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Preface

Our primary motivation in writing this book is to provide a basic introduc-
tion to Gibbs sampling. However, the early chapters are written so that the
book can also serve as an introduction to simulating probability models or to
computational aspects of Markov chains.

Prerequisites are a basic course in statistical inference (including data
description, and confidence intervals using t and chi-squared distributions)
and a post-calculus course in probability theory (including binomial, Poisson,
normal, gamma, and beta families of distributions, conditional and joint dis-
tributions, and the Law of Large Numbers). Accordingly, the target audience
is upper-division BS or first-year MS students and practitioners of statistics
with a knowledge of these prerequisites.
Specific Topics. Many students at the target level lack the full spectrum
of experience necessary to understand Gibbs sampling, and thus much of the
book is devoted to laying an appropriate foundation. Here are some specifics.

The first four chapters introduce the ideas of random number generation
and probability simulation. Fruitful use of simulation requires the right mix-
ture of confidence that it can often work quite well, consideration of margins
of error, and skepticism about whether necessary assumptions are met. Most
of our early examples of simulation contain a component for which exact an-
alytical results are available as a reality check. Some theoretical justifications
based on the Law of Large Numbers and the Central Limit Theorem are
provided. Later examples rely increasingly on various diagnostic methods.

Because Gibbs sampling is a computational tool for estimation, Chapter 5
introduces screening tests and poses the problem of estimating prevalence of
a trait from test data. This topic provides realistic examples where traditional
methods of estimation are problematic but for which a Bayesian framework
with Gibbs sampling is later shown to provide useful results. An important
pedagogical by product of this chapter is to start the reader thinking about
practical applications of conditional probability models.
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Most meaningful uses of Gibbs sampling involve limiting distributions of
ergodic Markov chains with continuous state spaces. Chapter 6 introduces
the theory of Markov dependence for chains with two states, material that
may be a review for some readers. Then Chapter 7 considers computations
and simulations for chains with finite, countable, and continuous state spaces.
Examples of absorbing and “almost absorbing” chains illustrate the impor-
tance of diagnostic methods. We have found that students can benefit from
these computational treatments of Markov chains either before or after a tradi-
tional theory-based undergraduate course in stochastic processes that includes
Markov chains.

Because Gibbs sampling is mainly used to compute Bayesian posterior
distributions, Chapter 8 provides an elementary introduction to some aspects
of Bayesian estimation. Then Chapter 9 shows a variety of applications of
Gibbs samplers in which the appropriate partial conditional distributions are
programmed in R to allow simulation of the desired posterior distributions.
Examples involving screening tests and variance components show how Gibbs
sampling in a Bayesian framework can provide useful interval estimates in
cases where traditional methods do not. Also, both flat and informative priors
are investigated. Chapter 10 briefly illustrates how the use of BUGS software
can sometimes minimize the programming necessary for Gibbs sampling.

Our treatment of Gibbs sampling is introductory. Readers who will use this
important computational method beyond the scope of our examples should
refer to any one of the many other more advanced books on the topic of
Bayesian modeling.
Computation. R software is used throughout. We provide and explain R
programs for all examples and many of the problems. Text files for all but the
briefest bits of code are also available online at

www.sci.csueastbay.edu/ ~esuess/psgs.htm

The goal has been to provide code that is simple to understand, taking ad-
vantage of the object-oriented structure of R whenever feasible, but avoiding
user-defined functions, data files, and libraries beyond the “base.” Readers
who have not used R before should begin with Chapter 11, which focuses on
just the terminology and procedures of R needed in our first few chapters.
Figures and Problems. Two important features of the book are the extra-
ordinarily large number of illustrations made using R and the extensive and
varied problems.

Throughout the book, figures are widely used to illustrate ideas and as
diagnostic tools. Although most of the figures have been embellished to show
well in print, the basic R code is provided for making images similar to those
in almost all figures.

Problems take up about a third of the pages in the book. They range from
simple drill problems to more difficult or advanced ones. Some of the problems
introduce optional topics and some can be easily expanded into more extensive



Preface IX

student projects. A few of the problems lead the reader through formal proofs
of probability results that are stated without proof in the text.
Frequentist and Bayesian Courses. We have used parts of Chapters 1–7
of this book in teaching two essentially non-Bayesian courses, one a beginning
course in probability simulation and the other a heavily computational course
on Markov chains and other applied probability models. In these courses that
do not cover the Bayesian and Gibbs-sampling topics, we have made heavier
use of the problems.

We have also used parts of Chapters 8–10 of this book in teaching Bayesian
Statistics and Mathematical Statistics at the undergraduate and beginning
graduate levels. In these courses, we present the ideas of Bayesian model-
ing and the use of R and WinBUGS for the estimation of these models. In
the graduate mathematical statistics classes, Bayesian modeling is presented
along with maximum likelihood estimation and bootstrapping to show the
connection between the frequentist and Bayesian interpretations of statistics.
Acknowledgments. In writing this book, we have been indebted to authors
of many books on related topics. In each chapter, we have tried to cite the
references that may be most useful for our readers. Also, we thank the many
students who have made corrections and helpful comments as they used drafts
of our manuscript.

Eric A. Suess
Bruce E. Trumbo
Hayward, CA, February 2010
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1

Introductory Examples: Simulation,
Estimation, and Graphics

1.1 Simulating Random Samples from Finite Populations

Because simulation is a major topic of this book, it seems appropriate to start
with a few simple simulations. For now, we limit ourselves to simulations based
on the R-language function sample.

In our first example, we use combinatorial methods to find an exact solu-
tion to an easy problem—and then, as a demonstration, we use simulation to
find an approximate solution. Throughout the book we have many opportu-
nities to see that simulation is useful. In Example 1.1 we are content to show
that simulation can produce a result we know is reasonably accurate.

Example 1.1. Sampling Computer Chips. Suppose there are 100 memory chips
in a box, of which 90 are “good” and 10 are “bad.” We withdraw five of the
100 chips at random to upgrade a computer. What is the probability that all
five chips are good?

Let the random variable X be the number of good chips drawn. We seek
P{X = 5}. Altogether there are (1005 ) = 75 287 520 equally likely ways in which
to select five chips from the box. Of these possible samples, ( 90

5 ) = 43 949 268
consist entirely of good chips. Thus the answer is

P (All Good) = P{X = 5} = ( 90
5 )/( 100

5 ) = 0.5838.

This can be evaluated in R as choose(90, 5)/choose(100, 5).
Now we use the sample function to approximate P{X = 5} by simulation.

This function takes a random sample from a finite population. Of course, in
any particular sampling procedure, we must specify the population and the
sample size. We also have to say whether sampling is to be done with or
without replacement (that is, with or without putting each selected item back
into the population before the next item is chosen). The following arguments
of the sample function are used to make these specifications:

1E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R,
Use R!, DOI 10.1007/978-0-387-68765-0_1, © Springer Science+Business Media, LLC 2010
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• The argument given first specifies the population. For our simulation, we
represent the population as the vector 1:100, which has the numbers 1
through 100 as its elements. (Of these, we regard the ten chips numbered 91
through 100 to be the bad ones.)

• The second argument is the number of items to be chosen, in our case, 5.
• To implement sampling with replacement, one would have to include the

argument repl=T. But in taking chips from the box, we want to sample
without replacement. This is the default sampling mode in R, so the effect
is the same whether we include or omit the argument repl=F.

Accordingly, we use the statement sample(1:100, 5) to sample five different
chips at random from the box of 100. Because this statement is a random one,
it is likely to give a different result each time it is used. Listed below are the
results we obtained from using it three times:

> sample(1:100, 5)

[1] 46 85 68 59 81

> sample(1:100, 5)

[1] 17 43 36 99 84

> sample(1:100, 5)

[1] 58 51 57 81 43

Our second simulated sample contains one bad chip (numbered 99). Only good
chips are found in the first and third samples. The three simulated values of
our random variable are X = 5, 4, and 5, respectively.

For a useful simulation, we must generate many samples of five chips, and
we need an automated way to count the good chips in each sample. We can
do this by determining how many chips have numbers 90 or smaller.

Here is one method, suppose pick = c(17, 43, 36, 99, 84). Then the vec-
tor (pick <= 90) has elements TRUE, TRUE, TRUE, FALSE, and TRUE, respec-
tively. If we take the sum of these elements, then R “coerces” (interprets) FALSE
as 0 and TRUE as 1. This amounts to taking the sum 1 + 1 + 1 + 0 + 1 = 4.
In general, sum(pick <= 90) returns the number of good chips in pick.
(Problem 1.2 asks you to explore an alternative method of counting the good
chips in a sample.)

With this background, we are ready to use a large-scale simulation to
approximate P{X = 5}. We simulate m = 100 000 samples of five chips
from the box (see Figure 1.1). In the following R program, we loop through
these m samples, counting the number of good items found in each. The
proportion of the m samples consisting entirely of good chips approximates
P{X = 5}. In Chapter 3, we discuss the theoretical justification for this
method of approximation in terms of the Law of Large Numbers. For now, it
is enough to look at some cases in which the method works.

In the program below, the statement good = numeric(m) initializes the
object good as a vector of m elements, all of which are 0s. Then, on the ith
passage through the loop, the ith element of good is replaced by the actual
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Figure 1.1. Based on 100 000 iterations, the histogram shows the simulated distri-
bution of the number of good computer chips in a random sample of 5 from a box
of 100 of which 90 are good (see Example 1.1). The heavy dots are centered on exact
values from the corresponding hypergeometric distribution (see Problem 1.3).

number of good items seen in the ith simulated sample. (For a similar program,
see Example 11.7.) Beneath the program, we show the result of one run.

# set.seed(1237) # this seed for exact result shown

m = 100000 # number of samples to simulate

good = numeric(m) # initialize for use in loop

for (i in 1:m)

{

pick = sample(1:100, 5) # vector of 5 items from ith box

good[i] = sum(pick <= 90) # number Good in ith box

}

mean(good == 5) # approximates P{All Good}

> mean(good == 5)

[1] 0.58293

The vector good has m = 100 000 elements, each the number of good chips
in one of the simulated samples. Averaging the elements of the logical vector
(good == 5) amounts to finding the proportion 0.58293 of the m samples in
which only good chips were chosen. This particular simulation run approxi-
mates the probability P{X = 5} = 0.5838 correct to two decimal places.

If you omit the statement set.seed at the beginning of the program, you
will get a slightly different answer each time you run it. For example, in four
additional runs we got 0.58385, 0.58390, 0.58345, and 0.58195. Approxima-
tions that are wrong by more than 0.004 are very rare. If you use the same
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seed and software we did, you will repeat precisely the simulation displayed
above and get the result 0.58293. (In Chapter 2, we explain how seeds work.) ♦

In practice, it would not make sense to approximate the probability in
Example 1.1 by simulation because it is so easy to find an exact value by
combinatorial methods. (See Problem 1.3 for details.) The next two examples
discuss a situation where simulation turns out to be useful.

Example 1.2. Birthday Matches—Combinatorial Approach. Suppose there are
n = 25 people in a room. What is the probability that two or more of them
have the same birthday? This is an intriguing problem because many people
expect the probability to be a lot smaller than it is.

• Perhaps such a person is thinking it is unlikely for someone in the room
to match his or her own birthday, overlooking that there are (252 ) = 300
possible pairs of people who might have matching birthdays.

• Perhaps such a person observes that there would have to be 367 people in
the room to be absolutely sure of a match, and so imagines a match must
be unlikely in a room with only 25 people. But the relationship between
room size and probability is far from linear (see Figure 1.2).

In order to get a useful solution to this problem by elementary combina-
torial methods, we make some assumptions:

1. Ignore leap years and pretend there are only 365 days in a year.
2. Assume that births are uniformly distributed throughout the year.
3. Assume that the people in the room are randomly chosen. Clearly, the

answer to our problem would be much different if the people in the room
were attending a convention of twins or of people born in December.

In most applied probability models, it is necessary to make some simplify-
ing assumptions. Such assumptions must be made with care and their effects
verified when possible. In our case, we know the first two assumptions are
false but hope they make little difference in our answer. We hope the third
assumption is true, or nearly so.

Under these assumptions, any one of 36525 equally likely sequences of
birthdays might occur in the room. Also, 365P25 = 365!/(365 − 25)! of these
possible outcomes avoid birthday matches. Therefore,

P (No Match) = 365P25

36525
=

24∏

i=0

(
1− i

365

)
= 0.4313 . (1.1)

So p = P (AtLeast One Match) = 1−0.4313 = 0.5687. In R, P (NoMatch) can
be evaluated as prod((365:(365-24))/365) or as prod(1 - (0:24)/365).

Intuitively, it seems the probability p of getting a match must increase as
the number n of people in the room increases. The following program explores
the relationship between n and p. It loops through rooms of sizes n = 1 to 60,
finding p for each room size. Then it plots p against n. The result is shown in
Figure 1.2.
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Figure 1.2. As the number of people in a room increases, so does the probability
of matching birthdays among them. In a room with 23 people, the probability of
such a match slightly exceeds 1/2; with 60 or more, matches are almost certain.

n = 1:60 # vector of room sizes

p = numeric(60) # initialize vector, all 0s

for (i in n) # index values for loop

{

q = prod(1 - (0:(i-1))/365) # P(No match) if i people in room

p[i] = 1 - q # changes ith element of p

}

plot(n, p) # plot of p against n

Of course, the probability of getting at least one match is 0 if n = 1. From
Figure 1.2 or, more precisely, from the additional code p[c(22, 23, 60)],
we see that p first exceeds 50% at n = 23 and that, in a room with n = 60
people, the probability of at least one birthday match is 0.994. (Making labels
and reference lines requires additional code; for simplicity, we do not usually
show the code used to embellish graphs for publication.) ♦

In Example 1.3, we solve the birthday matching problem by simulation.
One disadvantage of simulation is that it yields no formula, such as (1.1), that
can be generalized to any number n of people. Furthermore, simulation does
not even provide an exact answer for a particular number of people. However,
this example shows an elementary problem in which simulation turns out to
have important advantages.
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Example 1.3. Birthday Matches—Using Simulation. Again, we focus attention
on a room with n = 25 randomly chosen people and assume there are 365
equally likely birthdays in a year. We begin by simulating the birthdays in
one room. Numbering the days of the year from 1 to 365, we can use the
sample function to get a list of 25 random birthdays in a room. Of course, we
sample with replacement here because we need to allow for the possibility of
matching birthdays. One use of this function with the appropriate parameters
gives the following result:

> b = sample(1:365, 25, repl=T); b

[1] 74 251 335 104 39 256 193 295 350 41

[11] 100 180 117 205 96 74 142 325 203 308

[21] 325 264 78 83 52

In this simulated room of 25 people, there are two birthday matches: The
people numbered 1 and 16 were both born on the 74th day of the year, and
those numbered 18 and 21 were both born on the 325th day. We would also
have said there are two birthday matches if person 18 had been born on the
74th day.

The function unique can be used to automate the counting of birthday
matches. For example, the vector unique(b) is the same as b, except that
it has only 23 elements. The second occurrences of birthdays 74 and 325 are
removed. Thus x = 25 - length(unique(b)) computes 25 − 23 = 2. This
is the number X of birthday matches (redundant birthdays) among the 25
people in the “room” simulated above.

In the program below, we simulate a large number m of rooms. Almost
as if taking a poll, we “ask” each room, “How many birthday matches do
you have?” In a large poll, we anticipate that the fraction of rooms with
no matches will be very nearly P (NoMatches) = P{X = 0} = 0.4313, as
obtained with combinatorics in Example 1.2. We also anticipate that the mean
number of birthday matches in the m rooms will approximate the expected
number E(X) of birthday matches. This expected value is difficult to evaluate
by combinatorial methods.

The last three lines of the program estimate P{X = 0} (by mean(x == 0))
and E(X) (by mean(x)) and plot a histogram that gives a good idea of the
shape of the distribution of X.

set.seed(1237)

m = 100000; n = 25 # iterations; people in room

x = numeric(m) # vector for numbers of matches

for (i in 1:m)

{

b = sample(1:365, n, repl=T) # n random birthdays in ith room

x[i] = n - length(unique(b)) # no. of matches in ith room

}

mean(x == 0); mean(x) # approximates P{X=0}; E(X)

cutp = (0:(max(x)+1)) - .5 # break points for histogram

hist(x, breaks=cutp, prob=T) # relative freq. histogram
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Figure 1.3. A histogram based on 100 000 simulated rooms, each with 25 people.
It approximates the distribution of the number of birthday matches, which would
be difficult to obtain by combinatorial methods. The probability 0.43 of no matches
(height of the leftmost bar) agrees with a combinatorial result in Example 1.2.

To two places, the resulting approximations are P{X = 0} ≈ 0.43 and
E(X) ≈ 0.81. Because the former agrees with the known value 0.4313, we
believe that the simulation is performing as we intended—and so also that
the latter value is a useful approximation of E(X).

See Figure 1.3 for the histogram. The parameter prob=T puts a density
scale on the vertical axis. Thus we can see that the bar of the histogram at
x = 0 is approximately 0.43 units high. It also seems reasonable that the
balance point of the histogram is consistent with E(X) = 0.81. (We used the
parameter breaks=cutp to specify breakpoints for the histogram because we
did not like the histogram we obtained with the default breakpoints.)

To end this example, we discuss the assumption that birthdays are uni-
formly distributed throughout the year. For people born in the United States,
this assumption is not exactly correct. For example, there are more births in
summer months than in winter (see Figure 1.4).

An important advantage of simulation is the ease with which one may
account for such variations and thus test the effect of this departure from the
uniformity assumption. Nonuniformity tends to make birthday matches more
likely. However, in Problem 1.8 you can verify that the actual pattern of U.S.
birthrates gives very nearly the same probability of birthday matches as does
a uniform pattern. For practical purposes, the assumption that birthdays are
uniformly distributed does no harm. (These simulation results for nonuniform
birthrates agree with analytic approximations derived by methods consider-
ably beyond the mathematical level of this book. See [Nun92] and [PC00].) ♦
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Figure 1.4. Empirical U.S. birthrates for 36 consecutive months. The vertical scale
emphasizes seasonal variations, but simulation shows they do not seriously affect
the probability of birthday matches (see Problem 1.8). Data are for January 1997
through December 1999, From the U.S. National Center for Health Statistics.

Many of the methods we discuss in this book use simulation. Simulation
requires a reliable and plentiful supply of numbers that can be treated as
random. Therefore, in Chapter 2 we give a brief introduction to methods for
generating such numbers on a computer—and discuss some of the reasons it
is wise to be cautious about the software that provides them.

1.2 Coverage Probabilities of Binomial
Confidence Intervals

Now that we have shown some introductory examples of simulation, we turn
in this section to estimation—another major topic of this book. Later in this
book, we show that modern methods of estimation often require simulation,
but simulation plays no essential role in this section. The modern aspect here
is the enormous amount of computation required.

Suppose that n binomial trials with π = P (Success) result in X Successes.
(In this book, we usually denote the probability of Success by π, making
special note of the few instances where we need to use π = 3.1416.) The
traditional procedure, shown in many statistics texts, for computing an ap-
proximate 95% confidence interval for estimating π is to use the formula

p± 1.96

√
p(1− p)

n
. (1.2)
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This confidence interval is centered at the point estimate p = X/n of the
parameter π. The quantity we add and subtract to form the confidence interval
is called the margin of error.

In discussing this formula for computing confidence intervals, it is useful
to define

Z =
p− π√
π(1−π)

n

=
X − nπ√
nπ(1− π)

and Z ′ =
p− π√
p(1−p)

n

=
X − nπ√

X(n−X)
n

. (1.3)

In terms of these quantities, the validity of (1.2) as a 95% confidence interval
for π rests upon two assumptions:

1. Z is approximately standard normal, so that P{|Z| < 1.96} ≈ 95%.
2. π is estimated accurately enough by p that also P{|Z ′| < 1.96} ≈ 95%.

The approximation symbols (≈) can be replaced by equality only in the limit
as n →∞. Especially for small values of n or for values of π near 0 or 1, these
assumptions are worrisome.

First, if p = 0 or 1, then formula (1.2) gives a nonsensical “interval”
of zero length. Also, as illustrated in Example 1.4, extreme values of p can
give confidence intervals that extend to impossible values beyond the interval
(0, 1). Because troublesome values of p are most likely to occur for extreme
values of π, it seems clear that intervals of the form (1.2) should not be used in
certain kinds of practical applications where Successes are either very rare or
very common. Such situations occur regularly; for example, in epidemiology
and quality management.

Second, binomial distributions are discrete and (except when π = 1/2)
also skewed. Normal distributions are continuous and symmetrical. Especially
when n is small and π near 0 or 1, it may not be realistic to expect a useful
normal approximation to a binomial distribution.

Finally, the length of the confidence interval is based on p rather than π. If
the interval is longer or shorter than it should be, that would affect the chance
that it covers the value of π. How large must n be before p can reasonably be
used as a substitute for π?

Example 1.4. Estimating the Probability that a Die Shows a Six. As an ele-
mentary illustration of confidence intervals made with formula (1.2), suppose
20 students in a class were each asked to roll a die 30 times. We note the
number X of 6s observed and find the corresponding confidence interval.

Figure 1.5 shows the results. Two students (numbers 2 and 12 in the figure)
were surprised to get only one 6 in 30 rolls, so each of them obtained the
confidence interval (−0.031, 0.098). This confidence interval does not cover the
probability π = 1/6 of getting a 6 with a fair die. Also, it includes impossible
negative values, and so there is some question how it should be interpreted.
In contrast, student 10 rolled ten 6s; the lower end of her confidence interval
(0.165, 0.502) barely covered π = 1/6.
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Figure 1.5. Each of 20 students rolled a die 30 times, observed the number of 6s
obtained, and used formula (1.2) to make a confidence interval to estimate the
probability of getting a 6. Of these 20 intervals, 18 covered the probability π = 1/6.

Thus 18 of the 20 students obtained confidence intervals covering 1/6 and
two did not. If we were to do this experiment with a very large number of
students, if the dice were fair, and if the true coverage probability of confidence
intervals made with formula (1.2) were 95%, then we would expect about 95%
of the students to get confidence intervals covering 1/6. ♦

The next two examples are computationally intensive investigations of the
usefulness of (1.2). Each step is elementary; the complexity arises only because
there are so many computations at each step.

Example 1.5. Two Coverage Probabilities. Suppose a new process for making
a prescription drug is in development. Of n = 30 trial batches made with
the current version of the process, X = 24 batches give satisfactory results.
Then p = 24/30 = 0.8 estimates the population proportion π = P (Success)
of satisfactory batches with the current version of the process. Wondering
how near p = 0.8 might be to π, the investigators use (1.2) to obtain the
approximate 95% confidence interval 0.8± 0.143 or (0.657, 0.943).

The question is whether a 95% level of confidence in the resulting interval
is warranted. If (1.2) is used repeatedly, in what proportion of instances does
it yield an interval that covers the true value π? If (1.2) is valid here, then the
simple answer ought to be 95%. Unfortunately, there is no simple answer to
this question. It turns out that the coverage probability depends on the value
of π.

In our situation, there are 31 possible values 0, 1, . . . , 30 of X, and thus
of p. From (1.2) we can compute the confidence interval corresponding to each
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of these 31 possible outcomes, just as we computed the confidence interval
(0.657, 0.943) corresponding to the outcome X = 24 above. (This particular
interval appears again in the printout of results from the program below—on
the 7th row from the bottom.)

By letting the number of successes run from 0 through 30, the first five
lines of R code below make a complete list of the possible confidence intervals
for n = 30. Their lower confidence limits are in the vector lcl and their upper
confidence limits in ucl.

Now choose a particular value of π, say π = 0.8, so that X has a binomial
distribution with n = 30 trials and success probability π = 0.8. We write this
as X ∼ BINOM(30, 0.8). The vector prob of the 31 probabilities P{X = x}
in this distribution is found with the R function dbinom(0:30, 30, .8). In
the R code, we use pp, population proportion, for π because R reserves pi for
the usual constant. We also use sp, sample proportion, for p = x/n.

Next, we determine which of the 31 confidence intervals cover the value
π = 0.8. Finally, the coverage probability is computed: It is the sum of the
probabilities corresponding to values of x that yield intervals covering π.

n = 30 # number of trials

x = 0:n; sp = x/n # n+1 possible outcomes

m.err = 1.96*sqrt(sp*(1-sp)/n) # n+1 Margins of error

lcl = sp - m.err # n+1 Lower conf. limits

ucl = sp + m.err # n+1 Upper conf. limits

pp = .80 # pp = P(Success)

prob = dbinom(x, n, pp) # distribution vector

cover = (pp >= lcl) & (pp <= ucl) # vector of 0s and 1s

round(cbind(x, sp, lcl, ucl, prob, cover), 4) # 4-place printout

sum(dbinom(x[cover], n, pp)) # total cov. prob. at pp

> round(cbind(x, sp, lcl, ucl, prob, cov), 4)

x sp lcl ucl prob cover

...

[18,] 17 0.5667 0.3893 0.7440 0.0022 0

[19,] 18 0.6000 0.4247 0.7753 0.0064 0

[20,] 19 0.6333 0.4609 0.8058 0.0161 1

[21,] 20 0.6667 0.4980 0.8354 0.0355 1

[22,] 21 0.7000 0.5360 0.8640 0.0676 1

[23,] 22 0.7333 0.5751 0.8916 0.1106 1

[24,] 23 0.7667 0.6153 0.9180 0.1538 1

[25,] 24 0.8000 0.6569 0.9431 0.1795 1

[26,] 25 0.8333 0.7000 0.9667 0.1723 1

[27,] 26 0.8667 0.7450 0.9883 0.1325 1

[28,] 27 0.9000 0.7926 1.0074 0.0785 1

[29,] 28 0.9333 0.8441 1.0226 0.0337 0

[30,] 29 0.9667 0.9024 1.0309 0.0093 0

[31,] 30 1.0000 1.0000 1.0000 0.0012 0



12 1 Introductory Examples

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

π = P(Success)

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Figure 1.6. True coverage probabilities for traditional “95%” binomial confidence
intervals when n = 30, computed according to formula (1.2). The coverage probabil-
ity varies widely as π changes, seldom achieving the nominal 95%. Two heavy dots
show values discussed in Example 1.5. (Compare this with Figure 1.8, p21.)

> sum(dbinom(x[cover], n, pp))

[1] 0.9463279

To save space, the first 17 lines of output are omitted; none of them involve
intervals that cover π. We see that the values x = 20, 21, . . . , 27 yield intervals
that cover 0.30 (the ones for which cov takes the value 1). Thus the total
coverage probability for π = 0.30 is

P (Cover) = P{X = 20}+ P{X = 21}+ · · ·+ P{X = 27}
= 0.0355 + 0.0676 + · · ·+ 0.0785 = 0.9463.

Notice that, for given n and π, the value of Z ′ in (1.3) depends only on
the observed value of X. We have just shown by direct computation that if
n = 30 and π = 0.8, then P{|Z ′| < 1.96} = P{20 ≤ X ≤ 27} = 0.9463. This
is only a little smaller than the claimed value of 95%.

In contrast, a similar computation with n = 30 and π = 0.79 gives a
coverage probability of only 0.8876 (see Problem 1.14). This is very far below
the claimed coverage probability of 95%. The individual binomial probabilities
do not change much when π changes from 0.80 to 0.79. The main reason for the
large change in the coverage probability is that, for π = 0.79, the confidence
interval corresponding to x = 27 no longer covers π. ♦

For confidence intervals computed from (1.2), we have shown that a very
small change in π can result in a large change in the coverage probability. The
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discreteness of the binomial distribution results in “lucky” and “unlucky”
values of π. Perhaps of more concern, both of the coverage probabilities of
traditional confidence intervals we have seen so far are smaller than 95%—
one of them much smaller. Next we explore whether such “undercoverage” is
exceptional or typical.

Example 1.6. Two Thousand Coverage Probabilities. To get a more compre-
hensive view of the performance of confidence intervals based on formula (1.2),
we step through two thousand values of π from near 0 to near 1. For each value
of π, we go through a procedure like that shown in Example 1.5. Finally, we
plot the coverage probabilities against π.

n = 30 # number of trials

alpha = .05; k = qnorm(1-alpha/2) # conf level = 1-alpha

adj = 0 # (2 for Agresti-Coull)

x = 0:n; sp = (x + adj)/(n + 2*adj) # vectors of

m.err = k*sqrt(sp*(1 - sp)/(n + 2*adj)) # length

lcl = sp - m.err # n + 1

ucl = sp + m.err #

m = 2000 # no. of values of pp

pp = seq(1/n, 1 - 1/n, length=m) # vectors

p.cov = numeric(m) # of length m

for (i in 1:m) # loop (values of pp)

{ # for each pp:

cover = (pp[i] >= lcl) & (pp[i] <= ucl) # 1 if cover, else 0

p.rel = dbinom(x[cover], n, pp[i]) # relevant probs.

p.cov[i] = sum(p.rel) # total coverage prob.

}

plot(pp, p.cov, type="l", ylim=c(1-4*alpha,1))

lines(c(.01,.99), c(1-alpha,1-alpha))

It is clear from the resulting plot (Figure 1.6) that it is not unusual for
the coverage probabilities of intervals based on (1.2) to vary rapidly as π
varies in (0, 1). More regrettably, the true coverage probabilities are often
much lower than the claimed 95%. Furthermore, this tendency for coverage
probabilities to be too low persists even for moderately large n (see Figure 1.7
and Problem 1.15). ♦

In addition to the graphs in Example 1.6, we made similar ones based on
formula (1.2) for various levels of confidence 1−α between 90% and 99% and
for various sample sizes n up to 200. These plots show that, for values of α
and n frequently encountered in practice, the traditional confidence intervals
cannot be relied upon to provide the promised level of confidence unless π is
close to 1/2. Many ways have been proposed to improve confidence intervals
for binomial proportions.
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Figure 1.7. True coverage probabilities for traditional binomial confidence intervals
continue to lie mainly below their target value even for moderately large n. This
plot is based on a nominal confidence level of 95% and n = 100.

Fortunately, one of the proposed types of confidence intervals is simple
to compute and has satisfactory coverage probabilities in many situations.
Agresti-Coull confidence intervals are made by “adding two successes and
two failures” to the data and then applying formula (1.2) to the adjusted data.
Very briefly put, the effect of the adjustment is to shrink the distance between
the point estimate and 1/2, thus increasing the length of the confidence inter-
val for better coverage when the point estimate is far from 1/2. Throughout
this book, we often use this type of interval when n < 1000. For very large n,
the adjustment is not needed and has a negligible effect. See Problems 1.16,
1.17, and 1.19 for more about Agresti-Coull confidence intervals.

Perhaps you noticed the constant adj = 0, which played no essential role
in our run of the R program in Example 1.6. If we substitute adj = 2, the
program makes Figure 1.8 (p21), which shows coverage probabilities for 95%
Agresti-Coull confidence intervals when n = 30.

No one style of confidence interval for binomial π seems to be satisfactory
for all purposes. There is rich literature on binomial confidence intervals. The
discussion and graphics in this section are largely based on papers by Agresti
and Coull [AC98] and by Brown, Cai, and DasGupta [BCD01], both of which
include extensive lists of references.

Because of the assumptions involved, statisticians have wondered and de-
bated for some time about the accuracy of (1.2) in making binomial confi-
dence intervals. However, the impact of plots such as our Figures 1.6 and 1.7
is difficult to ignore. From them, the systematic undercoverage of traditional
confidence intervals is strikingly clear. The results we have reviewed in this
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section awaited a confluence of convenient software, modern hardware, and
the ingenuity of researchers to use computer graphics to such powerful effect.

A major theme throughout this book is the use of graphical methods to
better understand familiar concepts, verify the validity of statistical analyses
and probability models, and explore new ideas.

1.3 Problems

Problems for Section 1.1 (Simulating Samples)

1.1 Based on Example 1.1, this problem provides some practice using R.

a) Start with set.seed(1). Then execute the function sample(1:100, 5)
five times and report the number of good chips in each.

b) Start with set.seed(1), and execute sum(sample(1:100, 5) <= 90)
five times. Report and explain the results.

c) Which two of the following four samples could not have been produced
using the function sample(1:90, 5)? Why not?

[1] 2 62 84 68 60

[1] 46 39 84 16 39

[1] 43 20 79 32 84

[1] 68 2 98 20 50

1.2 This problem relates to the program in Example 1.1.

a) Execute the statements shown below in the order given. Explain what
each statement does. Which ones produce output? What is the length of
each vector? (A number is considered a vector of length 1.) Which vectors
are logical, with possible elements TRUE or FALSE, and which are numeric?

pick = c(4, 47, 82, 21, 92); pick <= 90; sum(pick <= 90)

pick[1:90]; pick[pick <= 90]; length(pick[pick <= 90])

as.numeric(pick <= 90); y = numeric(5); y; y[1] = 10; y

w = c(1:5, 1:5, 1:10); mean(w); mean(w >= 5)

b) In the program, propose a substitute for the second line of code within
the loop so that good[i] is evaluated in terms of length instead of sum.
Run the resulting program, and report your result.

1.3 The random variable X of Example 1.1 has a hypergeometric distri-
bution. In R, the hypergeometric probabilities P{X = x} can be computed
using the function dhyper. Its parameters are, in order, the number x of good
items seen in the sample, the number of good items in the population, the
number of bad items in the population, and the number of items selected
without replacement. Thus each of the statements dhyper(5, 90, 10, 5) and
dhyper(0, 10, 90, 5) returns 0.5837524.
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a) What is the relationship between sample(1:100, 5) and choose(100, 5)?
b) Compute P{X = 2} using dhyper and then again using choose.
c) Run the program of Example 1.1 followed by the statements mean(good)

and var(good). What are the numerical results of these two statements?
In terms of the random variable X, what do they approximate and how
good is the agreement?

d) Execute sum((0:5)*dhyper(0:5, 90, 10, 5))? How many terms are be-
ing summed? What numerical result is returned? What is its connection
with part (c)?

Notes: If n items are drawn at random without replacement from a box with b Bad

items, g Good items, and T = g+b, then E(X) = ng/T , V(X) = n( g
T

)(1− g
T

)(T−n
T−1

).

1.4 Based on concepts in the program of Example 1.3, this problem pro-
vides practice using functions in R.

a) Execute the statements shown below in the order given. Explain what
each statement does. State the length of each vector. Which vectors are
numeric and which are logical?

a = c(5, 6, 7, 6, 8, 7); length(a); unique(a)

length(unique(a)); length(a) - length(unique(a))

duplicated(a); length(duplicated(a)); sum(duplicated(a))

b) Based on your findings in part (a), propose a way to count redundant
birthdays that does not use unique. Modify the program to implement
this method and run it. Report your results.

1.5 Item matching. There are ten letters and ten envelopes, a proper one
for each letter. A very tired administrative assistant puts the letters into the
envelopes at random. We seek the probability that no letter is put into its
proper envelope and the expected number of letters put into their proper
envelopes. Explain, statement by statement, how the program below approx-
imates these quantities by simulation. Run the program with n = 10, then
with n = 5, and again with n = 20. Report and compare the results.

m = 100000; n = 10; x = numeric(m)

for (i in 1:m) {perm = sample(1:n, n); x[i] = sum(1:n==perm)}

cutp = (-1:n) + .5; hist(x, breaks=cutp, prob=T)

mean(x == 0); mean(x); sd(x)

Notes: Let X be the number correct. For n envelopes, a combinatorial argument gives

P{X = 0} = 1/2!−1/3!+− · · ·+(−1)n/n! . (See [Fel57] or [Ros97].) In R, i = 0:10;

sum((-1)^i/factorial(i)). For any n > 1, P{X = n − 1} = 0, P{X > n} = 0,

E(X) = 1, and V (X) = 1. For large n, X is approximately POIS(1). Even for n as

small as 10, this approximation is good to two places; to verify this, run the program

above, followed by points(0:10, dpois(0:10, 1)).

1.6 A poker hand consists of five cards selected at random from a deck of
52 cards. (There are four Aces in the deck.)
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a) Use combinatorial methods to express the probability that a poker hand
has no Aces. Use R to find the numerical answer correct to five places.

b) Modify the program of Example 1.1 to approximate the probability in
part (a) by simulation.

1.7 Martian birthdays. In his science fiction trilogy on the human colo-
nization of Mars, Kim Stanley Robinson arranges the 669 Martian days of
the Martian year into 24 months with distinct names [Rob96]. Imagine a
time when the Martian population consists entirely of people born on Mars
and that birthdays in the Martian-born population are uniformly distributed
across the year. Make a plot for Martians similar to Figure 1.2. (You do not
need to change n.) Use your plot to guess how many Martians there must
be in a room in order for the probability of a birthday match just barely to
exceed 1/2. Then find the exact number with min(n[p > 1/2]).

1.8 Nonuniform birthrates. In this problem, we explore the effect on birth-
day matches of the nonuniform seasonal pattern of birthrates in the United
States, displayed in Figure 1.4. In this case, simulation requires an additional
parameter prob of the sample function. A vector of probabilities is used to
indicate the relative frequencies with which the 366 days of the year are to
be sampled. We can closely reflect the annual distribution of U.S. birthrates
with a vector of 366 elements:

p = c(rep( 96,61), rep( 98,89), rep( 99,62),

rep(100,61), rep(104,62), rep(106,30), 25)

The days of the year are reordered for convenience. For example, February 29
appears last in our list, with a rate that reflects its occurrence only one year
in four. Before using it, R scales this vector so that its entries add to 1.

To simulate the distribution of birthday matches based on these birthrates,
we need to make only two changes in the program of Example 1.3. First,
insert the line above before the loop. Second, replace the first line within the
loop by b = sample(1:366, 25, repl=T, prob=p). Then run the modified
program, and compare your results with those obtained in the example.

1.9 Nonuniform birthrates (continued). Of course, if the birthrates vary too
much from uniform, the increase in the probability of birthday matches will
surely be noticeable. Suppose the birthrate for 65 days we call “midsummer”
is three times the birthrate for the remaining days of the year, so that the
vector p in Problem 1.8 becomes p = c(rep(3, 65), rep(1, 300), 1/4).

a) What is the probability of being born in “midsummer”?
b) Letting X be the number of birthday matches in a room of 25 randomly

chosen people, simulate P{X ≥ 1} and E(X).

Answers: (a) sum(p[1:65])/sum(p). Why? (b) Roughly 0.67 and 1.0, respectively.
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1.10 Three problems are posed about a die that is rolled repeatedly. In
each case, let X be the number of different faces seen in the specified num-
ber of rolls. Using at least m = 100 000 iterations, approximate P{X = 1},
P{X = 6}, and E(X) by simulation. To do this write a program using the
one in Example 1.3 as a rough guide. In what way might some of your sim-
ulated results be considered unsatisfactory? To verify that your program is
working correctly, you should be able to find exact values for some, but not
all, of the quantities by combinatorial methods.

a) The die is fair and it is rolled 6 times.
b) The die is fair and it is rolled 8 times.
c) The die is biased and it is rolled 6 times. The bias of the die is such that

2, 3, 4, and 5 are equally likely but 1 and 6 are each twice as likely as 2.

Answers: P{X = 1} = 1/65 in (a); the approximation has small absolute error but

perhaps large percentage error. P{X = 6} = 6!/66 = 5/324 in (a), 45/4096 in (c).

Problems for Section 1.2 (Binomial Confidence Intervals)

1.11 Suppose 40% of the employees in a very large corporation are women.
If a random sample of 30 employees is chosen from the corporation, let X be
the number of women in the sample.

a) For a specific x, the R function pbinom(x, 25, 0.3) computes P{X ≤ x}.
Use it to evaluate P{X ≤ 17}, P{X ≤ 6}, and hence P{7 ≤ X ≤ 17}.

b) Find µ = E(X) and σ = SD(X). Use the normal approximation to eval-
uate P{7 ≤ X ≤ 17}. That is, take Z = (X − µ)/σ to be approximately
standard normal. It is best to start with P{6.5 < X < 17.5}. Why?

c) Now suppose the proportion π of women in the corporation is unknown.
A random sample of 30 employees has 20 women. Do you believe π is as
small as 0.4? Explain.

d) In the circumstances of part (c), use formula (1.2) to find an approximate
95% confidence interval for π.

Hints and comments: For (a) and (b), about 0.96; you should give 4-place accuracy.

The margin of error in (d) is about 0.17. Example 1.5 shows that the actual coverage

probability of the confidence interval in (d) may differ substantially from 95%; a

better confidence interval in this case is based on the Agresti-Coull adjustment of

Problem 1.16: (0.486, 0.808).

1.12 Refer to Example 1.4 and Figure 1.5 on the experiment with a die.

a) Use formula (1.2) to verify the numerical values of the confidence intervals
explicitly mentioned in the example ( for students 2, 10, and 12).

b) In the figure, how many of the 20 students obtained confidence intervals
extending below 0?

c) The most likely number of 6s in 30 rolls of a fair die is five. To verify this,
first use i = 0:30; b = dbinom(i, 30, 1/6), and then i[b==max(b)] or
round(cbind(i, b), 6). How many of the 20 students got five 6s?
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1.13 Beneath the program in Example 1.1 on sampling computer chips, we
claimed that the error in simulating P{X = 5} rarely exceeds 0.004. Consider
that the sample proportion 0.58298 is based on a sample of size m = 100 000.

a) Use formula (1.2) to find the margin of error of a 95% confidence interval
for π = P{X = 5}. With such a large sample size, this formula is reliable.

b) Alternatively, after running the program, you could evaluate the margin
of error as 1.96*sqrt(var(good==5)/m). Why is this method essentially
the same as in part (a)? (Ignore the difference between dividing by m and
m− 1. Also, for a logical vector g, notice that sum(g) equals sum(g^2).)

1.14 Modify the R program of Example 1.5 to verify that the coverage
probability corresponding to n = 30 and π = 0.79 is 0.8876. Also, for n = 30,
find the coverage probabilities for π = 1/6 = 0.167, 0.700, and 0.699. Then find
coverage probabilities for five additional values of π of your choice. From this
limited evidence, which appears to be more common—coverage probabilities
below 95% or above 95%? In Example 1.4, the probability of getting a 6 is
π = 1/6, and 18 of 20 confidence intervals covered π. Is this better, worse, or
about the same as should be expected?

1.15 Modify the program of Example 1.6 to display coverage probabilities
of traditional “95% confidence” intervals for n = 50 observations. Also, modify
the program to show results for nominal 90% and 99% confidence intervals
with n = 30 and n = 50. Comment on the coverage probabilities in each of
these five cases. Finally, compare these results with Figure 1.7.

1.16 In the R program of Example 1.6, set adj = 2 and leave n = 30. This
adjustment implements the Agresti-Coull type of 95% confidence interval. The
formula is similar to (1.2), except that one begins by “adding two successes
and two failures” to the data. [Example: If we see 20 Successes in 30 trials,
the 95% Agresti-Coull interval is centered at 22/34 = 0.6471 with margin of
error 1.96

√
(22)(12)/343 = 0.1606, and the interval is (0.4864, 0.8077).]

Run the modified program, and compare your plot with Figures 1.6 (p12)
and 1.8 (p21). For what values of π are such intervals too “conservative”—too
long and with coverage probabilities far above 95%? Also make plots for 90%
and 99% and comment. (See Problem 1.17 for more on this type of interval.)

1.17 Algebraic derivation of alternate types of confidence intervals. For con-
venience, denote the standard error of p as SE(p) =

√
π(1− π)/n and its

estimated standard error as ŜE(p) =
√

p(1− p)/n.

a) Show that P{|p−π|/ŜE(p) < κ} = P{p−κ ŜE(p) < π < p+κ ŜE(p)}. The
extreme terms in the second inequality are the endpoints of the confidence
interval based on (1.2). The intended confidence level is 1 − α, and κ is
defined by P{|Z| < κ} = 1− α for standard normal Z.

b) We can also “isolate” π between two terms computable from observed
data by using SE(p) instead of its estimate ŜE(p). Show that
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P{|p− π|/SE(p) < κ} = P{p̃− E < π < p̃ + E},

where p̃ = X+κ2/2
n+κ2 , E = κ

n+κ2

√
np(1− p) + κ2/4, and κ is as in part (a).

Overall, the coverage probabilities of the Wilson confidence interval
p̃±E tend to be closer to 1−α than those of an interval based on (1.2). The
Wilson interval uses the normal approximation, but it avoids estimating
the standard error SE(p).

c) If we define X̃ = X+κ2/2 and ñ = n+κ2, then verify that p̃ = X̃/ñ agrees
with the p̃ of part (b). Also, show that E∗ = κ

√
p̃(1− p̃)/ñ is larger than

E of part (b), but not by much. With these definitions of ñ and p̃, the
Agresti-Coull confidence interval p̃±E∗ is similar in form to the interval
of (1.2). But, for most values of π, its coverage probabilities are closer to
1− α than are those of the traditional interval. (See Problem 1.16.)

Hints and comments: (b) Square and use the quadratic formula to solve for π.

When 1 − α = 95%, one often uses κ = 1.96 ≈ 2 and thus p̃ ≈ X+2
n+4

. (c) The

difference between E and E∗ is of little practical importance unless p̃ is near 0 or 1.

For a more extensive discussion, see [BCD01].

1.18 For a discrete random variable X, the expected value (if it exists) is
defined as µ = E(X) =

∑
k kP{X = k}, where the sum is taken over all

possible values of k. Also, if X takes only nonnegative integer values, then
one can show that µ =

∑
k P{X > k}. In particular, if X ∼ BINOM(n, π),

then one can show that µ = E(X) = nπ.
Also, the mode (if it exists) of a discrete random variable X is defined

as the unique value k such that P{X = k} is greatest. In particular, if X is
binomial, then one can show that its mode is b(n + 1)πc; that is, the greatest
integer in (n+1)π. Except that if (n+1)π is an integer, then there is a “double
mode”: values k = (n + 1)π and (n + 1)π − 1 have the same probability.

Run the following program for n = 6 and π = 1/5 (as shown); for n = 7
and π = 1/2; and for n = 18 and π = 1/3. Explain the code and interpret the
answers in terms of the facts stated above about binomial random variables. (If
necessary, use ?dbinom to get explanations of dbinom, pbinom, and rbinom.)

n = 6; pp = 1/5; k = 0:n

pdf = dbinom(k, n, pp); sum(k*pdf)

cdf = pbinom(k, n, pp); sum(1 - cdf)

mean(rbinom(100000, n, pp))

n*pp; round(cbind(k, pdf, cumsum(pdf), cdf), 4)

k[pdf==max(pdf)]; floor((n+1)*pp)

1.19 Average lengths of confidence intervals. Problem 1.16 shows that, for
most values of π, Agresti-Coull confidence intervals have better coverage prob-
abilities than do traditional intervals based on formula (1.2). It is only rea-
sonable to wonder whether this improved coverage comes at the expense of
greater average length. For given n and π, the length of a confidence interval
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Figure 1.8. Coverage probabilities for Agresti-Coull 95% binomial confidence in-
tervals when n = 30. By “adding two Successes and two Failures” to the data,
coverage probabilities are much improved over those for traditional intervals, shown
in Figure 1.6. See Problems 1.16 and 1.17 for a discussion of this adjustment.

is a random variable because the margin of error depends on the number of
Successes observed. The program below illustrates the computation and finds
the expected length.

n = 30; pp = .2 # binomial parameters

alpha = .05; kappa = qnorm(1-alpha/2) # level is 1 - alpha

adj = 0 # 0 for traditional; 2 for Agresti-Coull

x = 0:n; sp = (x + adj)/(n + 2*adj)

CI.len = 2*kappa*sqrt(sp*(1 - sp)/(n + 2*adj))

Prob = dbinom(x, n, pp); Prod = CI.len*Prob

round(cbind(x, CI.len, Prob, Prod), 4) # displays computation

sum(Prod) # expected length

a) Explain each statement in this program, and state the length of each
named vector. (Consider a constant as a vector of length 1.)

b) Run the program as it is to find the average length of intervals based
on (1.2) when π = 0.1, 0.2, and 0.5. Then use adj = 2 to do the same for
Agresti-Coull intervals.

c) Figure 1.9 was made by looping through about 200 values of π. Use it to
verify your answers in part (b). Compare the lengths of the two kinds of
confidence intervals and explain.

d) Write a program to make a plot similar to Figure 1.9. Use the program
of Example 1.5 as a rough guide to the structure. You can use plot for
the first curve and lines to overlay the second curve.

Note: This program includes the entire length of any CI extending outside (0, 1).
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Figure 1.9. Average lengths of confidence intervals plotted against π. Agresti-Coull
intervals (solid line) are a little shorter for π near 1/2 and longer for π near 0 or 1
than are traditional confidence intervals based on (1.2). See Problem 1.19.

1.20 Bayesian intervals. Here is a confidence interval based on a Bayesian
method and using the beta family of distributions. If x successes are observed
in n binomial trials, we use the distribution BETA(x+1, n−x+1). An interval
with nominal coverage probability 1 − α is formed by cutting off probability
α/2 from each side of this beta distribution. For example, its 0.025 and 0.975
quantiles are the lower and upper limits of a 95% interval, respectively. In the
R program of Example 1.6, replace the lines for lcl and ucl with the code
below and run the program. Compare the coverage results for this Bayesian
interval with results for the 95% confidence interval based on formula (1.2),
which are shown in Figure 1.6. (Also, if you did Problem 1.16, compare it
with the results for the Agresti-Coull interval.)

lcl = qbeta(alpha/2, x + 1, n - x + 1)

ucl = qbeta(1 - alpha/2, x + 1, n - x + 1)

Notes: The mean of this beta distribution is (x+1)/(n+2), but this value need not

lie exactly at the center of the resulting interval. If 30 trials result in 20 successes,

then the traditional interval is (0.4980, 0.8354) and the Agresti-Coull interval is

(0.4864, 0.8077). The mean of the beta distribution is 0.65625, and a 95% Bayesian

interval is (0.4863, 0.8077), obtained in R with qbeta(c(.025, .975), 21, 11).

Bayesian intervals for π never extend outside (0, 1). (These Bayesian intervals are

based on a uniform prior distribution. Strictly speaking, the interpretation of such

“Bayesian probability intervals” is somewhat different than for confidence inter-

vals, but we ignore this distinction for now, pending a more complete discussion of

Bayesian inference in Chapter 8.)
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Generating Random Numbers

2.1 Introductory Comments on Random Numbers

Much of this book deals with simulation methods for probability models,
also called Monte Carlo methods. We have seen a few introductory examples
in Chapter 1. Even for some models that are easy to specify in a theoretical
form, it may be difficult or impossible to “do the math” necessary to obtain the
numerical results required in practice. Because of recent advances in computer
hardware and software, simulation methods now offer feasible solutions to
some of these troublesome computational problems.

In a simulation, the goal is to repeat an easily performed procedure thou-
sands of times as a practical substitute for a direct computation that may not
be feasible. Probability simulations are based on “random” numbers, which
can be manipulated to produce observations from a probability model of in-
terest.

How do we obtain such random numbers? One idea is to generate them
with some physical device [KvG92]. Here are some examples:

• Successive tosses of a fair coin yield 0s (tails) or 1s (heads) at random.
• Rolling a fair die repeatedly produces a sequence of numbers 1 through 6.
• The faces of an icosahedron die (a regular 20-sided polyhedron) can be

inscribed with two copies of the numbers 0 through 9; five rolls yield a
randomly chosen number from 0 (for 00000) to 99999.

• A deck of 52 cards can be shuffled and cut to give a card interpreted as
a randomly chosen digit from 1 to 52 (assuming more thorough shuffling
than is usual in a friendly game of bridge.)

• Noise from an electronic circuit can be sampled at sufficiently long intervals
to give cumulative counts, the last digits of which are randomly generated
from among digits from 0 to 9. (In the early days of simulation, this method
was used to make a book containing a million random digits [RAN55].)

Such mechanical procedures, carefully done, can give numbers that appear
to be random: successive outcomes that are independent and equally likely.

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 23
Use R!, DOI 10.1007/978-0-387-68765-0_2, © Springer Science+Business Media, LLC 2010
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However, modern simulations often require hundreds of thousands or millions
of random numbers, and so these physical methods are usually much too
slow to be of practical use. The main goal of this chapter is to show how
a computer can be programmed to generate “random numbers” quickly and
simply enough to support the simulations we do throughout this book.

Specifically, in the next two sections, we show one method of generating
numbers that are intended to be randomly sampled from the standard uniform
distribution UNIF(0, 1). We also show some of the tests that are commonly
used to verify whether these numbers behave as intended. In later sections of
this chapter, we show some ways to transform random variables that are in-
dependent and identically distributed as UNIF(0, 1) into random observations
from a variety of other families of distributions, such as binomial, Poisson,
exponential, and normal.

2.2 Linear Congruential Generators

Because computers are programmed to carry out set arithmetic instructions,
you may wonder how it is possible to get random numbers from a computer.
Strictly speaking, it is not possible. However, with ingenuity and care, pro-
grams can be devised to produce pseudorandom numbers; that is, numbers
that behave, for practical purposes, as if they were random. In this section,
we hope you will understand how it is possible for the “random” procedures
programmed into R to achieve an excellent and useful illusion of randomness.

A very common method of generating pseudorandom numbers on comput-
ers is called a linear congruential generator, a phrase we often shorten to
“generator” in this chapter. First, we state and illustrate the general formula
for such a generator. Then, in the next section, we discuss whether the results
can be trusted to behave as random in practice.

A linear congruential generator produces integers ri iteratively according
to the mathematical formula

ri+1 = ari + b (mod d), (2.1)

for integers a > 0, b ≥ 0, and d > 0, where i = 1, 2, 3 . . . . The notation mod,
short for modulo, means that ri+1 is the remainder when ari + b is divided
by d. For example, we say that 3 is equal or “congruent” to 8 mod 5. Here, a is
called the multiplier, b the increment, and d the modulus of the generator.

The generation process is started with a positive integer seed s = r1 < d,
often taken unpredictably from a computer clock. For suitably chosen a, b,
and d, formula (2.1) can shuffle integers from among 0, 1, 2, . . . , d− 1 in ways
that are not random but that pass many of the tests that randomly shuffled
integers should pass. If b = 0, then the generator is called multiplicative
and ri cannot take the value 0.

Because the process described in formula (2.1) requires only simple compu-
tations, numbers can be generated fast enough to support practical computer
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simulations. Also, programmers like to use linear congruential generators be-
cause they can be made to give predictable results during debugging. From a
generator specified by specific constants a, b, and d, you always get the same
sequence of numbers if you start with the same seed.

Following standard terminology, we sometimes refer to the results from a
linear congruential generator as “random numbers.” But do not be confused
by this terminology. First, the word random is more appropriately applied to
the process by which a number is produced than to the number itself. There
is no way to judge whether the number 0.785398 is random without seeing
many other numbers that came from the same process. Second, random is
shorthand for the more awkward pseudorandom.

Example 2.1. As a “toy” illustration, suppose we want to shuffle the 52 cards in
a standard deck. For convenience, number them 1, 2, 3, . . . , 52. Then consider
the generator with a = 20, b = 0, d = 53, and s = 21. To obtain its first 60
numbers, we treat R simply as a programming language, using the following
code.

d = 53 # modulus

a = 20 # multiplier

b = 0 # shift

s = 21 # seed

m = 60 # length of run (counting seed as #1)

r = numeric(m) # initialize vector for random integers

r[1] = s # set seed

for (i in 1:(m-1)) r[i+1] = (a * r[i] + b) %% d

# generates random integers

r # list of random integers generated

The results are:

> r # list of random integers generated

[1] 21 49 26 43 12 28 30 17 22 16 2 40 5

[14] 47 39 38 18 42 45 52 33 24 3 7 34 44

[27] 32 4 27 10 41 25 23 36 31 37 51 13 48

[40] 6 14 15 35 11 8 1 20 29 50 46 19 9

[53] 21 49 26 43 12 28 30 17

Here are the details of the first few steps: To get from the seed s = r1 = 21
to the first generated number r2, compute 20(21)+0 = 420 and then find the
remainder r2 = 49 upon division by 53. Similarly, r3 = 20(49) + 0 = 671 =
26 (mod 53). At step 53, we obtain r53 = 21 again, and the process repeats.

This generator runs through all 52 numbers before it repeats. We say that
the period of this generator is 52 and that it has full period because only
52 values are possible for a multiplicative generator with modulus 53. As an
illustration that not all generators have full period, you can easily verify for
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Figure 2.1. Randomness may be difficult to judge by eye. In which of these four
plots are the 100 points placed at random within the square? Each point should
have an equal chance of falling anywhere in the square, regardless of where other
points might have fallen. See Problem 2.8.

yourself that, with a = 23, the sequence of results is ri = 21, r2 = 36, r3 = 2,
r4 = 47, and then r5 = 21 again, so that the period is only 4. ♦

The output of linear congruential generators is governed by intricate
number-theoretic rules (some known and some apparently unknown), and we
do not attempt a systematic discussion here. However, we see in Problem 2.3
that in a multiplicative generator with d = 53, the values a = 15 and a = 30
are among the multipliers that also give periods smaller than 52.

With a = 20, we have found a way to “shuffle” the 52-card deck. However,
even in a simple application like shuffling cards for games of computer soli-
taire, this generator would not be a useful way to provide an unanticipated
arrangement for each game. If we change the seed, we start with a different
card, but from there on the order is the same as shown above. For example,
if the seed is 5, then the sequence continues with 47, 39, 38, 18, and so on.

Carefully choosing values of a to get generators of full period, we could
permute the cards into some fundamentally different orders. For example, with
a = 12 and s = 21, we get a sequence that begins 21, 40, 3, 36, 8, and so on.
Even so, using a multiplicative generator that can assume only 52 possible
values is not a promising approach for shuffling a deck of 52 cards. Of the
52! ≈ 8× 1067 possible arrangements of 52 cards, multiplicative congruential
generators with d = 53 can show fewer than a thousand.
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Figure 2.2. Grids of four multiplicative generators of modulus 53. The generator
of Example 2.1 with multiplier a = 20 gives about the finest possible grid (upper
left), but changing to a = 27 or 3 produces a grid with points lying in two or three
widely separated parallel lines, and a = 28 results in less than the full period 52.

In the next section, we discuss some desirable properties of pseudorandom
numbers and ways to test whether these properties are satisfied.

2.3 Validating Desirable Properties of a Generator

It is customary to rescale the values ri output by a congruential generator to
fit into the interval (0, 1). For example, if a generator with modulus d takes
values 0, 1, . . . , d− 1, then we can use ui = (ri + 0.5)/d.

Desirable properties of the ui are that they have a large period, uniform
distribution, and independent structure. In particular, we seek a generator
with at least the following properties:

• A large modulus and full period. In practice, the period should be much
larger than the number m of random values needed for the simulation at
hand.

• A histogram of values ui from the generator that is consistent with a
random sample from UNIF(0, 1). Various statistical tests can be performed
to see whether this is so.

• Pairwise independence. As a check for independence and uniform distrib-
ution, a plot of the m − 1 pairs (ui, ui+1), for i = 1, 2, . . .m − 1, should
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“fill” the unit square in a manner consistent with a uniform distribution
over the unit square. Ideally, there would be no noticeable pattern of any
kind. (Figure 2.1 illustrates that intuition may not always be a good guide
in judging whether this is so.) However, on sufficiently close inspection,
points from a congruential generator always show a grid pattern. We hope
the grid is so fine as to be undetectable for m of the required size. We
hope the grid lines, if visible, are very narrowly spaced in both directions.
(Figure 2.2 illustrates obtrusive grid patterns for generators with d = 53.)

There are some rules for avoiding bad generators, but none for guarantee-
ing good ones. Each proposed generator has to be subjected to many tests
before it can be used with reasonable confidence. Now we investigate a few
generators, illustrating the principles just listed.

Example 2.2. Here we consider a generator that is “pretty good,” but not
really good enough for serious modern simulations. Let a = 1093, b = 18 257,
d = 86 436, and s = 7. In elementary software applications, this generator has
the advantage that the arithmetic involved never produces a number larger
than 108 (see [PTVF92]).

This generator has full period 86 436. As shown in the top two panels of
Figure 2.3, the histogram based on m = 1000 values ui looks reasonably close
to uniform, and no grid pattern is apparent in the corresponding bivariate
plot. See Problem 2.4 for a formal test of fit to UNIF(0, 1). The code for
making these two panels is shown below.

# Initialize

a = 1093; b = 18257; d = 86436; s = 7

m = 1000; r = numeric(m); r[1] = s

# Generate

for (i in 1:(m-1)) {r[i+1] = (a*r[i] + b) %% d}

u = (r + 1/2)/d # values fit in (0,1)

# Display Results

par(mfrow=c(1,2), pty="s") # 2 square panels in a plot

hist(u, breaks=10, col="wheat") # left panel

abline(h=m/10, lty="dashed")

u1 = u[1:(m-1)]; u2 = u[2:m] # right panel

plot (u1, u2, pch=19)

par(mfrow=c(1,1), pty="m") # return to default

If we generate m = 50 000 values, then we obtain the two panels at the
bottom of Figure 2.3. Fifty thousand is more than half the period of the gen-
erator, but not more than might be needed in a practical simulation. Initially,
the histogram (lower left) looks promising because all the bars are of very
nearly the same height. However, perhaps surprisingly, this is a serious flaw
because the heights of the bars are much less variable than would be expected
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Figure 2.3. The “pretty good” generator of Example 2.2. The top two panels
show 1000 generated values with unremarkable results. By contrast, the bottom
panels show 50 000 values. Here the histogram bars are surprisingly regular, and an
enlargement of a small corner of the 2-dimensional plot shows a clear grid pattern.

from truly random data. The result is “too good to be true”: there is about
one chance in 100 million of getting such a nearly perfect result.

Moreover, the 2-dimensional plot (lower right) shows that the grid is widely
spaced in one direction. Here, to make a clear figure for publication, we have
shown a magnified view of a small part of the entire 2-dimensional plot—
specifically, the corner (0, 0.1)× (0, 0.1). ♦

We have seen that 2-dimensional plots can play an important role in testing
a generator. The following example shows the importance of looking in higher
dimensions as well.

Example 2.3. Some years ago, IBM introduced a generator called RANDU for
some of its mainframe computers. Essentially a multiplicative generator with
a = 65 539 and d = 231, it came to be very widely used. But over time it
acquired a bad reputation. First, it was found to yield wrong Monte Carlo
answers in some computations where the right answers were known by other
means. Later, it was found to concentrate its values on a very few planes in
3-dimensional space. The program below makes Figure 2.4.

a = 65539; b = 0; d = 2^31; s = 10

m = 20000; r = numeric(m); r[1] = s
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for (i in 1:(m-1)) {r[i+1] = (a*r[i] + b) %% d}

u = (r - 1/2)/(d - 1)

u1 = u[1:(m-2)]; u2 = u[2:(m-1)]; u3 = u[3:m]

par(mfrow=c(1,2), pty="s")

plot(u1, u2, pch=19, xlim=c(0,.1), ylim=c(0,.1))

plot(u1[u3 < .01], u2[u3 < .01], pch=19, xlim=c(0,1), ylim=c(0,1))

par(mfrow=c(1,1), pty="m")

In the left panel of Figure 2.4, we see no evidence of a grid pattern in a
magnified view of part of the 2-dimensional plot. However, a view of the thin
veneer from the entire front face of the unit cube shows the widely separated
planes of the grid in 3-dimensional space. ♦

Subsequent to this discovery about RANDU, it has become standard prac-
tice to verify the grid structure of a generator in higher dimensions. Also,
nowadays candidate generators are tested against batteries of simulation prob-
lems that have known answers and that have caused problems for previously
disparaged generators. Problem 2.6 shows an example in which getting the
wrong answer to one simple problem is enough to show that a particular
generator is flawed.

In recent years, there has been tremendous progress in devising ever better
random number generators. Currently, the R function runif uses a generator
called the Mersenne twister which combines ideas of a linear congruential
generator with other more advanced concepts to produce results that you
can rely upon to be essentially independent and identically distributed as
UNIF(0, 1). Specifically, runif(10) produces a vector of ten observations from
this distribution, without the need to write a loop.

The Mersenne twister has period 219937 − 1 ≈ 4.32 × 106001, and it has
been tested for good behavior in up to 623 consecutive dimensions. These
distinct generated values are mapped into the roughly 4.31 billion numbers
that can be expressed within the precision of R. (See information provided at
?.Random.seed for some technical information about random number gener-
ation in R. Also, see the bottom panels of Figure 2.4, which show runif is at
least better behaved in three dimensions than RANDU.)

Some commercial statistical software packages (such as SAS, S-Plus,
Minitab, and so on) also use excellent generators. However, publishers of soft-
ware intended mainly for nonstatistical customers have not always had the
financial motivation or felt the corporate responsibility to use state-of-the-art
random number generators. For example, a generator that may be adequate
for “randomizing” the behavior of computer solitaire and other computer
games may not be appropriate for large-scale business simulations or for sim-
ulations of the kind we show in this book. (For some specific critiques of
generators in commercial software, see [LEc01] and [PTVF92].)
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Figure 2.4. Plots in two and three dimensions. In a magnified corner of a 2-d plot
(upper left), the RANDU generator of Example 2.3 seems alright. But a thin section
from the front face of the unit cube (upper right) shows that in 3-d all points lie in
very few planes. The second row shows no problem in analogous plots from runif

in R. Each generator produced 20 000 values; each plot shows about 200 points.

2.4 Transformations of Uniform Random Variables

All of the random procedures in R, including the function sample used in the
last chapter, are based on runif. In this section, we show how uniform random
variables can be used to sample from a finite population or transformed into
other random variables, such as binomial, exponential, and normal.

We begin with a few examples. These examples are elementary, but they
illustrate some important ideas.

• If U ∼ UNIF(0, 1), then 2U +5 ∼ UNIF(5, 7), so we can generate a vector of
ten observations from the latter distribution with 2*runif(10) + 5. (See
Problem 2.9.) Alternatively, we can use additional parameters of runif to
show the endpoints of the interval in which we want to generate uniformly
distributed observations: runif(10, 5, 7). The code runif(10) is short
for runif(10, 0, 1).

• To simulate a roll of two fair dice, we can use sample(1:6, 2, rep=T).
This is equivalent to ceiling(runif(2, 0, 6)). Also, to draw one card
at random from a standard deck, we can use ceiling(runif(1, 0, 52)).
Sampling multiple cards without replacement is a little more complicated
because at each draw we must keep track of the cards drawn previously,
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but this record keeping is already programmed into the sample function.
So sample(1:52, 5) simulates fair dealing of a five-card poker hand.

• Suppose we want to simulate the number X of heads in four tosses of
a fair coin. That is, X ∼ BINOM(4, 1/2). One method is to generate a
vector of four uniform random variables with runif(4) and then compute
sum(runif(4) > .5), where the expression in parentheses is a logical vec-
tor. When taking the sum, R interprets TRUE as 1 and FALSE as 0. This
method is considered wasteful because it requires four calls to the random
number generator. In Example 2.5, we show a better way that requires
only one call. Functions for simulating random samples from the binomial
and several other commonly used probability distributions are available
in R, and you can depend on these random functions being very efficiently
programmed. So it is preferable to use rbinom(1, 4, 0.5).

A real function of a random variable is another random variable. Random
variables with a wide variety of distributions can be obtained by transforming
a standard uniform random variable U ∼ UNIF(0, 1).

Example 2.4. The Square of a Uniform Random Variable. Let U ∼ UNIF(0, 1).
We seek the distribution of X = U2. The support of a continuous random
variable is the part of the real line for which its density function is positive. So
the support of U is the unit interval (0, 1). Because the square of a number in
the unit interval is again in the unit interval, it seems clear that the support
of X is also (0, 1).

However, it also seems clear that X cannot be uniformly distributed. For
example, P{0 < U ≤ 0.1} = P{0 < X ≤ 0.01} = 0.1, so outcomes that put
U into an interval of length 0.1 squeeze X into an interval of length 0.01.
In contrast, P{0.9 < U ≤ 1} = P{0.81 < X ≤ 1} = 0.1, so outcomes that
put U in an interval of length 0.1 stretch X over an interval of length 0.19.
Figure 2.5 shows the result when 10 000 values of U are simulated (left panel)
and transformed to values X = U2 (right). Each interval in both histograms
contains about 1000 simulated values. The following program makes such
graphs.

# set.seed(1234)

m = 10000

u = runif(m); x = u^2

xx = seq(0, 1, by=.001)

cut.u = (0:10)/10; cut.x = cut.u^2

par(mfrow=c(1,2))

hist(u, breaks=cut.u, prob=T, ylim=c(0,10))

lines(xx, dunif(xx), col="blue")

hist(x, breaks=cut.x, prob=T, ylim=c(0,10))

lines(xx, .5*xx^-.5, col="blue")

par(mfrow=c(1,1))
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Figure 2.5. Square of a uniform random variable. The histogram at the left shows
10 000 simulated observations from UNIF(0, 1). Upon squaring, these observations
make the histogram at the right, in which each bar represents about 1000 observa-
tions. It approximates the density function of BETA(0.5, 1). See Example 2.4.

The density function of X can be derived using an argument based on its
cumulative distribution function (CDF). Recall that the CDF of U is given
by FU (u) = P{U ≤ u} = u, for 0 < u < 1. Then, for 0 < x < 1, we have

FX(x) = P{X ≤ x} = P{U2 ≤ x} = P{U ≤ x1/2} = x1/2. (2.2)

Taking the derivative of this CDF to get the density function of X, we obtain
fX(x) = 0.5x−0.5, which is plotted along with the histogram of simulated
values of X in Figure 2.5. This is the density function of BETA(0.5, 1). ♦

In Example 2.4, we have seen how to find the density function of a trans-
formed standard uniform random variable. Now suppose we want to simulate
random samples from a particular distribution. Then the question is how to
find the transformation that will change a standard uniform distribution into
the desired one. In Example 2.4, notice that the CDF of X ∼ BETA(0.5, 1) is
FX(x) = x1/2, for 0 < x < 1, that the quantile function (inverse CDF) of X
is x = F−1

X (u) = u2, and that X = F−1
X (U) = U2 is the transformation we

used to generate X ∼ BETA(0.5, 1).
This result for BETA(0.5, 1) is not a coincidence. In general, if FY is the

CDF of a continuous random variable, then F−1
Y (U) has the distribution of Y .

This is called the quantile transformation method of simulating a distri-
bution. In order for this method to be useful, it is usually necessary for FY to
be expressed in closed form so that we can find its inverse, the quantile func-
tion F−1

Y . A few additional examples of this method are listed below, where U
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has a standard uniform distribution, and some of the details are left to the
problems.

• A random variable X ∼ BETA(α, 1) has density function fX(x) = αxα−1,
CDF FX(x) = xα, and quantile function x = F−1

X (u) = u1/α, where
0 < x, u < 1. Thus, X can be simulated as X = U1/α. To get a vector
of ten independent observations from such a distribution, we could use
qbeta(runif(10), alpha, 1), where the constant alpha is suitably de-
fined. However, to sample from any beta distribution, it is best to use the
R function rbeta because it is programmed to use efficient methods for all
choices of α and β. Problem 2.10 illustrates the case α = 2, β = 1.

• If X has an exponential distribution with CDF FX(x) = 1−e−x, for x > 0,
then the quantile function is x = F−1

X (u) = − log(1 − u), for 0 < u < 1.
Because 1− U ∼ UNIF(0, 1), it is easier to use G(U) = − log(U) to simu-
late X. See Problem 2.11 for a program that generates observations from
an exponential distribution using this slight variation of the quantile trans-
formation method. Here again, in practice, it is best to use the R function
rexp, with appropriate parameters, to simulate samples from any expo-
nential distribution. Notice that R parameterizes the exponential family
of distributions according to the rate (reciprocal mean) rather than the
mean.

• Some commonly used distributions have CDFs that cannot be expressed
in closed form. Examples are normal distributions and some members of
the beta and gamma families. Even for these, R provides quantile functions
that are accurate to many decimal places, but they require computation
by approximate numerical methods. Thus, although one could get two
independent standard normal random variables from qnorm(runif(2)),
it is simpler and faster—and maybe more accurate—to use rnorm(2).

Properly interpreted, the quantile transformation method also works for
simulating discrete distributions. The next example illustrates this method
for a binomial random variable.

Example 2.5. Suppose we want to simulate an observation X ∼ BINOM(5, 0.6).
In particular, P{X = 3} = FX(3) − FX(2) = 0.66304 − 0.31744 = 0.34560.
The left panel of Figure 2.6 shows the CDF of this distribution, and the length
of the heavy vertical line above x = 3 corresponds to this probability. What
mechanism of simulation would lead to the outcome X = 3? The quantile
function F−1

X is plotted in the right panel of the figure. Here, the length of
the heavy horizontal line at F−1

X (u) = 3 is 0.34560. If U ∼ UNIF(0, 1), then
P{X = 3} = FU (0.66304) − FU (0.31744) = 0.34560. So we can simulate the
event {X = 3} as {0.31744 < U ≤ 0.66304}.

More generally, this shows that we can use the quantile transformation
method to simulate an observation X: qbinom(runif(1), 5, 0.6). This is
an efficient method because it uses only one simulated value of U for each
simulated value of X produced. Consider the following experiment.
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Figure 2.6. Binomial CDF and quantile function. The CDF of X ∼ BINOM(5, 0.6)
is shown in the left panel. Its inverse is the quantile function (right). The length of
the heavy line segment in each plot represents P{X = 3}. See Example 2.5.

