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PREFACE

Around the world, people are living longer. Health is rooted in everyday life and is
critical to the well-being and economics of society. Delivering personalized, qual-
ity healthcare in a timely manner and at affordable costs remain major challenges
in the United States and around the world. Fueled by rapid digital media advances,
healthcare systems in the 21st century are investing more in advanced sensors and
robotics, communication technologies, and sophisticated data centers. This facilitates
information and knowledge visibility and delivery standardization and performance
efficiency through big data analytics.

Meaningful information and knowledge extraction from diverse and rich health-
care data sets is an emergent critical area of research and development. In the general
practice of medicine, healthcare providers must be empowered with effective analyt-
ical methods and tools that enable and assist them in (i) handling rich data sets gener-
ated from genetic screening to specimen tests to patient monitoring to large-scale
hospital operations, (ii) extracting useful and meaningful information at different
granularities and across heterogeneous healthcare systems, and (iii) exploiting per-
tinent knowledge for optimization of processes and performance across healthcare
systems and the provision of personalized and effective healthcare services.

This book provides a brief overview of the state of the art in healthcare analyt-
ics development. It covers a collection of recent research advances in data-driven
healthcare analytics from biomedical and health informatics to healthcare simula-
tion and modeling to healthcare service science and medical decision making. The
book intends to serve as a reference for healthcare researchers, practitioners, and
students. In addition, through the chapters, those who are new to healthcare analyt-
ics can learn and understand how to apply analytical methods and tools to diverse
healthcare applications. The intended audience includes researchers, practitioners,
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xxii PREFACE

and graduate students in the healthcare/engineering fields of statistics, data science,
system engineering, operations research, and operations management, as well as in
biomedical engineering and computer science.

This book is organized into two parts: Part I covers biomedical and health infor-
matics (Chapters 1–8) and Part II focuses on healthcare delivery systems (Chapters
9–19). Specifically, Chapters 1 and 2 address the analytics of genomic and proteomic
data. Chapters 3 and 4 analyze physiological signals from patient monitoring sys-
tems. Chapter 5 handles data uncertainty in clinical laboratory tests. Chapter 6 covers
predictive modeling and presents its applications to a broad variety of clinical and
translational projects, while Chapter 7 focuses on predictive usage within radiation
oncology. Chapter 8 discusses disease modeling for sepsis.

Part II begins with discussion of system advances for transforming clinic workflow
and patient care (Chapter 9). Chapter 10 covers macroanalysis of patient flow distri-
bution. Chapter 11 covers intensive care units while Chapter 12 covers a case study
in primary care. Chapters 13 and 14 detail demand and resource allocation, while
Chapters 15 and 16 focus on mathematical models for predicting patient readmission
(Chapter 15) and postoperative outcome (Chapter 16). The last three chapters deal
with physician–patient interactions (Chapter 17), insurance claims (Chapter 18), and
the role of social media in healthcare (Chapter 19).

This book focuses primarily on data analytics from the field of Industrial Engineer-
ing and Operations Research methodologies drawing technologies from mathemati-
cal modeling, optimization, simulation, and computational methods that advance and
improve healthcare. Most of the analytic authors are affiliated with the INFORMS
community and are members of the healthcare applications society, data mining,
simulation, optimization, computing, quality, statistics, and reliability societies. The
chapters herein showcase the successful and close collaboration with the healthcare
and clinical experts. A rich source of healthcare analytics can be found in the triannual
INFORMS Healthcare Conference http://meetings.informs.org/healthcare2015.

At the time of the writing, big data analytics has attracted increasing attention in
a broad spectrum of research domains, including biomedical and healthcare areas,
where data arose from “omics”; imaging, laboratory, medical records, and operations
offer invaluable opportunities. We also note that a number of large-scale data repos-
itories have been established to accelerate the initiatives of big data to knowledge,
for example, the Human Connectome Project (www.neuroscienceblueprint.nih.gov/
connectome), the Cancer Genome Atlas (cancergenome.nih.gov), and the Physiome
Project (www.physiome.org), to name a few.

Lastly, we would like to thank all the authors for their contribution that result in a
high-quality book. We also gratefully acknowledge the support in part by the National
Science Foundation under Grants CMMI-1454012, CMMI-1266331, IOS-1146882,
and IIP-1447289 to editor H .Yang, and IIP-0832390, CNS-1138733, IIP-1361532,
and IIP-1516074 to editor E.K. Lee. Finally, we thank the support and encouragement
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1
RECENT DEVELOPMENT IN
METHODOLOGY FOR GENE
NETWORK PROBLEMS AND
INFERENCES

Sung W. Han and Hua Zhong
Division of Biostatistics, School of Medicine, Department of Population Health,
New York University, New York, NY, USA

1.1 INTRODUCTION

The cell inside of a human body is similar to a manufacturing system producing an
appropriate protein that functions according to the specific organ or the part of the
body to which it belongs. The nucleus centered at the cell contains the DNA sequence,
which is a designed map for the human body. Each time the cell produces a protein, it
duplicates a certain part of the DNA sequence and generates mRNA sequences. This
is called a transcription process. After leaving the nucleus, the mRNA is attached to a
ribosome, and the ribosome interprets the code in mRNA. This is called a translation
process. After interpretation, the ribosome generates a sequence of amino acids; then
it is folded into a certain type of protein.

The manufacturing system from DNAs to proteins sometimes malfunctions due to
the DNA damage, which is known to be a main cause of cancers, also called malig-
nant neoplasms [1, 2]. The DNA damage can occur naturally, but the damage can also
be caused by two groups of agents: (i) exogenous agents such as radiation, smoke
[3], ultraviolet light [4], and viruses [5]; and (ii) endogenous agents such as diet [6]
and macrophages/neutrophils [5]. Such DNA damage leads to epigenetic alteration

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
Edited by Hui Yang and Eva K. Lee.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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for DNA repair genes, which play the key roles in preventing cancer cell growth.
Reducing the DNA repair gene expression (DNA repair deficiency; [7]) or switching
off the function of the DNA repair gene, called silence, finally leads to the devel-
opment of cancers. For example, MGMT is the DNA repair gene, and most types of
colorectal cancers have reduced MGMT expression ([8–11], and [12]). The following
are other examples of proteins corresponding to DNA repair genes [1].

• BRCA1 and BRCA2 (breast cancer genes 1 and 2) for breast and ovarian
cancers.

• ATM (ataxia telangiectasia mutated) for leukemia and breast cancers.
• XPC (xeroderma pigmentosum) for skin cancers.
• p53 (Li–Fraumeni syndrome) for sarcoma, leukemia, breast, lung, skin, pan-

creas, and brain cancers.

In addition, the miRNA (micro RNA) outside of the nucleus is known to have an
effect on the DNA repair gene because it can reduce the expression of DNA damage
response genes or repair genes [1]. For example, miRNA-155 is overly expressed
in colon cancers, and it is known to reduce the expression of MLH1, a DNA repair
protein [13].

For finding the mechanism of cancer development, understanding the causal rela-
tionship in transcriptional regulatory networks is important, and the related inference
is often based on the gene network problem. The examples of the application of the
network problem are in gene expression analysis or gene–gene expression networks
[14–19], protein–protein interaction analysis [20, 21], phenotype networks utilizing
gene expression information [22–24], and causal networks linking gene expression
and metabolic change [24].

The probabilistic graphical modeling is a popular approach to find causal rela-
tionships between variables in cell signal pathways or gene networks [25]. In this
chapter, the graphical models are assumed to be directed acyclic graphs (DAGs), in
which all the edges are directed edges and contain no cycles [26]. Since the estimation
of DAGs is computationally very challenging, we cannot simply apply approaches
that are used to estimate undirected graphs [27–29]. First, DAGs with the same set
of conditional independence are not identifiable from observational data alone [26];
this is called observational equivalence. Second, the number of possible DAGs expo-
nentially increases as the number of nodes increases [27]. Third, in gene network
problems, the number of genes is much larger than the sample size, which is called
high-dimensional data.

The DAGs with conditional probability distribution for each child node given
its parents are called Bayesian networks. The comprehensive review about learning
Bayesian network is in Buntine [30, 31], Heckerman [32], Neapolitan [33], and Daly
et al. [34]. Apart from cancer gene problems, the Bayesian network is used in broad
applications such as ecology [35, 36], neuroscience [37, 38], distributed sensor net-
works for change detection, and diagnosis [39–41].

The main approaches to estimate the Bayesian networks are as follows:
(i) a score-and-search approach through the space of Bayesian network structures,
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(ii) a constraint-based approach that uses conditional independencies identified
in the data, and (iii) a hybrid approach. A score-and-search approach is to find a
structure corresponding to a good score function value [42] and use a heuristic
algorithm to find the solution. The examples of this approach are in Daly et al. [34].
A constraint-based approach is to use a statistical test of conditional independence on
the data. One of the efficient methods is the PC algorithm [43]. In high-dimensional
contexts, Kalisch and Buhlmann [44] proposed the PC algorithm with a reasonable
computational time [43] and proved consistency for sparse DAGs. Hybrid search
strategies including the above-mentioned two criteria have also been proposed such
as in Tsamardinos et al. [45], where the method used is a Max–Min Hill-Climbing
(MMHC) algorithm. The methods mentioned have been successfully proposed to
estimate DAGs with a small to moderate number of nodes.

For the score-and-search approach, a network is identified by maximizing a certain
score function [31, 33, 42, 46], and several heuristic search algorithms are then devel-
oped to find a high score [27, 34]. To overcome high dimensionality in gene expres-
sion data, the L1-penalized method or lasso approach has been recently developed.
Meinshausen and Buhlmann [28] theoretically show that the neighborhood of a node
corresponding to a conditional dependence set can be obtained by a lasso problem,
and it is efficient for high-dimensional DAGs. For DAGs, Shojaie and Michailidis
[29] used the L1-penalized likelihood with a structural equation model to estimate
directed graphs with a known variable order and found that such a problem was
transformed into separable subproblems with lasso penalty. Huang et al. [47] used a
penalized linear regression that imposes penalties to the coefficient values as well as
to acyclic constraints. Fu and Zhou [48] used an adaptive lasso-based score function
when the variable order is unknown. However, their objective function without the
acyclic constraint is nonconvex, which makes finding the optimal solution infeasible.
Han et al. [49] proposed the adaptive lasso-based score function, and it demonstrated
superior performance to other methods when the network has a hub structure. In this
chapter, we overview the approach based on the lasso-type score function for gene
network problems in high-dimensional data.

1.2 BACKGROUND

We explain the basic theoretical background in probabilistic graphical modeling or
Bayesian networks. Let us have p random variables, Y1, Y2,… ,Yp, and the variables
have causal relationships with each other. The variables and relationships in proba-
bilistic distribution need to be mapped to p nodes, V , and edge sets, E (⊂ V × V). In
other words, the separation in a graph needs to be mapped to the independence in
probability [50].

In probabilistic graphical modeling, the d-separation (directed separation) is an
important concept described by Pearl [26]. The definition of d-separation is compli-
cated, but it implies the following argument. Suppose we have three node sets V1, V2,
and V3. We define that V2 is a d-separate between V1 and V3 if one of the conditions
is satisfied:
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• All edges between V1 and V2 inflow from V1 to V2, and all edges between V2
and V3 inflow from V2 to V3.

• All edges between V1 and V2 inflow from V2 to V1, and all edges
between V2 and V3 inflow from V3 to V2.

• All edges between V1 and V2 inflow from V2 to V1, and all edges between V2
and V3 inflow from V2 to V3.

For all disjoint subsets of V1, V2, and V3, we state that the probability distribution
P is faithful to the graph G if the following condition is satisfied.

V1 and V3 are independent given V2 if and only if V1 and V3 are d-separated
given V2.

Based on the d-separation, we can express the probability distribution by using the
Markov property. The probability distribution f (Y) is represented by

f (Y) =
p∏

i=1

f (Yi|Pa(Yi))

where Pa(Yi) is a set of parents for Yi.
Another important issue in probabilistic graphical model is observational equiva-

lence. The example of observational equivalence is in Figure 1.1. The three cases in
Figure 1.1a–c are not distinguishable based on observational data. They are said to be
in one equivalence class. However, based on the data, the case in Figure 1.1d can be
distinguished from the other three cases. We say that this case has a v-structure. Such
equivalence class causes multiple solutions with the same score function values if
we apply the score-and-search approach to estimate a DAG. To show all equivalence
classes, the complete partial DAG (cpDAG) can be used, which can be implemented
by the “essentialGraph()” function in R package [51].

Y1

Y2 Y3

Y1

Y2 Y3

Y1

Y2 Y3

(a) (b)

(c)

Y1

Y2 Y3

(d)

Figure 1.1 Examples of observational equivalence.
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1.3 GENETIC DATA AVAILABLE

The technology in recent decades has allowed genome-wide monitoring of DNA and
RNA levels on thousands of samples [52]. For example, The Cancer Genome Atlas
(TCGA) project seeks to provide a comprehensive landscape of genetic and genomic
alternations by profiling DNA copy number, mRNA expression, and miRNA expres-
sion for about 20 cancer types. The Genotype-Tissue Expression (GTEx) project
studies human gene expression regulation and its relationship to genetic variation.
The goal of these projects is to understand global regulation including genetic (from
DNA to RNA), transcriptional (among mRNAs), and posttranscriptional processes
determining normal cell physiology. Thus, the analysis of these regulatory layers can
provide a useful picture of the underlying processes.

Open sources of gene expression data including TCGA and GTEx, or pathway
information are in the following link:

• The Cancer Genome Atlas (TCGA) Data (https://tcga-data.nci.nih.gov/tcga/):
This data set provides high-level sequence analysis of the tumor genomes and
clinical information. The TCGA data consist of several types and levels as
follows: Copy Number Variation (Low Pass DNASeq), Copy Number Varia-
tion (SNP Array), DNA Methylation, Expression Protein, METADATA, miR-
NASeq, RNASeqV2, and Somatic Mutation.

• The GTEx project (http://www.broadinstitute.org/gtex/): The objective of this
project is to accumulate the comprehensive data of gene expression across
multiple tissues in the human body.

• modENCODE Project (Model Organism ENCyclopedia Of DNA Elements)
(http://www.genome.gov/modencode/): This project aims to create the data of
a comprehensive encyclopedia of genomic functional elements in the model
organisms.

• Pathway Interaction Database (http://pid.nci.nih.gov/index.shtml): This has the
maps of biomolecular interactions and cellular processes organized into human
signaling pathways. It was a collaborative work between Nature Publishing
Group (NPG) and National Cancer Institute (NCI).

• The DREAM5 Network Inference Challenge (http://wiki.c2b2.columbia.edu/
dream/index.php/D5c4): This website provides gene expression data, which
have been obtained from microorganisms.

1.4 METHODOLOGY

In this section, we explain a recently developed method based on the lasso-type score
function. The first two sections describe the model and the score function for the
graphical model to estimate the gene network problem, and the next two sections
explain technical details.



�

� �

�

8 RECENT DEVELOPMENT IN METHODOLOGY

1.4.1 Structural Equation Model

We express the genes by random variables. Denote by Ψ the n × p data matrix,
where n is the sample size and p is the number of the variables. We assume that an
edge is directed, so ( j, i) is not in E if (i, j) belongs to E. The causal relationship
of random variables in a DAG can be represented by the structural equation model
[26, 29, 53]. Let Zi be a latent variable, which is assumed to follow independent
normal distributions. Then, the structural equation model that represents the
relationship is

Yi =
∑
j∈Pai

cijYj + Zi (1.1)

where cij is a causal effect from a parent j to a child i. Zi s are latent variables.
Denote Y = [Y1,Y2,… ,Yp]T , and Z = [Z1,Z2,… ,Zp]T . Here, we assume that
the latent vector Z follows the multivariate normal distribution, MN(0,Γ), where
Γ = diag[σ2

1, σ
2
2,… , σ2

p]T . Under the unknown variable order, we represent
coefficients of Yj s, cij, by the coefficient matrix C, where

C =

⎛⎜⎜⎜⎜⎜⎝

0 c12
c21 0

…
…

c1(p-1) c1p
c2(p-1) c2p

⋮ ⋮ ⋱ ⋮ ⋮
c(p-1)1 c(p-1)2

cp1 cp2

…
…

0 c(p-1)p
cp(p-1) 0

⎞⎟⎟⎟⎟⎟⎠
Thus, cij is the (i, j)th entry of C, and Equation 1.1 can be rewritten by Y = CY + Z.

In addition, if the variable order is partially known, the blockwise matrix can be used
[53], which is represented by

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0

…
…

0 0
0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0
0 0

…
…

0 0
0 0

0 0
0 0

…
…

0 0
0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0
0 0

…
…

0 0
0 0

c1U1
0

0 c2U1

…
…

0 0
0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0
0 0

…
…

c(p-1)Up-1
0

0 cpUp

0 c12
c21 0

…
…

c1(p-1) c1p
c2(p-1) c2p

⋮ ⋮ ⋱ ⋮ ⋮
c(p-1)1 c(p-1)2

cp1 cp2

…
…

0 c(p-1)p
cp(p-1) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then, the corresponding structural equation model is

Yi = ciUi
Ui +

∑
j∈Pai

cijYj + Zi

where Ui is an upper-level variable, which regulates the down-level variable Yi. The
example of the upper-level variable is DNA copy number or miRNA, which regu-
lates mRNA.
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1.4.2 Score Function Formulation

In the gene network problem, the number of gene expressions is very large, for
example, over 10,000, but the sample size is relatively small such as 200–300.
Thus, the estimation of gene networks is related to the variable selection problem
in high-dimensional data. The well-known method for variable selection uses a
discrete manner. One approach is a best subset selection. However, if the number of
variables becomes large, the subset selection is computationally infeasible [54]. In
addition, due to the discreteness of the approach, the result of the subset selection is
unstable [55, 56]. Similarly, most discrete-based approaches may show instability in
finding a solution. However, the L1-penalized linear regression leads to a continuous
search, and it gives stable and robust estimation [54, 57]. Thus, for high-dimensional
data, the lasso approach proposed in Fu and Zhou [48] and [53] is a proper way.
In addition, they use adaptive lasso, which can break the equivalence class, and
give a high probability of estimating a correct solution among the solutions in the
equivalence class. In this section, we discuss a lasso-type approach as a recent
development of methodology.

The lasso-type score function can be derived from the L1-penalized log likelihood,
which is

−2
n

log
p∏

i=1

f (Yi|Pa(Yi),C) + Pe(C)

where Pa(Yi) is the set of parent variables for Yi, and Pe(C) is a penalty function for
the coefficient matrix C. Based on the L1-penalized log likelihood, Fu and Zhou [48]
proposed the score function, which is

min
C

p∑
k=1

[
log

(1
n
‖Ψk − ΨCk‖2

)
+ λ

p∑
j=1

𝑤kj|ckj|] (1.2)

subject that the estimated graph is acyclic. In the score function shown as
Equation 1.2, Ψ is a n × p data matrix and Ψk is a data vector as the kth variable. Ck is
a coefficient vector, [ck1, ck2,… , ck(p-1), ckp]T , which is a column vector representing
the kth row in matrix C. Zou [54] mentioned that the original lasso without the
weight term does not provide consistent estimates. Thus, they suggested the adaptive
lasso, which used the weights for the coefficient term ckj. Zou [54] suggested

𝑤kj =
(

1|𝛽kj|
)𝛿

, where 𝛽kj is the least square estimate from the ordinary least square,

while Fu and Zhou [48] suggested 𝑤kj = min

(
1|𝛽kj| , 104

)δ
.

Han et al. [49] proposed another type of score function:

min
C

p∑
k=1

[
1
n
‖Ψk − ΨCk‖2 + λ

p∑
j=1

𝑤kj|ckj|] (1.3)
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subject that the estimated graph is acyclic. The notations are the same as in
Equation 1.2. The score function in Equation 1.3 is the equivalent form of Shojaie
and Michailidis [29], which provides the score function with a known variable
order. For the value of the weights, Han et al. [53] used the scaled weight,

𝑤kj = min

(
0.0001|𝛽kj| , 1

)δ
. Han et al. [53] represented the acyclic constraint by the

optimization formulation, which is |ckj| ≤ Tkj (1.4)

Tkj = 0 or 1 (1.5)

and

Ti1i2
+ Ti2i1

≤ 1 for all i1 and i2

Ti1i2
+ Ti2i3

+ Ti3i1
≤ 2 for all i1, i2, and i3

⋮

Ti1i2
+ Ti2i3

+ · · · + Tipi1
≤ p-1 for all i1, i2,… , ip (1.6)

The score functions proposed by both Fu and Zhou [48] and Han et al. [53] have
an advantage. The adaptive lasso score function can break observational equivalence,
which expresses the same score function values [51]. If the structure of the graph
is a hub network, there exist multiple solutions that give the same objective func-
tion value, called score equivalence [51]. Most score-and-search approaches such as
penalized likelihood or constraint-based approach such as the PC algorithm cannot
distinguish the solutions in the equivalence class since they give the same score func-
tion values or the same p-value, respectively. However, the adaptive lasso provides a
different score function value to each solution even though they are in the same equiv-
alence class. Furthermore, it gives a high probability of selecting a correct solution
among the equivalence class especially in the hub network [53].

However, the score function from Fu and Zhou [48] has several disadvantages in
comparison with that from Han et al. [53]. First, the score function from Fu and Zhou
[48] in Equation 1.2 used the residual sum of the square from the penalized likelihood
to estimate the variance of latent variables, which becomes a log form in the score
function. The mean square error from the penalized linear regression is known to be a
biased estimate of the variance of the latent variables if the penalty is large. Thus, from
the various simulation studies, Han et al. [53] showed that when the penalty is large,
the score function from Equation 1.3 gave a higher true positive of edges than the
score function from Equation 1.2 given the same false positive, which indicates that
the score function from the former gives better performance than the score function
from the latter. However, as the penalty becomes small, the performance of the two
methods becomes similar. The performance of Equation 1.2 is sensitive to the value
of the penalty parameter, but that of Equation 1.3 is robust. Based on the simulation
studies with p= 100, n= 500, and density= 2 (average number of parent nodes per
child node), the receiver operating characteristic (ROC) curves based on true positive
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Figure 1.2 Receiver operating characteristic (ROC) curves from the adaptive lasso methods:
(a) random network and (b) hub network.

versus false positive is in Figure 1.2a and b. The black solid line indicates the curves
from the score function in Equation 1.3, and the gray dash line indicates the curves
from the score function in Equation 1.2.

Second, the score function in Equation 1.2 is nonconvex. Thus, Fu and Zhou [48]
can find only a local optimal solution at best. Both the nonconvexity of the score func-
tion and the acyclic constraints make finding a good solution very hard. In addition,
Fu and Zhou [48] proposed a block coordinate descent (BCD) algorithm to obtain a
solution from Equation 1.2 to overcome such nonconvexity, but they did not justify the
quality of the solution. However, the score function in Equation 1.3 is convex, and it
can be transformed into the quadratic programming (QP) problem, which guarantees
a global optimal solution. Han et al. [53] implemented the DIST (discrete improv-
ing search with TABU list) algorithm to find the solution from Equation 1.3, which
is called the cLasso method. They showed that the method based on Equation 1.3
requires smaller computational time than that based on Equation 1.2.

Apart from normal distributions, the lasso framework is easily extended to other
distributions. In particular, due to recent technology, some gene expressions such as
RNA sequences are recorded in discrete count data, and Poisson log-normal distri-
bution can be used for the RNA sequence measurements. By the assumption of the
log-normal data, Han et al. [53] represented the observed compounded Poisson data
by

Yk ∼ Poisson(exp(σkXk + 𝜇k))

where σk and 𝜇k are the standard deviation and average related to the marginal normal
variable. In this case, we only observe the count data Yk, and Xk is treated as unob-
served data. Han and Zhong [58] proposed a penalized likelihood score function as
follows. Let X be an unobserved normal vector with the Xk in the kth entry. Based on
Bayes theorem,

P(C|Y) = ∫ P(C,X|Y)dX ∝ ∫ P(Y|X,C) × P(X|C)dX
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The penalized log likelihood can be represented by

−2
n

n∑
j=1

log∫ exp[h(X|C, yj)]dX + Pe(C)

where h(X|C, yj) = log P( y|X,C) + log P(XC), and Pe(C) is a penalty function in
terms of the coefficient matrix C. Finding a solution based on the score function is
quite complicated. Based on several approximations, they first transformed the score
function to the lasso framework, and then searched the solution by using two iterative
optimization procedures based on two groups of parameters.

1.4.3 Two-Stage Learning

Since searching for the solution in entire space takes a lot of computational time,
much literature uses the two-step learning technique. The first step is to find the poten-
tial parents of each child by estimating an undirected graph/skeleton/Markov blanket,
and the second step is to identify directionality (or parents). Tsamardinos et al. [45]
proposed the MMHC algorithm, which estimates the skeleton by the constraint-based
method and identifies the directionality by a score-and-search algorithm. Schmidt
et al. [59] used the lasso regression to estimate an undirected graph, and then used a
permutation approach based on swapping adjacent variable orders to identify direc-
tionality. Neto et al. [22] first estimated an undirected graph, and then estimated a
DAG without an acyclic constraint based on the likelihood ratio between one direction
and the opposite direction of each edge. Pellet and Elisseeff [60] used feature selec-
tion algorithms [61] to estimate a Markov blanket and then identified a directionality
based on v-structured patterns. Other examples of the two-stage learning approaches
are the Sparse Candidate (SC) algorithm [62] and the Grow-Shrink algorithm [63].
The two-step learning approach is also called a hybrid algorithm in Nagarajan
et al. [50].

Huang et al. [47] mentioned that the two-stage procedure has high risk of misiden-
tification of the true parents. If the first stage missed a true parent, the parent is not
considered again as a possible parent in the second stage. Thus, they proposed a com-
bined score function, which is

min
C

p∑
k=1

[
1
n
‖Ψk − ΨCk‖2 + λ1

p∑
j=1

|ckj| + λ2

∑
k≠j

|ckj × Pjk|]

where P is a p × p matrix with 1 in the (i,j) entry if there is a direct path from Xi
to Xj, otherwise 0. The acyclic constraint,

∑
k≠j|ckj × Pjk|, is plugged into the score

function with a second penalty, which is similar to Lagrangian relaxation. They used
the BCD algorithm to estimate the network structure.

Han et al. [53] proposed an alternative approach. First, without the acyclic con-
straints, they minimized the objective function (score function) to find the infeasible
solution. They set the infeasible solution as the potential parent set per child. Then,
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they added the acyclic constraints back to the problem and found the feasible solution.
Unlike other hybrid approaches, Han et al. [53] used only one model and score func-
tion, but split the solution search algorithm by making it the two-step procedure.
Han et al. [53] argued that their approach is more stable that the existing two-stage
procedure.

1.4.4 Further Issues

Robustness of the estimation in Bayesian networks for gene network problems is an
important issue. The performance of Bayesian networks also depends on the network
structure. Han et al. [53] showed that the method with the score function based on
Equation 1.3 is robust in terms of the network structure, but the performance of the
pc-type algorithm is very sensitive to the network structure. Another issue related to
the robustness is that the data are sometimes not complete and have missing parts.
Ramoni and Sebastiani [64] discussed robust learning for Bayesian networks with
missing data. In addition, most approaches for learning Bayesian networks show point
estimator for the causal relations. Thus, several papers have studied how much confi-
dence can be placed in the network estimate [65–67]. Finally, to estimate the correct
structure, all variables with causal relationships are assumed to be included before
learning.

Another issue in the estimation of the structure of DAGs based on the lasso
problems is how to choose the penalty. To minimize average prediction errors, the
cross-validation (CV) is suggested since it gives an asymptotic optimal estimate of
the penalty. However, the CV does not lead to a consistent model selection for the
lasso-type penalty [68]. For the consistency of the model selection, the Bayesian
Information Criterion measures are suggested [69, 70]. Tibshirani [57] showed that
the lasso gives a stable and correct estimate. Proper tuning parameters need to be
selected for a consistent model selection [54, 71, 72]. How to select the best penalty
parameter in the network problem is still an open question.

1.5 SEARCH ALGORITHM

In this section, we discuss solution search algorithms to minimize the score function.

1.5.1 Global Optimal Solution Search

The straightforward way to find a global optimal solution is to use total enumeration,
which is an exhaustive search in terms of edges by permuting an entire combination
of directed edges and selecting the combination that gives the maximum of the score
function. For example, suppose that the number of variables is p, then the total number
of edges we need to consider is p(p–1)/2. Each edge can take three options: one direc-
tion, the opposite direction, or an empty edge. Then, the total number of combinations
we need to consider is 3(p(p–1)/2). However, such approaches are computationally not
feasible even when the number of variables is small.
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We may use some optimization technique to estimate a DAG based on the traveling
salesman problem (TSP) [73, 74]. The straightforward approach [53] to find a global
optimal solution is as follows:

• Step 1: Solve the objective function (1.3) without the acyclic constraints.

• Step 2: If cycles exist, add the constraints corresponding to the cycles. Then,
solve it again.

• Step 3: If the solution does not have any cycle, it is an optimal solution. Other-
wise, go to Step 2.

However, to solve the problem with the above-mentioned approach is also com-
putationally inefficient. For example, the asymmetric TSP [73, 74] presented com-
putational difficulty for long decades [75]. Thus, directly solving the gene network
problem requires heavy computational time if p increases.

Another approach described by Han et al. [53] is to find upper and lower bounds
of the solution based on the branch-and-bound technique and sub-tour elimination,
which are used in the TSP. Since it is almost impractical to include all possible cycles
in the formulation in the solution approach, we add acyclic constraints if needed.
During the branch-and-bound algorithm, the intermediate solution can be infeasible
since it violates the acyclic constraints. For the minimization problem, the solution
should be lower bound since it is the optimal solution under the relaxed conditions.
Then, we can obtain upper bound of the solution that breaks all cycles. Han et al.
[53] implemented the branch-and-bound technique to find the optimal solution, but
the computational time is over 2 h even when p= 20. Thus, in high-dimensional data,
using a heuristic algorithm or meta-heuristic algorithm is preferable.

1.5.2 Heuristic Algorithm for a Local Optimal Solution

To find the solution for the problem with nonconvexity of the acyclic constraints, the
ad hoc or rudimentary solution search algorithms have been proposed. Shojaie and
Michailidis [29] proposed permutation of variable order since known order indicates
directionality between two genes and automatically satisfies acyclic constraints. Such
one-time permutation relies on random chance to obtain the corrected order, so it is
not a reliable approach. Schmidt et al. [59] swapped adjacent ordered variables and
searched the best score function values. Fu and Zhou [48] used BCD algorithm. They
started the algorithm from the empty network and added edges or reverse direction-
ality of edges step-by-step while avoiding a cycle. However, they did not consider
a leaving edge, which is a necessary step to find a good solution. In the optimiza-
tion area, a greedy algorithm or Hill-Climbing algorithm is commonly used, which
considers adding an edge, reversing an edge, or removing an edge.

Most ad hoc or heuristic algorithms only guarantee a local optimal solution due
to acyclic constraints. Han et al. [53] proposed a meta-heuristic algorithm based on a
discrete improving search with a TABU list, which is called DIST. In the DIST algo-
rithm, at each iteration, a leaving edge is put in the TABU list and it is not considered
as an entering edge in the whole round. Han et al. [53] compared the solution from
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the DIST algorithm with a global optimal solution when p= 10 or 20, and he showed
that the solution from the DIST algorithm is close to the global optimal solution. The
description of the DIST algorithm is as follows:

• Select an entering edge among all unselected edges, which gives the most
improvement in the objective function.

• Select a leaving edge among all selected edges, which breaks the cycle and
gives the least harm in the objective function. To find any cycle, use forward
and backward Breadth-First Search (BFS) algorithms. Any confirmed leaving
edges are put into the TABU list.

• Update the intermediate solution as well as the objective function values.

• Do the above-mentioned three steps repeatedly until all edges are searched. We
call it a round. After each round, empty the TABU list and restart the next round.

• If there is no improvement in the objective function value in two consecutive
rounds, stop the algorithm. Otherwise, keep running the next round.

1.6 PC ALGORITHM

The well-known alternative method to estimate Bayesian networks is the PC
algorithm [43]. Kalisch and Buhlmann [44] applied the PC algorithm to estimate the
DAGs with high-dimensional data. It first estimates an undirected graph and removes
edges iteratively based on the conditional independence test. This method requires a
condition of faithfulness, which is mentioned in Section 1.2. Under the faithfulness
condition, the d-separation in a graph is equivalent to the conditional independence
relationship. In the multivariate normal distribution, the conditional independence
can be derived from partial correlation. Kalisch and Buhlmann [44] used Fisher’s
Z-transform statistics to test the significance of a partial correlation, which is
defined by

Z(X,Y|Z) = √
n-#(Z)-3

2
log

1 + 𝜌XY|Z
1-𝜌XY|Z

If the Z-transform statistics is greater than a certain threshold, it rejects ckj = 0,
and it adds an edge (i,j) in the graph. After estimating the skeleton, they extended it
to a complete partial DAG.

The PC algorithm has been used in high-dimensional data [76–79], and it is known
to be computationally feasible to estimate sparse network with the large number of
variables. There is an R package in the software, “pcalg()” [44]. Since the perfor-
mance of those methods is order dependent, which means that they are sensitive to the
true variable order, Colombo and Maathuis [80] developed the PC-stable algorithm.

Han et al. [53] compared the method based on the adaptive lasso score function
with the PC-stable algorithm by simulation studies. The results showed that the for-
mer outperforms the latter in terms of true positive given the same false positive
in most scenarios except for the random network with high density. Under the hub
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network, which is a main structure in gene networks, the adaptive lasso approach
performs better than the PC-stable method. Han et al. [53] found that the performance
of the PC-stable method is sensitive to the network structure, and as the percentage
of isolation of parents increases, the performance of the PC-stable method decreases.
Thus, for the gene network problem, which is related mostly to a hub network, the
adaptive lasso might be preferable to the PC-stable method.

The computational complexity of the PC algorithm is approximately O(pq),
where q is the maximal size of neighbors and p is the number of variables. On
the other hand, the computational complexity of the cLasso method is bounded by
O(max(nk2p, np2)), where k is the maximum number of parent candidates and n
is the sample size. As the complexity shows, if p or k is moderate such as 2, 3, or
above, the complexity of the PC algorithm is higher than that of the cLasso method.
Han et al. [53] also verified the complexity difference based on the simulation study.
Under the random network and d= 1, the computational time of the PC algorithm is
similar to that of the cLasso method. However, under the hub network or the random
network with d= 2, the computational time of the PC algorithm is much higher
than that of the cLasso method. Especially, under the hub network, from which
many possible parents can be derived, with d= 2, the computational time of the PC
algorithm is much higher than that of the cLasso method.

1.7 APPLICATION/CASE STUDIES

We discuss three examples of the data-driven analytics for gene network problems. In
the first example, which is based on open data set of melanoma skin cancers in TCGA
Data Portal, we describe how to construct gene networks under partially known vari-
able order and obtain inferences for clinical purposes. In the second example based
on Cancer Cell Line Encyclopedia (CCLE) data, we show how to build the network
under unknown variable order. In the third example based on flow cytometry data of
protein expressions, we describe some tutorials of how to use R softwares to estimate
the network.

1.7.1 Skin Cutaneous Melanoma (SKCM) Data from the TCGA Data Portal
Website

The incidence rate of melanoma skin cancer increased recently with a lifetime risk of
1 in 50 [81, 82]. The patients with metastatic tumors survive about 7 months on aver-
age [83]. Although several therapies such as BRAF mutant kinase inhibitors [84, 85]
or CTLA-4 inhibitors [86, 87] have been developed, the results of therapy have not
been successful. Fleming et al. [88] found that based on array-based screening, about
18 miRNAs out of 358 miRNAs are potential predictors of recurrence. They revealed
that based on statistical analysis of TCGA data, the signature miRNAs regulate func-
tions to melanoma biology such as the immune signaling pathway. In this section, we
describe how to construct gene pathways or networks under partially known struc-
ture based on Skin Cutaneous Melanoma (SKCM) data from the TCGA Data Por-
tal website (https://tcga-data.nci.nih.gov/tcga/). The TCGA Data Portal provides a
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platform of data sets containing clinical information as well as genomic data and
sequence analysis of various tumors.

The description of the data structure is as follows. The TCGA data consist of sev-
eral data types (so-called platform types) and levels. The data types are as follows:
CNV (Low Pass DNASeq), CNV (SNP Array), DNA Methylation, Expression Pro-
tein, METADATA, miRNASeq, RNASeqV2, and Somatic Mutations. Each type has
the data in four different levels at most. The data in level 1 are raw data or signals, and
the data in level 2 are processed data. The level 3 data are segmented or interpreted
with normalization, and the level 4 data are summary or regions of interest data. For
our purpose, we use level 3 data.

After downloading the data sets, the file, “file_manifest.txt,” showed the main
information of data type and sample ID/barcode as well as the corresponding file
name containing genomic data. For example, in the file, “file_manifest.txt,” there are
three columns: “Platform Type,” “Sample,” and “File Name.” It is useful to note that
in the sample barcode, the first 10 letters, for example, “TCGA-BF-A1PU,” indicate
a patient barcode. If we want to find miRNA and mRNA data for a certain sample, say
“TCGA-BF-A1PU-01A,” we need to search the file name in the “File Name” column,
which is matched to a certain platform type and sample barcode. For example, for
miRNA data, the file name matching to “miRNASeq” and “TCGA-BF-A1PU-01” is
“TCGA-BF-A1PU-01A-11R-A18V-13.mirna.quantification.txt.” In the miRNA data
file, there are raw count data and normalized count data for each miRNA ID, and we
used the normalized count data. The detailed description of the structure of all data
sets is in https://tcga-data.nci.nih.gov/tcga/tcgaDataType.jsp.

The clinical information for each sample barcode is in the following folder and file:
Clinical>Biotab>biospecimen_sample_skcm.txt. Each tumor sample is matched to a
normal sample. The number at the end of the sample barcode is the key to understand
the tumor source. For example, the ending number of the sample barcode is 1A for
a primary tumor and 06A for a metastatic tumor. The clinical information for each
patient is in the folder and file: Clinical>Biotab>clinical_patient_skcm.txt.

We extracted the data of miRNA and mRNA corresponding to primary or
metastatic tumors. The number of miRNAs is 1046, and the number of mRNAs is
20,531. The sample size in the miRNA data set is 329, but the sample size in the
RNASeqV2 (mRNA) data set is 325. Thus, we removed four samples in the miRNA
data that did not match the data set of mRNA. Next, we took a log transformation of
each data set and then standardized them by centering and scaling. In the miRNA
data, 200 miRNAs have zero values except for at most one value. In the mRNA data,
405 mRNAs have zero values except for at most one value. Thus, after removing
unnecessary miRNAs and mRNAs, the total numbers of remaining miRNAs and
mRNAs are 846 and 20,126, respectively.

Given the data set, we tried to estimate the gene network with the causal relation-
ship from miRNA to mRNA. We used the lasso-type score function in Equation 1.3.
Since we are interested in the causal relationship between the miRNA group and the
mRNA group, we use a block matrix for C in Equation 1.3. The penalty parameter
is selected based on empirical study in Fleming et al. [88]. The estimated gene
network is shown in Figure 1.3, which is drawn by network() and plot() functions
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miR–15b

miR–150

miR–425

miR–30d

Figure 1.3 Estimated graph: the small dots indicate mRNAs and the large dots indicate
miRNAs.

in R software. In this figure, the four large dots indicate miRNA and the small dots
indicate mRNAs. Based on the result, the miRNA-150 has a broad effect on many
mRNAs, so we included the network related to miRNA-150. We also include the
network plot with clinically important miRNA such as miRNA-30d, miRNA-425,
and miRNA-15b [88]. After deciding the miRNAs, we selected the mRNAs with
significant coefficients to the corresponding miRNAs, the absolute values of which
are greater than 0.1. The miRNA-150 was causally related to 1360 mRNAs with
high coefficients. A number of selected mRNAs with respect to the other three
important miRNAs (miRNA-30d, miRNA-425, and miRNA-15b) are 185, 5, and 15,
respectively.

From the result of gene network estimation, we draw inferences for clinical pur-
poses. Since the miRNA-150 gives the main impact for most mRNA, we make a
grouping for patients based on mRNAs affected by the miRNA-150. We draw a heat
map as shown in Figure 1.4. In the heat map, the rows indicate patient samples and
the columns indicate mRNA expression. As shown at the left side in the heat map, the
patients can be clustered by two groups such as a low-level group (bottom part) and
a high-level group (upper part) based on hierarchical cluster analysis. For each clus-
tered group, we estimate Kaplan–Meier survival curves that are shown in Figure 1.5.
The gray dash line indicates the high level group, and the black solid line indicates
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Figure 1.4 Heat map: the rows indicate patient samples and the columns indicate mRNA
expression.
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Figure 1.5 Survival curve: the gray dash line indicates the high-level group, and the black
solid line indicates the low-level groups.
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the low level groups. The p-value based on the log-rank test is 0.029, which is less
that 0.05 (significance level in biostatistics). This shows that the high-level group has
a better survival rate than the low-level group with the statistical significance.

1.7.2 The CCLE (Cancer Cell Line Encyclopedia) Project

It is widely known that p53 is an important gene as a tumor suppressor, which can
prevent cancer growth. This p53 controls genes, whose function is DNA repair, cell
cycle control, and apoptosis. Under normal conditions, the protein level of p53 drives
MDM2 transcription factor, and as a feedback loop, MDM2 regulates the protein
levels of p53. MDM2 can block or impair p53 pathway activity. Zhong et al. [89]
explained the development of gene expression signature, which is predictive of the
response to MDM2 antagonist therapy. Barretina et al. [90] discuss finding a predic-
tive model for anticancer drug sensitivity from CCLE data.

The CCLE contains cancer-related genomic data from 947 human cancer cell lines
with 36 tumor types, which are characterized by genomic technology platforms. This
data can be downloaded from http://www.broadinstitute.org. To identify mRNAs as
the cell line responses to the MDM2, we need to estimate the gene networks. By using
a partial model of Equation 1.3, we extracted 16 genes, which have roles in different
processes surrounding MDM2. These genes were BRCA1, DDB2, and XPC involved
in DNA repair; FDXR in P53-related process; SESN1 and ZMAT3 in cell growth;
CCNG1 and CDKN1A in cell cycle arrest; and BAX, EP300, PIDD, RPS27L, and
TP53 involved in apoptosis. To estimate the gene network, we applied the method in
Equation 1.3 to the data with a penalty parameter as suggested in Han et al. [53]. The
estimated network is plotted in Figure 1.6.

1.7.3 Cellular Signaling Network in Flow Cytometry Data

In this section, we provided a tutorial of the usage in R packages to estimate a DAG
in a gene network problem. The common example used to explain a network problem
is cell signaling in protein expression as in Sachs et al. [91]. Intracellular multicolor
flow cytometry can generate observational data of cell signaling molecules [92, 93],
and by flow cytometry, we can measure the protein expression and protein modifica-
tion states such as phosphorylation [93–95]. Based on this finding, Sachs et al. [91]
demonstrated that cell signaling data can be used for inferring causal relationships.
The multivariate flow cytometry data used in Sachs et al. [91] are collected to identify
the effects of different conditions on the intracellular signaling networks of human
primary naive CD4+ T cells, which are downstream of CD3, CD28, and LFA-1 acti-
vation. Eleven phosphorylated proteins were measured: PKC, PIP2, PLGG, PIP3,
AKT, JNK, P38, ERK, MEK, RAF, and PKA.

In this section, we show the examples of R codes for four different estimates for
the cellular signaling network and the corresponding network plots, which are shown
in Figure 1.7. The following is the R code to show the estimated network plot from
Sachs et al. [91].
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BIRC6
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Figure 1.6 Estimate structure in CCLE data with 16 genes, which have roles in different
processes surrounding MDM2.

> library(network)
> estmated.net <- network(t(estimate_Sachs))
> main.name=paste("(a) Estimate from Sachs et al. [91]",sep="")
> plot(estmated.net,
+ displaylabels=TRUE,
+ boxed.labels=FALSE,
+ mode="circle",
+ vertex.cex=3,
+ arrowhead.cex=2,
+ label.cex=1.0,
+ pad=0.15,
+ label.pos=6,
+ cex.main=1.2,
+ main=main.name)

In order to show network plots, “library(network)” needs to be called.
“estimate_Sachs” indicates the structure matrix based on the estimated net-
work from Sachs et al. [91]. The estimated network plot is in Figure 1.7a. Next,
the R code to show how to obtain the estimated network structure from the cLasso
method [53] is as follows:
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Figure 1.7 Four different estimates for the cellular signaling network. (a) Estimate from
Sachs et al. [91]; (b) estimate by cLasso; (c) estimate by PC algorithm; (d) estimate by MMHC
algorithm.

> delta<-0.15
> cLasso.fit <- cLasso(x.stand=Data.protein.expression,lambda=0.7,
search.index=0,gamma_weight=delta)
> estimate_T_cLasso <- cLasso.fit$est_T

The delta in the above-mentioned code is the value of the power for calculating
the weight, 𝑤kj, in Equation 1.3. The R codes and tutorials will be released as an R
package, the name of which is tentatively library(DAGLasso). The estimated network
plot is in Figure 1.7b. Then, the next two R codes are the examples of the PC algorithm
and the MMHC algorithm. The estimated network plots are in Figure 1.7c and d,
respectively. The details of the R codes are in the tutorials provided in the R packages,
library(pcalg) and library(bnlearn).

> library(pcalg)
> alpha_PC<-0.01
> data_size<-dim(Data.protein.expression)[1]
> data_dim<-dim(Data.protein.expression)[2]
> indepTest <- gaussCItest
> suffStat <- list(C = cor(Data.protein.expression), n = data_size)
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> pc.fit <- pc(suffStat, indepTest, data_dim, alpha_PC)
> g<-pc.fit@graph
> estimate_T_pc_algorithm <-t(as(g,"matrix"))
> library(bnlearn)
> alpha_MMHC<-0.01
> mmhc.fit<-mmhc(Data.protein.expression,alpha=alpha_MMHC)
> g<-mmhc.fit$arcs
> estimate_T_mmhc_algorithm <-matrix(as.numeric(g),ncol=2,
nrow=dim(g)[1])

1.8 DISCUSSION

This chapter discusses the recent development of model-based methodologies for
estimating cancer gene networks based on the score-and-search approach with the
adaptive lasso-based score function, which has been a very important problem in
genomic projects for decades. We overviewed the background of Bayesian networks
and the available genetic data. We explored structural equation models and the
lasso-type score function formulation, which is a recently developed approach
in gene network problem. We also discussed an optimization problem to find the
solution for the network estimation problem and described the application of the
method for data-driven analytics.

1.9 OTHER USEFUL SOFTWARES

There are several software tools visualizing the pathways and networks.

• Pathway Studio (http://www.elsevier.com/online-tools/pathway-studio): Path-
way Studio is made from Elsevier Life Science Solutions, and it is a tool for bio-
logical decision support. It shows protein–protein interaction and target–drug
interaction.

• Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com/products/ipa):
IPA is developed from QIAGEN, and it is a tool to model and analyze
the complex biological systems. This tool gives several functions such as
causal network analysis, upstream regulator analysis, and downstream effects
analysis.

There are also other packages in the R software for estimating DAGs of the
Bayesian network under different data types with various techniques. Following are
some of the packages that are briefly explained.

• The package, “bnlearn” [96], implements score-based, constraint-based, and
hybrid algorithms for learning the structure of Bayesian networks. It supports
parameter learning via maximum likelihood and Bayesian estimators and pro-
vides inference. This function can be applied to both discrete and continuous
data such as Gaussian data.
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• The package, “deal” [97] , implements a heuristic search algorithm and defines
priors to estimate the Bayesian network in both discrete and continuous data. It
can also simulate data sets from a given structure.

• The package, “pcalg” [44], implements the PC algorithm and the extended algo-
rithms for causal structure learning and causal effect estimation.

• The package, “catnet” [98], implements a maximum likelihood-based method
to estimate a Bayesian network for categorical data.
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2.1 INTRODUCTION

Despite more than 40 years of cancer research funding in the United States, “outlier”
patients with nonstandard cancers or nonstandard disease progression languish at the
margins of clinical investigation. Standard-of-care treatment does help many patients
overcome the disease, but the benefits are generally limited to those patients whose
disease progresses on an “average” trajectory with disease and patient characteristics
similar to those upon which the clinical trials for that treatment were carried out.
Once it is confirmed that the standard treatment is ineffective and that the cancer
is refractory or recurring, oncologists face the daunting task of designing a novel,
patient-specific treatment.

With the advent of molecular testing, there is now the opportunity to expand
the data available to assist in medical decision making for such outlier patients
with complex cancers. In 2007, 3 years after the validation of the human genome,
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analysis of gene sequence data was discussed as a way to guide treatment decisions
and drug development [1]. Although advances in high-throughput, next-generation
sequencing (NGS) have made it cheaper and quicker to detect hereditary or acquired
gene mutations, there are still challenges in using genomic profiles to guide further
treatment in recurrent cancers [2]. For example, tumors are heterogeneous and there
may be different gene mutations throughout the tissue; only known cancer-related
causative (driver) mutations can be identified; and, finally, there are a limited number
of available drugs that target cancer-related mutations [3]. To gain more information,
research has turned to the study of the expression levels of a gene’s biochemical
products, RNAs, or proteins, as indicative of the underlying biological mechanisms
amenable to therapy [4]. After the collapse of the drug industry efforts in 2011 to
develop gene silencing drugs based on RNA interference (RNAi) [5], preclinical
research turned to identifying and interpreting protein signatures that could be
targeted for therapy. However, the primary high-throughput technology used for
proteomic research, mass spectrometry, has drawbacks for clinical care including
a false discovery rate (FDR) of proteins that has to be managed computationally.
There was no single methodology that would identify and measure protein signatures
accurately, infer their likely molecular interactions, and predict likely drug effects
for an individual patient.

Therefore, we developed a novel approach to the personalized identification and
interpretation of molecular (protein) signatures in advanced cancers. Overall, mor-
phoproteomics and biomedical analytics combine classical, “gold standard,” methods
of pathology that identify and characterize protein activity with the latest information
on related molecular pathway networks and therapies. One of our goals was to iden-
tify drugs that likely will be ineffective against a patient’s tumor at a specific time
point in treatment, thus reducing treatment costs and lessening toxicity to the patient.
The combinations of the pathologist’s expertise in morphoproteomics and the scien-
tist’s application of analytics give insights into the unique mechanisms that influence
disease progression and treatment choices. The methodology is currently used by the
clinical Consultative Proteomics Service at the University of Texas Health Science
Center in Houston.

2.2 BACKGROUND

In 2014, Robert A. Weinberg, award-winning cancer researcher and author of the
key textbook in the field, The Biology of Cancer [6], wrote “The coupling between
observational data and biological insight is frayed if not broken … we lack the
conceptual paradigms and computational strategies for dealing with this complexity”
[7]. Genomic (gene) and proteomic (protein) molecular profiles have recently moved
from the research laboratory to the clinic, where their interpretation may be limited
by the physician’s experience and knowledge – two key aspects of medical decision
making [8, 9]. Genes and proteins comprise the typical data in a molecular profile
(or signature); measuring tools include mass spectrometry and antibody-based
approaches. Both tools use algorithms for data preparation, integration, and analysis.
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Let us consider the respective roles of data, tools, and algorithms in molecular
profiling for clinical decision making.

2.2.1 Data

2.2.1.1 Genes In 2004, the Human Genome Project completed validation and
identifications of more than 20,000 genes in human DNA [10]. Today, genotyping is
proving to be a useful clinical tool to identify patients with genes that may put them
at more risk for certain diseases, such as cancer [11]. Genes produce, or express,
molecules such as RNAs and proteins to carry out biological functions; using
alternative splicing, a single gene can produce a diversity of proteins [12]. When a
gene is mutated or damaged, the gene products may be defective, resulting in altered
biological functions and disease, such as cancer [13]. By detecting, quantifying,
and localizing the protein activity in tissue or blood, one can gain insights into the
underlying biological functions and see how the body has adapted – or not – to
defects in gene products.

2.2.1.2 Proteins Proteomics – the study of proteins and their interactions – has
emerged as a way to identify the changes over location and time in cellular pro-
cesses associated with disease progression. In particular, specific cascades of proteins
involved in intracellular and extracellular signaling influence treatment decisions. The
signaling cascades of molecular interactions are referred to as “pathways” and are
visually represented by network graphs with molecules as the nodes (vertices) and
molecular interactions as the edges (arcs) that may be directed or undirected. Bio-
logical pathway data are available in the literature and in pathway databases, and
these data can be used to “connect the dots” between measured and unmeasured pro-
teins to discover new proteins or to expand the molecular data set under analysis. The
primary technologies used for proteomics are mass spectrometry or antibody-based
methods such as immunoassays and IHC. Mass spectrometry is considered “unbi-
ased” because it is not constrained in advance to examine particular proteins. In
contrast, antibody-based approaches require an antibody sensitive and specific to the
protein. Although they are considered the “gold standard” for protein identification,
antibody-based approaches do not discover new proteins.

2.2.2 Tools

2.2.2.1 Mass Spectrometry (MS) It identifies and quantifies high-throughput
proteins by the spectral masses of their associated peptides. Unfortunately, peptides
are promiscuous, binding to a variety of proteins [14], and raw MS data require
complex postprocessing to limit FDR. Liquid chromatography (LC/MS) and tandem
(MS/MS) “shotgun” mass spectrometry lose localization information of the proteins,
while matrix-assisted laser desorption/ionization (MALDI-TOF/MS), or “imaging
MS” (IMS), can retain broad localization. Currently, IMS technology has issues
with spatial resolution [15]. Although mass spectrometry of protein patterns was
proposed for clinical diagnosis as early as 2002 [16], the technology still faces
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challenges; algorithms are still being developed to minimize the FDR incurred by
the indirect protein identification [17].

2.2.2.2 Immunoassays These assays measure the presence and concentration of
a specific protein in solution using an antibody that detects the protein. Multiplex
immunoassays can test multiple biofluid samples for multiple proteins and reverse
phase protein microarrays are being used to study leukemia, a cancer suitable for
testing via blood or marrow [18].

2.2.2.3 Immunohistochemistry (IHC) IHC visually detects the presence, concen-
tration, location, and distribution of a protein in tissue using an antibody stain. The
stained tissue slice is examined under a microscope and scored; there is usually one
slide per protein analyzed. IHC is the only proteomic method that can specify the
location of a protein within a cell; this is important because some key proteins in can-
cer have different functions when the majority of them are in the nuclei of the cells
in a tumor rather than in the surrounding cytoplasm. Morphoproteomics uses an IHC
approach to quantify and assess the activity of key proteins in a patient’s tumor.

2.2.3 Algorithms

Algorithms and protocols are used throughout proteomics analyses for molecular
data preparation, expansion, and analysis. One important goal is to discover hidden
or related molecules that can be added to the measured data; the combined data set
of measured and inferred molecules can then be analyzed within the context of the
study. There are many molecules that cannot be measured directly by the current
tools; yet, those molecules are important for the discovery of new protein interactions
and for generating hypotheses about the molecular mechanisms underlying disease.
As a result, proteomic algorithms often incorporate methods that link observed
protein data to pathway databases and then analyze the combined results. For
example, Vaudel proposed a three-step workflow algorithm for MS-based proteomic
discovery [19]:

• Step 1. Identify the found proteins. Starting from the raw MS data, generate
a list of proteins validated at a specific level of statistical confidence. The pro-
teins are inferred from the peptides and validated using a target/decoy approach.
Typically, 1000–2000 proteins are validated at 1% FDR.

• Step 2. Document the biological functions for each protein by first finding the
protein’s identifier and key information in the UniProtKB, the Universal Protein
Resource Knowledge Database (www.uniprot.org). Then, find out which path-
ways involve the inferred proteins using a pathway database such as Reactome
(http://www.reactome.org/).

• Step 3. Add the new MS analysis to the public Proteomics Identification Data
repository http://www.ebi.ac.uk/pride/archive/.
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Unlike Vaudel’s work, our goals went beyond inferring new proteins from MS; we
needed to analyze the expanded molecular data sets and their molecular interaction
pathway networks within the context of patient care. We were looking for molecular
patterns within a single patient. We had tissue data (protein measurements and local-
ization) from tools (morphoproteomics using IHC); we needed algorithms to use that
data to find which biological pathways were likely active in the patient and how pos-
sible drugs would interact with those pathways. We needed to compare the resulting
“molecular signature” of the patient with those of similar patients to explore different
therapies. So, we searched the biomedical literature for solutions.

2.2.4 Literature Review

2.2.4.1 Method A search of the PubMed/Medline database was performed for
all manuscripts published through June 2014 to identify those with algorithms that
used IHC proteomic data to generate and analyze molecular signatures. PubMed,
maintained by the United States National Library of Medicine (NLM), contains
more than 23 million citations for biomedical literature (http://www.ncbi.nlm.nih
.gov/pubmed/). The search was performed using terms from MeSH (“Medical
Subject Headings”), a controlled vocabulary hierarchy. The focus MeSH terms were
proteomics, human, mass spectrometry, immunoassay, IHC, clinical pathology,
pathology/methods, proteomics/methods, and algorithms.

2.2.4.2 Results The first manuscript in the category “proteomics” was published
in 1999. Through the mid-2014, more than 28,000 articles had been indexed, with
just over half including human proteomics. Of the human proteomics, 6601 had mass
spectrometry; 2219 had immunoassay, and 969 had IHC. Only 13 were categorized as
human proteomics in clinical pathology. In contrast, the more than 3400 manuscripts
under pathology/methods dated from 1946, and 3078 were human methods; the
15,591 proteomics/methods dated from 1999, and around half of them were related
to human analysis. Table 2.1 summarizes five of the searches – labeled from “A” to
“E” in Table 2.1 – related to biomedical analytics and morphoproteomics. In Search
A, there were 19 manuscripts under the combined category of pathology/methods,
proteomics/methods, and human [20–38]. In the Search B drilldown of Search A,
seven included mass spectrometry [26–28, 31, 32, 34, 38]. In the Search C and
D drilldowns of Search A, three were categorized as both IHC and immunoassay:
Kothmaier et al. compared tissue fixatives used for routine pathology protein analysis
[21]; Diaz et al. described a tissue specimen collection procedure for proteomic anal-
ysis [26]; and Brown (coauthor of this chapter) described how morphoproteomics
can be used by anatomic pathologists for personalized medicine [25].

2.2.4.3 Discussion Recent review studies support the need for molecular tech-
nologies and proteomic analysis of clinical samples, but the algorithmic focus is more
on improving mass spectrometry and immunoassay tools than on utilizing the more
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TABLE 2.1 Literature Search Shows Paucity of Clinical Proteomics Methods

Search Term # Manuscripts Oldest Year

proteomics[MeSH Terms] 28,168 1999
proteomics[MeSH Terms] AND human[MeSH Terms] 15,681 1999
(proteomics[MeSH Terms] AND human[MeSH Terms])

AND mass spectrometry[MeSH Terms]
6,601 1999

(proteomics[MeSH Terms] AND human[MeSH Terms])
AND immunoassay[MeSH Terms]

2,219 2002

(proteomics[MeSH Terms] AND human[MeSH Terms])
AND immunohistochemistry[MeSH Terms]

969 2002

(proteomics[MeSH Terms] AND human[MeSH Terms])
AND clinical pathology[MeSH Terms]

13 2003

pathology/methods[MeSH Terms] 3,403 1946
pathology/methods[MeSH Terms] AND human[MeSH

Terms]
3,078 1965

proteomics/methods[MeSH Terms] 15,591 1999
proteomics/methods[MeSH Terms] AND human[MeSH

Terms]
8,697 1999

A. (pathology/methods[MeSH Terms] AND
proteomics/methods[MeSH Terms]) AND
humans[MeSH Terms]

19 2003

B. ((pathology/methods[MeSH Terms] AND
proteomics/methods[MeSH Terms]) AND
humans[MeSH Terms]) AND mass
spectrometry[MeSH Terms]

7 2003

C. ((pathology/methods[MeSH Terms] AND
proteomics/methods[MeSH Terms]) AND
humans[MeSH Terms]) AND immunoassay[MeSH
Terms]

3 2008

D. ((pathology/methods[MeSH Terms] AND
proteomics/methods[MeSH Terms]) AND
humans[MeSH Terms]) AND
immunohistochemistry[MeSH Terms]

3 2008

((proteomics/methods[MeSH Terms]) AND
algorithms[MeSH Terms]) AND human[MeSH
Terms]

469 2002

((proteomics/methods[MeSH Terms] AND
algorithms[MeSH Terms]) AND human[MeSH
Terms]) AND mass spectrometry[MeSH Terms]

267 2002

((proteomics/methods[MeSH Terms] AND
algorithms[MeSH Terms]) AND human[MeSH
Terms]) AND immunoassay[MeSH Terms]

16 2005

E. ((proteomics/methods[MeSH Terms] AND
algorithms[MeSH Terms]) AND human[MeSH
Terms]) AND immunohistochemistry[MeSH Terms]

9 2005

Search as of June 11, 2014.
To see manuscripts and updates, enter the search term at http://www.ncbi.nlm.nih.gov/pubmed/.
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labor-intensive visual analysis by IHC [39, 40]. Because no MeSH term directly
relates to biomedical analytics, the term “algorithm” was used to search PubMed.
Looking solely at the 8697 human proteomics/methods, only 469 were categorized
as having algorithms; 267 included mass spectrometry, 61 had immunoassay; and
9 included IHC. Of these nine in Search E, six reported on algorithms to improve
mass spectrometry (MS), with IHC used to validate the MS finding [41–46]. Two
manuscripts focused on imaging as a possible future alternative to proteomic IHC.
Balluff et al. reported on a proof-of-principle study that imaging mass spectrome-
try (IMS) could be used to identify proteomic profiles that correlate with HER2/neu
positive breast cancer tissue, stating that IMS would be quicker, cheaper, and more
objective than the standard HER2/neu IHC test [47]. Rower et al. investigated a
20-protein signature for invasive ductal breast cancer. The signature was previously
developed using principal component analysis and hierarchical clustering on LC-MS
data [48]. Using the signature, this study compared tissue analysis by IHC with digital
analysis of IHC images from the Human Protein Atlas (www.proteinatlas.org). Both
methods differentiated normal tissue from tumor tissue and suggested that IMS would
be useful for clinical studies [49]. Finally, Daly et al. presented an algorithm to predict
protein concentrations from ELISA immunoassays, using monotonic spline statistical
models (MS), penalized constrained least squares (PCLS) fitting, and Monte Carlo
(MC) simulation [50]. The authors found that no reports used algorithms or devel-
oped models that connect measured proteins with evoked molecular pathways for a
specific patient with a disease that had progressed beyond standard treatment.

This literature search demonstrated that there is a lack of clinical laboratory and
analytical methods that positively identify, quantify, and localize protein circuitries
in human tissue and then use that information for discovery of additional likely pro-
tein interactions that influence disease diagnosis, prognosis, and treatment in a single
patient. Instead of developing a model that embodied predetermined hypotheses to
be perturbed by a variety of data, we chose to use our patient’s data to generate
hypotheses about their own underlying molecular mechanisms and potential drug
interactions. In the following section, we take you through the development of our
methodology and show how quantitative algorithms tie together patient data from
the pathologist’s morphoproteomic analysis with published biological pathways and
drug interactions to aid in medical decision making for a single patient.

2.3 METHODOLOGY

Unable to find suitable algorithms, we developed our own methodology. Morphopro-
teomic analysis was performed to detect and interpret the proteins in the tumor tissue.
These data were quantified and input to the pathway generation software to evoke
a qualitative “molecular signature” of the patient’s likely molecular pathways built
from the patient’s own tumor data. The molecular signature could be compared quan-
titatively to those of other patients or to those of the same patient at different times by
converting the molecule lists and pathway graphs to matrices. The molecular signa-
ture could also be used to evaluate drug resistance and support treatment decisions.
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Data – all possible molecules and
interactions in clinical sample

Select molecules
to be measured

Measure and interpret
molecular patterns in

clinical sample

Quantify molecular
profile

Input molecular matrix with
measures (patient)

Pathway
generation 

Output lists and graphs of
evoked molecular pathways

Assemble vector lists into
matrices, compare, and

interpret

Input molecular matrix
without measures (control)

Output lists of molecules and
interactions that differentiate

patient from control

Add potential drug
interactions to evoked
networks and interpret

Pathway
generation 

Output graphs showing
potential drug interactions

Validate by expert opinion, references,
and additional measures 

Morphoproteomics
Report 

Biomedical
analytics report

Overview. The methodology is an expanded version of Vaudel’s workflow for
MS-based proteomic discovery (vide supra), adapted for antibody-based approaches
rather than mass spectrometry. Following is an overview based on the flowchart
depicted in Figure 2.1; details are given in the following sections.
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Figure 2.1 Morphoproteomics analysis and biomedical analytics methodology flowchart.
(1) The clinical sample from the patient is a tissue sample, such as that taken for a cancer
tumor biopsy; it contains a vast amount of data. Here, the focus is on protein data only. (2) Due
to the use of antibodies as detectors (one per protein), the set of proteins to be measured is
determined in advance. From more than 140,000 human proteins documented in the Univer-
sal Protein Resource or “UniProt” (www.uniprot.org), the pathologist selects 10–20 proteins
that influence the specific disease and treatment decisions and for which laboratory antibody
analysis is available. (3) The protein molecules in the tissue are scored by visual inspection of
one protein per antibody stained tissue slide. The pathologist analyzes the set of slides with
the patient’s clinical tissue samples and writes a Morphoproteomics Report, documenting the
proteins found in the tissue samples, their qualitative scores per cellular location (nucleus,
cytoplasm, membrane), and interpretation in light of the patient history and potential treat-
ments. (4) The biomedical analyst then converts the morphoproteomic molecular signature, or
set of qualitative scores/locations for the patient, into a quantitative molecular signature matrix,
consisting of normalized scores and UniProt identifiers. The matrix data are represented in a
spreadsheet suitable for input to a biological pathway generation program. (5) The spreadsheet
data for the patient(s) and a “control” spreadsheet (with the same proteins as the patient but
without scores) are entered into the biological pathway analysis software. (6) The pathway
generation software is run. (7) The pathway generation software outputs biological pathway
network graphs and molecule lists that incorporate the measured proteins into the most likely
pathways. Note that there may be several pathways evoked from a single input data set. The
pathways are output as images (jpg, pdf) and the lists of the names of molecules in each path-
way as column vectors in a spreadsheet. The pathways may also be interrogated and expanded
interactively within the pathway generation software. (8, left) For a single patient sample, the
column vectors of the output molecule lists in the patient are compared to the respective column
vectors of the output molecule lists in the control. For short-molecule lists, this is done visu-
ally. For long-molecule lists, the column vectors are assembled into matrices and the patient’s
matrix and the control matrix are compared by matrix algebra. For multiple samples, additional
column vectors can be added to the matrix. For molecular interaction differences, the pathway
images are compared visually for small pathways. For large or complex pathways, the nodes
and edges on pathway network graphs are mapped to adjacency or incidence matrices for com-
putational comparison through mathematical software such as MATLAB. (8, right) Within the
pathway generation software, drug molecules can be interactively “connected into” the evoked
pathway networks to assess their effects. Both the pathologist and the biomedical analyst inter-
pret the results. (9, left) The results of the patient/control comparison are documented. (9, right)
Images of the drug interactions with the patient’s pathways are output. (10) The output data
are assembled and reviewed by the pathologist. Additional literature references are collected,
and the pathologist may validate the presence of inferred proteins by IHC. The Biomedical
Analytics Report is attached to the Morphoproteomics Report, and the results are discussed
with the patient and the oncologist.

2.3.1 Morphoproteomics (Fig. 2.1(1–3))

Morphoproteomics is defined as the identification by IHC of the molecular circuitry
of various proteins in a tumor by noting their state of activation (translocation
and phosphorylation) and correlative expressions. In morphoproteomic analysis,
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antibodies recognize sites of activation on the protein analytes that connect them
to other molecules in activation cascades. This approach can uncover potential
targets, amenable to therapeutic interventions, which are specific for an individual
patient’s tumor (i.e., customized therapy) [25, 51, 52]. Briefly, formalin-fixed
biopsy specimens are sectioned and mounted on glass slides, one slide per protein
to be analyzed. These protein “analytes” are selected based on their influence on
disease progression and on treatment recommendations; 10–24 or more proteins
may be detected. Each slide is incubated with antibody specific for phosphorylated
protein followed by binding with a chromogenic probe that enables subsequent
visualization via light microscopy. Our laboratory is government certified by CLIA
(http://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/), which allows
for these laboratory test results to be used to guide patient care when interpreted by
a physician [53]. The processed slides are then sent to the consulting pathologist
for morphoproteomics analysis. Each slide is examined individually under the
microscope. The protein analyte activity is based on a light microscopic assessment
of one or more of the following: the chromogenic signal intensity in cytoplasmic,
nuclear, and plasmalemmal (cell) membrane; phosphorylation at putative sites
of activation of the molecule using phosphospecific IHC probes, when available;
translocation within subcellular compartments; and/or correlative expressions (func-
tional grouping). The percentage of cells expressing specific proteins associated with
the speed of tumor development and metastasis (spread) is also determined. This,
along with the mitotic index, provides information as to whether the tumor cells
are actively dividing – important because some drugs only work when the tumor
cells are actively cycling. The consulting pathologist interprets the protein activity
pattern, the significance of the molecular profile for treatment options, and makes
recommendations to the patient’s oncologist based on published literature.

The morphoproteomics approach has been used for more than a decade for
insights into rare or recurrent cancers including mesenchymal chondrosarcoma
[54], relapsed acute lymphoblastic leukemia [55], head and neck squamous cell
carcinoma [53], glioblastoma multiforme (GBM) [56], high-risk neuroblastoma
[57], high-grade prostatic intraepithelial neoplasia and prostate cancer [58], cervical
squamous carcinoma [59], Ewing family of tumors [60]; anaplastic [61], papillary,
and follicular thyroid carcinoma [62]; pediatric brain tumors [63], clear cell sarcoma
of the kidney [64], desmoplastic small round cell tumor [65], phyllodes breast tumors
[66], sinonasal undifferentiated carcinoma [67], and refractory Hodgkin’s lymphoma
[68]. Such studies have shown proof-of-concept of the success of this approach for
nonstandard cancers, and it is now available as “Consultative Proteomics,” a clinical
service offered through the Department of Pathology and Laboratory Medicine at
the University of Texas Medical School at Houston.

2.3.2 Biomedical Analytics (Fig. 2.1(4–10))

2.3.2.1 Analytics Analytics is a scientific discipline that uses a wide range of
quantitative and qualitative approaches to identify meaningful patterns in data
in order to make better decisions. The methods fall into three major categories:
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descriptive analytics, predictive analytics, and prescriptive analytics. In business
analytics, descriptive analytics is used for pattern analysis of historical data; in
clinical use, it is used to diagnose, categorize, and describe a disease based on phe-
notype or typical appearance patterns. In business, predictive analytics is used to find
hidden data relationships that may suggest future industry or sales trends; in clinical
prognosis, it is used to project the likely disease progression and outcomes over
time. Prescriptive analytics integrates information from descriptive and predictive
analytics, along with related but heterogeneous data to support decision making.
In business, prescriptive analytics is used to suggest new ways to achieve business
goals; in clinical practice, it can be used to suggest treatment that will bring a person
back to health. Biomedical analytics encompasses the development, extension,
and application of theories and methods from analytics to biomedical research and
clinical practice.

2.3.2.2 Methods Statistical techniques have been the mainstay of descriptive and
predictive analytics; however, they have drawbacks when applied to the practice of
medicine. For example, clinical trial studies require more than 300 matched patients
to have sufficient predictive power to show treatment safety and benefit [69]. Clinical
trials support evidence-based medicine for the average patient who has the average
response to the average treatment. Unfortunately, a number of patients fall outside the
norm, and physicians have to rely on individual case studies and their own expertise
to help the patient.

Pathway analysis through biomedical analytics supports biomedical decision mak-
ing in small studies or individual cases by using the patient’s molecular data to “boot-
strap” the production of additional data in the form of biological pathway networks
that can be analyzed and compared. Methods used include statistics, matrix alge-
bra, graph theory, and data mining (automatic and manual) to evoke and analyze the
molecular pathway data. For example, statistics can be used for dimensionality reduc-
tion of input data, as Vaudel did with MS to select the proteins to be evaluated or was
done in the shock/trauma study described in the following (see Input preprocess-
ing in general, Fig. 2.1(4)). Lists of molecule names can be represented as vectors
with “0” or “1” per element and embedded as columns or rows in a matrix for alge-
braic comparisons (Fig. 2.2). Molecular interactions represented visually as directed
or undirected graphs can be represented as matrices, thus facilitating comparative
analyses using mathematics ranging from simple matrix addition and subtraction to
algebraic graph theory. The patterns evoked from the analysis can be used to narrow
down or expand the scope of a basic science research study or to suggest approaches
for patient care based on pathway dysregulation. Note that biomedical analytics is
used to generate hypotheses about biological mechanisms, not confirm them; results
must be validated through standard methods such as laboratory tests, imaging, expert
opinion, or a patient’s response to treatment.

2.3.2.3 Pathway Generation Software (Fig. 2.1(6, 7)) Although the molecular
pathways themselves can be generated manually by data mining molecular interac-
tion pathway databases, several online commercial pathway analysis programs are
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ID
MOF-
Time 1

MOF-
Time 2

MOF-
Time 3

MOF-
Time 4

MOF-
Time 5

MOF-
Time 6

M1 1 1 0 1 0 1
M2 0 1 0 1 1 0

… … … … … … …

… … … … … … …

M193 1 1 0 0 1 0

ID NMOF-
Time 1

NMOF-
Time 2

NMOF-
Time 3

NMOF-
Time 4

NMOF-
Time 5

NMOF-
Time 6

M1 0 0 1 0 1 0
M2 0 1 1 1 0 0

M193 0 0 1 0 1 0

Figure 2.2 Example of temporal matrices used to compare output molecule lists in the mul-
tiple organ failure (MOF) and nonmultiple organ failure (NMOF) study. ID, molecular ID; M
column, N= 1–193 named molecules evoked by IPA in both outcomes. There was a 1 in the
time T column if M(N) was present in that time period and 0 otherwise.

available including MetaCore (http://thomsonreuters.com/site/systems-biology/),
Qiagen’s Ingenuity Pathway Analysis (IPA) (www.ingenuity.com), and Pathway
Studio (http://www.elsevier.com/online-tools/pathway-studio) as well as noncom-
mercial programs such as Reactome (http://www.reactome.org/). These programs
output the most likely pathway network graphs derived from manual or automated
data mining of biomedical literature and public and proprietary molecular interaction
databases. The molecular pathways are represented as network graphs, with the
molecules as vertices (nodes) and the molecular interactions as directed arcs (edges)
that can be interrogated online for links back to the original information source.

2.3.2.4 Biomedical Analytics Algorithms Pre- and postprocessing algorithms
addressed two major challenges of using pathway analysis software for proteomics:
first, the pathway programs are primarily designed to take high-throughput input
such as DNA/RNA sequencing data or microarray data; second, the programs
are limited in export and analysis capabilities. To create algorithms to interface
with pathway analysis software, it was necessary to understand how the program
generates pathway networks. Therefore, we examined Qiagen’s IPA because its
pathway generation algorithm was published (http://www.ingenuity.com/wp-
content/themes/ingenuity-qiagen/pdf/ipa/IPA-netgen-algorithm-whitepaper.pdf)
and so input, processing, and output constraints could be evaluated.

IPA takes as input a list of genes (or proteins) with or without numerical expres-
sion data; it grows the likely pathway networks starting with the most interconnected
molecules by name in the input list, and then examines the expression or “rank” data
to decide the order and placement of additional molecules. Each generated network is
limited to 35 molecules, and one input list may generate several networks. By exam-
ining the IPA algorithm, the data type “Intensity” was selected because it had a range
of 0 to +∞ and would handle a variety of biomedical measures. Other data types such
as p-value and fold change were not applicable. For output, IPA supports data export
of the lists of the molecules in the networks; however, the networks themselves can
only be interrogated online or exported as graphs. This limits comparative analysis
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of molecular interactions across pathway networks. Both input and output interfaces
with IPA were addressed by algorithms specific to the biomedical studies.

2.3.2.5 Input Preprocessing in General (Fig. 2.1(4)) For studies with many
patients with many measured molecules, data are selected by dimensionality
reduction through nonparametric or parametric statistical methods as appropriate.
For example, in a prospective observational study of disease progression in shock
trauma, concentrations of 27 blood serum cytokine molecules were measured by
immunoassay in 48 patients every 4 h for 24 h [70]. The goal was to find molecular
patterns associated with multiple organ failure (MOF) or nonorgan failure (NMOF)
in each time period. Nonparametric statistical analysis (Mann–Whitney–Wilcoxon)
identified the significant molecules in each of the six time periods for the two
outcomes. Their molecular identifiers and median values (converted from pg/ml to
pmol/l for consistency with biological signaling processes) were used as input to
IPA under the data type “Intensity” that allows values from 0 to +∞ [71].

2.3.2.6 Output Postprocessing in General (Fig. 2.1(7, 8)) Resolution of the sec-
ond issue, output analysis, can be complex, particularly for studies that generate many
networks. Although IPA has added more analysis functionality to its software over
the years, only a few networks can be compared at the same time and this must be
done online, interactively. As a result, more complex analyses require that the out-
put results be mapped to matrices that can be compared in spreadsheets. Extensive
molecule lists or multiple networks require computational support through mathe-
matical software such as MATLAB (http://www.mathworks.com/products/matlab/).
IPA outputs lists of the network molecules, which, as vectors, can be assembled into
matrices for analysis. However, IPA does not export lists of the molecular interac-
tions (node-directed edge–node) in a network; this must be done by visual inspection
of the network graph and an adjacency (node to node) or incidence (edge to node)
matrix constructed manually for further computational analysis.

In the shock trauma study (vide supra), linear algebra was used to analyze the
nodes and edges in the IPA evoked networks. Two matrices were constructed, one
for the outcome of MOF and the other for NMOF (see Fig. 2.2 for an example of
the temporal matrices constructed). The first matrix column held the molecular IDs
of all 193 molecules evoked over all patients over the six time periods. Columns 2–7
represented each time period. In each molecule row, a 1 was placed if the molecule
was present in that outcome, and a 0 otherwise; then the matrices were compared and
contrasted through logical and arithmetic combinations.

For example, adding the matrices resulted in a 2 if the molecule was present in both
outcomes in the same time period, 1 if present in either of the outcomes in the same
period, and 0 if absent in that outcome in that time period. The matrix analysis iden-
tified seven “neighbor” molecules that differentiated outcomes over time, of which
four had never been associated with trauma. The more complex “edge” analysis used
graph theory and linear algebra to identify the changing patterns in 4 key functions of
molecular interactions (or edges) over time. This analysis also assessed crosstalk, or
redundant functional signaling across edges, using the novel metric “XTALK” which
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was based on the rank of the incidence matrix of the edges [71]. Despite its potential
for insights into molecular interactions, edge analysis was not usually carried out for
complex networks because it must be done manually due to IPA’s lack of edge export
capability.

Finally, this method has been confirmed by experimental findings in a mouse
model of hemophilia A in a cytokine study of the cellular immune response to clotting
factor VIII (FVIII), an essential blood-clotting factor. It was predicted that a newly
discovered T-cell-associated cytokine (IL-25) would be associated with development
of immune response to FVIII. Follow-up experimental assays confirmed the secretion
of this protein by immune cells in mice that generated anti-FVIII response [72].

2.3.3 Integrating Morphoproteomics and Biomedical Analytics

Although morphoproteomics excels at identification and expert interpretation of vis-
ible protein circuitries, many proteins present in a tissue or biofluid sample cannot be
seen simply because there are no antibodies for them. These unknown proteins affect
treatment decisions. Biomedical analytics can be used to infer unknown neighbor-
ing molecules based on a list of focus molecules, with or without measures. Gener-
ally, morphoproteomics and biomedical analytics produce reports that are not only
descriptive but also prescriptive, using validated protein signatures to evoke their
likely molecular pathways that influence therapy.

With morphoproteomics reports as the data source (Fig. 2.1(1–3)), biomedical ana-
lytics required a different approach than the shock trauma and hemophilia studies. It
was not feasible to group and compare patients statistically by outcome because each
patient had a unique case of recurrent or refractory (hard-to-treat) cancer that had pro-
gressed beyond the standard of care. Comparing a single patient’s disease progression
over time was hindered by the fact that tumor tissue biopsies were taken over long
intervals, unlike the blood draws taken every 4 h in the shock trauma study. Finally, the
morphoproteomics raw data scores were calculated in different measures and accom-
panied by qualitative modifiers. Therefore, new biomedical analytics algorithms were
developed for input preprocessing and output postprocessing.

2.3.3.1 Input Preprocessing for Morphoproteomics (Fig. 2.1(4)) Although IPA
can take immunoassay cytokine data as input to evoke the likely biological pathway
networks as described previously, IPA was not designed to handle heterogeneous IHC
data. Morphoproteomics produces semiquantitative data of protein analyte activity in
tissue as observed on a slide by a pathologist; measurement units differ depending on
the protein. Most protein activity is measured in ranges. There are 15 ranges of his-
tology scores (x to y, x≤ y), with x and y values of 0, +/- (meaning 0.5), 1, 2, or 3.
The histology score is given for each location (nucleus = N, cytoplasm = C, and
plasmalemmal membrane = P) of the protein analyte, as well as the percentage of
positive cells in the tumor. A few proteins are measured in percentages or numer-
ically, such as High Powered Fields (HPF). In consultation with the pathologists,
each range was normalized to 0–100, with 0 representing no activity, and 100 rep-
resenting maximum activity and coverage for the range 3 to 3 (3–3+ in pathology
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TABLE 2.2 Protein Activity Scores Normalization Worksheet for Pathway Generation
(excerpt)

Protein Analyte UNIPROT_Name UNIPROT_ID Path. Score Norm. Score

c-Myc MYC_HUMAN P01106 0–3+, N 45.31
CD8 CD8A_HUMAN P01732 30/HPF 30.00
IGF-1R(Tyr1165/1166) IGF1R_HUMAN P08069 ±2+,C–P 32.50
p-c-Met (Tyr1234/1235) MET_HUMAN P08581 0–3+. P 45.31
p53 P53_HUMAN P04637 <1%, N 1.00
ERCC-1 ERCC1_HUMAN P07992 0–3+, N 45.31

scoring notation). Other non-range scores were also normalized to a 100 scale. In
addition, certain proteins, such as mTOR (mammalian target of rapamycin) have dif-
ferent UNIPROT IDs, depending on whether they are localized to the nucleus or the
cytoplasm. In that case, two instances of the protein were entered into the worksheet.
An excerpt of the normalization worksheet can be seen in Table 2.2.

From this worksheet, a two-column spreadsheet was input online to IPA, with
the UNIPROT ID in column 1 and the Normalized Score in column 2, entered as
“Intensity.” An IPA “Core Analysis” was performed on these data to evoke the most
likely pathways.

