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Preface to Progress in Nano-Electro-Optics

Recent advances in electro-optical systems demand drastic increases in the
degree of integration of photonic and electronic devices for large-capacity and
ultrahigh-speed signal transmission and information processing. Device size
has to be scaled down to nanometric dimensions to meet this requirement,
which will become even more strict in the future. In the case of photonic
devices, this requirement cannot be met only by decreasing the sizes of ma-
terials. It is indispensable to decrease the size of the electromagnetic field
used as a carrier for signal transmission. Such a decrease in the size of the
electromagnetic field beyond the diffraction limit of the propagating field can
be realized in optical near fields.

Near-field optics has progressed rapidly in elucidating the science and
technology of such fields. Exploiting an essential feature of optical near fields,
i.e., the resonant interaction between electromagnetic fields and matter in
nanometric regions, important applications and new directions such as stud-
ies in spatially resolved spectroscopy, nanofabrication, nanophotonic devices,
ultrahigh-density optical memory, and atom manipulation have been realized
and significant progress has been reported. Since nanotechnology for fabri-
cating nanometric materials has progressed simultaneously, combining the
products of these studies can open new fields to meet the above-described
requirements of future technologies.

This unique monograph series entitled “Progress in Nano-Electro-Optics”
is being introduced to review the results of advanced studies in the field of
electro-optics at nanometric scales and covers the most recent topics of the-
oretical and experimental interest on relevant fields of study (e.g., classical
and quantum optics, organic and inorganic material science and technology,
surface science, spectroscopy, atom manipulation, photonics, and electron-
ics). Each chapter is written by leading scientists in the relevant field. Thus,
high-quality scientific and technical information is provided to scientists, en-
gineers, and students who are and will be engaged in nano-electro-optics and
nanophotonics research.

I gratefully thank the members of the editorial advisory board for valuable
suggestions and comments on organizing this monograph series. I wish to
express my special thanks to Dr T. Asakura, Editor of the Springer Series in
Optical Sciences, Professor Emeritus, Hokkaido University for recommending
me to publish this monograph series. Finally, I extend an acknowledgement to



VI Preface to Progress in Nano-Electro-Optics

Dr Claus Ascheron of Springer-Verlag, for his guidance and suggestions, and
to Dr H. Ito, an associate editor, for his assistance throughout the preparation
of this monograph series.

Yokohama, October 2002 Motoichi Ohtsu



Preface to Volume IV

This volume contains four review articles focusing on different aspects of
nano-electro-optics. The first chapter reviews a versatile scanning near-field
optical microscope with magnetic contrast by utilizing a Sagnac interferom-
eter for monitoring the magneto-optical Kerr effect. This microscope is used
to characterize data-storage media as well as to study the formation of mi-
crodomain patterns in ultrathin magnetic films.

The second chapter aims at describing how to achieve high-quality T-
shaped quantum wires with high spatial uniformity. To characterize local
structural and optical properties in quantum wires, a high-resolution micro-
scopic photoluminescence method is used. Lasing from a single-quantum-wire
laser structure is also demonstrated.

The third chapter summarizes material parameters of InGaN, and then
general transition modes are discussed based on screening of the piezoelectric
field, as well as on localization behavior of exciton/carriers. Detailed results
are also shown on near-field luminescence mapping in InGaN/GaN single-
quantum-well structures in order to interpret the recombination mechanism
in InGaN-based nanostructures.

The last chapter concerns the theoretical treatments of optical near field
and optical near-field interactions. The half-space problems are solved based
on the angular-spectrum representation of the scattered field, where the en-
ergy transfer between interacting objects is made clear. This treatment pro-
vides the basis to investigate the signal transport and associated dissipation
in nano-optical devices.

As was the case of Volumes I–III, this volume is published by the support
of an associate editor and members of the editorial advisory board. They are:

Associate editor: Ito, H. (Tokyo Inst. Tech., Japan)
Editorial advisory board: Barbara, P.F. (Univ. of Texas, USA)

Bernt, R. (Univ. of Kiel, Germany)
Courjon, D. (Univ. de Franche-Comte, France)
Hori, H. (Univ. of Yamanashi, Japan)
Kawata, S. (Osaka Univ., Japan)
Pohl, D. (Univ. of Basel, Switzerland)
Tsukada, M. (Univ. of Tokyo, Japan)
Zhu, X. (Peking Univ., China)
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I hope that this volume will be a valuable resource for the readers and future
specialists.

Tokyo, July 2004 Motoichi Ohtsu
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Near-Field Imaging
of Magnetic Domains

Gereon Meyer, Andreas Bauer, and Günter Kaindl

1 Introduction

The imaging of magnetic domains is of high technological interest for the char-
acterization of data-storage media and nonvolatile memory devices, where
domains carry the bit information [1]. It also has an impact on the study of
magnetism in general, since the formation of domain patterns in thin mag-
netic films is currently a field of intense research. For the observation of
ultrafast switching processes in submicrometer-size domains a magnetic mi-
croscope is needed with picosecond temporal and nanometer lateral resolution
that allows the application of external magnetic fields.

Quite a few powerful methods for the imaging of magnetic domains have
been introduced in the past, but most of them do not fulfill the described
prerequisites: Spin-polarized scanning tunneling microscopy (SP-STM) can
distinguish the spin orientation of adjacent atoms [2]; its temporal resolu-
tion, however, remains in the range of milliseconds. Other methods with high
lateral resolution face this drawback as well, like, e.g., magnetic force mi-
croscopy (MFM) [3] and scanning electron microscopy with polarization anal-
ysis (SEMPA) [4]. Magneto-optical microscopy in contrast can follow magne-
tization processes running on the picosecond time scale and below [5], but the
lateral resolution is diffraction limited to about half the wavelength of light.
The best compromise between spatial and temporal resolution is presently
provided by magnetic X-ray microscopy [6] and photoemission electron mi-
croscopy (PEEM) [7] allowing picosecond temporal resolution together with
the imaging of structures as small as a few tens of nanometers. The study
of magnetization-reversal processes, however, requires the application of ex-
ternal magnetic fields, a condition that, in general, can only be met by opti-
cal methods and X-ray techniques (except for some very tricky setups with
electron-microscopic techniques). A major challenge is thus to increase the
lateral resolution of magneto-optical microscopes.

In this chapter we shall review our effort to build a versatile scanning
near-field optical microscope (SNOM) with magnetic contrast by utilizing a
Sagnac interferometer for monitoring the magneto-optical Kerr effect [8,9].
This new microscope (UHV-Sagnac-SNOM) has been used to characterize
data-storage media [10] as well as to study the formation of microdomain
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patterns in ultrathin magnetic films [11,12]. For in situ studies, the SNOM
can be operated in ultrahigh vacuum (UHV) [13].

2 Magneto-Optical SNOM

The measurement of magneto-optical effects with a SNOM poses some se-
rious difficulties, since the changes in light polarization to be measured can
be strongly affected by phenomena other than magnetism. Such artifacts,
caused, e.g., by birefringence or topography, can be avoided by a careful
choice of the near-field probe and, in particular, by using a Sagnac interfer-
ometer for detecting the magneto-optical Kerr effect. Therefore, we shall first
introduce some basics of magneto-optics before reviewing previous magneto-
optical SNOM work.

2.1 Faraday Effect and Kerr Effect

When linearly polarized light interacts with a magnetic sample, it is converted
into elliptically polarized light, with the main axis of the ellipse being rotated
by a certain angle [14]. This magneto-optical effect is called the Faraday
effect in transmission and the Kerr effect in reflection. The rotation angle
and the ellipticity are expressed by the real and the imaginary parts of a
complex angle φF (resp. φK) (see Fig. 1). To a first approximation, both
parts are proportional to the sample magnetization, M , and can hence be
used to monitor the response of magnetization to variations of parameters
like temperature or external magnetic field. The recording of hysteresis loops
by measuring the magneto-optical Kerr effect (MOKE) versus the external
magnetic field is now a standard procedure to study magnetization-reversal
processes. In combination with pulsed laser sources, magnetization dynamics
can be studied by magneto-optics down to the subpicosecond time scale.
It also provides a powerful method for imaging magnetic domains. Technical
applications include Faraday isolators in optical communication and the Kerr-
effect-based readout process in magnetic data storage.

Magneto-optical effects are caused by the interplay of magnetic circular
dichroism and magnetic circular birefringence: Linearly polarized light is a
superposition of left-handed and right-handed circularly polarized light (LCP
and RCP). Dichroism means a difference in the absorption coefficients of the
two components, while birefringence results from a difference in the phases.
The material looks different for LCP and RCP, because M is an axial vector.
Any symmetry transformation that converts LCP into RCP changes the ori-
entation of M . Dichroism and birefringence are related to each other by the
Kramers–Kronig relations. In general, the combination of LCP and RCP –
after interaction – results in ellipticity and rotation of the light polarization
vector (Fig. 2). In magnetic transition metals the rotation angles are rather
small, with typical values amounting to only a few tenths of a degree [15].
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Fig. 2. The rotation angle of the polarization vector, φ′
F,K, and its ellipticity, φ′′

F,K,
result from a combination of magnetic circular dichroism and circular birefringence

These effects are microscopically understood by a preference of one kind of
spin over the other in optical excitations, which is caused by a combination
of exchange splitting and spin-orbit coupling [14]. In the framework of a
phenomenological theory, the magnetization induces complex nondiagonal
elements of the dielectric tensor ε [16].

In both cases, domain imaging and recording of magnetization curves, a
signal proportional to M is needed. Such a signal follows from the magneto-
optical effects if a setup with crossed polarizers is used. For this purpose, a
polarizer is inserted into the reflected beam (for Kerr-effect detection) with
the main axis slightly misaligned from extinction by an angle α. The intensity
of transmitted light, I, is then given by:

I(±M) = I0 sin2(α ± φK) + IB , (1)

where ±M is the magnetization that causes a Kerr rotation by an angle φK
1;

I0 is the intensity of the reflected light, and IB is the background intensity
1 Complex and real parts of φK need not be distinguished in this consideration,

since both are proportional to M .
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due to the limited extinction ratio of the polarizer, ε = IB/I0. The magneto-
optical contrast C is defined by

C =
I(+M) − I(−M)

I(+M)
=

I0(sin2(α + φK) − sin2(α − φK))
I0 sin2(α + φK) + IB

. (2)

For small angles α and φK slightly misaligned from extinction (α � φK),
this gives a signal proportional to φK, which is used as a measure of M :

C ≈ 4αφK

α2 + ε
. (3)

2.2 Sagnac Interferometer

A Sagnac interferometer is a sensor for testing time-reversal symmetry [17].
It measures the phase shift, ∆φ, between two light beams that propagate
in opposite directions through the interferometer. Such a phase shift can
result from nonreciprocal propagation conditions due to broken time-reversal
symmetry. Mechanical rotation of the optical path, e.g., breaks time-reversal
symmetry due to a relativistic effect that causes different optical pathlengths
for clockwise (CW) and counterclockwise (CCW) light beams. The Sagnac
effect is thus used in inertial sensors like laser gyroscopes to detect the angular
frequency of, e.g., an aircraft. Magneto-optical effects are another example. If
the counterpropagating beams are converted into circularly polarized light,
the Sagnac interferometer can measure their phase shift upon interaction
with the magnetic sample, i.e., the magneto-optical rotation [18]. We shall
show further that this may be the most appropriate way of monitoring the
Kerr effect in SNOM.

The principle of a glass-fiber-based Sagnac interferometer is shown in
Fig. 3: The beam of a laser source is divided into two partial beams by a
50:50 beam splitter, one traveling clockwise (CW), the other traveling coun-
terclockwise (CCW) through a glass-fiber loop. Finally, both beams interfere
at a photo detector. Any nonzero ∆φ between the corresponding electric
fields ECW and ECCW reduces the intensity of the interference signal, I(∆φ),
given by

I =
1
2

∣∣ECWei∆φ + ECCW
∣∣2 =

1
2
I0(1 + cos(∆φ)) . (4)

Here, we assume that E2
CW = E2

CCW = 1/2I0 with I0 being the output
intensity of the laser source. And, we take into account the fact that half of
the light intensity exits the interferometer via the nonreciprocal port.

To increase the sensitivity of the interferometer and to distinguish polari-
ties of ∆φ, a phase modulator is used. Its refractive index oscillates at a high
frequency, ω, modulating the phase of the light beam as φ(t) = φm sin(ωt).
This modulation is most effective if the two partial beams reach the phase
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and frequency ω. The ω signal indicates a nonreciprocal phase shift, ∆φ0

modulator delayed by τ = π/ω, which means φ(t − τ) = −φ(t). The delay,
τ = nL/c, can be adjusted by proper choice of fiber length, L, and refractive
index, n. The detected intensity then amounts to:

I =
1
2

∣∣∣ECWeiφ(t)+i∆φ + ECCWeiφ(t−τ)
∣∣∣2 (5a)

=
1
2
I0(1 + cos(2φm sin(ωt) + ∆φ)) . (5b)

A first-harmonic (ω) oscillation of I indicates that ∆φ �= 0, whereas the
second-harmonic (2ω) part exists also for ∆φ = 0, representing a good test
for the proper alignment of the interferometer (Fig. 4). This can also be
concluded from an expansion of I with respect to its frequency components,
where Jn are Bessel functions:

I

I0
=

1
2

[1 + cos(∆φ)J0(2φm)] (6a)

− [sin(∆φ)J1(2φm)] sinωt (6b)
+ [cos(∆φ)J2(2φm)] cos 2ωt (6c)
+ ...
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Fig. 5. Modifications of the Sagnac interferometer to measure (a) the magneto-
optical Faraday effect and (b) the Kerr effect

The modifications of the Sagnac interferometer that are necessary to mea-
sure the magneto-optical effects are shown in Fig. 5: The counterpropagating
beams are converted into circularly polarized light with the same helicity for
Faraday-effect measurements (Fig. 5a) and with opposite helicity for Kerr-
effect measurements (Fig. 5b). In both cases, the helicity is parallel to M
for one beam and antiparallel for the other one. The magneto-optical effects
induce a phase shift, ∆φ, since the refractive indices of the CW and CCW
beams are different due to the magnetic circular birefringence. ∆φ equals
twice the rotation angle of the polarization vector, and it changes sign upon
magnetization reversal, which can be measured by phase-sensitive detection
of the ω signal.

The main difference between a Sagnac interferometer and the crossed-
polarizers method is the exclusive sensitivity of the Sagnac signal to nonre-
ciprocal effects. Polarization changes caused by effects other than magneto-
optical ones do not contribute to the Sagnac signal but would be measured
by the crossed-polarizers method as well. This is important for magnetic-
domain imaging, where additional polarization changes due to, e.g., optical
activity of the sample (or, for SNOM, of the tip) can be much stronger than
the magneto-optical contrast. Optical activity, however, does not break the
time-reversal symmetry. This can readily be seen, e.g., by comparing trans-
mission of linearly polarized light by a perpendicularly magnetized sample
and a λ/2-retardation plate: The latter rotates the polarization vector of light
propagating along its main axis always in the same sense, whatever the propa-
gation direction is. A magnetic material, in contrast, rotates the polarization
vector clockwise for parallel orientation of propagation and magnetization
vectors, and counterclockwise for the antiparallel orientation.
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Fig. 6. UHV-Kerr microscope optimized for magneto-optical contrast rather than
for lateral resolution

2.3 Kerr Microscopy

A far-field Kerr microscope is a standard tool for the imaging of magnetic
domains, since it provides strong magnetic contrast using a conventional light
source [1]. In contrast to electron microscopes, this contrast is not affected
by external magnetic fields – a necessity if magnetization-reversal processes
are studied.

The setup of a Kerr microscope is rather simple: Linearly polarized light is
focused onto the sample and the illuminated area is imaged by a conventional
microscope equipped with a second (crossed) polarizer in front of the objec-
tive lens. To avoid diffraction and interference, an incoherent light source is
used, like a Hg lamp, providing sufficient intensity for measurements with
almost crossed polarizers.

The performance of a Kerr microscope is determined by two parameters:
the resolving power and the magneto-optical sensitivity, which limit each
other. According to the Rayleigh criterion, lateral resolution can be increased
using a higher numerical aperture. But raising the numerical aperture reduces
the magneto-optical contrast due to the widening of the acceptance angle.
This dilemma is particularly important for the application of Kerr microscopy
to in situ studies of magnetic domains in ultrathin films. Such a microscope is
usually placed in front of a viewport of the UHV chamber at a long distance
from the sample, which limits the numerical aperture (see the UHV setup
schematically shown in Fig. 6). In addition, the domain contrast of ultrathin
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films is weak. Most UHV-Kerr microscopes have therefore been optimized for
contrast rather than for resolution, which is a few micrometers [19]. However,
high-resolution setups have been built as well [20]. An alternative method is
a scanning Kerr microscope, where the sample is probed by a focused laser
beam in a confocal setup [21]. An interesting application of this method is
the time-resolved observation of ultrafast magnetization dynamics in a pump-
probe experiment [5].

2.4 Domain Contrast in SNOM

Neither the bits of state-of-the-art data-storage media nor the stripe-domain
patterns expected in ultrathin magnetic films can properly be imaged by far-
field Kerr microscopy. At first glance, methods like MFM or SEMPA seem to
be more appropriate to study such submicrometer-scale magnetic domains.
But magneto-optics has two major advantages: Compatibility with external
magnetic fields and the potential to combine it with pulsed laser sources for
the study of ultrafast magnetization dynamics. The diffraction-limited lateral
resolution, being the main drawback of magneto-optics, should be avoidable
in a scanning near-field optical microscope (SNOM) [22–24].

A simple setup of a magneto-optical SNOM is shown in Fig. 7: A probe
for simultaneous emission and collection of light is scanned in close proxim-
ity (� λ) across the sample surface. Typically, it is a glass-fiber tip covered
by a metal film. A tiny hole in the metal (approximate diameter: 100 nm)
acts as an aperture. On illumination, the near field of the tip interacts with
the sample material within an area that is limited by the aperture size. At
each scanning position, all reflected light originates from this laterally limited
near-field excitation. By insertion of crossed polarizers, the magneto-optical
Kerr effect can locally be measured giving a highly resolved magnetic-domain
image. The corresponding topography can be visualized by plotting the de-
flection of the tip that is necessary to maintain a constant tip-to-sample dis-
tance. Proper interpretation of the optical image requires comparison with
topography, because crosstalk can induce additional contrast in the optical
image – a typical SNOM artifact [25,26].

The first demonstration of magneto-optical contrast by SNOM was pub-
lished by Betzig et al. [27]. They coupled the linearly polarized light of an Ar+

laser into a glass fiber that was tapered and covered by a metal film to form
a small aperture. Using a crossed-polarizers setup, they determined the Fara-
day rotation of light that was transmitted by the sample upon illumination
by the near field of the tip. They succeeded in imaging magnetic domains
of perpendicularly magnetized Co/Pt-multilayer films, and they claimed a
rather spectacular lateral resolution of 30–50 nm. This work entailed quite
a lot of magneto-optical SNOM experiments. Most of them were done in
transmission [28–35].

Only very few instruments have been built to image magnetic domains in
reflection by measuring the magneto-optical Kerr effect (Fig. 8). Two types
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Fig. 7. Combination of shared-aperture
SNOM and magneto-optical Kerr effect for
magnetic-domain imaging (BS: beam splitter,
H: external magnetic field, pol.: polarizer)

of near-field probe have successfully been used for this purpose so far: The
aperture probes [36,37], and apertureless probes being excited to light emis-
sion, i.e., either a metallic nanoparticle [38] or a cantilever-shaped tungsten
tip [39].

The aperture-type setups (see, e.g., Fig. 8a) used metal-coated glass-fiber
tips for illumination of the sample with linearly polarized light (of different
wavelengths λ = 635 nm [36], λ = 488/512 nm [37]). The reflected light
was collected by a spherical mirror. It passed a polarizer and was focused
onto a photodetector located behind the sample. A photoelastic modulator
(PEM) was applied to increase the magneto-optical sensitivity. In one setup,
the Kerr rotation angle could be determined quantitatively [37]. Magnetic
domains that had been written thermomagnetically into a Co/Pt-multilayer
film with perpendicular easy axis and 0.25◦ Kerr rotation2 could be imaged.
The signal-to-noise ratio, however, was rather weak (1:1 [36] and 4:1 [37]).
The lateral resolution3 amounted to 50 nm [36] and 200 nm [37].

The first SNOM measuring the Kerr effect used a metal particle as a
scattering probe [38]. A silver globule with a mean diameter of 40 nm was
glued onto the surface of a hemispherical glass body. It is illuminated by
the evanescent field of a totally reflected laser beam within the glass body.
When optically excited at the surface-plasmon frequency, such a particle
radiates like an oscillating dipole (Fig. 8b). The magneto-optical Kerr effect
was measured by insertion of a polarizer into the perpendicularly scattered
light. By this technique, it was possible to image magnetic domains with a
diameter of 0.5 µm in a perpendicularly magnetized Co/Pt-multilayer film
(0.15◦ Kerr rotation) at a signal-to-noise ratio of 5:1. The lateral resolution
was 200 nm. It should be noted that it was even possible to image magnetic
domains in a permalloy film, where the magnetization vector was lying in
the film plane. One would usually not expect any contrast of that sample in
2 We always understand Kerr rotation as half of the difference between the rotation

angles corresponding to oppositely magnetized domains.
3 Lateral resolution is understood as the total width of domain walls.
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Fig. 8. Kerr-SNOM setups: (a) aperture type and (b) apertureless type. L: laser,
P: polarizer, A: analyzer, BS: beam splitter, D: detector

the polar Kerr-effect geometry used here. The authors assume that it was a
pure near-field phenomenon, since the contrast exponentially decayed upon
increasing the tip-to-sample distance [40].

Apertureless SNOM is usually based on the scattering of the electromag-
netic field by the tip of a metallic cantilever as it is used in an atomic force
microscope (AFM). Such a setup has been combined with magneto-optical
Kerr-effect detection as well [39]: The sample was illuminated by the focused
beam of a laser diode. Light scattered by the tip was collected by a micro-
scope objective. Near-field and far-field components of the reflected light can
be distinguished using a lock-in amplifier, since the near-field contributions
are modulated by the oscillation frequency of the tip. Using this technique,
it was possible to image magnetic domains of a Co/Pt-trilayer film with 0.1◦

Kerr rotation. The authors claim a signal-to-noise ratio of 4:1 and a lateral
resolution of 200 nm.

The most convincing performance was obtained by the scattering-particle-
type Kerr SNOM [38]. The strongest limitation comes from nonmagnetic po-
larization changes like birefringence due to mechanical strain of the probe or
the sample (i.e., optical activity). With aperture-type SNOM, an additional
problem is that scanning of a metal-surrounded aperture across a conducting
surface affects the polarization state of the probe [41]. The polarization con-
trast can also be influenced by the topographic structure of the sample [42].

At first glance, apertureless Kerr SNOM seems to be the better choice. It
has also been studied theoretically in more depth [43,44]. But low intensities
and strong nonmagnetic backgrounds lead to limitations as well. We therefore
decided to follow the path of aperture-type Kerr SNOM, but tried to avoid
some of the typical sources of trouble: We used uncoated glass-fiber tips
instead of metal-coated ones. Resolution of better than λ/3 has already been
demonstrated [45], and the optical throughput is much higher for uncoated
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fiber tips. In addition, we took up an idea published by Kapitulnik et al. [46]
to replace the crossed polarizers by a Sagnac interferometer.

3 Experimental Details

The intention of our work was to apply SNOM to in situ studies of magnetic
domains in ultrathin films at various temperatures, film thicknesses and mag-
netic fields. The high spatial resolution of the near-field method should allow
for imaging microstructures that cannot be resolved by far-field Kerr mi-
croscopy. The latter provides overview images on a larger length scale. For
thin-film studies, we first used SNOM in UHV. Then, we combined it with a
Sagnac interferometer for Kerr-effect detection. The Sagnac signal also pro-
vides an easy way of optical tip-to-sample-distance control, which in UHV is
superior to the common shear-force method.

3.1 UHV System

UHV is the standard experimental environment for surface physics. It slows
down the rate of adsorption of residual-gas molecules onto substrate surfaces,
which is a prerequisite for epitaxial growth of ultrathin metal films. The sam-
ple could also be covered by a protective coating for studies in air, but such
coatings might affect the magnetic anisotropies of the film. This is undesir-
able for investigations of processes depending strongly on the anisotropies,
like domain formation.

In our setup, the UHV chamber is connected to two further chambers: a
preparation chamber for ultrathin films equipped with standard techniques
for preparation of single-crystal surfaces, film growth, and characterization,
and a chamber containing a room-temperature scanning tunneling microscope
(STM) for studies of the film morphology. The base pressure is 5×10−11 hPa,
and during film preparation the pressure does not rise beyond 1×10−10 hPa.

After preparation, the ultrathin-film samples are transferred for in situ
experiments into the chamber for magneto-optical studies (Fig. 9), where they
are put into a sample cage made of Cu, which is mounted directly onto the
cold finger of the cryostat. For proper thermal contact, the sample is pressed
by a spring onto the walls of the cage. A 5-mm bore in the cage wall makes
the film surface accessible for optical studies. The cryostat is equipped with a
Si diode for precise determination of the sample temperature. By regulation
of the LHe flow and by heating, the sample temperature can be adjusted in
the range between about 20 K and 450 K.

The chamber is equipped with three magneto-optical devices differing in
lateral resolution and Kerr-effect sensitivity: The first one allows the measure-
ment of polar and longitudinal MOKE that indicates the net magnetization
behavior of the sample laterally averaged over the area illuminated by the
laser spot (≈ 1 mm2). The second device is a far-field UHV-Kerr microscope
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Fig. 9. UHV system for magnetic microscopy of ultrathin films equipped with
MOKE, UHV-Kerr microscope and UHV-Sagnac-SNOM. (1) LHe-flow cryostat,
(2) UHV electromagnet, (3) transferable SNOM head, and (4) sample cage

that allows an overview image of the domain structure of the sample to be
taken. Being optimized for magneto-optical sensitivity, our setup (Fig. 6)
provides a lateral resolution of 3 µm. The third device is a magneto-optical
SNOM measuring the Kerr effect via a Sagnac interferometer (UHV-Sagnac-
SNOM). At present, the lateral resolution is one order of magnitude better
than that of the Kerr microscope, so that one can study the domain structure
in more detail. Switching between these methods requires no further sample
transfer, just a 180◦ rotation of the cryostat to bring the sample into the
focus of the Kerr microscope. In this way, we can successively apply all three
methods at fixed sample temperature. For proper positioning, the cryostat
is mounted onto a rotary feedthrough in combination with a jacking stage
and an x-y stage (Fig. 10). All optical components are located outside the
chamber, just a glass fiber is fed through a bore in an UHV flange to connect
the UHV-SNOM head with the Sagnac interferometer, which is placed on an
optical table next to the UHV chamber.

The electromagnet that is used to induce magnetization reversal is located
inside the UHV chamber. It is rotatable, and the sample cage can be placed
between the pole shoes of its iron yoke. In this way, external magnetic fields
ranging up to 1500 Oe can be applied either in the film plane or perpendicular
to it. One of the pole shoes has a conical bore that guides the light to the
sample for polar-MOKE measurements.
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Vibrations of tip and sample can influence the optical signal, because the
near-field intensity depends critically on the distance. This can be suppressed,
like in STM, by a combination of stages with strongly different resonance fre-
quencies. We mounted the entire UHV system onto pneumatic dampers with
a resonance frequency of 2 Hz. A rigid tip–sample configuration would be the
best second damping step, but tip and sample should be separately transfer-
able in our UHV-Sagnac-SNOM. We therefore set aside part of the desired
rigidity and tried to compensate for this by making all oscillating parts as
short as possible: Upon transfer, the SNOM head is put into a holder that is
directly fixed to the inner chamber wall. The cryostat is additionally stabi-
lized by a rigid stainless steel support tube with a Teflon bearing at its end.

3.2 UHV-SNOM Setup

The transferable SNOM head consists of two parts: a piezo tube for x–y
scanning and z-approach and a dither unit, necessary for the control of the
tip-to-sample distance (Fig. 11). The SNOM tip is used here both for illumi-
nation and for collection of the reflected light (shared-aperture mode), which
is the easiest way of realizing a reflection-mode SNOM in combination with a
Sagnac interferometer. In this way, no further optical components except for
the glass fiber are needed inside the UHV chamber. The 670-nm light beams
(CW and CCW) are guided by a single-mode fiber (with a cutoff wavelength
of 580 nm) coated by a polyimide layer. This coating has a low outgassing
rate and is therefore compatible with the bakeout procedure that is required
to obtain ultrahigh vacuum. The tip is formed by etching the glass fiber in
hydrofluoric acid (HF) according to the Turner method [47]. The more con-
venient tube-etching method [48] cannot be applied to these fibers since it
induces asymmetric etching due to the fact that the HF-inert polyimide coat-
ing does not sit equally tight on the glass fiber. Removal of the polyimide is
done by dipping the fiber into boiling NaOH (30%) for approximately 60 min.
Good tips have a well-reproducible cone angle of 23◦, and the far-field light
spot shows a characteristic circular shape.

All experiments described here were performed with uncoated glass-fiber
tips, which provide a higher throughput and better defined polarization prop-
erties than coated ones. Both kinds of tips differ in the way light is guided
to the near-field region. Glass fibers lose the ability to guide and confine the
fundamental mode if the diameter of the core gets smaller than one half of the
wavelength. In metal-coated tips, the light has to couple to a surface plasmon
of the metal film to get to the aperture [49]. The efficiency of such coupling
is usually low, which is the reason for the low throughput of coated tips. In
uncoated tips, the light can reach the extreme tip by internal total reflection.
Lateral resolution is lower, however, because part of the light intensity leaks
out before arriving at the extreme tip. Uncoated tips are therefore modeled
by a combination of a subwavelength aperture and a far-field aperture [50].
There is a certain controversy over the question of whether it is actually
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Fig. 12. (a) SNOM head setup for tip–sample distance control and scanning in
UHV. (b) Resonance spectra with and without damping of tip oscillation

possible to beat the diffraction limit using uncoated glass-fiber tips. Sam-
ples with strong topographic features could be imaged with apparently high
lateral resolution using uncoated tips. However, this did not come from any
near-field sensitivity, but simply from crosstalk. Such artifacts can largely be
excluded for our samples, which are topographically flat single-crystal sur-
faces. True lateral resolution almost at the diffraction limit (in the range of
λ/2 to λ/3) has already been observed using uncoated tips [25,45,51].

We tested two different approaches for tip–sample distance control in
UHV: the conventional shear-force method [52] and an optical method. A
dither unit to apply the shear-force method in UHV was designed. It consists
of an Al block that holds the glass fiber supported by a metal tube and has
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piezo plates on opposite sides (see Fig. 12a). One of these plates is used to
excite horizontal tip oscillations, while the second plate acts as a microphone
to monitor the oscillations of the block. These are particularly strong at
resonance frequencies of any single component of the setup. The amplitude
of tip oscillations (and their resonance peak) gets strongly damped upon
approach to the sample, which is why it can be used as the controlled quantity
in a feedback circuit.

The resonance frequency of the tip is just the eigenfrequency ν of a bend-
ing rod, given by:

ν = 0.28
R

L2

√
E

ρ
, (7)

with L being the length of the tip, R the radius, E the Young’s modulus, and
ρ the density. This amounts to about 60 kHz in the present case. In contrast
to the tuning-fork concept, ν depends strongly on the length of the fiber tip
and will hence differ slightly from tip to tip even with careful control of the
lengths of the tips. The exact value can be found by a comparison of spectra
with and without damping (Fig. 12b). Bakeout procedures and variation of
sample temperature do not have any noticeable influence on the resonance
frequencies. Such effects, however, have been reported for other setups, where
both sample and SNOM head were cooled to low temperature [53]. Even
though all our studies of ultrathin films were done using the optical distance
control (described in the next paragraph), the shear-force distance control was
additionally run for safety reasons: to protect the tip if the optical distance
control should fail.

3.3 Sagnac-SNOM Setup

Another unique feature of the present SNOM setup, besides UHV operation,
is the detection of the Kerr effect via a Sagnac interferometer. The type of
Sagnac interferometer used here has been described by Spielman [18], who
had applied it to magneto-optical studies as well, but only in the far field. As
light source, a laser diode (670 nm) is used. It has a relatively short coher-
ence length, necessary to avoid competing interferences induced by reflections
from the surfaces of optical components. The output power of the laser, after
passing a Faraday isolator and beam-shaping optics, is 1.8 mW.

The setup of the Sagnac-SNOM is shown in more detail in Fig. 13. A key
conceptual decision is the proper choice of the phase-modulation frequency
νmod at the electro-optical modulator. It has to correspond to the relative de-
lay τ between the counterpropagating beams. According to Sect. 2.2, optimal
tuning requires

νmod =
1
2τ

=
c

2nL
. (8)
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controller consists of three fiber loops that act as an adjustable combination of two
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For a fiber-loop length of L = 20 m and a refractive index of n = 1.48,
this gives a modulation frequency of νmod ≈ 5 MHz. The ac signal of a
function generator is tuned to this frequency and used to excite a resonant
electro-optical modulator (New Focus PM 4001); the corresponding TTL-
signal serves as reference for lock-in detection.

We use a photodiode as detector, which is contained inside an aluminum
box and is battery operated to minimize noise. Its output signal is analyzed
with respect to the amplitudes of both the ω and 2ω signal (here ω = 2πνmod).
The 2ω signal represents the amount of light that has interacted with the
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sample and contributed to the interference signal. To determine its amplitude
for distance control, a 10-MHz rectifier is applied. The ω signal, in contrast,
carries the pure magneto-optical information, it is measured simultaneously
by a lock-in amplifier.

The feedback routine is implemented as a program written in C and runs
on a digital-signal-processing (DSP) card. It reads in three signals: (a) the
output voltage of the lock-in amplifier measuring the amplitude of the ω
part of the Sagnac-interference signal; (b) the output voltage of the 10-MHz
bandpass filter representing the 2ω signal; (c) the output voltage of a second
lock-in amplifier that monitors the amplitude of the tip oscillations, which
is a measure of the shear forces. While signal (a) forms the magneto-optical
image, signals (b) and (c) are used for distance control. They are compared
to the set values of total intensity and tip damping, respectively, which corre-
spond to certain tip-to-sample distances. The deviation from those set values
determines the output voltages that are applied to the piezo scanner to ad-
just the tip-to-sample distance. The optical distance control turned out to be
more appropriate for thin-film studies in UHV. Therefore, we chose the set
values of signals (b) and (c) in such a way that the shear-force control just
steps in if the optical control fails, e.g., at a strongly light-absorbing surface
defect. It then simply retracts the tip to avoid a crash.

3.4 Performance Tests

During construction of the UHV-Sagnac-SNOM we faced several open ques-
tions: Would the stability of the setup be sufficient to allow for optical or
shear-force distance control without strong crosstalk? Would it really be pos-
sible to achieve submicrometer lateral resolution using uncoated glass-fiber
tips? And, would the sensitivity of the UHV-Sagnac-SNOM actually be suffi-
cient to allow domain imaging of ultrathin films? We therefore carried out a
series of performance tests, before we tried to image unknown domain struc-
tures.

We first tested the shear-force distance control in UHV. We found that it
works, but it behaves differently from in air: damping in UHV arises mainly
from direct contact of tip and sample, as has been reported before for SNOM
operation at low temperatures [54] or in vacuum (not UHV) [55]. We did not
observe the action of a damping medium between tip and sample in vacuum,
reported by other groups [56]. Hence, the danger of tip crashes is quite strong
in our less-compact setup, where vibrations can amount to about ±10 nm.
This, however, does not affect optical distance control, where longer tip-to-
sample distances can be chosen.

To test the shear-force distance control in UHV, we scanned a calibration
sample: a grid of parallel lines with a periodicity of 3 µm and a depth of
100 nm etched into a SiO2 layer on top of a Si wafer. The grooves were a
little wider than the lands, as can be clearly seen in the topographical image
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Fig. 14. (a) Calibration grating with 100-nm deep grooves etched into a SiO2 layer
on top of a Si wafer (image obtained with a scanning electron microscope, NT-
MDT Inc., Moscow); (b) simple UHV-SNOM setup; (c) topographical image and
(d) optical image obtained by UHV-SNOM; (e, f) contour plots along the lines A
and B



20 G. Meyer, A. Bauer, and G. Kaindl

shown in Fig. 14c. From the contour plot shown in Fig. 14e we derived a
rms-noise amplitude of < 5 nm.

The same calibration sample was then also used to characterize the optical
contrast that can be obtained with uncoated glass-fiber tips. We built a simple
UHV-SNOM for that purpose (Fig. 14b): The light of the 670-nm diode laser
is coupled into a tapered glass fiber, which is used as a SNOM tip in shared-
aperture mode. The total reflected intensity is focused onto a photodiode.
Figure 14d shows the optical image corresponding to the topographical image
shown in Fig. 14c. The strong alternating contrast fits to the locations of
lands and grooves with presumably very different reflectivities. There are
some additional features that are typical for microscopy with uncoated glass-
fiber tips: The optical contrast corresponding to defects in the topography
is shifted in the optical image with respect to its position in the shear-force
image. We think that such displacements arise from slightly different positions
of the shear-force sensing tip (topography sensor) and the center of the optical
sub-λ aperture, which might result from a certain asymmetry of the core axis
or the etching procedure. This situation is analyzed in detail in Fig. 15:
The topography sensor and the light-collecting aperture are shifted in such
a way that the aperture passes the defect a few scan lines earlier than the
topography sensor. The narrow light stripes running parallel to the grating
lines in the center of the grooves are another artifact. They probably result
from an interference effect.

To test the magneto-optical sensitivity of the UHV-Sagnac-SNOM, we im-
aged the magnetic bits of a magneto-optical disc (MOD). This sample is par-
ticularly suitable for the characterization of scanning-probe microscopes due
to its pronounced topography and its strong, well-known magnetic-domain
structure. This can help to detect crosstalk between topographical and mag-
netic contrast. We obtained the sample studied from Philips Research, Eind-
hoven. It was made of a TbFeCo alloy, i.e., a composition of transition and
rare-earth metals, which is particularly suitable for data storage due to its
perpendicular easy axis [57]. Its Kerr rotation is approximately 0.4◦ for red
light. The surface of a MOD has a characteristic topography consisting of
1-µm wide lands with 600-nm wide and 100-nm deep grooves in between. The
magnetic bits are approximately 1 µm wide and 3 µm long. They were writ-
ten thermomagnetically into the tracks, i.e., the magnetization was reversed
by local heating and application of a magnetic switching field. A first trial to
image the magnetic bits by a Kerr SNOM using the crossed-polarizers setup
failed because nonmagnetic polarization changes at the contour of the surface
and at defects obscured the magnetic-domain pattern. This changed when the
UHV-Sagnac-SNOM was used. Figure 16 shows topographical images (a,c)
and the corresponding magneto-optical images (b,d). Lands and grooves can
clearly be distinguished in the topography showing that shear-force distance
control works well. The slight ripple structure arises from acoustically excited
vibrations of tip and sample. From the contour line (Fig. 16e) we estimate
the rms-noise level to be < 10 nm.
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Fig. 15. Model describing the shift of defect positions between the optical image
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detection of the defect a few scan lines later

The magnetic bits are clearly visible in the magneto-optical images. Even
the curvature of their edges can be identified. Lateral resolution and the
magneto-optical sensitivity of the method can be determined from the con-
tour lines along a single track (Fig. 16f): The total width of the edges amounts
to about 300 nm, indicating a lateral resolution below λ/2 (λ = 670 nm);
the signal-to-noise ratio is 10. Considering the known Kerr rotation of the
MOD, we derive a magneto-optical sensitivity of 0.08◦ – sufficient to image
magnetic domains in ultrathin films of Fe/Cu(100) [58].

We again observe a certain crosstalk between topography and optical
signal. A comparison of the simultaneously obtained signals along the lines A
and B reveals the cause (Fig. 16e): Contour line A exhibits a continuous drop
at the groove location that is followed by a steep rise. Obviously the tip drops
gradually into the groove until it is rapidly retracted again. This behavior is
accompanied by an initial rise of the optical signal followed by two minima, as
can be seen from the contour plot along line B. The first minimum coincides
with that of line A, whereas the second one is shifted by a few hundred nm
to the right with respect to the groove. We think that this behavior can be
explained again by asymmetric localization of shear-force detection and light
detection on the tip. The sub-λ aperture obviously passes the groove later
than the topography sensor. The dips of the optical signal presumably arise
from the drop of reflectivity at the precipitous groove edges.
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Fig. 17. Magnetization curves, locally recorded by the UHV-Sagnac-SNOM on:
(a) 15-ML Ni/Cu(100) (using shear-force distance control); (b) 3.7-ML Fe/Cu(100)
(using optical distance control)

Even higher magneto-optical sensitivity can be achieved using the optical
distance control instead of the shear-force method. This can be seen from a
comparison of locally recorded magnetization curves of ultrathin films: Fig-
ure 17a was measured on a sample of 15-ML Ni/Cu(100) with the UHV-
Sagnac-SNOM using shear-force distance control. Figure 17b was measured
on 3.7-ML Fe/Cu(100) (grown at 80 K) using the optical distance control.
Apart from a linear background (see discussion below), both curves show a
rectangular shape, as expected in polar Kerr-effect measurements for films
with perpendicular easy axis of magnetization. In principle, one would expect
a similar contrast for both samples because the Kerr rotation of iron is four
times higher than that of Ni, and the Kerr rotation is proportional to the
film thickness below the skin depth [59]. Even though the signal is slightly
smaller in Fig. 17b, the signal-to-noise ratio is clearly higher.