> set.seed(1234); rbinom(10, 5, 0.4)

[1] 1 2 2 2 3 2 0 1 2 2

> set.seed(1234); qbinom(runif(10), 5, 0.4)

[1] 1 2 2 2 3 2 0 1 2 2

> set.seed(1234); rbinom(10, 5, 0.6)

[1] 4 3 3 3 2 3 5 4 3 3

> set.seed(1234); 5 - qbinom(runif(10), 5, 0.4)

[1] 4 3 3 3 2 3 5 4 3 3

> set.seed(1234); qbinom(runif(10), 5, 0.6)

[1] 2 3 3 3 4 3 0 2 4 3

This suggests that the random function rbinom in R uses a method equivalent
to the quantile transformation when the success probability π ≤ 0.5 but that
a slight variation is used for larger π. ♦

Note: For a discrete random variable, interpretation of a quantile function as
the inverse of the cumulative distribution function must be done with care.
For example, qbinom(0.5, 5, 0.6) returns 3, as shown in the right panel
in Figure 2.6. But no cumulative probability in BINOM(5, 0.6) equals 0.5,
so pbinom(3, 5, 0.6) returns 0.66304, not 0.5. Also, pbinom(3.5, 5, 0.6)
returns 0.66304, which is consistent with the left panel in the figure, but
qbinom(0.66304, 5, 0.6) returns 3, not 3.5. Exact inverse relationships
hold only for the values shown by heavy dots in Figure 2.6. Nevertheless, in
R definitions of qbinom and quantile functions of other discrete distributions
are compatible with the quantile transformation method.
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Figure 2.7. Normal errors for hits on a target. Vertical and horizontal errors are
standard normal. The point roughly at (1.2, 0.9) is R ≈ 1.5 units away from the
origin. The line from the origin (bull’s eye) to this point makes an angle of Θ ≈ 37
degrees with the positive horizontal axis. See Example 2.6 and Problem 2.7.

2.5 Transformations Involving Normal Random
Variables

In this section, we explore some important relationships among normal, expo-
nential, and uniform random variables. One goal—accomplished near the end
of the section—is to illustrate one very common method of generating normal
random variables from uniform ones. However, in our first example, we take it
for granted that the R function rnorm generates independent standard normal
variates.

Example 2.6. Target Practice with Normal Errors. Suppose we aim an arrow
at a target, as shown in Figure 2.7. The goal is to hit the bull’s eye, located
at the origin, but shots are random.

We assume that errors in the horizontal and vertical directions are inde-
pendent standard normal random variables, Z1 and Z2, respectively, so that
any one shot hits at the point (Z1, Z2). Thus the squared distance from the
origin is T = R2 = Z2

1 + Z2
2 .

It is shown in books on probability theory and mathematical statistics
that T ∼ CHISQ(ν = 2) = EXP(1/2). This distribution has density function
ft(t) = 0.5e−0.5t, for t > 0, and hence E(T ) = 2. (See Problems 2.12 and 2.13.)
However, without any formal proof, the following program allows us to see
in Figure 2.8 the excellent agreement between this density function and the
histogram of 40 000 values of T as simulated from Z1 and Z2.
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Figure 2.8. Based on polar coordinates for hits on a target. The histogram at the
left shows 40 000 simulated values of R2 ∼ EXP(2), the squared distance from the
origin. For the roughly 10 000 simulated hits in the first quadrant, the histogram at
the right shows Θ ∼ UNIF(0, 10) degrees. See Example 2.6.

# set.seed(1212) # this seed for exact results shown

m = 40000; z1 = rnorm(m); z2 = rnorm(m)

t = z1^2 + z2^2; r = sqrt(t)

hist(t, breaks=30, prob=T, col="wheat")

tt = seq(0, max(t), length=100); dens = 0.5*exp(-0.5*tt)

lines(tt, dens, col="blue")

mean(t); mean(r); mean(r < 2)

> mean(t); mean(r); mean(r < 2)

[1] 2.005963

[1] 1.254416

[1] 0.86445

The first numerical result is consistent with the known value E(T ) = 2.
From the second numerical result, we see that on average the arrow misses
the bull’s eye by about 1.25 units (not

√
2). From the last result, we see that

about 86% of the hits are within 2 units of the bull’s eye. (Use pchisq(4, 2)
for the exact value of P{R < 2} = P{T < 4}.)

Also of interest is the angle Θ of the hit as measured counterclockwise
from the positive horizontal axis. If the hit is in the first quadrant, then
Θ = arctan(Z2/Z1). Restricting attention to (Z1, Z2) in the first quadrant for
simplicity, the following additional code shows that Θ ∼ UNIF(0, 90), mea-
sured in degrees.
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quad1 = (z1 > 0) & (z2 > 0) # logical vector

z1.q1 = z1[quad1]; z2.q1 = z2[quad1]

th = (180/pi)*atan(z2.q1/z1.q1)

hist(th, breaks=9, prob=T, col="wheat")

aa = seq(0, 90, length = 10)

lines(aa, rep(1/90, 10), col="blue")

sum(quad1) # number of hits in quadrant 1

> sum(quad1)

[1] 10032

As anticipated, very nearly a quarter of the hits were in the first quadrant.
Keeping track of signs and angles for all 40 000 hits, one gets results consistent
with Θ ∼ UNIF(0, 360). ♦

Starting with standard normal random variables in rectangular coordi-
nates, Example 2.6 suggests that in polar coordinates we have the random
variables Θ ∼ UNIF(0, 360) and R, with R2 = T ∼ EXP(1/2). (The distance
R itself is said to have a Rayleigh distribution.) Moreover, we already know
that the distributions of Θ and T are easily simulated as transformations of
standard uniform distributions.

Reversing this procedure, we can start with a pair of standard uniform
random variates (U1, U2) to simulate the location of a random hit in po-
lar coordinates and then transform to rectangular coordinates to obtain two
standard normal random variates (Z1, Z2) that express the location of the
same hit. Specifically, two independent observations from NORM(0, 1) can be
simulated from two independent observations from UNIF(0, 1) according to
the equations

Z1 =
√
−2 log(U1) cos(2πU2) and Z2 =

√
−2 log(U1) sin(2πU2).

This transformation from (U1, U2) to (Z1, Z2) is accurate and efficient. It is
known as the Box-Muller method of generating standard normal random
variables. Problem 2.14 illustrates its use. This method and variations of it
are widely used in statistical software to simulate random observations from
NORM(0, 1).

We hope the examples in this chapter have helped you to understand
how modern probability simulations can be based on a carefully constructed
random number generator of uniform random variables that may then be
transformed to imitate output from various other probability models and dis-
tributions. The book by James Gentle [Gen98] includes more detailed and
advanced discussions of the topics we have illustrated at a relatively superfi-
cial level in this chapter, and it provides over 20 pages of references to original
papers and yet more extensive discussions.

In the chapters that follow, we use a variety of random functions in R,
including sample, rnorm, rbeta, rgamma, rbinom, and rpois. All of these are
efficiently programmed and based on the excellent generator implemented for
runif.
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2.6 Problems

Problems for Section 2.2 (Congruential Generators)

2.1 Before congruential generators became widely used, various mathemat-
ical formulas were tried in an effort to generate useful pseudorandom numbers.
The following unsuccessful procedure from the mid-1940s has been ascribed
to the famous mathematician John von Neumann, a pioneer in attempts to
simulate probability models.

Start with a seed number r1 having an even number of digits, square it,
pad the square with initial zeros at the left (if necessary) so that it has twice
as many digits as the seed, and take the center half of the digits in the result
as the pseudorandom number r2. Then square this number and repeat the
same process to get the next number in the sequence, and so on.

To see why this method was never widely used, start with r1 = 23 as the
seed. Then 232 = 529; pad to get 0529 and r2 = 52. Show that the next
number is r3 = 70. Continue with values ri, i = 3, 4 . . . until you discover a
difficulty. Also try starting with 19 as the seed.

2.2 The digits of transcendental numbers such as π = 3.14159 . . . pass
many tests for randomness. A search of the Web using the search phrase pi
digits retrieves the URLs of many sites that list the first n digits of π for
very large n. We put the first 500 digits from one site into the vector v and
then used summary(as.factor(v)) to get the number of times each digit
appeared:

> summary(as.factor(v))

0 1 2 3 4 5 6 7 8 9

45 59 54 50 53 50 48 36 53 52

a) Always be cautious of information from unfamiliar websites, but for now
assume this information is correct. Use it to simulate 500 tosses of a coin,
taking even digits to represent Heads and odd digits to represent Tails. Is
this simulation consistent with 500 independent tosses of a fair coin?

b) Repeat part (a) letting numbers 0 through 4 represent Heads and numbers
5 through 9 represent Tails.

c) Why do you suppose digits of π are not often used for simulations?

Hint: (a, b) One possible approach is to find a 95% confidence interval for P (Heads)

and interpret the result.

2.3 Example 2.1 illustrates one congruential generator with b = 0 and
d = 53. The program there shows the first m = 60 numbers generated.
Modify the program, making the changes indicated in each part below, using
length(unique(r)) to find the number of distinct numbers produced, and
using the additional code below to make a 2-dimensional plot. Each part re-
quires two runs of such a modified program. Summarize findings, commenting
on differences within and among parts.



40 2 Generating Random Numbers

u = (r - 1/2)/(d-1)

u1 = u[0:(m-1)]; u2 = u[2:m]

plot(u1, u2, pch=19)

a) Use a = 23, first with s = 21 and then with s = 5.
b) Use s = 21, first with a = 15 and then with a = 18.
c) Use a = 22 and then a = 26, each with a seed of your choice.

Problems for Section 2.3 (Validating Generators)

2.4 A Chi-squared test for Example 2.2. Sometimes it is difficult to judge
by eye whether the evenness of the bars of a histogram is consistent with
a uniform distribution. The chi-squared goodness-of-fit statistic allows us to
quantify the evenness and formally test the null hypothesis that results agree
with UNIF(0, 1). If the null hypothesis is true, then each ui is equally likely to
fall into any one of the h bins of the histogram, so that the expected number of
values in each bin is E = m/h. Let Nj denote the observed number of values
in the jth of the h bins. The chi-squared statistic is

Q =
h∑

j=1

(Nj − E)2

E
.

If the null hypothesis is true and E is large, as here, then Q is very nearly
distributed as CHISQ(h− 1), the chi-squared distribution with h− 1 degrees
of freedom. Accordingly, E(Q) = h − 1. For our example, h = 10, so values
of Q “near” 9 are consistent with uniform observations. Specifically, if Q falls
outside the interval [2.7, 19], then we suspect the generator is behaving badly.
The values 2.7 and 19 are quantiles 0.025 and 0.975, respectively, of CHISQ(9).

In some applications of the chi-squared test, we would reject the null hy-
pothesis only if Q is too large, indicating some large values of |Ni− E|. But
when we are validating a generator we are also suspicious if results are “too
perfect” to seem random. (One similarly suspicious situation occurs if a fair
coin is supposedly tossed 8000 times independently and exactly 4000 Heads
are reported. Another is shown in the upper left panel of Figure 2.1.)

a) Run the part of the program of Example 2.2 that initializes variables and
the part that generates corresponding values of ui. Instead of the part that
prints a histogram and 2-dimensional plot, use the code below, in which
the parameter plot=F suppresses plotting and the suffix $counts retrieves
the vector of 10 counts. What is the result, and how do you interpret it?

# Compute chi-squared statistic

h = 10; E = m/h; cut = (0:h)/h

N = hist(u, breaks=cut, plot=F)$counts

Q = sum((N - E)^2/E); Q

b) Repeat part (a), but with m = 50 000 iterations.
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c) Repeat part (a) again, but now with m = 1000 and b = 252. In this
case, also make the histogram and the 2-dimensional plot of the results
and comment. Do you suppose the generator with increment b = 252 is
useful? (Problem 2.6 below investigates this generator further.)

d) Repeat part (a) with the original values of a, b, d, and s, but change to
m = 5000 and add the step u = u^0.9 before computing the chi-squared
statistic. (We still have 0 < ui < 1.) Also, make and comment on the
histogram.

e) Find and interpret the chi-squared goodness-of-fit statistic for the 10
counts given in the statement of Problem 2.2.

Answers: In (a)–(e), Q ≈ 7, 0.1, 0.2, 46, and 7, respectively. Report additional

decimal places, and provide interpretation.

2.5 When beginning work on [Tru89], Trumbo obtained some obviously
incorrect results from the generator included in Applesoft BASIC on the
Apple II computer. The intended generator would have been mediocre even
if programmed correctly, but it had a disastrous bug in the machine-level
programming that led to periods of only a few dozen for some seeds [Spa83].
A cure (proposed in a magazine for computer enthusiasts [HRG83]) was to
import the generator ri+1 = 8192ri (mod 67 099 547). This generator has full
period, matched the capabilities of the Apple II, and seemed to give accurate
results for the limited simulation work at hand.

a) Modify the program of Example 2.3 to make plots for this generator anal-
ogous to those in Figure 2.4. Use u = (r + 1/2)/d.

b) Perform chi-square goodness-of-fit tests as in Problem 2.4, based on 1000,
and then 100 000 simulated uniform observations from this generator.

Comment: (b) Not a bad generator. Q varies with seed.

2.6 Consider m = 50 000 values ui = (r + .5)/d from the generator with
a = 1093, b = 252, d = 86 436, and s = 6. We try using this generator to
simulate many tosses of a fair coin.

a) For a particular n ≤ m, you can use the code sum(u[1:n] < .5)/n to
simulate the proportion of heads in the first n tosses. If the values ui are
uniform in the interval (0, 1), then each of the n comparisons inside the
parentheses has probability one-half of being TRUE, and thus contribut-
ing 1 to the sum. Evaluate this for n = 10 000, 20 000, 30 000, 40 000, and
50 000. For each n, the 95% margin of error is about n−1/2. Show that all
of your values are within this margin of the true value P{Head} = 0.5.
So, you might be tempted to conclude that the generator is working sat-
isfactorily. But notice that all of these proportions are above 0.5—and by
similar amounts. Is this a random coincidence or a pattern? (See part (c).)

b) This generator has serious problems. First, how many distinct values do
you get among m? Use length(unique(r)). So, this generator repeats
a few values many times in m = 50 000 iterations. Second, the period
depends heavily on the seed s. Report results for s = 2, 8 and 17.
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Figure 2.9. A generator with a short period. The upper “sawtooth” trace results
from 50 000 tosses of a supposedly fair coin simulated with the defective generator
of Problem 2.6. It converges far too rapidly, and to a value above 1/2. The truly
random “meandering” trace from runif converges more slowly, but to 1/2.

c) Based on this generator, the code below makes a plot of the proportion
of heads in n tosses for all values n = 1, 2 . . . m. For comparison, it does
the same for values from runif, which are known to simulate UNIF(0, 1)
accurately. Explain the code, run the program (which makes Figure 2.9),
and comment on the results. In particular, what do you suppose would
happen towards the right-hand edge of the graph if there were millions of
iterations m? (You will learn more about such plots in Chapter 3.)

a = 1093; b = 252; d = 86436; s = 6

m = 50000; n = 1:m

r = numeric(m); r[1] = s

for (i in 1:(m-1)) {r[i+1] = (a*r[i] + b) %% d}

u = (r + 1/2)/d; f = cumsum(u < .5)/n

plot(n, f, type="l", ylim=c(.49,.51), col="red") # ’ell’, not 1

abline(h=.5, col="green")

set.seed(1237) # Use this seed for exact graph shown in figure.

g = cumsum(sample(0:1, m, repl=T))/n; lines(n, g)

Note: This generator “never had a chance.” It breaks one of the number-theoretic

rules for linear congruential generators, that b and d not have factors in com-

mon. [AS64]
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2.7 In R, the statement runif(m) makes a vector of m simulated observa-
tions from the distribution UNIF(0, 1). Notice that no explicit loop is required
to generate this vector.

m = 10^6; u = runif(m) # generate one million from UNIF(0, 1)

u1 = u[1:(m-2)]; u2 = u[2:(m-1)]; u3 = u[3:m] # 3 dimensions

par(mfrow=c(1,2), pty="s") # 2 square panels per graph

plot(u1, u2, pch=".", xlim=c(0,.1), ylim=c(0,.1))

plot(u1[u3<.01], u2[u3<.01], pch=".", xlim=c(0,1), ylim=c(0,1))

par(mfrow=c(1,1), pty="m") # restore default plotting

a) Run the program and comment on the results. Approximately how many
points are printed in each graph?

b) Perform chi-square goodness-of-fit tests as in Problem 2.4 based on these
one million simulated uniform observations.

2.8 The code used to make the two plots in the top row of Figure 2.1 (p26) is
shown below. The function runif is used in the left panel to “jitter” (randomly
displace) two plotted points slightly above and to the right of each of the 100
grid points in the unit square. The same function is used more simply in the
right panel to put 200 points at random into the unit square.

set.seed(121); n = 100

par(mfrow=c(1,2), pty="s") # 2 square panels per graph

# Left Panel

s = rep(0:9, each=10)/10 # grid points

t = rep(0:9, times=10)/10

x = s + runif(n, .01, .09) # jittered grid points

y = t + runif(n, .01, .09)

plot(x, y, pch=19, xaxs="i", yaxs="i", xlim=0:1, ylim=0:1)

#abline(h = seq(.1, .9, by=.1), col="green") # grid lines

#abline(v = seq(.1, .9, by=.1), col="green")

# Right Panel

x=runif(n); y = runif(n) # random points in unit square

plot(x, y, pch=19, xaxs="i", yaxs="i", xlim=0:1, ylim=0:1)

par(mfrow=c(1,1), pty="m") # restore default plotting

a) Run the program (without the grid lines) to make the top row of Figure 2.1
for yourself. Then remove the # symbols at the start of the two abline
statements so that grid lines will print to show the 100 cells of your left
panel. See Figure 2.12 (p47).

b) Repeat part (a) several times without the seed statement (thus getting a
different seed on each run) and without the grid lines to see a variety of
examples of versions of Figure 2.1. Comment on the degree of change in
the appearance of each with the different seeds.

c) What do you get from a single plot with plot(s, t)?
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d) If 100 points are placed at random into the unit square, what is the prob-
ability that none of the 100 cells of this problem are left empty? (Give
your answer in exponential notation with four significant digits.)

Note: Consider nesting habits of birds in a marsh. From left to right in Figure 2.1, the
first plot shows territorial behavior that tends to avoid close neighbors. The second
shows random nesting in which birds choose nesting sites entirely independently of
other birds. The third shows a strong preference for nesting near the center of the
square. The last shows social behavior with a tendency to build nests in clusters.

Problems for Section 2.4 (Transforming Uniform Distributions)

2.9 (Theoretical) Let U ∼ UNIF(0, 1). In each part below, modify equa-
tion (2.2) to derive the cumulative distribution function of X, and then take
derivatives to find the density function.

a) Show that X = (b− a)U + a ∼ UNIF(a, b), for real numbers a and b with
a < b. Specify the support of X.

b) What is the distribution of X = 1−U? [Hints: Multiplying an inequality
by a negative number changes its sense (direction). P (Ac) = 1 − P (A).
A continuous distribution assigns probability 0 to a single point.]

2.10 In Example 2.4, we used the random R function runif to sample from
the distribution BETA(0.5, 1). Here we wish to sample from BETA(2, 1).

a) Write the density function, cumulative distribution function, and quantile
function of BETA(2, 1). According to the quantile transformation method,
explain how to use U ∼ UNIF(0, 1) to sample from BETA(2, 1).

b) Modify equation (2.2) as appropriate to this situation.
c) Modify the program of Example 2.4 to illustrate the method of part (a),

Of course, you will need to change the code for x and cut.x and the code
used to plot the density function of BETA(2, 1). Also, change the code to
simulate a sample of 100 000 observations, and use 20 bars in each of the
histograms. Finally, we suggest changing the ylim parameters so that the
vertical axes of the histograms include the interval (0, 2). See Figure 2.10.

2.11 The program below simulates 10 000 values of X ∼ EXP(λ = 1),
using the quantile transformation method. That is, X = − log(U)/λ, where
U ∼ UNIF(0, 1). A histogram of results is shown in Figure 2.11.

# set.seed(1212)

m = 10000; lam = 1

u = runif(m); x = -log(u)/lam

cut1 = seq(0, 1, by=.1) # for hist of u, not plotted

cut2 = -log(cut1)/lam; cut2[1] = max(x); cut2 = sort(cut2)

hist(x, breaks=cut2, ylim=c(0,lam), prob=T, col="wheat")

xx = seq(0, max(x), by = .01)

lines(xx, lam*exp(-lam*xx), col="blue")
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Figure 2.10. Simulating X ∼ BETA(2, 1). The left histogram shows 100 000 simu-
lated values U ∼ UNIF(0, 1). Because the quantile function of BETA(2, 1) is x =

√
u,

for 0 < u, x < 1, the values X =
√

U ∼ BETA(2, 1). Histogram intervals for X are
images of respective intervals for U . See Problem 2.10.

mean(x); 1/lam # simulated and exact mean

median(x); qexp(.5, lam) # simulated and exact median

hist(u, breaks=cut1, plot=F)$counts # interval counts for UNIF

hist(x, breaks=cut2, plot=F)$counts # interval counts for EXP

a) If X ∼ EXP(λ), then E(X) = 1/λ (see Problem 2.12). Find the me-
dian of this distribution by setting FX(x) = 1 − e−λx = 1/2 and solving
for x. How accurately does your simulated sample of size 10 000 estimate
the population mean and median of EXP(1)? [The answer for λ = 1 is
qexp(.5).]

b) The last two lines of the program (counts from unplotted histograms)
provide counts for each interval of the realizations of U and X, respec-
tively. Report the 10 counts in each case. Explain why their order gets
reversed when transforming from uniform to exponential. What is the
support of X? Which values in the support (0, 1) of U correspond to the
largest values of X? Also, explain how cut2 is computed and why.

c) In Figure 2.11, each histogram bar represents about 1000 values of X, so
that the bars have approximately equal area. Make a different histogram of
these values of X using breaks=10 to get about 10 intervals of equal width
along the horizontal axis. (For most purposes, intervals of equal width are
easier to interpret.) Also, an alternate method to overlay the density curve,
use dexp(xx, lam) instead of lam*exp(-lam*xx).
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Figure 2.11. Quantile transformation. From 10 000 values of U ∼ UNIF(0, 1), we
obtain 10 000 values of X = − log(U) ∼ EXP(1). Each histogram bar represents
about 1000 values of X. See Problem 2.11.

d) Run the program again with lam = 1/2. Describe and explain the results
of this change. (Notice that EXP(1/2) = CHISQ(2) = GAMMA(1, 1/2).
See Problems 2.12 and 2.13.)

Problems for Section 2.5 (Normal and Related Distributions)

2.12 Distributions in Example 2.6 (Theoretical). The density function for
the gamma family of distributions GAMMA(α, λ) is fT (t) = λα

Γ (α) tα−1e−λt,
for t > 0. Here α > 0 is the shape parameter and λ > 0 is the rate parameter.
Two important subfamilies are the exponential EXP(λ) with α = 1 and the
chi-squared CHISQ(ν) with ν = 2α (called degrees of freedom) and λ = 1/2.

a) Show that the density function of CHISQ(2) shown in the example is con-
sistent with the information provided above. Recall that Γ (α) = (α− 1)!,
for integer α > 0.

b) For T ∼ CHISQ(2), show that E(T ) = 2. (Use the density function and
integration by parts, or use the moment generating function in part (c).)

c) The moment generating function of X ∼ CHISQ(ν), for s < 1/2, is

mX(s) = E(esX) = (1− 2s)−ν/2.

If Z ∼ NORM(0, 1), with density function ϕ(z) = 1√
2π

e−z2/2, then the
moment generating function of Z2 is

m(s) = mZ2(s) =
∫ ∞

−∞
exp(sz2)ϕ(z) dz = 2

∫ ∞

0

exp(sz2)ϕ(z) dz.

Show that this simplifies to m(s) = (1− 2s)−1/2, so that Z2 ∼ CHISQ(1).
Recall that Γ (1/2) =

√
π.
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Figure 2.12. Illustrating nonrandomness. In the top left panel of Figure 2.1 (p26),
each of 100 grid squares contains exactly one point. The points are too regularly
spaced to be “random.” Specifically, the probability is very small that independently
and uniformly distributed points would give such a result; see Problem 2.8 (p43).

d) If X and Y are independent random variables with moment generating
functions mX(s) and mY (s), respectively, then mX+Y (s) = mX(s)mY (s).
Use this property of moment generating functions to show that, if Zi are
independently NORM(0, 1), then Z2

1 + Z2
2 + . . . + Z2

ν ∼ CHISQ(ν).

2.13 Simulations for chi-squared random variables. The first block of code
in Example 2.6 illustrates that the sum of squares of two standard normal
random variables is distributed as CHISQ(2). (Problem 2.12 provides formal
proof.) Modify the code in the example to do each part below. For simplicity,
when plotting the required density functions, use dens = dchisq(tt, df)
for df suitably defined.

a) If Z ∼ NORM(0, 1), then illustrate by simulation that Z2 ∼ CHISQ(1)
and that E(Z2) = 1.

b) If Z1, Z2, and Z3 are independently NORM(0, 1), then illustrate by simu-
lation that T = Z2

1 + Z2
2 + Z2

3 ∼ CHISQ(3) and that E(T ) = 3.

2.14 Illustrating the Box-Muller method. Use the program below to imple-
ment the Box-Muller method of simulating a random sample from a standard
normal distribution. Does the histogram of simulated values seem to agree
with the standard normal density curve? What do you conclude from the
chi-squared goodness-of-fit statistic? (This statistic, based on 10 bins, has
the same approximate chi-squared distribution as in Problem 2.4, but here
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the expected counts Ei are not the same for all bins.) Before drawing firm
conclusions, run this program several times with different seeds.

# set.seed(1234)

m = 2*50000; z = numeric(m)

u1 = runif(m/2); u2 = runif(m/2)

z1 = sqrt(-2*log(u1)) * cos(2*pi*u2) # half of normal variates

z2 = sqrt(-2*log(u1)) * sin(2*pi*u2) # other half

z[seq(1, m, by = 2)] = z1 # interleave

z[seq(2, m, by = 2)] = z2 # two halves

cut = c(min(z)-.5, seq(-2, 2, by=.5), max(z)+.5)

hist(z, breaks=cut, ylim=c(0,.4), prob=T)

zz = seq(min(z), max(z), by=.01)

lines(zz, dnorm(zz), col="blue")

E = m*diff(pnorm(c(-Inf, seq(-2, 2, by=.5), Inf))); E

N = hist(z, breaks=cut, plot=F)$counts; N

Q = sum(((N-E)^2)/E); Q; qchisq(c(.025,.975), 9)

2.15 Summing uniforms to simulate a standard normal. The Box-Muller
transformation requires the evaluation of logarithms and trigonometric func-
tions. Some years ago, when these transcendental computations were very
time-intensive (compared with addition and subtraction), the following method
of simulating a standard normal random variable Z from 12 independent ran-
dom variables Ui ∼ UNIF(0, 1) was commonly used: Z = U1+U2+. . .+U12−6.

However, with current hardware, transcendental operations are relatively
fast, so this method is now deprecated—partly because it makes 12 calls to
the random number generator for each standard normal variate generated.
(You may discover other reasons as you work this problem.)

a) Using the fact that a standard uniform random variable has mean 1/2 and
variance 1/12, show that Z as defined above has E(Z) = 0 and V(Z) = 1.
(The assumed near normality of such a random variable Z is based on the
Central Limit Theorem, which works reasonably well here—even though
only 12 random variables are summed.)

b) For the random variable Z of part (a), evaluate P{−6 < Z < 6}. Theoret-
ically, how does this result differ for a random variable Z that is precisely
distributed as standard normal?

c) The following program implements the method of part (a) to simulate
100,000 (nearly) standard normal observations by making a 100 000× 12
matrix DTA, summing its rows, and subtracting 6 from each result.

# set.seed(1234)

m = 100000; n = 12

u = runif(m*n)

UNI = matrix(u, nrow=m)

z = rowSums(UNI) - 6
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cut = c(min(z)-.5, seq(-2, 2, by=.5), max(z)+.5)

hist(z, breaks=cut, ylim=c(0,.4), prob=T)

zz = seq(min(z), max(z), by=.01)

lines(zz, dnorm(zz), col="blue")

E = m*diff(pnorm(c(-Inf, seq(-2, 2, by=.5), Inf))); E

N = hist(z, breaks=cut, plot=F)$counts; N

Q = sum(((N-E)^2)/E); Q; qchisq(c(.025,.975), 9)

Does the histogram of simulated values seem to agree with the stan-
dard normal density curve? What do you conclude from the chi-squared
goodness-of-fit test? (This statistic, based on 10 bins, has the same approx-
imate chi-squared distribution as in Problem 2.4, but here the expected
counts Ei are not the same for all bins.) Before drawing firm conclusions,
run this program several times with different seeds. Also, make a few runs
with m = 10 000 iterations.

2.16 Random triangles (Project). If three points are chosen at random from
a standard bivariate normal distribution (µ1 = µ2 = ρ = 0, σ1 = σ2 = 1),
then the probability that they are vertices of an obtuse triangle is 3/4. Use
simulation to illustrate this result. Perhaps explore higher dimensions. (See
[Por94] for a proof and for a history of this problem tracing back to Lewis
Carroll.)
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Monte Carlo Integration and Limit Theorems

In Chapter 1, we did a few simulations by sampling from finite populations. In
Chapter 2, we discussed (pseudo)random numbers and the simulation of some
familiar discrete and continuous distributions. In this chapter, we investigate
how simulation is used to approximate integrals and what some fundamental
limit theorems of probability theory have to say about the accuracy of these
approximations. Section 3.1 sets the stage with elementary examples that
illustrate some methods of integration.

3.1 Computing Probabilities of Intervals

Many practical applications of statistics and probability require the evaluation
of the probability P{a < X ≤ b} that a continuous random variable X lies in
a particular interval (a, b]. Sometimes a simple integration gives the answer,
and sometimes numerical methods of various degrees of sophistication are
required. Here are some examples.

• Trains run on a strict schedule leaving Central Station on the hour and
the half hour. So a rider who arrives at a random time will have to wait for
W minutes, where W ∼ UNIF(0, 30), before the next train leaves. What
is the probability that her wait does not exceed 10 minutes? Calculating
the probability P{W ≤ 10} = P{0 < W ≤ 10} = 1/3 involves only simple
arithmetic. (See Problem 3.1.)

• An electronic component chosen at random from a particular population
has an exponentially distributed lifetime T with mean E(T ) = 2 years
and thus density function fT (t) = (1/2)e−t/2, for t > 0. The probability
that it survives for a year is P{T > 1} = 1−∫ 1

0
fT (t) dt = e−1/2 = 0.6065.

Nowadays, a cheap calculator can evaluate e−1/2, but 50 years ago one
would have consulted a table of exponentials. Values in such tables—and
from calculators and computer software—are typically based on analytic
relationships such as series expansions. (See Problems 3.1 and 3.2.)

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 51
Use R!, DOI 10.1007/978-0-387-68765-0_3, © Springer Science+Business Media, LLC 2010
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• A process produces batches of a protein. The nominal yield is 100, and we
hope to obtain yields between 90 and 110. If the yield Y of a randomly
chosen batch is normally distributed with mean µ = 100 and standard
deviation σ = 10, then P{90 < Y ≤ 110} = P{−1 < Z ≤ 1} ≈ 0.6827,
where Z is a standard normal random variable.
Because the cumulative distribution function (CDF) Φ of Z cannot be
expressed in closed form, this is a more difficult computation than those
above. In practice, we might get the answer from a table of the standard
normal CDF or use software (on a calculator or computer) that is written
to do this kind of computation. For example, in R we can use the statement
pnorm(1) - pnorm(-1) to evaluate P{−1 < Z ≤ 1} = Φ(1) − Φ(−1) =
0.6826895. Similarly, P{0 < Z ≤ 1} = 0.3413447. Used in this way, the
function pnorm acts like a standard normal CDF table built into R.

Tables and software for Φ are widely available, so you might not have
had the opportunity to think about methods for computing its values. As an
introduction to some of the computational methods available, we look briefly
at several ways to evaluate J = P{a < Z ≤ b} = Φ(b) − Φ(a) =

∫ b

a
ϕ(z) dz,

where a < b and ϕ(z) = 1√
2π

e−z2/2 is the standard normal density function.
Each of these methods can be used with a wide variety of other distributions,
for which tables and software may not be readily available.

Example 3.1. Riemann Approximation. The Riemann integral J is defined as
the limit of the sum of the areas of increasingly many rectangles. The heights
of these rectangles depend on ϕ, and the union of their bases is the required
interval. As the number of rectangles increases, their widths shrink to 0. In
Figure 3.1, there are m = 5 rectangles. For any practical purpose at hand,
we can use a large enough number m of such rectangles that the sum of their
areas is a sufficiently accurate approximation to J . Because it is based on the
definition of the Riemann integral, this method of numerical integration in
terms of areas of rectangles is sometimes called Riemann approximation.

The R script below implements this method to integrate ϕ over an interval
(a, b], with a < b. For m = 5000, a = 0, and b = 1, the 5000 rectangles have
bases centered at values in the vector g: 0.0001, 0.0003, . . . , 0.9997, 0.9999.
The areas of these rectangles, elements of the vector w*h, are summed to give
the desired approximation.

m = 5000; a = 0; b = 1 # constants

w = (b - a)/m # width of each rectangle

g = seq(a + w/2, b - w/2, length=m) # m "grid" points

const = 1/sqrt(2 * pi) # const. for density function

h = const * exp(-g^2 / 2) # vector of m heights

sum(w * h) # total area (approx. prob.)

> sum(w * h)

[1] 0.3413447
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Figure 3.1. Approximating the area under a standard normal curve. The Riemann
approximation of Example 3.1 is illustrated for m = 5 rectangles with bases centered
at grid points 0.1, 0.3, 0.5, 0.7, and 0.9. Heights are represented by dotted lines. The
total area within the five rectangles is 0.3417, whereas

∫ 1

0
ϕ(z) dz = 0.3413.

The result is exactly the same as we obtained above for P{0 < Z ≤ 1} by
using pnorm. In Problem 3.3, we see that we can get five-place accuracy with
a much smaller number m of rectangles. ♦

The method of Example 3.1 is simple and effective. The program is very
brief, it implements a familiar theoretical idea, it can give more accurate re-
sults than are generally needed in practice, and it can be easily modified for use
with the density function of any continuous random variable. Embellishments
that use trapezoids or strips with polynomial-shaped tops—instead of simple
rectangles—can sometimes considerably decrease the number m of iterations
needed, but today’s computers run so fast that the extra programming effort
may not be worthwhile in simple applications.

In Riemann approximation, the bases of the rectangles lie on a grid of
equally spaced points. But it can be difficult to construct such a regular grid
for some advanced applications, particularly those requiring integration over
multidimensional regions. Perhaps surprisingly, it turns out that we can use
points that are scattered at random rather than equally spaced on a grid.

Example 3.2. Monte Carlo Integration. Here we randomly select points u ac-
cording to the uniform distribution on (0, 1). Because points are randomly
selected, this method is called Monte Carlo integration—after a southern
European resort town long known for its casinos.

Except for the way the points of evaluation are chosen, this method is
very similar to the one in Example 3.1. Heights of the density function ϕ are
determined at each of m randomly chosen points, and each height is multiplied
by the average horizontal distance w = 1/m corresponding to each random
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point. The sum of these products approximates the desired integral. As we see
later in this chapter, the Law of Large Numbers guarantees that this method
works, provided the number of random points is large enough. Problem 3.14
gives a graphical illustration that the approximation gets better as the number
of randomly chosen points increases.

The following R script implements the Monte Carlo method for evaluating
P{0 < Z ≤ 1}. As we have seen in Chapter 2, the R function runif generates a
specified number of random observations uniformly distributed in the interval
(0, 1). Also, in R the standard normal density is called dnorm. In Example 3.1,
the two lines of code used to make the vector h could have been written more
compactly as h = dnorm(g). We use the function dnorm below.

# set.seed(12)

m = 500000 # number or random points

a = 0; b = 1 # interval endpoints

w = (b - a)/m

u = a + (b - a) * runif(m) # vector of m random points

h = dnorm(u) # hts. of density above rand. points

sum(w * h) # approximate probability

> sum(w * h)

[1] 0.3413249

When the set.seed statement is “commented out” as shown, different
random points will be selected each time the program is run, so the exact
result will differ somewhat from run to run. It can be shown that, when we
use m = 500 000 points to evaluate P{0 < Z ≤ 1}, the simulation error rarely
exceeds 0.00015. (See Problem 3.5.) If we were to use only m = 5000, the 95%
margin of error becomes 0.0015, which is still small enough for many practical
purposes. ♦
Example 3.3. The Acceptance-Rejection Method. Another simulation method
that can be used to find P{0 < Z ≤ 1} is to surround the desired area by the
rectangle with diagonal vertices at (0, 0) and (1, 0.4), put a large number of
points into this rectangle at random, and find the fraction of points that falls
in the area beneath the density curve—the “accepted” points (see Figure 3.2).
R code to implement this method for our specific problem is as follows.

# set.seed(12)

m = 500000

u = runif(m, 0, 1)

h = runif(m, 0, 0.4)

frac.acc = mean(h < dnorm(u))

0.4*frac.acc

> 0.4*frac.acc

[1] 0.341056
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Figure 3.2. In the acceptance-rejection method of Example 3.3, we put 500 000
points at random into a rectangle that surrounds the area for P{0 < Z ≤ 1}. The
fraction falling below the density curve, the (darker) “accepted points,” is used to
approximate this probability. For clarity, the figure shows only the first 2000 points.

The elements of the logical vector h < dnorm(u) take values TRUE and
FALSE. When we find the mean of this vector, TRUE is interpreted as 1 and
FALSE as 0, so that the result is the proportion of the m = 500 000 points that
lie within the desired region. In the last line of the program, the fraction of
these accepted points is multiplied by the area of the rectangle to obtain the
approximate value P{0 < Z ≤ 1} ≈ 0.341056. It can be shown that about
95% of the runs of this program will give a value within ±0.0004 of the correct
answer.

This method is a relatively inefficient one for evaluating simple normal
probabilities. However, like Monte Carlo integration, it can be useful in more
complicated situations. ♦

The methods of the preceding three examples all require us to know the
density function of the standard normal distribution. The method illustrated
in the next example takes a fundamentally different approach.

Example 3.4. Random Sampling Method. To evaluate J = P{a < Z ≤ b}, we
can take a large random sample from a standard normal distribution and then
see what proportion of the observations falls between a and b. It is easy for
us to generate standard normal observations at random because (as we saw
in Chapter 2) the R function rnorm is programmed to do this specific task.

The script below uses this function to generate the vector z. The logical
vector z > a & z <= b has m elements, each of which takes the value TRUE,
interpreted as 1, when and only when the corresponding element of the vector
z lies in (a, b].
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# set.seed(1212)

m = 500000 # number of observations sampled

a = 0; b = 1 # interval endpoints

z = rnorm(m) # m random obs. from std. normal

mean(z > a & z <= b) # proportion of obs. in (c, d)

> mean(z > a & z <= b)

[1] 0.34146

As in Examples 3.2 and 3.3, there is some random variation from one simu-
lation to the next. With m = 500 000, results for P{0 < Z ≤ 1} are likely
within ±0.0013 of the correct value.

Although the R code is quite simple, this method actually requires more
computation than for the previous two methods. In some applications, the
amount of computation required to sample values of a random variable X of
interest may be time-consuming even on modern computers. Also, for the task
of evaluating P{0 < Z ≤ 1}, the sampling method has the largest margin of
error. Consequently, you may wonder why the random sampling method is
ever used. The answer is that there are many important applications in which
the density function of a distribution is not known but in which a way can be
found to sample at random from the distribution. This is a major theme of
Chapters 4 and beyond. For now, see the simple example of Problem 3.10. ♦

So far, we have concentrated attention on integrals that provide proba-
bilities of intervals, but the methods just described are often used to find
expected values of continuous random variables. For example, up to a con-
stant, the integral

∫ 1

0
x2 dx can be interpreted as one of two expectations or

as a probability. (This is Problem 3.15; see other examples in Problems 3.7
and 3.8.) Also, we can use simulation methods to evaluate integrals that are
not directly related to probability (as in Problems 3.6 and 3.24 through 3.26).

As is true for many computer-intensive computations in probability and
statistics, the examples of this section are based on limiting processes.
It is important to distinguish between two kinds of limiting processes—
deterministic and random. Examples of deterministic convergence are the
convergence of (1 + 1/m)m to e = 2.718282 as m → ∞ and the conver-
gence in the definition of a Riemann integral. Here each term in the sequence
has a definite value. In contrast, the Monte Carlo methods we have just seen
are based on convergence of sequences of random variables. We explore this
topic in more detail in the next two sections.

3.2 Convergence—The Law of Large Numbers

Why does simulation work? Why is it ever possible to generate a lot of “fake”
data on a computer and find out something useful from the results? Even
if simulation does give accurate results in some cases, how can we know if
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Figure 3.3. Histogram of the sum T of independent random variables U and V ,
where U ∼ UNIF(0, 10) and V ∼ NORM(5, 1). In Problem 3.10, without knowing
the density function of T , we take a sample of size 500 000 from its distribution to
evaluate P{T > 15}. Can you roughly guess the answer by looking at the histogram?

a particular simulation is useful? In this section, we start to answer these
questions, first with some general guidelines.

• Relevance. Simulated observations must be carefully generated according
to rules that we have reason to believe are relevant. For example, the rules
may be based on a combination of past experience and current data from
which we want to make a decision, or they may be based on a hypothetical
probability model that we want to explore and better understand.

• Stability. Limit theorems of probability theory guarantee that, if a simula-
tion is properly designed and run for enough iterations, it will give a stable
result instead of useless random noise. Two of these theorems are the Law
of Large Numbers and the Central Limit Theorem, which we illustrate
later in this section and in the next.

• Diagnostics. A variety of numerical and graphical methods can be used to
see whether a simulation has stabilized. By running a simulation several
times, we can distinguish the random quirks of any one run (“noise”) from
the valid results shared by all runs (“signal”). We can look at the numbers
from the first few steps of a simulation and verify them by hand to make
sure our programming is correct. Also, by running simulations of similar
models where some or all of the results can be found analytically, we can
verify that we have programmed the correct model and that the random
number generator we used is of adequate quality.

We begin this section by simulating the repeated tossing of a fair coin.
This simple model illustrates the role of probability laws in simulation, and
it allows us to compare a simulated value with a known result.
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Example 3.5. Limiting Behavior of an Independent Process. Suppose we have
a coin that we believe is fair. Based on common sense and past experience
tossing coins, we also believe that each toss of the coin is independent of other
tosses.

Intuitively, we expect very nearly half of the tosses of this coin will result
in Heads. Of course, this does not necessarily hold true for very small numbers
of tosses. For example, if we toss the coin four times, the probability of getting
two Heads in four tosses is only

(
4
2

)
/24 = 0.375. However, for large numbers

of tosses, the Law of Large Numbers guarantees that the proportion of Heads
we observe will accurately approximate the probability of Heads.

More formally, we let Hn = 0 when the nth toss results in a Tail and
Hn = 1 when it results in a Head. Then P{Hn = 0} = P{Hn = 1} = 1/2, and
the Hn are independent random variables. After the nth toss, the distribution
of the Heads count Sn = H1 + H2 + · · · + Hn is BINOM(n, 1/2). Also, we
can use this distribution to evaluate probabilities for Yn = H̄n = Sn/n, the
proportion of heads observed so far.

The Law of Large Numbers involves choosing a positive “tolerable error” ε
as close to 0 as we please. For any ε > 0, as the number of tosses goes to infinity,
it becomes a sure thing that the proportion Yn of Heads is within ± ε of 1/2.
In symbols, defining Pn = P{|Yn − 1/2| < ε}, we have

lim
n→∞

Pn = lim
n→∞

P{|Yn − 1/2| < ε} = 1.

We say Yn converges in probability to 1/2 and write Yn
p→ 1/2.

To illustrate, let us choose ε = 0.02. For n = 4 tosses, we know that
P{S4 = 2} = P{Y4 = 1/2} = 0.375, and no other possible values of Y4 come
within ε of 1/2, so P4 = P{|Y4 − 1/2| < ε} = 0.375. Further computa-
tions with the binomial distribution reveal that P100 = 0.236, P1000 = 0.783,
P5000 = 0.995, and P10 000 > 0.999. (Also, see Problem 3.16 and Figure 3.12.)

Here is the crucial point in making a formal mathematical statement about
the “limiting behavior” of random variables. We cannot know the exact values
of the random variables Hn or Yn. But we can know the exact values of the
probabilities Pn, and we formulate a limit theorem about the random variables
in terms of these probabilities.

As a demonstration, we now simulate m = 10 000 coin tosses according
to the probability model stated above. After each simulated toss, we plot the
proportion Yn of Heads obtained so far against the number n of tosses so far.
This gives a trace of the process. The Law of Large Numbers says we should
see a trace that gets very close to 1/2 as n increases.

The R code for such a simulation is shown below. A graph based on one
run of this program is shown in Figure 3.4.

The randomly generated Bernoulli random variable Hn has equal proba-
bilities of taking the values 0 and 1. The vector h contains ten thousand 0s
and 1s. The nth element of the vector y is the mean of the first n elements
of h, that is, the proportion of 1s (Heads) in the first n tosses.
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Figure 3.4. This trace of the proportions of Heads after each toss of a fair coin
results from one run of the program in Example 3.5. (For clarity in print, this is a
magnified view of part of the plot specified there.) The dashed lines at 0.48 and 0.52
illustrate the Law of Large Numbers with ε = 0.02.

#Initialize:

# set.seed(1212)

m = 10000 # total number of tosses

n = 1:m # vector: n = 1, 2, ..., m; Toss number

#Simulate and Plot:

h = rbinom(m, 1, 1/2) # vector: H = 0 or 1 each with prob. 1/2

y = cumsum(h)/n # vector: Proportion of heads

plot (n, y, type="l", ylim=c(0,1)) # Plot trace

#Verify:

Show = cbind(n,h,y) # matrix: 3 vectors as cols.: n, h, y

Show[1:10, ] # print first 10 rows of Show

Show[(m-4):m, ] # print last 5 rows of Show

> Show[1:10, ] > Show[(m-4):m, ]

n h y n h y

[1,] 1 0 0.0000000 [1,] 9996 1 0.49990

[2,] 2 0 0.0000000 [2,] 9997 0 0.49985

[3,] 3 1 0.3333333 [3,] 9998 0 0.49980

[4,] 4 0 0.2500000 [4,] 9999 1 0.49985

[5,] 5 1 0.4000000 [5,] 10000 1 0.49990

[6,] 6 0 0.3333333

[7,] 7 0 0.2857143

[8,] 8 0 0.2500000

[9,] 9 1 0.3333333

[10,] 10 0 0.3000000
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The commands in the section marked Verify print the first ten and last
five values of n, Hn, and Yn so that we can follow in detail what is going
on. Output from one run of this program is shown above. The final value
Y10 000 = 0.49990 is very near 1/2.

Towards the right of the graph, our simulated values of Yn have begun to
cluster tightly around 1/2 in a way consistent with the Law of Large Num-
bers. Computations with the binomial distribution show that the interval
0.5± 0.01 is 95% sure to include Y10 000. In particular, our (especially lucky)
simulated value 0.49990 falls inside this interval. As judged by this informa-
tion, randomly generated coin tosses, obtained quickly by a simple program,
are behaving just as if they were tosses by hand of a real coin. ♦

Note: We could have written a program for the simulation above with a
loop, simulating one coin toss and updating the cumulative number of heads
on each passage through the loop. (See Problem 3.18.) But R executes
such “explicit” loops in a relatively inefficient way, and it is best to avoid
them when possible. Because the Hn in the example above are independent
random variables, we were able to “vectorize” the program to avoid writing
a loop. Of course, in executing our vectorized code, R performed several
loops to store the random variables in vectors and perform arithmetic on
these vectors. But R executes these implicit loops more efficiently within
its data-handling structure. Generally speaking, if an R program requires a
large number m of iterations, then arithmetic on an m-vector is faster than
running through an explicit loop m times.

We have just stated and illustrated the Law of Large Numbers for coin
tossing. The same principle holds more generally for sequences of random
variables from a wide variety of discrete and continuous distributions. Here is
a more general statement.
The Law of Large Numbers. Let X1, X2, . . . be a sequence of independent
random variables each with mean µ and finite standard deviation σ, and let
the “running average” X̄n be the sample mean of the first n random variables.
Then, for any ε > 0,

lim
n→∞

P{|X̄n − µ| < ε} = 1.

Notice that in the coin-toss example the Hi correspond to the Xi, and Yn

to X̄n, in the general statement above. Thus, in that example µ = E(Xi) = 1/2
and σ = SD(Xi) = 1/2.

One crucial assumption of the Law of Large Numbers is that the Xi must
have finite variance. One well-known distribution that does not is the “heavy-
tailed” Student’s t distribution with 1 degree of freedom, also called a Cauchy
distribution. In the program of Example 3.5, if we replace the specification
of h with h = rt(m, 1) and remove the ylim restrictions on the vertical
axis, then we get the nonconvergent sequence of running averages shown in
Figure 3.5. One can prove that the mean of n independent random variables
with this Cauchy distribution again has this same Cauchy distribution, so no
“stability” is gained by averaging.
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Figure 3.5. The running averages of Cauchy random variables do not converge in
probability to a constant. The Law of Large Numbers does not apply because the
Cauchy random variables do not have a finite standard deviation.

Another important assumption in the coin-toss example above is that the
tosses are independent. Now we look at a simple process where the outcome
at each step depends on the previous one.

Example 3.6. Limiting Behavior of a Dependent Process. On an imaginary
tropical island, days can be classified as either Sunny (coded as 0) or Rainy (1).
Once either a rainy or a sunny weather pattern has begun, it tends to continue
for a while. In particular, if one day is Sunny, then the probability that the
next day will also be Sunny is 0.97; and if one day is Rainy, then the probability
that the next day will also be rainy is 0.94.

More formally, let the random variable Wn, which takes only the values
0 and 1, describe the weather on the nth day. The Wn are not independent
random variables. In particular, P{Wn+1 = 1|Wn = 0} = 0.03, whereas
P{Wn+1 = 1|Wn = 1} = 0.94. However, we will see in Chapter 6 that the
probabilities P{Wn = 1|W1 = 0} and P{Wn = 1|W1 = 1} become equal as
n → ∞. We will also see that the proportion Yn = W̄n = (1/n)

∑n
i=1 Wi of

rainy days obeys a Law of Large Numbers, converging in probability to 1/3.
Thus, over the long run, it rains on a third of the days.

Using the R code below, we simulate the weather for m = 10 000 days
(about 27 years). Then we can make a plot that shows the behavior of the
“average” weather over this period. The result Y10 000 = 0.3099 suggests that
it may rain on about 1/3 of the days, but this is not a very satisfying match
with the known theoretical value. The convergence in this dependent model
is not as fast as it was in the independent coin-toss model of Example 3.5, so
10 000 days is not really long enough to qualify as “the long run” in this case.
(See Figure 3.6.)
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Figure 3.6. Counting sunny days as 0s and rainy days as 1s, the running averages
of Example 3.6 converge very slowly to the known limit 1/3 (horizontal reference
line). The slow convergence is due to the dependence of each day’s weather on the
weather of the previous day, in a pattern with highly positive correlation.

Because the weather on each day depends on the weather on the previous
day, we could find no straightforward way to vectorize this program entirely,
although we did keep the for-loop as simple as possible.

#Initialize:

# set.seed(1237)

m = 10000; n = 1:m; alpha = 0.03; beta = 0.06

w = numeric(m); w[1] = 0

#Simulate:

for (i in 2:m)

{

if (w[i-1]==0) w[i] = rbinom(1, 1, alpha)

else w[i] = rbinom(1, 1, 1 - beta)

}

y = cumsum(w)/n

#Results:

y[m]

plot(y, type="l", ylim=c(0,1))

The dependent structure is reflected in the two plots of Figure 3.7. The
upper panel, made with the additional code plot(w[1:500], type="l"), is
a plot of the first 500 values Wi against n, with line segments connecting suc-
cessive values. It shows the tendency for the weather to “stick” either at Rainy
or Sunny for many days in a row. The lower panel plots the autocorrelation
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Figure 3.7. The trace of the first 500 values of W (upper panel) shows long periods
of Rainy and of Sunny weather. The autocorrelation function (lower) shows a very
highly positive autocorrelation for small lags, slowly decreasing for larger lags.

function, made with acf(w). It shows the very high sample correlations be-
tween the sequences (Wn) and (Wn−g) for small lags g. For larger lags, the
correlations decrease but are still significantly positive out as far as g = 40.
The weather tomorrow depends very strongly on the weather today, but the
weather a month from now is noticeably less dependent on today’s weather.

Although our simulation did not stabilize within m = 10 000 iterations,
this slow convergence is a property of the particular process of this exam-
ple, not a fault of our method of simulation. In this regard, simulation has
accurately reflected the model we proposed but did not provide a very good
approximation for the proportion of rainy days encountered over the long run.

Taken together, the three graphs in Figures 3.6 and 3.7 are very useful
in detecting the slow convergence and diagnosing the reason for it. We use
such plots repeatedly throughout this book. (See Problem 3.20 for two better-
behaved weather models.) ♦

The Law of Large Numbers applies to most models we simulate in this
book, independent or not, guaranteeing that they will stabilize “over the long
run.” But, in practice, we have just seen that the long run may be very long
indeed. Especially for a process with positively correlated stages, one needs
to verify whether a particular simulation has stabilized enough to give useful
results.
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3.3 Central Limit Theorem

We have seen that the Law of Large Numbers gives assurance that simulations
based on independent models converge eventually, but it does not provide a
good way to assess the accuracy of results after a given number m of iterations.
Accordingly, we turn now to a brief discussion of a result that can provide
useful assessments.

If we sum or average many observations from a population, the result
tends to be normally distributed. Later in this section, we state this idea
more precisely as the Central Limit Theorem. As we have already seen in
Chapter 1, one consequence of this tendency is that, for sufficiently large n,
Xn ∼ BINOM(n, π) is approximately normal. The Central Limit Theorem
applies because we can consider the binomial random variable Xn as the sum
of n independent Bernoulli random variables Vi, each taking the value 1 with
probability π and the value 0 with probability 1− π.

Three of the simulations we did earlier in this chapter provide elementary
examples of this tendency for binomial random variables with large n to be
approximately normal.

• In Example 3.5, the random variable Sn ∼ BINOM(n, 1/2) is the number
of Heads seen in the first n = 100 tosses of a coin, so that E(Sn) = nπ = 50
and SD(Sn) =

√
nπ(1− π) = 5. There, with Yn = Sn/n, we claim that

Pn = P{|Yn − 1/2| < 0.02} = 0.236. However,

P100 = P{0.48 < Y100 < 0.52} = P{48 < S100 ≤ 51}
= P{48.5 < S100 < 51.5} ≈ P{48.5 < Z100 < 51.5},

where Z100 ∼ NORM(50, 5). Thus P100 can be evaluated exactly in terms
of S100, and approximately in terms of Z100, as follows:

> pbinom(51,100,.5) - pbinom(48,100,.5)

[1] 0.2356466

> pnorm(51.5,50,5) - pnorm(48.5,50,5)

[1] 0.2358228

The two answers agree to three places. Because of the good approximation
of binomial probabilities by normal ones, for large m we feel comfortable
taking Sm to be approximately NORM(m/2,

√
m/2) and Ym = Sm/m to

be approximately NORM(1/2, 1/2
√

m). Thus, in a simulation run with
m = 10 000, we have good reason to claim, as we did after the program in
Section 3.5, to be 95% sure that Y10 000 will be within ±1/

√
m or ±0.01

of the correct answer.
• In Example 3.4, we used the sampling method to evaluate P{0 < Z ≤ 1},

finding that the proportion 0.34146 of our m = 500 000 random samples
from a standard normal distribution fell in the unit interval. Of course,
in this problem, we know the exact answer is 0.3413. But in a practical
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simulation problem we would not know the answer, so it seems reasonable
to use a standard 95% binomial confidence interval to assess the margin
of error of the simulated result 0.34146. The estimated margin of error is
1.96 [0.34146(1 − 0.34146)/m]1/2 = 0.0013, which is what we claimed at
the end of that simulation. (Because m is so large, there is no point in
using the Agresti-Coull adjustment discussed in Chapter 1.)

• The acceptance-rejection method of Example 3.3 gave 0.341056 as the
simulated value of P{0 < Z ≤ 1}. Thus, of the m = 500 000 points used,
the proportion of accepted points was about 0.341056/0.40 = 0.85264. So
a 95% confidence interval for the true proportion of acceptable points is
0.85264±1.96 [0.85264(1−0.85264)/m]1/2 or 0.85264±0.00098. Multiplying
both the estimate and the margin of error by 0.40 gives the corresponding
confidence interval for the answer: 0.341056 ± 0.00039. It was on this ba-
sis that we concluded it is reasonable to expect the acceptance-rejection
method with this number of iterations to give answers with about a 0.0004
margin of error.

In the next section, we look at the margins of error for estimates of
P{0 < Z ≤ 1} using Riemann and Monte Carlo estimation. Although the
three examples we have just considered all involve sums of Bernoulli random
variables, the Central Limit Theorem works for random samples from a wide
variety of discrete and continuous distributions. Here is a general statement.
The Central Limit Theorem. Let X1, X2, . . . be a sequence of independent,
identically distributed random variables each with mean µ and finite standard
deviation σ, and let Sn =

∑n
i=1 Xi be the sum of the first n random variables

and X̄n = Sn/n be their mean. Further, let

Zn =
Sn − nµ√

nσ
=

X̄n − µ

σ/
√

n
.

Then limn→∞ FZn(z) = limn→∞ P{Zn ≤ z} = Φ(z) for any real z. We say
that Zn converges in distribution to standard normal. In symbols, we write
this as Zn

d→ Z ∼ NORM(0, 1). For d→, one reads converges in distribution to.
It is worthwhile to point out an essential difference between the Law of

Large Numbers and the Central Limit Theorem. For simplicity, let the Xi

have µ = E(Xi) = 0 and σ = SD(Xi) = 1, and set Sn = X1 + · · ·+ Xn. Then
the former theorem states that X̄n = Sn/n

p→ µ = 0 and the latter states
that Zn = Sn/

√
n

d→ NORM(0, 1). It matters greatly whether we divide Sn

by n or by
√

n. Dividing by n in the Law of Large Numbers yields conver-
gence to a constant value. Dividing by

√
n in the Central Limit Theorem

permits relatively more variation around µ = 0 and results in convergence to
a distribution. Partly because of this distinction, the Central Limit Theorem
often provides useful information for much smaller values of n (sometimes
useful for n as small as 10) than does the Law of Large Numbers (often useful
only for n in the hundreds or thousands).
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Figure 3.8. Illustrating the Central Limit Theorem. The density of NORM(15, 2.5)
closely fits the histogram of sample means of 500 000 simulated samples of size 12
from UNIF(0, 30). The area under the curve to the right of the dashed line is 0.1151,
while the area of the corresponding histogram bars is 0.1165. (See Example 3.7.)

Example 3.7. If the distribution of the Xi is relatively short-tailed and not far
from symmetrical, the Central Limit Theorem is sometimes of practical use as
an approximation for surprisingly small values of n. For example, let the Xi

be a random sample of size n = 12 from UNIF(0, 30) so that µ = E(Xi) = 15
and σ = SD(Xi) = 30/

√
12, as with the waiting times for trains at the

beginning of Section 3.1. Then E(X̄12) = 15 and SD(X̄12) = 30/12 = 2.5, so
the probability that the average waiting time X̄12 over 12 trips exceeds 18
minutes is approximated as

P{X̄12 > 18} = P

{
X̄12 − µ

σ/
√

n
>

18− 15
2.5

= 1.2
}
≈ 1− Φ(1.2) = 0.1151.

In contrast, the following R program solves this problem using the sam-
pling method with the actual distribution of X̄12 instead of using the normal
approximation. (We use the sampling method because finding the density
function of the actual distribution would be messy.) Each of the m = 500 000
rows of the matrix DTA contains one simulated sample of size n = 12.

# set.seed(1212)

m = 500000; n = 12

x = runif(m*n, 0, 30); DTA = matrix(x, m)

x.bar = rowMeans(DTA); mean(x.bar > 18)

> mean(x.bar > 18)

[1] 0.11655
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The result 0.1165±0.001 agrees with the normal approximation to two decimal
places. The margin of error is approximated as 2[0.1165(1 − 0.1165)/m]1/2.
(See Figure 3.8.)

If the distribution of the random variables being averaged is markedly
skewed, as for the electronic components with exponentially distributed life-
times in Section 3.1, then n = 12 is too small a sample size for the normal
approximation to be useful. (See Problem 3.13.) ♦

Now we revisit Monte Carlo integration to elaborate on its justification in
terms of the Law of Large Numbers and methods of estimating the accuracy
of results obtained using this method of integration.

3.4 A Closer Look at Monte Carlo Integration

In Section 3.1, we used Monte Carlo integration to evaluate P{0 < Z ≤ 1} =
P{0 ≤ Z ≤ 1}, where Z is standard normal. Now, more generally, suppose
we want to integrate a bounded, piecewise-continuous function h(x) over a
finite interval [a, b], with a < b. Then, for sufficiently large m, the integral
J =

∫ b

a
h(u) du is approximated by

Am =
b− a

m

m∑

i=1

h(Ui) =
1
m

m∑

i=1

(b− a)h(Ui) =
1
m

m∑

i=1

Yi = Ȳm,

where Ui are sampled at random from UNIF(a, b), and Yi = (b− a)h(Ui).
Because the Am are appropriate averages, the Law of Large Numbers

guarantees that the Am
p→ J as m → ∞. The following steps show that the

Law of Large Numbers applies:

• The density function of each Ui is fU (u) = 1
b−aI[a,b](u), which takes the

value 1/(b− a) on [a, b] and 0 elsewhere.
• The Yi are independent and identically distributed random variables, each

Yi with mean J , because

E(Y ) = E[(b− a)h(U)] =
∫ b

a

(b− a)h(u)fU (u) du =
∫ b

a

h(u) du = J.

• Am = Ȳm is the sample mean of the Yi = (b− a)h(Ui), i = 1, 2, ..., m.
• Thus the Law of Large Numbers states that Am = Ȳm

p→ E(Y ) = J .

In addition, for large m, the Central Limit Theorem states that Am = Ȳm

is approximately normally distributed with mean E(Y ) and standard devi-
ation SD(Ȳm) = SD(Y )/

√
m. This gives an idea of the largest likely error

in approximating J by Am; in only 5% of simulations will the absolute error
exceed 2SD(Ȳm). Both the Law of Large Numbers and the Central Limit The-
orem require the existence of SD(Y ), but this is assured by our restrictions
that h is bounded and piecewise continuous on the finite interval [a, b]. (See
Problem 3.24 for examples where the integrand is not bounded.)
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Example 3.8. Monte Carlo Margin of Error. We show results of the Riemann
and Monte Carlo methods of integration for J =

∫ 1.5

0
x2 dx = 1.125. Recall

that the Riemann approximation is based on summing rectangles:

Rm =
b− a

m

m∑

i=1

h(xi) =
m∑

i=1

b− a

m
h(xi),

where the xi are m grid points evenly spaced in [a, b] and Rm → J . The
following program implements both methods.

m = 100000

a = 0; b = 3/2; w = (b - a)/m

x = seq(a + w/2, b-w/2, length=m)

h = x^2; rect.areas = w*h

sum(rect.areas) # Riemann

# set.seed(1212)

u = runif(m, a, b)

h = u^2; y = (b - a)*h

mean(y) # Monte Carlo

2*sd(y)/sqrt(m) # MC margin of error

> sum(rect.areas) # Riemann

[1] 1.125

> mean(y) # Monte Carlo

[1] 1.123621

> 2*sd(y)/sqrt(m) # MC margin of error

[1] 0.006358837

Riemann approximation gives the exact answer and Monte Carlo integra-
tion comes reasonably close. The estimated margin of error of the latter is
about 0.006, so here we can expect one- or (most often) two-place accuracy
from Monte Carlo integration with m = 100 000. ♦

In general, for reasonably smooth functions h on a finite interval of the real
line, the Riemann approximation gives better results than the Monte Carlo
approximation. However, we can make no comprehensive comparisons because
different factors affect the accuracy of each method. We have seen that the
error of the Monte Carlo method decreases as 1/

√
m with increasing m and

depends on SD(Y ) = (b− a)SD[h(U)]. The error of the Riemann procedure is
increased by the roughness or “wiggliness” of h; if h is relatively smooth, its
error decreases as 1/m.

As we mentioned in Section 3.1, the importance of Monte Carlo integration
lies mainly in the evaluation of multiple integrals. The Monte Carlo method
often works well in higher dimensions, while the Riemann method usually does
not. Roughly speaking, the number m of grid points needed for an accurate
approximation with the Riemann method increases as the power of the number



3.4 A Closer Look at Monte Carlo Integration 69

of dimensions, whereas the required number m of random points in the Monte
Carlo method depends on the variance of h (which may be large when the
dimensionality is large) but not explicitly on the number of dimensions. (For
more detail on the last two paragraphs, see [Liu01], Chapter 1.)

The term Monte Carlo is used in slightly different ways by different authors.
Most broadly, it can be used to refer to almost any kind of simulation. In
this chapter we have used it to refer to the most basic kind of integration by
simulation, involving points uniformly distributed in an interval of interest.
All simulations are ultimately based on pseudorandom numbers that can be
taken as UNIF(0, 1). Other random variables are obtained by transforma-
tion. Hence it is theoretically possible to consider many kinds of simulations
as transformations of integration problems based on uniform values in a unit
interval, square, cube, or hypercube. As an especially straightforward ex-
ample, each sample in the simulation of Example 3.7 arises from a uniform
distribution on the 12-dimensional unit hypercube. (See [KG80], p233.)

Because many problems of practical interest require integration in higher
dimensions, we now show an example in two dimensions, which is extended
to three dimensions in the problems.

Example 3.9. A Bivariate Normal Probability. In the examples of Section 3.1,
a deterministic Riemann approximation with rectangles performed better than
Monte Carlo integration. Now we consider an integral over a two-dimensional
region, for which the deterministic method loses some of its advantage.

Let Z1 and Z2 be independent standard normal random variables, and let
ϕ denote the standard normal density. We wish to evaluate

J = P{Z1 > 0, Z2 > 0, Z1 + Z2 < 1},

which corresponds to the volume under a bivariate standard normal density
surface and above the triangle with vertices at (0, 0), (0, 1), and (1, 0). One
can show that J = 0.06773, so we are able to judge the accuracy of both the
deterministic and the Monte Carlo methods. (See Problem 3.27(c).)

We use m = 10 000 for both approximations. Thus, in the Riemann ap-
proximation, we make a grid of 100 × 100 points within the unit square and
consider volumes of solid rectangular “posts” that have square bases centered
at grid points and approximate the height of the normal surface. We use only
grid points inside the triangular region of integration (but some of the square
bases can extend outside the triangle).

m = 10000

g = round(sqrt(m)) # no. of grid pts on each axis

x1 = rep((1:g - 1/2)/g, times=g) # these two lines give

x2 = rep((1:g - 1/2)/g, each=g) # coordinates of grid points

hx = dnorm(x1)*dnorm(x2)

sum(hx[x1 + x2 < 1])/g^2 # Riemann approximation

(pnorm(sqrt(1/2)) - 0.5)^2 # exact value of J
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> sum(hx[x1 + x2 < 1])/g^2 # Riemann approximation

[1] 0.06715779

> (pnorm(sqrt(1/2)) - 0.5)^2 # exact value of J

[1] 0.06773003

Note: The rep function, used above to make the coordinates of the grid
points, may be new to you. Here are two simple examples illustrating its use:
The expression rep(1:3, times=3) returns the vector (1, 2, 3, 1, 2, 3, 1, 2, 3),
and rep(1:3, each=3) returns (1, 1, 1, 2, 2, 2, 3, 3, 3).

The approximation J ≈ 0.06716 agrees to two decimal places with the
exact answer J = 0.06773. If we change < to <= in the line of code that
sums volumes of posts, then the result changes to J ≈ 0.06830. With this
change, all of the grid squares along the hypotenuse of the triangle, excluded
in the original program, are included. Either choice—inclusion or exclusion—
is defensible. For the case m = 100, the top two panels of Figure 3.9 show the
square bases of the posts and illustrate exclusion (left) and inclusion of posts
corresponding to such boundary points.

In the Monte Carlo procedure for evaluating J , we need to sample from
a uniform distribution on the triangle. We do this by sampling m = 10 000
points from the uniform distribution on the unit square and rejecting those
that do not fall within the triangle. Because the area of the triangle is 1/2,
about half of the points will be accepted, so that the actual number of sampled
points m′ will be about 5000. Accordingly, in order to obtain the Monte Carlo
approximation to J , we must multiply by 1/2 the average value Ȳm′ for the
sampled points. (The last two lines of the block of code below show this
multiplication, which is analogous to multiplying by the length b−a when the
one-dimensional region of integration is the interval [a, b].)

# set.seed(1237)

u1 = runif(m) # these two lines give a random

u2 = runif(m) # point in the unit square

hu = dnorm(u1)*dnorm(u2)

hu.acc = hu[u1 + u2 < 1] # heights above accepted points

m.prime = length(hu.acc); m.prime # no. of points in triangle

(1/2)*mean(hu.acc) # Monte Carlo result

2*(1/2)*sd(hu.acc)/sqrt(m.prime) # aprx. Marg. of Err. = 2SD(A)

> m.prime = length(hu.acc); m.prime # no. of points in triangle

[1] 5066

> (1/2)*mean(hu.acc) # Monte Carlo result

[1] 0.06761627

> 2*(1/2)*sd(hu.acc)/sqrt(m.prime) # aprx. Marg. of Err. = 2SD(A)

[1] 0.0001972224

This run of the Monte Carlo method has an effective run size of m′ = 5066
accepted points. (The lower left panel of Figure 3.9 shows 47 accepted points
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Figure 3.9. Integrating over a triangle. Graphs in the upper row show square bases
of “posts” used in Riemann approximation, excluding (left) and including boundary
points. At the lower left, in Monte Carlo integration, 47 accepted random points out
of 100 fall within the region of integration. Example 3.9 uses 10 000 points instead
of 100. (Analogously, the graph at the lower right illustrates Monte Carlo integration
over the quarter of the unit circle in the first quadrant, see Problem 3.27(b).)

in a run with m = 100.) We see that we can expect, as achieved in this
run, about three-place accuracy. Integrating over this 2-dimensional region,
we have achieved better results with Monte Carlo integration than with de-
terministic Riemann approximation.

A fundamental difficulty of Riemann approximation in higher dimensions
is illustrated here. In Riemann approximation over two dimensions, errors
typically arise not only because flat-topped posts above grid squares do not
exactly fit the normal surface, but also because the bases of the posts cannot
exactly fit the region of integration. In higher dimensions, hard-to-fit edges
and surfaces can proliferate. The random points of the Monte Carlo method
lack regularity, but they have the great advantage of always lying precisely
within the region of integration. In Problems 3.27 through 3.29, we consider
related examples of multidimensional integration. ♦

3.5 When Is Simulation Appropriate?

One harsh traditional view is that simulation is inelegant and to be avoided
whenever an analytic solution is possible. Now that we have run a few simu-
lations for various purposes, we are in a position to consider when simulation
may be appropriate and when it is not.



72 3 Monte Carlo Integration and Limit Theorems

• Simulation used to test a procedure. If our goal is to evaluate
∫ 1

0
x2 dx,

then simulation is clearly not the way to go because it is a trivial calcu-
lus exercise to obtain the exact answer. But in Example 3.8, we used the
Monte Carlo method to approximate this integral and learn how to find
the degree of accuracy we could expect from the method. Once we know
Monte Carlo integration works well enough when the integrand is x2, we
are willing to try it for other integrands that do not have explicit indefi-
nite integrals, for example x−2 sin2 x in Problem 3.26. So the principle of
testing a simulation procedure on cases where the answer is known is not
just pedagogical. Such tests are important in program development to see
whether a simulation procedure works for a particular kind of problem—
and whether the procedure is properly programmed.

• Analysis plus simulation. Traditional analysis can greatly simplify some
problems, but simulation may still be necessary at the last stage to get a
numerical answer. In Example 3.9, we used analytic methods to express the
double integral over a triangular region in terms of the univariate standard
normal cumulative distribution function Φ. But then the integral Φ must be
evaluated—either by Riemann approximation or some simulation method.
For many analogous instances in higher dimensions, a Monte Carlo method
would be the clear choice for obtaining a numerical answer.

• Simulation because analysis is “impossible.” Sometimes an analytic solu-
tion is not possible, even as an initial step. Here we must understand that
possible is a slippery word. In practice, what is possible often depends on
how much you know or how much time you have to ponder the problem
before a solution is due. If you know about ergodic Markov chains, an
analytic solution to Problem 3.20 comes quickly (see Chapter 6). If not,
a simulation as in Example 3.6 would serve well. Also, there are many
problems where no known analytic solution exists, or even where it is
known that no analytic solution exists. In particular, the expected value
in Problem 3.8 seems an unlikely candidate for analytic solution.

• Simulation for exploration or convenience. With recent advances in con-
gruential generators, computer hardware, and statistical software, simula-
tions of important problems can be programmed easily and very long runs
can be done in seconds. In practice, simulations are often used to explore
ideas or obtain approximate answers. Perhaps “elegant” analytic solutions
come later when one knows it is worthwhile to look for them, or perhaps
analytic solutions would be desirable but remain elusive. Perhaps the line
of inquiry collapses once we see disappointing results in several simula-
tions. Also, both of us have used simulations to check analytic results,
sometimes discovering errors in the analysis.

As you approach a practical problem where numerical results are required,
you should try to use the combination of analysis and simulation that meets
your needs for generality, accuracy, speed, and convenience. Often analytic
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solutions generalize more easily than simulation methods, but sometimes the
reverse is true.

If the model you are computing is based on approximations and simplify-
ing assumptions, a relatively tiny additional error introduced by simulation
may be irrelevant. There may be practical situations in which a good approx-
imation by noon today is worth more than the exact answer sometime next
week. Of course, when publishing methods or software for use by others, one
is expected to put the criteria of generality and accuracy above one’s personal
convenience.

3.6 Problems

Problems for Section 3.1 (Probabilities of Intervals)

3.1 Computation of simple integrals in Section 3.1.

a) If W ∼ UNIF(0, 30), sketch the density function of W and the area that
represents P{W ≤ 10}. In general, if X ∼ UNIF(α, β), write the formula
for P{c < X < d}, where α < c < d < β.

b) If T ∼ EXP(0.5), sketch the exponential distribution with rate λ = 0.5
and mean µ = 2. Write P{T > 1} as an integral, and use calculus to
evaluate it.