However, because the IPA algorithm uses only the names of the input molecules at
the start of pathway network generation, the effect of the actual scores on “breaking
ties” in molecule choice was not seen until later in the network generation process.
This means that input lists with the same molecule names will generate the same sets
of networks up to a point; after that, the scores influence the network generation. Not
only was there a bias from the pathologist’s selection of protein analytes, there was
also a “search bias” due to IPA’s network generation algorithm. The pathologist’s
biased analyte choice was minimized by expert opinion documented in the mor-
phoproteomics report. To minimize search bias, the biomedical analytics approach
generated a second IPA “Core Analysis” based on a “control” single column spread-
sheet with only the UNIPROT IDs in column 1. In the previous shock trauma and
hemophilia studies, a control list with molecule names only was not required because
those studies analyzed multiple rather than single patients (Fig. 2.1(5, 6)).

2.3.3.2 Output Postprocessing for Morphoproteomics (Fig. 2.1(7, 8, left) Anal-
ysis of the resulting pathway networks was done visually for individual cases or by
conversion of the output lists or pathway network graphs to matrices when many net-
works were compared. Evoked pathway networks that were identical in both patient
and control were ignored; in matrix form, they would be subtracted out. These com-
mon pathways were interpreted as being indicative of similar underlying mecha-
nisms; on the other hand, they could be artifacts of the IPA network generation data
mining algorithm.

Once the pathway networks unique to the patient were identified (Fig. 2.1(9)), IPA
was used interactively on each network to show the influence of the proposed drug
therapy on the likely biological mechanisms (Fig. 2.1(7, right, 8, right)). Supporting
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literature references were gathered from IPA and augmented by additional manual
research for the Biomedical Analytics Report (Fig. 2.1(10)).

2.4 CASE STUDIES

Although the morphoproteomic analysis process remains the same, the choice of the
computational and qualitative methods used in biomedical analytics varies depend-
ing on the biomedical questions being addressed. Here, we present three applications
of our integrative approach. First, biomedical analytics used morphoproteomic data
to evaluate the impact of proposed therapy on a patient with advanced pancreatic
cancer. In the second example, morphoproteomics and biomedical analytics were
used retrospectively to gain insights into why a specific therapy reversed the course
of disease in a patient with Hodgkin’s lymphoma. Finally, morphoproteomics data
from a brain cancer (GBM) were combined with published data defining a molec-
ular hypoxia signature to provide additional evidence of the role of a low oxygen,
or hypoxic, microenvironment in cancer that parallels the hypoxic environment in
embryonic development.

2.4.1 Clinical: Therapeutic Recommendations for Pancreatic
Adenocarcinoma

Pancreatic adenocarcinoma is a cancer that originates in exocrine cells of the
pancreas. In this 2013 case study, we were contacted by the patient’s oncologists to
consult on treatment for a pancreatic adenocarcinoma that, despite over 2 years of
neoadjuvant chemotherapy and chemoradiotherapy, had metastasized to the lungs.
Immunotherapy was under consideration and a genomic profile report had been
prepared.

Morphoproteomic analysis of the tumor tissue (Fig. 2.1(1–3)) scored 34 mea-
sured protein analytes by cellular compartment and microanatomical region and made
detailed therapeutic recommendations based on the measured molecular signature,
the genomic profile, and published research findings. One key morphoproteomic rec-
ommendation was a caution as to the efficacy of immunotherapeutic strategies, due to
the existing favorable ratio of protein analytes that indicated that the patient’s immune
system was already quite active. Immunotherapy might not be effective; in fact, it
could cause harm or discomfort for the patient and pose the risk of the development
of immune dysregulation and of autoimmune-type diseases.

Biomedical analytics was then performed to gain additional insights into the bio-
logical pathways that were likely active. The patient’s morphoproteomic scores were
normalized (Fig. 2.1(4)) and entered into IPA, along with an unscored control list
(Fig. 2.1(5)). The patient list and the control list each evoked 8 pathway networks
of 35 molecules each (Fig. 2.1(6, 7)). The network molecule lists were exported and
combined into matrices to compare which molecules were present in both patient and
control, or only in one or the other (Fig. 2.1(8, left)).

Networks #1, #2, #3, #5, #6, and #7 were ignored because they were identical
in patient and control; #4 and #8 differed. In Network #4, 11 of the 35 molecules
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(a)

(b)

Figure 2.3 Case study. Pancreatic adenocarcinoma. (a) Patient – eight pathway networks
evoked from the patient’s normalized scores. (b) Control – eight pathway networks evoked
from the same protein name list without scores. Only networks #4 and #8 differ.

differentiated the patient from the control. There were major hubs at the molecules
MYC and TP53, consistent with the genomic report. In Network #8, 32 of 35
molecules differentiated the patient from the control (see Fig. 2.3 for molecule lists
(Fig. 2.1(9, left)); network graphs not shown).

The control evoked 27 general G-protein-coupled receptors around the hub Gpcr,
while the patient’s network #8 evoked only 6 general G-protein-coupled receptors
around the hub Gpcr; the rest were specialized G-protein-coupled receptors asso-
ciated with carcinogenesis. There was no immune cell trafficking associated with
network #4 in either the control or the patient. However, the patient’s network #8
had extensive interactions with immune cell trafficking; there was no immune cell
trafficking in the control network #8 (Fig. 2.1(10)).

Proposed drugs included celecoxib, metformin, melatonin, trametinib selumetinib,
vorinostat, and lovastatin (see Fig. 2.4 for a summary network graph of the proposed
drugs and their interactions with molecules associated with immune response in net-
work #8 (Fig. 2.1(8, 9)).

The biomedical analytics supported the morphoproteomic report that the patient’s
immune system was already very active; drugs that overly increased immune
response were to be avoided. The consulting pathologist took this into consideration
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Figure 2.4 Case study: Pancreatic adenocarcinoma, network #8 (edited for clarity) –
immunosurveillance and proposed drug therapy. Legend: Proposed drugs: ovals on left. Inter-
actions of drugs with protein analyte molecules (middle): lines (dashed = indirect, solid =
direct). Protein analytes: gray = measured by morphoproteomics; white = evoked by IPA. Fx
long ovals at top and bottom identify the drugs and protein analyte molecules associated with
immune cell trafficking functions. Source. Network generated through the use of QIAGEN’s
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).

and proposed a combinatorial therapy that included selumetinib, one of the drugs
that targeted both networks #4 and #8 (Fig. 2.1(10)).

2.4.2 Clinical: Biology Underlying Exceptional Responder in Refractory
Hodgkin’s Lymphoma

Hodgkin’s lymphoma is a white blood cell cancer characterized by distinctive cell
types. Although it may be controlled by standard treatment in patients with early
stage disease, some patients continue to relapse. In this 2012 case study, the patient
had a history of persistent and extensive Hodgkin’s lymphoma and had undergone
more than 3 years of standard therapy. The patient researched the disease and came
to the oncologist with the request for palliative therapy with an mTOR inhibitor and
a histone deacetylase (HDAC) inhibitor before hospice admission. The patient had
a dramatic response to the therapy, and the oncologist requested morphoproteomic
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analysis and biomedical analytics to gain insights into the mechanisms underlying
this exceptional remission response.

As in the previous case study, the morphoproteomic report data were quantified,
normalized, and entered, along with the control data, into the pathway generation
software (Fig. 2.1(1–6)). Molecules unique to the patient were identified (Fig. 2.1(7,
left, 9)), and additional pathological findings were added to the pathway network
graph (Fig. 2.1(7, right, 8)). The interaction of the proposed drugs, rapamycin and
vorinostat, with the evoked pathways was diagrammed (Fig. 2.1(9)) and formatted to
show the molecules’ cellular locations (see Fig. 2.5).

Cytoplasm

Plasma membrane

Extracellular space Other

TNFRSF8

IGF1R
CD8A Sirolimus

RICTOR

p-AKT (Ser 473)+

Nucleus

SIRT1

FOXP3

Vorinostat

Figure 2.5 Case study: Hodgkin’s lymphoma exceptional responder. The combination of the
drugs (right), sirolimus and vorinostat, brought key molecules in immune response (left) back
into balance. As a result of understanding this control mechanism from morphoproteomics
and biomedical analytics, the therapy is now in clinical trials. Source. Network generated
through the use of QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City,
www.qiagen.com/ingenuity).
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The integrated biomedical and morphoproteomic analyses (Fig. 2.1(10)) sug-
gested that there was an immune dysregulation of the autoimmune type in Hodgkin’s
lymphoma that could be managed by rapamycin (sirolimus), generally an mTOR
(Raptor) inhibitor, which also expands the T-regulatory cells and vorinostat, an
HDAC (SIRT1) inhibitor. This combinatorial therapy used downregulation (t-bar
lines) and upregulation (arrow) of key protein expressions in the lymphoma to bring
the immune system back into balance. The sirolimus/vorinostat therapy is in an IRB
approved phase 1b clinical trial (NCT01266057) and shows promising results, even
for patients who have undergone previous therapies [68].

2.4.3 Research: Role of the Hypoxia Pathway in Both Oncogenesis
and Embryogenesis

An hypoxic or low-oxygen microenvironment is required for embryonic stem cells to
transform into a developing fetus. Similarly, tumor stem cells adapt and proliferate in
a hypoxic environment. Cancer therapies targeted to restrict the development of new
blood vessels in a tumor may inadvertently make tumor cells more hypoxic, leading
to metastatic and recurrent disease.

In this research study, we used morphoproteomics and biomedical analytics to
define a conceptual model of an adaptive hypoxia pathway in GBM, an aggressive
brain cancer. Archival materials from IRB approved GBM morphoproteomic stud-
ies were used. GBM protein analyte scores were normalized and entered into IPA,
along with an unscored control (Fig. 2.1(1–5)). Then, 32 unscored molecules from a
recognized hypoxia gene signature [73] were also entered into IPA (Fig. 2.1(5)). The
control list and the GBM list were differentiated by one unique pathway network of
35 molecules (Fig. 2.1(6, 7, left)). Due to the smaller networks, visual analysis was
performed rather than matrix analysis (Fig. 2.1(8)).

The evoked control pathway network showed 11 unique interactions with the
hypoxia gene network, while the evoked GBM pathway network showed 17 unique
interactions with the hypoxia gene network (Fig. 2.1(9)); see Figure 2.6. Interactions
common to both were not counted. The results show the influence of hypoxia in
GBM. Both control and GBM networks had a major hub at HTT, a molecule that
modulates embryogenesis. GBM had four molecules associated with increased
embryogenesis while the control had a molecule that modulates embryogenesis and
is implicated in early neuronal development (Fig. 2.1(10)).

The five-drug therapy proposed by morphoproteomics spanned both the GBM
pathway network and the hypoxia gene signature network (Fig. 2.1(7, right, 9)). The
morphoproteomic results, supported by the biomedical analytics, identified the pres-
ence of an adaptive hypoxia pathway in GBM similar to that in embryogenesis, and
suggested that cancer treatment should be evaluated to consider if the drugs would
increase tumor hypoxia, thus causing the tumor to adapt, proliferate, and resist treat-
ment (Fig. 2.1(10)) [74].
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Figure 2.6 Research: Glioblastoma Multiforme (GBM) brain cancer network (left) shows
extensive interactions with the hypoxia molecular signature (square formation, right). Legend:
Protein analytes (left only): gray = unique to GBM (except MTNR1A); white and MTNR1A
= in GBM and control. Interaction lines (dashed = indirect, solid = direct). Source. Network
generated through the use of QIAGEN’s Ingenuity® Pathway Analysis (IPA® , QIAGEN Red-
wood City, www.qiagen.com/ingenuity).

2.5 DISCUSSION

There is no “standard of care” for recurrent or refractory cancers, and oncologists are
faced with making new treatment decisions when previous treatments have failed.
Interpretation of molecular signatures and assessment of the current adaptive state
of the tumor require specialized expertise, and pathologists are being encouraged to
move beyond diagnosis and tumor grading to become involved in patient care [75].

Here, we have shown an integrated method that uses data from the pathologist’s
morphoproteomic assessment of the protein circuitries in a tumor to evoke biological
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pathway graphs that can be analyzed visually or computationally through linear
algebra and statistical analysis. The combined results of morphoproteomics and
biomedical analytics show what key activities are underway in the tumor at the time
of biopsy, how those activities are likely influenced by nearby molecular interactions,
and what treatments will likely work – or not.

The case studies given as illustrations show proof-of-concept of our integrative
approach for medical decision making for recurrent or refractory cancers. As with
all analytics methods applied to business or medicine, the results depend on accurate
input data, choice of analysis methods, and expert interpretation of results. Here are
some of the considerations to be taken into account. Although we are accumulating
case studies that may lead to clinical trials, we are currently restricted to working with
patients who have failed standard treatment. As a result, findings from an individual
case may not be generally applicable. Biological pathway databases are constantly
updated; this means that pathway analyses may change over time, with the benefits
and drawbacks of revised interpretations. Finally, morphoproteomic analysis, as such,
has limited availability: it must be performed by specially trained pathologists with
access to certified CLIA laboratories.

Not only does the novel integration of morphoproteomics and biomedical analytics
advance the field of clinical proteomics, it is at the forefront of team medicine. The
combined methodology bridges the gap between the silos of basic science research
and clinical care through context-dependent algorithms. Team approaches, such as
this, that include biologists, mathematicians, computer scientists, and clinicians are
just beginning to be adopted for preclinical and clinical research; they require key
individuals who can translate across the disciplines [76].

2.6 CONCLUSIONS

Much in the same way that business analytics can link an individual company’s data
to external information such as industry norms, marketing trends, and global eco-
nomic conditions, so can biomedical analytics link an individual person’s data to
the vast literature and databases of molecular interactions, genomic, proteomic and
metabolic investigations, cellular and organ behavior, and disease case and popula-
tion studies. The challenge is how to analyze the resulting integrated heterogeneous,
multilevel “big data” to gain descriptive, predictive, and prescriptive insights to aid
in decision making. The biomedical analytics approach creates new algorithms and
computational methods to integrate molecular and clinical data for diagnosis, prog-
nosis, and therapy in disease progression as well as to expand upon deterministic and
probabilistic research models [77].

Here, we have shown that pathologists, with their access to multilevel patient data,
are at the leading edge of the molecular revolution in clinical medicine. Biomedical
analysts can integrate and analyze this data. And, as part of the clinical team, both
can improve patient care.
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3.1 INTRODUCTION

Nonlinear dynamics arise whenever multifarious entities of a system cooperate,
compete, or interfere. Effective monitoring and control of nonlinear dynamics will
increase system quality and integrity, thereby leading to significant economic and
societal impacts. For example, heart disease is responsible for one in every four
deaths in the United States, amounting to an annual loss of $448.5 billion [1].
Realizing a better quality of cardiac operations will reduce healthcare costs and
improve the health of our society. Figure 3.1a shows nonlinear waveforms of 1-lead
electrocardiogram (ECG) signals when human heart maintains blood circulation
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Figure 3.1 Examples of physiological signals: (a) 1-lead ECG in aligned ECG cycles and
(b) ECG trajectories in the 3D phase space.

through orchestrated depolarization and repolarization of cells. It is common to
observe the near-periodic patterns but with hidden temporal variations between
heart cycles in these physiological signals. Figure 3.1a shows some of the following
common characteristics of ECG signals. (i) Within one cycle, the signal waveforms
at different segments change significantly. The reason is that different segments often
correspond to different stages of cardiac operations. (ii) Between cycles, the signals
are similar to each other but with variations. Near-periodical beatings of human
heart provide nourishments to all parts of body and maintain vital living organs.

As complex physiological systems evolve in time, dynamics deal with change.
Whether the system settles down to the steady state, undergoes incipient changes, or
deviates into more complicated variations, it is dynamics that help analyze system
behaviors. Figure 3.1b shows an example of the ECG phase space constructed from
multilead ECG signals using the Takens’ embedding theorem [2]. As multiple sen-
sors are deployed at various locations, distributed sensing provides multidirectional
views of nonlinear dynamics in the underlying processes. Traditional linear method-
ologies focus on the analysis of time-domain signals and attempt to understand a
system’s behavior by breaking it down into parts and then combining all constituent
parts that have been examined separately. This idea underlies such methods as princi-
pal component analysis (PCA), Fourier analysis, and factor analysis. These methods
encounter difficulties in capturing nonlinear, nonstationary, and high-order variations.
The breakthrough in nonlinear theory came with Poincaré’s geometric thinking of
dynamical systems [3, 4], which focuses on geometric analysis of nonlinear trajec-
tories in the phase space (see Fig. 3.1b).

Physiological sensing brings the proliferation of measurements of process dynam-
ics (e.g., action potentials, ECG signals, echocardiogram). The challenge now is to
harness and exploit nonlinear complexity underlying sensing signals for quality and
integrity improvements in cardiac operations. However, multisensing capabilities are
not fully utilized to extract information about nonlinear dynamics in the phase-space
domain. Particularly, nonlinear dynamical systems defy understanding based on the
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traditional reductionist’s approach, in which one attempts to understand a system’s
behavior by combining all constituent parts that have been analyzed separately. For
example, clinicians had thought that drugs that significantly reduce arrhythmic behav-
iors in isolated cardiac cells would also do so in the heart until the concept was proven
wrong by the failure of two large clinical trials [5]. In order to cope with system
complexity and increase information visibility, modern healthcare systems are invest-
ing in advanced physiological sensing and patient monitoring, thereby giving rise to
big data. Realizing the full potential of big data for healthcare intelligence requires
fundamentally new methodologies to harness and exploit complexity. However, avail-
able nonlinear dynamics techniques are either not concerned with healthcare objec-
tives or fail to effectively analyze big data to extract useful information for improving
healthcare services. There is an urgent need to develop analytical methodologies that
fully utilize nonlinear dynamics and chaos principles for advancing healthcare ser-
vices with exceptional features such as personalization, responsiveness, and superior
quality.

Over the past few decades, the theory of nonlinear dynamics has emerged as a
powerful technique in the design of superconducting circuits [6], chatter control in
mechanical systems [7], laser stabilization [8], precise fabrication of nanomaterials
[9], and information security [10]. In addition, several investigations into character-
ization and modeling of physiological systems, from the cellular level to the system
level, have begun to adapt nonlinear dynamics and chaos principles. This chapter
reviews some theoretical developments and tools to advance the applications of non-
linear dynamics principles in health care. Specifically, we focus on the authors’ recent
investigations into sensor-based characterization and modeling of nonlinear dynam-
ics in physiological systems. Case studies and applications in the studies of heart
rate variability (HRV) and space–time ECG signals are presented. We hope that our
limited and focused review will spur further development of nonlinear dynamics
methodologies for improving healthcare services and accelerating the discovery of
scientific knowledge in biomedical research.

The remainder of this chapter is organized as follows: Section 3.2 presents a primer
on basic concepts of nonlinear dynamics and chaos. Section 3.3 presents two methods
(i.e., multifractal analysis and multiscale recurrence quantification) for sensor-based
characterization and modeling of nonlinear dynamics. Section 3.4 provides the case
studies that adapt principles of nonlinear dynamical systems for healthcare applica-
tions. Section 3.5 presents the discussion and conclusions arising out of this study.

3.2 BACKGROUND

Nonlinear dynamics theory has emerged as an important methodology for complex
systems modeling and analysis. The basic idea is to model the state evolution
of underlying processes by a set of nonlinear differential equations, that is,
Ẍ = dX

dt
= F(X,𝜽), F ∈ ℝn → ℝn, where X is a multidimensional state variable,

F is the nonlinear function, and 𝜽 is the model parameter. Thus, the solution, that
is, X = f (X(0), t), generates a trajectory representing the flow of state evolution
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Figure 3.2 An example of time-delay reconstruction: (a) ECG time series and (b) lag-
reconstructed ECG attractor.

for a given initial condition X(0). When there is a small perturbation in 𝜽 or X(0),
the dynamics of a nonlinear process undergo abrupt changes and reveal complex
characteristics, including chaos, recurrences, fractals, and bifurcations. Notably,
linear systems often attribute irregular behaviors of the system to random external
inputs, but nonlinear systems can produce very chaotic data with purely deterministic
equations and without stochastic inputs.

Much of the complexity in real-world systems is known to emerge from the under-
lying nonlinear stochastic dynamics. The exhibited signals from complex systems
are often chaotic in nature with irregular behaviors. However, dynamics manifest
in the vicinity an attractor A (e.g., ECG attractor shown in Fig. 3.2b), an invariant
set defined in an m-dimensional state space. Takens’ delay embedding theorem
[11] shows that system dynamics can be adequately reconstructed by using the
time-delay coordinates of the individual measurements because of the high dynamic
coupling existing in physical systems. For the time series X = {x1, x2,… , xN}T ,
state vector x⃗ (Fig. 3.2a) is reconstructed using a delay sequence of {xi} as
x⃗(i) = [xi, xi+𝜏 ,… , xi+𝜏(m−1)], where m is the embedding dimension and 𝜏 is the time
delay. Figure 3.2 shows an example of time-delay reconstruction of 3D ECG state
attractor from the 1D ECG time series. The optimal embedding dimension m suffice
to unfold the attractor is determined by false nearest neighbor (FNN) method [12].
In addition, mutual information [13] is used to minimize both linear and nonlinear
correlations for the choice of optimal time delay 𝜏.

If the time delay 𝜏 is too small, the attractor will be restricted to the diagonal of
the reconstructed phase space. However, if the time delay is too large, reconstructed
attractor no longer represents the true dynamics. In the literature, there are two tradi-
tional approaches for the selection of time delay 𝜏. The first approach is to increase
the 𝜏 value and then visually inspect that which 𝜏 gives the most spread out attractor.
The disadvantage of visual inspection is that it only achieves satisfactory results for
simple systems. The second approach is autocorrelation function (delay 𝜏):

r𝜏 =
∑N−𝜏

i=1 (xi − x)(xi+𝜏 − x)∑N
i=1 (xi − x)2
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Optimal 𝜏 is required to minimize the linear independence, that is, the value
when the autocorrelation function first passes through 0. Yet, autocorrelation is a
second-order quantity evaluating merely linear dependency among data. Notably,
mutual information quantifies both linear and nonlinear dependency between two
variables xi and yj, which is defined as

I(x, y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)

where p(x, y) is the joint probabilistic distribution, p(x) and p(y) are marginal proba-
bilities. Figure 3.3 shows the practical implementation to compute the mutual infor-
mation. In the scatter plot of two variables x and y, the histogram is shown for each
variable. Marginal probabilities p(xi) and p(yj) are computed as the number of points
in xi and yj divided by the total number of points in the 2D space. The joint probability
p(xi, yj) is computed as the number of points in box (xi, yj) divided by the total num-
ber of points in the space. Optimal 𝜏 is selected to minimize the general dependency
between variables, that is, the first local minimum of Mutual Information function.

The method of FNN was first proposed by Kennel et al. to determine the mini-
mal embedding dimension m suffice to reconstruct system dynamics [12]. In other
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words, FNN method is to reconstruct the abstractor in the m-dimensional space that
preserves dynamical properties of complex systems in the original phase space. Most
importantly, the minimal dimension needs to guarantee the diffeomorphism of recon-
struction without any information being lost but without adding unnecessary infor-
mation. Suppose a m-dimensional attractor is projected to the lower dimensional
space (m′ dimension and m′ < m). Due to this projection, the topological structure
of the m-dimensional attractor is no longer preserved. Some states are projected into
neighborhoods of other states, but they are not true neighbors in the higher dimen-
sional space. These states are called “false neighbors.” An optimal dimension for
time-delayed embedding is the smallest dimension that minimizes the number of
“false neighbors.” However, a larger dimension than the optimum leads to exces-
sive computation when investigating the dynamical properties. “Noise” will populate
and dominate the extra dimension of the space where no dynamics is operating. The
basic idea of FNN is to measure the distances between a state and its nearest neigh-
bors as this dimension increases. This distance should not change if the states are
really nearest neighbors.

For a given time series X = {x1, x2,… , xN}T , we calculate the change of distances
between neighboring states when the embedding dimension is increased from m to
m + 1. If the embedding dimension is high enough, then the fraction of false neigh-
bors is zero, or at least sufficiently small. The state vector in m-dimensional space
is

x(i) = (xi, xi+𝜏 , … , xi+𝜏(m−1))

Let us denote the r th nearest neighbor of x(i) by x(r)(i), then the Euclidean distance
between x(i) and its neighbor is

R2
m(i, r) =

m−1∑
k=0

(xi+k𝜏 − x(r)i+k𝜏 )
2

If the embedding dimension is increased from m to m + 1, the (m + 1) th coordinate
is added to each state vector x(i). Therefore, the distance between x(i) and the rth
nearest neighbor that we identified in the mth dimension is

R2
m+1(i, r) = R2

m(i, r) + (xi+m𝜏 − x(r)i+m𝜏 )
2

Then the FNN criterion (i.e., relative change in the distances between neighbors) is(
R2

m+1(i, r) − R2
m(i, r)

R2
m(i, r)

)1∕2

=
|xi+m𝜏 − x(r)i+m𝜏 |

Rm(i, r)
> Rtol

where Rtol is the threshold. We now examine the relative change in the distance as
a way to see if the states are not really close together when increased to a higher
dimensional space.
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3.3 SENSOR-BASED CHARACTERIZATION AND MODELING OF
NONLINEAR DYNAMICS

Nonlinearity is one of the most ubiquitous properties of physiological systems. Sensor
signals capture rich information on the underlying nonlinear dynamics in physiolog-
ical processes. Linear systems often attribute irregular behaviors of the system to
random external inputs, but nonlinear systems can produce chaotic data with purely
deterministic equations and without stochastic inputs. Modeling and analysis of non-
linear systems are more challenging than those for a linear system. Effective strategies
for modeling and monitoring of physiological systems need to consider enormous
amount of sensing data as well as the nonlinear evolution of state variables in the
underlying process. In this section, we present a detailed review of two method-
ologies, namely, multifractal analysis and multiscale recurrence quantification for
sensor-based characterization and modeling of nonlinear dynamics.

3.3.1 Multifractal Spectrum Analysis of Nonlinear Time Series

3.3.1.1 Fractal Dimension The dimension is generally defined as the minimal
number of coordinates one has to use to describe a point within the space. For
example, a line needs one coordinate to specify a point on it, and therefore its
dimension is 1. Similarly, the dimension of a plane is 2 and the dimension of a
cube is 3. The topological dimension of a set X takes integer values and is defined
by induction as 1 + the dimension of its boundary. In other words, the set X has
a dimension of d if ∀x ∈ X, there is an arbitrarily small neighborhood of x whose
boundary has a dimension of d − 1. A set is zero dimensional if there is an arbitrarily
small neighborhood of any point x whose boundary is empty. Because the notion
of boundary is well defined in mathematics, the inductive dimension effectively
describes topological spaces. Indeed, the topological dimension of ℝd is d.

However, fractals are irregular geometric objects that cannot be sufficiently speci-
fied using topological dimensions. Fractal objects are self-similar, that is, look similar
regardless of the magnification. If one zooms in or out the fractal set, its geometric
shape has a similar appearance. Hence, fractal dimension is introduced to describe
such “infinitely complex” fractal objects (or shape). Notably, fractal dimension is not
topological. Figure 3.4 illustrates the concepts of self-similarity and fractal dimen-
sion from the perspectives of scaling and covering. If we reduce the linear size of an
object in the Euclidean space ℝD by the scaling factor a in each spatial direction, its
measure (length, area, or volume) will increase to N = a−D, where N is the number of
measure elements to cover the object. As shown in Figure 3.4a, if we reduce the size
of a line by a = 1∕2, then its measure (i.e., length) will increase to N = (1∕2)−1 = 2.
In other words, two measure elements are needed to cover the original line. Further-
more, if we reduce the size of a line by 1/3, then its measure will be N = (1∕3)−1 = 3.
However, if we reduce the size of a square by 1/2, then its measure (i.e., area) will
increase to N = (1∕2)−2 = 4. In addition, nine measure elements (N = (1∕3)−2) are
needed to cover the original square if the line size of the square is reduced by 1/3
in each spatial direction. The scaling rule also holds for the cube. If we reduce the
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Figure 3.4 Illustration of self-similarity and fractal dimension from the perspectives of scal-
ing and covering for (a) Euclidean geometry, that is, line, square, and cube and (b) Koch curve.

line size of a cube by 1/2 in each spatial direction, then its measure (i.e., volume)
will increase to N = (1∕2)−3 = 8. If we reduce the size of a square by 1/3, then its
measure will be N = (1∕3)−3 = 27. Figure 3.4a shows how the measure changes with
respect to linear scaling. If we take log of both sides of the relationship N = a−D, the
dimension is D = − log N∕ log a.

The dimension D needs not to be an integer, as shown for Euclidean geometry in
Figure 3.4a. Figure 3.4b shows an example of the Koch snowflake curve, which has
a noninteger dimension. The Koch snowflake curve is generated by starting with a
straight line, divide the line into three segments of equal lengths, and then remove
the middle third of the line and replace it with two lines that have the same length
(1/3) as the remaining lines in both sides. This process recursively iterates to generate
the “infinitely complex” Koch curve. Figure 3.4b shows the first four iterations of
the process. In each iteration, the length of the curve increases. However, the Koch
snowflake curve is self-similar at all scales of magnification. If we follow the scaling
and covering rule, the dimension of Koch curve is D = − log 4∕ log

(
1
3

)
= 1.26.

Fractal sets have theoretical dimensions that exceed their topological dimensions
and can be noninteger values. Self-similarity across scales is a typical characteristic
of fractals. Fractal dimension specifies the complexity of a fractal object by measur-
ing the changes of coverings relative to the scaling factor. It also characterizes the
space-filling capacity of a fractal object with respect to its scaling properties in the
space. Many real-world objects exhibit self-similarity, for example, scribbles, dust,
ocean waves, or clouds. In practice, the relationship between scaling and covering is
often difficult to be determined. The box-counting method is widely used to estimate
the fractal dimension of an irregular object. The basic idea is to cover a fractal set
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with measure elements (e.g., box) at different scales and examine how the number
of boxes changes with respect to the scaling factor [14, 15]. If N(a) is the number of
boxes that are needed to cover a fractal object at the scale a, then the fractal dimension
DB specifies how N(a) varies with respect to the scaling factor a as

N(a) ∝ (1∕a)DB

In general, the box-counting dimension is defined as

DB ∶= lim
a→0

ln N(a)
ln(1∕a)

However, the box-counting dimension DB may not exist if the limit does not
exist. As the upper and lower limits always exist, the upper and lower bounds of
box-counting dimension will be

DB = lim sup
a→0

ln N(a)
ln(1∕a)

, DB = lim inf
a→0

ln N(a)
ln(1∕a)

The box-counting dimension DB is well defined when the two bounds are suffi-
ciently close to each other.

Figure 3.5 illustrates the use of box-counting method to calculate the fractal
dimension of the Koch curve. The number of boxes N(a) required to cover the Koch
curve increases when the “box” size decreases, and their relationship follows the
power law, that is, ln N(a) is proportional to ln(1∕a). If N(a) is computed for a
range of a, there is a linear relationship between ln N(a) and ln(1∕a). The slope is
an estimate of the fractal dimension. Figure 3.6 shows the plot of ln N(a) against
ln(1∕a) for the Koch curve. It is shown that ln N(a) linearly increases with respect
to ln(1∕a) and the estimated slope is approximately 1.2849, while the theoretical
fractal dimension of Koch curve is ln 4∕ ln 3 = 1.262.

However, there are several drawbacks in the box-counting method when estimat-
ing the dimension of a fractal set. First, if the upper and lower bounds of box-counting
dimension are not close to each other, then DB is not well defined. Second, the upper
bound DB may not be countably stable, that is, DB(

⋃∞
i=1 Xi) ≠ supi{DB(Xi)}, where

Size a

Figure 3.5 An illustration of box-counting method to cover the Koch curve with the box of
size a.
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Xi is the subset of a fractal set X =
⋃∞

i=1 Xi. Third, the lower bound DB may not be
finitely stable, that is, DB(Xi ∪ Xj) ≠ max(DB(Xi), DB(Xj)), where i ≠ j. Therefore,
Hausdorff dimension DH is further introduced to characterize the fractal set X ⊆ ℝD

[14]. For 𝜀 > 0, an 𝜀-cover of X is a finite or countable collection of {Bi}i=1,2,…,
where the ball Bi ⊆ ℝD and its diameter |Bi| is less than or equal to 𝜀. The 𝛿-total
length of {Bi}i=1,2,… is defined as

∑∞
i=1 |Bi|𝛿 . If {Bi}i=1,2,… is a countable cover of

the fractal set X, then the 𝛿-dimenional Hausdorff measure of X is defined to be the
limit of the infimum of the 𝛿-total length of {Bi}i=1,2,….

H𝛿(X) = lim
𝜀→0

inf

{ ∞∑
i=1

|Bi|𝛿 ∶ {Bi}i=1,2,… is the𝜀 − cover ofX

}

The Hausdorff dimension DH of the fractal set X exceeds its topological dimension
and is defined as

H𝛿(X) =

{
∞ if 𝛿 < DH

0 if 𝛿 > DH

Furthermore, it is worth mentioning that monofractal analysis (i.e., a single fractal
dimension) often fails to fully characterize complex scaling behaviors of many irreg-
ular objects in the real world [16]. Instead, multifractal analysis utilizes a spectrum of
singularity exponents to provide a detailed description of complex scaling behaviors.
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Let us denote 𝜇 as a measure using the ball Bi(a) centered at xi of the object. Then
the singularity exponent h at location xi will be

h(xi) = lim
a→0+

ln 𝜇(Bi(a))
ln(1∕a)

The singularity spectrum D(h) is the fractal dimension of the set of all the locations
x such that h(x) = h:

D(h) = DF({x ∶ h(x) = h})

where DF is the fractal dimension. The singularity spectrum D(h) provides a statis-
tical distribution of singularity exponents h(x). Figure 3.7a shows an example of the
multifractal set, namely triadic Cantor set. The Cantor set is constructed as follows:

1. At step k = 0, the weight 𝜇0 = 1 is assigned to the interval [0, 1].
2. At step k = 1, the whole interval is divided into three subintervals of equal

lengths. The new weights will be 𝜇1 = p1𝜇0 = p1 for the first subinterval
[0, 1∕3] and 𝜇2 = p2𝜇0 = p2 for the third subinterval [2∕3, 1], where p1 and p2
are two probability values. The second subinterval will have a zero weight.

3. This process is iteratively repeated and then weights are summed over all the
steps in the interval [0, 1] to generate the Cantor set.

After k steps, if we consider the first interval B1(a = 3−k) = [0, 3−k], then the mea-
sure 𝜇(B1) = pk

1𝜇0 = pk
1 at the location x = 0. Thus, the singularity exponent at x = 0

is h(x = 0) = − ln p1∕ ln 3. Similarly, one can prove that the singularity exponent at
x = 1 is h(x = 1) = − ln p2∕ ln 3 for the last interval B2k (a = 3−k) = [1 − 3−k, 1]. If
p1 = p2, then we will have a monofractal Cantor set. If p1 ≠ p2, then there will be
a spectrum of singularity exponents, particularly h(x = 0) ≠ h(x = 1). Figure 3.7a
illustrates a multifractal version of triadic Cantor set with p1 = 0.6 and p2 = 0.4.
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Figure 3.7 (a) Triadic Cantor set with p1 = 0.6 and p2 = 0.4 and (b) D(h) singularity
spectrum.
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Moreover, the singularity exponents are h(x = 0) = 0.834 and h(x = 1) = 0.465. As
such, we will have D(h = 0.834) = DF({x = 0}) = 0 and D(h = 0.465) = DF({x =
1}) = 0. Figure 3.7b shows the singularity spectrum D(h). Instead of a sole singular-
ity exponent, there is a range of singularity exponents that describes complex scaling
behaviors of multifractal Cantor set.

3.3.1.2 Continuous Wavelet Transformation Traditionally, box-counting meth-
ods leverage the measure elements (e.g., box, square, line) at different spatial scales
to cover the fractal set and then examine how the covering changes with respect to
the scaling factor. Here, the fractal set refers to an irregular object in the space. The
scaling factor refers to the variations of spatial scales of measure elements. However,
box-counting methods are not generally applicable to measure fractal dimension of
complex time series. First, the scaling factor usually refers to temporal scales instead
of spatial ones for a time series. Second, time series involves a range of frequency
components that are not specifically considered when dealing with an irregular object
in the space. Third, the box-counting technique cannot adequately address the chal-
lenge of low-frequency trends (e.g., polynomial) in the time series and thereby fail
to measure local scaling properties. New methods and tools to characterize scaling
behaviors and quantify fractal dimensions of time series are urgently needed.

Therefore, wavelet functions are widely used as “boxes” in multifractal spectrum
analysis of time series. Wavelet functions are building blocks that can be used to
simultaneously decompose signal characteristics in both time and frequency domains.
Wavelet representations delineate steady and transient components of nonstationary
time series into various frequency bands while preserving the time information. In
particular, wavelet transform effectively addresses polynomial trends that fail the
traditional box-counting techniques. Time–frequency representation (TFR) is partic-
ularly useful for revealing the underlying hierarchy that governs the temporal distri-
bution of local singularity exponents.

The continuous wavelet transform (CWT) is an effective TFR that overcomes
the resolution problems in the short-time Fourier transform (STFT) [17]. Notably,
Fourier analysis interprets the regular structure, for example, dominant frequencies
in the signals, but does not provide the temporal localization of frequency components
and assumes that spectral components exist at all times (i.e., stationarity). Therefore,
STFT employs a local analysis scheme for TFR of nonstationary signals. STFT seg-
ments the time series into narrow time windows, narrow enough to be considered
stationary, and then takes the Fourier transform of each segment. Furthermore, CWT
uses a variable-length wavelet function to address the preset resolution problem of
STFT. As shown in Figure 3.8, a narrower wavelet function captures high-frequency
transient behaviors in a fine-grained time resolution, and the wider one characterizes
low-frequency steady behaviors in a better frequency resolution.

The CWT of signal x(t) using the analyzing wavelet 𝜓(⋅) is defined as

CWT𝜓x (b, a) = Ψ𝜓
x (b, a) =

1√|a|∫t
x(t)𝜓∗

( t − b
a

)
dt
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Figure 3.8 (a) Continuous wavelet transform of time series with an analyzing wavelet at
different scales and time locations. (b) Time–frequency resolution of wavelet representation.

where CWT𝜓x represents wavelet coefficients, a is the scale parameter (i.e., measure
of frequency), and b is the translation parameter (i.e., measure of time). The mother
wavelet 𝜓(⋅) is translated and scales to obtain all kernels 𝜓

(
t−b
a

)
. In other words,

CWT𝜓x (b, a) is the cross-correlation of the signal x(t) with the mother wavelet at the
scale a and at the time lag of b. If x(t) shares similar patterns to the wavelet function
𝜓

(
t−b
a

)
at the time location b, then wavelet coefficients CWT𝜓x (b, a) will be large.

As shown in Figure 3.8a, the mother wavelet is shifted in the time domain with
the translation parameter as 𝜓(t − b) and is expanded or compressed with the scale
parameter as 𝜓

(
t
a

)
. Because scale is inversely proportional to frequency, smaller

scales correspond to more compact wavelet functions (i.e., high frequency). CWT
starts with the small-scale wavelet functions (high frequency) and then proceeds to
large-scale wavelet functions (low frequency) where the wavelet function is more
expanded. The wavelet function is first set at the beginning of the signal. The inner
product of the signal and wavelet function is then computed. The results are normal-
ized by the factor 1∕

√|a|, which is ensured that wavelet functions have the same
energy. The wavelet function is shifted along the time direction and new coefficients
will be calculated. This process is continued until reaching the end of the signal.

The variable-length wavelet function is analogous to flexible windowing in the
CWT. Hence, wavelet representation provides a better time–frequency resolution
as demonstrated in Figure 3.8b. As aforementioned, small-scale wavelets are more
compact (i.e., similar to the use of small window in STFT) and therefore capture
the high-frequency components in the time series. Large-scale wavelets are more
stretched and have a bigger window size, thereby capturing the low-frequency com-
ponents. As shown in Figure 3.8b, when the window size is smaller, time resolution
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is higher but frequency resolution is lower. However, when the window size is bigger,
time resolution is lower but frequency resolution is higher. The use of variable-length
wavelet functions in CWT provides a trade-off between frequency and time resolu-
tions [17, 18], which is advantageous in multifractal spectrum analysis of complex
time series that will be detailed in the next section.

3.3.1.3 Multifractal Spectrum Analysis The wavelet transform modulus maxima
(WTMM) method is widely used to quantify multifractal spectrum of a nonlinear
time series. This wavelet-based multifractal analysis evaluates the local singularity
exponent h through the CWT. Note that the WTMM method uses wavelets in different
scales as the box functions to measure the self-similarity in the TFR of time series
[19, 20]. Suppose 𝜇 is a measure of a fractal set, {Bi(a)}i=1,2,…,N(a) is a covering of
the support of 𝜇, where Bi(a) is the ith box of size a and N(a) is the number of boxes.
For q ∈ ℝ, the partition function Z(q, a) is defined as

Z(q, a) =
N(a)∑
i=1

𝜇
q
i (a), where 𝜇i(a) = 𝜇(Bi(a)) = ∫Bi(a)

d𝜇

Because the rigid box function leads to smooth behaviors that will distort the
singularities of time series and impair the estimation of local singularity exponent,
wavelet functions are used to substitute traditional box functions. Therefore, the par-
tition function in the new wavelet multifractal formalism is

Z(q, a) = ∫ |Ψ𝜓
x (b, a)|qdb

where Ψ𝜓
x (b, a) are wavelet coefficients at location b and scale a. In order to improve

the estimability of singularity and avoid the divergence of Z(q, a) for q < 0, the inte-
gration is further modified to be a discrete summation over the maxima of Ψ𝜓

x (b, a).
Hence, the partition function is revised as

Z(q, a) =
∑

l∈(a)
|Ψ𝜓

x (bl(a), a)|q
where l ∈ (a) denotes the maxima line at the scale a, and bl(a) is the position of
the maxima belonging to the line l at the scale a. Figure 3.10b shows an example of
CWT, and the black lines are the maxima of wavelet coefficients. More details will
be given in the later examples.

Furthermore, because the maxima line is sparse in the wavelet representation and
the partition function is unstable for the negative values of q, the WTMM method
defines the partition function by replacing the WTMM at the scale a by the supremum
values along the maxima line at scales smaller than a:

Z(q, a) =
∑

l∈(a)
(sup
a′≤a

|Ψ𝜓
x (bl(a′), a′)|)q
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where Ψ𝜓
x (bl(a′), a′) are wavelet transform coefficients at location bl(a′) and scale a′,

supa′≤a|⋅| is the local maxima of modulus for all scales a′ ≤ a, and l ∈ (a) denotes
the maxima line at the scale a. Hence, Z(q, a) is the sum of qth powers of the maxima
in the wavelet modulus. When a → 0+, Z(q, a) can be approximated as Z(q, a) ≅ a𝜏(q),
where 𝜏(q) is the spectrum of singularity exponents that describes the power-law scal-
ing behavior of Z(q, a) with respect to the scale a. As mentioned in Section 3.3.1.1,
𝜇i(a) ∝ ah(xi) and N(a) ∝ a−D. Therefore, the partition function can be approximately
expressed as

Z(q, a) =
N(a)∑
i=1

𝜇
q
i (a) ≅ N(a) ⋅ 𝜇q(a) ∝ ∫ aqh−D(h)da

When a → 0+, this integration is dominated by the term aqh−D(h). Hence, we have
𝜏(q) = qh(q) − D(h), where the local singularity exponent h(q) is not constant and is
calculated as h(q) = d𝜏(q)∕dq. Furthermore, the multifractal spectrum D(h) can be
derived from 𝜏(q) through a Legendre transform [21]:

D(h) = qh − 𝜏(q)

Furthermore, we introduce the generalized devil staircase [22] to demonstrate the
differences between monofractal and multifractal sets and the use of WTMM method
to derive the multifractal spectrum. The devil staircase is constructed as follows:

1. At the first step, if an interval is divided into four subintervals with equal lengths
and different weights p1, p2, p3, and p4, then we will have the scale a = 4−1

and four measures 𝜇i = |pi| (i = 1, 2, 3, 4). As such, the partition function is
Z(q, a) =

∑4
i=1 𝜇

q
i (a) = |p1|q + |p2|q + |p3|q + |p4|q.

2. If the process is iterated for each subinterval, then there will be 4K measures
(or subintervals) of size a = 4−K to cover the whole interval. Each measure will
have the form

∏K
k=1|p̃k|, where p̃k ∈ {pi, i = 1, 2, 3, 4}. The partition function

is Z(q, a) = (|p1|q + |p2|q + |p3|q + |p4|q)K.

3. Finally, the generalized devil staircase xds(t) is the cumulative distribution func-
tion of all subintervals at the Kth step.

Note that the constraint of weights is
∑4

i=1 pi = 1 and pi ∈ ℝ, i = 1, 2, 3, 4, which
is designed to reach convergence. Base on the definition of 𝜏(q), one can prove that
the singularity spectrum 𝜏(q) is

𝜏(q) =
ln Z(q, a)

ln a
=

ln (|p1|q + |p2|q + |p3|q + |p4|q)K
ln
(

1
4

K
)

= −log4(|p1|q + |p2|q + |p3|q + |p4|q)
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Figure 3.9a shows the devil staircase with the weights p1 = p2 = −p3 = p4 = 0.5.
Here, xds(t) is generated after six iterations, and hence the fractal set includes 46 =
4096 subintervals. At each iteration of the construction, the order of weights follows
exactly p1, p2, p3, and p4. Note that the devil staircase xds(t) is everywhere continuous
but nowhere differentiable. If we zoom into the first quarter of the devil staircase
xds(t), Figure 3.9b shows distinct self-similar patterns. In addition, we will have the
singularity spectrum (see Fig. 3.9c) as
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Figure 3.9 (a and b) The generalized devil staircase with weights p1 = p2 = − p3 = p4 = 0.5;
(c) singularity spectrum 𝜏(q) versus q; (d) multifractal spectrum D(h) versus h.
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𝜏(q) = −ln4(|p1|q + |p2|q + |p3|q + |p4|q) = −ln4

(
4
(1

2

)q
)

= 1
2

q − 1

Therefore, the singularity exponent will be h(q) = d𝜏(q)∕dq = 1∕2. The fractal
dimension is D(h) = hq(h) − 𝜏(q(h)) = 1

2
q −

(
1
2
q − 1

)
= 1 (see Fig. 3.9d). As a

result, the devil staircase with weights p1 = p2 = −p3 = p4 = 0.5 is monofractal.
Figure 3.10a shows the random devil staircase with weights as p1 = 0.69, p2 =

−p3 = 0.46, p4 = 0.31, where the relation p1 + p2 + p3 + p4 = 1 still holds. How-
ever, at each iteration of construction, the order of weights is chosen randomly from
p1, p2, p3, and p4. Here, xds(t) is generated after five iterations, and hence the frac-
tal set includes 45 = 1024 subintervals. Due to the randomness in each iteration, the
random devil staircase function xds(t) and the singularity spectrum are difficult to be
expressed analytically. Therefore, the WTMM method is used to quantify the multi-
fractal spectrum of the random devil staircase xds(t).

Figure 3.10b shows the CWT of the random devil staircase xds(t), where the black
lines represent maxima lines. Figure 3.10c shows log(Z(q, a)) versus log(a) for dif-
ferent q values, which is numerically calculated based on wavelet maxima modulus
and the definition of partition function Z(q, a) =

∑
l∈(a)(supa′≤a|Ψ𝜓

x (bl(a′), a′)|)q.

Because the singularity spectrum is 𝜏(q) = ln Z(q,a)
ln a

, the slope of each curve for dif-
ferent q′s in Figure 3.10c will be its corresponding 𝜏(q). As a result, 𝜏(q) versus
q is derived as shown in Figure 3.10d. Note that light gray dots represent the val-
ues derived with the use of the WTMM method, and dark gray lines are theoretical
curves 𝜏(q) = −log4(|p1|q + |p2|q + |p3|q + |p4|q) = −log4(0.69q + 0.46q + 0.46q +
0.31q). Figure 3.10d shows that the spectrum 𝜏(q) from the WTMM method matches
with the theoretical curves. Furthermore, the multifractal spectrum D(h) is derived
from 𝜏(q) through a Legendre transform. Figure 3.10e shows the multifractal spec-
trum D(h) versus the singularity exponent h. By comparing the WTMM results with
the theoretical curves, it is evident that the WTMM method is effective to extract
multifractal spectra from a nonlinear time series.

3.3.2 Recurrence Quantification Analysis

Recurrence (i.e., approximate repetitions of a certain event) is one of the most com-
mon phenomena in natural and engineering systems. For example, the human heart is
near-periodically beating to maintain vital living organs, and manufacturing machines
are cyclically forming sheet metals during production. Real-time sensing brings the
proliferation of big data (i.e., dynamic, nonlinear, nonstationary, high dimensional)
from complex processes. This provides an unprecedented opportunity for data-driven
characterization and modeling of nonlinear recurrence behaviors toward system infor-
matics and control. However, most of existing approaches adopt linear methodologies
for analyzing dynamic recurrences. Traditional linear methods interpret the regular
structure, for example, dominant frequencies in the signals. They have encountered
certain difficulties to capture the nonlinearity, nonstationarity, and high-order vari-
ations. For example, Fourier analysis does not provide the temporal localization of
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Figure 3.10 (a) The generalized devil staircase with weights p1 = 0.69, p2 = − p3 =
0.46, p4 = 0.31; (b) continuous wavelet transform; (c) log(Z(q, a)) versus log(a); (d) 𝜏(q) ver-
sus q; (e) D(h) versus h. Note that light gray dots are calculated from the WIMM method, and
the dark gray lines correspond to the theoretical curves.
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frequency components and assume that spectral components exist at all times (i.e.,
stationarity). Instead, system diagnostics and process control are more concerned
with aperiodic recurrences and nonlinear recurrence variations.

Therefore, nonlinear recurrence methodologies are urgently needed to handle the
underlying complexity in the big data. Poincaré recurrence theorem shows that if
a dynamical system has the measure of preserving transformation, its trajectories
eventually reappear in the 𝜀-neighborhood of former states [4]. The methodology of
nonlinear recurrence analysis is emerged from the theory of nonlinear dynamics and
characterizes recurrence behaviors in the high-dimensional state space. The recur-
rence plot was introduced by Eckmann et al. in the late 1980s [23] to characterize the
proximity of states in the phase space. Mathematically, the recurrence plot is defined
as R(i, j) = Θ(𝜀 − ‖x⃗(i) − x⃗(j)‖), where Θ is the Heaviside function, 𝜀 the neighbor-
hood size, and || ⋅ || is a distance measure. For the lag-reconstructed phase space
x⃗(i) = (xi, xi+𝜏 ,… , xi+𝜏(M−1)), i = 1,… ,N − 𝜏(M − 1), which is lag-reconstructed
from a time series, the computation of recurrence plot will be

R(i, j) = Θ
⎡⎢⎢⎣𝜀 −

√√√√M−1∑
m=0

(xi+m𝜏 − xj+m𝜏 )2
⎤⎥⎥⎦

It is worth mentioning that if the neighborhood size 𝜀 is too small, there will be
few recurrence points in the plot. Thus, we can hardly learn anything about recurrence
structures. However, if 𝜀 is too large, almost every point is a neighbor of every other
point. In the literature, there are several “rules of thumb” for the selection of 𝜀: (i) a
small percentage of the maximum diameter of the state space; (ii) a fixed scale region
in the recurrence rate; (iii) fix the number of neighbors for every point; and (iv) take
into account the standard deviation of the observational noise. An optimal choice of
𝜀 facilitates the characterization of recurrence structures and dynamical properties of
complex systems.

As shown in Figure 3.11, recurrence plot captures topological relationships in
the state space as a 2D image. If two states are located close to each other in the
m-dimensional state space (e.g., 3D space in Fig. 3.11a), the color code is black
(Fig. 3.11b). If they are located farther apart, the color is white. The structure of a
recurrence plot has distinct topology and texture patterns (Fig. 3.11b). The ridges
locate the nonstationarity and/or the switching between local behaviors. The parallel
diagonal lines indicate the near-periodicity of system behaviors. Recurrence quantifi-
cation analysis (RQA) measures intriguing structures and patterns in the recurrence
plot, including small structures (e.g., small dots, vertical lines, and diagonal lines),
chaos–order transitions, as well as chaos–chaos transitions. A comprehensive review
on recurrence quantifiers is reported in Marwan et al., 2007 [24]. Here, we present
several examples of recurrence quantifiers as follows: (i) recurrence rate (RR) – a
measure of the density of recurrence points in the RP, RR = 1

N2

∑N
i,j=1 R(i, j),

where N is the number of states in the attractor; (ii) determinism (DET) – the

percentage of recurrence points that form the diagonal lines, DET =
∑N

l=lmin
lP(l)∑N

l=1 lP(l)
,
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Figure 3.11 (a) An example of ECG trajectories in the 3D phase space; (b) the recurrence plot
characterizes the proximity of two states x⃗(i) and x⃗(j), that is, R(i, j) ∶= Θ(𝜀 − ‖x⃗(i) − x⃗(j)‖),
where Θ is the Heaviside function and || ⋅ || is a distance measure.

where P(l) is the histogram of diagonal line length; (iii) entropy (ENT) – Shannon
information entropy for the probability distribution of the diagonal line lengths P(l),
ENT = −

∑N
l=lmin

p(l) ln p(l); (iv) laminarity (LAM) – the percentage of recurrence

points that form vertical lines, LAM =
∑N
𝑣=𝑣min

𝑣P(𝑣)∑N
𝑣=1 𝑣P(𝑣)

, where P(𝑣) is the histogram of

vertical line lengths; and (v) trapping time (TT) – the average length of vertical

structures, TT =
∑N
𝑣=𝑣min

𝑣P(𝑣)∑N
𝑣=𝑣min

P(𝑣)
. RQA goes beyond the visual inspection in the RP

and provides complexity measures of system dynamics. If we compute the RQA
measures in small windows (submatrices) along the line of identity (LOI) of the
RP, time-dependent behaviors of system dynamics will be quantified. RQA has
successful applications in various disciplines, for example, physiology [25–28],
biology [29], economy [30], manufacturing [31], geophysics [32], and neuroscience
[28, 33].

3.3.3 Multiscale Recurrence Quantification Analysis

However, complex systems exhibit recurrence characteristics in multiple spatial
and temporal scales. Most of existing recurrence methods considered the data in
a single scale. In addition, recurrence computation is highly expensive, that is, a
squared increase (i.e., O(n(n − 1)∕2)) with the size of data n [3]. This limits the
use of recurrence approaches for big data, which are often collected in real-time
monitoring of complex systems. Multiscale analysis is of fundamental importance
to solve engineering and physics problems that have important characteristics in
spatial, temporal, and/or frequency scales. For example, multiscale spatial models
were developed for the prediction of weather evolution in meteorology [34] and the
control of nanomaterial growth in material science [35]. Hilbert–Huang transform
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empirically decomposes time series into intrinsic mode functions (IMFs) via the
sifting process, thereby capturing multiple instantaneous frequencies in the data [36,
37]. In addition, wavelet transform elucidates multiscale information of sensing data
in the time–frequency domain [17, 38].

However, very little work has been done to investigate multiscale recurrence
dynamics. Our previous research developed a novel multiscale framework to
quantify recurrence dynamics in complex systems and resolve computational issues
for large-scale data sets [3, 39]. As opposed to traditional single-scale recurrence
analysis, we characterize and quantify recurrence dynamics in multiple wavelet
scales. As shown in Figure 3.12, wavelet transform decomposes nonstationary
VCG signals into various frequency bands for effectively separating the system’s
transient, intermittent, and steady behaviors. Wavelet packet decomposition (WPD)
introduces both the wavelet function and scaling function for an efficient pyramid
decomposition of signal space Vj into an approximation space Vj+1 and a detail
space Wj+1. The approximation space Vj+1 and the detail space Wj+1 are, then,
divided iteratively in the next level. This provides a better resolution in both time and
frequency scales. As shown in Figure 3.12, the time series X = {x1, x2,… , xN}T ,
denoted as W0,0, is passed through the low-pass filter G(⋅) and high-pass filter
H(⋅) and followed by the dyadic subsampling process in each level. This subband
coding is repeated to produce the kth level coefficient sets that are denoted as
Wk,n, n = 0,… , 2k − 1. The redundancy is removed because each set Wk,n is of
length N/2k, and the total length in level k is the same as the original time series X.
Note that a narrower wavelet function captures high-frequency transient behaviors
in a fine-grained time resolution, and the wider wavelet function characterizes
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Figure 3.12 Flow diagram illustrating the WPD of a long-term time series X, as well as
the hierarchical analysis of recurrence and frequency behaviors. The subband coding (i.e.,
low-pass filter G(⋅) and high-pass filter H(⋅)) and dyadic subsampling processes decompose
a long-term time series X, defined as W0,0, into the kth level subseries that are denoted as
Wk,n, n = 0,… , 2k − 1, thereby facilitating the analysis of recurrence dynamics [40].



�

� �

�

80 CHARACTERIZATION AND MONITORING OF NONLINEAR DYNAMICS

low-frequency steady behaviors in a better frequency resolution. Thus, a nonstation-
ary time series is resolved into multiple nonoverlapping frequency bands. In addition,
the dyadic subsampling in discrete wavelet transforms leads to the reduction of
sample size. Notably, wavelet decomposition and subsampling do not lose any infor-
mation. The original long-term signal can be perfectly reconstructed from wavelet
coefficients.

Multiscale recurrence analysis integrates RQA into the framework of wavelet
subband coding. In each wavelet scale, recurrence analysis further quantifies
nonlinear system dynamics. Our previous research showed that the recurrence plot
R0,0(i, j)|i,j=1,…,N of original time series X can be perfectly reconstructed with the kth
level of wavelet coefficients Wk,n and their recurrence plots Rk,n(i, j) [3]. Dynamical
properties in the original recurrence plot are preserved after the WPD. Recurrence
dynamics pertinent to the original time series are further delineated by computing
the recurrence plots from the wavelet subseries Wk,0 · · ·Wk,2k−1. Note that many
previous approaches adjusted the threshold 𝜀 for an optimal recurrence plot in the
presence of noises. Multiscale recurrence analysis is more robust to observational
noises because it decomposes the system behaviors into different frequency bands.
For example, noises will be separated into the high-frequency band and long-term
trend will go into the low-frequency band. When there is a mixture of noise,
nonlinear, and nonstationary behaviors, multiscale wavelet decomposition separates
the mixture of information into various wavelet scales. This further reduces the
complexity of nonlinear dynamics within each scale. These shorter wavelet subseries
make expensive recurrence computations not only plausible but also more effective
within wavelet scales. Multiscale recurrence analysis facilitates the prominence of
hidden recurrence properties that are usually buried in a single scale.

3.4 HEALTHCARE APPLICATIONS

Human heart is essentially an autonomous electromechanical blood pump that oper-
ates near-periodically to maintain vital living organs. ECG signals contain a wealth of
dynamic information pertinent to cardiac operations, which is indispensable for car-
diac care – from monitoring and diagnosis to treatment planning to smart health man-
agement. One-lead ECG captures 1D temporal view of space–time cardiac electrical
activity. Multilead ECG systems provide multidirectional views of such space–time
dynamics [2]. A normal ECG tracing is often segmented into P wave, QRS com-
plex, and T wave (see Fig. 3.1a). Atrial depolarization (and systole) is represented
by the P wave, ventricular depolarization (and systole) is represented by the QRS
complex, and ventricular repolarization (and diastole) is represented by the T wave
[41]. In addition, HRV refers to the fluctuations in the sequential heartbeat inter-
vals, also called RR intervals. Heartbeat dynamics are highly pertinent to the func-
tion of autonomic nervous system. Autonomic nervous control brings a greater level
of nonlinear dynamics in the presence of nonstationarity and noises. Most existing
works focused on the analysis of time-domain ECG signals from a single sensor.
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Time-domain algorithms were usually developed to quantify the characteristics of
ECG wave deflections (i.e., P, QRS, and T waves) [42–44]. Examples of ECG fea-
tures include PR interval, RR interval, ST elevation/depression, QT interval, and R
amplitude. Also, Fourier analysis was utilized to transform time-domain ECGs to
extract hidden features in the frequency domain [45–47]. However, Fourier analysis
does not provide temporal location of frequency components and assumes that spec-
tral components exist at all times (i.e., stationarity). Nonstationarity in cardiovascular
systems fueled increasing interests in wavelet analysis of ECG signals to delineate
local time and frequency information for applications such as adaptive representation
[29], PQRST segmentation [48–50], noise cancellation [38], and arrhythmia recog-
nition [51]. Furthermore, nonlinear methods were developed to reconstruct the phase
space from 1-lead ECG and then characterize the dynamics of cardiovascular systems
[26, 52].

However, many previous works underuse multilead ECG signals and overlook spa-
tiotemporal dynamics in the heart. Multiple sensors at various locations on the human
body respond to process changes differently. Time-domain ECG – a projected view
of space–time cardiac electrical activity – diminishes important spatial information
pertinent to tissue damages in the heart (e.g., myocardial infarction). Most existing
methods are influenced by such an information loss, thereby failing to extract effec-
tive ECG biomarkers sensitive to cardiac malfunctions. The objective of this study
reported in this section is to present two case studies on the characterization and
modeling of nonlinear dynamics in cardiovascular systems. First, the approach of
wavelet multifractal analysis is developed to quantify nonlinear dynamics in heart
rate time series. These fractal features provide useful information about nonlinear
scaling behaviors and the complexity of autonomic cardiovascular function. Second,
we present a novel multiscale recurrence approach to study disease-altered nonlinear
dynamics in the spatiotemporal vectorcardiogram (VCG) signals. As opposed to the
traditional single-scale recurrence analysis, we characterize and quantify recurrence
behaviors within multiple wavelet scales. Also, wavelet dyadic subsampling makes
the expensive recurrence computations not only plausible for the long-term time
series but also more effective under the stationary assumptions in multiple wavelet
scales.

3.4.1 Nonlinear Characterization of Heart Rate Variability

HRV analysis plays an important role in the detection of disorders in autonomic
cardiovascular function. Since the 1980s, linear and frequency-domain approaches
are widely used in the HRV analysis but are limited in the ability to capture non-
linear dynamics in the long-term HRV time series. For example, Fourier analysis
is efficient to transform data from time domain to frequency domain but does not
provide the temporal localization of frequency components. Also, linear statistical
methods, for example, analysis of variance (ANOVA), have certain difficulties to
capture the nonlinearity, nonstationarity, and high-order variations. Therefore, linear
methods tend to bring less realistic characterization and quantification of nonlinear
time series. Notably, recent research showed that congestive heart failure (CHF),

www.Ebook777.com

http://www.ebook777.com


�

� �

�

82 CHARACTERIZATION AND MONITORING OF NONLINEAR DYNAMICS

a major life-threatening cardiac disorder, leads to a loss of multifractality [16]. Heart
failure is caused by a loss of cardiac ability to supply sufficient blood flows to the
body. As a result, central nervous system controls the heart rate to compensate heart
failure by maintaining blood pressure and perfusion, for example, increasing the sym-
pathetic activity. However, autonomic cardiovascular function not only is nonlinear
and nonstationary but is also with long-range correlations, at time scales ranging from
seconds to minutes to hours. This is significantly different from acute cardiac events
pertinent to only a segment of ECG signals. Therefore, long-term time series are nec-
essary to delineate the complex long-range dependence behaviors in multiple scales
for the identification of heart failures. Figure 3.13 shows examples of scaling expo-
nents function and multifractal spectrum extracted from HRV time series of healthy
control (HC) and heart failure subjects. Scaling exponents 𝜏(q) of the healthy sub-
ject (dark gray dots) are more linear than those of heart failures (light gray crosses).
Multifractal spectrum D(h) is obtained through a Legendre transform from the 𝜏(q)
in Figure 3.13a. It is worth mentioning that multifractal spectrum D(h) for the heart
failure subject is narrower than healthy control, indicating the loss of multifractality.

This section presents our previous efforts on characterization and modeling of
nonlinear dynamics in HRV time series, further evaluating their classification per-
formances. For that purpose, we used three well-known classification algorithms,
namely logistic regression (LR), k-nearest neighbor (KNN), and artificial neural net-
work (ANN). We build three classification models for nonlinear features to bench-
mark the performance in detecting disorders of autonomic cardiovascular function.
In this study, we analyzed the 24-h heart rate time series that are gathered from
54 healthy control (HC) subjects and 29 CHF patients, available in the PhysioNet
[53]. Heart rate time series is preprocessed to eliminate erroneously large intervals
and outliers due to missed beat detections following the same procedure as in [16].
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Figure 3.13 (a) Scaling exponents function: 𝜏(q) versus q and (b) multifractal spectrum: D(h)
versus h extracted from heart rate variability time series of healthy control and heart failure
subjects.
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The preprocessing procedures include (i) a moving-window average filter and (ii)
increment smoothing. For the five consecutive points in a moving window, the cen-
tral point is removed if it is greater than twice the local mean calculated from the
other four points. There is no interpolation in this moving-window average filter. The
second step calculates differences between adjacent elements in the time series. If
the successive increments have opposite sign with amplitudes >3× standard devia-
tion of increment series, both increments will be replaced by the interpolated value in
between. The new heart rate time series is, then, reconstructed from the postprocessed
series of increments.

3.4.1.1 Feature Extraction We have utilized two alternative approaches, namely
wavelet multifractal analysis and multiscale recurrence analysis, to extract nonlin-
ear dynamic features from long-term heart rate time series. Features extracted in the
wavelet multifractal analysis include multifractal spectrum 𝜏(q) and fractal dimen-
sion D(h). The fractal features provide useful information about nonlinear scaling
behaviors and the complexity of autonomic cardiac function. For multiscale recur-
rence analysis, six recurrence statistics, namely RR, DET, LMAX, ENT, LAM, and
TT, are exacted to quantify the nonlinear recurrence behaviors in wavelet subseries.
Therefore, a total of 6× 2k recurrence features are exacted for the kth level WPD.
In the case study of HRV, k is chosen from 6 to 9 for all subjects to explore the opti-
mal decomposition level that captures the frequency ranges of disease variations. The
neighborhood size 𝜀 in recurrence plots was chosen to be 5% of the maximal distance
of state space. The total length of each HRV recording is pruned to be 76,000 data
points to keep computational consistency for all subjects.

3.4.1.2 Feature Selection The method of sequential feature selection is used to
optimally choose a subset of features that are closely correlated with the disease vari-
ations [3, 20]. Note that a large amount of features are extracted from three nonlinear
approaches. As a result, this may bring the “curse of dimensionality” issues for clas-
sification models, for example, increased model parameters and overfitting problems
[3, 40, 54]. In addition, such a high-dimensional feature space hinders the develop-
ment of a deeper understanding of cardiac pathology. Hence, we use the strategy
of sequential forward feature selection to optimally choose a subset of features that
are strongly correlated with process variations. Starting from an empty feature sub-
set, an additional feature 𝓈+ is selected when it maximizes the objective function
 (𝓁 + 𝓈+), which wraps the classification model. This process is repeated until
it reaches the desired subset size. Feature selection not only surmounts the model
complexity and overfitting problems but also provides faster and more cost-effective
models with the optimal feature subset.

3.4.1.3 Feature Analysis As shown in Table 3.1, we evaluated the individ-
ual feature separately using two statistical tests, namely unpaired t-test and
Kolmogorov–Smirnov (KS) test. There are 10 features for each method that are
optimally chosen by the feature selection algorithms. In the unpaired t-test, the
smaller p-value indicates more evidence to reject the null hypothesis, that is, the
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feature has the same distribution between HC and CHF groups. In the KS test, a
larger KS statistic shows that this feature has more distinct cumulative distribution
functions between the HC and CHF groups. Table 3.1 shows that two statistic tests
agree on the fact that most of the features are significant, because the majority of
p-values are <0.05 and KS statistic >0.3. However, 1D statistical test does not
account for the feature dependence in the high-dimensional space.

3.4.1.4 Classification Performance Therefore, we carried out classification
experiments with two groups of features to evaluate the combinatorial effects of
multidimensional features. Three classification models are KNN, logistic regression
(LR), and ANN. As shown in Figure 3.14, the bar plot is used to visualize the
statistics of classification performance (i.e., sensitivity, specificity, and accuracy)
that are computed from 100 random replications of the fourfold cross-validation.

Figure 3.14a shows the sensitivity, specificity, and accuracy, respectively, for
features extracted from wavelet multifractal analysis of heart rate time series.
Figure 3.14a demonstrates an average sensitivity of 89.41%, a specificity of 67.72%,
and an accuracy of 81.83% for the logistic regression. In addition, KNN and ANN
models yielded approximately similar results but with small deviations. Overall, the
KNN model was shown to achieve a better accuracy (i.e., 82.44%) than the other two
models. Experimental results of three classification models show that the features
extracted from wavelet multifractal analysis are significant between CHF and HC
subjects.

Figure 3.14b presents the classification results for features extracted from mul-
tiscale recurrence analysis of heart rate time series. Notably, multiscale recurrence
features lead to generally better results for all three classification models than features
extracted from wavelet multifractal analysis. Logistic regression models are shown to
further improve the sensitivity to 92.28%, the specificity to 92.65%, and the accuracy
to 92.52%. The ANN models are shown to yield approximately the same results (i.e.,
an accuracy of 92.16%) as logistic regression, but the performance of KNN models is
lower than both ANN and logistic regression models. Overall, multiscale recurrence
analysis delineates nonlinear and nonstationary behaviors in multiple scales of heart
rate time series, and it is shown to yield better results for the classification of healthy
control and heart failure subjects.

3.4.2 Multiscale Recurrence Analysis of Space–Time Physiological Signals

The human heart is a 3D object and cardiac electrical activities are near-periodically
conducting across space and time. The ECG contains a wealth of dynamic informa-
tion pertinent to cardiac functioning, but 1-lead ECG only captures one directional
view of spatiotemporal heart activities. In contrast, 3-lead VCG monitors the spa-
tiotemporal cardiac electrical activity along three orthogonal X, Y, Z planes of the
body, namely, frontal, transverse, and sagittal [39]. However, 3-lead VCG is not as
commonly used as 12-lead ECG because medical doctors are accustomed to using
the time-domain ECG in clinical applications. Dower et al. [55, 56] and our pre-
vious study [57] showed that 3-lead VCG can be linearly transformed to 12-lead
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Figure 3.14 Performance results for (a) wavelet multifractal features and (b) multiscale
recurrence features using three classification models – logistic regression (LR), k-nearest
neighbors (KNN), and artificial neural network (ANN).

ECG without a significant loss of clinically useful information. Thus, 3-lead VCG
surmounts not only the information loss in 1-lead ECG but also the redundant infor-
mation in 12-lead ECG.

However, most of previous nonlinear methods only considered the lag-
reconstructed state space from 1-lead ECG signals. Although 3-lead VCG provides
a new way to investigate the cardiac dynamical behaviors, few previous approaches
have studied the disease-altered recurrence dynamics in the space–time VCG
signals. This chapter developed a novel multiscale recurrence approach to not
only explore recurrence dynamics but also resolve the computational issues for the
large-scale data sets. As shown in Figure 3.15, the long-term VCG signal, followed



�

� �

�

HEALTHCARE APPLICATIONS 87

Vx

Vy

Vz

Attractor

Feature
selection 

Recurrence analysis

Downsampling

Classification

Wavelet packet decomposition
3-lead VCG

Wk,2 −2

Wk,0

Wk,0

Wk,0

Rk,0Wk,0

k

Wk,2 −2
k

Rk,2 −1
k

Wk,2 −1
k

Wk,2 −1
k

Attractor

Figure 3.15 Multiscale recurrence analysis of disease-altered VCG signals.

by the dyadic subsampling, is decomposed into wavelet subseries. Each subseries
is iteratively decomposed to produce 2k subsets of wavelet subsignals, denoted
as Wk,n, n = 0,… , 2k − 1, in the kth level. Within each wavelet scale, recurrence
analysis is utilized to quantify the underlying dynamics of nonlinear systems. We
performed multiscale recurrence analysis of 448 VCG recordings (368 MIs and 80
HCs) available in the PhysioNet PTB Database [53]. Each recording contains 15
simultaneous heart-monitoring signals, that is, the conventional 12-lead ECG and
the 3-lead VCG.

Notably, we have previously extracted RQA features from the 3-lead VCG in the
original scale for the identification of myocardial infarction subjects [58]. In addi-
tion, we utilized the DWT to decompose VCG signals into multiple wavelet scales
and compute RQA features from not only the original single scale but also multiple
wavelet scales [39]. It is worth mentioning that only 4000 data points in the 3-lead
VCG are used for the single-scale and DWT recurrence analysis due to the compu-
tational complexity. In the study reported in this section, we further utilized wavelet
packet decomposition to not only quantify multiscale recurrence dynamics but also
resolve the computational issues for large-scale data sets. It may be noted that the
3-lead VCG of 16,000 data points are utilized for RQA in this present study with the
use of WPD dyadic sampling.

As shown in Figure 3.16, multiscale recurrence analyses (i.e., DWT and WPD)
show better performances (in terms of correct rates) than the single-scale recurrence
analysis. The correct rate using DWT recurrence analysis (93.2% from 10-fold
cross-validation) is 2.7% higher than the single-scale recurrence analysis (90.5%
from 10-fold cross-validation). Moreover, the proposed WPD recurrence analysis
increases the correct rate about 2.9% from the previous DWT recurrence analysis.
The correct rate for the identification of MI subjects is 96.1% in the WPD recurrence
analysis, which is about 5.6% increase from the single-scale analysis.

In the literature, little has been done to investigate multiscale variations of
phase-space recurrences underlying the space–time VCG signals. Previous work
focused primarily on the recurrences in time-domain signals from a single sensor.
In addition, existing recurrence methods only considered the data in a single scale.
Our previous research developed a novel multiscale framework to characterize
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Figure 3.16 The comparison of classification performance between single-scale and multi-
scale recurrence analyses.

and quantify the dynamics of transient, intermittent, and steady recurrences within
wavelet scales. Multiscale recurrence analysis facilitates the prominence of hidden
recurrence properties that are usually buried in a single scale. Our previous research
results are summarized as follows: (i) Single-scale versus multiscale recurrence
analysis: As opposed to the traditional recurrence analysis in a single scale, we
delineate the recurrence dynamics into multiple wavelet scales. (ii) Long-term recur-
rence analysis: Few, if any, previous approaches have been capable of quantifying
the recurrence dynamics from a long-term time series. Recurrence computation is
highly expensive (i.e., O(n(n − 1)∕2)) as the size of time series n increases. The
dyadic subsampling in WPD effectively resolves the computational issues for the
large-scale recurrence analysis. (iii) Disease-altered recurrence dynamics: It is
shown that recurrence dynamics are significantly different in wavelet scales between
healthy control (HC) and myocardial infarction (MI) subjects. Multiscale recurrence
analysis identifies the MI with an average sensitivity of 96.8% and specificity of
92.8%, which is much better (i.e., 5.6% increase) than the single-scale recurrence
analysis.

3.5 SUMMARY

Real-world physiological systems show high level of nonlinear and nonstationary
behaviors in the presence of extraneous noises. Nonlinear dynamic methods provide
significant opportunities to explore the hidden patterns and relationships in complex
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physiological systems. This chapter presents a review of theoretical developments and
tools of nonlinear dynamics principles as well as their applications in healthcare data
analytics. Specifically, we showed the methodological details of multifractal spec-
trum analysis and multiscale recurrence analysis with case studies in modeling and
analysis of HRV and space–time ECG signals. From the foregoing, it is evident that
healthcare data analytics can be greatly advanced from using sensor-based character-
ization and modeling of nonlinear dynamics.

We first introduced the methodology of multifractal spectrum analysis and
its applications to identify CHF subjects using the 24-h heart rate time series.
Experimental results demonstrated the effectiveness to delineate nonlinear and
nonstationary behaviors in multiple scales of time series. For the multifractal
features, the logistic regression models achieve a sensitivity around 89.41% and an
average specificity of 67.72%. KNN and ANN models yielded approximately similar
results but with small deviations. The multifractal approach was shown to effectively
capture nonlinear dynamic behaviors in the 24-h heart rate time series. In addition,
logistic regression models were shown to further improve the sensitivity to 92.28%,
the specificity to 92.65%, and the accuracy to 92.52% using features extracted
from multiscale recurrence analysis of heart rate time series. In general, overall,
multiscale recurrence analysis delineates nonlinear and nonstationary behaviors in
multiple scales of heart rate time series, and it is shown to yield better results for the
classification of healthy control and heart failure subjects than wavelet multifractal
methods.

Furthermore, this chapter presents a novel multiscale recurrence approach to
analyze the 3-lead VCG signals for the detection of MIs. Few, if any, previous work
studied disease-altered nonlinear dynamics hidden in long-term spatiotemporal
VCG signals. Notably, most of existing nonlinear dynamic methods considered
the time-delay reconstructed phase space from 1D time series for the investigation
of physiological dynamics. Computer experiments demonstrate that the proposed
approach yields better performances by characterizing the nonlinear and nonstation-
ary behaviors in multiple wavelet scales. Multiscale recurrence analysis of VCG
signals leads to a superior classification model that detects the myocardial infarction
with an average sensitivity of 96.8% and specificity of 92.8%, which is much better
(i.e., 5.6% increase in terms of correct rates) than the single-scale recurrence analysis.

The theory of nonlinear dynamics has been primarily studied in mathematics and
physics. Most of previous works have begun the adaptation of the existing results
in nonlinear dynamics body of knowledge into healthcare data analytics. However,
realizing the full potential of nonlinear dynamics theory for healthcare analytics calls
upon the new advancement of nonlinear dynamics methodologies, as well as integra-
tion of existing nonlinear methods with healthcare analysis tools. For example, very
little has been done to adapt nonlinear dynamics principles into operational analytics
in healthcare systems engineering. Also, nonlinear dynamics researchers have tradi-
tionally not addressed the issues of how to construct nonlinear models from the wealth
of process data and how to address noises in real-world healthcare processes. These
research problems are critically important to improving the performance of healthcare
systems and achieving a remarkable reduction of healthcare costs. Future research
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efforts addressing these problems will advance not only current healthcare practice
but also enrich the theory of nonlinear dynamics and further expand its research
domain to health care. We hope that our limited and focused review will inform
subsequent studies that will focus on the development of novel nonlinear dynamics
methodologies for improving healthcare services and optimizing healthcare systems
that are so vitally important for smart health.
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ELECTROCARDIOGRAPHY SIGNAL
FOR SUBJECT MONITORING AND
DIAGNOSIS

Lili Chen, Changyue Song, and Xi Zhang
Department of Industrial Engineering and Management, Peking University, Beijing, China

4.1 INTRODUCTION

As a pervasively used physiological signal, electrocardiography (ECG or EKG) is
the recording of electrical activities of the heart over a period of time, which aims
to measure the electrical impulses generated by cardiac tissue movement [1]. Cur-
rently, technologies based on ECG have been widely applied for diagnosis of cardiac
diseases due to its clinical significance.

Retrospectively, the development of ECG techniques involves three stages. In
the first stage, numerous sensitive galvanometer apparatus such as the capillary
electrometer, the string galvanometer, and the Holter Monitor were invented and
commenced to record human ECG [2, 3]. A milestone for this stage was the first
publication of human ECG in 1887 [4]. The second stage is clinical exploration
of the relationship between ECG and several kinds of cardiovascular disorders in
terms of the clinical application of ECG [5, 6]. The third stage is the development
of computer-aided ECG based on the automatic processing and analysis of the ECG
signal from the early 1960s [7].

Currently, modern information technologies become more and more useful in the
processing and interpretation of ECG signals automatically with designed algorithms

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
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and methods to extract some characteristics. For example, computer-aided ECG can
employ more complicated statistical models to explore the relationship between elec-
trocardiographic measurements and physiologic findings [8]. Due to the fastness, low
variability, and low cost, computer-aided ECG gains significant attention both in sci-
entific research and healthcare service systems.

In the following section, the basic elements of ECG in terms of the physical
mechanism, recording, and waveforms description are briefly introduced. In Section
4.3, several pervasively used automatic techniques for ECG preprocessing, waveform
detection, feature extraction, and disease diagnosis are reviewed. A real clinical
example in apnea detection is presented in Sections 4.4 and 4.5. Experimental
results, discussion and conclusions are summarized in Sections 4.6–4.7.

4.2 BASIC ELEMENTS OF ECG

Most of the disease diagnosis approaches are designed based on extracted charac-
teristics such as waveforms and derived features of ECG signals. Generally, the
morphology of ECG signal is formed by iteratively sequential polarization and
depolarization of cardiac tissue [8]. Figure 4.1 shows the activation process of a
single cardiac fiber to illustrate the generation of ECG signal.

When at rest, the extracellular potentials of a single cardiac fiber are higher than
the intracellular potentials, which constitute negative transmembrane potentials.
With the stimulus transferring from left to right through the fiber, the left part of
the fiber undergoes depolarization when the polarity of the transmembrane potential
converts from negative to positive while the right part remains in a resting state.
Therefore, the transmembrane potentials are positive on the left and negative on
the right, which are associated with inward and outward current flow, respectively.
Current flow in each direction is most intense near the site undergoing activation,
constituting a source–sink pair represented as a current dipole. As the stimulus
transfers through the fiber, the current dipole moves along with the stimulus.
After depolarization, the fiber undergoes the recovery process gradually with its
transmembrane potentials converting from positive to negative, which results in an

+

+

−

−

Inside cardiac fiber

Current dipole

Positive
transmembrane

potential

Negative
transmembrane

potential

Outside cardiac fiber

Stimulus

Inward
current

flow

Outward
current
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Figure 4.1 Currents and potentials during the activation of a single fiber.
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equivalent dipole transferring from less recovered sites to more recovered sites.
Changes in potential during recovery require much longer than during activation. In
real cases, multiple adjacent fibers are activated in synchrony. Each individual fiber
generates a single dipole, respectively, and the combination of the dipoles represents
the electrical activity of the entire system.

ECG signals can be recorded by sensing the potentials generated in the activation
and recovery process with electrodes placed on the torso. Specifically, an ECG lead
is formed by recording the difference in potentials between two electrodes placed at
different positions of the human body while one of the electrodes is designated as the
positive input and the other as the negative input. In some cases, the negative input of
the pair is represented by a combination of several electrically connected electrodes.
Since there are multiple positions on the human body for electrodes, various ECG
leads can be obtained and the most famous ECG lead system is presented in Table 4.1
[8]. This recording system is the 12-lead ECG composed by three standard limb leads,
three augmented limb leads, and six chest leads (precordial leads).

The popularity of 12-lead ECG recording system is partly due to historical reasons.
Some other recording systems are also in use aiming at recording more information,
which is neglected by 12-lead ECG system with additional leads. In addition, some
recording systems are capable to restore and reconstruct a full 12-lead recording at
a high accuracy with less number of leads to reduce the complexity of the recording
system especially for ambulatory use.