The above-mentioned linear background in both curves is attributed to
the Faraday effect caused within the glass fiber by the stray field of the
electromagnet. We estimate the Faraday rotation via ΦF = V d H, where V
is the Verdet constant, d the length of the glass fiber exposed to the stray
field, and H the strength of the stray field. We estimate ΦF ≈ 12 µrad/Oe,
in agreement with the experimental observation [60].

4 Magnetic Domains in Ultrathin Films

By studying ultrathin films of Fe/Cu(100) by UHV-Sagnac-SNOM we suc-
ceeded in imaging magnetic-domain patterns, which have been observed in
only a very few experiments so far. Such films exhibit a striking magnetic
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phenomenon, namely a spin-reorientation phase transition. In the vicinity of
such a phase transition, a striped-domain phase is expected. We have studied
this phase as a function of several parameters: temperature, film thickness,
and external magnetic field. One question concerned the way in which stripe
domains would transform into a saturated single-domain state during mag-
netization reversal.

4.1 Spin-Reorientation Transition

A variation of film thickness and temperature changes magnetic anisotropies.
The anisotropy energy is the direction-dependent contribution to the free en-
ergy of a ferromagnet. It mainly consists of two parts: shape anisotropy, which
is determined by the stray-field energy, and magnetocrystalline anisotropy,
which describes preferences of magnetization orientation along particular axes
of the crystal lattice [61].

Shape anisotropy results from a long-range dipolar interaction. This is the
stray-field energy, which is determined by the geometry of the magnet. For
thin films it is smallest for the magnetization lying in the film plane, and it
has a maximum for perpendicular alignment. Shape anisotropy hence favors
inplane magnetization.

The magnetocrystalline anisotropy is caused by spin-orbit coupling and
crystal fields. In the bulk of cubic crystals, the angular momentum is quenched,
which has the consequence that the magnetocrystalline anisotropy is usually
rather small. At a surface, however, the magnetocrystalline anisotropy can
be enhanced due to the reduced symmetry. The orientation-dependent part
of the free energy of a thin magnetic film, G, can be written to a first ap-
proximation as:

G = K cos2 θ =
(

Kshape + Kbulk +
Ksurface

d

)
cos2 θ , (9)

with K being the effective anisotropy constant, θ the angle between the
surface normal and the magnetization vector, Kshape the shape-anisotropy
constant (Kshape = − 1

2µ0M
2
s , Ms: saturation magnetization), Kbulk the 2nd-

order bulk contribution to the magnetocrystalline anisotropy (Kbulk = 0 for
Fe and Ni), and d the film thickness.

Opposite signs of Kshape and Ksurface (e.g., in Fe) mean that these anisotro-
pies favor orthogonal orientations. At critical values of temperature and film
thickness, however, they cancel (K = 0) and a spin-reorientation transi-
tion (SRT) takes place (see Fig. 18). At this point, the easy axis of magne-
tization changes from inplane to out-of-plane. This phenomenon has been
studied using MOKE in ferromagnetic ultrathin films of Fe/Ag(100) [62]
and Fe/Cu(100) [58,63]. The critical film thickness was found to be in the
range from 4 to 6 monolayers, depending on the substrate temperature during
preparation and subsequent thermal treatment. For films prepared at 300 K
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Fig. 18. Dependence of the effective anisotropy constant K on film thickness for
Ksurface < 0 and Kshape > 0 (e.g., in the case of Fe). A spin-reorientation transition
occurs at a critical thickness dR

(RT growth), the spin reorientation coincides with a phase transition of fcc Fe
to bcc Fe (martensitic transition), which has not been found for films grown
at 100 K (LT growth). Recent STM studies have been devoted to the crystal
symmetry [64] and to the morphology [19] of such films.

4.2 Stripe-Domain Patterns

MOKE studies of the spin-reorientation phase transition of ultrathin Fe films
revealed a strong reduction of the net sample magnetization in a certain
interval of temperature and film thickness in the vicinity of the SRT, which
in some studies was called a pseudogap [62,63]. This has been understood as a
zero net magnetization due to the formation of a magnetic domain state with
domain sizes far below the size of the integration area of MOKE. Such domain
patterns have actually been found in ultrathin films by electron-microscopy
studies [65–67]; and they consisted almost always of parallel stripes.

The experimental findings are supported by theory: The equilibrium spin
configuration of a ferromagnet is a domain state [1]. Exchange interaction
induces a parallel alignment of the magnetic moments over short distances
(short-range order). Over larger distances, dipolar interaction favors antipar-
allel alignment of adjacent homogeneously magnetized domains (long-range
order). This reduces stray fields, but costs energy for the formation of domain
walls. The domain-wall energy of a Bloch wall is given by 4

√
AK, with A be-

ing the exchange-stiffness coefficient. In the vicinity of a SRT, the effective
anisotropy energy, K, is reduced (see. (9)) and thus the domain-wall energy
is diminished, allowing for a strong reduction of the stray-field energy by for-
mation of microdomains. In the simplest case, such a microdomain pattern
consists of a periodic array of perpendicularly magnetized parallel stripes
(with adjacent stripes having opposite magnetizations [68]).

Yafet and Gyorgy [69] have calculated the dependence of stripe width,
a, on the anisotropy parameter, f , i.e., the ratio of the surface anisotropy
energy and the dipolar energy (f ≈ 1 at the SRT). They calculated the
binding energy of the stripe-domain state, which determines the saturation
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Fig. 19. Stripe width of the domain pattern in a 4-ML thick Fe film depending on
the saturation field

field. It turned out that a grows exponentially with f ; simultaneously, the
binding energy drops. Berger and Erickson [70] extended the stripe-domain
model by considering the variation of the stripe width in external magnetic
fields. In this way, they calculated a phase diagram connecting f and the
saturation field. Combining the information from both calculations for the
case of a 4-ML thick Fe film, the stripe width can be expressed as a function
of the saturation field (see Fig. 19).

The transformation of a stripe-domain pattern into the saturated, single-
domain state has been studied by Kashuba and Pokrovsky [71]. They con-
sidered a stripe-domain pattern with a stripe width L, where L0 is the equi-
librium width in zero external magnetic field (H = 0), and δ the deviation of
the stripe width from L. Calculating the energy of the pattern in an external
magnetic field, they found that both δ and L diverge, if H approaches the
saturation field HS. But the width of the minority stripes, (L− δ), where the
magnetization vector is antiparallel to the external magnetic field, converges
to 2L0/π. This is about 60% of the equilibrium stripe width. The trans-
formation to the saturated state can therefore be described by two parallel
processes: a reduction of the minority-stripe width and an increase of the
distance of minority stripes. Figure 20 shows a characteristic magnetization
curve and the corresponding stripe-domain patterns.

The first work aimed at visualizing the domain-transformation process of
ultrathin Fe films was recently published by Choi et al. [72]. It was a study
by PEEM, and the sample was an Fe wedge under the influence of a virtual
magnetic field, which was generated by interlayer exchange coupling with a
Ni film via another, nonmagnetic (Cu) wedge. The effect of variable magnetic
fields could be studied by moving the sample position [72]. The authors found
stripe domains in the vicinity of the spin-reorientation thickness of Fe. And
they observed growth of the majority-stripe width during the transformation
process, with the minority stripes remaining constant in width but shrinking
in length.
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Fig. 20. Magnetization curve and corresponding transformation process of a stripe-
domain pattern

Only very recently was it possible to directly observe the transformation
of the stripe-domain pattern in an external magnetic field in two studies, one
using spin-polarized low-energy electron microscopy (SPLEEM) [67] and the
other one using the present UHV-Sagnac-SNOM setup.

4.3 Domain Contrast

We first had to demonstrate that UHV-Sagnac-SNOM is actually able to
image magnetic domains in ultrathin films. We checked this for a 3.7-ML
thick film of Fe/Cu(100), well below the SRT, where rather large domains
with perpendicular magnetization should be favored. A 550 × 550 µm2 Kerr-
microscopy image of this film is shown in Fig. 21. The random domain pattern
appeared upon demagnetization of the film. Using the UHV-Sagnac-SNOM,
it is possible to study this pattern in detail: 11 × 20 µm2 sized scans of the
domain structure are shown in Fig. 22a–c. These images have been obtained
by successively moving the scan position a few micrometers to the right from
image to image.

These are the first domain images of an ultrathin film, obtained in situ by
SNOM. We now discuss the magnetic contrast by comparing the topographi-
cal and magneto-optical images obtained from the 3.7-ML film of Fe/Cu(100)
shown in Fig. 23. The topographical image corresponding to the magneto-
optical image given in Fig. 23b is shown in Fig. 23a. As the optical distance
control is used here, this image represents the contour of a constant 2ω signal.
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Fig. 21. Kerr-microscopy image of the
domain pattern in a demagnetized 3.7-
ML thick film of Fe/Cu(100), grown
at 80 K, annealed at 345 K, and mea-
sured at 285 K

Fig. 22. UHV-Sagnac-SNOM images of magnetic domains in a demagnetized 3.7-
ML-thick film of Fe/Cu(100). The scan position was moved by a few micrometers
to the right from image to image

The domain structures are not visible in the topography. Thus, magnetic and
nonmagnetic signals can obviously be distinguished using the Sagnac interfer-
ometer. The only exception is a semicircular defect in the topography, which
gives rise to some crosstalk. The pure magnetic origin of the domain pattern
can be clearly seen if the same sample position is scanned twice with a short
magnetic field pulse being applied after 40% of the second scan, which trans-
forms the domain state into a magnetically saturated single-domain state. As
can be seen in Fig. 23c, the domain pattern is erased by the magnetic-field
pulse. Only the crosstalk structure remains.

Figure 24a represents the contour of the optical signal along the line AB in
Fig. 22a. From this, we conclude that the width of the domain walls amounts
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Fig. 23. UHV-Sagnac-SNOM images of magnetic domains in a 3.7-ML film of
Fe/Cu(100): (a) topographical and (b) corresponding magneto-optical signal; (c)
saturation of the domain pattern upon application of a 150-Oe magnetic-field pulse
at the scan position indicated by a dashed line. The semicircular defect comes from
crosstalk between topography and magnetic signal
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Fig. 24. (a) Contour line along AB in Fig. 22a. Arrows indicate dip by doubling of
the domain-wall shape. (b) Locally recorded magnetization curve of the same film.
The curve is that from Fig. 17b, however, after subtraction of a linear background
due to the Faraday effect

to 300 nm. Hence, lateral resolution is below λ/2 here as well; the signal-
to-noise ratio is 6:1. From the known Kerr rotation of Fe/Cu(100) at this
particular thickness, we derive a magneto-optical sensitivity of 0.02◦. The
magneto-optical contrast of oppositely magnetized adjacent domains is com-
parable to the difference of the signals corresponding to the opposite satura-
tion states of a locally recorded magnetization curve (compare Figs. 24a–b).

One SNOM artifact present in all images is the double structure of the
domain walls. Moved by a few hundred nanometers to the right, the shape
of the wall between light and dark domains appears again as a narrow line.
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This can be seen in the contour plot, as well (Fig. 24a). We can exclude
phase contrasts or relative delay in processing of signals. Therefore, we think
that this behavior is caused by some kind of double-tip effect. A small metal
particle, picked up by the glass-fiber tip, e.g., might act as a second near-
field probe, being slightly moved relative to the symmetry axis of the tip. It
is not yet clear whether the second wall is a reduction of total intensity or a
magnetic signal. A magnetic signal would mean that the second tip detects
the components of the domain-wall magnetization lying in the plane, which
would be a pure near-field Kerr effect, similar to the one observed by Silva
et al. [38]. Further experiments are needed to clarify the origin of this effect.

4.4 Study of Magnetization Reversal

The combination of all three magneto-optical imaging methods that are avail-
able in our experimental setup was used to study the domain transformation
upon magnetization reversal of ultrathin films. By polar MOKE we recorded
a series of magnetization curves of 4.2-ML Fe/Cu(100) in the vicinity of
the SRT (see Fig. 25). For ultrathin Fe films, the SRT manifests itself as a
transition of polar-MOKE curves from a rectangular easy-axis shape at low
temperatures (K > 0) to a hard-axis shape at high temperatures (K < 0).
This can clearly be seen in Fig. 25, where we find full remanence at 260 K
and an almost flat shape at 300 K. In between, the curves exhibit a shape
comparable to the one predicted by theory for the vicinity of the SRT (see
Fig. 20). In contrast to theory, however, the curves flatten at the saturation
field and show strong hysteresis effects if the temperature is lowered. The
inner loop at 280 K clearly shows that the saturated state is only metastable
on reduction of the external magnetic field. Assuming that the ground-state
configuration is a domain state with zero remanence, we can conclude already
at this point that the transformation processes between the stripe domains
and the single-domain state will require thermal activation to compensate for
pinning of domains at local inhomogeneities of the sample.

It should be noted here that magnetization curves like the one measured
at 280 K have been found at the SRT of several other systems in the past,
e.g., Fe/Cu3Au [73] and Fe/Ag(100) [74].

Looking for domain patterns at the SRT of 4.2-ML Fe/Cu(100), we first
applied Kerr microscopy after adjusting the temperature to get a polar-
MOKE curve with an almost vanishing coercive field Hc. The Kerr-microscopy
images show the formation of a (dark) domain at Hc: The metastable single-
domain state (see Fig. 26a) is converted almost suddenly by domain nu-
cleation and domain-wall displacement into that new state (see Fig. 26b).
According to the magnetization curve, this state is not just oppositely mag-
netized. It rather has a reduced net magnetization, which gradually switches
into the oppositely saturated state on raising the magnetic field. If the ex-
ternal magnetic field is reduced, the domain pattern remains unchanged, but
the contrast decreases. However, it still remains visible, even in a reversed
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Fig. 25. Temperature dependence of the shape of magnetization curves at the spin-
reorientation transition of 4.2-ML Fe/Cu(100) obtained by polar MOKE. (The film
was grown at 80 K and annealed at 300 K)

magnetic field. At this point, the variation of contrast can be explained in
two ways: (i) The new state favors an inplane magnetization, which rotates
out of the plane when the perpendicular magnetic field is increased; (ii) it is
a pattern of perpendicularly magnetized microdomains that transform into a
saturated single-domain state by domain growth and nucleation, but remain
unresolved for far-field Kerr microscopy.

UHV-Sagnac-SNOM allowed us finally to determine the inner structure
of the phase that nucleates at Hc. The images and plots presented in Fig. 27
were recorded on the same sample as those given in Fig. 26. The magneto-
optical image in Fig. 27a clearly shows that the area with a reduced net
magnetization consists actually of striped microdomains. By comparing con-
tour plots we found the light stripes in the image to have more or less the
same widths, namely (380 ± 30) nm. This is far below the resolving power of
our UHV-Kerr microscope but can be resolved with our UHV-Sagnac-SNOM.
We assume that the stripes already have their equilibrium width, even though
there is a strong imbalance of light stripes and dark surroundings. This re-
manence at H = 0 could already be seen in the magnetization curves (see
Fig. 25). It results from the irreversibility of the growth process induced by
pinning effects. Obviously, the stripes are not able to move as freely as as-
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(d)(c)

(b)(a)

Fig. 26. 550 µm × 550 µm Kerr-microscopy images of 4.2-ML Fe/Cu(100) recorded
at a sample temperature of 150 K in variable external magnetic fields: (a) homoge-
neously magnetized film; (b) during domain growth at the coercive field (Hc); (c)
at reduced fields (0 < H < Hc); (d) at reversed fields (−Hc < H < 0)

sumed in the theoretical considerations mentioned above. They merely grow
in length and in a two-dimensional way (see, e.g., the turnarounds of stripes)
by thermally activated steps (Barkhausen jumps). However, in some parts of
the image, they are rather dense, as if pinning were less strong there. Never-
theless, the stripes seem to favor parallel alignment, which indicates strong
orientational order but reduced positional order. Therefore, stripe domains
have sometimes been described in analogy to liquid crystals [75,66].

The measured stripe widths can be compared to theoretically expected
values: From the polar-MOKE hysteresis curve, we obtain a saturation field
H0 = (45 ± 5) Oe, which, according to Fig. 19, translates into a stripe width
of (345 ± 50) nm. This is in excellent agreement with the measured value of
(380± 30) nm. The connection of stripe widths and saturation field (Fig. 19)
could thus be confirmed by this experiment.

The assumption of a thermally activated magnetization-reversal process
is supported by the shape of the magnetization curves (see Fig. 25): Reduc-
tion of sample temperature increases the saturation field. A purely reversible
process would behave completely different: Crystalline anisotropy increases
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Fig. 27. Stripe-domain pattern observed on 4.2-ML Fe/Cu(100) by UHV-Sagnac-
SNOM at a sample temperature of 200 K. (a) Domain state in remanence, after
a reversed field of 30 Oe had been applied. (b) Polar-MOKE curve of the film,
indicating the vicinity of a spin-reorientation transition, (c) local hysteresis curve
recorded by UHV-Sagnac-SNOM at a fixed sample position (after subtraction of a
linear background due to the Faraday effect.) This represents the Barkhausen jump
of a domain wall

when the sample temperature is reduced. This would reduce the binding en-
ergy of a domain state, and hence, also the saturation field. Such behavior
can be seen in magnetization curves at higher temperatures (290 K, 300 K)
as well, where pinning effects are weak.

4.5 Transformation of Stripe Domains

We have studied the transformation of stripe domains by imaging the pat-
tern at variable external magnetic fields with the UHV-Sagnac-SNOM. This is
shown for the 4.2-ML thick film in Fig. 28. The same sample position was suc-
cessively scanned at −15 Oe, 0 Oe, and +15 Oe (see Fig. 28a–c). Figure 28d
was obtained on a slightly different position of the sample in a magnetic field
of +30 Oe, which is still below saturation according to the magnetization
curve (see Fig. 27b). By looking at the series of images, we observe the fol-
lowing general features: Stripes with magnetization parallel to the magnetic
field (majority stripes) are stabilized, whereas those with antiparallel orien-
tation (minority stripes) become unstable. Obviously, the minority stripes
do not change their widths, and they are pinned to certain sample positions,
where inhomogeneities of the surface (e.g., from polishing scratches) affect
the anisotropies. Such pinning induces a certain deviation of the growth pro-
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Fig. 28. Stripe-domain pattern of a 4.2-ML thick film, recorded by UHV-Sagnac-
SNOM at various external magnetic fields: (a) at −15 Oe, (b) at 0 Oe, (c) at
+15 Oe, (d) at +30 Oe. Comparing the images, nucleation (A) and length growth
(B) of domains can be detected, as well as growth in width (compare (b) and (c)).
Close to saturation, a droplet phase occurs (d). The images are slightly Fourier
filtered, scan direction was vertical, and (d) was obtained at a different position on
the sample from (a–c)

cess from the theoretically expected behavior (see Fig. 20). Instead of mov-
ing closer together on decreasing external magnetic field, the minority stripes
grow in length or new stripes nucleate to fill the domain pattern more densely
(see areas A and B in Fig. 28). The transformation of the domain pattern
upon reversal of the external magnetic field is also governed by pinning ef-
fects. It looks like a contrast reversal (compare Figs. 28b–c), but it is actually
just a widening of the minority stripes and a narrowing of majority stripes
(which then turn into minority stripes). Another interesting phenomenon can
be seen close to the saturation field (see Fig. 28d): The minority stripes break
up into short pieces. Such a transition to a droplet phase has recently also
been observed for the same system by SPLEEM [67]. In principle, this is
well understood: In the vicinity of the saturation field, the distance between
minority stripe domains is relatively large. This reduces the magnetostatic
interaction between the stripes. Concentration of parallel magnetic moments
to a few narrow stripes is thermally unfavorable. If less than 30% of the area
is covered by stripe domains, a state consisting of droplet-like domains has
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lower energy than stripes. But since the energy gain is less than 10% [76] spon-
taneous transitions between stripe and droplet domains occur rarely. Pinning
of stripe domains could help here to open a channel for such a transition.

Inhomogeneities are almost unavoidable in ultrathin films. Pinning of
stripe domains has therefore been reported by other groups as well: Choi
et al. [72] claim that their domain images of Fe/Cu(100) obtained by PEEM
in a virtual magnetic field can be explained if pinning is assumed. The images
of the droplet phase, obtained by SPLEEM [67] obviously show pinning. Also,
recent SEMPA studies of the thermally induced transformation processes of
stripe domains in ultrathin films of Fe/Cu(100) show a certain positional or-
der in addition to the orientational order of stripes, which can be attributed
to pinning [77].

The quintessence of our studies so far is a model of the magnetization-
reversal process of ultrathin films in the vicinity of a spin-reorientation phase
transition. Taking into account pinning effects, we suggest a two-dimensional
growth process via defect-induced branching and domain nucleation. Our
model is summarized in Fig. 29: Curve A represents the shape of the magne-
tization curve of a film without pinning, as is predicted by theory (see Fig. 20).
In addition, we show a curve (C) as is usually observed experimentally (see
Fig. 25). Lower temperatures cause stronger pinning with two effects on the
shape of the curves: (i) A larger coercive field since thermal fluctuations are
smaller and larger magnetic fields are necessary to overcome activation barri-
ers for nucleation and growth of stripe domains. (ii) An increased saturation
field for the same reason. The transformation of the stripe-domain pattern
in a variable external magnetic field can be observed best for an inner loop
(curve B in Fig. 29) where the maximum applied magnetic field does not
exceed the saturation field. Here, we do not have to take into account the
generation process of the stripe-domain phase out of the saturated single-
domain state, which would add another degree of complexity.

Starting with small droplet-shaped domains (1) just below the saturation
field, branching of domains occurs upon reduction of the external magnetic
field, because the minority domains require more space (2). Locations with
enhanced anisotropy, like surface defects, play the role of branching points.
Locations with lowered anisotropy, on the other hand, act as nucleation cen-
ters for new domains. Polishing scratches, e.g., support the formation of stripe
domains in this way. We believe that very few polishing scratches can deter-
mine the domain pattern in a wide area due to the orientational order of stripe
domains (3). On reversal of the external magnetic field, the stripe domains
grow in width (4), but due to pinning, they do not change their positions.
Minority stripes turn into majority stripes and vice versa. Further increase
of the external magnetic field induces a shortening of the stripes (5). Stripes
that are not pinned may drift apart, whereas pinned stripes break up and
form droplets. This generates a balanced distribution of minority domains at
low coverages in the vicinity of the saturation field (6).
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Fig. 29. Model of the magnetization-reversal process in ultrathin films in the vicin-
ity of a spin-reorientation transition taking into account pinning effects. Magnetiza-
tion curves: (A) without pinning, (C) with pinning, (B) inner hysteresis loop of C.
(1)–(6) Transformation of the stripe-domain pattern in the magnetization-reversal
process

5 Summary and Future Prospects

By using an UHV-Sagnac-SNOM, we succeeded in imaging the stripe-domain
patterns of ultrathin films of Fe/Cu(100), which is the first application of
magneto-optical SNOM to samples other than test patterns. Stripe domains
are the ground-state spin configuration of ultrathin films in the vicinity of a
spin-reorientation transition. It was not even clear at the beginning whether
the stripe-domain state would play any role during the magnetization-reversal
process. Previous data could also be explained by a coherent rotation of the
magnetization vector within a single-domain state. The observation of stripe
domains in external magnetic fields by UHV-Sagnac-SNOM shows unambigu-
ously that the magnetization-reversal process takes place by transformation
of a domain phase. MOKE and Kerr-microscopy data can be explained in
this way as well. As expected, the stripe width depends on the saturation
field of the corresponding magnetization curve. It turned out that pinning
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of stripe domains plays a major role during magnetization reversal of ultra-
thin films. Surface defects, like polishing scratches, obviously determine the
orientational order of the domain stripes and induce a positional order that
prevents the stripes from drifting apart. Close to saturation, the stripes break
up into droplets.

We believe that the combination of MOKE, Kerr microscopy and UHV-
Sagnac-SNOM is a very powerful approach for studying thin magnetic films.
We demonstrated that SNOM works well in UHV and that a Sagnac interfer-
ometer is a more appropriate method for Kerr-effect detection than a conven-
tional crossed-polarizer setup. We also found that the total-intensity signal
provided by the Sagnac interferometer can effectively be used for distance
control, which in UHV is superior to the common shear-force method. SNOM
has the advantage that it can be operated in external magnetic fields. The
present setup provides a lateral resolution better than λ/2 and a magneto-
optical sensitivity of better than 0.02◦. This can be derived from domain im-
ages of ultrathin Fe films. It will be difficult to achieve convincing magnetic-
domain contrast with lateral resolution better than 100 nm using uncoated
glass-fiber tips. But the progress in apertureless SNOM might soon provide
a reasonable way of probing the Kerr effect.

We expect another aspect of magneto-optics to play a major role in fu-
ture SNOM experiments: Its ability to resolve ultrafast magnetization dy-
namics. This has been demonstrated successfully in far-field pump-probe ex-
periments so far. Either an all-optical setup was combined with Kerr-effect
detection [78,79], or a short magnetic-field pulse, synchronized with the Kerr-
effect-probing laser, was used to excite the dynamical states [5,80,81]. For lat-
erally resolved studies, such stroboscopic experiments have to be performed at
each scan position. In this way, even time-resolved magneto-optical SNOM
should be feasible. Time resolution in the femtosecond range has recently
been achieved by SNOM, e.g., in the study of the nonlinear optical response
of single semiconductor quantum dots [82]. For time-resolved magneto-optical
studies it might again be advantageous to use a Sagnac interferometer: If the
pulse of a fs-laser source were split into counterpropagating pulses of different
intensity, one of them could be used as the pump, and the other one could
act as the probe pulse. Time delay between both could be created by inser-
tion of delay stages into the Sagnac interferometer. The nonreciprocal phase
difference would be a measure of the transient changes of the magnetization
between pump and probe pulses.

Ultrathin films would be interesting samples for time-resolved studies. In
the vicinity of the spin-reorientation transition, an increase of temperature
could induce spin precession because it changes the easy axis of the magne-
tization. The heat pulse acts like an effective perpendicular magnetic field
pulse, which according to the Landau–Lifshitz equation excites spin preces-
sion [83]. Such thermally induced magnetization dynamics has already been
studied by time-resolved MOKE [79].
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51. W.A. Atia, S. Pilevear, A. Güngör, C.C. Davis: Ultramicroscopy 71, 379 (1998)
52. R. Brunner, A. Bietsch, O. Hollricher, O. Marti: Rev. Sci. Instrum. 68, 1769

(1997)
53. P. Anger, A. Feltz, T. Berghaus, A.J. Meixner: J. Microscopy 209, 162 (2003)
54. R. Brunner, O. Marti, O. Hollricher: J. Appl. Phys. 86, 7100 (1999)
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Improvement of Interface Quality
in Cleaved-Edge-Overgrowth GaAs Quantum
Wires Based on Micro-optical Characterization

Masahiro Yoshita and Hidefumi Akiyama

1 Introduction

Low-dimensional semiconductor nanostructures such as quantum wires and
dots have attracted great attention both in fundamental physics and in device
applications due to their novel properties inherent to low dimensionality.
For the realization of novel semiconductor nanostructures with high spatial
uniformity, development of the fabrication methods and characterization of
the nanostructures have been extensively performed in recent decades [1,2].

The quantum wire is a promising candidate for highly functional next-
generation electronic and optoelectronic devices. Also, from the viewpoint of
fundamental physics, due to strong Coulomb interactions, the appearance of
novel one-dimensional (1D) physical phenomena is expected. The semicon-
ductor quantum wires are fabricated by advanced epitaxial crystal growth
techniques such as molecular beam epitaxy (MBE) and metalorganic chemi-
cal vapor deposition (MOCVD). Recent progress in these growth techniques
has realized various kinds of quantum-wire structures, in which novel phe-
nomena such as enhancement of exciton binding energy, concentrated oscil-
lator strength of 1D excitons, squeezing of the wave functions of 1D excitons,
high-density excitation effects, and lasing have been studied [3–22].

However, in these quantum-wire structures, relatively large structural in-
homogeneity due to heterointerface roughness still exists because the epitaxial
growth of the quantum wire structures is difficult, in contrast to that of the
quantum wells (QWs) where the epitaxial growth is two-dimensional (2D)
on the flat surfaces. This structural inhomogeneity causes localization of the
electronic states of the quantum wire into zero-dimensional quantum dots
(QDs) at a low temperature, and disturbs inherent 1D properties [23–25].
Complete physical understanding of the observed phenomena such as exci-
ton Mott transition to an electron–hole plasma or lasing of quantum-wire
lasers still remains controversial. Therefore, realization of high-quality semi-
conductor quantum wires showing novel 1D properties becomes important
and urgent. To reach the goal of this challenging issue, microscopic evalua-
tion of the electronic, optical, and structural properties of the quantum wires
that returns essential feedback for further development of a novel epitaxial
growth technique for reducing structural inhomogeneity is quite important.
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In this chapter, we aim at describing how we have achieved high-quality
T-shaped quantum wires (T wires) with high spatially uniformity by using
a cleaved-edge overgrowth (CEO) method with MBE. To characterize local
structural and optical properties in T wires, we here use a high-resolution
microscopic photoluminescence (micro-PL) method as a local probe tech-
nique [26]. We first, in Sects. 2 and 3, examine the origins of the structural
inhomogeneity existing in the T wires grown by the original CEO method by
using micro-PL imaging and spectroscopy. From micro-PL spectroscopy, we
find that the large interface roughness exists in the (110) epitaxial layer grown
by the CEO method, and that causes structural inhomogeneity of the T wires.
To reduce the surface roughness existing in the (110) GaAs CEO layer, in
Sect. 4 we develop a modified CEO method combined with a growth-interrupt
in situ annealing technique. By using this technique, the surface roughness is
dramatically reduced and an atomically flat surface over several tens of µm in
extent is formed on the CEO surface. Moreover, on the basis of the obtained
surface morphology by means of atomic force microscopy (AFM), flat-surface
formation mechanisms on the (110) GaAs during growth-interrupt annealing
are also discussed. In Sect. 5 we fabricate a (110) GaAs QW with atomi-
cally smooth interfaces by using the modified CEO method combined with
the growth-interrupt annealing, and investigate the interface properties of the
QW by means of micro-PL spectroscopy and imaging. From the micro-PL re-
sults, we confirm the effectiveness of the modified CEO method on the growth
of high-quality CEO QW. Finally, in Sect. 6, we realize a high-quality T wire
by using the modified CEO method, and characterize spatial uniformity of
the wire states by the micro-PL technique. We also demonstrate lasing from
a single-T-wire laser structure with optical pumping.

2 T-Shaped Quantum Wires Grown
by Cleaved-Edge Overgrowth Method

2.1 Cleaved-Edge Overgrowth Method with MBE

The T wires are fabricated by the CEO method, in which two MBE growth
steps are separated by an in situ wafer-cleavage process [27]. The procedure
of the CEO method is schematically shown in Fig. 1. In the first growth step,
QWs are grown, by the conventional MBE growth, on a (001) substrate. After
the first growth, the (001) substrates are taken out from the MBE chamber,
thinned from the backside to around 80–100 µm in thickness, and partly
scribed to have incipient cleavage. The thinned substrates are mounted verti-
cally on the sample holder, and reloaded into the MBE chamber. The in situ
cleavage is carried out to expose a fresh (110) edge surface. Then, the second
MBE growth is performed on the (110) edge formed by the in situ cleavage.
A typical T-wire structure is schematically shown in Fig. 2. Quantum-wire
electronic states are quantum-mechanically confined at a T-intersection of
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Fig. 1. Schematics of the cleaved-edge overgrowth method with molecular beam
epitaxy

stem well
7% AlGaAs
   14 nm

arm well
   GaAs
    6 nm

[001]

[110]

50%

35% 35%

T wire

Fig. 2. Schematic of a T-shaped
quantum-wire structure that con-
sists of a 14-nm thick (001) QW
(stem well) and a 6-nm thick (110)
QW (arm well). Percentages show
Al contents (x) in AlxGa1−xAs
layers. The contour curves show
constant probability (|ψ|2 = 0.2,
0.4, 0.6, 0.8, and 1.0) for elec-
trons confined in the quantum-
wire structure

the (001) QW in the first MBE growth, which is denoted as a stem well, and
the (110) QW overgrown on the (110) edge, which is denoted as an arm well.

The CEO method with MBE has been used to fabricate a host of low-
dimensional quantum structures including T wires [3–9,16,17,28–31], modula-
tion-doped quantum wires showing nearly ideal quantum transport charac-
teristics [32], and precisely spaced QDs [33].

The advantages of the CEO method for fabricating quantum wires are (1)
precise control of layer thickness with an atomic scale in the QWs because
each MBE growth is a 2D growth on the flat surfaces, (2) arbitrary combi-
nation of two constituent QWs with different thickness, which enables us to
study dimensional crossover of the electronic states in the quantum wires, and
(3) feasibility of strong 1D confinement in small-size quantum-wire structures.

Meanwhile, the difficulty of the CEO method lies in the MBE growth of
high-quality GaAs layers on the (110) surface. The MBE growth of GaAs on
the (110) surface requires a low substrate temperature between 470 to 510◦C,
a V/III beam flux ratio (equivalent-flux pressure ratio) of about 60–100, and a
growth rate of around 0.3–0.5 µm/h [27], which are quite different from those
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required for the well-established MBE growth of GaAs layers on the (001)
surface. Also, allowable ranges in growth conditions for growing high-quality
layers on the (110) surface are narrower than those in the (001) growth.

2.2 Micro-PL Imaging and Spectroscopy Setup
to Characterize T Wires

Figure 3 shows the micro-PL setup used in this study to characterize optical
properties of quantum wires and constituent QWs [34]. The micro-PL setup
consists of a microscope objective lens, an electrically cooled CCD camera
for PL imaging, a monochromator with a liquid-nitrogen-cooled CCD camera
for PL spectroscopy, and a monitoring CCD-TV camera with a tungsten
illumination lamp. Samples are placed in a liquid-helium continuous flow
cryostat so that the overgrowth surface faces to the objective lens as shown
in Fig. 4.

In this system, two kinds of photoexcitation are available. One is point
photoexcitation. In the point-excitation mode, light from an excitation laser
is coaxially focused, through the objective lens, into a near diffraction-limited
spot of about 0.8 µm diameter on the sample surface. The other is uniform
photoexcitation. In the uniform-excitation mode where a defocusing lens is
inserted into the optical path, light from the laser uniformly illuminates the
whole of the sample surface.

CCD Monitor

W-lamp
L

BS

BSLaser

ND

BS

M

F

Objective Lens

Sample in

Cryostat

L

CCD

Monochr.

CCD

Camera

For PL spectrum

For PL image
M

L

L

For

uniform exc.

Fig. 3. Schematic of micro-PL setup used in this study. M; mirror, L; lens, BS; beam
splitter, ND; neutral density filter, F; sharp-cut filter. Objective lens has numerical
aperture of 0.5, nominal magnitude of ×40, and working distance of 10 mm
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PL
(110)
overgrowth
surface

Photoexcitation

(001)
surface

STEM

Wire

ARM

x
y

z

Objective Lens

Fig. 4. Configuration of the sample
in the micro-PL measurement. The
sample is placed in the cryostat so
that the overgrowth surface faces
the objective lens in the backward
scattering geometry

PL from the sample is collected by the same objective lens through an op-
tical glass window of 1.5-mm thickness in the backward scattering geometry
as shown in Fig. 4, and is introduced into the CCD camera or the monochro-
mator.

2.3 PL of T Wires Grown by the Original CEO Method

In the T wires grown by the CEO method, novel properties inherent to their
one-dimensionality, such as enhanced exciton binding energy and concen-
trated oscillator strength have been revealed [13]. However, it was recently
revealed that the electronic states in the T wires are localized at a low tem-
perature due to monolayer thickness fluctuation and act as a set of QDs [23].

Figure 5 shows a micro-PL spectrum and a micro-PL image measured at
4.8 K of a T-wire sample grown by the original CEO method. The sample has
200 periods of T wires consisting of 200 periods of 5.2-nm thick GaAs stem
wells separated by 31-nm thick Al0.3Ga0.7As barrier layers and a 4.8-nm thick
GaAs arm well. The total layer thickness of the T-wire region is 7.2 µm. The
CEO growth was performed under the typical growth conditions optimized
for the (110) GaAs surface shown above [27]. The details of the sample design
and preparation are given in [35]. Stability of 1D excitons confined in the T
wires is characterized by the lateral confinement energy that is defined by the
energy difference between the PL peak position of the wire and those of the
constituent QWs. From the PL spectrum in Fig. 5, the lateral confinement
energy of the wire is estimated to be 16 meV in this T-wire structure. Larger
confinement energies of 35 and 34 meV have been obtained in 5-nm scale
GaAs T wires with AlAs barriers and 3.5-nm scale In0.17Ga0.83As T wires
with Al0.3Ga0.7As barriers, respectively [4,36].

Note in Fig. 5a that the linewidth of the PL peak from the wire was
7.3 meV. Similar PL linewidths of the T wires have been reported separately
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Fig. 5. (a) PL spectrum with point excitation and (b) PL image with uniform
excitation, measured at 4.8 K, of equally spaced two-hundred T-wire sample grown
by the original CEO method. The inset in (a) shows the structure of each T wire
formed in the 200-wire sample

by some research groups [3–5,16,28–31]. Such a broad PL linewidth implies
the existence of unavoidable large structural inhomogeneity in the T-wire
structure. Figure 5b shows the PL image of the 200 T wires under uniform
excitation taken at the PL peak energy of the wire selected by a bandpass
filter. Spatially inhomogeneous PL intensity in Fig. 5b also suggests the ex-
istence of large structural inhomogeneity.

3 Interface Roughness and Modulated Electronic
States in (110) GaAs QWs

To clarify the origins of the structural inhomogeneity existing in the T-wire
structures, we characterize, in this section, interface roughness and local elec-
tronic states formed in GaAs QWs grown on (110) cleaved surfaces by using
high-resolution micro-PL imaging and spectroscopy technique assisted by a
solid immersion lens (SIL) [37].

3.1 Preparation of (110) GaAs QWs

5-nm thick (110) GaAs single-QW (SQW) samples with AlAs barriers were
grown with MBE on the cleaved (110) edge of a (001) GaAs substrate [37].
The procedure of the sample preparation is as follows. After cleavage in air,
the substrate was loaded into the MBE chamber and the top oxide layer was
removed at 580◦C. Then, 200- (or 500-) nm GaAs and GaAs/AlAs superlat-
tice buffer layers, a 5-nm thick GaAs SQW sandwiched by 10-nm thick AlAs
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barriers, and a 10-nm thick GaAs cap layer were successively grown with-
out growth interruption at a substrate temperature between 490 to 510◦C, a
V/III flux ratio of 30, and a GaAs growth rate of 0.35 µm/h.

For comparison, a 5-nm thick GaAs SQW of the same structure with
AlAs barriers was grown on a GaAs (001) substrate under the optimal growth
conditions with a substrate temperature of 605◦C, a V/III flux ratio of 5, a
GaAs growth rate of 1.0 µm/h for (001) surface, and a growth interruption
time at the GaAs surface of 45 s.

3.2 Macro-PL of the (110) GaAs QWs

The solid and dashed curves in Fig. 6 show the macro-PL spectra of 5-nm
thick GaAs/AlAs SQWs grown on the (110) cleaved edge and the (001) sub-
strate, respectively, measured at 77 K under photoexcitation by a He-Ne laser
with a spot size of about 100 µm.

The difference in PL peak energy between two GaAs/AlAs SQWs with
the same thickness was due to anisotropy of the heavy-hole mass. Note that
the PL spectrum of the (110) SQW has a broader linewidth than that of the
(001) SQW. The full width at half maximum (FWHM) was 27 meV for the
(110) SQW, and 7.2 meV for the (001) SQW. The PL linewidth of 7.2 meV
in the (001) SQW was smaller than the energy separation of about 15 meV
in the quantization energy due to a one-monolayer (1-ML) difference in well
thickness. On the other hand, the PL linewidth of 27 meV in the (110) SQW
was greater than the energy separation corresponding to a 3-ML difference

Fig. 6. Macro-PL spectra of a
5-nm thick (110) GaAs/AlAs
SQW (solid curve), a (001)
GaAs/AlAs SQW (dashed curve),
and a (110) GaAs/Al0.3Ga0.7As
SQW (dash-dot curve) at 77 K.
The inset shows the FWHM of
the PL spectra as a function
of PL peak energy for seven
(110) GaAs/AlAs SQW samples.
Each symbol shows a different
sample. Lines in the inset indicate
the calculated PL-peak-energy
separation between QWs with
well-thickness deviation of ±0.1
to 0.4 nm from the centered well
thickness
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in well thickness, which suggests the existence of larger interface roughness
in the (110) SQW.