3.2 We explore two ways to evaluate e−1/2 ≈ 0.61, correct to two deci-
mal places, using only addition, subtraction, multiplication, and division—
the fundamental operations available to the makers of tables 50 years ago. On
most modern computers, the evaluation of ex is a chip-based function.

a) Consider the Taylor (Maclauren) expansion ex =
∑∞

k=0 xk/k!. Use the
first few terms of this infinite series to approximate e−1/2. How many
terms are required to get two-place accuracy? Explain.

b) Use the relationship ex = limn→∞(1+x/n)n. Notice that this is the limit
of an increasing sequence. What is the smallest value of k such that n = 2k

gives two-place accuracy for e−1/2?
c) Run the following R script. For each listed value of x, say whether the

method of part (a) or part (b) provides the better approximation of ex.

x = seq(-2, 2, by=.25)

taylor.7 = 1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + x^6/720

seq.1024 = (1 + x/1024)^1024

exact = exp(x)

round(cbind(x, taylor.7, seq.1024, exact), 4)

3.3 Change the values of the constants in the program of Example 3.1 as
indicated.
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a) For a = 0 and b = 1, try each of the values m = 10, 20, 50, and 500. Among
these values of m, what is the smallest that gives five-place accuracy for
P{0 < Z < 1}?

b) For m = 5000, modify this program to find P{1.2 < Z ≤ 2.5}. Compare
your answer with the exact value obtained using the R function pnorm.

3.4 Modify the program of Example 3.1 to find P{X ≤ 1} for X expo-
nentially distributed with mean 2. The density function is f(x) = 1

2e−x/2,
for x > 0. Run the program, and compare the result with the exact value
obtained using calculus and a calculator.

3.5 Run the program of Example 3.2 several times (omitting set.seed)
to evaluate P{0 < Z ≤ 1}. Do any of your answers have errors that exceed
the claimed margin of error 0.00015? Also, changing constants as necessary,
make several runs of this program to evaluate P{0.5 < Z ≤ 2}. Compare your
results with the exact value.

3.6 Use Monte Carlo integration with m = 100 000 to find the area of the
first quadrant of the unit circle, which has area π/4. Thus obtain a simulated
value of π = 3.141593. How many places of accuracy do you get?

3.7 Here we consider two very similar random variables. In each part below
we wish to evaluate P{X ≤ 1/2} and E(X). Notice that part (a) can be done
by straightforward analytic integration but part (b) cannot.

a) Let X be a random variable distributed as BETA(3, 2) with density func-
tion f(x) = 12x2(1−x), for 0 < x < 1, and 0 elsewhere. Use the numerical
integration method of Example 3.1 to evaluate the specified quantities.
Compare the results with exact values obtained using calculus.

b) Let X be a random variable distributed as BETA(2.9, 2.1) with density
function f(x) = Γ (5)

Γ (2.9)Γ (2.1) x1.9(1− x)1.1, for 0 < x < 1, and 0 elsewhere.
Use the method of Example 3.1.

c) Use the Monte Carlo integration method of Example 3.2 for both of the
previous parts. Compare results.

Hints and answers: (a) From integral calculus, P{X ≤ 1/2} = 5/16 and E(X) = 3/5.

(Show your work.) For the numerical integration, modify the lines of the pro-

gram of Example 3.1 that compute the density function. Also, let a = 0 and let

b = 1/2 for the probability. For the expectation, let b = 1 use h = 12*g^3*(1-g) or

h = g*dbeta(g, 3, 2). Why? (b) The constant factor of f(x) can be evaluated in R

as gamma(5)/(gamma(2.9)*gamma(2.1)), which returns 12.55032. Accurate answers

are 0.3481386 (from pbeta(.5, 2.9, 2.1)) and 29/50.

3.8 The yield of a batch of protein produced by a biotech company is
X ∼ NORM(100, 10). The dollar value of such a batch is V = 20− |X − 100|
as long as the yield X is between 80 and 120, but the batch is worthless
otherwise. (Issues of quality and purity arise if the yield of a batch is much
different from 100.) Find the expected monetary value E(V ) of such a batch.
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Hint: In the program of Example 3.1, let a = 80, b = 120. Also, for the line of code

defining h, substitute h = (20 - abs(g - 100))*dnorm(g, 100, 10). Provide the

answer (between 12.0 and 12.5) correct to two decimal places.

3.9 Suppose you do not know the value of
√

2. You can use simulation to
approximate it as follows. Let X = U2, where U ∼ UNIF(0, 1). Then show
that 2P{0 < X ≤ 1/2} =

√
2, and use the sampling method with large m to

approximate
√

2.
Note: Of the methods in Section 3.1, only sampling is useful. You could find the

density function of X, but it involves
√

2, which you are pretending not to know.

3.10 A computer processes a particular kind of instruction in two steps.
The time U (in µs) for the first step is uniformly distributed on (0, 10). Inde-
pendently, the additional time V for the second step is normally distributed
with mean 5 µs and standard deviation 1µs. Represent the total processing
time as T = U + V and evaluate P{T > 15}. Explain each step in the sug-
gested R code below. Interpret the results. Why do you suppose we choose
the method of Example 3.4 here—in preference to those of Examples 3.1–3.3?
(The histogram is shown in Figure 3.3, p57.)

m = 500000; u = 10*runif(m); v = 5 + rnorm(m)

t = u + v; mean(t > 15); mean(t); sd(t); hist(t)

Comments: The mean of the 500 000 observations of T is the balance point of the

histogram. How accurately does this mean simulate E(T ) = E(U)+E(V ) = 10? Also,

compare simulated and exact SD(T ). The histogram facilitates a rough guess of the

value P{T > 15}. Of the m = 500 000 sampled values, it seems that approximately

20 000 (or 4%) exceed 15. Your value from the program should be more precise.

3.11 The acceptance-rejection method for sampling from a distribution. Ex-
ample 3.3 illustrates how the acceptance-rejection (AR) method can be used
to approximate the probability of an interval. A generalization of this idea is
sometimes useful in sampling from a distribution, especially when the quan-
tile transformation method is infeasible. Suppose the random variable X has
the density function fX with support S (that is, fX(x) > 0 exactly when
x ∈ S). Also, suppose we can find an “envelope” Bb(x) ≥ fX(x), for all x
in S, where B is a known constant and b(x) has a finite integral over S.

Then, to sample a value at random from X, we sample a “candidate”
value y at random from a density g(x) that is proportional to b(x), accepting
the candidate value as a random value of X with probability fX(y)/Bb(y).
(Rejected candidate values are ignored.) Generally speaking, this method
works best when the envelope function is a reasonably good fit to the tar-
get density so that the acceptance rate is relatively high.

a) As a trivial example, suppose we want to sample from X ∼ BETA(3, 1)
without using the R function rbeta. Its density function is fX(x) = 3x2,
on S = (0, 1). Here we can choose Bb(x) = 3x ≥ fX(x), for x in (0, 1),
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and b(x) is proportional to the density 2x of BETA(2, 1). Explain how
the following R code implements the AR method to simulate X. (See
Problem 2.10 and Figure 2.10, p45.)

m = 20000; u = runif(m); y = sqrt(u)

acc = rbinom(m, 1, y); x = y[acc==T]

mean(x); sd(x); mean(x < 1/2); mean(acc)

hist(x, prob=T, ylim=c(0,3), col="wheat")

lines(c(0,1), c(0, 3), lty="dashed", lwd=2, col="darkgreen")

xx = seq(0, 1, len=1000)

lines(xx, dbeta(xx, 3, 1), lwd=2, col="blue")

The top panel of Figure 3.10 illustrates this method. We say this is a
trivial example because we could easily use the quantile transformation
method to sample from BETA(3, 1).)

b) As a more serious example, consider sampling from X ∼ BETA(1.5, 1.5),
for which the quantile function is not so easily found. Here the density
is fX(x) = (8/π)x0.5(1 − x)0.5 on (0, 1). The mode occurs at x = 1/2
with FX(1/2) = 4/π, so we can use Bb(x) = 4/π. Modify the program
of part (a) to implement the AR method for simulating values of X,
beginning with the following two lines. Annotate and explain your code.
Make a figure similar to the bottom panel of Figure 3.2. For verification,
note that E(X) = 1/2, SD(X) = 1/4, and FX(1/2) = 1/2. What is the
acceptance rate?

m = 40000; y = runif(m)

acc = rbinom(m, 1, dbeta(y, 1.5, 1.5)/(4/pi)); x = y[acc==T]

c) Repeat part (b) for X ∼ BETA(1.4, 1.6). As necessary, use the R function
gamma to evaluate the necessary values of the Γ -function. The function
rbeta implements very efficient algorithms for sampling from beta dis-
tributions. Compare your results from the AR method in this part with
results from rbeta.

Answers: (a) Compare with exact values E(X) = 3/4, SD(X) = (3/80)1/2 = 0.1936,

and FX(1/2) = P{X ≤ 1/2} = 1/8.

Problems for Section 3.2 (Law of Large Numbers)

3.12 In Example 3.5, interpret the output for the run shown in the ex-
ample as follows. First, verify using hand computations the values given for
Y1, Y2, . . . , Y5. Then, say exactly how many Heads were obtained in the first
9996 simulated tosses and how many Heads were obtained in all 10 000 tosses.

3.13 Run the program of Example 3.5 several times (omitting set.seed).
Did you get any values of Y10 000 outside the 95% interval (0.49, 0.51) claimed
there? Looking at the traces from your various runs, would you say that the
runs are more alike for the first 1000 values of n or the last 1000 values?
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Figure 3.10. Using the acceptance-rejection method to simulate samples from two
beta distributions. In each plot, the dotted line shows our choice of envelope. The
solid lines show the density functions of the target distributions BETA(3, 1) (at the
top) and BETA(1.5, 1.5). See Problem 3.11.

3.14 By making minor changes in the program of Example 3.2 (as below), it
is possible to illustrate the convergence of the approximation to J = 0.341345
as the number n of randomly chosen points increases to m = 5000. Explain
what each statement in the code does. Make several runs of the program. How
variable are the results for very small values of n, and how variable are they
for values of n near m = 5000? (Figure 3.11 shows superimposed traces for 20
runs.)

m = 5000; n = 1:m

u = runif(m)

h = dnorm(u)

j = cumsum(h)/n

plot(n, j, type="l", ylim=c(0.32, 0.36))

abline(h=0.3413, col="blue"); j[m]

Note: The plotting parameter ylim establishes a relatively small vertical range for

the plotting window on each run, making it easier to assess variability within and

among runs.

3.15 Consider random variables X1 ∼ BETA(1, 1), X2 ∼ BETA(2, 1), and
X3 ∼ BETA(3, 1). Then, for appropriate constants, Ki, i = 1, 2, 3, the integral∫ 1

0
x2 dx = 1/3 can be considered as each of the following: K1E(X2

1 ), K2E(X2),
and K3P{0 < X3 ≤ 1/2}. Evaluate K1, K2, and K3.
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Figure 3.11. Traces from 20 runs of the program in Problem 3.14 overlaid on one
plot. Horizontal dotted lines at the right show the interval inside which 95% of runs
should end. In this typical set of 20, one run ends just outside the interval.

3.16 In Example 3.5, let ε = 1/10 and define Pn = P{|Yn − 1/2| < ε} =
P{1/2 − ε < Yn < 1/2 + ε}. In R, the function pbinom is the cumulative
distribution function of a binomial random variable.

a) In the R Console window, execute
n = 1:100; pbinom(ceiling(n*0.6)-1, n, 0.5) - pbinom(n*0.4, n, 0.5)

Explain how this provides values of Pn, for n = 1, 2, . . . 100. (Notice
that the argument n in the function pbinom is a vector, so 100 results
are generated by the second statement.) Also, report the five values
P20, P40, P60, P80, and P100, correct to six decimal places, and compare
results with Figure 3.12.

b) By hand, verify the R results for P1, . . . , P6.
c) With ε = 1/50, evaluate the fifty values P100, P200, . . ., P5000. (Use the

expression n = seq(100, 5000, by=100), and modify the parameters of
pbinom appropriately.)

3.17 Modify the program of Example 3.5 so that there are only n = 100
tosses of the coin. This allows you to see more detail in the plot. Compare the
behavior of a fair coin with that of a coin heavily biased in favor of Heads,
P (Heads) = 0.9, using the code h = rbinom(m, 1, 0.9). Make several runs
for each type of coin. Some specific points for discussion are: Why are there
long upslopes and short downslopes in the paths for the biased coin but not
for the fair coin? Which simulations seem to converge faster—fair or biased?
Do the autocorrelation plots acf(h) differ between fair and biased coins?
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Figure 3.12. Convergence rates for the Law of Large numbers. The rate at which
Pn = P{|Yn − 1/2| < ε} converges to 1 in Example 3.5 depends on the value of ε.
The upper plot shows P250 very near 1, with ε = 0.1 as in Problem 3.16. But if
ε = 0.05, then convergence of Pn to 1 is much slower (lower plot).

3.18 A version of the program in Example 3.5 with an explicit loop would
substitute one of the two blocks of code below for the lines of the original
program that make the vectors h and y.

# First block: One operation inside loop

h = numeric(m)

for (i in 1:m) {h[i] = rbinom(1, 1, 1/2)}

y = cumsum(h)/n

# Second block: More operations inside loop

y = numeric(m); h = numeric(m)

for (i in 1:m) {

if (i==1)

{b = rbinom(1, 1, 1/2); h[i] = y[i] = b}

else

{b = rbinom(1, 1, 1/2); h[i] = b;

y[i] = ((i - 1)*y[i - 1] + b)/i} }

Modify the program with one of these blocks, use m = 500 000 iterations,
and compare the running time with that of the original “vectorized” program.
To get the running time of a program accurate to about a second, use as the
first line t1 = Sys.time() and as the last line t2 = Sys.time(); t2 - t1.
Note: On computers available as this is being written, the explicit loops in the

substitute blocks take noticeably longer to execute than the original vectorized code.
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3.19 The program in Example 3.6 begins with a Sunny day. Eventually,
there will be a Rainy day, and then later another Sunny day. Each return to
Sun (0) after Rain (1), corresponding to a day n with Wn−1 = 1 and Wn = 0,
signals the end of one Sun–Rain “weather cycle” and the beginning of another.
(In the early part of the plot of Yn, you can probably see some “valleys” or
“dips” caused by such cycles.)

If we align the vectors (W1, . . . , W9999) and (W2, . . . , W10 000), looking
to see where 0 in the former matches 1 in the latter, we can count the
complete weather cycles in our simulation. The R code to make this count
is length(w[w[1:(m-1)]==0 & w[2:m]==1]). Type this line in the Console
window after a simulation run—or append it to the program. How many cycles
do you count with set.seed(1237)?
Hint: One can show that the theoretical cycle length is 50 days. Compare this with

the top panel of Figure 3.7 (p63).

3.20 Branching out from Example 3.6, we discuss two additional imaginary
islands. Call the island of the example Island E.

a) The weather on Island A changes more readily than on Island E. Specif-
ically, P{Wn+1 = 0|Wn = 0} = 3/4 and P{Wn+1 = 1|Wn = 1} = 1/2.
Modify the program of Example 3.6 accordingly, and make several runs.
Does Yn appear to converge to 1/3? Does Yn appear to stabilize to its
limit more quickly or less quickly than for Island E?

b) On Island B, P{Wn+1 = 0|Wn = 0} = 2/3 and P{Wn+1 = 1|Wn = 1} =
1/3. Modify the program, make several runs, and discuss as in part (a),
but now comparing all three islands. In what fundamental way is Island B
different from Islands E and A?

c) Make acf plots for Islands A and B, and compare them with the corre-
sponding plot in the bottom panel of Figure 3.7 (p63).

Note: We know of no real place where weather patterns are as extremely persistent

as on Island E. The two models in this problem are both more realistic.)

3.21 Proof of the Weak Law of Large Numbers (Theoretical). Turn the
methods suggested below (or others) into carefully written proofs. Verify the
examples. (Below we assume continuous random variables. Similar arguments,
with sums for integrals, would work for the discrete case.)

a) Markov’s Inequality. Let W be a random variable that takes only positive
values and has a finite expected value E(W ) =

∫∞
0

xfW (w) dw. Then, for
any a > 0, P{W ≥ a} ≤ E(W )/a.

Method of proof: Break the integral into two nonnegative parts, over the
intervals (0, a) and (a,∞). Then E(W ) cannot be less than the second
integral, which in turn cannot be less than aP{W ≥ a} = a

∫∞
a

fW (w) dw.
Example: Let W ∼ UNIF(0, 1). Then, for 0 < a < 1, E(W )/a = 1/2a and
P{W ≥ a} = 1− P{W < a} = 1− a. Is 1− a < 1/2a?
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b) Chebyshev’s Inequality. Let X be a random variable with E(X) = µ and
V(X) = σ2 < ∞. Then, for any k > 0, P{|X − µ| ≥ kσ} ≤ 1/k2.

Method of proof: In Markov’s Inequality, let W = (X − µ)2 ≥ 0 so that
E(W ) = V(X), and let a = k2σ2.
Example: If Z is standard normal, then P{|Z| ≥ 2} < 1/4. Explain briefly
how this illustrates Chebyshev’s Inequality.

c) WLLN. Let Y1, Y2, . . . , Yn be independent, identically distributed random
variables each with mean µ and variance σ2 < ∞. Further denote by Ȳn the
sample mean of the Yi. Then, for any ε > 0, limn→∞ P{|Ȳn−µ| < ε} = 1.

Method of proof: In Chebyshev’s Inequality, let X = Ȳn, which has
V(Ȳn) = σ2/n, and let k = nε/σ. Then use the complement rule and
let n →∞.

Note: What we have referred to in this section as the Law of Large Numbers is

usually called the Weak Law of Large Numbers (WLLN), because a stronger result

can be proved with more advanced mathematical methods than we are using in this

book. The same assumptions imply that P{Ȳn → µ} = 1. This is called the Strong

Law of Large Numbers. The proof is more advanced because one must consider the

joint distribution of all Yn in order to evaluate the probability.

Problems for Section 3.3 (Central Limit Theorem)

3.22 In Example 3.5, we have Sn ∼ BINOM(n, 1/2). Thus E(Sn) = n/2 and
V(Sn) = n/4. Find the mean and variance of Yn. According to the Central
Limit Theorem, Yn is very nearly normal for large n. Assuming Y10 000 to
be normal, find P{|Y10 000 − 1/2| ≥ 0.01}. Also find the margin of error in
estimating P{Heads} using Y10 000.

3.23 In Example 3.7, we see that the mean of 12 observations from a uni-
form population is nearly normal. In contrast, the electronic components of
Section 3.1 have exponentially distributed lifetimes with mean 2 years (rate
1/2 per year). Because the exponential distribution is strongly skewed, con-
vergence in the Central Limit Theorem is relatively slow. Suppose you want
to know the probability that the average lifetime T̄ of 12 randomly chosen
components of this kind exceeds 3.

a) Show that E(T̄ ) = 2 and SD(T̄ ) =
√

1/3. Use the normal distribution
with this mean and standard deviation to obtain an (inadequate) estimate
of P{T̄ > 3}. Here the Central Limit Theorem does not provide useful
estimates when n is as small as 12.

b) Modify the program of Example 3.7, using x = rexp(m*n, rate=1/2),
to simulate P{T̄ > 3}. One can show that T̄ ∼ GAMMA(12, 6) precisely.
Compare the results of your simulation with your answer to part (a) and
with the exact result obtained using 1 - pgamma(3, 12, rate=6).

c) Compare your results from parts (a) and (b) with Figure 3.13 and numer-
ical values given in its caption.
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Figure 3.13. The histogram shows the simulated distribution of the mean T̄ of 12
observations from EXP(1/2). The normal approximation is poor (broken curve),
giving P{T̄ > 3} ≈ 0.042. The simulation and the exact gamma distribution (solid)
give P{T̄ > 3} = 0.055. (See Problem 3.23 and compare with Figure 3.8.)

Problems for Section 3.4 (Closer Look at Monte Carlo)
In these problems, π = 3.14159.

3.24 Here are some modifications of Example 3.8 with consequences that
may not be apparent at first. Consider J =

∫ 1

0
xd dx.

a) For d = 1/2 and m = 100 000, compare the Riemann approximation
with the Monte Carlo approximation. Modify the method in Example 3.8
appropriately, perhaps writing a program that incorporates d = 1/2 and
h = x^d, to facilitate easy changes in the parts that follow. Find V(Y ).

b) What assumption of Section 3.4 fails for d = −1/2? What is the value
of J? Of V(Y )? Try running the two approximations. How do you explain
the unexpectedly good behavior of the Monte Carlo simulation?

c) Repeat part(b), but with d = −1. Comment.

3.25 This problem shows how the rapid oscillation of a function can affect
the accuracy of a Riemann approximation.

a) Let h(x) = | sin kπx| and k be a positive integer. Then use calculus to
show that

∫ 1

0
h(x) dx = 2/π = 0.6366. Use the code below to plot h on

[0, 1] for k = 4.

k = 4

x = seq(0,1, by = 0.01); h = abs(sin(k*pi*x))

plot(x, h, type="l")
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Figure 3.14. Two functions used in Problem 3.26. The top panel shows a plot of
sin2(1/x) in the interval (0.05, 1]; to the left of x = 0.05, the oscillation becomes too
rapid for clear plotting. The bottom panel shows a plot of x−2 sin2 x on (0, 1].

b) Modify the program of Example 3.8 to integrate h. Use k = 5000 through-
out, and make separate runs with m = 2500, 5000, 10 000, 15 000, and
20 000. Compare the accuracy of the resulting Riemann and Monte Carlo
approximations, and explain the behavior of the Riemann approximation.

c) Use calculus to show that V(Y ) = V(h(U)) = 1/2− 4/π2 = 0.0947. How
accurately is this value approximated by simulation? If m = 10 000, find
the margin of error for the Monte Carlo approximation in part (b) based
on SD(Y ) and the Central Limit Theorem. Are your results consistent
with this margin of error?

3.26 The integral J =
∫ 1

0
sin2(1/x) dx cannot be evaluated analytically,

but advanced analytic methods yield
∫∞
0

sin2(1/x) dx = π/2.

a) Assuming this result, show that J = π/2− ∫ 1

0
x−2 sin2 x dx. Use R to plot

both integrands on (0, 1), obtaining results as in Figure 3.14.
b) Use both Riemann and Monte Carlo approximations to evaluate J as

originally defined. Then evaluate J using the equation in part (a). Try
both methods with m = 100, 1000, 1001, and 10 000 iterations. What do
you believe is the best answer? Comment on differences between methods
and between equations.

Note: Based on a problem in [Liu01], Chapter 2.

3.27 Modify the program of Example 3.9 to approximate the volume be-
neath the bivariate standard normal density surface and above two additional
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regions of integration as specified below. Use both the Riemann and Monte
Carlo methods in parts (a) and (b), with m = 10 000.

a) Evaluate P{0 < Z1 ≤ 1, 0 < Z2 ≤ 1}. Because Z1 and Z2 are indepen-
dent standard normal random variables, we know that this probability is
0.3413452 = 0.116516. For each method, say whether it would have been
better to use m = 10 000 points to find P{0 < Z ≤ 1} and then square
the answer.

b) Evaluate P{Z2
1 + Z2

2 < 1}. Here the region of integration does not have
area 1, so remember to multiply by an appropriate constant. Because
Z2

1 + Z2
2 ∼ CHISQ(2), the exact answer can be found with pchisq(1, 2).

c) The joint density function of (Z1, Z2) has circular contour lines centered
at the origin, so that probabilities of regions do not change if they are
rotated about the origin. Use this fact to argue that the exact value of
P{Z1 + Z2 < 1}, which was approximated in Example 3.9, can be found
with (pnorm(1/sqrt(2)) - 0.5)^2.

3.28 Here we extend the idea of Example 3.9 to three dimensions. Suppose
three items are drawn at random from a population of items with weights (in
grams) distributed as NORM(100, 10).

a) Using the R function pnorm (cumulative distribution function of a stan-
dard normal), find the probability that the sum of the three weights is less
than 310 g. Also find the probability that the minimum weight of these
three items exceeds 100 g.

b) Using both Riemann and Monte Carlo methods, approximate the prob-
ability that (simultaneously) the minimum of the weights exceeds 100 g
and their sum is less than 310 g.
The suggested procedure is to (i) express this problem in terms of three
standard normal random variables, and (ii) modify appropriate parts of
the program in Example 3.9 to approximate the required integral over a
triangular cone (of area 1/6) in the unit cube (0, 1)3 using m = g3 = 253.
Here is R code to make the three grid vectors needed for the Riemann
approximation:

x1 = rep((1:g - 1/2)/g, each=g^2)
x2 = rep(rep((1:g - 1/2)/g, each=g), times=g)
x3 = rep((1:g - 1/2)/g, times=g^2)

Answers: (a) pnorm(1/sqrt(3)) for the sum. (b) Approximately 0.009. To under-

stand the three lines of code provided, experiment with a five-line program. Use

g = 3 before these three lines and cbind(x1, x2, x3) after.

3.29 For d = 2, 3, and 4, use Monte Carlo approximation with m = 100 000
to find the probability that a d-variate (independent) standard normal distri-
bution places in the part of the d-dimensional unit ball with all coordinates
positive. To do this, imitate the program in Example 3.9, and use the fact
that the entire 4-dimensional unit ball has hypervolume π2/2. Compare the
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results with appropriate values computed using the chi-squared distribution
with d degrees of freedom; use the R function pchisq.
Note: In case you want to explore higher dimensions, the general formula for the

hypervolume of the unit ball in d dimensions is πd/2/ Γ ((d + 2)/2); for a derivation

see [CJ89], p459. Properties of higher dimensional spaces may seem strange to you.

What happens to the hypervolume of the unit ball as d increases? What happens to

the probability assigned to the (entire) unit ball by the d-variate standard normal

distribution? What happens to the hypervolume of the smallest hypercube that

contains it? There is “a lot of room” in higher dimensional space.
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Sampling from Applied Probability Models

In Chapter 3, we used the sampling method to find probabilities and expecta-
tions involving a random variable with a distribution that is easy to describe
but with a density function that is not explicitly known. In this chapter, we
explore additional applications of the sampling method. The examples are
chosen because of their practical importance or theoretical interest. Some-
times, analytic methods can be used to get exact results for special cases,
thus providing some confidence in the validity of more general simulation re-
sults. Also, in an elementary way, some of the examples and problems show
how simulation can be useful in research. At least they have illustrated this
to us personally because we have gained insights from simulation in these
settings that we might never have gained by analytic means.

4.1 Models Based on Exponential Distributions

The exponential family of distributions is often used to model waiting times
for random events. In order to establish our point of view and notation, we
begin with a brief review of exponential distributions and their properties.

Suppose the number Nt of random events that occur in the time interval
(0, t], where t > 0, has the distribution POIS(λt). Thus the probability of
seeing none of these random events by time t > 0 is P{Nt = 0} = e−λt.
Another way to specify that there are no events in the interval (0, t] is to let
X be the waiting time, starting at t = 0, until we see the first event. Then

P{X > t} = 1− FX(t) = P{Nt = 0} = e−λt , (4.1)

for t > 0. Here, according to our usual notation, FX is the cumulative distri-
bution function of X. Then, by differentiation, the density function of X is
fX(t) = F ′X(t) = λe−λt, for t > 0 (and 0 elsewhere). We say that X has an
exponential distribution with rate λ; in symbols, X ∼ EXP(λ).

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 87
Use R!, DOI 10.1007/978-0-387-68765-0_4, © Springer Science+Business Media, LLC 2010
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Starting with the distribution of a discrete random variable Nt ∼ POIS(λt)
that counts the number of random events in an interval (0, t], we have found
the distribution of the continuous random variable X that takes values t > 0.

One can show that E(X) = SD(X) = 1/λ (see Problem 4.2). Intuitively
speaking, if the Poisson events occur at an average rate λ = 1/2 events per
minute (one event every two minutes), then it seems reasonable that the av-
erage waiting time for such an event should be 1/λ = 2 minutes.

Some texts parameterize the exponential family of distributions according
to the mean µ = 1/λ. But following the notation of R, we always use the rate λ
as the parameter. For example, if t = 1.5 and λ = 2, then N1.5 ∼ POIS(3) and
X ∼ EXP(2). Thus, P{N1.5 = 0} = P{X > 1.5} = e−3 = 0.0498. In R, this
can be evaluated as dpois(0, 3) or as 1 - pexp(1.5, 2).

An important characteristic of an exponential random variable X is the
no-memory property. In symbols,

P{X > s + t|X > s} =
P{X > s + t, X > s}

P{X > s} =
P{X > s + t}

P{X > s}
=

exp[−λ(s + t)]
exp(−λs)

= e−λt = P{X > t} , (4.2)

where s, t > 0 (see Problem 4.3). This means that the probability of waiting
at least another t time units until an event occurs is the same whether we
start waiting at time 0 or at time s.

Real-life waiting times are approximately exponentially distributed when
the no-memory property is approximately true. Suppose a bank teller takes
an exponentially distributed length of time to serve a customer. You are next
in line waiting to be served. You might hope that the fact you have already
been waiting s = 3 minutes improves your chances of being served within the
next t = 1 minute. But, if the teller’s service times are truly exponential, it is
irrelevant how long you have been waiting.

Suppose a type of device fails only because of “fatal” Poisson events. Then
a device that has been in use for s units of time has the same additional life
expectancy as a new one (in use for 0 units of time). The no-memory property
is often expressed by saying that for such a device “used is as good as new.”

Certainly then, an exponential distribution should not be used to model
the lifetimes of people. Typically, an 80-year-old person does not have the same
additional life expectancy as a 20-year-old. People can be killed by accident,
but they also die by “wearing out.” In contrast, an exponential distribution
may be a good choice to model the lifetime of a computer chip that fails
only by accident (such as a hit by a cosmic ray) rather than by wearing out.
A computer chip is, after all, only a very complicated piece of sand for which
wearing out is not much of an issue. Also, exponential lifetime models apply
to some systems that are continually maintained by replacing parts before
they wear out, so that failures are due almost exclusively to accidents. Up to
a point, it might be possible to maintain an automobile in this way.
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In practice, the exponential distribution is often used even when it is only
approximately correct. This preference for exponential distributions is some-
times because of the simple mathematical form of the exponential density
function, but perhaps more often because of the great convenience of not
having to take past history into account.

Example 4.1. Three Bank Scenarios. Two tellers at a bank serve customers
from a single queue. The time it takes one teller to serve a randomly selected
customer is distributed as EXP(1/5) so that his average service time is 5
minutes. The other, more experienced teller’s service times are distributed as
EXP(1/4), averaging 4 minutes. Tellers work independently.

Scenario 1. Both tellers are busy and you are next in line. What is the
probability it will be longer than 5 minutes before you begin to be served?
Let X1 and X2 be the respective waiting times until the tellers are free to
take their next customers. The time until one of them starts serving you is
V = min(X1, X2). The following R code simulates P{V > 5}. The function
pmin, for parallel minimum, compares two m-vectors elementwise and makes
an m-vector of the minimums (see Problem 4.5).

# set.seed(1212)

m = 100000; lam1 = 1/5; lam2 = 1/4 # constants

x1 = rexp(m, lam1); x2 = rexp(m, lam2) # simulation

v = pmin(x1, x2) # m-Vector of minimums

mean(v > 5) # approximates P{V > 5}

hist(v, prob=T)

xx = seq(0, 15, by=.01); lines(xx, dexp(xx, 9/20))

> mean(v > 5)

[1] 0.10572

This simulated result P{V > 5} = 0.106± 0.002 is easily verified analyti-
cally: P{V > 5} = P{X1 > 5, X2 > 5} = e−(1/5)5e−(1/4)5 = e−9/4 = 0.1054.
A similar computation gives the following general result. If X1 ∼ EXP(λ1) and
X2 ∼ EXP(λ2) are independent, then V = min(X1, X2) ∼ EXP(λ1 + λ2). In
our case, V ∼ EXP(9/20). The top panel in Figure 4.1 compares the histogram
of the simulated distribution of V with the known density function of V .

Scenario 2. In order to finish your banking business, you need to be served
by both tellers in sequence. Fortunately, it isn’t a busy time at the bank
and you don’t need to wait to begin service with either teller. What is the
probability it will take you more than 5 minutes to finish? With X1 and X2

distributed as in Scenario 1, the time it takes you to finish is T = X1 + X2.
The following R code simulates P{T > 5}.

# set.seed(1212)

m = 100000; lam1 = 1/5; lam2 = 1/4

x1 = rexp(m, lam1); x2 = rexp(m, lam2); t = x1 + x2

mean(t > 5); hist(t, prob=T)
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> mean(t > 5)

[1] 0.69371

The histogram of the simulated distribution of T is shown in the middle
panel of Figure 4.1. The required probability is approximately 0.694± 0.003,
but here it is not easy to get an exact result by analytic means. (If both tellers
served with rate λ = 1/5, then we would have T ∼ GAMMA(2, 1/5) and the
probability would be 0.7358. If both rates were λ = 1/4, then the probability
would be 0.6446. Our result is intermediate, which makes sense intuitively.)

Scenario 3. It is closing time, and no more customers will enter the bank.
No one is in line, but both tellers are still busy serving customers. You have
a date for coffee with one of the tellers after work. Neither is allowed to leave
until both are finished. What is the probability that this takes more than 5
minutes? We need to find P{W > 5}, where W = max(X1, X2). The R code
to simulate this probability and make the bottom histogram in Figure 4.1 is
essentially the same as in Scenario 1, except for replacing pmin by pmax.

The maximum of two exponentials is not exponential. However, in this
relatively simple case, it is not difficult to find the exact distribution (see
Problem 4.7). Intuitively, W cannot be exponential because it clearly does
matter how long you have been waiting. The longer you wait, the greater the
chance one of the two tellers has finished—and then the prospects of finish-
ing soon become better. The simulated probability from set.seed(1212) is
0.550 ± 0.003 and the exact value is 0.5490. The bottom panel of Figure 4.1
shows the simulated distribution of W along with the density function of W .
(See Problem 4.7(d) for the derivation of the density of W ). ♦

Situations similar to these three scenarios form the basis of queueing
theory—the theory of waiting lines. Using exponential distributions with vari-
ous rates to model both times between arrivals of customers and service times
between their departures, we could construct a realistic system for the flow
of customers through a bank or similar business where customers generally
arrive at random times (without appointments).

Queueing theory is a field with many theoretical results and analytic ap-
proximations for reasonably simple structures, but in which simulation is
widely used for more complex ones. Typical questions of interest are the av-
erage length of the queue, a customer’s average time between arrival and
departure, and the proportion of time servers are not busy serving customers.
Similar questions arise in the design of telecommunications and broadband
networks, in the design of computer hardware, and in understanding some
biological systems. An extensive exploration of these questions would lead us
too far from the central purpose of this book.

In our next example, we take a brief look at another application of the
maximum of exponential distributions. If a certain type of device has too
short a lifetime for a particular purpose, one may be able to connect several
of them “in parallel” so that a system of these devices continues to function as
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Figure 4.1. Three simulated waiting-time distributions of Example 4.1: minimum
(top), sum (center), and maximum. Each is based on two independent random vari-
ables distributed as EXP(1/4) and EXP(1/5). For each, the probability of a wait
exceeding 5 minutes is approximated. Analytic results for the sum are problematic.

long as any one of the component devices survives. The lifetime of the system
is then the maximum of the lifetimes of its components.

Example 4.2. Parallel Redundancy in a Communications Satellite. An on-
board computer controlling crucial functions of a communications satellite
will fail if its CPU is disabled by cosmic radiation. Reliability of the CPU is
important because it is not feasible to repair a disabled satellite.

In particular, suppose that the level of radiation is such that fatal events
befall such a CPU on average once in 4 years, so that the rate of these events
is λ = 1/4. The random lifetime of such a CPU is X ∼ EXP(1/4) and its
reliability function is

RX(t) = P{X > t} = 1− FX(t) = e−t/4,

for t > 0. For example, its probability of surviving longer than 5 years is
RX(5) = 0.2865.

For greater reliability, suppose we connect five CPU chips in parallel. Then
the lifetime of the resulting CPU system is W = max(X1, X2, . . . , X5), where
the Xi are independently distributed as EXP(1/4). We want to evaluate E(W ),
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P{W > 5}, and the 90th percentile of the distribution of W . The R code below
can be used to simulate these quantities. Each of the m = 100 000 rows of the
matrix DTA simulates one 5-chip system.

# set.seed(12)

m = 100000 # iterations

n = 5; lam = 1/4 # constants: system parameters

x = rexp(m*n, lam) # vector of all simulated data

DTA = matrix(x, nrow=m) # each row a simulated system

w = apply(DTA, 1, max) # lifetimes of m systems

mean(w) # approximates E(W)

mean(w > 5) # approximates P{W > 5}

quantile(w, .9) # approximates 90th percentile

> mean(w) # approximates E(W)

[1] 9.128704

> mean(w > 5) # approximates P{W > 5}

[1] 0.81456

> quantile(w, .9) # approximates 90th percentile

90%

15.51431

This run indicates that E(W ) ≈ 9.129, P{W > 5} ≈ 0.814, and the 90th
percentile is about 15.51 years.

In this example, we are able to get exact analytic results for the expectation
and the probability: E(W ) = 137/15 = 9.1333 and P{W > 5} = 0.8151.
Also, once we have the approximate value 15.51, it is easy to verify that
P{W ≤ 15.51} = 0.9007. So our simulation gives useful approximations. (See
Problem 4.9 for some analytic results.)

The empirical cumulative distribution function (ECDF) of the simulated
distribution of W is shown in Figure 4.2 along with the ECDF (dashed line)
of a single component. At all points in time, the parallel system is less likely
to have died than is a single component. The ECDFs are made with the
additional code shown below. We truncated the graph at about 30 years even
though the longest lifetime among our 100 000 simulated 5-component systems
exceeded 60 years.

ecdf = (1:m)/m

w.sort = sort(w) # sorted lifetimes for system simulated above

y = rexp(m, lam) # simulation for single CPU

y.sort = sort(y) # sorted lifetimes for single CPU

plot(w.sort, ecdf, type="l", xlim=c(0,30), xlab="Years")

lines(y.sort, ecdf, lty="dashed")

Recall that the ECDF takes a jump of size i/m at a data value, where i
is the number of tied observations at that data value. Because the random
variables simulated here are continuous, ties are nonexistent in theory and
extremely rare in practice, so i is almost always 1. (We could have used the R
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Figure 4.2. ECDFs of two simulated lifetime distributions. The solid plot corre-
sponds to a system with five identical exponential devices in parallel; the dashed
plot is for a single device. At each point in time the 5-component system is more
reliable (that is, less likely to have failed). See Example 4.2.

expression plot.ecdf(w) to make a plot similar to the heavy line in Figure 4.2.
It automatically makes values for the vertical axis and sorts the lifetime values,
but gives less control over the appearance of the plot.) ♦

4.2 Range of a Normal Sample

Suppose we take a random sample from a population or process distributed
as NORM(µ, σ) to obtain n observations Y1, Y2, . . . , Yn. The sample variance
S2 = 1

n−1

∑
i (Yi − Ȳ )2 and sample standard deviation S are commonly used

measures of the dispersion of the sample. These statistics are also used as
estimates of the population variance σ2 and standard deviation σ, respectively.

For normal data, (n−1)S2/σ2 ∼ CHISQ(n−1), the chi-squared distribution
with n−1 degrees of freedom, and also with mean n−1. Hence E(S2) = σ2, and
we say that S2 is an unbiased estimator of σ2. If L and U cut off probability
0.025 from the lower and upper tails of CHISQ(n−1), respectively, then a 95%
confidence interval for σ2 is ((n − 1)S2/U, (n − 1)S2/L). Take square roots
of the endpoints of this interval to get a 95% confidence interval for σ (see
Problem 4.15).

In some circumstances, it is customary or preferable to use the range
R = Y(n) − Y(1) as a measure of sample dispersion, where subscripts in paren-
theses indicate the order statistics Y(1) ≤ Y(2) ≤ . . . ≤ Y(n). We multiply
R by an appropriate constant K (less than 1) so that E(KR) = σ. Thus
Runb = KR is a convenient unbiased estimator of σ. For small samples, such
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estimates of σ are widely used in making control charts to monitor the stabil-
ity of industrial processes. The appropriate value of K depends strongly on
the sample size n, and many engineering statistics books have tables of con-
stants to be used for this purpose. Tables are necessary because the sampling
distribution of R is difficult to handle analytically.

Observing that almost all of the probability of a normal population is
contained in the interval µ ± 3σ, an interval of length 6σ, authors of some
elementary textbooks recommend general use of K = 1/6 or 1/5 to estimate σ
(or approximate S) from R. However, this is not a workable idea because no
one constant is useful across the wide variety of sample sizes encountered in
practice (see Problem 4.14).

From statistical theory we know that S2 must have the smallest variance
among all unbiased estimators of σ2, and so it is natural to wonder how much
precision of estimation is lost by basing an estimate of σ2 on R instead of S2.
In the next example we use a straightforward simulation to obtain information
about the distribution of R and the suitability of an interval estimate based
on R compared with one based on S2.

Example 4.3. Let Y1, Y2, . . . , Y10 be a random sample from NORM(100, 10).
The program below simulates the sample range R and for m = 100 000 such
samples in order to learn about the distribution of R.

# set.seed(1237)

m = 100000; n = 10; mu = 100; sg = 10

x = rnorm(m*n, mu, sg); DTA = matrix(x, m)

x.mx = apply(DTA, 1, max); x.mn = apply(DTA, 1, min)

x.rg = x.mx - x.mn # vector of m sample ranges

mean(x.rg); sd(x.rg)

quantile(x.rg, c(.025,.975))

hist(x.rg, prob=T)

> mean(x.rg); sd(x.rg)

[1] 30.80583

[1] 7.960399

> quantile(x.rg, c(.025,.975))

2.5% 97.5%

16.77872 47.88030

From this simulation, we have obtained approximate values E(R) ≈ 30.806
and SD(R) ≈ 7.960. These are in reasonably good agreement with exact values
E(R) = 30.8 and SD(R) = 7.97, obtainable by a combination of advanced
analytical methods and numerical integration.

In this example, we know the population standard deviation is σ = 10, so
E(R) = 3.08σ, for n = 10. Thus we can estimate σ by R/3.08 = 0.325R. Also,
based on the simulated quantiles, we expect that in about 95% of samples
of size n = 10 the sample range R lies between 17 and 48. More generally,
because we know σ = 10 here, we can write
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Figure 4.3. Histogram of the 100 000 simulated sample ranges, based on samples of
size n = 10 from NORM(100, 10). Skewness becomes more pronounced as n increases.
Vertical dashed lines show quantiles 0.025 and 0.975. See Example 4.3.

P{1.7 < R/σ < 4.8} = P{R/4.8 < σ < R/1.7} = 95%,

so that (R/4.8, R/1.7) is a 95% confidence interval for σ. This interval has
expected length

E(LR) = E(R)(1/1.7− 1/4.8) = 3.08σ(0.38) = 1.17σ.

The usual 95% confidence interval for σ, based on 9S2/σ2 ∼ CHISQ(9), is
(0.688S, 1.826S). It has average length E(LS) = 1.107σ (see Problem 4.15).
On average, this confidence interval for σ is shorter than one based on R—but
not by much when n is as small as 10. As n increases, estimates of σ based
on R become less useful.

The histogram in Figure 4.3 shows that the distribution of R is slightly
skewed to the right and so it is not normal. Because R is based on extremes,
as n increases its distribution becomes even less like the normal. In contrast,
the Central Limit Theorem says that the distribution of S2, which is based
on sums (of squares), converges to normal. Intuitively, it is clear that R must
behave badly for very large samples from a normal distribution. A normal
distribution has tails extending out towards ±∞. If we take a large enough
sample, we are bound to get some very extreme values. ♦

4.3 Joint Distribution of the Sample
Mean and Standard Deviation

Suppose random observations Y1, Y2, . . . , Yn from a laboratory instrument
have the distribution N(µ, σ0). For practical purposes, µ is an unknown
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value determined by the specimen being analyzed and σ0 is a known value
that is a property of the instrument. Then Ȳ ∼ NORM(µ, σ0/

√
n), so that

Z = Ȳ−µ
σ0/

√
n
∼ NORM(0, 1) and

P{−1.96 ≤ Z ≤ 1.96} = P{Ȳ − 1.96σ0/
√

n ≤ µ ≤ Ȳ + 1.96σ0/
√

n}.
Thus we say that Ȳ ±1.96σ0/

√
n is a 95% confidence interval for µ. We call Ȳ

the point estimate of µ and 1.96σ0/
√

n the margin of error. Intuitively, in 95%
of such samples of size n, we will be fortunate enough to get data yielding a
value of Ȳ that does not differ from µ by more than the margin of error. In
this case, the margin of error is a fixed, known value.

A more common circumstance is that both of the normal parameters µ and
σ are unknown, and we estimate µ by Ȳ and σ by S = [

∑
i (Yi−Ȳ )2/(n−1)]1/2.

In this case, T = Ȳ−µ
S/
√

n
∼ T(n−1), Student’s t distribution with n−1 degrees

of freedom. If t∗ cuts off 2.5% of the area from the upper tail of T(n−1), then

P{−t∗ < T < t∗} = P{Ȳ − t∗S/
√

n ≤ µ ≤ Ȳ + t∗S/
√

n}.
We say that Ȳ ± t∗S/

√
n is a 95% confidence interval for µ. An important dis-

tinction from the case where σ is known is that we now use S to estimate σ, so
both the denominator of T and the margin of error are now random variables.

For normal data, Ȳ and S are independent random variables. For many
students, this fact does not match intuition—perhaps not least because Ȳ
appears explicitly in the definition of S. The independence of Ȳ and S can be
proved rigorously in several ways (for example, using linear algebra or moment
generating functions), but these proofs have an abstract flavor that may be
satisfying in a logical sense while still not overcoming intuitive misgivings.

In practice, it is not foolish to be suspicious about the independence of Ȳ
and S. This independence holds only for normal data. However, most applied
statisticians know that precisely normal data are rare in practice. The sim-
ulation in the next example demonstrates the independence of Ȳ and S for
normal data. Later in this section, we consider what happens when the Yi are
not normally distributed. (Some of the examples are from [TSF01].)

Example 4.4. Independence of the Sample Mean and Standard Deviation for
Normal Data. To be specific, consider a random sample of size n = 5 from
NORM(200, 10). We simulate m = 100 000 such samples and find Ȳ and S
for each. Thus we have m observations from a bivariate distribution. If Ȳ
and S really are independent, then the population correlation ρȲ ,S = 0, and
we should find that the sample correlation rȲ ,S ≈ 0. Of course, it is possible
that the random variables Ȳ and S are associated (not independent) and yet
have ρ = 0. But verifying that our simulated data have r ≈ 0 seems a good
first step in investigating independence.

A second step is to make a scatterplot of Ȳ and S, looking for any patterns
of association. In particular, going more directly to the definition of indepen-
dence of two random variables, we can estimate some probabilities from our
simulated distribution to see whether
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Figure 4.4. Scatterplot of the bivariate distribution of the sample mean and stan-
dard deviation. Each of the 10 000 points represents a simulated sample of five
observations from NORM(200, 10). The two variables Ȳ and S are independent. See
Example 4.4.

P{Ȳ ≤ a}P{S ≤ b} = P{Ȳ ≤ a, S ≤ b}

is a believable equality. Clearly, we cannot investigate all possibilities (as would
be required for an ironclad proof of independence), but seeing that this equal-
ity holds for several choices of a and b lends credence to independence.

Note: In the R code below, we use rowSums to find the vector of m standard
deviations. For us, this ran faster (by about an order of magnitude) than
code with apply(DTA, 1, sd) or sd(t(DTA)).

# set.seed(37)

m = 100000; n = 5; mu = 200; sg = 10

y = rnorm(m*n, mu, sg); DTA = matrix(y, nrow=m)

samp.mn = rowMeans(DTA)

samp.sd = sqrt(rowSums((DTA - samp.mn)^2)/(n-1))

cor(samp.mn, samp.sd)

A = mean(samp.mn <= 195); B = mean(samp.sd <= 5); A; B; A*B

mean(samp.mn <= 195 & samp.sd <= 5)

plot(samp.mn, samp.sd, pch=".")

> cor(samp.mn, samp.sd)

[[1] 0.003977406

> A = mean(samp.mn <= 195); B = mean(samp.sd <= 5); A; B; A*B

[1] 0.13014

[1] 0.08922

[1] 0.01161109

> mean(samp.mn <= 195 & samp.sd <= 5)

[1] 0.01155
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All the numerical results from the simulated bivariate distribution are
consistent with the independence of the sample mean and variance: ρ ≈ 0
and P{Ȳ ≤ 195}P{S ≤ 5} = P{Ȳ ≤ 195, S ≤ 5} ≈ 0.012. For exact
values, pnorm(195, 200, 10/sqrt(5)) gives P{Ȳ ≤ 195} = 0.1318, and
pchisq(4*5^2/10^2, 4) gives P{S ≤ 5} = 0.0902. Thus the simulated values
for these probabilities are correct to two places.

Figure 4.4 shows a scatterplot of the simulated bivariate distribution, in
which we see no evidence of association. Vertical and horizontal reference lines
bound regions corresponding to the probabilities just discussed. For clarity in
print, the figure is different than you will see on your screen. We have plotted
only the first 10 000 points and used larger dots. From the code, you will get
a more detailed plot with ten times as many smaller dots. ♦

In estimating the parameters µ and σ of a normal population from a
random sample of size n, statistical theory shows that the two statistics Ȳ
and S are sufficient statistics for estimating µ and σ; that is, they contain
all of the relevant information for estimation. Statisticians often view the n
observations of a sample as a vector in n-dimensional space. Thus, by using
the bivariate distribution of the sufficient statistics Ȳ and S, we have reduced
the dimensionality of the estimation problem from n to 2.

When we construct the 95% confidence interval Ȳ ± t∗S/
√

n for µ, we
know that about 95% of the points in a plot such as Figure 4.4 will lead to
a confidence interval that covers (includes) the value of µ and that about
5% will not. One might guess that the points that yield covering confidence
intervals must be the ones nearest a vertical line through µ. The next example
shows that this is an incomplete guess.

Example 4.5. When Does a t Interval Cover the Population Mean? Again, in
this example we consider random samples of size n = 5 from NORM(200, 10).
The points (Ȳ , S) for which Ȳ ± t∗S/

√
n covers µ satisfy the inequality

|T | =
∣∣∣∣
Ȳ − µ

S/
√

n

∣∣∣∣ < t∗.

We use R code based on the program in Example 4.4 to make a scatterplot
in Figure 4.5 of m = 10 000 points to represent the joint distribution of Ȳ
and S. We find vectors samp.mn and samp.sd as before. In the code below, we
first plot all points with light-colored dots and then plot in black the points
corresponding to confidence intervals that cover µ.

plot(samp.mn, samp.sd, pch=".", col="darkgrey")

t.crit = qt(0.975, n-1)

t = sqrt(n)*(samp.mn - mu)/samp.sd

cover = (1:m)[abs(t) < t.crit]

points(samp.mn[cover], samp.sd[cover], pch=".")

xx = seq(min(samp.mn),max(samp.mn),length=1000)

ss = abs(sqrt(n)*(xx-mu)/t.crit)

lines(xx, ss, lwd=2) # boundary lines
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Figure 4.5. Scatterplot of the joint distribution of Ȳ and S, showing the points
(black) for which a t confidence interval covers the population mean. Especially for
small sample sizes (here n = 5), the value of the sample standard deviation greatly
influences whether the interval covers the mean. See Example 4.5.

Figure 4.5 shows that when a t confidence interval covers µ it is because
of a combination of a sample mean sufficiently near µ and a sufficiently large
sample standard deviation. Especially for sample sizes as small as n = 5, the
effect of S is impressive. If S is too small, the confidence interval may be too
short to cover µ even if Ȳ is very near µ. However, if S is very large, then the
interval may cover µ even if Ȳ lies quite far from µ—and the interval may be
so long that it is of little practical use. As the sample size n increases, the
angle between the boundary lines becomes more acute. ♦

Because Ȳ and S are independent only for normal data, it seems worth-
while to investigate the patterns of association between these two statistics
when data are not normal. If Ȳ and S are correlated, maybe the correlation
is strong enough to see in a simulation. If they are not correlated, then maybe
their scatterplot shows some obvious patterns of association. The next two
examples briefly explore these approaches.

Example 4.6. Exponential Data. For exponentially distributed data, it is rea-
sonable to anticipate positive association of the sample mean and standard
deviation. Exponential data cannot be negative. Hence, as the sample mean
increases, so does the opportunity for the standard deviation to increase. The
following R code, very similar to that of Example 4.4, verifies this hunch and
illustrates the pattern of positive association between Ȳ and S.

# set.seed(12)

m = 100000; n = 5; lam = 2

DTA = matrix(rexp(m*n, lam), nrow=m)

samp.mn = rowMeans(DTA)
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samp.sd = sqrt(rowSums((DTA - samp.mn)^2)/(n-1))

plot(samp.mn, samp.sd, pch="."); cor(samp.mn, samp.sd)

> cor(samp.mn, samp.sd)

[1] 0.7744946

The sample correlation r ≈ 0.77 clearly indicates the population correla-
tion ρ > 0. Because Ȳ and S are correlated, they cannot be independent.

Again in this example we print a plot that shows only 10 000 points (see
Figure 4.10, p112), and you should plot all 100 000 for yourself. From this plot
it appears there may be an upper boundary for the data cloud because there
are no points in the upper-left part of the plotting region. We leave it as an
exercise for you to find the equation of the boundary and to find probabilities
showing directly that Ȳ and S are not independent (see Problem 4.20). To
avoid confusion, we stress that the data Y1, Y2, . . . , Y5 are independent because
they are sampled at random; it is the statistics Ȳ and S computed from the
data that are not independent. ♦
Example 4.7. Beta Data. In this example, we look at data simulated from
BETA(0.1, 0.1), a symmetrical distribution on the interval (0, 1), in which
much of the probability is concentrated near the endpoints of that interval.
Because of the symmetry, we might guess Ȳ and S are uncorrelated. So we
wonder what pattern of association we might detect in the scatterplot.

# set.seed(12)

m = 100000; n = 5; alpha = beta = 0.1

DTA = matrix(rbeta(m*n, alpha, beta), nrow=m)

samp.mn = rowMeans(DTA)

samp.sd = sqrt(rowSums((DTA - samp.mn)^2)/(n-1))

cor(samp.mn, samp.sd)

plot(samp.mn, samp.sd, pch=".")

> cor(samp.mn, samp.sd)

[1] 0.004622875

Here, as we anticipated, the sample correlation is consistent with ρ = 0.
However, zero correlation does not imply independence, as is obvious from
Figure 4.6 (again with only 10 000 of the 100 000 points). See Problem 4.22
for further exploration of the unusual shape of this bivariate distribution. ♦

The examples in this section (and the associated problems) illustrate the
extraordinarily important role of multivariate graphical methods in assessing
whether variables in a multivariate distribution are independent or associated
and the patterns of association that might appear when variables are not
independent. Looking at sample correlations and univariate plots does not
always tell the whole story.
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Figure 4.6. Joint distribution of Ȳ and S for data from BETA(0.1, 0.1), a symmetri-
cal distribution on (0, 1) that concentrates probability near 0 and 1. See Example 4.7.

4.4 Nonparametric Bootstrap Distributions

In making estimates of the parameters µ and σ for random observations from a
normal distribution, we have noted that no information is lost if we summarize
the data by using only the sample mean and sample standard deviation. That
is the basis for the t confidence interval discussed in the previous section. If
the distribution of the population is “close” to normal, then methods based
on the t distribution are often still useful. However, to the degree that the
population is not normal—especially if it is markedly skewed—these methods
may give misleading results.

Of course, one might not know whether the population is nearly normal. In
practice, one usually has to decide, based on evidence in the sample, whether
t methods might be misleading. Traditionally, when there is strong evidence
against normality in a sample, it has been common to use various methods
based on ranks instead of t methods. Using ranks instead of actual data values
causes some information to be lost. Traditionally, procedures that do not
assume the data are normally distributed (or have any other specific shape)
are called nonparametric.

In 1978, Bradley Efron proposed a computationally intensive type of in-
terval estimation called the bootstrap, which uses all of the information in
the sample to make an interval estimate. A nonparametric bootstrap does not
require making the assumption that the population has a normal distribu-
tion. The purpose of this section is to give a very brief introduction to the
computation and use of nonparametric bootstrap confidence intervals.

Example 4.8. Lead Poisoning. An important industry in a small town is the
manufacture of car batteries, which contain lead. Especially for children, lead
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Figure 4.7. Strip chart and empirical cumulative distribution function (with best-
fitting normal cumulative distribution function, dotted curve) of the paired differ-
ences for the lead poisoning data of Example 4.8.

is a serious neurotoxin. So workers who handle lead at the local battery factory
are cautioned to shower, shampoo, and change clothes before leaving work in
order to prevent carrying lead dust home and contaminating their children.

In a study to determine whether workers do carry lead dust home to bad
effect, 33 of their children are selected as subjects. Children in this group
are considered “at risk” for lead contamination. A blood test for each child
determines the level of lead (in µg/dl) in his or her blood.

Because there are other possible environmental sources of lead contamina-
tion in the community, a control group of children is selected. For each at-risk
child, another child, matched for age and neighborhood of residence and with
no parental connection to the battery factory, is found and tested similarly.
Thus we have 33 matched pairs of children. In each pair, one is at risk and
the other serves as a control.

Preparatory to analysis in R, we enter the blood lead levels into two vec-
tors, Risk and Ctrl, and find the differences for each matched pair. A simple
and direct way to do this is as follows:

Risk = c(38, 23, 41, 18, 37, 36, 23, 62, 31, 34, 24,

14, 21, 17, 16, 20, 15, 10, 45, 39, 22, 35,

49, 48, 44, 35, 43, 39, 34, 13, 73, 25, 27)

Ctrl = c(16, 18, 18, 24, 19, 11, 10, 15, 16, 18, 18,

13, 19, 10, 16, 16, 24, 13, 9, 14, 21, 19,

7, 18, 19, 12, 11, 22, 25, 16, 13, 11, 13)

Pair.Diff = Risk - Ctrl

Because these are paired data, most of our analysis will be based on
Pair.Diff, the differences in lead levels between the children with fathers
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working at the battery factory and their corresponding controls. However, to
begin, we note that eight of the 33 children in the at-risk group have levels
of lead above 40 µg/dl, a level that calls for medical treatment. (Moreover,
according to the usual guidelines, the two children with levels above 60 µg/dl
should receive emergency treatment.) In contrast, the highest level in the con-
trol group is 25. In R, sum(Risk >= 40) returns 8 and max(Ctrl) returns 25.

In this study, the at-risk subjects come close to being the entire population,
so conclusions from the data cannot be rigorously extended beyond the situ-
ation at this one factory. But for purposes of illustration, we treat the paired
data as if they were chosen at random from a theoretical population, and we
seek a 95% confidence interval for the population mean µ of paired differences,
as a way of assessing the amount of contamination a hypothetical randomly
chosen child may acquire by having a father who works at the battery factory.
Assuming for the moment that this population is nearly normal, we find the
familiar t interval d̄± t∗Sd/

√
n, where d̄ = 15.97 and Sd = 15.86 are the mean

and standard deviation, respectively, of the sample of n = 33 differences, and
t∗ = 2.04 cuts off 2.5% from the upper tail of the distribution T(32). The
resulting confidence interval is (10.3, 21.6). The R code t.test(Pair.Diff)
can be used for this computation.

A normal probability plot of the paired differences seems to fit a curve
better than a straight line, suggesting that the population may not be exactly
normal (see Problem 4.23 and Figure 4.11, p113). However, this relatively
small dataset passes some standard tests for normality. Figure 4.7 shows a
strip chart of the paired differences and also their empirical cumulative dis-
tribution function (ECDF) along with the cumulative distribution function of
NORM(d̄, Sd). The R code for this figure is shown below.

plot(ecdf(Pair.Diff), pch=19, ylim=c(-.1,1))

xx = seq(-9,60, by = .01)

lines(xx, pnorm(xx, mean(Pair.Diff), sd(Pair.Diff)), lty="dashed")

stripchart(Pair.Diff, meth="stack", add=T, at=-.07, offset=1/2)

For any sample of size n = 33 that does not overwhelmingly fail a normality
test, a t interval would probably give useful results because t intervals are
robust against nonnormality. Nevertheless, we use these paired differences to
illustrate a nonparametric bootstrap confidence interval.

Such a confidence interval is based on the fact that the ECDF contains
all of the information we have about the population from which the data
were sampled. Moreover, for a sufficiently large sample size, the ECDF is a
reasonable approximation to the population cumulative distribution function.
The idea behind the bootstrap is to treat the data as a substitute population
and to take a large number B of resamples of size n with replacement from
this substitute population.

For each resample, we compute the mean d̄∗j for j = 1, . . . , B. By taking
many resamples, we can get a good notion of the variability of sample means
selected from a population somewhat similar to the population of interest.
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A simple nonparametric 95% confidence interval (L∗, U∗) for µ is found by
cutting off 2.5% from each tail of the distribution consisting of B resampled
means d̄∗j .

The following R code implements this procedure for the sample Pair.Diff
provided above. Notice that here we use B, instead of the usual m, to indicate
the number of iterations. Each of the B rows of the matrix RDTA is a resample.

# set.seed(1237)

n = length(Pair.Diff) # number of data pairs

d.bar = mean(Pair.Diff) # observed mean of diff’s

B = 10000 # number of resamples

re.x = sample(Pair.Diff, B*n, repl=T)

RDTA = matrix(re.x, nrow=B) # B x n matrix of resamples

re.mean = rowMeans(RDTA) # vector of B ‘d-bar-star’s

hist(re.mean, prob=T) # hist. of bootstrap dist.

bci = quantile(re.mean, c(.025, .975)) # simple bootstrap CI

alt.bci = 2*d.bar - bci[2:1] # bootstrap percentile CI

bci; alt.bci

> bci; alt.bci

2.5% 97.5%

10.78788 21.45530

97.5% 2.5%

10.48409 21.15152

Figure 4.8 shows the histogram of the bootstrap distribution of resampled
means d̄∗j and indicates the corresponding simple bootstrap confidence in-
terval (10.8, 21.5). Because of the simulation, this interval is slightly different
on each run of the program.

Note: The more sophisticated alternate bootstrap confidence interval pro-
vided at the end of the program above is especially preferred if the histogram
of resampled values d̄∗j shows noticeable skewness. If we knew the .025

and .975 quantiles L and U , respectively, of the distribution of d̄ − µ,
then a 95% confidence interval (d̄ − U, d̄ − L) for µ would arise from
P{L ≤ d̄ − µ ≤ U} = P{d̄ − U ≤ µ ≤ d̄ − L} = 0.95. To get substitute
values L̂ of L and Û of U , we view the distribution of d̄∗j − d̄ as a substitute

for the distribution of d̄− µ. Subtracting d̄ from the bootstrap distribution
of d̄∗j , we obtain L̂ = L∗ − d̄ and thus d̄ − L̂ = d̄ − (L∗ − d̄) = 2d̄ − L∗ as

the upper bootstrap confidence limit and, similarly, d̄− Û = 2d̄−U∗ as the
lower limit. This is often called the bootstrap percentile method.

By any reasonable method, it is clear that the children in the at-risk group
have higher levels of lead than their peers in the control group. On average,
the additional amount of lead associated with having a father who works at
the battery factory is likely between a quarter and a half of the amount that is
considered serious enough to warrant medical treatment. (The data are from
[Mor82], where additional evidence is given to suggest that the highest levels
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Figure 4.8. Histogram of the bootstrap distribution of means of paired differences
in Example 4.8. The vertical dashed lines indicate the resulting nonparametric boot-
strap confidence interval (10.8, 21.5).

of contamination are found among children whose fathers have the highest on-
job exposure to lead and the poorest adherence to end-of-day hygiene rules.
These data have also been discussed in [Rosn93] and [Tru02].) ♦

Nonparametric bootstrap methods are useful in a vast variety of more com-
plex situations where specific distributional assumptions are not warranted.
Often they are the most effective way to use all of the information in the
data when making inferences about a population. However, it is important
to understand that the resampling involved in bootstrapping cannot create
new information, nor make the original sample more representative of the
population from which it was drawn.

4.5 Problems

Problems for Section 4.1 (Exponential-Based Models)

4.1 Let Nt ∼ POIS(λt) and X ∼ EXP(λ), where λ = 3. Use R to evaluate
P{N1 = 0}, P{N2 > 0}, P{X > 1}, and P{X ≤ 1/2}. Repeat for λ = 1/3.
Note: Equation (4.1) says that the first and third probabilities are equal.

4.2 Analytic results for X ∼ EXP(λ). (Similar to problems in Chapter 2.)

a) Find η such that P{X ≤ η} = 1/2. Thus η is the median of X.
b) Show that E(X) =

∫∞
0

tfX(t) dt =
∫∞
0

λte−λt dt = 1/λ.
c) Similarly, show that V(X) = E(X2)− [E(X)]2 = 1/λ2, and SD(X) = 1/λ.



106 4 Sampling from Applied Probability Models

4.3 Explain each step in equation (4.2). For X ∼ EXP(λ) and r, s, t > 0,
why is P{X > r + t|X > r} = P{X > s + t|X > s}?
Hints: P (A|B) = P (A ∩B)/P (B). If A ⊂ B, then what is P (A ∩B)?

4.4 In the R code below, each line commented with a letter (a)–(h) returns
an approximate result related to the discussion at the beginning of Section 4.1.
For each, say what method of approximation is used, explain why the result
may not be exactly correct, and provide the exact value being approximated.

lam = .5; i = 0:100

sum(dpois(i, lam)) #(a)

sum(i*dpois(i, lam)) #(b)

g = seq(0,1000,by=.001)-.0005

sum(dexp(g, lam))/1000 #(c)

sum(g*dexp(g, lam))/1000 #(d)

x = rexp(1000000, lam)

mean(x) #(e)

sd(x) #(f)

mean(x > .1) #(g)

y = x[x > .05]; length(y)

mean(y > .15) #(h)

Hints: Several methods from Chapter 3 are used. Integrals over (0,∞) are approxi-

mated. For what values of s and t is the no-memory property illustrated?

4.5 Four statements in the R code below yield output. Which ones? Which
two statements give the same results? Why? Explain what the other two
statements compute. Make the obvious modifications for maximums, try to
predict the results, and verify.

x1 = c(1, 2, 3, 4, 5, 0, 2); x2 = c(5, 4, 3, 2, 1, 3, 7)

min(x1, x2); pmin(x1, x2)

MAT = cbind(x1, x2); apply(MAT, 1, min); apply(MAT, 2, min)

4.6 More simulations related to Example 4.1: Bank Scenarios 1 and 2.

a) In Scenario 1, simulate the probability that you will be served by the
female teller using mean(x2==v). Explain the code. [Exact value is 5/9.]

b) In Scenario 1, simulate the expected waiting time using mean(v), and
compare it with the exact value, 20/9.

c) Now suppose there is only one teller with service rate λ = 1/5. You are
next in line to be served. Approximate by simulation the probability it
will take you more than 5 minutes to finish being served. This is the same
as one of the probabilities mentioned under Scenario 2. Which one? What
is the exact value of the probability you approximated? Discuss.

4.7 Some analytic results for Example 4.1: Bank Scenario 3.

a) Argue that FW (t) = (1 − e−t/5)(1 − e−t/4), for t > 0, is the cumulative
distribution function of W .



4.5 Problems 107

b) Use the result of part (a) to verify the exact value P{W > 5} = 0.5490
given in Scenario 3.

c) Modify the program of Scenario 1 to approximate E(W ).
d) Use the result of part (a) to find the density function fW (t) of W, and

hence find the exact value of E(W ) =
∫∞
0

tfW (t) dt.

4.8 Modify the R code in Example 4.2 to explore a parallel system of four
CPUs, each with failure rate λ = 1/5. The components are more reliable here,
but fewer of them are connected in parallel. Compare the ECDF of this system
with the one in Example 4.2. Is one system clearly better than the other?
(Defend your answer.) In each case, what is the probability of surviving for
more than 12 years?

4.9 Some analytic solutions for Example 4.2: Parallel Systems.

a) A parallel system has n independent components, each with lifetime dis-
tributed as EXP(λ). Show that the cumulative distribution of the lifetime
of this system is FW (t) = (1 − e−λt)n. For n = 5 and λ = 1/4, use this
result to show that P{W > 5} = 0.8151 as indicated in the example. Also
evaluate P{W ≤ 15.51}.

b) How accurately does the ECDF in Example 4.2 approximate the cumula-
tive distribution function FW in part (a)? Use the same plot statement
as in the example, but with parameters lwd=3 and col="green", so that
the ECDF is a wide green line. Then overlay the plot of FW with
tt = seq(0, 30, by=.01); cdf = (1-exp(-lam*tt))^5; lines(tt, cdf)

and comment.
c) Generalize the result for FW in part (a) so that the lifetime of the ith

component is distributed as EXP(λi), where the λi need not be equal.
d) One could find E(W ) by taking the derivative of FW in part (a) to get

the density function fW and then evaluating
∫∞
0

tfW (t) dt, but this is a
messy task. However, in the case where all components have the same
failure rate λ, we can find E(W ) using the following argument, which is
based on the no-memory property of exponential distributions.

Start with the expected wait for the first component to fail. That is,
the expected value of the minimum of n components. The distribution is
EXP(nλ) with mean 1/λn. Then start afresh with the remaining n− 1
components, and conclude that the mean additional time until the second
failure is 1/λ(n − 1). Continue in this fashion to show that the R code
sum(1/(lam*(n:1))) gives the expected lifetime of the system. For a
five-component system with λ = 1/4, as in Example 4.2, show that this
result gives E(W ) = 9.1333.

Note: The argument in (d) depends on symmetry, so it doesn’t work in the case

where components have different failure rates, as in part (c).

4.10 When a firm receives an invitation to bid on a contract, a bid cannot
be made until it has been reviewed by four divisions: Engineering, Personnel,
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Legal, and Accounting. These divisions start work at the same time, but they
work independently and in different ways. Times from receipt of the offer to
completion of review by the four divisions are as follows. Engineering: expo-
nential with mean 3 weeks; Personnel: normal with mean 4 weeks and stan-
dard deviation 1 week; Legal: either 2 or 4 weeks, each with probability 1/2;
Accounting: uniform on the interval 1 to 5 weeks.

a) What is the mean length of time W before all four divisions finish their
reviews? Bids not submitted within 6 weeks are often rejected. What is
the probability that it takes more than 6 weeks for all these reviews to
be finished? Write a program to answer these questions by simulation.
Include a histogram that approximates the distribution of the time before
all divisions finish. Below is suggested R code for making a matrix DTA;
proceed from there, using the code of Example 4.2 as a guide.

Eng = rexp(m, 1/3)
Per = rnorm(m, 4, 1)
Leg = 2*rbinom(m, 1, .5) + 2
Acc = runif(m, 1, 5)
DTA = cbind(Eng, Per, Leg, Acc)

b) Which division is most often the last to complete its review? If that divi-
sion could decrease its mean review time by 1 week, by simply subtract-
ing 1 from the values in part (a), what would be the improvement in the
6-week probability value?

c) How do the answers in part (a) change if the uniformly distributed time for
Accounting starts precisely when Engineering is finished? Use the original
distributions given in part (a).

Hints and answers: (a) Rounded results from one run with m = 10 000; give more

accurate answers: 5.1, 0.15. (b) The code mean(w==Eng) gives the proportion of the

time Engineering is last to finish. Greatest proportion is 0.46. (c) Very little. Why?

(Ignore the tiny chance that a normal random variable might be negative.)

4.11 Explain the similarities and differences among the five matrices pro-
duced by the R code below. What determines the dimensions of a matrix
made from a vector with the matrix function? What determines the order
in which elements of the vector are inserted into the matrix? What happens
when the number of elements of the matrix exceeds the number of elements
of the vector? Focus particular attention on MAT3, which illustrates a method
we use in Problem 4.12.

a1 = 3; a2 = 1:5; a3 = 1:30

MAT1 = matrix(a1, nrow=6, ncol=5); MAT1

MAT2 = matrix(a2, nrow=6, ncol=5); MAT2

MAT3 = matrix(a2, nrow=6, ncol=5, byrow=T); MAT3

MAT4 = matrix(a3, 6); MAT4

MAT5 = matrix(a3, 6, byrow=T); MAT5
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Figure 4.9. ECDFs of simulated lifetime distributions of the homogeneous parallel
system of Example 4.2 (solid curve) and one much more reliable heterogeneous
parallel system from reallocating foil as suggested in Problem 4.12(b).

4.12 In Example 4.2, each of the five component CPUs in the parallel
system has failure rate λ = 1/4 because it is covered by a thickness of lead
foil that cuts deadly radiation by half. That is, without the foil, the failure
rate would be λ = 1/2. Because the foil is heavy, we can’t afford to increase
the total amount of foil used. Here we explore how the lifetime distribution of
the system would be affected if we used the same amount of foil differently.

a) Take the foil from one of the CPUs (the rate goes to 1/2) and use it to
double-shield another CPU (rate goes to 1/8). Thus the failure rates for the
five CPUs are given in a 5-vector lam as shown in the simulation program
below. Compare the mean and median lifetimes, probability of survival
longer than 10 years, and ECDF curve of this heterogeneous system with
similar results for the homogeneous system of Example 4.2. Notice that in
order for each column of the matrix to have the same rate down all rows,
it is necessary to fill the matrix by rows using the argument (byrow=T).
Thus the vector of five rates “recycles” to provide the correct rate for each
element in the matrix. (See Problem 4.11 for an illustrative exercise.)