For a typical recorded ECG, the waveforms, segments, and intervals provide a
basis for ECG interpretation and analysis. Figure 4.2 depicts the waveforms, seg-
ments, and intervals of a typical ECG signal. Five deflections including P, Q, R, S,

TABLE 4.1 Locations of Electrodes and Lead Connections for the Standard 12-Lead
ECG

Lead Type Positive Input Negative Input

Standard Limb Leads
Lead I Left arm Right arm
Lead II Left leg Right arm
Lead III Left leg Left arm

Augmented Limb Leads

aVR Right arm Left arm plus left leg
aVL Left arm Right arm plus left leg
aVF Left leg Left arm plus right arm

Precordial Leads

V1 Right sternal margin, fourth intercostal space Wilson central terminal
V2 Left sternal margin, fourth intercostal space Wilson central terminal
V3 Midway between V2 and V4 Wilson central terminal
V4 Left midclavicular line, 5th intercostal space Wilson central terminal
V5 Left anterior axillary line Wilson central terminal
V6 Left midaxillary line Wilson central terminal
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Figure 4.2 Waveforms and intervals for normal ECG.

TABLE 4.2 Origins and Normal Values of Duration for ECG Waveforms

Waveforms Origin
Normal
Duration (ms)

P wave Atria activation <120
PR segment Atrioventricular (AV) conduction
PR interval Beginning of P wave to beginning of QRS

complex
120–200

QRS complex Activation of the two ventricles 80–120
ST–T wave Ventricular recovery
QT interval Beginning of QRS complex to end of T wave 250–500

and T can be observed. The T wave may be followed by an additional wave named U
wave, which usually has low amplitude [8]. The baseline of ECG is measured as the
PR segment as well as the segment from the end of T wave (or sometimes U wave)
to the beginning of the next P wave. In normal ECG, the baseline is isoelectric with
amplitude of 0 mV.

The origins and normal durations of the waveforms, segments, and intervals are
summarized in Table 4.2 [1, 8–10]. The durations and wave amplitudes usually vary
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between individuals. The normal amplitudes of different waveforms can be found
in [11]. Factors such as gender, age, body habitus, and physiology may affect these
values. Therefore, physicians would incorporate a number of other factors apart from
ECG to implement an accurate diagnosis.

4.3 STATISTICAL MODELING OF ECG FOR DISEASE DIAGNOSIS

ECG signals have been widely applied for disease diagnosis and risk stratification
in both clinics and research areas due to intelligible physiological interpretation of
related heart activity and convenience to acquire [12, 13]. This chapter will focus on
four main aspects of statistical modeling of ECG signals for disease detection:

• Preprocessing Techniques. Directly modeling ECG signals is not easy since the
collected ECG signals are often contaminated with noise such as baseline drift,
electrode motion artifacts, power line interference, and muscle contraction noise
[14], and meanwhile the intrinsic properties can be concealed under different
clinical conditions. Hence, ECG noise removal is of crucial importance for an
accurate clinical diagnosis as noises will deteriorate the quality of ECG signals
and lead to misdiagnosis. One of the important objective for ECG study is to
separate the valid signal components from undesired noise signals to obtain
noise-free ECG.

• Waveform Detection Methods. A bunch of clinical information conceals in ECG
waveforms (such as P wave, T wave), and derivation of those waveforms will
greatly assist real case diagnosis. The objective of the waveform detection tech-
niques is to accurately identify various kinds of waveforms, and the character-
istics of detected waveforms can be employed for further analysis.

• Feature Extraction Approaches. Another vital aspect of ECG signals is the char-
acterization of ECG signals. The generation of ECG signals could be considered
as a nonrenewal random point process with unknown rate [15]. This nonre-
newal point process is nonstationary complex for which intrinsic properties
can be masked by the complex interaction of different physiological systems.
In addition, single derivative usually could not represent the whole underlying
physiological mechanism of the signal. Thus, appropriate derivatives should be
obtained from original signals to capture the inherent status of subjects.

• Disease Diagnosis Techniques. With signal denoising, waveforms detection,
and feature extraction, various statistical models can be applied for disease diag-
nosis and risk stratification according to different types of heart-related diseases.

A typical ECG modeling procedure can be divided into four stages as shown in
Figure 4.3. In this section, several conventional signal denoising approaches will
be introduced and the strengths and limitations will also be discussed, respectively.
Subsequently, waveforms detection techniques and features extracted from different
aspects of ECG signals will be summarized. Several disease diagnostic methods based
on statistical models and the associated algorithm will be also included in this section.
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Figure 4.3 Schematic of ECG modeling.

4.3.1 ECG Signal Denoising

ECG signal denoising is of great importance for disease diagnosis since noises may
conceal the intrinsic pathological states of subjects, leading to a weak performance
of diagnosis methods. Numerous noise removing approaches have been proposed in
the literature for ECG signals. Specifically, a few methods are designed to eliminate
specific noises existing in ECG signals. These approaches for ECG denoising can be
divided into several categories as shown in Figure 4.4.

The denoising approaches can be typically classified into filters/filter banks [16],
wavelet-based methods [17–19], empirical mode decomposition (EMD) [20–24]
and others such as S-transform [25], and independent component analysis (ICA)
[26]. Generally, wavelet and EMD have been extensively studied and gained a great
popularity for denoising of ECG signals due to the flexibility and multiresolution.
Theoretical details of these two approaches are given in the following sections.

4.3.1.1 Wavelet-Based Methods for ECG Denoising Wavelet transform (WT) has
been recognized as an effective tool for signal processing since it provides informa-
tion about the frequency characteristics of a signal as well as the time characteristics

FIR and IIR
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Notch filter

Adaptive
Kalman filter

Low-/highpass
 filters

Extended
Kalman filters

Morphological
filter

Linear/cubic
spline filter
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Empirical mode
decomposition
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Figure 4.4 Overview of ECG denoising approaches.



�

� �

�

STATISTICAL MODELING OF ECG FOR DISEASE DIAGNOSIS 101

of the signal [27]. Both details and approximates can be investigated in the timescale
domain, and the multiresolution property allows the noise to be eliminated. Hence,
WT has become a viable technique for ECG signal-noise reduction. Theoretically, in
wavelet transform, various wavelets are generated from a single basic wavelet 𝜓(t)
known as mother wavelet. Two critical parameters are defined: the scale (or dilation)
factors s and the translation (or shift) factor 𝜏. The shifted and dilated versions of the
mother wavelet can be expressed as

𝜓s, 𝜏 (t) =
1√|s|𝜓

( t − 𝜏
s

)
(4.1)

The wavelet transform of a signal x(t) with mother wavelet function 𝜓(t) can be
represented as

T(s, 𝜏) = ∫
∞

−∞
x(t)𝜓 ∗

( t − 𝜏
s

)
dt (4.2)

The asterisk (∗) denotes the complex conjugate of the wavelet function. For dis-
crete wavelet transform (DWT), the scale (m) and translation factors (n) are integers
for indices that yield the fast computation of wavelet transform coefficients. The
family of discrete wavelets can be denoted as

𝜓m, n(t) = 2
−m
2 𝜓(2−mt − n) (4.3)

The DWT [28] of a signal can be regarded that the signal passes through a series
of high-pass filters (HPF) and low-pass filters (LPF), which is shown in Figure 4.5.

A number of existing wavelet-based denoising approaches employ various shrink-
age techniques based on thresholding of the wavelet coefficients. Denote x as the
noisy signal vector, T and T−1 as the wavelet and inverse wavelet transform, respec-
tively. The wavelet coefficients w can be written as

w = T(x) (4.4)

Two different types of thresholding approaches can be found in the literature [29]:
hard thresholding (i.e., to delete the wavelet coefficients that are smaller than the
threshold and keep all the others unchanged) and soft thresholding (i.e., to delete the
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Figure 4.5 Diagram of discrete wavelet transform.
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wavelet coefficients that are below the threshold and scale all the other ones based on
certain rules). Let 𝜆 be the threshold and D be the thresholding operator, then

z = D(w, λ) (4.5)

where z is the wavelet coefficient vector after thresholding. The filtered signal with
noise free y can then be reconstructed using inverse wavelet transform

y = T−1(z) (4.6)

In ECG signal analysis, wavelet-based methods have been extensively investigated
and most of the developed approaches are effective to eliminate different kinds of
noises in ECG signals, such as wavelet neural network method [17] and dyadic sta-
tionary wavelet transform (SWT) Wiener filter [19].

Although the multiresolution analysis of WT allows the separation of noise from
the signals and wavelet transform-based denoising methods are widely used for
ECG signal processing, several limitations of this approach should be addressed.
First, practically, the value of threshold for wavelet coefficient shrinkage is usually
case-dependent and difficult to determine. Hence, numerous experiments should be
conducted to designate thresholds. In addition, the hard thresholding techniques may
lead to the oscillation of the reconstructed ECG signals, and some physiological
information can be lost during the reconstruction. Comparatively, the soft thresh-
olding methods may reduce the amplitudes of the ECG waveforms and especially
reduce the amplitudes of the R waves, which are more critical for the diagnosis
of heart-related diseases [25]. Second, the selected wavelet function is used in the
whole signal processing procedures, which will generate many false harmonics [21].
Attention should be paid when applying those wavelet-based approaches for ECG
signal denoising.

4.3.1.2 Empirical Mode Decomposition for ECG Signal Denoising Another con-
ventional method for ECG denoising is the EMD, which was developed by Rilling
et al. [30] and Huang et al. [31]. EMD decomposes the nonlinear and nonstationary
signal into a finite and small number of intrinsic mode functions (IMF), which fol-
lows two conditions: (i) the number of local extrema and the zero crossing must be
equal or differ by at most one, (ii) at any point, the mean value of the envelope by the
local maxima and the envelope defined by the local minima is zero. The IMFs repre-
sent the oscillation mode imbedded in the signal and can be searched by iteratively
using the envelopes defined by the local maxima and minima. The upper envelope
is established by connecting all the local maxima with a cubic spline line. Similarly,
the lower envelope is formed by all the local minima. Let u(t) and l(t) be the upper
and lower envelopes of signal x(t), respectively. m(t) = [u(t) + l(t)]∕2 is the mean of
these two envelopes and the first component h1(t) is founded and shown as

h1(t) = x(t) − m(t) (4.7)
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Then the condition of the IMF is checked for the first component and on satisfying
the conditions for IMFs until it becomes the first IMF otherwise, the procedure is
repeated till the IMF is found. A criterion that is known as the sum of difference (SD)
has been designed to obtain and stop the repeated process:

SD =
T∑

t=0

|(h1(k−1)(t) − h1k(t))|2
h2

1 (k−1)(t)
(4.8)

where h1k(t) represents the kth component and T is the total time length of the signal.
A threshold is designated between 0.2 and 0.3, and the first IMF I1(t) can be obtained
until the calculated SD is smaller than the threshold. Then

x(t) = I1(t) + r1(t) (4.9)

where r1(t) is the residue and contains information of longer period components.
The procedure described earlier is applied to all the subsequent ri(t) and the result is
obtained as

r1(t) = I2(t) + r2(t)

⋮

rN−1(t) = IN(t) + rN(t) (4.10)

The process is terminated when the residue rN(t) becomes a constant and mono-
tonic function. Therefore, the original signal is obtained as

x(t) =
N∑

i=1

Ii(t) + rN(t) (4.11)

where Ii(t) is the ith order IMF, N is the number of IMF, and rN(t) is the final residue.
Since EMD decomposes a signal into IMFs, most of the denoising methods based

on EMD technique follow partial reconstruction of the signal by removing noisy
IMFs. Some EMDs and the extended methods are concluded in Table 4.3 [20–24].

An example of applying EMD for ECG signal denoising has been provided in
Figure 4.6. The first panel is the original ECG signal, and the remaining panels are
the extracted IMFs using the criterion introduced earlier. The noise-free ECG signal
can be reconstructed by deleting the undesired IMFs, which contain nonperiodic noise
components.

When applied to ECG signal denoising, the EMD-based techniques are
remarkably effective to remove the various kinds of noises and serve as a reliable
preprocessing step for further analysis. However, the original EMD is likely to
remove specific signal information along with the noise while deleting certain noisy
IMFs, and this discarded signal information may contain vital pathological state
of subjects. Moreover, EMD-based techniques confront with the constraints being
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TABLE 4.3 Summary of EMD for ECG Denoising

Author Method Target Noise

Manuel Blanco-Velasco
et al.

EMD-based denoising method High-frequency noise and
baseline wander

Kang-Ming Chang Ensemble EMD Three types: 50 Hz, EMG,
baseline wander

J. Lee et al. EMD and statistical approaches Motion and noise artifact
detection

J. Jenitta et al. Adaptive filter with EMD and
EEMD

White Gaussian noise

Y. Xin Mean–median filter and
empirical mode decomposition

Baseline wander correction
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Figure 4.6 An example of EMD for ECG signal decomposition.

essentially defined by an algorithm, and therefore an analytical formulation could not
be obtained for theoretical analysis and performance evaluation [30]. Experiments
should be performed to validate the effectiveness before further application.

4.3.1.3 Comparison of Different Denoising Methods Typically, a good denoising
approach is supposed to detect different kinds of noises in the ECG signals and fil-
ter the signals while ensuring the obtained results are not influenced by undetected
artifacts. Most ECG denoising methods are designed to remove specific ECG noises,
and care should be taken when applying those methods. For instance, the filters/filter
banks are apt to introduce additional artifacts to signals when carrying out denoising
and some methods such as Kalman filters tend to remove specific noises, for example,
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TABLE 4.4 Summary of Pros and Cons of Different Denoising Techniques

Methods Pros Cons

Filters/filter banks • Easy to be implement
• Effective to remove specific

kind of noise

• Introduce additional artifacts
• Only for specific noise removing
• Not consider combined noises
• Require prior information of the

noise
Wavelet-based

methods
• Better performance
• Multiresolution analysis
• Restore the signal information
• Separate the abrupt change in

signal

• Gaussian noise
• Baseline wander noise
• Require numerous experiments for

choosing scales and thresholds

EMD • Adaptive
• Various kinds of noises
• Data driven
• Do not need prior information

about noise

• Not for combined noise
• Long time for large data set
• No analytical form for IMF

S-transform • Frequency-invariant amplitude
response

• Time–frequency axis
• Better for high-frequency noise

• Gaussian noise

ICA • Separate the noise components
from measured signals

• Linear combinations of
independent source signals

• Non-Gaussian
• Require prior information

white noise. The effect of combined noises is usually not considered and not all arti-
facts are included. In addition to noise types, prior information is commonly required
before implementing the designed denoising methods. To further illustrate this point,
summary of advantages and disadvantages for different ECG denoising methods is
given in Table 4.4 in terms of those aspects.

4.3.2 Waveform Detection

Waveform detection is a crucial step to evaluate the clinical conditions of subjects.
Waveform detection aims to locate and measure various waveforms, segments, and
intervals from ECG signals. Due to the striking shape of QRS complex with high
amplitude and slope, the detection of QRS complex serves as the basis for detection
of other waveforms [32]. However, currently no universal rule has been accepted to
define the beginning and end of other waveforms, segments, or intervals [33]. There-
fore, we focus on the detection of QRS complex.

4.3.2.1 QRS Detection A typical QRS detection algorithm constitutes two stages:
the preprocessing and the classification [32, 34]. The preprocessing stage includes
signal filtering, transforming, or characteristic magnifying; the classification stage
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TABLE 4.5 Summary of QRS Detection Methods

Author Year Method

Pan et al. 1985 Digital filters
Gritzali et al. 1988 Length and energy transforms
Lin et al. 1989 Adaptive filters
Coast et al. 1990 Hidden Markov models
Trahanias et al. 1990 Syntactic methods
Xue et al. 1992 Neural network
Li et al. 1995 Wavelet-based method
Ruha et al. 1997 Matched filters
Benitez et al. 2001 Hilbert transform-based method
Arzeno et al. 2008 Signal derivatives

Original ECG Filtered ECG signalLow-pass filter High-pass filter
Adaptive

thresholds
QRS complex

Derivative
Squaring
function

Moving-window
integration

Integrated signalFiltered ECG signal

Figure 4.7 Scheme of the QRS detection algorithm.

examines the QRS complex by establishing specific decision-making rules. Most
QRS detection algorithms in classification stage are heuristics, which are greatly
affected by the preprocessing stage [35]. Therefore, preprocessing stage serves an
important role in waveform detection. Table 4.5 summarizes some selected research
works, and more details can be referred to the specific literature [36–45]. A systematic
review and comparison of QRS detection methods is given in [32].

Among these methods, a pervasively used QRS detection algorithm was widely
applied since proposed in [37]. The framework of this algorithm is shown in
Figure 4.7. The original ECG signal is initially preprocessed by a LPF and a HPF
to attenuate noise. The filtered signal is differentiated followed by point-by-point
squaring. After integration with a moving window, an adaptive thresholding method
is applied to the integrated signal as well as the filtered ECG signal. To be identified
as a QRS complex, a peak must be recognized in both the integrated signal and the
filtered signal, which greatly reduces the false-positive rate.

4.3.3 Feature Extraction

Apart from waveforms detected from ECG, critical information can also be extracted
from ECG signals. Although the generation of ECGs is a nonrenewal random point
process that is difficult to characterize, heart rate variability (HRV) (inverse of heart-
beat rate (HR)) derived from ECG signals is an alternative representation of ECG
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Figure 4.8 An example of RR intervals on ECG signals.

signals and is widely applied for disease diagnosis. An example of RR intervals is
shown in Figure 4.8. From a physical perspective, any permutation on ECG can be
reflected in RR intervals. Hence, various research works are devoted to analyzing the
HRV for status monitoring and diagnosis of subjects. We introduce some commonly
used features derived from RR intervals in the following section.

The normal variability in heartbeat rate is due to autonomic neural regulation
of the heart and the circulatory system. The balancing action of the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS), which are
branches of the ANS, controls the HR. Increased SNS or diminished PNS activity
results in cardio-acceleration. Conversely, a low SNS activity or a high PNS
activity causes cardio-deceleration [46]. The degree of variability in the HR
provides information about the functioning of the nervous control on the HR and
the heart’s ability to respond. Therefore, HRV provides information about the
sympathetic–parasympathetic autonomic balance and has become a hot-spot topic in
physiological signal analysis, serving as a vital noninvasive indicator of cardiovas-
cular and autonomic system function, with direct connections to respiratory, central
nervous, and metabolic dynamics [47].

A large variety of features including time domain, frequency domain, and non-
linear measures are extracted from HRV to characterize the activity of sympathetic
activity and parasympathetic activity for subject discrimination [48]. Some features
involved in arrhythmia, myocardial infarction (MI) detection, can be summarized in
Table 4.6 [49–56]. Moreover, interpretation of time domain and frequency domain
features in Table 4.6 can be referred to Table 4.7.

4.3.3.1 Time-Domain Methods From the original RR intervals, a number of
parameters can be calculated [46]: SDNN, the standard deviation of the RR inter-
vals; RMSSD, the root-mean-square successive difference of intervals; pNN50%,
the number of successive difference of intervals that differ by more than 50 ms
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TABLE 4.6 RR-Derived Features in Research

Author Year Analysis

Bigger et al. 1993 Frequency domain: ULF, VLF, LF,HF, LF/HF ratio, total power
Vaishnav et al. 1994 SDRR, SDANNi, SD, pNN50, RMSSD
Bigger et al. 1996 Frequency domain: ULF, VLF, LF,HF, LF/HF ratio, total power
Quintana et al. 1997 NN median, variance, SDNN, SDANNi, RMSSD
Tapanainen et al. 2002 Time domain, frequency domain, nonlinear measures
Carpeggiani et al. 2003 SDNN, SDNN index, SDANN, RMSSD, pNN50
Chattipakorn et al. 2007 Time domain, frequency domain, nonlinear measures

TABLE 4.7 Commonly Used Parameters of Time and Frequency Domains of HRV

Parameters Description Unit

Time domain
SDNN Standard deviation of all NN intervals ms
SDANN Standard deviation of 5-min-averaged NN intervals ms
ASDNN Average of 5-min standard deviation of NN intervals ms
RMSSD Root mean square of successive differences ms

Frequency domain

Total power Power between 0 and 0.4 Hz ms2

Low frequency (LF) Power between 0.04 and 0.15 Hz ms2

High frequency (HF) Power between 0.15 and 0.4 Hz ms2

LF/HF ratio Ratio between LF and HF power

expressed as a percentage of the total number of ECG cycles analyzed. The statistical
parameters SDNN, RMSSD, and pNN50% are found to have larger value for the
disease such as periventricular contraction (PVC), sick sinus syndrome (SSS), and
atrial fibrillation (AF) due to higher RR variation [57].

4.3.3.2 Frequency-Domain Methods Frequency-domain methods employ the
periodogram for power spectral density (PSD) estimation procedure. The methods
for the calculation of PSD can be generally classified into nonparametric methods
and parametric methods [58]. The comparison of these two methods is summarized
in Table 4.8.

4.3.3.3 Nonlinear Methods Although time–frequency domain features are
frequently used in analysis, they both suffer from some limitations. The time-domain
methods are computationally simple but lack the ability to discriminate between
sympathetic and parasympathetic contributions of HRV. On the other hand, the
conventional frequency features based on FFT are not very suitable for analyzing
nonstationary time series and fail to provide the exact location of an event along
the timescale. Moreover, noise in ECG signals will severely degrade the quality
of time–frequency domain features. Thus, increasing popularity has gained for



�

� �

�

STATISTICAL MODELING OF ECG FOR DISEASE DIAGNOSIS 109

TABLE 4.8 Comparison of Nonparametric Methods and Parametric Methods for
PSD Estimation

Methods Pros Cons

Nonparametric
method

• Simple, for example, FFT
• High processing speed

• Less smoother estimate
• Rough estimation with small

number of samples
Parametric method • Smoother spectral components

• Easy post-processing of the
spectrum

• Accurate estimation of PSD
with small number of samples

• Need more calculation
• Require signals to be stationary

nonlinear dynamics in the recent development of physiological data analysis
approaches. The nonlinear techniques such as correlation dimension (CD) [59],
largest Lyapunov exponent (LLE) [60], SD1/SD2 of Poincare plot [61], approximate
entropy (ApEn) [62], and fractal dimension [63] have been widely applied for
disease detection, and the results are relatively satisfactory. Statistical details for
some nonlinear methods are introduced in the following section.

Approximate Entropy (ApEn) ApEn is a family of statistics introduced as a quantifi-
cation of regularity in the data. The statistics were first constructed by Pincus [64].
As an indicator of system regularity and chaos, ApEn facilitates its utility for
empirical ECG signal analysis. Compared to time–frequency domain features, ApEn
is nearly unaffected by noise below a certain specified filter level r. Additionally,
ApEn is scale invariant, model independent, and can be applied to long-time series
with good reproducibility. The increasing values of ApEn correspond to more
irregularity in the time series. Generally, given N data points from a time series
{x(n)} = (x(1), x(2),… , x(N)) and a run length m, ApEn is computed in the following
steps [65]:

1. Form N − m + 1 vectors X(1)…X(N − m + 1) defined by X(i) = [x(i),
x(i + 1),… , x(i + m − 1)], i = 1…N − m + 1. Each i-vector represents m
consecutive x values, commencing with the ith data point.

2. Define the distance between X(i) and X(j), d[X(i),X(j)], as the maximum abso-
lute difference between their respective scalar components, that is, the maxi-
mum norm

d[X(i),X(j)] = max
k=1,2,…,m

|x(i + k − 1) − x(j + k − 1)| (4.12)

3. For a given X(i), count the number of j(j = 1…N − m + 1) so that
d[X(i),X(j)] ≤ r, denoted as Nm(i). Then, for i = 1…N − m + 1

Cm
r (i) =

Nm(i)
(N − m + 1)

(4.13)
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Cm
r (i) measures the frequency of patterns similar to a given window length m

within a tolerance r.

4. Compute the natural logarithm of each Cm
r (i) and average it over i

𝜙m(r) = 1
N − m + 1

N−m+1∑
i=1

ln Cm
r (i) (4.14)

5. Increase the dimension to m + 1. Repeat steps (1)–(4) and find Cm+1
r (i) and

𝜙m+1(r).
6. ApEn is defined as

ApEn(m, r,N) = 𝜙m(r) − 𝜙m+1(r) (4.15)

The accuracy of the estimated approximate entropy can be affected by the value of
run length m as can be seen in Figure 4.9 and tolerance r. However, there is a trade-off
between probability estimates and information loss when choosing the tolerance r.
For small r values, poor conditional probability estimate for ApEn will be obtained.
While for large r values, too much detailed system information is lost. To avoid a
significant contribution of noise in an ApEn calculation, the value of r should be
chosen as a large value. In practice, ApEn have been used for atrial fibrillation (AF)
[66], sleep apnea [67], and other diseases.

Detrend Fluctuation Analysis (DFA) Detrend fluctuation analysis was originally
proposed as a technique for quantifying the nature of long-range correlations in a
time series [68, 69]. DFA aims to detrend variability in a sequence of events and
characterizes a time series through a power-law exponent. Let x(N) = (x1, x2,… , xN)

5
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Figure 4.9 Example of ApEn versus parameter m.
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be a time series and the computation of DFA involves the calculation of the
summed series:

y(k) =
k∑

i=1

{x(i) − E[x]} (4.16)

where y(k) is the kth value of the summed series and E[x] denotes the average over
x(N). The summed series is then divided into segments of length m and least-squares
fit is performed on each of the data segments, providing the trends for the individ-
ual segment ym(k). The root-mean-square fluctuation of the resulting series is then
calculated as

F(m) =

{
1
N

N∑
k=1

[y(k) − ym(k)]2
} 1

2

(4.17)

Since the parameter m is user-specified, the functional dependence of F(m) on m
is obtained by evaluations over all segment sizes m.

The power-law exponent 𝛼D that describes the nonlinearity of time series can be
obtained by plotting log[F(m)] against log(m) and fitting straight lines. The exponent
is simply the slope of the linearity fitted segments and has been proposed as a means
of differentiating normal from pathological subjects [70].

Although the nonlinear features can characterize the intrinsic properties of signals,
those features are sensitive to noise influence. More importantly, the physiological
interpretation of nonlinear features can be difficult in some situations. Thus, inves-
tigation between physiological mechanism of disease and nonlinear features should
be figured out before application.

4.3.4 Disease Classification and Diagnosis

Cardiac disease is a major cause of mortality in the globe. Disease such as cardiac
arrhythmias and myocardial infarction (MI) may not be life-threatening. However,
those diseases possibly lead to the susceptibility of cardiac arrest, stroke, or sudden
cardiac death. Early diagnosis of those cardiac diseases makes it possible to choose
appropriate antidrugs and is thus crucial for improving the corresponding therapy.

Numerous cardiac disease detection and classification approaches based on
advanced statistical methods as well as machine learning techniques have been
proposed in the literature. Specifically, the analysis of ambulatory ECG recordings
for cardiac disease detection has received considerable attention. Some advanced
classification approaches based on ECG signals are employed to classify the differ-
ent kinds of cardiac disease according to physiological interpretation. The general
principle of these models involves the denoising of ECG signals, feature extraction,
and statistical modeling of extracted features. Most previous denoising approaches
and features can be applied during statistical modeling for disease diagnosis. The sta-
tistical models for disease diagnosis based on ECG signals include time–frequency
domain analysis such as Hilbert transform analysis [71], time–frequency analysis
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[72], wavelet analysis [73], statistical methods (principal component analysis [74],
autocorrelation function [75]), nonlinear analysis (complexity measure [65]), and
some advanced statistical learning techniques (neural network [39], support vector
machine [76], hidden Markov models [41]). Details of two interesting approaches
including artificial neural network (ANN) and support vector machine are provided
as follows.

4.3.4.1 Artificial Neural Network ANN inspired by animals’ central nervous
systems have been applied to solve a wide variety of tasks that are hard to solve
using ordinary rule-based programming [77]. The utility of ANN includes system
identification and control, pattern recognition such as face identification, financial
applications, and medical diagnosis [78]. The central idea of ANN is to extract
linear combinations of the inputs as derived features, and then model the target as
a nonlinear function of these features. A typical form of ANN will be described to
illustrate the underlying functioning model.

A neural network is a two-stage classification model, typically represented by a
network diagram as in Figure 4.10.

Let X = (X1,X2,… ,Xp) be the p input variables. Y = (Y1,Y2,… ,YK) is the
output variable for K class classification, each output measure Yk, k = 1, 2,… ,K
being coded as a 0 − 1 for the kth class. For a typical feed-forward neural network,
the linear combinations of input variables X are transformed into hidden layer
Z = (Z1,Z2,… ,ZM) through a transform function, where M is the number of hidden
units. The transform function known as activation function can be denoted as

Zm = 𝜎(𝛼0m + 𝛼T
mX),m = 1,… ,M (4.18)

Y1

Z1

X1 X2 X3 Xp–1 Xp

Z2 Z3 Zk

Y2 Yk

Figure 4.10 Schematic of a single hidden layer, feed-forward neural network.
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where 𝜎(𝑣) is activation function and 𝛼0m, 𝛼
T
m are coefficients of the linear combina-

tion for the mth hidden unit. Then the output variable Y is modeled as a function of
linear combinations of Z, which is denoted as

Yk = fk(X) = gk(T), k = 1,… ,K (4.19)

where T = (T1,T2,… ,TK),Tk = 𝛽0k + 𝛽T
k Z, k = 1,… ,K. The 𝛽0k, 𝛽

T
k are coeffi-

cients of the linear combination for kth class. The output function gk(T) for kth class
transforms the vector of outputs T to make the final decision.

The neural networks can be fitted by minimizing cross-entropy (deviance) with N
observations yi = (yi1, yi2,… , yiK), xi = (xi1, xi2,… , xip), i = 1, 2,… ,N

R(𝜃) = −
N∑

i=1

K∑
k=1

yik log fk(xi) (4.20)

and the corresponding classifier is G(x) = argmaxkfk(x). Different forms of the acti-
vation function 𝜎(𝑣) and output function gk(T) with different number of layers are
applied according to different problem statements, which lead to various types of
neural networks. Neural networks offer a number of advantages, including flexibility
and nonlinearity. First, neural networks are capable to automatically learn from data,
which acquire knowledge from surroundings by adaptively tuning internal and exter-
nal parameters. Additionally, neural networks could implicitly detect nonlinear rela-
tionships between dependent and independent variables and all possible interactions
between predictor variables. Different specialized algorithms such as nonparamet-
ric methods and expectation maximization can be used to train neural networks. In
practice, physiological data are often correlated and perform with a nonlinear form,
and neural networks are well suitable to capture the nonlinear properties among pre-
dictors. Therefore, it has been extensively used in heart-related disease diagnosis.
As an example for arrhythmia detection, a large variety of extended neural networks
have been employed to detect normal beats and abnormal beats and classify different
types of arrhythmias. The performances of extensive neural network derivatives for
arrhythmias have been summarized in Table 4.9 [79–86].

Table 4.9 shows that neural networks have achieved a good performance when
implemented on arrhythmias detection (e.g., fuzzy Kohonen NN and multilayer
back-propagation NN). Despite advantages over conventional approaches for
modeling nonlinear relationship among predictors, there are some specific issues
that need to be addressed. First, many types of networks are, in a sense, the ultimate
black boxes. Apart from defining the general architecture of a network, the training
and learning progresses could not be observed and the results of trained network
could not provide any coefficient to define a relationship. Second, the running time of
networks strongly depends on the type of networks applied and will be problematic
with a large amount of data. Hence, feature reduction techniques should be designed
to reduce the data dimensions to make the networks more efficient.
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TABLE 4.9 Comparison of Performances of Different Extended NNs for Arrhythmia
Detection

NN Derivative Detection Objective Feature Set Performance (%)

ARTMAP NN Abnormal PVC Linear predictive coding
(LPC) coefficients

99 (spe), 97 (sen)

Fuzzy Kohonen NN Abnormal beats Short-time multifractality 97
Fuzzy NN Types of arrhythmias RR intervals; average

and deviation
>90

KDF-KNN NN Arrhythmia patient ECG morphologies;
patient information

70.66

Modular NN Arrhythmia patient ECG morphologies;
patient information

82.22

ELAMN NN Types of arrhythmias Morphological features >95
Multilayer back-

propagation NN
Types of arrhythmias Phase space density

values
98.55

Auto-associative NN Types of arrhythmias Segmented ECG beats 97

ARTMAP, adaptive resonance theory mapping; spe, specificity; sen, sensitivity; KDF-KNN: kernel
difference-weighted k-nearest neighbor.

4.3.4.2 Support Vector Machine The principle of SVM is to simultaneously min-
imize the structural classification error and maximize the geometric margin between
classes, which leads to high performance in practical application. Empirical evidence
shows that it performs well in many real learning problems [76]. The theory of SVM
can be represented as follows:

Consider a training set D = {(xi, yi)}N
i=1, with each input xi ∈ d and the asso-

ciated output yi ∈ {−1, 1}. Define a mapping function 𝜙(x) that transforms each xi
into a feature space  with higher dimension where the training samples are linearly
separable by a hyperplane. Denote the hyperplane by a vector 𝜔 ∈  and a scalar 𝜔0
as

𝜔𝜙(x)T + 𝜔0 = 0 s.t yi(𝜔𝜙(x)T + 𝜔0) ≥ 1,∀i (4.21)

The optimum separation hyperplane (OSH) is found by maximizing 2∕‖𝜔‖, the
margin between two classes, or minimizing 𝜔𝜔T∕2. By constructing a Lagrangian
formulation, the dual problem is to maximize

W(𝛼) =
N∑

i=1

𝛼i −
1
2

N∑
i=1

N∑
j=1

𝛼i𝛼jyiyj𝜙(xi)𝜙(xj)T

s.t.
N∑

i=1

yi𝛼i = 0 and 0 ≤ 𝛼i ≤ C,∀i (4.22)

where 𝛼 = (𝛼1, 𝛼2,… , 𝛼L) is the nonnegative Lagrangian multiplier. C is the regular-
ization parameter as a trade-off between maximizing the margin and minimizing the



�

� �

�

MATERIALS AND METHODS 115

classification error. The term 𝜙(xi)𝜙(xj)T can be substituted by a kernel function K(,)
as

𝜙(xi)𝜙(xj)T = K (xi, xj) (4.23)

After determining the optimum 𝛼, the optimum solution for the vector𝜔 is given by

𝜔 =
∑

i∈SVs

𝛼iyi𝜙(xi) (4.24)

For any test sample x ∈ n, the output of the SVM model is

y = f (x) = sgn(𝜔 ⋅ 𝜙(x) + 𝜔0) = sgn

(∑
i∈SVs

𝛼iyiK (xi, x) + 𝜔0

)
(4.25)

Support vector machine has been widely used in ECG signal classification such
as sleep apnea detection [87] and arrhythmia classification [88]. The results of those
research works demonstrate its effectiveness in disease diagnosis and classification.

4.4 AN EXAMPLE: DETECTION OF OBSTRUCTIVE SLEEP APNEA
FROM A SINGLE ECG LEAD

4.4.1 Introduction to Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is a clinical disorder characterized by abnormal reduc-
tion or complete cease of air flow in sleep for more than 10 s usually caused by partial
or complete collapse of the upper airway. OSA will significantly decrease the qual-
ity of life, causing daytime fatigue, slow reaction, and heavy snoring and increasing
risk for the progression of cardiovascular diseases such as hypertension, coronary
arterial disease, and congestive heart failure [89]. In this case study, the ECG sig-
nals are divided into minute-by-minute segments, which are labeled as normal or
apnea according to clinicians. Features are extracted using various prementioned
approaches. Specifically, three signals including RR intervals, R wave amplitudes,
and ECG-derived respiration (EDR) signal are derived from the original ECG signal.
Features are extracted from each segment of signals with duration of 1 min. Support
vector machine is employed for segment classification with the extracted feature set.

4.5 MATERIALS AND METHODS

4.5.1 Database

The example is based on 70 continuous ECG recordings collected from 32 subjects in
their sleeping experiments, and the data could be found at PhysioBank. The duration
of the ECG recordings ranged from 401 to 578 min (mean: 492±32 min) with AHI
from 0 to 93.5. The standard modified lead V2 ECG electrode position was used in
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these recordings, and the modified V2 ECG signals were sampled at 100 Hz with
16-bit resolution. These 70 ECG recordings were segmented minute by minute with
an annotation normal or apnea assigned to each segment by experts based on the ECG
recording as well as other PSG signals.

The 70 recordings were divided into released set with 35 recordings and with-
held set with the other 35 recordings by the provider. The recordings in the released
set were used to construct the SVM model and estimate unknown parameters, while
recordings in the withheld set were used to evaluate the performance of the method.

4.5.2 QRS Detection and RR Correction

QRS detection algorithm was implemented to locate the R waves. In this study, an
external package from the BioSig toolbox [90] for QRS detection was employed.
RR intervals were then derived by calculating the time span between two adjacent
R waves.

The original RR intervals contained physiologically unexplainable points as a
result of the poor quality of automatic QRS detection. Therefore, a correction proce-
dure based on a median filter was employed to eliminate unreasonable RR intervals
while keeping the duration of the entire RR sequence unchanged. Denote the origi-
nal RR intervals as s = (s1, s2,… , sN), the width of the median filter as 𝑤, the lower
bound and upper bound of RR intervals as LB and UB, respectively. The algorithm
is described in detail as follows.

Step 1: Select the minimum point in s, denoted as smin = min{s1, s2,… , sN}. If
smin ≥ LB, no RR interval is below the lower bound, then go to Step 3;
otherwise mark smin as a suspect interval, go to Step 2.

Step 2: Specify the window s𝑤 = (smin −𝑤,… , smin,… , smin +𝑤), which cen-
ters at smin containing 2𝑤 + 1 points. Calculate the median value smed
of the windows followed by comparison of the following two absolute
distances.

d1 = ||smin + min{smin−1, smin+1} − smed
|| + ||max{smin−1, smin+1} − smed

||
(4.26)

d2 = 2
||||1
2
(smin + max{smin−1, smin+1}) − smed

||||
+ ||min{smin−1, smin+1} − smed

|| (4.27)

If d1 < d2, merge smin with its smaller neighbor into one RR interval;
otherwise average smin with its larger neighbor. Go back to Step 1 for the
next suspect interval.

Step 3: Select the maximum point of s as smax = max {s1, s2,… , sN}. If smax ≤
UB, end the algorithm; otherwise mark the RR interval as a suspect and
go to Step 4.
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Step 4: Specify the window centered at smax with 2𝑤 + 1 points and calculate
the median smed of the window. Compare the following two absolute
distances:

d1 = k ||smax∕k − smed
|| + ||min{smax−1, smax+1} − smed

|| (4.28)

d2 = 2
||||1
2
(smax + min{smax−1, smax+1}) − smed

|||| (4.29)

where k was the integer that leads to the minimum value of k|smax∕k −
smed|. If d1 < d2, split smax into k equal-sized pieces; otherwise average
smax with its smaller neighbor. Go back to Step 3.

4.5.3 R Wave Amplitudes and EDR Signal

The occurrences of R waves in the ECG signal could be located by the corrected
RR intervals. The R wave amplitudes were derived as the voltages at the peaks of R
waves.

The EDR signal reflected the respiration activities and was derived by processing
the original ECG signal with two median filters of 200-ms width and 600-ms width,
respectively [91]. The first median filter was intended to remove QRS complexes and
P waves and the second median filter was intended to remove T waves. Regarded
as the baseline, the resulting signal was then removed from the original ECG sig-
nal. A sample point of an EDR was obtained by calculating the area enclosed by the
baseline corrected ECG in the region 100 ms beyond the QRS detection point.

4.5.4 Feature Set

Corrected RR intervals, R wave amplitudes, and the EDR signal were segmented
minute by minute according to the normal/apnea annotation. Based on the three sig-
nals, various features were extracted for each segment as potential predictors of the
SVM model to distinguish normal segments from apnea segments. The features are
listed and described as follows [91]:

• Mean, standard deviation, skewness, and kurtosis of RR intervals

• The first five serial correlation coefficients of RR intervals

• The NN50 measure (variant 1), defined as the number of pairs of adjacent RR
intervals where the first RR interval exceeds the second RR interval by more
than 50 ms

• The NN50 measure (variant 2), defined as the number of pairs of adjacent RR
intervals where the second RR interval exceeds the first RR interval by more
than 50 ms

• Two pNN50 measures, defined as each NN50 measure divided by the total
number of RR intervals

• The SDSD measure, defined as the standard deviation of the differences
between adjacent RR intervals
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• The RMSSD measure, defined as the square root of the mean of the sum of the
squares of differences between adjacent RR intervals

• The Allan factor A(T) evaluated at a timescale T of 5, 10, 15, 20, and 25 s where
the Allan factor is defined as A(T) = E{[Ni+1(T) − Ni(T)]2}∕2E{Ni+1(T)},
Ni(T) is the number of QRS detection points occurring in a window of length
T stretching from iT to (i+1)/T and E is the expectation operator

• Normalized VLF, LF, HF of RR intervals where the total power is the sum of
the three components

• Ratio LF/HF of RR intervals

• Mean, standard deviation, skewness, and kurtosis of R wave amplitudes

• Normalized VLF, LF, HF of R wave amplitudes where the total power is the
sum of the three components

• Ratio LF/HF of R wave amplitudes

• Mean, standard deviation, skewness, and kurtosis of EDR signal

• Normalized VLF, LF, HF of EDR signal where the total power is the sum of the
three components

• Ratio LF/HF of EDR signal

4.5.5 Classifier Training with Feature Selection

A sequential feature selection procedure was employed to exclude irrelevant fea-
tures and to reduce the risk of overfitting before implementing classification. The
35 recordings in the released set were divided into 35 folds with 1 recording per fold.
A leave-one-out cross-validation (LOOCV) scheme was carried out to evaluate the
performance of the classification in feature selection procedure, and the average pre-
diction accuracy was calculated. After selecting the best feature set, the SVM model
was trained and could be used for further prediction.

4.6 RESULTS

4.6.1 QRS Detection and RR Correction

All 70 ECG recordings were processed by the automatic QRS detection program
and the resulting RR intervals were corrected by the median filter. Figure 4.11 illus-
trates a segment of RR intervals before and after correction. A significant decrease in
unreasonable points was spotted.

4.6.2 Feature Selection

Figure 4.12 illustrates the change of the average prediction accuracy of the
cross-validation and the change of the number of selected features, along with the
feature selection iteration where in each iteration, the number of selected feature
changes by ±1 as a result of adding or removing a feature.
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Figure 4.11 RR intervals before and after correction. (a) Uncorrected. (b) Corrected.
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Figure 4.12 Cross-validation accuracy and selected number of features along with feature
selection process.

The maximum accuracy, 83.4%, was achieved at iteration 21 with 13 features.
Thus, features at iteration 21 were selected as the best feature subset. The selected
features are listed as follows

1. Mean value of RR intervals.

2. The second and third correlation coefficients.
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3. The pNN50 measure (variant 2).

4. The SDSD measure.

5. The Allan factor evaluated at a timescale of 5 s.

6. Normalized VLF and LF of RR intervals.

7. Skewness and kurtosis of R wave amplitudes.

8. Normalized LF of R wave amplitudes.

9. Normalized VLF and LF of EDR signal.

4.6.3 OSA Detection

The 35 recordings with a total of 17,268 segments were used to evaluate the per-
formance of the SVM model. This SVM model correctly recognized 4848 out of
6550 apnea segments and 9139 out of 10,718 normal segments. Therefore, the sen-
sitivity was 74.0% and the specificity was 85.3% with the overall accuracy 81.0%.
Figure 4.13 depicts the receiver operating characteristic (ROC) curve of per-segment
OSA detection, and the area under the curve (AUC) is 0.882.

The model could also be used to distinguish between healthy suspects with apnea
patients since the result of the per-segment classification could be combined to pro-
duce a prediction of AHI for a recording. For the recordings with a prediction of
AHI more than 5, they were classified as “apnea” and the others were classified as
“healthy.” Our model successfully recognized all the “apnea” recordings and 83.3%
of the “healthy” recordings, with the overall accuracy of 94.3%.
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Figure 4.13 ROC curve of SVM model.
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4.7 CONCLUSIONS AND DISCUSSIONS

In this example, single-lead ECG signals were statistically analyzed for OSA moni-
toring and detection. RR intervals were derived by QRS detection algorithm from the
original ECG signals and corrected by designed median filter. R wave amplitudes and
EDR signal were also derived before segment-by-segment feature extraction. After
feature selection, an SVM model was established based on the selected best feature
subset. The model was evaluated on the withheld set, achieving a segment prediction
accuracy of 81.0% and a recording classification accuracy of 94.3%.

The study of physiological signals is an important part in healthcare informatics.
Tools based on various physiological signals are developed in both real clinical diag-
nosis and research fields. The requirement of efficiency and automation for current
healthcare industry calls for more reliable physiological signals together with accu-
rate diagnosis tools, especially in the area of early disease detection. The purpose of
this chapter is to review the main ECG modeling approaches and the associated statis-
tical tools for patient monitoring and diagnosis. A brief illustration of physiological
operation of heart circulatory system is presented to explain the physical mechanism
of generation of ECG signals. As a critical aspect of ECG, the morphological com-
ponents such as P wave, QRS complex, and ST segment are introduced. A typical
procedure for ECG modeling is presented, which include ECG signal denoising,
waveform detection, feature selection, and disease diagnosis approaches. This chapter
finally provides an example of OSA detection to explain the procedures of monitoring
and diagnosis of subjects based on ECG signals.
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5.1 INTRODUCTION

In 2011, the net healthcare expenditure of the United States accounted for 17.7% of
the GDP, and it is expected that healthcare expenditure will increase to up to 19.8%
of the GDP by 2020 [1]. Globally, among the countries that make up the Organization
for Economic Cooperation and Development (OECD), the United States spends the
largest percentage of its GDP on healthcare [2]. Further, $810 billion, approximately
5% of the 2013 US GDP, is wasted every year in the United States due to inefficient
use of resources, medical errors, and the prescription of unnecessary procedures.

A significant proportion of these unnecessary procedures include repetition of clin-
ical laboratory tests used to assess a patient’s body function. These laboratory tests
are typically repeated when a patient moves between hospitals and laboratories, and
because the attending doctor does not have access to information regarding the quality
of a laboratory test that was performed in another laboratory.

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
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In this chapter, we address the issue of quality of a clinical laboratory measure-
ment process by describing the previous and current research in the field, and present
a methodology to model and estimate the uncertainty associated with these mea-
surement processes. A statement of uncertainty about the result of a measurement
provides information that describes the quality of the measurement process. Informa-
tion that describes the quality of the measurement result is vital for clinical laboratory
test results, since they inform every stage of medical decision making, from diag-
nostic and prognostic assessment to determining and prescribing drug dosages. The
United States Congress has recognized this need in its passage of the Clinical Lab-
oratory Improvement Amendments Act in 1988. This Act requires laboratories to
validate laboratory procedures and establish valid quality control systems. Informa-
tion regarding the current level of quality delivered by the laboratory is required in
order to establish valid quality control systems, and this information is provided by
estimates of measurement uncertainty.

Currently, clinical laboratories typically perform minimal testing in order to
verify measurement performance in terms of the possible range of values that can
be reported by the laboratory test, measurement accuracy with respect to samples
of a known analyte concentration, and reproducibility using one lot of reagents
and one operator, which does not adequately describe the system performance. In
this chapter, we present a methodology that combines mathematical modeling and
simulation and enables the estimation of the uncertainty associated with a clinical
laboratory measurement process. The methodology involves the development of
a physics-based mathematical model that expresses the measurement result as a
function of the sources of uncertainty that operate within the measurement process,
and then uses the Monte Carlo method to simulate the long-term behavior of the
measurement process. The use of the Monte Carlo method also enables the simu-
lation and optimization of various aspects of the laboratory measurement process
in terms of its effect on measurement uncertainty. The estimates of uncertainty
provided by the model, used in conjunction with the performance information
collected in the laboratory, can be used to establish quality control systems that
bridge the disparity between clinically required performance and that observed in the
laboratory.

The chapter is organized as follows: in Section 5.2, we provide background
information regarding clinical laboratory measurement processes and an overview of
the recent research that has been conducted regarding the modeling and estimation
of measurement uncertainty in the clinical laboratory. In Section 5.3, we provide a
brief description of some general guidelines for developing mathematical models
of measurement uncertainty. In Section 5.4, we illustrate the implementation of
these guidelines by developing a mathematical model of the uncertainty associated
with the measurement of the enzyme alkaline phosphatase (ALP) in the clinical
laboratory and then use the model to estimate the contributions of each source of
uncertainty operating within the process to the net measurement uncertainty. Finally,
in Section 5.5, we discuss the validation of the model, the limitations and advantages
of the modeling methodology, and outline possible avenues for future research in
the field.
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5.2 BACKGROUND AND LITERATURE REVIEW

A clinical laboratory measurement process is typically divided into three stages: the
preanalytical stage, which deals with patient sample collection, transportation, stor-
age, preparation, and so on; the analytical stage, which involves analysis of the patient
sample using a calibrated instrument; and the postanalytical stage, which deals with
recording, reporting, and interpreting the result of the measurement. Each of these
stages has uncertainty associated with it, and the uncertainty of a given stage of
the measurement process arises from multiple sources of variation operating within
that stage. Identifying all the sources of variation associated with each stage is often
impractical [3]; however, a list of important sources of variation associated with each
stage is provided in Table 5.1 [4].

The methodology presented in this chapter involves identifying and characteriz-
ing the sources of uncertainty operating within the analytical stage of the process
and estimates the uncertainty of this stage using the Monte Carlo method. As can
be seen in Table 5.1, there are numerous sources of uncertainty associated with the
preanalytical stage, and characterizing the variation of these sources merits a sepa-
rate discussion in its own right and is beyond the scope of the methodology in its
current form. The postanalytical stage does not generally contribute to measurement
uncertainty; however, human errors may occur in the reporting and interpretation of
measurement results. These errors are, by definition, out of the scope of this chapter.

TABLE 5.1 Sources of Uncertainty Operating within the
Measurement Process

Stage of the Process Sources of Uncertainty

Preanalytical Identification of the patient
Preparation of the patient
Venipuncture site selection
Preparation of venipuncture site
Tourniquet application and time
Proper venipuncture technique
Order of draw
Proper tube mixing
Correct specimen volume
Proper tube handling and specimen processing
Centrifugation
Special handling for blood specimens
Storage and transportation temperature stability

Analytical Calibrators or Certified Reference Materials
Reagents
Instrument(s)

Postanalytical Recording of measurement result
Reporting of measurement result
Interpretation of measurement result
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5.2.1 Measurement Uncertainty: Background and Analytical Estimation

In this section, we provide a brief introduction to modeling measurement uncertainty,
in general, and describe some simple rules for the analytical modeling and estimation
of measurement uncertainty that are applicable to all measurement systems, including
those in clinical laboratories.

In 1978, the Comite International des Poids et Mesures (CIPM) entrusted the
Bureau International des Poids et Mesures (BIPM) to work in collaboration with
national standards laboratories with the purpose of developing internationally accept-
able standards for the expression of uncertainty in measurement. The BIPM con-
vened a meeting with the purpose of arriving at a uniform and generally acceptable
procedure for the expression of uncertainty in measurement, and this was attended
by delegates from 11 national standards laboratories. The attendees at this meeting
formed the Working Group on the Statement of Uncertainties, and they developed
Recommendation INC-1 in 1980 [5], Expression of Experimental Uncertainties. It
was approved by the CIPM in 1981 and later reaffirmed in 1986.

According to the Recommendation INC-1 [5], the uncertainty associated with a
measurement result is typically a function of the uncertainties of several components.
The methods of estimation of the uncertainties of these components can be classified
into two categories:

1. Components for which experimental data is available, and whose uncertainty is
estimated by applying appropriate statistical methods to this data. This method
of characterization is known as the “Type A” method.

2. Components that are characterized by other less rigorous ad hoc methods,
which often rely on the judgment of experts. This method of characterization
is known as the “Type B” method.

It was also emphasized in the Recommendation INC-1 that the classification of
different components of uncertainty into “random” and “systematic” uncertainties,
as was previously used, is to be avoided, and in particular, the term “systematic
uncertainty” may even be misleading as to the nature of the variation in the result
of a measurement. Further, it was recommended that the net uncertainty of the mea-
surement result be estimated by applying the usual method for the combination of
variances and expressed in the form of a standard deviation.

In addition to the Recommendation INC-1, the CIPM entrusted the task of devel-
oping a comprehensive guide for the specification of the uncertainty of measurement
to the International Organization for Standardization. Six organizations partnered
with the ISO Technical Advisory Group, and they developed the Guide to the Expres-
sion of Measurement in Uncertainty in 1993, referred to hereafter as the GUM (1993)
[6]. The GUM (1993) is now accepted worldwide as the definitive document on the
conception, specification, and estimation of the uncertainty associated with the result
of a measurement.

The GUM (1993) establishes guidelines for the modeling and estimation of the
uncertainty of measurement. The term “uncertainty of measurement” is formally
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defined in the GUM as follows: “parameter, associated with the result of a mea-
surement, that characterizes the dispersion of the values that could reasonably be
attributed to the measurand.” The term measurand refers to the quantity being
measured.

In most cases, based on the guidelines in the Recommendation INC-1 (1980), the
standard deviation is the parameter used to characterize the dispersion of the result
of measurement. In the clinical assay model presented in Section 5.4, we also use
the standard deviation as a measure of uncertainty associated with both the com-
ponents of uncertainty and the measurand of the system under consideration. The
uncertainty associated with a component may be characterized by one of the two
methods described in the Recommendation INC-1 (1980), the Types A and B meth-
ods of uncertainty estimation. The GUM (1993) methodology for the evaluation of
uncertainty associated with a measurement system involves the following steps. First,
a mathematical model relating the different components of the measurement system
to the measurand is developed. Next, the uncertainties associated with the different
components of the model are characterized by either a Type A or a Type B method.
A first-order Taylor’s series expansion of a function, referred to as the law of prop-
agation of uncertainty, is then used to compute the combined uncertainty associated
with the system. This expression is as follows:

u( y) =

√√√√ n∑
i=1

(
𝜕f

𝜕xi

)2

∗ u2(xi) + 2
n−1∑
i=1

n∑
j=i+1

(
𝜕f

𝜕xi

)
∗
(
𝜕f

𝜕xj

)
∗ u(xi, xj) (5.1)

Here, f represents the model of the measurement system; u( y) denotes the uncertainty
of the measurand y; the xi denote the components of the system and the u(xi) their
individual uncertainties; and the u(xi, xj) represent the pairwise covariances between
the components of the measurement system. The partial derivatives 𝜕f

𝜕xi
are referred

to as the sensitivity coefficients for each of the xi and are evaluated at the expectations
of the xi. The above-mentioned expression is a general rule for combining individual
measurement uncertainties. We now describe some examples of its application to
simpler measurement systems.

If the model of the measurement system is linear, it can be represented by the
following expression:

y = f (x1, x2,… , xn) =
n∑

i=1

aixi + b

Here, the ai and b are constants ∈ ℝ. For such a measurement system, the law of
propagation of uncertainty simplifies to the following standard expression for the
variance of a linear function of random variables:

u( y) =

√√√√ n∑
i=1

a2
i u2(xi) + 2

n−1∑
i=1

n∑
j=i+1

aiaju(xi, xj) (5.2)
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If the relationship between the measurand y and the components of the system
xi is multiplicative and can be expressed as y = b xa1

1 xa2
2 … xan

n , then the combined
uncertainty of the measurement system is estimated using the following expression:

u( y)
y

=

√√√√ n∑
i=1

[
aiu(xi)

xi

]2

(5.3)

The xi and y in the above-mentioned expression represent their expected values or
means, respectively. The two simplifications of the law of propagation of uncertainty
described in Equations 5.2 and 5.3 can be used together to estimate the combined
uncertainty associated with most simple measurement systems. An example of such
a calculation is now described. Consider a measurement system with measurand y,
which is a function of its components x1, x2, x3, x4, and x5. Let their individual uncer-
tainties be denoted by u(x1), u(x2), u(x3), u(x4), and u(x5). The functional relationship
is given as follows:

y = x1 +
x2 x3

x4 + x5
(5.4)

Equation 5.3 can be used to estimate the combined uncertainty of the numerator
(x2 x3) of the fractional term in the right-hand side of Equation 5.4, and Equation 5.2
can be used for the denominator (x4 + x5) of the same fractional term. If we replace
the numerator and denominator of the fractional term by the variables x23 and x45 with
the corresponding uncertainties represented by u(x23) and u(x45), then Equation 5.4
becomes

y = x1 +
x23

x45

The uncertainties of x23 and x45 are given by the following equations:

u(x23) = x23

√[
u(x2)

x2

]2

+
[

u(x3)
x3

]2

u(x45) =
√

u2(x4) + u2(x5)

The expected values of x23 and x45 are estimated by appropriately convolving the
distributions of the corresponding individual random variables. Equation 5.3 can
now be applied to estimate the combined uncertainty of the simplified fractional
term in the above-mentioned expression. This yields a further simplification of
Equation 5.4 given by y = x1 + x2345. The uncertainty of u(x2345) is given by the
following equation:

u(x2345) = x2345

√[
u(x23)

x23

]2

+
[

u(x45)
x45

]2
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Finally, Equation 5.2 can be applied to yield the combined uncertainty of the mea-
surement system u( y), as given below:

u( y) =
√

u2(x1) + u2(x2345)

In order to simplify the process of estimating the net uncertainty of a measurement
system using the law of propagation of uncertainty, Kragten [7] developed a spread-
sheet program that automated the process of computing the combined standard uncer-
tainty using the law of propagation of uncertainty. Further, the EURACHEM group
published the document “Quantifying Uncertainty in Analytical Measurements” in
1995 to guide the implementation of principles of the GUM (1993) for analytical
measurements in laboratories.

An updated edition of the GUM (1993) was published in 2008 by the Joint Com-
mittee for Guides in Metrology [8], with some minor corrections to the 1993 version.
Several publications supplemental to the GUM (1993) [9–12] have also been pub-
lished.

The application of the law of propagation of uncertainty and its simplifications is
appropriate when the model of the measurement system is simple, as in the example
described earlier. However, in practice, useful models of measurement systems are
often complex in that the number of components (and therefore, the number of vari-
ables in the model of the measurement system) is large or in that there are significant
nonlinearities in the model. Often, both cases are simultaneously true of the measure-
ment system model. The presence of significant nonlinearities in the model, such as
exponential or logarithmic terms, high-degree polynomials, and so on, requires the
addition of higher-order terms to the law of propagation of uncertainty, which then
makes its use cumbersome. In such cases, the Monte Carlo method is most often used
to estimate the combined uncertainty of the measurement system model.

Recognizing this, in 2008, the JCGM also published a supplement that advo-
cates for the use of the Monte Carlo method to model the propagation of uncertainty
through a measurement process, and it outlines the statistical conditions that must
be satisfied if the Monte Carlo method is to be used for estimating the combined
measurement uncertainty [9]. These conditions are listed below.

1. The model f must be continuous in the neighborhood of the best estimates of
all the independent variables xi.

2. The distribution function for the measurand y must be continuous and strictly
increasing.

3. The PDF for the measurand y is as follows:

a. continuous as well as positive over the interval under consideration;

b. unimodal;

c. strictly increasing to the left of the mode and strictly decreasing to the right
of the mode.

4. E( y) and V( y) exist.

5. A sufficiently large number of Monte Carlo iterations are used.
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The model of measurement uncertainty presented in Section 5.4 satisfies all of the
above-mentioned conditions. Further, since the components of the measurement pro-
cess that are subject to variability typically follow the Gaussian distribution, they are
characterized by a probability distribution with the expected value and the standard
deviation as parameters, with the standard deviation used as the parameter describing
the uncertainty of measurement.

5.2.2 Uncertainty in Clinical Laboratories

In this section, we describe the research that has been conducted on the modeling and
estimation of uncertainty in clinical laboratories.

The need for ascertaining information about the reliability of analytical methods
used in the laboratory was recognized by Aronsson et al. as early as 1974 [13]. Fur-
ther, the authors proposed conducting a systems analysis to determine the contribution
of various components of the analytical procedure to, in their terms, the “quality” of
the result. They conclude that systems analysis is a valuable tool for minimizing the
effect of the contributing components and to inform the design of analytical assays
that are optimal with respect to the existing laboratory conditions.

This study was followed by Tietz [14], who proposed a model to quantify the
accuracy and reliability of clinical measurements so as to support the interlaboratory
comparison of clinical laboratory tests. The author discussed the traceability of a
clinical laboratory measurement termed as a “field method” by the author – to the
most accurate method, designated by the author as a “definitive method.”

Following the publication of the GUM (1993), Kristiansen et al. [15] applied the
principles in the Guide to estimate the uncertainty of the atomic absorption spec-
trometry technique, which is used to determine the amount of lead in the blood. The
uncertainty associated with each component of the process was characterized and
integrated into a net measurement uncertainty using the law of propagation of uncer-
tainty. Validation of their estimates was carried out by comparing the estimated uncer-
tainty with experimentally obtained data. Two of the above authors also published a
treatise on traceability and uncertainty in analytical measurements in 1998 [16].

Kallner, in 1999 [17], utilized the principles of the GUM (1993) and the first edi-
tion of the EURACHEM guide [18] to estimate the net measurement uncertainty
associated with an analytical assay. The author suggested that the uncertainty esti-
mates obtained in this manner be used to set quality specifications for such analytical
assays in laboratory medicine. The author used a spreadsheet program, similar to
that used by Kragten in 1994 [7] to automate the uncertainty estimation using the
law of propagation of uncertainty. The study presented in this paper provided some
valuable insights into the estimation of uncertainty in laboratory medicine and in our
development of a systems simulation approach toward the estimation and analysis of
uncertainty for clinical laboratory measurement systems.

Kallner and Waldenstrom, also in 1999 [19], obtained uncertainty estimates for
glucose measurements and investigated the clinical utility of uncertainty around deci-
sion levels for the diagnosis of diabetes. They also applied the procedures described
in the GUM (1993) to the steps of sampling and measurement and identified the
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measurement procedure as the major source of uncertainty, followed by the prean-
alytical sources. They arrive at the conclusion that presently available procedures do
not allow identification of individuals at high risk for diabetes.

Dybkaer [20] published a general paper that stressed the need for quality manage-
ment, certification, and accreditation of medical laboratories. The author maintains
that while the costs of achieving accreditation may be high, its rewards include the
development of an open system, smoother work, satisfied stakeholders, and emphasis
on the prevention of mistakes.

Fuentes-Arderiu [21] raised a few pertinent questions about standardizing the
practice of providing uncertainty statements for calibrator materials, the establish-
ment of a relationship between metrological standard deviation and concentration
level, and the question of whether preanalytical variation can be accurately quantified.
As illustrated in Section 5.4, we attempt to answer some of these questions.

Kristiansen, in 2001 [22], published an important paper wherein he describes the
development of a generally applicable methodology for the estimation of uncertainty
in clinical laboratories. The methodology involves the following steps: (i) specifi-
cation, which involves the establishment of a functional relationship between the
measurand and the quantities on which it depends; (ii) identification, which entails the
listing of all the possible sources of uncertainty; (iii) quantification, which involves
the estimation of the uncertainties of all the sources of uncertainty, and finally
(iv) combination, wherein all the sources of uncertainty are combined according to
the law of propagation of uncertainty and its special cases for independent, linear,
and uncorrelated components. The author implemented these guidelines to estimate
the uncertainty of the human serum prolactin assay.

Petersen et al. [23] studied three models in 2001: a linear model, a squared
model based on the GUM (1993), and a combined model for the development
of analytical quality specifications – for handling and combining random and
systematic variations/errors according to their purpose, their application, and the
validity of their assumptions. The authors conclude that each model possesses
specific advantages compared to the other models and should be applied according
to its suitability for the assay under consideration.

In 2001, Petersen et al. [24] also investigated the utility of estimating systematic
and random uncertainties in setting quality specifications for the laboratory tests used
in the diagnosis of type 2 diabetes mellitus. Further, they also investigated the effect
of the then current WHO and ADA recommendations on the diagnosis of type 2
diabetes mellitus and the implications of their estimates of measurement uncertainty
on the same.

Linko et al. [3] implemented the GUM (1993) guidelines to evaluate the uncer-
tainty associated with routine clinical chemistry measurements and, in particular,
estimated the uncertainty of the serum calcium and glucose assays. The evaluation
focuses on the analytical stage, but they introduce empirical terms to account for the
preanalytical phase and other patient-related issues.

Krouwer, in 2002 [25], conducted a review of the literature to reconcile three dif-
ferent approaches to the estimation of total analytical error for diagnostic assays: the
simple combination model, the distribution of differences model, and a simulation
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approach. The author concludes that total analytical error should be estimated either
using the distribution of differences method or by simulation. The author also men-
tions that the use of outlier rate estimates from large studies could also help assess
assay quality.

Further, Krouwer argues in 2003 [26] that the methodology proposed in the GUM
(1993) does not provide mechanisms to deal with outliers. Also, the author suggests
that the GUM (1993) methodology does not deal with systematic errors, particularly
in the case of calibrators. Due to these reasons, Krouwer suggests that the princi-
ples laid out in the GUM (1993) are not suitable for the evaluation of uncertainty in
diagnostic assays. Kristiansen [27] counters this argument by suggesting that external
quality control data can be used to estimate calibrator uncertainty and then applying
the law of propagation of uncertainty for the estimation of combined uncertainty,
as illustrated in the author’s earlier publication [22]. Further, the author counters
Krouwer’s argument regarding outliers by suggesting that the estimation of an uncer-
tainty interval for the measurement result is in itself sufficient to identify outliers and
indicate the need for further investigation.

There have been several attempts at the estimation of uncertainty in analytical
laboratory measurement systems, prominent among them being Fuentes-Arderiu and
Dot-Bach [28], Petersen et al. [24], Patriarca et al. [29], Burns and Valdivia [30],
Canalias et al. [31], Leung et al. [32], Middleton and Vaks [33], Sundvall et al. [34],
Fuentes-Arderiu and Dot-Bach [35], and Chen et al. [36]. A very useful survey of
the research on the estimation and analysis of uncertainty in various fields, including
method validation and QC, clinical chemistry, health, fitness and sports sciences, and
so on, was conducted by Burns [37]. In addition, commentaries of the evolution of
metrology in chemistry by Kipphardt et al. [38] and a review treatment of bias and
systematic error in analytical measurements by Hibbert [39] have been found useful in
developing a perspective of how variation has been handled in analytical and clinical
laboratories.

5.2.3 Uncertainty in Clinical Laboratories: A System Approach

Among the publications discussed earlier, the work done in Kallner and Waldenstrom
[19], Kallner [17], Kristiansen [22], and Krouwer [25] was found to be particularly
useful to the development of general guidelines for the estimation of uncertainty in
clinical laboratory measurement systems. While Kristiansen (2001) was one of the
first to explicitly outline a broadly applicable model for the estimation of the uncer-
tainty for clinical assays, the guidelines proposed in Section 5.3 of this chapter are
developed from a different perspective. In this chapter, we present the conceptual-
ization of the clinical measurement process as a system with inputs and outputs, and
describe the development of a mathematical model of the measurement system that
combines descriptions of the physical and chemical phenomena underlying the mea-
surement as well as the operational aspects of the measurement process. The use of
the Monte Carlo method for the estimation of the uncertainty associated with the out-
put of the system is then described. These general guidelines for the development of
models of measurement uncertainty are described in detail in Section 5.3.
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The choice of using the Monte Carlo method for estimating the uncertainty asso-
ciated with such systems was made due to the following reasons. The most widely
used method for computing the uncertainty associated with a measurement system
is based on the law of propagation of uncertainty, as described in the GUM (1993).
However, the Monte Carlo method becomes more appropriate to use for uncertainty
estimation when the model of the measurement system possesses one or more of the
following characteristics, as described by Cox et al. [40]:

1. The measurand is nonlinear.

2. The distribution of the measurand is not Gaussian.

3. Estimating the degrees of freedom for the sources of uncertainty is not possible.
This is typically the case when the variation of the sources of uncertainty is
characterized using Type B methods.

The models of measurement uncertainty developed using the methodology pre-
sented in the chapter have typically been nonlinear in the sources of uncertainty.
The sources of uncertainty are also characterized using Type B methods, and hence
these models meet conditions 1 and 3 described earlier. Therefore, the use of the
Monte Carlo method to estimate measurement uncertainty becomes appropriate for
the models developed using this methodology.

Further, using the general law of uncertainty propagation to compute uncertain-
ties becomes tedious [41] when one or more of the following scenarios occur: (i)
the model function is complex or nonlinear or both; (ii) there are a large number
of sources of uncertainty; and (iii) there are a large number of correlated sources of
uncertainty. Monte Carlo simulation has been considered as a tool of choice to over-
come these limitations (Technical Report, 2004, National Physical Laboratory, UK).
Monte Carlo simulation has also been used to estimate measurement uncertainty in
analytical chemistry [42] and for the evaluation of assigned value uncertainty for
complex calibrators [33], and hence the natural extension to clinical laboratory mea-
surement systems as a whole.

The primary advantage, however, of using this methodology is that it lends itself
to the development of a simulation model and, therefore, facilitates conducting sim-
ulation experiments and extracting information about the measurement process that
would otherwise require controlled experimentation in laboratory settings. The math-
ematical model itself will not be written out in its entirety for complex systems [9];
expressions representing each step of the process are usually provided, thereby fur-
ther encouraging the use of simulation for characterizing the stochastic behavior of
such systems.

The use of the Monte Carlo simulation model to simulate and analyze a clini-
cal measurement process is illustrated in Section 5.4. The methodology presented
in this chapter and its uses for the estimation of the contributions of the sources of
uncertainty operating within the system on the net measurement uncertainty, and for
the simulation and optimization of calibration protocols, have been published by the
authors in both methodological and clinical journals [4, 43–45].
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5.3 MODEL DEVELOPMENT GUIDELINES

The guidelines described in this section for the development of the mathematical
model are applicable to any clinical measurement process irrespective of whether the
Monte Carlo method or the law of propagation of uncertainty is used to estimate the
combined measurement uncertainty.

5.3.1 System Description and Process Phases

In the analytical stage of a clinical measurement process, the measuring instrument
analyses the patient sample and determines the value of the measurand. A distinction
is made here between the terms analyte and measurand: the analyte is the substance or
chemical constituent determined in an analytical procedure, whereas the measurand
represents the amount of the analyte in the patient sample. In general, there are two
types of measurands: direct measurands, wherein the amount of analyte is directly
measured by the instrument, and indirect measurands, wherein the instrument mea-
sures a property of the analyte, and the value of this property is converted into the
measurand value using a calibration function. In most measurement systems, the
instrument first analyzes known standards, and a calibration function is established.
This phase of the analytical process, wherein a calibrator or Certified Reference Mate-
rial (CRM) is analyzed by the instrument to characterize the calibration function, is
termed the calibration phase. Three major components of the system are involved
in the calibration phase: the calibrator or reference material, the instrument, and the
reagents. There are uncertainties associated with each of these three components, and
they are calibrator uncertainty, reagent uncertainty, and instrument uncertainty. These
combine to yield the uncertainty associated with this phase, calibration uncertainty.

The calibrated instrument then analyzes the patient sample and provides the value
of the measurand as system output. This phase of the analytical process – where the
patient sample analysis takes place – is termed the sample analysis phase. Three
principal components of the system are involved in this phase, the patient sample, the
reagents, and the measuring instrument. The uncertainty associated with the patient
sample is referred to as the specimen uncertainty, and the uncertainties associated
with the reagents and the instrument are, as before, reagent uncertainty and instru-
ment uncertainty. These combine to yield the uncertainty associated with this phase,
sample analysis uncertainty. Calibration uncertainty and sample analysis uncertainty
combine to form the net system uncertainty, which is the uncertainty associated with
the measurand. The division of the analytical stage of the measurement process into
phases provides intuitive structure to the modeling process and facilitates an under-
standing of the contribution of different stages of the measurement process to the net
measurement uncertainty. This conceptualization is illustrated in Figures 5.1 and 5.2.

A few important points must be mentioned here. (i) Even though certain compo-
nents are present in both phases, the uncertainty associated with each phase is unique.
(ii) Specimen uncertainty represents uncertainty that affects the concentration of
the analyte in the patient specimen before analysis on the instrument, and hence it
is the uncertainty associated with the preanalytical stage. (iii) While a majority of
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Figure 5.1 Clinical laboratory measurement process: system conceptualization.
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Figure 5.2 Uncertainty propagation through a clinical laboratory measurement process.

commonly used laboratory tests involve a chemical reaction requiring the use of
reagents, some do not involve a chemical reaction; and hence do not have reagents
as a principal component. An example of such an assay is the manual differential
leukocyte count.

5.3.2 Modeling Guidelines

The first step in estimating the uncertainty associated with a clinical laboratory mea-
surement system involves identifying the different components of the measurement
system. As mentioned previously, the principal components of most clinical labora-
tory measurement systems are (i) the calibrator/CRM; (ii) the measuring instrument;
(iii) the reagents; and (iv) the patient sample. Once the components of the system are
identified, the next step is to identify the factors that contribute to the variation inher-
ent in each component. To this end, the subcomponents of the principal components,
if any, must be identified. As an example, the measuring instrument may have indi-
vidual subcomponents with attendant uncertainties. These factors, which contribute
to the uncertainty of each component and hence to the net measurement uncertainty,
represent the sources of uncertainty operating within the measurement system.
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Once the sources of uncertainty are identified, the next step involves character-
izing their variation with an appropriate distribution. Here, a Type A or a Type B
characterization of the sources of uncertainty can be carried out [6]. Following this, a
mathematical model is developed that accurately describes the relationship between
the measurand and the system components. Developing the mathematical model gen-
erally involves the following: (i) understanding the role that each component of the
system plays in estimating the value of the measurand; (ii) understanding the chemical
reaction involved, if applicable, and the physical principle underlying the measure-
ment; and (iii) understanding the calibration process. The calibration function often
serves as a convenient starting point for the development of the mathematical model
because each term in the calibration function represents the uncertainty associated
with a specific stage of the measurement process. The calibration function relates to
the process phases as follows: the uncertainty associated with the parameters repre-
sents uncertainty in the calibration phase; the uncertainty associated with the inde-
pendent variable(s) represents the uncertainty of the sample analysis phase, including
preanalytical uncertainty; and the net measurement uncertainty is that associated with
the dependent variable. Once the mathematical model is developed, the measurand
can be evaluated for different values of each source of uncertainty by using the Monte
Carlo method. The behavior of the measurand under uncertainty can thus be charac-
terized and the uncertainty associated with the measurement system is thus estimated.

A key advantage of using the Monte Carlo method is that it enables the representa-
tion of the measurement process in a manner that most closely resembles day-to-day
laboratory operations. Therefore, the simulation must be organized in a manner that
is, to the extent possible, exactly the same as the laboratory operation of interest.
For instance, if 100 ALP measurements are carried out in a given day and the instru-
ment is calibrated every 5 days, then the simulation must be organized in exactly
the same way – that is, a calibration is performed every 500 measurements. Further,
sources of uncertainty that vary with time can also be incorporated. For instance, if
time-dependent drift is present in a sample or reagent pipette, then the expected value
of the distribution describing this source of uncertainty can be incremented every day
(or once every appropriate time unit). Since recalibration of the instrument nullifies
the effect of drift in an instrument component, the simulation model can be used to
determine the maximum time allowable between successive calibrations.

Since the Monte Carlo method enables accurate representation of laboratory oper-
ations, including calibration, the model can be used to simulate, evaluate, and opti-
mize laboratory operating protocols and calibration policies in terms of minimizing
the net measurement uncertainty. For instance, as a sensitivity analysis exercise, the
simulation model can be used to estimate the contributions of each component or
source of uncertainty to the net measurement uncertainty by changing the parameters
of the distribution of that source of uncertainty. Another example involves using the
simulation model to determine the minimum number of optical absorbance measure-
ments used as part of the calibration process that achieves the maximum reduction in
net measurement uncertainty.

In the following section, we describe the development of the mathematical model
of the ALP clinical assay. We then describe the use of the Monte Carlo method to
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estimate the uncertainty of the assay and to estimate the contributions of each source
of uncertainty to the net measurement uncertainty as well as the effect of uncertainty
in the calibration process on the net measurement uncertainty.

5.4 IMPLEMENTATION OF GUIDELINES: ENZYME
ASSAY UNCERTAINTY MODEL

In this section, we implement the guidelines outlined in the previous section by
describing the development of a model of the uncertainty associated with the
measurement of the ALP enzyme in the clinical laboratory. Elevated levels of the
ALP enzyme may indicate liver function abnormalities, bone disease, as well as the
presence of some cancers such as lymphoma and leukemia [46]. This model was
first described in Ramamohan et al. [47].

We model the ALP assay that is performed on the Roche Diagnostics P-Modular
Analytics measurement platform. The assay consists of conducting a chemical reac-
tion between reactants supplied by two reagents. The chemical reaction is catalyzed
by the enzyme supplied by the patient sample, and the amount of enzyme in the
patient sample is characterized by its acceleration of the rate of the reaction. The rate
of the reaction is a function of the amount of the reaction product formed per unit
time, and the optical absorbance of the reaction mixture at a given point in time is
proportional to the amount of product present in the reaction mixture at that point in
time. The optical absorbance of the reaction mixture is recorded at regular intervals
of time in order to estimate the rate of the reaction. The calibration function then con-
verts the measured rate of the reaction into the “activity level” of the enzyme, which
quantifies the amount of enzyme in the patient sample. The most widely used unit
of enzyme activity is enzyme unit per liter (denoted as U/l), which is defined as the
amount of enzyme that catalyzes the conversion of one micro mole of the substrate
into the reaction product per minute.

The chemical reaction catalyzed by the ALP enzyme, and thereby forming the
basis of the ALP assay, is given below:

p-nitrophenyl phosphate + H2O ALP−−−→ p-nitrophenol + phosphate (5.5)

This chemical reaction yields the product of interest, p-nitrophenol, and the optical
absorbance of the reaction mixture at a given point in time is directly proportional to
the concentration of the p-nitrophenol.

Two reagents are added as part of the ALP assay: R1, containing the metal-ion
buffer necessary for the reaction, and R2, containing the reactant p-nitrophenyl phos-
phate. The patient sample supplies the ALP enzyme that catalyzes the reaction. In
the description of the model that follows, we use the term “substrate” to refer to
the p-nitrophenyl phosphate supplied by the reagent R2 and “reagent” to refer to the
metal-ion buffer supplied by the reagent R1. The volumes of the reagent and the sub-
strate are denoted by Vr1 and Vr2, respectively. The volume of the patient sample
containing the ALP is denoted by Vs. The concentration of a species is represented
by enclosing its symbol within square brackets.
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The ALP activity level is linearly proportional to the rate of the reaction (rate
of change of absorbance with time) and is estimated using the calibration equation,
specified below:

[E]x = K(mx − mb) (5.6)

Here [E]x denotes the ALP activity level in the patient sample; K the calibration
parameter, and mb represents the rate of the reaction (absorbance/min) for a blank
sample. The value of mb is zero. Further, all properties (absorbance, activity level,
etc.) of the patient sample with unknown enzyme activity level will be denoted using
the subscript x in this document.

K, the calibration parameter, is computed as follows:

K =
[E]2 − [E]1

m2 − m1
(5.7)

Here, [E]1 and [E]2 represent the desired (error-free) lower and higher activity levels
of the ALP enzyme in the calibrators 1 and 2, respectively. n absorbance readings,
recorded at equal intervals of time and denoted by A1, A2, ..., An, are used to derive
a linear relationship between absorbance and time. The rate of the reaction m is esti-
mated by fitting a linear regression function using these n absorbance readings, that is,

m =
∑

itiAi −
1
n

∑
iti
∑

iAi∑
it

2
i −

1
n
(
∑

iti)2
(5.8)

5.4.1 Calibration Phase

In the calibration phase, the values of K and mb are estimated. A two-point calibration
is performed since the sample activity level is a linear function of the rate of change of
absorbance. Three sources of uncertainty are identified as affecting the value of the
calibrator activity level: calibrator set point uncertainty (uc1), vial-to-vial variabil-
ity (uc2) and calibrator reconstituted stability (uc3(t)). The first, calibrator set-point
uncertainty, involves the uncertainty in the calibrator activity level during manufac-
ture and prior to its use in the laboratory. The second source of calibrator uncertainty,
vial-to-vial variability, represents the uncertainty introduced in the sample activity in
the laboratory while preparing different vials of the calibrator from the batch sup-
plied by the manufacturer. The third source of uncertainty, calibrator reconstituted
stability, quantifies the deterioration (percentage decrease in activity per day) of the
sample when the calibrator vial is stored and reconstituted after each use. When these
sources of uncertainty are introduced into the model, the values of E1 and E2 change
according to the following equation:

[E]′1 = [E]1 (1 + uc1) (1 + uc2)
N∏

t=1

(1 + uc3(t)) (5.9a)

[E]′2 = [E]2 (1 + uc1) (1 + uc2)
N∏

t=1

(1 + uc3(t)) (5.9b)
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We assume a multiplicative model for the combination of these sources of uncer-
tainty because the sources of calibrator uncertainty are introduced into the calibration
process one after the other and, therefore, serially change the concentration of the
calibrator. The variation of these sources of uncertainty, along with the others identi-
fied as operating within the measurement process, is characterized by fitting suitable
distributions to the specifications provided by Roche Diagnostics for each source of
uncertainty. As an illustration, specifications for vial-to-vial variability were provided
by the instrument manufacturer in the form of a coefficient of variation (CV) of 1.5%.
After discussion with the manufacturers, a Gaussian distribution with a mean of 0%
and a standard deviation of 1.5% was assumed to characterize the variation in the
calibrator activity levels due to vial-to-vial variability. The expected value of the dis-
tribution was assumed to be 0%, as systematic errors in the calibrator manufacturing
process were ruled out based on the manufacturer’s recommendation. Therefore, at
a desired (error-free) calibrator enzyme activity level of 200 units/liter, the activity
level in practice would be described by a Gaussian distribution with an expected value
of 200 U/l and a standard deviation of 3 U/l.

The activity values of the calibrator also change due to the sources of instrument
uncertainty. Three sources of uncertainty are associated with the instrument: sam-
ple pipetting uncertainty, reagent pipetting uncertainty, and photometer uncertainty.
Sample and reagent pipetting uncertainty describe the uncertainty in the volumes of
the sample and reagents pipetted into the reaction cell, hence resulting in a change
in the total volume of the reaction mixture and the number of enzyme and reactant
molecules in the reaction mixture before the reaction begins. Therefore, their effect
on the measurand occurs at time t = 0. However, photometer uncertainty changes
each of the 15 optical measurements recorded during the course of the reaction. The
variations of the sources of instrument uncertainty are also characterized in a manner
similar to that of the sources of calibrator uncertainty, and hence are also described
by Gaussian distributions. The parameters of the distributions used to characterize
the sources of uncertainty are summarized in Table 5.2.