The inset in Fig. 6 shows the FWHM of the PL spectra as a function of
PL peak energy for seven (110) GaAs/AlAs SQW samples grown at different
substrate temperatures between 490 and 510◦C. The same symbols at several
PL peak energies show different excitation positions in the case of the same
sample. The larger FWHM of the closed triangles as compared to the others
was probably due to lower sample quality with slightly reduced growth tem-
perature, because the sample had higher-density triangle-shaped facet struc-
tures on the surface as observed under an optical microscope. Lines in the
inset indicate the calculated PL-energy difference due to the well-thickness
deviations of ±0.1 to ±0.4 nm from the centered well thickness. Note that
most samples follow the calculated lines with the deviation being about ±0.3
to ±0.35 nm. This result indicates that the (110) QWs have almost the same
quality at growth substrate temperatures within the range of 490 to 510◦C,
and that a well-thickness fluctuation of about 3.0 to 3.5 MLs (1 ML = 0.2 nm
in the (110) surface) exists in the (110) GaAs QW.

The dash-dot curve in Fig. 6 shows the macro-PL spectrum of an addi-
tional reference sample of a 5-nm thick GaAs SQW with Al0.3Ga0.7As barriers
grown on a (110) cleaved edge under the same growth conditions as those in
the case of the (110) SQWs with AlAs barriers. Its FWHM was 13.5 meV
and the corresponding well-thickness fluctuation was 0.74 nm or 3.7 MLs,
which is similar to that in the (110) GaAs/AlAs QWs, and indicates that the
large well-thickness fluctuation in the (110) GaAs QW is independent of the
barrier material.

3.3 Micro-PL Spectroscopy of the (110) GaAs QWs

To investigate local electronic states formed in the (110) GaAs QWs, we per-
formed micro-PL spectroscopy with high-spatial and high-spectral resolution
under point excitation. For micro-PL measurements with higher spatial res-
olution, we used a micro-PL setup combined with a SIL, in which spatial
resolution was enhanced to 0.4 µm and a spot size of the focused light in the
point excitation was reduced to 0.4 µm through the objective lens and the
SIL [38–42]. The spectral resolution was also improved to 0.2 meV by using
a 76-cm monochromator with a liquid-nitrogen-cooled CCD camera [37].

To obtain local electronic states at a selected position on the sample
exactly, we first obtained PL images under uniform excitation as shown in
the upper part of Fig. 7a prior to the spectroscopy, and selected an excitation
position for local spectroscopy. Then, we changed the excitation mode to
point excitation and obtained PL images as shown in the lower part of Fig. 7a
and the PL spectra simultaneously.

Figure 7b shows PL spectra measured at 4.8 K at the position shown in
Fig. 7a for various excitation power levels. The intensity of each PL spectrum
was calibrated in terms of the excitation power and the acquisition time of the
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Fig. 7. (a) Micro-PL images observed via SIL under uniform excitation (upper)
and point excitation (lower) in the same region of the (110) GaAs/AlAs SQW. (b)
Excitation-power dependence of micro-PL spectra via SIL under point excitation
at the position shown in (a). Intensity of each PL spectrum was calibrated on the
basis of the excitation power

CCD camera, so that the PL intensity becomes constant if it is proportional
to the excitation power.

In the PL spectra under low excitation powers, less than 3.8 W/cm2, only
a few sharp PL peaks were observed. The linewidth of these sharp PL peaks
was 0.5 ±0.1 meV.

At higher excitation powers, on the other hand, additional peaks (open
symbols) appeared on the low-energy side of the original peaks remaining
from low excitation power (solid symbols). To demonstrate this more clearly,
we moved the excitation spot to an another position where only a single sharp
PL line appeared at the low excitation power. Figure 8a shows the excitation
power dependence of the PL spectra at the single PL peak position. As the
excitation power was increased, the new peak (open symbol) appeared at
the low-energy side of the original peak (solid symbol). Figure 8b shows
the intensities of these two PL peaks at various excitation powers. The new
emission line increased superlinearly with the excitation power, whereas the
original peak showed linear dependence. This result suggests that the sharp
emission peak at low excitation powers was due to excitons and the new
emission peak was due to biexcitons.

The number of incident photons at the lowest excitation power of 1.2 W/cm2

in Fig. 7 was 5×109 photons/s in the excitation spot area with a diameter of
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Fig. 8. (a) Excitation power dependence of micro-PL spectra via SIL under point
excitation at a position where only a single PL peak is observed, and (b) PL peak
intensities of a single excitonic peak at 1.6349 eV and a new emission peak at
1.6323 eV as a function of the excitation power

0.4 µm, which corresponds to an averaged exciton number of 0.04 in the exci-
tation spot assuming that the reflection at the surface is 0.3, the absorption
in the SQW is 3%, and the radiative lifetime of excitons is about 0.4 ns. This
supports the view that the emission at the lowest excitation level was from
single excitons. The new lines begin to appear at an excitation power of about
10 W/cm2 corresponding to the averaged carrier number of 0.3. By assuming
the Poisson distribution of excitons, we estimated the ratio (nxx/nx) of prob-
abilities that the spot has the biexciton (nxx) or the exciton (nx) to be 0.15,
which is a reasonable value for the appearance of biexcitons. The broad back-
ground PL that appeared at very high excitation power above 1000 W/cm2

must originate from interaction between many carriers, or plasma emission.
Note in Fig. 7b that biexciton peaks were observed not only for the lowest-

energy PL peak but also for the high-energy peaks, which implies that several
local minima in energy existed in the excitation laser spot and that each PL
peak observed at the low excitation power was from the excitons in each local
minimum in energy. The appearance of such sharp peaks due to reduction
of the observation area is quite similar to the results obtained in micro-PL
and near-field studies on thin (001) GaAs QWs, where QD states are natu-
rally formed due to the interface roughness of the QWs [43–46]. Therefore,
it is concluded that the electronic states are localized due to interface rough-
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Fig. 9. (a) Peak positions of micro-PL spectra observed at ten different excitation
positions on the GaAs/AlAs (110) SQW sample and (b) their excitation position
shown as crosses on the micro-PL image via SIL under uniform excitation. The size
of the dots in (a) represents the PL intensity of each peak. Vertical dashed lines in
(a) show the calculated PL peak positions for GaAs/AlAs (110) SQWs with well
thickness of every ML step

ness and QD-like states are formed in the (110) GaAs QWs. Moreover, the
energy separation between the exciton and the biexciton peaks was about
2.5–3.0 meV. This value is similar to the binding energy of biexcitons ob-
tained in the naturally formed QD states in the (001) GaAs QWs [45] and
that in the self-organized QDs [47], which also supports our interpretation.

To see the spatial distribution of the local energy minima in the (110) QW,
we observed the PL spectra under weak point excitation at several positions
on the sample. Figure 9a shows peak positions of the PL spectra observed at
ten different positions; two (a1 and a2) at bright PL positions, four (b1–b4)
at middle intensity positions, and four (c1–c4) at dark positions, which are
marked by crosses in Fig. 9b. In Fig. 9a, the size of the dots represents the
PL intensity of each sharp peak. Vertical dashed lines show the calculated
PL peak positions for GaAs/AlAs (110) SQWs with different well thickness
every 0.2-nm step (1-ML steps).

In Fig. 9a, the bright and dark regions in the PL image of Fig. 9b have
different PL peak energy distribution. In brighter regions (a1, a2), relatively
strong PL peaks were dominantly observed on the lower-energy side. In darker
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regions (c1–c4), on the other hand, peaks were located on the higher-energy
side with weak intensity. This is explained by the spatial distribution of the
quantization energy in the (110) QW due to interface roughness and the
carrier migration from high-energy states to low-energy states [37].

Note in the energy distribution of PL peaks in Fig. 9a that, as indicated
by circles drawn to guide the eye, three to five neighboring PL peaks made
groups, and that those groups had energy spacing almost equal to the sep-
aration of the PL peak energy in (110) GaAs QWs with 1-ML difference in
well thickness as marked by vertical dashed lines. Such a unique energy dis-
tribution was explained by considering the following interface model for the
GaAs (110) SQW that the top surface of GaAs/AlAs SQW, where AlAs cov-
ered the GaAs surface, has large ML terraces with sub-µm to µm width, and
the bottom surface, where GaAs covered the AlAs surface, has shorter-scale
roughness due to the low mobility of Al atoms [37].

3.4 Interface Roughness in the (110) GaAs QWs
and T Wires Grown by the CEO Method

From the results of macro- and micro-PL spectroscopy, we found that inter-
face roughness as large as 3.0–3.5 MLs exists in the (110) GaAs QWs and
that the localized QD states are formed due to this large roughness.

Hasen et al. [23] performed micro-PL measurements of a single T wire
grown by the CEO method, and observed discrete sharp emission peaks from
the wire electronic states. They concluded that these sharp peaks originated
from localized QD states due to the monolayer thickness fluctuation of the
two constituent QWs; the first growth (001) QW and the CEO (110) QW.
From the micro-PL studies of the (110) GaAs QWs described above it could
be concluded that large structural inhomogeneity existing in the interface
of the (110) GaAs QWs dominantly contribute to the localization of the
electronic states in the T wires.

4 Formation of an Atomically Flat Surface
on the (110) GaAs Grown by the CEO Method

The most important issue to realize high-quality T wires is to reduce large
surface roughness formed on the (110) GaAs layer by the CEO method. To
overcome this difficulty inherent to the CEO growth, we developed a growth-
interrupt in situ annealing technique on the epitaxial surface after CEO
growth. In this section, we explain the newly developed growth-interrupt
annealing technique. To confirm the feasibility of this technique on the CEO
growth, we characterize the annealed surface by means of AFM in air. We
find that by growth-interrupt annealing at a substrate temperature of 600◦C
for 10 min, the surface roughness on the (110) GaAs layer is dramatically
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reduced and atomically flat surface is formed. Moreover, on the basis of char-
acteristic step-edge shapes formed on the annealed surfaces, mechanisms of
the flat (110) GaAs surface formation and surface evolution during annealing
are discussed [48–52].

4.1 Atomic Arrangements of the (001) and (110) GaAs Surfaces

The epitaxial growth conditions required for GaAs layers on the (110) sur-
face are quite different from those on the (001) surfaces as described in the
previous section. This difference is qualitatively explained by the difference
of the surface atomic arrangement between the (110) and (001) surfaces. Fig-
ure 10 shows perspective views of the atomic arrangements of the (110) and
(001) surfaces. In Fig. 10, surface reconstruction is ignored. On the (001)
surface, Ga and As layers are alternatively stacked and the surface atoms
(As atoms in Fig. 10a) in the topmost layer are two-bonded to the alternate
atoms (Ga atoms) in the underlying layer. Therefore, the adatoms attached
on the surface can make two bonds with the remaining two dangling bonds of
the surface atoms. On the (110) surface, on the other hand, each atomic layer
consists of an equal number of Ga and As atoms making zigzag chains. Each
atom in the topmost layer has three bonds with three alternate atoms (one in

(a)  (001) surface

(b)  (110) surface

[110]
_

[001]

[110]

[001]

Fig. 10. Atomic arrangements of (a) (001) and (b) (110) GaAs surfaces. On the
(001) surface, the topmost atoms are two-bonded, while on the (110) surface, the
topmost atoms have three bonds with three alternate atoms and a single dangling
bond
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the underlying atomic layer and two neighboring atoms in the same atomic
layer) and a single dangling bond that contributes to the epitaxial growth.

In the epitaxial growth of GaAs, the MBE growth is usually performed
in a Ga-limited/As-rich growth regime where incident Ga flux determines
growth rate of GaAs layer. In this growth regime, the incorporation ratio of
Ga atoms is almost unity because desorption (or evaporation) of Ga atoms
from the surface can be negligible at a substrate temperature commonly used
below at least 650◦C [53–55] for both (001) and (110) growth. The crucial
point of the epitaxial growth of GaAs in this growth regime is incorporation
of As atoms. In the MBE growth of GaAs, As atoms are supplied as As4 or
As2 molecules on the growth front. It is reported that the incorporation rate
of As4 (and also As2) molecules is lower on the (110) surface than on the (001)
surface at the same growth temperature [56]. If we grow (110) GaAs layers
at a substrate temperature as high as 600◦C, which is a commonly used sub-
strate temperature in the (001) growth, desorption of As atoms occurs and
the growth deviates from the As-rich growth regime. In this condition, unfa-
vorable growths such as a facet formation or formation of Ga droplets occur.
Actually, in (110) MBE growth at a substrate temperature as high as 600◦C,
formation of a large number of facet structures on the epitaxial surface was
confirmed [57,58]. Hence, to achieve As-rich condition for growing (110) GaAs
layers, one requires a low substrate temperature, high As4 overpressure, and
a low growth rate [59–63]. However, these growth conditions suppress the
surface migration of Ga atoms and make the growth surface rough, as shown
later.

4.2 Growth-Interrupt in situ Annealing Technique

In the original CEO growth, the overgrowth of the arm well and upper bar-
rier layers of the T wires is continuously carried out on the cleaved edge.
Therefore, surface roughness formed on the GaAs arm well layer is embed-
ded in the top heterointerface of the arm well as it is. To reduce the surface
roughness formed on the GaAs CEO surface before covering with the bar-
rier layer, we developed a growth-interrupt in situ annealing technique. After
the CEO growth on the cleaved edge of the (001) substrates using a growth
temperature of 490◦C, we interrupt the growth and anneal the sample at an
elevated substrate temperature under an As4 flux irradiation in the MBE
chamber [48,49].

4.3 Formation of Atomically Flat CEO Surfaces
by Growth-Interrupt Annealing

After the CEO growth of 5-nm thick GaAs epitaxial layers on the (110)
cleaved edge with a growth temperature of 490◦C and a growth rate of
0.43 µm/h, we interrupted the growth and annealed the sample under an As4
flux in the MBE chamber with various annealing times and temperatures.
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Fig. 11. AFM images of the
as-grown surface of a 5-nm
thick (110) GaAs layer grown
at 490◦C by the CEO method
without annealing (a), and
those of similar layers an-
nealed for 3 (b) and 10 min
(c) keeping the substrate tem-
perature at 490◦C. As a ref-
erence, the AFM image of
a cleaved (110) surface of
the substrate with no MBE
growth is also shown in
(d). The observation area is
2 µm × 2 µm and the height
scale is 2 nm

It is worth noting that distinct GaAs monolayer-height steps are clearly
and reproducibly resolved on the sample surface by AFM in air, as shown
below. This indicates that the degradation of the GaAs sample surface due
to room-temperature air oxidation is negligible, by which it is suggested that
the AFM measurement in air is a powerful tool for investigating the surface
morphology of the GaAs epitaxial surfaces on a monolayer scale.

We first characterized the as-grown surface of the 5-nm thick (110) GaAs
epitaxial layer grown by the CEO method at 490◦C without annealing. This
is shown in the AFM image of a 2 µm × 2 µm region in Fig. 11a. As a compar-
ative reference, we show in Fig. 11d an AFM image directly on a bare (110)
cleaved surface of the (001) GaAs substrate. The cleave is atomically flat
without monolayer steps or islands as expected. The CEO as-grown surface
in Fig. 11a is, however, covered with triangular-shaped islands each one or
two MLs high and 100 to 200 nm in lateral extent, whose apexes are aligned
to the [001] direction. These triangular islands are superposed on underlying
monolayer-height terraces forming features generally the same as those previ-
ously reported for the conventional MBE growth on (110) substrates [64,65].
From the height analysis of the AFM image, it was found that the mean and
peak-to-peak height distribution on the (110) as-grown surface were 1.5 and
5 MLs, respectively.

Note that this as-grown surface of the (110) GaAs CEO layer corresponds
to the top interface of the (110) QWs that form T wires studied extensively
elsewhere [3–5,16,28–31]. The islands and the relatively large height distri-
bution existing on the as-grown surface observed here nicely accounts for the
broad PL linewidth observed in the (110) QWs and T wires grown by the
CEO method [3–5,16,28–31,66,67] and the localization of the electronic states
in the T-QWRs [23].
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Fig. 12. AFM images of the
surfaces of a 5-nm thick
(110) GaAs layers grown at
490◦C by the CEO method
and annealed at elevated
substrate temperatures for
10 min. The observation area
is 5 µm × 5 µm. For compari-
son, that of the as-grown sur-
face is represented in (a) on a
5 µm × 5 µm scale

It is important to clarify whether atom migration tends to flatten the (110)
surface or roughen it, for example by step bunching or facet formation. For
this purpose, we have characterized the surface morphology of the samples
annealed for 3 and 10 min keeping the substrate temperature at 490◦C, as
shown in Fig. 11b–c, respectively. The observation area was 2 µm × 2 µm.

Note that the surface morphology was improved by annealing. Though the
mean and peak-to-peak height distribution were still about 1.6 and 5 MLs,
respectively, most islands on the surface were enlarged from sub-µm to µm
scale, and the underlying monolayer-height terraces also became larger con-
necting with one another as the annealing time was increased. Moreover, the
3-min annealed surface shows some smaller islands (< 50 nm in lateral width)
that are seen to disappear after the 10-min anneal. The data clearly shows
that the migration of atoms (probably Ga) tends to flatten the as-grown
(110) surface with time at 490◦C [48].

In an attempt to enhance this atom migration, we followed the 490◦C
MBE growth with anneals at elevated temperatures of 510, 560, and 600◦C for
10 min. These are characterized by AFM as shown in Fig. 12b–d, respectively.
For this figure, the scanned area shown is extended to 5 µm × 5 µm. For
comparison, the AFM image of the 490◦C as-grown surface is represented in
Fig. 11a also on a 5 µm × 5 µm scale. The gradual undulation of height along
the horizontal direction seen in the background of all the images in Fig. 12,
particularly in c–d, is an artifact due to the nonlinearlity of the scanning
piezo tube in the AFM, and should be ignored.

At all annealing temperatures, particularly as the annealing temperature
was increased, the surface morphology was dramatically improved. At the
annealing temperature of 510◦C, which is 20◦C higher than the growth tem-
perature, larger islands of µm-scale were formed and the mean height distri-
bution was reduced to 1.3 MLs, but many sub-µm-scale smaller islands still
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remained and the peak-to-peak height distribution was still about 4 MLs.
The anneals of 560 and 600◦C, on the other hand, produced almost flat sur-
faces. Especially at 600◦C, no island step-structures were observed. Indeed
an atomically flat monolayer-step-free surface was formed over areas several
tens of µm in extent. These results demonstrate that the migration of the
surface atoms is enhanced at these higher temperatures and that the (110)
GaAs surface is stable even at 600◦C for annealing.

We should emphasize that the allowed, and hence optimum, conditions for
annealing and growth are different. The growth of (110) GaAs layer requires
high As4-vapor pressure and low substrate temperatures of 470–500◦C, be-
cause of the low incorporation rate of As atoms to unstable sites on the (110)
surface [56]. On the other hand, annealing is not limited by these conditions.
The (110) GaAs surface is stable under an As4 overpressure at substrate
temperatures of at least 600◦C, where enhanced surface migration of atoms
becomes effective in improving the surface morphology of the (110) GaAs
epitaxial layer.

It is again stressed that this technique enables us to form high-quality
(110) GaAs QWs sandwiched by the two interfaces defined by cleavage and
annealing with an atomically flat surface over several tens of µm scale, in
which ideal 2D electronic states are expected to be formed.

4.4 Surface Morphology of the Annealed Surface
with Fractional Monolayer Coverage

It is now important to characterize the dependence of the surface morphol-
ogy on the deviation of the amount of GaAs deposition from integer MLs,
because fractional ML of GaAs can by no means accomplish an atomically
flat surface. For this purpose, a (110) GaAs layer was grown by the CEO
method without substrate rotation, but with the CEO surface aligned along
the Ga-flux gradient, so that a spatial distribution of GaAs layer thickness
by 1%/mm was intentionally introduced [49].

Figure 13 shows AFM images observed at different positions on the (110)
GaAs annealed surface. The nominal layer thickness was 6 nm (or 30 MLs),
and annealing was again done at 600◦C for 10 min. Note in the particular
case where exactly 30 molecular MLs of GaAs were deposited over the cleave
(denoted as Integer-ML) that an atomically flat surface without any islands
nor step edges was formed over an area several tens of µm on a side.

Notice also at other locations along the cleave where the GaAs coverage
ended in a fractional monolayer, that the surface morphology is sensitive to
the amount of GaAs deposition, and small deviations from the integer-ML
deposition cause formation of atomic step-edges and islands or monolayer
pits. When the deviation from an integer-ML thickness is +0.1ML or +0.2ML,
the GaAs surface is generally atomically flat except for isolated islands shaped
like boats (A in Fig. 13), which are 2- or 3-MLs high and elongated along the
[001] direction. The existence of such small islands in the interface of the (110)
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Fig. 13. AFM images of the surface of a 6-nm thick (110) GaAs layer grown on a
cleaved (110) edge of a 6.8-µm thick Al0.29Ga0.71As layer on the (001) substrate. The
observation area is 5 µm × 5 µm. A schematic sample structure is shown in the inset.
The cleaved (110) surface is parallel to the major flat of the (001) substrate wafer.
The (110) GaAs layer was overgrown at a substrate temperature of 490◦C under As4
flux. After the overgrowth, in situ annealing of the surface was done at a substrate
temperature of 600◦C for 10 min. A position with integral-ML deposition is denoted
as Integer-ML, and other positions with fractional ML are denoted by deviations
of deposition from the integral ML. As a reference, the AFM image of the surface
without annealing is labeled as as-grown with an observation area of 2 µm × 2 µm

QWs should cause localized electronic states at low temperatures [43–46].
When the excess coverage becomes +0.3ML, larger islands of 1-ML height are
found in addition to boats. At around +0.5ML coverage, the boats disappear
as the coalescence of 1-ML-height islands forms connected large terraces.
For excess coverage of +0.7ML, a 1-ML-high terrace is extended over the
whole surface with a few large isolated 1-ML-deep pits shaped like tropical
fish facing toward the [001] direction (B in Fig. 13). At still higher coverage
the fish-shaped pits are joined by 2-MLs-deep pits shaped like arrowheads
pointing toward the [001̄] direction (C in Fig. 13) [49].
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Fig. 14. (a) Distribution of short axis a vs. long axis b in 1-ML deep pits. A fitting
curve is drawn to guide the eye. The width and height of a 1-ML deep pit denoted
as a and b are measured in the [001] and [11̄0] directions, respectively, as shown
in the inset. (b) The a/b ratio vs. the area ab/2 of pits. A rising fitting line with
increasing pit area shows that large pits have round shapes

4.5 Step-Edge Kinetics on the (110) GaAs Surface
during Annealing

Characteristic shapes of the pits and islands formed on the annealed surface
at fractional ML regions reveal the atomic-step kinetics during annealing on
the (110) surface and illustrate the strong driving force toward flat-surface
formation.

Note first that the formed islands and pits are µm-scale in size, and thus
are much larger than those observed on any (001) GaAs MBE surface [43–
46]. This suggests that during the anneal the Ga atom or GaAs molecular
mobility is substantially higher on the (110) surface than on the (001) or
other surfaces, which is expected from the difference of the surface atomic
arrangement between the (110) and (001) surfaces.

To investigate the formation mechanism of such characteristic shapes in
more detail, we measured sizes of the fish-shaped 1-ML deep pits, length b
along the long axis in the [11̄0] direction and length a along the short axis
in the [001] direction. Figure 14a shows length a vs. length b for each fish. A
polynomial fitting curves to fourth order shows that a increases superlinearly
with b. The data points of a and b are mostly distributed between 0 to 2 µm,
and larger fish beyond these sizes are rare. In Fig. 14b, the a/b ratio is plotted
as a function of the area ab/2, which approximately represents an area of fish
by the formula for triangular areas. The data are scattered around a fitting
line with a positive slope of 0.03 /µm2 and an intercept of 0.3. This result
indicates that the ratio a/b gradually increases with increasing size of fish.
Namely, large fish tend to have round shapes and look fat, while small fish
have thinner shapes along the longer b axis [51].
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Fig. 15. Top and side views of the atomic arrangement model of a 1-ML-deep pit
observed on the annealed (110) surface. The symbol size of those atoms in the
topmost atomic layer is enlarged

We model and discuss the kinetics of atomic steps that form flat sur-
faces and characteristic-shaped islands and pits of Fig. 13 during the growth-
interrupt annealing. On the (110) surface at a substrate temperature of 600◦C
under As4-vapor overpressure for annealing, desorption and incorporation of
As atoms are in equilibrium, while the Ga atoms on the surface have neg-
ligible desorption. Thus the surface migration of Ga atoms determines the
surface morphology. The fact that islands and pits evolve toward self-similar
characteristic shapes on a µm scale indicates that the migration length of
the Ga atoms is larger than that scale, and the details of these shapes reflect
the relative stability of Ga atoms at the variously oriented step edges on the
(110) surface.
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Fig. 16. Atomic-step kinet-
ics of the surface evolution
during annealing. Proposed
schematic drawings of the evo-
lution for the island and pit
structures from an assumed
square initial shape are ob-
tained by considering detach-
ment and incorporation of Ga
atoms from the (1̄10) or (11̄0)
edges to the (001) and (001̄)
edges at the surface during an-
nealing

In Fig. 15, we reproduced the atomic-step arrangement of the 1-ML deep
fish in the AFM image. The longest step edge is the edge A–B consisting
of Ga atoms capping As three bonds along the [11̄0] direction. The curved
edges come from the edges B–C and A–D formed by Ga atoms capping two
As bonds, and the short edge C–D consists of As atoms capping three Ga
bonds along the [11̄0] direction. In this discussion we label each step edge
on the (110) plane with an index of a plane that is parallel to the edge and
perpendicular to the (110) plane. Thus the A–B edge becomes the (001) edge
and the C–D edge becomes the (001̄) edge.

The atomic arrangement of Fig. 15 suggests that three-bond sites A–B
and C–D are more stable than two-bond edge sites. Furthermore, the edge
C–D is less stable than the edge A–B because occasional desorption of an As
atom at the C–D step edge leaves two near-neighbor Ga atoms bonded by
only two bonds.

On the basis of the difference in the step-edge stability for Ga atoms, we
consider the simple surface-evolution model shown in Fig. 16. In the case of
1-ML deep pits, faster detachment of Ga atoms from the less stable (1̄10)
or (11̄0) edges and incorporation to more-stable sites at (001) and (001̄)
edges causes a pit elongated along the [11̄0] direction. This model predicts
the time evolution of the pits that the pits should become elongated in the
[11̄0] direction and become thinned in the [001] direction as a function of
time, because this tends to minimize the number of less-stable two-bond step
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edges. Note that the shape evolution of larger pits is slower than that in
smaller pits, because atom migration in larger pits requires more time. Thus,
the dependence of shape on pits area should reflect time evolution. In fact,
the result in Fig. 14 shows that smaller fish have thinner shapes, and it is
consistent with the above prediction.

For island evolution, on the other hand, the same detachment of the Ga
atoms from the less-stable (1̄10) or (11̄0) edges causes the remaining island to
become elongated along the [001] direction. We here take into account that
at the 1-ML high edge, the Ga atom can immediately migrate away from the
island after detachment from its initial site, but that in the case of the 2-ML
high step edge, a Ga atom in the higher-monolayer edge must first move to
an empty site in the lower-monolayer, and only then can it leave the step
edge. The kinetics of such a two-step process leads to the conclusion that 2-
or higher-MLs islands are more stable than 1-ML islands.

This simple model together with the notion that islands lose Ga atoms
to adjacent structures, but pits do not, reproduces the characteristic shapes,
relative sizes, and step heights of the islands and pits in the AFM images.
This successful modeling of the surface evolution during annealing suggests
that the efficient atom migration from unstable two-bond to stable three-
bond sites on the (110) surface due to differences in the step-edge stability is
the driving force to form an atomically flat surface [50,51].

4.6 First-Principles Calculations of Adatom Migration Barrier
Energies on (110) GaAs

The long migration of the adatoms on the (110) surface is also confirmed
by first-principles calculations on the migration barrier energy for Ga and As
adatoms on a (110) GaAs surface [52]. The calculation for the hopping barrier
energy was based on the density functional theory within the generalized
gradient approximation. Figures 17a and b show the calculated potential
surfaces for the Ga and As adatoms on the GaAs (110) surface, respectively.
In Figs. 17c and d, atomic models of Ga and As on the GaAs (110) surface
are again shown. Note the difference between the two contour maps a and
b. The migration barrier potential surface for Ga adatoms shown in Fig. 17a
has low-energy trenches along the [11̄0] direction. Thus, the migration of Ga
adatoms is constructed to be 1D along the [11̄0] direction. On the other hand,
the migration energy surface of the As adatom in Fig. 17b is 2D.

Table 1 shows the migration barrier energies for Ga and As adatoms on a
GaAs (110) surface for the migration to the next stable site in the [11̄0] and
[001] directions [52]. For Ga adatoms, the energies are anisotropic: 0.57 eV
toward [11̄0] and 0.86 eV toward [001]. On the other hand, the energies for
As are 0.57 eV toward [11̄0] and 0.67 eV toward [001], so the difference is
only 0.1 eV. These values quantitatively show that the migration of Ga is
1D, while that of As is 2D.
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[110]
_

Fig. 17. Contour map of migration barrier energy for (a) Ga adatom and (b) As
adatom on a GaAs (110) surface with the surface atomic configuration. The dotted
and solid circles correspond to As and Ga, respectively. (c) and (d) Atomic models
of a GaAs (110) surface. Larger and smaller circles correspond to the first and
second atomic layers from the surface
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Table 1. The migration barrier energy for Ga and As adatoms on the GaAs (110)
surface. The calculated barrier energy for Ga on the GaAs (001) β2(2 × 4) surface
is also shown for comparison [52]

Atomic species Migration direction Barrier energy (eV)

Ga [11̄0] 0.57

Ga [001] 0.86

As [11̄0] 0.57

As [001] 0.67

Ga [1̄10] on (001)β2 1.2∗

Ga [110] on (001)β2 1.5∗

∗ Ref. [68]

For comparison, Table 1 shows the calculated migration barrier energies
for the Ga adatom on GaAs (001) β2 surface [68], which is 1.2 eV toward
[1̄10] and 1.5 eV toward [110]. It is clear that the barrier energies on GaAs
(110) are far smaller than those on GaAs (001). The migration barrier energy
of the As adatom on GaAs (110) is also far smaller than that around the Ga-
dimer on the GaAs (001) [69], whereas it is similar to the barrier energy
value for Ga-rich GaAs (001) ζ(4×2) surface [70]. Thus, Ga and As adatoms
supplied as molecular beams have very small migration barrier energies, and
should migrate very easily on the GaAs (110) surface. This explains the
experimentally observed formation of a very wide atomically flat (110) surface
by growth-interrupt annealing at 600◦C for 10 min.

It is interesting to point out, in Fig. 17, that the As adatom is very
unstable at the position near the top-layer Ga atom. This means that As is
not stable at the site corresponding to the correct site for As in the next
atomic layer. The most stable position for an As adatom is the site near As
atoms of the topmost surface layer. On the other hand, for a Ga adatom, the
stable position is the site near the topmost As. Therefore, for both Ga and As
adatoms, the sites near As of the topmost layer are very stable, while those
near Ga are unstable. This is most likely because Ga (a group-III element)
in the topmost layer has an electronic structure like a closed shell, while As
(a group-V element) has excess electrons to make chemical bonds.

The fact that both Ga and As adatoms are stable near As sites and unsta-
ble near Ga sites explains the asymmetric shapes like fish for 1-ML deep pits.
As shown in Figs. 15 and 16, the lower stability of two-bond step-edges (A–D
and B–C) compared with three-bond step-edges (A–B and C–D) causes atom
migration from two- to three-bond step-edges and makes the pit elongated
along [11̄0]. Note here that both Ga and As adatoms feel repulsion from the
Ga-terminated three-bond step-edge (A–B), while they feel attraction from



Improvement of Interface Quality in CEO GaAs Quantum Wires 67

the As-terminated three-bond step-edge (C–D). Thus, adatom density be-
comes high near the C–D edge. Therefore, for both Ga and As adatoms, the
corner sites C and D are the most stable sites for incorporation into the step
edge. The repetition of such incorporation processes makes the fish shape of
the pit.

4.7 Toward Formation
of a Wider Atomically Flat (110) GaAs Surface

From both the experimental results and the theoretical calculations, one can
expect that growth-interrupt annealing at even higher substrate tempera-
tures than 600◦C is more effective to achieve atomically flat (110) surfaces
and most likely to shorten the annealing time. In one experiment, we per-
formed growth-interrupt annealing at a substrate temperature of 650◦C on a
(110) GaAs surface for 10 min. Figure 18 shows AFM images of the annealed
surface of a GaAs layer with nominal thickness of 100 nm or 500 MLs grown
on a cleaved edge of a (001) substrate. The GaAs layer was grown without
substrate rotation but aligned along the Ga-flux gradient of 1%/mm, which
forms 1-ML thickness variation in every 200 µm. If the surface roughness
formed during MBE growth is assumed to be proportional to the square root
of the layer thickness, the surface roughness of the 100-nm thick layer would
be about 22 MLs peak-to-peak. However, on the surface annealed at 650◦C,
the surface roughness was almost completely removed. The annealed surface
showed periodic evolution from an atomically flat to 1-ML deep pits with
a period of about 200 µm, but no boat-shaped islands even in the excess
region of GaAs deposition were seen. In addition, the fish-shaped pits were
more enlarged in size and more elongated along the [11̄0] direction than those
observed on the 600◦C annealed surface shown in Fig. 13. These features in-
dicate enhancement of the surface migration of Ga adatoms and thus efficient
surface flattening at higher temperatures.

Though the present experiment of flat-surface formation is performed on
the exact (110) surface prepared by cleavage, one can expect formation of an
atomically flat surface over 10 µm also on (110) polished wafers by applying
the annealing technique, which directly leads to extensive device applica-
tion of the (110) surface. Further improvement of this annealing technique is
desirable.

5 Fabrication of a High-Quality (110) GaAs QW
with Atomically Smooth Interfaces

In this section, we demonstrate fabrication of a 6-nm (110) GaAs QW exactly
30 MLs thick without barrier-well interface roughness using CEO combined
with the growth-interrupt annealing. The QW indeed shows a spatially uni-
form and spectrally sharp PL in micro-PL imaging and spectroscopy [49].
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Fig. 18. AFM images of a (110) GaAs
layer annealed at 650◦C for 10 min. The
(110) GaAs layer was grown on a (110)
cleaved edge of a (001) substrate. The
nominal thickness of the GaAs layer was
100 nm or 500 MLs
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5.1 Preparation of a (110) GaAs QW
with Atomically Smooth Interfaces

The inset in Fig. 19 shows a (110) GaAs QW grown by the CEO method
with growth-interrupt annealing. We first formed, by standard MBE on a
(001) GaAs wafer, a 300-nm GaAs buffer layer, a 6.8-µm thick Al0.29Ga0.71As
barrier layer formed by repeating 20.09 nm Al0.32Ga0.68As layers and 2.55 nm
GaAs healing layers with 15 s growth interruption, and a 3000-nm GaAs cap
layer. On a cleaved (110) edge of this substrate, a 6-nm thick (110) GaAs
layer was grown at a low substrate temperature of 490◦C under a high As4
overpressure by means of the CEO method. To reduce the surface roughness
of the (110) GaAs well layer, growth-interrupt annealing was performed on
the surface of the GaAs layer at an elevated substrate temperature of 600◦C
for 10 min under the As4 molecular flux. To fabricate a QW with atomically
flat interfaces, we overgrew an Al0.33Ga0.67As upper barrier layer on the
annealed top surface of the GaAs QW layer at a substrate temperature of
490◦C. Though the overgrowth thickness was nominally 6 nm on average,
a spatial gradation of thickness of 1%/mm was intentionally introduced by
aligning the surface along the Ga-flux gradient of MBE without substrate
rotation in the same manner as described in the AFM studies on the annealed
surfaces in the previous section.

5.2 Micro-PL of the (110) GaAs QW

Figure 19 shows micro-PL images of the GaAs QW at 4.7 K under uniform ex-
citation in the same top-view geometry as shown in Fig. 13. Strong PL comes
from the 6.8-µm wide region on Al0.29Ga0.71As where the QW was formed.
In the reference QW formed without annealing (denoted as no-annealing),
a PL image was spatially inhomogeneous. This is consistent with the pre-
vious studies on the related structures [23,37,66,67] and again indicates the
existence of a large interface roughness on the top interface of the CEO QW.

On the other hand, in the QW with in situ 600◦C annealing, a spatially
uniform PL image was observed at the integer-30-ML-thick location (denoted
as Integer-ML in Fig. 19), which was also found to extend over several tens
of µm in area. This demonstrates the formation of a 6-nm or 30-MLs GaAs
QW with no monolayer steps or roughness at either AlGaAs interface.

Figure 20 shows the PL spectrum observed at the Integer-ML region un-
der point excitation with a low excitation power of 0.2 nW. For comparison,
the PL spectrum for the (110) QW sample without annealing (no-annealing)
was observed at the same excitation and detection conditions. We observed
a FWHM of 2.1 meV with spectral resolution of 0.9 meV for the annealed
QW. This is much narrower than a FWHM of 7.1 meV observed for the
reference QW without annealing. In addition, the integrated PL intensity of
the annealed QW is almost the same as that of the reference QW as shown
in Fig. 20, which means that there is no degradation of PL efficiency in the
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Fig. 19. Micro-PL images of the GaAs QW at 4.7 K under uniform excitation of
a He-Ne laser at well thickness positions up to +0.7ML obtained via the (110)
surface in the backward scattering geometry. The spatial resolution of the images
is 1 µm. For comparison, a PL image of the GaAs QW without annealing is shown
as no-annealing

annealed QW. This indicates that during long-term annealing defects such
as nonradiative centers or impurities were not introduced into the surface.
The origin of the remaining linewidth of 2.1 meV is now not understood.
We believe that even our annealed QW still contains additional sources of
broadening due, for example, to alloy scattering of the exciton wave function
penetrating into the AlxGa1−xAs barriers where the Al alloy fraction is lo-



Improvement of Interface Quality in CEO GaAs Quantum Wires 71

Fig. 20. Micro-PL spectra at
4.8 K of the (110) GaAs QWs
grown by the CEO method (a)
with and (b) without growth-
interrupt annealing. The exci-
tation power into a spot size
of about 1 µm was as low as
0.2 nW. The energy resolution of
the micro-PL system used here
was 0.9 meV

cally varying and/or interdiffusion of Al and Ga atoms happening at the top
heterointerface of the QW during the overgrowth of the AlxGa1−xAs barrier.

In the other regions of the in situ annealed QW, we see bright PL spots
due to boats at 30.2MLs (+0.2ML in Fig. 19), and dark PL profiles shaped
like fish at 30.55MLs (+0.55ML in Fig. 19). The AFM patterns of atomic
steps observed in Fig. 13 are in fact reproduced in the PL image at each
corresponding position of the fractional-MLs deposition. This confirms that
the bottom interface formed by the cleavage has no atomic steps, and further
that the surface morphology formed on the well layer during annealing and
observed by AFM was conserved at the top interface of the QW as the upper
barrier material was overgrown.

This conservation of the surface morphology at the QW heterointerface
and the resulting formation of the integral-ML-thick QW without interface
roughness is also supported by spatially resolved PL spectroscopy associated
with the spectrally resolved PL imaging. Figure 21 shows PL spectra at
various positions of integer-ML thickness and then as the thickness gradually
increases up to an additional 0.7ML. At Integer-ML, only a single PL peak
(denoted as n) forms as expected for a QW with integer-ML thickness. As
the well thickness is increased by +0.1ML to +0.3ML, emission peaks appear
whose energy separation from the peak n corresponds to a +2- or +3-MLs
difference in well thickness, but a spectral peak from n+1MLs does not. This
is consistent with the formation of the boat-shaped islands of 2- or 3-MLs
height that we observed in the AFM image. For GaAs depositions in excess of
+0.3ML, on the other hand, the peaks n+2 or n+3 suddenly disappear and
a peak corresponding to the n + 1-MLs thickness appears in the PL spectra.
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Fig. 21. PL spectra observed at the cen-
ter of the 6.8-µm wide QW region under
point excitation of a He-Ne laser with a
spot size of 1 µm. The excitation position
was scanned with a step of 100 µm along
the [11̄0] direction

Fig. 22. Integrated and spectrally resolved PL images of the QW and simultane-
ously obtained PL spectra at 4.7 K under uniform excitation at (a) +0.1ML and
(b) +0.55ML thickness locations. The PL images are resolved at PL peak energies
corresponding to the well thickness of n, n + 1, n + 2, and n + 3 MLs
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This corresponds to the elimination of boat-shaped islands and formation of
a large terrace of 1-ML height.

Figure 22 shows spectrally resolved PL images at the (a) +0.1ML and
(b) +0.55ML thickness positions, in which the intensities of the PL peaks
denoted as n, n + 1, n + 2, and n + 3MLs are mapped. At the +0.1ML
thickness position, the PL image is decomposed into bright spots due to
boat-shaped islands at n + 2- and n + 3-MLs PL peaks and a reverse pattern
from the surrounding n-MLs flat region. At the +0.55ML thickness position,
the fish-shaped regions with n-MLs thickness are clearly resolved from the
surrounding n + 1-MLs region.