# Curve for original example

m = 100000

n = 5; lam.e = 1/4

x = rexp(m*n, lam.e)

DTA = matrix(x, nrow=m)

w.e = apply(DTA, 1, max)

mean(w.e); quantile(w.e, .5); mean(w.e > 10)

ecdf = (1:m)/m; w.e.sort = sort(w.e)

plot(w.e.sort, ecdf, type="l", xlim=c(0,40), xlab="Years")



110 4 Sampling from Applied Probability Models

# Overlay curve for part (a)

lam = c(1/2, 1/4, 1/4, 1/4, 1/8)

x = rexp(m*n, lam)

DTA = matrix(x, nrow=m, byrow=T)

w.a = apply(DTA, 1, max)

mean(w.a); quantile(w.a, .5); mean(w.a > 10)

w.a.sort = sort(w.a)

lines(w.a.sort, ecdf, lwd=2, col="darkblue", lty="dashed")

b) Denote the pattern of shielding in part (a) as 01112. Experiment with other
patterns with digits summing to 5, such as 00122, 00023, and so on. The
pattern 00023 would have lam = c(1/2, 1/2, 1/2, 1/8, 1/16). Which
of your patterns seems best? Discuss.

Notes: The ECDF of one very promising reallocation of foil in part (b) is shown in

Figure 4.9. Parallel redundancy is helpful, but “it’s hard to beat” components with

lower failure rates. In addition to the kind of radiation against which the lead foil

protects, other hazards may cause CPUs to fail. Also, because of geometric issues,

the amount of foil actually required for, say, triple shielding may be noticeably more

than three times the amount for single shielding. Because your answer to part (b)

does not take such factors into account, it might not be optimal in practice.

Problems for Section 4.2 (Range of Normal Data)

4.13 Repeat Example 4.3 for n = 5. For what value K is Runb = KR an
unbiased estimate of σ. Assuming that σ = 10, what is the average length of
a 95% confidence interval for σ based on the sample range?

4.14 Modify the code of Example 4.3 to try “round-numbered” values of n
such as n = 30, 50, 100, 200, and 500. Roughly speaking, for what sample sizes
are the constants K = 1/4, 1/5, and 1/6 appropriate to make Runb = KR an
unbiased estimator of σ? (Depending on your patience and your computer,
you may want to use only m = 10 000 iterations for larger values of n.)

4.15 This problem involves exploration of the sample standard deviation S
as an estimate of σ. Use n = 10.

a) Modify the program of Example 4.3 to simulate the distribution of S.
Use x.sd = apply(DTA, 1, sd). Although E(S2) = σ2, equality (that
is, unbiasedness) does not survive the nonlinear operation of taking the
square root. What value a makes Sunb = aS an unbiased estimator of σ?

b) Verify the value of E(LS) given in Example 4.3. To find the confidence
limits of a 95% confidence interval for S, use qchisq(c(.025,.975), 9)
and then use E(S) in evaluating E(LS). Explain each step.

c) Statistical theory says that V(Sunb) in part (a) has the smallest possible
variance among unbiased estimators of σ. Use simulation to show that
V(Runb) ≥ V(Sunb).
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Notes: E(S10) = 9.727. For n ≥ 2, E(Sn) = σ
√

2
n−1

Γ (n
2
)/Γ (n−1

2
). The Γ -function

can be evaluated in R with gamma(). As n increases, the bias of Sn in estimating σ

disappears. By Stirling’s approximation of the Γ -function, limn→∞ E(Sn) = σ.

4.16 For a sample of size 2, show that the sample range is precisely a mul-
tiple of the sample standard deviation. [Hint: In the definition of S2, express
X̄ as (X1 + X2)/2.] Consequently, for n = 2, the unbiased estimators of σ
based on S and R are identical.

4.17 (Intermediate) The shape of a distribution dictates the “best” esti-
mators for its parameters. Suppose we have a random sample of size n from
a population with the uniform distribution UNIF(µ − √3σ, µ +

√
3σ), which

has mean µ and standard deviation σ. Let Runb and Sunb be unbiased multi-
ples of the sample range R and sample standard deviation S, respectively, for
estimating σ. (Here the distribution of S2 is not related to a chi-squared dis-
tribution.) Use simulation methods in each of the parts below, taking n = 10,
µ = 100, and σ = 10, and using the R code of Example 4.3 as a pattern.

a) Find the unbiasing constants necessary to define Runb and Sunb. These
estimators are, of course, not necessarily the same as for normal data.

b) Show that V(Runb) < V(Sunb). For data from such a uniform distribution,
one can prove that Runb is the unbiased estimator with minimum variance.

c) Find the quantiles of Runb and Sunb necessary to make 95% confidence
intervals for σ. Specify the endpoints of both intervals in terms of σ. Which
confidence interval, the one based on R or the one based on S, has the
shorter expected length?

Problems for Section 4.3 (Sample Mean and Standard Deviation)

4.18 Let Y1, Y2, . . . , Y9 be a random sample from NORM(200, 10).

a) Modify the R code of Example 4.4 to make a plot similar to Figure 4.4
based on m = 100 000 and using small dots (plot parameter pch=".").
From the plot, try to estimate E(Ȳ ) (balance point), SD(Ȳ ) (most ob-
servations lie within two standard deviations of the mean), E(S), and ρ.
Then write and use code to simulate these values. Compare your estimates
from looking at the plot and your simulated values with the exact values.

b) Based on the simulation in part (a), compare P{Ȳ ≤ a}P{S ≤ b} with
P{Ȳ ≤ a, S ≤ b}. Do this for at least three choices of a and b from
among the values a = 197, 200, 202 and b = 7, 10, 11. Use normal and
chi-squared distributions to find exact values for the probabilities you
simulate. Comment.

c) In a plot similar to Figure 4.5, show the points for which the usual 95%
confidence interval for σ covers the population value σ = 10. How does
this differ from the display of points for which the t confidence interval
for µ covers the true population value?
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Figure 4.10. Joint distribution of Ȳ and S for exponential data illustrated with
10 000 simulated points. Each dot is based on a sample of size n = 5 from EXP(2).
No points can fall above the dashed line. See Example 4.6 and Problem 4.20.

4.19 Repeat the simulation of Example 4.5 twice, once with n = 15 random
observations from NORM(200, 10) and again with n = 50. Comment on the
effect of sample size.

4.20 More on Example 4.6 and Figure 4.10.

a) Show that there is an upper linear bound on the points in Figure 4.10. This
boundary is valid for any sample in which negative values are impossible.
Suggested steps: Start with (n−1)S2 =

∑
i Y 2

i −nȲ 2. For your data, say
why

∑
i Y 2

i ≤ (
∑

i Yi)2. Conclude that Ȳ ≥ S/
√

n.
b) Use plot to make a scatterplot similar to the one in Figure 4.10 but with

m = 100 000 points, and then use lines to superimpose your line from
part (a) on the same graph.

c) For Example 4.6, show (by any method) that P{Ȳ ≤ 0.5} and P{S > 1.25}
are both positive but that P{Ȳ ≤ 0.5, S > 1.25} = 0. Comment.

4.21 Figure 4.6 (p101) has prominent “horns.” We first noticed such horns
on (Ȳ , S) plots when working with uniformly distributed data, for which the
horns are not so distinct. With code similar to that of Example 4.7 but simu-
lated samples of size n = 5 from UNIF(0, 1) = BETA(1, 1), make several plots
of S against Ȳ with m = 10 000 points. On most plots, you should see a few
“straggling” points running outward near the top of the plot. The question
is whether they are real or just an artifact of simulation. (That is, are they
“signal or noise”?) A clue is that the stragglers are often in the same places
on each plot. Next try m = 20 000, 50 000, and 100 000. For what value of m
does it first become obvious to you that the horns are real?

4.22 If observations Y1, Y2, . . . , Y5 are a random sample from BETA(α, β),
which takes values only in (0, 1), then the data fall inside the 5-dimensional
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Figure 4.11. Normal probability plot (heavy black dots) of the 33 differences in
Example 4.8. Under a transformation of the vertical axis, the cumulative distribution
curve in Figure 4.7 (p102) becomes a straight line here. The lighter dots, from 20
simulated normal samples of size 33, suggest how far truly normal data may typically
fall from the line. See Problem 4.23.

unit hypercube, which has 25 = 32 vertices. Especially if we have parameters
α, β < 1/2, a large proportion of data points will fall near the vertices, edges,
and faces of the hypercube. The “horns” in the plots of Example 4.7 (and
Problem 4.21) are images of these vertices under the transformation from the
5-dimensional data space to the 2-dimensional space of (Ȳ , S).

a) Use the code of Example 4.7 to make a plot similar to Figure 4.6 (p101),
but with m = 100 000 small dots. There are six horns in this plot, four at
the top and two at the bottom. Find their exact (Ȳ , S)-coordinates. (You
should also be able discern images of some edges of the hypercube.)

b) The horn at the lower left in the figure of part (a) is the image of one
vertex of the hypercube, (0, 0, 0, 0, 0). The horn at the lower right is the
image of (1, 1, 1, 1, 1). They account for two of the 32 vertices. Each of the
remaining horns is the image of multiple vertices. For each horn, say how
many vertices get mapped onto it, its “multiplicity.”

c) Now make a plot with n = 10 and m = 100 000. In addition to the two
horns at the bottom, how many do you see along the top? Explain why
the topmost horn has multiplicity (105 ) = 252.
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Problems for Section 4.4 (Bootstrap Distributions)

4.23 Begin with the paired differences, Pair.Diff, of Example 4.8.

a) Use mean(Pair.Diff) to compute d̄, sd(Pair.Diff) to compute Sd,
length(Pair.Diff) to verify n = 33, and qt(.975, 32) to find t∗. Thus
verify that the 95% t confidence interval is (10.3, 21.6), providing two-place
accuracy. Compare your interval with results from t.test(Pair.Diff).

b) Modify the R code of the example to make a 99% nonparametric bootstrap
confidence interval for the population mean difference µ. Compare with
the 99% t confidence interval (see note).

c) Use qqnorm(Pair.Diff) to make a normal probability plot of the differ-
ences. Then use the lines function to overlay the line y = (d− d̄)/Sd on
your plot. The result should be similar to Figure 4.11, except that this
figure also has normal probability plots (lighter dots) from 20 samples of
size n = 33 from NORM(d̄, Sd) to give a rough indication of the deviation
of truly normal data from a straight line.

Notes: (b) Use parameter conf.level=.99 in t.test. Approximate t interval:

(8.4, 23.5). (c) Although the normal probability plot of Pair.Diff seems to fit a

curve better than a straight line, evidence against normality is not strong. For ex-

ample, the Shapiro-Wilk test fails to reject normality: shapiro.test(Pair.Diff)

returns a p-value of 0.22.

4.24 Student heights. In a study of the heights of young men, 41 students at
a boarding school were used as subjects. Each student’s height was measured
(in millimeters) in the morning and in the evening, see [MR58]. Every student
was taller in the morning. Other studies have found a similar decrease in
height during the day; a likely explanation is shrinkage along the spine from
compression of the cartilage between vertebrae. The 41 differences between
morning and evening heights are displayed in the R code below.

dh = c(8.50, 9.75, 9.75, 6.00, 4.00, 10.75, 9.25, 13.25, 10.50,

12.00, 11.25, 14.50, 12.75, 9.25, 11.00, 11.00, 8.75, 5.75,

9.25, 11.50, 11.75, 7.75, 7.25, 10.75, 7.00, 8.00, 13.75,

5.50, 8.25, 8.75, 10.25, 12.50, 4.50, 10.75, 6.75, 13.25,

14.75, 9.00, 6.25, 11.75, 6.25)

a) Make a normal probability plot of these differences with qqnorm(dh) and
comment on whether the data appear to be normal. We wish to have
an interval estimate of the mean shrinkage in height µ in the population
from which these 41 students might be viewed as a random sample. Com-
pare the 95% t confidence interval with the 95% nonparametric bootstrap
confidence interval, obtained as in Example 4.8 (but using dh instead of
Pair.Diff).

b) Assuming the data are normal, we illustrate how to find a parametric
bootstrap confidence interval. First estimate the parameters: the pop-
ulation mean µ by d̄ and the population standard deviation σ by Sd. Then
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take B resamples of size n = 41 from the distribution NORM(d̄, Sd), and
find the mean of each resample. Finally, find confidence intervals as in the
nonparametric case. Here is the R code.

B = 10000; n = length(dh)

# Parameter estimates

dh.bar = mean(dh); sd.dh = sd(dh)

# Resampling

re.x = rnorm(B*n, dh.bar, sd.dh)

RDTA = matrix(re.x, nrow=B)

# Results

re.mean = rowMeans(RDTA)

hist(re.mean)

bci = quantile(re.mean, c(.025, .975)); bci

2*dh.bar - bci[2:1]

Notes: (a) Nearly normal data, so this illustrates how closely the bootstrap procedure

agrees with the t procedure when we know the latter is appropriate. The t interval is

(8.7, 10.5); in your answer, provide two decimal places. (b) This is a “toy” example

because T = n1/2(d̄− µ)/Sd ∼ T(n− 1) and (n− 1)S2
d/σ2 ∼ CHISQ(n− 1) provide

useful confidence intervals for µ and σ without the need to do a parametric bootstrap.

(See [Rao89] and [Tru02] for traditional analyses and data, and see Problem 4.27

for another example of the parametric bootstrap.)

4.25 Exponential data. Consider n = 50 observations generated below from
an exponential population with mean µ = 10. (Be sure to use the seed shown.)

set.seed(1); x = round(rexp(50, 1/10), 2); x

> x

[1] 7.55 11.82 1.46 1.40 4.36 28.95 12.30 5.40 9.57 1.47

[11] 13.91 7.62 12.38 44.24 10.55 10.35 18.76 6.55 3.37 5.88

[21] 23.65 6.42 2.94 5.66 1.06 0.59 5.79 39.59 11.73 9.97

[31] 14.35 0.37 3.24 13.20 2.04 10.23 3.02 7.25 7.52 2.35

[41] 10.80 10.28 12.92 12.53 5.55 3.01 12.93 9.95 5.14 20.08

a) For exponential data X1, . . . , Xn with mean µ (rate λ = 1/µ), it can
be shown that X̄/µ ∼ GAMMA(n, n). Use R to find L and U with
P{L ≤ X̄/µ ≤ U} = 0.95 and hence find an exact formula for a 95%
confidence interval for µ based on data known to come from an exponen-
tial distribution. Compute this interval for the data given above.

b) As an illustration, even though we know the data are not normal, find the
t confidence interval for µ.

c) Set a fresh seed. Then replace Pair.Diff by x in the code of Example 4.8
to find a 95% nonparametric bootstrap confidence interval for µ.
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d) Does a normal probability plot clearly show the data are not normal? The
Shapiro-Wilk test is a popular test of normality. A small p-value indicates
nonnormal data. In R, run shapiro.test(x) and comment on the result.

Answers: (a) (7.6, 13.3), (b) (7.3, 12.4). (c) On one run: (7.3, 12.3).

4.26 Coverage probability of a nonparametric bootstrap confidence interval.
Suppose we have a sample of size n = 50 from a normal population. We
wonder whether an alleged 95% nonparametric bootstrap confidence interval
really has nearly 95% coverage probability. Without loss of generality, we
consider m = 1000 such random samples from NORM(0, 1), find the bootstrap
confidence interval (based on B = 1000) for each, and determine whether it
covers the true mean 0. (In this case, the interval covers the true mean if its
endpoints have opposite sign, in which case the product of the endpoints is
negative.) The fraction of the m = 1000 nonparametric bootstrap confidence
intervals that cover 0 is an estimate of the coverage probability.

A suitable R program is given below. We chose relatively small values of
m and B and simple bootstrap confidence intervals. The program has a com-
putationally intensive loop and so it runs rather slowly with larger numbers
of iterations. Do not expect a high-precision answer because with m = 1000
the final step alone has a margin of error of about 1.4%. Report results from
three runs. Increase the values of m and B for improved accuracy, if you have
some patience or a fast computer.

m = 1000; cover = numeric(m); B = 1000; n = 50

for (i in 1:m)

{

x = rnorm(n) # simulate a sample

re.x = sample(x, B*n, repl=T # resample from it)

RDTA = matrix(re.x, nrow=B)

re.mean = rowMeans(RDTA)

cover[i] = prod(quantile(re.mean, c(.025,.975)))

# does bootstrap CI cover?

}

mean(cover < 0)

4.27 Mark-recapture estimate of population size. To estimate the number τ
of fish of a certain kind that live in a lake, we first take a random sample of c
such fish, mark them with red tags, and return them to the lake. Later, after
the marked fish have had time to disperse randomly throughout the lake but
before there have been births, deaths, immigration, or emigration, we take a
second random sample of n fish and note the number X of them that have
red tags.

a) Argue that a reasonable estimate of τ is τ̂ = bcn/Xc, where b c indicates
the “largest included integer” or “floor” function. If c = 900, n = 1100,
and X = 95, then evaluate τ̂ .
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b) For known values of τ , r, and n, explain why P{X = x} = (c
x)(τ−c

n−x)/(τ
n),

for x = 0, . . . , n, where (a
b ) is defined as 0 if integer b ≥ 0 exceeds a. We

say that X has a hypergeometric distribution. Suppose τ = 10 000 total
fish, c = 900 tagged fish, τ − c = 9100 untagged fish, and n = 1100 fish
in the second sample. Then, in R, use dhyper(95, 900, 9100, 1100) to
evaluate P{X = 95}.

c) Now, with c = 900 and n = 1100, suppose we observe X = 95. For
what value of τ is P{X = 95} maximized? This value is the maximum
likelihood estimate of τ . Explain why the following code evaluates this
estimate. Compare your result with the value of τ̂ in part (a).

tau = 7000:15000; like = dhyper(95, 900, tau-900, 1100)

mle = tau[like==max(like)]; mle

plot(tau, like, type="l"); abline(v=mle, lty="dashed")

d) The R code below makes a parametric bootstrap confidence interval
for τ . For c, n, and X as in parts (a) and (c), we have the estimate
τ̂ = 10 421 of the parameter τ . We resample B = 10 000 values of X based
on the known values of c and n and this estimate τ̂ . From each resam-
pled X, we reestimate τ . This gives a bootstrap distribution consisting of
B estimates of τ , from which we obtain a confidence interval.

# Data

c = 900; n = 1100; x = 95

# Estimated population size

tau.hat = floor(c*n/x)

# Resample using estimate

B = 10000

re.tau = floor(c*n/rhyper(B, c, tau.hat-c, n))

# Histogram and bootstrap confidence intervals

hist(re.tau)

bci = quantile(re.tau, c(.025,.975)); bci # simple bootstrap

2*tau.hat - bci[2:1] # percentile method

Notes: (a) How does each of the following fractions express the proportion of marked

fish in the lake: c/τ and X/n? (d) Roughly (8150, 12 000) from the bootstrap per-

centile method, which we prefer here because of the skewness; report your seed and

exact result. This is a “toy” example of the parametric bootstrap because stan-

dard methods of finding a confidence interval for τ require less computation and are

often satisfactory. There is much literature on mark-recapture (also called capture-

recapture) methods. For one elementary discussion, see [Fel57].
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Screening Tests

Screening tests, also called diagnostic tests, are used in a wide variety of
fields—public health, surgery, forensics, industrial quality management, satel-
lite mapping, communications, banking, and many more. In the simplest case,
a population is divided into two parts. A particular member of the population
is infected with or free of a disease, a patient is about to reject a transplanted
organ or not, a suspect is deceptive or telling the truth, a manufactured com-
ponent is defective or fit for use, a remote mountainside is covered with snow
or not, a transmitted bit of information is a 0 or a 1, or a prospective borrower
will default on the loan or not.

If direct and sure classification is impossible, takes too long, or is too
expensive, then a relatively convenient, quick, or inexpensive screening test
may be used in an attempt to make the proper classification. Of course, one
hopes that the screening test will usually give the correct indication. Our
interest is mainly in a probability analysis of correct and incorrect test results.

Some of the terminology associated with screening tests varies with the
field of application. For focus and consistency, we carry a single example on
detecting a virus through much of this chapter, but other applications of
screening tests appear in some of the examples and problems. In Chapters 6
and 9, our first examples of Gibbs sampling are based on screening tests.

5.1 Prevalence, Sensitivity, and Specificity

Suppose that international public health officials want to determine the preva-
lence of a particular virus in donated blood at several sites throughout the
world. Also suppose that a relatively inexpensive ELISA test is available
to screen units of blood for this virus. Accordingly, the study will be based
on the results of ELISA tests performed on randomly chosen units of blood
donated at each place to be surveyed. (ELISA is short for enzyme-linked im-
munosorbent assay. A specific ELISA test detects antibodies to a particular
virus—such as HIV or one of several types of hepatitis.)

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 119
Use R!, DOI 10.1007/978-0-387-68765-0_5, © Springer Science+Business Media, LLC 2010
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It is convenient to define two random variables, D and T , corresponding
to a randomly chosen unit of blood. Each of these random variables is binary,
taking only the values 0 and 1:

π = P{D = 1} = P (unit infected with virus) = prevalence,

1− π = P{D = 0} = P (unit not infected),
τ = P{T = 1} = P (unit tests positive for virus),

1− τ = P{T = 0} = P (unit tests negative).

The Greek letters used above are pi (π) and tau (τ). In this book, π does not
ordinarily stand for the ratio of the diameter of a circle to its circumference;
we will note the occasions when it does.

The proportion τ of the units in the sample for which the ELISA test
indicates presence of the virus is not the same as the proportion π actually
infected with the virus. The ELISA test is useful, but not perfect.

During its development, this ELISA test was performed on a large number
of blood samples known to have come from subjects infected with the virus.
Suppose that about 99% of these infected samples showed a positive result.
That is to say, the ELISA test correctly detects the virus in 99% of infected
units of blood; the remaining 1% are false-negative results. In terms of random
variables and probabilities, we say that the sensitivity (denoted by the Greek
letter eta) of the test is

η = P{T = 1|D = 1} = P (positive test | unit has virus)
= P{T = 1, D = 1}/P{D = 1}
= P (true positive)/P (infected) = 0.99 = 99%.

Here, and often throughout this chapter, we express probabilities and propor-
tions as percentages.

In contrast, consider a group of units of blood known from more accurate
and costly procedures to be free of the virus {D = 0}. When administered to
such units of blood, the ELISA test was found to give negative results {T = 0}
for about 97% of them. That is, for some reason, the test gave false-positive
results for 3% of the uninfected units of blood. We say that the specificity
of the test (denoted by theta) is

θ = P{T = 0|D = 0} = P (negative test | no virus)
= P{T = 0, D = 0}/P{D = 0}
= P (true negative)/P (not infected) = 97%.

The particular numerical values of η and θ that we have given above,
and continue to use throughout this chapter, are reasonable but hypothetical
values. The actual sensitivity and specificity of an ELISA test procedure for
any particular virus would depend on whether tests are done once or several
times on each unit of blood and whether borderline results are declared as
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“positive” or “negative.” When the immediate purpose is to protect the blood
supply from contamination with the virus, such borderline decisions would
be made in favor of increasing the sensitivity. The consequence would be
to decrease the specificity. (See [Gas87] for a discussion of sensitivity and
specificity of diagnostic tests in a variety of applications.)

Example 5.1. The trade-off between sensitivity and specificity must be agreed
upon before a screening test is used for a particular purpose. The nature
of this trade-off becomes especially easy to quantify when the test criterion
is a measurement X subject to random variation and the distribution of X
is known for both the infected and the uninfected populations. That is, the
conditional distributions of X|D are known.

Specifically, suppose that X|{D = 0} ∼ NORM(50, 10) and X|{D = 1} ∼
NORM(70, 15). Let x be the cutoff value such that we declare a positive test
result {T = 1} for values of X above x and a negative test result {T = 0} for
values below x. Then it is easy to see how the sensitivity and specificity are
affected by changes in the cutoff value:

η(x) = 1− FX|D=1(x) and θ(x) = FX|D=0(x). (5.1)

One way to display the relationship between sensitivity and specificity is
an ROC plot (for Receiver-Operator Characteristic plot, terminology that
reflects the early use of these plots in the field of electronic communications).
It is customary to plot η(x) against 1 − θ(x) as x varies, so that both axes
involve conditional probabilities of testing positive. Below, we show the R code
used to print the numerical results shown below and make Figure 5.1.

x = seq(40,80,1)

eta = 1 - pnorm(x, 70, 15)

theta = pnorm(x, 50, 10)

cbind(x, eta, theta)[x >= 54 & x <= 63, ]

plot(1-theta, eta, xlim=c(0,1), ylim=c(0,1), pch=19)

lines(c(0,1),c(1,0))

> cbind(x, eta, theta)[x >= 54 & x <= 63, ]

x eta theta

[1,] 54 0.8569388 0.6554217

[2,] 55 0.8413447 0.6914625

[3,] 56 0.8246761 0.7257469

[4,] 57 0.8069377 0.7580363

[5,] 58 0.7881446 0.7881446

[6,] 59 0.7683224 0.8159399

[7,] 60 0.7475075 0.8413447

[8,] 61 0.7257469 0.8643339

[9,] 62 0.7030986 0.8849303

[10,] 63 0.6796308 0.9031995

If false-positive and false-negative results are about equally regrettable,
then desirable cutoff values x correspond to points on the ROC curve that are
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near the line from the upper-left corner (0, 1) to the lower-right corner (1, 0),
where η = θ. There is one such point in the figure, and from the printout we
see that it corresponds to a cutoff value x = 58, giving η = θ = 78.8%.

In general, useful tests correspond to points above the principal diagonal
from (0, 0) to (1, 1) in such a diagram. A point on this line would correspond
to a test that gives the same probability of a positive result whether D = 0
or D = 1. In this sense, all tests in the family considered in this example are
useful. (For more on choosing the cutoff values, see Problem 5.5.)

The curve shown in Figure 5.1 is an idealized one. In a typical application,
we would not know the exact conditional distributions, and the distributions
would not necessarily be symmetrical, much less normal. Instead, we might
have test data on some individuals (currently or eventually) known to have
D = 0 and some known to have D = 1, enabling us to use each group to find
a conditional ECDF. Then the two ECDFs could be used to plot points on an
ROC plot that, with luck, would suggest the location of the ROC curve (see
Problem 5.6). ♦

In summary, the two binary random variables D and T divide the entire
population of units of blood into four disjoint parts.

• True positive {D = 1, T = 1}: Unit infected and correctly classified.
• True negative {D = 0, T = 0}: Unit uninfected and correctly classified.
• False positive {D = 0, T = 1}: Unit uninfected and incorrectly classified.

This amounts to a “false alarm.” As a result, a unit of blood that might
have been used is destroyed. If a person is being screened for a disease, a
false-positive result may lead to needless worry, further testing, and so on.

• False negative {D = 1, T = 0}: Unit infected and incorrectly classified.
Here an infected unit of blood is introduced into the blood supply with
the likely result of infecting its recipient. In the case of a test on a person,
an opportunity may be lost to cure or manage a disease before it becomes
more serious.

For a practical discussion of sensitivity and specificity in several applications
of screening tests, see [Gas87].

5.2 An Attempt to Estimate Prevalence

Consider again our example of a screening test with sensitivity η = 99% and
specificity θ = 97%. At one of the sites under study, suppose that we estimate
τ = P{T = 1} as t, the proportion of positive tests in a sample. We have seen
in Section 5.1 that t itself is not an appropriate estimate of the prevalence
π = P{D = 1}. But can we use t indirectly to find an estimate p of π?

One proposed method of estimating prevalence is to use the following
equation, which establishes a connection between τ and π:
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Figure 5.1. ROC plot for Example 5.1. P (Positive |Virus) = η is plotted against
P (Positive |NoVirus) = 1− θ for various possible screening tests. Each test (dot) is
defined by the cutoff value x above which the test result is declared “positive.” The
point on the diagonal line has η = θ (sensitivity equal to specificity).

τ = P{T = 1} = P{D = 1, T = 1}+ P{D = 0, T = 1}
= P{D = 1}P{T = 1|D = 1}+ P{D = 0}P{T = 1|D = 0}
= πη + (1− π)(1− θ). (5.2)

Here we have partitioned all positive tests into true positives and false posi-
tives, applied the law of total probability, and twice used the multiplication
rule P (E

⋂
F ) = P (E)P (F |E). Solving (5.2) for π, we obtain

π = (τ + θ − 1)/(η + θ − 1). (5.3)

Then, replacing τ by t, we have an estimator p of π:

p = (t + θ − 1)/(η + θ − 1). (5.4)

For example, suppose that we have a random sample of n = 1000 units
of blood from a particular site and that 49 of them test positive. We use the
notation A = #{T = 1} = 49. Then t = A/n = 0.049 = 4.9% and

p = (0.049 + 0.97− 1)/(0.99 + 0.97− 1)
= (4.9%− 3%)/(99%− 3%) = 0.0198 = 1.98%.

Based on the normal approximation to the binomial distribution, the tra-
ditional 95% confidence interval for τ is t ± 1.96

√
t(1− t)/n. Here we get

4.9% ± 1.33% or (3.57%, 6.23%). Substituting the endpoints of this inter-
val into equation (5.3), we obtain the corresponding 95% confidence interval
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Figure 5.2. Estimates of prevalence π. For proportions t of units testing positive,
the plot shows corresponding estimates p of prevalence—based on 1000 units tested
with sensitivity 99% and specificity 97%. Curved bands show traditional 95% confi-
dence intervals for π; in particular, (0.59%, 3.36%) when A = 49 units test positive
(vertical line). Unfortunately, this procedure can produce absurd negative estimates.

for π, (0.59%, 3.36%). Similarly, the more accurate Agresti-Coull 95% con-
fidence interval for τ gives the interval (0.75%, 3.58%) for π. (See Figure 5.2
and Problem 5.7.)

Example 5.2. Absurd Estimates of Prevalence. Unfortunately, the method just
discussed sometimes gives absurd estimates p of π. Here again, let η = 99%
and θ = 97%. If we have a sample of n = 250 units of blood and six of them
test positive, then t = 2.4% and p = −0.62%. The difficulty here is that we
would expect 100%− θ = 3% of the tests to be positive even if the prevalence
is 0, but sampling variation has given us a value of t less than 3%. In different
circumstances, this method may give estimates of π that exceed 1.

Moreover, unreasonable estimates of π outside the interval (0, 1) are not
rare. Suppose this ELISA test is used in a population where, unknown to us,
the prevalence of the virus is π = 2% and so, by equation (5.2), τ = 4.92%.
We estimate π by administering the test to n = 250 units of blood, of which
it happens that A test positive. What then is the probability that we get an
absurd negative estimate of π? In this situation, A ∼ BINOM(250, 0.0492) and
t = A/n estimates τ . Looking at equation (5.3), we see that the estimate p is
negative when t < 1 − θ = 0.03 or A < 250(0.03) = 7.5. Thus the answer to
our question is that P{p < 0} = P{A ≤ 7} = 0.0721, which can be verified in
R with pbinom(7, 250, .0492).

A somewhat deeper question is how often the lower confidence limit of a
95% confidence interval for π will be negative. The following simulation with
R provides an approximate answer.
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Figure 5.3. Absurd estimates of prevalence. In Example 5.2, negative point esti-
mates of prevalence occur in about 7% of the m = 100 000 simulated samples of size
n = 250 from a population with prevalence π = 2%. The histogram shows that the
lower confidence limits for prevalence were negative about 75% of the time.

# set.seed(1212)

m = 100000; n = 250; sens = .99; spec = .97; prev = .02

tpos = prev*sens + (1-prev)*(1-spec)

a = rbinom(m, n, tpos); t = a/n; lcl.t = t - 1.96*sqrt(t*(1-t)/n)

p = (t + spec - 1)/(sens + spec - 1)

lcl.p = (lcl.t + spec - 1)/(sens + spec - 1)

hist(lcl.p, nclass=5)

mean(p < 0); mean(lcl.p < 0)

> mean(p < 0); mean(lcl.p < 0)

[1] 0.07241

[1] 0.74762

We see from the printout and the histogram in Figure 5.3 that the lower
confidence limit for π is negative about 75% of the time. Also, notice that
P{p < 0} is simulated as approximately 0.07, which is in substantial agree-
ment with the exact answer derived above. (For an example of an absurd
estimate of prevalence based on real data, see [PG00], Chapter 6.) ♦

In many applications of screening tests, the estimation of prevalence is
crucial—for example, in epidemiology to estimate the extent to which a disease
has spread, in communications to estimate the percentage of bits transmitted
in error, in banking to estimate the proportion of loans that will not be repaid,
and so on. We return to this topic in Chapter 9, where we explore more
satisfactory estimates of prevalence.
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5.3 Predictive Values

In this section, we introduce some additional conditional probabilities, that
are of importance in practical situations. Moreover, they provide a point of
view that will eventually permit us to make better estimates of prevalence.

To continue our example of screening units of blood, we consider a hypo-
thetical prevalence value of π = 2% at a particular site. In real life, prevalences
range widely depending on the population and the virus of interest. For exam-
ple, in the United States the prevalence of HIV in the donated blood supply
is now essentially 0. (Pre-donation questionnaires used by blood banks even
tend to eliminate donors likely to produce false-positive results.) In contrast,
screening tests are sometimes used in clinical applications where the preva-
lence of a disease exceeds 50%.

During the development of a screening test, it is natural to focus on the
sensitivity η = P{T = 1|D = 1}, the probability that an infected unit of blood
will test positive. After we have administered the test and have a positive
result, it is natural to ask what proportion of units with positive results are
actually infected with the virus. This can be viewed as the inverse conditional
probability P{D = 1|T = 1}, called the predictive value of a positive
test (sometimes abbreviated to predictive value positive, or PVP). This is a
property of the site as well as a property of the particular screening test used.
Equation (5.2) gives

τ = πη + (1− π)(1− θ)
= (0.02)(0.99) + (0.98)(0.03) = 0.0492 = 4.92%.

From this we can compute the predictive value of a positive test (denoted by
gamma),

γ = P (D = 1|T = 1) =
P (D = 1, T = 1)

P (T = 1)
=

πη

πη + (1− π)(1− θ)

=
πη

τ
=

0.0198
0.0492

= 0.4024 = 40.24%. (5.5)

In this population, considerably less than half of the units that test positive
are actually infected, so most of the units that are destroyed because they test
positive are not really infected. Fortunately, in this instance, relatively few of
the units test positive and so the overall consequence of these misclassifications
is not great.

Similarly, the predictive value of a negative test (denoted by delta
and sometimes abbreviated as PVN ) is

δ = P (D = 0|T = 0) = (1− π)θ/(1− τ)
= 0.9506/(1− 0.0492) = 0.9998 = 99.98%. (5.6)

Thus, almost all of the units that test negative are uninfected. Of course, we
can hope that the predictive values of both positive and negative tests are
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Figure 5.4. Predictive values. Conditional probabilities PVP γ (solid curve) and
PVN δ (dashed) of a test depend on prevalence π and also on its sensitivity η = 99%
and specificity θ = 97%. The vertical dotted line illustrates equations (5.5) and (5.6),
where π = 2%.

high (near 1), but even when one or both of these values is low, the screening
test may still be useful. (See Figure 5.4 and Problems 5.10 and 5.11.)

One way to get direct information about predictive values is to perform a
gold standard procedure on some of the units of blood. In concept, a gold
standard provides essentially a 100% accurate determination as to whether or
not the virus is present in a unit, but at a cost of administration that prevents
its use on every unit of blood. (If such a gold standard were inexpensive, why
bother with imperfect ELISA tests for screening?)

Procedures called Western blot tests are regarded as a gold standard
for some viruses. They use a different technology than ELISA tests
and are considerably more accurate, and expensive, to use than ELISA
tests. However, in practice, no such procedure is absolutely perfect.
Both the Western blot test and the ELISA test actually detect anti-
bodies to a specific virus. In most circumstances, the presence of anti-
bodies corresponds to presence of the virus itself. Exceptions might be
units of blood from people who have taken vaccines (having antibodies,
but no virus) or who have been very recently infected (virus, but no
antibodies yet). Blood banks use pre-donation questionnaires to try
to avoid accepting such units of blood.

Unless the prevalence of the virus is extremely high at a particular location,
the actual number of units with ELISA-positive tests found there may be
small enough that we could check them all against the gold standard. Without
knowing π, we could then estimate γ for this site as the proportion of ELISA-
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Table 5.1. Counts used in the program of Example 5.3.

BATCH

TEST Bad Good Total

Fail n - n.p - n.g + n.gp n.g - n.gp n - n.p

Pass n.p - n.gp n.gp n.p

Total n - n.g n.g n

positive units proved by subsequent gold-standard procedures actually to have
the virus; that is, #(T = 1, D = 1)/#(T = 1).

Although we would not ordinarily be able to apply the gold standard to
all units of blood that tested ELISA-negative, we might be able to check some
of them against the gold standard to get an estimate of δ (if only to verify
that δ really is very nearly 1, as in our example).

Example 5.3. Batches of a drug are synthesized using a process that gives
somewhat variable results. The potency of a randomly chosen batch is
S ∼ NORM(110, 5). A batch is called good (G)—that is, it meets design
specifications—if its potency exceeds 100. Otherwise, it is called bad (B).

However, it is difficult to assay potency. When a batch with potency s
is assayed according to a method accepted for use in production, the value
observed is a random variable X ∼ NORM(s, 1). By agreement with the appro-
priate regulatory agency, a batch passes inspection (P ) and can be packaged
for sale if X > 101. Otherwise, the batch fails inspection (F ) and must be
destroyed.

Of all the batches produced, we wish to know the proportion π = P (B)
of bad batches and the proportion τ = P (F ) that must be destroyed. Each of
these probabilities can be found as an area under a normal curve.

• Clearly, π = P{S ≤ 100} = Φ(−2) = 0.02275 from tables of the standard
normal distribution, or in R as pnorm(100, 110, 5) or pnorm(-2).

• To find τ , we express X as the sum X = S + E of two indepen-
dent random variables, S ∼ NORM(110, 5) and E ∼ NORM(0, 1). Then
X ∼ N(110,

√
12 + 52) and τ = P{X ≤ 101} = Φ(−9/

√
26) = 0.03878.

We see that more batches are being destroyed (almost 4%) than are actually
bad (about 2.3%). Clearly, some good batches fail the test. This is one of the
consequences of using a less than perfect testing procedure.

In economic terms, it is natural for the manufacturer to be concerned
about the specificity θ, the probability that a batch will pass inspection given
that it is good, and the predictive value of a negative test γ, the proportion
of discarded batches that is actually bad. However, an analytical evaluation
of these two conditional probabilities is a little more difficult than for π and τ
above. (See Problem 5.14.)
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Below is R code to simulate θ and δ (and, for an easy bit of verification,
also π). Notice that the step x = rnorm(n, s, sd.x) has two vectors of
length n; the ith entry in s is used as the mean when the ith entry in x is
generated. We use pp for our π because R reserves pi for the usual constant.
Table 5.1 displays counts used in the program.

# set.seed(1237)

n = 500000

mu.s = 110; sd.s = 5; cut.s = 100

sd.x = 1; cut.x = 101

s = rnorm(n, mu.s, sd.s); x = rnorm(n, s, sd.x)

n.g = length(s[s > cut.s]) # number Good

n.p = length(x[x > cut.x]) # number Pass

n.gp = length(x[s > cut.s & x > cut.x]) # number Good & Pass

n.bf = n - n.p - n.g + n.gp # number Bad & Fail

pp = (n - n.g)/n # prevalence pi

theta = n.gp/n.g

gamma = n.bf/(n - n.p)

pp; theta; gamma

> pp; theta; gamma

[1] 0.023292

[1] 0.982742

[1] 0.572313

The simulated value of π is correct to three decimal places: all but 2.3% of the
batches are good. Also, more than 98% of good batches pass inspection, so
relatively few batches are destroyed. Of the batches that are destroyed, only
about 57% are actually bad. ♦

By now we have accumulated a number of probabilities and conditional
probabilities. In order to avoid confusion, it is necessary to interpret each
probability by focusing on the population or subpopulation to which it refers.

• For example, P{T = 1, D = 1}, the probability of a true positive outcome,
refers to the entire population. It is the proportion of all units of blood that
are infected and also test positive.

• The sensitivity η = P{T = 1|D = 1} refers to the subpopulation of in-
fected units. It is the rate of (true) positive results within this infected
subpopulation. (To what subpopulation does θ refer?)

• In contrast, γ = P{D = 1|T = 1}, the predictive value of a positive
test, refers to the subpopulation of units that test positive. It is the rate of
infection within this subpopulation. (To what subpopulation does δ refer?)

In Chapter 9, we see that if reliable estimates of the conditional probabili-
ties γ and δ are available, they can provide the basis for an improved estimate
of π. In fact, this possibility provides a simple illustration of the important
estimation technique known as the Gibbs sampler.
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5.4 Bayes’ Theorem for Events

In Section 5.1, we defined sensitivity η = P{T = 1|D = 1} and specificity
θ = P{T = 0|D = 0} using the conditional distributions of T given D.
Then, in Section 5.3 we inverted the conditioning to obtain predictive values
γ = P{D = 1|T = 1} and δ = P{D = 0|T = 0}, which involve the conditional
distributions of D given T . This process is a special case of an important
general principle, which we now explore a little more deeply.

Consider sets A0, A1, . . . , AK that form a partition of the population into
subpopulations. That is, the Ai are disjoint and together they exhaust the
population. Suppose we know the probabilities P (Ai) of all of these subpop-
ulations. Also, for some event E of interest, suppose we know the probability
P (E|Ai) relative to each subpopulation. Then Bayes’ Theorem shows how
to find any one of the conditional probabilities P (Aj |E) as follows:

P (Aj |E) =
P (Aj)P (E|Aj)∑K
i=0 P (Ai)P (E|Ai)

, for j = 0, . . . , K. (5.7)

Example 5.4 below indicates the method of proving this result. (Many ele-
mentary probability textbooks give formal proofs, for example [Pit93]. For a
more general version of Bayes’ Theorem, see Problem 5.19.)

When we computed the predictive value of a positive test in equation (5.5),
we used a special case of equation (5.7). There the partition consisted of the
subpopulations A0 = {D = 0} and A1 = {D = 1}, with P (A0) = 1− π
and P (A1) = π. The event of interest was that the unit tested positive
E = {T = 1}, and we knew P (E|A0) = 1 − θ and P (E|A1) = η. We eval-
uated the reverse conditional probability γ = P{D = 1|T = 1} = P (A1|E).

An important point of view associated with Bayes’ Theorem has to do
with changing one’s assessment of a probability based on data. Prior to seeing
any data, we judge the probability of the jth subpopulation to be P (Aj).
This is called a prior probability. After seeing some relevant data for a
randomly chosen member of the population, we may reassess the probability
that it belongs to the jth subpopulation. The conditional probability based on
data is called a posterior probability. Bayes’ Theorem gives the posterior
probability P (Aj |E) of belonging to the jth subpopulation given the data E.

In terms of our example of testing units of blood, the prior probability
of infection (belonging to subpopulation A1) is the prevalence π. After see-
ing that a unit tests positive (data), our revised probability that the unit is
infected is γ, the predictive value of a positive test.

Example 5.4. At a manufacturing company, any one of four injection-molding
machines can be used to produce a particular kind of plastic part. Thus, the
population of all parts is partitioned into four subpopulations depending on
the machine. Machines A and B are each used to make 40% of the parts, high-
precision Machine C is used to make 15% of the parts, and older Machine D
is used to make the remaining 5% of them. The respective error rates for
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Machines A–D are 1%, 1%, 0.5%, and 3%. For example, 1% of the parts made
by Machine A are bad; P (E|A) = 1%.

Suppose one of these parts is chosen at random from the company ware-
house. The probability that it is bad is given by the denominator of Bayes’
Theorem, where the contributions of all four machines to the overall error rate
are summed:

P (E) = P (E ∩A) + P (E ∩B) + P (E ∩ C) + P (E ∩D)
= P (A)P (E|A) + P (B)P (E|B) + P (C)P (E|C) + P (D)P (E|D)
= 0.40(0.01) + 0.40(0.01) + 0.15(0.005) + 0.05(0.03)
= 0.01025 = 1.025%.

Thus, of all the parts of this type that the company makes, a little more than
1% are bad. Of all bad parts, the proportion made on Machine D is given by
Bayes’ Theorem as

P (D|E) = P (D ∩ E)/P (E) = P (D)P (E|D)/P (E)
= 0.05(0.03)/0.01025 = 0.0015/0.01025 = 14.63%.

Even though Machine D makes only 5% of the parts (prior probability), it is
responsible for almost 15% of all the bad parts produced (posterior probability,
given bad). Perhaps Machine D should be retired. (See Problem 5.16 for a
variation of this example.) ♦

In Chapter 8, we show applications of a more general version of Bayes’
Theorem in estimation. Chapters 6 and 7 introduce basic ideas of Markov
chains. Screening tests, Markov chains, and a Bayesian approach to estimation
are important elements of Chapters 9 and 10.

5.5 Problems

Problems for Section 5.1 (Prevalence, Sensitivity, and Specificity)

5.1 In a newspaper trivia column, L. M. Boyd [Boy99] ponders why lie
detector results are not admissible in court. His answer is that “lie detector
tests pass 10 percent of the liars and fail 20 percent of the truth-tellers.” If you
use these percentages and take {D = 1} to mean being deceitful and {T = 1}
to mean failing the test, what are the numerical values of the sensitivity and
specificity for such a lie detector test? (Continued in Problem 5.12.)

5.2 In a discussion of security issues, Charles C.Mann [Man02] considers
the use of face-recognition software to identify terrorists at an airport terminal:

[One of the largest companies marketing face-recognition technology]
contends that...[its] software has a success rate of 99.32 percent—that
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is, when the software matches a passenger’s face with a face on a
list of terrorists, it is mistaken only 0.68 percent of the time. Assume
for the moment that this claim is credible; assume, too, that good
pictures of suspected terrorists are readily available. About 25 million
passengers used Boston’s Logan Airport in 2001. Had face-recognition
software been used on 25 million faces, it would have wrongly picked
out just 0.68 percent of them–but that would have been enough...to
flag as many as 170,000 innocent people as terrorists. With almost 500
false alarms a day, the face-recognition system would quickly become
something to ignore.

Interpret the quantities η, θ, and π of Section 5.1 in terms of this situation.
As far as possible, say approximately what numerical values of these quantities
Mann seems to assume.

5.3 Consider a bogus test for a virus that always gives positive results,
regardless of whether the virus is present or not. What is its sensitivity?
What is its specificity? In describing the usefulness of a screening test, why
might it be misleading to say how “accurate” it is by stating its sensitivity
but not its specificity?

5.4 Suppose that a medical screening test for a particular disease yields
a continuum of numerical values. On this scale, the usual practice is to take
values less than 50 as a negative indication for having the disease {T = 0} and
take values greater than 56 as positive indications {T = 1}. The borderline
values between 50 and 56 are usually also read as positive, and this practice
is reflected in the published sensitivity and specificity values of the test. If
the borderline values were read as negative, would the sensitivity increase or
decrease? Explain your answer briefly.

5.5 Many criteria are possible for choosing the “best” (η, θ)-pair from an
ROC plot. In Example 5.1, we mentioned the pair with η = θ. Many references
vaguely suggest picking a pair “close to” the upper-left corner of the plot. Two
ways to quantify this are to pick the pair on the curve that maximizes the
Youden index η + θ or the pair that maximizes η2 + θ2.

a) As shown below, modify the line of the program in Example 5.1 that
prints numerical results. Use the expanded output to find the (η, θ)-pair
that satisfies each of these maximization criteria.

cbind(x, eta, theta, eta + theta, eta^2 + theta^2)

b) Provide a specific geometrical interpretation of each of the three criteria:
η = θ, maximize η + θ, and maximize η2 + θ2. (Consider lines, circles, and
tangents.)

Hint and notes: (b) When the ROC curve is only roughly estimated from data, it

may make little practical difference which criterion is used. Also, if false-positive

results are much more (or less) consequential errors than false-negative ones, then

criteria different from any of these may be appropriate.
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Table 5.2. Sensitivities and specificities for values of CREAT and B2M.

CREAT B2M

Value Sensitivity Specificity Value Sensitivity Specificity

1.2 .939 .123 1.2 .909 .067
1.3 .939 .203 1.3 .909 .074
1.4 .909 .281 1.4 .909 .084
1.5 .818 .380 1.5 .909 .123
1.6 .758 .461 1.6 .879 .149
1.7 .727 .535 1.7 .879 .172
1.8 .636 .649 1.8 .879 .215
1.9 .636 .711 1.9 .879 .236
2.0 .545 .766 2.0 .818 .288
2.1 .485 .773 2.1 .818 .359
2.2 .485 .803 2.2 .818 .400
2.3 .394 .811 2.3 .788 .429
2.4 .394 .843 2.4 .788 .474
2.5 .364 .870 2.5 .697 .512
2.6 .333 .891 2.6 .636 .539
2.7 .333 .894 2.7 .606 .596
2.8 .333 .896 2.8 .576 .639
2.9 .303 .909 2.9 .576 .676

5.6 Empirical ROC. DeLong et al. [DVB85] investigate blood levels of cre-
atenine (CREAT) in mg% and β2 microglobulin (B2M) in mg/l as indicators
of imminent rejection {D = 1} in kidney transplant patients. Based on data
from 55 patients, of whom 33 suffered episodes of rejection, DeLong and her
colleagues obtained the data in Table 5.2.

For example, as a screening test for imminent rejection, we might take a
createnine level above 2.5 to be a positive test result. Then we would esti-
mate its sensitivity as η(2.5) = 24/33 = 0.727 because 24 patients with such
createnine levels had a rejection episode soon after. Similarly, we estimate its
specificity as θ(2.5) ≈ 0.535 because that is the proportion of occasions on
which no rejection episode closely followed such a createnine level. If we want
a test that “sounds the alarm” more often, we can use a level smaller than 2.5.
Then we will “predict” more rejection episodes, but we will also have more
false alarms.

Use these data to make approximate ROC curves for both CREAT and
B2M. Put both sets of points on the same plot, using different symbols (or
colors) for each, and try to draw a smooth curve through each set of points
(imitating Figure 5.1). Compare your curves to determine whether it is worth-
while to use a test based on the more expensive B2M determinations. Would
you use CREAT or B2M? If false positives and false negatives were equally
serious, what cutoff value would you use? What if false negatives are some-
what more serious? Defend your choices.
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Figure 5.5. Approximating an ROC curve. An ROC curve can be approximated by
drawing a smooth curve through these points, estimated from the createnine data
of Problem 5.6. Compare this with Figure 5.1 (p123).

Notes: Data can be coded as follows. Use plot for the first set of points (as shown
in Figure 5.5), then points to overlay the second.

cre.sens = c(.939, .939, .909, .818, .758, .727, .636, .636, .545,

.485, .485, .394, .394, .364, .333, .333, .333, .303)

cre.spec = c(.123, .203, .281, .380, .461, .535, .649, .711, .766,

.773, .803, .811, .843, .870, .891, .894, .896, .909)

b2m.sens = c(.909, .909, .909, .909, .879, .879, .879, .879, .818,

.818, .818, .788, .788, .697, .636, .606, .576, .576)

b2m.spec = c(.067, .074, .084, .123, .149, .172, .215, .236, .288,

.359, .400, .429, .474, .512, .539, .596, .639, .676)

In practice, a combination of the two determinations, including their day-to-

day changes, may provide better predictions than either determination alone. See

[DVB85] for an exploration of this possibility and also for a general discussion (with

further references) of a number of issues in diagnostic testing. The CREAT data

also appear in [PG00] along with the corresponding approximate ROC curve.

Problems for Section 5.2 (Estimates of Prevalence)

5.7 Confidence intervals for prevalence.

a) Compute the 95% confidence interval for τ given in Section 5.2. Show
how the corresponding 95% confidence interval for π is obtained from this
confidence interval.

b) The traditional approximate confidence interval for a binomial probability
used in Section 5.2 can seriously overstate the confidence level. Especially
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for samples of small or moderate size, the approximate confidence interval
suggested by Agresti and Coull [AC98] is more accurate. Their procedure
is to “add two successes and two failures” when estimating the probability
of success. Here, this amounts to using t′ = (A + 2)/n′, where n′ = n + 4,
as the point estimate of τ and then computing the confidence interval
t′ ± 1.96

√
t′(1− t′)/n′. Find the 95% Agresti-Coull confidence interval

for τ and from it the confidence interval for π given in Section 5.2. (See
Chapter 1 for a discussion of the Agresti-Coull adjustment.)

5.8 Suppose that a screening test for a particular parasite in humans has
sensitivity 80% and specificity 70%.

a) In a sample of 100 from a population, we obtain 45 positive tests. Estimate
the prevalence.

b) In a sample of 70 from a different population, we obtain 62 positive tests.
Estimate the prevalence. How do you explain this result?

5.9 Consider the ELISA test of Example 5.2, and suppose that the preva-
lence of infection is π = 1% of the units of blood in a certain population.

a) What proportion of units of blood from this population test positive?
b) Suppose that n = 250 units of blood are tested and that A of them yield

positive results. What values of t = A/n and of the integer A yield a
negative estimate of prevalence?

c) Use the results of part (b) to find the proportion of random samples of
size 250 from this population that yields negative estimates of prevalence.

Problems for Section 5.3 (Predictive Values)

5.10 Write a program to make a figure similar to Figure 5.4 (p127). What
are the exact values of PVP γ and PVN δ when π = 0.05?

5.11 Suppose that a screening test for a particular disease is to be given
to all available members of a population. The goal is to detect the disease
early enough that a cure is still possible. This test is relatively cheap, conve-
nient, and safe. It has sensitivity 98% and specificity 96%. Suppose that the
prevalence of the disease in this population is 0.5%.

a) What proportion of those who test positive will actually have the disease?
Even though this value may seem quite low, notice that it is much greater
than 0.5%.

b) All of those who test positive will be subjected to more expensive, less
convenient (possibly even somewhat risky) diagnostic procedures to de-
termine whether or not they actually have the disease. What percentage
of the population will be subjected to these procedures?
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c) The entire population can be viewed as having been split into four groups:
true and false positive, true and false negative. What proportion of the
entire population falls into each of these four categories? Suppose you
could change the sensitivity of the test to 99% with a consequent change
in specificity to 94%. What factors of economics, patient risk, and preser-
vation of life would be involved in deciding whether to make this change?

Note: (b) This is a small fraction of the population. It would have been prohibitively

expensive (and depending on risks, possibly even unethical) to perform the definitive

diagnostic procedures on the entire population. But the screening test permits focus

on a small subpopulation of people who are relatively likely to have the disease and

in which it may be feasible to perform the definitive diagnostic procedures.

5.12 Recall the lie detector test of Problem 5.1. In the population of in-
terest, suppose 5% of the people are liars.

a) What is the probability that a randomly chosen member of the population
will fail the test?

b) What proportion of those who fail the test are really liars? What propor-
tion of those who fail the test are really truth-tellers?

c) What proportion of those who pass the test is really telling the truth?
d) Following the notation of this chapter, express the probabilities and pro-

portions in parts (a), (b), and (c) in terms of the appropriate Greek letters.

5.13 In Example 5.3, a regulatory agency may be concerned with the values
of η and γ. Interpret these two conditional probabilities in terms of testing a
batch for potency. Extend the program in this example to obtain approximate
numerical values for η and γ.
Note: For verification, the method of Problem 5.14 provides values accurate to at

least four decimal places.

5.14 The results of Example 5.3 can be obtained without simulation
through a combination of analytic and computational methods.

a) Express the conditional probabilities η, θ, γ, and δ in terms of π, τ , and
P (G ∩ P ) = P{S > 100, X > 101}.

b) Denote the density function of NORM(µ, σ) by ϕ( ·, µ, σ) and its CDF by
Φ( ·, µ, σ). Manipulate a double integral to show that

P (G ∩ P ) =
∫ ∞

100

ϕ(s, 110, 5)[1− Φ(101, s, 1)] ds.

c) Write a program in R to evaluate P (G ∩ P ) by Riemann approximation
and to compute the four conditional probabilities of part (a). We suggest
including (and explaining) the following lines of code.

mu.s = 110; sd.s = 5; cut.s = 100 # as in the Example

s = seq(cut.s, mu.s + 5 * sd.s, .001)
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int.len = mu.s + 5 * sd.s - cut.s

integrand = dnorm(s, mu.s, sd.s) * (1 - pnorm(cut.x, s, sd.x))

pr.gp = int.len * mean(integrand); pr.gp

Compare your results for θ and δ with the simulated values shown in
Example 5.3. (If you did Problem 5.13, then also compare your results for
η and γ with the values simulated there.)

5.15 In Example 5.3, change the rule for “passing inspection” as follows.
Each batch is assayed twice; if either of the two assays gives a result above
101, then the batch passes.

a) Change the program of the example to simulate the new situation; some
useful R code is suggested below. What is the effect of this change on τ ,
θ, and γ?

x1 = rnorm(n,s,sd.x); x2 = rnorm(n,s,sd.x); x = pmax(x1, x2)

b) If you did Problem 5.13, then also compare the numerical values of η and γ
before and after the change in the inspection protocol.

Problems for Section 5.4 (Bayes’ Theorem)

5.16 In Example 5.4, suppose that Machine D is removed from service and
that Machine C is used to make 20% of the parts (without a change in its
error rate). What is the overall error rate now? If a defective part is selected
at random, what is the probability that it was made by Machine A?

5.17 There are three urns, identical in outward appearance. Two of them
each contain 3 red balls and 1 white ball. One of them contains 1 red ball and
3 white balls. One of the three urns is selected at random.

a) Neither you nor John has looked into the urn. On an intuitive “hunch,”
John is willing to make you an even-money bet that the urn selected has
one red ball. (You each put up $1 and then look into the urn. He gets
both dollars if the urn has exactly one red ball, otherwise you do.) Would
you take the bet? Explain briefly.

b) Consider the same situation as in (a), except that one ball has been chosen
at random from the urn selected, and that ball is white. The result of this
draw has provided both of you with some additional information. Would
you take the bet in this situation? Explain briefly.

5.18 According to his or her use of an illegal drug, each employee in a large
company belongs to exactly one of three categories: frequent user, occasional
user, or abstainer (never uses the drug at all). Suppose that the percentages
of employees in these categories are 2%, 8%, and 90%, respectively. Further
suppose that a urine test for this drug is positive 98% of the time for frequent
users, 50% of the time for occasional users, and 5% of the time for abstainers.
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a) If employees are selected at random from this company and given this
drug test, what percentage of them will test positive?

b) Of those employees who test positive, what percentage are abstainers?
c) Suppose that employees are selected at random for testing and that those

who test positive are severely disciplined or dismissed. How might an
employee union or civil rights organization argue against the fairness of
drug testing in these circumstances?

d) Can you envision different circumstances under which it might be appro-
priate to use such a test in the workplace? Explain.

Comment: (d) Consider, as one example, a railroad that tests only train operators

who have just crashed a train into the rear of another train.

5.19 A general form of Bayes’ Theorem.

a) Using f with appropriate subscripts to denote joint, marginal, and con-
ditional density functions, we can state a form of Bayes’ Theorem that
applies to distributions generally, not just to probabilities of events,

fS|X(s|x) =
fX,S(x, s)

fX(x)
=

fX,S(x, s)∫
fX,S(x, s) ds

=
fS(s)fX|S(x|s)∫
fS(s)fX|S(x|s) ds

,

where the integrals are taken over the real line. Give reasons for each step
in this equation. (Compare this result with equation (5.7).)

b) In Example 5.3, S ∼ NORM(110, 5) is the potency of a randomly chosen
batch of drug, and it is assayed as X|{S = s} ∼ NORM(s, 1). The expres-
sion for the posterior density in part (a) allows us to find the probability
that a batch is good given that it assayed at 100.5, thus barely failing
inspection. Explain why this is not the same as 1− δ.

c) We seek P{S > 100|X = 100.5}. Recalling the distribution of X from
Example 5.3 and using the notation of Problem 5.14, show that this prob-
ability can be evaluated as follows:

∫ ∞

100

fS|X(s|100.5) ds =

∫∞
100

ϕ(s, 110, 5)ϕ(100.5, s, 1) ds

ϕ(100.5, 110, 5.099)
.

d) The R code below implements Riemann approximation of the probability
in part (c). Run the program and provide a numerical answer (roughly
0.8) to three decimal places. In Chapter 8, we will see how to find the
exact conditional distribution S|{X = 100.5}, which is normal. For now,
carefully explain why this R code can be used to find the required proba-
bility.

s = seq(100, 130, 0.001)

numer = 30 * mean(dnorm(s, 110, 5) * dnorm(100.5, s, 1))

denom = dnorm(100.5, 110, 5.099)

numer/denom
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Markov Chains with Two States

A stochastic process is a collection of random variables, usually considered
to be indexed by time. In this book we consider sequences of random vari-
ables X1, X2, . . . , viewing the subscripts 1, 2, . . . as successive steps in time.
The values assumed by the random variables Xn are called states of the
process, and the set of all its states is called the state space. Sometimes it
is convenient to think of the process as describing the movement of a particle
over time. If X1 = i and X2 = j, then we say that the process (or particle)
has made a transition from state i at step 1 to state j at step 2. Often we
are interested in the behavior of the process over the long run—after many
transitions.

The definition of a stochastic process is very broad. There is no restriction
on the variety of probability distributions that the various Xn may follow
the complexity of the associations among these distributions. In applications,
we seek models that strike an appropriate compromise between mathemat-
ical simplicity and practical realism. Here are a few examples of stochastic
processes we have already considered.

• Example 3.5 (p58) shows an especially simple process of independent tosses
of a fair coin with P (Heads) = π. Here the state space is S = {0, 1}, the
(marginal) distribution at each step n is given by Xn ∼ BINOM(1, π), and
the steps are independent of one another. We saw that, over the long run,
the proportion of Heads (the proportion of the time the process is “in
state 1”) is approximately equal to π.

• In Example 3.6 (p61), we simulated a somewhat more complex process in
which the probability of rain on one day depends on the weather of the
previous day. Here again, the state space is S = {0, 1}, where 0 = Sunny
and 1 = Rainy. A longer simulation run than the one we did there would
show the long-run proportion of rainy days to be 1/3. (Problem 6.2 explores
joint distributions of two dependent random variables, each taking only
values 0 and 1.)

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 139
Use R!, DOI 10.1007/978-0-387-68765-0_6, © Springer Science+Business Media, LLC 2010
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• Problem 3.20 (p80) provides examples of two dependent weather processes
that converge more quickly. (If you have not already worked this problem
as you read Chapter 3, now may be a good time to do so.)

The purpose of this chapter is to introduce Markov chains, which we use
for computational purposes throughout the rest of this book. A Markov chain
is a particular kind of stochastic process that allows for the possibility of a
“limited” dependence among the random variables Xn. (Such processes were
first considered by the Russian mathematician A. A. Markov in 1907. Markov
is usually pronounced and sometimes spelled as Markoff.)

As we see in the next section, all the examples itemized above are Markov
chains with two states. In this chapter, we look at the structure, applications,
and long-run behavior of 2-state Markov chains.

6.1 The Markov Property

A 2-state Markov chain is a sequence of random variables Xn, n = 1, 2, . . . ,
that take only two values (which we call 0 and 1). The random variables Xn

are not necessarily independent, but any dependence is of a restricted nature.
In particular,

p01 = P{Xn = 1|Xn−1 = 0, Xn−2 = in−2, . . . , X1 = i1}
= P{Xn = 1|Xn−1 = 0} = α, (6.1)

where 0 ≤ α ≤ 1. That is, the probability α of making a transition from state
0 at step n−1 to state 1 at step n does not depend on the states (0 or 1) that
were occupied before step n− 1. Of course, it follows that

p00 = P{Xn = 0|Xn−1 = 0} = 1− α.

Similarly, we define

p10 = P{Xn = 0|Xn−1 = 1, Xn−2 = in−2, . . . , X1 = i1}
= P{Xn = 0|Xn−1 = 1} = β, (6.2)

where 0 ≤ β ≤ 1, so that

p11 = P{Xn = 1|Xn−1 = 1} = 1− β.

A consequence of equations (6.1) and (6.2) is that only the state at the
most recently observed step may be relevant in predicting what will hap-
pen next. This one-step-at-most kind of dependence, known as the Markov
property, characterizes Markov chains.

Here we consider only homogeneous Markov chains, for which the prob-
ability of any particular transition from one step to the next remains constant
over time. For example,
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p01 = P{X2 = 1|X1 = 0} = P{X3 = 1|X2 = 0} = · · ·
= P{Xn = 1|Xn−1 = 0} = P{Xn+1 = 1|Xn = 0} = α,

for any n. Similarly, β is constant over time. To keep the language simple, we
will usually say Markov chain instead of homogeneous Markov chain.

Sometimes Markov dependence provides a good fit to real data and some-
times it does not.

• Experience with actual data has shown that Markov dependence works well
for modeling some kinds of weather patterns. The dependence of today’s
weather on yesterday’s weather may be very slight or even nonexistent in
some climates. In others, the dependence is stronger but of a kind well-
suited to Markov modeling. (Cox and Miller [CM65] report winter rainfall
data from Tel Aviv that fits a strongly dependent Markov chain.)

• A Markov chain would be better than a strictly independent process for
modeling whether a worker holds a blue-collar (0) or white-collar (1) job
at the end of each month, but the fit to actual data would not be pre-
cise. Human memory extends farther than a month back in time. So in
predicting the next job choices of accountants (1) who have just been laid
off, a Markov chain could not distinguish between an accountant who has
previously held only white-collar jobs and one who made a good living as
an electrician (0) a few years ago.
Such a Markov model was introduced in a monograph by Blumen et al.
[BKM55] as an approximate method to study industrial labor mobility.
They called it a mover-stayer model, and its modifications have been
used in a wide variety of fields, including finance, criminology, geography,
and epidemiology. See [Goo61] and [Fry84].

In many important applications, all four transition probabilities p00, p01,
p10, and p11 are positive. That is, 0 < α, β < 1. However, our definition of a
2-state Markov chain allows for situations where certain movements from one
step to the next are prohibited or required.

First, we consider two strictly deterministic cases. If α = β = 0, then
no movement among states is possible. In this “never-move” chain, the value
of X1 determines the values of all other Xn = X1. In contrast, if α = β = 1,
the process cycles between 0 and 1 on alternate steps. In such a “flip-flop”
chain, the value X1 = 0 would determine the values of all other Xn, with
Xn = 0 for all odd values of n and Xn = 1 for all even values of n.

Second, two absorbing cases are also included in our definition of a
Markov chain. If α = 0 and β > 0, then the chain will eventually move to
state 0, where it will stay (“be absorbed”) for all subsequent steps n. Suppose
that X1 = 1. Then, if β = 1, absorption into 0 occurs precisely at step 2.
Otherwise, the length of the run of 1s before absorption into 0 is governed by
a geometric distribution with mean 1/β. Similarly, if β = 0 and α > 0, then 1
is the absorbing state. (See Problem 6.3.)
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Figure 6.1. Histogram of the durations of 222 eruptions of Old Faithful geyser. In
this bimodal distribution, we arbitrarily choose 3 minutes as the boundary between
“Short” and “Long” eruptions.

Finally, among these restrictive models, we explore an example in which
α = 1 and 0 < β < 1. (The case where β = 1 and 0 < α < 1 is similar.)

Example 6.1. Modeling Eruptions of Old Faithful Geyser. According to data
collected on 16 days during the summers of 1978 and 1979, eruptions of
Old Faithful geyser in Yellowstone National Park can be classified as either
Short (0) or Long (1). We take the Long eruptions to be those lasting 3 minutes
or more. The histogram in Figure 6.1, based on 222 eruptions, illustrates the
rationale for this somewhat arbitrary choice. (Data were collected by park
rangers and reported by Weisberg in [Wei85].)

Looking at the plot of 205 adjacent pairs of eruptions in Figure 6.2, we
conclude that the behavior of successive eruptions can be modeled as a Markov
chain with the estimated values α = 1 and β = 0.44. That is, in the available
data, Short eruptions are always followed by Long ones, and about 44% of
Long eruptions are followed by Short ones. (Although 222 eruptions were
observed, only 205 could be paired with an immediately following one.)

The probability rules governing the long-run behavior of this Markov chain
are relatively simple. Once a Long eruption occurs, there is some tendency for
the next eruption to be Long also: 56% of the time. The eventual transition to
a Short eruption is governed by a geometric distribution with probability 0.44.
So the average length of a run of Long eruptions will be 1/0.44 = 2.2727. Then
a single Short eruption will be followed immediately by a Long one and the
cycle will repeat. On average, there will be 2.2727 Long eruptions out of the
3.2727 eruptions in a complete cycle. Thus, over the long run, the proportion
of Long eruptions will be 2.2727/3.2727 = 69.44%, which agrees well with the
data: 69.8% Long eruptions among the 222 observed.
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Figure 6.2. Dependence between durations of adjacent eruptions of Old Faithful
geyser. Each of 205 eruptions is plotted against the one just before. No Short eruption
(less than 3 minutes) was immediately followed by another Short eruption.

The following R script simulates m = 2000 steps of this Markov chain.
From the results, we approximate both the long-run proportion of Long erup-
tions and the average cycle length. For simplicity, the number a of cycles is
taken to be the number of 0 → 1 transitions and the average cycle length
to be m/a. This may be very slightly inaccurate because the last cycle is
truncated at m and so may be incomplete. Because α = 1, we could replace
rbinom(1, 1, alpha) by 1, but for consistency with our other simulations
of Markov chains, we use code that works for 0 ≤ α ≤ 1.

# Preliminaries

# set.seed(1237)

m = 2000; n = 1:m; x = numeric(m); x[1] = 0

alpha = 1; beta = 0.44

# Simulation

for (i in 2:m)

{

if (x[i-1]==0) x[i] = rbinom(1, 1, alpha)

else x[i] = rbinom(1, 1, 1 - beta)

}

y = cumsum(x)/n # Running fractions of Long eruptions

# Results

y[m] # Fraction of Long eruptions among m. Same as: mean(x)

a = sum(x[1:(m-1)]==0 & x[2:m]==1); a # No. of cycles

m/a # Average cycle length

plot(x[1:20], type="b", xlab="Step", ylab="State")
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Figure 6.3. Simulated Old Faithful process. The alternation between Short and
Long eruptions is shown for the first 20 eruptions. Each return to Short (0) starts a
new cycle of this 2-state chain.

> y[m] # Fraction of Long eruptions among m. Same as: mean(x)

[1] 0.697

> a = sum(x[1:(m-1)]==0 & x[2:m]==1); a # No. of cycles

[1] 605

> m/a # Average cycle length

[1] 3.305785

The proportion 0.70 of the m = 2000 simulated steps that result in Long
eruptions and the average 3.3 of the cycle lengths (run of Long eruptions
followed by one Short eruption) are in good agreement with the theoretical
values derived above. Figure 6.3 shows the first few cycles in our simulation.

Moreover, Figure 6.4 plots the cumulative proportion of Long eruptions
at each simulated step, showing that this Markov chain stabilizes quickly to
its limiting distribution as the process continues to cycle between Long and
Short states. It is made with the following additional line of code,

plot(y, type="l", ylim=c(0,1), xlab="Step", ylab="Proportion Long")

If we know the current state of this chain, then we have some strong infor-
mation about the next state. Specifically, a Short eruption is always followed
by a Long one, and about 44% of Long eruptions are followed by Short ones.
However, this one-step Markov dependence dissipates rather quickly, so that
knowledge of the current step does not tell us much about what will hap-
pen several steps later. By looking at autocorrelations of the process, the
additional code below illustrates one way to quantify this “wearing away” of
dependence over time.
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Figure 6.4. Simulated Old Faithful process. For each simulated step the proportion
of long eruptions to date is plotted. This proportion converges to about 70%.

acf(x) # Autocorrelation plot

acf(x, plot=F) # Printed output

> acf(x, plot=F) # Printed output

Autocorrelations of series ’x’, by lag

0 1 2 3 4 5 6 7 8

1.000 -0.434 0.163 -0.072 0.038 -0.062 0.051 -0.043 0.028

...

As always, the autocorrelation of order 0 is 1. The estimated autocorrela-
tion of order 1 is about −0.43, and autocorrelations of larger orders tend to
alternate in sign and trend quickly to values that are not significantly different
from 0 (see Figure 6.5). This autocorrelation structure provides additional ev-
idence that the simulated values of Xn have a limiting distribution that does
not depend on the initial state.♦

Is a Markov chain a realistic model for the eruptions of Old Faithful? The
answer is that it is about as good as we can do with the data at hand. First,
our Markov chain is clearly better than an independent process with 70% Long
eruptions and 30% Short ones. Under this independent model, 30% of Short
eruptions would be followed by another Short one, and that never happens
in our data. Second, it might be possible to construct a model that makes
more detailed use of past information and is somewhat more accurate than
our Markov chain. But with the limited amount of data available, it would be
difficult to verify whether this is so.
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Figure 6.5. Simulated Old Faithful process. A plot of the autocorrelation function.
As the lag increases, the correlation shrinks to nonsignificant levels.

6.2 Transition Matrices

We have adopted the notation pij = P{Xn+1 = j|Xn = i} for the probability
of a 1-step transition from state i to state j, for i, j = 0, 1, and for any
n = 1, 2, . . . . It is useful to arrange these probabilities in a matrix,

P =
[

p00 p01

p10 p11

]
=

[
1− α α

β 1− β

]
,

where the ith row gives the conditional distribution of Xn+1|Xn = i. Thus
each row of a transition matrix sums to 1.

The 2-step transition probability pij(2) = P{Xn+2 = j|Xn = i} is found
by taking into account the two possible states of Xn+1. For example, let n = 1,
i = 0, and j = 1. The sequence of states for stages 1, 2, and 3 must be either
0→0→1 or 0→1→1. Thus

p01(2) = P{X3 = 1|X1 = 0} = p00p01 + p01p11 = α(2− α− β), (6.3)

where the first equality is by definition, the second is intuitively reasonable
(with rigorous details of its proof relegated to Problem 6.7), and the third
follows from simple algebra.