We now derive the effect of sample and reagent pipetting uncertainty on each
optical absorbance measurement recorded during the reaction. We begin with the
assumption that the optical absorbance at time t, denoted by At, is linearly propor-
tional to the concentration of the product p-nitrophenol in the reaction mixture at

TABLE 5.2 Characterization of Sources of Uncertainty

Source of Uncertainty Distribution Mean (%) SD (%) Notes

Calibrator set-point uncertainty Gaussian 0.00 0.10
Vial-to-vial variability Gaussian 0.00 1.50
Reconstituted stability Gaussian −1.25 0.42 Decrease of enzyme

activity per day
Sample pipetting uncertainty Gaussian 0.00 1.50
Reagent pipetting uncertainty Gaussian 0.00 4.00
Photometer uncertainty Gaussian 0.00 0.15
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time t (denoted by [P]t), that is,

At = k[P]t + A0(t) (5.10)

Here, k represents the molar extinction coefficient, A0(t) represents the absorbance
at time t when the p-nitrophenol concentration at time t is zero. This assumption is
based on the Beer–Lambert law, which states that the optical absorbance of a solu-
tion is proportional to the concentration of the absorbing species – in this case the
product of the reaction. It is reasonable to assume that the optical absorbance at time
t at zero p-nitrophenol concentration is equal to the optical absorbance at time t = 0
at zero p-nitrophenol concentration. The p-nitrophenol concentration will be zero if
the chemical reaction does not take place; in other words, it can correspond to a con-
figuration wherein a water blank is used. In this case, the optical absorbance will be
independent of time, and the measurements recorded at regular time intervals will
remain constant. Therefore, we replace the intercept term A0(t) by a more general
intercept term A0 to denote optical absorbance of a sample with zero enzyme activity.
Equation 5.10 can then be rewritten as

At = k[P]t + A0 (5.11)

In order to derive the relationship between the concentration [P]t of p-nitrophenol,
time t, and the initial concentration of the substrate [S]0, we consider the fact that reac-
tion 5.5 belongs to the class of enzyme reactions that follow the following reaction
mechanism:

E + S
k1−−−−⇀↽−−−−

k−1

ES
k2−−→E + P (5.12)

Here, E represents to the enzyme ALP, S to the substrate p-nitrophenyl phosphate,
ES to the enzyme–substrate complex formed during the reaction, and P to the prod-
uct p-nitrophenol. The rate constants for the forward reactions are represented by k1
and k2, and the rate constant for the reverse reaction is k−1. We now recall that the
patient sample supplies the enzyme E, reactant R2 supplies the substrate S, and the
product P refers to p-nitrophenol.

Applying the law of mass action to each of the terms in reaction 5.12, which states
that the rate of a reaction, represented by the rate of formation or consumption of
a species in the reaction, is proportional to the product of the concentrations of the
reactants, we obtain the following system of nonlinear differential equations:

d[S]
dt

= −k1 [E] [S] + k−1 [ES] (5.13a)

d[E]
dt

= −k1 [E] [S] + (k−1 + k2) [ES] (5.13b)

d[ES]
dt

= k1 [E] [S] − (k−1 + k2) [ES] (5.13c)

d[P]
dt

= k2 [ES] (5.13d)
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The initial conditions for this system are as follows:

([E], [S], [ES], [P])t=0 = ([E]0, [S]0, 0, 0) (5.13e)

There are two conservation laws applicable to this system. First, the sum of the
concentrations of the free substrate [S], enzyme–substrate complex [ES], and product
[P] must be equal to the initial substrate concentration [S]0. Second, the sum of the
enzyme concentration [E] and the enzyme–susbtrate complex concentration [S] must
be equal to the initial free enzyme concentration [E]0]. Mathematically, these are
represented as follows:

[S] + [ES] + [P] = [S]0 (5.14a)

[E] + [ES] = [E]0 (5.14b)

Applying Equation 5.14a and b to the system of coupled differential Equation
5.13a–e results in reducing the system of four equations to the following:

d[S]
dt

= −k1 ([E]0 − [ES]) [S] + k−1 [ES] (5.15a)

d[ES]
dt

= k1 ([E]0 − [ES]) [S] − (k−1 + k2) [ES] (5.15b)

Briggs and Haldane [48] developed a mathematical framework, based on the work
by Michaelis and Menten [49], for the analysis of enzyme kinetics that expressed
the initial velocity of the reaction as a function of the initial enzyme concentration
as well as the initial substrate concentration (at time t = 0). They postulated that the
concentration of the enzyme–substrate complex will rapidly reach at a constant value,
which enables the following steady-state approximation to be applied to Equation
5.15b:

d[ES]
dt

= 0 = k1 ([E]0 − [ES]) [S] − (k−1 + k2) [ES] (5.16)

Solving for the enzyme–substrate complex concentration [ES], we have the fol-
lowing expression:

[ES] =
k1 [E]0 [S]0

k−1 + k2 + k1 [S]0
(5.17)

The initial velocity of the reaction is defined by Equation 5.13d, as the rate of
formation of the product. Substituting the expression for [ES] developed in Equation
5.13d, we have

d[P]
dt

=
k2 k1 [E]0 [S]0

k−1 + k2 + k1 [S]0
(5.18)

Upon dividing the right-hand side of the above-mentioned equation by k1, the
equation can be rewritten as following:

d[P]
dt

=
𝑣max [S]0
Km + [S]0

(5.19)
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Now we write k2+k−1
k1

as Km and replace the term k2 [E]0 by 𝑣max. Km is also known
as the Michaelis constant and 𝑣max is the maximum rate – the reaction velocity at
which all the enzyme molecules are in the enzyme–substrate complex form. Now,
when [S]0 = Km, we find that the rate of the reaction, as defined by Equation 5.19 is
equal to 1

2
𝑣max, and therefore the Michaelis constant represents the value of the initial

substrate concentration at which the reaction attains half its maximum velocity.
We can use Equation 5.19 to determine the relationship between product concen-

tration [P] and time as follows:

∫
[P]t

0
d[P] = ∫

t

0

𝑣max [S]0
Km + [S]0

dt (5.20)

That is,

[P]t =
(
𝑣max [S]0
Km + [S]0

)
t (5.21)

Substituting the above-mentioned expression for [P]t in Equation 5.10, we obtain
the relationship between optical absorbance and the initial enzyme and substrate con-
centrations and time.

At = k

(
𝑣max [S]0
Km + [S]0

)
t + A0 (5.22)

For the purpose of maintaining economy of notation in the rest of the derivation,
we express the product concentration at time t as a function f of the initial substrate
and enzyme concentrations and time t as follows:

[P]t = f ([S]0, [E]0, t)

Therefore, Equation 5.22 now becomes

At = k f ([S]0, [E]0, t) + A0 (5.23)

Now, at t = 0, substrate concentration in the reaction mixture can be written as
the ratio of the number of moles of the substrate NS(0) to the volume of the reaction
mixture V . That is, the above equation can be written as

At = k f

(
NS(0)

V
, [E]0, t

)
+ A0 (5.24)

Further, the number of moles of the substrate NS(0) can also be written as the
product of the substrate concentration [S]r2 in R2 and its volume Vr2. The distinc-
tion between the terms [S]0 and [S]r2 must be emphasized here: the former refers
to the desired substrate concentration in the reaction mixture at time t = 0, and the
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latter to the desired substrate concentration in the reagent R2 before it is added to the
reaction mixture. Therefore, the above-mentioned equation can be written as

At = k f

(
[S]r2 Vr2

V
, [E]0, t

)
+ A0 (5.25)

The total volume of the reaction mixture V is the sum of the sample and reagent
volumes Vs, Vr1, and Vr2. We now introduce pipetting uncertainty into the model.
Let the fractional change in sample volume due to sample pipetting uncertainty be x,
the fractional change in reagent volumes due to reagent pipetting uncertainty be y1
and y2, and the fractional change in total reaction mixture volume be denoted by z.
Then,

Vs + 𝛿Vs = Vs(1 + x) (5.26a)

Vr1 + 𝛿Vr1 = Vr1(1 + y1) (5.26b)

Vr2 + 𝛿Vr2 = Vr2(1 + y2) (5.26c)

V + 𝛿V = V(1 + z) (5.26d)

Now, using the fact that V = Vs + Vr1 + Vr2, we have

V + 𝛿V = Vs(1 + x) + Vr1(1 + y1) + Vr2(1 + y2) (5.27a)

That is,
V + 𝛿V = Vs + Vr1 + Vr2 + xVs + y1Vr1 + y2Vr2 (5.27b)

and
𝛿V = xVs + y1Vr1 + y2Vr2 (5.27c)

Uncertainty in the instrument can also manifest itself as an error in the time at
which the absorbance measurement is recorded. This in turn can change the extent
to which the reaction has occurred, and therefore the optical absorbance is measured
ostensibly at time t. We refer to this uncertainty in time of measurement as clock
uncertainty. We denote this error in the time of measurement as 𝛿t and the fractional
change in the desired time of measurement t as ut. If we denote the change in optical
absorbance measured at time t as 𝛿At, then the optical absorbance after the incorpo-
ration of pipetting and clock uncertainty can be written as

At + 𝛿At = k f

(
[S]r2 (Vr2 + 𝛿Vr2)

(V + 𝛿V)
, [E]0, (t + 𝛿t)

)
+ A0 (5.28)

Using Equation 5.26a–d, we obtain

At + 𝛿At = k f

(
[S]r2 Vr2 (1 + y2)

V (1 + z)
, [E]0, t (1 + ut)

)
+ A0 (5.29)
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Subtracting Equation 5.25 from Equation 5.29, we obtain the change in absorbance
due to instrument uncertainty.

𝛿At = k

[
f

(
[S]r2 Vr2 (1 + y2)

V (1 + z)
, [E]0, t (1 + ut)

)
− f

(
[S]r2 Vr2

V
, [E]0, t

)]
(5.30)

We denote the fractional change in optical absorbance at time t due to pipetting
and clock uncertainty, 𝛿At

At
, by the term upc(t). Now, Equation 5.30 denotes the change

in absorbance at time t from the desired value that occurs before the measurement is
performed. When the measurement is performed, the uncertainty due to the photome-
ter changes the absorbance further by the fractional amount up(t). Therefore, the final
expression for optical absorbance after incorporating pipetting and clock uncertainty
into the model is as follows:

A
′
t = At(1 + upc(t))(1 + up(t)) (5.31)

The above-mentioned expression denotes the value of absorbance after all sources
of uncertainty affecting the optical absorbance measurement have been incorporated
into the model. This process is repeated for all absorbance measurements recorded
during the chemical reaction. Therefore, the corresponding rate of the reaction is
estimated as follows:

mint =
∑

itiA
′
i −

1
n

∑
iti
∑

iA
′
i∑

it
2
i −

1
n
(
∑

iti)2
(5.32)

Now, since the patient sample supplies the enzyme ALP that catalyzes the assay
reaction, a change in the volume of the patient sample due to sample pipetting uncer-
tainty changes the number of enzyme molecules available to catalyze the reaction.
The change in the rate of the reaction due to a change in sample volume is linearly
proportional to the change in volume; therefore, an x% change in the sample volume
would cause the same x% change in the rate of the reaction. Therefore, the final rate
of the reaction after all the sources of uncertainty operating within the calibration
process is given by

m′ = mint(1 + x) (5.33)

This process of incorporating uncertainty into the calibration process is applied to
both calibrators E1 and E2 and their corresponding desired reaction rates m1 and m2.
Therefore, after incorporating the uncertainty introduced by the calibration process,
this results in the estimation of the calibration factor as

K′ =
[E]′2 − [E]′1

m
′
2 − m

′
1

(5.34)

In the case of most clinical enzyme assays, one of the calibrators is a water blank,
and hence only the slope of the calibration line, the calibration factor, is estimated.
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5.4.2 Sample Analysis Phase

After the value of the calibration factor is estimated, the process moves into the sam-
ple analysis phase. In terms of the calibration line, the uncertainty of this phase is
that associated with the independent variable m; that is, the absorbance measurements
recorded as part of the analysis of the patient sample. Instrument uncertainty is the
primary source of uncertainty operating within this phase.

The effect of instrument uncertainty on net measurement uncertainty has been
dealt with in the previous section, and we denote the fractional change in optical
absorbance at time t due to pipetting uncertainty and clock uncertainty in the sample
analysis phase as upc(t,x). If we denote the “true” error-free enzyme activity level of
the sample as [E]x and the corresponding absorbance at time t as Ax(t), the absorbance
obtained after the incorporating sample and instrument uncertainty is expressed as

A′
x(t) = Ax(t)(1 + upc(t,x))(1 + up(t,x)) (5.35)

Here A
′
x represents the absorbance after the uncertainty of the measurement phase is

introduced into the process. The process of incorporating instrument uncertainty is
followed for each absorbance measurement, and the rate of the reaction correspond-
ing to the patient sample (denoted by mint(x)) is estimated as the following:

mint(x) =

∑
itiA

′

x(i) −
1
n

∑
iti
∑

iA
′

x(i)∑
it

2
i −

1
n
(
∑

iti)2
(5.36)

The above value of the rate of the reaction is further changed due to sample pipet-
ting uncertainty as follows:

m
′
x = mint(x) (1 + x) (5.37)

The term m
′
x denotes the value of the rate of the reaction after all sources of uncertainty

operating within the measurement process are incorporated into the model. When
this value of the rate of the reaction is input into the calibration line, we get the ALP
activity of the sample as

[E]′x = K′m′
x (5.38)

The uncertainty associated with the model is estimated by generating patient sam-
ple activity levels (in the current implementation, 1000, since it corresponds to the
average number of tests conducted on the P-modular analytics platform in a day in
a hospital) for different sets of realizations of the sources of uncertainty and then
computing the standard deviation of these 1000 activity levels. After each set of
1000 measurements, the instrument is calibrated again. The average measurement
uncertainty observed for the ALP assay is computed by estimating the mean of the
uncertainties recorded for each of 30 sets of 1000 measurements. We note here that
while the model accounts for clock uncertainty, it was decided not to include it in the
implementation of the model upon the recommendation of the manufacturer, as it is
negligible in practice.
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5.4.3 Results and Analysis

The model was programmed in Python with the NumPy and SciPy packages. Val-
ues of the rate constant k2 (34/s) and the Michaelis constant Km (4.48 mmol/L) were
estimated from the BRENDA Comprehensive Enzyme Information System [50]. The
measurement uncertainties (coefficients of variation (CVs)) estimated for a range of
patient sample activity levels between 120 and 360 U/l varied from 3.63% to 2.11%.
In order to estimate the measurement uncertainty at different activity levels, the simu-
lation model was used to develop an empirical function, referred to as the uncertainty
profile, that generates an estimate of measurement uncertainty at a given activity level.
The uncertainty profile is constructed by generating uncertainty estimates at enzyme
activity levels, across the possible range of patient sample activity levels, and then
identifying the function that is the best statistical fit to the data. For the uncertainty
profile, the sample activity level (in U/l) is the independent variable, and the stan-
dard deviation (in U/l) of the distribution of the measurement result is the dependent
variable. The uncertainty profile for the ALP assay is shown in Figure 5.3. A sam-
ple activity level range of 120–360 U/l, traversed in increments of 5 U/l, was used to
construct the uncertainty profile. The coefficients of variation used in constructing the
uncertainty profile were generated by organizing the simulation in the same manner
as described in the previous section. That is, CVs were estimated by computing the
mean of 30 values of measurement uncertainty, each of which was estimated from a
set of 1000 measurements.

One of the principal uses of such an uncertainty model is to estimate the contri-
bution of each individual source of uncertainty in both the calibration and sample
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Figure 5.3 ALP assay uncertainty profile.
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TABLE 5.3 Contribution of Sources of Uncertainty in the Sample
Analysis Phase to Net Measurement Uncertainty

Source of
Uncertainty

Measurement
Uncertainty with
All Sources
Operating (CV, %)

Measurement
Uncertainty
with Source
Removed (CV, %)

% Contribution
to Net
Measurement
Uncertainty

Sample pipette 2.50 2.02 19.20
Reagent pipette 2.50 2.31 7.60
Photometer 2.50 1.78 28.80

analysis phase of the measurement process. The contribution of a given source of
uncertainty in a phase is estimated by nullifying its variation (setting its mean and
standard deviation of its distribution to zero) and then re-estimating the net measure-
ment uncertainty. The difference between the value of the measurement uncertainty
estimated without the source under consideration and the value estimated with all
sources of uncertainty quantifies its contribution to the net measurement uncertainty.

First, the contributions of the sources of uncertainty operating within the sam-
ple analysis phase are estimated. Only the sources of instrument uncertainty operate
within this phase, and their individual contributions to the net measurement uncer-
tainty within the sample analysis phase are listed in Table 5.3. It is evident that the
photometer and the sample pipette are the largest contributors to the net measure-
ment uncertainty, and that reducing the variation in their operation would lead to
a substantial decrease in net measurement uncertainty. For instance, a decrease in
50% of photometer uncertainty (from an SD of 0.15% to 0.075%) reduces the net
measurement uncertainty by 20%.

Next, the contributions of the sources of calibrator uncertainty are estimated. Since
these sources operate within the calibration phase, their contribution is estimated not
by studying the effect of nullifying their variation on the net measurement uncertainty,
but by studying the distribution of the calibration parameter K′. The effect of these
sources of uncertainty on the distribution of K′ is estimated by nullifying the variation
of these sources of uncertainty in the calibration phase alone and then re-estimating
the net measurement uncertainty.

Uncertainty in K′ shifts the expected value of the distribution of the measurement
result. We refer to this shift in the expected value of the measurement result distribu-
tion as bias and estimate the worst-case bias of the measurand due to each source of
uncertainty operating within the calibration phase. We define the worst-case bias of
the measurand as the absolute value of the percentage deviation in the expected value
of the measurand distribution from the desired error-free enzyme activity level when
the calibration parameter is at +3 standard deviations from its expected value. The
estimates of the worst-case bias due to each source of uncertainty operating within
the calibration phase are provided in Table 5.4.

It is clearly seen from Table 5.4 that the sources of uncertainty operating within the
calibration phase do not have a significant effect on the expected value of K′. This can
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TABLE 5.4 Contribution of Individual Sources of Uncertainty in
the Calibration Phase

Source of
Uncertainty
Removed

Mean of
Calibration
Parameter
K′(U-s/l)

CV of
Calibration
Parameter
K′(%)

Worst-
Case
Bias
(%)

None 0.002094 2.560 7.269
Calibrator set-point uncertainty 0.002093 2.553 7.169
Vial-to-vial variability 0.002093 2.537 7.093
Reconstituted stability 0.002093 2.480 6.970
All calibrator sources 0.002095 2.506 7.077
Sample pipetting uncertainty 0.002093 2.088 5.924
Reagent pipetting uncertainty 0.002093 2.341 6.616
Photometer uncertainty 0.002093 1.796 5.185

be attributed to the fact that the expected values of all the sources of uncertainty are
assumed to be zero, except for reconstituted stability. It is also clear that the sources
of calibrator uncertainty, including reconstituted stability, do not have a significant
effect on the distribution of K′. Among the sources of calibrator uncertainty, reconsti-
tuted stability has the largest effect on the worst-case bias, with a reduction of 4.11%
when its variation is set to zero. The effect of the sources of instrument uncertainty
dominates that of the sources of calibrator uncertainty on the calibration parameter,
and therefore on the measurand distribution. Once again, photometer uncertainty has
the largest effect on the measurand distribution, with a reduction of approximately
30% in the CV of K′ and a reduction of approximately 29% in the worst-case bias
as compared to the case when all sources of uncertainty are operating within the
measurement system. The dominance of photometer uncertainty in its effect on the
measurand distribution can be attributed to the fact that multiple absorbance mea-
surements are made within the assay analysis process – 15 within each phase in the
current configuration of the ALP assay.

As is evident from this section, such models can be used to estimate the effect
of the sources of uncertainty operating within both the calibration phase and the
measurement phase on the distribution of the measurement result.

5.5 DISCUSSION AND CONCLUSIONS

Two categories of assumptions are made in developing such models of measurement
uncertainty: physical assumptions that form the basis of the mathematical model of
the measurement system; and statistical assumptions made regarding the probability
distributions of the sources of uncertainty operating within the system. Both sets of
assumptions must be valid if the model is to accurately describe the measurement
process. Experimentally verifying these assumptions made in building the ALP
assay model was not possible due to limitations of access to experimental equipment.
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However, a minimum level of validation was conducted by comparing estimates
of uncertainty obtained from the model with uncertainty estimates provided by
the instrument manufacturer. These estimates of uncertainty from the instrument
manufacturer were provided in the form of an upper bound of 4% for the CV
for ALP activity levels greater than 75 U/l. As can be seen from Figure 5.3, this
condition is satisfied for all enzyme activity levels greater within the range of
enzyme activity levels considered in the model. This comparison is not an adequate
substitution for validation via controlled experimentation; however, it serves to
indicate that the model provides estimates of uncertainty comparable to that seen in
the laboratory.

We would like to emphasize here that for the purpose of comparison of model
estimates of uncertainty with estimates of uncertainty from experimental data, the
organization of the Monte Carlo simulation must be the same as that of the experi-
mental data. For instance, consider a data set consisting of 50 sets of 20 measurements
each (all at the same desired enzyme activity level), with the instrument being cali-
brated after every 20 measurements. Estimates of uncertainty must be computed for
each of these 20 sets, and then the mean uncertainty must be computed from these
50 estimates of uncertainty. Then the estimates of uncertainty from the simulation
model must also be obtained in exactly the same way, with the mean uncertainty
computed from 50 estimates of uncertainty, each of which is computed from a set of
20 measurements.

A few important points require consideration while developing such models of
measurement uncertainty. It is imperative that the mathematical model developed be
accurate and adequately representative of the clinical laboratory testing system. Some
potential sources of uncertainty, although not included currently in the study, require
investigation, an example being the sources of preanalytical uncertainty. To this end,
a close working relationship with both the clinical laboratorians and the instrument
manufacturers is required. These considerations imply that this simulation approach
would be useful for clinicians and instrument manufacturers as a design tool to set
quality specifications and to estimate and understand the contribution of the different
sources of uncertainty to the net system uncertainty (as shown in [4]). The authors
have previously explored the use of these models to simulate and evaluate the effect
of existing and new calibration protocols on the net system uncertainty, such as the
use of multiple replicate measurements or calibrators in establishing the calibration
function [43].

The use of the model, as demonstrated in the previous section, in determining
the largest contributors to net measurement uncertainty demonstrates the utility of
the model as an alternative or aid to conducting controlled experiments in the lab-
oratory. In our estimation, such models would best be developed by the instrument
manufacturer during the conceptualization stage of the instrument design process.
The instrument manufacturer would have the best access to information regarding
the performance of the subcomponents of the instrument, which would be required to
parameterize the distributions of the sources of uncertainty, and also to the resources
required to experimentally validate the physical assumptions made in the develop-
ment of the model.
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Estimates of measurement uncertainty and the contribution of individual sources
of uncertainty to the net measurement uncertainty can provide guidance to the instru-
ment designers as to which subcomponent should be the target of their design efforts.
Based on the information provided by clinicians across different hospitals, instrument
manufacturers can simulate and evaluate commonly used calibration and quality con-
trol protocols and make recommendations to clinicians regarding optimal operating
policies. Clinicians can use the models supplied by the instrument manufacturers to
specify quality control limits for regular evaluation of the measurement process and
also experiment with alternative operating protocols that suit their laboratory’s needs.

Further, such models of measurement uncertainty can be built for general linear
and nonlinear calibration systems, and general guidelines for developing such models
have been described in [4]. Building an adequately representative model of a measure-
ment system requires understanding and modeling the physical principle underlying
the measurement process, and then introducing uncertainty into the model by treating
the relevant parameters of the model as random variables. The calibration function
therefore serves as a convenient starting point for developing the uncertainty model.
Uncertainty in the calibration process can be incorporated into the variation in the
parameters of the calibration function, and the uncertainty associated with the anal-
ysis of the sample can be incorporated into the variation of the independent variable.
After the mathematical model is developed and the sources of uncertainty are charac-
terized by appropriate distributions, the model can then be used to simulate, analyze,
and optimize the measurement process.
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6
PREDICTIVE ANALYTICS:
CLASSIFICATION IN MEDICINE AND
BIOLOGY

Eva K. Lee
Center for Operations Research in Medicine and HealthCare, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

6.1 INTRODUCTION

Classification is a fundamental machine learning task whereby rules are developed
for the allocation of independent entities to groups. Classic examples of applications
include medical diagnosis – the allocation of patients to disease classes based on
symptoms and laboratory tests, and credit screening – the acceptance or rejection
of credit applications based on applicant data. Data are collected concerning entities
with known group membership. These training data are used to develop rules for the
classification of future entities with unknown group membership.

Cognitive science is the science of learning, knowing, and reasoning. Pattern
recognition is a broad field within cognitive science that is concerned with the
process of recognizing, identifying, and categorizing input information. These
areas intersect with computer science, particularly in the closely related areas of
artificial intelligence, machine learning, and statistical pattern recognition. Artificial
intelligence is associated with constructing machines and systems that reflect human
abilities in cognition. Machine learning refers to how these machines and systems
replicate the learning process, which is often achieved by seeking and discovering
patterns in data, or statistical pattern recognition.

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
Edited by Hui Yang and Eva K. Lee.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Discriminant analysis is the process of discriminating between categories or
between populations. Associated with discriminant analysis as a statistical tool are
the tasks of determining the features that best discriminate between populations
and the process of classifying new entities based on these features. The former
is often called feature selection, and the latter is referred to as statistical pattern
classification.

Supervised learning is the process of developing classification rules based on enti-
ties for which the classification is already known. Note that the process implies that
the populations are already well defined. Unsupervised learning is the process of
discovering patterns from unlabeled entities and thereby discovering and describing
the underlying populations. Semisupervised learning falls between supervised and
unsupervised learning that uses a large collection of unlabeled entities jointly with a
few labeled entities for improving classification performance. Models derived using
supervised learning can be used for both functions of discriminant analysis – feature
selection and classification. The model that we consider is a method for supervised
learning, so we assume that populations are previously defined.

A fundamental problem in discriminant analysis, or supervised learning, concerns
the classification of an entity into one of several a priori, mutually exclusive groups
based on k-specific measurable features of the entity. Typically, a discriminant (pre-
dictive) rule is formed from data collected on a sample of entities for which the group
classifications are known. New entities, whose classifications are unknown, will then
be classified based on this rule. Such an approach has been applied in a variety of
domains, and a large body of literature on both the theory and applications of dis-
criminant analysis exists (e.g., see the bibliography in [1]).

In experimental biology and in medical research, very often, experiments or tests
are performed and measurements are recorded under different conditions. A critical
analysis involves the discrimination of different features under different conditions
that will reveal potential predictors for biological and medical phenomena. Hence,
classification techniques play an extremely important role in biological analysis, as
they facilitate systematic correlation and classification of different biological and
medical phenomena. A resulting predictive rule can assist in early health risk and
disease prediction and diagnosis, identifying new target therapeutic sites (genomic,
cellular, and molecular) for drug delivery, disease prevention and early intervention,
optimal treatment design, and treatment outcome prediction.

There are five fundamental steps in discriminant analysis: (i) determine the data
for input and the predictive output classes; (ii) gather a training set of data (including
output class) from human experts or from laboratory experiments. Each element in
the training set is an entity with the corresponding known output class; (iii) determine
the input attributes to represent each entity; (iv) identify discriminatory attributes
and develop the predictive rule(s); and (v) validate the performance of the predictive
rule(s).

In our Center for Operations Research in Medicine and Healthcare, we have
developed a general-purpose machine learning framework that incorporates an
optimization-based discriminant analysis model and a rapid solution engine
for large-scale complex biological and biomedical informatics analyses. Our
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classification model, the first discrete support vector machine, offers these distinct
features simultaneously: (i) it can classify any number of distinct groups; (ii) it
allows incorporation of heterogeneous, continuous, and temporal features as input;
(iii) it utilizes a high-dimensional data transformation to minimize noise and errors;
(iv) it incorporates a reserved-judgment region that provides a safeguard against
overtraining; and (v) it enables successive multistage classification capability [2–7].

Studies involving vaccine immunity prediction, early detection of MCI and
Alzheimer’s disease, CpG island aberrant methylation in human cancer, ultra-
sonic cell disruption in drug delivery, tumor volume identification; predicting
early atherosclerosis using biomarkers; and fingerprinting native and angiogenic
microvascular networks using functional perfusion data demonstrate that our
approach is adaptable and can produce effective and reliable predictive rules for a
broad variety of biomedical applications [4–6, 8–17].

Section 6.2 briefly describes the background of discriminant analysis. Section 6.3
describes the optimization-based multistage discriminant analysis predictive models
for classification. The use of the predictive models on various biological and medi-
cal applications is presented in Section 6.4. This is followed by a brief summary in
Section 6.5.

6.2 BACKGROUND

The main objective in discriminant analysis is to derive rules that can be used to
classify entities into groups. Discriminant rules are typically expressed in terms of
variables representing a set of measurable attributes of the entities in question. Data
on a sample of entities for which the group classifications are known (perhaps deter-
mined by extraordinary means) are collected and used to derive rules that can be
used to classify new yet-to-be-classified entities. Often there is a trade-off between
the discriminating ability of the selected attributes and the expense of obtaining mea-
surements on these attributes. Indeed, the measurement of a relatively definitive dis-
criminating feature may be prohibitively expensive to obtain on a routine basis, or
perhaps impossible to obtain at the time that classification is needed.

Thus, a discriminant rule based on a selected set of feature attributes will typically
be an imperfect discriminator, sometimes misclassifying entities. Depending on the
application, the consequences of misclassifying an entity may be substantial. In such
a case, it may be desirable to form a discrimination rule that allows less specific classi-
fication decisions, or even nonclassification of some entities to reduce the probability
of misclassification.

To address this concern, a number of researchers have suggested methods for
deriving partial discrimination rules [18–22]. A partial discrimination rule allows
an entity to be classified into some subset of the groups (i.e., rule out membership
in the remaining groups) or be placed in a “reserved-judgment”’ category. An entity
is considered misclassified only when it is assigned to a nonempty subset of groups
not containing the true group of the entity. Typically, methods for deriving partial
discrimination rules attempt to constrain the misclassification probabilities (e.g., by
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enforcing an upper bound on the proportion of misclassified training sample entities).
For this reason, the resulting rules are also sometimes called constrained discrimina-
tion rules.

Partial (or constrained) discrimination rules are intuitively appealing. A partial
discrimination rule based on relatively inexpensive measurements can be tried first.
If the rule classifies the entity satisfactorily according to the needs of the application,
then nothing further needs to be done. Otherwise, additional measurements – albeit
more expensive – can be taken on other, more definitive, discriminating attributes of
the entity.

One disadvantage of partial discrimination methods is that there is no obvious
definition of optimality among any set of rules satisfying the constraints on the mis-
classification probabilities. For example, since some correct classifications are cer-
tainly more valuable than others (e.g., classification into a small subset containing
the true group versus a large subset), it does not make sense simply to maximize the
probability of correct classification. In fact, to maximize the probability of correct
classification, one would simply classify every entity into the subset consisting of all
the groups – clearly this is not an acceptable rule.

A simplified model, whereby one incorporates only the reserved-judgment region
(i.e., either an entity is classified as belonging to exactly one of the given a priori
groups, or it is placed in the reserved-judgment category), is amenable to reasonable
notions of optimality. For example, in this case, maximizing the probability of correct
classification is meaningful. For the two-group case, the simplified model and the
more general model are equivalent. Research on the two-group case is summarized
in [1]. For three or more groups, the two models are not equivalent, and most work
has been directed towards the development of heuristic methods for the more general
model (e.g., see [18, 19, 21–23]).

Assuming that the group density functions and prior probabilities are known, [24]
showed that an optimal rule for the problem of maximizing the probability of cor-
rect classification subject to constraints on the misclassification probabilities must
be of a specific form when discriminating among multiple groups with a simplified
model. The formulae in Anderson’s result depend on a set of parameters satisfying
a complex relationship between the density functions, the prior probabilities, and
the bounds on the misclassification probabilities. Establishing a viable mathemati-
cal model to describe Anderson’s result, and finding values for these parameters that
yield an optimal rule are challenging tasks. Gallagher et al. [3] presented the first
computational model for Anderson’s results.

A variety of mathematical programming models have been proposed for the dis-
criminant analysis problem [25–44]. None of these studies deal formally with mea-
suring the performance of discriminant rules specifically designed to allow allocation
to a reserved-judgment region. There is also no mechanism employed to explicitly
constrain the level of misclassifications for each group, although some researchers
manage to include it within their objective functions.

Many different techniques and methodologies have contributed to advances
in classification, including artificial neural networks, decision trees, kernel-based
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learning, machine learning, mathematical programming, statistical analysis, boost-
ing, and support vector machines [45–53]. There are some review papers for
classification problems with mathematical programming techniques. Stam [54]
summarized basic concepts and ideas and discusses potential research directions on
classification methods that optimize a function of the Lp-norm distances. The paper
focuses on continuous models and includes normalization schemes, computational
aspects, weighted formulations, secondary criteria, and extensions from two-group
to multigroup classifications. Wilson [55] presented a series of integer programming
formulations for statistical classification problems and compared their performance
on sample data. Zopounidis and Doumpos [56] reviewed the research conducted on
the framework of the multicriteria decision aiding, covering different classification
models. Mangasarian [57] and Bradley et al. [58] gave an overview of using
mathematical programming approaches to solve data mining problems. Byvatov and
Schneider [59] provided an overview on the theory and basic principles of support
vector machine and their application to bioinformatics. Lee et al. [60] and Lee and
Wu [61] provided a comprehensive overview of continuous and discrete mathe-
matical programming models for classification problems and their usage within
medicine.

6.3 MACHINE LEARNING WITH DISCRETE SUPPORT VECTOR
MACHINE PREDICTIVE MODELS

In our computational center, we have been developing and advancing a general-
purpose machine-learning framework for classification in medicine and biology. The
system consists of a pattern recognition module, a feature selection module, and
a classification modeler and rapid solver module. The pattern recognition module
involves automatic image analysis, “omic” pattern recognition, spectrum pattern
extractions, and unstructure text-mining capabilities. The feature selection module
consists of a combinatorial selection algorithm where discriminatory patterns are
extracted from among a large set of pattern attributes. These modules are wrapped
around the classification modeler and solver into a machine learning framework.
Our system is applicable to a wide variety of applications, including biological,
biomedical, and logistics problems. Utilizing the technology of large-scale discrete
optimization and support vector machines, our classification model includes the
following features within a single modeling framework: (i) the ability to classify
any number of distinct groups; (ii) the ability to incorporate heterogeneous and
temporal type of attributes as input; (iii) a high-dimensional data transformation that
reduces noise and errors; (iv) constraints to limit the rate of misclassification, and
a reserved-judgment region that provides a safeguard against overtraining (which
tends to lead to high misclassification rates from the resulting predictive rule); and
(v) successive multistage classification capability to handle data points placed in the
reserved-judgment region. Based on the description in Gallagher et al. [2, 3], Lee
et al. [7], and Lee [4–6], we summarize below some of the classification models that
we have developed.

www.Ebook777.com
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6.3.1 Modeling of Reserved-Judgment Region for General Groups

When the population densities and prior probabilities are known, the constrained rules
with a reject option (reserved judgment), based on Anderson’s results, calls for finding
a partition {R0,…, RG} of ℜk that maximizes the probability of correct allocation
subject to constraints on the misclassification probabilities; that is,

maximize
G∑

g=1

𝜋g∫Rg

fg(𝑤)d𝑤 (6.1)

subject to∫Rg

fh(𝑤)d𝑤 ≤ 𝛼hg, h, g = 1,… ,G, hg, (6.2)

where fh, h= 1,…, G, are the group conditional density functions, 𝜋g denotes the
prior probability that a randomly selected entity is from group g, g= 1,…, G, and
𝛼hg, h≠ g, are constants between zero and one. Under quite general assumptions, it
was shown that there exist unique (up to a set of measure zero) nonnegative constants
𝜆ih, i, h ∈ {1,…, G}, i≠ h, such that the optimal rule is given by

Rg = {x ∈ ℜk ∶ Lg(x) = max
h∈{0,1,…G}

Lh(x)}, g = 0,… ,G (6.3)

where
L0(x) = 0 (6.4)

Lh(x) = 𝜋h fh(x) −
G∑

i=1
i≠h

𝜆ihfi(x), h = 1,… ,G (6.5)

For G= 2, the optimal solution can be modeled rather straightforward. However, find-
ing optimal 𝜆ih’s for the general case, G≥ 3, is a difficult problem, with the difficulty
increasing as G increases. Our model offers an avenue for modeling and finding the
optimal solution in the general case. It is the first such model to be computationally
viable [2, 3].

Before proceeding, we note that Rg can be written as Rg = {x ∈ ℜk: Lg(x)≥ Lh(x)
for all h= 0,…, G}. So, since Lg(x)≥ Lh(x) if, and only if, (1∕

∑G
t=1 ft(x))Lg(x) ≥

(1∕
∑G

t=1 ft(x))Lh(x), the functions Lh, h= 1,…, G, can be redefined as

Lh(x) = 𝜋hph(x) −
G∑

i=1
i≠h

𝜆ihpi(x) h = 1,… ,G (6.6)

where pi(x) = fi(x)∕
∑G

t=1 ft(x). We assume that Lh is defined as in Equation 6.6 in our
model.
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6.3.2 Discriminant Analysis via Mixed-Integer Programming

Assume that we are given a training sample of N entities whose group classifications
are known; say ng entities are in group g, where

∑G
g=1 ng = N. Let the k-dimensional

vectors xgj, g= 1,…, G, j= 1,…, ng, contain the measurements on k available char-
acteristics of the entities. Our procedure for deriving a discriminant rule proceeds
in two stages. The first stage is to use the training sample to compute estimates f̂h,
either parametrically or nonparametrically, of the density functions fh (e.g., see [1])
and estimates 𝜋h, of the prior probabilities 𝜋h, h= 1,…, G. The second stage is to
determine the optimal 𝜆ih’s given these estimates. This stage requires being able to
estimate the probabilities of correct classification and misclassification for any can-
didate set of 𝜆ih’s. One could, in theory, substitute the estimated densities and prior
probabilities into Equation 6.5 and directly use the resulting regions Rg in the integral
expressions given in Equations 6.1 and 6.2. This would involve, even in simple cases
such as normally distributed groups, the numerical evaluation of k-dimensional inte-
grals at each step of a search for the optimal 𝜆ih’s. Therefore, we have designed an
alternative approach. After substituting the f̂h’s and 𝜋h’s into Equation 6.5, we sim-
ply calculate the proportion of training sample points that fall in each of the regions
R1,…, RG. The mixed-integer programming (MIP) models discussed below attempt
to maximize the proportion of training sample points correctly classified while sat-
isfying constraints on the proportions of training sample points misclassified. This
approach has two advantages. First, it avoids having to evaluate the potentially dif-
ficult integrals in Equations 6.1 and 6.2. Second, it is nonparametric in controlling
the training sample misclassification probabilities. That is, even if the densities are
poorly estimated (by assuming, e.g., normal densities for nonnormal data), the con-
straints are still satisfied for the training sample. Better estimates of the densities may
allow a higher correct classification rate to be achieved, but the constraints will be sat-
isfied even if poor estimates are used. Unlike most support vector machine models
that minimize the sum of errors, our objective is driven by the number of correct clas-
sifications and will not be biased by the distance of the entities from the supporting
hyperplane. Hence, our model returns a robust classifier.

A word of caution is in order. In traditional unconstrained discriminant analysis,
the true probability of correct classification of a given discriminant rule tends to be
smaller than the rate of correct classification for the training sample from which it was
derived. One would expect to observe such an effect for the method described herein
as well. In addition, one would expect to observe an analogous effect with regard
to constraints on misclassification probabilities – the true probabilities are likely to
be greater than any limits imposed on the proportions of training sample misclassi-
fications. Hence, the 𝛼hg parameters should be carefully chosen for the application
in hand.

Our first model is a nonlinear 0/1 MIP model with the nonlinearity appearing in
the constraints. Model 1 maximizes the number of correct classifications of the given
N training entities. Similarly, the constraints on the misclassification probabilities are
modeled by ensuring that the number of group g training entities in region Rh is less
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than or equal to a prespecified percentage, 𝛼hg (0<𝛼hg < 1), of the total number, ng,
of group g entities, h, g ∈ {1,…, G}, h≠ g.

For notational convenience, let G= {1,…, G} and Ng = {1,…, ng}, for g ∈ G.
Also, analogous to the definition of pi, define p̂i by p̂i(x) = f̂i(x)∕

∑G
t=1 f̂t(x). In our

model, we use binary indicator variables to denote the group classification of entities.
Mathematically, let uhgj be a binary variable indicating whether or not xgj lies in region
Rh; that is, whether or not the jth entity from group g is allocated to group h. Then
Model 1 can be written as follows:

DAMIP:
Maximize

∑
g∈G

∑
j∈Ng

uggj

Subject to

Lhgj = 𝜋hp̂h(xgj) −
∑

i∈G∖h

𝜆ihp̂i(xgj) h, g ∈ G, j ∈ Ng (6.7)

ygj = max{0,Lhgj ∶ h = 1,… ,G} g ∈ G, j ∈ Ng (6.8)

ygj − Lggj ≤ M(1 − uggj) g ∈ G, j ∈ Ng (6.9)

ygj − Lhgj ≥ 𝜀(1 − uhgj)h, g ∈ G, j ∈ Ng, h ≠ g (6.10)∑
j∈Ng

uhgj ≤ ⌊𝛼hgng⌋ h, g ∈ G, h ≠ g (6.11)

−∞ < Lhgj < ∞, ygj ≥ 0, 𝜆ih ≥ 0, uhgj{0, 1}

Constraint (6.7) defines the variable Lhgj as the value of the function Lh evaluated
at xgj. Therefore, the continuous variable ygj, defined in constraint (6.8), represents
max{Lh(xgj): h= 0,…, G}; and consequently, xgj lies in region Rh if, and only if,
ygj = Lhgj. The binary variable uhgj is used to indicate whether or not xgj lies in region
Rh; that is, whether or not the jth entity from group g is allocated to group h. In
particular, constraint (6.9), together with the objective, forces uggj to be 1 if, and
only if, the jth entity from group g is correctly allocated to group g; and constraints
(6.10) and (6.11) ensure that at most ⌊𝛼hgng⌋ (i.e., the greatest integer less than or
equal to 𝛼hg ng) group g entities are allocated to group h, h≠ g. One caveat regard-
ing the indicator variables uhgj is that although the condition uhgj = 0, h≠ g, implies
(by constraint (6.10)) that xgj ∉ Rh, the converse need not hold. As a consequence,
the number of misclassifications may be overcounted. However, in our preliminary
numerical study we found that the actual amount of overcounting is minimal. One
could force the converse (thus, uhgj = 1 if and only if xgj∈Rh) by adding constraints
ygj − Lhgj ≤M(1− uhgj), for example. Finally, we note that the parameters M and 𝜀 are
extraneous to the discriminant analysis problem itself, but are needed in the model to
control the indicator variables uhgj. The intention is for M and 𝜀 to be, respectively,
large and small positive constants.
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6.3.3 Model Variations

We explore different variations in the model to grasp the quality of the solution and
the associated computational effort.

A first variation involves transforming Model 1 to an equivalent linear
mixed-integer model. In particular, Model 2 replaces the N constraints defined
in Equation 6.8 with the following system of 3GN+ 2N constraints:

ygj ≥ Lhgj h, g ∈ G, j ∈ Ng (6.12)

ỹhgj – Lhgj ≤ M
(
1 − 𝑣hgj

)
h, g ∈ G, j ∈ Ng (6.13)

ỹhgj ≤ 𝜋hp̂h(xgj)vhgj h, g ∈ G, j ∈ Ng (6.14)∑
h∈G

𝑣hgj ≤ 1 g ∈ G, j ∈ Ng (6.15)∑
h∈G

ỹhgj = ygj g ∈ G, j ∈ Ng (6.16)

where ỹhgj ≥ 0 and vhgj ∈ {0,1}, h,g ∈ G, j ∈ Ng. These constraints, together with the
nonnegativity of ygj, force ygj = max{0, Lhgj: h= 1,…, G}.

The second variation involves transforming Model 1 to a heuristic linear MIP
model. This is done by replacing the nonlinear constraint (6.8) with ygj ≥Lhgj, h,g
∈ G, j ∈ Ng, and including penalty terms in the objective function. In particular,
Model 3 has the objective

Maximize
∑
g∈G

∑
j∈Ng

𝛽uggj −
∑
g∈G

∑
j∈Ng

𝛾ygj,

where 𝛽 and 𝛾 are positive constants. This model is heuristic in that there is nothing
to force ygj =max{0, Lhgj: h= 1,…, G}. However, since in addition to trying to force
as many uggj’s to one as possible, the objective in Model 3 also tries to make the
ygj’s as small as possible, and the optimizer tends to drive ygj toward max{0, Lhgj:
h= 1,…, G}. We remark that 𝛽 and 𝛾 could be stratified by group (i.e., introduce
possibly distinct 𝛽g, 𝛾g, g ∈ G) to model the relative importance of certain groups to
be correctly classified.

A reasonable modification to Models 1, 2, and 3 involves relaxing the constraints
specified by (6.11). Rather than placing restrictions on the number of type g training
entities classified into group h, for all h, g ∈ G, h≠ g, one could simply place an upper
bound on the total number of misclassified training entities. In this case, the G(G−1)
constraints specified by (6.11) would be replaced by the single constraint∑

g∈G

∑
h∈G∖{g}

∑
j∈Ng

uhgj ≤ ⌊𝛼N⌋ (6.17)

where 𝛼 is a constant between 0 and 1. We will refer to Models 1, 2, and 3, modified
in this way, as Models 1T, 2T, and 3T, respectively. Of course, other modifications are
also possible. For instance, one could place restrictions on the total number of type
g points misclassified for each g ∈ G. Thus, in place of the constraints specified in
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(6.17), one would include the constraints
∑

h∈G∖{g}
∑

j∈Ng
uhgj ≤ ⌊𝛼N⌋, g∈G, where

0<𝛼g < 1.
We also explore a heuristic linear model of Model 1. In particular, consider the

linear program (DALP):

Minimize
∑
g∈G

∑
j∈Ng

(c1𝑤gj + c2ygj) (6.18)

subject to

Lhgj = 𝜋hp̂h(xgj) −
∑

i∈G∖h

𝜆ihp̂i(xgj) h, g ∈ G, j ∈ Ng (6.19)

Lggj – Lhgj + 𝑤gj ≥ 0 h, g ∈ G, h ≠ g, j ∈ Ng (6.20)

Lggj + 𝑤gj ≥ 0 g ∈ G, j ∈ Ng (6.21)

–Lhgj + ygj ≥ 0 h, g ∈ G, j ∈ Ng (6.22)

−∞ < Lhgj <∞, 𝑤gj, ygj, 𝜆ih ≥ 0

Constraint (6.19) defines the variable Lhgj as the value of the function Lh evaluated
at xgj. As the optimization solver searches through the set of feasible solutions, the 𝜆ih
variables will vary, causing the Lhgj variables to assume different values. Constraints
(6.20–6.22) link the objective-function variables with the Lhgj variables in such a
way that correct classification of training entities and allocation of training entities
into the reserved-judgment region are captured by the objective-function variables.
In particular, if the optimization solver drives wgj to zero for some g, j pair, then
constraints (6.20) and (6.21) imply that Lggj =max{0, Lhgj: h ∈ G}. Hence, the jth
entity from group g is correctly classified. If, on the other hand, the optimal solution
yields ygj = 0 for some g, j pair, then constraint (6.22) implies that max{0, Lhgj: h ∈
G} = 0. Thus, the jth entity from group g is placed in the reserved-judgment region.
(Of course, it is possible for both wgj and ygj to be zero. One should decide prior to
solving the linear program how to interpret the classification in such cases.) If both
wgj and ygj are positive, the jth entity from group g is misclassified.

The optimal solution yields a set of 𝜆ih’s that best allocates the training entities
(i.e., “best” in terms of minimizing the penalty objective function). The optimal 𝜆ih’s
can then be used to define the functions Lh, h ∈ G, which in turn can be used to
classify a new entity with feature vector x ∈ ℜk by simply computing the index at
which max{Lh(x): h ∈{0, 1,…, G}} is achieved.

Note that Model DALP places no a priori bound on the number of misclassified
training entities. However, since the objective is to minimize a weighted combination
of the variables wgj and ygj, the optimizer will attempt to drive these variables to zero.
Thus, the optimizer is, in essence, attempting either to correctly classify training enti-
ties (wgj = 0) or to place them in the reserved-judgment region (ygj = 0). By varying
the weights c1 and c2, one has a means of controlling the optimizer’s emphasis for
correctly classifying training entities versus placing them in the reserved-judgment
region. If c2/c1 < 1, the optimizer will tend to place a greater emphasis on driving the
wgj variables to zero than driving the ygj variables to zero (conversely, if c2/c1 > 1).
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TABLE 6.1 Model size

Model Type Constraints Total Variables 0/1 Variables

1 Nonlinear MIP 2GN+N+G(G− 1) 2GN+N+G(G− 1) GN
2 Linear MIP 5GN+ 2N+G(G− 1) 4GN+N+G(G− 1) 2GN
3 Linear MIP 3GN+G(G− 1) 2GN+N+G(G− 1) GN
1T Nonlinear MIP 2GN+N+ 1 2GN+N+G(G− 1) GN
2T Linear MIP 5GN+ 2N+ 1 4GN+N+G(G− 1) 2GN
3T Linear MIP 3GN+ 1 2GN+N+G(G− 1) GN
DALP Linear program 3GN NG+N+G(G− 1) 0

Hence, when c2/c1 < 1, one should expect to get relatively more entities correctly
classified, fewer placed in the reserved-judgment region, and more misclassified than
when c2/c1 > 1. An extreme case is when c2 = 0. In this case, there is no emphasis
on driving ygj to zero (the reserved-judgment region is thus ignored), and the full
emphasis of the optimizer is to drive wgj to zero.

Table 6.1 summarizes the number of constraints, the total number of variables, and
the number of 0/1 variables in each of the discrete support vector machine models and
in the heuristic LP model (DALP). Clearly, even for moderately sized discriminant
analysis problems, the MIP instances are relatively large. Also, note that Model 2 is
larger than Model 3, both in terms of the number of constraints and the number of
variables. However, it is important to keep in mind that the difficulty of solving an
MIP problem cannot, in general, be predicted solely by its size; problem structure
has a direct and substantial bearing on the effort required to find optimal solutions.
The LP relaxation of these MIP models pose computational challenges as commer-
cial LP solvers return (optimal) LP solutions that are infeasible, due to the equality
constraints, and the use of big M and small 𝜀 in the formulation.

It is interesting to note that the set of feasible solutions for Model 2 is “tighter”
than that for Model 3. In particular, if Fi denotes the set of feasible solutions of
Model i, then

F1 = {(L, 𝜆, u, y) ∶ there exists ỹ, 𝑣 such that (L, 𝜆, u, y, ỹ, 𝑣) ∈ F2}} ⊆ F3 (6.23)

The novelties of the classification models developed herein include the follow-
ing: (i) they are suitable for discriminant analysis given any number of groups, (ii)
they accept heterogeneous types of attributes as input, (iii) they use a parametric
approach to reduce high-dimensional attribute spaces, and (iv) they allow constraints
on the number of misclassifications, and utilize a reserved judgment to facilitate the
reduction of misclassifications. The latter point opens the possibility of performing
multistage analysis.

Clearly, the advantage of an LP model over an MIP model is that the associ-
ated problem instances are computationally much easier to solve. However, the most
important criterion in judging a method for obtaining discriminant rules is how the
rules perform in correctly classifying new unseen entities. Once the rule is developed,
applying it to a new entity to determine its group is trivial. Extensive computational
experiments have been performed to gauge the qualities of solutions of different mod-
els ([3–7]).
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6.3.4 Theoretical Properties and Computational Strategies

Theoretically and empirically, DAMIP has many appealing characteristics includ-
ing that the resulting classification rule is (i) strongly universally consistent, given
that the Bayes optimal rule for classification is known [62, 63]; (ii) the misclassifica-
tion rates using the DAMIP method are consistently lower than other classification
approaches in both simulated data and real-world data; (iii) the classification rules
from DAMIP appear to be insensitive to the specification of prior probabilities, yet
capable of reducing misclassification rates when the number of training entities from
each group is different; (iv) the DAMIP model generates stable classification rules
regardless of the proportions of training entities from each group.

The DAMIP model and its variations described herein offer a computational
avenue for numerically estimating optimal values for the 𝜆ih parameters in Ander-
son’s formulae. However, it should be emphasized that MIP problems are themselves
difficult to solve. Anderson himself noted the extreme difficulty of finding an
optimal set of 𝜆ih’s [24]. Indeed, DAMIP is proven to be NP-complete when the
number of groups is greater than 2 [62]. Nevertheless, due to the fact that integer
variables – and in particular, 0/1 variables – are a powerful modeling tool, a wide
variety of real-world problems have been modeled as mixed-integer programs.
Consequently, much effort has been invested in developing computational strategies
for solving MIP problem instances.

The numerical work reported in Section 6.4 is based on an MIP solver, which is
built on top of a general-purpose in-house MIP solver. The general-purpose solver
integrates state-of-the-art MIP computational devices such as problem preprocess-
ing, primal heuristics, global and local reduced-cost fixing, and cutting planes into a
branch-and-bound framework [64, 65]. The solver has been shown to be effective in
solving a wide variety of large-scale real-world instances [66]. For our MIP instances,
special techniques including variable aggregation, a heuristic branching scheme, and
hypergraphic cut generations are employed [3, 62, 63, 67].

6.4 APPLYING DAMIP TO REAL-WORLD APPLICATIONS

The main objective in discriminant analysis is to derive rules that can be used to clas-
sify entities into groups. Computationally, the challenge lies in the effort expended
to develop such a rule. Feasible solutions obtained from our classification models
correspond to predictive rules. Empirical results [3, 7] indicate that the resulting clas-
sification model instances are computationally very challenging and even intractable
by competitive commercial MIP solvers. However, the resulting predictive rules prove
to be very promising, offering correct predictive accuracy on new unknown data rang-
ing from 80% to 100% on various types of biological/medical problems. Our results
indicate that the general-purpose classification framework that we have designed has
the potential to be a very powerful predictive method for clinical setting.

The choice of MIP as the underlying modeling and optimization technology for
our support vector machine classification model is guided by the desire to simul-
taneously incorporate a variety of important and desirable properties of predictive
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models within a general framework. MIP itself allows for incorporation of continuous
and discrete variables, and linear and nonlinear constraints, providing a flexible and
powerful modeling environment.

6.4.1 Validation of Model and Computational Effort

We performed 10-fold cross-validation and designed simulation and comparison
studies on our preliminary models. The results, reported in Gallagher et al. [3] and
Lee et al. [7], show that the methods are promising, based on applications to both
simulated data and real-application data sets from the machine learning database
repository [68]. Furthermore, our methods compare well to existing methods, often
producing better results when compared to other approaches such as artificial neural
networks, quadratic discriminant analysis, tree classification, and other support
vector machines.

6.4.2 Applications to Biological and Medical Problems

Our mathematical modeling and computational algorithmic design show great
promise. The resulting predictive rules are able to produce higher rates of blind
prediction accuracy on new data (with unknown group status) compared to exist-
ing classification methods. The resulting classification rules are robust and are
insensitive to imbalance in sample size. This is partly due to the transformation
of raw data via the set of constraints in Equation 6.7, and the distinct features that
occur simultaneously in a single modeling framework. While most support vector
machines (summarized in [60, 61]) directly determine the hyperplanes of separation
using raw data, our approach transforms the raw data via a probabilistic model before
the determination of the supporting hyperplanes. Furthermore, the separation is
driven by maximizing the sum of binary variables (representing correct classification
or not of entities), instead of minimizing a sum of errors (representing distances of
entities from hyperplanes), as in other support vector machines. The combination
of these two strategies offers better and robust classification capability. Noise in
the transformed data is not as profound as in raw data. And the magnitudes of the
errors do not skew the determination of the separating hyperplanes, as all entities
have “equal” importance when correct classification is being counted. To highlight
the broad applicability of our approach, we briefly summarize the application of our
predictive models and solution algorithms to seven different biological and medical
problems. These projects were carried out in close partnership with experimental
biologists and clinical investigators. We also include multigroup classification using
the UCI Repository of machine learning databases. Applications to finance and other
industry applications are described elsewhere [3, 7, 69, 70].

6.4.2.1 Quick Test to Predict Immune Responses to Flu Shots [16, 17] Vaccines
have drastically reduced the mortality and morbidity of many diseases. However, vac-
cines have historically been developed empirically, and recent development of vac-
cines against current pandemics such as HIV and malaria has been met with difficulty.
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The path to licensure of candidate vaccines involves very lengthy and expensive clin-
ical trials to assess their efficacy and safety. These trials involve thousands of subjects
and can cost hundreds of millions of dollars to complete. As a result, very few vaccine
concepts are tested.

A major challenge in vaccinology is that the effectiveness of vaccination can only
be ascertained after vaccinated individuals have been exposed to infection. The abil-
ity to identify early predictive signatures of vaccine responses and novel and robust
correlates of protection from infection will play an instrumental role in developing
rationally designed, next-generation vaccines. It will facilitate rapid design and eval-
uation of new and emerging vaccines, and the identification of individuals who are
unlikely to be protected by a vaccine. This work focuses on predicting the immu-
nity of a vaccine without exposing individuals to infection. The study addresses a
long-standing challenge in the development of vaccines – that of only being able
to determine immunity or effectiveness long after vaccination and, often, only after
being exposed to infection.

Three studies involving nine trials of patient subjects were carried out. The first
study aims to predict the body’s ability shortly after immunization to stimulate a
strong and enduring immunity against yellow fever. Healthy individuals were vacci-
nated with YF-17D, and T cell and antibody responses in their blood were captured
for 30 days. These blood samples were studied with genomic signatures character-
ized. There was a striking variation in these responses between individuals. Analysis
of gene expression patterns in white blood cells revealed that in majority of the indi-
viduals the vaccine induced a network of genes involved in the early innate immune
response against the viruses. DAMIP takes in these gene expression data and uses
it to uncover discriminatory gene signatures to establish the classification rule that
can classify the T cell and the antibody responses induced. To validate its predictive
accuracy, and whether these gene signatures could actually predict immune response,
a second group of individuals were vaccinated for independent blind predication.

To analyze the generalizability of this approach, we apply DAMIP to predict the
effectiveness of other vaccines, including flu vaccines. The second study is based on
a series of clinical studies during the annual flu seasons in 2007, 2008, and 2009.
Healthy young adults were vaccinated with a standard flu shot (trivalent inactive vac-
cine). Others were given live attenuated vaccine nasally. Comprehensively surveyed,
the activity levels of all human genes in blood samples from the volunteers revealed
that the activities of many genes involved in innate immunity, interferon, and reac-
tive oxygen species signaling were changing after flu vaccination. Biological analysis
also identified genes in the “unfolded protein response,” necessary for cells to adapt
to the stress of producing high levels of antibodies. These genomic expression data
are then input into our DAMIP model to identify discriminatory gene signatures that
can classify patients who respond positively to the vaccine versus those who do not.

The yellow fever study offered a groundbreaking work in vaccine immunogenicity.
DAMIP identified signatures of gene expression in the blood of healthy humans a
few days after vaccination that could predict with up to 90% accuracy of the strength
of the immune response, weeks or months after yellow fever vaccination. In the flu
analysis, being named 2011 Paper of the Year by the International Society of Vaccine,
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we extended this approach to the seasonal influenza vaccines over the course of three
influenza seasons. By studying gene expression patterns in the blood a few days after
vaccination, we were able to identify “signatures” that were capable of predicting the
magnitude of the later immune response, with >90% accuracy. Importantly one of
the genes in the signature, CAMK4 whose expression was negatively correlated with
antibody titers, revealed an unappreciated role for CAMK4 in B-cell responses. This
landmark study demonstrates the use of DAMIP in predicting vaccine efficacy and
highlights one of the ways for the future of vaccinology – use of systems biology
tools to perform sophisticated human studies that in turn returns specific hypothesis
to be tested experimentally.

Encouragingly, some of the genes identified in the seasonal flu study were also
predictors of the antibody response to vaccination against yellow fever. Furthermore,
DAMIP facilitates discovery of new functions for genes, even when scientists previ-
ously did not suspect their involvement in antibody responses.

6.4.2.2 Predictive Model for Early Detection of Mild Cognitive Impairment and
Alzheimer’s Disease [14] The number of people affected by Alzheimer’s disease
is growing at a rapid rate, and the subsequent increase in costs will have significant
impacts on the world’s economies and healthcare systems. Alzheimer’s disease, the
sixth leading cause of death in the United States, is a progressive and irreversible brain
disease causing memory loss and other cognitive dysfunction severe enough to affect
daily life. It is estimated that one in eight elderly Americans suffer from Alzheimer’s.
The number of AD victims is briskly rising, with an estimated 35 million people
worldwide currently living with Alzheimer’s or forms of dementia. AD is currently
incurable. Drugs are used to manage the symptoms, but no treatments to prevent or
meaningfully slow the disease’s progression are known to exist.

Since changes in the brain triggered by AD develop slowly over many years and
symptom onset coincides with advanced neurodegeneration, the need to identify new
and noninvasive diagnostics before any symptoms occur has become a public health
imperative. Creating new opportunities for early intervention is vital. System’s pre-
dictive analyses on noninvasive tests that can identify people who are at-risk but
currently have no symptoms are critical to curtail the rapid rise of this illness.

Neuropsychological tests are inexpensive, noninvasive, and can be incorporated
within an annual physical examination. Thus, they can serve as a baseline for early
cognitive impairment or Alzheimer’s disease-risk prediction. We apply the DAMIP
machine learning framework for early detection of MCI and Alzheimer’s disease.
Anonymous data of neuropsychological tests from 35 subjects were collected at
Emory Alzheimer’s Disease Research Center from 2004 to 2007. Eighteen types of
neuropsychological tests were applied to the subjects, but only four of them were
applied to all subjects, thus being used in our predictive model. These tests included
Mini Mental State Examination (MMSE), Clock drawing test, Word list memory
tasks by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD),
and Geriatric depression scale (GDS).

The MMSE is a screening tool for cognitive impairment, which is brief, but cov-
ers five areas of cognitive function, including orientation, registration, attention and
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calculation, recall, and language. The clock drawing test assesses cognitive func-
tions, particularly visuospatial abilities and executive control functions. The CERAD
word list memory tasks assess learning ability for new verbal information. The tasks
include word list memory with repetition, word list recall, and word list recognition.
The GDS is a screening tool to assess the depression in older population.

There were 153 features including raw data from the four neuropsychological
tests as well as subjects’ age. Raw data from tests contained answers to individual
questions in the tests. Discarding features that contained missing values or that were
nondiscriminating (i.e., features which contained almost the same value among all
subjects), 100 features were used for feature selection and classification. The clini-
cians also summarize performance of subtotal scores in different tests, resulting in
nine scores for each patient.

Using two trials of patients with Alzheimer’s disease (AD), MCI, and control
groups, we show that one can successfully develop a classification rule based on the
data from neuropsychological tests to predict AD, MCI, and normal subjects where
the blind prediction accuracy is over 90%. Table 6.2 illustrates one predictive rule
obtained for this study. Furthermore, our study strongly suggests that raw data of
neuropsychological tests have higher potential to predict subjects from AD, MCI,
and control groups than preprocessed subtotal score-like features, as contrasted in
Table 6.3. When applying our predictive rule to a third trial of 200 patients, over 88%
blind prediction accuracy is achieved. The classification approach and the results offer

TABLE 6.2 Classification Results of Emory Data: 10-Fold Cross-Validation and Blind
Prediction

10-Fold Cross-Validation Blind Prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00 AD 2 0 0 1.00 0.00 0.00
MCI 0 11 0 0.00 1.00 0.00 MCI 1 4 0 0.20 0.80 0.00
Ctl 0 0 8 0.00 0.00 1.00 Ctl 0 0 4 0.00 0.00 1.00

Unbiased estimate accuracy: 96% Blind prediction accuracy: 91%

Five discriminatory features were selected (among the 100 features): MMSE – cMMtotal, WordList –
cWL2Butter, WordList – cWL2Queen, WordList – cWL2Ticket, GDS – GDS13.

TABLE 6.3 Classification Results of the Same Emory Data: 10-Fold Cross-Validation
and Blind Prediction from Nine Score-Type Features Instead of Raw Data

10-Fold Cross-Validation Blind Prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00 AD 1 1 0 0.50 0.50 0.00
MCI 1 9 1 0.09 0.82 0.09 MCI 0 5 0 0.00 1.00 0.00
Ctl 0 2 6 0.00 0.25 0.75 Ctl 0 1 3 0.00 0.25 0.75
Unbiased estimate accuracy: 79% Blind prediction accuracy: 82%

Two discriminatory features were selected: MMSE – cMMtotal, Word List – cWLcorTotal.
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the potential for development of a clinical decision-making tool for early detection.
Further study must be conducted to validate its clinical significance and its predictive
accuracy among various demographic groups and across multiple sites.

6.4.2.3 Predicting Aberrant CpG Island Methylation in Human Cancer [9, 10]
Epigenetic silencing associated with aberrant methylation of promoter region CpG
islands is one mechanism leading to loss of tumor suppressor function in human
cancer. Profiling of CpG island methylation indicates that some genes are more
frequently methylated than others, and that each tumor type is associated with a
unique set of methylated genes. However, little is known about why certain genes
succumb to this aberrant event. To address this question, Restriction Landmark
Genome Scanning (RLGS) is used to analyze the susceptibility of 1749 unselected
CpG islands to de novo methylation driven by overexpression of DNMT1. We found
that although the overall incidence of CpG island methylation was increased in
cells overexpressing DNMT1, not all loci were equally affected. The majority of
CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1
overexpression. In contrast, we identified a subset of methylation-prone CpG islands
(3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing
clones. Methylation-prone and methylation-resistant CpG islands were not signif-
icantly different with respect to size, CpG content, CpG frequency, chromosomal
location, or gene or promoter association. To discriminate methylation-prone from
methylation-resistant CpG islands, we developed a novel DNA pattern recognition
model and algorithm [71] and coupled our DAMIP predictive model described
herein with the patterns found. We were able to derive a classification function based
on the frequency of seven novel sequence patterns that was capable of discriminating
methylation-prone from methylation-resistant CpG islands with 90% correctness
upon cross-validation, and 85% blind prediction accuracy when applied it to blind
CpG islands unknown to us on the methylation status. The data indicate that CpG
islands differ in their intrinsic susceptibility to de novo methylation and suggest that
the propensity for a CpG island to become aberrantly methylated can be predicted
based on its sequence context.

The significance of this research is twofold. First, the identification of sequence
pattern/attributes that can discriminate methylation-prone CpG islands will lead to
a better understanding of the basic mechanisms underlying aberrant CpG island
methylation. Because genes that are silenced by methylation are otherwise struc-
turally sound, the potential for reactivating these genes by blocking or reversing the
methylation process represents an exciting new molecular target for chemothera-
peutic intervention. A better understanding of the factors that contribute to aberrant
methylation, including the identification of sequence elements that may act to target
aberrant methylation, will be an important step in achieving this long-term goal.
Second, the classification of more than 29,000 known (but as yet unclassified)
CpG islands in human chromosomes will provide an important resource for the
identification of novel gene targets for further study as potential molecular markers
that could impact on both cancer prevention and treatment. Extensive RLGS
fingerprint information (and thus potential training sets of methylated CpG islands)
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already exists for a number of human tumor types, including breast, brain, lung,
leukemias, hepatocellular carcinomas, and PNET [72–75]. Thus, the methods and
tools developed are directly applicable to CpG island methylation data derived from
human tumors. Moreover, new microarray-based techniques capable of “profiling”
more than 7000 CpG islands have been developed and applied to human breast can-
cers [76–78]. Indeed, we have shown that using the predictive rule established from
the breast cancer cell line and applying it to lung cancer cells, the blind prediction
accuracy reaches over 80% [15]. We are uniquely poised to take advantage of the
tumor CpG island methylation profile information that will likely be generated using
these techniques over the next several years. Thus, our general-purpose predictive
modeling framework has the potential to lead to improved diagnosis and prognosis
and treatment design for cancer patients.

6.4.2.4 Ultrasonic Assisted Cell Disruption for Drug Delivery [13] Although bio-
logical effects of ultrasound must be avoided for safe diagnostic applications, ultra-
sound’s ability to disrupt cell membranes has attracted interest as a method to facili-
tate drug and gene delivery. This preliminary study seeks to develop rules for predict-
ing the degree of cell membrane disruption based on specified ultrasound parameters
and measured acoustic signals. Too much ultrasound destroys cells, while cell mem-
branes will not open up for absorption of macromolecules when too little ultrasound
is applied. The key is to increase cell permeability to allow absorption of macro-
molecules and to apply ultrasound transiently to disrupt viable cells so as to enable
exogenous material to enter without cell damage. Thus, our task is to uncover a
“predictive rule” of ultrasound-mediated disruption of red blood cells using acoustic
spectra and measurements of cell permeability recorded in experiments.

DAMIP is applied to data obtained from a sequence of experiments on bovine
red blood cells. For each experiment, the attributes consist of four ultrasound param-
eters, acoustic measurements at 400 frequencies, and a measure of cell membrane
disruption. To avoid overtraining, various feature combinations of the 404 predictor
variables are selected when developing the classification rule. The results indicate
that the variable combination consisting of ultrasound exposure time and acoustic
signals measured at the driving frequency and its higher harmonics yields the best
rule. Furthermore, our method compares favorably with classification tree and other
ad hoc approaches, with correct classification rate of 80% upon cross-validation and
85% blind prediction accuracy when classifying new unknown entities. Our methods
used for deriving the prediction rules are broadly applicable and could be used to
develop prediction rules in other scenarios involving different cell types or tissues.
These rules and the methods used to derive them could be used for real-time feedback
about ultrasound’s biological effects. For example, it could assist clinicians during a
drug delivery process or could be imported into an implantable device inside the body
for automatic drug delivery and monitoring.

6.4.2.5 Identification of Tumor Shape and Volume in Treatment of Sarcoma [12]
This project involves the determination of tumor shape for adjuvant brachytherapy
treatment of sarcoma based on catheter images taken after surgery. In this application,
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the entities are overlapping consecutive triplets of catheter markings, each of which
is used for determining the shape of the tumor contour. The triplets are to be classified
into one of two groups: Group 1 = [triplets for which the middle catheter marking
should be bypassed], and Group 2 = [triplets for which the middle marking should
not be bypassed]. To develop and validate a classification rule, we used clinical data
collected from 15 soft tissue sarcoma (STS) patients. Cumulatively, this comprised
620 triplets of catheter markings. By careful (and tedious) clinical analysis of the
geometry of these triplets, 65 were determined to belong to Group 1, the “bypass”
group, and 555 were determined to belong to Group 2, the “do-not-bypass” group.

A set of measurements associated with each triplet is then determined. The choice
of what attributes to measure to best distinguish triplets as belonging to Group 1 or
Group 2 is nontrivial. The attributes involved distance between each pair of mark-
ings, angles, curvature formed by the three triplet markings. Based on the selected
attributes, DAMIP was used to develop a classification rule. The resulting rule pro-
vides 98% correct classification on cross-validation and was capable of correctly
predicting 95% of the shape of the tumor on new patients’ data. We remark that the
current clinical procedure requires manual outline based on markers in films of the
tumor volume. This study was the first to use automatic construction of tumor shape
for sarcoma adjuvant brachytherapy [12].

6.4.2.6 Discriminant Analysis of Biomarkers for Prediction of Early Atheroscle-
rosis [4] Oxidative stress is an important etiologic factor in the pathogenesis of
vascular disease. Oxidative stress results from an imbalance between injurious
oxidant and protective antioxidant events in which the former predominate [79, 80].
This results in the modification of proteins and DNA, alteration in gene expression,
promotion of inflammation, and deterioration in endothelial function in the vessel
wall, all processes that ultimately trigger or exacerbate the atherosclerotic process
[81, 82]. It was hypothesized that novel biomarkers of oxidative stress would predict
early atherosclerosis in a relatively healthy nonsmoking population who are free
from cardiovascular disease. One hundred and twenty-seven healthy nonsmokers,
without known clinical atherosclerosis, had carotid intima media thickness (IMT)
measured using ultrasound. Plasma oxidative stress was estimated by measuring
plasma lipid hydroperoxides using the determination of reactive oxygen metabolites
(d-ROMs) test. Clinical measurements include traditional risk factors including age,
sex, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides,
cholesterol, body mass index (BMI), hypertension, diabetes mellitus, smoking
history, family history of CAD, Framingham risk score, and Hs-CRP.

For this prediction, the patients are first clustered into two groups: (Group 1:
IMT≥ 0.68, Group 2: IMT< 0.68). Based on this separator, 30 patients belong to
Group 1 and 97 belong to Group 2. Randomly selecting 90 patients from these two
groups as a training set, DAMIP trains and learns and returns the most discrimina-
tory patterns among the 14 clinical measurements, ultimately resulting in a prediction
rule based on age, sex, BMI, HDLc, Fhx CAD< 60, hs-CRP, and d-ROM as discrim-
inatory attributes. The resulting rule provides 80% and 89% blind prediction accu-
racy on the remaining 37 patients into Groups 1 and 2, respectively. The importance
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of d-ROM as a discriminatory predictor for IMT status was confirmed during the
machine learning process, this biomarker was selected in every iteration as the “ma-
chine” learned and trained to develop a predictive rule to correctly classify patients in
the training set. We also performed predictive analysis using Framingham Risk Score
and d-ROM; in this case the unbiased correct classification rates for Groups 1 and 2
are 77% and 84%, respectively. This is the first study to illustrate that this measure of
oxidative stress can be effectively used along with traditional risk factors to generate
a predictive rule that can potentially serve as an inexpensive clinical diagnostic tool
for predicting early atherosclerosis.

6.4.2.7 Fingerprinting Native and Angiogenic Microvascular Networks through
Pattern Recognition and Discriminant Analysis of Functional Perfusion
Data [4] The cardiovascular system provides oxygen and nutrients to the entire
body. Pathological conditions that impair normal microvascular perfusion can result
in tissue ischemia, with potentially serious clinical effects. Conversely, development
of new vascular structures fuels the progression of cancer, macular degeneration,
and atherosclerosis. Fluorescence microangiography offers superb imaging of the
functional perfusion of new and existent microvasculature, but quantitative analysis
of the complex capillary patterns is challenging. We developed an automated
pattern recognition algorithm to systematically analyze the microvascular networks
and then apply DAMIP to generate a predictive rule. The pattern recognition
algorithm identifies the complex vascular branching patterns, and the predictive
rule demonstrates 100% and 91% correct classification on perturbed (diseased) and
normal tissue perfusions, respectively. We confirmed that transplantation of normal
bone marrow to mice in which genetic deficiency resulted in impaired angiogenesis
eliminated predicted differences and restored normal tissue perfusion patterns (with
100% correctness). The pattern recognition and DAMIP offer an elegant solution
for the automated fingerprinting of microvascular networks that could contribute to
a better understanding of angiogenic mechanisms and be utilized to diagnose and
monitor microvascular deficiencies. Such information would be valuable for early
detection and monitoring of functional abnormalities before they produce obvious
and lasting effects, which may include improper perfusion of tissue or support of
tumor development.

The algorithm can be used to discriminate between the angiogenic response in
a native healthy specimen and the groups with impairment due to age, or chemi-
cal or other genetic deficiency. Similarly, it can be applied to analyze angiogenic
responses as a result of various treatments. This will serve two important goals. First,
the identification of discriminatory patterns/attributes that distinguish angiogenesis
status will lead to a better understanding of the basic mechanisms underlying this
process. Because therapeutic control of angiogenesis could influence physiological
and pathological processes such as wound and tissue repairing, cancer progression
and metastasis, or macular degeneration, the ability to understand it under differ-
ent conditions will offer new insight into developing novel therapeutic interventions,
monitoring, and treatment, especially in aging and heart disease. Thus, our study
and the results form the foundation of a valuable diagnostic tool for changes in the
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functionality of the microvasculature and for discovery of drugs that alter the angio-
genic response. The methods can be applied to tumor diagnosis, monitoring, and
prognosis. In particular, it will be possible to derive microangiographic fingerprints to
acquire specific microvascular patterns associated with early stages of tumor devel-
opment. Such “angioprinting” could become an extremely helpful early diagnostic
modality, especially for easily accessible tumors such as skin cancer.

6.4.2.8 Applying DAMIP to UCI Repository of Machine Learning Databases [68]

Determining the Type of Erythemato-squamous Disease The differential diagnosis
of erythemato-squamous diseases is an important problem in dermatology. They all
share the clinical features of erythema and scaling, with very little differences. The
six groups are psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, chronic
dermatitis, and pityriasis rubra pilaris. Usually, a biopsy is necessary for the diag-
nosis, but unfortunately these diseases share many histopathological features as well.
Another difficulty for the differential diagnosis is that a disease may show the features
of another disease at the beginning stage and may have the characteristic features at
the following stages.

The six groups consist of 366 subjects (112, 61, 72, 49, 52, 20, respectively)
with 34 clinical attributes. Patients were first evaluated clinically with 12 features.
Afterwards, skin samples were taken for the evaluation of 22 histopathological fea-
tures. The values of the histopathological features are determined by an analysis of
the samples under a microscope. The 34 attributes include the following: (i) clinical
attributes: erythema, scaling, definite borders, itching, koebner phenomenon, polyg-
onal papules, follicular papules, oral mucosal involvement, knee and elbow involve-
ment, scalp involvement, family history, age; and (ii) histopathological attributes:
melanin incontinence, eosinophils in the infiltrate, PNL infiltrate, fibrosis of the pap-
illary dermis, exocytosis, acanthosis, hyperkeratosis, parakeratosis, clubbing of the
rete ridges, elongation of the rete ridges, thinning of the suprapapillary epidermis,
spongiform pustule, munro microabscess, focal hypergranulosis, disappearance of
the granular layer, vacuolization and damage of basal layer, spongiosis, saw-tooth
appearance of retes, follicular horn plug, perifollicular parakeratosis, inflammatory
mononuclear infiltrate, band-like infiltrate.

Using 250 randomly selected subjects to develop the rule, our multigroup DAMIP
model selected 27 discriminatory attributes and successfully classified the patients
into six groups, each with an unbiased correct classification of greater than 93% (with
100% correct rate for groups 1, 3, 5, 6) with an average overall accuracy of 98%. Blind
prediction on the remaining 116 patients yields a prediction accuracy of 91% for each
group.

Predicting Presence/Absence of Heart Disease The four databases concerning heart
disease diagnosis were collected by Dr Janosi of Hungarian Institute of Cardiology,
Budapest; Dr Steinbrunn of University Hospital, Zurich; Dr Pfisterer of University
Hospital, Basel, Switzerland; and Dr Detrano of V. A. Medical Center, Long Beach
and Cleveland Clinic Foundation. Each database contains the same 76 attributes. The
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“goal” field refers to the presence of heart disease in the patient. The classification
attempts to discriminate presence (values 1, 2, 3, 4, involving a total of 509 subjects)
from absence (value 0, involving 411 subjects). The attributes include demograph-
ics, physiocardiovascular conditions, traditional risk factors, family history, personal
lifestyle, and cardiovascular exercise measurements. This data set has posed some
challenges to past analysis via various classification approaches, resulting in less
than 80% unbiased classification accuracy. Applying our classification model with-
out reserved judgment, we obtain 79% and 85% correct classification for each group,
respectively. To gauge the usefulness of multistage analysis, we apply two-stage clas-
sification. In the first stage, 14 attributes were selected as discriminatory. One hun-
dred and thirty-five Group absence subjects were placed into the reserved-judgment
region, with 85% of the remaining were classified as Group absence correctly; while
286 Group presence subjects were placed into the reserved judgment region, and 91%
of the remaining classified correctly into the Group presence. In the second stage, 11
attributes were selected with 100 and 229 classified into Group absence and pres-
ence, respectively. Combining the two stages, we obtained a correct classification of
82% and 85%, respectively, for diagnosis of absence or presence of heart disease.
Figure 6.1 illustrates the two-stage classification.

Using 600 of them as training via multistage DAMIP classification results in 85%
and 84% accuracy for 10-fold cross-validation. Blind prediction on the remaining
320 patients results in 85% and 83% prediction accuracy.

Prediction of Protein Localization Sites The protein localization database consists
of 8 groups with a total of 336 instances (143, 77, 52, 35, 20, 5, 2, 2, respectively) with

920 Subjects

411 Absence

509 Presence
Clinical attributes

Clinical attributes

Discriminant

analysis classifier

Discriminant

analysis classifier

Absence

235 (85%)

Absence

100 (74%)

Presence

203 (91%)

Presence

229 (80%)

Reserved

judgment

135 Absence

286 Presence

Figure 6.1 A tree diagram for two-stage classification and prediction of heart disease.
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7 attributes. The 8 groups are 8 localization sites of protein including cp (cytoplasm),
im (inner membrane without signal sequence), pp (periplasm), imU (inner mem-
brane, uncleavable signal sequence), om (outer membrane), omL (outer membrane
lipoprotein), imL (inner membrane lipoprotein), imS (inner membrane, cleavable
signal sequence). However, the last 4 groups are taken out from our classification
experiment since the population sizes are too small to ensure significance.

The 7 attributes include mcg (McGeoch’s method for signal sequence recognition),
gvh (von Heijne’s method for signal sequence recognition), lip (von Heijne’s Signal
Peptidase II consensus sequence score), chg (Presence of charge on N-terminus of
predicted lipoproteins), aac (score of discriminant analysis of the amino acid con-
tent of outer membrane and periplasmic proteins), alm1 (score of the ALOM mem-
brane spanning region prediction program), and alm2 (score of ALOM program after
excluding putative cleavable signal regions from the sequence).

In the classification we use 4 groups, 307 instances, with 7 attributes. Our classifi-
cation model selected the discriminatory patterns mcg, gvh, alm1, and alm2 to form
the predictive rule with unbiased correct classification rates of 89%, compared to the
results of 81% by other classification models [83]. Using only 200 instances to train,
the prediction accuracy on the remaining 107 instances reaches over 90% for each of
the 4 groups.

Pattern Recognition in Satellite Images for Determining Types of Soil The satellite
database consists of the multispectral values of pixels in 3× 3 neighborhoods in a
satellite image and the classification associated with the central pixel in each neigh-
borhood. The aim is to predict this classification, given the multispectral values. In
the sample database, the class of a pixel is coded as a number. There are 6 groups
with 4435 samples in the training data set and 2000 samples in testing dataset; and
each sample entity has 36 attributes describing the spectral bands of the image.

The original Landsat Multispectral Scanner image data for this database was gen-
erated from data purchased from NASA by the Australian Centre for Remote Sensing.
The Landsat satellite data are one of the many sources of information available for a
scene. The interpretation of a scene by integrating spatial data of diverse types and
resolutions including multispectral and radar data, maps indicating topography, land
use, and so on, is expected to assume significant importance with the onset of an
era characterized by integrative approaches to remote sensing (e.g., NASA’s Earth
Observing System commencing this decade).

One frame of Landsat MSS imagery consists of four digital images of the same
scene in different spectral bands. Two of these are in the visible region (corresponding
approximately to green and red regions of the visible spectrum) and two are in the
(near) infrared. Each pixel is an eight-bit binary word, with 0 corresponding to black
and 255 to white. The spatial resolution of a pixel is about 80 m× 80 m. Each image
contains 2340× 3380 such pixels.

The database is a (tiny) subarea of a scene, consisting of 82× 100 pixels. Each line
of data corresponds to a 3× 3 square neighborhood of pixels completely contained
within the 82× 100 subarea. Each line contains the pixel values in the four spectral
bands (converted to ASCII) of each of the nine pixels in the 3× 3 neighborhood and
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a number indicating the classification label of the central pixel. The number is a code
for the following six groups: red soil, cotton crop, gray soil, damp gray soil, soil with
vegetation stubble, very damp gray soil. Running the DAMIP model, 17 discrimina-
tory attributes were selected to form the classification rule, producing a prediction
accuracy of 85%.