It is interesting to note that the bright regions of n are smaller in size than
the corresponding dark regions of n + 1 in Fig. 22b. This directly images the
diffusion of QW excitons over the 0.8 µm distance from the higher-energy n-
region image edge of the locally narrow QW of fish-shaped pits to the actual
step edge of the larger lower-energy n + 1 region. Separately, we performed
PL imaging under point excitation on the annealed QW and directly evalu-
ated the diffusion length of excitons from the PL images obtained [71]. The
diffusion length obtained was as large as 1.3 µm at 4 K, and that gradually
increased with the temperature. Such a long-distance path at low temper-
ature is not unreasonable as exciton diffusion is expected to be especially
efficient in QWs with atomically smooth interfaces.

The atomically smooth interface formation investigated here by means of
the CEO and the in situ annealing method is expected to play an essential
role in the realization and future investigation of high-quality quantum wells
and wires with ideal 2D and 1D properties.

6 Fabrication of a High-Quality Single-Quantum-Wire
Laser Structure and its Lasing Properties

In this section, we fabricate unprecedetedly high-quality single-quantum-wire
lasers by the CEO method with growth-interrupt annealing, and demonstrate
stimulated emission from the lasers [72,73].

6.1 Preparation of a Single-T-Wire Laser Structure

Using the CEO method combined with the growth-interrupt annealing tech-
nique mentioned above, we fabricated a single-quantum-wire laser structure
shown in Fig. 23. The T wire consists of a 14-nm thick Al0.07Ga0.93As stem
well and a 6-nm thick GaAs arm well, and it was embedded in the core re-
gion of a T-shaped optical waveguide structure formed by a 500-nm thick
Al0.35Ga0.75As stem layer and a 111-nm thick Al0.10Ga0.90As arm layer [72].
Growth-interrupt annealing was performed for 10 min on the surface of the 6-
nm thick GaAs arm well at a substrate temperature of 600◦C. Laser bars with
an optical cavity length of 500 µm were formed by [11̄0] cleavage from the
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Fig. 23. Schematics of a single-T-
wire laser structure fabricated by
the CEO method with the growth-
interrupt annealing technique. The
size of the T wire is 14 nm × 6 nm.
The T wire was embedded in a T-
shaped optical waveguide

Fig. 24. (a) PL spectrum and
(b) PL images of the T-wire laser
structure measured under uniform
excitation at 5 K. The PL images in
(b) were obtained at each PL peak
position in (a)
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wafer, and the cavity-mirror surfaces were coated with 120-nm and 300-nm
thick gold films with an estimated reflectivity of 97%.

6.2 Spatial Uniformity of the Electronic States in the T Wire

Figure 24 shows a micro-PL spectrum and images of the single-T-wire laser
structure measured from the top of the overgrowth surface under uniform
excitation at 5 K. The PL images were taken at each PL peak selected by a
bandpass filter. The photon energy of the excitation light was 1.691 eV and
the excitation power was 0.16 mW. By comparing the PL images with the
formed T-wire laser structure, we identified peak A as a quantum wire, peaks
B and C as arm wells in the core and cladding region of the optical waveguide,
respectively, and peak D as a stem well. As shown in Fig. 24b, the PL image
of the T wire is spatially uniform over several µm along the wire direction,
which indicates that a high-quality single quantum wire was formed.

Figure 25 shows the spatially resolved micro-PL spectra under point exci-
tation scanned over a length of 25 µm of the wire using 0.5 µm steps at 5 K.
The lower-energy PL peaks are from the wire, and the higher-energy peaks

Fig. 25. Spatially resolved PL spectra
at 5 K scanned along the wire by steps
of 0.5 µm for 25 µm
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are from the stem well. No PL from the arm wells was observed because the
photogenerated carriers in the arm wells quickly flowed into the T wire.

The main PL peak from the wire observed at 1.582 eV originates from the
free excitons, while the small peaks at the lower-energy side of the main peak
observed in the middle of the sample are ascribed to the excitons localized
in MLs-high islands observed on the annealed surface of the arm well in the
fractional GaAs deposition region [48,49]. Both intensity and energy position
of the main PL peak of the T wire are spatially uniform over 20 µm. In
addition, the PL linewidth of the wire is about 1.3 meV, which is about an
order of magnitude narrower than that of the previous T wires fabricated
without the annealing procedure. These micro-PL results also confirm that
the high-quality T-wire laser was formed.

6.3 Lasing from a Single-Quantum-Wire Laser

Stimulated emission from the single-T-wire laser was measured using optical
pumping [72]. Excitation light focused into a filament shape through a set
of cylindrical lenses was uniformly incident onto the T-wire laser waveguide
from the top of the overgrowth surface, and the light emitted from the edge
of the laser cavity was detected.

Figure 26 shows stimulated emission spectra obtained at various excita-
tion powers at 5 K. The photon energy of the excitation light was 1.6455 eV.
Multimode lasing from the wire was observed at an excitation power of
8.3 mW, and then it changed to single-mode lasing at 17 mW. At higher
excitation powers, the single-mode emission peak showed a slight red shift
with mode hopping. The threshold excitation power of the laser emission from
the wire was 5 mW, as shown in Fig. 26b. Single-mode emission was observed
up to 40 K, but only multimode lasing was observed at 60 K. Lasing from
the stem and arm wells was also observed at higher excitation powers of 17
and 260 mW, respectively. It should be noted that the lasing from the wire
was single mode, while that from the stem and arm wells was multimode,
which reflects the narrower gain spectra of the T wire compared to those of
the stem and arm wells. The lower threshold excitation power in the T-wire
laser also supports the narrower gain spectra in the T wire.

The single-mode lasing energy of the wire was 1.577 eV, which was 5 meV
lower than the peak energy (1.582 eV) of the spontaneous emission from the
1D free excitons of the wire shown in Fig. 25, and there was no overlap
between the lasing peak and the 1D free-exciton PL peak. This implies that
the lasing gain occurred in the ground state of the T wire but was not due
to the recombination of free excitons. In micro-PL spectroscopy, a new peak
was observed on a lower-energy side of the free-exciton PL peak at a higher
excitation power. This new peak increased in intensity with the broadening
of its linewidth but the peak showed no energy shift with an increase in the
excitation power, which suggests the formation of an electron–hole plasma
with strong Coulomb interactions [74,75]. The lasing energy of the wire was
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Fig. 26. (a) Stimulated emis-
sion spectra of the single-T-
wire laser with optical pump-
ing and (b) lasing property
of the T-wire laser versus the
pumping power

on the lower-energy side of this broad PL emission and the shift in the lasing
energy of the wire was less than 2 meV, in contrast to a larger energy shift of
5 meV in the stem well. Therefore, we conclude that the gain for lasing in the
quantum-wire laser is due to the strongly Coulomb-correlated electron–hole
plasma [74].

7 Concluding Remarks and Future Perspective

By using a modified CEO method combined with the in situ growth-interrupt
annealing, we successfully controlled surface morphology of the (110) GaAs
layer grown on the cleave and as a result formed an atomically flat surface over
several tens of µm in extent in the integral-ML-thick region. We fabricated
a (110) GaAs QW with atomically smooth heterointerfaces using this tech-
nique and characterized, by means of micro-PL spectroscopy and imaging,
optical and structural interface properties in the QW. We confirmed preser-
vation of the atomically smooth (110) surface formed by in situ annealing
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into the top heterointerface of the QW without any optical and structural
degradation. We also fabricated a high-quality single-T-wire laser structure
and demonstrated lasing from the T wire. Micro-PL spectroscopy revealed
spatial uniformity and high quality of the wire electronic states in the T wire
showing sharp PL with a narrow linewidth of 1.3 meV over 20 µm along the
wire direction. Lasing from the T wire was achieved with optical pumping
at temperatures as high as 60 K, and the origins of gain for lasing in the
quantum wires were discussed [74,76].

Successful fabrication of high-quality quantum wires enables us to eval-
uate novel 1D properties that are hidden behind large structural inhomo-
geneity in the previous quantum wires. Some of them have already been
revealed experimentally. In micro-PL and PL excitation (PLE) spectroscopy
of highly uniform T-wire samples, we observed clearly resolved PLs from the
ground states and excited states of 1D free excitons and the 1D continuum
states [77,78]. It is, for the first time, confirmed experimentally that the sin-
gularity of the 1D free-particle density of states in 1D continuum states is
suppressed due to strong Coulomb interaction effects, which was predicted
theoretically about a decade ago [79,80].

Also, to investigate many-body effects in a 1D electron–hole system in a
quantum wire, we observed spectral evolution of PL from the quantum wire
with electron–hole pair density using micro-PL measurements. The spectral
changes observed indicates that the crossover from a dilute exciton gas to a
dense electron–hole plasma occurs gradually via biexcitons and suggests that
there are strong biexcitonic correlations in the dense electron–hole plasma
in the quantum wire [75]. Many-body effects in a dense 1D electron–hole
system is closely related to the gain mechanism for lasing in the quantum-
wire lasers. Therefore, further studies both experimentally and theoretically
are expected.

Optical response of charged plasma (electron plasma or hole plasma) in
doped quantum wires is another interest since understanding of the intriguing
difference between charged and electron–hole neutral plasmas in the quantum
wires is significantly meaningful from the viewpoint of fundamental physics
in 1D systems. We fabricated an n-type modulation-doped single GaAs T
wire and observed the evolution of PL spectra with electron density [81]. We
observed a clearly resolved 1D charged excitons with large binding energy
of 2.3 meV, and large band-gap renormalization and Fermi-edge singularity
in a 1D electron plasma, which indicates the crucial importance of Coulomb
interaction effects in the doped quantum wire.

From the viewpoint of device application, realization of room-temperature
lasing from the T wire is one of the most important targets. In the single-T-
wire laser fabricated in this work, lasing was achieved at a temperature as
high as 60 K, but not observed at 80 K. In a multiple-T-wire laser structure
containing 20 periods of T wires in the active region, lasing at 110 K was
achieved, but room-temperature lasing from the T-wire electronic states has
not yet been achieved. This is due to the small lateral confinement energy
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of the T wire to the adjacent QWs. Thus, one direction to realize T-wire
devices operating at room temperature is realization of T wires having large
confinement energy by optimizing a T-wire structure and/or using adequate
materials such as InxGa1−xAs [36,82].
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Recombination Dynamics
in InxGa1−xN-Based Nanostructures

Yoichi Kawakami, Akio Kaneta, Kunimichi Omae, Yukio Narukawa, and
Takashi Mukai

1 Introduction

Recent progress in epitaxial growth techniques has achieved the successful
introduction of indium into gallium nitride, leading to the realization of light-
emitting devices based on InxGa1−xN/GaN/AlyGa1−yN heterostructures in
wurtzite crystal phase, such as dazzling violet, blue, green, and amber light-
emitting diodes (LEDs) [1–3], as well as laser diodes (LDs) operated from
ultraviolet (350 nm) to blue (480 nm) spectral regions [4–6]. However, fur-
ther improvement of emission efficiency, reduction in the lasing threshold and
extension of the operatable wavelength range is required to expand the ap-
plication field of such devices. Therefore, it is very important to assess the
carrier/exciton recombination processes, through which positive feedback can
be made not only to the growth conditions but also to the appropriate design
of device structures.

There has been controversy concerning a major role on the modulation of
optical transitions in InxGa1−xN-based semiconductors [7]. One important
effect, as schematically depicted in Fig. 1a, is exciton localization induced
by potential fluctuation because of compositional modulation of In [8–12].
This can be understood as a feature of InxGa1−xN ternary alloys, where the
insoluble tendency of InN is energetically favored in GaN at the growth tem-
peratures [13–16]. Actually, spontaneous formation of In-rich regions on the
nanoscopic scale has been reported by several groups [9,17–21]. In this case,
large Stokes-like shifts between absorption and emission have been attributed
to the exciton/carrier distribution to localized tail states acting as quantum
disks or quantum dots depending on the lateral spatial confinement [22–
26]. It has been claimed that the high quantum efficiency of InxGa1−xN-
based emitters in spite of high threading dislocation density is mostly due to
the large localization of excitons/carriers because the pathway to the non-
radiative recombination centers is prohibited once they are captured in a
small volume [9]. Another important effect is large piezoelectric fields in
InxGa1−xN/GaN quantum wells perpendicular to the (0001)-oriented growth
direction as shown in Fig. 1b, which induces the quantum-confined Stark ef-
fect (QCSE) [27–31], and the Franz-Keldysh effect (FKE) [32]. As described
in the forthcoming section, both effects contribute to the Stokes-like shifts,
and to the localization-like behavior, so that conventional macroscopic optical
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Fig. 1. (a) Potential fluctuation induced by inhomogeneity of indium distribution
within InxGa1−xN QW. (b) Piezoelectric field induced in InxGa1−xN/GaN QW
grown toward (0001) orientation (c-axis)

data do not provide adequate information on the mechanism [33]. Therefore,
photoinduced changes of optical absorption spectra were assessed [34–37] to
determine which effect plays a major role, by employing white-light pump
and probe spectroscopy [38].

A number of reports have recently been appeared on the spatial map-
ping of luminescence in InxGa1−xN/GaN quantum wells by optical micro-
scope [39–41], by cathodoluminescence (CL) [42,43], or by scanning near-
field optical microscopy (SNOM) [44–53]. It is worth noting that such an
SNOM technique is not only useful for the PL mapping, but also applicable
to the electroluminescence (EL) mapping under the current-driving condition
of LEDs [54,55]. Although the spatial resolution of an optical microscope is
typically a few to several hundreds of nanometers that is restricted by diffrac-
tion limit, CL has a much smaller diameter exciting electron beam (e-beam).
However, the spatial resolution is generally much larger that the e-beam di-
ameter not only because incident electrons spread during the penetration
into the sample, but also because generated carriers/excitons diffuse later-
ally before recombining radiatively or nonradiatively. Another drawback of
CL is that both active and cladding layers are photoexcited, while selective
photoexcitation to active layers is achieved in optical excitation by tuning
incident laser wavelength. The SNOM technique has a potential to attain
spatial resolution on the nm scale. Moreover, spatial and temporal dynamics
can be detected by combining with time-resolved spectroscopy [50–52].

In this chapter, material parameters are summarized such as bandgap en-
ergy and alloy broadening of InxGa1−xN, and piezoelectric field in
InxGa1−xN/GaN quantum wells, and then the general transition models are
discussed based on screening of the piezoelectric field, as well as on the local-
ization behavior of excitons/carriers. Finally, detailed results are shown on
SNOM-luminescence mapping in an InxGa1−xN/GaN single-quantum-well
(SQW) structure, by which the physical interpretation was made for the re-
combination mechanism in InxGa1−xN-based nanostructures.
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2 Material Parameters of InxGa1−xN

2.1 Bandgap Energies in InxGa1−xN Alloys

In order to assess the optical transitions in InxGa1−xN-based nanostructures,
it is essential to estimate the bandgap energies (Eg) of InxGa1−xN ternary
alloys, and then take into account the effects of quantum confinement under
an electric field, as well as those of localization induced by fluctuation of
composition or of the well width. However, there have recently been many
papers discussing the exact bandgap energies of InxGa1−xN. This is due to the
difficulty in obtaining high-quality InN crystals caused by the low dissociation
temperature and high vapor pressure of nitrogen. Although InxGa1−xN-based
light emitting devices are in practical use, only a small amount of In up to a
few tens of % was successfully incorporated into gallium nitride with sufficient
quality in current fabrication technology. Moreover, fabricated InxGa1−xN
active layers are highly strained and their layer thicknesses are as small as a
few nm. Therefore, the fundamental bandgap of InN was thought to be about
1.89 eV at room temperature (RT) for a long period, where the value had
been obtained by the optical absorption measurement on polycrystalline InN
grown by a sputtering technique [56]. The bandgap energies of InxGa1−xN
have also been estimated in a similar way, and the most commonly cited
equation was

Eg = 3.42eV(1 − x) + 1.89eVx − bx(1 − x) , (1)

where b denotes the bowing parameter, reported values of which scattered in
the range between 1.0 eV and 3.8 eV [57–59].

However, PL and absorption measurements of high-quality InN epitax-
ial layers grown by metalorganic vapor phase epitaxy (MOVPE) and RF-
molecular beam epitaxy (RF-MBE) have demonstrated that the fundamen-
tal bandgap of InN is about 0.78 eV [60–63], revealing that the appropriate
equation should be

Eg = 3.42eV(1 − x) + 0.78eVx − bx(1 − x) . (2)

InxGa1−xN alloy films with an entire alloy composition have been grown
by RF-MBE at about 550◦C without noticeable phase separation, and b =
2.3 eV [64] was reported by fitting PL and CL peak positions as a function
of x-value, while b = 1.43 eV [65] was claimed by fitting absorption data, as
shown in Fig. 2. Although there still exists, to some extent, the scattering
of the value of b, the difference in this case may be contributed from the
localization effects, where the luminescence peaks are located on the low-
energy side of the absorption edge. Consequently, it has been clarified that
InxGa1−xN alloy semiconductors cover not only extend to the ultraviolet and
full-visible range but also the infrared reaching to the wavelength used for
optical communications [66].
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Fig. 2. Bandgap energies of InxGa1−xN alloys as a function of In content x, calcu-
lated assuming various parameters, (a) Eg of InN= 1.8 eV, b = 1.0 eV [57], (b) Eg

of InN= 0.78 eV, b = 2.3 eV [64], and (c) Eg = 0.77 eV, b = 1.43 eV [65]

2.2 Alloy Broadening Factor in InxGa1−xN Alloys

The effect of disorder in alloy semiconductors can be classified into two cate-
gories, where inhomogeneous broadening is induced by the inevitable nature
inherent to alloys, as well as by compositional modulation. The former takes
place in a random distribution of alloy composition because of the standard
deviation of alloy composition within the exciton Bohr radius. This effect
is significant in widegap semiconductors owing to their small exciton Bohr
radius. The full width at half maximum (FWHM) of an excitonic transi-
tion [∆(x)] in an A1−xBx alloy due to this effect is given by the following
equation [67]:

∆(x) = 2
√

2 ln 2[dEex(x)/dx]
√

x(1 − x)V0(x)/Vex(x) , (3)

if a Gussian line shape is assumed, where Eex(x) is the exciton transition
energy, V0(x) is the volume of elementary cell, and Vex(x) is that of an exciton.
Zimmermann [68] has derived the relevant exciton volume using a statistical
theory expressed by

Vex(x) = 8πr3
B(x) , (4)

where rB(x) denotes the Bohr radius of exciton. The ∆(x) values have been
calculated for InxGa1−xN using rB values of GaN and InN as 2.9 nm and
7.3 nm, respectively. It should be noted here that no experimental data have
been reported for excitonic properties of InN because of the screening of the
Coulomb force between electron and hole induced by the high density of
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Fig. 3. Theoretical FWHM values of excitonic transition in InxGa1−xN ternary
alloys induced by the effect of alloy broadening

residual donors (approximately in the range of 1018 cm−3 to 1020 cm−3) in
current InN layers. Therefore, the rB value of InN has been calculated by

rB = a0εr(
m0

me
+

m0

mh
) , (5)

where a0 and εr are Bohr radius of hydrogen (0.0529 nm) and relative di-
electric constant (εr = 15.3 [69]), and m0, me and mh are free electron mass,
effective mass of electron (me = 0.12 m0 [70]) and effective mass of hole
(mh = 1.56 m0 [71]), respectively. For the x dependence of rB, a linear vari-
ation with x has been assumed.

As shown in Fig. 3, it was found that the FWHM due to this effect is at
most 20 meV.

However, observed PL linewidths are much larger than this value, typi-
cally from several tens of meV to a few hundred meV depending on samples.
This suggests that the compositional modulation, and alloy clustering are
induced in samples grown by current growth techniques.

2.3 Piezoelectric Fields in Strained InxGa1−xN Layers

Unlike other semiconductors with zincblende crystal structures grown to-
ward the (001) orientation, a large piezoelectric field is induced in wurtzite-
structured InxGa1−xN along the c-axis [(0001)-orientation] [27]. This is not
only because of large piezoelectric constants in this direction, but also due
to high biaxial-compressive strain in InxGa1−xN layers coherently grown on
almost unstrained GaN-based layers. The piezoelectric polarization to the
c-axis defined as Pz is given by
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Fig. 4. Band structures as well as wave functions of both electrons and holes
in GaN/InxGa1−xN/GaN having 3-nm QW thickness, for (a) x = 25%, Ez =
2.7 MV/cm, and for (b) x = 50%, Ez = 4.5 MV/cm

Pz = e31εxx + e31εyy + e33εzz , (6)

where e31 and e33 are piezoelectric constants, and εxx, εyy and εzz are strain
elements defined by the following equation using a-axis lattice constants
of GaN (aGaN = 0.3189 nm) and InxGa1−xN (aInGaN = 0.3189(1 − x) +
0.3548x nm), as well as elastic stiffness constants of c11 and c13

εxx = εyy =
aGaN − aInGaN

aGaN
, (7)

εzz = −2c13

c11
εxx . (8)

The internal electric field along the c-axis (Ez) is then given by

Ez = − Pz

εrε0
, (9)

where εr and ε0 are relative dielectric constants of InxGa1−xN and the per-
mittivity of free space, respectively. Although there still exists wide scattering
of reported values of e31, e33, c11 and c13 of both GaN and InN [72], the Ez

value is estimated to be of the order of MV/cm for InxGa1−xN layers with
x = 0.1–0.2 used for active layers of blue-green emitters [73–75].

In Fig. 4, the band structures of GaN/InxGa1−xN/GaN are depicted as-
suming that only InxGa1−xN quantum wells are under compressive strain.
Due to the internal field, the effective bandgaps as well as oscillator strengths
of excitons become much lower than those in the case of flat bands.
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Fig. 5. Potential fluctuation induced by the alloy disorder or by the randomness of
the well width

Fig. 6. Density of states (DOS) in localized band structure. PL spectrum, as well
as observed PL lifetimes [τPL(E)] are plotted schematically

3 General Transition Models

3.1 Localization versus Screening of Piezoelectric Field

Potential fluctuation induces localization of excitons and/or carriers to po-
tential minima in real space. Besides the effect of inevitable alloy broadening,
thermodynamical theory shows that the fluctuation of In composition lead-
ing to local clustering or phase separation is energetically favored considering
the free energy of mixing in InxGa1−xN alloys [13–15]. If In clustering takes
place with a size less than several nanometers, localization centers act as
quantum dots (QDs) [9,17–21]. Such localization is conspicuous even with a
small amount of disorder because of both the small exciton Bohr radius and
large bandgap variation with x-value in InxGa1−xN. The model of exciton lo-
calization due to potential fluctuation, as well as the density of states (DOS)
of the exciton-energy distribution induced by localization are schematically
shown in Fig. 5 and Fig. 6, respectively. The observation of large Stokes shift
between the absorption edge and the PL peak energy may be interpreted as
a result of this effect because radiative recombination takes place at localized
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Fig. 7. TRPL spectra of a 0.1-µm thick In0.08Ga0.92N single epilayer taken at
various time delays (0 ps to 1500 ps) after pulsed photoexcitation at 24 K

Fig. 8. Time-integrated PL (TIPL) spectrum and the PL decay times
[τ(E)] plotted as a function of monitored photon energies taken with a
0.1-µm thick In0.08Ga0.92N single epilayer at 24 K. The best fitting of τ(E) was
made using values of τrad = 440 ps, E0 = 21 meV, and Eme = 3.242 eV
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Fig. 9. Radiative recombination in a quantum well under a piezoelectric field. Just
after pulsed excitation [(a) t = t1], screening of the field is significant due to the large
amount of photogenerated carriers. With increasing time, the effect of screening
becomes less dominant in accordance with the reduction of carrier density, so that
transition energy as well as recombination probability is decreased

tail states, the DOS of which is very small. The recombination dynamics of
localized exciton can be assessed by time-resolved PL (TRPL) spectroscopy.
If the pulsed photoexcitation is made at continuum energy levels, TRPL
peak energies red shift with increasing monitored time after excitation, so
that the PL decay time depends on the monitored photon energy with a
function of τ(E). This is because exciton transition is due not only to ra-
diative and/or nonradiative recombination processes but also to the transfer
process to the localized levels distributed to the lower-energy side [76]. If the
density of localized states is approximated as a single exponential tail with
gE = exp(−E/E0) using parameters for the localization depth as E0, and
if the radiative recombination lifetime (τrad) is constant within the emission
band neglecting nonradiative recombination processes, it is possible to esti-
mate τ(E) by fitting the experimental data with the theoretical equation [76],
so that the density of excitons is expressed as functions of energy (E) and
time (t) after pulsed excitation with n(E, t)

τ(E) =
τrad

1 + exp{(E − Eme)/E0} , (10)

n(E, t) = n0 exp{−t/τ(E)} , (11)

where Eme shows a characteristic energy analogous to mobility edge. Typical
examples of TRPL spectra taken with a 0.1-µm thick In0.08Ga0.92N single
epilayer at 24 K are shown in Fig. 7 and Fig. 8, where localization dynamics
induced by compositional fluctuation have been revealed [77]. Such charac-
teristics have been observed in wide-bandgap ternary alloys, for example,
in CdSxSe1−x [78] and ZnxCd1−xS [79]. However, one has to be careful in
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interpreting the recombination mechanism in InxGa1−xN/GaN QW struc-
tures by means of TRPL because such localization-like behavior can also be
contributed from the QCSE.

As shown in Fig. 9, electron and hole wave functions in InxGa1−xN wells
are spatially separated to opposite directions due to the piezoelectric field,
as described in the previous section [27–30]. This leads not only to the re-
duction of recombination probability of electrons and holes, but also to the
QCSE, where the transition energy is red shifted compared to the case of
flat-band with zero internal electric field. Since the electric field is screened
by carriers either by photoexcitation or by electrical injection, InxGa1−xN-
based LEDs show a blue shift of emission energy with increasing injection
current density. This effect becomes significant for greater well thicknesses
and for higher In mole fractions (x-value). PL lifetime also shows a large well
dependence where it varies from sub-ns to more than a µs if the well width is
increased from 2 nm to 7 nm. Consequently, the PL peak red shifts and the
PL lifetime increases with increasing time after excitaion in accordance with
the reduction of carriers contributing to the screening. It should be noted
that the typical well width of InxGa1−xN-based LEDs and LDs is as small
as 2 to 3 nm in order to make such QCSE as small as possible.

3.2 Photoinduced Change of Optical Density Induced
by Two Major Effects

Two effects, internal electric fields versus potential fluctuation can be sepa-
rated if the photoinduced change of absorption spectra is characterized by
means of pump and probe spectroscopy, by which the transmission spectrum
of the probe beam detected in the presence of the pump beam (T + ∆T ) is
compared with the spectrum without a pump beam (T ) [34–37]. The photoin-
duced change of the transmission [∆T (ω, Iex, td))] depends not only on the
frequency of incident photon (ω) but also on both the photopumping energy
densities (Iex) and time delay between pump and probe beams (td) as shown
in Fig. 10. The photoinduced change of optical density [∆OD(ω, Iex, td)] is
given by the following equation

∆OD = log
(

T

T + ∆T

)
= δαd × 0.434 , (12)

where ∆α(ω, Iex, td) is the photoinduced change of absorption coefficient,
and d is the total thickness of the absorbing layer. Schematics of the band
structures in InxGa1−xN QW under FKE and QCSE, and localization effect
are shown in Fig. 11. Since both effects contribute to the broadening of the
absorption edge, it is difficult to separate the two effects by linear absorption
spectra. However, the modification of such optical density due to injected
carriers is different between the two cases. If the time domain of about 1 ps
to ns order is considered, the internal electric field is reduced by the screening
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Fig. 10. Optical configuration in pump and probe spectroscopy. Time difference
between two pulses can be controlled by changing the optical length difference

Table 1. Various types of optical nonlinearities dependent on time domains by
classifying positive or negative polarity in ∆OD

Time domain Origin of nonlinearity Positive or negative

polarity of ∆OD

0–2 ps Optical Stark effect ∆OD > 0

Nonthermal distribution of carriers ∆OD < 0

Energy relaxation ∆OD < 0

1–10 ps Optical gain ∆OD < 0

OD + ∆OD < 0

1 ps–ns order Band filling of localized states ∆OD < 0

Screening of internal electric fields ∆OD > 0

ns order–µs order Screening by trapped carriers ∆OD > 0

Thermal effect ∆OD > 0

effect case (a). Therefore, the optical density (OD) spectra corresponding to
absorption spectra (as well as to DOS) become sharp, so the feature of ∆OD
is as shown in the figure, where the positive signal is sandwiched between two
negative signals. However, in case (b), only the negative signal is observed
in ∆OD due to the band filling of localized-tail states. Motivated by this
idea, the dynamics of ∆OD was estimated by employing white-light pump-
and-probe spectroscopy to InxGa1−xN/GaN multiple-quantum-well (MQW)
structures. The effects of (a) the screening and (b) the band filling are the
major origins of nonlinear optical density in this time domain, the appli-
cable duration period of which is determined by the carrier recombination
times. The optical Stark effect, nonthermal distribution of carriers, energy
relaxation and optical gain in the faster time-domain, while the persistent
trapped carriers or thermal effects in the slower one can contribute to ∆OD,
as shown in Table 1.



Fig. 11. Schematic band struc-
ture and corresponding OD and
∆OD spectra in InxGa1−xN QW
under (a) FKE and QCSE ef-
fects, and (b) localization effect
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4 Pump and Probe Spectroscopy
on InxGa1−xN Thin Layers and Quantum Wells

The pump and probe spectroscopy depicted in Figs. 12 and 13 was performed
for the measurement of temporal behavior of differential absorption spectra.
The pump beam with wavelength 370 nm, pulse width 150 fs and repetition
rate 1 kHz was formed by passing the output beam from a regenerative am-
plifier (RGA) to an optical parametric amplifier (OPA). The white light used
for the probe beam was generated by focusing part of the output beam from
the RGA on a D2O cell. The pulse width of both pump and probe beam was
150 fs. The delay time of the probe beam with respect to the pump beam was
tuned by changing the position of the retroreflector that could be controlled
by the pulse stage. Since the minimum difference in optical path was 2 µm, a
time resolution down to 6.7 fs was achieved. In order to detect the probe beam
with spatially uniform carrier distribution in the sample, the focus size of the
pump beam (500 µm in diameter) was set to be much larger than that of the
probe beam (200 µm in diameter). Furthermore, the probe beam was perpen-
dicularly polarized with respect to the pump beam, and the transmitted probe
beam polarized in this direction was detected to avoid the scattered compo-
nent of the pump beam. Both pump and probe beams were detected by a
dual photodiode array in conjunction with a 25-cm monochromator. The four
types of samples of InxGa1−xN-based quantum structures used in this study
are shown in Fig. 14. They are composed of, respectively, (a) an In0.1Ga0.9N
single layer (30 nm), (b) In0.1Ga0.9N/GaN (10 nm/10 nm) multiple quantum
wells (MQWs) with 3 periods, (c) In0.1Ga0.9N/GaN (5 nm/10 nm) MQWs
with 6 periods, and (d) In0.1Ga0.9N/GaN (3 nm/10 nm) MQWs with 10 pe-
riods. Although the active layers in each sample differs, the total thickness
of the active layers in each sample is 30 nm. All the active layers are sand-
wiched between GaN layers (0.1 µm) and Al0.1Ga0.9N/GaN (2.5 nm/2.5 nm)
superlattices with 100 periods. All layers are grown on GaN buffer layers
and sapphire substrates under undoped conditions. Since the PL lifetime of
stimulated emission is much shorter than that of the spontaneous one, it was
confirmed by means of TRPL that the appearance of stimulated emission
at about 3.1 eV under a photoexcitation energy density (Iex) above about
10 µJ/cm2, corresponding to the threshold carrier density on the order of
1018 cm−3 for all samples at 10 K.

Figure 15 shows the ∆OD spectra taken at the sample of (a) 30-nm thick
In0.1Ga0.9N single layer at 10 K as a function of time after pumping at 370 nm
(3.350 eV) under (1) Iex = 800 µJ/cm2, and under (2) Iex = 8 µJ/cm2. The
photopumping energy is located below the absorption edge of GaN barrier
layers, so that the selective photoexcitation to the active layer was made.
The OD spectrum taken under weak photoexcitation, as well as PL spectra
under both the same (Iex = 800 µJ/cm2, stimulated emission) and weak
(Iex = 140 nJ/cm2, spontaneous emission) excitation conditions are shown for
reference. In the case of (i) Iex = 800 µJ/cm2, the carrier density just after the
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Fig. 12. Optical apparatus used for the pump and probe spectroscopy

Fig. 13. Picture of beam path and optical component for the pump and probe
spectroscopy

excitation is estimated to be about 1 × 1020 cm−3, a negative signal appears
at the initiation of time in the whole observed energies. However, a positive
signal appears at about 3.2 eV after about 12 ps. These phenomena indicate
that the bleaching due to a high density of carriers dominates the spectra
initially, but the carrier density is rapidly decreased due to the process of
stimulated emission, then photoinduced screening of the internal electric field
plays major role on the photoinduced enhancement of OD. In fact, only this
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Fig. 14. Sample structures for pump and probe
spectroscopy consisting of four types of samples
having different well width, 30 nm, 10 nm, 5 nm
and 3 nm. The total thickness of all InxGa1−xN
active layers was set to 30 nm in order to make
the OD of each sample of comparable value

Fig. 15. Variation of ∆OD spectra taken of a 30-nm thick In0.1Ga0.9N epilayer as
a function of time after pumping at 3.350 eV (370 nm) under (i) Iex = 800 µJ/cm2,
and under (ii) Iex = 140 nJ/cm2. The OD spectrum under weak photoexcitation, as
well as the time-integrated PL (TIPL) spectra under the same and weak excitation
conditions are shown at the bottom of each plot
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Fig. 16. Variation of ∆OD spectra taken of (i) In0.1Ga0.9N/GaN (10 nm/10 nm)
MQWs [sample (b)] and (ii) In0.1Ga0.9N/GaN (5 nm/10 nm) MQWs [sample (c)]
as a function of time after pumping at 3.350 eV (370 nm) underIex = 800 µJ/cm2.
The OD spectra under weak photoexcitation, as well as the TIPL spectra under
the same and weak excitation conditions are shown at the bottom of each plot. For
the sample (c), the PL spectrum under the weak excitation condition was located
at about 2.7 eV that is out of the plotted energy range

positive spectral feature is observed in the whole time range if the pumping
energy density is as low as (ii) Iex = 8 µJ/cm2 where no stimulated emission
was observed. It is noted that the same mechanism is also observed in a GaN
epilayer, where photoinduced enhancement was observed clearly in excitonic
absorption [34].

∆OD spectra taken at samples of (b) In0.1Ga0.9N/GaN (10 nm/10 nm)
MQWs and of (c) In0.1Ga0.9N/GaN (5 nm/10 nm) MQWs at 10 K under
Iex = 800 µJ/cm2 are shown in Fig. 16. Similar results with the sample (a)
were observed for the sample (b) of 10-nm thick In0.1Ga0.9N QW. However,
the positive feature became less dominant for the sample (c) of 5-nm thick
In0.1Ga0.9N QW.

∆OD spectra were taken of the sample (d) In0.1Ga0.9N/GaN (3 nm/1 nm)
MQWs (Fig. 17). It was found that carriers photogenerated at 3.350 eV
rapidly reach the bottom of the density states within the time scale of several
ps. And the important finding is that only a negative signal is observed in the
whole spectra, indicating the importance of the band-filling effect compared
to the effect of the piezoelectric field.
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Fig. 17. Variation of ∆OD spectra taken of In0.1Ga0.9N/GaN (3 nm/10 nm) MQWs
[sample (d)] as a function of time after pumping at 3.350 eV (370 nm) under (i)
Iex = 800 µJ/cm2, and under (ii) Iex = 140 nJ/cm2. The OD spectrum under weak
photoexcitation, as well as the TIPL spectra under the same and weak excitation
conditions are shown at the bottom of each plot

The following features were clarified, summarizing the results of the pump
and probe spectroscopy. In samples (a) and (b), the screening of the inter-
nal electric field has a dominant effect on optical transitions after carrier
generation. The internal electric field reduces the oscillator strength of the
optical transition due to QCSE and FKE. When the photogenerated carri-
ers screen the internal electric field, excitonic absorption is restored. As a
result, photoinduced enhancement of the absorption coefficient is observed.
The internal electric field strength due to piezoelectric polarization was cal-
culated to be 0.45–1.6 MV/cm using the scattered value of the piezoelectric
constants [73,75] as discussed in the previous section. In sample (d), exciton
localization has a dominant effect on optical transitions. The density of local-
ized levels is so small that the DOS is readily occupied by the photogenerated
carriers. As a result, the broad negative signals of ∆OD are observed. The
piezoelectric field dominates over inhomogeneity in samples with layer thick-
ness more than the exciton Bohr radius (3.4 nm) [80,81]. Similar results have
been observed at RT though the carrier density to observe the screening of
piezoelectric fields in ∆OD is reduced compared to that at low temperature,
suggesting that intrinsic carriers activated by thermal energy also contribute
persistently to the partial screening of piezoelectric fields.
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Fig. 18. Three types of optical configuration used for SNOM-PL measurements, (a)
illumination mode (I mode), (b) collection mode (C mode) and (c) illumination–
collection mode (I–C mode)

Fig. 19. Schematic of exciton/carrier generation induced by a local photoexcitation
by fiber tip, and their recombination dynamics based on diffusion, localization,
radiative and nonradiative processes

5 SNOM-Luminescence Mapping Results

5.1 Instrumentation

The SNOM-PL detection has recently been developed as the PL mapping
technique, where the optical access in the near-field regime is made through
the tip of optical fibers having a very small aperture. Optical configurations
in the SNOM-PL technique are schematically illustrated in Fig. 18, where
photoexcitation is made in the near field through an optical fiber and the
PL signal is detected from the far field with an objective lens in (a) illu-
mination mode (I mode), the optical accesses for excitation and detection
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Fig. 20. SNOM-PL detection with (a)
I–C mode, and (b) I mode under po-
tential fluctuation. Spatial resolution
is not affected by the carrier/exciton
diffusion for (a) I–C mode

are opposite to (a) in (b) collection mode (C mode), while both excitation
and detection are in the near field in (c) illumination–collection mode (I–C
mode). In Fig. 19, the dynamics of carriers/excitons are schematically shown
in InxGa1−xN-based layers. Even if they are photogenerated in a very small
area by the tip of the optical fiber, some of them diffuse out of the area, and
are captured by radiative centers, or by nonradiative recombination centers.
The majority of SNOM results for the assessment of InxGa1−xN have ini-
tially been performed in the I mode with an aperture diameter of the optical
fiber of 100 nm to a few hundred nm [44–48,51]. However, it is not possible
by this mode to determine the true size of localization centers because the
spatial resolution is affected by the diffusion process before radiative recom-
bination. This problem can be overcome by means of the I–C mode, where
the resolution is solely limited by the diamter of the aperture formed at the
fiber tip. The difference between I mode and I–C mode in detecting PL can
be understood by taking a look at the probing areas described in Fig. 20.

The SNOM measurements were performed with a NFS-300 near-field
spectrometer developed at JASCO Corp. (Figs. 21 and 22) that is capa-
ble of photoluminescence (PL) mapping with scanning near-field optical mi-
croscopy under I–C mode. Two types of fibers were used in this study;
double-tapered Ge-doped-SiO2 cores with aperture diameter in the range
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Fig. 21. Schematic of the SNOM system composed of SNOM-head, excitation laser
and detection parts, where PL mapping can be performed in both CW and time-
resolved modes

from 30 nm to 150 nm, and single-tapered pure-SiO2 cores with an aperture
diameter of 300 nm. A double-tapered structure is fabricated by a multi-
step etching technique using hydrofluoric-buffered solution, by which high
efficiency of light transmission is achieved compared to that in conventional
single-tapered probes. However, one drawback of this structure is the fluo-
rescence of a Ge-doped SiO2 core that sometimes buries the PL from the
sample in the background level if the signal intensity of PL is not strong
enough. Therefore, single-tapered pure-SiO2 fibers fabricated were used for
detecting TRPL, where a long exposure time was enabled by the elimination
of fluorescence background. Apertures of fiber probes were obtained by ap-
plying the mechanical impact on a suitable surface after evaporating Au at
the apex. The sample–probe separation was controlled by detecting the am-
plitude of a dithered probe. The amplitude of this oscillation was less than
1 nm at the first-order resonance frequency of the probe. This amplitude
was fed back to control the height of the sample PZT [Pb(Zr,Ti)O3] stage.
As a result, the sample–probe separation was regulated to be 10 nm. The
cooling of the samples was performed by flowing cool He gas. The stable
measurement was achieved by flowing an appropriated flux of He gas from
the bottom to the top of the cryostat. An InxGa1−xN-based laser diode emit-
ting at 400 nm (developed at Nichia Corp.) was used as the excitation source
with the continuous wave (CW) condition. An optical power of 1 mW was
coupled to the probe, and about 2 µW was used to illuminate the samples
through the probes of both Ge-doped SiO2 fibers with an aperture diameter



Recombination Dynamics in InxGa1−xN-Based Nanostructures 103

Fig. 22. (a) SNOM-head (whole-view). The position of sample stage is controlled
by PZT in xyz directions. (b) The closed view of the sample stage and the probe.
The separation between the sample and the fiber tip is controlled by monitoring
the friction force using the optical configuration in the figure

of 100 nm and pure-SiO2 cores with an aperture diameter of 300 nm, while
about 0.1 µW was used through Ge-doped SiO2 fibers with an aperture diam-
eter of 30 nm. The PL signal was collected by the probe, and was introduced
into a monochromator in conjunction with a cooled charge-coupled device
(CCD) detector (Roper Scientific, Spec-10:400B/LN). For TRPL measure-
ment, the frequency-doubled mode-locked Al2O3:Ti laser emitting at 400 nm
with the pulse width of 2 ps was used as an excitation source. A streak cam-
era (Hamamatsu Photonics, C5680) was used as a detector. It is noted that
the selective photoexcitation to the InxGa1−xN active layer was achieved for
both measurements. Since the cutoff wavelength of pure-SiO2 fiber is about
1.3 µm, the beam-propagation properties were assessed by measuring pulse
width and spectra before and after passing the fiber of 1-m length. It was
found that the broadening of the pulse width after transmission is as small
as about 10 ps keeping the same wavelength. Therefore, the pure-SiO2 fiber
used in this study is suitable for employing a time-resolved SNOM-PL mea-
surement with time-resolution of about 10 ps.