More generally, we have the Chapman-Kolmogorov equations

pij(2) =
∑

k∈S

pikpkj , (6.4)

for i, j ∈ S, where S is the state space of the Markov chain. This means that
the 2-step transition matrix P2 of elements pij(2) can be found as the square
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of the 1-step transition matrix P by using ordinary matrix multiplication.
After some algebra (see Problem 6.8), we have

P2 =
1

α + β

[
β α
β α

]
+

(1− α− β)2

α + β

[
α −α
−β β

]
, (6.5)

for α + β > 0. (As usual, the coefficient of a matrix multiplies each of its
elements, and the sum of two matrices is found by adding corresponding ele-
ments.) Thus, for example, the upper-right element of P2 is

p01(2) =
α

α + β
+

(1− α− β)2(−α)
α + β

= α(2− α− β),

which agrees with equation (6.3).
Similarly, the r-step transition matrix for a Markov chain is found by

taking the rth power of P. It can be shown by mathematical induction (see
Problem 6.9) that, for α + β > 0,

Pr =
1

α + β

[
β α
β α

]
+

(1− α− β)r

α + β

[
α −α
−β β

]
. (6.6)

Example 6.2. Old Faithful Chain (continued). Recall that in Example 6.1 the
transition matrix P is specified by p01 = α = 1 and p10 = β = 0.44. Given that
the first eruption was Short (0), let us find the conditional probability that
the third eruption will be Long (1). Evaluating p01(2) according to equation
(6.3), we have p01(2) = (0)(1) + (1)(0.56) = 0.56, where one of the two 2-step
paths turns out to have 0 probability.

To find the probability that X5 = 1 subject to the same condition, we can
substitute the numerical values of r, α, and β into the upper-right element in
the matrix equation (6.6) to obtain

p01(4) =
α + (1− α− β)r(−α)

α + β
=

1− (−0.44)4

1.44
= 0.6684. (6.7)

In R, the computation of Pr, for r = 2, 4, 8, and 16, can be done as shown
below. Because R labels elements of matrices starting at 1 rather than 0, you
will find p01(r) by looking at row [1,] and column [,2] in the appropriate
section of output.

P = matrix(c( 0, 1,

.44, .56), nrow=2, ncol=2, byrow=T)

P

P2 = P %*% P; P2

P4 = P2 %*% P2; P4

P8 = P4 %*% P4; P8

P16 = P8 %*% P8; P16
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> P

[,1] [,2]

[1,] 0.00 1.00

[2,] 0.44 0.56

> P2 = P %*% P; P2

[,1] [,2]

[1,] 0.4400 0.5600

[2,] 0.2464 0.7536

> P4 = P2 %*% P2; P4

[,1] [,2]

[1,] 0.3315840 0.668416

[2,] 0.2941030 0.705897

> P8 = P4 %*% P4; P8

[,1] [,2]

[1,] 0.3065311 0.6934689

[2,] 0.3051263 0.6948737

> P16 = P8 %*% P8; P16

[,1] [,2]

[1,] 0.3055569 0.6944431

[2,] 0.3055550 0.6944450

This computation confirms the calculation p01(4) = 0.6684 we made above
from equation (6.6). Also notice that p11(4) ≈ 0.71 and p01(4) ≈ 0.69 are not
far apart. This means that, 4 steps into the future (at step 5), the probability
of a Long eruption is roughly 0.7 regardless of whether the eruption at step 1
is Short or Long. After 16 transitions, the probability of a Long eruption is
0.6944—essentially independent of step 1. ♦

This tendency for dependence to “wear off” over time is a property of
many chains used in practical probability modeling. In the next section, we
explore when and how rapidly Markov dependence dissipates.

6.3 Limiting Behavior of a 2-State Chain

Equation (6.6) expresses Pr as the sum of two matrices. The first term does
not depend on r, and the second term depends on r only as an exponent of
∆ = 1−α− β. Thus, for |∆| = |1−α− β| < 1, the second term vanishes as r
increases. In symbols,

Λ = lim
r→∞

Pr =
1

α + β

[
β α
β α

]
+

limr→∞∆r

α + β

[
α −α
−β β

]

=
1

α + β

[
β α
β α

]
=

[
λ
λ

]
, (6.8)

where the limiting matrix consists of two identical row vectors, each expressing
the long-run distribution, λ = [λ0, λ1] = [ β

α+β
, α

α+β
].
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The condition |∆| < 1 excludes the deterministic cases where α + β = 0
(never move) and α + β = 2 (flip-flop). Notice that the rate of convergence
is geometric; that is, the discrepancy from the limiting value decreases as a
power of r. Thus, convergence is very rapid unless |∆| is very near 1. This ac-
counts for the near equality in the two rows of P16 seen in Example 6.2. There
∆ = −0.44, and so the chain essentially converges after very few transitions.

For a 2-state Markov chain, we conclude that it is easy to determine from
the values of α and β whether the chain has a long-run probability distribution.
If so, it is easy to compute the limiting probabilities λ1 and λ0 = 1− λ1 and
also to see how quickly Markov dependence dissipates.

However, knowing the probability structure does not reveal exactly how
a chain will behave in practice in a particular instance. If we approximate
the long-run probability λ1 by simulating X̄m, the convergence can be rel-
atively slow, requiring m to be in the thousands in order to obtain a useful
approximation. The examples below illustrate that, for a chain with transition
matrix P, the rate of convergence of Pr is not the same thing as the rate of
convergence of a simulation of the chain.

Example 6.3. An Independent Chain. Suppose that we take independent sam-
ples from a population in which the proportion of individuals infected with a
certain disease is α = 0.02. If the nth individual sampled is infected, then
Xn = 1; if not, then Xn = 0. This is a special case of a Markov chain
with α = 1 − β = 0.02. For this chain, there is no dependence to wear off,
and P = P2 = P3 = · · · = Λ = [ 0.98

0.98
0.02
0.02 ].

Using a result about binomial confidence intervals from Chapter 1, we see
that it takes a simulation of length m = (1.96/E)2(0.02)(0.98) ≈ 750 to be
95% sure that X̄m is within E = 0.01 of its limit λ1 = 0.02. To be reasonably
sure of two-place accuracy (E = 0.005), we would require m ≈ 3000. ♦
Example 6.4. An Almost-Absorbing Chain. In Section 6.4, we use a Markov
chain with α = 0.0123 and β = 0.6016. For this chain, limr→∞ p01(r) =
limr→∞ p11(r) = λ1 = α/(α + β) = 0.0123/0.6139 = 0.0200. The convergence
of Pr as r →∞ is rapid, with P16 ≈ [ 0.9800

0.9800
0.0200
0.0200 ].

However, because α = p01 is very small, once this chain enters state 0 it is
unlikely to leave at any one step. Because α > 0, state 0 is not an absorbing
state: The chain eventually moves to state 1—after a run of 0s of average
length 1/α = 81.30. The average length of a cycle of this 2-state Markov
chain (a run of 0s followed by a run of 1s) is 1/α + 1/β = 82.96.

To get a good approximation of λ1 by simulation, we need to go through
many cycles. So this chain requires a larger run length m than does the in-
dependent chain (with its cycle length of 51.02) to achieve similar accuracy.
Specifically, five successive runs of a program similar to that of Example 6.1
gave X̄3000 = 0.0147, 0.0210, 0.0203, 0.0263, and 0.0223. (In the notation of
that program, X̄3000 is y[3000].) Clearly, m = 3000 does not consistently
give two-place accuracy in simulating a chain with such a long cycle length.
However, the first-order autocorrelations of the Xn in these runs were mostly



150 6 Markov Chains with Two States

between 0.3 and 0.5 and, in each run, higher-order autocorrelations trended
towards 0. So longer runs should give satisfactory accuracy. (In contrast, Prob-
lem 6.10 shows a chain for which the powers of P converge more slowly than
the simulated values X̄n.) ♦

6.4 A Simple Gibbs Sampler

A Gibbs sampler is a simulated Markov chain X1, X2, . . . that is constructed to
have a desired long-run distribution. By observing enough simulated values
of Xn after the simulation has stabilized, we hope that the distribution of
sampled Xn will approximate its long-run distribution. In practice, Gibbs
samplers are often used to approximate distributions that would be difficult
to derive analytically. Here we illustrate a very simple Gibbs sampler in a
screening test problem where we can find the correct answer by other means.

Consider a screening test. As in Chapter 5, the random variable D = 1
or 0 according to whether a tested sample is infected or not and the random
variable T = 1 or 0 according to whether the sample tests positive or not.
Suppose the conditional distributions T |D and D|T for a particular population
are known in terms of the following four numbers:

Sensitivity = η = P{T = 1|D = 1},
Specificity = θ = P{T = 0|D = 0},

PV Positive = γ = P{D = 1|T = 1},
PV Negative = δ = P{D = 0|T = 0}.

In Chapter 5, we saw that, for a particular population, the two predictive
values γ and δ can be computed easily from the prevalence π = P{D = 1}
of the infection in that population knowing the sensitivity η and specificity
θ of the screening test. So it seems that we should be able to compute the
distribution λ = (λ0, λ1) = (1−π, π) of D from the four quantities given. But
going from η, θ, γ, and δ to π is not quite as straightforward as going from π, η,
and θ to γ and δ. Later in this section, we show one way to compute π
analytically, but now we show how to approximate π with a Gibbs sampler.

The idea is to construct a Markov chain D1, D2 . . . . We begin the simula-
tion with an arbitrarily chosen value of D1 = 0 or 1. Depending on the value
of Dn−1, we obtain Dn in two “half-steps.” In the first of these half-steps, we
use the conditional distributions T |D to simulate a value of Tn−1, and in the
second we use the conditional distributions of D|T to simulate a value of Dn.
Specifically,

Tn−1 ∼ BINOM(1, η) if Dn−1 = 1 or
Tn−1 ∼ BINOM(1, 1− θ) if Dn−1 = 0;

Dn ∼ BINOM(1, γ) if Tn−1 = 1 or
Dn ∼ BINOM(1, 1− δ) if Tn−1 = 0.
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Clearly, the Dn form a Markov chain. Once Dn−1 is known, this procedure
specifies all the distributional information for obtaining Dn. It is not necessary
to know the value of Dn−2 or earlier values.

We can use graphical methods to see if this chain converges to a long-
run distribution. Assume that the chain does stabilize satisfactorily after an
appropriate burn-in period. Then it seems that limn→∞ P{Dn = 1} = λ1

can be approximated as the proportion of cases after burn-in for which Dn = 1.

Example 6.5. To illustrate this Gibbs sampler, we use the values η = 0.99,
θ = 0.97, γ = 0.4024, and δ = 0.9998 of Chapter 5. Because the latter two
values were computed from the former two for a population with π = 0.02,
we expect the result λ = (0.98, 0.02). The desired chain is simulated by the R
script shown below.

# set.seed(1234)

m = 80000

eta = .99; theta = .97 # T|D

gamma = .4024; delta = .9998 # D|T

d = numeric(m); d[1] = 0 # vector of D’s; start at 0

t = numeric (m) # vector of T’s

for (n in 2:m)

{

if (d[n-1]==1) t[n-1] = rbinom(1, 1, eta)

else t[n-1] = rbinom(1, 1, 1 - theta)

if (t[n-1]==1) d[n] = rbinom(1, 1, gamma)

else d[n] = rbinom(1, 1, 1 - delta)

}

runprop = cumsum(d)/1:m # running proportion infected

mean(d[(m/2+1):m]) # prevalence after burn-in

par(mfrow=c(1,2))

plot(runprop, type="l", ylim=c(0,.05),

xlab="Step", ylab="Running Proportion Infected")

acf(d, ylim=c(-.1,.4), xlim=c(1,10))

par(mfrow=c(1,1))

acf(d, plot=F)

> mean(d[(m/2 + 1):m]) # prevalence after burn-in

[1] 0.01915

> acf(d, plot=F)

Autocorrelations of series ’d’, by lag

0 1 2 3 4 5 6 7 8

1.000 0.395 0.156 0.055 0.017 0.006 -0.002 -0.009 -0.004

...
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The left panel of Figure 6.6 shows a plot of running proportions of preva-
lence, which seem to stabilize nicely about halfway through the m = 80 000
iterations programmed. We consider the first 40 000 iterations to constitute
the burn-in period. The average of the last 40 000 simulated values of D is
0.019, which is consistent with the anticipated value P{D = 1} = λ1 = 0.02.

Ten additional runs starting with D1 = 0 gave results between 0.0184 and
0.0218, averaging 0.0200. Ten runs starting with D1 = 1 gave results between
0.0180 and 0.0222, averaging 0.0199. This confirms that the starting value has
a negligible effect on the result.

Moreover, estimated first-order autocorrelations of the simulated Dn from
these additional runs averaged about 0.39, and, for each run, autocorrela-
tions of higher orders converge quickly to 0. That the autocorrelations are
mainly positive shows poorer mixing than in Example 6.2, but the quick con-
vergence of higher-order autocorrelations to 0 provides further evidence that
the Markov dependence wears off quickly. Autocorrelations for the particular
simulation shown above are shown in the right panel of Figure 6.6.

An intuitive argument may help you to understand how this Gibbs sampler
works. It is futile to try to simulate π = P{D = 1} = 0.02 from the conditional
distributions D|T alone. The probability γ = P{D = 1|T = 1} = 0.4024 is
much too big and the probability 1 − δ = P{D = 1|T = 0} = 0.0002 much
too small. However, as the simulation runs through the steps of our Markov
chain, the conditional distributions of T |D come into play to ensure that—
in the long run—the probabilities γ and 1 − δ are each used the appropriate
proportion of the time, so we get 0.02 as a long-run weighted average of 0.4024
and 0.0002. ♦

Now we show explicitly that the random variables Dn of the Gibbs sampler
are a 2-state Markov chain with the desired limiting distribution. We use the
conditional distributions T |D and D|T to find the transition matrix of this
chain. For i, j, k ∈ S = {0, 1} and n = 1, 2, . . . ,

P{Dn = j|Dn−1 = i} =
∑

k∈S

P{Tn−1 = k, Dn = j|Dn−1 = i}

=
∑

k∈S

P{Tn−1 = k|Dn−1 = i}P{Dn = j|Tn−1 = k}

=
∑

kinS

qikrkj ,

where the second equation uses P (A ∩ B|C) = P (A|C)P (B|A ∩ C) to-
gether with the Markov property, and the last equation defines qik and rkj .
The Markov property holds for this “half-step” because the earlier condition
Dn = i is irrelevant given the later information that Tn = k. When the sym-
bols η, θ, γ, and δ are substituted as appropriate, the equation above can be
written in matrix form as

P = QR =
[

θ 1− θ
1− η η

] [
δ 1− δ

1− γ γ

]
.
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Figure 6.6. Diagnostic graphics for the simple Gibbs sampler of Example 6.5.
The left panel shows relatively stable convergence of the simulation after a burn-in
of 40 000 iterations. The right panel shows high-order autocorrelations tending to 0.

Example 6.6. Returning to the specific example of Chapter 5, we have the
transition matrix

P =
[

0.97 0.03
0.01 0.00

] [
0.9998 0.0002
0.5976 0.4024

]
=

[
0.9877 0.0123
0.6016 0.3984

]

of the “almost absorbing” 2-state chain with α = 0.0123, β = 0.6016, and
λ = (0.98, 0.02) that we discussed in Example 6.4. If the characteristics of
our screening test had produced a chain in which the values 0 and 1 “mix”
better (that is, tend to have shorter runs), then our Gibbs sampler would
have converged more rapidly. (For a similar Gibbs sampler—with a less sat-
isfactory clinical situation but more agreeable convergence properties—see
Problem 6.13.) ♦

Especially in Bayesian estimation, Gibbs samplers are used to approximate
distributions that would be very difficult or impossible to derive analytically.
These more practical uses of Gibbs samplers rely upon Markov chains with
larger state spaces, which we consider in the next chapter. Also, before we look
at the most important applications Gibbs samplers, in Chapters 9 and 10, we
introduce some of the basic ideas of Bayesian estimation in Chapter 8.
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6.5 Problems

Problems for Section 6.1 (Markov Property)

6.1 In each part below, consider the three Markov chains specified as fol-
lows: (i) α = 0.3, β = 0.7; (ii) α = 0.15, β = 0.35; and (iii) α = 0.03, β = 0.07.

a) Find P{X2 = 1|X1 = 1} and P{Xn = 0|Xn−1 = 0}, for n ≥ 2.
b) Use the given values of α and β and means of geometric distributions to

find the average cycle length for each chain.
c) For each chain, modify the program of Example 6.1 to find the long-run

fraction of steps in state 1.
d) For each chain, make and interpret plots similar to Figures 6.3 (where the

number of steps is chosen to illustrate the behavior clearly), 6.4, and 6.5.
e) In summary, what do these three chains have in common, and in what

respects are they most remarkably different. Is any one of these chains an
independent process, and how do you know?

Answers for one of the chains: (a) 0.85 and 0.65, (b) 9.52, (c) 0.3.

6.2 There is more information in the joint distribution of two random vari-
ables than can be discerned by looking only at their marginal distributions.
Consider two random variables X1 and X2, each distributed as BINOM(1, π),
where 0 < π < 1.

a) In general, show that 0 ≤ Q11 = P{X1 = 1, X2 = 1} ≤ π. In particular,
evaluate Q11 in three cases: where X1 and X2 are independent, where
X2 = X1, and where X2 = 1−X1.

b) For each case in part (a), evaluate Q00 = P{X1 = 0, X2 = 0}.
c) If P{X2 = 1|X1 = 0} = α and P{X2 = 0|X1 = 1} = β, then express

π, Q00, and Q11 in terms of α and β.
d) In part (c), find the correlation ρ = Cov(X1, X2) / SD(X1)SD(X2), recall-

ing that Cov(X1, X2) = E(X1X2)− E(X1)E(X2).

Hints and partial answers: P (A ∩ B) ≤ P (A). Make two-way tables of joint

distributions, showing marginal totals. π = α/(α + β). E(X1X2) = P{X1X2 = 1}.
ρ = 1− α− β. Independence (hence ρ = 0) requires α + β = 1.

6.3 Geometric distributions. Consider a coin with 0 < P (Heads) = π < 1.
A geometric random variable X can be used to model the number of indepen-
dent tosses required until the first Head is seen.

a) Show that the probability function P{X = x} = p(x) = (1− π)x−1π, for
x = 1, 2, . . . .

b) Show that the geometric series p(x) sums to 1, so that one is sure to see
a Head eventually.

c) Show that the moment generating function of X is m(t) = E(etX) =
πet/[1 − (1 − π)et], and hence that E(X) = m′(0) = dm(t)

dt |t=0 = 1/π.
(You may assume that the limits involved in differentiation and summing
an infinite series can be interchanged as required.)
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Problems for Section 6.2 (Transition Matrices)

6.4 Suppose the weather for a day is either Dry (0) or Rainy (1) according
to a homogeneous 2-state Markov chain with α = 0.1 and β = 0.5. Today is
Monday (n = 1) and the weather is Dry.

a) What is the probability that both tomorrow and Wednesday will be Dry?
b) What is the probability that it will be Dry on Wednesday?
c) Use equation (6.5) to find the probability that it will be Dry two weeks

from Wednesday (n = 17).
d) Modify the R code of Example 6.2 to find the probability that it will be

Dry two weeks from Wednesday.
e) Over the long run, what will be the proportion of Rainy days? Modify

the R code of Example 6.1 to simulate the chain and find an approximate
answer.

f) What is the average length of runs of Rainy days?
g) How do the answers above change if α = 0.15 and β = 0.75?

6.5 Several processes X1, X2, . . . are described below. For each of them
evaluate (i) P{X3 = 0|X2 = 1}, (ii) P{X13 = 0|X12 = 1, X11 = 0},
(iii) P{X13 = 0|X12 = 1, X11 = 1}, and (iv) P{X13 = 0|X11 = 0}. Also,
(v) say whether the process is a 2-state homogeneous Markov chain. If not,
show how it fails to satisfy the Markov property. If so, give its 1-stage transi-
tion matrix P.

a) Each Xn is determined by an independent toss of a coin, taking the value 0
if the coin shows Tails and 1 if it shows Heads, with 0 < P (Heads) = π < 1.

b) The value of X1 is determined by whether a toss of a fair coin is Tails (0)
or Heads (1), and X2 is determined similarly by a second independent
toss of the coin. For n > 2, Xn = X1 for odd n, and Xn = X2 for even n.

c) The value of X1 is 0 or 1, according to whether the roll of a fair die gives
a Six (1) or some other value (0). For each step n > 1, if a roll of the die
shows Six on the nth roll, then Xn 6= Xn−1; otherwise, Xn = Xn−1.

d) Start with X1 = 0. For n > 1, a fair die is rolled. If the maximum value
shown on the die at any of the steps 2, . . . , n is smaller than 6, then
Xn = 0; otherwise, Xn = 1.

e) At each step n > 1, a fair coin is tossed, and Un takes the value −1 if the
coin shows Tails and 1 if it shows Heads. Starting with V1 = 0, the value
of Vn for n > 1 is determined by

Vn = Vn−1 + Un (mod 4).

The process Vn is sometimes called a “random walk” on the points 0, 1, 2,
and 3, arranged around a circle (with 0 adjacent to 3). Finally, Xn = 0,
if Vn = 0; otherwise Xn = 1.
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Hints and partial answers: (a) Independence is consistent with the Markov property.

(b) Steps 1 and 2 are independent. Show that the values at steps 1 and 2 determine

the value at step 3 but the value at step 2 alone does not. (c) P = 1
6

[
5
1
1
5

]
. (d) Markov

chain. (e) (ii) > 0, (iii) = 0.

6.6 To monitor the flow of traffic exiting a busy freeway into an industrial
area, the highway department has a TV camera aimed at traffic on a one-
lane exit ramp. Each vehicle that passes in sequence can be classified as Light
(for example, an automobile, van, or pickup truck) or Heavy (a heavy truck).
Suppose data indicate that a Light vehicle is followed by another Light vehi-
cle 70% of the time and that a Heavy vehicle is followed by a Heavy one 5%
of the time.

a) What assumptions are necessary for the Heavy-Light process to be a ho-
mogenous 2-state Markov chain? Do these assumptions seem realistic?
(One reason the process may not be independent is a traffic law that for-
bids Heavy trucks from following one another within a certain distance
on the freeway. The resulting tendency towards some sort of “spacing”
between Heavy trucks may carry over to exit ramps.)

b) If I see a Heavy vehicle in the monitor now, what is the probability that
the second vehicle after it will also be Heavy? The fourth vehicle after it?

c) If I see a Light vehicle in the monitor now, what is the probability that
the second vehicle after it will also be Light? The fourth vehicle after it?

d) In the long run, what proportion of the vehicles on this ramp do you
suppose is Heavy?

e) How might an observer of this Markov process readily notice that it differs
from a purely independent process with about 24% Heavy vehicles.

f) In practice, one would estimate the probability that a Heavy vehicle is
followed by another Heavy one by taking data. If about 1/4 of the vehicles
are Heavy, about how many Heavy vehicles (paired with the vehicles that
follow immediately behind) would you need to observe in order to estimate
this probability accurately enough to distinguish meaningfully between a
purely independent process and a Markov process with dependence?

6.7 For a rigorous proof of equation (6.3), follow these steps:

a) Show that p01(2) is a fraction with numerator

P{X1 = 0, X3 = 1} = P{X1 = 0, X2 = 0, X3 = 1}
+ P{X1 = 0, X2 = 1, X3 = 1}.

b) Use the relationship P (A ∩ B ∩ C) = P (A)P (B|A)P (C|A ∩ B) and the
Markov property to show that the first term in the numerator can be
expressed as p0p00p01, where p0 = P{X1 = 0}.

c) Complete the proof.
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6.8 To verify equation (6.5) do the matrix multiplication and algebra nec-
essary to verify each of the four elements of P2.

6.9 Prove equation (6.6), by mathematical induction as follows:

Initial step: Verify that the equation is correct for r = 1. That is, let r = 1
in (6.6) and verify that the result is P.

Induction step: Do the matrix multiplication P ·Pr, where Pr is given by the
right-hand side of (6.6). Then simplify the result to show that the product
Pr+1 agrees with the right-hand side of (6.6) when r is replaced by r + 1.

Problems for Section 6.3 (Limiting Behavior)

6.10 Consider the 2-state Markov chain with α = β = 0.9999. This is
almost a “flip-flop” chain. Find λ1, the cycle length, and P132. Simulate X̄100

and X̄101 several times. Also, look at the autocorrelations of Xn in several
simulation runs. Comment on your findings.
Note: The autocorrelations for small lags have absolute values near 1 and they

alternate in sign; for larger lags, the trend towards 0 is extremely slow.

6.11 A single strand of a DNA molecule is a sequence of nucleotides. There
are four possible nucleotides in each position (step), one of which is cytosine
(C). In a particular long strand, it has been observed that C appears in 34.1%
of the positions. Also, in 36.8% of the cases where C appears in one position
along the strand, it also appears in the next position.

a) What is the probability that a randomly chosen pair of adjacent nu-
cleotides is CC (that has cytosine in both locations).

b) If a position along the strand is not C, then what is the probability that
the next position is C?

c) If a position n along the strand is C, what is the probability that position
n + 2 is also C? How about position n + 4?

d) Answer parts (a)–(c) if C appeared independently in any one position with
probability 0.341.

Hint: Find the transition matrix of a chain consistent with the information given.

6.12 Consider a 2-state Markov chain with P = [ 1−α
β

α
1−β ]. The elements

of the row vector σ = (σ1, σ2) give a steady-state distribution of this chain
if σP = σ and σ1 + σ2 = 1.

a) If λ is the limiting distribution of this chain, show that λ is a steady-state
distribution.

b) If |1− α− β| < 1, show that the solution of the vector equation λP = λ

is the long-run distribution λ = [ β
α+β

, α
α+β

].
c) It is possible for a chain that does not have a long-run distribution to have

a steady-state distribution. What is the steady-state distribution of the
“flip-flop” chain? What are the steady-state distributions of the “never
move” chain?
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Problems for Section 6.4 (Simple Gibbs Sampler)

6.13 Suppose a screening test for a particular disease has sensitivity η = 0.8
and specificity θ = 0.7. Also suppose, for a particular population that is
especially at risk for this disease, PV Positive γ = 0.4 and PV Negative
δ = 0.9.

a) Use the analytic method of Example 6.6 to compute π.
b) As in Example 6.5, use a Gibbs sampler to approximate the preva-

lence π. As seems appropriate, adjust the vertical scale of the plot, the run
length m, and the burn-in period. Report any adjustments you made and
the reasons for your choices. Make several runs of the modified simulation,
and compare your results with the value obtained in part (a). Compare
the first-order autocorrelation with that of the example.

Answer: π ≈ 0.22; your answer to part (a) should show four places.

6.14 Mary and John carry out an iterative process involving two urns and
two dice as follows:

(i) Mary has two urns: Urn 0 contains 2 black balls and 5 red balls; Urn 1
contains 6 black balls and 1 red ball. At step 1, Mary chooses one ball at
random from Urn 1 (thus X1 = 1). She reports its color to John and returns
it to Urn 1.

(ii) John has two fair dice, one red and one black. The red die has three
faces numbered 0 and three faces numbered 1; the black die has one face
numbered 0 and five faces numbered 1. John rolls the die that corresponds to
the color Mary reported to him. In turn, he reports the result X2 to Mary. At
step 2, Mary chooses the urn numbered X2 (0 or 1).

(iii) This process is iterated to give values of X3, X4, . . . .

a) Explain why the X-process is a Markov chain, and find its transition
matrix.

b) Use an algebraic method to find the percentage of steps on which Mary
samples from Urn 1.

c) Modify the program of Example 6.5 to approximate the result in part (b)
by simulation.

Hint: Drawing from an urn and rolling a die are each “half” a step; account for both

possible paths to each full-step transition: P = 1
7 [ 2

6
5
1] · 1

6 [ 1
3

5
3 ].
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Examples of Markov Chains with Larger State
Spaces

In Chapter 6, we took advantage of the simplicity of 2-state chains to intro-
duce fundamental ideas of Markov dependence and long-run behavior using
only elementary mathematics. Markov chains taking more than two values
are needed in many simulations of practical importance. These chains with
larger state spaces can behave in very intricate ways, and a rigorous math-
ematical treatment of them is beyond the scope of this book. Our approach
in this chapter is to provide examples that illustrate some of the important
behaviors of more general Markov chains.

We give examples of Markov chains that have K-states, countably many
states, and a continuum of states. Among our examples are chains that have
served as useful models for important scientific problems. We focus mainly on
their long-run behavior.

7.1 Properties of K -State Chains

First, we consider homogeneous Markov chains with a finite number K of
states. Usually, we denote the state space as S = {1, 2, . . . ,K}. The most
basic definitions and results are much the same as for a 2-state chain. The
Markov property is

pij = P{Xn = j|Xn−1 = i,Xn−2 = in−2, . . . , X1 = i1}
= P{Xn = j|Xn−1 = i}, (7.1)

for i, in−2, . . . , i1 and j ∈ S, and for n = 1, 2, . . . .
Here again, we consider only homogeneous chains. That is, the pij in (7.1)

do not depend on n. Accordingly, the 1-step transition probabilities can be
arranged in a K × K matrix P, where the ith row specifies the conditional
distribution of Xn+1|Xn = i.

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 159
Use R!, DOI 10.1007/978-0-387-68765-0_7, © Springer Science+Business Media, LLC 2010
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Also, the Chapman-Kolmogorov equations for pij(2) take a familiar form,

pij(2) =
∑

k∈S

pikpkj , (7.2)

for i, j ∈ S. These equations imply that r-step transition probabilities pij(r)
are the elements of Pr.

As in Chapter 6, we want to know whether a Markov chain has a long-run
distribution. For a K-state chain, this means that limr→∞Pr = Λ, where
the limiting matrix Λ has K identical rows λ = [λ1, . . . , λK ]. In terms of
individual states, limr→∞ P{Xr = j|X1 = i} = λj , for any i, j ∈ S.

When there are more than two states, the paths of movement from one
state to another can be complex, and formulating a condition for convergence
to a long-run distribution requires a more general approach than we used in
Chapter 6. Specifically, a long-run distribution is guaranteed if we can find
a number N for which PN has all positive elements, written PN > 0. If
this condition holds, then it follows directly from the Chapman-Kolmogorov
equations that Pr > 0 for all r ≥ N .

We call such a chain ergodic, and we use this terminology for its transition
matrix P also. (Some authors use the term regular instead of ergodic.) For
any two of its states i and j, an ergodic chain can move from i to j and back
to i in exactly 2N steps or any larger number of steps.

For 2-state chains, the never-move, flip-flop, and absorbing cases are non-
ergodic. If a 2-state chain is ergodic, then P2 has all positive elements. Prob-
lem 7.1 provides some examples of ergodic and nonergodic 4-state chains.

Sketch of proof. We do not give a formal proof that limn→∞Pr = Λ for an
ergodic chain, but it is not difficult to show a key step in the proof that the
rows of Pr become more and more nearly identical as r increases. Assume
that PM > 0 and PN > 0. Then consider the jth column of PM+N. The
element

pij(M + N) =
∑

k∈S

pik(M)pkj(N)

is a weighted average of the elements of the jth column of PN , where the
weights are the elements of the ith row of PM and sum to 1. A weighted
average, with all positive weights, of diverse quantities has a value strictly
between the extremes of the quantities averaged. So if the elements of the jth
column of PN differ, then the elements of the jth column of PM+N cannot
differ by as much:

min
i′∈S

pi′j(N) < pij(N + M) < max
i′∈S

pi′j(N),

for any i ∈ S. A more technical version of this argument is required to show
that all rows converge to the same vector λ—and at a geometric rate. (See
[Goo88] for a very clear exposition of the averaging lemma just described and
its use in proving the ergodic theorem.)
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7.2 Computing Long-Run Distributions

In practice, the long-run distribution λ of a K-state ergodic Markov chain
can be derived or approximated in a variety of ways described briefly below.
Most of our examples and problems use the first two of these methods.

Powers of the transition matrix. Compute Pr for large enough r that all rows
are approximately the same—that is, equal to λ. This method works well
for many K-state ergodic chains (as in Example 7.1 and Problem 7.2).
However, even by today’s standards, it may require excessive computation
if a chain converges very slowly or if the number of states K is very large.

Simulation. For a 2-state chain, we have seen that λ1 can be approximated as
the proportion X̄m of visits to state 1 in a large number m of simulated
steps of a chain. For a K-state ergodic chain, the empirical distribution
of Xn, for n = 1, 2, . . . ,m, approximates the limiting distribution. Often
we make a histogram of the Xn to visualize the approximate shape of the
long-run distribution. However, to use this method we must be sure that
the chain is really ergodic (see Example 7.2).

Steady-state distribution. A distribution vector σ that satisfies the matrix
equation σP = σ is called a steady-state distribution of the chain
because this distribution does not change from one step to the next.
A K-state ergodic chain has a unique steady-state distribution that is
the same as its long-run distribution. We illustrate this method for a par-
ticularly simple special case in Problem 7.5. Here again, it is important
to know that the chain is ergodic; Example 7.2 shows a nonergodic chain
with a more than one steady-state distribution.

Explicit algebraic solution. In Chapter 6, we showed that a 2-state chain with
|1 − α − β| < 1 has limr→∞Pr = Λ, where the two identical rows of Λ
are λ = [λ0, λ1] = (α + β)−1[β, α]. For an ergodic K-state chain, the
long-run distribution vector λ can be found by the methods of linear
algebra. Specifically, λ is the row eigenvector of P corresponding to the
eigenvalue 1, multiplied by a constant so its entries sum to 1. (For an
illustration, see Problem 7.10; for the theory, see [CM65].)

Means of geometric distributions. In Chapter 6, we show that the mean cycle
length of a 2-state chain (with α, β > 0) is the sum 1/α + 1/β of the
means of two geometric distributions, from which we can find the long-run
distribution. This method may be intractable in a K-state chain (K > 2)
if there are many possible paths leading from one state to another. (The
chain in Problem 7.5 is simple enough for this method to work).

In the following example, we use the first two of these methods to find the
long-run distribution of a 4-state ergodic chain.

Example 7.1. In most regions of the human genome, the dinucleotide cytosine-
guanine (often denoted CpG for “C preceding G”) along a DNA strand is
susceptible to mutation to thymine-guanine (TpG). In certain regions, called
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Figure 7.1. CpG islands process. The long-run distribution of this chain is ap-
proximated by the proportions of steps in which the four states are occupied in a
simulation run with m = 100 000. See Example 7.1 for a description of this chain.

CpG islands, this kind of mutation is naturally somewhat suppressed. In the
mutation-prone regions, CpG dinucleotides are far less common than would be
anticipated from the independent occurrence of C and G. In the CpG islands,
one sees more C, G, and CpG than in the rest of the genome.

Experience has shown that the progression of nucleotides along a strand
of DNA is well-modeled as a 4-state Markov chain. Above we have mentioned
nucleotides C, G, and T, a fourth nucleotide occurring in DNA is adenine (A).
We label the states as 1 = A, 2 = C, 3 = G, and 4 = T. The probabilities
in the transition matrix below were estimated from 48 supposed CpG islands
totaling about 60 000 nucleotides in length (see [DEKM98]):

P =




0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182


 .

To three-place accuracy, each row of P5 is λ = (0.155, 0.341, 0.350, 0.154).
Before doing this computation, we reduced each entry in the second row of
the transition matrix by 0.00025 so that the second row adds exactly to 1;
otherwise the computed powers of the matrix are not stable.

The following R program simulates m = 100 000 steps of this chain. From
Chapter 1, recall useful arguments of the sample function. Here these are the
states of the chain from which we sample, the number of values generated (one
on each pass through the loop), and prob to specify the respective probabilities
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Figure 7.2. CpG islands process. The trace of the first 50 simulated steps shows that
the process moves readily among its four states (1 = A, 2 = C, 3 = G, and 4 = T).
This suggests that the proportions in Figure 7.1 accurately approximate the long-run
distribution. Four CpG transitions are emphasized with heavy line segments.

of states. The expression as.factor(x) treats elements of the vector x as
categories to be tallied, and division by m converts counts to proportions.

#Preliminaries

# set.seed(1237)

m = 100000

x = numeric(m); x[1] = 1

#Simulation

for (i in 2:m)

{

if (x[i-1] == 1)

x[i] = sample(1:4, 1, prob=c(.180,.274,.426,.120))

if (x[i-1] == 2)

x[i] = sample(1:4, 1, prob=c(.171,.368,.274,.188))

if (x[i-1] == 3)

x[i] = sample(1:4, 1, prob=c(.161,.339,.375,.125))

if (x[i-1] == 4)

x[i] = sample(1:4, 1, prob=c(.079,.355,.384,.182))

}

#Results

summary(as.factor(x))/m # Table of proportions

mean(x[1:(m-1)]==2 & x[2:m]==3) # Est. Proportion of CpG

hist(x, breaks=0:4+.5, prob=T, xlab="State", ylab="Proportion")
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> summary(as.factor(x))/m # Table of proportions

1 2 3 4

0.15400 0.33826 0.35252 0.15522

> mean(x[1:(m-1)]==2 & x[2:m]==3) # Est. Proportion of CpG

[1] 0.09348093

To two-place accuracy, the proportion of steps that the simulated process
spends in each of the four states agrees well with the long-run distribution λ.
A bar chart of the simulated results is shown in Figure 7.1. We started
the chain at X1 = 1. However, Figure 7.2, made in R with plot(x[1:50],
type="o", pch=19), shows that the chain moves readily enough among states
that the starting point makes no practical difference in a run of m = 100 000.

In the sample of CpG islands used here, the proportion of CpGs among
about 60 000 (overlapping) dinucleotides must have been about

P{Xn = 2, Xn+1 = 3} = P{Xn = 2}P{Xn+1 = 3|Xn = 2}
≈ λ2p23 = (0.341)(0.274) = 0.093 = 9.3%,

based on a chain at steady state. The proportion of CpGs in our simulated
sample of 99 999 dinucleotides is 0.09348 ≈ 9.3%. In contrast, an independent
process with about 34% Cs and about 35% Gs would give about 12% CpGs.
In Problem 7.2 we explore data from a part of the genome where CpGs are
even less likely because of their tendency to mutate into TpGs. ♦

For population geneticists, the following example gives a clue how even
harmful mutations can come to predominate in a small inbred population.
For us, it also illustrates the difficulty in trying to draw conclusions about the
behavior of a nonergodic chain via simulation.

Example 7.2. Brother-Sister Mating. Suppose that two individuals are mated
(generation or step n = 1). From their offspring (step n = 2), two individuals
are selected and mated. Then their offspring are mated (step n = 3), and so
on. This scheme is called brother-sister mating.

If a gene has two alleles A and a, then three genotypes AA, Aa, and aa are
possible. The pairs to be mated at each step will exhibit one of six genotype
crosses, which we take to be the states of a Markov chain: 1 = AA × AA,
2 = AA×Aa, 3 = Aa×Aa, 4 = Aa× aa, 5 = AA× aa, and 6 = aa× aa.

The elements of P are found by considering the probabilities of the types
of offspring that can result from each cross (state). For example, Cross 1 can
yield only offspring of genotype AA, so that the only available cross of its
offspring is again Cross 1. Similarly, Cross 5 can lead only to Cross 3 in the
next generation because each offspring necessarily inherits A from one parent
and a from the other. Two equally likely genotypes, AA and Aa, result from
Cross 2, yielding the transition probabilities in the second row of P below.
(You should verify the remaining transition probabilities; see Problem 7.3.)
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P =
1
16




16 0 0 0 0 0
4 8 4 0 0 0
1 4 4 4 2 1
0 0 4 8 0 4
0 0 16 0 0 0
0 0 0 0 0 16




.

This transition matrix is not ergodic because the “homozygotic” states 1
and 6 are absorbing states. That is, the chain will eventually move to one of
these two states and stay there forever. The output of R computations below
shows P16 (rounded to 3 places)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.000 0.000 0.000 0.000 0.000 0.000

[2,] 0.735 0.009 0.011 0.009 0.002 0.235

[3,] 0.481 0.011 0.013 0.011 0.002 0.481

[4,] 0.235 0.009 0.011 0.009 0.002 0.735

[5,] 0.477 0.013 0.017 0.013 0.003 0.477

[6,] 0.000 0.000 0.000 0.000 0.000 1.000

and P128 (rounded to 15 places).

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00

[2,] 0.75 4.33e-013 5.35e-013 4.33e-013 8.30e-014 0.25

[3,] 0.50 5.35e-013 6.62e-013 5.35e-013 1.02e-013 0.50

[4,] 0.25 4.33e-013 5.35e-013 4.33e-013 8.30e-014 0.75

[5,] 0.50 6.62e-013 8.18e-013 6.62e-013 1.26e-013 0.50

[6,] 0.00 0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.00

We see that 0s persist in the first and last rows of P128 because escape from
states 1 and 6 is impossible. Also, in rows 2 through 5 all entries except those
in the first and last columns are very nearly 0. No matter what the starting
state, absorption into either state 1 or 6 by generation 16 is very likely.

Often it is of interest to find the probability fij of absorption into state j
starting from state i. Look at row 3 of P128. When the chain starts in state 3,
the sibling-mating chain is equally likely to get absorbed into state 1 or 6:
p31(128) ≈ f31 = 0.5 and p36(128) ≈ f36 = 0.5. But when the chain starts
in state 4, the absorbing states have different probabilities: f41 = 0.25 and
f46 = 0.75. It is possible to find analytic solutions for absorption probabilities
and also for mean times until absorption. (See [Fel57], [CM65], or [Goo88].)

As for most absorbing chains, steady-state distributions are uninformative
for brother-sister mating. Any vector of the form λ = (p, 0, 0, 0, 0, q), where
0 ≤ p, q ≤ 1 and p + q = 1, satisfies the matrix equation λP = λ.

We simulated this process with an R script similar to that of Example 7.1.
We changed the Results section to plot the trace of each run and to give the
numerical output below concerning the step before absorption, denoted sba.
Specifically, we started one run at X1 = 3, and absorption occurred with
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X6 = 6, following X5 = 4. Figure 7.3 shows the trace of this run superimposed
on another trace showing absorption at X9 = 1. (Also see Problem 7.4.)

> plot(x, type="b", ylim=c(1,6))

> sba = length(x[(x > 1) & (x < 6)]); sba

[1] 5

> x[sba]

[1] 4

Notes: Brother-sister mating has been used to produce homozygotic plant and an-

imal populations of commercial and research interest. This mating scheme has a

long history as a topic in genetics and probability. See [Fel57] for mathematical

discussions beyond the scope of this book and historical references. ♦
In general, when a chain has one absorbing state, the main question of

interest is how long we expect to wait before absorption. Also, when a chain
has more than one absorbing state, we may want to know the probabilities of
getting trapped in the various absorbing states. The answers to these questions
typically depend on the starting state. In neither case will a single simulation
(or even a few) give meaningful answers to these questions. However, algebraic
methods are often available (see, for example, [CM65]).

A careless observer who believes such a chain to be ergodic may mistake
absorption (or near absorption) in a simulation run for convergence to a long-
run distribution—especially if absorption happens slowly through a long path
of intercommunicating states. Furthermore, chains with many states may have
“absorbing clusters” of states. So, after absorption, the process can continue
to “mix” within a subset of S but not within the whole state space S. Making
several runs with careful attention to diagnostic methods, especially graphical
ones, can provide some protection against mistaking absorption for ergodicity.

7.3 Countably Infinite State Spaces

Many Markov chains of practical interest have infinitely many states. Such
chains can exhibit behaviors not seen in chains with finite state spaces. In
this section and the next, we look at a few examples.

Consider a chain with a countably infinite state space: for example,
S = {0, 1, 2, . . . } or S = { . . . ,−2,−1, 0, 1, 2, . . . } = {0,±1,±2, . . .}. Here
again, the Markov property is specified by equation (7.1). It may or may
not be convenient to show transition probabilities pij , i, j ∈ S in the form of a
matrix with infinite dimensions, but the Chapman-Kolmogorov equations are
the same as in (7.2), where the sum is now an infinite series.

An important difference between finite and infinite chains is illustrated
by the example below. Even if an infinite chain can move freely among all
its states in the sense that pij(n) > 0 for all n exceeding some N (which
may depend on i and j), this does not guarantee the existence of a long-run
distribution.
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Figure 7.3. Brother-sister mating. Two simulations of the chain of Example 7.2
are shown, both starting at state 3 = Aa×Aa. One is absorbed in state 6 = aa×aa
at generation 6, the other in state 1 = AA×AA at generation 9.

Example 7.3. For some purposes, the diffusion of molecules in a gas can be
modeled approximately as a random walk on the integers of the line. Here
we focus on a single molecule; it moves only in one dimension (along a line),
and movements are all of unit size. Specifically, consider independent random
displacements Dn that take the values 1,−1, and 0 with probabilities α, β,
and γ, respectively (with α + β + γ = 1 and α, β, γ > 0). Starting at X1 = 0,
the location of a molecule at stages n = 2, 3, . . . is Xn = Xn−1 + Dn. Thus
pi,i+1 = α, pi,i−1 = β, and pii = γ, for i− 1, i, i + 1 ∈ S = {0,±1,±2, . . .}.

What is the distribution of Xn as n increases? It is helpful to look at
means and variances. Because E(Dn) = µD = (−1)β + (0)γ + (1)α = α − β,
E(D2

n) = α + β, and V(Dn) = σ2
D = α + β − (α− β)2 > 0, we have

E(Xn) = E(D2) + E(D3) + · · ·+ E(Dn) = (n− 1)µD,

V(Xn) = V(D2) + V(D3) + · · ·+ V(Dn) = (n− 1)σ2
D.

Suppose α > β so that the process has a drift to the right (moves more
readily to the right than to the left). Then, as n increases, the mean and the
variance both become arbitrarily large. We say that the probability “escapes
to infinity,” and there is no long-run distribution. (In a symmetrical case where
α = β > 0, we have E(Xn) ≡ 0, but V(Xn) still becomes infinite.)

The behavior of such a process Xn can be illustrated by simulation. The
R script below simulates m = 1000 steps of a random walk with a strong
positive drift: α = 1/2, β = 1/4, and γ = 1/4. Because of the simple additive
structure of the chain, we can use the R function cumsum to write vectorized
code for this simulation.
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Figure 7.4. Random walk on the integers. The process of Example 7.3 has a drift
towards larger-numbered states. The simulation run illustrated here stays unusually
close to the mean function of the process, represented by the straight line.

# set.seed(1237)

m = 1000

d = c(0, sample(c(-1,0,1), m-1, replace=T, c(1/4,1/4,1/2)))

x = cumsum(d)

plot(x, pch=".", xlab="Step", ylab="State")

lines(c(0,m), c(0,m/4), type="l")

Figure 7.4 shows the drift towards higher-numbered states. The mean func-
tion is µ(n) = E(Xn) = (n − 1)/4, so the theoretical slope of the random
path is 1/4. The standard deviation of Xn increases with n. For example,
SD(X100) =

√
99(3/4− 1/16) = 8.25 is smaller than SD(X1000) = 26.21.

Note: For such random walks, a curious technical distinction can be proved.
Suppose the process has a tendency to drift either to the left or to the
right (α 6= β). Of course, the molecule may happen to return to its starting
place 0. For example, the probability that it is in state 0 again at step 3
is 2αβ + γ2. However, because of the drift, the molecule can visit 0 only
finitely many times. One says it is “absorbed” towards ±∞, depending on
the direction of the drift. A paradox arises in the case where α = β precisely
(a condition seldom achieved in practice). Then the molecule is “sure” to
return to 0 infinitely often, even though the expected period between returns
is infinite.

In contrast, a molecule of a more realistic 3-dimensional diffusion model

can visit its starting place only a finite number of times even if movement

is symmetrical—with probability 1/6 at each step of moving one unit left,

right, up, down, forward, or backward. (For more precise formulations and

proofs, see [Fel57]). ♦
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Figure 7.5. Random walk with normal displacements. This simulation of the
process of Example 7.4 illustrates its slight positive drift and relatively large
volatility.

For examples of convergent Markov chains with countably infinite state spaces,
see Problems 7.11 and 7.12. Intuitively, the idea is that a Markov chain will
have a long-run distribution if its extreme states are so unlikely that the
particle cannot “slip away” to infinity in either direction.

7.4 Continuous State Spaces

Markov chains with continuous state spaces are especially important in
computational methods such as Gibbs sampling. For a chain of continuous
random variables, we need to take a different mathematical approach than we
have taken for discrete random variables.

• For a chain of discrete random variables Xn, the transitional behavior
is specified in terms of probabilities pij = P{Xn = j|Xn−1 = i}. We
have often displayed the pij as a matrix, of which the jth row gives the
conditional distribution of Xn|Xn−1 = i.

• For a chain of continuous random variables Xn, we cannot show the tran-
sitional behavior in terms of a matrix. Here our approach is to show how
the observed value xn−1 = s ∈ S of the process at step n − 1 determines
the conditional density function f(t|s) of Xn|Xn−1 = s. Then the 1-step
probability of a transition from the point s to the interval T = (tL, tU ),
with states tL < tU , is expressed as

P{tL < Xn < tU |Xn−1 = s} =
∫ tU

tL

f(t|s) dt.
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Figure 7.6. Random walk on a circle of unit circumference. This histogram sum-
marizes the states occupied in 50 000 iterations of the simulation of Example 7.5.
The long-run distribution of this Markov chain is UNIF(0, 1).

Example 7.4. Consider a random walk with S = (−∞,∞), the initial value
X1 = 0, and Xn = Xn−1 + Dn, for n = 2, 3, . . . , and where the independent
displacements Dn are distributed as NORM(0.02, 1). This process is a Markov
chain because the distribution of Xn depends only on the outcome at step n−1.
Specifically, the conditional distribution of Xn|Xn−1 = s is NORM(s+0.02, 1).

This process has a slight positive drift because E(Dn) = µD = 0.02. Both
E(Xn) = (n−1)µD →∞ and V(Xn) = (n−1)σ2

D = n−1 →∞ are evaluated
as in Example 7.3. Thus there is no long-run distribution. Figure 7.5 shows a
simulation of this process based on the R script below.

# set.seed(1237)

m = 1000

d = c(0, rnorm(m-1,0.02,1)); x = cumsum(d)

plot(x, type="l", xlab="Step", ylab="State")

lines(c(0,m), c(0, 0.02*m), type="l")

Such a process, with appropriate choices of µD > 0 and σD > 0, might be
used as a short-term model of a stock index for which one supposes there is a
drift towards higher prices but with considerable random volatility from step
to step. A step may be taken as any specified length of time: a trading day,
a week, and so on. While the process will eventually increase without bound,
there may be very large fluctuations in value along the way. ♦

If the continuous state space S of a Markov chain is an interval of finite
length, then the distribution of Xn cannot “escape” to infinity in the long
run. Our next example illustrates this.
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Figure 7.7. Random walk on a circle of unit circumference. This plot, based on the
first 1000 iterations of the simulation of Example 7.5, is best imagined as a cylinder
(with the top and bottom edges adjacent).

Example 7.5. Consider a random walk on the circumference (of length 1) of
a circle. That is, the state space is S = [0, 1). Then define X1 = 0 and
Xn = Xn−1 + Dn (mod 1), for n = 2, 3, . . . , where the Dn are independently
distributed as UNIF(−0.1, 0.1). The following R script can be used to simulate
this random walk.

# set.seed(1212)

m = 50000

d = c(0, runif(m-1, -.1, .1))

x = cumsum(d) %% 1

hist(x, breaks=10, prob=T, xlab="State", ylab="Proportion")

As suggested by the histogram of Figure 7.6, the long-run distribu-
tion of this chain is UNIF(0, 1). Figure 7.7, made with the additional code
plot(x[1:1000], pch=".", xlab="Step", ylab="State"), shows the first
1000 steps of the simulation. It is best imagined as being bent around to form
a horizontal cylinder. Notice that a few “paths” of outcomes run off the plot
at the top but continue at the bottom. (Also see Problem 7.13.) ♦

A state space of finite length does not ensure useful long-run behavior.
The following example shows a chain on the unit interval that mixes badly
and converges slowly to a bimodal long-run distribution.

Example 7.6. The beta family of distributions BETA(α, β) has density func-
tions of the form f(x) ∝ xα−1(1− x)β−1, for 0 < x < 1, and both parameters
positive. The symbol ∝ (read proportional to) means that the constant neces-
sary to make the density function integrate to 1 is not written. [This constant,
not explicitly involved in our discussion, is Γ (α + β)/(Γ (α)Γ (β)).]
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Figure 7.8. Four beta density functions, illustrating some of the many different
shapes of the densities in the beta family.

Because beta random variables take values in (0, 1), this family of distrib-
utions is often used to model random proportions. Figure 7.8 shows examples
of four beta densities. Other choices of parameters give density functions with
a wide variety of shapes.

Roughly speaking, the parameter α controls the shape of the beta density
curve y = f(x) near 0. If α is near 0, then the density is very high for x near 0;
if α > 2, then the density is low for x near 0. Similarly, the density near 1 is
very high or low according as β is near 0 or larger than 2.

In this example, each of the random variables Xn, n = 2, 3, . . . , of a Markov
chain has a beta distribution where the parameters α and β are determined by
the observed value of Xn−1. Although this is an artificial example, contrived to
show a particular kind of bad long-run behavior, many useful Markov chains
consist of sequences of beta random variables.

If we take Xn ∼ BETA(0.001 + 3Xn−1, 3.001 − 3Xn−1), for n = 2, 3, . . . ,
then a value of Xn−1 near 0 will yield values of α and β in the distribution
of Xn that tend to produce values of Xn near 0 and away from 1. Similarly, if
the value of Xn−1 is near 1, then the value of Xn will also tend to be near 1.
That is, Xn−1 and Xn will be highly correlated. The following R program
simulates this process.
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Figure 7.9. A Markov chain with poor mixing. An accurate assessment of its long-
run distribution would require a very large number of iterations. See Example 7.6.

# set.seed(1212)

m = 10000

x = numeric(m)

x[1] = .5 # Arbitrary starting value in (0,1)

for (i in 2:m)

{

x[i] = rbeta(1, .001+3*x[i-1], 3.001-3*x[i-1])

}

plot(x, type="l")

Figure 7.9, shows the plot of successive values of Xn. The limiting dis-
tribution of this process is a mixture of beta distributions, many with high
densities near 0, many with high densities near 1, and few with high densities
near the middle of (0, 1). Not surprisingly, the histogram of the simulated
distribution, made with the additional code hist(x) but omitted here, shows
a bimodal distribution with tall bars near 0 and 1 and negligible numbers of
visits elsewhere. In several runs of this simulation, none of the autocorrela-
tions through lag 40 were ever smaller than 0.95. These results can be seen
by using the additional code acf(x). In summary, this chain mixes poorly,
tending to “stick” in the neighborhood of 0 or of 1. (Problem 7.14 shows two
variants of this example with very different limiting behaviors.) ♦

An important use of Markov chains in computation is to find a chain that
has a desired long-run distribution. The distribution may be of interest in its
own right, and then we might find its mean, quantiles, and so on. Alterna-
tively, sampling from the long-run distribution might be the basis of a further
computation, such as a numerical integration; this is illustrated by the next
example.
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Figure 7.10. A triangular state space. The first 100 states visited in a simulation
of the chain of Example 7.7 show excellent mixing. To three-place accuracy, the first
four points visited are (0, 0), (0.328, 0.641), (0.008, 0.117), and (0.173, 0.661).

Example 7.7. Define a continuous Markov chain on the triangle 4ABC with
vertices at A = (0, 0), B = (0, 1), and C = (1, 0) as follows. Begin at the
origin: (X1, Y1) = (0, 0). Then select X2 ∼ UNIF(0, 1) along the base of the
triangle and Y2 at random along the vertical line segment from (X2, 0) to
the hypotenuse as Y2 ∼ UNIF(0, 1 − X2). Next select X3 at random along
the horizontal line segment within the triangle and passing through (X2, Y2)
and Y3 at random along the vertical line segment within the triangle and
passing through (X3, Y2), and so on.

The following R script simulates this process and makes Figure 7.10.

# set.seed (1237)

m = 5000

x = y = numeric(m)

x[1] = y[1] = 0

for (i in 2:m)

{

x[i] = runif(1, 0, 1-y[i-1])

y[i] = runif(1, 0, 1-x[i])

}

plot(x[1:100], y[1:100], type="l", xlim=c(0,1), ylim=c(0,1))

Figure 7.10 shows the movement of this Markov chain within the tri-
angle over the first 100 steps. Figure 7.11, made with the additional code
plot(x, y, pch=".", xlim=c(0,1), ylim=c(0,1)), shows the 5000 simu-
lated points, illustrating that the long-run distribution of this chain is uniform
on the triangle. (Compare this with the Markov chain in Problem 7.16, which
has a much more intricate long-run distribution. Also see Figure 7.16.)
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Figure 7.11. A triangular state space. Here we show 5000 simulated points of the
chain of Example 7.7. The long-run distribution of this chain is uniform on the
triangle.

In Chapter 3, we use Monte Carlo integration to approximate the volume

J =
∫ ∫

4ABC

ϕ(x; 0, 1)ϕ(y; 0, 1) dx dy ≈ 0.0677

above the triangle and beneath the bivariate standard normal density func-
tion. There, the method was to generate points uniformly distributed in the
unit square and reject the points outside the triangle (about half of them).
Here, we have found a way to generate only points we will actually use. The
following additional code does the Monte Carlo integration and estimates the
standard error.

h = dnorm(x)*dnorm(y)

.5*mean(h); .5*sd(h)/sqrt(m)

> .5*mean(h); .5*sd(h)/sqrt(m)

[1] 0.06777085

[1] 0.00009937692

The result from this run, 0.0678 ± 2(0.0001), is consistent with the exact
value 0.06773. We see no way to vectorize the current script, so in R the
“wasteful,” but vectorizable, procedure of Chapter 3 runs a little faster—even
though the number of steps there would have to be set at m = 10 000 to yield
approximately 5000 accepted points. ♦

Although we have not even approached a thorough mathematical treat-
ment of Markov chains that have continuous state spaces, we hope our ex-
amples have illustrated some issues of practical importance. In particular, we



176 7 Examples of Chains with Larger State Spaces

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 7.12. Sierpinski’s triangle. The plot shows 5000 simulated points of the
chain of Problem 7.16. The definition of the chain may seem similar to that of
Example 7.7, but comparison with Figure 7.11 shows a surprisingly different long-
run distribution.

hope we have provided memorable evidence that not all Markov chains con-
verge and that some convergent ones behave strangely either because they mix
badly and converge slowly or because they converge to unexpected limiting
distributions.

When simulating Markov chains in practice, one must rely heavily on
descriptive diagnostic methods to be confident that apparent limiting distri-
butions are what they seem to be. The use of autocorrelations and graphs
of simulated transition paths can help to assess mixing. Depending on the
dimensionality of the state space, histograms or scatterplots can help to re-
veal shapes of distributions. Also, multiple runs can be used to check whether
there are multiple “sticking points” or “modes” that are absorbing or nearly
absorbing.

7.5 Uses of Markov Chains in Computation

Ergodic Markov chains are often used as an aid in simulating complex proba-
bility models. Such simulation methods are sometimes called Markov chain
Monte Carlo (MCMC) methods. Typically, one specifies a chain that has the
target model as its stationary distribution. In order to do this, it is necessary
to use key information about the model in defining how the chain moves from
one step to the next. Examples of MCMC in this section, based on bivariate
normal distributions, provide relatively simple illustrations of two methods
of specifying computationally useful Markov chains, the Metropolis algorithm
and the Gibbs sampler.
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Consider a possibly correlated bivariate normal distribution of random
variables X and Y with zero means and unit standard deviations. The joint
density function is

φ(x, y) = K exp{−[2(1− ρ2)]−1 [x2 − 2ρxy + y2]},

where K = [2π(1 − ρ2)]−1/2 and ρ = Cor(X,Y ). Specifically, suppose two
achievement tests on a particular field of knowledge are administered to sub-
jects in some population. If the population mean of a test is µ and its standard
deviation is σ, then a subject who has raw score U is said to have standard
score X = (U − µ)/σ.

One can show that the marginal distributions of X and Y are standard nor-
mal, and that the conditional distribution of X|Y = y is NORM(ρy,

√
1− ρ2),

and symmetrically for the conditional distribution of Y given X. Thus, in R
the joint density function of X and Y can be expressed by either of the fol-
lowing lines of code.

dnorm(x)*dnorm(y, rho*x, sqrt(1-rho^2))

dnorm(y)*dnorm(x, rho*y, sqrt(1-rho^2))

In the computational examples below, we use standard scores X and Y
corresponding to the two tests, respectively. Because the tests have a substan-
tial amount of subject matter in common, we have ρ = 0.8. Suppose a subject
for whom either X ≥ 1.25 or Y ≥ 1.25 receives a certificate. One question of
interest is to evaluate the proportion of subjects taking both tests who receive
certificates.

Because this bivariate model can be simulated in a more traditional way
(as shown in Problem 7.18), our computational examples using Markov chains
are “toy” ones. Nevertheless, they provide useful introductory illustrations of
two important computational methods.

Example 7.8. Metropolis Algorithm. This algorithm is an acceptance-rejection
procedure that can be considered a generalization of the ideas in Example 3.3
and Problem 3.11. An arbitrary starting point (x1, y1) within the support of
the desired model is chosen as the state of the chain at step 1. Then the state
(xi, yi), at each successive step i, is simulated in two stages:

• A symmetrical random jump function provides a proposed (or candidate)
state (xp, yp) for step i.

• The proposal is either accepted or rejected. The acceptance criterion uses
the density function of the target distribution. If the proposed state (xp, yp)
is at a point of higher density than the previous state (xi−1, yi−1), then
the proposal is accepted. If it is a point of lower density, then it is accepted
only with a certain probability that involves the ratio of the two densities.

For our bivariate model of standard test scores, the following R code imple-
ments such a procedure.
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set.seed(1234); m = 40000; rho = .8; sgm = sqrt(1 - rho^2)

xc = yc = numeric(m) # vectors of state components

xc[1] = -3; yc[1] = 3 # arbitrary starting values

jl = 1; jr = 1 # l and r limits of proposed jumps

for (i in 2:m)

{

xc[i] = xc[i-1]; yc[i] = yc[i-1] # if jump rejected

xp = runif(1, xc[i-1]-jl, xc[i-1]+jr) # proposed x coord

yp = runif(1, yc[i-1]-jl, yc[i-1]+jr) # proposed y coord

nmtr = dnorm(xp)*dnorm(yp, rho*xp, sgm)

dntr = dnorm(xc[i-1])*dnorm(yc[i-1], rho*xc[i-1], sgm)

r = nmtr/dntr # density ratio

acc = (min(r, 1) > runif(1)) # jump if acc == T

if (acc) {xc[i] = xp; yc[i] = yp}

}

x = xc[(m/2+1):m]; y = yc[(m/2+1):m] # states after burn-in

round(c(mean(x), mean(y), sd(x), sd(y), cor(x,y)), 4)

mean(diff(x)==0) # proportion or proposals rejected

mean(pmax(x,y) >= 1.25) # prop. of subj. getting certificates

par(mfrow = c(1,2), pty="s")

plot(xc[1:100], yc[1:100], xlim=c(-4,4), ylim=c(-4,4), type="l")

plot(x, y, xlim=c(-4,4), ylim=c(-4,4), pch=".")

par(mfrow = c(1,1), pty="m")

> round(c(mean(x), mean(y), sd(x), sd(y), cor(x,y)), 4)

[1] -0.0348 -0.0354 0.9966 0.9992 0.7994

> mean(diff(x)==0) # proportion or proposals rejected

[1] 0.4316216

> mean(pmax(x,y) >= 1.25) # prop. of subj. getting certificates

[1] 0.14725

Assuming that the initial m/2 steps (called the burn-in period) are enough
for the simulation to stabilize at the stationary distribution of the chain, we
use only the second half of the simulated states to get our approximate values.
For validation, we note that the simulated means are near 0, the simulated
standard deviations near 1, and the simulated correlation near 0.8, as required.
About 15% of subjects receive certificates. (From the standard normal distri-
bution, we know that about 10% will get a standard score above 1.25 on a
particular one of the exams.)

The upper left-hand panel in Figure 7.13 shows the movement of the chain
over the first 100 steps. Notice that when a proposed state is rejected (which
happens about 43% of the time), then the state at the previous step is re-
peated. Thus some dots in the scatterplot represent more than one step in
the simulated chain. There is a trade-off in selecting the random jump dis-
tribution. If it is too disperse, the proportion of acceptances can be small. If
it is too concentrated, the chain cannot move freely among the values of the
target distribution. ♦
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Figure 7.13. Bivariate normal distributions simulated by Metropolis (upper panels)
and Gibbs methods. States (X, Y ) after burn-in are sampled from a bivariate normal
distribution of standard test scores with zero means, unit standard deviations, and
correlation 0.8. In the bottom panels, the heavy lines separate cases where the best
of two scores exceeds 1.25 from those where it does not. See Examples 7.8 and 7.9.

As in this example, the Metropolis algorithm requires a symmetrical jump
distribution. Problem 7.19 shows the incorrect results from using an asym-
metrical one and illustrates a more general algorithm, called the Metropolis-
Hastings algorithm, that permits and corrects for an asymmetrical jump
distribution. Problem 8.6 uses the Metropolis algorithm to find Bayesian pos-
teriors in a conceptually simple and computationally problematic situation.
For more rigorous developments and various applications of MCMC methods
in general and these algorithms in particular, see [CG94], [GCSR04], [Lee04],
[Has55], and [RC04].

Next we use a Gibbs sampler to simulate the target bivariate distribution.
In a sense that we will not make explicit here, a Gibbs sampler is a special
case of the Metropolis-Hastings algorithm in which all proposals are accepted.

Example 7.9. A Gibbs Sampler. Here we solve exactly the same problem as
in Example 7.8, but with a Gibbs sampler. Again we make a Markov chain
that has the target correlated bivariate normal distribution as its stationary
distribution.

The simulation starts at an arbitrary state (x1, y1) at step 1. Then we
use the conditional distribution X|Y = y1 to simulate a value x2 and the
conditional distribution Y |X = x2 to simulate a value y2. Thus we have
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determined the state of the chain (x2, y2) at step 2. This process is iterated
for i = 3, 4, . . . , m, where m is suitably large, to obtain successive states
of the chain. After a burn-in period in which the simulation stabilizes, the
interplay between the two conditional distributions ensures that all states
are appropriately representative of the target distribution. The R code below
implements this simulation for our distribution of test scores.

set.seed(1235); m = 20000; rho = .8; sgm = sqrt(1 - rho^2)

xc = yc = numeric(m) # vectors of state components

xc[1] = -3; yc[1] = 3 # arbitrary starting values

for (i in 2:m)

{

xc[i] = rnorm(1, rho*yc[i-1], sgm)

yc[i] = rnorm(1, rho*xc[i], sgm)

}

x = xc[(m/2+1):m]; y = yc[(m/2+1):m] # states after burn-in

round(c(mean(x), mean(y), sd(x), sd(y), cor(x,y)), 4)

best = pmax(x,y); mean(best >= 1.25) # prop. getting certif.

summary(best)

par(mfrow = c(1,2), pty="s")

hist(best, prob=T, col="wheat", main="")

abline(v = 1.25, lwd=2, col="red")

plot(x, y, xlim=c(-4,4), ylim=c(-4,4), pch=".")

lines(c(-5, 1.25, 1.25), c(1.25, 1.25, -5), lwd=2, col="red")

par(mfrow = c(1,1), pty="m")

> round(c(mean(x), mean(y), sd(x), sd(y), cor(x,y)), 4)

[1] 0.0083 0.0077 1.0046 1.0073 0.8044

> best = pmax(x,y); mean(best >= 1.25) # prop. getting certif.

[1] 0.1527

> summary(best)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.6050 -0.3915 0.2626 0.2589 0.9087 3.3850

The numerical results and the scatterplot (lower right in Figure 7.13) are
essentially the same as results from the Metropolis algorithm. Here we also
show a histogram of the best-of-two test scores (lower left). In both of these
graphs, lines separate test results that would earn a certificate from those that
would not. ♦

Typically, as in the example just above, Gibbs samplers use Markov chains
with continuous state spaces. A Markov chain is chosen because it has a long-
run distribution of interest that is difficult to describe or simulate by more
direct means. Following an introduction to Bayesian estimation in Chapter 8,
some practical uses of Gibbs samplers to solve Bayesian problems are shown
in Chapters 9 and 10.
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7.6 Problems

Problems for Sections 7.1 and 7.2 (Finite State Spaces)

7.1 Ergodic and nonergodic matrices. In the transition matrices of the six
4-state Markov chains below, elements 0 are shown and * indicates a positive
element. Identify the ergodic chains, giving the smallest value N for which
PN has all positive elements. For nonergodic chains, explain briefly what
restriction on the movement among states prevents ergodicity.

a) P =




* * 0 0
0 * * 0
0 0 * *
* 0 0 *


 , b) P =




* * * 0
* * * 0
* * * 0
0 0 0 *


 , c) P =




* * 0 0
* * 0 0
* 0 * *
0 0 * 0


 ,

d) P =




0 * 0 0
0 0 * *
* 0 0 0
* 0 0 0


 , e) P =




0 * * 0
0 0 0 *
* 0 0 0
0 * * *


 , f) P =




* * 0 0
* * 0 0
0 * * *
0 0 0 *


 .

Answers: In each chain, let the state space be S = {1, 2, 3, 4}. (a) Ergodic, N = 3.

(b) Class {1, 2, 3} does not intercommunicate with {4}. (d) Nonergodic because of

the period 3 cycle {1}→{2}→{3, 4}→{1}; starting in {1} at step 1 allows visits to

{3, 4} only at steps 3, 6, 9, . . . . (f) Starting in {3} leads eventually to absorption in

either {1, 2} or {4}.
7.2 Continuation of Example 7.1, CpG islands. We now look at a Markov
chain that models the part of the genome where mutation of CpGs to TpGs
is not inhibited. In the transition matrix below, note particularly that the
probability p23 is much smaller than in the matrix of Example 7.1 (p161).

P =




0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292


 .

a) Find a sufficiently high power of P to determine the long-run distribu-
tion of this chain. Comment on how your result differs from the long-run
distribution of the chain for CpG islands.

b) Modify the R program of Example 7.1 to simulate this chain, approximat-
ing its long-run distribution and the overall proportion of CpGs. How does
this compare with the product λ2p23? With the product λ2λ3? Comment.
How does it compare with the proportion of CpGs in the CpG-islands
model?
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Figure 7.14. Absorption-time distribution of the brother-sister mating process.
Starting at state 3 = Aa× Aa, absorption often occurs in less than 15 generations.
See Example 7.2 (p164) and Problem 7.4.

Note: The proportion of CpGs among dinucleotides in the island model is approx-

imately 9%; here it is only about 2%. Durbin et al. [DEKM98] discuss how, given

the nucleotide sequence for a short piece of the genome, one might judge whether or

not it comes from a CpG island. Further, with information about the probabilities of

changing between island and “sea,” one might make a Markov chain with 8 states:

A′, T′, G′, C′ for CpG islands and A, T, G, C for the surrounding sea. However, when

observing the nucleotides along a stretch of genome, one cannot tell A from A′,
T from T′, and so on. This is an example of a hidden Markov model.

7.3 Brother-sister mating (continued).

a) In Example 7.2 (p164) verify the entries in the transition matrix P.
b) Evaluate the products (1/2, 0, 0, 0, 0, 1/2) · P and (1/3, 0, 0, 0, 0, 2/3) · P

by hand and comment.
c) Make several simulation runs similar to the one at the end of Example 7.2

and report the number of steps before absorption in each.

7.4 Distribution of absorption times in brother-sister mating (continuation
of Problem 7.3). The code below simulates 10 000 runs of the brother-sister
mating process starting at state 3. Each run is terminated at absorption, and
the step and state at absorption for that run are recorded. The histogram
from one run is shown in Figure 7.14.

Run the program several times for yourself, each time with a different start-
ing state. Summarize your findings, comparing appropriate results with those
from P128 in Example 7.2 and saying what additional information is gained
by simulation.
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m = 10000 # number of runs

step.a = numeric(m) # steps when absorption occurs

state.a = numeric(m) # states where absorbed

for (j in 1:m)

{

x = 3 # initial state; inside the loop the length

# of x increases to record all states visited

a = 0 # changed to upon absorption

while(a==0)

{

i = length(x) # current step; state found below

if (x[i]==1) x = c(x, 1)

if (x[i]==2)

x = c(x, sample(1:6, 1, prob=c(4,8,4,0,0,0)))

if (x[i]==3)

x = c(x, sample(1:6, 1, prob=c(1,4,4,4,2,1)))

if (x[i]==4)

x = c(x, sample(1:6, 1, prob=c(0,0,4,8,0,4)))

if (x[i]==5) x = c(x, 3)

if (x[i]==6) x = c(x, 6)

# condition below checks for absorption

if (length(x[x==1 | x==6]) > 0) a = i + 1

}

step.a[j] = a # absorption step for jth run

state.a[j] = x[length(x)] # absorption state for jth run

}

hist(step.a) # simulated distribution of absorption times

mean(step.a) # mean time to absorption

quantile(step.a, .95) # 95% of runs absorbed by this step

summary(as.factor(state.a))/m # dist’n of absorption states

7.5 Doubly stochastic matrix. Consider states S = {0, 1, 2, 3, 4} arranged
clockwise around a circle with 0 adjacent to 4. A fair coin is tossed. A Markov
chain moves clockwise by one number if the coin shows Heads, otherwise it
does not move.

a) Write the 1-step transition matrix P for this chain. Is it ergodic?
b) What is the average length of time this chain spends in any one state before

moving to the next? What is the average length of time to go around the
circle once? From these results, deduce the long-run distribution of this
chain. (In many chains with more than 2 states, the possible transitions
among states are too complex for this kind of analysis to be tractable.)

c) Show that the vector σ = [1/5, 1/5, 1/5, 1/5, 1/5] satisfies the matrix equa-
tion σP = σ and thus is a steady-state distribution of this chain. Is σ
also the unique long-run distribution?
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d) Transition matrices for Markov chains are sometimes called stochastic,
meaning that each row sums to 1. In a doubly stochastic matrix, each
column also sums to 1. Show that the limiting distribution of a K-state
chain with an ergodic, doubly stochastic transition matrix P is uniform
on the K states.

e) Consider a similar process with state space S = {0, 1, 2, 3}, but with 0
adjacent to 3, and with clockwise or counterclockwise movement at each
step determined by the toss of a fair coin. (This process moves at every
step.) Show that the resulting doubly stochastic matrix is not ergodic.