6.5 SUMMARY AND CONCLUSION

In the article, we summarize a class of general-purpose predictive models that we
have developed based on the technology of large-scale optimization and support vec-
tor machines [3–7]. Our models seek to maximize the correct classification rate while
constraining the number of misclassifications in each group. The models incorpo-
rate the following features simultaneously: (i) the ability to classify any number
of distinct groups; (ii) allow incorporation of heterogeneous and temporal types of
attributes as input; (iii) a high-dimensional data transformation that reduces noise
and errors in biological data; (iv) constraining the misclassification in each group
and a reserved-judgment region that provides a safeguard against overtraining (which
tends to lead to high misclassification rates from the resulting predictive rule); and
(v) successive multistage classification capability to handle data points placed in the
reserved-judgment region. The performance and predictive power of the classification
models is validated through a broad class of biological and medical applications.

Classification models are critical to medical advances as they can be used in
genomic, cell, molecular, and system-level analyses to assist in early-risk prediction,
diagnosis and detection of disease, intervention and monitoring, and treatment
outcome prediction. As shown in the vaccine immunity prediction, the predictive
signatures can guide the rapid development of vaccines against emerging infections
and aid in the monitoring of suboptimal immune responses in the elderly, infants, or
people with weakened immune systems. Neuropsychological tests are inexpensive,
noninvasive, and can be incorporated within an annual physical examination. Our
study on Alzheimer’s disease shows that they offer potential predictive capability
for earliest diagnosis. Identifying individuals who are at-risk but currently have
no symptoms are critical to curtail the rapid rise of this illness. In the CpG island
study for human cancer, such prediction and diagnosis open up novel therapeutic
sites for early intervention. The ultrasound application illustrates its application to a
novel drug delivery mechanism, assisting clinicians during a drug delivery process,
or in devising implantable devices into the body for automated drug delivery and
monitoring. Prediction of the shape of a cancer tumor bed provides a personalized
treatment design, replacing manual estimates by sophisticated computer predictive
models. Prediction of early atherosclerosis through inexpensive biomarker mea-
surements and traditional risk factors can serve as a potential clinical diagnostic
tool for routine physical and health maintenance, alerting doctors and patients the
need for early intervention to prevent serious vascular disease. Fingerprinting of
microvascular networks opens up the possibility for early diagnosis of perturbed
systems in the body that may trigger disease (e.g., genetic deficiency, diabetes,
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aging, obesity, macular degeneracy, tumor formation), identify target sites for
treatment, and monitor prognosis and success of treatment. Determining the type
of erythemato-squamous disease and the presence/absence of heart disease helps
clinicians to correctly diagnose and effectively treat patients. Thus, classification
models can serve as a basis for predictive health/medicine where the desire is to
diagnose early and provide personalized target intervention. This has the potential to
reduce healthcare costs, improve success of treatment, and improve quality of life of
patients.

The modeling framework of the discrete support vector machines, DAMIP, offers
great flexibility, enabling one to simultaneously incorporate the features as listed ear-
lier, as well as many other features. Further theoretical study will be performed on
these models to understand their characteristics and the sensitivity of the predictive
patterns to model/parameter variations. We note that deriving the predictive rules
for such problems can be computationally demanding due to the NP-hard nature of
MIP. We continue to work on improving optimization algorithms utilizing novel cut-
ting plane and branch-and-bound strategies, fast heuristic algorithms, and parallel
algorithms.
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7.1 INTRODUCTION

Cancer is a leading cause of death worldwide and can affect people at all ages. There
will be over 1.6 million new cases of cancer diagnosed in the United States in 2014,
and many times that number in other countries. About 60% of US cancer patients
are treated with radiation therapy, and increasingly complex radiation delivery pro-
cedures are being developed in order to improve treatment outcomes. A key goal of
radiation therapy is to determine appropriate values for a large set of delivery parame-
ters in order to ensure that as large a fraction as possible of the radiation that enters the
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patient is delivered to the tumor as opposed to depositing it in adjacent noncancer-
ous organs that can be damaged by radiation (the latter are termed organs-at-risk
(OARs)). As complex as cancer is, radiation therapy is also a complicated process.
Analytics tools are becoming critical for clinicians and scientists for improvements
to the treatment and a better understanding of the disease. Computational techniques
such as predictive modeling using machine learning (ML) have been increasingly
used in radiation therapy to help accurately localize the tumors in images, precisely
target the radiation to the tumors, analyze treatment outcomes, and improve treatment
quality and patient safety.

Machine learning tools are commonly used to extract implicit, previously
unknown, and potentially useful information from data. This information, which
is expressed in a comprehensible form, can be used for a variety of purposes. The
idea is to build programs or models that sift through raw data automatically, seeking
regularities or patterns. Strong patterns, if found, will likely generalize to yield
accurate predictions with respect to future data. Machine learning algorithms need
to be robust enough to cope with imperfect data and to extract regularities that are
inexact but useful. In order to achieve this, machine learning algorithms typically
involve solving rigorous mathematical optimization (linear or nonlinear) programs
to obtain the coefficients for describing regression models or to derive rules, trees,
and networks for classification.

Recently, machine learning has gained great popularity in many aspects of cancer
research, including tumor localization, prediction of radiotherapy response and image
processing, and pattern recognition. Regression methods are essential to any cancer
data analysis that attempts to describe the relationship between a response variable
(outcome) and any number of predictor variables (input features). Regression analysis
helps us understand how the typical value of the outcome changes when any one of
the predictor variables is varied, while the other predictor variables are held fixed.
Most commonly used methods include linear regression and ordinary least squares
regression, in which the regression function is defined in terms of a finite number of
unknown coefficients that are estimated from the data.

Frequently in medical applications, situations involving discrete variables arise. In
this circumstance, machine learning still plays an essential role, because objects such
as lesions, cancer foci, and organs in medical images cannot be modeled accurately by
simple equations. Thus, it is natural that tasks in medical analysis require essentially
“learning from examples.” Logistic regression (LR) analysis extends the techniques
of multiple regression analysis to research situations in which the outcome variable
is categorical, that is, taking on two or more possible values. In cancer research, the
goal of logistic regression analysis is to find the best fitting and most parsimonious,
yet biologically reasonable, model to describe the relationship between an outcome
and a set of predictor or explanatory variables. But logistic regression requires many
data points to ensure the stability of the model and has a disadvantage with respect
to interpretability of the model in the face of multicollinearity.

One of the most popular uses of machine learning in Radiation Oncology is the
classification of objects into certain categories (e.g., abnormal or normal, lesions or
nonlesions). This class of machine learning uses features (e.g., diameter, contrast, and
circularity) extracted from segmented objects as information for classifying objects.



�

� �

�

TUTORIALS OF PREDICTIVE MODELING TECHNIQUES 191

Most commonly used techniques include artificial neural networks (ANN), support
vector machines (SVM), and decision trees. These methods involve solving an opti-
mization problem in which the objective function has a measure of the errors in the
model (e.g., squared error) and may include a term that measures the complexity of
the model (e.g., norm of the weights of input features). An example of one such
technique is the use of a sequential optimization algorithm for “training” a sup-
port vector regression model, which employs a quadratic data-fitting problem whose
objective function comprises a weighted combination of two terms: the first term is a
quadratic error measure and the second is a model complexity term defined by a norm
of the weights selected for the input features. The latter term aids in the prevention of
overfitting of data. Training an SVM is accomplished by the solution of a large con-
strained quadratic programming (QP) optimization problem in order to determine the
optimal weights of those linear terms in the model.

The rest of the chapter is organized as follows: First, brief tutorials of four predic-
tive modeling techniques are given. Then, we provide a summary of recent advances
of predictive modeling applications in three major areas: medical image processing
and diagnostics, real-time tumor localization, and radiotherapy response prediction.
After that, the authors’ previous work is used to provide detailed examples of pre-
dictive modeling approaches to radiation therapy. Section 7.4 demonstrates how to
construct predictive models using comprehensive tumor features for the evaluation of
tumor response to neoadjuvant chemoradiotherapy (CRT) in patients with esophageal
cancer. Section 7.5 shows ML applications in predicting radiation-induced complica-
tions: xerostomia (dry mouth) in head and neck cancer and rectal bleeding in whole
pelvis/prostate cancer. Section 7.6 shows utilization of an ML method in localizing
thorax tumor motion in radiation therapy.

7.2 TUTORIALS OF PREDICTIVE MODELING TECHNIQUES

Depending on the application area, there exist many predictive modeling techniques
that can be utilized. It is not the goal of this chapter to give a comprehensive
introduction of these techniques. We only give brief tutorials of several widely used
techniques.

7.2.1 Feature Selection

Before applying any predictive modeling techniques, feature selection is often used to
remove redundant or irrelevant features. Here, we demonstrate an SVM-based feature
ranking method [1]. For a training set {x1, x2,… , xi,… , xl}with corresponding labels
{y1, y2,… , yi,… , yl}, the SVM algorithm is as follows:

Minimize𝛼i

1
2

∑
hi

yhyi𝛼h𝛼i(xh ⋅ xi + 𝜆𝛿hi) −
∑

i

𝛼i

subject to 0 ≤ 𝛼i ≤ C and
∑

i

𝛼iyi = 0
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The summations run over all training data xi that are n-dimensional feature vectors.
xh ⋅ xi denotes the scalar product, yi encodes the class label as a binary value+1 or−1,
𝛿hi is the Kronecker symbol (𝛿hi = 1 if h= i and 0 otherwise), and 𝜆 and C are positive
constants, which ensure convergence even when the problem is nonlinearly separa-
ble or poorly conditioned. In such cases, some of the support vectors may not lie on
the margin. The resulting decision function of an input vector x is D(x) = 𝑤 ⋅ x + b
with 𝑤 =

∑
i
𝛼iyixi. The weight vector w is a linear combination of training data. The

training data with nonzero weights are support vectors. Those with weight satisfy-
ing the strict inequality 0 < 𝛼i < C are marginal support vectors. The bias value b is
an average over marginal support vectors. The final feature ranking is achieved by
recursively removing features with the lowest weight until all features are removed.
To avoid feature selection bias, a frequency distribution of the top-ranked features
after k-fold cross-validation can be obtained. An optimal feature set can be identi-
fied as the most frequently selected certain number of features from the frequency
distribution.

7.2.2 Support Vector Machine

One of the most commonly used predictive modeling techniques is SVM. In an
SVM, a kernel is used to transform the selected features from x1, …, xm space into
x̃1, …, x̃m space, so that the two classes become linearly separable. A hyperplane
that represents the largest separation between the closest members (support vectors)
of the two classes in multidimension is determined, providing a classification rule or
model y = f (̃x1,… , x̃m), which classify a new or testing data based on its y value. One
method to train the SVM is the construction of a linear model f (x) = 𝑤 ⋅Φ(x) + b
via a sequential minimal optimization (SMO) algorithm [2, 3].

min
1
2
‖𝑤‖2 + C

∑
i

(𝛼i + 𝛽i)

s.t. − (𝜀 + 𝛼i) ≤ 𝑤 ⋅ zi + b − di ≤ 𝜀 + 𝛽i

𝛼i, 𝛽i ≥ 0

The SMO algorithm utilizes the simplest linear model of the form𝑤 ⋅ zi + b where
zi denotes the vector of input variables, and 𝑤 and b denote the fitting parameters (𝑤
is a vector, b is a scalar) to be generated by SMO. di is the label. Training the SVM is
accomplished by the solution of this constrained quadratic programming (QP) opti-
mization problem in order to determine the optimal weights of those linear terms. In
support vector regression, an accuracy threshold 𝜀 (0.001) is set so that model predic-
tion errors that are below this threshold yield a penalty of 0 in the objective function.
C is a weighting factor for the sum of errors terms and 2-norm is used for model
complexity measure.

Rather than working directly with the primal quadratic weight optimization
problem, SMO adopts the more efficient approach of initially solving the dual of
this problem [3], which is derived from optimality conditions and defined in terms
of the Lagrange or dual variables and may be formulated as a large QP problem.
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After defining the Lagrange multipliers 𝜆 as 𝑤(𝜆, 𝜆′) =
∑
i
(𝜆i − 𝜆i

′)zi and using

Wolfe duality theory, the dual problem is

max
∑

i

di(𝜆i − 𝜆i
′) − 𝜀

∑
i

(𝜆i + 𝜆i
′) − 1

2
‖𝑤(𝜆, 𝜆′)‖2

s.t.
∑

i

(𝜆i − 𝜆i
′) = 0

𝜆i, 𝜆i
′ ∈ [0,C]

SMO divides this latter problem into a series of small QP problems involving only
two variables each, which are solved sequentially and analytically. After obtaining 𝜆i
and 𝜆i

′, the primal variables𝑤 and b can be determined by using the KKT conditions.

7.2.3 Logistic Regression

Logistic regression (LR) is one the most widely used predictive modeling tech-
niques in healthcare applications. LR first transformed the response variable
into Pr[YES|x1,… , xm], a probability variable corresponding to the “YES” class
given features x1,… , xm. A logit transformation, log{Pr[YES|x1,… , xm]∕(1 −
Pr[YES|x1,… , xm])}, is then applied so that the resulting variable lies between
negative infinity and positive infinity. The transformed variable is approximated
using a linear function of input features (linear regression). The resulting model
is Pr[YES|x1,… , xm] = 1∕[1 + exp(−𝑤0 −𝑤1x1 − · · · −𝑤mxm)] with weight w.
The weights are obtained by fitting the model to the training set using maximum
log-likelihood estimation.

7.2.4 Decision Tree

Another binary classification method in predicting modeling is an optimized decision
tree, whose generation process via supervised learning is outlined here. Referencing
Figure 7.1, note that the nonleaf nodes (i.e., the nodes that have successor nodes
below them, shown as ellipses in Fig. 7.1) represent univariate inequality tests that

Root

Feature x Feature y

Condition a Condition b

Depth 0

Depth 1

Decision rule

Depth m

Leaf nodes

(class labels)
Labels

... ... ... ... ...

Figure 7.1 Optimized decision tree algorithm schematic.
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are followed by further tests at lower nodes until the final tests leading to the leaf
nodes (shown as rectangles in Fig. 7.1) yield classification decisions [4, 5].

A general approach to the construction of decision trees starts with the selection
of a branching test at the root node at the top of the tree and can be summarized as
following:

1. Choose an attribute–value pair that leads to the best partition of the training
instances with respect to the output attribute.

2. Create a separate branch for each range of value of the chosen attribute.

3. Divide the instances into subgroups corresponding to the attribute–value range
of the chosen node.

4. For each subgroup, terminate the attribute partitioning process if:

a. All members of a subgroup have the same value for the output attribute.

b. No further distinguishing attributes can be determined. Label the branch
with the output value seen by the majority of remaining instances.

5. Else, for each subgroup created in 3 for which the attribute partitioning process
is not terminated in 4 at a leaf, repeat the above branching process.

This stage of the algorithm is based on the training data, and generally produces a
large and complex decision tree that correctly classifies all of the training instances.
In the second stage of the tree generation process, this decision tree is then pruned
by considering the test data and removing parts of the tree that have a relatively high
error rate or provide little gain in statistical accuracy.

7.3 REVIEW OF RECENT PREDICTIVE MODELING APPLICATIONS
IN RADIATION ONCOLOGY

Optimization-based analytics approaches have been widely applied in medicine and
biology fields [6]. In recent years, there have been special sessions dedicated to appli-
cations in Radiation Oncology at international machine learning conferences. Even
in national medical conferences (e.g., the 2010 American Association of Physicists
in Medicine annual meeting), there have been special sessions dedicated to machine
learning applications. It is therefore appropriate to survey advancements in this area.

7.3.1 Machine Learning for Medical Image Processing

Machine learning plays an essential role in medical image analysis because objects
such as lesions and organs in medical images cannot be modeled accurately by
simple equations; thus, tasks in medical image analysis require essentially “learning
from examples.” One of the most popular uses of machine learning in medical image
analysis is the classification of objects such as lesions into certain categories (e.g.,
abnormal or normal, lesions or nonlesions). This class of machine learning uses
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features (e.g., diameter, contrast, and circularity) extracted from segmented objects
as information for classifying the objects. Machine learning techniques in this class
include linear discriminant analysis, k-nearest neighbor classifiers, ANN, and SVM.

Early uses of ML were by Wolberg et al. [7, 8] of the Wisconsin group. They
built an interactive computer system via ML to evaluate and diagnose breast cancer
based on cytologic features derived directly from a digital scan of fine-needle aspi-
rate (FNA) slides. FNA accuracy is traditionally limited by, among other factors, the
subjective interpretation of the aspirate. The authors increased breast FNA accuracy
by coupling digital image analysis methods with ML techniques. The ML approach
captured nuclear features that were prognostically more accurate than estimates based
on tumor size and lymph node status. The method was tested on consecutive series
of 569 patients. A 166-patient subset provided the data for the prognostic study. An
additional 75 consecutive, new patients provided samples to test the diagnostic sys-
tem. The projected prospective accuracy of the diagnostic system was estimated to
be 97% by 10-fold cross-validation, and the actual accuracy on 75 new samples was
100%. The projected prospective accuracy of the prognostic system was estimated to
be 86% by leave-one-out testing.

Based on the evidence suggesting that ML can help improve the diagnostic perfor-
mance of radiologists in their image interpretations, many investigators have contin-
ued the research in developing schemes for detection/diagnosis of lesions in medical
images, such as detection of lung nodules in chest radiographs [9, 10], and thoracic
CT [11], detection of microcalcifications or masses in mammography, breast MRI,
and detection of polyps in CT colonography [12, 13].

For example, a supervised lesion segmentation method based on a massive training
artificial neural network (MTANN) filter in a computer-aided diagnostic scheme for
detection of lung nodules in CT was developed by Suzuki et al. [14]. Tested on 71
instances of lung cancer patient data, the MTANN filter yielded a sensitivity of 80.3%
(57/71), with a rate of 4.8 false positives per patient. Overall, the MTANN-based
segmentation method was effective in segmenting lesions in medical images with
improved sensitivity and specificity.

In mammography, ML classifiers were proposed for breast cancer diagnosis [15].
The method was evaluated to classify feature vectors extracted from segmented
regions (pathological lesion or normal tissue) on craniocaudal (CC) and/or medio-
lateral oblique (MLO) mammography image views, providing BI-RADS diagnosis
(BI-RADS stands for breast imaging reporting and data system, which is a scheme
for putting the findings of mammograms into a small number of well-defined
categories). Appropriate combinations of image processing and normalization tech-
niques were applied to reduce image artifacts and increase mammogram details. Two
hundred and eighty-six cases extracted from an image repository, where specialized
radiologists segmented regions on CC and/or MLO images (biopsies provided the
golden standard), were evaluated. Around 20,000 ML configurations were tested
with different parameter combinations, obtaining classifiers achieving an AUC,
defined as the area under receiver operating characteristic (ROC) curves, of 0.996
when combining feature vectors extracted from CC and MLO views of the same case.
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7.3.2 Machine Learning in Real-Time Tumor Localization

In recent years, the substantial risks of surgical resection of tumors in the lungs, liver,
and pancreas, and the fact that a large percentage of patients are not surgical candi-
dates because their disease is too far advanced or their health is poor, have motivated
the investigation of stereotactic body radiation therapy. Stereotactic body radiation
therapy involves delivery of a high dose of radiation that conforms precisely to the
tumor volume in just a few fractions with the objective of tumor ablation.

However, a significant challenge is the delivery of very precise treatments to
moving targets during respiration. Therefore, methods to track tumors during normal
respiration need to be developed. The extent of respiratory motion for tumors
in various organs is observed with technologies such as fluoroscopy, surrogate
markers (spirometry, fiducials), 4D-CT, and dynamic MRI. Then a tumor motion
compensation method can be employed. A number of real-time technologies are
being developed to account for respiratory motion. These systems require real-time
radiation target position information for both respiratory gating and tracking.
Classification schemes based on machine learning techniques such as ANN [16] and
SVM [17] were used to separate the fluoroscopic images into beam on or off classes.
ML regression models have also been proposed to localize tumor position in real
time as shown in Section 7.6.

A traditional technique to account for tumor motion is to expand the treatment
target with margins. The undesirable outcome of these margins is higher doses to
the surrounding normal tissue and the increased risk of toxicity. ML methods, such
as neural networks, have been used for real-time spatial and temporal tracking of
radiotherapy treatment targets during free breathing [18–21]. These techniques will
allow the reduction and possible elimination of dose-limiting motion margins in
external-beam radiation delivery plans. Murphy has shown that, despite the widely
varying characteristics of 27 test examples of breathing, a neural network based ML
technique was able to make temporal predictions 300 ms into the future with high
accuracy [22], which enabled its use in radiotherapy for motion tracking.

Ruan and Keall [23] extended ML methods from a single dimension to multi-
dimensional processing. However, the amount of data required for such extensions
grows exponentially with the dimensionality of the problem. They investigated a
multidimensional prediction scheme based on kernel density estimation in an aug-
mented covariate-response space. Principal component analysis (PCA) was utilized
to construct a proper low-dimensional feature space, where kernel density estimation
is feasible with the limited training data. The dimension reduction idea proposed
in their work was closely related to feature selection used in ML, particularly
SVMs. To test the performance of their method, 159 lung target motion traces were
obtained with a Synchrony respiratory tracking system. Prediction performance of
the low-dimensional feature learning-based multidimensional prediction method
was compared against an independent prediction method where prediction was con-
ducted along each physical coordinate independently. The proposed method showed
uniformly better performance and reduced the case-wise 3D root-mean-squared
prediction error by about 30–40%.
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While tracking implanted fiducial markers has been shown to provide good
accuracy with respect to tumor motion prediction, this procedure may not be widely
accepted due to the risk of pneumothorax. Cui et al. [17] proposed a gating method
that includes formulating the problem as a classification problem and generating
the gating signals from fluoroscopic images without implanted fiducial markers via
template matching methods [24]. The classification problem (gating the beam to
be ON or OFF) was solved by SVM. The ground truth was the reference gating
signal, which was manually determined by a radiation oncologist. The proposed
technique was tested on five sequences of fluoroscopic images from five lung cancer
patients and compared to template matching method alone. SVM was slightly more
accurate on average (1–3%) than using template matching by itself with respect to
delivering the target dose. SVM is thus a potentially precise and efficient algorithm
for generating gating signals for radiotherapy.

In order to compensate for the shortcomings of template matching methods, which
may fail when the tumor boundary is unclear in fluoroscopic images, Lin et al. [25]
proposed a framework of markerless gating and tracking based on machine learning
algorithms. A similar two-class classification tracking problem was solved by PCA
and ANN. The tracking problem was formulated as a regression task, which employs
the correlation between the tumor position and nearby surrogate anatomic features
in the image. Proposed methods were tested on 10 fluoroscopic image sequences of
9 patients. For gating, the target coverage (the precision) ranged from 90% to 99%,
with the mean of 96.5%. For tracking, the mean localization error was about 2.1 pix-
els and the maximum error at 95% confidence level was about 4.6 pixels (pixel size is
about 0.5 mm). Following the same framework, different combinations of dimension-
ality reduction techniques (PCA and four nonlinear manifold-learning methods) and
two machine learning classification methods (ANN and SVM) were evaluated later
[16]. PCA combined with either ANN or SVM achieved a better performance than
the other nonlinear manifold-learning methods. Overall, ANN combined with PCA is
a better candidate than other combinations for real-time gated radiotherapy. General-
ized linear discriminant analysis (GLDA) was recently applied to the same problem
[26]. The fundamental difference relative to conventional dimensionality reduction
techniques is that GLDA explicitly takes into account the label information available
in the training set and therefore is efficient for discrimination among classes. It was
demonstrated that GLDA outperformed PCA in terms of classification accuracy and
target coverage at a lower nominal duty cycle.

7.3.3 Machine Learning for Predicting Radiotherapy Response

Radiation-induced outcomes are determined by complex interactions between treat-
ment techniques, cancer pathology, and patient-related physiological and biological
factors. A common obstacle to building maximally predictive treatment outcome
models for clinical practice in radiation oncology is the failure to capture this com-
plexity of heterogeneous variable interactions and the ability to adapt outcome models
across different institutions. Methods based on ML can identify data patterns, variable
interactions, and higher order relationships among prognostic variables. In addition,
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they have the ability to generalize to unseen data [27]. In this section, we briefly
summarize the research in ML for predicting radiotherapy response.

As in the case of our example of using constraints to build treatment plan surface
to predict organ complications (Section 7.5), Buettner et al. [28] proposed to predict
radiation-induced rectal bleeding and loose stools using Bayesian logistic regression
with high-order interactions. Binary features (constraint satisfied or failed) were used
as predictive variables in multivariate logistic regression to build the probabilistic
model. The 10-fold cross-validation of the model for loose stools resulted in an aver-
age AUC of 0.72 with a standard deviation of 0.11. For rectal bleeding an AUC of
0.64± 0.08 was achieved. From the results of these models, they were able to derive
a new type of geometrical dosimetric constraint that showed more predictive power
than traditional constraints. Similarly, Bayesian logistic regression together with fea-
ture selection was also applied to predict esophagitis and xerostomia [29].

In addition to applications in tumor motion localization, neural networks and deci-
sion trees have also been utilized in predicting radiotherapy response because of their
ability to detect nonlinear patterns in the data. In particular, neural networks were
used to model postradiation treatment outcomes for cases of lung injury [30, 31] and
prostate cancer [32]. However, these studies have mainly focused on using a single
class of neural networks, namely feedforward neural networks with different types of
activation functions. A different neural network architecture, referred to as general-
ized regression neural network, was shown to outperform classical neural networks
[33]. The major drawback of using neural network methods was that they are based
on greedy heuristic algorithms with no guarantee of global optimality or robustness,
in addition to the extensive computational burden associated with them. This draw-
back led to introduction of SVM methods from medical imaging applications [34,
35] to the area of response modeling [36].

The Washington University group applied ML techniques for the prediction of
radiation pneumonitis in lung cancer patients [37]. The authors compared several
widely used classification algorithms in the machine learning field, including SVM,
decision trees, random forest, and naïve Bayes, to distinguish between different risk
groups for pneumonitis. The performance of these classification algorithms was
evaluated in conjunction with several feature selection strategies (SVM-recursive
feature elimination, correlation based, chi-square, and information gain based feature
selections), and the impact of the feature selection on performance was further
evaluated. In conclusion, kernel-based SVMs showed greatly higher Matthew’s
correlation coefficient values (a metric that is widely used as a performance measure)
than not only linear SVM but also other competing classification algorithms after
correction for imbalance.

Oh and El Naqa [38] continued research along this line for lung cancer patients.
Instead of SVM, a Bayesian network was applied to not only predict the probabil-
ity that a given treatment plan for a patient will result in a treatment complication
but also for developing better understanding of the clinical decision-making pro-
cess. Feature selection was used to reduce the time and space complexity associated
with Bayesian structure learning. The authors demonstrated that a Bayesian net-
work was able to identify the relationship between the dose-volume parameters and
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pneumonitis (distinguishing the control group from the disease group based on the
trained Bayesian network).

Das et al. [39] provided a simple hybrid ML method, in which they fuse the results
of four different machine learning models (boosted decision trees, neural networks,
SVM, self-organizing maps) to predict the risk of lung pneumonitis in patients under-
going thoracic radiotherapy. Fusion was achieved by simple averaging of the 10-fold
cross-validated predictions for each patient from all four models. The AUC for the
fused cross-validated results was 0.79, higher than the individual models and with
lower variance.

Lung cancer has been the most frequent tested disease site utilizing ML, espe-
cially via neural networks [40] and SVM [41, 42]. However, Bayesian networks were
hypothesized to have an advantage with respect to handling missing data. Dekker et al.
[43] provided a comparison between an SVM and Bayesian network model regard-
ing the handling of missing data for predicting survival in lung cancer. A Bayesian
network model outperformed the SVM model in the case of missing data. If an impor-
tant feature was missing that could not be inferred by the Bayesian model, a strong
change in AUC was noticed (AUC from the Bayesian network went from 0.72 to 0.82
while AUC from SVM went from 0.68 to 0.76) when the patients with missing data
are removed from the validation set.

To emphasize the advantage of ML in dealing with heterogeneous data from mul-
tiple institutions, El Naqa et al. [44] described an ML methodology that can screen
for nonlinear relations among prognostic variables and generalize to unseen data. An
independent RTOG data set from multiple institutions was used for model validation.
The database contained different cancer disease sites including complications such
as esophagitis, pneumonitis, and xerostomia. The distribution of patient groups was
analyzed using PCA to uncover potential nonlinear behavior. Results suggested that
an SVM kernel method provided superior performance on leave-one-out testing com-
pared to logistic regression and neural networks in cases in which the data exhibited
nonlinear behavior on PCA. In prediction of esophagitis and pneumonitis endpoints,
21% and 60% improvement was reported, respectively.

7.4 MODELING PATHOLOGIC RESPONSE OF ESOPHAGEAL
CANCER TO CHEMORADIOTHERAPY

Trimodality therapy, which consists of concurrent neoadjuvant CRT followed
by surgery, has been the most common treatment for locally advanced cancers.
However, it was recently suggested that not all patients benefit from surgery after
the induction of CRT and that definitive CRT (CRT alone) could also become an
option [45]. Evidence suggests that surgery after CRT can significantly improve
local control [46, 47]. These improvements in local control, however, have been
tempered by the increased mortality (9–12%) and morbidity (30%) compared to
CRT alone (mortality, 0.8–3.5%). Several studies have shown that tumor response
to CRT remains an important predictor of both local control and overall survival
[45–47]. Complete pathologic responders to CRT appear to have superior outcomes,
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regardless of whether they undergo surgical resection. These data also support that
the addition of resection can improve outcomes for patients who are discovered to
have residual tumor following completion of CRT. Given the added mortality and
morbidity of surgery after CRT, as well as the high local failure rate for CRT alone,
it is critical to accurately identify patients who respond to CRT so that surgery may
be safely deferred. It is equally important to accurately identify patients who do not
respond to CRT so that early surgical salvage can be initiated. A preliminary study
with 20 locally advanced esophageal cancer patients was conducted to predict the
tumor response to CRT [48].

7.4.1 Input Features

Sixteen clinical parameters and demographic features were extracted from patients’
charts. Clinical parameters included differentiation stage, T stage, N stage, M stage,
distant metastasis, type of chemotherapy, radiotherapy dose, treatment with concomi-
tant boost, location of tumor, tumor involves gastroesophageal junction, histology,
total extent of disease, and extent of disease >4 cm. Demographic features included
age and gender.

Comprehensive spatiotemporal positron emission tomography (PET) features
were extracted from pre-CRT and post-CRT PET/CT images, which characterize
the tumor standardized uptake value (SUV) intensity distribution, spatial variations
(texture), geometry, and their associated changes resulting from CRT. Nine intensity
features, 8 Haralick texture features, 15 geometry features, and 1 volume-intensity
feature were extracted. After incorporating temporal changes and excluding
quantitatively identical features, a total of 137 features were obtained for each tumor.

The resected surgical specimen was submitted to the pathologist for evalua-
tion and was used as modeling ground truth. The specimen was microscopically
examined and semiquantitatively categorized into one of three groups: pathologic
complete response (pCR), microscopic residual disease (mRD), or gross residual
disease (gRD), according to the amount of residual viable carcinoma observed in
relation to areas of fibrosis [49]. In this study, both pCR and mRD were considered
as “responders,” because they have been shown to have similar survival rates [50],
while gRD was considered as “nonresponder.”

7.4.2 Feature Selection and Predictive Model Construction

Four groups of tumor features were examined: (i) 16 conventional PET/CT response
measures; (ii) 16 clinical parameters and demographics as described earlier; (iii)
137 spatiotemporal PET features; and (iv) all 169 combined features. Since there
were many features, a feature selection process as described in Section 7.2.1 with
cross-validation (Fig. 7.2) was applied first within each feature group for each tested
predictive model.

Ten-, five-, and twofold cross-validations were repeatedly used for both feature
selection and model accuracy evaluation. Our goal was to model pathologic tumor
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Figure 7.2 Workflow diagram illustrating feature selection and model construction with
cross-validations for prediction of tumor response.
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response to CRT as a function (f) of each of the four groups of tumor features
so that:

Pathologic tumor response

= f

(
conventional PET

/CT measures, or clinical parameters and demographics,
or spatiotemporal PET features, or all combined features

)
(7.1)

We used two machine learning models, LR and SVM, to obtain functions f.
Figure 7.2 illustrates the modeling process using SVM with all tumor features as an
example.

The outputs of the ML models were the predicted pathologic response represented
as a binary variable (yes or no), which corresponded to “responder” or “nonrespon-
der,” respectively (Fig. 7.2). The accuracy of using each feature group and each model
to predict the pathologic tumor response was quantified using the AUC. In addition,
the sensitivity and specificity of each model were calculated and compared using the
unpaired t-test at a significance level of 0.05. Model precision was evaluated with the
95% confidence intervals (CI).

7.4.3 Results

Because LR and SVM are two distinct models, our feature selection process resulted
in different optimal feature sets for each model. The optimal feature set for SVM
always contained the optimal feature set for LR, except when applied to clinical
parameters and demographics, where histology was the only feature selected
for SVM.

Figure 7.3 shows the model accuracy (AUC) and precision (95% CI) obtained
from repeating the 10-, 5-, and 2-fold cross-validations. The best prediction was
obtained using the SVM model with 17 features from all combined features (SVMall).
All patients within the testing set were correctly classified during the repetition of
10-fold cross-validations, resulting in a mean AUC of 1.00 (100% sensitivity, 100%
specificity). SVMall contained 1 conventional PET/CT measure, “residual metabolic
tumor volume (i.e., SUV≥ 2.5) post-CRT”; 2 clinical parameters, “whether tumor
involves gastroesophageal junction” and “T stage”; and 14 spatiotemporal PET
(3 intensity, 8 texture, 2 geometry, and 1 volume-intensity) features, suggesting that
all 3 groups of tumor features and all 4 categories of spatiotemporal PET features
contained useful predictors of response. The model performance was stable when
leaving more patients out with five- and two-fold cross-validations compared to
10-fold cross-validation. Only a small reduction in mean AUC (from 1.00 to 0.99
and 0.92) was observed.

Figure 7.3 also shows the sensitivity and specificity obtained from each model
using different groups of features. When the SVM model was used with 10-fold
cross-validation, significantly higher sensitivity was achieved by using all features
including spatiotemporal PET features (100%) than by using conventional PET/CT
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measures (60%) or clinical parameters and demographics (70%) alone (P< 0.001).
Significantly higher specificity (P< 0.001) was achieved as well. Similar results
were obtained when the LR model was used (92% sensitivity, 94% specificity; both
P< 0.001).

For 10-fold cross-validation, the differences between SVM and LR models were
not significant when using any of the four groups of features (P> 0.06). However,
when using selected spatiotemporal PET features or using all features in five- and
two-fold cross-validations, the SVM models demonstrated significantly better results
than the LR models (P< 0.0001 and P< 0.0002, respectively).

7.4.4 Discussion

Analytical predictive models using all features include spatiotemporal PET features
accurately and precisely predicted pathologic tumor response to CRT in 20 patients
with esophageal cancer. It has the potential to be used to safely defer surgery or to give
a higher dose in definitive CRT for patients who respond to CRT. This will ultimately
improve patient’s quality of life while reducing costs.

When using the same feature group and comparing the performance of LR and
SVM models, the results varied from group to group. SVM achieved significantly
higher accuracy than LR when using spatial–temporal PET feature group. The reason
is that this group contained more candidate features, whose complementary relation-
ship for response prediction is hard to identify with LR. On the other hand, SVM
has been proven to be able to extract complex relationships among a large number
of features [51]. Because the candidate feature group of the conventional PET/CT
measures or clinical parameters and demographics contained only 16 features and
because only 1 or 4 features were selected into the optimal subset, LR resulted in bet-
ter results than SVM. The reason is that with this small number of selected features,
it would be difficult for SVM to achieve high accuracy.

Another important aspect of constructing predictive models is to avoid model over-
fitting. To test this, we used different number of patients to train and test our models,
namely 10-, 5-, and 2-fold cross-validations. When leaving more patients out of train-
ing set, the prediction accuracy decreased. However, the AUC was still above 0.90
for SVMall model, suggesting that it was not notably affected by overfitting. The LR
model was not as stable as the SVM model in this case (AUC dropped from 0.90 to
below 0.70).

The limitation is that it is a retrospective analysis of a small patient cohort.
Although 10-, 5-, and 2-fold cross-validations showed that the model was not
notably affected by overfitting, the predictive accuracy and stability of the models
should be validated in a larger, independent patient cohort as shown in Figure 7.2.
Validation is also needed to confirm that the selected features are indeed meaningful
measures and important for response evaluation in esophageal cancer. When the
model is validated, it can be used to more appropriately select patients for surgery,
thus avoiding the mortality and morbidity of surgery in responders for whom surgery
can be safely deferred. The methodology can also be applied to evaluate response
during CRT, which will provide the opportunity for early adjustments to treatment
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strategies that are as follows: giving a higher dose in definitive CRT to responders,
changing the type of chemotherapy, or performing surgery earlier in nonresponders.

7.5 MODELING CLINICAL COMPLICATIONS
AFTER RADIATION THERAPY

Radiation treatment planning requires consideration of competing objectives: maxi-
mizing the radiation delivered to the planning target volume (PTV) and minimizing
the amount of radiation delivered to all other tissues. A limitation of the current plan-
ning approach is that the relationship between the achieved plan dose-volume (DV)
or dose levels and the DV or dose constraint settings is not known a priori. Further-
more, the current planning approach does not allow for inferential determination of
the ideal DV constraint settings that will yield desired outcomes (plan-related com-
plication levels).

We have previously described a multiplan framework, which provides for the gen-
eration of many plans that differ in their DV constraint settings [52]. The rationale
is via the computation of a limited number of plans combined with suitable model-
ing tools that could enable the construction of a plan surface, representing achieved
DV levels for a given OAR as a function of DV constraint settings corresponding to
all involved OARs. The purpose of this section is to describe an approach to guide
the selection of DV constraint settings by predicting plan-related OAR complications
(and achieved DV levels as an intermediate step) as a function of DV constraint set-
tings directly without explicit plan computation [53, 54]. We hypothesize that such a
prediction is possible using predictive modeling. We selected two frequently encoun-
tered OAR complications: xerostomia (dry mouth) in head and neck radiotherapy and
rectal bleeding in prostate radiotherapy.

7.5.1 Dose-Volume Thresholds: Relationship to OAR Complications

Previous research has described the relationships (derived retrospectively) between
plan DV levels and OAR complications. These data served as the “ground truth” for
the actual calculation of OAR complications against which our prediction of OAR
complications is compared. A large knowledge base was generated for one head and
neck case (125 plans were generated by varying the DV constraints on the left parotid,
right parotid, and spinal cord) and one prostate case (256 plans were generated by
varying the DV constraints on the rectum, bladder, and small bowel).

For xerostomia, retrospective studies have shown that specific volumes of the
parotid glands (66%, 45%, and 24%) receiving specific doses (15, 30, and 45 Gy) (Gy
is the symbol for Gray, which is unit of absorbed radiation dose of ionizing radiation)
correlated with posttreatment saliva flow rate [55–57]. Chao et al. [57] presented an
equivalent uniform dose (EUD)-based model to calculate posttreatment saliva flow
rate, which we use as the ground truth for each of the 125 plans. The saliva flow rate
(ml/min) is normalized to that before treatment. The model is

F = [exp(−A ⋅ EUDR − B ⋅ EUD2
R) + exp(−A ⋅ EUDL − B ⋅ EUD2

L)]∕2 (7.2)
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where A and B are fitted parameters (0.0315 and 0.000168, respectively), F is the
expected resulting fractional saliva output, and EUD is the EUD to the left (L) and
right (R) parotids as defined in Equation 7.3.

EUD =

(
1
N

N∑
i=1

Da
i

)1∕a

(7.3)

where N is the total number of voxels corresponding to a given structure, Di is the dose
to the ith voxel, and a is a structure-specific parameter that describes the dose-volume
effect.

For rectal bleeding, retrospective studies have shown a correlation between rectal
bleeding and 25–70% of the rectal volume receiving 60–75 Gy [58–63]. We used
a threshold of 25%/70 Gy to determine a binary classification for the plans in the
prostate case.

7.5.2 Modeling the Radiation-Induced Complications via
Treatment Plan Surface

Our goal is to predict OAR complications (referred to as labels) during the treatment
planning process as a function of the DV constraint settings (referred to as features)
corresponding to all involved OARs. In some cases, in order to accurately predict
treatment-related complications, an intermediate step of modeling achieved plan DV
levels (referred to as plan properties) corresponding to one OAR as a function of DV
constraint settings (features) for the full set of OARs is employed (Eq. 7.4):

plan propertiesOARi = f (featuresOAR1, featuresOAR2,… , featuresOARn) (7.4)

where i corresponds to the OAR whose plan properties are being modeled and n
corresponds to the number of involved OARs. This intermediate modeling step was
utilized in the head and neck case. Plan properties (specifically dose to 24%, 45%,
and 66% of the parotids) were modeled as a function of the input constraint settings
(features) using quadratic functions and employing linear programming data-fitting
tools as described in [52].

The quadratic model of a PTV or OAR property pj would have the following
algebraic form:

pj ∼ kj + lju + u′Mju (7.5)

where j indexes the plan properties; u is a vector of variables corresponding to the
constraint settings that were varied to generate the knowledge base; and kj (a scalar),
lj (a vector), and Mj (a symmetric matrix) are fitting parameters. This is a second-order
Taylor approximation of a multivariate function representing the property as a func-
tion of the constraint settings. The fitting parameters were computed using linear
programming optimization to minimize the maximum relative error of the fit of the pj
values of the plans. (We minimized the maximum relative error instead of minimizing
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the sum of squared errors because the former limits the largest error in comparison
with minimizing average-squared error.) Thus, the quadratic model includes terms of
the form muk

2 and 𝜇ukul, where m and 𝜇 correspond to entries of the matrix Mj.
These terms yield a second-order model that takes into account the combined

effects of the interaction of pairs of constraint settings.
The problem of determining the model parameters that minimize the maximum

relative error is stated as an unconstrained optimization problem:

Minimize
{

maxi

(|||pi
j − kj + lju

i + ui′Mju
i||| ∕pi

j

)}
(7.6)

where i denotes a plan index and the optimization is performed with respect to the set
of variables consisting of the unknown model parameters kj, lj, and Mj. This problem
can be solved by applying standard linear programming software (such as CPLEX)
to the equivalent problem:

Minimize y

such that − y ≤ (
pi

j − kj + lju
i + ui′Mju

i
)
∕pi

j ≤ y

for i = 1,… ,N

where N is the number of plans. Linear programming problems of the corresponding
size are solved in a fraction of a second with current software.

Then we use ML algorithms to predict treatment-related complications for an OAR
as a function of DV constraint settings (features) corresponding to all involved OARs
and modeled achieved dose and dose-volume levels (plan properties) corresponding
to the OAR in question if necessary as input (Eq. 7.7).

ComplicationsOARi = g(featuresOAR1,… , featuresOARn, plan propertiesOARi)

= g(features, f (features)) (7.7)

The goal of ML in this research is to build and validate the numerical prediction or
decision models (described in Eq. 7.7) from the knowledge base. The knowledge base
is the collection of plans arising from our multiplan framework coupled with proper-
ties of those plans. In summary, 11 inputs (5 features and 3 predicted plan properties
for each parotid) were used to predict saliva flow rate in the head and neck case and
5 inputs (5 features) were used to predict Grade 2 rectal bleeding complication in
the prostate case using ML. These inputs to the ML algorithms are summarized in
Table 7.1.

The SVM algorithm and decision tree method as described in previous section
were used for predictive modeling. Although both approaches were tested for each
of the two cases, it was determined that SVMs yielded superior results in predict-
ing saliva flow rate and decision trees yielded superior results in predicting rectal
bleeding.
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TABLE 7.1 Input Variables Used in Modeling the Achieved Dose-volume and Dose
Levels in the Head and Neck Case and the OAR Complications in the Head and Neck
and Whole Pelvis Case

Input Variables (Dose Settings at Following Volume Levels)

Head and neck 33%
Left parotid

66%
Left parotid

33%
Right parotid

66%
Right parotid

Maximum
Cord

Pelvis/prostate 25%
Bladder

50%
Bladder

25%
Rectum

50%
Rectum

30%
Bowel

7.5.3 Modeling Results

The results for predicted saliva flow rate using the SMO algorithm are shown in
Figure 7.4. The x-axis was the actual flow rate (normalized to the pretreatment
saliva flow rate) for each of the 125 plans in the knowledge base (plans were sorted
according to increasing saliva flow rate). The actual saliva flow rate was obtained
using Equation 7.2. The y-axis was the mean predicted saliva flow rate obtained
from the twofold cross-validation process. From Figure 7.4, it can be seen that the
normalized saliva flow rate ranged from 20% to 30% for the case considered. The
further a point is from the diagonal (which represents equality of actual and predicted
values), the larger the prediction error is. The mean absolute error (averaged over
cross-validations) for saliva flow rate prediction compared with the ground truth
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Figure 7.4 Comparison of the mean-predicted saliva flow rate to the actual saliva flow rate.
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Figure 7.5 Decision tree for Grade 2 rectal complication classification – an example.

obtained from the EUD-exponential model in Equation 7.3 was 0.42% with a 95%
confidence interval [0.41%, 0.43%].

Figure 7.5 shows a representative decision tree resulting from twofold
cross-validation method applied to the 256 prostate treatment plans. Each decision
node of the tree represents one dose-volume histogram (DVH) constraint, which is
an input to the planning system. For example, 25Bldr is the DVH constraint setting
for 25% of the bladder volume. The number on the branches shows the dose-level
partitions. Each leaf node represents a classification result, and the number in
parenthesis is the number of instances that were classified correctly/incorrectly.
Each leaf node corresponds to the set of inequalities on the path from the top-most
node to that leaf. Using twofold cross-validation 50 times, we achieved an average
classification accuracy of 97.04% with a 95% confidence interval of [96.67%,
97.41%] for Grade 2 rectal bleeding.

Figure 7.6 shows an example of the resulting plan surface for the prediction of
normalized saliva flow rate as a function of the DV constraints using the approach
described in this work. The contours in each plot correspond to the percentage
saliva flow rate normalized to the pretreatment saliva flow rate as a function of
DV constraint settings for two of the OARs and a fixed constraint setting for the
third OAR. It can be observed that the plot for saliva flow rate as a function of the
DV constraint settings on one parotid gland (left or right) and the maximum dose
constraint to the spinal cord for a fixed DV constraint setting for the other parotid
gland is near linear or near quadratic.
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Figure 7.6 Prediction of saliva flow rate as a function of the dose constraint settings for
the three OARs: (a) fixed cord constraint, ranges for left parotid (LP) and right parotid (RP),
(b) fixed RP constraint, ranges for cord and LP, and (c) fixed LP constraint, ranges for cord
and RP.

Figure 7.7 shows an example of the resulting plan surface for the prediction of
Grade 2 rectal complications. The shaded region in the plot corresponds to the compli-
cation region for a range of DV constraint settings for two OARs and a fixed constraint
setting for the third OAR. We attribute the unshaded region (lack of rectal bleeding)
in Figure 7.7 corresponding to an increase in the bladder and bowel settings to an
associated dose transfer to the bladder and bowel and reduced dose to the rectum.
These results are examples of how the prediction of OAR complications can guide
the selection of DV constraint settings for all OARs.
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Figure 7.7 Prediction of Grade 2 rectal complications as a function of the dose constraint
settings when fixing rectum constraint and ranging for bladder and bowel.

7.6 MODELING TUMOR MOTION WITH RESPIRATORY
SURROGATES

Advances in radiation therapy for cancer have made it possible to deliver confor-
mal doses to the tumor while sparing normal healthy tissues. However, one of the
difficulties radiation oncologists face is targeting moving tumors, such as those in
the thorax, which can change position during normal respiration. Tumor motion can
be determined by directly monitoring tumor position using continuous X-ray imag-
ing or electromagnetic transponders placed in the tumor that emit a signal. These
approaches require potentially unnecessary radiation to the patient or acquisition of
expensive technology. Alternatively, one can image the patient intermittently to deter-
mine tumor location and external markers placed on the patient’s torso. The external
surrogates can then be used to determine an inferential model that would determine
the tumor position as a function of external surrogates. These external surrogates can
be monitored continuously in order to determine the real-time position of the tumor.
In order to do that, it is necessary to know whether the relationship between internal
tissue motion and external tissue motion is constant during a single treatment fraction.
In this section, we evaluate a machine learning algorithm for inferring intrafraction
tumor motion from external markers using a database obtained via the Cyberknife
Synchrony™ system [64].

7.6.1 Cyberknife System Data

The Cyberknife Synchrony system intermittently localizes fiducials implanted in or
near the tumor using fluoroscopy and models tumor positions from continuously



�

� �

�

212 PREDICTIVE MODELING IN RADIATION ONCOLOGY

tracked optical marker positions. We analyzed a database of Cyberknife system files
comprising 128 treatment fractions from 62 lung cancer patients, 10 treatment frac-
tions from 5 liver cancer patients, and 48 treatment fractions from 23 pancreas cancer
patients. The Cyberknife files for each fraction included both the 3D positions of
three optical markers affixed to the abdomen and/or chest and the 3D positions of
the centroid of a set of three fiducial markers implanted in or near the tumor (deter-
mined through fluoroscopic imaging). Each fraction contained 40–112 (mean= 62)
stereoscopic radiographs acquired over a mean treatment fraction of 64 min.

7.6.2 Modeling for the Prediction of Tumor Positions

In this tumor position prediction context, the knowledge base is the collection of posi-
tions from different external markers coupled with properties of those markers (actual
position of the tumor). The model that is constructed below for numerical prediction
(real coordinates) employs multivariate quadratic functions (whose input features are
coordinates of external markers). The outputs of the model are the properties that are
of interest – in this case, true position of tumor represented by fiducial markers. The
method that we used to predict the continuous value of positions is SMO for training
a support vector regression model as described in previous section.

We also performed an empirical approach to reduce the knowledge base size (i.e.,
number of fluoroscopic image acquisitions) based on machine learning approaches.
The size of the training data corresponds to the knowledge base, the number of fluoro-
scopic image acquisitions required to obtain the model. We used 50%, 25%, 12.5%,
6% of the full knowledge base as training data and the rest of knowledge base as
testing data. For each fractional value, 20 random samples of the corresponding size
were used as training sets. Mean absolute prediction errors in millimeter (mm) were
reported.

7.6.3 Results of Tumor Positions Modeling

We tested our method on three motion directions of tumors (superior–inferior (SI),
medial–lateral (ML), and anterior–posterior (AP)) of the three types of cancer: lung,
liver, and pancreas. Each motion direction was modeled separately. The detailed
results are shown in Table 7.2. From Table 7.2, we can see that the predicted errors
using machine learning increased monotonically when using fewer data points in the
training set. We can achieve less than 2–3 mm error with 5–15 training data points for
all three tumor sites. Based on real-time application experience, we believe that using
12.5% of the full knowledge base (eight data points on average) can provide enough
prediction accuracy, which corresponds to eight fluoroscopic image acquisitions.

Figure 7.8 shows the details of prediction errors when using about eight data points
as training set in machine learning algorithm. We can see that tumor motions on the
medial–lateral directions can be predicted with the highest accuracy. Prediction accu-
racy on anterior–posterior directions is the second highest and on superior–inferior
direction is the lowest. From Figure 7.8, there is no clear evidence showing which of
the three tumor sites could be modeled more accurately.
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TABLE 7.2 Tumor Motion Prediction Error Summary (in mm)

Lung Liver Pancreas

SI ML AP SI ML AP SI ML AP

50% 0.8 0.7 0.8 0.9 0.5 0.6 0.9 0.8 0.8
25% 0.9 0.8 0.9 1.1 0.6 0.6 1.0 0.9 0.9
12.5% 1.2 0.9 1.1 1.5 0.8 0.9 1.3 1.1 1.1
6% 2.1 1.7 2.0 3.0 1.4 1.6 2.2 1.8 1.8
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Figure 7.8 Prediction summary using 12.5% of full knowledge base as a training set for lung,
liver, and pancreas cases.
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Figure 7.9 Prediction error distributions with 12.5% of full knowledge base as a training set.

We further investigated the results by looking at the distributions of the prediction
errors. Figure 7.9 shows the box plot of these errors. The lines in the middle of each
box in the figure were the median of the errors of the predictions, and the lower and
upper edges of boxes represented 25% and 75% quantiles. The whiskers were esti-
mated extreme ranges of the predictions (not considering outliers). The points outside
the whiskers were outliers. The notches within the boxes were 95% confidence inter-
vals on the median. From Figure 7.9, we see that the stability of machine learning
algorithm varied when applied to different tumor sites: there were more outliers for
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Figure 7.10 Error distributions of lung tumor position prediction within different locations.

the lung cases than liver and pancreas cases, and the outliers ranged from more than
2 mm to 1 cm.

Because more prediction outliers occurred for lung patients, we plotted the error
distributions for different tumor locations within the lung patients (Fig. 7.10). From
Figure 7.10, we noticed that for the left and right lower lobe the outliers were less
than 8 mm, for the right upper lobe the outliers were less than 5 mm and for the right
middle lung the outliers were less than 3 mm. For other locations, the outliers spread
to 1 cm. Most outliers occurred for the left upper lobe and other locations. This pro-
vided information about which tumor location in the lung had a better chance to be
modeled accurately.

7.6.4 Discussion

Our aim for this initial research was to investigate predictive modeling as a method
for creating models of instantaneous tumor positions based on a limited number of
fluoroscopic image acquisitions. By minimizing image acquisitions, we decrease the
in-room time for the patient and improve the efficiency of treatment delivery. We were
able to achieve accurate intrafraction motion modeling using eight (mean error less
than 2 mm) samples corresponding to individual image acquisitions. Thus, our results
indicate that ML algorithm shows potential for use in intrafraction motion modeling
in real-time systems.

In practice, model errors could increase over time due to tumor–surrogate rela-
tionship changes. This effect could be overcome by updating the model during the
treatment fraction. Intrafraction model updates have been utilized by tracking sys-
tems such as Cyberknife Synchrony, but model updates are not common in clinical
treatment protocols. The ML algorithm represents the state of the art in indirect tumor
localization algorithms. In addition to its accuracy, ML requires only milliseconds to
derive tumor position from surrogate data. This shows that it can be an ideal candidate
for real-time applications. Decreased measurement precision in either gold-standard
tumor localizations or external surrogate measurements was found to have consider-
able impact on model accuracy.

We also evaluated the patient-specific, fraction-specific, and site-specific factors.
The results did not differ between lung, liver, and pancreas cancers. Furthermore, the
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model error was not found to be significantly associated with fraction index. Patient
index, on the other hand, was significantly associated with model accuracy. The prac-
tical implication of these results is that the design of a study to evaluate tumor motion
models should use a large enough group of patients to obtain statistically signifi-
cant results; multisite and interfraction data are less important unless a model will be
applied without revision on multiple treatment days.

7.7 CONCLUSION

We live in an era of “Big Data”: rapid development in science and technology from
genomics and proteomics research is available to researchers and clinicians. With
high-throughput/high-performance computing power, we are capable of delivering
societal expectations of personalized patient care. This is especially relevant in the
clinical management of cancer. Cancer is a leading cause of death worldwide, and
most patients go through radiation therapy during their treatment. As complex as can-
cer is, we have shown that the predictive modeling technique has the ability to provide
information to physicians for better diagnostic, more accurate treatment delivery and
to predict radiotherapy response so that personalized treatment can be developed.

In conclusion, this book chapter provides an up-to-date review of the state of the art
in several key elements of applied predictive modeling in Radiation Oncology, which
is of special importance for the treatment of cancer. It makes the case for collabora-
tive efforts between technical and scientific disciplines, such as operations research,
healthcare informatics, data analytics, machine learning, and, beyond them, the clin-
ical arena.
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8.1 BACKGROUND

Sepsis, currently defined as a systemic inflammatory response (SIR) in the presence
of an infectious agent or trauma, is increasingly being considered an exaggerated,
poorly regulated innate immune response to microbial products [1, 2]. The progres-
sion to severe sepsis is marked by the generalized hypotension, tissue hypoxia, and
coagulation abnormality [1]. Severe sepsis can further develop into septic shock under
the long-lasting severe hypotension [1] and ultimately lead to the death.

Severe sepsis and septic shock during an infection are the major causes of death
in an intensive care setting [3]. There is an average of 250,000 deaths per year in the
United States caused by sepsis [4]. Among patients in intensive care units (ICUs),
it ranks as the second highest cause of mortality [5] and the 10th leading cause
of death overall in the United States [6]. Average of 750,000 sepsis cases happen
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annually and is increasing [5]. In addition, the quality of life for sepsis survivors
is significantly reduced [5, 7]. Care of patients with sepsis costs can be as much as
$60,000 per patient. This cost results in a significant healthcare burden of nearly
$17 billion annually in the United States alone [8]. The development of sepsis in
a hospitalized patient can lead to a longer length of stay in the hospital, which
implies stiffer financial burden. Cross and Opal [9] in their research pointed out
“the availability of rapid and reliable assays that could be used to quickly identify
the stage or severity of sepsis and to monitor therapy may optimize the use of
immunomodulatory therapy.” However, no such assays are available because the
complex nature of the inflammatory response and the unpredictable nature of septic
shock in individual patients render the effect of targeting isolated components of
inflammation with supportive therapy difficult to predict [9, 10].

The human immune response evolves to protect the body from infection by
harmful pathogens found in the environment [11]. This response is characterized
by the activation and mobilization of white blood cells, the release of cytokines,
and the modification of the vascular and lymphoid tissue [12, 13]. Unfortunately,
the activation of the immune system can become dysregulated and the immune
responses or acute inflammatory responses (AIR) can become pathogenic. Indeed,
an uncontrolled AIR may lead to possible sepsis or septic shock. Whether a patient
will progress to sepsis, severe sepsis, or even septic shock is determined by a cascade
of immune system components. These include pro-inflammatory cytokines such as
tumor necrosis factor-𝛼 (TNF-𝛼); interferon gamma (IFN-𝛾); interleukins (IL)-1,
IL-6, IL-8; and high motility group box-1 (HMGB-1) [9, 14]. These cytokines are
released to recruit more activated phagocytes to the location of infection to help
eliminate the causal pathogen(s). Unfortunately, this process likely causes tissue
damage [15]. In addition, anti-inflammatory cytokines such as IL-1ra, IL-4, IL-10,
IL-6 and transforming growth factor-𝛽 (TGF-𝛽) are also released to serve as negative
regulators of the response [15, 16].

Recent data indicate that the interactions between anti-inflammatory responses and
pro-inflammatory responses determine the prognosis of AIR [16, 17]. More specifi-
cally, the presence of HMGB-1, which reaches its peak concentrations around 8–12 h
after it is induced by TNF-𝛼, may be a key component in the progression of AIR.
If the level of HMGB-1 remains elevated for long periods of time, the patient may
be at risk for more severe AIR or developing sepsis [18–20]. Also, clinical experi-
ments have demonstrated that monoclonal antibody therapy against HMGB-1 eleva-
tion can prevent septic patients from organ damage and subsequent organ dysfunction
in trials of both animals and humans [21–25]. Anti-inflammatory cytokines such as
IL-4, IL-10, IL-13, and IL-14 also play crucial roles in inhibiting the production
of pro-inflammatory cytokines and in turn slowing down the progression of AIR
[26, 27]. For example, circulating levels of IL-6 can be used to predict the severity
of acute respiratory distress syndrome, sepsis, and the associated acute pancreatitis
[28]. Clearly, the levels of pro- and anti-inflammatory mediators are closely linked to
the development of severe sepsis and septic shock.

As mentioned earlier, the levels of cytokines and their presence over time
play very important roles in AIR and the development of sepsis; however, there
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is little data on the quantitative relationships of the cytokine network, which
can be used to predict the progression of disease. Kumar et al. [29] presented a
simplified three-equation SDMM to describe mathematical relationships between
pathogen, early pro-inflammatory mediators, and late pro-inflammatory mediators,
respectively. However, the model is overly simplified and fails to represent the
overall prognosis of AIR. It lacks several key components including phagocytes,
anti-inflammatory cytokines, and the resultant tissue damage. Later, Reynolds
et al. [30] proposed a mathematical model for AIR that included a time-dependent,
anti-inflammatory response in an attempt to provide insights into a variety of
clinically relevant scenarios associated with the inflammatory response to infection.
However, this model missed essential mathematical expression of early and late
pro-inflammatory mediators (TNF-𝛼) and (HMGB-1) that are important biomarkers
used in the progression of sepsis during treatments.

The collective disadvantage of current existing mathematical models is that they
are incomplete. They only represent some of the essential factors in AIR. There-
fore, to improve on current models, we have developed a 14-equation SDMM in an
attempt to incorporate the most critical variables involved in the development of the
septic response and the innate immune system during the AIR. In particular, we have
included equations to represent pathogen load, phagocyte (including neutrophils and
monocytes) activation, early and late pro-inflammatory cytokine mediators, tissue
damage, and anti-inflammatory cytokine mediators.

8.2 SYSTEM DYNAMIC MATHEMATICAL MODEL (SDMM)

A mathematical model currently being developed as a dynamic knowledge represen-
tation may be a powerful tool to help understand the complex local and global dynam-
ics of AIR and the development of sepsis. Using a series of known and hypothesized
kinetics of biochemical and immunological components from the existing literature,
this approach provides a comprehensive attempt to model the progression of sep-
sis. This method combines conventional logistics dynamics, the laws of mass action,
Michaelis–Menten kinetics, and their nonlinear transformations into ordinary differ-
ential equations. We propose this modeling technique to describe AIR and the SIR
processes by measuring either the steady state or changes of the various components
during simulated inflammatory responses.

The first step in our analysis was to create a mathematical model to reflect the
global dynamics of sepsis. The variables were selected based on what is known about
the molecular and physiological mediators that are important to the development of
sepsis. We initially validated the mathematical model by comparing the model out-
comes to data from actual experiments. If the results did not match, equations were
rewritten or the model was reconfigured to adjust relationships between the compo-
nents (indicators). After the initial validation, we conducted sensitivity and stability
analyses (based on bifurcation theory). The goal was to identify which parameters and
processes were critical in influencing modeled outcomes. We believe that construc-
tion of the mathematical model for exhibiting various outcomes and facilitating the
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Figure 8.1 Framework of the system dynamic mathematical model.

understanding of complex interactions between various components in AIR and SIR
response will be one of the most difficult and fundamental steps of using the math-
ematical model in the future as a platform to generate experiment-dependent results
by incorporating a large amount of experimental data. In order to help on reading, we
have summarized a framework of the mathematical model in Figure 8.1.

8.3 PATHOGEN STRAIN SELECTION

We chose Salmonella as a “targeted” pathogen strain in our mathematical model and
simulated immune responses to Salmonella in the liver of mice. We chose Salmonella
because it is Gram-negative bacteria and Salmonella sepsis widely impacts devel-
oping countries, commonly occurred in young children [31]. Furthermore, immune
responses to Salmonella sepsis have been investigated in mice’s experiments for past
several years [32–37], and hence it is effective for us to get either data or evidence
support for our mathematical model.

8.3.1 Step 1: Kupffer Local Response Model

Macrophages are one of first lines of the innate host defense system against bacterial
pathogens. They are important because not only are they antimicrobicidal cells but
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also they play a role in the initiation of the adaptive immune response [38]. Therefore,
macrophages often determine the outcomes of an infection [38]. In septic responses,
the liver frequently plays a major role in host defense [39]. Furthermore, hepatic
macrophages (also known as Kupffer cells or resident liver macrophages) constitute
80–90% of tissue resident macrophages in the body and significantly influence the
propagation of liver inflammation [40, 41]. Majority of bacteria that enter the blood
stream are taken up and eliminated by Kupffer cells within the liver [42]. During
the initial stage of an AIR, Kupffer cells will eliminate the pathogens, specifically
Salmonella, during the local immune responses.

The Kupffer cell-related local immune response was defined as the interactions
between the pathogen and Kupffer cells [40] and was modeled as follows:

dP
dt

= kpgP

(
1 − P

P∞

)
− rpmk

[Pn]
[Pn + kn

c1]
MkfP

∗ (8.1)

dMkf

dt
= kmkMkf

(
1 −

Mkf

K∞

)
+ kmkubMkb −

[Pn]
[Pn + kn

c1]
MkfP

∗ − umkMkf (8.2)

dMkb

dt
= [Pn]

[Pn + kn
c1]

MkfP
∗ − kmkubMkb (8.3)

In Equation 8.1, P denotes the pathogen load. kpg represents a constant growth
rate for pathogens and P∞ represents maximum carrying capacity of the pathogen.
The parameter rpmk represents phagocytosis rate of Kupffer cells when Kupffer cells
start to engulf pathogens. Although phagocytosis rate is dependent on time in a
slow S-shaped curve [43], the phagocytosis rate changes only slightly per hour if we
assume that the phagocytosis rate versus time is linear, and therefore we relaxed this
condition in our model and assumed it was constant [43]. Equation 8.2 represents
the changes of the Kupffer cells over a unit time period, and Mkf denotes the amount
of Kupffer cells resided in the liver available for pathogen binding. The parameter
term, kmk, represents a constant proliferation (replenishment) rate for Kupffer cell
population and K∞ represents the maximum carrying capacity of Kupffer cells. The
parameter term, kmkub, represents the unbinding rate of binding Kupffer cells and
umk represents the killing rate of free Kupffer cells induced by binding to intruding
pathogens.

Here, a standard logistic function is used to model the pathogen population growth
with limited maximal carrying capacity, which is the first term

(
kpgP

(
1 − P

P∞

))
in

Equation 8.1 [44]. The second term of Equation 8.1 models the local Kupffer cell
responses, the decrease in pathogen population phagocytized by initial tissue resi-
dent macrophages (Kupffer cells). This process includes two steps: pathogen–ligand
binding to the receptors of Kupffer cells and the actual phagocytosis by Kupffer cells.
We used a Hill-type function and receptor–ligand kinetics to model the two basic
steps [34, 38, 40, 45–47]. First, we define the rate of pathogen binding to Kupf-
fer cells as a Hill-type function ( [Pn]

[Pn+kn
c1
] ). Here, n represents a strong affinity of

pathogen binding to Kupffer cells and kc1 is the pathogen concentration occupying
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half of Kupffer cell receptors. Second, we modeled pathogen to Kupffer cell receptors
using receptor–ligand kinetics ( [Pn]

[Pn+kn
c1
]MkfP

∗), where P* represents pathogen con-

centration. We determined the pathogen concentration using the number of pathogens
divided by the maximum carrying capacity of pathogen (108 cells in mouse [37]).
The final variable to determine the pathogen is the phagocytosis rate of pathogens by
Kupffer cells (represented by rpmk) times the portion of pathogens binding to Kupffer

cells ( [Pn]
[Pn+kn

c1
]MkfP

∗).

We assumed that Kupffer cells population growth followed a standard logistic
growth pattern with a constant proliferation (replenishment) rate denoted as kmk, and

a maximal carrying limit, K∞, represented by the first term
(

kmkMkf

(
1 − Mkf

M∞

))
in Equation 8.2. Since the binding of a pathogen did not preclude the phagocytosis
of additional bacteria after the completion of phagocytosis, we used receptor–ligand
kinetics to model the release of Kupffer cells from the binding complex, which is rep-
resented by the second term (kmkubMkb) in Equation 8.2, and kmkub representing the
rate of the motile enterobacteria (i.e., Salmonella) are phagocytosed by the free Kupf-
fer cells and are made available for additional interactions with motile enterobacteria.
The decreasing number of free Kupffer cells is due to two things: the free Kupffer

cells binding to pathogen, which is described by the third term

(
[Pn]

[Pn+kn
c1
]MkfP

∗
)

,

also the natural decay of free Kupffer cells represented by the fourth term (umkMkf)
in Equation 8.2. The free Kupffer cells become binding Kupffer cells once they bind

to pathogen, which is described by the first term

(
[Pn]

[Pn+kn
c1
]MkfP

∗
)

in Equation 8.3.

The second term (kmkubMkb) in Equation 8.3 measures decreasing (releasing) por-
tion of binding Kupffer cells. The definition of parameters and the corresponding
experimental data for each system parameter in Kupffer local response model are
summarized in Table 8.1.

Experimental results show that 50% Salmonella are phagocytosed by Kupffer cells
in liver, and we used this fact to determine the number of Kupffer cells that phago-
cytoses half of Salmonella equal to the number of Kupffer cells in the liver [35].
Experimental data also show that Salmonella ingestion can kill macrophages, and
such macrophages will no longer return to the active state for pathogen binding if
they are killed [36]. Our assumption was that the “dissociation” rate of Kupffer cells is
equivalent to 1-infected rate of Kupffer cells. This is based on data showing that Kupf-
fer cell activity could range from 0.1 to 0.77 from known infection rates [36]. Other
parameters are either directly derived from published observations in the literature or
will be estimated from our model. Our sensitivity analysis revealed that this system
is highly sensitive to the proliferation (replenishment) rate of Kupffer cells (kmk).

The data are represented by plotting the number of motile enterobacteria and Kupf-
fer cells (arbitrary units) versus time (hours) based on the variation in the proliferation
rate (including the growth rate of Kupffer cells, as well as the recruitment rate of
monocytes from the blood vessels) of Kupffer cells (kmk) in Figure 8.2a and b.

Figure 8.2 indicates that Kupffer cells alone are not able to resolve an infection
when the “proliferation rate” of Kupffer cells is less than 0.5/h. In this simulation, all
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TABLE 8.1 Definition of Parameters and Experimental Values in Kupffer local
Response Model

Parameters Description Value References

kpg Salmonella growth rate 1.2–3.6/h [33]
P∞ Salmonella carrying capacity 108 cells [37]
rpmk Rate at which pathogens are killed by

Kupffer cells
0.03/Kupffer cell/h [35]

n The extent of Salmonella binding to
Kupffer cells

2 Estimated

kc1 Number of Kupffer cells that
phagocytose half of Salmonella

0.03cells∕h [35]

kmk Proliferation rate of Kupffer cells under
inflammation

0.015–2/h Estimated

K∞ Kupffer cells carrying capacity
(16–20) × 106cells

g liver
[48]

kmkub Unbinding rate of binding Kupffer cells 0.1–0.77/h [36]
umk Killing rate of free Kupffer cells

induced by binding to pathogens
0.23–0.9/h [36]
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Figure 8.2 (a) Concentration of pathogen load versus time, for three different proliferation
rates of Kupffer cells in Kupffer local response model. (b) Concentration of Kupffer cells versus
time, for three different proliferation rates of Kupffer cells in the Kupffer local response model.
The horizontal axes represent the time in hours, and the vertical axes represent concentration
in arbitrary units.

Kupffer cells are phagocytosing pathogens and there are no Kupffer cells available
to phagocytose additional motile enterobacteria, and hence phagocytosis fails to
continue. However, the pathogen could be cleared completely if Kupffer proliferation
rate is set relatively high. In our model, we assume that the proliferation rate of
Kupffer cells in the liver comprises two parts: the natural growth rate of Kupffer cells
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and the recruiting rate of monocytes from the nearby blood vessels. The results of the
experimental studies show that the local growth rate of Kupffer cells is low and stable
with 0.015/h [49, 50]. Therefore, we conclude that the increase in proliferation rate of
Kupffer cells is due to the increasing recruitment rate of monocytes from blood ves-
sels, with those recruited monocytes contributing to the clearance of local infection.
Based on our simulation results, we could further inference that Kupffer cells are not a
major responder to resolve an overwhelming AIR episode, which allows us to model
the effects of other immune cells during AIR such as neutrophils and monocytes.

8.3.2 Step 2: Neutrophils Immune Response Model

The results in the Kupffer immune response model show that Kupffer cells may
not be sufficient to eliminate the infection, especially when the local infection is
overwhelming. The Kupffer cells in local immune response release pro-inflammatory
cytokines such as TNF-𝛼, which contribute to the recruitment of neutrophils in the
circulation and accumulation of neutrophils in the liver (transmigration) [51–53]. The
transmigration can be mediated by a chemokine gradient (e.g., TNF-𝛼, IL-1, CXC
chemokines, and PAF) established toward the hepatic parenchyma that generally
involves the adhesion molecules on neutrophils (𝛽2 integrins) and on endothelial
cells (intracellular adhesion molecules, ICAM-1). After transmigration, neutrophils
adhere to distressed hepatocytes through their 𝛽2 integrins and ICAM-1 expressed
on hepatocytes. Neutrophils contact with hepatocytes mediate oxidative killing
of hepatocytes by the initiation of respiratory burst and neutrophil degranulation
leading to hepatocellular oncotic necrosis. Neutrophils, as a double-effect mediator,
will either phagocytose pathogens or induce tissue damages by killing distressed
hepatocytes [53]. Furthermore, activated neutrophils (priming) will release TNF-𝛼
and therefore recruit even more neutrophils to the site of infection [54]. The release
of cytokines follows trafficking machinery, and the cytokines are released via
protein–protein interactions initiated by the ligand binding to the receptors [55, 56].
The mechanism of cytokine release is depicted in Figure 8.3.

During the process of cytokine release, R-SNARE protein complex on the mem-
brane of the secretory organelle will interact with Q-SNARE protein complex on the
membranes of different types of immune cells, which allows membrane fusion and
extrusion of cytokines from the granule interior [55]. We model a protein–protein
interaction as Michaelis–Menten kinetics [57] and derive our neutrophil immune
response model as follows.

dP
dt

= kpgP

(
1 − P

P∞

)
− rpmk

[Pn]
[Pn + kn

c1]
MkfP

∗ − rpn
[Pn]

[Pn + kn
c2]

(Nf + Nb)P∗

(8.4)

dMkf

dt
= kmkMkf

(
1 −

Mkf

K∞

)
+ kmkubMkb −

[Pn]
[Pn + kn

c1]
MkfP

∗ − umkMkf (8.5)

dMkb

dt
= [Pn]

[Pn + kn
c1]

MkfP
∗ − kmkubMkb (8.6)
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Figure 8.3 Mechanism of cytokine release.

dT
dt

=
(

rt1maxMkb

mt1 + Mkb

)
Mkb +

(
rt2maxNb

mt2 + Nb

)
Nb − utT (8.7)

dNR

dt
= krdNR

(
1 −

NR

NS

)
− r1NR(T + P)∗ − 𝜇nrNR (8.8)

dNf

dt
= r1NR(T + P)∗ + knubNb −

[Pn]
[Pn + kn

c2]
Nf P

∗ − 𝜇nNf (8.9)

dNb

dt
= [Pn]

[Pn + kn
c2]

Nf P
∗ − knubNb (8.10)

dr1

dt
= kr1(1 + tanh(N∗

f )) − 𝜇r1r1 (8.11)

Equation 8.4 is further derived from Equation 8.1 in the Kupffer local immune
response by incorporating the phagocytotic effects of neutrophils, which is rep-
resented by term rpn

[Pn]
[Pn+kn

c2
] (Nf + Nb)P∗. Details about parameters are defined in

Table 8.2. Equations 8.5 and 8.6 are cited from Equations 8.2 and 8.3.
Equation 8.7 represents the changes of the pro-inflammatory cytokines (denoted

by T) such as TNF-𝛼, released by binding both tissue resident Kupffer cells (Mkb) and
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TABLE 8.2 Definition of Parameters and Experimental Values in Neutrophils
Immune Response Model

Parameters Description Value References

rpn Rate at which pathogens are killed by
neutrophils

20–100/
neutrophil/h

[58]

rt1max The maximum number of TNF-𝛼 being
released by Kupffer cells per enzyme
molecule per hour

10/h Estimated

rt2max The maximum number of TNF-𝛼 being
released by neutrophils per enzyme
molecule per hour

1,000/h Estimated

mt1 Number of Kupffer cells at which the
reaction rate is half of maximal
production rate

10,000 cells Estimated

mt2 Number of activated neutrophils at which
the reaction rate is half of maximal
production rate

10,000 cells Estimated

kc2 Concentration of neutrophils which
phagocytose half of Salmonella

About1.5 × 10−4

h
[59]

ut Degradation rate of TNF-𝛼 0.025–0.5/h
(measured in

kidney)

[60]

krd Influx rate of neutrophils into blood vessel 0.1–0.72∕h [61]
Ns Maximum amount of neutrophils in liver 3.5 × 105 [42]
𝜇nr Apoptotic rate of resting neutrophils 0.069–0.12/h [62]
𝜇n Apoptotic rate of activated neutrophils 0.05/h [62]
knub Unbinding rate of activated neutrophils 0.01–0.5/h Estimated
kr1 Auxiliary parameter associated with the

activation rate of resting neutrophils
3/h Estimated

ur1 Degradation rate of parameter r1 to
maintain a slow saturation curve

0.003/h Estimated

activated neutrophils (Nb) along with a constant degradation rate (ut). Since TNF-𝛼
was released after pathogens binding to the receptors of tissue resident macrophages
or neutrophils, we model the process of TNF-𝛼 release as a combination of
Michaelis–Menten kinetics and receptor–ligand kinetics [12]. In Equation 8.7, the
release of TNF-𝛼 from Kupffer cells is initiated by a receptor–ligand kinetics and
secondly following enzymatic kinetics (Michaelis–Menten) represented by the
term

(
rt1maxMkb
mt1+Mkb

)
where rt1max represents the maximal production rate of TNF-𝛼 by

binding Kupffer cells. It is well known that the release of TNF-𝛼 is a combined effect
of both receptor–ligand kinetics and enzymatic kinetics, therefore, we incorporate
both terms together

(
rt1maxMkb
mt1+Mkb

)
Mkb in the model to represent the combined effects

of the TNF-𝛼 releasing processes. Similarly, we use the same principle to model
the release of TNF-𝛼 contributed by activated neutrophils in the second term in



�

� �

�

PATHOGEN STRAIN SELECTION 231

Equation 8.7. The third term in Equation 8.7, utT , measures the degradation of
TNF-𝛼, with ut representing the degradation rate of TNF-𝛼.

In Equation 8.8, the first term krdNR

(
1 − NR

NS

)
is a standard logistic function to

measure the increase in number of resting neutrophils per time unit (hour), which
is represented by the influx of neutrophils into blood vessel per hour. The second
term r1NR(T + P)∗ describes that the decrease in the number of resting neutrophils
per time unit is due to neutrophils’ activation process promoted by pro-inflammatory
mediator TNF-𝛼 where T∗ denotes the concentration of TNF-𝛼 and P∗ denotes the
concentration of pathogens [52–54]. The third term in Equation 8.8 𝜇nrNR represents
the natural decay of resting neutrophils, and unr is defined as the apoptotic rate of rest-
ing neutrophils per time unit in hours. In Equation 8.9, the first term exactly equals to
the second term in Equation 8.8 since the increase in the population of activated neu-
trophils results directly from the population of resting neutrophils being activated.
The second term of Equation 8.9 used mass action kinetics (knubNb) to model the
release of activated phagocytes from the binding complex and make activated phago-
cytes available for additional interaction with pathogens, where Nb represents the
binding complex and knub represents the rate of activated phagocytes releasing from
the binding complex. The third term of 8.9, similar to the third term in Equation 8.8
models the natural apoptosis of activated neutrophils.

Equation 8.10 is similar to the derivation of Equation 8.3 in Kupffer local
response model. We used a hyperbolic tangent function in Equation 8.11 to represent
a slow-saturation influx rate of neutrophils into hepatic parenchyma and therefore
represent the rate of resting neutrophils being activated. The definition and the
corresponding experimental data for newly added system parameters in the immune
response model of neutrophils are summarized in Table 8.2.

By substituting the above-mentioned experimental data into our neutrophil
immune response model, we plot the pathogen loads, TNF- 𝛼, resting neutrophils,
activated neutrophils versus time (hours) using Mathematica, and the computed
results are shown in Figure 8.4a–d.

Compared to the result in Figure 8.2a, the result in Figure 8.4a shows that pathogen
load peaks out and decreases significantly in a short time period (around 10 h from
our neutrophil immune response model) if the effects of neutrophils are incorporated.
Regardless of the overall effects of immune cells in the liver, experimental studies
have shown that mice at 6 h after infection exhibit a large decrease (0.6log10) in bac-
teria correlating with the influx of neutrophils [42]. The bulk of clearance of bacteria
or pathogen is largely due to influx of neutrophils and their programmed mechanism
to ingest bacteria and other harmful microorganisms [63]. Being one of the major
immune cells arrived early at the site of infection, neutrophils play an essential role
in the initial stage of AIR and further influence the downstream progression of AIR.
Also, previously activated neutrophils release pro-inflammatory cytokines such as
TNF-𝛼, and newly released TNF-𝛼 helps to recruit more neutrophils from blood ves-
sels to the site of infection. Our neutrophil immune response model recapitulates the
patterns of TNF-𝛼 reported in the literature that TNF-𝛼 concentration in the liver
increases to a peak at 6 h after infection and trends down toward baseline by 24 h
(Fig. 8.4b) [64]. From our simulation results, the highest level of activated neutrophils
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Figure 8.4 (a) Concentration of pathogen versus time in neutrophil immune response model
at the first 100 h of simulation. (b) Concentration of TNF-𝛼 versus time in neutrophil immune
response model at the first 100 h of simulation. (c) Concentration of resting neutrophils versus
time in neutrophil immune response model at the first 100 h of simulation. (d) Concentration
of activated neutrophils versus time in neutrophil immune response model at the first 100 h of
simulation. (e) Concentration of pathogen versus time in neutrophil immune response model
at the first 240 h of simulation. (f) Concentration of TNF-𝛼 versus time in neutrophil immune
response model at the first 240 h of simulation. (g) Concentration of resting neutrophils versus
time in neutrophil immune response model at the first 240 h of simulation. (h) Concentration
of activated neutrophils versus time in neutrophil immune response model at the first 240 h of
simulation. X-axes represent time (hours) and Y-axes represent concentration in arbitrary unit.

occurs around 10 hours after infection, which is later than the highest level occurred
for TNF-𝛼, and its level decreases toward zero around 3 days (72 h) after the infec-
tion (Fig. 8.4d). Furthermore, the observed infection is “oscillated” during first 500 h
of simulation in Figure 8.4e–h, which matches to biological experimental data in the
literature [63]. The relationships among pathogen, TNF-𝛼, and activated neutrophils,
shown in Figure 8.5, are interconnected based on our model.

Figure 8.5 provides a simple logistic chart to illustrate the interactions between
each component in our neutrophil immune response model. An increase in pathogen
(denoted as P in Figure 8.5) will induce the production of TNF-𝛼 and further help to
recruit more activated neutrophils (denoted as N in Figure 8.5), which contribute to
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Figure 8.5 Interactions between pathogen, activated neutrophils, and TNF-𝛼.

the decrease in pathogen load. We conclude that the clearance of pathogen is more
dependent on the effects of infiltrating neutrophils in the liver than on the Kupffer
cells in the liver after comparing the results from both models.