104 Y. Kawakami et al.

Fig. 23. In0.2Ga0.8N-SQW structure used for the SNOM measurement

Fig. 24. (a) Macroscopic PL of the sample at 18 K taken with the spot diameter
of 100 µm. (b) Macroscopic integrated-PL intensity plotted as a function of inverse
of temperature

5.2 SNOM-PL Mapping at Low Temperature
under Illumination–Collection Mode

The sample (shown in Fig. 23) is grown on sapphire (0002) substrate by
metalorganic chemical vapor deposition (MOCVD), and is composed of a
1.5-µm thick undoped GaN, a 2.3-µm thick n-type GaN:Si, a 3-nm thick
InxGa1−xN-SQW active layer (x ≈ 0.2) and a 5-nm thick undoped GaN
layer. The macroscopic PL peak is located at about 480 nm at 18 K as shown
in Fig. 24a. LO-phonon side bands are associated on the low-energy side of
the main peak. The temperature dependence of the integrated PL-intensity
plotted in Fig. 24b shows that the internal quantum efficiency is nearly unity
below 50 K because of the suppression of a nonradiative recombination pro-
cess, and that it is decreased to about 20% at RT.

Figure 25 shows the PL mapping plotted with PL peak intensity as well
as with PL peak wavelength at 18 K under a photoexcitation power density
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Fig. 25. SNOM-PL image of an In0.2Ga0.8N-SQW structure mapped with (a) PL
peak intensity and with (b) peak wavelength at 18 K under photoexcitation power
density of 100 W/cm2 using a 150-nm aperture fiber-probe

of 100 W/cm2. The scanning was made in the area of 4 × 4 µm2 square with
an interval of 100 nm using a 150-nm aperture fiber-probe in I–C mode. It
was found that the relative PL intensity fluctuates from 1 to 6, and that the
PL peak wavelength is distributed from 470 nm to 490 nm, both of which
consist of island-like structures within the range approximately 0.1 to 1 µm.

A clear correlation was observed between PL intensity and wavelength
as shown Fig. 26, where the areas of strong PL intensity correspond to
those of long PL wavelength (low PL peak energy). The temperature depen-
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Fig. 26. PL peak intensity plotted as a
function of PL peak wavelength from the
data of SNOM-PL mapping in Fig. 25

Fig. 27. (a) SNOM-PL peak intensity
mapping taken with a pure-SiO2 fiber with
a 300-nm aperture at 18 K. (b) PL life-
times plotted as a function of the position
along the bar shown in (a)
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dence of macroscopic PL measurements reveals that the internal quantum
efficiency (ηint) is nearly unity (0.9–1.0) below 100 K. Moreover, atomic force
microscopy (AFM) assessed in situ during the SNOM measurements shows
that the root mean square of surface unevenness is as small as 5.1 nm within
the scanning area of 4 µm square. The PL peak intensity map (Fig. 1a)
shows a relative intensity variation of approximately 1 to 6, corresponding
to the ηint variation of 0.17 to 1.00 if the maximum is 1.00. If nonradiative
recombination alone caused the spatial variation, then the spatially averaged
quantum efficiency is estimated to be 0.41 taking into account the area of
each PL intensity. This value is much smaller than unity, which is the macro-
scopic hint as mentioned above. Therefore, nonradiative recombination alone
cannot explain the results; diffusion of carrers from the low-intensity to the
high-intensity regions must occur.

In order to confirm such a mechanism, TRPL was employed under a
SNOM configuration using a pure-SiO2 fiber-probe with a 300-nm aperture.
Figure 27a shows the PL image mapped with the PL intensity taken under
100 W/cm2 with CW condition. TRPL was detected across the white bar
drawn in the figure with an interval of 180 nm. The photoexcitation energy
density is 14 µJ/cm2 in this case. PL lifetimes of the emission peak are plotted
as a function of position as shown in Fig. 27b. It was found that the short
lifetimes (2.5 to 4.8 ns) rapidly jump to the longer ones (7.6 to 9.0 ns) at
about 0.75 µm. This position corresponds to the boundary where the PL
intensity changes from approximately 2.5 to 5.0. The PL lifetime (τPL) is
expressed by the equation

1
τPL

=
1

τrad
+

1
τnonrad

+
1

τtrans
, (13)

where τrad and τnonrad are radiative and nonradiative lifetimes, respectively,
and τtrans represents the transfer lifetime to lower-lying energy levels arising
from the localization phenomena. As mentioned above, the term 1/τnonrad
can be neglected at this temperature. Therefore, the shorter lifetimes in the
weak PL regions are contributed from the transfer lifetimes. This can be in-
terpreted because PL peak energies of such regions are smaller than other
surrounding regions. Figures 28a and b show the TIPL, as well as TRPL spec-
tra as a function of time after pulsed excitation monitored at positions A and
B, respectively. The TLPL spectrum in Fig. 28a is composed of two emission
bands peaking at 458 nm and 464 nm. The main PL peak at 458 nm decays
with a lifetime of 3.8 ns, while the longer peak at 464 nm does so with 6.4 ns.
However, for Fig. 28b, the PL band is composed of a single emission peak
associated with one LO-phonon replica, and decays with 8.4 ns. Two emission
bands with different PL lifetimes in Fig. 28a are probably because the two
regions having different energy levels are included within the probing aper-
ture, and the excitons and/or carriers generated at the shorter-wavelength
region transfer to the longer-wavelength regions distributed within or out of
the aperture. This model is schematically illustrated in Fig. 29.
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Fig. 28. Time-integrated PL (TIPL) spectra and time-resolved PL (TRPL) spectra
as a function of time after pulsed excitation measured at position A (a) and position
B (b) at 18 K

Fig. 29. Model of exciton/carrier localiza-
tion induced by potential fluctuation, and
the correlation with the PL intensity mon-
itored by a fiber probe
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Fig. 30. SNOM-PL mapped with PL peak wavelength under (a) Iex = 100 W/cm2,
(b) 1 kW/cm2 and (c) 10 kW/cm2. Shift of PL peak wavelength between (d)
Iex = 100 W/cm2 and 1 kW/cm2, and between (e) Iex = 1 kW/cm2 and 10 kW/cm2

SNOM-PL spectra were taken at various excitation power density [(a)
100 W/cm2, (b) 1 kW/cm2 and (c) 10 kW/cm2] under CW excitation con-
ditions as shown in Fig. 30. Each monitored position made the shift toward
shorter wavelength with increasing excitation power density. However, such
a shift is not uniformly distributed as revealed from the mapping of wave-
length shifts between Iex = 100 W/cm2 and 1 kW/cm2 (Fig. 30d), as well as
between between Iex = 1.0 kW/cm2 and 10 kW/cm2 (Fig. 30e). Figure 31
shows the PL peak energies plotted as a function of excitation power for two
data points, namely for the weak-intensity region [averaged 100 data point
for a value smaller than 25% of PL maximum intensity (Imax)], and for the
strong intensity regions (averaged 100 data point for value larger than 75%
of Imax). The PL peak energy increases with increasing excitation power in
both the strong-intensity region and the weak-intensity region. However, the
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Fig. 31. (a) PL peak wavelength and corresponding peak energy plotted as a func-
tion of excitation power density at 18 K, averaged at strong and weak PL-intensity
regions. The error bar shows the distribution of the data. (b) The model of band
filling in the strong PL-intensity region where the degree of localization is higher
than that in the weak PL-intensity region

blue shift is larger in the strong-intensity region than in the weak-intensity
region for the same excitation intensity. These results can be explained by
assuming that the density of states of localized levels decreases with increas-
ing localization depth. Hence, more filling of the exciton and/or carrier band
occurs in the strong-intensity region than in the weak-intensity region for the
same excitation intensity. An additional factor that probably contributes to
the blue shift in both regions is screening of the piezoelectric field induced
by the photogenerated excitons and/or carriers.

In order to assess the spatial distribution of localization centers, CW-PL
was performed using a 30-nm aperture probe taken at different positions,
as shown in Fig. 32. Several peaks are clearly observed by using a small
aperture size fiber-probe and the spectral shape is different. The minimum
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Fig. 32. SNOM-PL spectra taken at each position with a 30-nm aperture under
Iex = 100 W/cm2 at 18 K

PL linewidth is about 11.6 meV. This value is one fifth of the macroscopic PL
linewidth (about 60 meV), indicating that the macroscopic linewidth is not
mainly contributed from the homogeneous broadening due to the interaction
with phonons, but from the inhomogeneous one due to potential fluctuations.
It is likely that inhomogeneous broadening due to potential fluctuations is
still a significant effect on a 30-nm length scale. Therefore, an even smaller
PL linewidth might be observed with a smaller aperture size. SNOM-PL
intensity mapping was performed with a 30-nm aperture under I–C mode as
shown in Fig. 33. The images are taken with four different emission energies,
ranging from a low-energy emission component to a high-energy one [(a)
2.560 eV, (b) 2.597 eV, (c) 2.615 eV and (d) 2.636 eV]. The size of the
island-like area is in the range from 20 nm to 70 nm for (a) to (c), showing
a close distribution. However, islands tend to be connected if the monitored
photon energy is the highest (Fig. 33d). It should be noted that such fine
structures disappear if monitored under I mode, and that exciton/carrier
localization from the high-energy region to the low-energy one was observed
by a time-resolved SNOM-PL measurement. Therefore, it is probable that
excitons and/or carriers are deeply localized, but each localization center is
so closely distributed that they are mobile within the layer as illustrated by
the schematic model in Fig. 34. Atomic force microscopy (AFM) assessed
in situ during the SNOM measurements shows that the root mean square of
surface unevenness is about 3 nm, and that no correlation was found between
the unevenness and PL intensity within the scanning area of 250-nm squares.
The origin of localization centers thus may be mainly due to the fluctuation
of In composition rather than the interface roughness. Cross-sectional TEM
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Fig. 33. SNOM-PL intensity images monitored at each emission energy with a
30-nm aperture at 18 K

Fig. 34. Recombination model of localized excitons for interpreting SNOM data
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observation shows the formation of In-rich QD-like regions about 3 nm in
diameter [9]. In compositions in QW and in QDs are estimated to be 20%
and 30%, respectively by energy-dispersive X-ray (EDX) microanalysis. The
transition energy was thus calculated as a function of the inplane quantum
box size assuming that Lx = Ly. The result shows that the variation of
Lx(= Ly) in the range 2.2 to 3 nm leads to the distribution of localization
depth from 70 to 170 meV.

5.3 Multimode SNOM at RT

As described in the previous section, high spatial resolution limited only by
the size of aperture is achieved in SNOM-PL mapping under I–C mode. How-
ever, a disadvantage of the I–C mode is that it is impossible to detect the
signal of radiative recombinations in regions not directly under the probe,
while it is possible by a far-field detector of an I -mode configuration. There-
fore, it is difficult for the I–C mode to attribute the weak PL intensity to
nonradiative recombination processes, or to diffusion of photogenerated car-
riers outside the detection area of the fiber probe. This is critical for the
assessment at RT because the former processes cannot be neglected, unlike
at cryogenic temperature.

Focusing on these optical configuration problems, and understanding the
importance of collecting different signal simultaneously, we set up a SNOM

Fig. 35. Schematic of the experimental setup of a multimode SNOM system capable
of working simultaneously in I mode and I–C mode to perform CW-PL and TRPL
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Fig. 36. Near-field PL intensity images taken under (a) I–C mode and (b) I mode
probed with double-tapered fiber (aperture size is 200 nm in diameter) at RT. The
excitation power density is 2.5 kW/cm2 under CW condition. The scanning area is
4 µm × 4 µm with a probing step of 100 nm

apparatus able to operate simultaneously in multiple modes, I and I–C modes,
and designed to probe TRPL spectra in both modes. The multiple measure-
ments taken in this way allowed us to map the PL signal at high resolution
and we could clearly discriminate radiative and nonradiative processes in
InxGa1−xN-based semiconductors. A schematic experimental setup of this
multimode-SNOM is shown in Fig. 35, where optical access in an I mode
was made from the backside of the sample through a cube-type half-mirror
because the sapphire substrate is transparent within the whole spectral range
of the detection.
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Fig. 37. Cross-sectional profile of PL in-
tensity along the white bar in Fig. 36.(a)
The dashed line represents the best-fit re-
sult using a Gaussian shape

Figure 36 shows the spatial distribution of PL peak intensity under I–C
mode and I mode taken in the same scanning area. The excitation power den-
sity is 2.5 kW/cm2 under CW condition. The mean carriers/excitons density
for this excitation condition is estimated to be about 5×1017 cm−3, consider-
ing the absorption coefficient and the light source energy if uniform distribu-
tion of carriers is assumed. The scanning area is 4 µm × 4 µm with an interval
of 100 nm using a 200-nm aperture fiber-probe. Concerning the I–C mode
measurement, it was found that the relative PL intensity fluctuates from 0.2
to 2.8, consisting of island-like structures within the range of approximately
0.3–1 µm. On the other hand, in I -mode measurement, the relative PL inten-
sity fluctuates from 0.1 to 2.7, a value larger than that of the I–C mode. Also
at RT, there is no correlation with the PL intensity signal and surface rough-
ness of 3.1 nm within the scanning area of 4 µm2. It is very interesting to
find that differences between two images are observed, where the presence of
weak PL-intensity domains (indicated by the arrows) that appear as high PL
intensity in I mode. Other regions appear to remain unchanged if observed
in the two modes. This behavior can be explained as follows. In the case of
domains that appear of weak PL intensity in I–C mode and turn out as high
PL intensity in I mode, we believe that the carrier and/or exciton that are
photogenerated directly under the optical aperture of the probe, are diffused
and localized to out of the I–C -mode probing area, but they remain in the
range of the far-field I -mode detector. In the other case, the photogenerated
carriers and/or excitons do not migrate further than the I–C -mode probing
region, they are presumably captured at nonradiative recombination centers,
the origin of which is related to microscopic dislocations and/or to nanoscopic
point defects. The cross-sectional profile of PL intensity along the white line
in Fig. 36a is plotted in Fig. 37. The FWHM of a Gaussian fitting result of
this profile is 550 nm, therefore, the diffusion length to the radiative recom-
bination center is at least 275 nm in this area. It is noted that a similar value
is reported by Cherns et al. [82] as the diffusion length in InxGa1−xN-based
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Fig. 38. Time-integrated near-field PL intensity images taken under I–C mode
(a) and (b) I mode probed with single tapered fiber (pure SiO2, aperture size is
200 nm in diameter) at RT. The excitation energy density is 5.5 µJ/cm2 under
pulsed condition. The scanning area is 3.7 µm×3.7 µm with probing step of 100 nm

quantum structures using the CL spectroscopy technique though this method
is used for the characterization of the diffusion to nonradiative recombination
centers originating from threading dislocations.

Figure 38a and b shows the PL intensity mapped in I–C mode and I
mode, respectively. TRPL was detected at 4 different positions that are indi-
cated with the letter (a)–(d). These positions were selected as representative
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Fig. 39. Decay spectra under (a) I mode, and (b) I–C mode monitored at spec-
trally integrated PL intensity (all) and at each PL-energy components. Decay curves
are fitted with double-exponential curves, but the fast components of lifetimes are
shown in the figure

of 4 different behaviors, (a); relatively weak PL intensity in the I–C mode
while stronger PL intensity in I mode, (b); opposite situation to the case
of (a), (c); relatively strong PL intensity in both modes and (d); relatively
weak PL intensity in both modes. The photoexcitation energy density is
5.5 µJ/cm2 corresponding to an estimated carrier/exciton density just after
photoexcitation to be about 1 × 1018 cm−3. It was found that the PL life-
times (τPL) under the I–C mode are always shorter than those in I mode.
The difference is significant for the data at (a), where τPL values of spec-
trally integrated PL intensity are 0.541 ns and 1.553 ns, for the I–C mode
and I mode, respectively, as shown in Fig. 39, both of which are fast com-
ponents in double-exponential fitting. This assumption is valid because the
faster components are dominant comparing to the slower ones, and is neces-
sary to make a simple discussion as described below. The PL lifetime in the
I–C mode (τPL−I−C) is

1
τPL−I−C

=
1

τrad
+

1
τnonrad

+
1

τtr−out
, (14)

where τrad and τnonrad are radiative and nonradiative lifetimes, respectively,
and τtr−out represents the lifetime of carrier transfer from the area directly
under the tip aperture (within the I–C mode probing range, I -mode and I–
C -mode detection are both possible) to the external region (in this case only
I -mode detection is possible). Since the PL signal is detected in the far-field
configuration under I mode, the term 1/τtr−out can be neglected; the PL
lifetime under I mode (τPL−I) is expressed by

1
τPL−I

=
1

τrad
+

1
τnonrad

. (15)
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Table 2. Internal quantum efficiency and PL-lifetime in each mode monitored at
4 different positions

Position II−Cmode II−mode ηint τPL−I−C (ns) τPL−I (ns)

a Weak Strong 21.1 0.541 1.55

b Strong Weak 15.0 0.673 0.67

c Strong Strong 22.6 0.564 0.568

d Weak Weak 9.0 0.552 0.677

It should be noted that this treatment is based on the first-order assumption,
where radiative lifetimes as well as nonradiative recombination times in the I
mode are averaged to be same as those in the I–C mode. More detailed anal-
ysis taking into account the difference in radiative/nonradiative lifetimes is
in progress. The TIPL intensity mapped under I mode (Fig. 38b) represents
the spatial distribution of internal quantum efficiency. According to the tem-
perature dependence of macroscopic PL measurements it was found that the
internal quantum efficiency of this sample is nearly unity (more than 90%) at
temperatures less than 50 K. Consequently, the distribution of PL intensities
from 0.1 to 2.7 at RT corresponds to ηint values ranging from 3.4% to 22.7%.
Since the ηint value is expressed by

ηint =
τnonrad

τrad + τnonrad
, (16)

all recombination lifetimes can be calculated using the experimental data as
shown in Table 3. It is evident that the shorter lifetime of τPL−I probed at
position (a) is due to a small τtr−out = 0.83 ns term. This transfer process
is probably caused by exciton/carrier localization centers that are local po-
tential minima distributed in the proximity of the tip, but outside of the
I–C -mode probing range. This idea is confirmed by examining the time inte-
gration of the PL peaks, in the case of position (a) the time-integrated peak
is located at 464.2 nm (2.670 eV) under I–C mode, while it is at 461.9 nm
(2.683 eV) under I mode, as shown in Fig. 40.

In the point indicated with (b), relatively weak PL intensity in I mode
is caused by a transfer process to nonradiative recombination centers dis-
tributed in the region external to the I–C probing, as is indicated by the
small τnonrad = 0.79 ns. Concerning the point in (c), the strong PL intensi-
ties in both modes are due to radiative recombinations that mainly take place
within the aperture, as shown by a large value of τtr−out = 87.1 ns. Moreover,
in the position (d), a weak PL intensity in both modes is due to the large
density of nonradiative recombination centers distributed within and outside
of the aperture range.

Recombination processes probed at (a)–(d) within inplane potential fluc-
tuations are schematically illustrated in Figs. 41a–d. Based on the dynamics
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Table 3. Recombination lifetimes at each position obtained by the calculation of
experimental data

Position τtr−out (ns) τrad (ns) τnon−rad (ns)

a 0.83 7.35 1.97

b 4.18 4.49 0.79

c 87.1 2.50 0.73

d 3.00 7.44 0.74

Fig. 40. Time-integrated PL (TIPL) spectra as well as time-resolved PL (TRPL)
spectra monitored under (a) I mode and under (b) I–C mode. Lifetimes in the
figure are experimental decay times monitored at each emission energy shown by
dotted lines

described above, the transfer, radiative and nonradiative processes taking
place are represented in the scheme of Fig. 42. Radiative and nonradiative
recombination centers are present all over the sample. However, their densities
are inhomogeneous. Higher density of radiative recombination domains act as
attractive centers for photogenerated excitons/carriers. The potential energy
was estimated by PL peak mapping that we performed separately; in Fig. 42
the dotted lines represent regions where the potential energy is higher. These
high-energy lines form a potential ridge that presumably would suppress the
carrier/exciton diffusion, creating the carrier dynamics we observed.
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Fig. 41. Schematics of recombination model probed at positions of (a), (b), (c),
and (d)
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Fig. 42. Schematics of the different carrier dynamics as observed in Fig. 38 with
its four studied positions of (a), (b), (c), and (d)

6 Conclusion

Materials parameters, such as bandgap energies, piezoelectric constants and
alloy broadening have been summarized for InxGa1−xN alloys, the general
model of optical transitions has been described in InxGa1−xN/GaN QW
structures taking into account two major effects of localization and screening
of piezoelectric fields.

The In0.1Ga0.9N well-width dependence on transient absorption revealed
that the screening of internal electric fields plays an important role in the
photoinduced change of absorption spectra in wider wells of 30 nm, 10 nm.
However, this effect was less dominant for the well width of 5 nm, and was
not detectable for the well width of 3 nm, resulting in the observation of
photobleaching of localized tail states.

PL mapping with SNOM has revealed the dense distribution of island-like
localized structures, the size of which ranges from 20 nm to 70 nm in a 3-nm
thick In0.2Ga0.8N SQW structure emitting in the blue spectral region. More-
over, local diffusion, radiative and nonradiative processes have been identified
at RT in this structure, by employing multimode SNOM where TRPL data
are taken by both I–C mode and I mode. It was found that the probed area
could be classified into four different regions whose dominating processes are
1) radiative recombination within a probing aperture, 2) nonradiative recom-
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bination within an aperture, 3) diffusion of photogenerated excitons/carriers
out of an aperture resulting in localized luminescence and 4) the same diffu-
sion process as 3), but resulting in nonradiative recombination.

We believe our experimental technique can be a powerful tool for any
nanophotonic materials because of an applicability to study carrier/exciton
dynamics where spatial and temporal dynamics have to be taken into account.
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Quantum Theory of Radiation in Optical Near
Field Based on Quantization of Evanescent
Electromagnetic Waves Using Detector Mode

Tetsuya Inoue and Hirokazu Hori

1 Introduction

After the rapid development of scanning near-field optical microscopes, near-
field optics and the related techniques have been extended to manipulation
and fabrication of nanometer-sized devices and, at present, have become an
indispensable field of study in mesoscopic physics and nanotechnology with
optical fields [1]. In contrast to the rapid progress in experimental works,
there still remain a number of basic problems in the theoretical treatment
of optical near fields. This is because it involves the difficult problem of
electromagnetic interactions in its explicit form, which is still one of the most
challenging problems of modern physics after the developments of quantum
electrodynamics.

In this chapter, we investigate a theoretical treatment of optical near-field
interactions based on the angular-spectrum representation of scattered fields
developed for half-space problems [2] and field quantization based on the de-
tector modes [3]. The purpose of the optical near-field theory developed in
this work is not to calculate the optical fields consistent with the environ-
mental material excitation but to evaluate the processes of excitation transfer
and dissipation in subwavelength-sized material systems so as to provide the
basis to develop optoelectronic devices that exhibit characteristic functions in
optical near field. Strictly speaking, an optical near-field problem corresponds
to an approximation of the optical problem where the whole system involves
optical and electronic interactions between a number of optical and electronic
components including optical sources and sinks. However, we can find a well-
established meaning of its own even in a local subsystem of subwavelength
size, provided that the optical interactions relevant to the function of the local
subsystem have a characteristic property that is qualitatively different from
those of the entire optical system except for the local subsystem considered.
One of the purposes of the optical near-field theory is to provide a criterion to
identify whether the local subsystem is separable or inseparable in its func-
tion from the entire optical system. In doing this, we should be careful about
the energy transfer and dissipation that characterize the function of both the
local and entire optical systems [4].

The study of the energy dissipation through the electromagnetic field
is also very important in the theoretical description of nanometer-sized elec-
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tronic devices. These problems manifest themselves in Coulomb blockade and
light emission associated with electron tunneling in scanning tunneling mi-
croscopes, as well as the optical radiation from quantum dots and molecules
under the electromagnetic influence of the environmental system such as a
substrate. In particular, for the problem of radiation associated with electron
tunneling, we do not yet have any fully developed theory for the lack of the
well-established basis to treat electromagnetic fields and electronic behaviors
on an equal footing.

In this chapter we will develop the theoretical treatments of optical near
fields and optical near-field interactions with all these issues into our scope. To
this end we will study the half-space problems based on the angular-spectrum
representation of scattered fields, where we can make clear the energy trans-
fer between interacting objects separated by an assumed planar boundary
on which the electromagnetic energy transport is evaluated in terms of the
Poynting vector. This implies that even in the optical near-field problems one
can introduce a clear definition of optical source and sink, which provides the
basis to investigate the signal transport and associated dissipation in general
nano-optics devices.

Theoretical treatments of the light-scattering problems in half-space pro-
vide us with the basis of understanding, description, and evaluation of optical
near-field phenomena and investigation of its applications to nano-optics de-
vices, such as optical near-field microscopes and optoelectronic devices of
nanometer size. Studies of the radiation processes in half-space are also the
foundation of optical manipulation and optical control of electronic systems
of nanometer size that compose nano-optics devices and exert function in the
complex material environments. Furthermore, the optical near-field interac-
tions between nanometer-sized objects, such as molecules, quantum dots, and
quantum wires, play an important role in the process of excitation transfer
or information transport in the electronic devices of nanometer size. In this
chapter, we will investigate the basic description of half-space scattering prob-
lems of optical fields, the quantum theory of radiation in the optical near-field
regime, and the nature of optical near-field interactions as the foundation of
nanometer-sized optoelectronic devices.

1.1 Half-Space Problems and Angular-Spectrum Representation

The scattering processes of optical waves in half-space involve a number of
interesting phenomena that have been investigated extensively and are still
issues of great interest in relation to optical near-field interactions and nano-
optics devices. In general, an optical half-space problem is considered under
a system with a planar dielectric boundary, where an incidence of homoge-
neous plane waves from the higher refractive index side with an angle beyond
the critical angle of total internal reflection produces evanescent waves in the
lower-index side [5]. The evanescent wave is the most remarkable manifes-
tation of optical near field that propagates parallel to the boundary surface
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exhibiting an exponential decay in the direction normal to the surface. Since
the energy flux associated with the evanescent wave vanishes in the direction
normal to the surface, the incident optical energy can not be transmitted into
the other half-space and is totally reflected back to the dielectric medium of
the source side. On the other hand, when a homogeneous plane wave is inci-
dent on the planar dielectric boundary from the lower refractive index side,
the homogeneous wave is transmitted into the higher-index side at a prop-
agation direction within the critical angle of total internal reflection. What
is remarkable takes place when an evanescent wave is incident on the planar
dielectric boundary from the half-space of lower refractive index; a homo-
geneous wave is transmitted into the higher-index side with a propagation
direction out of the critical angle of total internal reflection. This process of
excitation transfer via evanescent waves is the fundamental process of opti-
cal near-field interactions. One piece of the experimental evidence is given
by the observation of radiation from an oscillating electric point dipole, such
as an excited atom, placed in a subwavelength vicinity of a planar dielectric
surface, where optical waves are excited in the dielectric medium regardless
of the propagation direction within or out of the critical angle. The radia-
tion field from the electric dipole involves both homogeneous and evanescent
waves, when it is expanded in terms of the wavevector parallel to the bound-
ary surface, so that the observed propagating waves in the directions out of
the critical angle of total internal reflection can be attributed to the excitation
transfer via evanescent waves. One of the remarkable features of this process is
that the optical near-field interaction involves the additional paths of optical
radiation into the medium that enhances the radiative decay of the oscillating
dipole compared with that in free space. In the process of the optical near-
field interaction, the conservation law holds for the pseudomomentum of the
evanescent wave corresponding to the wavevector parallel to the boundary
surface. In the near-field regime, the angular spectrum of the scattered field
involves evanescent waves with wavevectors along the surface much larger
than that of optical waves in free space. This results in the ultrahigh resolu-
tion of optical near-field microscopes and ultrahigh spatial controllability of
optical near-field manipulation of subwavelength-sized matter.

As we have discussed above, the angular-spectrum representation provides
us with the useful basis to study the optical near-field problems based on the
half-space system. In this chapter, we will develop the theoretical study of the
optical near-field interactions of excited electric and magnetic multipoles with
evanescent waves based on an angular-spectrum representation of radiation
fields [6]. We will show that the optical near-field interaction corresponding
to the coupling to the evanescent waves can be evaluated in terms of the
Poynting vectors corresponding to an overlap integral of evanescent waves
over a planar surface lying between the interacting objects.



130 T. Inoue and H. Hori

1.2 Quantization of Evanescent Electromagnetic Fields
and Radiative Decay in Optical Near Field

The enhancement of radiation in optical near fields discussed in the above cor-
responds to a so-called cavity quantum electrodynamics (cavity QED) effect,
which is a general term for enhancement and suppression of photon emission
of excited electronic systems, such as atoms, molecules, and quantum dots,
near matter studied on the basis of quantum theory of radiation [1,7–11].
The important issues are enhancement or reduction of spontaneous emission
and the associated level shift of the radiating system due to variations of
the environmental electromagnetic mode and to multiple interactions via the
scattered electromagnetic field. Recently, these effects are utilized in control-
ling the motion and radiative properties of atoms and molecules especially
by using high-Q optical resonators [12–15]. Cavity QED phenomena in a
broad sense arise also in optical near-field regimes, or in optical near-field
interactions of a radiating system with matter lying in its subwavelength
vicinity. Extensive studies have been made on the radiation properties of
atoms and molecules near a material surface [16–18] and also on the applica-
tions for atom manipulation [19–21]. Further interest in the near-field regime
lies in photon-emission characteristics of mesoscopic electronic systems, such
as quantum dots and wires, fabricated on a substrate and also in its obser-
vation process by means of optical near-field microscopy and spectroscopy.
One can expect several interesting effects in the near-field regime that reflect
the features of optical near field as an effective field or a coupled mode of
electromagnetic field with matter. That is, the dispersion relations and po-
larization characteristics of optical near field deviate from those of photons
in vacuum. Although an optical near-field interaction, in general, sustains a
relatively short period compared with those with high-Q cavities it still ex-
erts a considerable effect because of the high field intensity of the spatially
localized field. For further study in this direction, it is important to develop
the quantum-mechanical treatment of optical near field.

In a full quantum treatment of radiation of the atom or molecule, it is
necessary to quantize the electromagnetic fields in half-space. The quanti-
zation of electromagnetic fields in half-space carried out by Carniglia and
Mandel introduced the so-called triplet mode [22]. The triplet mode is de-
scribed by a set of incident, reflected, and transmitted waves connected via
Fresnel relations at the planar boundary under consideration. The complete
set of triplet modes involved the evanescent photon. The triplet mode in-
volving single incident wave serves as a convenient basis for the theoretical
treatment of photon-absorption processes near a dielectric surface, where a
single light source placed in far field may be assumed in a practical setup. In
contrast, in accounting for the photon-emission processes near the boundary,
the triplet mode should be related to a correlation measurement of photons
by using two photodetectors coupled to each of the outgoing waves involved
in the triplet. On the other hand, when we study photon-emission processes
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near a dielectric surface, we usually consider a practical setup with a photon-
counting scheme by using an independent photodetector placed in each of
the half-spaces separated by the boundary, so that we may consider a single
outgoing wave as the final state of the radiation process. In this case, the
so-called detector-mode function including a single outgoing wave serves as
the convenient basis for theoretical analysis.

The radiative decay rate of atomic excitation has been studied both exper-
imentally and theoretically for atomic and molecular dipoles put near a planar
dielectric surface [10,23–25]. According to Fermi’s golden rule the probability
of a quantum-mechanical transition depends both on the transition matrix
element and the density of the final state. The source of our interest in the
cavity-QED problems lies in the controllability of the final-state density es-
pecially for the electromagnetic mode involved in the radiative transition
considered. That is, the electromagnetic final state depends strongly on the
scheme of our experiment. Therefore, in a practical analysis of experimental
cavity-QED results, we should consider sources and sinks of photons as the
reservoir being implemented outside of the photonic system (i.e., far-field ob-
servation), each of which couples to one of the incident and outgoing wave
components belonging to the photonic mode under consideration.

In our context of radiation study, these are classified approximately into
two categories: single-photon counting measurements and photon-correlation
measurements. In the former only one of the photodetectors exclusively de-
tects the single photon, but in the latter signals from several pairs of pho-
todetectors exhibit correlation features reflecting coherence of radiation. In
any case, the quantum-electrodynamic processes are evaluated in terms of
external sources coupling to incident waves and external detectors coupling
to outgoing waves being placed outside the isolated quantum system under
consideration. Therefore, a careful consideration is required also on the role
of sources and detectors for the practical near-field optical measurements
concerned with both excitation and interaction of the local mode or its ob-
servation in far field, so that the entire process considered here exhibits the
nature of an open system. Depending on our experimental schemes, we can
select a convenient set of basis functions in describing the electromagnetic
mode. Here, it is noted that, for the study of level shift of a radiative system,
the important process lies rather in a closed system of multiple interactions
between the radiative system and the environmental electromagnetic field.

1.3 Detector-Mode Description for Radiation Problem

In this chapter, we will study the field quantization based on the detector
mode as the basis for theoretical analysis of the photon-emission process
in optical near field [26]. We consider the radiative decay rate due to the
electric dipole transition near a planar dielectric surface based on the novel
2nd quantization formalism developed on the basis of the detector mode. This
gives us a straightforward evaluation of radiative decay rate in terms of the
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final-state density of photonic modes and provides a clear understanding of
the meaning of detector mode as well as about the correspondence between
classical and quantum descriptions of electric-dipole radiations of a two-level
system in the near-field regime. The interaction between the atomic dipole
and the evanescent photon corresponds to the tunneling process of energy
flux due to the coupling to evanescent waves.

Reviewing the related works, a classical treatment of this problem for the
magnetic and electric dipoles in half-space has been reported by Lukosz and
Kunz [23–25], in which the boundary-value problem is solved using a com-
bination of single-component magnetic and electric Hertz vectors to provide
the total light emission intensity per unit time using Poynting’s theorem. A
semiclassical evaluation has been given by Wylie and Sipe for electric dipole
radiation near a planar boundary based on general quantum-electrodynamic
linear response theory [11,27]. We derive the full quantum treatment of elec-
tric quadrupole radiation near the planar boundary.

In this chapter, we also study the radiative decay rate due to the electric
and magnetic multipole transition of arbitrary order near a planar dielectric
surface, using the detector-mode functions. The optical near-field interaction
process between the planar boundary and the atomic multipole transition is
important, because this process corresponds to the light-scattering problem
of an object with arbitrary shape [7,28,29].

1.4 Outline

Here, we present the outline of this chapter.
In Sect. 2, we present a brief review of the classical theory of dipole

radiation in free space to introduce notations and basic formulations used in
this chapter, where the nature of optical near fields is discussed in comparison
with the asymptotic forms in the far-field regime. In order to evaluate the
radiation decay rate of an oscillating dipole, the total radiation power is
evaluated in terms of the Poynting vector.

In Sect. 3, we introduce the angular-spectrum representation of electro-
magnetic fields and calculate the total radiation power per second from an
oscillating electric dipole. The angular-spectrum representation of scattered
fields corresponds to a momentum-space expansion in a series of plane waves
with complex wave number, which provides the convenient basis for half-space
problems. In fact, one can separate near-field components with short penetra-
tion depth from propagating waves mediating long-ranged interaction. One
can also study optical near-field interactions in terms of momentum conser-
vation parallel to the boundary plane as well as of energy transfer through
the boundary plane.

In Sect. 4, we study the classical theory of radiative decay of an oscillating
electric dipole moment near a planar dielectric surface. We introduce a gen-
eral treatment of half-space problems and discuss the fundamental processes
involved in half-space problems, where the scattering processes are classified
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into three charactaristic categories, one of which is discussed in terms of ex-
citation tunneling via evanescent waves. Then we will proceed to theoretical
evaluation of radiative decay of an oscillating electric dipole on the basis of
the angular-spectrum representation.

In Sect. 5, we study the field quantization based on the detector mode
as the basis of a theoretical analysis of the photon-emission process in op-
tical near field. The detector-mode-based theory gives us a straightforward
evaluation of radiative decay rate in terms of the final-state density of the
photonic mode and provides a clear understanding of the meaning of the
detector mode as well as the correspondence between classical and quantum
descriptions of electric and magnetic multipoles radiations of a two-level sys-
tem in the near-field regime. We also study how the spontaneous-emission
probability depends on the atomic excited state.

In Sect. 6, we extend our study to quantum optical theory of multipole
radiation in optical near fields based on the detector mode and show that the
multipole radiations are strongly enhanced in optical near field. The study
of optical multipole radiation in near field provides an important basis in
considerations of nanometer-sized electronic devices in terms of optical near-
field interactions.

In Sect. 7, we introduce the tunneling picture of optical near-field interac-
tions based on the calculation of the Poynting vector of scattered fields, us-
ing the angular-spectrum representation of electromagnetic fields. It is shown
that the energy transfer of the tunneling regime takes place only through the
overlap integral of evanescent waves with the same penetration depth and
pseudomomentum involved in the angular spectra of scattered fields of inter-
acting objects. We will clarify the role of dissipation processes that actually
determine the transport of electromagnetic excitation.

2 Classical Theory of Radiation from an Oscillating
Electric Dipole in Free Space

In this section, we will present a brief review of the classical theory of ra-
diation from an oscillating point dipole in free space (vacuum) to introduce
notations and basic formulations used in the following sections of this chapter.
The nature of optical near fields is discussed in comparison with the asymp-
totic forms of the dipole fields in the far-field regime. In order to evaluate
the radiation decay rate of an oscillating dipole associated with single-photon
emission, we calculate the total radiation power of the dipole fields in terms
of the Poynting vector.

2.1 Dipole Radiation in Free Space

We will consider the radiation from an oscillating electric dipole moment
d(r, t) with frequency K distributed in an infinitesimal spatial domain D
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Fig. 1. Coordinate system employed: Light source is placed in a finite domain D,
and radiation fields are evaluated at an observation point P

in vacumm with the coordinate system shown in Fig. 1. Throughout this
chapter, we employ the unit in which the light velocity is taken to be unity,
c = 1. We introduce the complex amplitude of the electric dipole, d(r), as

d(r, t) = d(r) exp(−iKt) + d∗(r) exp(+iKt) , (1)

where d(r) is taken as a nonzero value in D, and zero outside D.
We consider vector potential A(0)(r, t) and scalar potential Φ(0)(r, t) of

monochromatic radiation fields and introduce complex amplitudes A(0)(r)
and Φ(0)(r) for positive-frequency Fourier components with frequency K.
The complex amplitudes satisfy the Maxwell’s equations

(∇2 + K2)A(0)(r) =
iK
ε0

d(r) , (2)

(∇2 + K2)Φ(0)(r) = − 1
ε0

ρ(r) , (3)

in Lorentz gauge

∇ · A(0)(r) − iKΦ(0)(r) = 0 , (4)

where the charge density, ρ(r), results from the distribution of the dipole
as ρ(r) = −∇ · d(r). The complex amplitudes A(0)(r) and Φ(0)(r) outside
the domain D are represented in terms of the (free-space) Green’s function
defined by(∇2 + K2)G(r, r′) = δ(r − r′) , (5)

as

A(0)(r) =
iK
ε0

∫
d3r′G(r, r′)d(r′) , (6)

Φ(0)(r) =
1
ε0

∫
d3r′∇ [G(r, r′)] · d(r′) . (7)
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Here, we have employed the relations ρ(r) = −∇ · d(r) and ∇′G(r, r′) =
−∇G(r, r′). The explicit form of G is given by

G(r, r′) = − iK
4π

h
(1)
0 (K|r − r′|) , (8)

with the zeroth-order spherical Hankel function of the first kind,

h
(1)
0 (Kr) =

1
iKr

exp(iKr) . (9)

It is noted that when ∇ operates on an arbitrary scalar function χ(r), i.e.,
χ(r) depends only on the argument r in the spherical coordinates (r, θ, φ),
one can use the relation,

∇χ(r) = r̂
d
dr

χ(r) . (10)

We can utilize the following recursion relation for spherical Hankel functions;

h
(1)
�+1(ρ) = − d

dρ
h

(1)
� (ρ) +

�

ρ
h

(1)
� (ρ) = −ρ� d

dρ

(
h

(1)
� (ρ)
ρ�

)
. (11)

Substituting (8) into (6) and (7) with (10) and (11), we obtain the explicit
forms of the complex amplitudes as

A(0)(r) =
(

K2

4πε0

)∫
d3r′h(1)

0 (Kr0)d(r′) , (12)

Φ(0)(r) =
(

iK2

4πε0

)∫
d3r′h(1)

1 (Kr0)r̂0 · d(r′) , (13)

where we have introduced the directional unit vector r̂0 = r0/r0 correspond-
ing to r0 = r − r′.