7.6 An Ehrenfest Urn model. A permeable membrane separates two com-
partments, Boxes A and B. There are seven molecules altogether in the two
boxes. On each step of a process, the probability is 1/2 that no molecules
move. If there is movement, then one of the seven molecules is chosen at
random and it “diffuses” (moves) from the box it is in to the other one.

a) The number of molecules in Box A can be modeled as an 8-state Markov
chain with state space S = {0, 1, . . . , 7}. For example, if the process is
currently in state 5, then the chances are 7 in 14 that it will stay in state
5 at the next step, 5 in 14 that it will go to state 4, and 2 in 14 that it will
go to state 6. The more unequal the apportionment of the molecules, the
stronger the tendency to equalize it. Write the 1-step transition matrix.

b) Show that the steady-state distribution of this chain is BINOM(7, 1
2 ). That

is, show that it satisfies λP = λ. This is also the long-run distribution.
c) More generally, show that if there are M molecules, the long-run distrib-

ution is BINOM(M, 1
2 ).

d) If there are 10 000 molecules at steady state, what is the probability that
between 4900 and 5100 are in Box A?

Note: This is a variant of the famous Ehrenfest model, modified to have probability

1/2 of no movement at any one step and thus to have an ergodic transition matrix.

(See [CM65], Chapter 3, for a more advanced mathematical treatment.)

7.7 A Gambler’s Ruin problem. As Chris and Kim begin the following gam-
bling game, Chris has $4 and Kim has $3. At each step of the game, both play-
ers toss fair coins. If both coins show Heads, Chris pays Kim $1; if both show
Tails, Kim pays Chris $1; otherwise, no money changes hands. The game con-
tinues until one of the players has $0. Model this as a Markov chain in which
the state is the number of dollars Chris currently has. What is the probability
that Kim wins (that is, Chris goes broke)?
Note: This is a version of the classic gambler’s ruin problem. Many books on stochas-

tic processes derive general formulas for the probability of the ruin of each player

and the expected time until ruin. Approximations of these results can be obtained

by adapting the simulation program of Problem 7.4.

7.8 Suppose weather records for a particular region show that 1/4 of Dry
(0) days are followed by Wet (1) days. Also, 1/3 of the Wet days that are
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immediately preceded by a Dry day are followed by a Dry day, but there can
never be three Wet days in a row.

a) Show that this situation cannot be modeled as a 2-state Markov chain.
b) However, this situation can be modeled as a 4-state Markov chain by the

device of considering overlapping paired-day states: S = {00, 01, 10, 11}.
For example, 00 can be followed by 00 (three dry days in a row) or 01,
but it would contradict the definition of states for 00 to be followed by
10 or 11; logically, half of the entries in the 1-step transition matrix must
be 0. The prohibition on three Wet days in a row dictates an additional 0
entry. Write the 4× 4 transition matrix, show that it is ergodic, and find
the long-run distribution.

Hints and answers: (a) The transition probability p11 would have to take two different

values depending on the weather two days back. State two relevant conditional

probabilities with different values. (b) Over the long run, about 29% of the days are

Wet; give a more accurate value.

7.9 Hardy-Weinberg Equilibrium. In a certain large population, a gene has
two alleles a and A, with respective proportions θ and 1 − θ. Assume these
same proportions hold for both males and females. Also assume there is no
migration in or out and no selective advantage for either a or A, so these
proportions of alleles are stable in the population over time. Let the genotypes
aa = 1, Aa = 2, and AA = 3 be the states of a process. At step 1, a female
is of genotype aa, so that X1 = 1. At step 2, she selects a mate at random
and produces one or more daughters, of whom the eldest is of genotype X2.
At step 3, this daughter selects a mate at random and produces an eldest
daughter of genotype X3, and so on.

a) The X-process is a Markov chain. Find its transition matrix. For example,
here is the argument that p12 = 1 − θ: A mother of type aa = 1 surely
contributes the allele a to her daughter, and so her mate must contribute
an A-allele in order for the daughter to be of type Aa = 2. Under random
mating, the probability of acquiring an A-allele from the father is 1− θ.

b) Show that this chain is ergodic. What is the smallest N that gives PN > 0?
c) According to the Hardy-Weinberg Law, this Markov chain has the “equi-

librium” (steady-state) distribution σ = [θ2, 2θ(1 − θ), (1 − θ)2]. Verify
that this is true.

d) For θ = 0.2, simulate this chain for m = 50 000 iterations and verify
that the sampling distribution of the simulated states approximates the
Hardy-Weinberg vector.

Hints and partial answers: (a) In deriving p12, notice that it makes no difference how

the A-alleles in the population may currently be apportioned among males of types

AA and Aa. For example, suppose θ = 20% in a male population with 200 alleles

(100 individuals), so that there are 40 a-alleles and 160 As. If only genotypes AA

and aa exist, then there are 80 AAs to choose from, any of them would contribute an
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A-allele upon mating, and the probability of an Aa offspring is 80% = 1−θ. If there

are only 70 AAs among the males, then there must be 20 Aas. The probability that

an Aa mate contributes an A-allele is 1/2, so that the total probability of an Aa

offspring is again 1(0.70) + (1/2)(0.20) = 80% = 1 − θ. Other apportionments of

genotypes AA and Aa among males yield the same result. The first row of the matrix

P is [θ, 1 − θ, 0]; its second row is [θ/2, 1/2, (1 − θ)/2]. (b) For the given σ, show

that σP = σ. (d) Use a program similar to the one in Example 7.1.

7.10 Algebraic approach. For a K-state ergodic transition matrix P, the
long-run distribution is proportional to the unique row eigenvector λ corre-
sponding to eigenvalue 1. In R, g = eigen(t(P))$vectors[,1]; g/sum(g),
where the transpose function t is needed to obtain a row eigenvector,
$vectors[,1] to isolate the relevant part of the eigenvalue-eigenvector dis-
play, and the division by sum(g) to give a distribution. Use this method to
find the long-run distributions of two of the chains in Problems 7.2, 7.5, 7.6,
and 7.8—your choice, unless your instructor directs otherwise. (See [CM65]
for the theory.)

Problems for Section 7.3 (Countably Infinite State Spaces)

7.11 Reflecting barrier. Consider a random walk on the nonnegative inte-
gers with pi,i−1 = 1/2, pi,i+1 = 1/4, and pii = 1/4, for i = 1, 2, 3, . . . , but
with p00 = 1/4 and p01 = 3/4. There is a negative drift, but negative values
are impossible because the particle gets “reflected” to 1 whenever the usual
leftward displacement would have taken it to −1.

a) Argue that the following R script simulates this process, run the program,
and comment on whether there appears to be a long-run distribution.

# set.seed(1237)

m = 10000

d = sample(c(-1,0,1), m, replace=T, c(1/2,1/4,1/4))

x = numeric(m); x[1] = 0

for (i in 2:m) {x[i] = abs(x[i-1] + d[i])}

summary(as.factor(x))

cutp=0:(max(x)+1) - .5

hist(x, breaks=cutp, prob=T)

b) Show that the steady-state distribution of this chain is given by λ0 = 1/4
and λi = 3

4 ( 1
2 )i, for i = 1, 2, . . ., by verifying that these values of λi satisfy

the equations λj =
∑

i λipij , for j = 0, 1, . . . . For this chain, the steady-
state distribution is unique and is also the long-run distribution. Do these
values agree reasonably well with those simulated in part (a)?

7.12 Attraction toward the origin. Consider the random walk simulated by
the R script below. There is a negative drift when Xn−1 is positive and a
positive drift when it is negative, so that there is always drift towards 0. (The
R function sign returns values −1, 0, and 1 depending on the sign of the
argument.)
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Figure 7.15. Ergodic chain with countable state space. Although the state space
S = {0,±1,±2, . . .} of the chain in Problem 7.12 is not finite, activity is concentrated
near 0, so probability does not “escape” to ±∞.

# set.seed(1212)

m = 10000; x = numeric(m); x[1] = 0

for (i in 2:m)

{

drift = (2/8)*sign(x[i-1]); p = c(3/8+drift, 2/8, 3/8-drift)

x[i] = x[i-1] + sample(c(-1,0,1), 1, replace=T, prob=p)

}

summary(as.factor(x))

par(mfrow=c(2,1)) # prints two graphs on one page

plot(x, type="l")

cutp = seq(min(x), max(x)+1)-.5; hist(x, breaks=cutp, prob=T)

par(mfrow=c(1,1))

a) Write the transition probabilities pij of the chain simulated by this pro-
gram. Run the program, followed by acf(x), and comment on the result-
ing graphs. (See Figure 7.15.)

b) Use the method of Problem 7.11 to show that the long-run distribution
is given by λ0 = 2/5 and λi = 6

5 ( 1
5 )|i| for positive and negative integer

values of i. Do these values agree with your results in part (a)?

Problems for Section 7.4 (Continuous State Spaces)

7.13 Random walk on a circle. In Example 7.5 (p170), the displacements of
the random walk on the circle are UNIF(−0.1, 0.1) and the long-run distribu-
tion is UNIF(0, 1). Modify the program of the example to explore the long-run
behavior of such a random walk when the displacements are NORM(0, 0.1).
Compare the two chains.
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7.14 Explore the following two variants of Example 7.6 (p171).

a) Change the line of the R script within the loop as follows:
x[i] = rbeta(1, 2.001 - 2*x[i-1], 0.001 + 2*x[i-1]).

You will also need to omit the plot parameter type="l". (Why?) Do
you think this chain has the same limiting distribution as the one in the
example? Compare histograms from several runs of each chain. Explain.

b) Simulate the Markov chain defined by the initial value X1 = 0.5 and
Xn ∼ BETA(5 + 2Xn−1, 7− 2Xn−1), for n = 2, 3, . . . .

c) Compare the chains of parts (a) and (b) with the chain of Example 7.6.
Discuss long-run behaviors, including the output from acf, in each case.

7.15 Monte Carlo integration. Modify the procedure in Example 7.7 (p174)
to make a Markov chain whose limiting distribution is uniform on the first
quadrant of the unit circle. If Z1 and Z2 are independent and standard normal,
use your modified chain to approximate P{Z1 > 0, Z2 > 0, Z2

1 + Z2
2 < 1}.

7.16 Sierpinski Triangle. Consider S, obtained by successive deletions from
a (closed) triangle 4ABC of area 1/2 with vertices at A = (0, 0), B = (0, 1),
and C = (1, 0). Successively delete open subtriangles of 4ABC as follows. At
stage 1, delete the triangle of area 1/8 with vertices at the center points of the
sides of 4ABC, leaving the union of three triangles, each of area 1/8. At stage
2, delete three more triangles, each of area 1/32 with vertices at the center
points of the sides of triangles remaining after stage 1, leaving the union of
nine triangles, each of area 1/32. Iterate this process forever. The result is the
Sierpinski Triangle.

a) Show that the area of S is 0. That is, the infinite sum of the areas of all
the triangles removed is 1/2.

b) S is the state space of a Markov chain. Starting with (X1, Y1) = (1/2, 1/2),
choose a vertex of the triangle at random (probability 1/3 each) and let
(X2, Y2) be the point halfway to the chosen vertex. At step 3, choose a ver-
tex, and let (X3, Y3) be halfway between (X2, Y2) and the chosen vertex.
Iterate. Suppose the first seven vertices chosen are A,A, C,B, B, A, A.
(These were taken from the run in part (c).) Find the coordinates of
(Xn, Yn), for n = 2, 3, . . . , 8, and plot them by hand.

c) As shown in Figure 7.12 (p176), the R script below generates enough points
of S to suggest the shape of the state space. (The default distribution of
the sample function assigns equal probabilities to the values sampled, so
the prob parameter is not needed here.)

# set.seed(1212)

m = 5000

e = c(0, 1, 0); f = c(0, 0, 1)

k = sample(1:3, m, replace=T)

x = y = numeric(m); x[1] = 1/2; y[1] = 1/2
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for (i in 2:m)

{

x[i] = .5*(x[i-1] + e[k[i-1]])

y[i] = .5*(y[i-1] + f[k[i-1]])

}

plot(x,y,pch=20)

Within the limits of your patience and available computing speed, increase
the number m of iterations in this simulation. Why do very large values of
m give less-informative plots? Then try plot parameter pch=".". Also,
make a plot of the first 100 states visited, similar to Figure 7.10. Do you
think such plots would enable you to distinguish between the Sierpinski
chain and the chain of Example 7.7?

d) As n increases, the number of possible values of Xn increases. For example,
3 points for n = 2 and 9 points for n = 3, considering all possible paths.
Points available at earlier stages become unavailable at later stages. For
example, it is possible to have (X2, Y2) = (1/4, 1/4), but explain why
this point cannot be visited at any higher numbered step. By a similar
argument, no state can be visited more than once. Barnsley ([Bar88],
p372) shows that the limiting distribution can be regarded as a “uniform”
distribution on Sierpinski’s Triangle.

Note: Properties of S related to complex analysis, chaos theory and fractal geometry

have been widely studied. Type sierpinski triangle into your favorite search

engine to list hundreds of web pages on these topics. (Those from educational and

governmental sites may have the highest probability of being correct.)

7.17 Continuation of Problem 7.16: Fractals. Each subtriangle in Fig-
ure 7.12 is a miniature version of the entire Sierpinski set. Similarly, here
each “petal” of the frond in Figure 7.16 is a miniature version of the frond
itself, as is each “lobe” of each petal, and so on to ever finer detail beyond the
resolution of the figure. This sort of self-similarity of subparts to the whole
characterizes one type of fractal.

By selecting at random among more general kinds of movement, one can
obtain a wide range of such fractals. Figure 7.16 resembles a frond of the
black spleenwort fern. This image was made with the R script shown below.
It is remarkable that such a simple algorithm can realistically imitate the
appearance of a complex living thing.

a) In the fern process, the choices at each step have unequal probabilities,
as specified by the vector p. For an attractive image, these “weights” are
chosen to give roughly even apparent densities of points over various parts
of the fern. Run the script once as shown. Then vary p in several ways to
observe the role played by these weights.

m = 30000

a = c(0, .85, .2, -.15); b = c(0, .04, -.26, .28)

c = c(0, -.04, .23, .26); d = c(.16, .85, .22, .24)
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Figure 7.16. Barnsley’s fractal fern. A relatively simple Markov chain has a very
intricate state space. See Problem 7.17.

e = c(0, 0, 0, 0); f = c(0, 1.6, 1.6, .44)

p = c(.01, .85, .07, .07)

k = sample(1:4, m, repl=T, p)

h = numeric(m); w = numeric(m); h[1] = 0; w[1] = 0

for (i in 2:m)

{

h[i] = a[k[i]]*h[i-1] + b[k[i]]*w[i-1] + e[k[i]]

w[i] = c[k[i]]*h[i-1] + d[k[i]]*w[i-1] + f[k[i]]

}

plot(w, h, pch=20, col="darkgreen")

b) How can the vectors of parameters (a, b, etc.) of this script be changed
to display points of Sierpinski’s Triangle?

Note: See [Bar88] for a detailed discussion of fractal objects with many illustrations,

some in color. Our script is adapted from pages 87–89; its numerical constants can

be changed to produce additional fractal objects described there.

Problems for Section 7.5 (Metropolis and Gibbs Chains)

7.18 A bivariate normal distribution for (X, Y ) with zero means, unit stan-
dard deviations, and correlation 0.8, as in Section 7.5, can be obtained as a
linear transformation of independent random variables. Specifically, if U and
V are independently distributed as NORM(0, 2/

√
5), then let X = U + V/2

and Y = U/2 + V .

a) Verify analytically that the means, standard deviations, and correlation
are as expected. Then use the following program to simulate and plot this
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bivariate distribution. Compare your results with the results obtained in
Examples 7.8 and 7.9.

m = 10000

u = rnorm(m,0,2/sqrt(5)); v = rnorm(m,0,2/sqrt(5))

x = u + v/2; y = u/2 + v

round(c(mean(x), mean(y), sd(x), sd(y), cor(x,y)), 4)

best = pmax(x, y)

mean(best >= 1.25)

plot(x, y, pch=".", xlim=c(-4,4), ylim=c(-4,4))

b) What linear transformation of independent normal random variables could
you use to sample from a bivariate normal distribution with zero means,
unit standard deviations, and correlation ρ = 0.6? Modify the code of
part (a) accordingly, run it, and report your results.

7.19 Metropolis and Metropolis-Hastings algorithms. Consider the following
modifications of the program of Example 7.8.

a) Explore the consequences of incorrectly using an asymmetric jump distri-
bution in the Metropolis algorithm. Let jl = 1.25; jr = .75.

b) The Metropolis-Hastings algorithm permits and adjusts for use of an
asymmetric jump distribution by modifying the acceptance criterion.
Specifically, the ratio of variances is multiplied by a factor that corrects
for the bias due to the asymmetric jump function. In our example, this
“symmetrization” amounts to restricting jumps in X and Y to 0.75 units
in either direction. The program below modifies the one in Example 7.8
to implement the Metropolis-Hastings algorithm; the crucial change is the
use of the adjustment factor adj inside the loop. Interpret the numerical
results, the scatterplot (as in Figure 7.17, upper right), and the histogram.

set.seed(2008)

m = 100000; xc = yc = numeric(m); xc[1] = 3; yc[1] = -3

rho = .8; sgm = sqrt(1 - rho^2); jl = 1.25; jr = .75

for (i in 2:m)

{

xc[i] = xc[i-1]; yc[i] = yc[i-1] # if no jump

xp = runif(1, xc[i-1]-jl, xc[i-1]+jr)

yp = runif(1, yc[i-1]-jl, yc[i-1]+jr)

nmtr.r = dnorm(xp)*dnorm(yp, rho*xp, sgm)

dntr.r = dnorm(xc[i-1])*dnorm(yc[i-1], rho*xc[i-1], sgm)

nmtr.adj = dunif(xc[i-1], xp-jl, xp+jr)*

dunif(yc[i-1], yp-jl, yp+jr)

dntr.adj = dunif(xp, xc[i-1]-jl, xc[i-1]+jr)*

dunif(yp, yc[i-1]-jl, yc[i-1]+jr)

r = nmtr.r/dntr.r; adj = nmtr.adj/dntr.adj

acc = (min(r*adj, 1) > runif(1))

if (acc) {xc[i] = xp; yc[i] = yp}

}
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Figure 7.17. The Metropolis-Hastings algorithm. With an asymmetrical jump dis-
tribution, the Metropolis algorithm gives an incorrect result (upper left), while the
Metropolis-Hastings algorithm corrects the “southwesterly” bias to sample from the
intended distribution (upper right). The histogram shows that longer negative jumps
responsible for asymmetry are being rejected. This relatively sluggish movement re-
sults in the very high autocorrelations seen in the ACF plot. See Problem 7.19.

x = xc[(m/2+1):m]; y = yc[(m/2+1):m]

round(c(mean(x), mean(y), sd(x), sd(y), cor(x,y)) ,4)

mean(diff(xc)==0); mean(pmax(x, y) > 1.25)

par(mfrow=c(1,2), pty="s")

jump = diff(unique(x)); hist(jump, prob=T, col="wheat")

plot(x, y, xlim=c(-4,4), ylim=c(-4,4), pch=".")

par(mfrow=c(1,1), pty="m")

c) After a run of the program in part (b), make and interpret autocorrelation
function plots of x and of x[thinned], where the latter is defined by
thinned = seq(1, m/2, by=100). Repeat for realizations of Y .

Notes: (a) The acceptance criterion still has valid information about the shape of

the target distribution, but the now-asymmetrical jump function is biased towards

jumps downward and to the left. The approximated percentage of subjects awarded

certificates is very far from correct. (c) Not surprisingly for output from a Markov

chain, the successive pairs (X, Y ) sampled by the Metropolis-Hastings algorithm

after burn-in are far from independent. “Thinning” helps. To obtain the desired

degree of accuracy, we need to sample more values than would be necessary in
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a simulation with independent realizations as in Problem 7.18. It is important to

distinguish the association between Xi and Yi on the one hand from the association

among the Xi on the other hand. The first is an essential property of the target

distribution, whereas the second is an artifact of the method of simulation.

7.20 We revisit the Gibbs sampler of Example 7.9.

a) Modify this program to sample from a bivariate normal distribution with
zero means, unit standard deviations, and ρ = 0.6. Report your results. If
you worked Problem 7.18, compare with those results.

b) Run the original program (with ρ = 0.8) and make an autocorrelation plot
of X-values from m/2 on, as in part (c) of Problem 7.19. If you worked
that problem, compare the two autocorrelation functions.

c) In the Gibbs sampler of Example 7.9, replace the second statement inside
the loop by yc[i] = rnorm(1, rho*xc[i-1], sgm) and run the result-
ing program. Why is this change a mistake?

Note: (b) In the Metropolis-Hastings chain, a proposed new value is sometimes

rejected so that there is no change in state. The Gibbs sampler never rejects.
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Introduction to Bayesian Estimation

The rest of this book deals with Bayesian estimation. This chapter uses ex-
amples to illustrate the fundamental concepts of Bayesian point and interval
estimation. It also provides an introduction to Chapters 9 and 10, where more
advanced examples require computationally intensive methods.

Bayesian and frequentist statistical inference take very different approaches
to statistical decision making.

• The frequentist view of probability, and thus of statistical inference, is
based on the idea of an experiment that can be repeated many times.

• The Bayesian view of probability and of inference is based on a personal
assessment of probability and on observations from a single performance
of an experiment.

These different views lead to fundamentally different procedures of estima-
tion, and the interpretations of the resulting estimates are also fundamentally
different. In practical applications, both ways of thinking have advantages and
disadvantages, some of which we will explore here.

Statistics is a relatively young science. For example, interval estimation has
gradually become common in scientific research and business decision making
only within the past 75 years. On this time scale it seems strange to talk
about “traditional” approaches. However, frequentist viewpoints are currently
much better established, particularly in scientific research, than Bayesian ones.
Recently, the use of Bayesian methods has been increasing, partly because
the Bayesian approach seems to be able to get more useful solutions than
frequentist ones in some applications and partly because improvements in
computation have made Bayesian methods increasingly convenient to apply
in practice. The Gibbs sampler is one computationally intensive method that
is broadly applicable in Bayesian estimation.

For some of the very simple examples considered here, Bayesian and fre-
quentist methods give similar results. But that is not the main point. We
hope you will gain some appreciation that Bayesian methods are sometimes

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 195
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196 8 Introduction to Bayesian Estimation

the most natural and useful ones in practice. Also, we hope you will begin to
appreciate the essential role of computation in Bayesian estimation.

For most people, the starkest contrast between frequentist and Bayesian
approaches to analyzing an experiment or study is that Bayesian inference
provides the opportunity—even imposes the requirement—to take explicit
notice of “information” that is available before any data are collected. That
is where we begin.

8.1 Prior Distributions

The Bayesian approach to statistical inference treats population parameters as
random variables (not as fixed, unknown constants). The distributions of these
parameters are called prior distributions. Often both expert knowledge and
mathematical convenience play a role in selecting a particular type of prior
distribution. This is easiest to explain and to understand in terms of examples.
Here we introduce four examples that we carry throughout this chapter.

Example 8.1. Election Polling. Suppose Proposition A is on the ballot for an
upcoming statewide election, and a political consultant has been hired to help
manage the campaign for its adoption. The proportion π of prospective voters
who currently favor Proposition A is the population parameter of interest here.
Based on her knowledge of the politics of the state, the consultant’s judgment
is that the proposition is almost sure to pass, but not by a large margin. She
believes that the most likely proportion π of voters in favor is 55% and that
the proportion is not likely to be below 51% or above 59%.

It is reasonable to try to use the beta family of distributions to model the
expert’s opinion of the proportion in favor because distributions in this family
take values in the interval (0, 1), as do proportions. Beta distributions have
density functions of the form

p(π) = Kπα−1(1− π)β−1

∝ πα−1(1− π)β−1,

for 0 < π < 1, where α, β > 0 and K is the constant such that
∫ 1

0
p(π) dπ = 1.

Here we adopt two conventions that are common in Bayesian discussions: the
use of the letter p instead of f to denote a density function, and the use of the
symbol ∝ (read proportional to) instead of =, so that we can avoid specifying
a constant whose exact value is unimportant to the discussion. The essential
factor of the density function that remains when the constant is suppressed
is called the kernel of the density function (or of its distribution).

A member of the beta family that corresponds reasonably well to the
expert’s opinion has α0 = 330 and β0 = 270. (Its density is the fine-line curve
in Figure 8.1.) This is a reasonable choice of parameters for several reasons.
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Figure 8.1. Prior and posterior densities for the proportion π of the population
in favor of ballot Proposition A (see Examples 8.1 and 8.5). The prior (fine line) is
BETA(330, 270) with mean 55.0%. Based on a poll of 1000 subjects with 62.0% in
favor, the more concentrated posterior (heavy) is BETA(950, 650) with mean 59.5%.

• This beta distribution is centered near 55% by any of the common mea-
sures of centrality. Using analytic methods one can show that the mean of
this distribution is α0/(α0 +β0) = 330/600 = 55.00% and that its mode is
(α0−1)/(α0 +β0−2) = 329/598 = 55.02%. Computational methods show
the median to be 55.01%. (The R function qbeta(.5, 330, 270) returns
0.5500556.) The mean is the most commonly used measure of centrality.
Here the mean, median, and mode are so nearly the same that it doesn’t
make any practical difference which is used.

• Numerical integration shows that these parameters match the expert’s
prior probability interval reasonably well: P{0.51 < π < 0.59} ≈ 0.95.
(The R code pbeta(.59, 330, 270) - pbeta(.51, 330, 270) returns
0.9513758.)

Of course, slightly different choices for α0 and β0 would match the expert’s
opinion about as well. It is not necessary to be any fussier in choosing the
parameters than the expert was in specifying her hunches. Also, distributional
shapes other than the beta might match the expert’s opinion just as well. But
we choose a member of the beta family because it makes the mathematics in
what comes later relatively easy and because we have no reason to believe that
the shape of our beta distribution is inappropriate here. (See Problems 8.2
and 8.3.)

If the consultant’s judgments about the political situation are correct, then
they may be helpful in managing the campaign. If she too often brings bad
judgment to her clients, her reputation will suffer and she may be out of the
political consulting business before long. Fortunately, as we see in the next
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section, the details of her judgments become less important if we also have
some polling data to rely upon. ♦
Example 8.2. Counting Mice. An island in the middle of a river is one of the
last known habitats of an endangered kind of mouse. The mice rove about the
island in ways that are not fully understood and so are taken as random.

Ecologists are interested in the average number of mice to be found in
particular regions of the island. To do the counting in a region, they set many
traps there at night, using bait that is irresistible to mice at close range. In
the morning they count and release the mice caught. It seems reasonable to
suppose that almost all of the mice in the region where traps were set during
the previous night were caught and that their number on any one night has a
Poisson distribution. The purpose of the trapping is to estimate the mean λ
of this distribution.

Even before the trapping is done, the ecologists doing this study have some
information about λ. For example, although the mice are quite shy, there have
been occasional sightings of them in almost all regions of the island, so it seems
likely that λ > 1. On the other hand, from what is known of the habits of the
mice and the food supply in the regions, it seems unlikely that there would
be as many as 25 of them in any one region at a given time.

In these circumstances, it seems reasonable to use a gamma distribution
as a prior distribution for λ. This gamma distribution has the density

p(λ) ∝ λα−1e−κλ,

for λ > 0, where the shape parameter α and the rate parameter κ must both
be positive. First, we choose a gamma distribution because it puts all of its
probability on the positive half line, and λ must surely have a positive value.
Second, we choose a member of the gamma family because it simplifies some
important computations that we need to do later.

Using straightforward calculus, one can show that a distribution in the
gamma family has mean α/κ, mode (α − 1)/κ, and variance α/κ2. These
distributions are right-skewed, with the skewness decreasing as α increases.

One reasonable choice for a prior distribution on λ is a gamma distribution
with α0 = 4 and κ0 = 1/3. Reflecting the skewness, the mean 12, median
11.02, and mode 9 are noticeably different. (We obtained the median using R:
qgamma(.5, 4, 1/3) returns 11.01618. Also, see Problem 8.9.) Numerical
methods also show that P{λ < 25} = 0.97. (In R, pgamma(25, 4, 1/3)
returns 0.9662266.) All of these values are consistent with the expert opinions
of the ecologists.

It is clear that the prior experience of the ecologists with the island and
its endangered mice will influence the course of this investigation in many
ways: dividing the island into meaningful regions, modeling the randomness
of mouse movement as Poisson, deciding how many traps to use and where
to place them, choosing a kind of bait that will attract mice from a region of
interest but not from all over the island, and so on. The expression of some
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of their background knowledge as a prior distribution is perhaps a relatively
small use of their expertise. But a prior distribution is a necessary starting
place for Bayesian inference, and it is perhaps the only aspect of expert opinion
that will be explicitly tempered by the data that are collected. ♦
Example 8.3. Weighing an Object. A construction company buys reinforced
concrete beams with a nominal weight of 700 lb. Experience with a particular
supplier of these beams has shown that their beams very seldom weigh less
than 680 or more than 720 lb. In these circumstances it may be convenient
and reasonable to use NORM(700, 10) as the prior distribution of the weight
of a randomly chosen beam from this supplier.

Usually, the exact weight of a beam is not especially important, but there
are some situations in which it is crucial to know the weight of a beam more
precisely. Then a particular beam is selected and weighed several times on a
scale in order to determine its weight more exactly.

Theoretically, a frequentist statistician would ignore “prior” or background
experience in doing statistical inference, basing statistical decisions only on
the data collected when a beam is weighed. In real life, it is not so simple.
For example, the design of the weighing experiment will very likely take past
experience into account in one way or another. (For example, if you are going
to weigh things, then you need to know whether you will be using a laboratory
balance, a truck scale, or some intermediate kind of scale. And if you need
more precision than the scale will give in a single measurement, you may need
to weigh each object several times and take the average.) For the Bayesian
statistician the explicit codification of some kinds of background information
into a prior distribution is a required first step. ♦
Example 8.4. Precision of Hemoglobin Measurements. A hospital has just pur-
chased a device for the assay of hemoglobin (Hgb) in the blood of newborn
babies (in g/dl). Considering the claims of the manufacturer and experience
with competing methods of measuring Hgb, it seems reasonable to suppose
the machine gives unbiased normally distributed results X with a standard
deviation σ somewhere between 0.25g/dl and 1g/dl.

For mathematical convenience in Bayesian inference, it is customary to
express a prior distribution for the variability of a normal distribution in terms
of a gamma distribution on the precision τ = 1/σ2. In our example, we might
seek a prior distribution on τ with P{1/4 < σ < 1} = P{1/16 < σ2 < 1} =
P{1 < τ < 16} ≈ 0.95. One reasonable choice, under which this interval has
probability 0.96, is τ ∼ GAMMA(α0 = 3, κ0 = 0.75).

When τ has a gamma prior GAMMA(α, κ), we say that θ = 1/τ = σ2 has
an inverse gamma prior distribution IG(α, κ). This distribution family has
density

p(θ) =
κα

Γ (α)
θ−(α+1) e−κ/θ ∝ θ−(α+1) e−κ/θ,

for θ > 0. The mode of this distribution is κ/(α + 1), and when α > 1, its
mean is κ/(α− 1).
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In R, simulated values and quantiles of IG can be found as reciprocals of
rgamma and qgamma, respectively. Cumulative probabilities can be found by
using reciprocal arguments in pgamma. For example, with α0 = 3, κ0 = .75,
we find Med(θ) = 1/Med(τ) = 0.28 with the code 1/qgamma(.5, 3, .75),
and we get 0.50 from pgamma(1/0.28047, 3, .75). ♦

8.2 Data and Posterior Distributions

The second step in Bayesian inference is to collect data and combine the
information in the data with the expert opinion represented by the prior
distribution. The result is a posterior distribution that can be used for
inference.

Once the data are available, we can use Bayes’ Theorem to compute the
posterior distribution π|x. Equation (5.7), repeated here as (8.1), states an
elementary version of Bayes’ Theorem for an observed event E and a partition
{A1, A2, . . . , Ak} of the sample space S,

P (Aj |E) =
P (Aj)P (E|Aj)∑k
i=1 P (Ai)P (E|Ai)

. (8.1)

This equation expresses a posterior probability P (Aj |E) in terms of the prior
probabilities P (Ai) and the conditional probabilities P (E|Ai).

Here we use a more general version of Bayes’ Theorem involving data x
and a parameter π,

p(π|x) =
p(π)p(x|π)∫
p(π)p(x|π) dπ

∝ p(π)p(x|π), (8.2)

where the integral is taken over all values of π for which the integrand is
positive. The proportionality symbol ∝ is appropriate because the integral is
a constant. (In case the distribution of π is discrete, the integral is interpreted
as a sum.)

Thus the posterior distribution of π|x is found from the prior distribution
of π and the distribution of the data x given π. If π is a known constant,
p(x|π) is the density function of x; we might integrate it with respect to x to
evaluate the probability P (x ∈ A) =

∫
A
p(x) dx. However, when we use (8.2)

to find a posterior, we know the data x, and we view p(x|π) as a function
of π. When viewed in this way, p(x|π) is called the likelihood function of π.
(Technically, the likelihood function is defined only up to a positive constant.)

A convenient summary of our procedure for finding the posterior distrib-
ution with relationship (8.2) is to say

POSTERIOR ∝ PRIOR× LIKELIHOOD.

We now illustrate this procedure for each of the examples of the previous
section.
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Figure 8.2. (a) Prior and posterior densities for the number of mice in a region.
(b) Likelihood function of the mouse data: 50 nights with a total of 256 mice trapped.
Because the prior density (fine line) is relatively flat, the data largely determine the
mode 5.166 of the posterior (heavy). The MLE λ̂ = 256/50 = 5.120 (mode of the
likelihood) is not far from the posterior mode. (See Examples 8.2 and 8.6.)

Example 8.5. Election Polling (continued). Suppose n randomly selected reg-
istered voters express opinions on Proposition A. What is the likelihood func-
tion, and how do we use it to find the posterior distribution?

If the value of π were known, then the number x of the respondents in
favor of Proposition A would be a random variable with the binomial dis-
tribution: (n

x)πx(1− π)n−x, for x = 0, 1, 2, . . . , n. Now that we have data x,
the likelihood function of π becomes p(x|π) ∝ πx(1− π)n−x.

Furthermore, display (8.2) shows how to find the posterior distribution

p(π|x) ∝ πα0−1(1− π)β0−1 × πx(1− π)n−x

= πα0+x−1(1− π)β0+n−x−1 = παn−1(1− π)βn−1,

where we recognize the last line as the kernel of a beta distribution with
parameters αn = α0 + x and βn = β0 + n− x. It is easy to find the posterior
in this case because the (beta) prior distribution we selected has a functional
form that is similar to that of the (binomial) distribution of the data, yielding
a (beta) posterior. In this case, we say that the beta is a conjugate prior
for binomial data. (When nonconjugate priors are used, special computational
methods are often necessary; see Problems 8.5 and 8.6.)

Recall that the parameters of the prior beta distribution are α0 = 330 and
β0 = 270. If x = 620 of the n = 1000 respondents favor Proposition A, then
the posterior has a beta distribution with parameters αn = α0 + x = 950 and
βn = β0 +n−x = 650. Look at Figure 8.1 for a visual comparison of the prior
and posterior distributions. The density curves were plotted with the following
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R script. (By using lines, we can plot the prior curve on the same axes as
the posterior.)

x = seq(.45, .7, .001)

prior = dbeta(x, 330, 270)

post = dbeta(x, 950, 650)

plot(x, post, type="l", ylim=c(0, 35), lwd=2,

xlab="Proportion in Favor", ylab="Density")

lines(x, prior)

The posterior mean is 950/(950+650) = 59.4%, a Bayesian point estimate
of the actual proportion of the population currently in favor of Proposition A.
Also, according to the posterior distribution, P{0.570 < π < 0.618} = 0.95,
so that a Bayesian 95% posterior probability interval for the proportion π
in favor is (57.0%, 61.8%). (In R, qbeta(.025, 950, 650) returns 0.5695848,
and qbeta(.975, 950, 650) returns 0.6176932.)

This probability interval resulting from Bayesian estimation is a straight-
forward probability statement. Based on the combined information from her
prior distribution and from the polling data, the political consultant now be-
lieves it is very likely that between 57% and 62% of the population currently
favors Proposition A. In contrast to a frequentist “confidence” interval, the
consultant can use the probability interval without the need to view the poll
as a repeatable experiment. ♦
Example 8.6. Counting Mice (continued). Suppose a region of the island is
selected where the gamma distribution with parameters α0 = 4 and κ0 = 1/3
is a reasonable prior for λ. The prior density is p(λ) ∝ λα0−1e−κ0λ.

Over a period of about a year, traps are set out on n = 50 nights with
the total number of captures t =

∑50
i=1 xi = 256 for an average of 5.12 mice

captured per night. Thus, the Poisson likelihood function of the data is

p(x|λ) ∝
n∏

i=1

λxie−λ = λte−nλ

and the posterior distribution is

p(λ|x) ∝ λα0−1e−κ0λ × λte−nλ

= λα0+t−1e−(κ0+n)λ,

in which we recognize the kernel of the gamma distribution with parameters
αn = α0 + t and κn = κ0 + n. Thus, the posterior mean for our particular
prior and data is

αn

κn
=

α0 + t

κ0 + n
=

4 + 256
1/3 + 50

=
260

50.33
= 5.166,

the posterior mode is (αn − 1)/κn = 259/50.33 = 5.146, and the posterior
median is 5.159. Based on this posterior distribution, a 95% probability in-
terval for λ is (4.56, 5.81). (In R, qgamma(.025, 260, 50.33) returns 4.557005
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Figure 8.3. Prior density and posterior density for the weight of a beam. The
normal prior (fine line) is so flat that the normal posterior (heavy) is overwhelmingly
influenced by the data, obtained by repeated weighing of the beam on a scale of
relatively high precision. (See Examples 8.3 and 8.7, and Problem 8.12.)

and qgamma(.975, 260, 50.33) returns 5.812432.) The prior and posterior
densities are shown in Figure 8.2. ♦

Example 8.7. Weighing a Beam (continued). Suppose that a particular beam
is selected from among the beams available. Recall that, according to our
prior distribution, the weight of beams in this population is NORM(700, 10),
so µ0 = 700 pounds and σ0 = 10 pounds. The beam is weighed n = 5 times on
a balance that gives unbiased, normally distributed readings with a standard
deviation of σ = 1 pound. Denote the data by x = (x1, . . . , xn), where the xi

are independent NORM(µ, σ) and µ is the parameter to be estimated. Such
data have the likelihood function

p(x|µ) ∝ exp

[
− 1

2σ2

n∑

i=1

(xi − µ)2
]

,

where the distribution of µ is determined by the prior and σ = 1 is known.
Then, after some algebra (see Problem 8.13), the posterior is seen to be

p(µ|x) ∝ p(µ)p(x|µ) ∝ exp[−(µ− µn)2/2σ2
n],

which is the kernel of NORM(µn, σn), where

µn =
1

σ2
0
µ0 + n

σ2 x̄

1
σ2
0

+ n
σ2

and σ2
n =

1
1

σ2
0

+ n
σ2

.

It is common to use the term precision to refer to the reciprocal of a
variance. If we define τ0 = 1/σ2

0 , τ = 1/σ2, and τn = 1/σ2
n, then we have
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µn =
τ0

τ0 + nτ
µ0 +

nτ

τ0 + nτ
x̄ and τn = τ0 + nτ.

Thus, we say that the posterior precision is the sum of the precisions of the
prior and the data and that the posterior mean is a precision-weighted average
of the means of the prior and the data.

In our example, τ0 = 0.01, τ = 1, and τn = 5.01. Thus the weights used in
computing µn are 0.01/5.01 ≈ 0.002 for the prior mean µ0 and 5/5.01 ≈ 0.998
for the mean x̄ of the data. We see that the posterior precision is almost
entirely due to the precision of the data, and the value of the posterior mean
is almost entirely due to their sample mean. In this case, the sample of five
relatively high-precision observations is enough to concentrate the posterior
and diminish the impact of the prior. (See Problem 8.12 and Figure 8.3 for the
computation of the posterior mean and a posterior probability interval.) ♦

In the previous example, we considered the situation in which the mean of
a normal distribution is to be estimated but its standard deviation is known.
In the following example, data are again normal, but the mean is known and
its standard deviation is to be estimated.

Example 8.8. Precision of Hemoglobin Measurements (continued). Suppose
researchers use the new device to make Hgb determinations vi on blood sam-
ples from n = 42 randomly chosen newborns and also make extremely precise
corresponding laboratory determinations wi on the same samples. Based in
part on assumptions in Example 8.4, we assume xi = vi − wi ∼ NORM(0, σ).
Assuming the laboratory measurements to be of “gold standard” quality, we
ignore their errors and take τ = 1/σ2 to be a useful measure of the precision
of the new device.

If we observe s = (
∑

i x2
i /n)1/2 = 0.34 and use the prior distribution

τ ∼ GAMMA(3, 0.75) of Example 8.4, then what Bayesian posterior probabil-
ity intervals can we give for τ and for σ? The likelihood function of the data
x = (x1, . . . , xn) is

p(x|θ) ∝
n∏

i=1

θ−1/2 exp
(
−x2

i

2θ

)
= θ−n/2 exp

(
−ns2

2θ

)
,

where we denote σ2 = θ, and the posterior distribution of θ is

p(θ|x) ∝ θ−(α0+1) exp
(
−κ0

θ

)
× θ−n/2 exp

(
−ns2

2θ

)

= θ−(αn+1) exp
(
−κn

θ

)
,

where αn = α0 + n/2 and κn = κ0 + ns2/2. We recognize this as the kernel
of the IG(αn, κn) density function. Notice that the posterior has a relatively
simple form because θ appears in the denominator of the exponential factor
of the inverse-gamma prior. If we had used a gamma prior for the variance
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Figure 8.4. Prior density and posterior density for the precision of hemoglobin
measurements. The gamma prior (fine line) contributes information corresponding
to six measurements. The posterior (heavy line) combines this information with data
on 42 subjects to give greater precision. (See Examples 8.4 and 8.8.)

θ (instead of the precision τ = 1/θ), then θ would have appeared in the
numerator of the exponential factor, making the posterior density unwieldy.

For our data, αn = 3 + 42/2 = 24 and κn = 0.75 + 42(0.34)2/2 = 3.178,
so that a 95% posterior probability interval for τ is (4.84, 10.86), computed
in R as qgamma(c(.025, .975), 24, 3.18). The corresponding interval for
σ is (0.303, 0.455). The frequentist 95% confidence interval for σ =

√
θ

based on ns2/θ ∼ CHISQ(n) is (0.280, 0.432), and can be computed in R
as sqrt(42*(.34)^2/qchisq(c(.975,.025), 42)). The gamma prior and
posterior distributions for the precision τ are shown in Figure 8.4 for τ in the
interval (1, 16).

Notes: (1) Because the normal mean is assumed known, µ = 0, we have
ns2/σ2 =

∑
(xi − µ)2/σ2 =

∑
x2

i /σ2 distributed as chi-squared with
n (not n−1) degrees of freedom. (2) This example is loosely based on
a real situation reported in [HF94] and used as an extended example
in Unit 14 of [Tru02]. In this study, s = 0.34 based on n = 42 sub-
jects. Complications in practice are that readings from the new device
appear to be slightly biased and that the laboratory determinations,
while more precise than those from the new device, are hardly free of
measurement error. Fortunately, in this clinical setting the precision
of both kinds of measurements is much better than it needs to be. ♦
In the next two chapters, we look at Bayesian estimation problems where

computationally intensive methods are required to find posterior distributions.
Specifically, the concepts of continuous Markov chains from Chapter 7 are used
to implement Gibbs samplers.



206 8 Introduction to Bayesian Estimation

8.3 Problems

Problems Related to Examples 8.1 and 8.5 (Binomial Data)

8.1 In a situation similar to Example 8.1, suppose a political consultant
chooses the prior BETA(380, 220) to reflect his assessment of the proportion
of the electorate favoring Proposition B.

a) In terms of a most likely value for π and a 95% probability interval for π,
describe this consultant’s view of the prospects for Proposition B.

b) If a poll of 100 randomly chosen registered voters shows 62% opposed to
Proposition B, do you think the consultant (a believer in Bayesian infer-
ence) now fears Proposition B will fail? Quantify your answer with specific
information about the posterior distribution. Recall that in Example 8.5
a poll of 1000 subjects showed 62% in favor of Proposition A. Contrast
that situation with the current one.

c) Modify the R code of Example 8.5 to make a version of Figure 8.5 (p207)
that describes this problem.

d) Pollsters sometimes report the margin of sampling error for a poll with
n subjects as being roughly given by the formula 100/

√
n%. According

to this formula, what is the (frequentist’s) margin of error for the poll in
part (b)? How do you suppose the formula is derived?

Hints: (a) Use R code qbeta(c(.025,.975), 380, 220) to find one 95% prior prob-

ability interval. (b) One response: P{π < 0.55} < 1%. (d) A standard formula for an

interval with roughly 95% confidence is p±1.96
√

p(1− p)/n, where n is “large” and

p is the sample proportion in favor (see Example 1.6). What value of π maximizes

π(1− π)? What if π = 0.4 or 0.6?

8.2 In Example 8.1, we require a prior distribution with E(π) ≈ 0.55 and
P{0.51 < π < 0.59} ≈ 0.95. Here we explore how one might find suitable
parameters α and β for such a beta-distributed prior.

a) For a beta distribution, the mean is µ = α/(α + β) and the variance is
σ2 = αβ/[(α+β)2(α+β +1)]. Also, a beta distribution with large enough
values of α and β is roughly normal, so that P{µ− 2σ < π < µ + 2σ} ≈
0.95. Use these facts to find values of α and β that approximately satisfy
the requirements. (Theoretically, this normal distribution would need to
be truncated to have support (0, 1).)

b) The following R script finds values of α and β that may come close to
satisfying the requirements and then checks to see how well they succeed.

alpha = 1:2000 # trial values of alpha

beta = .818*alpha # corresponding values of beta

# Vector of probabilities for interval (.51, .59)

prob = pbeta(.59, alpha, beta) - pbeta(.51, alpha, beta)

prob.err = abs(.95 - prob) # errors for probabilities
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Figure 8.5. Prior and posterior densities for the population proportion π favoring
Proposition B (see Problem 8.1). Here the prior (fine line) reflects strong optimism
that the proposition is leading. The posterior (heavy line), taking into account results
of a relatively small poll with 62% opposed, does little to dampen the optimism.

# Results: Target parameter values

t.al = alpha[prob.err==min(prob.err)]

t.be = round(.818*t.al)

t.al; t.be

# Checking: Achieved mean and probability

a.mean = t.al/(t.al + t.be)

a.mean

a.prob = pbeta(.59, t.al, t.be) - pbeta(.51, t.al, t.be)

a.prob

What assumptions about α and β are inherent in the script? Why do we
use β = 0.818α? What values of α and β are returned? For the values of
the parameters considered, how close do we get to the desired values of
E(π) and P{0.51 < π < 0.59}?

c) If the desired mean is 0.56 and the desired probability in the interval
(0, 51, 0.59) is 90%, what values of the parameters are returned by a suit-
ably modified script?

8.3 In practice, the beta family of distributions offers a rich variety of
shapes for modeling priors to match expert opinion.

a) Beta densities p(π) are defined on the open unit interval. Observe that
parameter α controls behavior of the density function near 0. In particular,
find the value p(0+) and the slope p′(0+) in each of the following five cases:
α < 1, α = 1, 1 < α < 2, α = 2, and α > 2. Evaluate each limit as being 0,
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positive and finite, ∞, or −∞. (As usual, 0+ means to take the limit as
the argument approaches 0 through positive values.)

b) By symmetry, parameter β controls behavior of the density function
near 1. Thus, combinations of the parameters yield 25 cases, each with its
own “shape” of density. In which of these 25 cases does the density have a
unique mode in (0, 1)? The number of possible inflection points of a beta
density curve is 0, 1, or 2. For each of the 25 cases, give the number of
inflection points.

c) The R script below plots examples of each of the 25 cases, scaled vertically
(with top) to show the properties in parts (a) and (b) about as well as
can be done and yet show most of each curve.

alpha = c(.5, 1, 1.2, 2, 5); beta = alpha

op = par(no.readonly = TRUE) # records existing parameters

par(mfrow=c(5, 5)) # formats 5 x 5 matrix of plots

par(mar=rep(2, 4), pty="m") # sets margins

x = seq(.001, .999, .001)

for (i in 1:5) {

for (j in 1:5) {

top = .2 + 1.2 * max(dbeta(c(.05, .2, .5, .8, .95),

alpha[j], beta[i]))

plot(x,dbeta(x, alpha[i], beta[j]),

type="l", ylim=c(0, top), xlab="", ylab="",

main=paste("BETA(",alpha[j],",", beta[i],")", sep="")) }

}

par(op) # restores former parameters

Run the code and compare the resulting matrix of plots with your results
above (α-cases are rows, β columns). What symmetries within and among
the 25 plots are lost if we choose beta = c(.7, 1, 1.7, 2, 7)? (See
Figure 8.6.)

8.4 In Example 8.1, we require a prior distribution with E(π) ≈ 0.55 and
P{0.51 < π < 0.59} ≈ 0.95. If we are willing to use nonbeta priors, how might
we find ones that meet these requirements?

a) If we use a normal distribution, what parameters µ and σ would satisfy
the requirements?

b) If we use a density function in the shape of an isosceles triangle, show that
it should have vertices at (0.4985, 0), (0.55, 19.43), and (0.6015, 0).

c) Plot three priors on the same axes: BETA(330, 270) of Example 8.1 and
the results of parts (a) and (b).

d) Do you think the expert would object to any of these priors as an expres-
sion of her feelings about the distribution of π?

Notes: (c) Plot: Your result should be similar to Figure 8.7. Use the method in Exam-

ple 8.5 to put several plots on the same axes. Experiment: If v = c(.51, .55, .59)
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Figure 8.6. Shapes of beta density functions. Shape parameters α and β control
the behavior of the density near 0 and 1, respectively; 25 fundamentally different
shapes are shown here. (See Problem 8.3.)

and w = c(0, 10, 0), then what does lines(v, w) add to an existing plot? (d) The

triangular prior would be agreeable only if she thinks values of π below 0.4985 or

above 0.6015 are absolutely impossible.

8.5 Computational methods are often necessary if we multiply the kernels
of the prior and likelihood and then can’t recognize the result as the kernel
of a known distribution. This can occur, for example, when we don’t use a
conjugate prior. We illustrate several computational methods using the polling
situation of Examples 8.1 and 8.5 where we seek to estimate the parameter π.

To begin, suppose we are aware of the beta prior p(π) (with α = 330 and
β = 270) and the binomial likelihood p(x|π) (for x = 620 subjects in favor
out of n = 1000 responding). But we have not been clever enough to notice
the convenient beta form of the posterior p(π|x).

We wish to compute the posterior estimate of centrality E(π|x) and the
posterior probability P{π > .6|x} of a potential “big win” for the ballot propo-
sition. From the equation in (8.2), we have E(π|x)=

∫ 1

0
πp(π)p(x|π) dπ/D and

P (π > 0.6|x) =
∫ 1

0.6
p(π)p(x|π) dπ/D, where the denominator of the posterior
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is D =
∫ 1

0
p(π)p(x|π) dπ. You should verify these equations for yourself before

going on.

a) The following R script uses Riemann approximation to obtain the desired
posterior information. Match key quantities in the program with those in
the equations above. Also, interpret the last two lines of code. Run the
program and compare your results with those obtainable directly from
the known beta posterior of Example 8.5. (In R, pi means 3.1416, so we
use pp, population proportion, for the grid points of parameter π.)

x = 620; n = 1000 # data

m = 10000; pp = seq(0, 1, length=m) # grid points

igd = dbeta(pp, 330, 270) * dbinom(x, n, pp) # integrand

d = mean(igd); d # denominator

# Results

post.mean = mean(pp*igd)/d; post.mean

post.pr.bigwin = (1/m)*sum(igd[pp > .6])/d; post.pr.bigwin

post.cum = cumsum((igd/d)/m)

min(pp[post.cum > .025]); min(pp[post.cum > .975])

b) Now suppose we choose the prior NORM(0.55, 0.02) to match the expert’s
impression that the prior should be centered at π = 55% and put 95% of its
probability in the interval 51% < π < 59%. The shape of this distribution
is very similar to BETA(330, 270) (see Problem 8.4). However, the normal
prior is not a conjugate prior. Write the kernel of the posterior, and say
why the method of Example 8.5 is intractable. Modify the program above
to use the normal prior (substituting the function dnorm for dbeta). Run
the modified program. Compare the results with those in part (a).

c) The scripts in parts (a) and (b) above are “wasteful” because grid values
of π are generated throughout (0, 1), but both prior densities are very
nearly 0 outside of (0.45, 0.65). Modify the program in part (b) to integrate
over this shorter interval.
Strictly speaking, you need to divide d, post.mean, and so on, by 5 be-
cause you are integrating over a region of length 1/5. (Observe the change
in b if you shorten the interval without dividing by 5.) Nevertheless, show
that this correction factor cancels out in the main results. Compare your
results with those obtained above.

d) Modify the R script of part (c) to do the computation for a normal
prior using Monte Carlo integration. Increase the number of iterations
to m ≥ 100 000, and use pp = sort(runif(m, .45, .65)). Part of the
program depends on having the π-values sorted in order. Which part?
Why? Compare your results with those obtained by Riemann approxi-
mation. (If this were a multidimensional integration, some sort of Monte
Carlo integration would probably be the method of choice.)

e) (Advanced) Modify part (d) to generate normally distributed values of
pp (with sorted rnorm(m, .55,.02)), removing the dnorm factor from the
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Figure 8.7. Two nonbeta priors. One (thick lines) has an isosceles triangle as
its density. The other, NORM(.55, .02) (dashed), is hardly distinguishable from
BETA(330, 270) of Example 8.1 (thin). For all three priors, P{.51 < π < .59} ≈ 95%.
Only the beta prior is conjugate with binomial data. Bayesian inference using the
nonbeta priors requires special numerical methods. (See Problems 8.4, 8.5, and 8.6.)

integrand. Explain why this works, and compare the results with those
above.
This method is efficient because it concentrates values of π in the “im-
portant” part of (0, 1), where computed quantities are largest. So there
would be no point in restricting the range of integration as in parts (c)
and (d). This is an elementary example of importance sampling.

8.6 Metropolis algorithm. In Section 7.5, we illustrated the Metropolis algo-
rithm as a way to sample from a bivariate normal distribution having a known
density function. In Problem 8.5, we considered some methods of computing
posterior probabilities that arise from nonconjugate prior distributions. Here
we use the Metropolis algorithm in a more serious way than before to sample
from posterior distributions arising from the nonconjugate prior distributions
of Problem 8.4.

a) Use the Metropolis algorithm to sample from the posterior distribution
of π arising from the prior NORM(0.55, 0.02) and a binomial sample of
size n = 1000 with x = 620 respondents in favor. Simulate m = 100 000
observations from the posterior to find a 95% Bayesian probability in-
terval for π. Also, if you did Problem 8.5, find the posterior probability
P{π > 0.6|x}. The R code below implements this computation using a
symmetrical uniform jump function and compares results with those from
the very similar conjugate prior BETA(330, 270). See the top panel in Fig-
ure 8.8.
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set.seed(1234)

m = 100000

piec = numeric(m); piec[1] = 0.7 # states of chain

for (i in 2:m) {

piec[i] = piec[i-1] # if no jump

piep = runif(1, piec[i-1]-.05, piec[i-1]+.05) # proposal

nmtr = dnorm(piep, .55, .02)*dbinom(620, 1000, piep) %%1

dmtr = dnorm(piec[i-1], .55, .02)*dbinom(620, 1000, piec[i-1])

r = nmtr/dmtr; acc = (min(r,1) > runif(1)) # accept prop.?

if(acc) {piec[i] = piep} }

pp = piec[(m/2+1):m] # after burn-in

quantile(pp, c(.025,.975)); mean(pp > .6)

qbeta(c(.025,.975), 950, 650); 1-pbeta(.6, 950, 650)

hist(pp, prob=T, col="wheat", main="")

xx = seq(.5, .7, len=1000)

lines(xx, dbeta(xx, 950, 650), lty="dashed", lwd=2)

b) Modify the program of part (a) to find the posterior corresponding to the
“isosceles” prior of Problem 8.4. Make sure your initial value is within the
support of this prior, and use the following lines of code for the numerator
and denominator of the ratio of densities. Notice that, in this ratio, the
constant of integration cancels, so it is not necessary to know the height
of the triangle. In some more advanced applications of the Metropolis
algorithm, the ability to ignore the constant of integration is an impor-
tant advantage. Explain why results here differ considerably from those
in part (a). See the bottom panel in Figure 8.8.

nmtr = max(.0515-abs(piep-.55), 0)*dbinom(620, 1000, piep)

dmtr = max(.0515-abs(piec[i-1]-.55), 0)*

dbinom(620, 1000, piec[i-1])

Notes: (a) In the program, the code %%1 (mod 1) restricts the value of nmtr to

(0, 1). This might be necessary if you experiment with parameters different from

those in this problem. (b) Even though the isosceles prior may seem superficially

similar to the beta and normal priors, it puts no probability above 0.615, so the

posterior can put no probability there either. In contrast, the data show 620 out

of 1000 respondents are in favor.

8.7 A commonly used frequentist principle of estimation provides a point
estimate of a parameter by finding the value of the parameter that maximizes
the likelihood function. The result is called a maximum likelihood esti-
mate (MLE). Here we explore one example of an MLE and its similarity to
a particular Bayesian estimate.

Suppose we observe x = 620 successes in n = 1000 binomial trials and wish
to estimate the probability π of success. The likelihood function is p(x|π) ∝
πx(1− π)n−x taken as a function of π.

a) Find the MLE π̂. A common way to maximize p(x|π) in π is to maximize
`(π) = ln p(x|π). Solve d`(π)/dπ = 0 for π, and verify that you have found
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Figure 8.8. Posteriors from nonconjugate priors. Data: 620 subjects in favor out
of 1000. Top: The simulated posterior distribution from the prior NORM(.55, .02) is
nearly the same as the posterior BETA(950, 650) (dashed) from the conjugate prior
BETA(330, 270). Bottom: In contrast, support of the posterior from the “isosceles”
prior in Figure 8.7 cannot extend beyond (0.485, 0.615). (See Problem 8.6.)

an absolute maximum. State the general formula for π̂ and then its value
for x = 620 and n = 1000.

b) Plot the likelihood function for n = 1000 and x = 620. Approximate its
maximum value from the graph. Then do a numerical maximization with
the R script below. Compare it with the answer in part (a).

pp = seq(.001, .999, .001) # avoid ’pi’ (3.1416)

like = dbinom(620, 1000, pp)

plot(like, type="l"); pp[like==max(like)]

c) Agresti-Coull confidence interval. The interval π̃±1.96
√

π̃(1− π̃)/(n + 4),
where π̃ = (x+2)/(n+4), has approximately 95% confidence for estimat-
ing π. (This interval is based on the normal approximation to the bino-
mial; see Example 1.6 on p13 and Problems 1.16 and 1.17.) Evaluate its
endpoints for 620 successes in 1000 trials.

d) Now we return to Bayesian estimation. A prior distribution that provides
little, if any, definite information about the parameter to be estimated is
called a noninformative prior or flat prior. A commonly used nonin-
formative beta prior has α0 = β0 = 1, which is the same as UNIF(0, 1). For
this prior and data consisting of x successes in n trials, find the posterior
distribution and its mode.

e) For the particular case with n = 1000 and x = 620, find the posterior
mode and a 95% probability interval.

Note: In many estimation problems, the MLE is in close numerical agreement with

the Bayesian point estimate based on a noninformative prior and on the posterior
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mode. Also, a confidence interval based on the MLE may be numerically similar

to a Bayesian probability interval from a noninformative prior. But the underlying

philosophies of frequentists and Bayesians differ, and so the ways they interpret

results in practice may also differ.

Problems Related to Examples 8.2 and 8.6 (Poisson Data)

8.8 Recall that in Example 8.6 researchers counted a total of t = 256 mice
on n = 50 occasions. Based on these data, find the interval estimate for λ
described in each part. Comment on similarities and differences.

a) The prior distribution GAMMA(α0, κ0) has least effect on the posterior
distribution GAMMA(α0 + t, κ0 + n) when α0 and κ0 are both small. So
prior parameters α0 = 1/2 and κ0 = 0 give a Bayesian 95% posterior
probability interval based on little prior information.

b) Assuming that nλ is large, an approximate 95% frequentist confidence
interval for λ is obtained by dividing t± 1.96

√
t by n.

c) A frequentist confidence interval guaranteed to have at least 95% coverage
has lower and upper endpoints computable in R as qgamma(.025, t, n)
and gamma(.975, t+1, n), respectively.

Notes: (a) Actually, using κ0 = 0 gives an improper prior. See the discussion in

Problem 8.12. (b) This style of CI has coverage inaccuracies similar to those of the

traditional CIs for binomial π (see Section 1.2). (c) See [Sta08], Chapter 12.

8.9 In a situation similar to that in Examples 8.2 and 8.6, suppose that we
want to begin with a prior distribution on the parameter λ that has E(λ) ≈ 8
and P{λ < 12} ≈ 0.95. Subsequently, we count a total of t = 158 mice in
n = 12 trappings.

a) To find the parameters of a gamma prior that satisfy the requirements
above, write a program analogous to the one in Problem 8.2. (You can
come very close with α0 an integer, but don’t restrict κ0 to integer values.)

b) Find the gamma posterior that results from the prior in part (a) and the
data given above. Find the posterior mean and a 95% posterior probability
interval for λ.

c) As in Figure 8.2(a), plot the prior and the posterior. Why is the posterior
here less concentrated than the one in Figure 8.2(a)?

d) The ultimate noninformative gamma prior is the improper prior having
α0 = κ0 = 0 (see Problems 8.7 and 8.12 for definitions). Using this prior
and the data above, find the posterior mean and a 95% posterior proba-
bility interval for λ. Compare the interval with the interval in part (c).

Partial answers: In (a) you can use a prior with α0 = 13. Our posterior intervals

in (c) and (d) agree when rounded to integer endpoints: (11, 15), but not when

expressed to one- or two-place accuracy—as you should do.
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8.10 In this chapter, we have computed 95% posterior probability intervals
by finding values that cut off 2.5% from each tail. This method is computa-
tionally relatively simple and gives satisfactory intervals for most purposes.
However, for skewed posterior densities, it does not give the shortest interval
with 95% probability.

The following R script finds the shortest interval for a gamma posterior.
(The vectors p.low and p.up show endpoints of enough 95% intervals that
we can come very close to finding the one for which the length, long, is a
minimum.)

alp = 5; kap = 1

p.lo = seq(.001,.05, .00001); p.up = .95 + p.lo

q.lo = qgamma(p.lo, alp, kap); q.up = qgamma(p.up, alp, kap)

long = q.up - q.lo # avoid confusion with function ‘length’

c(q.lo[long==min(long)], q.up[long==min(long)])

a) Compare the length of the shortest interval with that of the usual
(probability-symmetric) interval. What probability does the shortest in-
terval put in each tail?

b) Use the same method to find the shortest 95% posterior probability inter-
val in Example 8.6. Compare it with the probability interval given there.
Repeat, using suitably modified code, for 99% intervals.

c) Suppose a posterior density function has a single mode and decreases
monotonically as the distance away from the mode increases (for example,
a gamma density with α > 1). Then the shortest 95% posterior probability
interval is also the 95% probability interval corresponding to the highest
values of the posterior: a highest posterior density interval. Explain
why this is true. For the 95% intervals in parts (a) and (b), verify that the
heights of the posterior density curve are indeed the same at each end of
the interval (as far as allowed by the spacing 0.00001 of the probability
values used in the script).

8.11 Mark-recapture estimation of population size. In order to estimate the
number ν of fish in a lake, investigators capture r of these fish at random,
tag them, and then release them. Later (leaving time for mixing but not for
significant population change), they capture s fish at random from the lake
and observe the number x of tagged fish among them. Suppose r = 900,
s = 1100, and we observe x = 103. (This is similar to the situation described
in Problem 4.27 (p116), partially reprised here in parts (a) and (b).)

a) Method of moments estimate (MME). At recapture, an unbiased estimate
of the true proportion r/ν of tagged fish in the lake is x/s. That is,
E(x/s) = r/ν. To find the MME of ν, equate the observed value x/s to its
expectation and solve for ν. (It is customary to truncate to an integer.)

b) Maximum likelihood estimate (MLE). For known r, s, and ν, the hyper-
geometric distribution function pr,s(x|ν) = (r

x)(ν−r
s−x)/(ν

s ) gives the prob-
ability of observing x tagged fish at recapture. With known r and s and
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observed data x, the likelihood function of ν is pr,s(x|ν). Find the MLE;
that is, the value of ν that maximizes pr,s(x|ν).

c) Bayesian interval estimate. Suppose we believe ν lies in (6000, 14 000) and
are willing to take the prior distribution of ν as uniform on this interval.
Use the R code below to find the cumulative posterior distribution of ν|x
and thence a 95% Bayesian interval estimate of ν. Explain the code.

r = 900; s = 1100; x = 103; nu = 6000:14000; n = length(nu)

prior = rep(1/n, n); like = dhyper(x, r, nu-r, s)

denom = sum(prior*like)

post = prior*like/denom; cumpost = cumsum(post)

c(min(nu[cumpost >= .025]), max(nu[cumpost <= .975]))

d) Use the negative binomial prior: prior = dnbinom(nu-150, 150, .014).
Compare the resulting Bayesian interval with that of part (c) and with a
bootstrap confidence interval obtained as in Problem 4.27.

Problems Related to Examples 8.3 and 8.7 (Normal Data, σ Known)

8.12 In Example 8.7, we show formulas for the mean and precision of the
posterior distribution. Suppose five measurements of the weight of the beam,
using a scale known to have precision τ = 1, are: 698.54, 698.45, 696.09,
697.14, 698.62 (x̄ = 697.76).

a) Based on these data and the prior distribution of Example 8.3, what is
the posterior mean of µ? Does it matter whether we choose the mean, the
median, or the mode of the posterior distribution as our point estimate?
(Explain.) Find a 95% posterior probability interval for µ. Also, suppose
we are unwilling to use this beam if it weighs more than 699 pounds; what
are the chances of that?

b) Modify the R script shown in Example 8.5 to plot the prior and posterior
densities on the same axes. (Your result should be similar to Figure 8.3.)

c) Taking a frequentist point of view, use the five observations given above
and the known variance of measurements produced by our scale to give a
95% confidence interval for the true weight of the beam. Compare it with
the results of part (a) and comment.

d) The prior distribution in this example is very “flat” compared with the
posterior: its precision is small. A practically noninformative normal prior
is one with precision τ0 that is much smaller than the precision of the data.
As τ0 decreases, the effect of µ0 diminishes. Specifically, limτ0→0 µn = x̄
and limτ0→0 τn = nτ. The effect is as if we had used p(µ) ∝ 1 as the
prior. Of course, such a prior distribution is not strictly possible because∫∞
−∞p(µ) dµ would be ∞. But it is convenient to use such an improper

prior as shorthand for understanding what happens to a posterior as
the prior gets less and less informative. What posterior mean and 95%
probability interval result from using an improper prior with our data?
Compare with the results of part (c).
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e) Now change the example: Suppose that our vendor supplies us with a
more consistent product so that the prior NORM(701, 5) is realistic and
that our data above come from a scale with known precision τ = 0.4.
Repeat parts (a) and (b) for this situation.

8.13 (Theoretical) The purpose of this problem is to derive the posterior
distribution p(µ|x) resulting from the prior NORM(µ0, σ0) and n independent
observations xi ∼ NORM(µ, σ). (See Example 8.7.)

a) Show that the likelihood is

f(x|µ) ∝
n∏

i=1

exp
[
− 1

2σ2
(xi − µ)2

]
∝ exp

[
−

n∑

i=1

1
2σ2

(x̄− µ)2
]

.

To obtain the first expression above, recall that the likelihood function
is the joint density function of x = (x1, . . . , xn)|µ. To obtain the second,
write (xi−µ)2 = [(xi− x̄)+ (x̄−µ)]2, expand the square, and sum over i.
On distributing the sum, you should obtain three terms. One of them
provides the desired result, another is 0, and the third is irrelevant because
it does not contain the variable µ. (A constant term in the exponential is
a constant factor of the likelihood, which is not included in the kernel.)

b) To derive the expression for the kernel of the posterior, multiply the kernels
of the prior and the likelihood, and expand the squares in each. Then put
everything in the exponential over a common denominator, and collect
terms in µ2 and µ. Terms in the exponent that do not involve µ are
constant factors of the posterior density that may be adjusted as required
in completing the square to obtain the desired posterior kernel.

Problems Related to Examples 8.3 and 8.7 (Normal Data, µ = 0)

8.14 For a pending American football game, the “point spread” is estab-
lished by experts as a measure of the difference in ability of the two teams. The
point spread is often of interest to gamblers. Roughly speaking, the favored
team is thought to be just as likely to win by more than the point spread as
to win by less or to lose. So ideally a fair bet that the favored team “beats the
spread” could be made at even odds. Here we are interested in the difference
x = v −w between the point spread v, which might be viewed as the favored
team’s predicted lead, and the actual point difference w (the favored team’s
score minus its opponent’s) when the game is played.

a) Suppose an amateur gambler, perhaps interested in bets that would not
have even odds, is interested in the precision of x and is willing to assume
x ∼ NORM(0, σ). Also, recalling relatively few instances with |x| > 30,
he decides to use a prior distribution on σ that satisfies P{10 < σ < 20} =
P{100 < σ2 = 1/τ < 400} = P{1/400 < τ < 1/100} = 0.95. Find parame-
ters α0 and κ0 for a gamma-distributed prior on τ that approximately
satisfy this condition. (Imitate the program in Problem 8.2.)
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b) Suppose data for point spreads and scores of 146 professional football
games show s = (

∑
x2

i /n)1/2 = 13.3. Under the prior distribution of
part (a), what 95% posterior probability intervals for τ and σ result from
these data?

c) Use the noninformative improper prior distribution with α0 = κ0 = 0 and
the data of part (b) to find 95% posterior probability intervals for τ and σ.
Also, use these data to find the frequentist 95% confidence interval for σ
based on the distribution CHISQ(146), and compare it with the posterior
probability interval for σ.

Notes and hints: (a) Parameters α0 = 11, κ0 = 2500 give probability 0.945, but your

program should give integers that come closer to 95%. (b) The data x in part (b),

taken from more extensive data available online [Ste92], are for 1992 NFL home

games; x̄ ≈ 0 and the data pass standard tests for normality. For a more detailed

discussion and analysis of point spreads, see [Ste91]. (c) The two intervals for σ agree

closely, roughly (12, 15). You should report results to one decimal place.

8.15 We want to know the precision of an analytic device. We believe its
readings are normally distributed and unbiased. We have five standard spec-
imens of known value to use in testing the device, so we can observe the
error xi that the device makes for each specimen. Thus we assume that the xi

are independent NORM(0, σ), and we wish to estimate σ = 1/
√

τ .

a) We use information from the manufacturer of the device to determine
a gamma-distributed prior for τ . This information is provided in terms
of σ. Specifically, we want the prior to be consistent with a median of
about 0.65 for σ and with P{σ < 1} ≈ 0.95. If a gamma prior distribution
on τ has parameter α0 = 5, then what value of the parameter κ0 comes
close to meeting these requirements?

b) The following five errors are observed when analyzing test specimens:
−2.65, 0.52, 1.82,−1.41, 1.13. Based on the prior distribution in part (a)
and these data, find the posterior distribution, the posterior median value
of τ , and a 95% posterior probability interval for τ . Use these to give the
posterior median value of σ and a 95% posterior probability interval for σ.

c) On the same axes, make plots of the prior and posterior distributions of τ .
Comment.

d) Taking a frequentist approach, find the maximum likelihood estimate
(MLE) τ̂ of τ based on the data given in part (b). Also, find 95% confidence
intervals for σ2, σ, and τ . Use the fact that

∑n
i=1 x2

i /σ2 ∼ CHISQ(n) =
GAMMA(n/2, 1/2). Compare these with the Bayesian results in part (b).

Notes: The invariance principle of MLEs states that τ̂ = 1/σ̂2 = 1/σ̂2, where “hats”

indicate MLEs of the respective parameters. Also, the median of a random variable

is invariant under any monotone transformation. Thus, for the prior or posterior

distribution of τ (always positive), Med(τ) = 1/Med(σ2) = 1/[Med(σ)]2. But, in

general, expectation is invariant only under linear transformations. For example,

E(τ) 6= 1/E(σ2) and E(σ2) 6= [E(σ)]2.
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Using Gibbs Samplers to Compute Bayesian
Posterior Distributions

In Chapter 8, we introduced the fundamental ideas of Bayesian inference, in
which prior distributions on parameters are used together with data to obtain
posterior distributions and thus interval estimates of parameters. However, in
practice, Bayesian posterior distributions are often difficult to compute.

Gibbs sampling is a computational method that uses Markov chains, as
discussed in Chapter 7, to approximate posterior distributions. The central
idea is to use available information about a prior distribution and data to
construct an ergodic Markov chain whose limiting distribution is the desired
posterior distribution. Then we simulate enough steps of the chain to obtain
a good approximation to the limiting distribution.

In this chapter, we consider several relatively simple Bayesian models,
explicitly illustrating how to program suitable chains in R in order to approx-
imate posterior distributions and obtain interval estimates of parameters. In
Chapter 10, we show how WinBUGS software can simplify the programming
to do inference for more intricate Bayesian models.