8.3.3 Step 3: Damaged Tissue Model

The complexity in AIR is due to the multiple effects induced by inflammatory cells.
We show that the recruitment of neutrophils helps to clear local pathogen level; how-
ever, those inflammatory cells are harmful at the same time because they release toxic
molecules such as reactive oxygen species (ROS), which could cause damage to the
host tissue [53, 54]. Recent experimental results show that neutrophils’ 𝛽2 integrins
adhere to the ICAM-1 receptors of hepatocytes and accelerate the killing process of
distressed hepatocytes [65]. We assume that the binding process of neutrophils to
hepatocytes also follows ligand–receptor kinetics and derive the following damaged
tissue model.

dD
dt

= rhn
[Dn]

[Dn + kn
c3]

Nf D
∗
(

1 − D
A∞

)
− rahD (8.12)

In Equation 8.12, D denotes the number of apoptotic hepatocytes or dead hepato-
cytes), rhn represents the rate of apoptotic hepatocytes killed by activated neutrophils
and rah represents the recovery rate of apoptotic hepatocytes. The ligand–receptor
kinetics [Dn]

[Dn+kn
c3
]Nf D

∗ is used to represent the amount of apoptotic hepatocytes that

bind to activated neutrophils, with the binding rate being modeled as a Hill-type func-
tion [Dn]

[Dn+kn
c3
] . The activated neutrophils have recently been found to kill the apoptotic

hepatocytes [65]. After neutrophil adhered to apoptotic hepatocytes, the neutrophils
release ROS and proteases, which accelerate the death of apoptotic hepatocytes
[65, 66]. Multiplying [Dn]

[Dn+kn
c3
]Nf D

∗ by rhn, the entire first term in Equation 8.12

represents the number of apoptotic hepatocytes killed by activated neutrophils per
hour, which is the total number of dead hepatocytes per hour. The maximal number of
apoptotic or dead hepatocytes will not exceed the total number of hepatocytes in liver
(represents by A∞). In addition, we use rah to represent the recovery rate of apop-
totic hepatocytes, and the second term in Equation 8.12 is defined as the amount of
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TABLE 8.3 Definition of Parameters and Experimental Values in Damaged Tissue
Model

Parameters Description Value References

A∞ Number of hepatocytes in liver 3.2 × 108cells∕h Mouse phenome
database

rhn Rate at which activated neutrophils kill
apoptotic hepatocytes

9000/ neutrophil/h Estimated

kc3 Concentration of activated neutrophils
that phagocytose half of apoptotic
hepatocytes

0.04cells∕h Estimated

rah Recovery rate of apoptotic hepatocytes 0.5–2/h [67]

Dead hepatocytes

2.5×10
8

2.0×10
8

1.5×10
8

1.0×10
8

5.0×10
7

2.5×10
8

2.0×10
8

1.5×10
8

1.0×10
8

5.0×10
7

Dead hepatocytes
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time

(a)
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Figure 8.6 (a). Concentration of dead hepatocytes versus time in damaged tissue model at the
first 100 h of simulation. (b) Concentration of dead hepatocytes versus time in damaged tissue
model at the first 240 h of simulation. X-axes represent time (in hour) and Y-axes represent
concentration in arbitrary unit.

recovering apoptotic hepatocytes. The definition of parameters and the corresponding
experimental data in damaged tissue model are summarized in Table 8.3, and
Figure 8.6 shows the concentration of dead hepatocytes versus time (hours).

Our simulation result shows that the population of dead hepatocytes significantly
increases by 12 h. The dead hepatocytes are defined as accumulated apoptotic hepato-
cytes over time. In the Gal/ET shock model [66], neutrophils extravasate in response
to 15–20% of hepatocytes undergoing apoptosis at 6 h, and the neutrophil attack
expands the tissue damage to 40–50% of hepatocytes by 7 h. Our simulation results
correspond to the evidence that about 15% of hepatocytes are undergoing apoptosis
at 9 h and the tissue damage is expanding to around 40% of hepatocytes by 10 h with
the attack of neutrophils.

8.3.4 Step 4: Monocytes Immune Response Model

Recent biological experiments from the literatures [68, 69] have shown that mono-
cyte, recruited by the presence of HMGB-1, plays an essential role in the liver
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inflammation and liver fibrosis. Upon liver injury, the inflammatory Ly6cC (Gr1C)
monocyte subset as precursors of tissue macrophages in blood vessel near the
infected site will be attracted and recruited to the injured liver via CCR2-dependent
bone marrow egress. The chemokine receptor CCR2 and its ligand MCP-1/CCL2
promote monocyte subset infiltration upon liver injury and further promote the
progression of liver fibrosis [40, 70]. Since evidence showed that tumor necrosis
factor-𝛼 (TNF-𝛼) induced a marked increase in CCL2/MCP-1 production in dose-
and time-dependent manners [71], we assume the influx of monocytes from the
blood vessel to the liver is induced by effects of both HMGB-1 and TNF-𝛼 and model
the influx of monocytes similar to the kinetics of neutrophils’ influx. According to
existing literature, HMGB-1 is released by necrotic cells and activated monocytes in
response to TNF-𝛼 simulation [20, 71, 72]. Hence, we model the release of HMGB-1
using receptor–ligand kinetics as well as enzymatic kinetics, similar to the release of
TNF-𝛼, by incorporating the effects of necrotic cells and activated monocytes.

dP
dt

= kpgP

(
1 − P

P∞

)
− rpmk

[Pn]
[Pn + kn

c1]
MkfP

∗ − rpn
[Pn]

[Pn + kn
c2]

(Nf + Nb)P∗

− rpm
[Pn]

[Pn + kn
c4]

(Mf + Mb)P∗ (8.13)

dNb

dt
= [Pn]

[Pn + kn
c2]

Nf P
∗ − umnNbM∗

f − knubNb (8.14)

dMR

dt
= kmrMR(1 − MR∕Ms) − r2MR(H + T)∗ − 𝜇mrMR (8.15)

dMf

dt
= r2MR(H + T)∗ + kumbMb −

[Pn]
[Pn + kn

c4]
Mf P

∗ − 𝜇mMf (8.16)

dMb

dt
= [Pn]

[Pn + kn
c4]

Mf P
∗ − kumbMb (8.17)

dH
dt

=
(

rh1max(Mb + D)
mh1 + Mb + D

)
(Mb + D) − uhH (8.18)

In Equation 8.13, we incorporate the effect of phagocytosis by monocytes
into Equation 8.4 since monocytes phagocytose Gram-negative bacteria by
a CD14-dependent mechanism [73]. We recall Hill-type function equation
( [Pn]
[Pn+kn

c4
] ) to represent the receptor–ligand binding kinetics between pathogens

and activated monocytes. Since binding-activated neutrophils are engulfed by
infiltrating monocytes [74], we use umnNbM∗

f to calibrate the killing process of
binding-activated neutrophils by activated monocytes, which modify Equation 8.10
to Equations 8.14–8.17 describe the activation and migration of resting monocytes
from blood vessel to infected tissue. In Equations 8.15–8.17, MR, Mf, and Mb
represents the resting monocytes, free activated monocytes, and binding-activated
monocytes, respectively. The principles used to build those three equations are
similar to the principle used to build Equations 8.8–8.10 for the neutrophil immune
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response model. Equation 8.18 calibrates the release of HMGB-1 per hour by
activated monocytes (monocytes-derived macrophage) and apoptotic hepatocytes,
and the process of releasing HMGB-1 is similar to the process of releasing
TNF-𝛼. Most experiments in the literatures have shown that HMGB-1 is a delayed
pro-inflammatory cytokine and is released late in the course of AIR [19, 20, 75]. The
definition of parameters and the corresponding experimental data in the monocyte
immune response model are summarized in Table 8.4.

We plot the population size of resting monocytes in blood vessel, the activated
monocytes in liver and concentration of TNF-𝛼, and HMGB-1 versus time (hours) in
Figure 8.7a–d.

From Figure 8.7b, the recruitment of monocytes to the liver reaches it maximal
level around 40 h after the introduced infection in our model, compared with 3 days
in an experimental model [77], which demonstrates that monocytes arrive later to the
site of infection, following the recruitment of neutrophils. Our simulation results cor-
respond to the evidence from experimental study that serum HMGB1 levels were not
significantly altered for the first 10 h and then significantly increased at 18 h after the
introduced infection as shown in Figure 8.7d [19, 21]. Comparing the peak level of

TABLE 8.4 Definition of Parameters and Experimental Values in Monocytes Immune
Response Model

Parameters Description Value References

kmr Influx rate of monocytes into blood vessel 0.5∕h [61]
rpm Rate at which pathogens are killed by

inflammatory monocytes
7/monocyte/h [76]

r2 Influx rate of monocytes in liver 80/h [77]
Ms Maximum amount of inflammatory

monocytes in liver
50,000 [51]

𝜇mr Apoptotic rate of resting monocytes 0.2 Estimated
𝜇m Apoptotic rate of activated monocytes

(monocytes-derived macrophage)
0.08 [78]

rh1max The maximum number of HMGB-1 being
released by monocytes per enzyme
molecule per hour

0.001 Estimated

mh1 Number of monocytes generate half of
maximal HMGB-1 production rate

10,000 Estimated

n Hill-type coefficient associated with
monocytes

2 Estimated

kc4 Number of monocytes that phagocytose
half of Salmonella

0.002cells∕h [76]

kumb Unbinding rate of binding activated
monocytes

0.4 [21]

uh Degradation rate of HMGB-1 0.5–3 Estimated
umn Rate at which activated neutrophils are

killed by inflammatory monocytes
200 Estimated
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Figure 8.7 (a) Concentration of resting monocytes versus time in monocyte immune
response model at the first 240 h of simulation. (b) Concentration of activated monocytes versus
time in monocyte immune response model at the first 120 h of simulation. (c) Concentration
of TNF-𝛼 versus time in monocyte immune response model at the first 120 h of simulation.
(d) Concentration of HMGB-1 versus time in monocyte immune response model at the first
120 h of simulation. Horizontal axes represent time (in hours), and vertical axes represent con-
centrations in arbitrary units.

HMGB-1 with the peak level of TNF-𝛼, the peak level of HMGB1 is smaller and the
release time of HMGB-1 is slower than the release time of TNF-𝛼 (10 vs. 6 h postin-
fection). Furthermore, our simulation results show that HMGB-1 is readily detectable
at 10 h and is maintained at peak, plateau levels from 18 to 32 h after infection, which
is similar to the results from experimental studies [19]. Our simulation results suggest
that HMGB-1, as a late pro-inflammatory cytokine, downregulates the AIR induced
by TNF-𝛼 production.

8.3.5 Step 5: Anti-inflammatory Immune Response Model

IL-10 is an anti-inflammatory cytokine. Plasma levels are elevated in animal models
of endotoxemia and inhibit the release of pro-inflammatory cytokine (TNF-𝛼, IL-1𝛽,
and IL-6) from monocytes/macrophages, thus preventing subsequent tissue damage
[79]. This anti-inflammatory mediator is produced by macrophages, dendritic cells
(DC), B cells, and various subsets of CD4 and CD8_T cells [80] and follows the
same mechanism as pro-inflammatory (TNF-𝛼 and HMGB-1) release. Since our main
focus in this chapter is to model the innate immune responses, we ignore the release
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of IL-10 by B cells and T cells during the adaptive immune responses. Hence, we
model the release of IL-10 in a similar way as pro-inflammatory cytokine release.

dCA

dt
=
(

rcamaxMb

CAh + Mb

)
Mb − ucaCA (8.19)

In Equation 8.19, CA represents the concentration of anti-inflammatory cytokine

(IL-10) during AIR.
(

rcamaxMb

CAh+Mb

)
represents the release rate of anti-inflammatory

cytokine (IL-10) by activated monocytes, derived from enzymatic kinetics. The first
term in Equation 8.19 calibrates the increase in the number of anti-inflammatory
cytokines every hour and the second term ucaCA calibrates the decrease in number
of anti-inflammatory cytokines every hour due to a natural degradation. The
corresponding parameters and their values are defined in Table 8.5.

We plot the concentration of TNF-𝛼, HMGB-1, and IL-10 versus time (hours) in
Figure 8.8a–c.

Experimental studies in mice have shown that early predominance of
pro-inflammatory cytokines transitions to anti-inflammatory predominance at
24 h [17, 64]. Figure 8.8a–c shows that the time to approach the peak levels of

TABLE 8.5 Definition of Parameters and Experimental Values in Anti-inflammatory
Immune Response Model

Parameters Description Value References

rcamax The maximum number of IL-10 being released by
monocytes per enzyme molecule per hour

10,000 Estimated

CAh Number of monocytes generate half of maximal
HMGB-1 production rate

10,000 Estimated

n Hill-type coefficient associated with monocytes 2 Estimated
uca Degradation rate of IL-10 0.02 Estimated
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Figure 8.8 (a) Concentration of TNF-𝛼 versus time in anti-inflammatory immune response
model at the first 80 h of simulation. (b) Concentration of HMGB-1 versus time in
anti-inflammatory immune response model at the first 80 h of simulation. (c) Concentration
of IL-10 versus time in anti-inflammatory immune response model at the first 80 h of simu-
lation. Horizontal axes represent time (in hours) and vertical axes represent concentration in
arbitrary unit.
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TNF-𝛼, HMGB-1, and IL-10 are 6, 18, and 24 h, respectively, and demonstrates that
anti-inflammatory responses will follow pro-inflammatory responses and play a role
in the later phase of AIR. In the following section, we will discuss the inhibiting
effects of anti-inflammatory cytokines and the comprehensive structure of our
mathematical model of innate immunity in the AIR.

8.4 MATHEMATICAL MODELS OF INNATE IMMUNITY OF AIR

8.4.1 Inhibition of Anti-inflammatory Cytokines

Before we incorporate mathematical models of subsystems into a comprehensive
mathematical model of innate immunity in AIR, we will review the mechanism of
inhibition of anti-inflammatory cytokines to the course of infection. IL-10 was found
to inhibit protein kinase activation (IKK activity) induced by LPS binding to the CD14
receptor and to consequently block the downstream Ras signaling pathway [81]. Fur-
thermore, IL-10 inhibits both TNF-𝛼 and LPS-induced NF-𝜅B DNA binding, gene
transcription, and cytokine synthesis [82–84]. The mechanism of IL-10 inhibition of
protein production is shown in Figure 8.9.

By IKK activity, NF-𝜅B as a protein complex is released from cytoplasm into the
cell nucleus and binds to DNA in order to accomplish NF-𝜅B-dependent DNA tran-
scription [85]. We assume the NF-𝜅B protein complex binding to DNA as an enzyme
kinetics, since DNA-binding proteins, such as transcription factors, have recently
been found to exhibit enzymatic activity during the process of transcription [86].
Furthermore, we assume and model IL-10 inhibition as an enzyme inhibition process,
since IL-10 inhibits the process of DNA–protein binding, as well as transcription. The
mathematical formation of IL-10 inhibition will, therefore, follow simplified compet-
itive enzyme kinetics (𝛼 denoted as adjustment) as follows:

f (CA, x) = 𝛼x(
1 + CA

C∞

)
After incorporating the inhibition function of IL-10, we derive a comprehensive

mathematical model for innate immunity of AIR, and C∞ represents the dissociation
rate of IL-10 with initial estimated value equivalent to 0.02.

8.4.2 Mathematical Model of Innate Immunity of AIR

dP
dt

= kpgP

(
1 − P

P∞

)
− rpmk

[Pn]
[Pn + kn

c1]
MkfP

∗ − rpn
[Pn]

[Pn + kn
c2]

(Nf + Nb)P∗

− rpm
[Pn]

[Pn + kn
c4]

(Mf + Mb)P∗ (8.20)

dMkf

dt
= kmkMkf

(
1 −

Mkf

K∞

)
+ kmkubMkb −

[Pn]
[Pn + kn

c1]
MkfP

∗ − umkMkf (8.21)
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Figure 8.9 Mechanism of IL-10 inhibition.

dMkb

dt
= [Pn]

[Pn + kn
c1]

MkfP
∗ − kmkubMkb (8.22)

dT
dt

=
(

rt1maxMkb

mt1 + Mkb

)
Mkb +

(
rt2maxNb

mt2 + Nb

)
Nb − utT (8.23)

dNR

dt
= krdNR

(
1 −

NR

NS

)
− r1NR(T + P)∗ − 𝜇nrNR (8.24)

dNf

dt
=

r1NR(T + P)∗(
1 + CA

C∞

) + knubNb −
[Pn]

[Pn + kn
c2]

Nf P
∗ − 𝜇nNf (8.25)

dNb

dt
= [Pn]

[Pn + kn
c2]

Nf P
∗ − umnNbM∗

f − knubNb (8.26)

dr1

dt
= kr1(1 + tanh(N∗

f )) − 𝜇r1r1 (8.27)
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dD
dt

= rhn
[Dn]

[Dn + kn
c3]

Nf D
∗
(

1 − D
A∞

)
− rahD (8.28)

dMR

dt
= kmrMR(1 − MR∕Ms) − r2MR(H + T)∗ − 𝜇mrMR (8.29)

dMf

dt
=

r2MR(H + T)∗(
1 + CA

C∞

) + kumbMb −
[Pn]

[Pn + kn
c4]

Mf P
∗ − 𝜇mMf (8.30)

dMb

dt
= [Pn]

[Pn + kn
c4]

Mf P
∗ − kumbMb (8.31)

dH
dt

=
(

rh1max(Mb + D)
mh1 + Mb + D

)
(Mb + D) − uhH (8.32)

dCA

dt
=
(

rcamaxMb

CAh + Mb

)
Mb − ucaCA (8.33)

8.4.3 Stability Analysis

To study the model behaviors under various parameter settings and initial conditions,
stability analysis are conducted for each subsystem during model construction using
bifurcation diagrams. Bifurcation diagrams are graphical tools to visualize the behav-
iors of dynamic system change with parameters, which are generated by Matcont in
this chapter. Matcont is a Matlab continuation package with a graphic user interface
(GUI) for the interactive numerical study of parameterized nonlinear ODEs. It allows
to compute curves of equilibria, limit points, Hopf point, limit cycles, fold, torus, and
branch point bifurcation of limit cycles and so on [87].

In bifurcation diagrams, the Y-axis represents the equilibrium of state variable
and the X-axis represents the value of system parameter that generates equilib-
rium. Therefore, bifurcation diagrams reflect change in equilibrium of dynamic
system (either change in number of equilibrium or change in numerical value of
equilibrium) in relation to the change in numerical value of system parameter.
We analyzed stability of dynamic system by identifying types of bifurcation
point in bifurcation diagrams since bifurcation points are defined as points where
stability changes from stable to unstable. In our bifurcation diagrams, there are
two typical bifurcation points: limit point (marked as “LP” in Matcont) and Hopf
point (marked as “H” in Matcont). Neutral Saddle Point is marked as “NS” in
bifurcation diagram; however, it is not a bifurcation point for the equilibrium since it
is identified as a hyperbolic saddle. Figure 8.10 shows stability of equilibria of state
variable pathogens change in relation to system parameters change in neutrophil
subsystem.
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8.4.3.1 Neutrophil Subsystem Stability Analysis LPs in bifurcation diagrams of
neutrophil subsystem appear when two equilibria merge into one equilibrium, and
thus, the number of equilibrium of dynamic system changes when LPs are detected.
LPs are also turning points at which dynamic system changes from stability to insta-
bility. In Figure 8.10a, there is stable equilibrium of pathogen when system parameter
kpg increases from 0 to 4.93, when kpg equals to 4.93, LP is identified and unstable
equilibrium of pathogen is generated as kpg decreases from 4.93 to 0. Therefore, equi-
librium of pathogen of our neutrophil subsystem is bistable when kpg is from 0 to 4.93.
Similarly, equilibrium of pathogen in Figure 8.10b is bistable when system parameter
rpn is from 25 to 200. In Figure 8.10c, equilibrium of pathogen before LP is stable
and the equilibrium is bistable when un is from 0.05 to 0.21.

A Hopf bifurcation, identified in Figure 8.10d, is a periodic bifurcation in which
a new limit cycle is born from a stationary solution. Hopf point is a point in a turning
point for periodic orbits, and Hopf point is detected when system parameter rt2max
changes. The detected Hopf point in Figure 8.10d is used to start a limit cycle contin-
uation, where two cycles collide and disappear. Since the first Lyapunov coefficient
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Figure 8.10 (a) Computed equilibrium curve of pathogens in relation to system parameter
kpg in neutrophil subsystem. (b) Computed equilibrium curve of pathogens in relation to sys-
tem parameters rpn in neutrophil subsystem. (c) Computed equilibrium curve of pathogens in
relation to system parameters un in neutrophil subsystem. (d) Computed equilibrium curve of
pathogens in relation to system parameters rt2max in neutrophil subsystem.
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Figure 8.11 (a) Family of limit cycles bifurcating from the Hopf point in TNF-𝛼 and
pathogen plane. (b) Family of limit cycles bifurcating from the Hopf point in Nf and pathogen
plane. (c) Equilibria and limit cycles in (Nf, pathogen, and TNF-𝛼)-space. (d) Period of the
cycle as function of rt2max.

[88] is positive, there exists an unstable limit cycle, bifurcating from this equilib-
rium. Figure 8.11a and b shows the family of limit cycles bifurcating from detected
Hopf point in Figure 8.10d. The family of limit cycles is represented using limit cycle
planes such as TNF-𝛼–pathogen plane and Nf–pathogen plane. Figure 8.11c shows
a limit cycle sphere represented by a TNF-𝛼, Nf, and pathogen plane. Figure 8.11d
indicates that the presence of two limit cycles occurs when rt2max equal to 5495.6394
or 6265.0029

In Figure 8.11c, the first family of limit cycle (a dark gray small cycle in the
center of sphere) spiral outward as system parameter rt2max decreases, and the
second family of limit cycle appears when rt2max decreases to 5495.6394 (a dark
gray cycle line appears). As rt2max increases from 5495.6394, the second family of
limit cycle spiral outward again, when rt2max increases to 6265.0029, an unstable
equilibrium is detected in Figure 8.12. If value of rt2max is between 5495.6394 and
6265.0029, the equilibria of neutrophil subsystem are stable and converged shown by
Figure 8.13.
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Figure 8.12 (a) Numerical relationships between Nf, pathogen, and TNF-𝛼 in unstable neu-
trophil subsystem at equilibrium when rt2max is equal to 6265.0029. (b) Pathogen diverges in
unstable neutrophil subsystem at equilibrium when rt2max is equal to 6265.0029. (c) Activated
neutrophils diverge in unstable neutrophil subsystem at equilibrium when rt2max is equal to
6265.0029. (d) TNF-𝛼’s diverge in unstable neutrophil subsystem at equilibrium when rt2max

is equal to 6265.0029.

To conclude, we have detected system parameters kpg, rpn, and rt2max contributing
to bistability of our neutrophil subsystem. Furthermore, we observe system parameter
rt2max (the maximum release rate of TNF-𝛼 by activated neutrophils) is essential for
generating a closed trajectory of neutrophil subsystem. A significant unstable infec-
tion oscillation occurs when rt2max increases to 6265.0029.

8.4.3.2 Monocyte Subsystem Stability Analysis Continued stability analysis on
monocyte subsystem indicates a change in system parameters krd, unr, and un, induc-
ing bistability of monocyte subsystem. From Figure 8.14a–c, we know monocyte
subsystem is bistable if at least one of the three conditions meets: krd is between 0 and
0.32, unr is between 0 and 0.28, and un is between 0 and 0.21. Specifically, we have
observed that rt2max (the maximum release rate of TNF-𝛼 by activated neutrophils)
and mt2 (the number of activated neutrophils releasing half of TNF-𝛼) are essential for
oscillated monocyte subsystem. Limit cycles are bifurcating from Hopf point, shown
in Figure 8.14d and e, similar to neutrophil subsystem. Therefore, we conclude that
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Figure 8.13 (a) Numerical relationships between Nf, pathogen, and TNF-𝛼 in stable
neutrophil subsystem at equilibrium when rt2max is between 5495.6394 and 6265.0029.
(b) Pathogen converges in stable neutrophil subsystem at equilibrium when rt2max is between
5495.6394 and 6265.0029. (c) Activated neutrophils converges in stable neutrophil sub-
system at equilibrium when rt2max is between 5495.6394 and 6265.0029. (d) TNF-𝛼 con-
verges in stable neutrophil subsystem at equilibrium when rt2max is between 5495.6394 and
6265.0029.

the oscillated infection is significantly dependent on the amount of released TNF-𝛼
and further recruited neutrophils in AIR. However, the released monocytes and the
associated cytokines, such as HMGB-1, play no roles in contributing to oscillation in
AIR progression.

8.4.3.3 Full Model Stability Analysis Built upon monocyte subsystem, our full
model incorporating the effect of anti-inflammatory cytokines and our stability anal-
ysis shows that the stability of our full model is significantly dependent on the effect
of anti-inflammatory cytokines, especially when medium effect of anti-inflammatory
cytokines are incorporated (dissociation rate of IL-10 equal to logarithm 4). Our
stability analysis, in Figure 8.15, shows that the Hopf points move forward as
rt2max and mt2 increases when medium effect of anti-inflammatory cytokines is
incorporated.
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Figure 8.14 (a) Computed equilibrium curve of pathogens in relation to system param-
eter krd in monocyte subsystem. (b) Computed equilibrium curve of pathogens in rela-
tion to system parameters unr in monocyte subsystem. (c) Computed equilibrium curve of
pathogens in relation to system parameters un in monocyte subsystem. (d) Computed equi-
librium curve of pathogens in relation to system parameters rt2max in monocyte subsystem. (e)
Computed equilibrium curve of pathogens in relation to system parameters mt2 in monocyte
subsystem.
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Figure 8.15 (a) Computed equilibrium curve of pathogens in relation to system param-
eter rt2max if medium effect of anti-inflammatory cytokine is incorporated. (b) Computed
equilibrium curve of pathogens in relation to system parameters mt2 if medium effect of
anti-inflammatory cytokine is incorporated.

8.4.3.4 Medium Effect of Anti-inflammatory Cytokines In Figure 8.15a and b,
comparing to Figure 8.14d and e, we see the Hopf point is detected when rt2max and
mt2 increases to a bigger value since the anti-inflammatory cytokines inhibit the acti-
vation of phagocytic cells (neutrophils and monocytes). This trend indicates that the
infection oscillation requires, with the medium effect of anti-inflammatory cytokines,
more pro-inflammation (including TNF-𝛼 and activated neutrophils) compared to our
monocyte subsystem without including the effect of anti-inflammatory cytokines.
The strengthened (increased rt2max and mt2) pro-inflammatory immune responses
could also induce stable or unstable equilibria, and therefore leads to a dampened
oscillated infection or diverged infection, similar to our observations in Figures 8.12
and 8.13. However, we have observed that our AIR progression, if high effect of
anti-inflammatory cytokine is incorporated (dissociation rate equal to logarithm 6) at
the beginning of infection, will induce a stable overwhelming pathogen load. These
observations inspire us that the effects of anti-inflammatory cytokines play a vital
role in AIR progression and could be either positive or negative to AIR progression
dependent on levels of anti-inflammatory cytokines.

8.5 DISCUSSION

8.5.1 Effects of Initial Pathogen Load on Sepsis Progression

Using our system dynamic mathematical model, we analyzed the impact of effect
of bacteria load on phagocytic cells, inflammatory cytokines, and damaged tissue at
low, medium, and high level during innate immunity of AIR. The computed results
are shown in Figures 8.16–8.18.
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8.5.1.1 Low Initial Load of Pathogen (p(0)= 100)
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Figure 8.16 (a) Concentration of pathogen in the presence of low initial load of pathogen.
(b) Concentration of activated neutrophils in the presence of low initial load of pathogen.
(c) Concentration of activated monocytes in the presence of low initial load of pathogen.
(d) Concentration of TNF-𝛼 in the presence of low initial load of pathogen. (e) Concentra-
tion of HMGB-1 in the presence of low initial load of pathogen. (f) Concentration of dead
hepatocytes in the presence of low initial load of pathogen. Horizontal axes represent time (in
hours) and vertical axes represent concentration in arbitrary unit.
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8.5.1.2 Medium Initial Load of Pathogen (p(0)= 10,000)
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Figure 8.17 (a) Concentration of pathogen in the presence of medium initial load of
pathogen. (b) Concentration of activated neutrophils in the presence of medium initial load
of pathogen. (c) Concentration of activated monocytes in the presence of medium initial load
of pathogen. (d) Concentration of TNF-𝛼 in the presence of medium initial load of pathogen.
(e) Concentration of HMGB-1 in the presence of medium initial load of pathogen. (f) Con-
centration of dead hepatocytes in the presence of medium initial load of pathogen. Horizontal
axes represent time (in hours) and vertical axes represent concentration in arbitrary units.

8.5.1.3 High Initial Load of Pathogen (p(0)= 100,000) Based on our computed
results, we conclude a resolved healthy state, pathogen falls below threshold during
the oscillation as well as other phagocytic cells and inflammatory cytokines, when ini-
tial pathogen load is low. We recognize a persistent infection pattern happening, when
initial pathogen load is medium, if inflammatory responses are still active (damaged
tissue oscillates during infection). If initial pathogen load is high, an overwhelming
bacteria load occurs eventually, leading to a high risk of death.
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Figure 8.18 (a) Concentration of pathogen in the presence of high initial load of pathogen.
(b) Concentration of activated neutrophils in the presence of high initial load of pathogen.
(c) Concentration of activated monocytes in the presence of high initial load of pathogen.
(d) Concentration of TNF-𝛼 in the presence of high initial load of pathogen. (e) Concentra-
tion of HMGB-1 in the presence of high initial load of pathogen. (f) Concentration of dead
hepatocytes in the presence of high initial load of pathogen. Horizontal axes represent time (in
hours) and vertical axes represent concentration in arbitrary units.

8.5.2 Effects of Pro- and Anti-inflammatory Cytokines on Sepsis Progression

Interactions and balances between pro-inflammatory cytokines and anti-inflammatory
cytokines are essential to the progression of the AIR. Previous experiments on mice
[17] have found a close link between severity of sepsis and the balance and time
course of inflammatory cytokines. Experiments from existing literature showed that
excess production of pro-inflammatory cytokines has been associated with multiple
organ system dysfunction (severe sepsis), postfluid resuscitation hypertension (septic
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shock), and mortality [16]. Based on our simulation results, the response of TNF-𝛼
is maximal at an early stage of AIR. Following TNF-𝛼, the late pro-inflammatory
HMGB-1 and the anti-inflammatory IL-10 will typically dominate AIR progression
and ultimately determine the possible outcomes of AIR. Therefore, local TNF-𝛼
level elevation may not end with multiple organ system dysfunctions and anti-TNF-𝛼
treatment alone could be ineffective in the early stages of AIR, consistent with
clinical trials [79].

Biological results show that effect with IL-10 increases mortality in the murine
model [64]. In general, effectiveness of IL-10 on sepsis progression is inconsistent in
experimental studies. A group of experimental studies showed that IL-10 improved
the outcome of mice undergoing cecal ligation and puncture (CLP), while antibody
against IL-10 contributed to worsened outcome or even mortality [17, 89]. In contrast,
other investigators failed to confirm the improvement by showing no difference on
survival rate between pretreatment with IL-10 and non-pretreatment with IL-10 in
mice after CLP [90]. Using our system dynamic mathematical model, we analyzed
the impact of effect of IL-10 (measured by system parameter CA) on bacteria load,
phagocytic cells, and damaged tissue at high, medium, and low level during innate
immunity of AIR. The computed results are shown in Figures 8.19–8.21.

8.5.2.1 High Effect of Anti-inflammatory Cytokines
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Figure 8.19 (a) Concentration of pathogen in the presence of high effect of IL-10. (b) Con-
centration of activated neutrophils in the presence of high effect of IL-10. (c) Concentration
of activated monocytes in the presence of high effect of IL-10. (d) Concentration of dead hep-
atocytes in the presence of high effect of IL-10. Horizontal axes represent time (in hours) and
vertical axes represent concentration in arbitrary units.
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8.5.2.2 Medium Effect of Anti-inflammatory Cytokines
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Figure 8.20 (a) Concentration of pathogen in the presence of medium effect of IL-10.
(b) Concentration of activated neutrophils in the presence of medium effect of IL-10. (c) Con-
centration of activated monocytes in the presence of medium effect of IL-10. (d) Concentration
of dead hepatocytes in the presence of medium effect of IL-10. Horizontal axes represent time
(in hours) and vertical axes represent concentration in arbitrary units.

8.5.2.3 Low Effect of Anti-inflammatory Cytokines Our simulation results have
shown that the high effect of anti-inflammatory cytokine (IL-10) inhibits the release
of activated immune cells (activated neutrophils and activated monocytes) as well as
subsequent cytokine production. The levels of damaged tissue significantly decrease
with the presence of the anti-inflammatory cytokine, which in turn moderates the
progression of the AIR and reduces the risks of the sepsis development. Our quanti-
tative results are supported by an abundance of experimental studies in the literatures,
which have shown that IL-10 downregulates the production of secreted cytokines by
inhibiting the various behaviors of activated immune cells [26, 27, 91]. Moreover,
existing experimental results have suggested that anti-inflammatory mediator inhibits
the activation of phagocytes and reduces the ability of activated phagocytes to attack
pathogen [24] and therefore is associated with mortality and severity of infection in
sepsis [64, 92]. Based on the above-mentioned evidence, our computed results sug-
gest that the high effect of anti-inflammatory cytokines is a “double-edged sword”
for AIR since it would either decrease the mortality associated with tissue damage or
increase the mortality associated with high load of bacteria.
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Figure 8.21 (a) Concentration of pathogen in the presence of low effect of IL-10. (b) Con-
centration of activated neutrophils in the presence of low effect of IL-10. (c) Concentration of
activated monocytes in the presence of low effect of IL-10. (d) Concentration of dead hepa-
tocytes in the presence of low effect of IL-10. Horizontal axes represent time (in hours) and
vertical axes represent concentration in arbitrary units.

With the low effect of anti-inflammatory cytokines, our computed results have
shown that low effect of anti-inflammatory cytokine (IL-10) fails to inhibit the release
of activated immune cells (activated neutrophils and activated monocytes) as well as
subsequent cytokine production. The levels of damaged tissue significantly accumu-
late during the first 500 h (about 20 days) of infection. In the presence of low effect
of the anti-inflammatory cytokine, AIR is at a high risk of development to organ
dysfunction and eventually progression to septic shock.

To further investigate the effects of anti-inflammatory cytokines, we simulate
a medium effect of anti-inflammatory cytokines and compare simulated results to
both high effect of anti-inflammatory cytokines and low effect of anti-inflammatory
cytokines. Our computed results show bacteria load decreases during the first 100 h
of infection, together with the total amount of dead hepatocytes. Furthermore, we
have observed the production of both activated neutrophils and activated monocytes
declines to baseline near 0 at the end of simulation, which indicates a positive
trend of sepsis progression to a healthy pattern. Thus, we conclude that the level
of anti-inflammatory cytokines plays a vital role in determining the direction of
sepsis progression, and the levels of anti-inflammatory cytokines and the time of
intervention of anti-inflammatory cytokines will largely influence the outcomes
of AIR.
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8.6 CONCLUSION

In this chapter, we propose a system dynamic mathematical model and show that
the model has significant potential to help predict the possible pathogenesis of AIR
based on a patient’s physiological conditions. Also, we show that the model is able
to give insight into the innate immunity of sepsis progression by exploring various
combinations of levels of phagocytes and cytokines. Our focus is especially on the
effects of anti-inflammatory cytokines on pathogen load, phagocytic cells, and tissue
damage. We observed that the outcomes of sepsis progression could be improved in
presence of IL-10 at a medium level at an early stage of infection. Furthermore, our
model quantitatively measures the levels of phagocytes (neutrophils and monocytes),
compared with existing mathematical models, which provide qualitative estimates.

One of the assumptions of our model is that we currently only include innate
immunity, and therefore the results of our model could only represent an early stage of
AIR. Adaptive immunity occurs following the innate immune response and includes
B-cells, T-cells, and antibodies released from B-cells, which contribute to pathogen
clearance [93]. IL-10 is known to be released by various subsets of T-cells, which
may lead to overproduction of the anti-inflammatory cytokines by the compensatory
anti-inflammatory response and, eventually, an increased risk of secondary infection
and poor prognosis [80, 93]. For further research, we expect to explore the promi-
nent effects of anti-inflammatory mediators on the outcomes of AIR progression by
incorporating adaptive immunity and its effects on anti-inflammatory cytokine. Also,
we propose an agent-based model of sepsis progression and compare the results from
the system dynamic mathematical model and the agent-based model.

The system dynamic mathematical model proposed in this chapter is a robust and
accurate representation of the comprehensive innate immune responses within an
AIR/sepsis episode. This underlining model is general enough and flexible enough
that it can be further used to predict the possible outcomes and prognosis for dif-
ferent patient demographics with different model parameters using the experimental
data from the literature.
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9.1 INTRODUCTION

The US healthcare system is considered the most expensive in the world ($8508 per
capita). Unfortunately, the United States consistently underperforms relative to other
western industrialized countries on many fronts, including quality, access, efficiency,
equity, and healthy lives. The reforms brought about by the Affordable Care Act can
be expected to boost access and equity by providing health insurance to some of the
50 million people who previously lacked it. However, many problems of our health-
care system remain challenging and pervasive, and it will take more than better access
and equity to resolve them.

Over the years, the Institute of Medicine has highlighted longstanding systemic
inefficiencies in US health care, with ongoing reports of inadequate safety, variable
quality, and runaway costs. In its 2001 report, “Crossing the Quality Chasm: A
New Health System for the 21st Century” (IOM [1]), it designated “efficiency” and
“timeliness” as two of six key aims for improvement in health care. The recent report
to the President “Better health care and lower costs: Accelerating improvement
through systems engineering” offers glimpses of successes and encouraging steps;
it also emphasizes the urgent need for further advances from the research and the
practice communities [2].

This chapter focuses on recent advances on “timeliness,” “efficiency,” and “qual-
ity” of patient care that our team has helped to implement in several hospitals in the
United States. In the writing, we focus our discussion on emergency departments
(EDs). However, the methods are generalizable and have been applied successfully
in other units including intensive care, pharmacy, the operating room, the step-down,
primary care, and some specialty settings.

Over the past two decades, ED crowding and delays have become serious issues
for hospitals and health systems in the United States. ED visits have increased by
more than 2 million per year, characterized by patients who were older and sicker,
and thus required more complex, time-consuming workups (i.e., complete medical
examinations, including medical history, physical exam, laboratory tests, X-rays, and
analysis) and treatments, and by nonurgent patients who use the ED in place of pri-
mary care facilities. The National Hospital Ambulatory Medical Care survey [3]
reported 130 million ED visits in 2010. Despite increased demand, 19 hospitals closed
in 2011. In 2012, hospitals reported that more than 40% of ED patient visits were for
nonurgent care, contributing to long waiting times, decreased quality and timeliness
of care, and decreased patient satisfaction. Numerous reports have questioned the
ability of US EDs to handle this increasing demand for emergency services [4–10].

This chapter summarizes our work on advancing clinic workflow and patient care
that was named second prize for the 2013 INFORMS Daniel H. Wagner Prize for
Excellence in Operations Research Practice [11] and a finalist for the 2014 INFORMS
Franz Edelman Award Achievement in Operations Research [12].

The content of this chapter, starting from the following paragraph, is excerpted
from the Interfaces Edelman–Wagner published article [12].
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This project showcases the transformation that can happen when operations
research (OR) is applied to improve a hospital’s ED operations. Working with Grady
Memorial Hospital (also referred to as Grady Hospital or Grady), we devised a
customizable model and decision-support system that couples machine learning,
simulation, and optimization to help hospitals improve effectiveness in their EDs.
Part of the Grady Health System, Grady Hospital is the fifth largest safety net
hospital in the United States; these hospitals provide a disproportionate amount
of care to vulnerable populations (US Department of Health and Human Services
[13]). Grady implemented our decision-support system with beneficial results, such
as reduced length of stay (LOS), patient waiting times, and readmissions (i.e.,
repeat admissions related to an initial admission), and improved efficiencies and
throughput, all without investing additional funds or resources. Subsequently, 20
other hospitals implemented our system and also achieved beneficial results.

Grady’s ED, which is a level 1 trauma center, operates the country’s largest
hospital-based ambulance service. Its ED receives more than 125,000 patient visits
per year, more than 20,000 of whom are trauma patients. Grady provides critical
services to Georgia’s health system. It is home to Georgia’s only poison control
center, the area’s first primary stroke center, and Georgia’s first cancer center for
excellence. Its extended trauma facilities include surgical suites, burn units, the
LifeFlight, and AngelFlight air medical transport programs; Angel II neonatal
transport units; and an emergency medical service ambulance program.

Grady serves a large population of uninsured patients and diverse socioeconomic
groups. Of more than 621,000 annual patient visits, only 8% of these patients are pri-
vately insured (vs 50% nationally). In 2007, Grady “was in desperate need of more
than $200 million to remain solvent. Grady’s financial collapse has serious conse-
quences not just for metro Atlanta – its crisis could reverberate across the state …
Experts say its inefficient customer service and general administration have created
this financial crisis of epic proportions” [14]. In the midst of this financial crisis, a new
management team came on board to rescue the hospital and transform its operations.
The new leadership was committed to serious ED system transformation and initi-
ated a joint collaboration with our team of operations researchers. Through extensive
data collection and vigorous OR analytical advances and recommendations, Grady
adopted the transformative steps, which included addressing readmissions, quality,
and efficiency of care before the Affordable Care Act and its associated penalties
were put in place.

The ED crisis is being experienced across the nation. In January 2014, the Ameri-
can College of Emergency Physicians ranked [nationwide] ED access as D+ to reflect
“that hospitals are not getting the necessary support in order to provide effective and
efficient emergency care” [15]. Grady feels a more-than-average burden; it treats all
patients, whether or not they have insurance. For each service that it provides, it incurs
costs for which it will be reimbursed only a small portion. In addition, many critically
ill patients (including referrals from other EDs) are routed to Grady because of the
excellent specialty care that it provides.



�

� �

�

266 TRANSFORMING EMERGENCY DEPARTMENT WORKFLOW AND PATIENT CARE

The novelty of our Edelman–Wagner prize work with Grady has five main aspects.
To the best of our knowledge, these have not been incorporated in previous methods
or studies.

1. We optimize within the ED system simulation, rather than relying on a
scenario-based method, so that the results more closely approach global
optima. The global solution involves aligning and consolidating operations,
optimizing staffing, and optimizing processes.

2. We dynamically and stochastically incorporate treatment patterns and patient
characteristics within an agent-based simulation, while focusing on ED opera-
tions and quality improvement.

3. We model ED readmissions using data that simultaneously encompass demo-
graphics, socioeconomic status, clinical information, hospital operations, and
disease behavioral patterns.

4. We explicitly model the interdependencies to and from the ED with numerous
other hospital departments, capturing inefficiencies in those processes.

5. We integrate machine learning within the simulation–optimization framework.

We also note that in our work, all medical terms and related metrics are defined as
is customary in the medical community.

From a hospital’s perspective, healthcare leaders have acknowledged that this
work advances ED operations in several ways, which we describe in Section 9.6.
From an OR perspective, the collaboration this project engendered and the challenges
it presented have led to both theoretical and computational advances in optimization
and simulation.

9.2 BACKGROUND

Crowded ED conditions have sparked research on several fronts. Eitel et al. [16]
discussed different methods for improving ED quality and flow, including demand
management, critical pathways, process mapping, emergency severity-index triage,
bedside registration, and lean and six sigma management methods [17]. Popovich
et al. [18] developed a volume-driven protocol and implemented it through the use
of published evidence, which focused on essential endpoints of measurement. Wiler
et al. [19] evaluated interventions, such as immediate bedding, bedside registration,
advanced triage, physician and (or) practitioner at triage, and dedicated fast-track ser-
vice lines, all of which are considered potential solutions to streamline the front-end
processing of ED patients. Ashby et al. [20] optimized patient flow throughout the
inpatient units, while modeling and observing the impacts on other interdependent
parts of the hospital, such as the ED and operating rooms. Kolker [21] tried to estab-
lish a quantitative relationship between ED performance characteristics, such as per-
centage of time on ambulance diversion and the number of patients in queue in the
waiting room, and the upper limits of patient LOS. Moskop et al. [22] identified and
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described operational and financial barriers to resolving the crisis of ED crowding;
they also proposed a variety of institutional and public policy strategies to overcome
those barriers. Nugus et al. [23] used an ethnographic approach, which involves direct
observation of on-the-ground behaviors, observing interactions among physicians
and nurses, emergency clinicians, and clinicians from other hospital departments
to identify indicators of and responses to pressure in the day-to-day ED work envi-
ronment. DeFlitch et al. [24] reported provider-directed queuing for improving ED
operations. McCarthy et al. [25] used discrete-time survival analysis to determine the
effects of crowding on ED department waiting room, treatment, and boarding times
(i.e., the time spent in the ED after the decision has been made to admit the patient
to the hospital) across multiple sites and acuity levels. Sturm et al. [26] identified
predictors that can influence nonurgent pediatric ED utilization.

9.3 CHALLENGES AND OBJECTIVES

Although some of the ED advances have been successful, the improvement is often
not sustainable, or it redirects inefficiencies from one area of the ED to another, or
to other hospital divisions. Poor results from these approaches are partly because the
requisite data are very time consuming to collect, often resulting in poor data being
entered into a model. In addition, a model may be flawed if important elements and
system dependencies are overlooked in its design.

Readmissions are a key challenge in ED performance. In particular, avoidable
readmissions (i.e., readmissions resulting from an adverse event that occurred
during the initial admission or from inappropriate care coordination following
discharge) through the ED have become a major burden on the US health system
(see [27]). Recent research shows that nearly one in five patients are readmitted to
the discharging hospital within 30 days of discharge; these readmissions accounted
for $17.8 billion in Medicare spending in 2004 [28].

Numerous studies have been conducted to identify frequently readmitted patients’
characteristics and construct patient profiles to aid hospitals in predicting these
patients. These studies have identified a number of demographic and clinical factors
that are thought to significantly correlate with readmission. Other factors concerning
hospital operations have also been investigated. Various statistical tools have been
used to identify patient factors that are associated with readmissions [29–32].
Westert et al. [33] conducted an international study, including three US states and
three countries, to find patterns in the profiles of readmitted patients. The findings
are divided into demographic and social factors, clinical factors [30, 34], and
hospital operations factors [33, 35–39]. A study of 26 readmission risk-prediction
models concluded that after reviewing 7843 citations, none of the models analyzed
could suitably predict future hospital readmissions [40]. Allaudeen et al. [41] noted
that healthcare personnel could not accurately predict the readmission of patients
discharged from their own hospitals; however, conclusions from these studies may
be premature, given that much of the analyses were performed via logistic regression
on only subsets of data.
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We recently published a readmission study in which, for the first time, a predictive
model can incorporate comprehensive factors related to demographics and socioeco-
nomic status, clinical and hospital resources, operations and utilization, and patient
complaints and risk factors for global prediction [42]. Our approach empowers
healthcare providers with good predictive capability, which we generalized for this
Grady study.

The Affordable Care Act, its influence on Medicaid and Medicare payments, the
high cost of emergency care, the persistent nonurgent visits, and the penalties imposed
because of inappropriate readmissions and hospital-related health problems demand
transformation of ED patient care and workflow.

The Edelman–Wagner project focuses on large-scale systems’ modeling and deci-
sion analytics for modeling and optimizing the workflow for an ED [12]. Specifically,
we aim to improve workflow, reduce wait time, improve quality and timeliness of
care, and reduce the number of avoidable readmissions. Although most studies incor-
porate simulation to model ED operations and perform scenario-based improvement
(e.g., [43]), we believe that our model is the first to intertwine machine learning, sim-
ulation, and optimization into one system in which (i) the ED patient characteristics
are analyzed and patterns uncovered, and (ii) operations and workflow are modeled
and resources optimized within the system to achieve the best performance outcome.

Grady began an ED process transformation with our OR team in 2008. At that time,
the average patient LOS in its ED exceeded 10 h. LOS represents the time between
a patient’s arrival at the ED and the time that patient is discharged from the ED or
admitted to the hospital. Thus, LOS includes the door-to-provider time, the time the
patient waits for the service and receives care, and the boarding time. Hence, LOS is
often dominated by long stretches of nonservice times. Grady’s goal was to achieve
an LOS of close to 7 h and reduce its readmissions rate by 25%. We refer to the
period from the beginning of the study in 2008 to the time of the sustained improved
performance (July 2011) as Phase I. As a result of the Phase I improvements, the
hospital was able to use sponsored funds to open a walk-in center for low-acuity
patients, further driving down costs and LOS [44]. In addition, the implementation of
an electronic medical record (EMR) system in October 2010 has enabled the adminis-
tration to better track hospital operations. Because of the alternative care options and
the addition of a new dedicated 15-bed trauma center, the dynamics of ED patient
visits have changed. Phase II captures the period of ED advances from 2011 to the
present. This chapter is excerpted from the Edelman–Wagner paper that summarizes
the OR analytic, system-driven advances in the ED, and their associated performance
outcomes during these two phases. By design, the two phases overlap.

9.4 METHODS AND DESIGN OF STUDY

Figure 9.1 highlights the study schema and the interdependencies of our methods.
The human-centered computational modeling environment comprises data analytics
served by innovative OR predictive decision tools. We simultaneously explore
patterns of patient behavior and care characteristics, provider decision and process
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Figure 9.1 This figure shows the study schema and interdependencies of the analytic frame-
work that we use. These interdependencies are crucial to achieving a valid description of the
actual processes. Reproduced from Lee et al. [12] with permission of the Institute for Opera-
tions Research and the Management Sciences.

workflow, facility-layout design, and staffing, where resource allocation, cognitive
human behavior, and care patterns are optimized globally for best outcomes, as
measured by LOS and readmissions. Uncovering patterns in patient care helps to
appropriately align resources with demands and enables providers to better antici-
pate needs. Exploring facility design provides decision makers with the envisioned
improvement before they embark on an expensive layout redesign effort.

In the following, we detail the major steps in our study.

9.4.1 ED Workflow and Services

Patients who visit the ED for care are evaluated first at the triage area to determine
the severity of their injuries and (or) conditions. They are assigned an acuity level
based on the emergency severity index (ESI), a five-level index for prioritizing ED
patients for care, ranging from level 1 (emergent and requiring multiple resources)
to level 5 (nonurgent and least resource intensive). The ESI is unique among triage
tools because it categorizes ED patients by both acuity and resource needs.

At Grady, the blue zone is used to treat high-acuity patients (levels 1 and 2) and
all prisoners, except those with significant trauma. (Note that a detention area for
prisoners is located inside the blue zone, and prisoner patients are registered in the
blue-zone treatment area.) A major resuscitation room anchors this area, which also
includes eight critical care rooms, seven respiratory isolation rooms, and several
general-patient care areas. The red zone is used to treat general patients. This area
has general-care rooms; an orthopedic room; a gynecology evaluation room; and an
eye, ear, nose, and throat room. All rooms in the blue and red zones are capable of
cardiac monitoring. In 2010, based on our Phase I results, Grady added a clinical
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decision unit. This unit provides an alternative to admission to the main hospital by
providing observation services for those patients who have already received treatment
in the ED. All patients in the clinical decision unit are evaluated by a case manager
who helps coordinate care, provide education, and ensure appropriate follow-up. A
patient who is not improving is sent to the hospital’s main building for admission.

The mission of the patient ambulatory care express (PACe) area is to treat patients
with relatively minor conditions. The PACe facility operates 24 h a day, 7 days a week,
and is staffed primarily by nurse practitioners and physician assistants. The trauma
center is designed to treat patients with trauma levels 1, 2, and 3, as categorized by
the American Trauma Society [45]. Trauma operating rooms are staffed 24 h a day
year-round.

Patients arriving in an ambulance or other vehicle enter the ED through the ambu-
lance arrival area, which is separate from the walk-in area. Here, patients determined
to be ESI level 1 or 2 will be triaged and sent directly to the blue or red zone.
Levels 3 and 4 patients are triaged, sent to the ED waiting room, and enter the same
queue as the patients in the walk-in area to wait for a bed in either zone. Walk-in
patients, some of whom may not be assigned an acuity level, are treated by the walk-in
triage physician and discharged from there.

Table 9.1 summarizes the ED patient care and resources, excluding the walk-in.
Figure 9.2a–d shows the workflow process maps at the start of our study.

9.4.2 Data Collection and Time-Motion Studies

In this section, we discuss the two phases of our study.

9.4.2.1 Phase I From August 2008 through February 2009, multiple trained
observers collected ED data by reviewing files and charts and conducting interviews
and time-motion studies related to services at various stations, as guided by the
process maps. The data collected in this manner contain 45,983 data fields covering
2509 patients. In addition, the hospital maintained vital statistics, including acuity
level, LOS, and discharge data. Grady also provided readmission status for 42,456
patients. Furthermore, we received more than 40,000 individual service times for
laboratory turnaround – the amount of time between the time a laboratory receives a
specimen and the time that the results are available.

9.4.2.2 Phase II In Phase II, data from 16,217 patient visits from October 28,
2010 to December 31, 2010 were pulled from the EMR system. For each visit, data
include patient information, ED admission time, hospital discharge time, acuity level,
ED zones, diagnosis, and insurance type. The EMR records also include time stamps
for relevant events, including registration, triage, laboratory orders and results, doctor
assessment, observation, and discharge. We supplemented the EMR ED data with
observations and time-motion studies at the triage and registration areas, and sampled
treatment time and wait time inside the rooms by shadowing various care providers.
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TABLE 9.1 Zones, Patient and Worker Types, and Resource Availability

Patient Type Space/Beds Worker Type

2008 2010
Attending
Physicians

Mid-Level
Providers Nurses

Triage All Yes Nurse
practitioners,
physician
assistants

Yes

Blue zone
(acuity
levels 1
and 2)

High-acuity patients and
all prisoners without
significant trauma

34 37 Yes Residents Yes

Red zone
(acuity
levels 2
and 3)

General patients 25 21 Yes Residents Yes

Clinical
decision
unit

Treated ED patients who
need observation

0 7 Yes No Yes

PACe (acuity
levels 4
and 5)

Patients with relatively
minor conditions

8 8 No Nurse
practitioners,
physician
assistants

Yes

Trauma
center

Patients who meet either
trauma level 1, 2, 3
criteria, in addition to
any child involved in
a traumatic accident,
any patient arriving on
a backboard, all
gunshots and stab
victims, and patients
with complex
extremity injuries or
burns

4 15 Yes Residents Yes

Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

By identifying the responsibilities of each type of worker via shadowing in
the ED and reviewing the EMR system patient timeline, we found variability and
randomness in arrival and treatment processes and workers’ responsibilities. The
variability emerges from the delivery practices of the nurses, mid-level practitioners,
and attending physicians. Our model may not describe each case in the ED; however,
it represents more than 93% of the cases.
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Figure 9.2 (a) The flowchart shows the workflow process map for the blue zone. Reproduced from Lee et al. [12] with permission of the Institute for
Operations Research and the Management Sciences. (b) The flowchart shows the workflow process map for the red zone. Reproduced from Lee et al.
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9.4.3 Machine Learning for Predicting Patient Characteristics and Return
Patterns

Armed with comprehensive data, we first developed machine learning techniques to
uncover patient characteristics, including resource needs, treatment outcome, LOS
and readmission patterns, and to establish predictive rules. A significant contribu-
tion of our work is that it is the first study in which demographics, socioeconomic
status, clinical information, hospital operations, and disease behavioral patterns are
employed simultaneously as attributes within a machine learning framework.

The computational design of our machine learning framework utilizes a wrapper
approach; specifically, we apply pattern recognition based on our recent advances
on text mining for unstructured clinical notes to the input attributes [46]. Next, we
couple a combinatorial attribute-selection algorithm with a discriminant analysis via
a mixed-integer program (DAMIP) learning and classification module. The attribute
selection, classification, and cross-validation procedures are wrapped so that the
attribute-selection algorithm searches through the space of attribute subsets using the
cross-validation accuracy from the classification module as a measure of goodness.
The small subset of attributes returned from the machine learning analysis can be
viewed as critical patient and clinical and (or) hospital variables that drive service
characteristics. This provides feedback to clinical decision makers for prioritization
and intervention of patients and tasks.

In the Edelman–Wagner ED study, entities correspond to patients. The input
attributes for each patient include comprehensive demographics, socioeconomic
status, clinical information, hospital resources and utilization, and disease behav-
ioral patterns. The machine learning uncovers patient disease patterns, associated
resource needs, and factors influencing treatment characteristics and outcome. For
readmission, there are two statuses for patients: they come back to the hospital for
visits (return group), or they do not come back (nonreturn group). The classification
aims to uncover from the set of all attributes a set of discriminatory attributes that
can classify each patient into the return or nonreturn group. We seek to identify the
rule that offers the best predictive capability.

In this supervised classification approach, the status of each patient in the train-
ing set is known. The training set consists of a group of patients extracted from the
hospital database whose status (e.g., returned within 72 h after the first visit or within
30 days after the first visit) is known. The training data are input into the machine
learning framework. Through the attribute-selection algorithm, a subset of attributes
is selected to form a classification rule. This rule is then used to perform 10-fold
cross-validation on the training set to obtain an unbiased estimate.

In 10-fold cross-validation, the training set is randomly partitioned into 10 roughly
equal subsets. Of the 10 subsets, 1 subset is retained as the validation data for testing
the model, and the remaining 9 subsets are used as training data. The cross-validation
process is then repeated 10 times (the folds), with each of the 10 subsets used exactly
once as the validation data. The 10 results from the folds can then be added to pro-
duce an unbiased estimation. The advantage of this method over repeated random
subsampling is that all observations are used for both training and validation, and
each observation is used exactly once for validation.
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To gauge the predictive power of the rule, we perform blind prediction on an inde-
pendent set of patients; these patients have never been used in attribute selection. We
run each patient through the rule, which returns a status. We then give the hospital
personnel the predicted status of each patient, which they check against the patient’s
actual status. Hence, we always compare our prediction with the actual outcome in
measuring predictive accuracy.

Once our machine learning system sends a trigger that a particular patient is highly
likely to return, an expert human (usually a nurse) places this patient on a to-observe
list. That our predictions are not 100% accurate is understandable; however, the first
pass is critical because it narrows down the return to a very small subset of patients,
allowing the human expert to focus on them to determine which patients in this
selected set should be observed in the clinical decision unit. Learning is continuous
because human experts may identify attributes that they will use in their second pass
of selection. These attributes will then be incorporated into our system for learning
and refinement. Lee et al. [47], Lee [48], Lee and Wu [49], Brooks and Lee [50], and
Brooks and Lee [51] detail the DAMIP modeling and its theoretical and computa-
tional contributions. In the following, we include the mathematical formulation and
a brief explanation of how it works within this ED study.

Optimization-Based Classifier: Discriminant Analysis via Mixed-Integer Program
(DAMIP) We assume there are n entities (e.g., patients) from K groups (e.g.,
returning or nonreturning) with m features. Let  = {1, 2,… , K} be the group index
set,  = {1, 2,… , n} be the entity index set, and  = {1, 2,… , m} be the feature
index set. Also, let k, k ∈ , and k ⊆ , be the entity set that belongs to group
k. Moreover, let j, j ∈  , be the domain of feature j, which could be the space
of real, integer, or binary values. The ith entity, i ∈ , is represented as (yi, xi) =
(yi, xi1,… , xim) ∈  × 1 × · · · × m, where yi is the group to which entity i belongs,
and (xi1,… , xim) is the feature vector of entity i. The classification model finds a func-
tion 𝛙 ∶ (1 ×… × m) →  to classify entities into groups based on a selected set
of features.

Let 𝜋kbe the prior probability of a randomly chosen entity being in group k and
fk(x) be the group conditional probability density function for the entity x ∈ ℝm

of group k, k ∈ . Also let nh denote the number of entities from group h, and
𝛼hk ∈ (0, 1), h, k ∈ , h ≠ k,be the upper bound for the misclassification percentage
that group h entities are misclassified into group k. DAMIP seeks a partition
{P0, P1,… , PK} of ℝK , where Pk , k ∈ , is the region for group k, and P0 is the
reserved-judgment region with entities for which group assignment are reserved (for
potential further exploration).

Let uki be the binary variable to denote if entity i is classified to group k. Mathe-
matically, DAMIP can be formulated as follows [47, 48]:

Max
∑
i∈

uyii
(D1)

subject to Lki = 𝜋kfk(xi) −
∑

h∈, h≠k

fh(xi)𝜆hk, ∀i ∈ , k ∈  (D2)
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uki =
{

1 ifk = arg max{0, Lhi ∶ h ∈ }
0 otherwise

, ∀i ∈ , k ∈ {0} ∪  (D3)∑
k∈{0}∪

uki = 1 ∀ i ∈  (D4)

∑
i∶i∈h

uki ≤ ⌊𝛼hknh⌋, ∀ h, k ∈ , h ≠ k (D5)

uki ∈ {0, 1}, ∀ i ∈ , k ∈ {0}∪
Lki unrestricted in sign, ∀ i ∈ , k ∈ 
𝜆hk ≥ 0, ∀ h, k ∈ , h ≠ k

The objective function (D1) maximizes the number of entities classified into the
correct group. Constraints (D2) and (D3) govern the placement of an entity into each
of the groups in  or the reserved-judgment region. Thus, the variables Lki and𝜆hk pro-
vide the shape of the partition of the groups in the  space. Constraint (D4) ensures
that an entity is assigned to exactly one group. Constraint (D5) allows the users to pre-
set the desirable misclassification levels, which can be specified as overall errors for
each group, pairwise errors, or overall errors for all groups together. With the reserved
judgment in place, the mathematical system ensures that a solution that satisfies the
preset errors always exists.

Mathematically, we have proven that DAMIP is NP-hard and that the resulting
classification rule is strongly universally consistent, given that the Bayes optimal rule
for classification is known [50, 51]. In addition, DAMIP model generates stable and
robust classification rules, regardless of the proportions of training entities from each
group. Computationally, DAMIP is the first multiple-group classification model that
includes a reserved judgment and the ability to constrain the misclassification rates
simultaneously within the model. Furthermore, we have demonstrated in real-world
applications that DAMIP works well on biomedical applications [26, 42, 47–53]. In
Brooks and Lee [50, 51], we have shown that DAMIP is difficult to solve, and we
applied the hypergraphic structures that Lee and Maheshwary [54] and Lee et al. [55]
derived to efficiently solve these instances. Empirically, DAMIP can handle imbal-
anced data well; thus, it is suitable for the ED readmission analysis, when compared
against other classification approaches [42].

The predictive model maximizes the number of correctly classified cases; there-
fore, it is robust and not skewed by errors committed by observation values. The asso-
ciated optimal decision variable values (Lki and𝜆hk) form the classification rule, which
consists of the discriminatory attributes; examples include patient chief complaint,
diagnosis, whether IV antibiotics were ordered, trainee and (or) resident involved,
primary nurse, time when the patient received an ED bed to time until first medical
doctor arrived. Using this rule, blind prediction of whether a new patient will return
to the ED can be performed in real time.

One can use alternative objectives, for example, by placing different weights
on each group. In Lee [48], we discuss various alternative objectives that take into
account differences in the relative cost of different types of classification errors [42].
We tested these alternatives on the Grady data and report the best combination in the
Edelman–Wagner ED paper [12].
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9.4.4 The Computerized ED System Workflow Model

To establish a framework for modeling and optimizing the ED workflow, including
ED processes and dependencies on other hospital divisions when discharging patients
from the ED, we use the RealOpt© simulation–optimization decision-support envi-
ronment [56–62]. RealOpt was developed at Georgia Tech for the purpose of
optimizing operations, throughput, and resource allocation for public health
resources, in particular for emergency response and public health medical prepared-
ness. It includes easy-to-use drawing tools to permit users to enter the workflow via
mouse clicks and keystrokes. It also allows incorporation of the stochastic nature
of human behavior (both the servers and patients) in workflows and processes
and provides a method to model fatigue and stress factors. In the background, it
translates the workflow into a computerized simulation model in which resources can
be optimized to achieve the best throughput and system performance. Figure 9.3a
shows the (simplified) clinic workflow and service zones for Grady’s ED, as entered
into RealOpt via its graph-drawing panel.

Figure 9.3b shows the average total time to admit a patient from the ED to different
units of the hospital. Note that until the patient is admitted elsewhere, ED resources (in
particular, the patient’s bed) are not free to assign to a new patient. This information
forms part of our RealOpt model for systems optimization.

Within RealOpt, optimization is performed to ensure the best operations and
system performance (e.g., throughput, wait time, queue length, utilization). The
resource allocation is modeled via a nonlinear mixed-integer program (NMIP).
Resources include labor, equipment, and beds, and so on. Constraints in the model
include (i) maximum limits on wait time and queue length, which are dictated by
the capacity of the waiting room in most EDs, and the desire to quickly service
patients; (ii) range of utilization desired at each station; (iii) for each resource group,
assignability and availability of resource types at each station (i.e., the skill set and
the number of skilled personnel available); and (iv) maximum limit on the cycle time
of the individual (i.e., ED LOS). In the following, we briefly describe the resource
allocation model [12, 56, 57, 60, 61].

Nonlinear Mixed-Integer Program for Multiple-Resource Allocation The NMIP
used in allocating resources was built on top of the nonlinear MIP formulated in Lee
et al. [57] and solved using the simulation–optimization framework described in Lee
et al. [56].

Mathematically, the model parameters are defined as follows:

• R: the set of resource groups;
• Tr: the set of resource types in resource group r, r ∈ R;
• S: the set of services in the process flow;
• Sir ⊆ S: the set of services in which resource type i in resource group r can be

assigned. This models the assignability of the resource (e.g., based on skills of
workers);

• kijr: the cost of assigning a resource of type i in resource group r to station j.
r ∈ R, i ∈ Tr, j ∈ Sir;

• mijr andmijr: the maximum and minimum number of resources of type i in

resource group r that may be assigned to station j. r ∈ R, i ∈ Tr, j ∈ Sir;
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Figure 9.3 (a) This RealOpt flowchart represents a simplified ED workflow at Grady Health System. Reproduced from Lee et al. [12] with permission
of the Institute for Operations Research and the Management Sciences. (b) The figure shows discharge destinations for October 2009 ED patients and
the time taken from ED disposition to actual departure for each destination. Destinations are the telemedicine sign-up, intensive care unit, floor
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et al. [12] with permission of the Institute for Operations Research and the Management Sciences.
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Figure 9.3 (Continued)

∗The flowchart is split in two pages to enhance readability.
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• nir: the number of available resources of type i in resource group r. r ∈ R, i ∈
Tr;

• 𝑤j, qj, and uj: the average wait time, average queue length, and average utiliza-
tion rate, respectively, at station j. j ∈ S;

• c: the average cycle time (i.e., the length of time a customer spends in the sys-
tem); and

• 𝜃: the average throughput (number of customers served in a specified period).

The decision variables for this problem are xijr ∈ Z+: the number of resources of
type i in resource group r assigned to station j. r ∈ R, i ∈ Tr, j ∈ Sir.

We can represent the cost at each station j as gj(
∑

(i,r)∈𝛀j

kijrxijr, 𝑤j, qj, uj), j ∈ S,

where 𝛀j = {(i, r)|r ∈ R, i ∈ Tr, j ∈ Sir}. The total system cost depends on the cost
at each station and on system performance variables, such as cycle time and through-
put. Thus, we can represent the total cost as f

(∑
j∈Sgj, c, 𝜃

)
. Here, gj and f are

functions that are not necessarily expressible in closed form. We can formulate a
general representation of the multiple-resource allocation problem as

Min z = f

(∑
j∈S

gj, c, 𝜃

)
(N0)

subject to mijr ≤ xijr ≤ mijr, ∀ r ∈ R, i ∈ Tr, j ∈ Sir (N1)∑
j∈Sir

xijr ≤ nir, ∀r ∈ R, i ∈ Tr (N2)
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𝑤(x)j ≤ 𝑤max

q(x)j ≤ qmax, ∀ j ∈ S (N3)

umin ≤ u(x)j ≤ umax

𝜃(x) ≥ 𝜃min

c(x) ≤ cmax (N4)

xijr ∈ Z+, ∀r ∈ R, i ∈ Tr, j ∈ Sir (N5)

(N0)–(N2), (N3), (N4), (N5) form an NMIP problem for cost minimization under
the constraints of multiple-resource allocation and stochastic system performance.
For (N3), (N4), these are system parameters in the simulation and performance
variables in the optimization. Due to the fact that some functions in the objective
and constraints are not necessarily expressible in closed form, the problem is
proven intractable by commercial systems. RealOpt© is designed to overcome such
computational bottlenecks by interweaving rapid system simulation and optimization
[56, 61, 63].

In all three papers [12, 56, 61], an initial solution is obtained via a fluid model
as a warm start to a resource optimization model; the results of the optimization are
entered into a simulation model that estimates the system’s average wait time, queue
length, and utilization. If the solution satisfies all the input ranges, this solution is
returned. Otherwise, the system looks for violated constraints (from among wait
time, queue length, and cycle time) and determines violated service blocks. Service
blocks are all the services and (or) processes that a patient might undergo in an ED
visit, including triage, registration, PACe examination, walk-in, and laboratory tests.
Once these blocks are identified, optimization will be performed on them. This time,
however, the objective is to minimize a total violation penalty. The process continues
until convergence.

There are two key distinctions between this work and the earlier work by Lee (e.g.,
[56, 61]). First, machine learning that predicts patient pattern and treatment charac-
teristics is integrated into the simulation–optimization decision framework. Second,
this work models multiple-resource groups at each station. The optimization within
each simulation step maximizes throughput without exceeding the existing resources
and includes weights on how to use staff skills. For example, if a nurse and a physi-
cian can both perform a specific task, it may be more expensive to use a physician
than a nurse (or vice versa). The user ranks them in the input, and we use these ranks
as weights in the optimization process.

Integrating Machine Learning within the RealOpt Simulation–Optimization
Environment As we describe earlier, machine learning is used to identify discrim-
inatory attributes that can predict whether a patient will return to the ED. Within
the simulation, an individual patient is simulated thoroughly, including medical
conditions, arrival times, zones visited, and treatments received. Hence, in addition
to modeling the hospital operations, it also characterizes each individual by disease
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type, risk factors, demographics, and payor types – knowledge that the machine
learning analysis uncovers. Upon completion of a patient’s treatment and before
discharge, the machine learning classification rule is used within the simulation
environment to predict whether that patient will return. If it predicts that the patient
will return, it triggers an alarm; a nurse then determines whether the patient should
be sent to the clinical decision unit for observation.

One of the novelties in the Edelman–Wagner ED work is the incorporation of
patient characteristics and care patterns that the machine learning framework uncov-
ers within the RealOpt simulation–optimization environment. Hence, agents (repre-
senting patients) within the simulation present disease symptoms that challenge the
care providers. They mimic the behavior of returning patients for whom certain symp-
toms may not have been diagnosed properly during previous ED visits. Furthermore,
the model captures more than 200 processes, including ED connected environments
(e.g., discharge destinations and factors external to ED), which contribute to delays in
the ED workflow. The optimization component connects the multiple-resource alloca-
tion, as we describe earlier, with process and operations optimization over the entire
ED process network. The multiple-objective function values are evaluated through
the simulation process.

9.4.5 Model Validation

Using the data collected, we simulated the hospital environment and operations and
validated the simulation results against an independent set of 3 months of hospital
data. The model returned ED LOS, throughput, wait time, queue length, and other
system statistics that are useful for performance measurement and comparison. For
brevity, Table 9.2 includes only LOS and throughput comparisons. The simulation
results accurately reflect the existing ED system performance, with outcome metrics
and performance statistics consistent with their actual hospital values.

The average characteristics of Grady’s ED patients differ markedly from national
averages, especially because so few have private insurance. In 2009 at Grady, only
8% of the ED patients had private insurance; more than 50% self-paid for the service,
and Medicaid and Medicare paid for 36%. In contrast, nationally, approximately 50%
of ED patients have private insurance. Moreover, Grady is burdened by return visits
from uninsured individuals who use the ED as their primary care facility. Table 9.3a
shows Grady’s ED readmission statistics for November to December 2009, which
were close to the national average.

Our goal in predicting readmissions is twofold: (i) capture the characteristics of
the disease and treatment patterns of readmitted patients to incorporate their behavior
within the simulation–optimization environment; and (ii) provide real-time guidance
to ED providers to identify individuals (for observation) before discharge to miti-
gate the number of avoidable readmissions. Reducing the number of readmissions
improves quality of care and provides financial and resource savings.

We apply the machine learning framework using a training set of 42,456 patients
and blind predict using an independent set of 18,464 patients to gauge the predic-
tive accuracies. Table 9.3b summarizes the results. We select those results in which
both the specificity and sensitivity are above 70%. Note that for self-pay and Med-
icaid patients, the accuracy is below 70%. We also observe that predicting insured
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TABLE 9.3a ED Readmission Statistics for the Period from November to December
2009

November–December
2009 72-h Return 30-Day Return

Acuity Level
Number of
Visits

Number
of Revisits

Percentage
of Revisits

Number
of Revisits

Percentage
of Revisits

Total 15,168 824 5.43 3279 21.62
1: Immediate 367 17 4.63 56 15.26
2: Emergent 2,793 157 5.62 651 23.31
3: Urgent 6595 385 5.84 1531 23.21
4: Less urgent 3310 147 4.44 651 19.67
5: Nonurgent 1531 90 5.88 294 19.20
None – missing 572 28 4.90 96 16.78

Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

TABLE 9.3b Tenfold Cross-Validation Results and Blind-Prediction Accuracy for
72-h Returns and 30-Day Returns

72-h Return 30-Day Return

Acuity Level

10-Fold
Cross-
Validation (%)

Blind-
Prediction
Accuracy (%)

10-Fold
Cross-
Validation (%)

Blind-
Prediction
Accuracy (%)

1: Immediate 83.9 82.7 78.3 75.4
2: Emergent 70.0 70.0 79.7 79.0
3: Urgent 70.1 70.5 78.5 78.5
4: Less urgent 71.1 70.1 80.2 80.0
5: Nonurgent 70.5 70.5 77.0 78.5
None – missing 75.3 74.7 89.8 91.1
Overall 71.0 71.1 79.3 78.7
Payment type
Private insurance 86.5 85.9 84.7 84.8
Self-pay 67.1 67.3 76.9 76.6
Medicare 70.1 70.9 77.5 77.9
Medicaid 66.1 67.4 76.5 76.7

The percentage represents the percentage of patients with correct predictions.
Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

individuals yields the highest accuracy because insured individuals use the ED only
when necessary. Obtaining high prediction accuracy for patients who are not pri-
vately insured (e.g., self-pay, Medicaid, Medicare) is difficult. We also note that for
72-h returns, prediction accuracy is highest for acuity level 1 patients, because their
symptoms and conditions are generally more conspicuous; in addition, 72-h returns
and 30-day returns show variations.
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9.5 COMPUTATIONAL RESULTS, IMPLEMENTATION, AND ED
PERFORMANCE COMPARISON

9.5.1 Phase I: Results

We performed systems optimization of the overall ED processes. In addition to the
ED processes, the system model included other units in which ED patients are being
discharged, for example, the ICU, step-down, floor, isolation unit, and telemedicine
sign-up. In Table 9.4a, we summarize the operational performance according to
improvement options using LOS and throughput. When we optimized over the
existing ED layout, the system returned a global solution, which comprises Options
1–4. When we relaxed the layout restriction and optimized, it returned Options 1, 2,
and 5 as the solution. Although these global solutions include a collection of changes
and recommendations that together result in the best overall operations improvement,
we split the solution into individual options and individually simulated the effects of
these changes to allow for prioritization and selection by hospital management for
implementation.

Specifically, we separated the global solution into five options according to change
potential and analyzed the anticipated ED operations improvement. In the following,
we describe the five options and their predicted impact.

Option 1: Combining registration and triage decreases the LOS of blue-zone and
red-zone patients by more than 1 h, with more significant gains by the most
severe (i.e., blue zone) patients. Detention patients are registered separately;
thus, they do not benefit from the change. We find no change in how trauma
patients are admitted. This is marginal improvement for less urgent patients.

Option 2: Reducing laboratory and X-ray turnaround time (by 15 min) drastically
reduces blue-zone, red-zone, and detention patients’ LOS by more than 2 h.
These savings are realized because 59% of these patients require one labora-
tory order and 40% require two orders. The gain is also realized for trauma
patients, although to a lesser extent. PACe and walk-in patients seldom require
laboratory or X-ray orders. The time reduction is achieved via bin-tracking
on orders and improved scheduled pickup and delivery between the ED and
the laboratory.

Option 3: Optimizing staffing in blue and red zones reduces the LOS of blue-zone
and red-zone patients by more than 1 h, with more significant reductions
observed by red-zone patients, because nurses originally operated at about
80% capacity in the blue zone and at 91% in the red zone. Detention-patient
LOS also decreases because of using blue-zone resources.

Option 4: Optimizing staffing in triage, walk-in, and PACe areas reduces LOS
by about 30 min for blue-zone and red-zone patients; as expected, it has a
major impact on PACe and walk-in patients, reducing LOS by 3.8 h (−49%)
and 42 min (−22%), respectively.

Option 5: Combining blue-zone and red-zone layouts with optimized staffing
offers substantial operational efficiency. Before the ESI was introduced,
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patients were sent to each color zone for similar complaints and (or) severity,
as set forth by hospital personnel, to streamline the treatment process, to be
assigned to appropriate providers, or to anticipate complexity of treatment.
This also made revisits easier because patients would recall their previously
assigned color zone. With the establishment of the ESI and sophisticated
triage, patients are assigned an acuity level to assist in the treatment process.
The color zones no longer serve their original purpose, although the hospital
retains them (and appropriately uses them to accommodate the ESI). At
Grady, the blue and red zones are adjacent to each other and share the same
labor resources. Providers spend a good part of each day walking back and
forth between these two zones to tend to patients. Our combined layout with
optimized staffing provides operational efficiency because it reduces LOS by
over 5 and 3 h for the blue and red zones, respectively, and reduces more than
40% of blue-zone LOS and 30% of red-zone LOS. Detention patients use
blue-zone resources and achieve an LOS reduction of about 26%. As expected,
LOS for trauma patients improves only slightly.

In addition to the systems optimization, our time-motion studies and machine
learning analysis also led us to make the following recommendation to hospital man-
agement:

Option 6: Allocate a separate area for walk-in patients to be assigned a bed instead
of at the ambulance triage area.

Option 7: Eliminate batching patients from the walk-in area to a zone or PACe.
Instead of accumulating enough patients and taking a group of them to a zone
or PACe, service each patient based on his (her) arrival time.

Option 8: Eliminate batch discharges. Discharge paperwork is performed for each
patient whenever that patient is ready for discharge, rather than discharging
them in groups.

Option 9: Create a clinical decision unit to observe patients before formal
discharge to reduce avoidable readmissions as a result of insufficient care,
discrepancies in diagnosis, or premature discharge. This option arises from
the machine learning analysis that predicts patients who would be readmitted;
providers then observe them to mitigate the readmission probability. This area
is created by system optimization, which repurposes three beds from the blue
zone and four beds from the red zone. Since 2003, Grady had an observation
unit with six beds to manage ED patients for whom extra time is required
to determine discharge or hospital admission. The repurposed seven beds
increase Grady’s ED observation capacity.

Option 10: Redirect nonurgent or walk-in patients to an alternative care facility.

www.Ebook777.com
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9.5.2 Phase I: Adoption and Implementation

Grady management adopted Options 1–4, 7, and 8 for implementation, but made a
minor alteration to Option 1 – it combined the registration and triage only at the ambu-
lance arrival area. These changes, which required no extra resources, were imple-
mented by July 2009.

At that time, Option 9 was under discussion for implementation because we rec-
ommended reallocating or reoptimizing existing resources (i.e., labor, space, equip-
ment). Option 10 was under consideration to raise funds to help pay for establishing
the alternative care facility.

Subsequently, based on follow-up time-motion studies and independent
best-practice benchmarking tools that Grady employs (e.g., CMS core measures,
National Association of Public Hospitals (NAPH) quality indicators, Press Ganey,
and Leapfrog quality indicators), the changes implemented by July 2009 led to
an LOS reduction of about 3 h (from more than 10 h to slightly more than 7 h), as
Table 9.4b shows for the Phase I adoption and implementation. In January 2011,
the hospital implemented the recommended clinical decision unit for observation,
using the machine learning prediction to trigger the targeted treated ED patients
for observation. Figure 9.4 shows the actual reduction of 72-h and 30-day return
patients. For acuity levels 1 and 2, 72-h returns decreased by more than 30% and
7%, respectively. For 30-day returns, the reductions for these two levels were 24%
and 9%, respectively. Our Grady ED transformation was timely. As a result of
requirements in the Affordable Care Act, the hospital does not receive payment
for return visits; in addition, it must pay a penalty. Hence, reducing avoidable
readmissions represents improved care quality and provides financial savings.

These improvements raised confidence in our recommendations and prompted the
hospital to use $1 million of a donation from Kaiser Permanente to act on Option 10
of our recommendations – to open an alternative care facility, a walk-in center for
low-acuity patients. This facility opened in August 2011 [44]. With confidence in
improved ED efficiency, in October 2011, Grady also unveiled the Marcus trauma
center, which increases the number of trauma beds from 4 to 15 [64]. Based on
the improved ED efficiency, our study recommended only one additional attending
physician.

9.5.3 Phase II: Results

In conjunction with the walk-in-center option and the increase of beds in the trauma
center from 4 to 15, the hospital gained an attending physician; however, the ED
demand also increased. The hospital observed a slight increase in LOS from 7.9 h to
more than 8 h. Understanding that system improvement is an ongoing effort in align-
ing demand with resources, the team embarked on Phase II of the system optimization
effort using existing resources.

In our summary below, we omit the performance report for the PACe and walk-in
because the system output from the various strategies offers only marginal LOS dif-
ferences compared to the larger improvements observed from Phase I.
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Figure 9.4 The graph compares the percentage of ED revisits in 2010 and 2011. Note the sig-
nificant reduction in 72-h and 30-day returns following the installation of the clinical decision
unit in 2011. Reproduced from Lee et al. [12] with permission of the Institute for Operations
Research and the Management Sciences.

Table 9.5a summarizes the anticipated results based on simulation and opti-
mization. Specifically, globally optimizing the system resulted in an overall LOS
reduction of 90 min. This entails global resource allocation and changes in ED
layout. The improvement is considerable, with major LOS reductions in the blue and
red zones (44% and 30%, respectively). Although the trauma center significantly
increased its bed capability, it added only one attending physician. As a result, trauma
LOS improved by only about 10 min, because the new facility had a significant
increase in trauma patients. Nevertheless, for trauma patients, particularly those who
suffer from traumatic brain injury, 10 min can have a tremendous impact on outcome
(e.g., survival, disablement, death) and is vital to the survival and quality of life of
these patients.

Splitting the global strategies into Option 11 (optimal staffing) and Option 12
(optimal layout) resulted in similar minor LOS improvements in trauma patients.
However, blue-zone and red-zone patients continued to enjoy significant LOS
reductions.