The complex amplitudes of electric and magnetic fields, E(0)(r) and
B(0)(r), are given, respectively, by

E(0)(r) = iKA(0)(r) − ∇Φ(0)(r) , (14)
B(0)(r) = ∇ × A(0)(r) . (15)

Substituting (12) and (13) into (14) and (15) and using (10) and (11), we
obtain the explicit forms of electromagnetic amplitudes of electric dipole ra-
diation as follows;

E(0)(r) =
(

iK3

4πε0

)∫
d3r′

s

{
−1

3

[
d̃(r′

s) − 3(r̂0 · d̃(r′
s))r̂0

]
h

(1)
2 (Kr0)

+
2
3
d̃(r′

s)h
(1)
0 (Kr0)

}
, (16)

B(0)(r) =
(−K3

4πε0

)∫
d3r′

sh
(1)
1 (Kr0)r̂0 × d̃(r′

s) . (17)
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Here, we have utilized the following variation of the recursion relation;

h
(1)
�−1(ρ) =

d
dρ

h
(1)
� (ρ) +

� + 1
ρ

h
(1)
� (ρ) . (18)

We introduce r = rs + R and r′ = r′
s + R, where R indicates the position

vector of a point in D. The integration with respect to d3r′ has been converted
to that with respect to d3r′

s, and we have written d̃(r′
s) = d(r′

s + R), and
r0 = r − r′ = rs − r′

s.
In order to evaluate the radiation amplitudes from an oscillating point

dipole placed at R, we can replace the dipole distribution by

d̃(r′
s) = dδ(r′

s) (19)

with delta function δ(r′
s). Then, we obtain the complex electromagnetic am-

plitudes for the monochromatic electric dipole radiation as

E(0)(r)

=
(

iK3

4πε0

){
−1

3
[d − 3(r̂0 · d)r̂0] h

(1)
2 (Kr0) +

2
3
dh

(1)
0 (Kr0)

}
, (20)

B(0)(r) =
(−K3

4πε0

)
h

(1)
1 (Kr0)r̂0 × d , (21)

where r0 = r − R.
In the conventional treatment of dipole radiation, an observation is as-

sumed to be made by using a photodetector placed in the far-field region.
In such a case where the far-field condition, (Kr0 � 1), holds, the asymp-
totic forms of E(0)(r) and B(0)(r) are available for evaluation of radiation
intensity. The asymptotic forms of the spherical Hankel functions for large
argument,

h
(1)
� (ρ) ∼ 1

ρ
exp{i[ρ − (� + 1)

π

2
]} for ρ � 1 ,

provide the dipole radiation fields in the far-field regime, Kr0 � 1, as

E(0)(r) ∼
(

K2

4πε0

)
[d − (r̂0 · d)r̂0]

exp(iKr0)
r0

, (22)

B(0)(r) ∼
(

K2

4πε0

)
(r̂0 × d)

exp(iKr0)
r0

. (23)

These asymptotic forms correspond to ordinary spherical waves.
On the other hand, when an observation is made near the point dipole, the

near-field condition, Kr0 � 1, leads to other asymptotic forms of E(0)(r) and
B(0)(r) that are useful for understanding the nature of optical phenomena
of the near-field regime. For small arguments ρ � 1, the �-th-order spher-
ical Bessel function j�(ρ) and Neumann function n�(ρ) are approximated,
respectively, by
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j�(ρ) ∼ ρ�

(2� + 1)!!
, n�(ρ) ∼ − (2� − 1)!!

ρ�+1 for ρ � 1 .

Applying these to the spherical Hankel function, h
(1)
� (ρ) = j�(ρ) + in�(ρ),

the dipole radiation fields in the near-field regime, Kr0 � 1, are obtained as
follows;

E(0)(r) ∼
(

iK3

4πε0

){
[d − 3(r̂0 · d)r̂0]

i
K3r3

0
+

2
3
d

}
, (24)

B(0)(r) ∼
(−K3

4πε0

)
(r̂0 × d)

(
Kr0

3
− i

K2r2
0

)
. (25)

These results clearly show that one observes an extremely large field ampli-
tude in optical near field of an oscillating point dipole. Here, it is noted that
both the real and imaginary components involved in (24) and (25) play an
important role in optical near-field interactions. As we will see later, products
of the complex amplitudes, such as E(0) · E(0)∗ and E(0) × B(0)∗, contribute
to power density and energy flow in the optical near-field regime.

2.2 Total Radiation Intensity in Free Space

The electromagnetic energy flux is given in terms of the Poynting vector
defined by

P (r, t) = ε0E(r, t) × B(r, t) , (26)

where E(r, t) and B(r, t) are electric and magnetic fields, respectively, and
the unit ε0µ0 = 1 (c = 1) is employed. The temporal average of the total
radiation power per second, I, from the oscillating electric dipole is given
as the temporal average of the outgoing Poynting vector through a closed
surface ∂D enclosing the source in the domain D:

I =
∮

∂D

〈P (r, t)〉 · r̂0dσ , (27)

where dσ is an infinitesimal area on ∂D and r̂0 is its unit normal vector (see
Fig. 2).

The temporal average of the Poynting vector 〈P (r, t)〉 is represented in
terms of the complex amplitudes of dipole fields, E(r) and B(r), as

〈P (r, t)〉 = 2ε0
e {E(r) × B∗(r)} . (28)

For the case of the point dipole, it is convenient to take ∂D as a sphere
of radius r0 centered at the dipole. Employing polar coordinates (θ, φ) for
representation of the unit vector r̂0,

r̂0 = (sin θ cos φ, sin θ sin φ, cos θ) , (29)
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Fig. 2. The total radiation power per second, I, from an oscillating electric dipole
is evaluated by integration of the temporal average of the Poynting vector outgo-
ing through a closed surface ∂D enclosing the source in the domain D. dσ is the
infinitesimal area on ∂D and n̂0 is the corresponding unit normal vector

where dσ = r2
0 sin θdθdφ, we obtain the total radiation power per second as

I(0) = 2ε0r
2
0

∫ π

0
sin θdθ

∫ 2π

0
dφ 
e

{
E(0)(r) × B(0)∗(r)

}
· r̂0 . (30)

Substituting (20) and (21) into (30), we obtain the total radiation power
per second as

I(0) =
(

K4

8π2ε0

)∫ π

0
sin θdθ

∫ 2π

0
dφ

[|d|2 − (d∗ · r̂0)(r̂0 · d)
]

, (31)

where the following relation is utilized;

1
3
�m

{[
2h

(1)
0 (ρ) − h

(1)
2 (ρ)

]
h

(1)∗
1 (ρ)

}
= �m

{
∂h

(1)
0 (ρ)
∂ρ

h
(1)∗
0 (ρ)

}
, (32)

which is derived from the recursion relations in (11) and (18). The radiation
power I(0) derived from E(0)(r) and B(0)(r) is independent of the distance
r0 between the point dipole and the observation point. It is confirmed that
the same results can be obtained by using the asymptotic forms given in (22)
and (23) for the far-field condition, as well as (24) and (25) for the near-field
regime. Taking the dipole orientation in the z-axis, for further convenience,

d = |d| êz . (33)

The result is rewritten as

I(0) =
(

K4|d|2
8π2ε0

)∫ π

0
sin θdθ

∫ 2π

0
dφ

(
1 − cos2 θ

)
=

K4|d|2
3πε0

, (34)
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which is, as expected, independent of the direction of the electric dipole d
due to spatial isotropy.

Here we proceed to the semiclassical theory of electric dipole radiation
and consider the probability Γ of an electronic transition in the optical source
between quantum-mechanical states |ϕi〉 and |ϕf 〉 resulting in single-photon
emission. Then, in order to evaluate the transition probability Γ , we can
replace the classical electric dipole moment in (34) by the corresponding sum
of the dipole transition matrix elements, dfi = 〈ϕf |d |ϕi〉 over all the possible
final electronic states of the transition as

|d|2 →
∑

f

|dfi|2 .

The total radiation power per second, I(0), corresponding to the single-
photon emission is then translated to the probability of photon emission Γ (0)

when it is normalized by the photon energy �K as Γ (0) = I(0)/(�K), with
photon energy as

Γ (0) =
(

K3

3π�ε0

)∑
f

|dfi|2 . (35)

We will later compare this result with those in half-space problems and in-
vestigate the modification of radiation properties due to the presence of a
material surface nearby an oscillating electric dipole.

3 Classical Theory of Radiation Based
on Angular-Spectrum Representation

In this section, we will study the angular-spectrum representation of scat-
tered electromagnetic fields, which is very useful for description of opti-
cal near-field problems. Angular-spectrum representation corresponds to a
momentum-space expansion of arbitrary scattered fields with respect to an
assumed planar boundary in a series of plane waves with complex wave num-
ber. Therefore, it provides one of the most convenient bases for half-space
problems that we encounter in near-field optics. The imaginary part of the
wave number represents an exponential decay of the wave function in the
corresponding direction that is normal to the assumed boundary plane. Such
decaying plane waves are referred to as evanescent waves. Therefore, one can
separate clearly near-field components with short penetration depth from
propagating waves mediating long-ranged interaction. One can also study
optical near-field interactions in terms of momentum conservation parallel to
the boundary plane as well as of energy transfer through the boundary plane.
These properties are, in general, the most important ones in the considera-
tions of resolution and sensitivity related to optical near-field microscopy. In
this study, we will focus on radiation properties of optically excited electronic
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Fig. 3. Scattered and assumed planar boundaries as the basis of the angular-
spectrum representation of scattered optical fields. The source of scattered fields
lies in the domain D, and the right half-space separated by the planar boundary is
referred to as R+ and left half-space as R−

system, in which angular-spectrum representation provides a number of ad-
vantageous properties related to descriptions of short penetration depth and
pseudomomentum conservation in optical near-field interactions.

In the following, we introduce the angular-spectrum representation of elec-
tromagnetic fields and calculate the total radiation power per second from
an oscillating electric dipole based on the angular-spectrum representation of
electromagnetic fields.

3.1 Angular-Spectrum Representation

We consider an electromagnetic scattering problem with a pair of planar
boundaries, regardless of whether the boundary planes correspond to real
boundaries formed by different material media or these are just assumed. We
assume that the source of scattered fields lies in the domain D, and the right
half-space separated by the planar boundary is referred to as R+ (ZR < z),
and left half-space as R− (z < ZL). It is noted that the observation point of
scattered fields lies in z > z′ in R+, and z < z′ in R−.

The angular-spectrum representation of scattered electromagnetic fields is
obtained from that of outgoing scalar spherical wave h

(1)
0 (K|r−r′|), given by

h
(1)
0 (K|r − r′|) =

1
2π

∫ ∫ +∞

−∞
dsxdsy

1
sz

exp
[
iKŝ(±) · (r − r′)

]
, (36)

where ŝ(±) stands for unit wavevector with Cartesian components

ŝ(±) = (sx, sy,±sz) , (37)

which satisfies the dispersion relation of optical wave, s2
x + s2

y + s2
z = 1, and

produces the solid angle dsxdsy/sz in the direction of the unit vector ŝ(±)

(see Fig. 4).
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1
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Fig. 4. The solid angle dΩ(ŝ(±)). Coordinate system corresponding to that em-
ployed for angular-spectrum representation of outgoing spherical waves. For real
values of sz, ŝ(±) = (sin α cos β, sin α sin β, ± cos α) indicates the unit wavevec-
tor of the plane wave involved in the angular spectrum. Infinitesimal solid an-
gle corresponds to the indicated area on the unit circle satisfies the relation
dΩ(ŝ(±)) cos α = dsxdsy, so that it is described as dΩ(ŝ(±)) = dsxdsy/sz

The sx and sy are always real, but sz are either real or pure imaginary
corresponding, respectively, to homogeneous wave or evanescent wave. With
s‖ =

√
s2

x + s2
y, sz is represented by

sz =

⎧⎪⎪⎨
⎪⎪⎩

√
1 − s2

‖ for 0 ≤ s‖ < 1 ,

i
√

s2
‖ − 1 for 1 ≤ s‖ < +∞ .

(38)

One should take the unit wavevector ŝ(+) for z > z′, and ŝ(−) for z < z′. For
real values of sz, exp

[
iKŝ(±) · (r − r′)

]
represents a homogeneous outgoing

plane wave from a point r′ on the boundary plane. On the other hand, for pure
imaginary values of sz, exp [∓K|sz| · z] exp

[
iKŝ‖ · (r‖ − r′

‖)
]

represents an
evanescent wave propagating parallel to the boundary plane showing an ex-
ponential decay with increase in distance from the boundary. In other words,
as is widely recognized, far-field behavior and near-field behavior of scattered
fields are dominated, respectively, by homogeneous plane waves and evanes-
cent waves involved in the angular-spectrum representation of the fields.

Figure 5 shows the sx–sy cross section of the dispersion relation, (s2
x +

s2
y + s2

z = 1). The projections of wavevector, ŝ‖ lying inside and outside the
unit circle correspond, respectively, to homogeneous and evanescent waves.
Figures 6a and b show the cross section of the dispersion relation in the com-
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Fig. 5. The integration area corresponds to sx and sy. The inside of unit sphere
(0 ≤ s‖ < 1) corresponds to the homogeneous waves. The outside of unit sphere
(1 ≤ s‖ < +∞) corresponds to the evanescent waves

plex sz plane, where the circle with 0 ≤ s‖ < 1, therefore, with real colatitude
α, corresponds to homogeneous waves with real values of sz, and the hyper-
bola with 1 ≤ s‖ < +∞, therefore, with complex colatitude α, represents
evanescent waves with pure imaginary values of sz. The complex argument
of the integration involved in the angular-spectrum representation sweeps the
entire surface of the dispersion relation. It should be noted that, for the case
of an optical point source, the amplitudes of wave components involved in the
angular-spectrum representation, or the angular spectrum of scattered fields,
depends on the distance between the point source and the assumed boundary
plane. In the near-field regime, according to the decrease in the distance, the
amplitudes of evanescent waves with larger s‖ and shorter penetration depth
increase in the angular spectrum. This is the most significant property of
near-field observations of electromagnetic radiation.

3.2 Angular-Spectrum Representation
of Scattered Electromagnetic Fields

For the complex amplitudes of vector and scalar potentials corresponding to
dipole radiation, the angular-spectrum representation is derived in each of
the half-spaces R± by substituting (36) into (6) and (7);

A(0)(r)

=
(

K2

8π2ε0

)∫ ∫ +∞

−∞
dsxdsy

1
sz

d̃(Kŝ(±)) exp
[
iKŝ(±) · (r − R)

]
, (39)
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Fig. 6. (a) The curve corresponds to the real part of the z-element of ŝ(+), �e{sz}.
The curve meets the circle with radius 1 for the homogeneous mode 0 ≤ s‖ < 1.
(b) The curve corresponds to the imaginal part of the z-element of ŝ(+), �m{sz}.
The curve meets the hyperbolic curve for the evanescent mode 1 ≤ s‖ < +∞

Φ(0)(r)

=
(

K2

8π2ε0

)∫ ∫ +∞

−∞
dsxdsy

× 1
sz

[
ŝ(±) · d̃(Kŝ(±))

]
exp

[
iKŝ(±) · (r − R)

]
. (40)

We have introduced r′ = r′
s + R, where R stands for the position vector

of a point in D, and d̃(Kŝ(±)) indicates the Fourier spectrum of d̃(r′
s) =

d(r′
s + R) defined by

d̃(Kŝ(±)) =
∫

d3r′
s exp

(
−iKŝ(±) · r′

s

)
d̃(r′

s) . (41)

The unit wavevector ŝ(+) should be taken for the obsevation at a point in
R+, and ŝ(−) in R−.
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Substituting (39) and (40) into (14) and (15), we obtain the angular-
spectrum representation of complex amplitudes, E(0) and B(0), as follows,

E(0)(r) =
(

iK3

8π2ε0

)∫ ∫ +∞

−∞
dsxdsy

1
sz

×
{

d̃(Kŝ(±)) −
[
ŝ(±) · d̃(Kŝ(±))

]
ŝ(±)

}
exp

[
iKŝ(±) · (r − R)

]
, (42)

B(0)(r) =
(

iK3

8π2ε0

)∫ ∫ +∞

−∞
dsxdsy

1
sz

×
[
ŝ(±) × d̃(Kŝ(±))

]
exp

[
iKŝ(±) · (r − R)

]
. (43)

Here, we restrict ourselves to considering a point dipole placed at R as
described in (19) and reduce (41), using (19), into the following forms;

E(0)(r) =
(

iK3

8π2ε0

)∫ ∫ +∞

−∞
dsxdsy

1
sz

×
[
d −

(
ŝ(±) · d

)
ŝ(±)

]
exp

[
iKŝ(±) · (r − R)

]
, (44)

B(0)(r) =
(

iK3

8π2ε0

)∫ ∫ +∞

−∞
dsxdsy

1
sz

×
(
ŝ(±) × d

)
exp

[
iKŝ(±) · (r − R)

]
. (45)

It is convenient to introduce a set of polarization vectors ε(ŝ(±), 1) and
ε(ŝ(±), 2) with respect to the unit wavevector ŝ(±) defined, respectively, by

ε̂(ŝ(±), 1) = ε̂ , (46)

ε̂(ŝ(±), 2) = −ŝ(±) × ε̂ . (47)

Here, ε̂ is a real unit vector lying in the z = 0 plane orthogonal to the unit
wavevector ŝ(±). The label µ in ε̂(ŝ(±), µ) specifies the state of polarization
so that µ = 1 and 2 corresponds, respectively, to TE and TM waves. For
example, when we consider a set of orthogonal unit vectors (ês, êα, êβ) as the
basis of spherical coordinates and take ŝ(+) as ês, the polarization vectors
ε̂(ŝ(+), 1) and ε̂(ŝ(+), 2) correspond, respectively, to êβ and êα. Figure 7
shows how we define polarizations with respect to the unit wavevector ŝ(+).

With the Cartesian coordinates shown in Fig. 7, TE- and TM-polarization
vectors are represented, respectively, by

ε̂(ŝ(±), 1) = (−sy

s‖
,
sx

s‖
, 0) , (48)

ε̂(ŝ(±), 2) = (±szsx

s‖
,±sysz

s‖
,−s‖) . (49)
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Fig. 7. The polarization vectors, ε̂(ŝ(+), 1) and ε̂(ŝ(+), 2), corresponding, respec-
tively, to TE and TM waves, defined with respect to the unit wavevector ŝ(+)

The TE-polarization vector ε̂(ŝ(±), 1) is always a real unit vector, since it
does not involve the complex component of wavevector sz. On the other
hand, ε̂(ŝ(±), 2) is a real unit vector for 0 ≤ s‖ < 1 and a complex vector for
1 < s‖ ≤ +∞. The unit wavevector and the polarization vectors satisfy the
following orthogonality relations;

ε̂(ŝ(±), µ) · ε̂(ŝ(±), µ′) = δµµ′ , (50)

ε̂(ŝ(±), µ) · ŝ(±) = 0 , (51)

where µ and µ′ take values 1 and 2. Regarding these orthogonality relations,
we can expand the electric dipole moment d as

d = ŝ(±)
(
ŝ(±) · d

)
+

2∑
µ=1

ε̂(ŝ(±), µ)
[
ε̂(ŝ(±), µ) · d

]
. (52)

This transforms (44) and (45) into the following forms;

E(0)(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

×
[
ε̂(ŝ(±), µ) · d

]
ε̂(ŝ(±), µ) exp

[
iKŝ(±) · (r − R)

]
, (53)

B(0)(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

×(−1)µ
[
ε̂(ŝ(±), µ) · d

]
ε̂(ŝ(±), µ̄) exp

[
iKŝ(±) · (r − R)

]
, (54)

where µ̄ stands for the interchanged suffix µ, i.e., µ̄ = 2 for µ = 1, and vice
versa.
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3.3 Angular Spectrum of Dipole Radiation Fields
in Optical Near-Field Regime

Here, it is especially instructive to investigate the angular spectrum of the op-
tical field due to electric-dipole radiation in the optical near-field regime. The
dipole field invloves both homogeneous and evanescent waves in its angular
spectrum. When the angular-spectrum representation is made with respect
to an assumed boundary plane placed at a subwavelength distance z0 from
the electric dipole, the angular spectrum involves evanescent waves of large
amplitude. This implies that the optical near-field interactions of the elec-
tric dipole with a material object placed at the distance z0 are dominated
by interactions via evanescent waves corresponding to the large amplitude
components in the angular spectrum. We will actually evaluate the angular
spectrum of dipole radiation fields in order to see the shape and magnitude of
the angular spectrum depending on the distance z0. This provides the basic
understanding of the high resolution achieved in optical near-field microscopy
as well as the large pseudomomentum exchange taking place in optical near-
field interactions.

The electric field E(0) from an oscillating electric dipole can be expanded
in terms of a spherical basis as

E(0)(r) =
+1∑

m=−1

(−1)mE
(0)
−m(r)ê+m , (55)

where the expansion coeffcients, E
(0)
−m, are defined by

E
(0)
−m(r) = ê−m · E(0)(r) . (56)

We consider that the electric dipole at R is oriented in the z direction as
d = dê0 and the electric field of radiation is observed at a point r = R+z0ê0
with z0 the distance of the dipole and the observation point. For the dipole
oriented in the z direction the nonzero coefficient of the angular-spectrum
representation is given by

E
(0)
0 (R + z0ê0) =

(
iK3d

4πε0

)∫ 1

0
dsz

(
1 − s2

z

)
exp (iρ0sz)

+
(

K3d

4πε0

)∫ +∞

0
dξz

(
1 + ξ2

z

)
exp (−ρ0ξz) for 0 < z0 , (57)

where the integration with respect to dsx and dsy is converted to that to dsz

and dβ under the relations; sx =
√

1 − s2
z cos β and sy =

√
1 − s2

z sin β. We
denote the normalized distance ρ0 = Kz0.
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Fig. 8. The angular spectrum of evanescent waves for E
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When we consider electric dipoles described by d = dê±1, the nonzero
expansion coeffcients are those given by

E
(0)
∓1(R + z0ê0) =

(
iK3d

4πε0

)∫ 1

0
dsz

−1
2

(
1 + s2

z

)
exp (iρ0sz)

+
(

K3d

4πε0

)∫ +∞

0
dξz

1
2
(
ξ2
z − 1

)
exp (−ρ0ξz) for 0 < z0 . (58)

Each of the first terms in (57) and (58) represents the angular spectrum
corresponding to homogeneous waves. The second terms are attributed to
evanescent waves. Figure 8 shows the numerical example of the angular spec-
trum calculated for E

(0)
0 (R + z0ê0) normalized by the factor K3d/(4πε0).

Since we consider the near-field regime ρ0 = Kz0 � 1, only the dominant
parts of the angular spectra corresponding to evanescent waves are shown
as the function of the normalized spatial frequency ξ = −isz. It is clearly
seen that the angular spectra take their maxima at the spatial frequencies
corresponding to ∼ 1/ρ0 and have spectral width ∼ 2/ρ0. These results pro-
vide a very useful criterion to identify which spatial-frequency components
are dominating the optical near-field process under consideration.
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Fig. 9. Radiation power per second from an oscillating electric dipole is evaluated
for a closed surface enclosing the source. By taking the height and depth of the
enclosure in the x and y directions to be infinity, the total radiation power per
second from the source is calculated as a surface integration of the Poynting vector
on ∂D+ and ∂D−

3.4 Evaluation of Radiation Based
on Angular-Spectrum Representation

In order to evaluate the radiation power per second from an oscillating electric
dipole, we consider a closed surface ∂D enclosing the source. When there is
no dissipation inside ∂D, the decrease in electromagnetic energy per second
involved in ∂D is equivalent to the surface integration of the Poynting vector
on the enclosure surface. We consider ∂D being composed of rectangular
surfaces including xy-planes ∂D+ and ∂D−, as shown in Fig. 9. By taking
the height and depth of the enclosure to be infinity for finite width, the
total radiation power per second from the source is calculated as a surface
integration of the Poynting vector on ∂D+ and ∂D−.

For the investigations of excitation transport between objects in the near-
field regime, it is useful to evaluate separately the radiation power per second
through ∂D+ and ∂D− as

I(0) = I
(0)
+ + I

(0)
− . (59)

According to (27) and (28) the temporal averaged sum of the Poynting vector
through each of the boundaries is obtained as

I
(0)
± = 2ε0

∫ ∫ +∞

−∞
dxdy
e

{
E(0)(r) × B(0)∗(r)

}
· (±êz) , (60)
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where ±êz stand for the unit normal vectors of the plane ∂D±. Substituting
(53) and (54) into (60), and evaluating the integration as∫ ∫ +∞

−∞
dxdy exp {iK[(sx − s′

x)x + (sy − s′
y)y]}

=
(

2π

K

)2

δ(sx − s′
x)δ(sy − s′

y) , (61)

we obtain the total power per second through each boundary plane as

I
(0)
± =

(
K4

8π2ε0

) 2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy

sz

[
d∗ · ε̂(ŝ(±), µ)

] [
ε̂(ŝ(±), µ) · d

]
.

(62)

Here, we have utilized the following relations stand for the complex conjugate
in accordance with (38);

s∗
z =

⎧⎨
⎩

sz for 0 ≤ s‖ < 1 ,

−sz for 1 ≤ s‖ < +∞ ,
(63)

or

ŝ(±)∗ =

⎧⎨
⎩

ŝ(±) for 0 ≤ s‖ < 1 ,

ŝ(∓) for 1 ≤ s‖ < +∞ .

(64)

It is noted that the radiation power through each of the boundary planes
is due only to homogeneous waves, since evanescent waves can not propa-
gate into the far-field region where existence of an optical sink is assumed
in this problem. In other words, when we consider outgoing homogeneous
waves we implicitly assume the existence of an optical sink, or reservoir in
general, in the far-field region, otherwise any excited object is unable to ra-
diate electromagnetic energy. This, in turn, implies that if an optical sink is
put into the near-field region it will possibly alter the radiation properties of
excited objects. This point is what we will discuss extensively later in this
chapter and one of the most important issues in the study on functions and
signal-transport properties of nanophotonic devices.

It is also useful to convert the integration with respect to Cartesian coordi-
nates, dsx and dsy, into that described in terms of the spherical coordinates,
α and β by utilizing the relations, sx = sin α cos β and sy = sin α sin β;

I
(0)
± =

(
K4

8π2ε0

) 2∑
µ=1

∫ π/2

0
sin αdα

∫ 2π

0
dβ

[
d∗ · ε̂(ŝ(±), µ)

] [
ε̂(ŝ(±), µ) · d

]
.

(65)



150 T. Inoue and H. Hori

We then obtain the total power per second radiated from the oscillating
electric dipole as

I(0) =
(

K4

8π2ε0

) 2∑
µ=1

∫ π

0
sin αdα

∫ 2π

0
dβ

[
d∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(+), µ) · d

]
.

(66)

We can verify this result by making the scalar product of d∗ with (52),

|d|2 =
(
d∗ · ŝ(±)

)(
ŝ(±) · d

)
+

2∑
µ=1

[
d∗ · ε̂(ŝ(±), µ)

] [
ε̂(ŝ(±), µ) · d

]
, (67)

and substituting this into the (+) component of (66), so that we obtain
exactly the same result with (31). It is noted that in (66) ŝ(+) corresponds
to the direction of the observation of radiation in far field, i.e., ŝ(+) can be
replaced by r̂0.

4 Radiative Decay of Oscillating Electric Dipole
in Half-Space Based on Angular-Spectrum
Representation

In this section we will study the classical theory of radiative decay of an
oscillating electric dipole moment near a planar dielectric surface. We intro-
duce a general treatment of half-space problems and discuss the fundamental
processes involved in half-space problems. Then we will proceed to the the-
oretical evaluation of radiative decay of an oscillating electric dipole on the
basis of angular-spectrum representation.

4.1 Half-Space Problems

Based on the results we have obtained using angular-spectrum representation
of radiation fields in the previous section, we will study half-space problems
with an actual planar boundary between two different dielectric media.

We consider a space, half of which is filled with a nonmagnetic, transpar-
ent, homogeneous, and isotropic dielectric medium of refractive index n (real
number) and the other half is vacuum as shown in Fig. 10. The medium side
is referred to as the left half-space, z < 0, and the vacuum side the right
half-space, z ≥ 0.

For later convenience, we will introduce unit wavevectors of incoming
fields from the right of the boundary as ŝ(−) = K(−)/K = (sx, sy,−sz), and
those of outgoing fields to the left of the boundary as κ̂(−) = k(−)/(nK) =
(κx, κy,−κz), for which the following relations stand;
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K ŝ(−)

K ŝ(+)

nK κ̂(−)

dielectric vacuum
n > 1

Fig. 10. Schematic diagram showing the half-space problems under consideration.
The space, half of which is filled with a nonmagnetic, transparent, homogeneous,
and isotropic dielectric medium of refractive index n (the left half-space, z < 0),
and the other half is vacuum (the right half-space, z ≥ 0)

κx =
sx

n
, (68)

κy =
sy

n
, (69)

κ‖ =
s‖
n

, (70)

κz = +
√

1 − κ2
‖ = +

1
n

√
n2 − s2

‖ , (71)

sz = +
√

1 − s2
‖ = +

√
1 − n2κ2

‖ , (72)

Here, the projections of the unit wavevectors onto the boundary surface, i.e.,
κ‖ =

√
κ2

x + κ2
y, and s‖ =

√
s2

x + s2
y, and nKκ‖ and Ks‖, correspond to

the conserved quantities related to the translational symmetry of the system
with respect to the planar boundary. In addition, we introduce unit wavevec-
tors representing fields reflected from the boundary as ŝ(+) = K(+)/K =
(sx, sy, sz). The dispersion relations in terms of these variables are shown in
Fig. 11.

According to (38), sz is real for 0 ≤ s‖ < 1 and pure imaginary for
1 ≤ s‖ < +∞, so that κz is represented by

κz =

⎧⎪⎪⎨
⎪⎪⎩

+
1
n

√
n2 − s2

‖ for 0 ≤ s‖ < n ,

+
i
n

√
s2

‖ − n2 for n ≤ s‖ < +∞ .

(73)
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Fig. 11. Dispersion relations for unit wavevectors involved in half-space problems

Following the above classification, the light-scattering processes in the half-
space configuration involve the following three characteristic cases, which are
schematically shown in Fig. 12:

(i) When 0 ≤ s‖ < 1, ŝ(−), ŝ(+) and κ̂(−) are real vectors, therefore, the inci-
dent and reflected fields are homogeneous waves, the transmitted field is
also a homogeneous wave. We introduce the incident angle α and trans-
mitted angle α′ in the domain,

0 ≤ α < π/2 (s‖ = sin α) ,

0 ≤ α′ < α′
c (κ‖ = sin α′) ,

where the angle α′
c corresponds to the critical angle of total internal re-

flection given by sinα′
c = 1/n. It is noted that the transmitted waves

propagate in the direction within the critical angle of total internal re-
flection.

(ii) When 1 ≤ s‖ < n, ŝ(−) and ŝ(+) are complex vectors, and κ̂(−) is a real
vector, therefore, the incident and reflected fields are evanescent waves,
the transmitted field is a homogeneous wave. The incident and transmit-
ted angles lie in the domain
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Fig. 12. The scattering process (i) for 0 ≤ s‖ < 1, corresponding to ordinary
reflection and refraction of propagating wave. The scattering process (ii) for 1 ≤
s‖ < n, corresponding to radiation into a direction out of the angle of total internal
reflection. The scattering process (iii) for n ≤ s‖, corresponding to optical near-field
interactions localized near the boundary

α = (π/2) − iγ , 0 ≤ γ < γc ,

α′
c ≤ α′ < π/2 .

Here, the angle γc corresponds to another critical angle set for extended
fields given by sin[(π/2)− iγc] = n. It is noted that the transmitted wave,
in this case, propagates in the direction out of the critical angle of total
internal reflection, α′

c, since α′
c ≤ α′ < π/2.

(iii) When n ≤ s‖ < +∞, ŝ(−), ŝ(+) and κ̂(−) are complex vectors, therefore,
the incident and reflected fields are evanescent waves, the transmitted
field is also an evanescent wave. The incident and transmitted angles are
in the domain of complex numbers,

α = (π/2) − iγ , γc ≤ γ < +∞ ,

α′ = (π/2) − iγ′ , 0 ≤ γ′ < +∞ .

Therefore, the electromagnetic fields in this case are localized near the
boundary. This case has no contribution to far-field observation, since no
extended field is involved, however, it plays an important role in optical
near-field interactions.
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Fig. 13. The complex amplitude of electric field in half-space. E(I), E(R), and
E(T) correspond to the incident, reflected and transmitted field, respectively. E(D)

corresponds to the incident field into the right half-space of the dipole

4.2 Angular-Spectrum Representation of Radiation Fields
in Half-Space

We consider a classical electric point dipole oscillating at frequancy K located
in the right half-space at R lying in the z = 0 plane as shown in Fig. 13. The
radiation fields from the dipole into its left half-space, z < Z, are incident on
the dielectric surface, for which the complex amplitude of the electric field is
denoted as E(I)(r). According to (53), the angular-spectrum representation
of E(I)(r) is given by

E(I)(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

×
[
ε̂(ŝ(−), µ) · d

]
ε̂(ŝ(−), µ) exp

[
iKŝ(−) · (r − R)

]
. (74)

The total complex amplitude of the electric field including contributions from
the electric dipole and half-space system is obtained simply by summing up
those of field components, E(I)(r), the radiation field from the dipole into its
right half-space (Z < z), E(D), and the reflected field, E(R), and transmitted
field, E(T) as

E(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E(R)(r) + E(D)(r) for Z < z ,

E(I)(r) + E(R)(r) for 0 ≤ z < Z ,

E(T)(r) for z < 0 .

(75)

Using angular-spectrum representation of dipole fields, E(I), and Fresnel
relations accounting for the electromagnetic boundary conditions, we can ob-
tain the angular-spectrum representation of E(R) and E(T), respectively, by
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E(R)(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

[
ε̂(ŝ(−), µ) · d

]

×ε̂(ŝ(+), µ)RR(sz, µ) exp(iKŝ(+) · r) exp(−iKŝ(−) · R) . (76)

E(T)(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

[
ε̂(ŝ(−), µ) · d

]

×ε̂(κ̂(−), µ)TR(sz, µ) exp(inKκ̂(−) · r) exp(−iKŝ(−) · R) . (77)

Here, RR and TR stand, respectively, for the reflection and transmission co-
efficients, for the incident wave from the right of the boundary given by

RR(sz, µ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sz − nκz

sz + nκz
for µ = 1 ,

nsz − κz

nsz + κz
for µ = 2 ,

(78)

TR(sz, µ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2sz

sz + nκz
for µ = 1 ,

2sz

nsz + κz
for µ = 2 ,

(79)

where κz = (1/n)
√

n2 − 1 + s2
z. In addition to the above, the electric field

corresponding to direct radiation from the electric dipole into its right half-
space, z > Z, is described as

E(D)(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

×
[
ε̂(ŝ(+), µ) · d

]
ε̂(ŝ(+), µ) exp

[
iKŝ(+) · (r − R)

]
. (80)

The complex amplitude for the total magnetic field associated with the
electric field is obtained by the sum of field components as

B(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B(R)(r) + B(D)(r) for Z < z ,

B(I)(r) + B(R)(r) for 0 ≤ z < Z ,

B(T)(r) for z < 0 ,

(81)

where the complex field amplitudes are calculated from electric fields by using
Maxwell’s equation

∇ × E(r, t) = −∂B(r, t)
∂t

. (82)
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4.3 Electric Dipole Radiation into Medium

According to (75) and (81), the transmitted power per second of the dipole
radiation into the medium, I(−), is given by

I− = 2ε0

∫ ∫ +∞

−∞
dxdy
e

{
E(T)(r) × B(T)∗(r)

}
· (−êz) . (83)

Substituting (77) and the associated magnetic field given by (82) and evalu-
ating the following integration,∫ ∫ +∞

−∞
dxdy exp

{
inK[(κx − κ′

x)x + (κy − κ′
y)y]

}

=
(

2π

K

)2

δ(sx − s′
x)δ(sy − s′

y) , (84)

we obtain the transmitted power per second in the following form;

I− = I
(h)
− + I

(t)
− , (85)

where I
(h)
− corresponds to the integration for 0 ≤ s‖ < 1 given by

I
(h)
− =

(
K4

8π2ε0

) 2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy

sz

×
[
d∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · d

]
n

(
κz

sz

)
T 2

R(sz, µ) (86)

and I
(t)
− corresponds to the integration for 1 ≤ s‖ < n given by

I
(t)
− =

(
K4

8π2ε0

) 2∑
µ=1

∫ ∫
1≤s‖<n

dsxdsy

sz
n

(−κz

sz

)[
d∗ · ε̂(ŝ(+), µ)

]

×
[
ε̂(ŝ(−), µ) · d

]
TR(sz, µ)TR(−sz, µ) exp(2iKszZ) . (87)

Here, we have utilized the following relations that stand for the complex
conjugate in accordance with (73),

κ∗
z =

⎧⎨
⎩

κz for 0 ≤ s‖ < n ,

−κz for n ≤ s‖ < +∞ ,
(88)

κ̂(−)∗ =

⎧⎨
⎩

κ̂(−) for 0 ≤ s‖ < n ,

κ̂(+) for n ≤ s‖ < +∞ ,

(89)

where κ̂(+) = (κx, κy, κz) and κ̂(−) = (κx, κy,−κz).
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Fig. 14. The energy flux I ′(h)
− corresponds to the energy flux I

(h)
− into the medium

in directions within the critical angle α′
C

According to the classification of fundamental processes shown in Fig. 12,
I
(h)
− corresponds to the case (i) since the unit wavevector κ̂(−) is a real vector

for 0 ≤ κ‖ < 1/n (0 ≤ s‖ < 1). Therefore, I
(h)
− corresponds to the energy

flux transmitted into the medium in the directions lying within the critical
angle of total internal reflection as shown in Fig. 14. On the other hand, I

(t)
−

corresponds to the case (ii) shown in Fig. 12, since the unit wavevector κ̂(−)

is a real vector and ŝ(±) is pure imaginary for 0 ≤ κ‖ < 1 (1 ≤ s‖ < n).
Therefore, I

(t)
− corresponds to the energy flux into the medium in directions

lying out of the critical angle of total internal reflection as shown in Fig. 14.
In this case, the incident and reflected fields correspond to evanescent waves.

We will show later, in Sect. 4.5, that the energy flux from the oscillating
electric dipole into the dielectric medium can be viewed as a tunneling process
of excitation energy. The case (iii) shown in Fig. 12 has no direct contribution
to the energy flux into the medium because the transmitted wave is local-
ized near the dielectric boundary and contributes to higher-order interactions
between the electric dipole and medium.

4.4 Electric Dipole Radiation into the Vacuum-Side Half-Space

According to (75) and (81), we can calculate the total radiation power per
second I(+) from the oscillating electric dipole into the vacuum-side half-space
through an arbitrary plane at Z < z as

I+ = I
(h)
+ + I

(c)
+ , (90)

where I
(h)
+ corresponds to the direct sum of contributions from the radiated

and reflected waves from the dipole given by



158 T. Inoue and H. Hori

I
(h)
+ = 2ε0

∫ ∫ +∞

−∞
dxdy
e

{
E(D)(r) × B(D)∗(r)

+E(R)(r) × B(R)∗(r)
}

· êz , (91)

and I
(c)
+ represents the modulation of radiation due to interference between

direct and reflective waves given by

I
(c)
+ = 2ε0

∫ ∫ +∞

−∞
dxdy
e

{
E(D)(r) × B(R)∗(r)

+E(R)(r) × B(D)∗(r)
}

· êz . (92)

Using (76), (80)–(82), and (61), we obtain

I
(h)
+ =

(
K4

8π2ε0

) 2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
{[

d∗ · ε̂(ŝ(+), µ)
] [

ε̂(ŝ(+), µ) · d
]

+
[
d∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · d

]
R2

R(sz, µ)
}

, (93)

I
(c)
+ can be obtained as

I
(c)
+ =

(
K4

4π2ε0

)

e

{
2∑

µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
[
d∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(−), µ) · d

]
RR(sz, µ) exp(2iKszZ)

}
. (94)

The interference term involves contributions only from homogeneous waves.
Since the factor exp(2iKszZ) for 0 ≤ s‖ < 1, oscillates rapidly when the dis-
tance between the dipole and the dielectric surface becomes large compared
with the optical wavelength, the interference term disappears, I

(c)
+ → 0, for

1 � KZ.

4.5 Interaction between Electric Dipole and Dielectric Surface

We consider optical near-field interactions of the oscillating electric dipole
with the planar dielectric surface in terms of the energy flux through a plane
assumed to be in between the electric dipole and the surface, 0 < z < Z. It
will be shown that optical near-field interactions are described in terms of the
Poynting vector composed of cross-products of evanescent waves, one being
radiation from the dipole and another from the surface. One can find such
a cross-product of evanescent waves in the description of tunneling current
where electronic scalar wave functions are penetrating into a barrier region
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with exponential decay. This implies that we can picture an optical near-field
interaction as a tunneling process of an optical excitation. The result derived
in the following provides one of the most important bases in the study of
optical near-field problems.