9.1 Bayesian Estimates of Disease Prevalence

In Section 5.2, we considered how one might use the properties and results of
a medical screening test to estimate the prevalence of a disease. In particular,
we assumed we know the sensitivity and specificity of a screening test,

η = P{Positive test|Disease present} = P{T = 1|D = 1}

and
θ = P{Negative test|Disease absent} = P{T = 0|D = 0},

respectively. Based on these quantities, we sought to estimate the prevalence
of the disease π = P{D = 1} from the equation π = (τ + θ − 1)/(η + θ − 1),
where τ = P{T = 1}. If τ is estimated by t = A/n, which is the ratio of the

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 219
Use R!, DOI 10.1007/978-0-387-68765-0_9, © Springer Science+Business Media, LLC 2010
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number of individuals with positive tests to the sample size, then replacing τ
by t in this equation gives an estimate p of π,

p =
A/n + θ − 1
η + θ − 1

=
t + θ − 1
η + θ − 1

. (9.1)

For the derivation, see page 123. Endpoints of a confidence interval for τ can
be plugged into this equation to obtain a confidence interval for π.

However, we have seen some circumstances in which such an estimate of π
falls outside the interval [0, 1]. Even more often, the corresponding confidence
interval for π can extend beyond this interval. Another difficulty with this
method arises when the sample size is small and the proportion of “Successes”
is near 0 or 1. Then binomial confidence intervals are known to be problematic
and equation (9.1) may not provide a useful interval estimate of π.

In Section 6.4, we investigated the situation in which, for a particular pop-
ulation, we know the predictive power of a positive test γ = P{D = 1|T = 1}
and a negative test δ = P{D = 0|T = 0} in addition to η and θ. Here the
relationships γ = πη/[πη+(1−π)(1−θ)] and δ = (1−π)θ/[π(1−η)+(1−π)θ]
follow from Bayes’ Theorem. So if we knew π along with η and θ, we could
compute γ and δ. Accordingly, it seems reasonable that we should be able
to compute π if η, θ, γ, and δ are known. In the examples of Section 6.4, we
saw how this can be done either by simulation (simple Gibbs sampler) or
analytically (solving for the steady state of a Markov chain). Unfortunately,
these particular procedures are mainly of theoretical and pedagogical interest
because data to estimate γ and (especially) δ are not typically available in
practical situations.

Fortunately, in a framework with a Bayesian prior distribution, we can use
a Gibbs sampler to find useful estimates of π. With a prior distribution on π
having support [0, 1], the following example shows how to obtain a posterior
probability interval for π based on data A and n, and on known values of
the sensitivity η and specificity θ, with no need to make assumptions about
the predictive values γ and δ. Because values of π outside of [0, 1] are not
contemplated in the prior, they have zero probability under the posterior.

Example 9.1. Suppose we use a screening test with sensitivity η = 99% and
specificity θ = 97%, and among n = 1000 subjects we see A = 49 positive
results. We use a beta prior distribution for π. That is, π ∼ BETA(α, β). Not
claiming to have advance information about π, we choose the flat prior with
α = β = 1, so that the prior is π ∼ BETA(1, 1) = UNIF(0, 1).

Our Gibbs sampler starts with an arbitrary initial value π∗1 of π. From π∗1
and our knowledge of η and θ, we speculate as to the number X of the A
test-positive subjects that may have the disease. Based on π∗1 , the probability
that any one of these A subjects has the disease is equal to the predictive
value of a positive test, γ∗1 = π∗1η/[π∗1η+(1−π∗1)(1−θ)]. So we use a binomial
distribution with A trials and this Success probability γ∗1 to simulate X. In
much the same way, we simulate the number Y of the B = n−A test-negative
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subjects that have the disease. Altogether, we now have X + Y subjects out
of n with the disease, and we can use this simulated total to update the beta
distribution for π, as in the election polling examples of Chapter 8. From this
updated distribution, we simulate π∗2 , and we iterate the procedure from there
to get π∗3 , π∗4 , . . . . In symbols, the partial conditional distributions relating the
key quantities are

X|A, π ∼ BINOM(A, γ), Y |B, π ∼ BINOM(B, 1− δ), and

π|X, Y ∼ BETA(α + X + Y, β + n−X − Y ),

where γ = πη/[πη + (1 − π)(1 − η)], δ = (1 − π)θ/[π(1 − η) + (1 − π)θ], and
B = n−A. These relationships are used in the R code below. Simulated values
of π shown with asterisks (*) above are elements of the vector PI (all capitals)
in the code.

Because the distribution of π∗i = PI[i] depends only on known parameters
and the previous value π∗i−1 = PI[i-1], the values in PI simulate a Markov
process with a continuous state space as in Chapter 7. It can be shown that
the limiting distribution of this process is the posterior distribution of π based
on the prior and the data.

# set.seed(1237)

m = 50000 # iterations

PI = numeric(m); PI[1] = .5 # vector for results, initial value

alpha = 1; beta = 1 # parameters of beta prior

eta = .99; theta = .97 # sensitivity; specificity

n = 1000; A = 49; B = n - A # data

for (i in 2:m)

{

num.x = PI[i-1]*eta; den.x = num.x + (1-PI[i-1])*(1 - theta)

X = rbinom(1, A, num.x/den.x)

num.y = PI[i-1]*(1 - eta); den.y = num.y + (1-PI[i-1])*theta

Y = rbinom(1, B, num.y/den.y)

PI[i] = rbeta(1, X + Y + alpha, n - X - Y + beta)

}

aft.brn = seq(m/2 + 1,m)

mean(PI[aft.brn])

quantile(PI[aft.brn], c(.025, .975))

par(mfrow=c(2,1))

plot(aft.brn, PI[aft.brn], type="l")

hist(PI[aft.brn], prob=T)

par(mfrow=c(1,1))

> mean(PI[aft.brn])

[1] 0.02059591

> quantile(PI[aft.brn], c(.025, .975))

2.5% 97.5%

0.007428221 0.035523630
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Figure 9.1. History plot (top) and histogram of 25 000 sampled prevalence values
after burn-in. The plot shows good mixing of the Gibbs sampler in Example 9.1.
The histogram approximates the posterior distribution π|A, B; an estimated density
curve is superimposed (see Problem 9.7). Dotted lines indicate the 95% Bayesian
interval estimate of π. Compare with Figure 9.10 on page 239.

The histogram in the top panel of Figure 9.1 indicates the posterior distri-
bution of π. Taking the mean of this distribution, we have the point estimate
π = 0.021, and cutting off 2.5% from each tail of this simulated distribution,
we have the Bayesian interval estimate (0.007, 0.036) for π. Problem 9.1 in-
vites you to see how these results change when we use some informative prior
distributions.

Essentially, Figure 9.2 is made using the following additional statements.

par(mfrow=c(1,2))

acf(PI[aft.brn], ylim=c(0, .6))

plot(1:m, cumsum(PI)/(1:m), type="l", ylim=c(.016, .024))

par(mfrow=c(1,1))

The three diagnostic graphs in the top panel of Figure 9.1 and in Figure 9.2
show that, in spite of some positive autocorrelation for neighboring values
of π∗i |A,B, the sampler mixes well and running averages after burn-in converge
smoothly to the point estimate. (See Problem 9.5 for more about running
averages and burn-in.)

It is easy to see why there is positive autocorrelation. If by chance at some
step i in the iteration we obtain a rather large value of π∗i , then it is some-
what likely that unusually large values of X or Y or both will result at step
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Figure 9.2. The ACF plot (left) of sampled values of π after burn-in for Example 9.1
shows autocorrelations of sampled values decaying to insignificance for lags above 25.
The plot of cumulative averages of sampled values shows steady convergence to the
Bayesian point estimate of π after burn-in (dotted vertical line).

i + 1. Consequently, the first parameter of the beta distribution may be in-
flated, and along with it the expectation of the next value of π∗i . However,
the data and the prior exert an overall tendency towards appropriate values
of π∗i , so the process does not consistently “run away” towards ever larger
values. A mirror image of this argument holds in case we get an unusually
low value of π∗i at some step in the simulation. (See Problem 9.6 for more
on autocorrelations.)

In this example, equation (9.1) provides the traditional point estimate
p = 0.020 of π and the corresponding confidence interval (0.006, 0.034). [The
Agresti-Couil estimates of τ give p = 0.022 and (0.008, 0.036).] So in this
situation where equation (9.1) works well, the Gibbs sampler with a noninfor-
mative prior gives almost identical results. Moreover, Problem 9.3 illustrates
that a Gibbs sampler gives reasonable point and interval estimates of π, even
in situations where equation (9.1) gives problematic negative estimates. ♦

Although there are many important applications in which equation (9.1)
is not useful, the benefit of the Bayesian framework is not just to avoid absurd
estimates outside the range of possible parameter values. In practice, one sel-
dom encounters a situation where there is no prior information at all about
prevalence. For example, if π = 93%— or even π = 30%—for a serious disease,
the evidence of this public health catastrophe would be evident all around us
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without reference to data from medical screening tests. Also, in practice one
often encounters situations where there is very little data and a reasonable
approach is to meld expert opinion with the bit of objective information that
is available. For such reasons, it is fair to say that Gibbs sampling, as illus-
trated in Example 9.1, has wide applicability in estimating prevalence from
the results of screening tests across a broad spectrum of applications.

9.2 Bayesian Estimates of Normal Mean and Variance

In Chapter 8, we discussed separately (i) Bayesian estimation of the mean µ
of a normal population when the variance is known and (ii) Bayesian esti-
mation of the variance σ2 = θ when the mean is known. In this section, we
use a Gibbs sampler to provide Bayesian estimates of the normal mean and
variance simultaneously. In the following example, we see that—when rela-
tively flat priors are used—Bayesian results are numerically very similar to
those obtained by traditional methods based on Student’s t and chi-squared
distributions. In several problems, we explore the effect of informative priors.

Example 9.2. Changes in Students’ Heights. Heights of n = 41 young men
at a boarding school are measured in the morning and also in the evening.
For each student, the difference xi, morning height minus evening height, is
found. Considering these subjects to be a random sample from an appropriate
population, our main purpose is to estimate the population mean µ of the
change in height.

If we take differences in height xi, for i = 1, 2, ..., 41, to be normally
distributed, this example is similar in some ways to Examples 8.3 and 8.7
(concrete beams) and Examples 8.4 and 8.8 (hemoglobin). Here we assume
xi ∼ NORM(µ, σ), where both parameters are unknown. The classical unbi-
ased point estimators are x̄ = 1

n

∑
i xi for µ and s2 = 1

n−1

∑
i(xi − x̄)2 for

σ2 = θ. We seek Bayesian point and interval estimates for µ and σ.
Prior Distributions. First, we choose a prior distribution for µ of the form
NORM(µ0, σ0), where θ0 = σ2

0 . Specifically, we choose µ0 = 0 because we
have no reason to suppose heights differ systematically between morning and
evening. Also, we want a reasonably flat prior because we claim no particular
expertise in the matter of height changes, and we do not really know whether
students might grow or shrink a little during the day. Thus, rather arbitrarily,
we choose σ0 = 20 mm (about 3/4 of an inch), so θ0 = 400.

Next, we choose a prior distribution for θ of the form IG(α0, κ0), where
α0 and κ0 are shape and rate parameters, respectively. We do not have much
idea how accurately the measuring will be done, and differences involve two
measurements. Also, if there are differences in height during a day, those dif-
ferences may be larger for some students than for others. Accordingly, we
choose α0 = 1/2 and κ0 = 1/5, which means we think the standard deviation
of the differences is pretty sure to be between 0.3mm and 20 mm (computed
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from sqrt(1/qgamma(c(.975, .025), 1/2, 1/5)). This choice seems rea-
sonable. As heights go, a millimeter is very small and it seems unlikely that
measurements could be made much more precisely than that. Also, 20 mm
seems an unbelievably large amount of measurement error or variability in
daily changes among students.
Data. From the data, we find n = 41 differences xi, for which the sample mean
is x̄ = 9.6mm and the sample variance is s2 = 7.48, so that s = 2.73mm.
(See Problem 9.12 for the 41 differences.) A Bayesian analysis will combine
these data and our priors to give posterior distributions upon which we base
our inferences.
Posterior Distributions. Almost exactly as in Example 8.7, we have

µ|x, θ ∼ NORM(µ′,
√

θ′),

where the updated parameters (denoted with primes), reflecting the data, are
µ′ = θ′(nx̄/θ + µ0/θ0) and θ′ = (n/θ + 1/θ0)−1 = θ0θ/(nθ0 + θ). Also, similar
to our results in Example 8.8,

θ|x, µ ∼ IG(α′, κ′),

where α′ = α0 + n/2 and κ′ = κ0 + [(n− 1)s2 + n(x̄− µ)2]/2. The important
change from Example 8.8 is the second term inside brackets in the expres-
sion for κ′, needed here to take x̄ into account because µ is not known. (See
Problem 9.14 for some details of the derivation.)

Now, in order to find the posterior distributions of µ|x and θ|x, we use a
Gibbs sampler to perform the required integrations:

p(µ|x) ∝
∫

p(µ|x, θ) p(θ|x) dθ and p(θ|x) ∝
∫

p(θ|x, µ) p(µ|x) dµ.

Gibbs sampler. Using the R code below, we simulate a bivariate Markov chain
with vectors denoted in the program as MU and THETA. The limiting distribu-
tion of this chain provides estimates of the posterior distributions of µ and θ,
respectively, upon which Bayesian estimates are based. The simulation begins
with known quantities: the parameters µ0 and θ0 of the normal prior distrib-
ution on µ, the parameters α0 and κ0 of the inverse gamma prior distribution
on θ, the data x̄ and s2, and an arbitrary starting value THETA[1].

Iteratively, at step i of the Gibbs sampler, we generate values MU[i] and
THETA[i] of the Markov chain. We sample MU[i] from NORM(µ′,

√
θ′), where

θ in the expressions for µ′ and θ′ is taken to be THETA[i-1]. Then we sample
THETA[i] from IG(α′, κ′), where µ in the expression for κ′ is taken to be MU[i].

We simulate m = 50 000 steps, with the first half of them as burn-in
values. Thus we take values of MU and THETA from steps i = m/2 + 1 = 25 001
through m to represent distributions of µ|x and θ|x, respectively. Cutting off
2.5% from the tails of these simulated distributions gives us Bayesian interval
estimates of µ and θ. From the interval estimate of θ = σ2, we obtain an
interval estimate of σ.
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# set.seed(1237)

m = 50000 # iterations

MU = numeric(m); THETA = numeric(m) # sampled values

THETA[1] = 1 # initial value

n = 41; x.bar = 9.6; x.var = 2.73^2 # data

mu.0 = 0; th.0 = 400 # mu priors

alp.0 = 1/2; kap.0 = 1/5 # theta priors

for (i in 2:m)

{

th.up = 1/(n/THETA[i-1] + 1/th.0)

mu.up = (n*x.bar/THETA[i-1] + mu.0/th.0)*th.up

MU[i] = rnorm(1, mu.up, sqrt(th.up))

alp.up = n/2 + alp.0

kap.up = kap.0 + ((n-1)*x.var + n*(x.bar - MU[i])^2)/2

THETA[i] = 1/rgamma(1, alp.up, kap.up)

}

# Bayesian point and probability interval estimates

aft.brn = (m/2 + 1):m

mean(MU[aft.brn]) # point estimate of mu

bi.MU = quantile(MU[aft.brn], c(.025,.975)); bi.MU

mean(THETA[aft.brn]) # point estimate of theta

bi.THETA = quantile(THETA[aft.brn], c(.025,.975)); bi.THETA

SIGMA = sqrt(THETA)

mean(SIGMA[aft.brn]) # point estimate of sigma

bi.SIGMA = sqrt(bi.THETA); bi.SIGMA

par(mfrow=c(2,2))

plot(aft.brn, MU[aft.brn], type="l")

plot(aft.brn, SIGMA[aft.brn], type="l")

hist(MU[aft.brn], prob=T); abline(v=bi.MU, col="red")

hist(SIGMA[aft.brn], prob=T); abline(v=bi.SIGMA, col="red")

par(mfrow=c(1,1))

> mean(MU[aft.brn]) # point estimate of mu

[1] 9.594313

> bi.MU = quantile(MU[aft.brn], c(.025,.975)); bi.MU

2.5% 97.5%

8.753027 10.452743

> mean(THETA[aft.brn]) # point estimate of theta

[1] 7.646162

> bi.THETA = quantile(THETA[aft.brn], c(.025,.975)); bi.THETA

2.5% 97.5%

4.886708 11.810233

> SIGMA = sqrt(THETA)
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Figure 9.3. History plots (top) and histograms of sampled values approximating µ|x
(left) and σ|x in the Gibbs sampler of Example 9.2. All values are after burn-in.
Vertical dashed lines show 95% Bayesian interval estimates.

> mean(SIGMA[aft.brn]) # point estimate of sigma

[1] 2.747485

> bi.SIGMA = sqrt(bi.THETA); bi.SIGMA

2.5% 97.5%

2.210590 3.436602

Diagnostic graphs in Figure 9.3 (top) show good behavior of the Gibbs
sampler, so the numerical results from MU and SIGMA can be trusted to rep-
resent the posterior distributions µ|x and σ|x accurately. Also, because this
is a bivariate Markov chain, we show, in Figure 9.4 on page 228, a scatter-
plot of the last 10 000 sampled pairs approximating (µ, σ)|x. (For additional
diagnostic graphs, see Problem 9.9.)

The 95% Bayesian interval estimates are (8.73, 10.44) for µ and (2.22, 3.45)
for σ. On average, it seems that from morning to evening the students shrink
in height by about a centimeter (10 mm or about 3/8 in). Other studies have
found similar decreases in height. A plausible explanation is that the cartilage
between vertebrae is compressed during the day and expands during sleep.

Frequentist methods that use Student’s t and chi-squared distributions
give a 95% confidence interval (8.74, 10.46) for µ and a 95% confidence inter-
val (2.24, 3.49) for σ (see Problem 9.10). The Bayesian probability intervals
are slightly shorter than the corresponding frequentist confidence intervals,
possibly because our prior distributions, even though diffuse, provide some
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Figure 9.4. Scatterplot of the last 10 000 pairs in Example 9.2 simulating (µ, σ)|x.
The prior distributions on µ and θ = σ2 are independent, as are the sample statis-
tics x̄ and s. Also, this plot shows no marked association between simulated values
of µ|x and σ|x. Reference lines indicate 95% Bayesian interval estimates for µ and σ.

useful information about variability. But in this example the effect of our prior
distributions is relatively small because there are enough data to overwhelm
the effect of priors that are not strongly informative. ♦

In general, if we make the prior parameter σ0 very large and the parame-
ters α0 and κ0 very small, then neither prior affects the posterior by much,
and the Bayesian intervals are nearly in numerical agreement with the cor-
responding frequentist confidence intervals. Specifically, one formulation of a
noninformative prior gives the posterior distributions

t =
µ− x̄

s/
√

n
∼ T(n− 1) and (n− 1)s2/σ2 ∼ CHISQ(n− 1) ,

where µ and σ are random variables and x̄ and s are observed values. These
yield 95% Bayesian interval estimates for µ and σ that are numerically exactly
the same as the respective traditional frequentist 95% confidence intervals.

Moreover, there are particular ways to formulate informative priors so
that posterior distributions given x̄ and s can be expressed in closed form.
Then Bayesian interval estimates can be found for µ and σ without the
need for Gibbs sampling. (For discussions of more general priors, see [BT73]
and [Lee04].)

In practice, Gibbs samplers are especially important in models with many
parameters, for which Example 9.2 provides an important pedagogical bridge.
In the next section, we consider a three-parameter model for which traditional
methods may be especially inappropriate and for which a Gibbs sampler is a
practical way to compute useful Bayesian inferences.
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9.3 Bayesian Estimates of Components of Variance

In Section 9.1, we saw that a Bayesian approach to estimating disease preva-
lence gave useful estimates in circumstances where traditional methods can
give absurd results. In this section, we look at one more practical situation
in which a traditional frequentist approach often does not provide useful es-
timates and a Bayesian framework does.

Suppose a manufacturing process has two steps. Precursors of the finished
items are made in batches, and then the batches are used to produce the
individual items. If a key measurement on the final items shows excessive
variability, the question arises whether this variability may arise mainly at
the batch level or mainly at the final stage of the overall process. A logical
step towards reducing variability is to try to understand where it arises. We
want to estimate the two components of variance that contribute towards
overall variance of individual items.

Assuming normal distributions for errors, we can write the measured value
of the jth item from the ith batch as

xij = µ + Ai + eij ,

where Ai ∼ NORM(0,
√

θA), eij ∼ NORM(0,
√

θ), and all Ai and eij are
mutually independent. This implies that measurements on two items from
two different batches are independent but that measurements xij and xij′ on
two items from batch i are correlated. Specifically, V(xij) = V(xij′) = θA + θ,
Cov(xij , xij′) = θA, and ρI = ρ(xij , xij′) = θA/(θA + θ). The ratio ρI , called
the intraclass correlation, is the proportion of the total variance that arises
at the batch level of the manufacturing process.

Example 9.3. Consider a pilot project to manufacture a pharmaceutical drug
in two steps as just described. Technicians want to know if variability among
batches makes an important contribution to product variability. They assay
r = 10 individual items from each of g = 12 batches.

In this example, so we can know whether our estimates are reasonable, we
generate data with known parameter values µ = 100, θA = 152 = 225, and
θ = 92 = 81, so that ρI = 225/306 = 0.7353—values roughly modeled after
proprietary data. These gr = 120 observations are plotted in Figure 9.5, and
the procedure for generating them is shown in Problem 9.15. Because the data
are normal, it is sufficient to look at the g = 12 batch means x̄i. = 1

r

∑
j xij

and variances s2
i = 1

r−1

∑
j(xij − x̄i.)2. Summary data by batch are shown in

the printout below.
Batch 1 2 3 4 5 6

Mean 91.9 129.0 104.1 75.7 108.7 100.2

SD 9.96 10.07 4.98 12.16 5.06 10.65

Batch 7 8 9 10 11 12

Mean 62.6 107.5 66.7 129.1 106.8 93.4

SD 6.52 11.05 9.90 8.39 8.99 8.14
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Figure 9.5. Boxplots of the data of Example 9.3. Dots show group means. Clearly,
variance among batches contributes significantly to the variability of individual ob-
servations. Compare with Figure 9.6, which illustrates the data of Problem 9.18,
where batch-to-batch variability is relatively much smaller.

In these circumstances, it is traditional to look at the following statistics.

x̄.. =
g∑

i=1

r∑

j=1

xij = 97.975,

MS(Batch) =
r

g − r

g∑

i=1

(x̄i. − x̄..)2 = 4582.675,

MS(Error) =
1

g(r − 1)

g∑

i=1

r∑

j=1

(xij − x̄i.)2 =
1
g

g∑

i=1

s2
i = 82.68056.

For normal data, these three statistics are independent, and the following
distributions are useful for making confidence intervals.

(x̄.. − µ)/
√

MS(Batch)/gr ∼ T(g − 1),
(g − 1)MS(Error)/(rθA + θ) ∼ CHISQ(g − 1),

(gr − 1)MS(Error)/θ ∼ CHISQ(gr − 1),
MS(Batch)/MS(Error) ∼ F(g − 1, gr − 1).

Unbiased point estimates are µ̂ = x.. = 97.975 (compared with the known
µ = 100), θ̂ = MS(Error), and θ̂A = [MS(Batch) −MS(Error)]/r = 449.999.
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Figure 9.6. Boxplots of the data of Problem 9.18, drawn to the same scale as
Figure 9.5 for easy comparison. Here batch-to-batch variance θA is so small that
traditional methods of estimating it are problematic. A Gibbs sampler yields a useful
Bayesian probability interval (see problem 9.18 on page 245).

Taking square roots, we have estimates for the standard deviations σ̂ = 9.09
(compared with σ = 9) and σ̂A = 21.21 (compared with σA = 15). In general,
estimating θA and σA can be problematic. Information about batch variability
is entangled with information about item variability. Because θ̂A is found by
subtraction, we could potentially get θ̂A < 0, even though θA = σ2

A ≥ 0.
Frequentist confidence intervals for µ, σ, and ρI can be obtained from t,

chi-squared, and F distributions, respectively (see Problem 9.16). There is no
such straightforward confidence interval for θA. Also, the confidence interval
for ρI includes negative values whenever θ̂A < 0. There are models in which
intraclass correlation can legitimately be negative (for example, see [SC80]),
but ours is not one of them.

A Bayesian framework for this model is similar to that of Example 9.2,
with one additional variance parameter. Our prior distributions are

µ ∼ NORM(µ0,
√

θ0), θA ∼ IG(α0, κ0), and θ ∼ IG(β0, λ0) .

In order to have noninformative priors for this example with simulated data,
we select a large value of θ0 and small values of all four inverse gamma para-
meters.

Partial conditional distributions used in the Gibbs sampler to compute the
posterior distributions of µ, θ, and θA are as follows (see [GS85], page 405).



232 9 Gibbs Sampling

µ|θA,A ∼ NORM(µ′,
√

θ′), θA|A, µ ∼ IG(α′, κ′), and θ|X,A ∼ IG(β′, λ′) ,

where

µ′ = (µ0θA + θ0

∑
i Ai)/(θA + r

∑
i Ai) and θ′ = θ0θA/(θA + r

∑
i Ai)

in the partial conditional for µ|θA,A;

α′ = α0 + g/2 and κ′ = κ0 + 1
2

∑
i(Ai − µ)2

in the partial conditional for θA|A, µ; and

β′ = β0 + gr/2 and λ′ = λ0 + 1
2 [(r − 1)

∑
i s2

i + r
∑

i(Ai − x̄i.)2]

in the partial conditional for θ|X,A. In the above, the g elements of A are

Ai ∼ NORM((rθAx̄i. + θµ)/(rθA + θ), [θθA/(rθA + θ)]1/2) .

The R code below shows how these relationships can be used in a Gibbs
sampler to simulate a multidimensional Markov chain of sampled values. Re-
sults include vectors denoted MU, VAR.BAT, and VAR.ERR, from which we can
find Bayesian interval estimates of µ, θA, and θ, respectively. Each step of the
sampler uses the prior distributions and the data.

• The sampler starts with an arbitrary initial value of MU[1]. We also require
values of the random effects Ai, so-called latent variables, which are not
directly observable as data. In the program, these are denoted by the
g-vector a. On the first pass through the loop, we use the group means x̄i.

as initial values of a. On later passes, updated values of a are available.
• Next, the sampler uses values of a and MU[1] to sample VAR.BAT[2] and

VAR.ERR[2], and then uses VAR.BAT[2] and VAR.ERR[2] to sample MU[2].
• At the end of the loop, new latent values a are sampled using MU[2],

VAR.BAT[2], and VAR.ERR[2].
• The loop is iterated at each pass using values of MU[k-1], VAR.BAT[k-1],

VAR.ERR[k-1], and the newest values a to sample elements of the vectors
with index [k].

Finally, when all iterations are completed, Bayesian interval estimates of µ, θA,
and θ are found from the values after burn-in of the three simulated vectors,
and intervals for σA, σ, and ρI are found from information the Gibbs sampler
provides about θA = σ2

A and θ = σ2.

##Assumes matrix X with g rows (batches), r columns (reps),

##Or provide g-vectors of batch means and SDs as the 2nd line.

# set.seed(443)

X.bar = apply(X, 1, mean); X.sd = apply(X, 1, sd)

m = 50000; b = m/4 # iterations; burn-in

MU = VAR.BAT = VAR.ERR = numeric(m)
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Figure 9.7. Histograms of simulated posteriors for Example 9.3. Results are from
the vectors MU, SIGMA.BAT, SIGMA.ERR, and ICC of the Gibbs sampler after burn-
in. Indications of the 95% Bayesian interval estimate and the estimated posterior
density are superimposed on each histogram.

mu.0 = 0; th.0 = 10^10 # prior parameters for MU

alp.0 = .001; kap.0 = .001 # prior parameters for VAR.BAT

bta.0 = .001; lam.0 = .001 # prior parameters for VAR.ERR

MU[1] = 150; a = X.bar # initial values

for (k in 2:m) {

alp.up = alp.0 + g/2

kap.up = kap.0 + sum((a - MU[k-1])^2)/2

VAR.BAT[k] = 1/rgamma(1, alp.up, kap.up)

bta.up = bta.0 + r*g/2

lam.up = lam.0 + (sum((r-1)*X.sd^2) + r*sum((a - X.bar)^2))/2

VAR.ERR[k] = 1/rgamma(1, bta.up, lam.up)

mu.up = (VAR.BAT[k]*mu.0 + th.0*sum(a))/(VAR.BAT[n] + g*th.0)

th.up = th.0*VAR.BAT[k]/(VAR.BAT[n] + g*th.0)

MU[k] = rnorm(1, mu.up, sqrt(th.up))

deno = r*VAR.BAT[k] + VAR.ERR[k]

mu.a = (r*VAR.BAT[k]*X.bar + VAR.ERR[k]*MU[k])/deno

th.a = (VAR.BAT[k]*VAR.ERR[k])/deno

a = rnorm(g, mu.a, sqrt(th.a)) }



234 9 Gibbs Sampling

mean(MU[b:m]); sqrt(mean(VAR.BAT[b:m])); sqrt(mean(VAR.ERR[b:m]))

bi.MU = quantile(MU[b:m], c(.025,.975))

SIGMA.BAT = sqrt(VAR.BAT); SIGMA.ERR = sqrt(VAR.ERR)

bi.SG.B = quantile(SIGMA.BAT[b:m], c(.025,.975))

bi.SG.E = quantile(SIGMA.ERR[b:m], c(.025,.975))

ICC = VAR.BAT/(VAR.BAT+VAR.ERR);

bi.ICC = quantile(ICC[b:m], c(.025,.975))

bi.MU; bi.SG.B; bi.SG.E; bi.ICC

par(mfrow=c(2,2))

hist(MU[b:m], prob=T); abline(v=bi.MU)

hist(SIGMA.BAT[b:m], prob=T); abline(v=bi.SG.B)

hist(SIGMA.ERR[b:m], prob=T); abline(v=bi.SG.E)

hist(ICC[b:m], prob=T); abline(v=bi.ICC)

par(mfrow=c(1,1))

> mean(MU[b:m]); sqrt(mean(VAR.BAT[b:m])); sqrt(mean(VAR.ERR[b:m]))

[1] 98.00235

[1] 23.41598

[1] 9.177717

> bi.MU; bi.SG.B; bi.SG.E; bi.ICC

2.5% 97.5%

84.30412 111.59195

2.5% 97.5%

14.84336 36.16719

2.5% 97.5%

8.022159 10.488738

2.5% 97.5%

0.7146413 0.9421721

From the printouts for one run of the Gibbs sampler, we see that the
Bayesian point estimates (98.0 for µ, 23.4 for σA, and 9.2 for σ) are not much
different from the traditional ones (98.0, 21.2, and 9.1, respectively). Also,
the 95% Bayesian interval estimates of these parameters all happen to cover
the known values we used to simulate the data (100, 15, and 9, respectively).
Based on distributions stated earlier, traditional 95% confidence intervals are
(85.7, 110.2) for µ, (8.0, 10.5) for σ, and (0.71, 0.94) for ρI .

Figure 9.7 shows the approximate posterior distributions and 95% Bayesian
interval estimates for µ, σA, σ, and ρI . Figure 9.8 shows diagnostic plots—all
favorable—for the dimension of the sampler estimating σA, and we leave the
remaining diagnostic plots to Problem 9.17.

The 95% Bayesian interval estimate of σA is very wide because we have
information on only g = 12 batches. In contrast, we have much more informa-
tion about σ, and that information is not entangled with other effects, so the
interval for σ is shorter. If feasible, it would be appropriate to increase g. (See
Problem 9.23.) But, in practice, batches are often prohibitively expensive. In
our consulting experience, the number of batches has rarely exceeded 12.
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Figure 9.8. Diagnostic plots for the simulation of the posterior distribution of σA

in Example 9.3. Evidently, the Gibbs sampler converges smoothly to its limiting
distribution. Only the plot of cumulative means (upper right) shows all 50 000 steps;
the others use steps after burn-in. The histogram is also shown in Figure 9.7.

Faced with long interval estimates for the batch component of variance,
some authors and practitioners use 90% intervals instead. (In this particular
example, that would give an interval that doesn’t cover 15.) In a Bayesian
context where appropriate prior information is available, an informative prior
on θA = σ2

A might give a shorter and more useful interval estimate. ♦
In this example, the traditional method of estimating θA gives useful an-

swers. But this method becomes problematic when the batch component of
variance is relatively small. Then, as mentioned above, the estimate of θA can
be negative and the confidence interval for ρI can include negative values. As
we see in Problem 9.19, this happens more than occasionally.

• One standard interpretation when θ̂A < 0 is to say this is an indication
that θA must be “very small.” Maybe so, but presumably we would not
have chosen a model containing θA without reason to believe batches might
make some contribution to overall variance, and this analysis leaves us with
no idea how large θA might really be.

• A related traditional approach is to test the null hypothesis H0 : θA = 0
against H1 : θA > 0. What do we say if H0 is accepted, as it surely will
be when θ̂A < 0? Again the interpretation is that θA is “very small.” But
then we must speculate about the power of the test, the probability of
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Figure 9.9. Bivariate plots from the Gibbs sampler of Example 9.3. In each of
the four panels, every 10th step after burn-in is plotted. The vectors MU, SIGMA.BAT,
and SIGMA.ERR are not mutually independent. In particular, values of MU far from x̄..

tend to be associated with large values of ICC. See Problem 9.17.

accepting H0, for various possible values of θA > 0. We still have no idea
how large θA might actually be. Perhaps this difficulty has been made more
obscure by the terminology of hypothesis testing, but it has not gone away.

In Problem 9.18, we show data for which θ̂A < 0, but the Gibbs sampler
of Example 9.3 gives useful Bayesian interval estimates for all parameters (see
Figure 9.12 on page 244). Several additional problems show real data that
result in θ̂A > 0. For a comparison of the models of Examples 9.2 and 9.3, see
Problem 9.24.

Technical note: Although traditional method of moments estimates
(MMEs) of θA, essentially obtained by making E(θ̂A) = θA, can have
negative values, we take this opportunity to mention that computa-
tionally intensive methods are available to find approximate maxi-
mum likelihood estimates (MLEs) of θA, which are never negative.
Moreover, except when the MLE of θA is small, these methods can
also provide approximate confidence intervals. Typically, these MLE
results are numerically similar to Bayesian results from a Gibbs sam-
pler using a noninformative prior. However, when the MLE of θA is
small, computational difficulties involving collinearity arise, so that it
is not feasible to construct MLE-based confidence intervals.
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In this chapter, we have seen situations in which a Bayesian approach
has something to offer over a traditional one, and in which a Gibbs sampler
is a useful method for computing approximate posterior distributions. An
inconvenience in using a Gibbs sampler is the need to specify partial condi-
tional distributions upon which to base the programming. In Chapter 10, we
show how BUGS software can do Gibbs sampling simply by specifying the
model, but without having to write and explicitly program partial conditional
distributions.

9.4 Problems

Problems for Section 9.1 (Estimating Prevalence of a Disease)
In working these problems, modify the program of the example as appropriate.

9.1 Estimating prevalence π with an informative prior.

a) According to the prior distribution BETA(1, 10), what is the probability
that π lies in the interval (0, 0.2)?

b) If the prior BETA(1, 10) is used with the data of Example 9.1, what is the
(posterior) 95% Bayesian interval estimate of π?

c) What parameter β would you use so that BETA(1, β) puts about 95%
probability in the interval (0, 0.05)?

d) If the beta distribution of part (c) is used with the data of Example 9.1,
what is the 95% Bayesian interval estimate of π?

Hints: c) Use beta = seq(1:100); x = pbeta(.05, 1, beta); min(beta[x>=.95]).

Explain. d) The mean of the posterior distribution π|X, Y is about 1.8%.

9.2 Run the program of Example 9.1 and use your simulated posterior
distribution of π to find Bayesian point and interval estimates of the predictive
power of a positive test in the population from which the data are sampled.
How many of the 49 subjects observed to test positive do you expect are
actually infected?

9.3 In Example 5.2 on p124, the test has η = 99% and θ = 97%, the data
are n = 250 and A = 6, and equation (9.1) on p220 gives an absurd negative
estimate of prevalence, π = −0.62%.

a) In this situation, with a uniform prior, what are the Bayesian point es-
timate and (two-sided) 95% interval estimate of prevalence? Also, find a
one-sided 95% interval estimate that provides an upper bound on π.

b) In part (a), what estimates result from using the prior BETA(1, 30)?

Comment: a) See Figure 9.10. Two-sided 95% Bayesian interval: (0.03%, 2.9%). Cer-

tainly, this is more useful than a negative estimate, but don’t expect a narrow interval

with only n = 250 observations. Consider that a flat-prior 95% Bayesian interval

estimate of τ based directly on t = 6/250 is roughly (1%, 5%).



238 9 Gibbs Sampling

9.4 In each part below, use the uniform prior distribution on π and suppose
the test procedure described results in A = 24 positive results out of n = 1000
subjects.

a) Assume the test used is not a screening test but a gold-standard test,
so that η = θ = 1. Follow through the code for the Gibbs sampler in
Example 9.1, and determine what values of X and Y must always occur.
Run the sampler. What Bayesian interval estimate do you get? Explain
why the result is essentially the same as the Bayesian interval estimate you
would get from a uniform prior and data indicating 24 infected subjects
in 1000, using the code qbeta(c(.025,.975), 25, 977).

b) Screening tests exist because it is not feasible to administer a gold-
standard test to a large group of subjects. So the situation in part (a)
is not likely to occur in the real world. But it does often happen that
everyone who gets a positive result on the screening test is given a gold-
standard test, and no gold-standard tests are given to subjects with neg-
ative screening test results. Thus, in the end, we have η = 99% and θ = 1.
In this case, what part of the Gibbs sampler becomes deterministic? Run
the Gibbs sampler with these values and report the result.

c) Why are the results from parts (a) and (b) not much different?

Hints: a) The Gibbs sampler simulates a large sample precisely from BETA(25, 977)

and cuts off appropriate tails. Why these parameters? Run the additional code:

set.seed(1237); pp=c(.5, rbeta(m-1, 25, 977)); mean(pp[(m/2):m])

c) Why no false positives among the 24 in either (a) or (b)? Consider false negatives.

9.5 Running averages and burn-in periods. In simulating successive steps
of a Markov chain, we know that it may take a number of steps before the
running averages of the resulting values begin to stabilize to the mean value
of the limiting distribution. In a Gibbs sampler, it is customary to disregard
values of the chain during an initial burn-in period. Throughout this chapter,
we rather arbitrarily choose to use m = 50 000 iterations and take the burn-
in period to extend for the first m/4 or m/2 steps. These choices have to
do with the appearance of stability in the running average plot and how
much simulation error we are willing to tolerate. For example, the running
averages in the right-hand panel of Figure 9.2 (p223) seem to indicate smooth
convergence of the mean of the π-process to the posterior mean after 25 000
iterations. The parts below provide an opportunity to explore the perception
of stability and variations in the length of the burn-in period. Use m = 50 000
iterations throughout.

a) Rerun the Gibbs sampler of Example 9.1 three times with different seeds,
which you select and record. How much difference does this make in the
Bayesian point and interval estimates of π? Use one of the same seeds in
parts (b) and (c) below.

b) Redraw the running averages plot of Figure 9.2 so that the vertical plotting
interval is (0, 0.5). (Change the plot parameter ylim.) Does this affect
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Figure 9.10. History plot (top) and histogram of 25 000 sampled prevalence values
after burn-in for Problem 9.3. Here, traditional methods give a nonsensical negative
point estimate of prevalence π. But a one-sided 95% Bayesian interval provides a
useful upper bound on π (dotted line). Compare this with Figure 9.1 on page 222.

your perception of when the process “becomes stable”? Repeat, letting
the vertical interval be (0.20, 0.22), and comment.

c) Change the code of the Gibbs sampler in the example so that the burn-in
period extends for 15 000 steps. Compared with the results of the example,
what change does this make in the Bayesian point and interval estimates
of π? Repeat for a burn-in of 30 000 steps and comment.

9.6 Thinning. From the ACF plot in Figure 9.2 on p223, we see that the
autocorrelation is near 0 for lags of 25 steps or more. Also, from the right-
hand plot in this figure, it seems that the process of Example 9.1 stabilizes
after about 15 000 iterations. One method suggested to mitigate effects of
autocorrelation, called thinning, is to consider observations after burn-in
located sufficiently far apart that autocorrelation is not an important issue.

a) Use the data and prior of Example 9.1. What Bayesian point estimate
and probability interval do you get by using every 25th step, starting
with step 15 000? Make a histogram of the relevant values of PI. Does
thinning in this way have an important effect on the inferences?

b) Use the statement acf(PI[seq(15000, m, by=25)]) to make the ACF
plot of these observations. Explain what you see.
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9.7 Density estimation. A histogram, as in Figure 9.1, is one way to show
the approximate posterior distribution of π. But the smooth curve drawn
through the histogram there reminds us that we are estimating a continuous
posterior distribution. A Gibbs sampler does not give us the functional form of
the posterior density function, but the smooth curve is a good approximation.
After the Gibbs sampler of Example 9.1 is run, the following additional code
superimposes an estimated density curve on the histogram of sampled values.

est.d = density(PI[aft.brn], from=0, to=1); mx = max(est.d$y)

hist(PI[aft.brn], ylim=(0, mx), prob=T, col="wheat")

lines(est.d, col="darkgreen")

median(PI[aft.brn]); est.d$x[est.d$y==mx]

a) Run the code to verify that it gives the result claimed. In the R Ses-
sion window, type ?density and browse the information provided on
kernel density estimation. In this instance, what is the reason for the
parameters from=0, to=1? What is the reason for finding mx before the
histogram is made? In this book, we have used the mean of sampled val-
ues after burn-in as the Bayesian point estimate of π. Possible alternative
estimates of π are the median and the mode of the sampled values after
burn-in. Explain how the last statement in the code roughly approximates
the mode.

b) To verify how well kernel density estimation works in one example, do
the following: Generate 50 000 observations from BETA(2, 3), make a
histogram of these observations, superimpose a kernel density-estimated
curve in one color, and finally superimpose the true density function of
BETA(2, 3) as a dotted curve in a different color. Also, find the estimated
mode and compare it with the exact mode 1/3 of this distribution.

9.8 So far as is known, a very large herd of livestock is entirely free of a
certain disease (π = 0). However, in a recent routine random sample of n = 100
of these animals, two have tested positive on a screening test with sensitivity
95% and specificity 98%. One “expert” argues that the two positive tests
warrant slaughtering all of the animals in the herd. Based on the specificity
of the test, another “expert” argues that seeing two positive tests out of 100
is just what one would expect by chance in a disease-free herd, and so mass
slaughter is not warranted by the evidence.

a) Use a Gibbs sampler with a flat prior to make a one-sided 95% probability
interval that puts an upper bound on the prevalence. Based on this result,
what recommendation might you make?

b) How does the posterior mean compare with the estimate from equa-
tion (9.1) on p220?

c) Explain what it means to believe the prior BETA(1, 40). Would your rec-
ommendation in part (a) change if you believed this prior?
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d) What Bayesian estimates would you get with the prior of part (c) if there
are no test-positive animals among 100? In this case, what part of the
Gibbs sampling process becomes deterministic?

Comments: In (a) and (b), the Bayesian point estimate and the estimate from equa-

tion (9.1) are about the same. If there are a few thousand animals in the herd,

these results indicate there might indeed be at least one infected animal. Then, if

the disease is one that may be highly contagious beyond the herd or if diseased

animals pose a danger to humans, we could be in for serious trouble. If possible,

first steps might be to quarantine this herd for now, find the two animals that tested

positive, and quickly subject them to a gold-standard diagnostic test for the disease.

That would provide more reliable information than the Gibbs sampler based on the

screening test results. d) Used alone, a screening test with η = 95% and θ = 98%

applied to a relatively small proportion of the herd seems a very blunt instrument

for trying to say whether the herd is free of a disease.

Problems for Section 9.2 (Estimating Normal Mean and Variance)

9.9 Write and execute R code to make diagnostic graphs for the Gibbs
sampler of Example 9.2 showing ACFs and traces (similar to the plots in
Figure 9.2). Comment on the results.

9.10 Run the code below. Explain step-by-step what each line (beyond
the first) computes. How do you account for the difference between diff(a)
and diff(b)?

x.bar = 9.60; x.sd = 2.73; n = 41

x.bar + qt(c(.025, .975), n-1)*x.sd/sqrt(n)

a = sqrt((n-1)*x.sd^2 / qchisq(c(.975,.025), n-1)); a; diff(a)

b = sqrt((n-1)*x.sd^2 / qchisq(c(.98,.03), n-1)); b; diff(b)

9.11 Suppose we have n = 5 observations from a normal population that
can be summarized as x̄ = 28.31 and s = 5.234.

a) Use traditional methods based on Student’s t and chi-squared distribu-
tions to find 95% confidence intervals for µ and σ.

b) In the notation of Example 9.2, use prior distributions with parameters
µ0 = 25, σ0 =

√
θ0 = 2, α0 = 30, and κ0 = 1000, and use a Gibbs sampler

to find 95% Bayesian interval estimates for µ and σ. Discuss the priors.
Make diagnostic plots. Compare with the results of part (a) and comment.

c) Repeat part (b), but with µ0 = 0, σ0 = 1000, α0 = 0.01, and κ0 = 0.01.
Compare with the results of parts (a) and (b) and comment.

Hints: In (a)–(c), the sample size is small, so an informative prior is influential. In

(a) and (c): (21.8, 34.8) for µ; (3, 15) for σ. Roughly.

9.12 Before drawing inferences, one should always look at the data to see
whether assumptions are met. The vector x in the code below contains the
n = 41 observations summarized in Example 9.2.
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x = c( 8.50, 9.75, 9.75, 6.00, 4.00, 10.75, 9.25, 13.25,

10.50, 12.00, 11.25, 14.50, 12.75, 9.25, 11.00, 11.00,

8.75, 5.75, 9.25, 11.50, 11.75, 7.75, 7.25, 10.75,

7.00, 8.00, 13.75, 5.50, 8.25, 8.75, 10.25, 12.50,

4.50, 10.75, 6.75, 13.25, 14.75, 9.00, 6.25, 11.75, 6.25)

mean(x)

var(x)

shapiro.test(x)

par(mfrow=c(1,2))

boxplot(x, at=.9, notch=T, ylab="x",

xlab = "Boxplot and Stripchart")

stripchart(x, vert=T, method="stack", add=T, offset=.75, at = 1.2)

qqnorm(x)

par(mfrow=c(1,1))

a) Describe briefly what each statement in the code does.
b) Comment on the graphical output in Figure 9.11. (The angular sides of the

box in the boxplot, called notches, indicate a nonparametric confidence
interval for the population median.) Also comment on the result of the
test. Give several reasons why it is reasonable to assume these data come
from a normal population.

Note: Data are from [MR58], also listed and discussed in [Rao89] and [Tru02]. Each

data value in x is the difference between a morning and an evening height value.

Each height value is the average of four measurements on the same subject.

9.13 Modify the code for the Gibbs sampler of Example 9.2 as follows to
reverse the order of the two key sampling steps at each passage through the
loop. Use the starting value MU[1]= 5. At each step i, first generate THETA[i]
from the data, the prior on θ, and the value MU[i-1]. Then generate MU[i]
from the data, the prior on µ, and the value THETA[i]. Compare your results
with those in the example, and comment.

9.14 (Theoretical ) In Example 9.2, the prior distribution of the parameter
θ = σ2 is of the form θ ∼ IG(α0, κ0), so that p(θ) ∝ θ−(α0+1) exp(−κ0/θ).
Also, the data x are normal with xi randomly sampled from NORM(µ, σ), so
that the likelihood function is

p(x|µ, θ) ∝ θn/2 exp

{
− 1

2θ

n∑

i=1

(xi − µ)2
}

.

a) By subtracting and adding x̄, show that the exponential in the likelihood
function can be written as exp{− 1

2θ [(n− 1)s2 + n(x̄− µ)2]}.
b) The distribution of θ|x, µ used in the Gibbs sampler is based on the prod-

uct p(θ|x, µ) ∝ p(θ) p(x|µ, θ). Expand and then simplify this product to
verify that θ|x, µ ∼ IG(αn, κn), where αn and κn are as defined in the
example.
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Figure 9.11. A boxplot, stripchart, and normal quantile plot of the height differ-
ences in Example 9.2. The overall impression is that the data are consistent with
the assumption of a normally distributed population. See Problem 9.12.

Problems for Section 9.3 (Estimating Variance Components)

9.15 The R code below was used to generate the data used in Example 9.3.
If you run the code using the same (default) random number generator in R
we used and the seed shown, you will get the same data.

set.seed(1212)

g = 12 # number of batches

r = 10 # replications per batch

mu = 100; sg.a = 15; sg.e = 9 # model parameters

a.dat = matrix(rnorm(g, 0, sg.a), nrow=g, ncol=r)

# ith batch effect across ith row

e.dat = matrix(rnorm(g*r, 0, sg.e), nrow=g, ncol=r)

# g x r random item variations

X = round(mu + a.dat + e.dat) # integer data

X

> X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 103 113 88 96 89 88 80 92 89 81

[2,] 143 116 126 127 132 121 129 148 129 119

[3,] 107 107 98 103 113 104 99 103 98 109

[4,] 71 72 89 63 85 71 75 76 98 57

[5,] 105 101 113 110 109 101 114 114 113 107

[6,] 88 93 100 91 98 105 103 91 123 110

[7,] 71 52 67 59 67 67 60 68 62 53

[8,] 115 102 93 111 130 114 97 103 112 98

[9,] 58 70 65 78 67 60 74 80 47 68
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Figure 9.12. Histograms of simulated posteriors with estimated posterior densities
for Problem 9.18. Results are from the vectors MU, SIGMA.BAT, SIGMA.ERR, and ICC of
the Gibbs sampler after burn-in. Indications of the 95% Bayesian interval estimate
(one-sided for SIGMA.BAT and ICC). Compare this with Figure 9.7 (p233).

[10,] 133 119 130 136 133 116 131 118 140 135

[11,] 103 101 97 110 125 107 115 106 110 94

[12,] 83 106 86 91 88 107 92 98 88 95

a) Run the code and verify whether you get the same data. Explain the
results of the statements a.dat, var(a.dat[1,]), var(a.dat[,1]), and
var(as.vector(e.dat)). How do the results of the first and second state-
ments arise? What theoretical values are approximated (not very well
because of the small sample size) by the last two statements.

b) Explain why the following additional code computes MS(Batch) and
MS(Error). How would you use these quantities to find the unbiased esti-
mate of θA shown in the example?

X.bar = apply(X, 1, mean); X.sd = apply(X, 1, sd)

MS.Bat = r*var(X.bar); MS.Err = mean(X.sd^2)

Hints: a) By default, matrices are filled by columns; shorter vectors recycle. The

variance components of the model are estimated.

9.16 (Continuation of Problem 9.15 ) Computation and derivation of fre-
quentist confidence intervals related to Example 9.3.

a) The code below shows how to find the 95% confidence intervals for µ, θ,
and ρI based on information in Problem 9.15 and Example 9.3.
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mean(X.bar) + qt(c(.025,.975), g-1)*sqrt(MS.Bat/(g*r))

df.Err*MS.Err/qchisq(c(.975,.025), df.Err)

R = MS.Bat/MS.Err; q.f = qf(c(.975,.025), g-1, g*r-g)

(R - q.f)/(R + (r-1)*q.f)

b) (Intermediate ) Derive the confidence intervals in part (b) from the distri-
butions of the quantities involved.

Hint: b) For ρI , start by deriving a confidence interval for ψ = θA/θ. What multiple

of R is distributed as F(g − 1, g(r − 1))?

9.17 Figure 9.8 on page 235 shows four diagnostic plots for the simulated
posterior distribution of σA in the Gibbs sampler of Example 9.3. Make similar
diagnostic plots for the posterior distributions of µ, σ, and ρI .

9.18 Small contribution of batches to the overall variance. Suppose the
researchers who did the experiment in Example 9.3 find a way to reduce the
batch component of variance. For the commercial purpose at hand, that would
be important progress. But when they try to analyze a second experiment,
there is a good chance that standard frequentist analysis will run into trouble.
The code below is essentially the same as in Problem 9.15, but with the
parameters and the seed changed. Group means and standard deviations,
sufficient for running the Gibbs sampler of Example 9.3 are shown as output.

set.seed(1237)

g = 12; r = 10

mu = 100; sg.a = 1; sg.e = 9

a.dat = matrix(rnorm(g, 0, sg.a), nrow=g, ncol=r)

e.dat = matrix(rnorm(g*r, 0, sg.e), nrow=g, ncol=r)

X = round(mu + a.dat + e.dat)

X.bar = apply(X, 1, mean); X.sd = apply(X, 1, sd)

round(rbind(X.bar, X.sd), 3)

> round(rbind(X.bar, X.sd), 3)

[,1] [,2] [,3] [,4] [,5] [,6]

X.bar 96.90 103.700 97.300 100.900 95.100 95.900

X.sd 11.77 12.781 8.693 10.418 6.244 7.505

[,7] [,8] [,9] [,10] [,11] [,12]

X.bar 94.900 99.00 98.200 98.200 98.700 102.400

X.sd 9.871 10.76 10.304 6.356 11.146 8.289

a) Figure 9.6 shows boxplots for each of the 12 batches simulated above.
Compare it with Figure 9.5 (p230). How can you judge from these two
figures that the batch component of variance is smaller here than in Ex-
ample 9.3?

b) Run the Gibbs sampler of Section 9.3 for these data using the same un-
informative priors as shown in the code there. You should obtain 95%
Bayesian interval estimates for µ, σ, σA =

√
θA, and ρI that cover the
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values used to generate the data X. See Figure 9.12, where one-sided in-
tervals are used for σA and ρI .

9.19 Continuation of Problem 9.18. Negative estimates of θA and ρI .

a) Refer to results stated in Problems 9.15 and 9.16. Show that the unbiased
estimate of θA is negative. Also, show that the 95% confidence interval
for ρI includes negative values. Finally, find 95% confidence intervals for µ
and σ =

√
θ and compare them with corresponding results from the Gibbs

sampler in Problem 9.18.
b) Whenever R = MS(Batch)/MS(Error) < 1, the unbiased estimate θ̂A

of θA is negative. When the batch component of variance is relatively
small, this has a good chance of occurring. Evaluate P{R < 1} when
σA = 1, σ = 9, g = 12, and r = 10, as in this problem.

c) The null hypothesis H0 : θA = 0 is accepted (against H1 : θA > 0) when
R is smaller than the 95th quantile of the F distribution with g − 1 and
g(r − 1) degrees of freedom. Explain why this null hypothesis is always
accepted when θ̂A < 0.

Hints: b) Exceeds 1/2. c) The code qf(.95, 11, 108) gives a result exceeding 1.

9.20 Calcium concentration in turnip leaves (% dry weight) is assayed for
four samples from each of four leaves. Consider leaves as “batches.” The data
are shown below as R code for the matrix X in the program of Example 9.3;
that is, each row of X corresponds to a batch.

X = matrix(c(3.28, 3.09, 3.03, 3.03,

3.52, 3.48, 3.38, 3.38,

2.88, 2.80, 2.81, 2.76,

3.34, 3.38, 3.23, 3.26), nrow=4, ncol=4, byrow=T)

a) Run the program, using the same noninformative prior distributions as
specified there, to find 95% Bayesian interval estimates for µ, σA, σ, and ρI

from these data.
b) Suppose the researchers have previous experience making calcium deter-

minations from such leaves. While calcium content and variability from
leaf to leaf can change from one crop to the next, they have observed that
the standard deviation σ of measurements from the same leaf is usually
between 0.075 and 0.100. So instead of a flat prior for σ, they choose
IG(α0 = 35, λ0 = 0.25). In these circumstances, explain why this is a
reasonable prior.

c) With flat priors for µ and θA, but the prior of part (b) for θ, run the
Gibbs sampler to find 95% Bayesian interval estimates for µ, σA, σ, and ρI

from the data given above. Compare these intervals with your answers in
part (a) and comment.

Note: Data are from page 239 of [SC80]. The unbiased estimate of θA = σ2
A is

positive here. Estimation of σA by any method is problematic because there are so

few batches.
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9.21 In order to assess components of variance in the two-stage manufac-
ture of a dye, researchers obtain measurements on five samples from each of
six batches. The data are shown below as R code for the matrix X in the
program of Example 9.3; that is, each row of X corresponds to a batch.

X = matrix(c(1545, 1440, 1440, 1520, 1580,

1540, 1555, 1490, 1560, 1495,

1595, 1550, 1605, 1510, 1560,

1445, 1440, 1595, 1465, 1545,

1595, 1630, 1515, 1635, 1625,

1520, 1455, 1450, 1480, 1445), 6, 5, byrow=T)

a) Use these data to find unbiased point estimates of µ, σA, and σ. Also find
95% confidence intervals for µ, σ, and ρI (see Problem 9.16).

b) Use a Gibbs sampler to find 95% Bayesian interval estimates for µ, σA, σ,
and ρI from these data. Specify noninformative prior distributions as in
Example 9.3. Make diagnostic plots.

Answers: b) Roughly: (1478, 1578) for µ; (15, 115) for σA. See [BT73] for a discussion

of these data, reported in [Dav57].

9.22 In order to assess components of variance in the two-stage manufac-
ture of a kind of plastic, researchers obtain measurements on four samples
from each of 22 batches. Computations show that MS(Error) = 23.394. Also,
sums of the four measurements from each of the 22 batches are as follows:

218 182 177 174 208 186

206 192 187 154 208 176

196 179 181 158 158 198

160 178 148 194

a) Compute the batch means, and thus x̄.. and MS(Batch). Use your results
to find the unbiased point estimates of µ, θA, and θ.

b) Notice that the batch standard deviations si, i = 1, . . . , 12, enter into
the program of Example 9.3 only as

∑
i(r − 1)s2

i . Make minor changes
in the program so that you can use the information provided to find
90% Bayesian interval estimates of µ, σA, σ, and ρI based on the same
noninformative prior distributions as in the example.

Note: Data are taken from [Bro65], p325. Along with other inferences from these

data, the following traditional 90% confidence intervals are given there: (43.9, 47.4)

for µ; (17.95, 31.97) for θ; and (0.32, 1.62) for ψ = θA/θ. (See Problem 9.16.)

9.23 Design considerations. Here we explore briefly how to allocate re-
sources to get a narrower probability interval for σA than we got in Exam-
ple 9.3 with g = 12 batches and r = 10 replications. Suppose access to ad-
ditional randomly chosen batches comes at negligible cost, so that the main
expenditure for the experiment is based on handling gr = 120 items. Then an
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experiment with g = 60 and r = 2 would cost about the same as the one in
the example.

Modify the code shown in Problem 9.15 to generate data from such a
60-batch experiment, but still with µ = 100, σA = 15, and σ = 9 as in
the example. Then run the Gibbs sampler of the example with these data.
Compare the lengths of the probability intervals for µ, σA, σ, and ρI from
this 60-batch experiment with those obtained for the 12-batch experiment of
the example. Comment on the trade-offs.
Note: In several runs with different seeds for generating the data, we got much

shorter intervals for σA based on the larger number of batches, but intervals for σ

were a little longer. What about the lengths of probability intervals for µ and ρI? In

designing an experiment, one must keep its goal in mind. For the goal of getting the

shortest frequentist confidence interval for µ within a given budget, [SC80] shows an

optimization based on relative costs of batches and items. Additional explorations:

(i) For these same parameters, investigate a design with g = 30 and r = 4. (ii) In-

vestigate the effect of increasing the number of batches when σA is small, as for the

data generated in Problem 9.18.

9.24 Using the correct model. To assess the variability of a process for
making a pharmaceutical drug, measurements of potency were made on one
pill from each of 50 bottles. These results are entered into a spreadsheet as 10
rows of 5 observations each. Row means and standard deviations are shown
below.

Row 1 2 3 4 5 6 7 8 9 10

Mean 124.2 127.8 119.4 123.4 110.6 130.4 128.4 127.6 122.0 124.4

SD 10.57 14.89 11.55 10.14 12.82 9.99 12.97 12.82 16.72 8.53

a) Understanding from a telephone conversation with the researchers that
the rows correspond to different batches of the drug made on different
days, a statistician uses the Gibbs sampler of Example 9.3 to analyze the
data. Perform this analysis for yourself.

b) The truth is that all 50 observations come from the same batch. Record-
ing the data in the spreadsheet by rows was just someone’s idea of a
convenience. Thus, the data would properly be analyzed without regard
to bogus “batches” according to a Gibbs sampler as in Example 9.2.
(Of course, this requires summarizing the data in a different way. Use
s2 = [9MS(Batch) + 40MS(Error)]/49, where s is the standard deviation
of all 50 observations.) Perform this analysis, compare it with the results
of part (a), and comment.

Note: Essentially a true story, but with data simulated from NORM(125, 12) replac-

ing unavailable original data. The most important “prior” of all is to get the model

right.
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Using WinBUGS for Bayesian Estimation

Historically, an important roadblock to using Bayesian inference has been the
difficulty of computing posterior distributions of parameters. Thus, a major
focus of this book is to show how such computations can be done using modern
hardware and software.

• We introduced Bayesian inference in Chapter 8, showing a few situations
in which the exact posterior distributions can be found analytically. For
example, in Example 8.5 (on election polling), the posterior distribution
is in the beta family. Printed tables of beta distributions were never very
widely available, but nowadays it is easy to use the R function qbeta,
or similar functions in other software, to find interval estimates of π, the
population proportion in favor of a particular candidate.

• In general, however, it may be difficult or impossible to find the posterior
distribution analytically, and then simulation methods are useful. For ex-
ample, in Section 9.3 (on variance components), a Gibbs sampler is used
to find posterior interval estimates of batch and error variances and of
other parameters in the model. This requires finding partial conditional
distributions analytically and using them to program the simulation of a
multidimensional Markov chain whose stationary distribution provides the
desired interval estimates.

• The discovery that the Gibbs sampler can be used to solve a wide variety
of Bayesian estimation problems was a major advance in the accessibility
of Bayesian inference in practice. However, it may not be trivial to find
the partial conditional distributions or to do the programming necessary
to implement a Gibbs sampler. For example, the program of Example 9.3
is about a page long when printed in the format of this book.

In this chapter, we introduce WinBUGS, showing some instances in which
this software greatly simplifies the implementation of Gibbs sampling and
other computational methods for Bayesian estimation. We begin with some
basic information about WinBUGS software. Then we use this software to

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 249
Use R!, DOI 10.1007/978-0-387-68765-0_10, © Springer Science+Business Media, LLC 2010
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analyze some of the models illustrated in Chapters 8 and 9 and also some
additional Bayesian inference models we have not previously considered.

10.1 What Is BUGS?

The BUGS program is designed for Bayesian modeling. The term BUGS
stands for Bayesian Inference Using Gibbs Sampling. WinBUGS is an im-
plementation of BUGS for Microsoft Windows. As this is being written, the
latest version of WinBUGS is available from OpenBUGS website:

www.openbugs.info

This website also has links to prior versions of OpenBUGS, information about
running BUGS software on other operating systems, manuals, information
about the authors of the software, and so on. In this chapter, we use Open-
BUGS 3.0.3, a version of WinBUGS from this site. (See [TOLS06].)

To begin a specific analysis, the user provides a relatively brief WinBUGS
program, written in code that has syntax that is somewhat similar to R. The
program includes a statement of the model (including prior distributions), the
data, and initial values of the parameters to be estimated (as the first step in
a simulated Markov chain).

At the core of the BUGS software is the Gibbs sampler, which is used
to sample from the conditional posterior distributions of the parameters.
These distributions are provided by the program, based on a listing of the
model, the prior distributions, and the data. When nonconjugate models
are used, WinBUGS may employ various computational methods to sample
from these conditional posterior distributions. For example, the Metropolis-
Hastings algorithm and other adaptive rejection methods may also be imple-
mented as appropriate (see Chapters 7 and 8).

The posterior analysis is performed using the simulated Monte Carlo
Markov chain output produced by the program. Posterior statistics and pos-
terior densities can be calculated to produce posterior estimates of the para-
meters in the model. Much as in Chapter 9, diagnostic graphical displays such
as trace plots, mean plots, and autocorrelation plots can be made as an aid
in determining whether the simulated chain converges satisfactorily.

In earlier chapters of this book, we have stressed that some Markov chains
either do not have stationary distributions or that it may be difficult to ap-
proximate a stationary distribution using simulation. Although WinBUGS
is relatively easy to use, that does not diminish the responsibility of users
to determine whether the results are trustworthy. Here we quote an explicit
warning on this issue from the creators of WinBUGS [STBL07]:

Potential users are reminded to be extremely careful if using this program
for serious statistical analysis. We have tested the program on quite a wide
set of examples, but be particularly careful with types of model that are
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currently not featured. If there is a problem, WinBUGS might just crash,
which is not very good, but it might well carry on and produce answers
that are wrong, which is even worse. Please let us know of any successes or
failures.

Beware: MCMC sampling can be dangerous!

10.2 Running WinBUGS: The Binomial Proportion

In this section, we show how to use WinBUGS to make Bayesian inferences
about a population proportion, assuming binomial data. In Chapter 8, we
found exact values based on beta-distributed prior and posterior distributions,
so it is not necessary to use WinBUGS in this situation. But this example
provides an easy introduction to WinBUGS.

Example 10.1. Election Polling Revisited. Recall Example 8.1 on election
polling. This model denotes by x the number of potential voters out of a
sample of size n in favor of Proposition A. We assume that x ∼ BINOM(n, π),
where π is the population proportion of potential voters who favor Proposi-
tion A, and we use the prior distribution π ∼ BETA(α, β), with α0 = 330
and β0 = 270. Note that in the syntax of WinBUGS the parameterization
of the binomial distribution is with the population proportion listed first and
the sample size listed second. These parameters center the prior at π = 55%
with high probability that π is between 51% and 59%. The data are x = 620
favorable responses out of n = 1000 subjects sampled.

Because this model and prior are conjugate, the posterior distribution can
be derived analytically, so WinBUGS implements Monte Carlo simulation
directly from the posterior and does not implement a Gibbs sampler. We
show the steps necessary to program this situation into WinBUGS. We use
only 2000 iterations for this first example so we can see the simulated history
plots more clearly. Longer runs of the program would produce more accurate
results and would match the exact answers from Chapter 8 to any desired
number of decimal places.

We begin by typing the code below into a new Program window, available
by selecting New in the File menu. There are three parts to the program: the
Model and two lists, one for the Data and one for the Inits (initial values).

# Model

model; {

x ~ dbin(pp, n) # Note syntax differs from R

pp ~ dbeta(330, 270) # Prior

}

# Data

list(x = 620, n = 1000) # observed data

# Inits

list(pp = 0.25) # starting values for pp



252 10 Using WinBUGS for Bayesian Estimation

Figure 10.1. Polling data: WinBUGS screenshot with code for Example 10.1.

Notice that we use pp for π and that the name and syntax for the binomial
density differ from that of R.

To run this program, begin by opening the Specification Tool from the
Model pull-down menu. See Figures 10.1 and 10.2 for a view of the screen at
this point and an enlargement of the Specification Tool, respectively.

• To specify the model, highlight the code model; under the comment
# Model, and then click the check model button in the Specification Tool.
The response in the lower-left corner of the Program window should be
“model is syntactically correct.”

• To load the data, highlight the code list under the comment # Data, and
then click the load data button in the Specification Tool. The response in
the lower-left corner of the Program window should be “data loaded.”

• To compile the model, click the compile button in the Specification Tool.
The response in the lower-left corner of the Program window should be
“model compiled.”

• To load the initial values, highlight the code list under the comment
# Inits, and then click the load inits button in the Specification Tool.
The response in the lower-left corner of the Program window should be
“model is initialized.”

Next, we open two new tools: the Update Tool from the Model pull-down
menu (shown in Figure 10.3) and the Sample Monitor Tool from the Inference
pull-down menu (shown in Figure 10.4). The screen should now look like
Figure 10.1.



10.2 Running WinBUGS: The Binomial Proportion 253

Figure 10.2. Polling data: Use of the Specification Tool for Example 10.1.

.

Figure 10.3. Polling data: Use of the Update Tool for Example 10.1

Once the Sample Monitor Tool is open, we can enter the node of the model.
(WinBUGS uses the word node to mean a parameter to be estimated.) Since
we have one model parameter, we need to enter only one node. In the Sample
Monitor Tool, type the node pp and click the set button. To indicate that no
more nodes are to be entered, type the star symbol * in the node box. Then
you should see additional buttons appear in the Sample Monitor Tool.

Now we run the model for 2000 iterations. In the Update Tool, click the
update button twice (once for each 1000 iterations). To view the resulting
sampled values, click the history button in the Sample Monitor Tool. Then, to
view the sampled values of the estimated parameter pp, its estimated posterior
density, and the ACF of the simulated values, click buttons history, stats,
density, and auto cor in the Sample Monitor Tool. At this point, the screen
should look like Figure 10.5.

With 2000 iterations from one run of this program in WinBUGS, we ob-
tained posterior statistics for π that are similar to the exact values obtained
in Example 8.6 on election polling. Our posterior mean was 59.39% in favor
of Proposition A. And the posterior probability interval for the proportion
in favor was (56.9%, 61.79%). These results are very close to the exact values
59.4% for the mean and (57.0%, 61.8%) for the interval. With a longer run
of the WinBUGS program, we could come closer to the actual values, but
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Figure 10.4. Polling data: Use of the Sample Monitor Tool for Example 10.1.

with 2000 values we come very close. We chose a relatively small number of
iterations to give a clear view of the degree of mixing.

As seen in Chapter 8, this problem can be solved directly because of the
conjugate prior, and so we are sampling directly from the posterior density
and convergence is achieved very near the beginning of the Markov chain
simulation. This is Monte Carlo integration of the posterior density, similar
to what we presented in Chapter 3.

It should be noted that the summary results from the simulated values
from the posterior distribution of pp shown in Figure 10.5 indicate that the
sampling is independent, as demonstrated in the ACF. And we present the
summary statistics below (slightly reformatted to fit on our printed page).

mean sd MC_error

pp 0.5939 0.01222 2.389E-4

val2.5pc median val97.5pc start sample

0.569 0.5939 0.6179 1 2000

Also, we tried using the first 1000 iterations as a burn-in period by chang-
ing the starting value beg from 1 to 1001 in the Sample Monitor Tool. Then
our summary results changed to:

mean sd MC_error

pp 0.5935 0.01221 3.51E-4

val2.5pc median val97.5pc start sample

pp 0.5684 0.5935 0.6178 1001 1000

Problems 10.1 through 10.3 provide some basic practice using WinBugs
and also additional insight into estimation in this situation. ♦
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Figure 10.5. Polling data: WinBUGS screenshot for Example 10.1

In the next section, we use WinBugs to solve an elementary inferential
problem involving normal data that is not included in Chapters 8 or 9. Unlike
this section, where the sampling for one parameter was independent, it should
be clear in the next section how the Gibbs sampler is a form of dependent
sampling when there are two or more parameters in the model.

10.3 Running WinBUGS with a Script:
Two-Sample Problem

This section deals with a two-sample model in which two independent samples
are assumed to be normal with the same population variance and in which
we seek an interval estimate for the difference between the population means.
We use flat prior distributions, so the numerical results should be nearly the
same as we would get from a frequentist two-sample t procedure.

Example 10.2. The Speed of a Mental Process. One way to quantify the speed
of a mental process is by repeated measurements of reaction times. In one
study, 48 student subjects are divided at random into two groups, called
Choice and Simple. Subjects in both groups are asked to memorize three
nonsense words, each starting with a different letter. In repeated trials, each
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subject says a particular word as soon as possible after a cue appears on a
computer monitor, but the method of cueing depends on the group.

• On each trial, a subject in the Simple group is reminded of a specific word
by showing its first letter on a computer monitor. Then he or she is asked
to say this word as soon as possible after a subsequent cue appears on
the screen. Thus the reaction time involves only the time to see the cue
and “program” the voice to say the word into a microphone connected
to the computer. The computer records the reaction time between the
appearance of the cue and the utterance of the word.

• On each trial, a subject in the Choice group is alerted that a cue is coming,
but without revealing which word is to be said. The cue itself gives the
first letter of the word. Thus the reaction time includes the time it takes
to recall the specific word in addition to the time it takes to program
saying it.

The idea is that, on average, the difference between Choice and Simple
reaction times should be the time it takes a person to recall a nonsense word
after being told its first letter. Similar reaction-time experiments for determin-
ing the speeds of mental processes have been done for over a century. (Early
experiments used stopwatches rather than computers, and so also involved
components of error due to experimenter reaction times.) The data presented
here are from an experiment by Stuart Klapp at California State University,
East Bay, reported and discussed in [Tru02].

A practical complication is that reaction times—even for a given subject—
are quite variable and distinctly right-skewed. So each subject did many
trials, and the data in the program below show the median reaction time
(in milliseconds) for each subject. For a demonstration that such medians are
nearly normally distributed, see Problem 10.5.

In classical statistics, a pooled two-sample confidence interval could be
found for the difference between population means for the Simple and Choice
methods (see Problem 10.4). Here we show a Bayesian model for estimating
the difference in means between the two groups.

The WinBUGS program below specifies that observations in the Choice
group are randomly sampled from N(µ1, τ) and that observations from the
Simple group are from N(µ2, τ). As usual in Bayesian modeling, we specify
variability in terms of precision τ (reciprocal of variance). This matches the
syntax for the normal distribution in WinBUGS, which is different from that
of R. In WinBUGS, the second parameter of the function dnorm is the preci-
sion, not the standard deviation. Notice that we assume the same precision τ
in both populations.

Our model uses prior distributions that are conjugate and nearly flat. The
priors for the means µ1 and µ2 are normal with very small precision, and the
prior for the precision τ has a gamma distribution with very small shape and
rate parameters. Two additional parameters, useful in interpreting results,



10.3 Running WinBUGS with a Script: Two-Sample Problem 257

.