9.5.4 Phase II: Adoption and Implementation

Table 9.5b contrasts the ED performance before and after the Phase II Option 11
implementation. Using existing resources and facility layout, Grady gained efficiency
and timeliness of care by simply globally optimizing resources across the ED. The
net LOS reduction of 4 h for high-severity patients (i.e., blue zone) is substantial and
could translate to better quality of care and outcomes. Even minor improvements in
timeliness of care for trauma patients could make a difference between life and death
and have a significant impact on quality of life for these patients.
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TABLE 9.5a Phase II Comparisons of Potential ED Performance Showing Efficiency
Improvements Using Different Strategies

Simulation Systems Performance

Actual Hospital
Operations
August–December
2011

Global
Strategy: System
Optimization
(Resource+Layout)

Option 11:
Optimize
Worker
Allocation

Option 12:
Combine Blue
and Red zones

Overall LOS (h) 8.30 6.79 (−1.51) 7.21 (−1.09) 6.94 (−1.36)
Blue zone (h) 11.32 6.24 (−5.08) 6.66 (−4.66) 6.61 (−4.71)
Red zone (h) 8.94 6.24 (−2.70) 6.19 (−2.75) 6.61 (−2.33)
Trauma center (h) 6.63 6.46 (−0.17) 6.16 (−0.47) 6.47 (−0.16)

Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

TABLE 9.5b The 30-Day Average LOS and Throughput Performance Improved as a
Result of the Phase II Implementation

Phase II: Comparison of ED Performance
(Actual Hospital Monthly statistics)

Original (from Phase I
Improvement)

Implementation of
Phase II Recommendations

Option 11 (Optimizing
Overall ED Staffing)

September 2011–
December 2011 2012

January–
December 2013

ED Zone LOS (l**)
Reduction in
LOS (l–l**)

Reduction in
LOS (l–l**)

Patient volume 8364 8920 9060
Overall LOS 8.30 h −1.00 h −1.16 h
Blue zone 11.32 h −3.95 h −4.05 h (−36%)
Red zone 8.94 h −2.70 h −2.52 h (−30%)
Trauma center 6.63 h −0.35 h −0.30 h (−5%)

Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

Combining blue and red zones is viable because all patients entering either zone
require a consultation and generally require multiple resources or extensive diagnos-
tic testing. However, such layout redesign may not be desirable because commingling
patients with different acuity levels may have detrimental effects on the treatment pro-
cess; for example, care providers may not be as focused. The net gain of combining
the zones, even with optimizing resource usage across all areas, is less substantial for
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trauma patients. The hospital executives carefully weighed this option and are now
confident that combining the zones will have an overall positive impact.

At the time of this writing, the hospital has received $77 million of sponsored
funding and has embarked on the ED facility-layout redesign.

To monitor the performance of the clinical decision unit, Figure 9.5 contrasts the
72-h and 30-day return performance for 2010 through 2013. Between Phases I and II,
the 30-day return reduction shows substantial gain, especially among severe-acuity
patients. Nonurgent patients (level 5) return to ED at high rates because it is often
their only means of access to health care. Such nonurgent readmission is unavoidable
because some patients come in with unrelated health complaints. In contrast, although
level 1 patients demand the most urgent care, their diagnosis is typically very specific;
upon discharge, they are well counseled with regard to follow-up care with their pri-
mary care providers, resulting in lower returns to the ED. Mid-level acuity patients
have higher rates of return because of the less-specific nature of their complaints and
(or) diagnosis.

Figure 9.6 shows LOS trends for the ED zones through the various stages of imple-
mentation. Specifically, adoption of the initial optimization of overall staffing and
process consolidation significantly reduced LOS across all zones (from the first to
the second bar). This implementation did not require additional resources or financial
investment. When the clinical decision unit was established in 2011, Grady expe-
rienced a marginal increase in LOS across all zones because some patients were
selected for observation to reduce potential returns (third bar). This also very slightly
affected the LOS of the blue and red zones because space and labor resources were
repurposed for the clinical decision unit. In September 2011, the alternative walk-in
center was opened, drastically reducing LOS for ED walk-in patients (fourth bar). The
difference in LOS across other zones was marginal; however, overall LOS increased
slightly because the number of walk-in patients decreased significantly. Although
the throughput in the ED and trauma center increased steadily over the years (by
approximately 16.2%), the LOS from 2012 to the present stayed close to constant,
indicating that the earlier improvement was being sustained. The clinical decision unit
reduced potential avoidable returns, thus helping to save hospital resources, reduce
penalties, and improve the quality of patient care. Since November 2013, the unit
has expanded to 15 beds. The walk-in center has helped to relieve Grady’s large
healthcare burden of Medicaid and Medicare patients. By redirecting nonurgent ED
patients, the hospital saved valuable resources and reduced the costs needed to unnec-
essarily treat these patients in the ED. This has also reduced the number of patients
who leave without being seen by more than 32%.

9.6 BENEFITS AND IMPACTS

The Edelman–Wagner OR analytical work and the subsequent implementation and
successes are extremely important to Grady. As a safety net healthcare provider,
Grady must make transformative changes to improve efficiencies and reduce expenses
so that it can continue to provide care to a significant segment of the population that
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Figure 9.5 (a, b) The graphs compare the percentage of ED revisits in 2010 (no intervention),
2011 (Phase I), and 2012–2013 (Phase II). Note the significant drop in 72-h and 30-day returns
following the Phase I implementation. The machine learning tool learns from revisit patterns
and improves progressively as it adapts through the years. The levels 4 and 5 patients who use
the ED as their primary care service (i.e., super-utilizers) remain a challenge, especially for
72-h returns. Reproduced from Lee et al. [12] with permission of the Institute for Operations
Research and the Management Sciences.

is underserved medically. The goal of our work is to significantly improve the effi-
ciency and timely delivery of quality care to Grady’s ED patients. In the opinion of
Grady executives and medical staff members, our OR analytical work made possible
and substantially facilitated the following benefits and impacts listed.
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Figure 9.6 The graph compares LOS from 2009 to the present. Grady has sustained a steady
ED LOS since the 2009 system improvement implementation. The graph shows the following:
March–May 2009 (original performance, first bar), July 2009–December 2010 (after Phase I
implementation, second bar), January–August 2011 (after implementation of the clinical deci-
sion unit for observation, third bar), September–December 2011 (after implementation of the
walk-in center to redirect nonurgent patients, and expansion of the trauma center, fourth bar),
and 2012–2013 (after Phase II implementation, fifth and sixth bars). The overall average LOS
in 2013 was 7.14 h. Reproduced from Lee et al. [12] with permission of the Institute for Oper-
ations Research and the Management Sciences.

9.6.1 Quantitative Benefits

Our work has improved the timeliness of emergency care. From the beginning of
Phase I to the present, the overall average LOS decreased by 33% (10.59 to 7.14 h),
while average total waiting time decreased by 70%. This contrasts with an ED LOS
of 8–11 h in comparable safety net hospitals (see Table 9.6). The reductions are most
significant for high-acuity patients: LOS decreased by more than 50% for both the
blue and red zones (−7.27 and −6.28 h, respectively); the LOS in the trauma zone
decreased by 20% (−1.52 h). In the following, we list quantitative improvements.

9.6.1.1 Improved Efficiency of Emergency Care Facilitated by the creation of the
walk-in center, the improvements allowed Grady to increase its ED annual through-
put (i.e., number of patients treated) by more than 7.8% (+8114), its trauma vol-
ume by 8.4% (+1664), and its volume of severe trauma cases (i.e., patients facing
life-and-death situations) by 14% (+417) and reduce the number of patients who leave
without being seen by more than 30% (−5553). Moreover, it made these improve-
ments without increasing its ED staff or facilities. The use of the clinical decision
unit decreased avoidable 72-h and 30-day readmissions among the acuity levels 1–3
patients by 28% (−602). This produced direct financial and resource savings for the



�

� �

�

BENEFITS AND IMPACTS 295

TABLE 9.6 Comparison of LOS in Major Safety Net Hospitals
(http://www.Hospitalcompare.hhs.gov)

Hospital

LOS for ED
Patients
Discharged
to Hospital (h)

LOS for ED
Patients
Discharged
Home (h)

Average
ED LOS (h)

LAC/USC (Los Angeles) 17.8 6.7 8–11
Cook County (Chicago) 15.0 6.0
Parkland (Dallas) 11.1 5.3
Grady (2014) 9.3 6.7 7.1
Grady (before) 2008 13.5 10.0 10.6

Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

hospital and had a positive impact on patient-care quality measures. The alternative
walk-in center serviced more than 32% of the nonurgent ED cases outside the ED
treatment area, thus reducing the hospital’s financial burden (by treating these patients
in a lower cost area) and ensuring proper ED resource usage.

9.6.1.2 Annual Financial Savings and Revenues From 2008 to 2012, the reduc-
tion in revisits resulted in $7.5 million of savings in penalties. The walk-in center
for nonurgent conditions reduced ED costs by $21.6 million and resulted in $12.5
million in additional revenue. ED and trauma efficiency increased the revenue by
$96.6 million. Expansion of trauma care resulted in $51.8 million in revenue. For a
critical safety net hospital with $1.5 billion of annual economic impact, only 8% of
which is paid by private insurance, the $190 million financial gains have a tremendous
impact on maintaining Grady’s financial health.

The ED, often called the front door to a hospital, serves as a source of hospital
inpatient admissions, which on average generate more revenue than ED-only admis-
sions. For Grady hospital, the ED provides about 75% of inpatient admissions. Thus,
the ED’s increased throughput and other improvements played a major role in the
significant revenue increases shown in Grady’s annual financial reports.

9.6.1.3 Encouragement of External Sponsorship In part, as a result of the rigor-
ous OR-driven recommendations, Grady has been able to document success in time-
liness of care and operational efficiencies, thus facilitating increased philanthropic
donations. The Kaiser Foundation contributed $1 million [44] to establish an alterna-
tive care site (walk-in center) for low-acuity patients. A $20 million gift from the Mar-
cus Foundation [64] enabled Grady to create a world-class stroke and neuroscience
center and a state-of-the-art trauma center. The OR advances and the subsequent ED
transformation give investors confidence in sponsoring projects that will benefit the
hospital and its patients.
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TABLE 9.7 Estimates of Potential Death and Disability Reductions Resulted from
Increasing Patient Volumes at Grady in 2013

ED Service 2013 Volume Increase in Volume Reduced Death and Disability

Airlift trauma
patients

3395 Patients 417 Patients (+14%) All need immediate care for
life-and-death situations

Trauma patients 15,992 1665 (+8.4%) Death∼ 56
Disability∼ 160

Comprehensive
care

39,059 2001 (+5.52%) Disability∼ 390

Extended care 29,645 902 (+2.9%) Disability∼ 296

Volume increases shown compare 2013 and 2012.
Source: Reproduced from Lee et al. [12] with permission of the Institute for Operations Research and the
Management Sciences.

9.6.2 Qualitative Benefits

Our work has saved lives, reduced morbidity, and reduced disabilities. Efficient
ED operations allow the ED to more quickly treat patients with time-sensitive
conditions. The shortened LOS demonstrates that patients move from the ED
and receive appropriate care in the appropriate setting in a timelier manner. For
high-acuity patients, quicker response during the golden hour of treatment (i.e.,
a period of about 1 h following traumatic injury) during which prompt medical
treatment will likely prevent death can mean the difference between life and death,
disability, or returning to a normal life. Faster door-to-computerized-tomography
(CT) scan and door-to-tissue-plasminogen-activator (a clot-dissolving drug) admin-
istration for stroke patients, and faster door-to-antibiotics for pneumonia patients
have decreased long-term disability and death. More acute trauma patients can be
treated, saving more lives. Improved timeliness and service quality directly translate
to improved quality of life for patients and decreased morbidity and mortality and
make a difference in whether a patient is treated and released, or is admitted to the
hospital (see Table 9.7).

9.6.2.1 Health Cost Reductions ED timeliness and efficiency of care have a broad
impact on patient quality of life and on healthcare spending. Timeliness and improved
quality of care improve outcomes and consequently lead to indirect savings of hun-
dreds of millions of dollars in ongoing care and management of patients. In addition,
reducing disability allows patients to lead normal lives. The estimate of the value
of one life in the United States is $50,000 to $100,000 per year of life saved [65].
We emphasize that although quality and systems efficiency have been our focus, the
monetary savings (for both the providers and the patients) are real and are critical to
our national healthcare system. This is especially true for safety net hospitals such as
Grady, which feel the burden more acutely than other hospitals, given that many of
its service costs are not reimbursed.
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9.6.2.2 Continuous Improvement and Adaptive Advances The hospital has been
able to achieve its targeted goal of ED LOS of 7 h and sustain overall improvement
for over 5 years. With ED demand continuing to grow, maintaining a culture of con-
tinuous improvement is key to sustaining good performance.

9.6.2.3 Improved Quality of Care in Other Facilities The model can be general-
ized and has been tested and successfully implemented in 10 other EDs. The benefits
across these EDs are consistent with the substantial benefits Grady achieved. The ED
volumes at these 10 sites range from 30,000 to 80,000 patients per year. Upon imple-
mentation, they have experienced a total throughput increase of 15–35%, a reduction
of revisits of severe acute patients of 19–41%, an LOS reduction of 15–38%, and a
reduction in the number of patients who leave without being treated of 35–50%.

Grady has applied the technology in other units, including medication error anal-
ysis for the pharmacy and hospital-acquired conditions (HACs) in the ED, operating
room, and intensive care units. HAC is one of the 10 major causes of death in the
United States. Our surgical site infection (SSI) study at Grady involved reducing
mediastinitis after cardiac surgery. Nationwide, the 700,000 open-heart surgeries per-
formed each year result in infection rates of 0.5–5%. Of those infected, the mortality
rate is 40%. On average, an additional 30 days of hospital LOS and (or) one extra sur-
gical procedure are required. The SSI rate at Grady was 23% in 2010. The team imple-
mented transformative changes, including strategic preoperative procedures for both
inpatients and outpatients and optimal timing and dosing of preoperative antibiotics
in July 2011. The infection rate decreased to 1.5% between July 2011 and January
2012 and has been 0% since February 2012. The team is now conducting a study on
joint surgeries, bloodstream infection, and catheter-induced urinary-tract infection.

9.7 SCIENTIFIC ADVANCES

The collaborative effort between hospital researchers and OR scientists resulted in
scientific advances on two fronts:

9.7.1 Hospital Care Delivery Advances

The new system couples machine learning, and simulation and optimization decision
support to improve the efficiency and timeliness of care in the ED, while reducing
avoidable readmissions. The model allows a hospital to globally optimize its ED
workflow, taking into account the uncertainty of human disease characteristics and
care patterns, to drive the patient LOS and wait time to a minimum. It provides a
comprehensive analysis of the entire patient flow from registration to discharge and
enables a decision maker to understand the complexities and interdependencies of
individual steps in the process sequence; ultimately, it allows a hospital to perform
systems optimization to achieve the most optimum performance.

The model focuses on system optimization that results in improvements in LOS
and waiting time through resource allocation, system consolidation, and operations



�

� �

�

298 TRANSFORMING EMERGENCY DEPARTMENT WORKFLOW AND PATIENT CARE

optimization without attempting to change the behavior of healthcare providers or
patients. Rather, the system captures the human behavior and optimizes the workflow
process to achieve optimal results. Although changing human behavior can result in
significant gains, we understand that such changes may be more costly in terms of
training and altering habits; this is particularly true for teaching hospitals at which
rotations of residents and healthcare trainees are common. The potential to introduce
new errors also exists. Thus, we accept the variability in human behavior and ser-
vices and incorporate these elements into our model to reflect workflow and human
characteristics.

9.7.2 OR Advances

The novelty of our OR-driven analytical work includes performing systems opti-
mization within the ED simulation environment; incorporating treatment patterns
and patient characteristics dynamically and stochastically within the ED oper-
ations and quality–improvement framework; modeling ED readmission using –
simultaneously – demographics, socioeconomic status, clinical information, hospital
operations, and disease behavioral patterns; modeling ED interdependencies involv-
ing other hospital units; and integrating a machine learning framework within the
simulation–optimization environment.

We acknowledge the computational challenges of such large-scale complex mod-
els in data collection for model validation, parameter estimation, and global system
optimization. The machine learning framework and the DAMIP model have been
proven to be NP-hard [51]; hence, they require both theoretical and computational
breakthroughs [47–51, 54, 55]. However, once the predictive rule has been estab-
lished, it can analyze and predict patient return patterns in nanoseconds, opening up
real-time target patient intervention. We derived polyhedral theory and applied it to
the solution strategies for DAMIP [50, 51, 54, 55].

Because of the complexity of simultaneously simulating dynamic system behavior
and optimizing operational performance, solving within our simulation–optimization
framework remains a challenge. We caution that our solutions, although obtained
rapidly, are not proven to be optimal. Nevertheless, our investigations indicate that
the solutions are close to optimal.

Related photos, presentations, hospital-insider notes, and an Institute of
Medicine/National Academy of Engineering letter concerning the significance of
the work are available at http://www2.isye.gatech.edu/medicalor/EDadvances.
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A MULTIOBJECTIVE SIMULATION
OPTIMIZATION OF THE
MACROLEVEL PATIENT FLOW
DISTRIBUTION

Yunzhe Qiu and Jie Song
Department of Industrial Engineering & Management, College of Engineering,
Peking University, Beijing, China

10.1 INTRODUCTION

The imbalance development of public healthcare system and patients’ demand has
grown into a worldwide problem. Patients desire fast and high-quality healthcare
service with less expense, but not all of the hospitals provide effective and timely
service. In the United States, patients with un-emergent illness also visit Emergency
Departments (ED) for faster treatment, while in China patients with minor illness
still prefer General Hospitals (GH) for higher quality healthcare service. Although
ED and GH play different roles in their own indigenous healthcare system, they are
facing the same problem that the demand exceeds service capacity.

Components of the hierarchical healthcare system currently in urban China
include Community Healthcare Centers (CHCs) and GHs. CHCs are faster to deal
with ailments, but the service quality, the skill of physicians, and medical devices are
far behind high-level hospitals. The GH always covers several communities, even a
district or a whole city. The service quality is usually better in GH, but patients have
a long access time to healthcare service. Statistics from Ministry of Health in China
show that 73.9% of patients choose GHs for the first attendance. However, 65% of
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outpatients currently in GH could also be well treated by CHC. In a word, patients’
blindness of seeking healthcare service causes the irrational patient flow distribution.

The Chinese government has been conscious of the severity and proposed a series
of incentive policies to guide the patient flow. Among them, the “Two-Way Refer-
ral Policy” (TWRP) is the most important one. The TWRP consists of two parts.
The “Upward Referral” part states that CHC patients (those choosing CHC for first
healthcare attendance) whose acuteness exceeds the CHC’s ability can be transferred
to higher-level hospitals directly without extra waiting in GH. It aims to encour-
age patients to choose CHCs for the first diagnosis so as to release GH’s pressure
from outpatients. Another part of the TWRP is the “Downward Referral” policy. It
announces that the inpatient in GHs, whose health condition has been controlled but
still needs further observation, is encouraged to move to the CHC. Similar to the
“Upward Referral” part, the “Downward Referral” part is used to reduce the high uti-
lization of bed resources from inpatients at the recovery stage. Therefore, we build a
two-level healthcare system consisting of several CHCs and a GH connected accord-
ing to the TWRP.

This study is aimed at optimizing the performance of a hierarchical urban
healthcare system by adjusting the patient flow distribution among different level
healthcare facilities. Different from previous researches in the healthcare system,
it focuses on the quantitative analysis to the patient flow distribution among the
two-level urban healthcare system, with the intention to develop a decision-making
supported tool for the government to determine the optimal patient flow distribution.
Our method integrates the discrete-event simulation (DES), multiobjective opti-
mization, and simulation optimization. There are three control variables describing
the patient flow distribution, and eight system performance measures functioned
as objectives in the optimization model. Since the stochastic healthcare service
processes are too complicated to be modeled by mathematical tools, we use DES to
model the healthcare system. In addition, we develop two simulation optimization
algorithms to find the optimal patient flow distribution. One is based on Random
Search (RS) and the Ranking and Selection (R&S), and the other is a variant
algorithm based on Stochastic Approximation (SA) and improved by the Response
Surface Method (RSM). We finally carry out a case study on the background of
the Peking University Third Hospital (PUTH) and 15 CHCs in Beijing, China, to
implement our method. Based on the analysis of the results, we conclude recom-
mendations to improve the patient flow distribution in the current urban healthcare
system. A comparison between the two algorithms from the aspects of efficiency
and accuracy is also discussed in this case.

The main contribution of our work is that we propose a multiobjective simula-
tion optimization method in a policy-driven healthcare problem. Simulation is used
to describe the relationship between decision variables and objective functions in the
multiobjective optimization model. Two improved algorithms have been designed to
determine the optimal patient flow distribution. A typical case study demonstrates
how to implement our approach. To our best knowledge, this work is the first chapter
considering the macrolevel patient flow distribution in a hierarchical healthcare deliv-
ery system based on multiobjective simulation optimization.
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This chapter is structured as follows. Section 10.2 reviews the previous research
on improving patient flow distribution and simulation optimization in the field of
healthcare. In Section 10.3, the macrolevel patient flow problem is studied as a
multiobjective optimization model, and the two-level healthcare delivery system
is simulated. In Section 10.4, we introduce simulation optimization approaches to
solve the multiobjective model, and the developed algorithms are also included.
Section 10.5 is the case study, in which our approach is implemented, and the two
developed simulation optimization algorithms are compared. Section 10.6 is the
conclusion to our approach along with policy recommendations to the government.
In the end, the limitation of our approach and future study directions are also
pointed out.

10.2 LITERATURE REVIEW

With respect to the objective of improving patient flow, relevant literatures associ-
ated with patient flow, multiobjective optimization, and simulation optimization are
reviewed. Section 10.2.1 briefly reviews previous researches on patient flow optimiza-
tion problem. Section 10.2.2 provides existing literatures on multiobjective optimiza-
tion problems in the field of healthcare. In Section 10.2.3, literatures on simulation
optimization are reviewed.

10.2.1 Simulation Modeling on Patient Flow

Most existing researches on patient flow planning focus on one or several certain
departments at a microlevel. Among them, the allocation of crew and facilities,
including the doctors, nurses, beds, medical devices, are mainly investigated, and the
patients’ length of stay (LOS), utilizations of medical resources, and the throughput
of the system are chosen as the performance measures. Coelli et al. [1] develop a
discrete-event computation simulation model, based on an existing public sector
clinic of the Brazilian Cancer Institute, for the analysis of a mammography clinic
performance. And they successfully prove that small-capacity configurations help
to abridge the patient waiting time. Mallor et al. [2] develop a simulation model
combined with generalized regression models to study bed occupancy levels in
Intensive Care Unit (ICU). The beds and specialized staff are re-planned to meet the
patients’ requirement. Kumar [3] designs a surgical delivery process to optimize the
patient flow in a country hospital in the United States. The bed capacity is adjusted
by building a system simulation model. Venkatadri et al. [4] use simulation-based
alternatives at the cardiac catheterization lab to improve the overall patient care
process by reducing patient turnaround time.

Researches on patient flow congestion are also investigated. Raunak et al. [5] uses
executable process definitions and separate components for specifying resources to
support DES so as to improve efficiency of hospital Emergency Department. Powell
et al. [6] conduct a cross-sectional computer modeling analysis to test three poli-
cies and choose the best-performed one to implement. In order to reduce the waiting
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time in ED, Konrad et al. [7] uses DES modeling to support the implementation of
a split-flow process improvement in an ED. Statistical analysis of data taken before
and after the implementation indicates that the waiting time is significantly improved
and overall patient LOS is reduced.

Patients sometimes move from one healthcare facility to another. A few literatures
investigate the healthcare system consisting of several levels of hospitals and refer-
rals among them. Koizumi et al. [8] use a queuing network with blocking to model
the patient flow in a mental health system in Pennsylvania. The system consists
of three types of psychiatric institutions: extended acute hospitals, residential
facilities, and supported housing, and the in-flows and out-flows between them
are also considered. Farinha et al. [9] use a stochastic discrete-event simulation
model to study the organization of primary and secondary care services. Original
services are re-organized, and improvement in efficiency and quality healthcare
delivery is achieved. Abo-Hamad and Arisha [10] develop a methodology using
the DES to evaluate the entire emergency medical system of Belo Horizonte
in Brazil.

10.2.2 Multiobjective Patient Flow Optimization Problems

Another criterion to classify the researches on patient flow distribution is the objec-
tive(s) they choose. Most of the researches only optimize one objective. Some are
concerned about the service time represented by LOS [7, 11–13], and some are aimed
to reduce Leave-Without-Being-Seen (LWBS) rate or to improve the throughputs
[14–16], but only a few focus on the utilization of severs [17].

However, considering only one objective sometimes cannot improve the system in
all directions, and thus the optimization to multiple objectives is required. Common
methods of multiobjective programming include the objective dimensionality
reduction, preference-based multiobjective optimization, and ideal multiobjective
optimization [18].

The objective dimensionality reduction is to set benchmarks to secondary objec-
tives and only optimize one primary objective instead. In this method, secondary
objectives are transformed into constraints and primary objective retains as the objec-
tive function. Ahmed and Alkhamis [19] transform the average waiting time and costs
to an ED unit into constraints of the programming model. Only the system throughput
chosen as the single-objective function is optimized. Santibáñez et al. [20] use simu-
lation to redesign the scheduling strategy of ACU process under several scenarios at
an ambulatory care in Canada. In this research, a waiting time criteria is defined, and
the utilization of ACU should be maximized. Popovich et al. [21] reduce the patients’
LWBS rate in hospital emergency services by firstly making total LOS meets national
benchmarks. Zhang et al. [22] carry out a research to long-term care capacity planning
in Canada. They aim to find the minimal capacity planning satisfying the standard ser-
vice level for patients’ waiting time expressed as the probability that a patient exceeds
the given target waiting time.

Another way to transform a multiobjective into single objective is the preference-
based multiobjective optimization method [18]. The procedure is as follows:
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(i) determining a preference vector representing the weight of each objective based
on the higher-level information to construct the composite single-objective function,
and (ii) using single-objective optimization algorithms to find the optimal solution(s).
Oddoye et al. [23] describe a detailed simulation model for healthcare planning in
a medical assessment unit and optimize five objectives including the patient queue
length for nurses, for doctors, the total length of queues in the system, the total
waiting time, and the number of beds. They use the weighted goal programming
technique to construct the objective function where the weights are derived from
the elicited preferences of the medical assessment unit management. Cardoen
et al. [24] study a multiobjective combinatorial optimization problem to determine
the sequence of patients within the operating rooms of a freestanding ambulatory
surgical center. They study six objectives including the travel distance, the LOS in
recovery area, the peak number of bed space, and the surgery scheduling of different
types of patients. The chapter introduces each objective a weight and then sums the
values of all weighted objectives.

An appropriate preference vector can be determined by Analytic Hierarchy Pro-
cess (AHP), developed by Thomas Saaty’s [25], and its variants, fuzzy AHP and
Monte Carlo AHP, which have been used in the healthcare field. Abo-Hamad and
Arisha [10] use AHP to aggregate conflicting objectives of providing wide acces-
sibility and delivering high-quality services together as single objective, after their
simulation model based on the exported outputs in the emergency department.

The ideal multiobjective optimization is as follows: (i) finding the set of trade-off
(nondominated Pareto) optimal solutions by considering all objectives, (ii) using
higher-level qualitative considerations to make a choice in the optimal solution set
[18]. Baesler and Sepúlveda [26] develop a methodology integrating simulation
and Genetic Algorithm (GA) for a cancer treatment center to optimize the perfor-
mance of four objectives. They solves a two-objective operating room scheduling
problem by the combination of simulation and Random Key Genetic Algorithm
(RKGA).

10.2.3 Simulation Optimization

With the development of computing technology, the power of computer simulation
becomes much stronger. Simulation nowadays can not only be used to describe a
system but also to solve optimization problem to support decision making. Fu [27]
introduces the theory of simulation optimization and summarizes several common
methodologies.

Similar with deterministic optimization, methodologies in simulation optimization
applied in healthcare area can be divided into several groups: (i) nonintelligent search;
(ii) metaheuristic; and (iii) gradient search. A critical difference between determin-
istic optimization and simulation optimization is the randomness of outputs. Among
all the methods in the field of simulation optimization, R&S is the most basic one
that provides the comparison and ordinal theory to random simulation outputs based
on statistical techniques. So R&S always functions as the auxiliary method to others
in the researches on simulation optimization (i.e., [28–30], and [31]).
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Both of exhaustive search and RS are functioned as nonintelligent global search
strategies in simulation and optimization. They are usually used under discrete and
countable settings, but exceptions also exist. Taboada et al. [32] use agent-based sim-
ulation (ABS) model to test the effects of different patients’ derivation policies to
the patients’ LOS in ED. Six scenarios are tested separately, and the best-performed
one is obtained as the optimal patient arrival pattern. Cabrera et al. [33] integrate
ABS and exhaustive search optimization to find out the optimal ED staff configura-
tion, which is modeled as a multidimensional problem. Several optimization methods
based on RS, such as the Stochastic Ruler (SR) algorithm [34], the stochastic com-
parison (SC) algorithm [35], have also been proposed, but few of them is used in the
healthcare area.

Metaheuristic methods are also used in discrete settings. Compared with exhaus-
tive search and RS, metaheuristic methods search the definition domain with more
wisdom. Another superiority of metaheuristic methods is their applicability in
multiobjective optimization problems. Pareto optimal set can be found instead
of determining weights of each objective to translate the problem into a single
objective. Literatures on GA used in simulation optimization have been mentioned in
Section 10.2.2. Other metaheuristic methods, such as Tabu search [36], Simu-
lated Annealing [37], and Artificial Neural Network [38], have also been used in
simulation optimization.

SA is based on gradient-search mechanism, which is often used in continuous set-
tings, when the solution or scenario of the problem is noncountable. In these cases,
procedure of SA runs much more efficiently than traditional random or exhaustive
search. As a gradient-search algorithm, SA is not as widely used as methodologies
mentioned earlier because the algorithm of SA is easily trapped in local optimality.
Spall [39], Alrefaei and Diabat [40], and Broadie et al. [41] used SA in simulation
optimization, and both of them obtained satisfied results. Another gradient-search
algorithm RSM combines stochastic tool with simulation optimization, which pro-
vides regression model between the inputs and outputs of simulation [42–44].

10.3 PROBLEM DESCRIPTION AND MODELING

10.3.1 Problem Description

China’s urban healthcare system in this chapter consists of a GH and several CHCs, in
which all of the hospitals are accessible to patients. Because of the TWRP, referrals
have higher priority in registration queues. Through the observation of the patient
movement process, we obtain the patient flow chart of the two-level healthcare system
as shown in Figure 10.1.

In this model, patients from the community choose CHC or GH for the first atten-
dance with constant probabilities. The patient flow and service processes in CHC are
modeled as follows. Before receiving the treatment, the current congestion level of
CHC is judged. If the CHC is too crowded, patients abandon the service and leave
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Figure 10.1 Patient flow and service processes in the two-level healthcare system.

the system with service failure. Otherwise, they sequentially go through the “CHC
Register,” the “CHC Doctor” servers for treatment. Patients who have finished the
diagnosis are inspected whether they are cured in the “Physical Check” server. Cured
patients leave the system with successful service, while others enter the “Upward
Referral” queue, waiting to enter the GH part.

The GH part in this model is more complex, it includes three ways for registration:
the registrations for upward referrals, the online reservation, and the window register
for walk-in patients. The sum of all the registrations is fixed. The upward referrals
have categorical priority in the registration queue. As for the “Online Reservation,”
patients request the appointment dates according to their preference and receive an
appointment on the nearest available date after the day they want instead. Once the
registration capacity runs out, patients do not get the admission and leave the system
directly, which indicates the service is failed. Treatment process of GHs is similar to
the CHCs. However, CHCs in China hardly have beds, and only GHs provide bed
for hospitalization service to patients. So most of the GH patients leave the system
with successful healthcare service, while the rest of them turn into inpatients. After
a course of treatment, patients go back to the “Physical Check” server for another
inspection to their health condition. And they also need another judgment module
called “Downward or not” to choose a proper place for recovery.
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10.3.2 System Modeling

The aim of our research is to optimize the system performances by adjusting the
patient flow distribution. We choose three controllable variables with significant
impacts on the patient flow distribution, which appeal much attention from the
government as decision variables:

p0,CHC denotes the CFAR (Community First Attendance Ratio)

pCHC,GH denotes the upward referral ratio

pGH,CHC denotes the downward referral ratio.

We formulate the multiobjective functions containing the LOS, the throughput,
the service efficacy represented by the LWBS rate, and the resources utilization. We
define

TCHC and TGH as the average LOS in CHC and GH

TUpward as the average LOS of upward referrals in the system

H as the number of cured patients in a day

LCHC and LGH as the service LWBS rate in CHC and GH

UCHC and UGH as the average utilization of resources in CHC and GH.

Then we get a series of multiobjective functions as follows:

Minimize TCHC = T1(p0,CHC, pCHC,GH, pGH,CHC) (10.1)

Minimize TGH = T2(p0,CHC, pCHC,GH, pGH,CHC) (10.2)

Minimize TUpward = T3(p0,CHC, pCHC,GH, pGH,CHC) (10.3)

Maximize H = H(p0,CHC, pCHC,GH, pGH,CHC) (10.4)

Minimize LCHC = L1(p0,CHC, pCHC,GH, pGH,CHC) (10.5)

Minimize LGH = L2(p0,CHC, pCHC,GH, pGH,CHC) (10.6)

Maximize UCHC = U1(p0,CHC, pCHC,GH, pGH,CHC) (10.7)

Maximize UGH = U2(p0,CHC, pCHC,GH, pGH,CHC) (10.8)

Subject to

0 ≤ p0,CHC ≤ 1 (10.9)

0 ≤ pCHC,GH ≤ 0.1 (10.10)

0 ≤ pGH,CHC ≤ 0.05 (10.11)

where T1(⋅),T2(⋅),T3(⋅),H(⋅),S1(⋅),S2(⋅),U1(⋅),U2(⋅) are the multiobjective functions
determined by the three decision variables.
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We use simulation to discover the value of functions 10.1–10.8. Constraints
10.9–10.11 are the policy limit, which also give the range of the decision variables.
To solve the linear programming, we transform the multiobjective functions into a
composite single-objective function using expression 10.12:

Maximize J(p0,CHC, pCHC,GH, pGH,CHC) = w ⋅ Y (10.12)

where w = (𝑤1, 𝑤2,… , 𝑤8) is the preference vector and Y is the linear standardized
multiobjective vector.

(a) Linear standardization From the output of our simulation model, the
orders of magnitude of the outputs are varied from 10−1 to 103, which
destroy the fairness of the objective functions. In this paper, we target to
develop a decision-support tool for the policy makers to justify the value of
the multiobjective optimization model. The standardized output values of
objective functions ranging from [0,100] are easy for the policy makers to
understand the quantitative effect of the multiobjective optimization model.
The expressions of yi(�̂�i) are

yi(�̂�i) = 𝛼i�̂�i + 𝛽i (10.13)

where 𝛼i, 𝛽i are the one-stage coefficient and constant coefficients and �̂�i is the
observed value of ith performance measure.

The method of undetermined coefficients is used to determine 𝛼i, 𝛽i. We
should figure out the Upper Bound (UB) and Lower Bound (LB) of each objec-
tive at first by simulating under extreme circumstances. We define �̂�i as the UB
of ith performance measure and �̂�i as the LB, and we then obtain equation sets
to find 𝛼i, 𝛽i:

As for positive objectives, which should be maximized, such as
H,UCHC,UGH, we define yi = 100 when �̂�i = �̂�i, and yi = 0 when �̂�i = �̂�i.{

𝛼i�̂�i + 𝛽i = 0

𝛼i�̂�i + 𝛽i = 100

On the contrary, as for negative objectives, we define yi = 0 when Yi = Yi,
and yi = 100 when Yi = Yi. {

𝛼i�̂�i + 𝛽i = 100

𝛼i�̂�i + 𝛽i = 0

(b) Determining preference vector Some of the previous researches on health-
care service quality used AHP methodology ([45, 46], Arisha 2012) to deter-
mine the importance of factors. AHP is an easier method to carry out when the
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decision-making group is small and considers both the absolute and relative
weights of the objectives as an entire system, which determines the weights
comprehensively. The procedures of AHP are as follows: (i) proposing the
hierarchy model; (ii) constructing the pairwise comparison matrix; (iii) figur-
ing out the weights vector; and (iv) checking the consistency.

10.4 METHODOLOGY

The methodology structure of the multiobjective optimization is based on the
preference-based multiobjective optimization procedure [18] as follows:

• Use higher-level information to determine the preference vector and the com-
posite single-objective function;

• Find a single trade-off optimal solution by a single-objective optimization algo-
rithm.

Distinguished from deterministic optimization, the value of objective variables
is observed by the simulation model. The flow chart of multiobjective simulation
optimization algorithm is shown in Figure 10.2.

10.4.1 Simulation Model Description

We used Arena 14.0.0 developed by Rockwell company to construct our simulation
model. The logical of the patient flow chart in the simulation model is the same as
described in Figure 10.1. In order to have easier observations and calculations, we
raise the following assumptions in the DES simulation model:

• Patients are categorized into three groups: (i) CHC patients, who enter CHC for
diagnosis and leave the system after finishing all the processes in CHC; (ii) GH

Data collection and analysis

Discrete-event simulation

Terminate criteria

Single-objective optimization algorithm

Composite single-objective
function

Multiobjective functions

Decision marker(s)

Optimal solutions
Fixed inputs
and settings

Candidate solution

Not satisfied

Performance measures:
objective variables

Satisfied

Preferences

Offspring solutions

Figure 10.2 The diagram of methodology structure.
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patients, who enter GH directly; (iii) upward patients, who enter CHC at first,
but go upward to GH for further treatment after finishing all the processes in
CHC. Since the number of downward referrals is too small to analyze and the
difference of the average LOS between GH patients and downward referrals are
not significant, we do not differentiate downward referrals with GH patients.

• As a macrolevel patient flow simulation optimization research, more detailed
processes of diagnosis and treatment, such as physical tests, payment, prescrip-
tion, and pharmacy, are included in the “CHC Doctor” and “GH Doctor” servers
for model simplification.

• Upward patients need GH-level healthcare service and will finish their treat-
ments in GH ultimately. Therefore, they are included in the throughputs of GH.

10.4.2 Optimization

With the development of computing technology, simulation has been used to
construct and analyze complex systems for a couple of years. The integration
of simulation model and optimization techniques is now accessible for decision
making, and several simulation optimization approaches have been put forward.
Fu [27] introduces simulation optimization, as well as five common approaches
including R&S, SA, RSM, RS algorithm, and SPO (Sample Path Optimization).
After that, some more chapters discuss the theories and applications of simulation
optimization [1, 19, 22, 47].

Each simulation optimization approach has its own pros and cons. In order to
design a more effective and efficient framework, we develop two improved integrated
algorithms. Algorithm 1 is based on RS algorithm, and R&S is used to determine the
number of simulation replications. The second one is gradient-search algorithm based
on SA and improved by the RSM to regress the local surface.

10.4.2.1 Algorithm 1: RS+R&S RS is one of the most common approaches of
simulation optimization because of the existence of theoretical convergence [48–51].
It is appropriate for both discrete and continuous inputs. A candidate solution ran-
domly chosen by procedure each time is substituted into simulation model as decision
variables. After computing the value of objective functions, the procedure makes
a comparison between the current optimal solution and the candidate solution, and
chooses the better one as new optimal solution.

Algorithm 1

Step 1 Initiation: Define �̂�∗ as the initial solution. Then define i = 1, and imax as
the maximum iteration times. Plug �̂�∗ into the simulation model and run the
simulation. We get the mean value of objective Ĵ(�̂�∗) by running the replication
for m times.

Step 2 Iteration: Generate another 𝜃i ∈ Ω (Ω is the feasible domain) and plug it
into the simulation model. Run the replication for m times to obtain the value
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of objective Ĵ(𝜃i). Compare Ĵ(�̂�∗) and Ĵ(𝜃i). Update �̂�∗ , i as follows:

�̂�∗ =
{
𝜃i Ĵ(�̂�∗) > Ĵ(𝜃i)
�̂�∗ Ĵ(�̂�∗) ≤ Ĵ(𝜃i)

i = i + 1 (10.14)

Step 3 Optimal solution: when the terminal criteria i > imax is satisfied,
return �̂�∗.

One of the challenges of Algorithm 1 is to identify the performance of input �̂�∗
and 𝜃i. The value of outputs collected by simulation is with uncertainty, we can only
infer its distribution by repeated observations. However, determining the sample size
has a dilemma that more samples guarantee the accuracy of results, while the speed
of algorithm decreases with increasing replications. Therefore, we introduce R&S to
determine the sample size that is statistically optimal.

Before that, we firstly introduce two concepts: indifference zone 𝛿 and confidence
level 𝛼 [52]. The indifference zone expresses the precision level of the selection, and
the confidence level means the probability to make a correct selection. Briefly, we
claim

−→
𝜃1,

−→
𝜃2 to be indifferent in zone 𝛿 at a confidence level 𝛼 if

Prob[|J(−→𝜃1) − J(−→𝜃2)| < 𝛿] ≥ 𝛼 (10.15)

After knowing indifference zone 𝛿, confidence level 𝛼, sample standard deviation
𝜎, the number of candidate solutions k, and the number of optimal solutions t, we
can figure out the proper sample size n according to single-stage procedure which is
determined by

n =
(

c𝛼,k,t𝜎

𝛿

)2

(10.16)

where c𝛼,k,t exists in the lookup table [53].

10.4.2.2 Algorithm 2: SA+RSM Compared with RSA, SA is much more effec-
tive on searching the optimal solution. SA is a greedy algorithm that each iteration
of candidate solution moves forward to a greedy direction so as to maximize the
improvements of objective function [54]. As for a MINIMIZE problem, 𝜃n denotes
the input of nth iteration, the iteration formulation is

𝜃n+1 = ΠΘ(𝜃n − an�̂�J(𝜃n)) (10.17)

where function ΠΘ is used to guarantee the feasibility of new candidate point, an is
the step multiplier, and �̂�J indicates the gradient of current point.

The key point of SA is finding the gradient. According to Fu [27], no direct gradi-
ent is available because there is no mathematical relationship between inputs and out-
puts. In this case, one-sided finite difference (FD) or two-sided symmetric difference
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(SD) estimation is used to figure out the approximate gradient. However, neither
approach is accurate enough since the response surface of this problem seems rel-
atively complex and nonlinear. Therefore, we bring in RSM to obtain approximate
functional relationship between decision variables and objective function near can-
didate points so as to figure out the gradient [55]. One-stage and two-level linear
regression models are used in RSM. Considering the trade-off of effectiveness and
efficiency of the algorithm, we only use one-stage regression model as follows:

J(𝜃) = 𝛼0 + 𝛼1p0,CHC + 𝛼2pCHC,GH + 𝛼3pGH,CHC + 𝜀 (10.18)

where J(𝜃) denotes objective function (response), 𝛼i(0 ≤ i ≤ 3) denotes the undeter-
mined coefficient, p0,CHC, pCHC,GH, pGH,CHC are the decision variables (factors), and
𝜀 is the random disturbance that cannot be explained by our model.

Algorithm 2

• Step 1 Initiation: Assign the current value of 𝜃 = (p0,CHC, pCHC,GH, pGH,CHC)
as the initial candidate point of the model. According to Resolution-III full
factorial design with center points, choose 27 extreme and center points of
area Ω:

Ω = {p0,CHC − 𝛿1 ≤ p′0,CHC ≤ p0,CHC + 𝛿1, pCHC,GH − 𝛿2 ≤ p′CHC,GH

≤ pCHC,GH + 𝛿2, pGH,CHC − 𝛿3 ≤ p′GH,CHC ≤ p0,CHC + 𝛿3}

as the sample of experiment, where 𝛿i is the width of the area on dimension i.
Then we can obtain a sample set sized 27*m, after simulating each point for m
times.

• Step 2 Regression: Regress the sample in order to obtain the one-stage linear
model between factors and response shown as

J(𝜃) = ap0,CHC + bpCHC,GH + cpGH,CHC + J0 (10.19)

Figure out the gradient as following:

𝛻J(−→𝜃 ) =
(

𝜕J
𝜕p0,CHC

,
𝜕J

𝜕pCHC,GH
,

𝜕J
𝜕pGH,CHC

)
= (a, b, c) (10.20)

• Step 3 Iteration: Calculate the length of gradient

|𝛻J(𝜃)| = √
a2 + b2 + c2 (10.21)

If |𝛻J(−→𝜃 )| is relatively small, or the area Ω does not fit the one-stage linear
regression model, or the value of objective function is worse than the previous
one, the algorithm ends and return

−→
𝜃 = argmax

𝜃∈Θ
n𝜃



�

� �

�

316 A MULTIOBJECTIVE SIMULATION OPTIMIZATION

Otherwise, move forward by one step 𝛼 along the direction of gradient, and
update the candidate point by

−→
𝜃 =

(
p0,CHC + a𝛼|𝛻J(−→𝜃 )| , pCHC,GH + b𝛼|𝛻J(−→𝜃 )| , pGH,CHC + c𝛼|𝛻J(−→𝜃 )|

)
(10.22)

• Step 4: Return to step 1.

There are few chapters discussing the value of 𝛼, and no rigorous method has been
derived to determine 𝛼. In this chapter, we alternate several values of 𝛼, and choose
the best-performed one to recommend in the following case study.

10.5 CASE STUDY: ADJUSTING PATIENT FLOW FOR A TWO-LEVEL
HEALTHCARE SYSTEM CENTERED ON THE PUTH

10.5.1 Background and Data

The PUTH, located in Haidian district, Beijing, is one of the most famous GHs, pro-
viding healthcare service not only for nearby residential communities but also for
patients all over the country. There are 15 CHCs keeping long-term partnerships with
PUTH. Due to its fame, a huge number of outpatients come to PUTH for medical ser-
vice, but only a few go to the CHC. To solve this problem, we model the real two-level
healthcare system and use our proposed simulation optimization approach to find an
optimal patient flow distribution that maximize the system multiple performances.

The data sources of this case study include Haidian District Community Health
Reporting System (HDCHRS), Beijing Registration Reservation Platform (BRRP),
and China Health Statistics Yearbook 2012 (CHSY 2012) [56]. Unfortunately, not
all data could be obtained directly through these sources mentioned earlier, that is,
the service time distribution of register windows at CHC. So these microcosmic data
are collected through field research. Parameters are classified into two types: fixed
parameters keeping constant throughout the simulation optimization, and decision
variables need dynamic adjustment. The current values of all parameters (by April 4,
2013) are shown in Tables 10.1 and 10.2.

As mentioned in Section 10.3.2, to complete the simulation optimization model,
we transform the multiobjective functions into a single one. The first step is to lin-
early standardize all the objectives (outputs) distributed in [0, 100]. Through the
simulation under extreme conditions, we obtain the upper and lower bounds of each
objective. According to linear standardize expression, we figure out 𝛼i, 𝛽i as shown
in Table 10.3.

The second step is to determine the weights 𝑤i of each objective. We invited sev-
eral experts in healthcare area to weight the significance of all of the objectives and
measured them by the AHP template (Table 10.4).
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TABLE 10.1 The Current Value of Fixed Parameters

Variable Value

𝜆 Total customer arrival rate (person/h) 1894
𝜇r Service rate of CHC register window (person/h) 103
𝜇C Service rate of CHC doctor (person/h) 6.43
𝜇R Service rate of GH register window (person/h) 103
𝜇G Service rate of GH doctor (person/h) 2.90
TB Average LOS in hospital (day) 6.64
P The probability of patients in hospital (%) 10.05
ncr The number of register windows in CHCs 30
ncd The number of CHC doctors 88
ngr The number of register windows in GH 12
ngd The number of GH doctors 552
m The number of beds in GH 1463
K The number of registrations released by GH each day 8077
K′ The number of GH registrations reserved online each day 4038
N The time limit of online reserving (day) 7

TABLE 10.2 The Current Value of Decision Variables

Variables Value

p0,CHC The CFAR (Community First Attendance Ratio) (%) 4.94
pCHC,GH The upward referral ratio (%) 1.13
pGH,CHC The downward referral ratio (%) 0.1

TABLE 10.3 Bounds of Each Objective and Value of 𝜶i, 𝜷 i

Upper Bound Lower Bound 𝛼i 𝛽i

TCHC 2 0.17 −54.6448 109.2896
TGH 18 8 −4.3478 134.7826
TUpward 13 2.5 −9.5238 123.8095
H 13,000 4200 0.0113 −47.7273
LCHC 0.73 0 −136.9863 136.9863
LGH 0.48 0 −208.3333 208.3333
UCHC 0.835 0 119.7605 0.0000
UGH 0.767 0 130.3781 0.0000
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TABLE 10.4 The Weight of Each Objective

𝑤i Value

𝑤1 0.1094
𝑤2 0.0640
𝑤3 0.1559
𝑤4 0.2584
𝑤5 0.1658
𝑤6 0.1527
𝑤7 0.0381
𝑤8 0.0558

We feed the value of 𝛼i, 𝛽i into linear standard expressions and then feed both yi()
and 𝑤i into expression 10.12 to obtain the composite objective function as shown in
expression 10.24.

Maximize J(p0,CHC, pCHC,GH, pGH,CHC) = −5.9758TCHC − 0.2782TGH

− 1.4846TUpward + 0.002936H − 22.7185LCHC − 31.8027LGH

+ 4.5580UCHC + 7.2753UGH + 82.0764 (10.23)

10.5.2 Simulation under Current Situation

10.5.2.1 Results of System Simulation We input the data in Tables 10.1 and 10.2
to our simulation model and define the length of each day to be 8 h (equal to the real
work-hour), the length of simulation to be 30 days. The simulation runs for 100 times,
and we finally obtain the simulation results.

(a) LOS Since the number of downward patients is very little, in this section, we
only consider the LOS of three types of patients: the CHC patients, the GH
patients, and the upward referrals. The timing of LOS starts once the patient
enters the system and ends when the patient leaves.

As shown in Figure 10.3, the LOS of CHC patient is much shorter than the
other two. More details in the simulation process shows that the congestion rate
in CHC is quite low because of the small arrival rate of CHC patients. The
average length of queues in CHC is very short, indicating that most of the CHC
patients’ demand can be received without delay. Another discovery is that the
LOS of GH patients is almost three times that of upward referrals, which is
regarded as a positive effect of the TWRP.

(b) Throughputs and LWBS Rates These performances reflect the service capacity
and quality of hospitals. From Figure 10.4, the GH’s throughput is over 10 times
of CHCs’, in other words, over 90% patients are cured in GH. The LWBS rate of
CHC is 0, but the service success rate in GH is that nearly half of GH patients
leave the system without successful treatments. The poor performance in GH
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Figure 10.3 The LOS of three kinds of patients under current situation.

CHC GH Total

Throughput 748.4455 7882.2935 8630.739

Failure 0 6328.5375 6328.5375

LWBS rate 0.00% 44.53% 42.31%
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Figure 10.4 The throughputs and LWBS rates under current situation.

hugely influences the whole healthcare system that most of the service occurs
in GH, making the total LWBS rate exceed 40%.

(c) Resources’ Utilizations The utilizations of all the resources are shown in
Figure 10.5, and we find doctors in GH are three times busier than those in
CHC. The register windows in GH are even busier than doctors, while the reg-
ister windows in CHC are idle most of the time. The bottleneck in GH is the
bed server. Beds in GH are always occupied according to the simulation results,
which is consistent with the data shown in CHSY 2012.

10.5.2.2 Analysis and System Estimation We obtain that the value of composite
objective function is 51.91 after inputting the simulation results to expression 10.24.
The original value and the standardized score (belongs to interval [0,100]) of each
objective are shown in Table 10.5.

The objectives of TCHC, LCHC are nearly full marks, which means that CHC
patients can receive fast and guaranteed service, but UCHC does not perform well.
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Figure 10.5 The resources’ utilizations under current situation.

TABLE 10.5 The Value and Score of
Objective Variables under Current Situation

Value Score

TCHC 0.176 99.65
TGH 29.788 5.27
TUpward 10.363 25.11
H 8630.7 49.80
LCHC 0.00% 100
LGH 44.53% 7.22
UCHC 14.79% 17.71
UGH 76.02% 99.11

Sum 51.91

This is because the patients that go to CHC for healthcare service is in the minority,
making resources in CHC always idle. On the contrary, blocking and congestion
in GH are severe. The score of UGH is high, but of the TGH, LGH, and TUpward are
low. Though servers in GH are made full use of to meet the huge demand, the
service time and LWBS rate cannot reach a satisfied level. Obviously, the simulation
results is consistent with the current situation of urban healthcare system in China.
The unmatched situation between patient flow and the medical resource allocation
brings a series of problems mentioned in the introduction part to the system. In
Section 10.5.4, we introduce our approach to optimize the patient flow by readjusting
p0,CHC, pCHC,GH, pGH,CHC to improve the performance of current system.

10.5.3 Model Validation

To validate the simulation model, we compare simulation results collected in
Section 10.5.3 to the authoritative data published by the Ministry of Health (MOH).
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TABLE 10.6 The Comparison between Statistics Published by MOH and Simulation
Results

Statistics Simulation Results Error

Ratio of throughputs between GH and CHC 9.901 10.537 6.42%
Utilization (%) of beds in hospitals 104.2 100 −4.03%
Daily visits per doctor in CHC 7.9 8.5 7.59%
Daily visits per doctor in GH 20 19.705 −1.48%
Throughputs of PUTH per day 7977 7882 −1.1%

As shown in Table 10.6, most of the performances of our simulation system are
consistent with the statistics.

10.5.4 Optimization through Algorithm 1

10.5.4.1 Defining Variables We firstly derive the value of the indifferent zone 𝛿,
the confidence level 𝛼, the sample standard deviation 𝜎, the number of candidate
points k, and the number of optimal solution t in order to determine the sample
size according to the R&S approach. In step (b) of Algorithm 1 (seen from Section
10.4.2.1), the comparison only occurs between the newly generated point 𝜃i and the
current optimal point 𝜃∗. Therefore, we set k = 2, t = 1. Through the preliminary
experiment, we found the sample standard deviation varied from 0.35 to 0.84. By
convention, we set 𝛿 = 0.1, 𝛼 = 0.05, and plug them into expression 10.19, so that
we have

n =
(2.3262 × 0.84

0.1

)2
= 382 (10.24)

Since the effective simulation length is 20 days (removing the 10-day warm-up
time), the replication time of simulation should be m = n

20
= 20. Limited by

the hardware capability, we defined the number of iteration times N= 1000 as
the end condition that 1000 randomly generated points in definition domain are
tested. Hence, the total duration of the algorithm lasts 30 × 20 × 1000 = 6 × 105

simulation days.

10.5.4.2 Optimization Result The optimization decision variables found by
Algorithm 1 is �̂�∗ = (0.4798, 0.01032, 0.016805), which is significantly different
from the current value of 𝜃0 = (0.0494, 0.0113.0.0010), especially the p0,CHC and
pGH,CHC. The values and scores of objectives under the optimal scenario �̂�∗ are
shown in Table 10.7.

Compared with Table 10.6, the value of composite objective function expressed by
formulation 10.24 in Table 10.7 improves by nearly 50%. The huge increase of p0,CHC
reverse the unbalanced allocation of CHC patients and GH patients. More details
are contained in Table 10.7 that the objectives TGH and LGH almost reach the full
score, which means that the crowd in GH is released. In addition, the UCHC and UGH
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TABLE 10.7 The Value and Score of Objective
Variables under Optimal Solution of Algorithm 1

Value Score

TCHC 0.981 55.66
TGH 8.274 98.81
TUpward 6.363 63.21
H 11,901.9 87.53
LCHC 42.24% 42.14
LGH 0.34% 99.29
UCHC 83.41% 99.89
UGH 75.09% 97.90

Sum 76.29

also obtain high scores, especially UCHC, leading to the increase of throughputs in
CHC and the whole system. The average number of cured patients each day increases
by over 3000, in other words, the service capability of the whole system significant
increases by 38%. However, the optimal solution sacrifices TCHC and LCHC to the
improvement of GH because the scores of TCHC and LCHC decrease to some extent.

10.5.4.3 Outputs Analysis We record the outputs of all of the 1000 points gener-
ated in Algorithm 1 to analyze the relationship between three decision variables and
the composite objective function value. The correlation tests between the composite
objective function and one-dimension factors p0,CHC, pCHC,GH, pGH,CHC, along with
two-dimension factors (p0,CHC, pCHC,GH), (pGH,CHC, p0,CHC), (pCHC,GH, pGH,CHC) are
carried out, but only p0,CHC has significant effects on the objective value. The scat-
ters of one-dimension factors and the composite objective function are shown in
Figure 10.6.

Figure 10.6a shows that there are two local maxima all over the domain of
p0,CHC located near 0.26 and 0.47. Through segmented tests, we find that the curves
between a maximum (minimum) and its adjacent minimum (maximum) are all linear.
The insight of Figure 10.6a contains that when p0,CHC ∈ [0, 0.26) or [0.28, 0.47),
the value of objective function and p0,CHC increase synchronously, while when
p0,CHC ∈ [0.26, 0.28) or [0.47, 1.00], the value of objective function decreases
as p0,CHC increases. Figure 10.6b and c shows that the relationships between
pCHC,GH, pGH,CHC and the composite objective function are not significant.

10.5.5 Optimization through Algorithm 2

Since the domain of decision variables is relatively small, as well as the num-
ber of iterations, we only discussed the iteration step with a fixed length.
According to constraints 10.9–10.11, the widths of definition domain are
D0,CHC = 1, DCHC,GH = 0.1,DGH,CHC = 0.05. We defined 𝛿i =

min(Di)
50

= 1 × 10−3,
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Figure 10.6 The scatters of one-dimension factors and the composite objective function.
(a) p_(0, CHC), (b) p_(CHC, GH), and (c) p_(GH, CHC)

the replication times m = 10, the length of simulation to be 20 days, with a
10-day warm-up time, and the original point

−→
𝜃 0 = (0.0494, 0.0113, 0.001) from the

performance of existing system.

10.5.5.1 Step Length 𝜶= 0.02 The procedure of Algorithm 2 stops after 29 iter-
ations, lasting 156,600 workdays in simulation. During the procedure, two peaks
(0.2605, 0.02437, 0.006447) and (0.4773, 0.01168, 0.04979) are discovered, consis-
tent to the results of Algorithm 1. By comparing the objective function value at these
two points, we found the latter one is better, at which the objective function equaled
to 76.90, a bit larger than the maximal value 76.29 discovered by Algorithm 1.

The iteration path of candidate solutions is shown in Figure 10.7, and the
arrow shows the direction that the candidate solution evolves. Figure 10.7a is the
three-dimensional plot of iteration path and the iteration paths in Figure 10.7b–d are
two-dimensional projections in plane p0,CHC − pCHC,GH, pGH,CHC − pCHC,GH, and
p0,CHC − pGH,CHC. Part figures (a), (b), and (d) of Figure 10.7 all show that the value
of p0,CHC increase as the procedure goes forward until the procedure stops, while
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Figure 10.7 The iteration path of candidate solutions (Algorithm 2, 𝛼 = 0.02).

the values of pCHC,GH and pGH,CHC move irregularly. These properties indicate that
the evolution of the composite objective function is mainly driven by the increase of
p0,CHC. Therefore, we can get the similar insights with Section 10.5.4.3 that p0,CHC
is the main factor influencing the objective function.

Figure 10.8 shows the evolution of the composite objective function during the
procedure. The value increases continuously until the 13th step. After two-step adjust-
ment, the procedure finds another rising path, and the objective function increases
until the 29th step. The procedure ends at that time because no rising path could be
found. For more details, we discuss the evolution of each objective in the following.

According to the evolution curve of the composite objective function, we divide
the iteration process into three stages: (i) the 1st to 13th step, (ii) the 13th to 15th step,
and (iii) the 15th to 29th step. The evolution curves of individual objective functions
are shown in Figures 10.9–10.11. In the first stage, the CHC is idle, but the GH is
overloaded. The increase of the CFAR p0,CHC lead to the increase of the utilization of
resources and the throughput in CHC. Along with the decrease of arrivals at GH, the
service failure in GH reduces at the same time. That is why the value of the composite
objective function increases at this stage. When the procedure comes to the 14th step,
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Figure 10.11 The evolution of the average utilization of resources in CHC and GH
(Algorithm 2, 𝛼 = 0.02).

the CHC is saturated with patients, which makes the LOS of CHC patients increases
sharply, and the score of TCHC decreases. The composite objective function is hugely
influenced by the change of TCHC, and starts to decrease at this moment. In the last
stage, both of CHC and GH run at the full speed, so that the values of UCHC, UGH,
and H keep steady. Although LCHC starts to decrease, the increase of other objec-
tives including TCHC, TGH, TUpward, and H helps to improve the composite objective
function. At this time, TGH and TUpward are shortened under the effects of increasing
pGH,CHC, which leads to the reduction of GH patients’ LOS in bed. Meanwhile, LGH
increases at the beginning of the procedure and reaches the upper bound 100 finally.
Comparing the scores of L and LGH at the end of iteration, we find that the CHC is
overloaded, but the GH is just saturated. Since the arrival rate of the whole system
exceeds the service rate, the LWBS rates of CHC and GH cannot reach 0 at the same
time. Therefore, sacrificing one of them is an acceptable choice.

10.5.5.2 Step Length 𝜶= 0.05 and 𝜶= 0.1 In order to check the influence of step
length toward output, we then set the step length 𝛼 as 0.05 and run the procedure of
Algorithm 2. The procedure stops after 10 iterations, lasting 54,000 workdays in sim-
ulation. Similar to the results shown in Section 10.5.5.1, two peaks (0.2771, 0.02372,
0.02295) and (0.4779, 0.004649, 0.02718) are found. The objective function obtained
the maximum 76.60 at point �̂�∗ = (0.4779, 0.004649, 0.02718). By comparing the
iteration path and the evolution of composite objective function with Figures 10.7 and
10.9, we find that the shapes of the curves are similar. The procedure of Algorithm
2 with a 0.1-step length has similar results with a six-step iteration, lasting 32,400
workday in simulation. The optimal solution is �̂�∗ = (0.4686, 0.000255, 0.04954),
where the value of final objective function equals to 76.86.

The values of final objective function identified by procedures of Algorithm 2
with different step lengths are quite close. Result obtained by procedure with the
step length of 0.02 is the best, and the point

−→
𝜃 = (0.4773, 0.01168, 0.04979) is the

optimal solution of Algorithm 2. The value and score of objectives are shown in
Table 10.8.
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TABLE 10.8 The Value and Score of Objective Variables
under Optimal Solution of Algorithm 2

Value Score

TCHC 0.984 55.54
TGH 8.280 98.78
TUpward 6.070 66.00
H 11,938.1 87.94
LCHC 42.09% 42.34
LGH 0.27% 99.44
UCHC 83.41% 99.90
UGH 75.45% 98.37

Sum 76.90

10.5.6 Comparison of the Two Algorithms

Both of the two algorithms have their own pros and cons. On the one hand, the the-
oretical convergence of Algorithm 1 guarantees the use in almost all the simulation
optimization problems. On the other hand, the greedy mechanism of Algorithm 2
helps to promote the efficiency of procedure by eliminating iterations from many
noneffective points. As for this case, we recommend Algorithm 2 according to the
comparison shown in Table 10.9. We estimate the convergence rate of two algorithms
by using the simulation running time (workdays), because for a simulation optimiza-
tion problem, most of the computation time is spent on simulation. The simulation
time for each point in Algorithm 1 is 30× 20= 600 workdays, and the procedure test
1000 points. However, for Algorithm 2, the simulation running time for each iteration
is 27× 20× 10= 5400 workdays, and the effective iteration times for Algorithm 2
with different step sizes are 29, 10, and 6. The running time of Algorithm 1 is much
longer than Algorithm 2, almost three times longer than the Algorithm 2 with 𝛼 equals
to 0.02, and 18 times longer than the Algorithm 2 with 𝛼 equals to 0.1. However, the
performance of optimal solution under Algorithm 1 is not as good as Algorithm 2.

TABLE 10.9 The Comparison between Algorithms 1 and 2

Algorithm 1 Algorithm 2 (SA+RSM)

(RSA+R&S) 𝛼 = 0.02 𝛼 = 0.05 𝛼 = 0.1

Running time 600,000 156,600 54,000 32,400

Optimal solution (0.4798,
0.01032,

0.016805)

(0.4773,
0.01168,
0.04979)

(0.4779,
0.004649,
0.02718)

(0.4686,
0.000255,
0.04954)

Maximum of
objective function

76.29 76.90 76.60 76.86
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Figure 10.12 The evolutions of the current maximum of composite objective function.

From another aspect, the curves in Figure 10.12 show the evolutions of current
maximum of objective function. For Algorithm 1, the value of current maximum does
not change much after 60,000 simulation workdays, while the curves of Algorithm 2
rise steadily before reaching a peak.

Unfortunately, Algorithm 2 is always available. First of all, both the SA method
and the RSM can only be used on continuous problems, that is, both the decision
variable (input) and objective function (output) should be continuous. In addition,
the number of peaks on response surface greatly influences the efficiency of proce-
dure. Each time after reaching a peak, the program must spend a couple of iterations
searching for a path to a new peak or to prove there is not any more peak in the domain.
If there are more than 10 peaks throughout the definition domain, the efficiency of
Algorithm 2 will substantially decrease. The step length in SA method is the key to
determine the accuracy and efficiency of the algorithm. In the PUTH case, the 0.1
step length is recommended considering both the accuracy and efficiency. However,
if the accuracy of the optimal solution is more important, the shorter step length will
be needed.

10.5.7 Managerial Insights and Recommendations

The case study is aimed to ameliorate the awkward situation of healthcare sys-
tem in Haidian. On the other hand, it helps to confirm the practicability of our
decision-support approach. Insights from the comparison between current situation
and the optimal solution are as follows:

• The practical CFAR now in CHC is 4.94%, only one-tenth of the optimal solu-
tion of 47.69%. Such a low CHC arrival rate prevents the full use of healthcare
resources in CHC. We recommend our government to strive to develop CHC,
especially the technical and skill levels of CHC.

• The current ratio of upward referral (1.13%) is almost the same as the optimal
solution (1.17%), which indicates that the upward part of TWRP has been
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brought into effect in the real-world system. However, since the optimal CFAR
in CHC increases hugely, the actual number of upward referrals increases
at the same time. The transferring passage for upward referrals should be
consolidated.

Different from the upward referral part, the downward referral part of TWRP is
not fully used. According to the optimal solution, the value of pGH,CHC reaches the
upper bound, which means that transferring treatment downward should be strongly
advocated.

From the simulation results, the CHC is indeed much more convenient than GH in
terms of short waiting time and high success service rate. It is important that patients
can have a diagnosis to their disease in advance, so that they can choose a proper
healthcare facility to receive treatment. By comparing the current and optimal values
of objective variables, we obtained the following insights:

• The LOS of patients treated in GH is shortened sharply (from 3.724 days to
1.034 days), and the LOS of upward referrals also decreases by 39% because of
the quicker service in GH, which is still shorter than the LOS in GH. The only
bad effect is that the LOS in CHC increases from 11 min to nearly an hour.

• The utilization of resources in CHC increases by five times under the premise of
keeping the utilization of GH constant. It improves the throughput of the entire
two-level system 38% each day.

The LWBS rate in GH decreases from 44.53% to 0.34%, making almost all the
GH patients received successfully, but the CHC’s service of LWBS rate increases.
As aforementioned in Section 10.5.5.1, sacrificing LCHC to fulfill other objectives’
improvement is acceptable.

10.6 CONCLUSIONS AND THE FUTURE WORK

This chapter proposes a novel methodology for the adjustment of patient flow in
the two-level urban healthcare system. Our approach integrates statistical analysis,
discrete-event simulation, multiobjective programming, and simulation optimization.
We use the mathematical programming technique to model the problem, the simula-
tion tool to describe the healthcare system, and the simulation optimization to find
the optimal solution. We also carry out a real-world case of the PUTH, which helps
to confirm the operational applicability of our approach. Two modified simulation
optimization algorithms are designed to our approach, and we compare both of their
efficiency and effectiveness in the case study.

From a methodological perspective, the main innovation of this chapter is the com-
bination of multiobjective optimization and simulation optimization methods. We
model the patient flow problem aimed at the optimization of service time (LOS),
service capacity (throughputs), service quality (LWBS rate), and resources’ utiliza-
tion. We use the preference-based multiobjective optimization combined with AHP to
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integrate the objective function and use the single-objective optimization algorithm
to find the optimal solution of the composite objective function. We develop two
algorithms (RSA+R&S and SA+RSM) for this research to find the unique optimal
solution of the macrolevel patient flow distribution.

From a practical perspective, the multiobjective simulation optimization is a rig-
orous approach to estimate the system performance and to adjust the patient flow that
makes the system perform better. The result of our approach improves the system by
finding a trade-off between CHC and GH to reduce the waiting time and improve
the total service throughput and quality. Our work verifies the positive effect of the
TWRP and also provides quantitative recommendations of readjusting patient flow
to decision makers. More detailed insights are explained as follows:

• A general problem to Chinese urban healthcare system is the insufficient use
of CHCs. The government should encourage more patients to choose CHC for
their first diagnosis.

• The promotion to the downward part of TWRP should be strengthened com-
pared with the upward part. In addition, the bed in hospital is the bottleneck of
the system.

• There are several simulation optimization methods. Each of them has its own
pros and cons. In the PUTH case, the method based on SA and RSM is the
best-performed method. If the problem is continuous and the number of peaks
in the definition domain is small, SA and RSM are much quicker. Nevertheless,
if the decision variable space of the problem is discrete and the shape of response
surface is complex, the method based on RSA is recommended.

This research also has several further directions concerning the patient flow in
hierarchical healthcare system. First of all, we only figure out the optimal patient
flow of the system, but not how to achieve these. Behavioral operations research is an
important direction to discover the influence of changing price, service quality, and
waiting time on the patients’ choice of hospital. By combining those two parts, we can
develop a more intelligent decision-support system for policy makers to put forward
the proper incentives. Another shortage of our approach is that it does not classify
the patients by gender, age, and other demographic characters. They should be clas-
sified as heterogeneous patients groups lead to the variant healthcare requirements
and different behaviors in the system. Furthermore, we use multiagent-based simu-
lation in order to treat every patient in the system as separate entity. They can make
decisions by themselves according to other entities’ behaviors and the current perfor-
mance of the system. The multiobjective optimization can be improved by finding the
nondominated Pareto solution set that is another interesting direction of further work.
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11.1 INTRODUCTION

Hospitals are the primary provider of medical services and are in a sense the factories
of the healthcare industry. About a third of all US healthcare costs are hospital
related. Hospitals typically evaluate performance in two dimensions: clinical out-
comes (quality of care/process of care) and financial stability (reimbursement rates
and profitability). The well-known US News and World Report ranking evaluates
performance on the three interlocking dimensions of healthcare: structure, process,
and outcomes [1]. Today, these rankings are generally accepted as a surrogate
measure for clinical performance and identifying the best hospitals in the US. In
contrast, there are only a limited number of broadly applicable evaluation metrics or
even studies that focus on hospital operations productivity and efficiency. A classical
measure of productivity is resources used to provide or create a unit of output,
which in most cases is standardized (e.g. mid-sized automobile). A key obstacle to
hospital productivity measurement is defining a standard unit of healthcare output

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
Edited by Hui Yang and Eva K. Lee.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



�

� �

�

336 ANALYSIS OF RESOURCE INTENSIVE ACTIVITY VOLUMES IN US HOSPITALS

because every patient is different in terms of diagnosis, response to medical care,
and their acuity level. From an analytical perspective, the hospital patient input is
heterogeneous; hence, simple counts of patients or patients’ days are not sufficient
for inter-hospital comparisons.

Traditionally used units of hospital output have been inpatient days, adjusted
patient days (APD), and adjusted discharge, all of which are reasonable estimators of
hospital output activity. When combined with total cost or total patient revenue, they
can be used to derive the nominal resource efficiency (e.g., Total Cost/APD or Total
Revenue/Adjusted Discharge). These metrics are, however, assumed that patient
profiles are generally equivalent across hospitals. Clearly this is not the case and as
a result comparative assessments across hospitals cannot be made effectively. It is
therefore difficult to identify an operationally excellent hospital, even though one
can today identify the best hospitals in terms of clinical outcomes. As an example
consider two hospitals with the same volume of APD and the same level of clinical
outcomes, but one has an operating budget that is 20% more than the other. One
cannot conclude that the hospital with the larger budget has a lower operational
productivity. This inability to compare hospital operational productivity limits many
healthcare cost reduction efforts and national health policy initiatives. We can only
search for system-wide cost reductions, as opposed to focusing improvement on the
less productive parts of the system. What is needed are data analysis methods and
measures that help identify hospital operational excellence, allowing these practices
to be replicated across the weaker units of the healthcare system.

Even in the face of the above-mentioned analytical challenges, there is an extensive
literature on methods and models for measuring the productivity or efficiency of hos-
pitals and a detailed review is provided in Section 11.3. These research methods
employ a range of approaches for measuring the hospital healthcare output including
inpatient days, outpatient visits, case complexity, number of patient admissions, num-
ber of surgeries, and number of discharges. The Hospital Unit of Care (HUC) model
[2] provides an activity-based approach to modeling hospital resource use and, thus,
is independent of the patient acuity profiles. The HUC model can then be used to
determine different activity components of any hospital, which in turn can be used to
estimate resource use productivity. Tiemann and Schreyögg [3] note that in an envi-
ronment of rising healthcare costs, hospitals, in particular, are increasingly being held
accountable for their efficiency and financial performance. A key assumption made
by the HUC model is that all hospitals provide acceptable or higher levels of quality
patient care, that is, as required by the patient’s condition and specified by acceptable
process of care. The research here therefore does not address variances in quality of
care between hospitals.

In this chapter, we utilize the HUC model to characterize hospitals based on
their operational activity profiles. For our data set of 1000+ hospitals, we show
that resource use profiles vary significantly between states and within states. The
profiles are then used to define HUC resource use peer groups or 𝜆-Types. Each
group includes hospitals with a similar positive bias in a specific HUC component.
Group distribution by state is shown to vary significantly, and specific differences
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are discussed. Clearly, operational initiatives and productivity benchmarks cannot
be generalized for all hospitals, but should be focused on their specific resource use
profiles. First, we describe the structural classification of US hospitals since resource
use and activity sets tend to vary across this classification. A key component of a
data analytics is the data source, and in the following we describe the Medicare
databases used in this project. Next, the HUC model for quantifying hospital output
is introduced and the derivation of the first HUC component is presented. Following
that in the next section, we introduce the data analysis underlying the HUC model
and also describe the functional relationship of the model to the MEDPAR database.
Subsequently, the resources usage analysis is developed and the associated hospital
data are presented.

11.2 STRUCTURAL CLASSIFICATION OF HOSPITALS

To better evaluate the operational use of resources in hospitals, it is first necessary
to understand the structural classification of hospitals. Just as in any other industry,
specific hospitals will vary from the general group due to specific characteristics in
their individual profiles. A data analytical study such as this will attempt to study the
factorial relationships between specific structural characteristics and the analytical
results, in this case the use of different resources. We find that the most common struc-
tural factor for hospitals is “size” or number of beds, which are classified as shown
in Figure 11.1. Many hospital systems studies focus on medium- and large-sized
hospitals as hospitals of this size offer a more homogeneous suite of service activ-
ities. Smaller hospitals, particularly those with less than 70 beds, frequently offer
only a subset of services and tend to have very different resource use patterns. The
economics and operational behavior of small size hospitals are known to be quite
different from other size hospitals.

A second structural classification is the type of care delivered – short-term
acute care or long-term rehabilitation and psychiatric care. Healthcare systems
engineering efforts are usually focused on short-term acute care hospitals. There are
5723 general and specialty hospitals registered as members of the American Hospital
Association. These hospitals may be further separated by the type of control as in
Figure 11.2.

Size Class Number of Beds (Range) % US Hospitals

Small Less than 100 47

Medium 100 to 300 38

Large 300 to 500 10

Very large 500+ 5

Figure 11.1 Hospital Size in the United States.
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Figure 11.2 United States hospital count by the type of control.

Community hospitals are all nonfederal, short-term general, and special hospitals
(obstetrics and gynecology; eye, ear, nose, and throat; rehabilitation; orthopedic; and
other defined specializations). Many data analysis projects will exclude hospitals
not accessible by the general public, such as prison hospitals or veteran’s hospitals.
Resource usage is closely related to the functional relationships between different
areas of a hospital. A typical acute care hospital involves an interaction among
(i) bed-related inpatient functions, (ii) outpatient-related functions, (iii) diagnostic
and treatment functions, (iv) administrative functions, (v) service functions (food,
supply, etc.), and (vi) research and teaching functions (Fig. 11.3). The hospital’s
care profile as well as its physical configuration, transportation, and logistics
systems is inextricably intertwined as shown in the flow diagram in Figure 11.4,
which illustrates the movement and communication of people, materials, and
waste.

The operational resources required to deliver hospital care will vary by the
hospital’s structural and/or care profile. This is a key factor in the analysis of hospital
productivity, since hospitals may be limited by an inherited operational structure
and/or regulatory environment. In this project, we focus on comparing the resource
usage of hospitals between states. The motivation for this stems from the common
regulatory environment in which hospitals within a state operate.
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Figure 11.3 Functional relationships in a hospital [4].
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Figure 11.4 Major clinical relationships [4].

11.3 PRODUCTIVITY ANALYSIS OF HOSPITALS

A classical productivity measure is given by resources used per unit output. The only
flow entities in a hospital system are the patients who spend time at a hospital during
which they receive a range of healthcare services. In the context of a hospital, the
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Differences in quality of care

Process of care differences

Patient heterogeneity

Hospital productivity =
Operating costs

Patient day ?

Figure 11.5 Hospital productivity and analytical challenges.

productivity relationship is then described in Figure 11.5. In the application of this
productivity relationship, we find three key analytical challenges. All of these relate
to standardization of the three equation elements:

Patient Heterogeneity. Differences in case-mixes, disease profile, disease acuity,
available support groups, and so on. Makes it impossible to achieve patient
equivalency, hence impatient days are not the same across hospitals.

Process of Care Differences. Hospital may follow different approaches in terms
of procedures, tests, and care services for the same diagnosis. These are then
billed different resulting in operating cost variances.

Quality of Care Differences. The expectation is that all hospitals provide an
equivalent quality of care. Put just like in any other service industry, there are
differences in the quality of the services provided.

Hollingsworth [5] notes that in contrast to manufacturers with standardized
production lines, hospitals confront considerable variations in how and what outputs
are produced, thus limiting the productivity analysis. The simplest measure of
hospital output is patient volume measured by the total annual inpatient days.
Progressively there has been a shift away from this approach, and MacLean and Mix
[6] recommended that APD provided a more accurate measure of hospital output.
APD is an outpatient revenue ratio adjustment from inpatient days. For a long time,
APD has been the predominant measure of hospital care volume and is widely used
in the hospital productivity research literature. Current research postulates that APD
is no longer a reliable approach for benchmarking hospital output. The APD count
can be extended by factoring in the “service-mix” and “case-mix” indices. Hospital
output measurement has rarely been tackled directly. Typically, such work has been
secondary to the principal research objectives, which have related to the study of
hospital cost structure and economies of scale. Soderlund et al. [7] and Miller et al.
[8] found that case-mix differences accounted for 77% of the cost variance between
healthcare providers emphasizing the need for factoring case-mix in hospital output.
More recently, Cleverley and Cleverley [9] suggest a new output metric, equivalent
patient units (EPU), given by

EPU = Equivalent discharges + (Payment ratio × Equivalent visits)
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where

Equivalent discharges=Number of discharges×Average case-mix index (CMI)

Equivalent visits=Number of outpatient visits×Relative weights (RW)

Payment ratio=Reimbursement for outpatient visit at RW= 1/inpatient discharge
at CMI= 1

There is an extensive literature on methods and models for measuring the
productivity or efficiency of hospitals. Huerta et al. [10] provide a detailed summary
of the methods and note that they are all built on the same basic principle: the
“transformation” of inputs to outputs. The two classical approaches followed by
most hospital productivity research are (i) DEA – Data Envelopment Analysis, and
(ii) SCFA – Stochastic Cost Frontier Analysis. Of these, the dominant research
method for studying hospital performance or resource efficiency is DEA. The output
metric most frequently used in these studies has been APD. For example, Zhivan
and Diana [11] propose a cost-efficiency measure for hospitals as a function of
the price of labor, number of discharges, number of outpatient visits, and price of
capital that is normalized by the price of labor. Other studies have used stochastic
frontier analysis to estimate the cost function and then evaluate hospital efficiency,
and a comprehensive review is provided by Hollingsworth [5]. An application of this
method to US hospitals is reported by Greene [12].

The HUC model provides an alternative approach to measuring hospital output
and can therefore be easily integrated with existing DEA approaches. A range of
approaches for measuring output are also seen including inpatient days, outpatient
visits, case complexity, number of patient admissions, number of surgeries, and
number of discharges. In a review of several studies, McGlynn et al. [13] identify
patient discharges and inpatient days as two of the most commonly used outputs.
Most studies though use adjusted patient revenue, number of discharges, and number
of inpatient days that is equivalent to APD. Some recent examples include Rosko
and Mutter [14] who reported a DEA-based hospital efficiency study, which used
APD for the output, and Zhivan and Diana [11] who proposed a cost-efficiency
measure in which output is defined as a function of the number of discharges and the
number of outpatient visits. In an analysis of hospital productivity growth using the
Luenberger indicator, Barros et al. [15] assume that hospitals produce four outputs:
(i) number of patients that leave the hospital, (ii) length of stay, (iii) consultations,
and (iv) emergency cases. These four have been the measured outputs in most
hospital productivity studies.

11.4 RESOURCE AND ACTIVITY DATABASE FOR US HOSPITALS

To successfully implement data analytics projects in the context of hospitals, it impor-
tant to first determine the available data sources and their formats. Clinical data sets
that focus on disease statistics are formally recorded and readily available to research
groups. Hospital operational data sets, on the other hand, are difficult to obtain
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and even when available tend to be unstructured and not standardized. Researchers
must evaluate both healthcare operation flows and data availability before build-
ing analytical models. This will allow for better validation and applicability of
the models.

Figure 11.6 identifies possible hospital operation data sources. A common
approach is the “create your own” pathway. As a note of caution it is difficult, if
not impossible, to create reliable data sets for hospital activity using direct feeds
from individual hospitals. Despite the fact that hospitals collect and store a myriad
of data elements at the local level, every patient encounter generates a mountain of
paperwork: timestamps, patient chart, medication record, scans, labs, nursing notes,
surgeon notes, and prescription information just to name the major elements. Even a
relatively small hospital with 2000 or 3000 annual discharges will have an extremely
large data set. Although large, this data set is typically unusable for cross-hospital
comparisons as few hospitals use a common definition for data elements since this
is not required by regulatory and accreditation bodies. Even at the local level, many
hospitals keep all patient records on paper charts in files not easily accessible to
analysts. In fact, the norm has become for hospitals to hire an entire department
devoted to “chart abstractions” – clinical support staff whose job is to comb through
patient records to provide data for regulatory audits and billing.