According to (75) and (81), we obtain the total power per second, I ′
−,

through the assumed plane from the dipole to the surface as

I ′
− = I ′(h)

− + I ′(t)
− , (95)

where I ′(h)
− corresponds to contributions from both the radiated and reflective

fields given by

I ′(h)
− = 2ε0

∫ ∫ +∞

−∞
dxdy
e

{
E(I)(r) × B(I)∗(r)

+E(R)(r) × B(R)∗(r)
}

· (−êz) , (96)

and I ′(t)
− describes the optical near-field interaction of the electric dipole with

the dielectric surface given by

I ′(t)
− = 2ε0

∫ ∫ +∞

−∞
dxdy
e

{
E(I)(r) × B(R)∗(r)

+E(R)(r) × B(I)∗(r)
}

· (−êz) . (97)

Using (74), (76), (81), (82) and (61), we obtain I ′(h)
− as

I ′(h)
− =

(
K4

8π2ε0

) 2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
[
d∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · d

] [
1 − R2

R(sz, µ)
]

, (98)

which simply describe the net energy transport via homogeneous waves prop-
agating from right to left and left to right. It is noted that conservation of
energy flux holds as

I ′(h)
− = I

(h)
− , (99)

which is verified by using the relation between reflection and transmission
coefficients given as

T 2
R(sz, µ) =

(
sz

nκz

)[
1 − R2

R(sz, µ)
]

. (100)

As we discussed in Fig. 14, the net energy flux flow into a medium due to
homogeneous waves corresponds to that carried by homogeneous waves prop-
agating in the direction within the critical angle of total internal reflection.
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Fig. 15. The tunneling energy flux I ′(t)
− corresponds to the energy flux I

(t)
− into the

medium in directions without the critical angle α′
C

In the same manner as the above, we obtain I ′(t)
− as

I ′(t)
− =

(
K4

4π2ε0

)

e

{
2∑

µ=1

∫ ∫
1≤s‖<n

dsxdsy
1
sz

×
[
d∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(−), µ) · d

]
RR(sz, µ) exp(2iKszZ)

}
, (101)

which is due to near-field electromagnetic interactions between the planar
dielectric boundary and electric dipole via evanescent waves with 1 ≤ s‖ < n,
so that I ′(t)

− can be interpreted as the tunnel current for transport of optical
energy. Since the factor exp(2iKszZ) = exp(−2K|sz|Z) for 1 ≤ s‖ < n
exhibits an exponential decay with increase in the dipole-to-surface distance,
the tunnel effect is important only in the near-field regime. Conservation of
energy flux,

I ′(t)
− = I

(t)
− , (102)

is verified by using the relation between the reflection and transmission co-
efficients;

TR(−sz, µ)TR(sz, µ) =
(

sz

nκz

)
[RR(−sz, µ) − RR(sz, µ)] . (103)

As we discussed in Fig. 15, the energy transport due to tunneling of excita-
tion results in homogeneous waves in the medium with propagation direction
falling in the angular domain out of the critical angle of total internal reflec-
tion.

It should be noted that (93) and (98) leads to the relation

I
(h)
+ + I ′(h)

− = I(0) . (104)
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Fig. 16. (a) The energy flux I
(h)
+ composed of contributions from direct, E(D),

and reflected, E(R), fields. (b) The energy flux I
(c)
+ corresponding to the intensity

modulation due to interference between direct and reflected fields

This implies an important fact that the radiation power per second from an
oscillating electric dipole in free space, I(0), is equal to that from the same
dipole near a planar dielectric surface via homogeneous waves. As we have
seen in the half-space problem, there remains an excess radiation energy, I ′(t)

−
and I

(c)
+ , from the dipole near the surface due, respectively, to tunneling of

optical excitation via evanescent waves and interference between the direct
and reflected homogeneous waves. The excess radiation power per second of
the dipole,

∆I = I
(c)
+ + I ′(t)

− , (105)

suggests that the radiative decay rate of the oscillating electric dipole is
modified due to optical near-field interaction with the dielectric surface. This
important feature of optical near-field interactions is fully developed later in
this chapter on the basis of 2nd-quantization of optical fields in half-space
problems.

5 Quantum Theory of Dipole Radiation
Near a Dielectric Surface Based on Detector Modes

In general, quantum-mechanical treatment of fields is achieved in the second
quantization framework based on normal modes. Normal modes should be
composed so as to describe the state of the fields in the entire space consid-
ered in the problem. Since half-space problems involve two different regions,
whether these regions are different or not in optical properties, we should
compose the normal modes so as to include fields of both sides of the half-
space under some adequate connections of the fields at the boundary plane.
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For the basis of field quantization including evanescent waves, Carniglia
and Mandel [22] introduced the so-called triplet mode composed of a set of
incident, reflected, and transmitted waves connected via Fresnel’s relations
at the planar boundary under consideration. The triplet modes involving a
single incident wave serve as the convenient basis for the theoretical treatment
of photon-absorption processes near a dielectric surface, where a single light
source placed in far field may be assumed in a practical setup. In contrast, in
accounting for the photon-emission processes near the boundary, the triplet
mode should be related to a correlation measurement of photons by using two
photodetectors coupled to each of the outgoing waves involved in the triplet.
This situation, in some sense, is similar to beam-splitter problems.

On the other hand, when we study photon-emission processes near a di-
electric surface, we usually consider a practical setup with a photon-counting
scheme by using an independent photodetector placed in each of the half
spaces separated by the boundary, so that we may consider a single outgoing
wave as the final state of the radiation process. In this case, the so-called de-
tector modes including a single outgoing wave serve as the convenient basis
for theoretical analysis, especially in the consideration of radiative lifetime
of a two-level system near a dielectric surface. Indeed, completeness of ba-
sis functions assures equivalence between various descriptions, but practical
treatments of photon absorption or emission experiments are simplified by
choosing either of those expressions according to the experimental setup un-
der consideration: either a single source or a single detector is assumed in the
far-field region. The detector modes have been introduced by Viogureux and
Payen [3] in their theoretical study on the Raman diffusion due to atoms near
a planar dielectric boundary. In their work, the detector modes are defined
in terms of the linear combination of the triplet mode functions but have not
been explicitly quantized.

In this section, we study the field quantization based on the detector mode
as the basis for theoretical analysis of the photon-emission process in the
optical near field. In contrast to the study reported by Viogureux and Payen
we introduce the detector modes in terms of time-reversal and spatial-rotation
transforms of the triplet mode. This gives us a straightforward evaluation of
the radiative decay rate in terms of the final-state density of the photonic
mode and provides a clear understanding of the meaning of detector mode
as well as the correspondence between classical and quantum descriptions
of electric and magnetic multipoles radiations of a two-level system in the
near-field regime.

5.1 Normal Modes as the Basis of Field Quantization
in Half-Space Problems; Triplet and Detector Modes

In this section we consider a space, half of which is filled with a nonmagnetic,
transparent, homogeneous, and isotropic dielectric medium of refractive index
n (left half-space, z < 0), and half is vacuum (right half-space, z ≥ 0) (see
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vacuumdielectric

A+A−

Optical source

Optical sink

z0

Fig. 17. Photonic system of half-space. Optical sources and sinks are considered
to be placed on the left A− and the right A+ hemispheres of radius r± in far field,
kr±, Kr± � 1

Fig. 17). Optical sources and sinks are considered to be placed on the left
A− and the right A+ hemispheres of radius r± in far field, kr±, Kr± � 1.
In this limit, we consider the space inside the whole sphere, A+ plus A−,
as the entire space for which normal modes are defined. Corresponding to
these, when we introduce optical sources and sinks in far field on A− and A+
hemispheres, they are considered, respectively, as emitters and detectors of
incoming and outgoing plane waves.

We will study the problem for the monochromatic fields of frequency
K corresponding to the Fourier component of electric field E(r) exp(−iKt),
under the unit in which the light velocity is taken to be unity, c = 1. The
complex amplitude E(r) of the electric field satisfies the Helmholtz equation[∇2 + K2n2(r)

]
E(r) = 0 , (106)

with the refractive-index function defined by

n(r) =

⎧⎨
⎩

n for z < 0 ,

1 for z ≥ 0 ,
(107)

where n is assumed to be a real number.
As the basis to introduce normal modes in half-space problems, we intro-

duce the unit wavevectors of incoming waves from the right of the boundary
plane as ŝ(−) = K(−)/K = (sx, sy,−sz), and those of outgoing fields to
the left of the boundary plane as κ̂(−) = k(−)/(nK) = (κx, κy,−κz), which
satisfy the relations in (68)–(72). We also introduce the unit wavevectors of
incoming waves from the left as κ̂(+) = k(+)/nK = (κx, κy, κz) and those of
the outgoing field to the right as ŝ(+) = K(+)/K = (sx, sy, sz). The projec-
tion of the wavevector onto the boundary plane is conserved due to spatial
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source
Optical

vacuumdielectric

(a) (b)

A+ A−

Fig. 18. The triplet modes. (a) R-triplet mode coupled to a single optical source
on the hemisphere A+. (b) L-triplet mode coupled to a single optical source on the
hemisphere A−

translational symmetry in half-space problems, so that we introduce nKκ‖
and Ks‖ defined, respectively, by κ‖ =

√
κ2

x + κ2
y, and s‖ =

√
s2

x + s2
y.

When we consider a problem with a single optical source, it is convenient
to employ the so-called triplet modes composed of one incoming and two
outgoing plane waves that are connected at the boundary plane by using
Fresnel’s relations for fulfillment of electromagnetic boundary conditions as
shown in Figs. 18a–b.

For instance, when we consider absorption properties of atoms put in the
vacuum side of the half-space, we consider that the incident wave of the triplet
mode is coupled to a light source placed at far field and evaluate the electric-
dipole interaction of atoms with the wave components in the vacuum side in-
volved in the triplet mode. The triplet modes are also applicable to a problem
in which a photonic source, such as an excited atom, is put in the half-space
configuration under consideration. For instance, when we put an excited atom
in a subwavelength vicinity of the dielectric surface, we can evaluate the ra-
diation properties of the atom in terms of interactions with the triplet mode.
It should, however, be noted that, in the triplet-mode configuration, the re-
sulting two outgoing waves corresponding to a single-photon emission are
considered to have quantum correlation. Such a property is similar to those
we encounter as beam-splitter problems in quantum optics. Therefore, the
triplet-mode description has convenience in the theoretical treatments of a
half-space photonic system in terms of a correlation measurement of radiation
by a pair of photodetectors put, respectively, on the hemispheres A− and A+.

As the complementary description of the half-space problems, we can
introduce so-called detector modes as the normal modes composed of a single
outgoing and two incident plane waves connected by Fresnel’s relations at
the boundary surface. The detector-mode description is especially useful in
investigations on radiation properties of photonic source, such as an excited
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atom, put in the half-space system, since a single outgoing wave coupled
to a detector in far field is involved (see Figs. 19a–b). For example, when
we investigate the spontaneous emission of radiation from an excited atom
put near a dielectric surface using a single photodetector put on one of the
hemispheres, A− or A+, we can evaluate the radiation properties in terms of
the atomic interaction with the wave components in the vacuum side. In this
case, we can easily evaluate the spontaneous emission by virtue of the well-
defined final-state mode-density of radiation involved in the corresponding
one of the two detector modes.

In the following, we introduce the detector-mode functions by means of
time reversal and spatial rotation transform of the well-established triplet-
mode functions, for which orthogonality relations and completeness are con-
firmed by the work of Carniglia and Mandel [22]. We will see that the
detector-mode description of radiation problems in half-space provides us
with a clear interpretation of the fundamental processes that can be compared
directly with classical descriptions of radiation, such as image-dipole pictures
useful in understanding half-space problems. It is noted that the time-reversal
and spatial-rotation transform employed preserves the field momentum par-
allel to the boundary surface and, therefore, the angular momentum of the
field normal to the surface, which are the conserved quantities in the interact-
ing atom plus photon system under consideration. In the sense of restricted
conservation laws, we refer to these quantities as pseudomomentum and an-
gular pseudomomentum, respectively. These conserved quantities under the
restricted symmetry of the local system must play the most important role
in optical manipulation and control of the mesoscopic material system of
nanometer size as well as in realization of functional devices working on the
basis of optoelectronic interactions.

5.2 Detector-Mode Functions

As is shown in Fig. 19a, the R-detector-mode function is defined in terms of
a composition of three field amplitudes by

EDR(K(+), µ, r) = E(I)
DR(K(+), µ, r) + E(R)

DR(K(−), µ, r)

+ E(T)
DR(k(+), µ, r) , (108)

where DR indicates that the mode involves a single outgoing wave in vacuum,
i.e., right-half to the boundary, and the parameters K(+) and µ in the field
amplitudes EDR indicate, respectively, the wavevector and the polarization
state of the outgoing wave into vacuum; µ = 1 for the transverse electric (TE)
polarization and µ = 2 for the transverse magnetic (TM) polarization. Using
the notation of vector plane waves, we can describe the field components, i.e.,
single outgoing and two incident waves, as follows;
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E(I)
DR(K(+), µ, r)

=

⎧⎪⎨
⎪⎩

1√
2
ε̂(ŝ(+), µ) exp(iKŝ(+) · r) for z ≥ 0 ,

0 for z < 0 ,

(109)

E(R)
DR(K(−), µ, r)

=

⎧⎪⎨
⎪⎩

1√
2
ε̂(ŝ(−), µ)RR(sz, µ) exp(iKŝ(−) · r) for z ≥ 0 ,

0 for z < 0 ,

(110)

E(T)
DR(k(+), µ, r)

=

⎧⎪⎨
⎪⎩

1√
2
ε̂(κ̂(+), µ)TR(sz, µ) exp(inKκ̂(+) · r) for z < 0 ,

0 for z ≥ 0 .

(111)

Here, RR(sz, µ) and TR(sz, µ) are, respectively, the reflection and transmis-
sion coefficients of incident waves from right to left given by (78) and (79).
Since the wave component E(I)

DR is considered to be coupled with a single pho-
todetector placed on the right hemisphere A+ in far field, the unit wavevector
ŝ(+) falls in the domain where 0 ≤ s‖ < 1 (0 ≤ κ‖ < 1/n), so that ŝ(+), ŝ(−)

and κ̂(+) are always real vectors and EDR corresponds to homogeneous waves.
According to the diagram shown in Fig. 19b, the L-detector-mode function

is defined by

EDL(k(−), µ, r) = E(I)
DL(k(−), µ, r) + E(R)

DL (k(+), µ, r)

+ E(T)
DL (K(−)∗, µ, r) , (112)

where DL indicates that the mode involves a single outgoing wave in the
medium, i.e., the left-half to the boundary, and the parameters k(−) and µ
in EDL indicate, respectively, the wavevector and polarization state of the
outgoing wave in medium. We can describe the field components as

E(I)
DL(k(−), µ, r)

=

⎧⎪⎨
⎪⎩

1√
2n

ε̂(κ̂(−), µ) exp(inKκ̂(−) · r) for z < 0 ,

0 for z ≥ 0 ,

(113)
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Fig. 19. The detector-mode functions in half-space problems. (a) R detector-mode
function coupled to a single optical sink placed on the hemisphere A+ in far field.
(b) L detector-mode function coupled to that on A−

E(R)
DL (k(+), µ, r)

=

⎧⎪⎨
⎪⎩

1√
2n

ε̂(κ̂(+), µ)RL(s∗
z, µ) exp(inKκ̂(+) · r) for z < 0 ,

0 for z ≥ 0 ,

(114)

E(T)
DL (K(−)∗, µ, r)

=

⎧⎪⎨
⎪⎩

1√
2n

ε̂(ŝ(−)∗, µ)TL(s∗
z, µ) exp(iKŝ(−)∗ · r) for z ≥ 0 ,

0 for z < 0 .

(115)

Here, RL(sz, µ) and TL(sz, µ) are, respectively, the reflection and transmission
coefficients for the incident wave from the medium side given by

RL(sz, µ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nκz − sz

nκz + sz
for µ = 1 ,

κz − nsz

κz + nsz
for µ = 2 ,

(116)

TL(sz, µ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2nκz

nκz + sz
for µ = 1 ,

2nκz

κz + nsz
for µ = 2 .

(117)

Since the wave component E(I)
DL is to be coupled with a single photodetector

on A−, the unit wavevector κ̂(−) falls in the domain of 0 ≤ κ‖ < 1 (0 ≤
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s‖ < n), so that κ̂(−) and κ̂(+) are real vectors, and ŝ(−)∗ involves a complex
component. For 0 ≤ κ‖ < 1/n (0 ≤ s‖ < 1), −sz is real, so that the relations

ŝ(−)∗ = ŝ(−) , −s∗
z = −sz ,

hold and EDL corresponds to homogeneous waves. On the other hand, for
1/n ≤ κ‖ < 1 (1 ≤ s‖ < n), −sz is purely imaginary, so that

ŝ(−)∗ = ŝ(+) , −s∗
z = sz ,

and EDL corresponds to the evanescent wave.
In a practical setup, k(−) and K(+), indicating the outgoing wavevectors

of detector modes, correspond to the angular directions of the light sink
placed on A− and A+, respectively. L and R detector modes correspond to
the eigenstates of the pseudomomentum operator −i�∇‖ as

(−i�∇‖)EDR(K(+), µ, r) = (�Kŝ‖)EDR(K(+), µ, r) , (118)

(−i�∇‖)EDL(k(−), µ, r) = (�Kŝ‖)EDL(k(−), µ, r) , (119)

where −i�∇‖ operates on each component of E. We have denoted the pseu-
domomentum vector �Kŝ‖ = �K(sx, sy, 0).

The orthogonality relations for the detector-mode functions are obtained
as follows;∫ ∫ ∫

d3xn2(r)
[
EDR(K(+), µ, r)

]∗
· EDR(K ′(+)

, µ′, r)

=
1
2
(2π)3δµµ′δ3(K(+) − K ′(+)) , (120)∫ ∫ ∫

d3xn2(r)
[
EDL(k(−), µ, r)

]∗
· EDL(k′(−)

, µ′, r)

=
1
2
(2π)3δµµ′δ3(k(−) − k′(−)) , (121)∫ ∫ ∫

d3x n2(r)
[
EDR(K(+), µ, r)

]∗
· EDL(k′(−)

, µ′, r)

= 0 . (122)

5.3 Electric Field Operator in Half-Space Problems

Based on the detector modes, the electric field operator is described by

Ê(r, t) =
2∑

µ=1

∫ ∫ ∫
0≤s‖<1

d3K(+)
[

�K

(2π)3ε0

]1/2

× [âDR(K(+), µ)EDR(K(+), µ, r)e−iKt + H.c.]

+
2∑

µ=1

∫ ∫ ∫
0≤κ‖<1

d3k(−)
[

�K

(2π)3ε0

]1/2

× [âDL(k(−), µ)EDL(k(−), µ, r)e−iKt + H.c.] , (123)



Quantum Theory of Radiation in Optical Near Field 169

where âDR(K(+), µ), â†
DR(K(+), µ) and âDL(k(−), µ), â†

DL(k(−), µ) are the
annihilation and creation operators of photons characterized by wavevector
K(+) or k(−) for each polarization state µ. The commutation relations be-
tween these operators are given as follows;[

âDR(K(+), µ), â†
DR(K ′(+)

, µ′)
]

= δµµ′δ(K(+) − K ′(+)) , (124)[
âDL(k(−), µ), â†

DL(k′(−)
, µ′)

]
= δµµ′δ(k(−) − k′(−)) , (125)[

âDR(K(+), µ), âDL(k′(−)
, µ′)

]
= 0 , (126)[

âDR(K(+), µ), â†
DL(k′(−)

, µ′)
]

= 0 . (127)

Finally, let us consider the Hamiltonian Ĥ, number operator N̂ and pseu-
domomentum operator P̂‖ of the quantized electromagnetic field. We obtain

Ĥ =
2∑

µ=1

∫ ∫ ∫
0≤s‖<1

d3K(+)
�Kâ†

DR(K(+), µ)âDR(K(+), µ)

+
2∑

µ=1

∫ ∫ ∫
0≤κ‖<1

d3k(−)
�Kâ†

DL(k(−), µ)âDL(k(−), µ) , (128)

N̂ =
2∑

µ=1

∫ ∫ ∫
0≤s‖<1

d3K(+)â†
DR(K(+), µ)âDR(K(+), µ)

+
2∑

µ=1

∫ ∫ ∫
0≤κ‖<1

d3k(−)â†
DL(k(−), µ)âDL(k(−), µ) , (129)

P̂‖ =
2∑

µ=1

∫ ∫ ∫
0≤s‖<1

d3K(+)
�Kŝ‖â

†
DR(K(+), µ)âDR(K(+), µ)

+
2∑

µ=1

∫ ∫ ∫
0≤κ‖<1

d3k(−)
�Kŝ‖â

†
DL(k(−), µ)âDL(k(−), µ) . (130)

The photon-number state corresponding to the mode specified by K(+)

and µ or k(−) and µ, is generated by operating â†
DR(K(+), µ) or â†

DL(k(−), µ)
to the vacuum state |0〉 as∣∣∣D, N(K(+), µ)

〉
= (1/

√
N !)[â†

DR(K(+), µ)]N |0〉 , (131)∣∣∣D, N(k(−), µ)
〉

= (1/
√

N !)[â†
DL(k(−), µ)]N |0〉 , (132)

where D indicates that the state is defined on the basis of the detector modes.
When we consider a single-photon emission process of atoms near a pla-
nar dielectric surface, the transition amplitudes are given, in a first-order
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approximation, by the nonzero matrix elements of the creation operators,
â†
DR(K(+), µ) and â†

DL(k(−), µ), as follows;〈
D, N(K(+), µ) + 1

∣∣∣ â†
DR(K ′(+)

, µ′)
∣∣∣D, N(K ′(+)

, µ′)
〉

=
√

(N + 1)δµµ′δ(K(+) − K ′(+)) , (133)〈
D, N(k(−), µ) + 1

∣∣∣ â†
DL(k′(−)

, µ′)
∣∣∣D, N(k′(−)

, µ′)
〉

=
√

(N + 1)δµµ′δ(k(−) − k′(−)) . (134)

5.4 Spontaneous Emission into Right Half-Space

We consider the photon-emission process from an excited atom placed in the
right half-space (vacuum side) near a planar dielectric surface. The interaction
Hamiltonian between the atom and the electromagnetic field is given by

V̂ (t) = − e

me
Â(r0 + R, t) · p0 , (135)

where the atomic-position vector is R = (X, Y, Z) (Z > 0), r0 = (x0, y0, z0)
the relative position vector of the atomic electron with respect to the nucleus,
and e, me, and p0 the electron charge, mass, and momentum, respectively.
Â is the vector potential in the Coulomb gauge obtained from (123) by using
the relation

Ê(r, t) = − ∂

∂t
Â(r, t) . (136)

We will consider a photon-emission process of a two-level atom with a
µ-polarized outgoing wave in the vacuum-side half-space with wavevector
K(+) = K(sx, sy, sz). Here it is stressed that a single detector mode is spec-
ified by its outgoing wavevector K(+) and polarization µ. For the photon
emission in the mode specified by K(+) and µ, the final state is described
by |f〉 =

∣∣D, 1(K(+), µ)
〉 |ϕf 〉, where |ϕf 〉 corresponds to the atomic ground

state. The initial state of the system is described by |i〉 = |0〉 |ϕi〉, where
|ϕi〉 corresponds to an atomic excited state under consideration. By separat-
ing the temporal evolution of the wave functions, the matrix element of the
operator in (135) can be represented by using the time-independent matrix
element Vfi as

Vfi(t) = Vfie−i(ω0−K)t , (137)

where ω0 is the atomic-transition frequency between the initial and final
states. The probability dΓ for the i → f transition resulting in a single-
photon emission is given by

dΓ =
2π

�2 |Vfi|2 δ(ω0 − K)dρ(K) , (138)
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where dρ(K) indicates the final-state mode density of the electromagnetic
field.

When we consider the single-photon emission into the vacuum side, the
state of the photon is described by the R-detector mode alone. From (123),
(133), and (135), we can find the time-independent transition matrix ele-
ment as

Vfi(K(+), µ) = −i
(

e

me

)[
�

(2π)3Kε0

]1/2

× 〈ϕf |
[
EDR(K(+), µ, r0 + R)

]∗
· p0 |ϕi〉 . (139)

Using the long-wavelength approximation and the relation 〈ϕf |p0 |ϕi〉 =
−imeω0 〈ϕf | r0 |ϕi〉, the matrix element can be written in the following form:

Vfi(K(+), µ) = V
(I)
fi (K(+), µ) + V

(R)
fi (K(−), µ) , (140)

where

V
(I)
fi (K(+), µ) = −ω0

[
�

2(2π)3Kε0

]1/2

×
[
ε(ŝ(+), µ) · dfi

]
exp(−iKŝ(+) · R) , (141)

V
(R)
fi (K(−), µ) = −ω0

[
�

2(2π)3Kε0

]1/2

×
[
ε(ŝ(−), µ) · dfi

]
RR(sz, µ) exp(−iKŝ(−) · R) . (142)

Here, we denote dfi = e 〈ϕf | r0 |ϕi〉. V
(I)
fi indicates the matrix element of

interaction between E(I)
DR and the electric dipole. V

(R)
fi indicates the matrix

element of interaction between E(R)
DR and the electric dipole. The radiation

field involves only one outgoing wave with wavevector K(+) and polarization
µ, so that the mode density dρ(K) for the final state of the photon for each
µ given simply by

dρ(K) = d3K(+) = K2dKdΩ(ŝ(+)) , (143)

with the infinitesimal solid angle dΩ(ŝ(+)) = dsxdsy/sz in the direction of
unit prapagation vector ŝ(+). Here it is stressed that the detector mode pro-
vides a clear understanding of the radiation process from the viewpoints of
the classical–quantum correspondence and the straightforward evaluation of
the final mode density discussed in the above.

Substituting (140) and (143) into (138) and integrating over dK, the
differential radiation probability dΓ for photon emission into the mode with
outgoing wave with K(+) lying in the solid angle dΩ(ŝ(+)) is given by

dΓ+(ŝ(+), µ) = dΓ
(h)
+ (ŝ(+), µ) + dΓ

(c)
+ (ŝ(+), µ) . (144)
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Here, dΓ
(h)
+ and dΓ

(c)
+ are defined by

dΓ
(h)
+ (ŝ(+), µ) =

(
2πK2

�2

)[
V

(I)∗
fi (K(+), µ)V (I)

fi (K(+), µ)

+V
(R)∗
fi (K(−), µ)V (R)

fi (K(−), µ)
]
dΩ(ŝ(+)) , (145)

dΓ
(c)
+ (ŝ(+), µ) =

(
2πK2

�2

)[
V

(I)∗
fi (K(+), µ)V (R)

fi (K(−), µ)

+V
(R)∗
fi (K(−), µ)V (I)

fi (K(+), µ)
]
dΩ(ŝ(+)) , (146)

where K = ω0. Substituting (141) and (142) into (145) and (146), dΓ
(h)
+ and

dΓ
(c)
+ can be obtained as

dΓ
(h)
+ (ŝ(+), µ) =

(
K3

8π2�ε0

){[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(+), µ) · dfi

]
+
[
(dfi)∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
R2

R(sz, µ)
}

dΩ(ŝ(+)) ,(147)

dΓ
(c)
+ (ŝ(+), µ) =

(
K3

4π2�ε0

)

e

{[
(dfi)∗ · ε̂(ŝ(+), µ)

]
×
[
ε(ŝ(−), µ) · dfi

]
RR(sz, µ) exp (2iKszZ)

}
dΩ(ŝ(+)) . (148)

5.5 Spontaneous Emission into Left Half-Space

Next, let us consider an emission of µ-polarized photon resulting in the out-
going wave in the medium side with k(−) = nK(κx, κy,−κz). The final state
corresponds to |f〉 =

∣∣D, 1(k(−), µ)
〉 |ϕf 〉. From (123), (134), and (135), the

time-independent matrix element is given by

Vfi(k(−), µ) = −
[

�

(2π)3Kε0

]1/2

× 〈ϕf |
[
EDL(k(−), µ,R + r0)

]∗
· p0 |ϕi〉 , (149)

Vfi(k(−), µ) = V
(T)
fi (K(−), µ) , (150)

where

V
(T)
fi (K(−), µ) = −ω0

n

[
�

2(2π)3Kε0

]1/2

×
[
ε̂(ŝ(−), µ) · dfi

]
TL(sz, µ) exp(−iKŝ(−) · R) . (151)

As the final-state mode function is labeled by k(−) and µ in EDL(k(−), µ, r),
the differential mode density dρ(K) is given simply by

dρ(K) = d3k(−) = n3K2dKdΩ(κ̂(−)) , (152)
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with the solid angle dΩ(κ̂(−)) = dκxdκy/κz in the direction of the unit prop-
agation vector κ̂(−). Substituting (151) and (152) into (138) and integrating
over dK, the differential transition probability dΓ is given by

dΓ−(κ̂(−), µ) =

⎧⎪⎨
⎪⎩

dΓ
(h)
− (κ̂(−), µ) for 0 ≤ κ‖ < 1/n ,

dΓ
(t)
− (κ̂(−), µ) for (1/n) ≤ κ‖ < 1 ,

(153)

dΓ
(h)
− (κ̂(−), µ)

=
(

2πn3K2

�2

)
V

(T)∗
fi (K(−), µ)V (T)

fi (K(−), µ)dΩ(κ̂(−)) , (154)

dΓ
(t)
− (κ̂(−), µ)

=
(

2πn3K2

�2

)
V

(T)∗
fi (K(+), µ)V (T)

fi (K(−), µ)dΩ(κ̂(−)) . (155)

Here, dΓ
(h)
− and dΓ

(t)
− indicate the probability of homogeneous photon emis-

sion and evanescent photon emission, respectively. Substituting (151) into
(154) and (155), respectively, these are obtained as

dΓ
(h)
− (κ̂(−), µ) =

(
K3

8π2�ε0

)[
(dfi)∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
× nT 2

L(sz, µ)dΩ(κ̂(−)) , (156)

dΓ
(t)
− (κ̂(−), µ) =

(
K3

8π2�ε0

)[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
× nTL(−sz, µ)TL(sz, µ) exp (2iKszZ) dΩ(κ̂(−)) . (157)

5.6 Radiative Decay Rate and Lifetime of Electric Dipole
in Half-Space

The probability of spontaneous photon emission into the right half-space from
the atom exerting transition from the initial state |ϕi〉 to the final state |ϕf 〉
is obtained by integrating dΓ+ over A+, and summing up dΓ+ for all the
possible polarizations of radiation, µ. The result is given by the sum of two
components,

Γ+ = Γ
(h)
+ + Γ

(c)
+ , (158)

where Γ
(h)
+ and Γ

(c)
+ are calculated, respectively, by integrating (147) and

(148) over dsx and dsy (0 ≤ s‖ < 1);
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Γ
(h)
+ =

(
K3

8π2�ε0

) 2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
{[

(dfi)∗ · ε̂(ŝ(+), µ)
] [

ε̂(ŝ(+), µ) · dfi

]
+
[
(dfi)∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
R2

R(sz, µ)
}

, (159)

Γ
(c)
+ =

(
K3

4π2�ε0

)

e

{
2∑

µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε(ŝ(−), µ) · dfi

]
RR(sz, µ) exp (2iKszZ)

}
. (160)

On the other hand, the probability of spontaneous emission into the left
half-space is obtained by integrating dΓ− over A−, and summing up dΓ− for
all the possible polarizations, µ. The result is given also as the sum of two
components,

Γ− = Γ
(h)
− + Γ

(t)
− , (161)

where Γ
(h)
− and Γ

(t)
− are calculated by integrating (156) and (157);

Γ
(h)
− =

(
K3

8π2�ε0

) 2∑
µ=1

∫ ∫
0≤κ‖<1/n

dκxdκy
1
κz

×
[
(dfi)∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
nT 2

L(sz, µ) , (162)

Γ
(t)
− =

(
K3

8π2�ε0

) 2∑
µ=1

∫ ∫
(1/n)≤κ‖<n

dκxdκy
1
κz

×
[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
× nTL(−sz, µ)TL(sz, µ) exp (2iKszZ) . (163)

These results can be transformed, respectively, to the integrals with respect
to dsx and dsy with the use of (68) and (69). The results are as follows;

Γ
(h)
− =

(
K3

8π2�ε0

) 2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
[
(dfi)∗ · ε̂(ŝ(−), µ)

] [
ε̂(ŝ(−), µ) · dfi

] [
1 − R2

R(sz, µ)
]

, (164)

Γ
(t)
− =

(
K3

4π2�ε0

)

e

{
2∑

µ=1

∫ ∫
1≤s‖<n

dsxdsy
1
sz

×
[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(−), µ) · dfi

]
RR(sz, µ) exp (2iKszZ)

}
, (165)
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where we have used (100), (103), and the relation between TL and TR,

TL(sz, µ) =
(

nκz

sz

)
TR(sz, µ) . (166)

Since the radiated power per second, I, is related to the photon-emission
probability, or the radiative decay rate of the excited atom as I = �KΓ , the
results with the full quantum treatment given in (159), (160), (164) and (165)
can be related, respectively, to the results of classical treatment as

�KΓ
(h)
± → I

(h)
± , �KΓ

(c)
+ → I

(c)
+ , �KΓ

(t)
− → I

(t)
− .

Here, it is understood that Γ
(h)
+ + Γ

(h)
− corresponds to the probability of the

spontaneous emission, or the spontaneous decay rate of the atomic excited
state, in vacuum, because I

(h)
+ +I

(h)
− gives the total power per second radiated

from the excited atom in vacuum as shown in Sect. 4.5. There arise additional
terms in the spontaneous decay rate in the half-space problem; Γ

(c)
+ is due

to the interference between the direct and reflected waves propagating in the
right half-space, and Γ

(t)
− corresponds to the tunneling energy transport from

the excited atom to the dielectric medium via evanescent waves. It is stressed
that the latter shows one of the most important results of the optical near-
field interactions of atoms with a dielectric surface. Therefore, the probability
of a photon emission, or the spontaneous decay rate, is represented as the
sum of the free-space term and the half-space correction by

Γ = Γ+ + Γ− = Γ (0) + ∆Γ , (167)

where

Γ (0) = Γ
(h)
+ + Γ

(h)
− , (168)

∆Γ = Γ
(c)
+ + Γ

(t)
− . (169)

Γ (0) indicates the probability of photon emission in vacuum, and ∆Γ its half-
space correction due to atom–surface interactions. ∆Γ , in turn, is composed
of Γ

(c)
+ as the correction due to interference and Γ

(t)
− as that due to the

tunneling. Substituting (159) and (164) into (168) and replacing the variables
of integration dsx and dsy by α and β according to sx = sin α cos β and
sy = sin α sin β, we obtain the angular-spectrum representation of Γ (0) as

Γ (0) =
(

K3

8π2�ε0

) 2∑
µ=1

∫ π

0
sin αdα

∫ 2π

0
dβ

×
[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε̂(ŝ(+), µ) · dfi

]
. (170)
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In the same way, we obtain the angular-spectrum representation of (160)
and (165), respectively, as follows;

Γ
(c)
+ =

(
K3

4π2�ε0

)

e

{
2∑

µ=1

∫ π/2

0
sin αdα

∫ 2π

0
dβ

×
[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε(ŝ(−), µ) · dfi

]
RR(sz, µ) exp (2iKszZ)

}
, (171)

Γ
(t)
− =

(
K3

4π2�ε0

)

e

{
2∑

µ=1

∫ π/2−iγc

π/2
sin αdα

∫ 2π

0
dβ

×
[
(dfi)∗ · ε̂(ŝ(+), µ)

] [
ε(ŝ(−), µ) · dfi

]
RR(sz, µ) exp (2iKszZ)

}
. (172)

5.7 Dependence of Radiative Lifetime on Magnetic Quantum
Number of Atom in Half-Space Problems

It is useful to describe the electric dipole operator in terms of spherical basis
êq (q = ±1, 0), as

d =
+1∑

q=−1

(−1)qd(1)
q ê−q . (173)

With these expansion coefficients, the transition matrix element of the electric
dipole moment of atom, dfi, is represented as

dfi =
+1∑

q=−1

(−1)q 〈f | d(1)
q |i〉 ê−q . (174)

Substituting this into (170) and using the representations of the polarization
vectors, ε̂(ŝ(+), µ), given in (48) and (49), we obtain

Γ (0) =
(

K3

3π�ε0

) +1∑
q=−1

∣∣∣〈f | d(1)
q |i〉

∣∣∣2 =
K3 |dfi|2

3π�ε0
. (175)

Summing up Γ (0) over all the possible atomic final states, we obtain the
radiative decay rate of the atomic initial state |ϕi〉 being equivalent to the
classical result given in (35). Substititing (174) into (171) and (172) and
using the representations of the polarization vectors, ε̂(ŝ(±), µ), we obtain
the half-space corrections of the radiative decay rate as

Γ
(c)
+ =

(
K3

2π�ε0

)[(∣∣∣〈f | d(1)
+1 |i〉

∣∣∣2 +
∣∣∣〈f | d(1)

−1 |i〉
∣∣∣2) I

(c)
1

+
∣∣∣〈f | d(1)

0 |i〉
∣∣∣2 I

(c)
0

]
, (176)
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Γ
(t)
− =

(
K3

2π�ε0

)[(∣∣∣〈f | d(1)
+1 |i〉

∣∣∣2 +
∣∣∣〈f | d(1)

−1 |i〉
∣∣∣2) I

(t)
1

+
∣∣∣〈f | d(1)

0 |i〉
∣∣∣2 I

(t)
0

]
, (177)

where

I
(c)
1 =

∫ 1

0
dsz

1
2
[
RR(sz, 1) − s2

zRR(sz, 2)
]
cos(2KszZ) , (178)

I
(c)
0 =

∫ 1

0
dsz(1 − s2

z)RR(sz, 2) cos(2KszZ) , (179)

I
(t)
1 =

∫ √
n2−1

0
dξz

1
2

[�m {RR(iξz, 1)}

+ξ2
z�m {RR(iξz, 2)}] exp (−2KξzZ) , (180)

I
(t)
0 =

∫ √
n2−1

0
dξz

(
1 + ξ2

z

)�m {RR(iξz, 2)} exp (−2KξzZ) . (181)

Here, we consider the initial state as an atomic excited state without spin
described by

|ϕi〉 = |ni, �i, mi〉 , (182)

where �i indicates the angular momentum, mi the magnetic quantum number,
and ni the other quantum number characterizing the atomic excited state.
We also describe the final state as

|ϕf 〉 = |nf , �f , mf 〉 . (183)

According to the Wigner–Eckart theorem, the matrix element of the elec-
tric dipole operator can be evaluated as∣∣∣〈nf , �f , mf | d(1)

q |ni, �i, mi〉
∣∣∣2

= 〈�i, 1; mi, q| �i, 1; �f , mf 〉2
∣∣〈nf , �f ||d(1)||ni, �i

〉∣∣2
2�f + 1

, (184)

where 〈�i, 1; mi, q| �i, 1; �f , mf 〉 indicates Clebsch–Gordan coefficient [30].
Summing up the probability over all the possible values of mf for a given mi,
we have the total probability of photon emission at a given frequency from
the initial state of the atom. For an atom in free space the result is given by

Γ (0)(ni, �i → nf , �f ) =
(

K3

3π�ε0

) ∣∣〈nf , �f ||d(1)||ni, �i

〉∣∣2
(2�i + 1)

. (185)
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It is noted that the Γ (0) is independent of the initial value of mi because of
spatial isotropy. The summation is carried out by using the formula;∑

mf

∑
q

∣∣∣〈nf , �f , mf | d(1)
q |ni, �i, mi〉

∣∣∣2

=
1

2�i + 1

∣∣∣〈nf , �f ||d(1)||ni, �i

〉∣∣∣2 . (186)

On the other hand, summing up the probability of (176) and (177) over all
the possible values of mf for a given mi, we obtain for the half-space problem;

Γ
(c)
+ (ni, �i, mi → nf , �f ) =

3
2
Γ 0(ni, �i → nf , �f )

×
{

I
(c)
1 +

(
2�i + 1
2�f + 1

)
〈�i, 1; mi, 0| �i, 1; �f , mi〉2 (I(c)

0 − I
(c)
1 )

}
, (187)

Γ
(t)
− (ni, �i, mi → nf , �f ) =

3
2
Γ 0(ni, �i → nf , �f )

×
{

I
(t)
1 +

(
2�i + 1
2�f + 1

)
〈�i, 1; mi, 0| �i, 1; �f , mi〉2 (I(t)

0 − I
(t)
1 )

}
. (188)

It is emphasized that these results depend on the initial value of mi because
spatial anisotropy is introduced in half-space problems.