Figure 10.6. Reaction-time data: WinBUGS screenshot for Example 10.2.

are defined: the common population standard deviation σ = 1/
√

τ and the
difference δ = µ1 − µ2 between the two population means.

# Model

model; {

for(i in 1:n1) {

Choice[i] ~ dnorm(mu1, tau)

}

for(j in 1:n2) {

Simple[j] ~ dnorm(mu2, tau)

}

mu1 ~ dnorm(0.0, 1.0E-6)

mu2 ~ dnorm(0.0, 1.0E-6)

tau ~ dgamma(0.01, 0.001)

sigma <- 1/sqrt(tau)

delta <- mu1 - mu2

}

# Data

list(

Choice = c(462, 397, 523, 481, 494, 430, 516, 472,

521, 397, 441, 474, 468, 503, 492, 383,

432, 569, 444, 534, 437, 553, 434, 435),

Simple = c(237, 260, 340, 322, 255, 273, 252, 316,

276, 339, 304, 268, 291, 355, 292, 225,

381, 334, 256, 325, 413, 307, 308, 312), n1=24, n2=24)

# Inits

list(mu1=0, mu2=0, tau=1)
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Figure 10.7. Reaction-time data: Dynamic Trace for Example 10.2.

Open this program in WinBUGS and pull down the Specification Tool
from Model on the menu bar. To specify the model, highlight the code word
model; under the comment # Model, and then click the check model button
in the Specification Tool.

To load the data, highlight the code list under the comment # Data and
click the load data button. Then compile the model by clicking the compile
button.

To load the initial values, highlight the code list under the comment
# Inits and click the load inits button. The response in the lower-left corner
should be “model is initialized.”

Next, we select the Update Tool from the Model menu and the Sample
Monitor Tool from the Inference menu. Once the Sample Monitor Tool is
active, we can enter the five nodes in the model. In turn, type mu1, mu2, tau,
sigma, and delta into the node box—clicking the set button immediately
after typing each one. Then enter * into the node box. At this point, all of
the buttons on the Sample Monitor Tool should appear (see Figure 10.6).

Now run the simulation for 2000 iterations as a burn-in period by clicking
the update button twice. Select the trace button in the Sample Monitor Tool
to watch the sample values as they are simulated. Then run the simulation
for 2000 more iterations by clicking the update button two more times to
produce the results we regard as sampled values from the posterior distri-
butions. Note that in the Dynamic trace window the simulated values are
automatically updated (see Figure 10.7).

To view all 4000 of the sampled values, click the history button. To see the
posterior analysis only for values sampled after burn-in, change the beg value
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to 2001 and click the stats and density buttons. At this point, your screen
should look like Figure 10.8. The numerical results (in msec) are shown below.

There is a clear difference in reaction times between the two groups. To
see this, we can examine the model parameter δ = µ1 − µ2. Its posterior mean
estimate is 168.8 msec, with a posterior 95% interval estimate of (141.1, 196.7).
There is a 95% probability that the difference µ1−µ2 is in this interval, which
does not include 0, indicating that the difference between the two group means
is significantly different from 0.

mean sd MC_error

delta 168.9 13.76 0.2404

val2.5pc median val97.5pc start sample

delta 141.3 169.3 197.0 2001 2000

mean sd MC_error

mu1 470.4 9.69 0.2021

val2.5pc median val97.5pc start sample

mu1 451.7 470.6 489.4 2001 2000

mean sd MC_error

mu2 301.6 10.01 0.2161

val2.5pc median val97.5pc start sample

mu2 281.5 301.8 321.0 2001 2000

mean sd MC_error

sigma 48.54 5.168 0.1007

val2.5pc median val97.5pc start sample

sigma 39.5 48.09 59.62 2001 2000

mean sd MC_error

tau 4.387E-4 9.195E-5 1.75E-6

val2.5pc median val97.5pc start sample

tau 2.826E-4 4.325E-4 6.413E-4 2001 2000

Theoretically, a more precise experimental design might use both methods
of giving cues on each subject (paired data) so that we could measure each
person’s individual recall time. But it takes a while for subjects to get familiar
with the equipment and cueing procedure. Experience has shown that subjects
get confused when asked to switch between methods, so it is best to have two
groups. Problems 10.7 and 10.8 illustrate situations where it is feasible to use
paired data to estimate a difference between means. ♦

An alternative way to run a WinBUGS program is by writing a script.
Here is an example of the script needed to estimate parameters from the
reaction-time data.
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Figure 10.8. Reaction-time data: Node statistics and posterior density plots for
Example 10.2.

modelCheck(’C:/ReactionTime/ReactionTimeModel.odc’)

modelData(’C:/ReactionTime/ReactionTimeData.odc’)

modelCompile(1)

modelInits(’C:/ReactionTimeInit.odc’)

modelUpdate(1000)

samplesSet(mu1)

samplesSet(mu2)

samplesSet(tau)

samplesSet(sigma)

samplesSet(delta)

modelUpdate(1000)

samplesStats(’*’)

samplesDensity(’*’)

samplesHistory(’*’)

samplesAutoC(’*’)

This script calls three files, which need to be prepared in advance: a model
file, a data file, and an initial values file. The files contain the three parts of
the WinBUGS program for reaction times as shown above. However, notice
that the WinBUGS script uses forwardslashes / instead of backslashes \ in
specifying MS Windows directory locations.
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Figure 10.9. Reaction-time data: Script for Example 10.2.

To run the script, open the Log window, where you will see the script as
it runs. From the Info pull-down menu, select Open Log. Then click on the
window in WinBUGS containing the script, and from the Model pull-down
menu select Script. In the Log window, you should see each command in the
script. When the script finishes, the screen should look similar to Figure 10.9.

10.4 Running WinBUGS and MCMC Diagnostics:
Variance Components

WinBUGS includes a large library of example programs. In this section, we
show one of them. These examples can be found in the Examples pull-down
menu, where there are three volumes of general examples. The one we il-
lustrate here is from Example Volume 1, Dyes: variance components model
(see Problem 9.21). This example gives the WinBUGS implementation of the
analysis of the data presented by Box and Tiao [BT73]. This is a very useful
example because it has more parameters than the examples given earlier in
the chapter and shows the ease of using WinBUGS to implement Bayesian
hierarchical models. It also provides an opportunity to use the convergence
diagnostics available in WinBUGS and thus to illustrate some of the issues
with convergence of MCMC methods.

In particular, it is a nice example of how different prior distributions (pos-
sibly nonconjugate) may influence the convergence of the Markov chains pro-
duced. In Problem 10.9, we also illustrate that the Gibbs sampler implemented
by WinBUGS may produce slightly different results than if one derives the
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conditional posterior distributions directly and writes R code based on them to
implement the Gibbs sampler. This is an important illustration of the warning
given with the WinBUGS software and quoted earlier in this chapter (p250).

Example 10.3. Dye Data Revisited. The Dye data were collected to examine
the influence on the final yield of the batch-to-batch (or “among batch”) vari-
ation in a raw material used in a production process. The data were collected
from six batches, i = 1, ..., g = 6, with five replications from each batch,
j = 1, ..., r = 5, and thus there are gr = 30 observations yij altogether. The
goal of the analysis is to estimate the among-batch variation σ2

A and the
within-batch variation σ2, assuming independent batches and replications.
These are the same data given in Problem 9.21.

The model for these data is yij ∼ N(Ai, τ), with Ai ∼ N(µ, τA), where Ai

is the true mean yield for batch i, τA = 1/σ2
A, and τ = 1/σ2. The total vari-

ation in the production process is assumed to be additive, V(yij) = σ2
A + σ2.

For each i, the yij , for j = 1, ..., r, are assumed to be independent and Ai

are assumed to be independent. Noninformative priors are assumed for µ, τA,
and τ .

We present the code for one of the recommended priors given in the exam-
ple WinBUGS program. It is suggested that the prior UNIF(0, 1) be placed on
the intraclass correlation. This is suggested to improve the convergence of the
Gibbs sampler in WinBUGS for this model. The intraclass correlation ρI is

ρI =
σ2

A

σ2
A + σ2

=
θA

θA + θ
.

This leads to a derived formula for the between variance among batches:

σ2
A =

ρI

1− ρI
σ2.

The WinBUGS model with this uniform prior on the intraclass correlation is
shown below along with the data and some arbitrary initial parameter values.

# Model

model; {

for(i in 1:g) {

A[i] ~ dnorm(mu, tau.A)

for(j in 1:r) {

y[i,j] ~ dnorm(A[i], tau)

}

}

mu ~ dnorm(0.0, 1.0E-10) # flat prior on grand mean

tau ~ dgamma(0.001, 0.001) # flat prior on within-variation

theta <- 1/tau

sigma <- sqrt(theta)

rho.I ~ dunif(0,1) # Uniform prior on ICC

theta.A <- theta * rho.I/(1-rho.I)
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sigma.A <- sqrt(theta.A)

tau.A <- 1/theta.A

}

# Data

list(g = 6, r = 5,

y = structure(

.Data = c(1545, 1440, 1440, 1520, 1580,

1540, 1555, 1490, 1560, 1495,

1595, 1550, 1605, 1510, 1560,

1445, 1440, 1595, 1465, 1545,

1595, 1630, 1515, 1635, 1625,

1520, 1455, 1450, 1480, 1445), .Dim = c(6,5)))

# Inits

list(mu=1500, tau=1, rho.I=0.5)

list(mu=1000, tau=0.9, rho.I=0.2)

list(mu=2000, tau=10, rho.I=0.8)

For this model, we run three chains simulatively to examine the conver-
gence of the Gibbs sampler. To simulate the three chains with different starting
values, we run WinBUGS in the same way as the last two examples in this
chapter, but before clicking the compile button we change the num of chains
from 1 to 3.

When running multiple chains, it is usual to provide different inits for
each chain. Accordingly, we have listed three sets of starting values in the
WinBUGS program above. To implement them, highlight each list separately
and click load inits. Our inits lists do not include all of the model parameters
requiring initial values, so after loading the three sets of initial values there are
still some uninitialized variables. The rest of the initial values can be randomly
generated by clicking the gen inits button at the bottom of the Specification
Tool.

All of the model parameters should be examined for convergence, but for
illustration here we focus on the four parameters, µ, ρI , σ, and σA, that were
examined in Chapter 9. In the Sample Monitor Tool, we enter the nodes mu,
rho.I, sigma, and sigma.A, clicking the set button after entering each one.
We run the program for 500 000 iterations, with a burn-in of 200 000 iterations.

To assess the convergence of the simulated chains, we examine the history
plots, acf plots, quantiles, and BGR diagnostic (see Figure 10.10).

• First, we set the beginning value to beg 200 001, and then we click history
to see the history plots of the three chains. Notice that the three chains
overlap.

• We view the acf plots by clicking the auto cor button. The acf plots indicate
high autocorrelation within the chains. We could also try selecting the over
relax option on the Update Tool or increasing the thin options to 10 or 20.
These options would reduce the autocorrelation within the Markov chains.
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Figure 10.10. Dye data: Convergence diagnostics for Example 10.3.

• We click on the quantiles button to see the running 2.5, 50, and 97.5
quantiles. Also, Notice that the quantile plots overlap. Both plots indicate
that the chains converge.

• Finally, we click on the bgr diag to see the output of BGR convergence
diagnostic. The plot shows that all of the chains converge around 1 in the
plot. This is also an indication of convergence.

Below, we give the posterior statistics from the three chains. Notice that
they all produce similar posterior estimates of each model parameter. (In each
case, we sample 300 000 values, starting at burn-in value 200 000. These values
are omitted from the printouts below. See Figure 10.11.)

Chain 1 results:

mean sd MC_error val2.5pc median val97.5pc

mu 1527.0 22.79 0.05223 1482.0 1527.0 1573.0

rho.I 0.4337 0.1817 0.005604 0.09642 0.4303 0.7916

sigma 51.3 7.538 0.1239 38.91 50.46 68.16

sigma.A 46.94 19.77 0.5591 18.1 43.36 95.93
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Figure 10.11. Dye data: Posterior statistics from three chains for Example 10.3.

Chain 2 results:

mean sd MC_error val2.5pc median val97.5pc

mu 1528.0 22.75 0.05265 1482.0 1528.0 1573.0

rho.I 0.4323 0.1793 0.005173 0.09546 0.4294 0.7841

sigma 51.38 7.624 0.1165 39.0 50.58 68.83

sigma.A 46.73 19.36 0.5107 17.95 43.78 93.23

Chain 3 results:

mean sd MC_error val2.5pc median val97.5pc

mu 1528.0 22.08 0.05226 1483.0 1527.0 1572.0

rho.I 0.4243 0.1737 0.006601 0.1083 0.4196 0.7567

sigma 51.42 7.618 0.1925 38.76 50.44 68.2

sigma.A 45.73 17.89 0.634 19.37 42.84 88.25

As a summary, we average over all three chains, that is, 900 000 values
after burn-in.

mean sd MC_error val2.5pc median val97.5pc

mu 1528.0 22.54 0.03025 1482.0 1527.0 1573.0

rho.I 0.4301 0.1783 0.003364 0.09916 0.4265 0.7798

sigma 51.37 7.594 0.08563 38.87 50.49 68.38

sigma.A 46.47 19.03 0.3295 18.62 43.31 92.81
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For comparison with Problem 9.21, the estimate for µ is 15.28 with a 95%
posterior probability interval of (1482, 1573) and the estimate for σA = 46.47
with a 95% posterior probability interval of (18.62, 92.81). As mentioned ear-
lier in this chapter, the results of WinBUGS may be slightly different from the
results produced by directly computing the conditional posterior distributions
and implementing them in R directly.

For this example, also note that we use a different model with a non-
conjugate prior on the intraclass correlation. The model from Chapter 9 uses
different priors; in particular, noninformative inverse gamma distributions are
used as priors for both variance components. In the new model presented here
a noninformative prior is used on one variance component, a noninformative
prior is used on the intraclass correlation, and from this some information is
assumed for the other variance component. This may be the reason for the
shorter posterior probability intervals computed using WinBUGS. ♦

10.5 A Final WinBUGS Example: Linear Regression

In this section, we give a final example using WinBUGS to implement the
simple linear regression model. This type of model is commonly used in data
analysis in general and in Bayesian modeling in particular.

We estimate the parameters in a centered linear regression model.
This is also an example given in the WinBUGS User Manual. The model is

Yi = α + β(xi − x̄) + εi, (10.1)

where εi ∼ N(0, τ) and τ = 1/σ2. This is the same model as the simple linear
regression model

Yi = α0 + βxi + εi (10.2)

with α0 = α − βx̄. In order to get better behavior of the simulated Markov
chains within the Gibbs sampler, we use equation (10.1) for the model and
then estimate α0 in equation (10.2). This centering of the predictor variable,
xi, makes the estimate of α independent of the estimate of β, which leads
to much less correlation of the simulated Markov chains for α and β. See
Problem 10.10.

Example 10.4. Linear Regression Model Using the Old Faithful Data. Recall
the data on eruptions of the Old Faithful geyser discussed in Chapter 6, Exam-
ple 6.1. These data were collected in an attempt to predict the waiting time Yi

until the next eruption given the length xi of an eruption just finished. Values
of Yi and xi for 107 eruptions are shown in the following WinBUGS code.
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# Model WaitNext = alpha + beta ( DurLast - mean(DurLast) )

model; {

for( i in 1 : N ) {

mu[i] <- alpha + beta * (x[i] - xbar)

}

for( i in 1 : N ) {

Y[i] ~ dnorm(mu[i],tau)

}

alpha ~ dnorm(0.0, 1.0E-6)

beta ~ dnorm(0.0, 1.0E-6)

tau ~ dgamma(0.001, 0.001)

sigma <- sqrt(1 / tau)

}

# Data

list(x = c(4.4, 3.9, 4.0, 4.0, 3.5, 4.1, 2.3, 4.7, 1.7, 4.9,

1.7, 4.6, 3.4, 4.3, 1.7, 3.9, 3.7, 3.1, 4.0, 1.8,

4.1, 1.8, 3.2, 1.9, 4.6, 2.0, 4.5, 3.9, 4.3, 2.3,

3.8, 1.9, 4.6, 1.8, 4.7, 1.8, 4.6, 1.9, 3.5, 4.0,

3.7, 3.7, 4.3, 3.6, 3.8, 3.8, 3.8, 2.5, 4.5, 4.1,

3.7, 3.8, 3.4, 4.0, 2.3, 4.4, 4.1, 4.3, 3.3, 2.0,

4.3, 2.9, 4.6, 1.9, 3.6, 3.7, 3.7, 1.8, 4.6, 3.5,

4.0, 3.7, 1.7, 4.6, 1.7, 4.0, 1.8, 4.4, 1.9, 4.6,

2.9, 3.5, 2.0, 4.3, 1.8, 4.1, 1.8, 4.7, 4.2, 3.9,

4.3, 1.8, 4.5, 2.0, 4.2, 4.4, 4.1, 4.1, 4.0, 4.1,

2.7, 4.6, 1.9, 4.5, 2.0, 4.8, 4.1),

Y = c(78, 74, 68, 76, 80, 84, 50, 93, 55, 76,

58, 74, 75, 80, 56, 80, 69, 57, 90, 42,

91, 51, 79, 53, 82, 51, 76, 82, 84, 53,

86, 51, 85, 45, 88, 51, 80, 49, 82, 75,

73, 67, 68, 86, 72, 75, 75, 66, 84, 70,

79, 60, 86, 71, 67, 81, 76, 83, 76, 55,

73, 56, 83, 57, 71, 72, 77, 55, 75, 73,

70, 83, 50, 95, 51, 82, 54, 83, 51, 80,

78, 81, 53, 89, 44, 78, 61, 73, 75, 73,

76, 55, 86, 48, 77, 73, 70, 88, 75, 83,

61, 78, 61, 81, 51, 80, 79), xbar = 3.461, N = 107)

# Inits

list(alpha = -1, beta = -1, tau = 0.1)

list(alpha = 0, beta = 0, tau = 1)

list(alpha = 1, beta = 1, tau = 10)

These data can also be saved in a column format and imported into WinBUGS
as shown in Problem 10.11.
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Figure 10.12. Old Faithful data: Fitted line plot for Example 10.4.

Here is the WinBUGS script file to run the regression model.

modelCheck(’C:/Regr/RegressionModel.odc’)
modelData(’C:/Regr/RegressionData.odc’)
modelCompile(1)
modelInits(’C:/Regr/RegressionInits.odc’)
modelUpdate(2000)
samplesSet(alpha)
samplesSet(beta)
samplesSet(tau)
samplesSet(sigma)
modelUpdate(2000)
samplesStats(’*’)
samplesDensities(’*’)
samplesHistory(’*’)
samplesAutoC(’*’)

The resulting history plots show that the model converges quickly and the
autocorrelation plots show good mixing (see Problem 10.10). The estimated
parameters are shown below.
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Figure 10.13. Old Faithful data: Graphical model for Example 10.4.

mean sd MC_error val2.5pc median val97.5pc
alpha 70.99000 0.651800 1.227e-02 69.72000 71.0000 72.26000
alpha0 33.78000 2.257000 4.353e-02 29.40000 33.8100 38.31000
beta 10.75000 0.625200 1.177e-02 9.51400 10.7500 11.95000
sigma 6.72000 0.473500 8.717e-03 5.88000 6.6960 7.70600
sigma2 45.39000 6.438000 1.192e-01 34.58000 44.8400 59.38000
tau 0.02247 0.003147 5.692e-05 0.01684 0.0223 0.02892

The fitted regression model from equation (10.1) for the fitted values Ŷ is

Ŷi = 70.99 + 10.75(xi − x̄), (10.3)

or equivalently, the fitted simple linear regression model equation (10.2) is

Ŷi = 70.99− 10.75x̄ + 10.75xi = 33.79 + 10.75xi. (10.4)

In Figure 10.12, we plot the data Y (the waiting time to the next eruption)
against x (the length of an eruption just past) along with the fitted regression
model.

We also point out that the WinBUGS software has a design tool called
DoodleBUGS that can be used to graphically represent Bayesian models, see
the pull-down menu item Doodle. To learn how to use this design tool, con-
sult the DoodleBUGS manual that is available from the Manuals pull-down
menu. In Figure 10.13, we show the graphical representation of the centered
regression model 10.1. ♦
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10.6 Further Uses of WinBUGS

In this section, we have shown how to implement Bayesian models using Win-
BUGS, which is very commonly used in practice for Bayesian estimation.
Advantages of WinBUGS are its overall ease of use and its flexibility for de-
veloping and comparing models.

Replacing the mathematical development and implementation in R by the
automatic generation of full conditional densities for sampling in WinBUGS
greatly decreases the time necessary to develop useful models. However, users
must keep in mind the warning that comes with WinBUGS, which we quote
in the first section of this chapter.

The use of WinBUGS can be integrated into R by using special libraries.
The libraries R2WinBUGS and BRugs make it possible to run WinBUGS
within R. The resulting advantage is that the simulated chains are stored
within R, so that the user can graph and analyze these chains more flexibly
within R. In particular, it is then possible to perform convergence diagnostics
beyond what is available in WinBUGS. Also, running WinBUGS within R
removes the need to interact directly with the WinBUGS interface and makes
it easier to run longer chains.

Many excellent books on Bayesian inference using WinBUGS are currently
available. Two books by Congdon [Con01] and [Con03] provide examples using
WinBUGS to analyze various types of data, extending far beyond examples
provided in the WinBUGS Volumes of Examples. Gelman and Hill [GH07]
use R2WinBUGS to analyze data involving regression and hierarchical models.
Also, an excellent general reference for further study of Bayesian data analysis
is the book by Gelman, Carlin, Stern, and Rubin [GCSR04].

10.7 Problems

Problems for Section 10.2 (Estimating a Population Proportion)

10.1 In Example 10.1, run the program for 10 000 iterations with a burn-in
period of 2000. What modifications are required in how the program of the
example is run? Are the posterior estimate and the posterior 95% probability
interval of π (denoted pp in the program) closer to the exact values computed
in Chapter 8 than are the estimates in this chapter?

10.2 Run the program in Example 10.1 for 10 000 iterations with a burn-in
period of 2000. Use a uniform prior on (0, 1). Are the posterior point estimate
and the posterior 95% probability interval of π (denoted pp in the program)
consistent with the Agresti-Coull estimate and frequentist 95% confidence
interval of Chapter 1?

10.3 In Example 10.1, suppose that only 100 voters were polled, with the
same proportion favoring of Proposition A as in the example. That is, suppose
there were x = 62 Yes responses among of the n = 100 voters polled.
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a) Modify the program given in Example 10.1 to reflect this change in the
data. Run the modified program, and report your results. Report the
number of iterations you used and the resulting 95% Bayesian probability
interval for the proportion of voters in favor of Proposition A.

b) What are the exact answers obtained for this smaller poll using the method
presented in Chapter 8?

c) In view of the smaller sample, do you find an increase in the influence of
the prior on the posterior?

Problems for Section 10.3 (Estimating Differences in Means)

10.4 Find a frequentist 95% confidence interval for the average time
to recall a nonsense word. With data vectors Choice and Simple defined
as in the list in the WinBUGS program of Example 10.2, use the R
code t.test(Choice, Simple, var.eq=T). Compare these results with the
Bayesian analysis based on a flat prior. How much does the frequentist con-
fidence interval change if you drop the assumption that the two populations
have the same variance (by omitting the parameter var.eq=T)?

10.5 Central Limit Theorem for medians. The exponential distribution is
often used to model reaction times. Suppose reaction times in Example 10.2
are exponential. Each subject in that experiment performed 90 trials. Perform
the following simulation to see whether the distribution of the median of 90
exponential observations is nearly normal as claimed in the example. Briefly
explain the program and interpret the results.

m = 5000; n = 90; x = rexp(m*n, 1/170)

med = apply(matrix(x, nrow=m),1, median)

hist(med, prob=T)

xx = seq(min(med), max(med), length=100)

lines(xx, dnorm(xx, mean(med), sd(med)))

shapiro.test(med)

Notes: Regardless of the value of the exponential mean, the demonstration is
essentially the same. Recall that for moderate to large sample sizes, t proce-
dures are reasonably robust to nonnormality. Moreover, for sufficiently large
sample sizes, any goodness-of-fit test for normality tends to reject unless the
population is precisely normal.

10.6 Below are IQ scores for 31 girls and 47 boys, all seventh-graders in the
same Midwestern school district (data provided by Darlene Gordon, Purdue
University, quoted in [Moo06]). Assume these students were chosen at random
from some population. Modify the program of Example 10.2 to find a 95%
Bayesian probability interval for the population difference between girls’ and
boys’ IQ scores.

girls = c(114, 100, 104, 89, 102, 91, 114, 114, 103, 105,

105, 130, 120, 132, 111, 128, 118, 119, 86, 72,

111, 103, 74, 112, 107, 103, 98, 96, 112, 112, 93)
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boys = c(111, 107, 100, 107, 115, 111, 97, 112, 104, 106,

115, 109, 113, 128, 128, 118, 113, 124, 127, 136,

106, 123, 124, 126, 116, 127, 119, 97, 102, 110,

120, 103, 115, 93, 103, 79, 119, 110, 110, 107,

105, 105, 110, 77, 90, 114, 106)

Note: For comparison, a frequentist 95% confidence interval for the difference
in the population means, δ = µgirls − µboys, based on a pooled standard
deviation, is (−10.810, 1.145). There is no reason to believe the population
variances are unequal, but if you want to try finding a Bayesian interval based
on separate variances, the separate variances t procedure gives the longer
interval (−11.056, 1.391).

10.7 In 1999, as part of her master’s thesis in education at CSU East Bay,
Anne Nathan reported achievement test scores for 12 fourth-grade special
education students and 14 regular fourth-grade students at a public school
in the San Francisco Bay Area. Assume these students are randomly chosen
from two populations. Scores for one type of test are shown below.

Reglr = c( 94, 112, 107, 118, 126, 103, 103,

132, 98, 121, 88, 118, 100, 103)

Specl = c( 88, 82, 96, 87, 77, 80,

98, 84, 88, 88, 90, 89)

a) Find a traditional 95% confidence interval for the difference in population
means. A practical complication here is that the type of special education
student studied here is relatively narrowly defined, so that the population
variance for this population may be smaller than the population variance
in the population of regular students.

b) Modify the program in Example 10.2 to find a 95% Bayesian probabil-
ity interval for the difference in population mean scores. Assume equal
population precisions. Use noninformative priors.

c) Separate variances. Modify the program of the example to allow for differ-
ent population precisions. The two-sample problem with separate preci-
sions is notoriously difficult to simulate using MCMC methods, especially
when sample sizes are relatively small. Comment on the diagnostic plots.
Do you believe the sampled values accurately reflect the posterior distri-
butions of the parameters?

d) Paired data. Below are scores for an alternate kind of achievement test
administered to the same 12 special education students (listed in the same
order). Provide a Bayesian estimate of the population mean difference in
scores between the two types of tests.

SpAlt = c(75, 86, 84, 80, 69, 81,

89, 75, 84, 86, 85, 89)

10.8 Changes in heights revisited. Recall Example 9.2 (p224) in which the
differences between morning and evening heights of 41 young men were mea-
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sured. The data are shown and explored further in Problem 9.12 (p241), and
are repeated below.

c( 8.50, 9.75, 9.75, 6.00, 4.00, 10.75, 9.25, 13.25,

10.50, 12.00, 11.25, 14.50, 12.75, 9.25, 11.00, 11.00,

8.75, 5.75, 9.25, 11.50, 11.75, 7.75, 7.25, 10.75,

7.00, 8.00, 13.75, 5.50, 8.25, 8.75, 10.25, 12.50,

4.50, 10.75, 6.75, 13.25, 14.75, 9.00, 6.25, 11.75, 6.25)

a) Paired data. Modify the WinBUGS program of Example 10.2 to find
a 95% Bayesian probability interval for height difference in the popula-
tion, using prior distributions equivalent to those shown in Example 9.2.
Compare your numerical and graphical results with those obtained in
Chapter 9. Also compare your modified program with the program of the
example, mentioning similarities and differences.

b) Informative prior. Suppose you have previous experience with such height
measurements. In particular, you believe the mean difference in heights is
fairly sure to lie between 7 and 13 mm and that individual differences can
be measured with a standard deviation between 1 and 5mm. Use priors
that reflect this experience, and report whether taking prior information
into account markedly changes the results from those in part (a).

Problems for Section 10.4 (Variance Components)

10.9 In Problem 9.21, the model presented in Example 9.3 is used to an-
alyze the dye data. Compare the results of the direct implementation of the
model in the R code with the results of the WinBUGS implementation.

a) Run the code from Example 9.3 using the data given in Problem 9.21. Say
which parameters have priors, and what priors are assumed for each.

b) Run the code from Example 10.3. What are the parameters with priors,
and what are the assumed priors?

c) Are the posterior estimates of the common parameters similar, using R
and using WinBUGS?

d) Does it appear that the different prior specifications in parts (a) and (b)
influence the implemented Gibbs sampler?

Problems for Section 10.5 (Simple Linear Regression)

10.10 Compare the convergence properties of the two regression models
presented in Section 10.5. Run the WinBUGS code given for the centered
regression model (10.1) and the simple regression model (10.2).

a) Run the WinBUGS model from Example 10.4 and examine the autocor-
relation in the history plots of simulated chains for α and β.

b) Modify the WinBUGS program from the example to implement the sim-
ple regression model given in equation (10.2). Run the new WinBUGS
program and check the autocorrelation within the history plots of the α0

chain and within the β chain.
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c) Compare the correlation between the α0 and β chains for the simple regres-
sion model with the same correlation for the α and β centered regression
model. Use the plotting pull-down menu items Inference and Correla-
tions... to examine the correlation between the simulated chains. Enter
the nodes and click the scatter button to see a scatterplot, and click print
to see the calculated correlation coefficient.

d) Examine the history plots from each model. Is there a difference in the con-
vergence of Markov chains? Which model seems to converge more quickly?

e) Another method used to reduce the correlation in simulated Markov chains
is thinning. Increase the number of updates to 40 000 and thin the chains
from each model, using every 10th simulated value. Compare the results.

10.11 An alternative way of saving the data is to use the column format.
Replace the data list in Example 10.4 with the following list and the data
in column format, illustrated below.

list(xbar = 3.461, N = 107)

Y[] x[]
78 4.40000
74 3.90000
68 4.00000
76 4.00000
80 3.50000
84 4.10000
...
79 4.10000
END

To run this new WinBUGS program with the pull-down menus, follow the
steps presented earlier in this chapter, except after highlighting the code list
and clicking load data also highlight Y[] x[] and click load data. This will
load the data in WinBUGS. Check that the results are similar to the results
present in Section 10.5.
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Appendix: Getting Started with R

11.1 Basics

This appendix focuses on some specific features and commands of R that
you will need in the first few chapters of this book. If you have never used
R before—or you need a review of the basics—we recommend starting here.
Throughout the book, we show the R code required for each new concept,
briefly explaining the new R commands involved. If you want more detailed
information, you can refer to the introductory and general reference manuals
available on the R website.

11.1.1 Installation

The R software package [RDCT09] can be downloaded and installed free
of charge from www.r-project.org. Versions are available to run under
Windows, Unix, or Macintosh operating systems. For example, here is how
to install R on a Windows machine from this web address (instructions that
as of this writing, have been stable for several years). In the left margin,
under Download, select CRAN. Then, in sequence, select the CRAN Mirror
site nearest you, Windows, base, and then finally the setup program, which
installs the latest release of R. After downloading is finished (which can take
seconds or minutes, depending on the speed of your connection), the R icon
should appear on your desktop. Select this icon to start R.

When R starts up, you will see the Console window—with a prompt > at
which you can type an instruction. This appendix shows introductory exam-
ples of R instructions. It is best read while seated at a computer with the
Console window open so you can interactively type R code shown here. Some
informal questions and formal problems are interspersed to help you reinforce
ideas in the examples. We recommend that you explore these to consolidate
what you have learned before going on to the next part. Learning to use R is
not a spectator sport.

E.A. Suess and B.E. Trumbo, Introduction to Probability Simulation and Gibbs Sampling with R, 275
Use R!, DOI 10.1007/978-0-387-68765-0_11, © Springer Science+Business Media, LLC 2010
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11.1.2 Using R as a Calculator

To get the feel of how the Console works, try typing instructions for a few
simple computations, pressing the Enter key after each. Use the asterisk (*)
for multiplication and carat (^) for exponentiation. Here are some simple
examples.

> 2 + 2

[1] 4

> (2 + 2)*5

[1] 20

> 2 + 2 * 5

[1] 12

> 2 + 3 * 5^2

[1] 77

> 3^2 + 4^2

[1] 25

> (4/2)^(1/2)

[1] 1.414214

> sqrt(3)

[1] 1.732051

After pressing Enter, if you discover you have made a mistake, it may be
easier to use the up-arrow key (↑) to retrieve the previous instruction and
edit it than to retype everything afresh. Below, after R returns 22 for the sum
1 + 2 + 3 + 42, press ↑. This character does not print on-screen; instead the
previous instruction appears at a fresh prompt. Then insert parentheses to
obtain (1 + 2 + 3 + 4)2, which equals 100.

> 1 + 2 + 3 + 4^2

[1] 22

> (1 + 2 + 3 + 4)^2

[1] 100

If you want to save the result of one computation before going on to the
next, use the equal sign (=) to store the preliminary result as an object. Here
the object is a number, which we choose to call a.

> a = 1 + 2 + 3 + 4

> a

[1] 10

> a^2

[1] 100

> sqrt(a)

[1] 3.162278

11.1.3 Defining a Vector

R is an object-oriented language. In this book, the most important objects
are vectors. A vector is an ordered list of numbers called elements. The index
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of an element specifies its position in the list: index 1 for the first element,
index 2 for the second, and so on.

Next we show a few ways to specify the elements of a vector. The symbol =
is used to assign values. For example, y = 25 means that y is a vector with 25
as its only element. Below we show how this looks in the R Console window.
But first we give some specific notes about making and printing vectors, which
are also illustrated below.

• In other books containing R code, you may see <- used instead of = as the
assignment operator. However, the simpler = now seems to predominate.
Ordinarily, R is not fussy about where you put spaces, but if you use <-,
then you must type the two symbols without a space between them.

• Names of objects in R are case-sensitive. Thus, y and Y are two different
objects. In this book, to avoid confusion, we use mainly lowercase names.

• The name of a vector can be several characters long, but the first character
must be a (capital or small) letter. Commonly, the additional characters
are letters or numbers, but a period (.) may also be used.

• The symbol c is used to make a vector with several elements. You can
think of c as standing for “combine.” Because R ordinarily treats vectors
as columns of elements (even though vectors are sometimes printed out in
rows), you may prefer to think of c as standing for “column vector.”

• To print a vector on the screen, just type its name. No special printing
command is needed. Semicolons (;) can be used to separate two or more
R commands on the same line. For clarity, these should be closely related
commands. Below, we use a semicolon to define and print a vector in a
single line of code.

> y = 25

> y

[1] 25

> b <- 1 + 2 + 3; b

[1] 6

> b.test = b + 1; b.test

[1] 7

> b.test = 0; b.test

[1] 0

> Y

Error: Object "Y" not found

> d < - 1 + 2

Error: Object "d" not found

> v1 = c(7, 2, 3, 5); v1

[1] 7 2 3 5

Here are a few convenient shorthand notations for making vectors. They
are often used to make vectors with elements that follow a particular pattern,
and they are especially convenient for long vectors that would be tedious to
specify with the c-notation.
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• The function numeric is often used to “initialize” a long vector containing
all 0s that is to be used in a loop. Inside the loop, each element may be
changed, one at a time, from 0 to some other value. (More about loops
later.)

• The function rep (for repeat) is used to make a vector in which all elements
are equal to a specified value (not necessarily 0).

• The function seq (for sequence) is used to make a vector that is a sequence
of equally spaced values. Alternatively, if successive values differ by 1, such
a vector can be defined using a colon (:).

• The c-symbol can be used to combine vectors as well as single numbers to
form a longer vector.

• When long vectors are printed, the appearance of output on the screen
depends on the width of the Console window, which you can adjust in the
usual way (by selecting an edge or corner and dragging it to get the desired
dimensions). When a vector is printed, the first line begins with [1]. The
number in brackets at the start of each successive line is the index number
of the first element printed on that line.

> v2 = numeric(4); v2

[1] 0 0 0 0

> numeric(10)

[1] 0 0 0 0 0 0 0 0 0 0

> v3 = rep(3, 4); v3

[1] 3 3 3 3

> rep(4, 3)

[1] 4 4 4

> v4 = 1:4; v4

[1] 1 2 3 4

> seq(1, 2.2, by=.1)

[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

[13] 2.2

> seq(1, 2.2, length=11)

[1] 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 2.08

[11] 2.20

> v5 = c(v3, v4, 7); v5

[1] 3 3 3 3 1 2 3 4 7

In each of its uses above, the function seq has three arguments. The first
argument is the beginning number and the second argument indicates where
to stop. These arguments are usually specified by position, appearing first
and second in order within the parentheses. We prefer to specify the third
argument by name. In one of the examples above, the additional argument
is by. It is the increment between successive elements of the vector. In the other
example of the function seq above, the additional argument is length.out,
which may be shortened to length or even to len. It specifies the length of
the resulting vector (that is, the number of elements it contains). The value
of by or length.out is specified by using an equal sign (=).
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Notes: In specifying arguments of an R function, you may not use <- as a
substitute for =. Names of arguments can ordinarily be abbreviated as long
as the abbreviation is not so severe as to cause ambiguity.
Problems

11.1 Predict the results of each of the following R statements, and then
use R to verify the answers. The last three lines of code illustrate new state-
ments. The R constant pi and functions exp, log, log10, log2, sin, and tan
used here have their obvious meanings. (Because pi is a predefined, reserved
constant in R, you should never assign another numerical value or vector to it.)

2 + 5^2 - 4^2; 2 / (5^2 - 4)^2

2 + (3^2 + 4^2)^(2/4); 2 * (3^2 - 4^2)^2 / 4

exp(1); exp(1)^2; exp(2); log(exp(2))

log10(10^10); log2(1024); log10(10^(1:5))

pi; sin(pi/2); tan(pi/4)

11.2 In working with the following statements, experiment by adjusting the
width of the Console window so that the output is easy to read. The last few
lines of code illustrate some related ideas that we have not explicitly covered.
A string included in quotes (") is a character object.

numeric(100); numeric(10); rep(0, 10); rep(10, 10)

seq(0, 10); seq(0, 10.5, by=1); seq(0, 10, length=11)

0:9.5; -.5:10; 0:10 - .5; -1:9 + .5; seq(-.5, 9.5)

-4:11; 4:-1; 4.5:10; -4:-11.5

(10:22)/10; 10:22/10; 10/2:22; (10/2):22

seq(1, 2.2, by=0.1); seq(by=0.1, to=2.2, from=1)

seq(1, 2.2, length.out=13); seq(1, 2.2, len=13)

r = 1:5; s = -2:2; s/r; r/s; s/s

r^0; s^0; s^.5; 1000^1000; ?NaN

rep("I will not eat anchovy pizza in class.", 20)

rep(1:4, times=3); rep(1:4, each=3)

11.3 At the Console > prompt, try typing each of ?Arithmetic, ?log,
and ?seq to see examples of the help screens that are immediately available
while using R. Explore some of the variations you see there. (You can also
use help(log) instead of ?log, and similarly for other expressions.) Unfortu-
nately for our purposes, sometimes you will find that a help screen gives you
more technical detail than you want or need to know.

11.2 Using Vectors

In this section, we illustrate simple arithmetic operations with vectors, the use
of indices to change and retrieve individual elements of vectors, and procedures
for modifying and comparing vectors.
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11.2.1 Simple Arithmetic with Vectors

Operations on vectors are performed element by element. In particular, when
an operation involves a vector and a number, the number is used to modify
each component of the vector as specified by the operation. Here are some
examples.

> v1; w1 = 3*v1; w1

[1] 7 2 3 5

[1] 21 6 9 15

> w2 = v1/2; w2

[1] 3.5 1.0 1.5 2.5

> w3 = 5 - v1; w3

[1] -2 3 2 0

> w4 = w3^2; w4

[1] 4 9 4 0

When arithmetic involves two vectors of the same length, then the oper-
ation applies to elements with the same index. In particular, it is important
to remember that multiplication is element-wise. (In R, one can also compute
vector products and do matrix multiplication, but we do not discuss these
topics in this appendix.)

> w5 = w3 + w4; w5

[1] 2 12 6 0

> (5:1)*(1:5)

[1] 5 8 9 8 5

> (5:0)^(0:5); (5:1)/(1:5)

[1] 1 4 9 8 1 0

[1] 5.0 2.0 1.0 0.5 0.2

When the vectors involved are of unequal lengths, then the shorter vector is
“recycled” as often as necessary to match the length of the longer vector. If the
vectors are of different lengths because of a programming error, this can lead
to unexpected results, but sometimes recycling of short vectors is the basis of
clever programming. Furthermore, in a technical sense, all of the examples we
have shown with operations involving a vector and a single number recycle
the single number (which R regards as a one-element vector).

Here are several examples of operations involving vectors of unequal
lengths. Notice that R gives a warning message if the recycling comes out
“uneven”; that is, the length of the longer vector is not a multiple of the
length of the shorter one. A warning message is warranted because this situ-
ation often arises because of a programming error.

> (1:10)/(1:2)

[1] 1 1 3 2 5 3 7 4 9 5

> (1:10)/(1:5)

[1] 1.000000 1.000000 1.000000 1.000000 1.000000 6.000000

[7] 3.500000 2.666667 2.250000 2.000000
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> (1:10)/(1:3)

[1] 1.0 1.0 1.0 4.0 2.5 2.0 7.0 4.0 3.0 10.0

Warning message: longer object length

is not a multiple of shorter object length

in: (1:10)/(1:3)

Problems

11.4 Using the definitions of vectors w3 and w4 given above, predict results
and use R to verify your answers for the following: w3-w4, w4-w3, w4*w3,
w4^w3, w4/w3, (1:4)^2, (1:4)^(0:3), and (1:2)*(0:3).

11.2.2 Indexes and Assignments

Sometimes we want to use only one element of a vector. To do this, we use
the index notation [ ], which can be read as “sub.” The simplest version of
referencing by index is just to specify the index (position number within the
vector) you want. However, the bracket notation can also be used along with
the assignment operator = to change the value of an element of an existing
vector. Similarly, it is possible to use or change the values of several specified
elements of a vector. (We illustrate additional uses for the bracket notation
later in this appendix.)

> w1; w1[3]

[1] 21 6 9 15

[1] 9

> w5; w5[9]

[1] 3 3 3 3 1 2 3 4 7

[1] 7

> v2; v2[1] = 6; v2

[1] 0 0 0 0

[1] 6 0 0 0

> v7 = numeric(10); v7

[1] 0 0 0 0 0 0 0 0 0 0

> v7[1:3] = 4:6; v7

[1] 4 5 6 0 0 0 0 0 0 0

> v7[2:4]

[1] 5 6 0

Problems

11.5 Which statements in the following lines of R code produce output?
Predict and use R to verify the output.

x = 0:10; f = x*(10-x)

f; f[5:7]

f[6:11] = f[6]; f

x[11:1]

x1 = (1:10)/(1:5); x1; x1[8]

x1[8] = pi; x1[6:8]
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11.2.3 Vector Functions

We begin with vector functions that return a single number. The meanings of
the functions in the following demonstration should be self-explanatory.

> w2; max(w2)

[1] 3.5 1.0 1.5 2.5

[1] 3.5

> w3; mean(w3)

[1] -2 3 2 0

[1] 0.75

> v1; sum(v1)

[1] 7 2 3 5

[1] 17

> v4; prod(v4)

[1] 1 2 3 4

[1] 24

> v5; length(v5)

[1] 3 3 3 3 1 2 3 4 7

[1] 9

By using parentheses to indicate the sequence of operations, one can com-
bine several expressions that involve functions. For example, here are two ways
to find the variance of the elements of w3, followed by the computation of the
standard deviation of this sample.

> (sum(w3^2) - (sum(w3)^2)/length(w3)) / (length(w3) - 1)

[1] 4.916667

> var(w3)

[1] 4.916667

> sqrt(var(w3)); sd(w3)

[1] 2.217356

[1] 2.217356

Some vector functions return vectors when they are applied to vectors.
For example, sqrt takes the square root of each element of a vector. Other
functions work similarly, for example exp, log, and sin. The function cumsum
forms cumulative sums of the elements of a vector. Also, the vector function
unique eliminates “redundant” elements in a vector, returning a vector of
elements with no repeated values.

> sqrt(c(1, 4, 9, 16, 25))

[1] 1 2 3 4 5

> 1:5

[1] 1 2 3 4 5

> cumsum(1:5)

[1] 1 3 6 10 15

> cumsum(5:1)

[1] 5 9 12 14 15
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> v5; cumsum(v5)

[1] 3 3 3 3 1 2 3 4 7

[1] 3 6 9 12 13 15 18 22 29

> unique(v5)

[1] 3 1 2 4 7

> s = c(rep(3,5), rep(4,10)); s

[1] 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

> length(s); unique(s); length(unique(s))

[1] 15

[1] 3 4

[1] 2

The function round with no second argument rounds values to integers.
With a second argument, it rounds to the requested number of digits.

> round(2.5)

[1] 2

> round(3.5)

[1] 4

> round(5/(1:3))

[1] 5 2 2

> round(5/(1:3), 3)

[1] 5.000 2.500 1.667

Problems

11.6 Predict and verify results of the following. The function diff of a
vector makes a new vector of successive differences that has one less element
than the original vector. The last line approximates e2 by summing the first 16
terms of the Taylor (Maclaurin) series ex =

∑∞
n=0 xn/n!, where x = 2.

length(0:5); diff(0:5); length(diff(0:5)); diff((0:5)^2)

x2 = c(1, 2, 7, 6, 5); cumsum(x2); diff(cumsum(x2))

unique(-5:5); unique((-5:5)^2); length(unique((-5:5)^2))

prod(1:5); factorial(5); factorial(1:5)

exp(1)^2; a1 = exp(2); a1

n = 0:15; a2 = sum(2^n/factorial(n)); a2; a1 - a2

11.7 The functions floor (to round down) and ceiling (to round up)
work similarly to round. You should explore these functions, using the vectors
shown above to illustrate round. See ?round for other related functions.

11.2.4 Comparisons of Vectors

If two vectors are compared element by element, the result is a logical vector
that has elements TRUE and FALSE. Common comparison operators are ==
(equal), < (less than), <= (less than or equal to), != (not equal), and so on.
It is important to distinguish between the assignment operator = and the
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comparison operator ==. Also, distinguish between > used as a prompt in the
R Console window and as a comparison operator. Here are some examples.
(Also, see the help screen at ?Comparison.)

> 1:5 < 5:1

[1] TRUE TRUE FALSE FALSE FALSE

> 1:5 <= 5:1

[1] TRUE TRUE TRUE FALSE FALSE

> 1:5 == 5:1

[1] FALSE FALSE TRUE FALSE FALSE

> 1:4 > 4:1

[1] FALSE FALSE TRUE TRUE

> 1:5 < 4

[1] TRUE TRUE TRUE FALSE FALSE

> w4; x3 = (w4 == 4); x3

[1] 4 9 4 0

[1] TRUE FALSE TRUE FALSE

If R is coerced (that is, “forced”) to do arithmetic on logical values, then
it takes TRUE to be 1 and FALSE to be 0. The mean of a vector of 0s and 1s is
the proportion of 1s in the vector. So the first result below shows that half of
the elements of the numerical vector w4 are equal to 4; equivalently, half of the
elements in the logical vector x3 are TRUE. The symbols T and F are reserved
as abbreviations of TRUE and FALSE, respectively; they must never be used for
other purposes.

> mean(x3)

[1] 0.5

> sum(c(T, T, F, F, T, T))

[1] 4

> mean(c(T, T, F, F, T, T))

[1] 0.6666667

Comparisons can be used inside brackets to specify particular elements of
a vector. In such instances, it is convenient to read [ ] as “such that.” From
three of the statements below, we see different ways to show that exactly two
elements of v5 are smaller than 3. The two statements on the last line are
logically equivalent.

> v5; v5[v5 < 3]

[1] 3 3 3 3 1 2 3 4 7

[1] 1 2

> length(v5[v5 < 3]); sum(v5 < 3)

[1] 2

[1] 2

Up to this point, we have illustrated many of the fundamental rules about
vector operations in R by focusing on individual statements. In the rest of
this appendix, we begin to explore some elementary applications that involve
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putting statements together into brief “programs.” If a program has more than
a few lines, you may want to prepare it in a text editor (for example, Word-
pad), “cut” multiple lines from there, and “paste” them at an R prompt (>).
Treat each line as a paragraph; do not begin lines with >. (R has a built-in ed-
itor, but its unsaved contents will be lost if you make a mistake and crash R.)

Problems

11.8 Predict and verify the results of the following statements. Which ones
produce output and which do not? The last two lines illustrate a grid search
to approximate the maximum value of f(t) = 6(t − t2), for t in the closed
interval [−1, 1]. Show that if t is chosen to have length 200, instead of 201,
then the result is neither exact nor unique.

x4 = seq(-1, 1, by = .1); x5 = round(x4); x4; x5

unique(x5); x5==0; x5[x5==0]; sum(x4==x5)

sum(x5==0); length(x5); mean(x5==0); x5 = 0; x5

t = seq(0, 1, len=201); f = 6*(t - t^2)

mx.f = max(f); mx.f; t[f==mx.f]

11.3 Exploring Infinite Sequences

Of course, all vectors in R are of finite length. However, the behavior of an
infinite sequence can often be illustrated or explored by looking at a sufficiently
long finite vector.

Example 11.1. The Sum of the First n Positive Integers. One can show by
mathematical induction that the sum sn of the first n positive integers is
sn = n(n+1)/2. For example, s5 =

∑5
i=1 i = 1+2+3+4+5 = 15 = 5(6)/2.

For values of n up to 50, we can use R to illustrate this theorem with the
following code.

> n = 1:50

> s = n*(n+1)/2

> cumsum(n)

[1] 1 3 6 10 15 21 28 36 45 55

[11] 66 78 91 105 120 136 153 171 190 210

[21] 231 253 276 300 325 351 378 406 435 465

[31] 496 528 561 595 630 666 703 741 780 820

[41] 861 903 946 990 1035 1081 1128 1176 1225 1275

> s

[1] 1 3 6 10 15 21 28 36 45 55

[11] 66 78 91 105 120 136 153 171 190 210

[21] 231 253 276 300 325 351 378 406 435 465

[31] 496 528 561 595 630 666 703 741 780 820

[41] 861 903 946 990 1035 1081 1128 1176 1225 1275

> mean(s == cumsum(n))

[1] 1
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The last result indicates 100% agreement between two vectors: s, illustrat-
ing the formula for the sums, and cumsum(n), representing the sums them-
selves. In the last line, the comparison produces a logical vector of length 50.
Taking the mean coerces its values to be numerical (0s or 1s, here all 1s). The
mean of a sequence of 0s and 1s is the proportion of 1s. The demonstration
below, for values of n up to 50 000, is similar.

> n = 1:50000

> s = n*(n + 1)/2

> mean(s == cumsum(n))

[1] 1

But in this case it is impractical to compare all the results by visual inspection,
so the programmed comparison becomes crucial. ♦.

Of course, a demonstration in R is not a substitute for a formal proof.
But if you had not seen the formula of Example 11.1 before and wondered
whether it is true, this demonstration in R might encourage you that the result
is credible and that it is worthwhile trying to construct a formal proof.

Example 11.2. A Sequence with Limit e. Using methods of calculus one can
show that e = 2.71828... is the limit of the infinite sequence an = (1 + 1/n)n,
where n = 1, 2, 3, . . . . In R we can show how close to e the sequence becomes as
n increases to 10 000. In the code below, the function cbind binds two column
vectors together to make a matrix with 10 000 rows and two columns. For
compact output, the expression in brackets prints out only a few designated
rows of the matrix. That nothing follows the comma within the square brackets
indicates that all (both) rows of the matrix are to be printed.

> n = 1:10000; a = (1 + 1/n)^n

> cbind(n, a)[c(1:5, 10^(1:4)), ]

n a

[1,] 1 2.000000

[2,] 2 2.250000

[3,] 3 2.370370

[4,] 4 2.441406

[5,] 5 2.488320

[6,] 10 2.593742

[7,] 100 2.704814

[8,] 1000 2.716924

[9,] 10000 2.718146

The sequence an is monotone increasing (that is, each term in the sequence
is larger than the one before). This can be illustrated by taking successive
differences of the vector a. The result is a vector of length 9999, which can be
used to show that all differences are positive. We also see that a10 000 provides
an approximation to e that is accurate to three decimal places.



11.3 Exploring Infinite Sequences 287

0 50 100 150 200

2.
0

2.
2

2.
4

2.
6

A Sequence That Approaches e

1:200

a[
1:

20
0]

Figure 11.1. A plot of the first 200 terms of the sequence an = (1 + 1/n)n, which
has limn→∞ an = e (indicated by the horizontal dashed line). See Example 11.2.

> da = diff(a)

> da[1:10]

[1] 0.25000000 0.12037037 0.07103588 0.04691375

[5] 0.03330637 0.02487333 0.01928482 0.01539028

[9] 0.01256767 0.01045655

> mean(da > 0)

[1] 1

> exp(1) - a[10000]

[1] 0.0001359016

Throughout this book, we see that the extensive graphical capabilities of
R are especially useful in probability and statistics. In particular, the plot
function plots one vector against another vector of equal length. Here we use
it to plot the first 200 values of an against the numbers n = 1, 2, . . . , 200.

> plot(1:200, a[1:200], pch=19, main="A Sequence That Approaches e")

> abline(h = exp(1), col="darkgreen", lwd=2, lty="dashed")

The default plotting character in R is an open circle. Here we choose to
substitute a smaller solid circle by specifying its code number 19. Also by
default, R supplies a main “header” for the plot and labels for the axes, all
based on names of the vectors plotted. Here we choose to specify our own
more descriptive main label. Finally, we use the function abline to overlay
a horizontal reference line at e, which we choose to draw twice the normal
thickness (parameter lwd), dashed (lty), and in green (col). Results are
shown in Figure 11.1. (Colors are not shown in print.) Within the resolution
of the graph, it certainly looks as if the sequence an is approaching e. ♦
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Problems

11.9 With sn = n(n+1)/2, use R to illustrate the limit of sn/n2 as n →∞.

11.10 Modify the R code of Example 11.2, including the numerical and
graphical displays, to illustrate that the sequence bn = (1 + 2/n)n converges
to e2.

11.4 Loops

Because R handles vectors as objects, it is often possible to avoid writing
loops in R. Even so, for some computations in R it is convenient or necessary
to write loops, so we give a few examples.

Example 11.3. A Loop to Find the Mean of a Vector. We have already seen
that the mean function can be used to find that the mean of the numbers
−2, 3, 2, 0 is 3/4 or 0.75. Recall from above that the vector w3 contains the
desired elements and the statement mean(w3) returns 0.75.

Now, as a “toy” example, we show how we could find the mean of w3 using
a loop. We initialize the object avg to have the value 0. Then, on each passage
through the loop, we add (cumulatively) one more element of w3. Finally, we
divide the accumulated total by the number of elements of w3 to find the
mean of w3. We write this “program” without prompt characters (>) to make
a clear distinction between the program and its output.

w3 = c(-2, 3, 2, 0) # omit if w3 defined earlier in your R session

avg = 0 # when program finishes, this will be the mean

n = length(w3)

for (i in 1:n)

{

avg = avg + w3[i]

}

avg = avg/n; avg

> avg

[1] 0.75

Notice that R ignores comments following the symbol #. These are intended
to be read by people. Because the mean function, which is widely used in
statistics, is already defined in R (in terms of an internal loop), this simple
program is only for purposes of illustration. ♦
Problems

11.11 How many times does the program in Example 11.3 execute the
statement within the loop (between curly brackets { })? As you follow
through the entire program, list all of the values assumed by avg.
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Example 11.4. A Loop to Print Fibonacci Numbers. As far as we know, R
does not come preprogrammed to print Fibonacci numbers—probably because
they are not frequently used in probability and statistics. The following loop
illustrates how one can find the first 30 elements of the Fibonacci sequence,
1, 1, 2, 3, 5, 8, 13, . . . . In this sequence, each element is the sum of the two
previous elements. (In Fi′·bo·na′′·cci, the cci sounds like chee in cheese.)

We begin by saying how many elements we want to display and initializing
a vector fibo of appropriate length, which contains all 0s. Then we supply the
two starting numbers of the sequence (two 1s) and use a loop to generate
the rest. On each passage through the loop, the ith element of fibo is changed
from its initial value of 0 to the appropriate Fibonacci number.

m = 30; fibo = numeric(m); fibo[1:2] = 1

for (i in 3:m)

{

fibo[i] = fibo[i-2] + fibo[i-1]

}

fibo

> fibo

[1] 1 1 2 3 5 8 13 21

[9] 34 55 89 144 233 377 610 987

[17] 1597 2584 4181 6765 10946 17711 28657 46368

[25] 75025 121393 196418 317811 514229 832040

The sequence of ratios, obtained by dividing each Fibonacci number by
the previous one, rapidly approaches the so-called Golden Ratio 1.618 used
in ancient Greek architecture. The following four additional lines of R code
find these ratios, print the (m − 1)st value, and make a figure that uses the
first 15 ratios to illustrate the rapid approach to a limit.

golden = fibo[2:m]/fibo[1:(m-1)]

golden[m-1]

plot(1:15, golden[1:15],

main="Fibonacci Ratios Approach Golden Ratio")

abline(h=golden[m-1], col="darkgreen", lwd=2)

> golden[m-1]

[1] 1.618034

See Figure 11.2 for the plot. We could have found the ratios inside the
loop, but in this book we make it a practice to put as little as possible inside
loops and use the vector arithmetic built into R to do the rest. Also notice
that it is alright to break a long R statement from one line to another—as
long as the statement is syntactically complete only on the last line. Below,
the plot statement is not complete until its right parenthesis ) on the second
line is encountered, matching the left parenthesis ( at the beginning.
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Figure 11.2. Rapid approach to a limit of the Fibonacci ratios. The Fibonacci
numbers are generated using a loop in Example 11.4.

The Fibonacci sequence is not used elsewhere in this book, but if you
are curious to know more about it, you can google “Fibonacci” to retrieve
lots of comments on Fibonacci numbers. On the Internet, any fool fascinated
by a topic can pose as an expert. Comments about mathematics posted on
sites of universities, professional societies, and governmental organizations are
generally most likely to be factual—but still be alert for errors. ♦

11.5 Graphical Functions

An important feature of this book is its many illustrative figures made using R.
We have already seen a few of the extensive graphical capabilities of R. In the
rest of this appendix, we introduce a few additional graphical methods.

Throughout the book, we show the most elemental code for making almost
all of the figures. However, in order to make figures that are effective and
attractive in print, we frequently needed to embellish the elemental code, and
we omit details we feel many readers would find irrelevant or distracting. In
contrast, in this appendix we show (almost) the full code for all the figures,
and on the website that supports this book, we show more detailed code for
most figures.
• Except in this appendix, we do not usually show how to make main headers

or to label axes. In the main text, we mainly rely on captions to label and
explain figures. We show code for main headers in this appendix because
you may find it convenient to use headers in homework or projects.

• We seldom show parameters to govern the thickness (width) or style
(dashed, dotted, etc.) of lines or to produce colors. These omissions mean
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Figure 11.3. Graph of a continuous density curve, rendered by plotting many short
line segments. See Example 11.5

that much of our elemental R graphics code also works with little or no
modification in S-PLUS.

• To see an extensive list of colors that can be used for histogram bars,
lines, and other features of graphs, type colors() at the prompt in the
R Console. (If you want to make your own colors, see ?par, about 80% of
the way down under “Color Specification.”)

Example 11.5. Plotting a “Continuous” Function. The plot function can be
used to give the appearance of a smooth continuous function. For example,
the following code graphs the parabola f(t) = 6t(1 − t), where 0 ≤ t ≤ 1.
The argument type = "l" of the plot function connects 200 dots with line
segments to make what is, for practical purposes, a smooth curve. (The symbol
inside quotes is the letter ell, for lines—not the number one.) Use ?plot to
see other choices that can be specified for type. Also, we include additional
arguments here to make the line double width and blue. Ordinarily, it is
understood that the first argument is for the x-axis and the second for the
y-axis. We think it is best to designate additional arguments by name (as with
type, lwd, and so on), rather than by position (as for the first and second
arguments).

t = seq(0, 1, length=200)

f = 6*(t - t^2)

plot(t, f, type="l", lwd=2, col="blue", ylab="f(t)",

main="Density of BETA(2,2)")

The resulting plot is shown in Figure 11.3. ♦
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Problems

11.12 (a) Without the argument type="l", each of the 200 plotted points
would be shown as a small open circle, with no connecting lines. Modify the
program of Example 11.5 and try it. (b) If the first argument is also omitted,
the remaining vector argument is plotted on the y-axis against the index on
the x-axis. To illustrate, with f defined as above, show the result of plot(f).

11.13 (a) The function f(t) = 6t(1 − t), for 0 < t < 1, and 0 otherwise,
is never negative and (together with the t-axis) it encloses unit area. Thus it
qualifies as a density function of a continuous random variable—specifically
a random variable with distribution BETA(2, 2). Make a plot of the density
function of the distribution BETA(3, 2) similar to that of Example 11.5. The
density function of the general beta distribution BETA(α, β) has the form

f(t) =
Γ (α + β)
Γ (α)Γ (β)

tα−1(1− t)β−1,

for t in the unit interval (0, 1). Here we use the gamma function, which has
Γ (n) = (n − 1)! for positive integer n and can be evaluated more generally
in R with the function gamma. (b) Execute gamma(seq(1, 4, by=.2)) and
factorial(0:3), and explain the results. (c) Use a grid search to find the
mode of BETA(3, 2) (that is, the value of t at which the density function has
its maximum value), and then verify the result using calculus.

Example 11.6. Making a Histogram of Data. Another important graphical
function is the histogram function hist. As an illustration, suppose the IQ
scores of 20 elementary school students are listed in the vector iq below. There
are cleverer ways to import data into R, but simply making a list with the
c-operator suffices throughout this book. The second statement below makes
a suitably labeled histogram of these data.

iq <- c( 84, 108, 98, 110, 86, 123, 101, 114, 121, 131,

90, 108, 105, 93, 95, 102, 119, 98, 94, 73)

hist(iq, xlab="IQ", col="wheat", label=T,

main=paste("Histogram of IQ Scores of", length(iq), "Students"))

This histogram is shown in Figure 11.4. We have used the data to generate
one part of the main header with the character function paste and used the
argument labels=T to print counts atop the bars. The argument col="wheat"
fills bars with a designated color, one of many predefined in R. ♦
Problems

11.14 In Example 11.6, look at the entries in the data vector iq to verify
the heights of each of the histogram bars. That is, determine the number of
observations in each of the intervals [70, 80], (80, 90], . . . (130, 140]. Looking at
the result of sort(iq) may help.
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Figure 11.4. Histogram of IQ scores of students. This histogram illustrates several
embellishments that are not defaults in R. See Example 11.6.

11.15 (a) In Example 11.6, what is the effect of omitting the arguments for
xlab and col in the histogram statement? (b) What happens if you remove
the argument labels=T? (c) What happens if you specify prob=T?

11.16 An algorithm in R determines, by default, how many intervals are
used and what cutpoints (or breaks) separate the intervals. For many kinds of
data, as in Example 11.6, this algorithm gives reasonable results. However, the
breaks argument allows you to control what intervals are used. Experiment
with hist(iq, breaks=10) to get a histogram with roughly ten bars, and
hist(iq, breaks=seq(64.5, 134.5, by=10)) to specify exact cutpoints.

11.17 (a) A histogram should appear to “balance” at the sample mean
(considering the bars to have “weights” in proportion to their heights). Es-
timate the mean of the 20 IQ scores from the histogram in Figure 11.4, and
then use mean(iq) to find the exact sample mean X̄ of these data. Also, use
sd(iq) to find the standard deviation S, and perhaps use the formula for
the sample standard deviation to get the same result with a hand calculator.
(b) The so-called Empirical Rule suggests that, for many samples, all or al-
most all of the observations lie within an interval X̄ ± 3S, extending three
sample standard deviations on either side of the sample mean. Is that true
here? (c) Also, find and explain the results of summary(iq).

11.18 In Example 11.6, we used the character function paste to put the
number length(iq) into the header of the histogram. Similarly, use paste
with round(golden[m-1], 3) in the program of Example 11.4 to put the
value of the Golden Ratio into the main header of the plot.
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11.6 Sampling from a Finite Population

The sample function selects a random sample of a specified size from a given
population. Its first argument is a vector whose elements are the population.
Its second argument is the sample size. If sampling is to be done with replace-
ment, a third argument repl=T is required, otherwise sampling is without
replacement. (When sampling without replacement, the sample size can’t ex-
ceed the population size.) The sample function uses a pseudorandom number
generator to do the sampling in a fashion that is almost impossible to distin-
guish from actually drawing at random from a population. (Pseudorandom
number generators are discussed in Chapter 2.)

A major topic of this book is simulation. Here we illustrate the use of the
sample function to simulate probabilities in two familiar random processes—
dealing cards and rolling dice. Because the correct probabilities are known
from simple combinatorics in these elementary examples, you can verify that
the simulated results are accurate enough for practical purposes.

Example 11.7. Poker Hands. To deal a random poker hand, we take the pop-
ulation to be the 52 cards of a standard deck, from which we want to select 5
cards at random (without replacement, of course). The code in the first line
below does the sampling. Because this is a random process, your answer will
(almost certainly) not be the same as the one shown below.

In order to associate the output with actual playing cards, we imagine
assigning numbers 1, 2, . . . , 52 to the 52 cards. If we want to count the Aces in
a 5-card poker hand, it is convenient to associate the numbers 1, 2, 3, 4 with
the four Aces: A♥, A♦, A♣, A♠, respectively. According to this convention,
there is exactly one Ace in the particular result shown below. In general, the
number of Aces can be determined in R by using the expression sum(h < 5).

> h = sample(1:52, 5); h

[1] 36 10 2 39 26

> h < 5; sum(h < 5)

[1] FALSE FALSE TRUE FALSE FALSE

[1] 1

If you repeat this random experiment several times in R, you will find that
you often get no Aces in your randomly dealt hand and more rarely get one or
several. What are the possible values that might be returned by sum(h < 5)?
What would happen if you tried to sample 60 cards instead of five from a
52-card deck? Try it in R and see.

The program below uses a loop to “deal” 100 000 five-card hands, counts
the Aces in each hand, and makes a histogram of the resulting 100 000 counts.
In the hist function, we use two arguments to modify the default version.
• The argument prob=T puts “densities” (that is, relative frequencies or

proportions out of 100 000) on the vertical axis of the histogram. These
relative frequencies simulate the probabilities of getting various numbers
of Aces.
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Figure 11.5. Simulated distribution of the number of Aces in a randomly dealt
poker hand. See Example 11.7 for the simulation.

• An argument to specify the parameter breaks improves the break points
along the horizontal axis to make a nice histogram. (Otherwise, R uses its
own algorithm to make the breaks—an algorithm ill-suited to our integer
data with many repeated values.)

Results are shown in Figure 11.5. At the end of the program, we tally how
many times each number of Aces was observed. The command as.factor in-
terprets aces as a vector of categories to be tallied by the summary statement.
(What do you get from just summary(aces)?) Again, comments following the
symbol # are explanatory annotations intended for human readers and are
ignored by R.

set.seed(1234)

m = 100000

aces = numeric(m) # m-vector of 0s to be modified in loop

for (i in 1:m)

{

h = sample(1:52, 5)

aces[i] = sum(h < 5) # ith element of ‘aces’ is changed

}

cut = (0:5) - .5

hist(aces, breaks=cut, prob=T, col="Wheat",

main="Aces in Poker Hands")

summary(as.factor(aces)) # observed counts

summary(as.factor(aces))/m # simulated probabilities

round(choose(4, 1)*choose(48, 4)/choose(52, 5), 4) # P{1 Ace}
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> summary(as.factor(aces)) # observed counts

0 1 2 3 4

65958 29982 3906 153 1

> summary(as.factor(aces))/m # simulated probabilities

0 1 2 3 4

0.65958 0.29982 0.03906 0.00153 0.00001

> round(choose(4, 1)*choose(48, 4)/choose(52, 5), 4) # P{1 Ace}

[1] 0.2995

Every time you run a simulation program starting with the same seed and
using the same software, you will get the same answer. ♦
Problems

11.19 Run the program of Example 11.7 for yourself. In this book, we
often show the seed we used to get the sample results we print. This makes
it possible for you to compare your results with ours. (Seeds are explained in
more detail in Chapter 2.) In contrast, if you omit the set.seed statement
when you run the program, you will get your own simulation with slightly
different results. Your exact counts will differ, but your histogram should not
look much different from ours. Find results from two runs.

11.20 The probability of obtaining exactly one Ace in a five-card poker
hand is 0.2995 (correct to four places). This probability is obtained from the
formula (41)(

48
4 )/(525 ), where (n

r ) = n!
r!(n−r)! , which is known as the number

of combinations of n objects taken r at a time. In R, numbers of combina-
tions can be evaluated using the function choose, as shown in the last line of
code above. Starting with r = 0:4, write an additional statement, with three
uses of choose, that gives exact values of all five probabilities simulated in
Example 11.7.
Note: The probability of getting four Aces in a five-card hand is very small indeed:

1.847 × 10−5. In Problem 11.20, you used combinatorics to verify this result. This

probability is too small to be evaluated satisfactorily by our simulation—except to

see that it must be very small. The absolute error is small, but the relative error

is large. (Perhaps getting four Aces is somewhat more likely than this in amateur

poker games where the cards left over from a previous game may not be sufficiently

shuffled to imitate randomness as well as does the pseudorandom number generator

in R. It takes about eight “riffle shuffles” done with reasonable competence to put a

deck of cards into something like random order.)

Example 11.8. Rolling Dice. The code below simulates rolling two dice. For
each roll, the population is 1:6. Because it is possible for both dice to show
the same number, we are sampling with replacement.

> d = sample(1:6, 2, repl=T); d

[1] 6 6

In our run of this code in R, we happened to get two 6s. If you repeat this
experiment several times, you will find that you do not usually get the same
number on both dice.
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What is the probability of getting the same number on both dice? You
could determine whether this happens on a particular simulated roll of two
dice with the code length(unique(d)). What would this code return in the
instance shown above? In general, what are the possible values that might be
returned?

Here is a program that simulates the sums of the numbers in 100 000 two-
dice experiments. It tallies the results and makes a histogram (not shown) of
simulated probabilities.

set.seed(1212)

m = 100000; x = numeric(m)

for (i in 1:m)

{

x[i] = sum(sample(1:6, 2, repl=T))

}

cut = (1:12) + .5; header="Sums on Two Fair Dice"

hist(x, breaks=cut, prob=T, col="wheat", main=header)

summary(as.factor(x))

> summary(as.factor(x))

2 3 4 5 6 7 8 9 10 11 12

2793 5440 8428 11048 13794 16797 13902 11070 8337 5595 2796

Without looking at the program below, can you give the exact probabilities
corresponding to each of the possible sums 2, 3, . . . , 12 ? (Hint: Each result can
be expressed as a fraction with denominator 36.)

In this simulation of rolls of pairs of dice, we can avoid writing a loop,
as shown in the program below. Imagine that one of the dice is red and the
other is green. The first elements of the vectors red and green contain the
results of the first roll, and the first element of the vector x contains the total
number of spots showing on the first roll of the two dice. Each of these three
vectors is of length 100 000.

set.seed(2008)

m = 100000

red = sample(1:6, m, repl=T); green = sample(1:6, m, repl=T)

x = red + green

summary(as.factor(x))

sim = round(summary(as.factor(x))/m, 3)

exa = round(c(1:6, 5:1)/36, 3); rbind(sim, exa)

hist(x, breaks=(1:12)+.5, prob=T, col="wheat",

main="Sums on Two Fair Dice")

points(2:12, exa, pch=19, col="blue")
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Figure 11.6. Histogram of the simulated distribution of the number of spots seen
on a roll of two fair dice. The dots atop the histogram bars show exact probabilities.
See Example 11.8.

> summary(as.factor(x))

2 3 4 5 6 7 8 9 10 11 12

2925 5722 8247 11074 13899 16716 13633 11166 8309 5495 2814

> sim = round(summary(as.factor(x))/m, 3)

> exa = round(c(1:6, 5:1)/36, 3); rbind(sim, exa)

2 3 4 5 6 7 8 9 10 11 12

sim 0.029 0.057 0.082 0.111 0.139 0.167 0.136 0.112 0.083 0.055 0.028

exa 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028

Figure 11.6 shows the simulated probabilities (histogram) and the correspond-
ing exact values (dots atop histogram bars). ♦

In the example above, we say that the second dice program is “vectorized”
because it uses the capability of R to work efficiently with vectors in order
to avoid writing an explicit loop. The second program runs faster because R
executes its internally programmed loops for vector arithmetic faster than
loops you write yourself.

Generally speaking, expert R programmers prefer to use vectorized code
whenever possible. In this book, we occasionally write loops when we might
have used vectorized code—especially if we think the code with loops will be
substantially easier for you to understand or to modify for your own purposes.

Problems

11.21 (a) After you run the program in Example 11.8 with the seed shown,
use the code cbind(red, green, x)[1:12,] to look at the first 12 elements
of each vector. On the first dozen simulated rolls of two dice, how many
times did you see a total of 7 spots? What is the “expected” result? (b) Also,
consider these issues of syntax: What happens if you omit the comma within
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the square brackets? Explain the result of mean(green==red). Why does
mean(green=red) yield an error message?

11.22 (Continuation of Problem 11.20) As illustrated in the program of
Example 11.8, a statement with points can be used to overlay individual dots
onto a histogram (or other graph). Use points, together with the expression
you wrote in Problem 11.20, to overlay dots at exact probabilities onto the
histogram of Example 11.7. For this to work, why is it necessary to use prob=T
when you make the histogram?
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