As a special case, we will consider photon emission associated with an
atomic transition into the final state with �f = �i − 1. The resulting Γ

(c)
+ and

Γ
(t)
− involve the coefficient

〈�i, 1; mi, 0| �i, 1; �i − 1, mi〉 = −
√

(�i + mi)(�i − mi)
�i(2�i + 1)

. (189)

As a useful example, we show the results for Γ
(c)
+ and Γ

(t)
− corresponding to

the atomic transition from the initial state with �i = 1, mi = ±1 to the final
state with �f = 0;

Γ
(c)
+ (ni, 1,±1 → nf , 0) =

3
2
Γ 0(ni, 1 → nf , 0)

×
∫ 1

0
dsz

1
2
[
RR(sz, 1) − s2

zRR(sz, 2)
]
cos (2KszZ) , (190)

Γ
(t)
− (ni, 1,±1 → nf , 0) =

3
2
Γ 0(ni, 1 → nf , 0)

×
∫ √

n2−1

0
dξz

1
2

[�m {RR(iξz, 1)}

+ξ2
z�m {RR(iξz, 2)}] exp (−2KξzZ) . (191)
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Fig. 20. Normalized spontaneous emission probability calculated as the function of
the normalized distance KZ between the dipole and the dielectric surface for the
atomic transition from the initial state with �i = 1, mi = ±1 to the final state with
�f = 0. (a) Γ

(t)
− normalized by Γ 0(ni, 1 → nf , 0) corresponding to the interaction

with evanescent waves involved in the L-detector mode. (b) Γ
(c)
− normalized by

Γ 0 corresponding to the interaction with homogeneouse waves involved in the R-
detector mode. (c) ∆Γ normalized by Γ 0

For the atomic transition from the initial state with �i = 1, mi = 0 to the
final state with �f = 0, we obtain

Γ
(c)
+ (ni, 1, 0 → nf , 0) =

3
2
Γ 0(ni, 1 → nf , 0)

×
∫ 1

0
dsz

(
1 − s2

z

)
RR(sz, 2) cos (2KszZ) , (192)

Γ
(t)
− (ni, 1, 0 → nf , 0) =

3
2
Γ 0(ni, 1 → nf , 0)

×
∫ √

n2−1

0
dξz

(
1 + ξ2

z

)�m {RR(iξz, 2)} exp (−2KξzZ) . (193)

We show in Fig. 20 the numerical results of Γ
(c)
+ and Γ

(t)
− as a function of the

normalized distance KZ between the atom and the dielectric surface. The
results are calculated for the atomic transition from the initial state with
�i = 1 and mi = ±1 to the final state with �f = 0. This corresponds to the
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Fig. 21. Normalized spontaneous emission probability as a function of the normal-
ized distance KZ calculated for the atomic transition from the initial state with
�i = 1, mi = 0 to the final state with �f = 0. The curves a, b, c indicate, respectively,
Γ

(t)
− , Γ

(c)
+ , and Γ

(t)
− + Γ

(c)
+ , normalized by Γ 0

orientation of the classical point dipole in the direction parallel to the planar
boundary. The refractive index of the medium is assumed as n = 1.45. The
spontaneous decay rates are normalized by the probability of spontaneous
emission in free space (vacuum), Γ 0(ni, 1 → nf , 0). The curve a corresponds
to the interaction between the atomic dipole and the evanescent wave in-
volved in the L-detector mode. This process corresponds to the tunnnering
of excitation due to the coupling via evanescent waves. The curve b corre-
sponds to the interaction between the atomic dipole and the homogeneous
wave involved in the R-detector mode. This process showing an oscillation
of the decay rate corresponds to the interference between the direct radia-
tion of the dipole into the right half-space and the reflected radiation of the
dipole from the dielectric surface. The curve c corresponds to ∆Γ given as
the sum of the results shown in the curves a and b. The results show that the
normalized Γ

(t)
− is strongly enhanced in the near-field regime.

Figure 21 shows the results calculated for the atomic transition from the
initial state with �i = 1 and mi = 0 to the final state with �f = 0. This
corresponds to the orientation of the classical point dipole in the direction
perpendicular to the planar boundary. The refractive index of the medium is
also n = 1.45. The normalized value of Γ

(t)
− for mi = 0 is larger than that

calculated for mi = ±1.
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These results are especially useful when we investigate the spin polariza-
tion or manipulation of atoms by means of optical excitation and spontaneous
emission near a dielectric surface. Such a process in free space is well known
as optical pumping, which produces atomic spin polarization by means of a
repeated cycle of optical excitation with circularly polarized light followed by
spontaneous emission into isotropic space. The optical pumping in free space
corresponds to a transfer of angular momentum from optical fields to atoms.
The optical pumping in the near-field regime corresponds to a transfer of
angular pseudomomentum of optical fields to atoms.

6 Quantum Theory of Multipole Radiation
in Optical Near-Field Regime

In this section we extend our study into quantum optical theory of multipole
radiation in optical near fields based on the detector mode we have developed
in the previous sections for half-space problems. One of the most important
results derived in the following is that multipole radiations are strongly en-
hanced when they are placed in the optical near field of matter. Indeed the
near-field enhancement of the radiative decay rate of electric dipoles investi-
gated in the previous sections is a very interesting and remarkable property
from the viewpoints of both the tunneling of optical excitation and cavity
QED, but the basic characteristics are still under the influence of ordinary
radiation of homogeneous waves. In contrast, multipole processes in free space
involve very small amplitude of radiation into far field due to interaction with
propagating waves, so that an optical near-field enhancement of the multipole
radiation plays the dominant role in near-field interactions of the multipole
with its environment without significant loss of excitation energy radiated
into far fields. In particular, an electric quadrupole is excited in a mesoscopic
electronic system where nonlocal properties play an important role, or in
other words a finite spatial extension of the electronic wave function man-
ifests itself in interactions with local electromagnetic fields, its interaction
in the near-field regime is as strong as electric-dipole interactions, whereas
the radiation loss into far field is still suppressed since the system maintains
the nature of the quadrupole when observed from the far-field region. This
property is critical if we consider an optical near-field device that exerts its
function in terms of optical near-field excitation transfer between electronic
two-level systems of mesoscopic nature, such as a pair of quantum dots or
molecules. Provided that an electric quadrupole interaction is employed, the
local optical near-field coupling in such a device maintains the well-defined
meaning even if one considers the system within a restricted space of subwave-
length size. Therefore, the study of optical multipole radiation in near field
provides an important basis in considerations of nanometer-sized electronic
devices in terms of optical near-field interactions.
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6.1 Multipole Transition Matrix Elements

In this section, we will consider the spontaneous emission of electric and mag-
netic multipoles near a planar dielectric surface. Without losing generality,
we consider an excited atomic two-level system as an example. Here, we start
with the generalized form of electromagnetic interactions, which is basically
similar to (135);

Vfi(t) = −e

∫
〈D, 1| Â(r0 + R, t) |0〉 · jfi(r0, t)d3x0 , (194)

where jfi(r0, t) = (1/me) 〈ϕf (r0, t)|p0 |ϕi(r0, t)〉 is the transition current
associated with the radiative transition in the atomic two-level system from
the initial state |ϕi〉 to the final state |ϕf 〉.

Employing the half-space system similar to that assumed in the previous
section, we consider a single-photon emission process into the half-space of the
vacuum side, where the state of the photon radiated is described by using the
R detector mode alone. The R detector mode involves only the homogeneous
waves, since 0 ≤ s‖ < 1 corresponding to our assumption that a propagating
wave is coupled with a photodetector in the far-field region. The atom placed
in the vacuum side at Z > 0 interacts with two wave components E(I)

DR and
E(R)

DR belonging to the R detector mode. We obtain the time-independent ma-
trix element for spontaneous photon emission into the mode with wavevector
K(+) and polarization µ in the form of (140), as follows;

V
(I)
fi (K(+), µ) = −ie

[
�

2(2π)3Kε0

]1/2

×
[
ε̂(ŝ(+), µ) · jfi(Kŝ(+))

]
exp(−iKŝ(+) · R) , (195)

V
(R)
fi (K(−), µ) = −ie

[
�

2(2π)3Kε0

]1/2

×
[
ε̂(ŝ(−), µ) · jfi(Kŝ(−))

]
RR(sz, µ) exp(−iKŝ(−) · R) . (196)

Here, we have used the Fourier component of the transition current defined by

jfi(Kŝ(±)) =
∫

d3x0 exp(−iKŝ(±) · r0)jfi(r0) . (197)

For a single-photon emission into the half-space of the medium side, the
state of the photon is described by the L detector mode alone. The atom
placed at Z > 0 in the vacuum side interacts with the component E(T)

DL of the
L detector mode, and the time-independent matrix element for spontaneous
photon emission into the mode labelled by k(−), µ is obtained in the form of
(150) with
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V
(T)
fi (K(−), µ) = −i

e

n

[
�

2(2π)3Kε0

]1/2

×
[
ε̂(ŝ(−), µ) · jfi(Kŝ(−))

]
TL(sz, µ) exp(−iKŝ(−) · R) . (198)

It is noted that the atom interacts with homogeneous waves for 0 ≤ κ‖ < 1/n
and with evanescent waves for 1/n ≤ κ‖ < 1.

In order to evaluate the probability of multipole radiation, we introduce
the multipole expansion of the transition current given by

jfi(Kŝ(±)) =
3∑

λ=1

∑
j,m

′
Y

(λ)
j,m(ŝ(±))Jfi(λ, K, j,−m) , (199)

where Jfi(λ, K, j,−m) are the expansion coefficients defined by

Jfi(λ, K, j,−m) =
∫

U
(λ)∗
K,j,m(r0) · jfi(r0)d3x0 , (200)

with Y
(λ)
j,m(ŝ(±)) and U

(λ)∗
K,j,m(r), respectively, the momentum and position

representations of vector spherical waves introduced in Appendix A. The
multipole expansion of (199) can be obtained by using (251) in Appendix B.
These vector mode functions are specified by parity λ, λ = 1 for Electric,
λ = 2 for Magnetic, or λ = 3 for Longitudinal, wave number K, total angular
momentum j, and its z projection, i.e., magnetic quantum number, m. The
scalar product of the polarization vector and the Fourier component of the
transition current can be rewritten as

ε̂(ŝ(±), µ) · jfi(Kŝ(±)) =
2∑

λ=1

∑
j

∑
m

f
(λ)
j,m(ŝ(±), µ)Jfi(λ, K, j,−m) , (201)

with the expansion coeffcients defined as shown in Appendix B as

f
(λ)
j,m(ŝ(±), µ) = ε̂(ŝ(±), µ) · Y

(λ)
j,m(ŝ(±)) . (202)

It is noted that f
(3)
j,m(ŝ(±), µ) = 0 for µ = 1, 2, so that the photon-emission

processes are irrelevant to the longitudinal component of λ = 3. According
to (262) and (265) given in Appendix C, (200) can be represented as

Jfi(λ, K, j,−m) = (−1)j+m+λ ij+λ+1

×
√

4π

√
(2j + 1)(j + 1)

j

Kj

(2j + 1)!!
Qfi(λ, j,−m) , (203)

where λ = 1, 2, and Qfi(λ, j,−m) indicates the 2J -pole moments correspond-
ing to the transition defined by (263) and (266) in Appendix C.
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Now we consider the spontaneous-emission probability for the well-defined
photonic final state with the angular momentum j, its z projection m, and
parity λ, λ = 1 for Electric, λ = 2 for Magnetic. The replacement

ε̂(ŝ(±), µ) · jfi(Kŝ(±)) → f
(λ)
j,m(ŝ(±), µ)Jfi(λ, K, j,−m) (204)

and substitution of (195) and (196) into (145) and (146) yield dΓ
(h)
+ and

dΓ
(c)
+ as follows;

dΓ
(h)
+ (ŝ(+), µ) = Γ (0)(λ, j,−m)

{
f

(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(+), µ)

+f
(λ)∗
j,m (ŝ(−), µ)f (λ)

j,m(ŝ(−), µ)R2
R(sz, µ)

}
dΩ(ŝ(+)) , (205)

dΓ
(c)
+ (ŝ(+), µ) = 2Γ (0)(λ, j,−m)
e

{
f

(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(−), µ)

× RR(sz, µ) exp(2iKszZ)
}

dΩ(ŝ(+)) , (206)

where ρ = KZ is the normalized atom-to-boundary distance and

Γ (0)(λ, j,−m)

=
1

4πε0�

2(2j + 1)(j + 1)
j [(2j + 1)!!]2

K2j+1e2 |Qfi(λ, j,−m)|2 . (207)

Substituting (198) into (154) and (155), we obtain the differential transi-
tion probability corresponding, respectively, to the radiation of homogeneous
photon, dΓ

(h)
− , and the photon tunneling via evanescent waves, dΓ

(t)
− , as fol-

lows;

dΓ
(h)
− (κ̂(−), µ) = Γ (0)(λ, j,−m)f (λ)∗

j,m (ŝ(−), µ)f (λ)
j,m(ŝ(−), µ)

× nT 2
L(sz, µ)dΩ(κ̂(−)) , (208)

dΓ
(t)
− (κ̂(−), µ) = Γ (0)(λ, j,−m)f (λ)∗

j,m (ŝ(+), µ)f (λ)
j,m(ŝ(−), µ)

× nTL(−sz, µ)TL(sz, µ) exp(2iKszZ)dΩ(κ̂(−)) . (209)

6.2 Spontaneous Decay Rate of Multipoles in Half-Space

The probability of spontaneous emission into the right half-space associated
with the atomic transition from the initial

∣∣ϕi

〉
to final

∣∣ϕf

〉
states is obtained

by integrating dΓ+ over the hemisphere A+, and summing up the contribu-
tions from all the polarizations µ. According to (158), the result is described
as the sum of the radiation probability Γ

(h)
+ and its modulation Γ

(c)
+ due to

interference as follows;
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Γ
(h)
+ = Γ (0)(λ, j,−m)

2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

×
[
f

(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(+), µ)

+f
(λ)∗
j,m (ŝ(−), µ)f (λ)

j,m(ŝ(−), µ)R2
R(sz, µ)

]
, (210)

Γ
(c)
+ = 2Γ (0)(λ, j,−m)
e

{
2∑

µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

× f
(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(−), µ)RR(sz, µ) exp(2iKszZ)

}
. (211)

On the other hand, the probability of spontaneous emission into the left
half-space is obtained by integrating dΓ− over A−, and summing up all the
polarization conponents µ. The result is described as the sum of two com-
ponents according to (161); one is due to radiation of homogeneous waves
Γ

(h)
− and the other is due to radiation of evanescent waves interpreted as an

optical excitation tunneling Γ
(t)
− given, respectively, by

Γ
(h)
− = Γ (0)(λ, j,−m)

2∑
µ=1

∫ ∫
0≤s‖<1

dsxdsy
1
sz

× f
(λ)∗
j,m (ŝ(−), µ)f (λ)

j,m(ŝ(−), µ)
[
1 − R2

R(sz, µ)
]

, (212)

Γ
(t)
− = 2Γ (0)(λ, j,−m)
e

{
2∑

µ=1

∫ ∫
1≤s‖<n

dsxdsy
1
sz

× f
(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(−), µ)RR(sz, µ) exp(2iKszZ)

}
.(213)

The probability of spontaneous emission, i.e., the decay rate of excited
multipoles, in half-space is enhanced compared with that in free space Γ (0)

by ∆Γ given by (169). Substituting (210) and (212) into (168), and replacing
variables of integration dsx and dsy by α and β under the transform sx =
sin α cos β and sy = sin α sin β, we obtain Γ (0) for multipole radiation as

Γ (0) = Γ
(h)
+ + Γ

(h)
− = Γ (0)(λ, j,−m) , (214)

where we have utilized the following narmalization condition of vector spher-
ical harmonics;

2∑
µ=1

∫ π

0
sin αdα

∫ 2π

0
dβf

(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(+), µ) = 1 for λ = 1, 2 .

(215)
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Equation (214) corresponds to the spontaneous-emission rate Γ (0) in free
space obtained in the limit of n→1 because Γ

(c)
+ = Γ

(t)
− = 0 for RR(sz, µ)→0.

Equations (211) and (213) can be transformed, respectively, as

Γ
(c)
+ = 2Γ (0)(λ, j,−m)
e

{
2∑

µ=1

∫ π/2

0
sin αdα

∫ 2π

0
dβ

× f
(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(−), µ)RR(sz, µ) exp(2iKszZ)

}
, (216)

Γ
(t)
− = 2Γ (0)(λ, j,−m)
e

{
2∑

µ=1

∫ (π/2)−iγc

π/2
sin αdα

∫ 2π

0
dβ

× f
(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(−), µ)RR(sz, µ) exp(2iKszZ)

}
.(217)

According to (169), the optical near-field enhancement of the spontaneous
decay rate of an atomic multipole ∆Γ is given by

∆Γ = 2Γ (0)(λ, j,−m)
e

{
2∑

µ=1

∫ (π/2)−iγc

0
sin αdα

∫ 2π

0
dβ

× f
(λ)∗
j,m (ŝ(+), µ)f (λ)

j,m(ŝ(−), µ)RR(sz, µ) exp(2iKszZ)

}
.(218)

As a numerical example, the spontaneous-emission probability or sponta-
neous decay rate of an electric quadrupole is shown in Fig. 22 for the case
of the radiation corresponding to λ = 1 and j = 2, where the expansion
coefficients are given as follows;

f
(1)
2,m(ŝ(±), 1) = −i

(
5

16π

)1/2

× [− sin α exp(2iβ)δm,+2 ± cos α exp(iβ)δm,+1

± cos α exp(−iβ)δm,−1 + sin α exp(−2iβ)δm,−2] , (219)

f
(1)
2,m(ŝ(±), 2) = −

(
5

16π

)1/2

× [∓ sin α cos α exp(2iβ)δm,+2 − (1 − 2 cos α2) exp(iβ)δm,+1

±
√

6 sinα cos αδm,0 + (1 − 2 cos2 α) exp(−iβ)δm,−1

∓ sin α cos α exp(−2iβ)δm,−2] . (220)

As we discussed in the previous sections, the enhancement and modulation of
spontaneous emission in half-space problems are due, respectively, to the in-
terference of propagating waves in R-detector mode and the excitation trans-
fer via evanescent waves in L-detector mode.
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Fig. 22. Numerical results of normalized spontaneous-emission probability from the
atomic quadrupole as a function of the normalized distance KZ. The orientation of
the atomic quadrupole is indicated for each curve with respect to the quantization
axis normal to the surface

As an example of a numerical result, we show in Fig. 22 the normal-
ized spontaneous-emission probability calculated for the atomic quadrupole
radiation near a planar dielectric surface with refractive index n = 1.6. As
indicated in the figure, each curve corresponds to a different orientation of
the atomic quadrupole with respect to the quantization axis normal to the
surface. The interaction between the atomic quadrupole and the evanescent
wave involved in the L-detector mode is strongly enhanced in the near-field
regime, KZ < 1. The oscillation of the result observed for KZ > 1 is due to
the interference between the direct and reflected radiation from the atomic
quadrupole corresponding to the interaction with the homogeneous wave invo
lved in the R-detector mode.

It is instructive to evaluate ∆Γ in the far-field limit, (KZ � 1) corre-
sponding to large atom-to-surface distances, where the integrand of (216) is
rapidly oscillating due to the phase factor 2KszZ. Therefore, in this limit,
we obtain Γ

(c)
+ → 0. Also, since the interaction via evanescent waves is weak-

ened by exp(−2K|sz|Z) in (217), Γ
(t)
− → 0 in the far-field limit. In this

way, the spontaneous decay rate of atomic multipoles in half-space problems
approaches the value in free space in the far-field limit.
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It should be noted that, according to the results obtained in the above,
high-order multipoles exert stronger coupling with evanescent waves involved
in L-detector mode during optical near-field interaction.

It is also noted that the theoretical treatments based on the detector
modes developed in this section are also applicable to problems with spherical
and cylindrical boundaries because of the use of angular-spectrum representa-
tion by which one can easily transform different representations utilizing the
analytic nature of the angular spectrum or introduction of evanescent waves.
Some examples of such transforms have been shown in the literature [29].

7 Tunneling Picture of Optical Near-Field Interactions

As we have discussed in the previous sections, the optical near-field interac-
tions associated with energy-transport processes can be described as a tun-
neling of excitation via evanescent electromagnetic fields. This picture is es-
pecially useful in the investigation of the fundamental processes involved in
optical near-field microscopy and nanometer-sized optoelectronic devices. In
this section, we will introduce the tunneling picture based on the calculation
of the Poynting vector of scattered fields using angular-spectrum representa-
tion of electromagnetic fields. Since the interacting objects are separated by
an assumed planar boundary in the angular-spectrum representation, we can
clearly evaluate the energy transfer between the objects in terms of the sur-
face integration of the Poynting vector over the boundary plane. This implies
that even in the optical near-field problems one can introduce a clear identi-
fication of optical source and sink, which provides us with the basis to inves-
tigate the signal transport and associated dissipation processes in the general
nano-optics devices. It is stressed that the energy transfer of the tunneling
regime takes place only through the overlap integral of evanescent waves with
the same penetration depth and pseudomomentum involved in the angular
spectra of scattered fields of interacting objects. In the following, we will
clarify the role of dissipation processes that actually determine the transport
of electromagnetic excitation. Generally speaking, it is the dissipation pro-
cess, or explicitly the assumed absorbing boundary and source distribution,
that determines the electromagnetic fields in numerical treatments of elec-
tromagnetic boundary problems, such as that based on the finite-difference
time-domain algorithum.

Tunneling phenomena of the electron are usually described in terms of
the tunneling current of Bardeen corresponding to the quantum-mechanical
transition current composed of a product of the electronic wave functions
defined in each half-space lying in the “right” and “left” of the potential
barrier including the common interaction region where the potential barrier
exists. The tunneling current provides the transition amplitude when it is
integrated over an arbitrary surface lying in the middle of the barrier re-
gion. According to the golden rule of Fermi, the probabilitiy of excitation
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Fig. 23. Angular-spectrum representa-
tion of scattered fields

transfer is determined not only by the transition amplitudes, but also by the
density of final states of the quantum-mechanical transition including both
the electronic and photonic states. In the case of electron tunneling such as
in scanning tunneling microscopes one actually considers a thermodynamical
open-system where one assumes the existence of reserves of different chemical
potentials corresponding to the bias across the tunnel barrier. In any case,
the tunneling process is irreversible due only to dissipation processes.

Optical near-field interactions can also be viewed as a tunneling phe-
nomenon when it is reduced to a one-dimensional problem, except for the
statistics of tunneling particles, based on the angular-spectrum representation
of scattered fields. In the case of the interactions between a pair of spatially
localized subwavelength-sized objects placed in a subwavelength vicinity to
each other, both the over-barrier transport of excitation via homogeneous
waves and tunneling of excitation via evanescent waves are involved in the
angular spectrum. In the tunneling regime the transport of electromagnetic
energy takes place through the coupling of evanescent waves each of which
is connected to the fields in the right or left half-space. In the optical case
the energy transport through the barrier region can be evaluated in terms
of the Poynting vector. Also in the case of optical excitations, the tunneling
processes are determined by both the density of the final state and the dis-
sipation process due to absorbers and photodetectors actually placed in the
near-field region or those assumed implicitly in the far-field region.

7.1 Energy Transport via Tunneling
in Optical Near-Field Interactions

To summarize the results obtained in the previous sections, the electromag-
netic fields scattered by a small dielectric object involve both homogeneous
and evanescent waves as described in the angular-spectrum representation
given by
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Es(r) =
(

iK3

8π2ε0

) 2∑
µ=1

∫ ∫ +∞

−∞
dsxdsy

1
sz

×
[
ε(ŝ(±), µ) · d(Kŝ(±))

]
ε(ŝ(±), µ) exp

(
iKŝ(±) · r

)
in R± . (221)

Here, d(Kŝ(±)) stands for the Fourier amplitude of the electric dipole induced
in the scatterer by the total electric field of the system, E;

d(Kŝ(±)) = ε0

∫
d3r′ exp(−iKŝ(±) · r′)χ(r′)E(r′) , (222)

where χ(r′) is the susceptibility of the dielectric object.
In general, the energy transport via optical near-field interactions of two

scatterers is described in terms of the Poynting vector as

I(t) = 2ε0

∫ ∫ +∞

−∞
dxdy
e {E1(r) × B∗

2(r) + E2(r) × B∗
1(r)} · êz ,

(223)

where E1 and E2 indicate the complex amplitudes of the scattered waves
from objects 1 and 2, respectively, and B1 and B2 are those of the associated
magnetic fields. We have shown that I(t) corresponds to the energy transfer
due to the coupling of two scatterers via evanescent waves. During energy
transfer the selection rule holds for the wavevectors parallel to the boundary
surface, which corresponds to the pseudomomentum conservation. This also
implies that such a tunneling energy transfer via evanescent waves of a certain
pseudomomentum is significant only when the distance between the scatterers
comes within the penetration depth of the evanescent waves. Regarding the
shape of the angular-spectrum of the scattered field, we can conclude that
the tunneling energy transfer is significant when two scatterers of about the
same size are placed at a distance similar to the sizes of the scatterers.

For the case of the interaction between a planar dielectric surface and
a small scatterer as illustrated in Fig. 24, E1 corresponds to a transmitted
wave produced directly from the incident wave with pseudomomentum Kŝi‖
from the left side of the boundary, and E2 a scattered wave from the small
object. We can describe I(t) as the product of the transmitted evanescent
wave and the evanescent wave with pseudomomentum Kŝi‖ involved in the
angular spectrum of E2;

I(t) = 
e

{
(−iK)TL(−siz, µi)

×
[
ε(ŝ(−)

i , µi) · d2(Kŝ
(−)
i )

]
exp(−iKŝ

(−)
i · R)

}
. (224)

The induced dipole d2 in the scatterer is expanded as

d2(Kŝ
(−)
i ) = d

(0)
2 (Kŝ

(−)
i ) + d

(1)
2 (Kŝ

(−)
i ) + d

(2)
2 (Kŝ

(−)
i ) + · · · , (225)
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Fig. 24. Tunneling energy
transfer between a planar and
a small scatterer

where d
(0)
2 is an induced dipole by the incident wave E1, which then induces

two image dipoles in the small scatterer, d
(1)
2 and d

(2)
2 . Substituting this into

(224) and considering each component, we can find the fundamental processes
involved in the interaction illustrated in Fig. 24. The component of I(t) re-
sulting from d

(0)
2 yields zero energy transfer. This can be understood from the

fact that the equiphase planes of evanescent waves are perpendicular to the
boundary plane, so that the reflection of the evanescent wave directly to the
induced dipole in the scatterer makes no difference to the total reflection at
the dielectric surface. Nonzero energy transfer results from the components of
I(t) due to d

(1)
2 and d

(2)
2 . For each component the corresponding interaction

process is schematically indicated in Fig. 24. The self-interaction resulting in
d

(1)
2 corresponds to the reorganization of induced electric dipole to produce

the self-consistent distributions of the fields and polarizations in the scatterer
of finite spatial extension. From the viewpoint of the angular-spectrum rep-
resentation, the small object scatters the incident evanescent wave into an
evanescent wave with different pseudomomentum, which, in turn, is scattered
by the small object into the propagating wave into the far-field region. In each
process of scattering, the small object receives the recoil momentum from the
scattered field according to the restricted conservation law of momentum in
the direction parallel to the dielectric surface. d

(2)
2 is due to the higher-order

interaction between the scatterer and the dielectric surface. Also in this case,
the scattering process is due to evanescent waves of different pseudomomenta
involved in the angular spectrum of the scattered field of the small object.
We have shown that the scattered field due to d

(1)
2 contributes to the mod-

ulation of the reflected fields via interference with the reflected incident field
d

(0)
2 . The scattered field due to d

(2)
2 contributes to the intensity reflected back

into the medium via the tunneling energy transfer. This process involves the
propagating wave with the same propagation direction as the totally reflected
incident wave at the boundary, which decreases the intensity of the reflected
light due to interference so as to maintain the energy conservation. In other
words, the contribution from d

(2)
2 is the counterpart of the radiation from the

small object. It is stressed that the nonzero tunneling energy transfer is due
to these image dipoles.
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For the case of the interaction between two small scatterers, we consider
E1 and E2 as the complex amplitude corresponding, respectively, to the
scattered waves from the scatterers 1 and 2. The tunneling energy transfer I(t)

is given by the coupling of evanescent waves with the same pseudomomentum
in the angular spectra of E1 and E2;

I(t) =
(

K4

4π2ε0

)

e

{
2∑

µ=1

∫ ∫
1≤s‖

dsxdsy

sz

[
ε(ŝ(+), µ) · d1(Kŝ(+))

]∗

×
[
ε(ŝ(−), µ) · d2(Kŝ(−))

]
exp

[
iKŝ(−) · (R1 − R2)

]}
. (226)

Only when some modulations of d1 are induced on d
(0)
1 by an additional

incoming wave due to near-field interactions with the environment in addition
to some dissipation processes, does the tunneling energy have a nonzero value,
which is actually due to the image dipoles d

(1)
2 and d

(2)
2 involved in d2.

7.2 Fundamental Process in Nano-Optics Device

The fundamental processes of the optical near-field interaction described by
(226) is illustrated in Fig. 25, which corresponds to a nanophotonic device ex-
erting its function via optical near-field excitation transfer between elements.
The tunneling picture developed in this chapter provides general bases for
investigations of such devices with a clear understanding of the important
role of dissipation in the process of the directional signal transport proper-
ties. As an example, we show in Fig. 26 a schematic diagram of a scanning
optical near-field microscope, where the fundamental processes involved are
described in a similar way to those in Fig. 25 by the scattering and interac-
tions between four major objects, i.e., a planar dielectric substrate, sample
object, probe tip, and tapered waveguide. It is again stressed that, even in
this case, the excitation transfer is determined by the dissipation process at
the sink and by transmission loss due to stray propagating fields scattered
into far field where sinks are assumed implicitly. The theoretical study in
this chapter provides us with sufficient description of the fundamental pro-
cesses to evaluate the entire process of near-field optical microscopes shown
in Fig. 26, as well as general nano-optics devices.

An extension of discussion of the multipole excitation is especially impor-
tant since the near-field interactions based on multipole transitions are less
dissipative with respect to the radiation in the far-field region, so that one can
find the meaning of local interaction via evanescent waves with higher wave
numbers and short penetration depths even in a narrow space of nanometer
size. Such a study provides the indispensable basis for investigation of the
functions of nanometer-sized electronic or optoelectronic devices in terms of
the signal transport and associated dissipation processes.
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SinkSource

Environment

Loss Loss

Tunneling

d1 d2

Fig. 25. Model of nanometer-sized optoelectronic device with the fundamental pro-
cesses of optical near-field interactions viewed as a tunneling energy transfer as well
as the dissipation processes that actually dominate the energy transport

Source

Sink

Sample Probe

Fig. 26. Fundamental processes of optical near-field microscopy viewed as a nano-
optoelectronic device: One can investigate the near-field interactions and dissipation
processes on the basis of the model device shown in Fig. 25

Appendices

A Vector Spherical Wave

The state of vector spherical waves is specified by using the following set of
parameters; parity λ with λ = 1 for Electric, λ = 2 for Magnetic, λ = 3
for Longitudinal, wave number K, total angular momentum j, and its z
projection m, i.e., magnetic quantum number [31–34]. The vector spherical
waves are defined in the momentum representation as

U
(λ)
K,j,m(K ′) =

(2π)3

K2 δ(K ′ − K)Y (λ)
j,m(ŝ′) , (227)

where the unit wavevector is ŝ′ = (K ′/K) and the vector spherical harmonics
are given by

Y
(1)
j,m(ŝ) =

K√
j(j + 1)

∇Y m
j (ŝ) , (228)

Y
(2)
j,m(ŝ) = −iK

ŝ × ∇√
j(j + 1)

Y m
j (ŝ) , (229)

Y
(3)
j,m(ŝ) = ŝY m

j (ŝ) , (230)
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with the spherical harmonic Y m
j and ∇ = ∂/(∂K) [35]. These orthogonality

relations are described as∫ π

0
sin αdα

∫ 2π

0
dβY

(λ)∗
j,m (ŝ) · Y

(λ′)
j′,m′(ŝ) = δλλ′δjj′δmm′ . (231)

In order to describe the states of polarization, it is convenient to introduce
the other representation of vector spherical harmonics defined by

Y
(1)
j,m(ŝ) =

√
j

2j + 1
Y j,j+1,m(ŝ) +

√
j + 1
2j + 1

Y j,j−1,m(ŝ) , (232)

Y
(2)
j,m(ŝ) = Y j,j,m(ŝ) , (233)

Y
(3)
j,m(ŝ) = −

√
j + 1
2j + 1

Y j,j+1,m(ŝ) +

√
j

2j + 1
Y j,j−1,m(ŝ) , (234)

where

Y j,�,m(ŝ) =
+1∑

µ=−1

〈�, 1; m − µ, µ| �, 1; j, m〉 Y m−µ
� (ŝ)êµ , (235)

with Clebsch–Gordan coefficients 〈�, 1; m − µ, µ| �, 1; j, m〉 describing the vec-
tor spherical harmonics specified by j and m as the composite state of the
electric multipole with � and the vector nature of electromagnetic fields with
spin 1.

The states of a photon in the spatial representation are obtained by

U
(λ)
K,j,m(r) =

1
(2π)3

∫
d3K ′ exp(iK ′ŝ′ · r)U (λ)

K,j,m(K ′) . (236)

It is useful to introduce the following spherical wave representation of plane
waves

exp(iKŝ · r) = 4π
+∞∑
�=0

+�∑
m=−�

i�j�(Kr)Y m
� (r̂)Y m∗

� (ŝ) , (237)

with unit vector r̂ = (r/r) and spherical Bessel function j�(Kr). Substituting
(227) and (237) into (236) and using the orthogonality relation of spherical
harmonics, one can obtain

U
(1)
K,j,m(r) = 4π

[
ij+1

√
j

2j + 1
jj+1(Kr)Y j,j+1,m(r̂)

+ij−1

√
j + 1
2j + 1

jj−1(Kr)Y j,j−1,m(r̂)

]
, (238)
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U
(2)
K,j,m(r) = 4πijjj(Kr)Y j,j,m(r̂) , (239)

U
(3)
K,j,m(r) = 4π

[
−ij+1

√
j + 1
2j + 1

jj+1(Kr)Y j,j+1,m(r̂)

+ij−1

√
j

2j + 1
jj−1(Kr)Y j,j−1,m(r̂)

]
. (240)

The orthogonality relation between photonic states in position representation
is given by∫

d3xU
(λ)∗
K,j,m(r) · U

(λ′)
K′,j′,m′(r) =

(2π)3

K2 δ(K − K ′)δλλ′δjj′δmm′ , (241)

for which the following relations hold;

U
(λ)
K,j,m(−r) = (−1)j+λU

(λ)
K,j,m(r) , (242)

U
(λ)∗
K,j,m(r) = (−1)j+m+1U

(λ)
K,j,−m(r) . (243)

It is also useful to introduce scalar spherical waves defined by

ΦK,j,m(r) = 4πijjj(Kr)Y m
j (r̂) , (244)

where the scalar spherical waves satisfy the following relation;

iKU
(3)
K,j,m(r) = ∇ΦK,j,m(r) , (245)

ΦK,j,m(−r) = (−1)jΦK,j,m(r) , (246)
Φ∗

K,j,m(r) = (−1)j+mΦK,j,−m(r) . (247)

B Expansion of the Vector Plane Wave in Terms
of the Vector Spherical Waves

Scalar plane waves are described in terms of the vector spherical waves
given by

exp(iKŝ · r) =
3∑

λ=1

∑
j,m

′
U

(λ)
K,j,m(r) ⊗ Y

(λ)∗
j,m (ŝ) , (248)

where the sum is taken as

∑
j,m

′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
j=1

+j∑
m=−j

for λ = 1, 2 ,

∞∑
j=0

+j∑
m=−j

for λ = 3 .

(249)
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Replacing ŝ in (248) by ŝ(±), we can obtain the expansion of vector evanes-
cent waves. The vector spherical harmonics with the argument ŝ(±) can be
obtained from the representation of (232)–(234). Replacing the unit wavevec-
tor ŝ in (248) by ŝ(∓)∗, we obtain

exp(iKŝ(∓)∗ · r) =
3∑

λ=1

∑
j,m

′
U

(λ)
K,j,m(r) ⊗ Y

(λ)∗
j,m (ŝ(∓)∗) , (250)

where the unit wavevector takes ŝ(−)∗ for z ≥ 0, and ŝ(+)∗ for z < 0. The
complex conjugate of (250) is given by

exp(−iKŝ(∓) · r) =
3∑

λ=1

∑
j,m

′
Y

(λ)
j,m(ŝ(∓)) ⊗ U

(λ)∗
K,j,m(r) , (251)

which leads to the expansion of vector plane waves in terms of vector spherical
waves as

ε̂(ŝ(∓), µ) exp(−iKŝ(∓) · r) =
2∑

λ=1

∑
j,m

f
(λ)
j,m(ŝ(∓), µ)U (λ)∗

K,j,m(r) , (252)

with expansion coefficients defined by

f
(λ)
j,m(ŝ(∓), µ) = ε̂(ŝ(∓), µ) · Y

(λ)
j,m(ŝ(∓)) . (253)

Here we have used ε̂(ŝ(∓), µ) · Y
(3)
j,m(ŝ(∓)) = 0.

C Multipole Expansion of Transition Current

We consider multipole expansion of transition current (given in (200));

Jfi(λ, K, j,−m) =
∫

d3xU
(λ)∗
K,j,m(r) · jfi(r) . (254)

Using the relation given in (243), we obtain

Jfi(λ, K, j,−m) = (−1)j+m+1
∫

d3xU
(λ)
K,j,−m(r) · jfi(r) . (255)

Electric Multipole. We will first evaluate (255) for λ = 1 correspond-
ing to electric multipole transitions. According to (242) the vector spherical
waves with λ = 1, 3 are the same in parity, so that Jfi(1, K, j, −m) can be
transformed by using (245) as

Jfi(1, K, j, −m) = (−1)j+m+1
∫

d3x

{
U

(1)
K,j,−m(r)

+ C

[
U

(3)
K,j,−m(r) − 1

iK
∇ΦK,j,−m(r)

]}
· jfi(r) , (256)
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where C is an arbitrary constant. If we assume the transition current jfi

satisfies the continuity equation as

∇ · jfi(r) = iKρfi(r) , (257)

we can refer to ρfi(r) as the transition density. Using the relation of (257) and
considering that ∇(Φρfi) vanishes as integrated over d3x, (256) is rewritten as

Jfi(1, K, j, −m) = (−1)j+m+1
∫

d3x

{
CΦK,j,−m(r)ρfi(r)

+
[
U

(1)
K,j,−m(r) + CU

(3)
K,j,−m(r)

]
· jfi(r)

}
, (258)

which corresponds to a gauge transform in electromagnetic interactions. When
C is chosen as

C = −
√

j + 1
j

, (259)

the spherical Bessel functions of order j − 1 involved in U
(1)
K,j,−m(r) and

U
(3)
K,j,−m(r) cancel each other out, so that there remains only the spherical

Bessel function of order j+1 that contributes to Jfi(1, K, j, −m) in the higher
order with respect to Ka than the scalar function Φ consisted of the spherical
Bessel function of order j. As a result, in the near-field regime Ka � 1, we
obtain

Jfi(1, K, j, −m) = (−1)j+m

√
j + 1

j

∫
d3xΦK,j,−m(r)ρfi(r) , (260)

where only the contributions from Kr � 1 are significant in the integration
with respect to d3x. Raplacing jj(Kr) by its lowest-order term of Kr as

jj(Kr) ∼ (Kr)j

(2j + 1)!!
, (261)

we obtain the transition current in the near-field regime as

Jfi(1, K, j, −m) =

(−1)j+m ij2
√

π

√
(2j + 1)(j + 1)

j

Kj

(2j + 1)!!
Qfi(1, j,−m) , (262)

where Qfi(1, j,−m) stands for the electric multipole transition moments de-
fined by

Qfi(1, j,−m) =
√

4π

2j + 1

∫
d3xrjY −m

j (r̂)ρfi(r) . (263)
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Magnetic Multipole. We evaluate (255) for λ = 2 corresponding to mag-
netic multipole transitions. Substituting (229) into (239) with replacement of
ŝ by r̂, the vector spherical wave for λ = 2 is obtained as

U
(2)
K,j,m(r) = −4πij+1jj(Kr)

r × ∇√
j(j + 1)

Y m
j (r̂) , (264)

where r = rr̂. Substituting this into (255) for λ = 2 and adopting (261) in
the near-field regime, we obtain the transition current for magnetic multipole
transitions as

Jfi(2, K, j, −m) = (−1)j+m+1 ij+1

× 2
√

π

√
(2j + 1)(j + 1)

j

Kj

(2j + 1)!!
Qfi(2, j,−m) , (265)

where we have introduced the magnetic multipole transition moments given by

Qfi(2, j,−m) =
1

(j + 1)

√
4π

2j + 1

∫
d3x [r × jfi(r)] · ∇ (

rjY −m
j (r̂)

)
.

(266)
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scanning near-field optical microscopy

84, 101
scanning tunneling microscope 11,

128, 189
scattered field 127–129, 132, 133,

139–142, 188–191
scattering-particle-type Kerr SNOM

10
screening 84, 86, 92, 93, 96, 99, 110,

121
SEMPA 1
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tunneling picture 133, 188, 192
tunneling process 132, 157, 159, 189
tunneling regime 133, 188, 189
Turner method 14
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