Most US hospitals with electronic health records (EHRs) have multiple electronic
patient systems that do not “talk to each other” so data remains in silos across the
organization. Under these circumstances, many large hospitals do not routinely
perform operational analysis or even root cause analysis for adverse events unless
there are legal ramifications for not investigating specific cases. A good source
of hospital-specific data would be payers such as insurance companies. These
entities require detailed reports on patient care – diagnoses, comorbidities, services

Healthcare

operations data

sources

Create your own

Hospital/clinic IS

State/regional

agencies

Federal government

agencies

Data definitions,

work flow tracking,

extract from local

data

Cerner, EPIC, EMR

systems and so on

Departments of

health, payer

companies,
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Medicare and

Medicaid Services

(CMS)

More

standardized

data
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Figure 11.6 Data sources for hospital operations analysis.
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rendered, and procedures delivered – a wealth of information, which could be used to
understand the full range of patient treatment. Unfortunately, in most cases, there is
no true link between hospital charges and payer reimbursements. The reimbursement
rates are also typically a well-guarded secret as these “contractual discounts” are
all based on negotiated rates per hospital. As a result, “Big Data” sets for hospital
operations are rare. The only truly national, publicly accessible “Big Data” class
hospital information is the Medicare database. The analysis reported here utilizes
this publicly available data set.

11.4.1 Medicare Data Sources for Hospital Operations

In the United States, the Center for Medicare and Medicaid Services (CMS) maintains
several databases [16] that can be utilized for healthcare analytics research. These
databases provide detailed activity reports for all US hospitals. These files are updated
annually and represent the most comprehensive “Big Data” class hospital data set
available to researchers in the United States. The two specific data sets used here are
as follows:

Healthcare Cost Report Information System (HCRIS). Medicare-certified
providers are required to submit an annual cost report to a Medicare Admin-
istrative Contractor (MAC). The report contains provider information such
as facility characteristics, utilization data, cost, and charges by cost center as
well as quality of care and financial statement data segmented for Medicare
and the facility as a whole. HCRIS includes reports for the various subclasses
of providers, each with its own cost report – Hospital Cost Report, Skilled
Nursing Facility (SNF) Cost Report, Home Health Agency (HHA) Cost
Report, Renal Facility Cost Report, Health Clinic Cost Report, and the
Hospice Cost Report.

Medicare Provider Analysis and Review (MEDPAR). The MEDPAR file
contains data from claims for services provided to beneficiaries admitted to
Medicare-certified inpatient hospitals and SNF. This file contains a detailed
record of claims stemming from a beneficiary’s stay record. A single hospital
stay may generate a single or multiple claims. The MEDPAR file contains
beneficiary demographic characteristics, diagnosis and surgery information,
use of hospital or SNF resources, accommodation and departmental charge
data, days of care, and entitlement data [2].

This HUC project focused its analysis on the approximately 5000 short-term
acute care and specialty hospitals in the United States. The HUC model was built
to match the available data sets to ensure implementation feasibility. The MEDPAR
and HCRIS data are organized into multiple categories including financial, inpatient
activity, outpatient activity, quality of care, and department activity. Figure 11.7
illustrates the MEDPAR data structure for ICU services while Figure 11.8 shows
a sample data snapshot for ICU services. The HUC model then is designed to
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Figure 11.7 MEDPAR data structure for ICU services.

match this data structure. Specifically the HUC model utilizes the four-activity data
elements as input parameters.

In this data analysis project, 318 unique data points were extracted from the HCRIS
and MedPAR databases for each hospital. Proprietary programs were developed for
the extraction process. A series of qualifying filter that identified and removed hos-
pitals, which had missing data elements and special characteristics (e.g., psychiatric
care), was developed. Note that most data are for Medicare patients only, typically
between 25% and 50% of inpatients days at most US hospitals. Where necessary
the data must then be extrapolated to account for the total hospital population. The
extracted data quantify all healthcare activities at each hospital and form the basis for
deriving the HUC model as described in the following section.

11.5 ACTIVITY-BASED MODELING OF HOSPITAL OPERATIONS

11.5.1 Direct Care Activities

Patient care in hospitals can be modeled as a series of healthcare-related activities that
are designed to provide the needed quality of care for the specific disease. We define a
healthcare activity as a patient-centric activity prescribed by physicians, requiring the
direct use of hospital resources. These resources include (i) clinical staff, (ii) nonclin-
ical staff, (iii) equipment, (iv) supplies, and (v) facilities plus other indirect resources.
Hospitals are typically compensated by insurance companies for a specific activity or
a care process, which includes a defined set of activities. Healthcare activities are,
therefore, the basic element of the measurable output that a hospital provides to its
patients.

Consider two admitted patients with the same diagnosis and different acuity levels
but with the same length of stay. The care may involve different activities; hence,
they will consume different levels of hospital resources. Presumably the patient with
higher acuity will require higher units of care output for the hospital. By a simple
count of inpatient days, the two patients would be equivalent. But a more accu-
rate and effective output measure must track the difference in activity and resource
usage.

Figure 11.9 describes the activity-based view of hospital operations adopted in
the HUC model. This view postulates that patient care can be modeled as a series
of healthcare-related activities that are needed to provide the quality of care for
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Figure 11.9 Hospital productivity view of inputs and outputs.

the specific disease. A healthcare activity is a patient-centric activity prescribed by
physicians, and here there is a many-to-many relationship between diseases and
activities. Translating from a patient-centric to an activity-centric view, the HUC
model considers healthcare activities as the basic measurable output of a hospital.
To formulate the HUC output measure, it is necessary to make a standardization
assumption. That is, the resources required to complete a specific healthcare activity
are generally independent of the patient acuity and/or diagnosis. For instance, the
resources used to conduct a chest X-ray will be the same regardless of patient type
or acuity, and arguably should be the same at any US hospital. Then similar to other
industries, difference in resource usage can be attributed to differences in worker
skill and/or differences in process design.

An activity-based approach must track all healthcare activities in the hospital and
equate them to resource usage. Then an indexed or weighted summation of the activ-
ities would be functionally equivalent to the total medical care output of a hospital.
Figure 11.9 translates the classical productivity input–output model to patient flow
operations in a hospital. Key attributes of this activity-centric flow model are as
follows:

Patients. The primary flow entity in a hospital and the focus of all resources.
Patients are heterogeneous and there is a great variance in resource utilization.
This variance will depend on multiple factors including patient acuity,
case-mix, treatment options and strategies, and resource availability at the
hospital.
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Activities. The hospital provides a large range of healthcare activities all of which
are intended to provide a health-related service to the patient. Key activity
groups are shown in Figure 11.2. Within each group, MEDPAR defines a stan-
dardized list of subactivities. For example, in Outpatient Care Services, there
are 45 subactivities including pharmacy orders, IV therapy, surgical supplies,
CT scans, and pathological lab orders. Specific subactivities that patient will
access are prescribed to meet the required process of care to achieve accepted
quality of care standards for their diagnosis.

Resources. Each healthcare activity will require or consume one or more resources
at varying levels. Resources include staff, equipment, supplies, utilities, and
numerous other items. Altogether these represent both the direct and indirect
costs of operating the hospital. All resources are quantified into a common
dollar scale, and the HCRIS database will track the resource expenditures by
activity group and subactivity.

Discharge. Patients exiting from the hospital after having received the accepted
quality of care, which is defined by a set of healthcare activities.

11.5.2 The Hospital Unit of Care (HUC) Model

The HUC model was developed by Boodhoo and Das [2] using the above-described
activity-based view of a hospital. They define a baseline HUC as the resources
required for delivery of one general medical-acute care inpatient day, which includes
the needed healthcare staff, ancillary, and support services and facilities to deliver
the required (acceptable quality) continuum of care. Frequently, this is referred to as
a general medical/surgical inpatient day or the provision of a bed with routine care.
The baseline HUC measure does not include outpatient care and services, specialty
or intensive care, surgeries, prescribed services, prescribed diagnostics, enhanced
facilities, patient complexity, and so on. They then expand the HUC to account
for all additional care/service activities that the hospital provides by deriving an
equivalency value for all activities. For example, it may be estimated that 1 Intensive
Care Patient Day= 2.3 Hospital Units of Care. This approach provides a function to
roll-up all the reported hospital direct patient care activities into a unified activity or
output measure, which can be standardized across hospitals.

While hospitals collect and store a myriad of data elements at the local level, these
data are typically unusable for cross-hospital comparisons as few hospitals use a com-
mon definition set. Furthermore, HIPPA regulations make it restrictive for analytical
groups to get data directly from hospitals. Clearly, developing a measure that is depen-
dent on unavailable or typically unrecorded data is unlikely to be implemented. An
effective healthcare data analysis project must be based on data that is readily avail-
able and when possibly scalable to a large set of hospitals. For many hospital data
analytics research projects, this can be the biggest challenge. The implementation
strategy is to develop a measure, which can readily be applied to an available data
set. The only truly national, publicly accessible hospital operations information is the
MedPAR database. The HUC model was designed to be compatible to the MedPAR
and HCRIS databases, allowing analysis of almost every US hospital.
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Figure 11.10 HUC output activity components.

Development of the HUC measure involved several research activities including
(i) review of patient activity process flows for different hospitals, both from onsite
studies and those reported in the literature; (ii) review of Medicare billing and pay-
ment procedures and the link to direct patient activity; and (iii) review of the Medicare
maintained data sets to identify data elements that relate to identified activities. The
HUC measure comprises five components (Fig. 11.10), each of which represents a
different set of patient care activities for the hospital.

Brief definitions of the five HUC components follow, the HUC units for each are
denoted by Ωn where n= 1–5 is the component number as identified below:

1. Inpatient General Med/Surg (Ω1). The general inpatient ward in a hospital
caters to a mix of cases in a hospital. This mix reflects the diversity and clinical
complexity of the population of inpatients served by the hospital. The base line
HUC measure is simply the number of inpatient days. This component factors
the difference in resource usage as a function of the patient case-mix to derive
the adjusted number of inpatient days. Medicare tracks patient volumes in dif-
ferent medical service categories; examples are Cardiology, Gynecology, and
Neurology. Each category is based on groupings of patient diagnosis-related
groups (DRGs) and is assigned a case-mix index (CMI) for the hospital. The
CMI indicates the mix of patient severity levels. Higher severity levels will
consume relatively more hospital resources.

2. Intensive Care Services (Ω2). Intensive care is an integral part of a hospital’s
operations, consuming a significant proportion of all resources and of the
hospital-operating budget [17, 18]. Intensive Care Units (ICUs) provide
specialized care to critically ill patients and are typically characterized
by additional resource requirements due to services being rendered at a
heightened level of care. Maintenance of the ICU location and its operating
personnel is the most costly component of ICU services. This component
factor in the additional resources required to provide ICU services. Several
types of ICU services are possible, and Medicare requires hospitals to track
and report patient volumes in 10 ICU categories, including General ICU,
Coronary ICU, and Neonatal ICU.
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3. Nursery Services (Ω3). This component factors the additional load placed on
hospital resources by caring for newborns in the nursery. Newborns are not
considered in the traditional “inpatient days” count but nonetheless consume
resources. Typically, the newborn is taken to the nursery, which does not count
“beds” hence does not appear in many output measures, but certainly incurs its
own costs. Any special care for the newborn such as neonatal ICU is treated
separately as part of the ICU adjustment factor. Only when a newborn enters
a special care unit does it become an identified patient, and the associated
resources are directly tracked.

4. Outpatient Care Services (Ω4). In recent years, there has also been rapid growth
in the number of patients seeking care as outpatients through both hospital out-
patient departments and emergency rooms. The Centers for Disease Control
trend analysis indicates that the volume of outpatients is approaching almost
seven times the number of inpatients. In many cases, outpatients now account
for larger portions of a hospital’s resource utilization. This component accounts
for the resource usage by the hospital’s outpatient population. Medicare tracks
a mix of 45 different healthcare services provided to outpatients. Example ser-
vices include pharmacy orders, IV therapy, surgical supplies, CT scans, and
pathological laboratory orders.

5. IP and OP Ancillary Services (Ω5). Hospitals provide a range of additional
or ancillary services that are delivered to both inpatients and outpatients.
Ancillary services are considered to be supplemental services provided to
patients and typically fall into one of three categories. (i) Diagnostic: Provided
in support of physician services and includes audiology, radiology, pulmonary
testing services, and clinical lab services. (ii) Therapeutic: Focus on treatment
of illness or disease and includes medications, dialysis, and rehabilitation.
(iii) Custodial: Primary focus on hospice, home health, and nursing home
care. These services should not be confused with routine services that patients
receive. For example, inpatients receive basic nursing care and noncharge
medicine such as aspirin as part of “routine services” provided to all patients.
For outpatients, any services administered beyond those covered in the basic
care for a particular diagnosis are considered ancillary. Medicare tracks 23
different ancillary services provided to patients. An X-ray of an injured leg
for an inpatient would be considered a diagnostic ancillary service. Physical
therapy in the hospital on that leg would be an example of therapeutic ancillary
service.

As noted earlier, all of the above six HUC output activity components can be
derived from data reported by hospitals to Medicare for a given year. An example
calculation for the CMI adjustment is shown here.

i=Medical service categories (i= 1–16)

Ni =Number of Medicare patients (annual) in this category for hospital

Li =Average inpatient length of stay (LOS) in this category for hospital
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Ci =Medicare assigned CMI for this category at this hospital

VIN =Total (Medicare plus non-Medicare) inpatient volume for hospital

ΨIN = Inpatient volume coefficient VIN/
∑

iNi for hospital

𝜌=CMI scaling coefficient

Inpatient GeneralMedSurgCMIDays = Ω1 = 𝜓IN

∑
i

NiLi Min{Ci, 1 + 𝜌(Ci − 1)}

Since data are reported only for Medicare patient volumes, the coefficient 𝜓 IN
scales the data for the total hospital patient volume. The assumption here is that
the case-mix profile of Medicare and non-Medicare patients is the same. The CMI
is indicative of the additional resources required to care for the patient. Part of
these resources are included in the other activities associated with the patient.
The factor 𝜌 is introduced to account only for a portion of the resources beyond
CMI= 1 that are included in this HUC component. Based on an analysis of data for
hospital data of 1000 US hospitals, here we set 𝜌= 0.33. Observe that depending
on the patient severity mix at a hospital, Ω1 could be greater or less than the
baseline (NiLi).

Equations for all other HUC components are reported in Boodhoo and Das [2].
The total HUC units delivered by a specific hospital are thus given by

Total delivered HUC per year = Ω1 + Ω2 + Ω3 + Ω4 + Ω5

The measurement unit of the HUC is inpatient-days equivalency, the same unit as
APD. The HUC value will change from year to year for a specific hospital.

11.5.3 HUC Component Results by State

Table 11.1 provides a summary of the HUC data analysis for 1009 US hospitals,
representing all 70+ bed hospitals in 16 states. Note that the data analysis continues,
and in the future a similar analysis will be available for all 52 states. The total HUC
units show that four states (California, Florida, New York, and Texas), clearly the
most populated states, have very large resource intensive activities in their hospitals.
In contrast, four states (Nebraska, South Dakota, Oregon, and Utah) have activity
levels that are less than 10% of the large states. The HUC data now allow a more
extensive data analysis to be conducted at the per capita level and also perform pro-
ductivity analysis across the set of hospitals. With productivity being defined as the
cost per delivered HUC unit.

Table 11.1 data also provides insights into how hospital resources are distributed
across the components. We see that for the set of 1009 hospitals, 42.9% of resources
are assigned to ancillary services. The current research literature has only occasional
mention of ancillary services, but this analysis shows that when accounted for as an
explicit entity it is the most resource significant part of a hospital.
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TABLE 11.1 HUC Component Activity Levels by State

HUC Distribution Ratio

# State Hospitals
Total HUC

units

Ω1 –
CaseMix

(%)

Ω2 –
IntCare

(%)

Ω3 –
Nursery

(%)

Ω4 –
Outpatient

(%)

Ω5 –
Ancillary

(%)

1 AZ 34 6,635,249 36.3 10.3 1.2 14.0 38.2
2 CA 207 34,551,159 35.9 11.6 1.2 10.0 41.2
3 CT 21 4,821,575 32.7 7.2 0.8 15.3 44.1
4 FL 125 28,631,206 35.0 9.9 0.8 12.7 41.5
5 IL 85 16,173,424 31.0 8.8 1.1 13.9 45.3
6 MA 39 10,214,560 28.5 7.8 1.0 19.6 43.1
7 NE 12 2,079,149 30.2 7.9 1.0 9.8 51.1
8 NJ 57 12,800,336 34.0 9.5 1.5 14.0 41.0
9 NY 136 34,155,088 34.5 8.5 0.8 15.9 40.2
10 PA 95 23,161,162 30.4 8.2 0.6 14.8 46.0
11 SD 6 1,049,730 31.5 8.0 0.6 12.7 47.1
12 WA 26 6,007,042 29.0 10.2 1.2 15.0 44.6
13 TX 119 29,379,282 30.6 10.9 1.6 14.8 42.1
14 CO 22 4,264,448 30.5 9.8 1.4 13.1 45.2
15 OR 14 2,800,968 35.9 9.8 1.0 11.0 42.3
16 UT 11 2,140,025 24.7 8.4 1.7 17.8 47.4

All states 1009 218,864,403 32.9 9.6 1.1 13.9 42.4

11.6 RESOURCE USE PROFILE OF HOSPITALS FROM HUC
ACTIVITY DATA

In the analysis of large data sets where multiple organizations are involved, an effec-
tive strategy is to separate the organizations into peer groups. This allows for deriving
reliable conclusions that are specific to each peer group, additionally comparisons
between the peer groups are possible. In the evaluation of multihospital data, the most
common peer group classification criteria are structural in nature. These include (i)
Hospital size – number of beds; (ii) Patient volume – annual inpatient days; (iii) Geo-
graphical location – urban, suburban, or rural; and (iv) Ownership – profit, nonprofit,
or county. There are few studies that characterize hospitals based on an operational
characteristic, primarily due to the difficulty in accessing operations data in a stan-
dardized format. The development of the HUC model allows the creation of hospital
peer groups. We introduce the following peer group definition consistent with the
HUC operations data.

Hospital HUC Resource Use Group (𝜆-Type). Hospitals with a similar positive
bias, as measured by the percentage of healthcare activities in a specific HUC
component, are classified into a common group. Six groups or 𝜆-Types 1–6 are
identified.
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Classification into 𝜆-Type is based on the HUC component data for each hospital
as introduced earlier in Section 11.2. We introduce the following notation:

Πn,i Proportionate activity level of HUC component n relative to the total HUC
activity of hospital i, which is derived as follows:

Πn,i = Ωn,i∕∑
nΩn,i

S Set of reference hospitals against which the hospital is evaluated. For the purpose
of this study, S is defined by state. That is S= {NJ} represents all hospitals in
the state of New Jersey.

𝜇(Πn)S Mean of Πn,i for all hospitals in set S. Note that i∈S if hospital i is located
in state S.

𝜎(Πn)S Standard deviation of Πn,i for all hospitals in set S.

𝜎(Πn)G Standard deviation of Πn,i for all hospitals in all S, that is, the global data
set.

The classification groups then are as follows:

𝜆-Type= 1 Intensive Care – Significantly higher than state average

𝜆-Type= 2 Outpatient Care Services – Significantly higher than state average

𝜆-Type= 3 Ancillary Services – Significantly higher than state average

𝜆-Type= 4 Nursery Care – Significantly higher than state average

𝜆-Type= 5 Basic Inpatient Care – Significantly higher than state average

𝜆-Type= 6 General – No significant difference from state average

The 𝜆-Type classification rules are then as follows. These are applied to each hos-
pital i to derive the corresponding 𝜆i:

1. If Π2,i > 𝜇(Π2)S + 0.4𝜎(Π2)S + 0.6𝜎(Π2)G then set 𝜆i = 1 and quit rules, else
go to next rule.

2. If Π4,i > 𝜇(Π4)S + 0.4𝜎(Π4)S + 0.6𝜎(Π4)G then set 𝜆i = 2 and quit rules, else
go to next rule.

3. If Π5,i > 𝜇(Π5)S + 0.4𝜎(Π5)S + 0.6𝜎(Π5)G then set 𝜆i = 3 and quit rules, else
go to next rule.

4. If Π3,i > 𝜇(Π3)S + 0.4𝜎(Π3)S + 0.6𝜎(Π3)G then set 𝜆i = 4 and quit rules, else
go to next rule.

5. If Π1,i > 𝜇(Π1)S + 0.4𝜎(Π1)S + 0.6𝜎(Π1)G then set 𝜆i = 5 and quit rules, else
go to next rule.

6. Else set 𝜆i = 6

Bias is detected in the above rules when the proportionate activity level in a HUC
component exceeds the state average by 40% of the state standard deviation plus 60%
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of the global standard deviation. The bias rules are thus anchored to variance in both
state and global data. In the data analysis, we experimented with other multiplier
levels ranging from 0.3 to 1.0 for 𝜎(Πn)S, but observed that at higher levels the clas-
sification rules are triggered a very low levels. While at lower levels, it tends to skew
toward the early rules.

Note that the rules prioritize the HUC component by which classification is deter-
mined. Top priority is given to intensive care (n= 2). These priorities were determined
by the resource complexity as assessed by healthcare professionals. It is important in
healthcare data analysis to seek and establish necessary links with the practitioners.
This will ensure that where subjective data are involved, the relevant conclusions can
be drawn. In the absence of these linkages, the data analysis results may lose relevance
to the practitioner community.

11.6.1 Comparing the Resource Use Profile of States

A key step in data analysis is identifying reference data sets for performance com-
parison. The approach followed here and the HUC study, in general, is to define the
reference groups by state. Since all hospitals in a state experience equivalent wage
rates, patient demographics, legal and regulatory requirements, and associated infra-
structures, any differences in resource use are less likely to be due to these reasons.
Presented here (Table 11.2) are results of the application of the resource use data
analysis of hospitals in 16 US states. The analytical results show that there are key
differences in the resource use profiles between states and within states.

1. Intra-state Differences: Some states have large differences between hospitals
as indicated by high values of 𝜎(Πn)S. CA is the most diverse state in hospi-
tal operations behavior, in particular both 𝜎(Π1)S and 𝜎(Π5)S are significantly
higher than other states. Intuitively, the expectation would be that all large states
would show diversity, but that is not necessarily the case. For instance, large
states such as TX and FL have much lower 𝜎(Πn)S values, indicating that hos-
pitals are quite similar in the activity profiles. In contrast OR, a small state, also
exhibits a diverse hospital profile.

2. Inter-state Difference: A key research question is whether the hospital resource
use activity profile as described by the vector {𝜇(Πn)S | n= 1 to 5} is consistent
across the states. A data scan indicates that some states are quite different in
that𝜇(Πn)S is significantly greater than that for other states. For all components,
we can identify at least one state where it this true: Case Mix, OR; Intensive
Care, CA; Nursery, UT; Outpatient, MA; and Ancillary, SD. Further research
can identify the causal factors for these differences.

Ideally we would want to do an F-test to confirm that the observed HUC-based
resource use behavior is not the same for all states in the study. That is, for each n, we
would evaluate if 𝜇(Πn)S is the same for all s. But the data set is unbalanced in that
the max–min standard deviation ratio is greater than two plus the population sizes
are unequal. Instead we limit the analysis to graphical evaluation of the box plot, as
shown in Figure 11.11.
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Figure 11.11 Box plot of 𝜇(Πn)S by component.

11.6.2 Application of the Hospital Classification Rules

An example 𝜆-Type classification using the above-defined rules for three Califor-
nia hospitals of different sizes (as measured by adjusted inpatient days) is shown in
Table 11.2. What we demonstrate here is the use of the HUC model to classify hospi-
tals using data analysis, as opposed to the more peer-assessment approach. The first
hospital, Hollywood Community, is classified as 𝜆= 5 or basic inpatient care. This
hospital has no nursery service, marginal levels of outpatients services provide very
limited advanced healthcare services as evidenced by low Π2,i and Π5,i values. We see
from Table 11.2 that 𝜇(Π4)CA = 5.4% while for the second hospital in Table 11.3, UC
San Diego, Π4,i is much larger classifying the hospital as 𝜆= 4. Clearly, operational
initiatives and productivity benchmarks established for the first hospital should not
be immediately applied to the second hospital. Since the two hospitals have differ-
ent resource use profiles, they should be evaluated according to their peer group. The
HUC analysis, therefore, allows not only aggregate analysis but also specific analysis
at the hospital level.

Distributions of hospitals by 𝜆-Type for the data set are shown in Figures 11.12
and 11.13. Overall, the dominant hospital type is 𝜆= 5 implying that 62% of hos-
pitals have a resource use profile similar to the mean behavior for their state. But
operationally 38% of hospitals have a signifcantly different resource use profile. Fur-
thermore, as seen in Figure 11.4, the overall distribution of hospital types is not been
consistent across states, and in many cases quite contrasting.



�

� �

�

356 ANALYSIS OF RESOURCE INTENSIVE ACTIVITY VOLUMES IN US HOSPITALS

TABLE 11.3 Classification for a Sample of California Hospitals

Hospital

Adj
Inpatient

Days

Ω1 –
CaseMix

(%)

Ω2 –
IntCare

(%)
Ω3 –

Nursery

Ω4 –
Outpatient

(%)

Ω5 –
Ancillary

(%) 𝜆-Type

Hollywood
Community
Hospital

42,277 80.2 7.2 0.0 2.0 10.4 5

UC San Diego
Medical
Center

254,062 32.5 15.3 0.63 16.0 35.4 2

Valley
Presbyterian
Hospital

99,922 40.7 15.1 3.43 13.9 27.6 4

The maximum values in the columns are given in italics.
Bold terms show the subscripts.

1–Intensive care

7%

2–Outpatient care

11%

3–Ancillary services

9%

4–Nursery

7%

5–Basic care

4%

6–General

62%

Figure 11.12 Distribution of hospital 𝜆-Type full data set.

In combination with the HUC component data, key insights into operational
characteritics can be gleaned. Consider the case of CA, which has only five 𝜆= 1
hospitals but 𝜇(Π2)CA = 11.8% higher than most states. This indicates that intensive
care activities are more widespread in CA hospitals although the variance is high. In
contrast, PA has fewer 𝜆= 6 hospitals, indicating that operationally many hospitals
have a bias to one of the HUC components.
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Figure 11.13 Distribution of hospital 𝜆-Type by state.

11.7 SUMMARY

The application of the HUC model to extract key operational behavior about hospi-
tals from the “Big Data” sets maintained by Medicare has been demonstrated. This
application confirms that large-scale cross-hospital productivity analysis involving
multiple states can be done from available databases. This is in contrast to most cur-
rent studies that are limited to one hospital or a small subset of hospitals. Research
groups are encouraged to further leverage these database sources for data analysis
studies that focus on hospital operations.

The analytical results have identified and quantified the resource intensive activity
behavior of hospitals, a key factor in productivity analysis. The resource use profile
across the five HUC components was shown to vary significantly both inter-state
and intra-state. Supporting the common view that there is a lack of operational
commonality between hospitals, the dominance of ancillary services as resources
was identified, although these services are addressed only briefly in the research
literature. Many studies focus on the operations of Emergency Rooms (ER), but
an ER is a collection of multiple activities and this analysis shows the volume of
these activities individually. The results of this analysis allows for more focussed
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performance improvement initiatives. Using the resource activity volume ratios,
a 𝜆-Type hospital classification system was developed. In contrast to structural
classification systems, this is first method for classifying hospitals strictly on the
basis of activity and resource usage profiles. Analysis of the data reveals significant
different in 𝜆-Type distribution between states.
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12.1 INTRODUCTION

The goal of University of Wisconsin Health (UW Health) primary care redesign
efforts is to provide easy and timely access to healthcare, which is culturally sen-
sitive, quality driven, and maximizes the use of education and community resources
based on patient needs. To make such a care delivery model successful, it is essential
to create a sustainable environment, in which team members work to their highest
level of licensure with excellence at all levels of the system of care, and make full use
of existing and emerging technologies [1].

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
Edited by Hui Yang and Eva K. Lee.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



�

� �

�

362 DISCRETE-EVENT SIMULATION FOR PRIMARY CARE REDESIGN

Redesigning primary care has attracted substantial research effort (see white paper
[2], an early paper [3], and review [4–7]). Most of the work in primary care redesign
focuses on investigating team work, evaluating physician performance and patient
quality, assessing performance-based payments and electronic medical record sys-
tem, and so on. Qualitative methods have been used prevailingly in many studies.

Many health systems use “small tests of change” to iteratively improve processes.
However, when contemplating major changes in systems of care, such as appointment
scheduling and staffing, use of the PDCA (plan-do-check-act) model is not appropri-
ate for being disruptive and time consuming. On the other hand, simulation offers an
alternative method to “test” changes in practice and to evaluate the impact of those
changes on patients and staff. In recent years, discrete-event simulation (DES) dom-
inates the quantitative studies in healthcare delivery research (see reviews [8–10]).
The successful implementation areas include emergency department (ED), hospital
pharmacy unit, critical care unit (CCU), outpatient clinics, and so on. The objective
of this work is to develop a simulation model to support primary care redesign.

In this chapter, we present a review of primary care redesign and healthcare sys-
tem simulation and introduce a case study conducted at a pediatric and adolescent
medicine clinic owned and operated by UW Health in Madison, WI. As one of UW
Health’s leading pediatric clinics, it provides a comprehensive service to child care
from birth to adolescence and offers the entire spectrum of pediatric and adolescent
primary health care. The intent of this study is to understand the patient flow in the
pediatric clinic and identify the opportunities to minimize patient waiting time and
improve the patient outcome. The main objective is to develop a simulation model
to analyze patient flow, evaluate its design options, and propose recommendations
for improvement. Through identifying the optimal scheduling template and staffing
model, managerial alternatives and insights for potential ways to reduce patient aver-
age length of stay (LOS) will be investigated.

The remainder of the chapter is structured as follows: The review of relevant
literature on both primary care redesign and DES in healthcare is reviewed in
Section 12.2. The simulation model of the case study is introduced in Section 12.3.
Section 12.4 presents the what–if analyses with respect to changes in scheduling
template, patient volume, room assignment, staffing, and so on. Finally, conclusions
are given in Section 12.5.

12.2 REVIEW OF RELEVANT LITERATURE

12.2.1 Literature on Primary Care Redesign

12.2.1.1 Reviews Primary care, as the backbone of the nation’s healthcare system,
is facing significant challenges and risk of collapse [3, 5]. Bodenheimer [6] discusses
the difficulties in primary care, in which a confluence of factors could lead to disaster,
such as excessive demands, uneven quality of care, unhappiness with jobs, inade-
quate reimbursement, and fewer and fewer US medical students choosing to enter
the field. To address these challenges, actions on primary care practices (microsys-
tem improvement) and larger healthcare system (macrosystem reform) are needed.
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Bodenheimer and Pham [7] review the state of primary care in the United States.
They discuss the feature and landscape of primary care practices and resulting diffi-
culty accessing primary care due to multiple factors, including shortage in the primary
care practitioner workforce, geographic maldistribution, and organizational issues
within primary care practices. Reform strategies are proposed to address the problems
of estimating panel size, increasing capacity, mitigating geographic maldistribution,
standardizing reimbursement levels to reduce insurance-linked refusal, increasing
after-hour access, implementing open access for same-day scheduling, introducing
e-mail and telephone visits, and forming primary care teams with nonprofessional
team members.

12.2.1.2 Team Work Team work plays a critical role in primary care practice.
Lemieux-Charles and McGuire [11] provide a review of healthcare team effective-
ness from 1985 to 2004 by comparing team with usual (nonteam) care, examining
the impact of team design on effectiveness, and exploring relationships among team
context, structure, processes, and outcomes. It is suggested that the type and diversity
of clinical expertise involved in team decision making largely accounts for improve-
ments in patient care and organizational effectiveness. Staff satisfaction and perceived
team effectiveness are largely influenced by collaboration, conflict resolution, partic-
ipation, and cohesion.

Through observation studies, Bower et al. [12] discuss team practice structure,
process (climate), and outcome (quality of care) in primary care. The results indicate
there exist important relationships between team structure, process, and outcome that
may be of relevance to quality improvement initiatives in primary care. It is necessary
to determine the possible causal mechanisms that might underlie these associations.
Grumback and Bodenheimer [13] study how a team with individuals from different
disciplines work together to care for the patient. Through research of two primary
care sites, it is shown that the team with greater cohesiveness is associated with bet-
ter clinical outcome and higher satisfaction. The planning and team work in multiple
disciplinary care to improve outcomes for patients with chronic disease and complex
care needs are presented in paper [14]. It shows that such an effort does improve out-
comes. To widespread its implementation in standard practice, complex and targeted
strategies are necessary to change patterns of interactions between care providers,
alignment of roles, and work practices and change organizational arrangements.

More studies on team work in primary care can be found in [15–17].

12.2.1.3 Data and Information Data in electronic health records (EHR) plays a
central role in healthcare delivery, quality control, clinical governance, and provider
practices. The adoption of EHR system has been a worldwide trend in healthcare prac-
tice. de Lusignan and van Weel [18] review the opportunities of using routinely col-
lected data in primary care research, such as growing volumes, improving data qual-
ity, technological progress for processing, and potentials to link clinical and genetic
data, and established body of know-how within health informatics community. How-
ever, there exist challenges such as limited research methods working with large data
sets and inferences of data meaning; lack of reliable unique identifier between health
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and social care systems; increased pace of change in medicine and technology; and
information security, confidentiality, and privacy issues. A comprehensive review of
literature on the current state of implementation of health information system in pri-
mary care is carried out in paper [19]. It shows that the graphical user interface design
quality, feature functionality, project management, procurement, and users’ previous
experience affect implementation outcomes. Factors such as privacy, patient safety,
provider/patient relations, staff anxiety, time factors, quality of care, finances, effi-
ciency, and liability are the major concerns.

In addition, the data quality in electronic patient records (EPRs) in primary care
is reviewed in paper [20] based on publications in 1980–2001. Hillestad et al. [21]
investigate the impact of electronic medical record systems on transforming primary
care and the potential health benefits, savings and costs. From a human factors’ engi-
neering perspective, Beasley et al. [22] discuss the concept of information chaos in
primary care and explore implications for its impact on physician performance and
patient safety.

More studies related to data and information system in primary care are introduced
in papers [21, 23–26].

12.2.1.4 Medical Homes The concept of medical home is defined as follows: hav-
ing a regular doctor or place of care, doctor/staff knowing information about patient’s
health history, the place being easy to contact by phone, and the doctor/staff coordi-
nating care received from other doctors or source of care [27].

Rosenthal [28] reviews the literature and program on medical homes to assess
the usefulness of the model based on several principles, such as personal physician,
team-directed medical practice, whole-person orientation, coordinated and integrated
care across the healthcare domain, quality, and safety. It is claimed that a reformu-
lation of reimbursement policy is required to institutionalize the medical homes. By
arguing that the specialist-dominated US healthcare system results in mediocre qual-
ity care with excessive use of costly service but little marginal health benefit, Landon
et al. [29] further claim that the patient-centered medical home has become a policy
shorthand for rebuilding US primary care capacity. The success will require effec-
tive policies in payment reform and certification of medical homes, and proper act to
facilitate transformation of existing practices and identify the appropriate linkages of
medical homes to other delivery systems. Gilfillan et al. [30] carry out observational
study to evaluate the ability of a medical home model in improving the efficiency of
care for Medicare beneficiaries. It shows that medical homes in primary care service
may increase healthcare value by improving the efficiency of care. It can also help
significantly reduce hospital admissions and readmissions for Medicare Advantage
members.

Papers [31–34] provide more references addressing medical homes in primary care
practice.

12.2.1.5 Payment System Davis et al. [4] introduce seven attributes of the
patient-centered primary care to improve care quality: access to care, patient engage-
ment in care, information systems, care coordination, integrated and comprehensive
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team care, patient-centered care surveys, and publicly available information. They
argue that a new primary care payment system to blend monthly patient panel fees,
traditional fee-for-service, and new incentives for patient-centered care performance
is desirable. As performance-based payments are increasingly common in primary
care, Friedberg et al. [35] suggest that pay-for-performance programs should monitor
and address the potential impact of performance-based payments on healthcare
disparities. To improve the ability of primary care to play its essential role in the
healthcare system, Porter et al. [36] offers a framework based on value for patients
to sustain and improve primary care practice. It proposes to organize primary care
around subgroups of patients with similar needs, and thus team-based services could
be provided to each subgroup. The patient’s outcome and costs should be measured
by subgroup, and payment should be bundled to reimburse for each subgroup.
Finally, subgroup teams should be integrated with relevant specialty providers.

Extensive studies in payment-related issues in primary care have been introduced
in recent years, such as papers [37–40].

12.2.1.6 Advanced Access The advanced access, also known as open access
or same-day scheduling, in which patients calling to schedule a physician visit
are offered an appointment on the same day [41], has been increasingly shown
to be helpful to reduce waiting times in primary care. Murray and Berwick [42]
summarize six elements of advanced access to make it sustainable: balancing
supply and demand, reducing backlog, reducing the variety of appointment types,
developing contingency plans for unusual circumstances, working to adjust demand
profiles, and increasing the availability of bottleneck resources. Case studies using
the advanced access models are presented in paper [43]. By analyzing 462 general
practices (GP) in England, Pickin et al. [44] show that advanced access can help
practices to improve availability of GP appointments and has been well received by
the majority of practices. Another survey in paper [45] also shows that patients are
seen more quickly in advanced access practices, but with less flexibility in choice
of appointment. Thus, appointment systems need to be flexible to accommodate
different needs of different patient groups.

Additional papers studying advanced access in primary care can be found in
[46–49].

12.2.1.7 Global Experiences In paper [27], healthcare experiences for adults
in seven countries: Australia, Canada, Germany, the Netherlands, New Zealand,
the United Kingdom, and the United States, are compared. It discovers that the
accessible medical home can yield significant positive experience. It finds that
differences exist between countries, but many concerns are common. However, the
United States is standing out in cost-related access and less-efficient care. Four more
countries (France, Italy, Norway, and Sweden) are included in a more recent survey
[50] from physicians’ perspective, which finds wide differences in practice systems,
incentives, perceptions of access to care, use of health information technology (IT),
and programs to improve quality. It shows that US and Canadian physicians lag in
the adoption of IT. More reports on insurance restrictions on obtaining medication
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and treatment and difficulty with costs for patients are reported in the United
States. It is believed that opportunities exist for cross-national learning in disease
management, use of teams, and performance feedback to improve primary care
globally. Additional studies are presented in papers [51] and [52], which indicate
opportunities to learn cross-nationally to improve outcomes and efficiency.

12.2.2 Literature on Discrete-Event Simulation in Healthcare

12.2.2.1 Reviews In recent years, there has been a significant increase in using
computer simulation to study healthcare delivery systems. The rapid development of
information technology and data analytics has substantially enhanced and extended
the functions of simulation tools. Thus, simulations can be used as an aid for decision
making and operation improvement through modeling complex facilities, sophisti-
cated logics, and dynamic schedules, assessing the efficacy of the system, carrying
out what–if analysis to evaluate the design, studying the impact of potential changes,
and investigating the complex relationships of system variables. A comprehensive
review of DES in health care is presented in [8]. In this chapter, simulation studies
of single or multifacility healthcare organizations are reviewed, which include out-
patient clinics, emergency departments, surgical centers, orthopedic departments and
pharmacies, and so on. Similar reviews have been provided in [9, 10, 53]. Gunal and
Pidd [10] classify the papers of DES for performance modeling in healthcare accord-
ing to the areas of applications. They also indicate that there is a lack of generality and
explain the rationale why generic approaches are rare and specificity dominates. By
reviewing the legacies of simulation modeling in healthcare, Eldabi et al. [9] propose
future opportunities to use simulation as a problem-solving technique in healthcare
setting. In addition, Wiler et al. [53] focus on emergency department and categorizes
the modeling approach of patient flow in emergency department into five categories:
formula-based, regression-based, time series analysis, queueing models, and DESs.

12.2.2.2 Emergency Department As emergency department (ED) is one of the
most critical departments in a hospital, and overcrowding becomes a national crisis
[54–56], substantial amount of simulation studies have been devoted to ED to reduce
crowding (see reviews [53, 57]). Many simulation studies have been used to help
reduce patient waiting time, determine ED configuration and resource allocation, and
so on, which can effectively simulate changes to the model and its effects on patient
flow. For example, Hung et al. [58] construct a patient flow model using DES to test
different staffing scenarios in pediatric and emergency departments. Such a model
is also used as an analysis tool to assist in physician scheduling. Fanti et al. [59]
introduce a Petri net model to simulate emergency cardiology department in Bari,
Italy. A simulation study is introduced to model the ED in University of Kentucky
Chandler Hospital in paper [60]. It shows that the diagnostic test is the bottleneck in
the ED. As a result of this study, a new CT scanner and two more nurses are added in
the ED. Similarly, Zeng et al. [61] identify the same procedure as bottleneck at another
community hospital in Lexington, KY. It also investigates the impact of limited team
nursing policy (i.e., two nurses sharing the work together) on ED efficiency, which
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shows that such a policy could help reducing patient LOS and waiting time. Similarly,
simulation results in paper [62] also show that decreasing lab turnaround time could
lead to improvement in ED efficiency, such as ED LOS, throughput, and diversion. In
another community hospital study [63], improvement has been achieved by adding a
float nurse and integrating registration and triage processes.

Additional simulation studies in emergency departments have been reported in
papers [64–68].

12.2.2.3 Other Hospital Units In addition to simulations of EDs, other hospital
departments are also studied intensively. A simulation model developed to represent
the complex process of radiation therapy and suggest improvements to reduce
the planning time and waiting times is described in paper [69]. The operation
performance of an endoscopy suite is studied using simulation in paper [70]. The
results show that, under a constant room to endoscopist ratio, the maximum number
of patients served is linearly related to the number of procedure rooms in the
colonoscopy suite. In addition, the procedure room turnaround time has a significant
influence on patient throughput, procedure room utilization, and endoscopist
utilization. The patient waiting time can be reduced by changing the patient arrival
schedule.

As intensive care units (ICUs) are the most critical department in a hospital,
ICU simulation has attracted substantial interests. Griffiths et al. [71] simulate
the bed-occupancy of the CCU of a large teaching hospital in order to optimize
the number of beds available to minimize cancellations of elective surgery and
maintain an acceptable level of bed-occupancy. What–if analysis has been carried
out to evaluate the impact of increasing bed numbers, “ring-fencing” beds for
elective patients, reducing LOS to account for delayed discharge, and changing the
scheduling of elective surgery. In paper [72], simulation model is also developed
to determine the number of supplementary nurses in an ICU that are required to
minimize overall nursing staff costs.

For pharmacies, Lu et al. [73] introduce a simulation study to improve the antineo-
plastic medication preparation and delivery performance at a pharmacy department
in a large community hospital. It is discovered that by introducing early preparation
for the returning patients and dedicating an infusion staff member for medication
delivery, patients’ waiting time for antineoplastic medications can be reduced sub-
stantially. The implementation results have indicated more than 50% reduction in
waiting time. Reynolds et al. [74] present a DES study of the hospital pharmacy out-
patient dispensing systems at two London hospitals in the United Kingdom. Different
scenarios related to prescription workload, staffing levels and skill-mix, and utiliza-
tion of the dispensaries’ automatic dispensing robots are tested, which are used to
support business cases for changes in staffing levels and skill-mix in response to
changes in workload.

Moreover, Couchman et al. [75] introduce a computer simulation model to pre-
dict the effects of increased workload, replacement of analytical instruments, and
changes in working practices at a general hospital’s clinical biochemistry laboratory.
A simulation model is developed in paper [76] focusing on patient flow analysis,
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by considering patient classification, blocking effects, time-dependent arrival and
departure patterns, and distributions for LOS. Through the application to DeKalb
Medical’s Women’s Center, it is shown that implementation of “swing” rooms (flexi-
ble between Antepartum (AP) and Mother–Baby (MB) rooms) could help to balance
bed allocation.

Through simplifications, simulation models of a whole hospital have been stud-
ied. To balance bed unit utilizations in a 400-bed hospital, Cochran and Bharti [77]
use DESs to maximize the flow and cope with the complexity of hospital operations.
The study is only limited to bed-related operations. van der Meer et al. [78] study all
phases of the musculoskeletal service: an elective patient passing through in orthope-
dics medicine. It focuses on the reduction of waiting time for elective patients, both
for a first outpatient appointment and for the subsequent commencement of inpatient
treatment.

More simulation studies on different hospital units (e.g., critical care, surgical,
discharge) can be found in [79–83].

12.2.2.4 Primary Care Outpatient Clinics In primary care outpatient clinics,
scheduling is of substantial importance [84]. Simulations have been used in paper
[85] to evaluate the performance of different appointment systems. The results show
that patient sequencing has a larger impact on ambulatory care performance than the
choice of an appointment rule. In addition, panel characteristics such as walk-ins,
no-shows, punctuality, and overall session volume influence the effectiveness of
appointment systems. A detailed simulation model is presented in paper [86] for
an Ear, Nose, and Throat (ENT) clinic to test different appointment schedules.
It is shown that the patients’ waiting time can be reduced dramatically through
improved appointment schedules without the need for extra resources. In order to
utilize the limited and expensive equipment and manpower more efficiently, a patient
scheduling approach based on simulation analysis is introduced in paper [87] to
determine appropriate scheduling policy under different environmental conditions.

More applications of simulation in primary care clinics can be found. For instance,
a simulation-based project to help North Mersey Community National Health Ser-
vice (NHS) Trust in the United Kingdom to design and plan the operation of an
NHS Walk-in Centre is introduced in paper [88]. A simulation study of an ortho-
pedic outpatient clinic is presented by Rohleder et al. [89], which can help identify
improvement alternatives such as optimized staffing levels, better patient schedul-
ing, and an emphasis on staff arriving promptly. The implementation results show
that waiting-time measures are significantly improved and overall patient time in the
clinic is reduced. Moreover, a discrete-event computer simulation model is developed
by Coelli et al. [90] to simulate changes in patient arrival rates, number of equipment
units, available personnel, equipment maintenance scheduling schemes, and exam
repeat rates in a mammography clinic of Brazilian Cancer Institute. Again in the city
of Rio de Janeiro, Brazil, a computer simulation model is described in paper [91]
to analyze the performance of a standard physiotherapy clinic and investigate the
impacts of changes in the number of patients, human resources of the clinic, and the
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scheduling of patient arrivals. Finally, Reynolds et al. [92] study the design of staffing
model for a health clinic for homeless people.

In addition, simulations have been used to analyze and improve the financial per-
formance in radiology procedure scheduling for outpatients and to reduce the number
of tests without pre-approvals [93]. Emerging methods in economic modeling of
imaging costs and outcomes using DES have been summarized and reported in [94].
It is concluded that DES is playing an increasingly important role in the future mod-
eling of annual screening programs, diagnosis, and treatment of chronic recurrent
disease and modeling the utilization of imaging equipment.

More simulation studies on outpatient clinics are described in [95–99].

12.2.3 UW Health Improvement Projects

In UW Health, much effort has been devoted to implementing primary care redesign
and simulation modeling. For example, an initiative has been taken to reduce Odana
Atrium (OA) overall clinic telephone abandonment rate to 3% or below [100].
Through reallocating staff and rerouting phone calls, the OA communication center
is redesigned, and the phone abandonment rate is decreased from 13% to 1.3% within
6 months, which leads to improved physician and staff satisfaction. In addition,
colonoscopy capacity analysis through Markovian analysis/pseudosimulation has
been carried out to understand the capacities for general colon procedure and
designed colon screening at UW Health [101]. Similar improvement projects in CT
test center, mammography imaging test laboratory, and Gastroenterology (GI) clinic
design in new digestive health center (DHC) have been carried out in UW Health as
well [102–105]. Such activities have helped UW Health improve care quality and
patient outcome in primary care.

As introduced earlier, simulations have been widely used in many healthcare
applications. It can play a significant role in primary care redesign. Following is a
case study of pediatric clinic of UW Health using simulations. First, a simulation
model is developed and validated. Second, what–if analyses are carried out to
investigate the impact of demand variation, scheduling template, staffing level, and
room assignment.

12.3 A SIMULATION CASE STUDY AT A PEDIATRIC CLINIC

To develop a simulation model to emulate the patient flow in the pediatric clinic,
a detailed analysis of the patient care delivery process is essential.

12.3.1 Patient Flow

The pediatric clinic has a high patient volume with around 20,000 patient visits per
year and a staff model consisting of physicians (9.7 full time equivalent (FTE)), regis-
tered nurses (RN) (8.5 FTE), and medical assistants (MA) (12.0 FTE). Each pediatri-
cian is working with a dedicated MA and is assigned three to four exam rooms. There
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Figure 12.1 Patient flow in the pediatric clinic.

are mainly three types of patient visits: well child (WEL), office visit (OFV), and
long office visit (LOV), which includes other longer appointment/consultation visits.
In addition to physician appointments, there are also patient appointments with the
MA, referred to here as MA-only visits. For those children who have an annual WEL
check, an RN is responsible for providing patient education. Daily patient volume
varies by physician, generally accommodating 15–25 visits per day. An appointment
is scheduled based on a designated template: OFV patients are scheduled every 15
min and WEL patients are scheduled every 30 min in both morning and afternoon ses-
sions. At the end of the day, an LOV patient appointment is scheduled. The current
template can accommodate up to 33 patients; however, it is usually not fully filled
due to either appointment vacancy or patient no-shows.

The patient flow is illustrated in Figure 12.1. The sequential stages of a patient
visit are described as follows:

• A patient arrives at the clinic and registers. The patient checks-in with the recep-
tionist and waits for rooming.
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• The patient is roomed by an MA. If it is an MA-only visit, the MA completes
the patient visit and the patient is given a routing slip for checkout. If it is a
physician visit (WEL/OFV/LOV), the MA completes the rooming workflow
and then may administer any needed injections or immunizations prior to the
clinician visit, as time allows.

• A WEL patient receives education from an RN prior to the clinician visit.

• Some patients need additional tasks following the clinician visit, usually per-
formed by the MA. These tasks include administration of injections or immu-
nizations, going to laboratory, and so on. After the additional task, there may
be a need for the clinician to follow-up with the patient, identify or address
additional patient needs.

• Finally, the patient is given a routing slip and checks out at the reception desk.

12.3.2 Model Development

Given the patient flow introduced earlier, a simulation model is developed using
SIMUL8, a commercial software tool for planning, design, optimization, and reengi-
neering of production, manufacturing, logistic, or healthcare systems [106]. In this
model, each procedure or operation is treated as a “machine” with processing time,
required resources, and routing in/out logic. The resources utilized include exam
rooms, receptionists, MAs, RNs, and physicians. In the following, each part of the
model is introduced.

12.3.2.1 Patient Arrival The parameters in the model are obtained from the UW
Health medical record information system, which collects the time stamps of patient
arrival and composition, such as scheduled arrival time, actual arrival time, checkin
time, first access time by MA and by physician, and checkout time. Additional data
were collected through direct observations. To model the arrival, several steps are
made to characterize the patient behavior.

Different types of visits are defined in this model. To evaluate the impact of
queueing at registration, patients who visit other clinics within the same building
are included in the registration process and are referred to as a “Non-Peds visit.”
Since there are around 200–250 Non-Peds visits each day, a Poisson arrival is
used to model this type of arrival. Those patients are set to leave the system
directly after registration. For the MA-only visits, the arrival is generated using
Poisson distribution with one to two visits daily. For those patients coming for a
physician visit, the arrival is generated based on the scheduling template. The sample
appointment template is shown in Table 12.1. The first patient is scheduled to arrive
at 9:00 am and the last patient is scheduled no later than 4:30 pm. To incorporate the
randomness in arrivals, the deviation of the actual arrival time from the appointment
time is captured using field data. It is found that the deviation has a distribution
with a negative mean value, which suggests that most of the patients arrive ahead
of their scheduled time. This deviation is modeled as a normal distribution with
mean −7.1 min and standard deviation 11.4 min, added to the scheduled time. In
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TABLE 12.1 Patient Arrival Template

Time
(Morning)

Patient
Type

Time
(Afternoon)

Patient
Type

9:00 WEL 13:30 WEL
9:00 OFV 13:30 OFV
9:15 OFV 13:45 OFV
9:30 WEL 14:00 WEL
9:30 OFV 14:00 OFV
9:45 OFV 14:15 OFV
10:00 WEL 14:30 WEL
10:00 OFV 14:30 OFV
10:15 OFV 14:45 OFV
10:30 WEL 15:00 WEL
10:30 OFV 15:00 OFV
10:45 OFV 15:15 OFV
11:00 WEL 15:30 WEL
11:00 OFV 15:30 OFV
11:15 OFV 15:45 OFV
11:30 OFV 16:00 OFV

16:30 LOV

TABLE 12.2 Appointment Vacancy Probability

Winter Min (%) Max (%) Summer Min (%) Max (%)

WEL 0 40 WEL 0 30
Other 5 60 Other 40 80

addition, appointment vacancy and patient no-show are not negligible. To model this
scenario, some patients are chosen to leave the system without being served, which
is modeled based on a certain appointment vacancy probability distribution varying
among patient types and by seasons (summarized in Table 12.2). For example, more
children come in for their annual WEL check in summer, while more sick kids
require acute visits in winter.

12.3.2.2 Resources In the pediatric clinic, three to four physicians are on duty
daily, each working with a designated MA. There are 15 exam rooms in the clinic,
each physician is assigned three to four exam rooms. Typically, there will be a lunch
break at noon lasting 30–60 min. The responsibilities of the MA include rooming,
administrating injections, immunizations, and so on. The RN is mainly responsible
for patient education during WEL visits. In addition, MAs and RNs also spend time
answering phone calls, scheduling, and handling other paperwork. In addition to see-
ing patients, physicians also help with teaching the residents and coordinating care
with other providers. A receptionist is responsible for patient registration and checkin.
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Remark 1 Since all the physicians work independently with their assigned MA
and RN and have their own exam rooms to manage, we only track the patient flow
for one physician, in order to simplify the model without impairing the properties of
the system.

12.3.2.3 Operation Times The operation time of each service is collected either by
direct measurement or through estimation by clinic staff. The operation times associ-
ated with different clinic staff are provided in Table 12.3. As shown in [92] and [107],
the average LOS and other performance measures are practically independent of the
distribution type, but are mainly determined by the coefficient of variations. Such a
property is also observed in this study. Thus, log-normal distribution characterized
by mean and standard deviation is used for modeling operation times.

12.3.2.4 Control Logics The patient routing logistics are designed based on obser-
vational data of patients’ behavior. In SIMUL8, each patient is assigned a label to
characterize the visit type. Such labels determine the patient’s routing options within
the clinic and the corresponding operation times. Non-Peds patients leave the sys-
tem directly after checking-in at the registration. After the patient has been roomed,
patients’ in-room service depends on visit type. Only WEL patients receive nurse
education. For a WEL patient, the chance of receiving injections and immunizations
is 4% while the probability for an OFV patient is only 1%. Physicians spend more
time with LOV patients (see Table 12.4 for more detailed routing probabilities).

12.3.2.5 The Complete Model Using the information discussed earlier, a com-
plete simulation model is developed (Figure 12.2). Three modules are included in
the model: pre-rooming service, in-room service, and post-room service.

TABLE 12.3 Operation Times (Minute)

Description Mean Std

Registration for pediatric patients 0.5 0.5
Pediatric patients checkin 1.5 1
Rooming for well child 12.19 4.99
Rooming for office visit 10.97 4.12
Rooming for long office visit and consult 10.73 4.23
MA-only visits (immunizations, injections, etc.) 8 5
Immunization or injection prior to MD visit 3 1
RN education (WEL visits only) 13.51 6.03
Well child visit 15.30 6.64
Office visit 12.22 7.03
Long office visit/consult 26.00 10.53
Additional tasks postvisit 3.84 2.95
MD revisit 11.85 6.15
Pediatric patients checkout 0.75 1
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TABLE 12.4 Control Logic

Routing Option Probability

Entry Queue for first floor
registration

90% Non-Peds
65% Peds

Queue for third floor
registration

10% Non-Peds
35% Peds

Registration End Non-Peds 100% Non-Peds
Queue for reception 100% WEL/OFV/LOV

Reception Queue for MA-Only 100% MA-only visit type
Queue for rooming 100% WEL, OFV, LOV visit types

Rooming Dummy WEL split 96% WEL
99% OFV
97% LOV

Prior immunization/
injection queue

4% WEL
1% OFV
3% LOV

Dummy WEL split Queue for RN 100% WEL
Dummy resident split 100% OFV

100% LOV
MD visit Queue for additional task 40% WEL w/o prior immunization

1% WEL w/ prior immunization
4% OFV
0% LOV

Queue for checkout 60% WEL w/o prior immunization
99% WEL w/ prior immunization
96% OFV
100% LOV

Additional tasks Queue for MD revisit 10%
Checkout queue 90%

• The pre-rooming service process is modeled to include patient arrival, label
assignment (characterizing patient identity), and patient routing to different reg-
istration/checkin locations. Non-Peds patients leave the system directly while
other patients wait for rooming when any exam room and MA become available.

• The in-room service starts with the MA rooming sequence. In some cases, the
patient may require an injection or immunization prior to the physician’s visit.
The MA-only patients will go to checkout directly after their service with the
MA. For patients with a physician’s appointment, a dummy work center is set
to direct WEL patients for RN education. Depending on the patient status, addi-
tional activities might be required (such as laboratory work or injections), and
finally, the patient might require a physician revisit.

• The post-room service is a quick checkout.
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Figure 12.2 Pediatric clinic patient flow simulation model.



�

� �

�

376 DISCRETE-EVENT SIMULATION FOR PRIMARY CARE REDESIGN

TABLE 12.5 Model Validation (Unit: Minute)

Summer Visit type LOSdata LOSsim Δ 𝜀 (%)
WEL 64.7 65.2 −0.7 −1.1
OFV 46.2 44.3 1.9 4.1

Winter Visit type LOSdata LOSsim Δ 𝜀 (%)
WEL 67.1 68.7 −1.6 −2.4
OFV 51.9 51.4 0.5 0.9

12.3.3 Model Validation

To validate the model developed earlier, observational data are analyzed and the
average patient LOS is calculated to compare with simulation results. Let LOSdata

WEL,
LOSdata

OFV , LOSsim
WEL, and LOSsim

OFV denote the LOS for WEL and OFV patients obtained
by data collection and the simulation model, respectively. The 95% confidence inter-
vals in simulation are typically within 5% of the corresponding measures. Then, the
following accuracy measurements are introduced:

ΔWEL = LOSdata
WEL − LOSsim

WEL,

ΔOFV = LOSdata
OFV − LOSsim

OFV ,

𝜀WEL =
LOSdata

WEL − LOSsim
WEL

LOSdata
WEL

⋅ 100%,

𝜀OFV =
LOSdata

OFV − LOSsim
OFV

LOSdata
OFV

⋅ 100%.

The results of such comparisons are shown in Table 12.5. As one can see, the
differences are typically within 4%. Considering the accuracy of the input data, such
a result is acceptable. Therefore, the model is validated and can be used for further
analysis.

Remark 2 Note that there are only a few LOV patients’ data collected during the
observation, hence its comparison is not included.

12.4 WHAT–IF ANALYSES

In this section, several simulation experiments are conducted to accommodate the
questions raised by clinicians. By analyzing the simulation results, recommendations
are proposed to clinic leadership.

12.4.1 Staffing Analysis

It is of interest to investigate the MA per physician ratio in this system. A 1.2 MA per
physician model is proposed. Based on the current model, we add another MA with
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20% availability to emulate this scenario. Results show that the reduction in average
patient LOS is 4–6 min, which is a moderate deduction. In this case, having more
MA FTE does help decrease patient waiting significantly.

Moreover, with 1.2 MA, the clinician utilization is almost the same (from 48% to
47%). The original MA’s utilization is reduced from 44% to 34%, while the newly
added one is 17.8% busy with the patient.

12.4.2 Resident Doctor

In some cases, a clinician is working with a resident doctor. In such a scenario, the
patient is assessed by the resident first and then evaluated by the clinician. The sim-
ulation model has been revised to accommodate such changes. The resident service
time has a mean of 10 min and standard deviation of 5 min, described by log-normal
distribution. Then, the patients’ average LOS is increased considerably with the res-
ident’s presence. For WEL patients who have seen resident first, the average LOS is
increased from 65.2 to 73.9 min, that is, 13.3% increase compared with no resident
case. For OFV patients seeing residents, the average LOS is increased from 44.3 to
57.6 min, which is a 30.0% increase. However, clinician working with a resident is
not prevailing (1 or 2 half-days per week) in the clinic so that such a case would not
have a great impact on the overall clinic performance.

12.4.3 Schedule Template Change

To identify the areas of opportunities for reducing patient’s waiting time, several
potential schedule templates are proposed by the clinicians for investigation. In addi-
tion to the current template, a non-double booking template is proposed and the
interarrival time is changed to 10 min, as shown in Table 12.6. Another option is
to have a block booking, where the same type of patients are grouped as illustrated
in Table 12.7.

Simulation results comparing the three types of templates under the same system
settings are shown in Table 12.8 and illustrated in Figure 12.3. Note that the average
LOS in current template changes slightly (comparing with the results in Table 12.5).
It can be seen that the block booking template’s performance is considered to be
the least satisfying. For the other two options, different types of patients behave dif-
ferently in terms of the average LOS. The non-double booking template results in
a slightly shorter LOS for OFV visits, while the current template gives the shortest
LOS for WEL visits. As block booking template typically results in the longest aver-
age LOS, we will emphasize on double and non-double booking templates only in
subsequent discussions.

In addition to patient LOS, the staff utilization is also analyzed. It is shown that
the MA is busy in serving the patients 44% of the time, while the clinician spends
48% of the time with the patient. Note that such utilizations only represent the time
the staff is working face to face with the patient, and typically they have much other
work (such as documentation, answering phone calls) to handle.
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TABLE 12.6 Non-double Booking Template

Time
(Morning)

Patient
Type

Time
(Afternoon)

Patient
Type

9:00 WEL 13:30 WEL
9:10 OFV 13:40 OFV
9:20 OFV 13:50 OFV
9:30 WEL 14:00 WEL
9:40 OFV 14:10 OFV
9:50 OFV 14:20 OFV
10:00 WEL 14:30 WEL
10:10 OFV 14:40 OFV
10:20 OFV 14:50 OFV
10:30 WEL 15:00 WEL
10:40 OFV 15:10 OFV
10:50 OFV 15:20 OFV
11:00 WEL 15:30 WEL
11:10 OFV 15:40 OFV
11:20 OFV 15:50 OFV
11:30 OFV 16:00 OFV

16:30 LOV

TABLE 12.7 Block Booking Template

Time
(Morning)

Patient
Type

Time
(Afternoon)

Patient
Type

9:00 WEL 13:30 WEL
9:10 WEL 13:40 WEL
9:20 WEL 13:50 WEL
9:30 WEL 14:00 WEL
9:40 WEL 14:10 WEL
9:50 OFV 14:20 OFV
10:00 OFV 14:30 OFV
10:10 OFV 14:40 OFV
10:20 OFV 14:50 OFV
10:30 OFV 15:00 OFV
10:40 OFV 15:10 OFV
10:50 OFV 15:20 OFV
11:00 OFV 15:30 OFV
11:10 OFV 15:40 OFV
11:20 OFV 15:50 OFV
11:30 OFV 16:00 OFV

16:30 LOV
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TABLE 12.8 Template Comparison

Patient LOS (Minute)

WEL Lower Limit Average Upper Limit
Current booking template 57.8 60.4 63.0
Non-double booking template 59.1 61.5 63.9
Block booking template 62.5 65.1 67.7
OFV Lower limit Average Upper limit
Current booking template 41.0 43.5 46.0
Non-double booking template 40.3 42.9 45.9
Block booking template 44.8 47.6 50.3
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Figure 12.3 Patient LOS for different templates.

12.4.4 Volume Change

Furthermore, we investigate the system performance with 20% increase in patient
volume under different templates. The results are shown in Table 12.9. As one can
see, the non-double booking template outperforms the other when patient volume is
increased by 20%. These results indicate that the clinic should consider changing their
current template to non-double booking template to improve the system performance.

12.4.5 Room Assignment

Currently, each physician is assigned three exam rooms, while there are extra exam
rooms available. An experiment is conducted to test the impact of having an extra
exam room per physician. Here, we compared the system with three exam rooms to
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TABLE 12.9 Template Comparison with Increased Patient Volume

Patient LOS (Minute)

WEL Lower Limit Average Upper Limit
Current template 62.2 64.7 67.3
Non-double booking template 61.5 64.2 69.9
OFV Lower Limit Average Upper Limit
Current template 46.7 49.2 51.7
Non-double booking template 46.3 48.7 51.0

TABLE 12.10 Patient LOS with Different Room Assignment

Patient LOS (Minute)

WEL 3 Rooms 4 Rooms
Double booking template 60 60.4
Non-double booking template 59.6 61.5
OFV 3 Rooms 4 Rooms
Double booking template 45 43.5
Non-double booking template 44.1 42.9

that of four, under different scheduling templates as proposed. The results are shown
in Table 12.10.

The results indicate that the effect of adding an extra room is not the same for
different types of patients and different templates. For those visits with a longer stay,
having an extra room increases the patient average LOS, for example, WEL patient
average LOS is increased by 0.4 minute under current template. However, this change
is opposite for those visits with a shorter stay, for example, OFV patient average
LOS is decreased by 1.5 min. Such trends are more obvious when using non-double
booking (WEL LOS increased by 1.9 min, OFV LOS decreased by 1.2 min). The
overall average patient LOS (i.e., count different types of patients) is decreased by 1.2
min by having an extra room using the current template. The LOS remains the same
for the non-double booking template. Such reductions are not practically significant.
Therefore, it concludes that in this system, there is no need to have more exam rooms,
especially if the room operation cost is considerable.

12.4.6 Early Start

In order to reduce patient LOS, new booking templates with early start time
(8:45 a.m.) have been proposed and evaluated by the simulation model. Tables 12.11
and 12.12 illustrate the double booking and non-double booking schedules,
respectively.

The comparison results with the new templates are shown in Table 12.13. As
one can see, the non-double booking template provides slightly shorter average LOS
(about 1 min less). In addition, since the templates start at 8:45 a.m., the average LOS
decreases in almost all cases comparing with the cases with 9:00 a.m. start.
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TABLE 12.11 New Double Booking Template

Time
(Morning)

Patient
Type

Time
(Afternoon)

Patient
Type

8:45 WEL 13:30 WEL
8:45 OFV 13:30 OFV
9:00 OFV 13:45 OFV
9:15 WEL 14:00 WEL
9:15 OFV 14:00 OFV
9:30 OFV 14:15 OFV
9:45 WEL 14:30 WEL
9:45 OFV 14:30 OFV
10:00 OFV 14:45 OFV
10:15 WEL 15:00 WEL
10:15 OFV 15:00 OFV
10:30 OFV 15:15 OFV
10:45 WEL 15:30 WEL
11:00 OFV 15:30 OFV
11:15 OFV 15:45 OFV
11:30 OFV 16:00 OFV

16:30 LOV

TABLE 12.12 New Non-double Booking Template

Time
(Morning)

Patient
Type

Time
(Afternoon)

Patient
Type

8:45 WEL 13:30 WEL
8:55 OFV 13:40 OFV
9:05 OFV 13:50 OFV
9:15 WEL 14:00 WEL
9:25 OFV 14:10 OFV
9:35 OFV 14:20 OFV
9:45 WEL 14:30 WEL
9:55 OFV 14:40 OFV
10:05 OFV 14:50 OFV
10:15 WEL 15:00 WEL
10:25 OFV 15:10 OFV
10:35 OFV 15:20 OFV
10:45 WEL 15:30 WEL
11:00 OFV 15:40 OFV
11:15 OFV 15:50 OFV
11:30 OFV 16:00 OFV

16:30 LOV
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TABLE 12.13 Comparison of Patient LOS Using Templates with Early Start Time

Patient LOS (Minute)

WEL Lower Limit Average Upper Limit
Double booking template 58.5 60.7 62.9
Non-double booking template 57.5 59.8 62.0
OFV Lower Limit Average Upper Limit
Double booking template 39.0 41.8 44.6
Non-double booking template 38.7 41.2 43.7

12.4.7 Additional Observations

Several other questions are also of interest to clinicians and the clinic manager. Some
patients complain about experiencing a long wait during registration due to a joint
queue with patients scheduled at other clinics within the building. In this analysis,
we compare two systems with and without Non-Peds patients. The simulation result
suggests that including those Non-Peds patients will not cause a significant change
in queueing time at registration. The average queue length at registration is less than
one. It can be concluded that the long queue is a rare phenomena and should not be
regarded as a constraint for this system.

12.5 CONCLUSIONS

In this chapter, reviews of primary care redesign and DES in healthcare delivery are
presented. A simulation model is developed to study the work flow in a pediatric clinic
of UW Health. The patient average LOS and staff utilization are evaluated. What–if
analyses are carried out to investigate the impacts of different scheduling templates,
staffing models, room assignment, and demand change. In the above analyses, the
conclusion is reached that the clinic should consider changing the current template to
pursue a better system performance. Sharing registration service does not affect the
patient LOS significantly. Adding extra MA resources to the system would improve
the system performance but cause additional operation cost.

In future work, we plan to generalize the model to redesign other primary care
systems. The modeling methods described here are also applicable to other healthcare
delivery systems. The results of this work could provide hospital/clinic professionals
a quantitative tool to evaluate current system performance, investigate the effects of
different configurations, and predict care service efficiency for future redesign plans,
which is critical for assisting decision making in healthcare management.
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13.1 INTRODUCTION

A primary goal of emergency medical services (EMS) is often to minimize response
times to emergencies while managing operational costs. Sophisticated operations
research methods have been developed to optimize many management decisions,
such as locations of bases, fleet size, staffing, and dynamic deployment strategies
[1, 2]. However, these methods require ambulance demand estimates as inputs, and
their performances rely critically on the accuracy of these demand estimates. Demand
predictions that are too high lead to overstaffing, unnecessary vehicles, and high
cost, while estimates that are too low result in slow response times to potentially
life-threatening emergencies.

In practice, two types of demand estimates are of interest: aggregate temporal
demand, that is, total expected demand volume, and spatiotemporal demand, or the
spatial distribution of demand over time. Temporal aggregate demand estimates
inform effective staffing and fleet planning; spatiotemporal estimates are critical
for choosing base locations and dynamic deployment strategies. These estimates
are ideally needed at high temporal resolution (e.g., 4-h work shifts). Similarly,
spatiotemporal estimates at fine spatial granularities are required for accurate
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dynamic deployment. Therefore, we aim to model aggregate demand bi-hourly and
spatiotemporal demand continuously in space over 2-h intervals.

Current EMS industry practice for forecasting ambulance demand in time and
space often uses simple averaging models on discretized time and spatial domains.
Demand in a small spatial cell over a short time period is typically predicted
by averaging a small number of historical counts, from the same location, over
the corresponding time intervals from previous weeks or years. For example, the
EMS of Toronto, Canada, averages four historical counts in the same hour of the
year, over the past 4 years. Another practice mentioned in [3] used by the EMS
of Charlotte-Mecklenburg, North Carolina, called the MEDIC method, averages
20 historical counts in the same hour of the preceding 4 weeks for the past 5 years.
Averaging so few observations may lead to highly noisy predictions; these methods
may also be quite sensitive to how the temporal and spatial domains are partitioned.

We propose methods that estimate ambulance demand accurately on fine scales.
Our motivating data set consists of all emergency priority calls from Toronto EMS
for which an ambulance was dispatched. Each event contains the time and location
that the ambulance was dispatched to. We use training data from February 2007 and
test data from March 2007 and February 2008. Altogether, we have 45,730 realized
events of ambulance demand. This includes some calls not requiring lights-and-sirens
response but does not include scheduled patient transfers. We include only the first
event in our analysis when multiple responses are received for the same event. The
data were processed to exclude events with no reported location. These removals
totaled less than 2% of the data.

We model Toronto’s ambulance demand on a continuous spatial domain  ⊆ ℝ2

and a discrete temporal domain of 2-h intervals  = {1, 2, · · · ,T}. Let st,i be the ith
ambulance demand location occurring at time period t, for i ∈ {1, · · · , yt}, in which yt
denotes the city-wide aggregate demand for that period. For each time period t ∈  ,
we have a spatial point process {st,i ∶ i = 1, · · · , yt}. Since nonhomogeneous Pois-
son process (NHPP) is a natural model for spatial point process [4–6], we assume
{st,i ∶ i = 1, · · · , yt}, for each t, independently follow an NHPP over  , with positive
intensity function 𝜆t(s). This implies that all demand locations in the point process
are independent conditional on the intensity function.

We further decompose the intensity function as

𝜆t(s) = 𝛿tgt(s) (13.1)

for s ∈  . Here, 𝛿t = ∫𝜆t(s) ds is the aggregate demand intensity over the spatial
domain. Therefore, gt(⋅) is the spatial density of the demand at time t, such that gt(s) >
0 for s ∈  and ∫gt(s) ds = 1. Hence, for each t, yt|𝜆t ∼ Poisson(𝛿t) and st,i|𝜆t, yt ∼
gt(⋅), i.i.d for i ∈ {1, · · · , yt}.

We thus represent {𝜆t} by separately modeling the aggregate temporal demand
intensity and the spatiotemporal demand density. In Section 13.2, we model expected
demand counts {𝛿t} with a dynamic latent factor structure, imposing covariates in
the factor loadings and smoothing the factor levels. Then, we forecast the demand
volumes yt adaptively via an integer-valued time series model in combination with
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this factor structure. In Section 13.3, we estimate the sequence of spatial densities
gt(⋅), t = 1, · · · ,T . We consider a novel characterization of a time-varying Gaussian
mixture model. The mixture distributions are fixed over time to estimate an accurate
spatial structure, while the mixture weights are allowed to vary over time. We use the
evolution of mixture weights to represent the diverse temporal patterns and dynamics
observed in this application. With these models, we obtain accurate temporal aggre-
gate demand estimates and spatiotemporal demand density estimates for the Toronto
EMS data.

13.2 TEMPORAL AMBULANCE DEMAND ESTIMATION

In this section, we model the aggregate ambulance demand intensity in Toronto for
every 2-h period. Few studies have focused specifically on EMS demand and of
those that have proposed methods for time series modeling, most have been based
on Gaussian linear models. Even with a continuity correction, this method is highly
inaccurate when the observed counts are low, which is typical of EMS demand at the
bi-hourly level. For example, Channouf et al. [7] forecast EMS demand by mod-
eling the daily observations as Gaussian, with fixed day-of-week, month-of-year,
special day effects, and fixed day–month interactions. They also consider a Gaus-
sian autoregressive moving-average (ARMA) model with seasonality and special day
effects. Comparable studies on arrival processes (e.g., call centers) have also consid-
ered singular spectrum analysis [8], fixed-effects, mixed-effects and bivariate models
[9, 10], Bayesian multiplicative models [11], and singular value decompositions [12,
13].

As we mentioned in Section 13.1, we assume that the observed bi-hourly EMS
demand volume yt has a Poisson distribution with mean 𝛿t. This allows parsimonious
modeling of periods with small counts, conforms with the standard industry assump-
tion [14], and avoids use of variance stabilizing transformations [11, 13]. We also
assume that 𝛿t is a random process, that it may be partitioned into stationary and non-
stationary components, and that it can be forecast using previous observations. The
demand pattern over the course of a typical day is shown in Figure 13.1.

Each day we observe a distinct shape: demand increases quickly in the late
morning, peaks in the early afternoon, and then slowly decreases until it troughs
between 4 and 6 am. In our analysis, we consider an arrival process that has been
repeatedly observed over a particular time span, specifically a 12-period day. Let d
denote the number of days, let m denote the number of intraday periods, and let

{yt ∶ t = 1, · · · ,T} = {yij ∶ i = 1, · · · , d; j = 1, · · · ,m}

denote the sequence of counts, observed in each time period t, which corresponds
one-to-one with the jth subperiod of the ith day, such that T = dm. Our baseline
approach is to model the arrival intensity 𝛿t for the distinct shape of intraday call
arrivals using a small number of smooth curves.
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Figure 13.1 Mean number of observations per bi-hour, by day-of-week, for February 2007
in Toronto.

Following [15], we propose to model 𝛿t using a dynamic latent factor structure.
Day-of-week effects are included via simple constraints on the factor loadings. The
factor structure allows for a significant reduction in the number of model parameters.
Furthermore, it provides a systematic approach to modeling the diurnal pattern
observed in intraday counts. Smoothing is used in estimating the factor levels and
loadings. Finally, we obtain temporal aggregate demand estimates by combining
integer-valued time series models with this factor structure to capture residual
dependence and to provide adaptive short-term forecasts. Our estimates are highly
accurate and straightforward to implement.

We present some notation in Section 13.2.1, introduce the factor model in Section
13.2.2, and incorporate it into a time series model in Section 13.2.3.

13.2.1 Notation

We consider two disjoint information sets for predictive conditioning. Let t =
(y1, · · · , yt)′ denote all observed counts through time t, and let X = {X1, · · · ,XT}
denote any available deterministic covariate information about each observation,
such as intraday time and day-of-week. We define 𝛿t as the conditional expectation
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of yt given t−1 and X and use this as an estimate of yt. Let 𝜇t = E(yt;X) > 0 denote
the expectation of yt as a function of the nonrandom covariates X, and let

𝛿t = E(yt|t−1;X) = 𝜇tE (yt∕𝜇t|t−1;X) = 𝜇t𝜂t, (13.2)

in which 𝜂t > 0 is referred to as the conditional intensity inflation rate (CIIR). By
construction

E(𝜂t;X) = E{E (yt|t−1;X);X}∕𝜇t = E(yt;X)∕𝜇t = 1.

The CIIR process is intended to model any remaining serial dependence in the
observed counts after accounting for available covariates. In the EMS context, we
hypothesize that this dependence is due to sporadic events such as inclement weather
or unusual traffic patterns. Since information regarding these events may not be avail-
able or predictable in general, we argue that an approach such as ours which explicitly
models the remaining serial dependence will lead to improved short-term forecast
accuracy. In the following, we consider a dynamic latent factor model estimated with
smoothing for modeling 𝜇t and a generalized autoregressive time series model for 𝜂t,
conditional on 𝜇t.

13.2.2 Factor Modeling with Constraints and Smoothing

For notational simplicity, assume m consecutive observations per day are available
(e.g., 12) for d consecutive days (e.g., 28) with no omissions in the record. Let Y =
(yij) denote the d × m matrix of observed counts for each day i and each subperiod j.

Let 𝜇ij = E(Yij;X), and let M = (𝜇ij) denote the corresponding d × m latent
nonstationary intensity matrix. To reduce the dimension of the intensity matrix M,
we introduce a K-factor model.

We assume that the intraday pattern of expected bi-hourly counts on the log scale
can be well approximated by a linear combination of K (a small number) factors or
functions, denoted by fk, for k = 1, · · · ,K. The intraday arrival rate model 𝛍i for day
i at subperiod j is given by

log ([𝛍i]j) = [Li1f1 + · · · + LiKfK]j. (13.3)

Each of the factors fk varies as a function over the periods within a day, but they are
constant from one day to the next. Day-to-day changes are modeled by allowing the
various factor loadings Lik to vary across days. When K is much smaller than either
m or d, the dimensionality of the general problem is greatly reduced. In matrix form,
we have

log ([M]ij) = [LF′]ij, (13.4)
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in which F = (f1, · · · , fK) denotes the K factors and L denotes the corresponding
d × K full rank matrix of factor loadings. Since neither F nor L are observable, the
expression (13.4) is not identifiable, in general. We further constrain the columns of
F to be orthonormal.

To further reduce the dimensionality, we impose a set of constraints by way of
categorical covariates on the factor loading matrix L. Let H denote a d × n full rank
matrix (n < d) of given constraints and let B denote an n × K matrix of unconstrained
factor loadings. Specifically, we let H denote a d × 7 matrix, in which each row Hi
is an incidence vector indicating the day-of-week, and the 7 × K matrix B contains
unconstrained factor loadings for the day-of-week. Hence, the factor model may now
be written as

log ([M]ij) = [LF′]ij = [HBF′]ij.

Constraints to assure identifiability are standard in factor analysis. The constraints
we now consider incorporate auxiliary information about the rows and columns
of the observation matrix Y to simplify estimation and to improve out-of-sample
predictions. Similar constraints have been used in [16] and [17].

We further assume that as the nonstationary intensity process 𝜇ij varies over
the hours j of each day i, it does so smoothly. To incorporate smoothness into the
model (13.3), we use Generalized Additive Models (GAMs) in the estimation of
the common factors fk. GAMs extend generalized linear models, allowing for more
complicated relationships between the response and predictors, by modeling some
predictors nonparametrically [cf. [18, 19]]. GAMs have been successfully used for
count-valued data in the study of fish populations [cf. [20, 21]]. The factors fk = fk(j)
are a smooth function of the intraday time index covariate j. Conditional on the
loadings L, Equation (13.3) represents a varying coefficient model [cf. [22]].

Conditional on the factors F, Equation (13.3) represents a generalized linear
model. Given the calendar covariates X, let

log𝜇ij = log𝜇i(j) = Li1f1(j) + · · · + LiKfK(j)

= Li1fj1 + · · · + LiKfjK =
K∑

k=1

bk(Xi)fjk, (13.5)

in which bk(Xi) = [H′
iB]k is a piece-wise constant function of the day-of-week in our

specification.
To estimate the degree of smoothness for the factors fk, we apply a performance

iteration [cf. [23]] versus an outer iteration strategy that requires repeated estimation
for many trial sets of the smoothing parameters. The performance iteration strategy is
much more computationally efficient for use in the estimation algorithm, but conver-
gence is not guaranteed, in general. In particular, cycling between pairs of smoothing
parameters and coefficient estimates may occur [cf. [19], Section 4.5], especially
when the number of factors K is large.
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Figure 13.2 February 2007 fitted (a) factor levels fk (log-linear scale) and (b) corresponding
factor loadings L⋅k (log-linear scale) for a factor model fit with constraints, smoothing, and
K = 4 factors. (L⋅1 − 13.5) is shown for easier comparison.

The fitted factors fk applying smoothing are shown (log-linear scale) in
Figure 13.2(a), and the corresponding factor loadings Lk⋅ (log-linear scale) applying
constraints are shown in Figure 13.2(b).

The first factor f1 is strictly positive and the least variable. It appears to capture
the mean diurnal pattern. The factor f2 appears to isolate the dominant relative differ-
ences between weekdays and weekend days. The defining feature of f3 and f4 is the
large increase late in the day, corresponding closely to the relative increase observed
on Friday evenings, in particular. However, f3 decreases in the morning, while f4
increases in the morning and decreases in the late afternoon. The much higher load-
ings L⋅1 on f1 confirm its interpretation as capturing the overall pattern. The peak on
Friday coincides with Friday having the highest average number of calls, as seen in
Figure 13.1. Weekdays get a positive loading on f2, while weekend days get negative
loading. Loadings on f3 are lowest on Wednesdays and loadings on f4 are largest on
Mondays. The estimated intensity process �̂�t for a factor model fit with constraints,
smoothing, and K = 4 factors is shown in Figure 13.3. The curves are smoothed rep-
resentations of the subperiod sample means as shown in Figure 13.1.

13.2.3 Adaptive Forecasting with Time Series Models

Although the factor model largely removes the strong seasonality exhibited in
the observations, see Figure 13.4(a), some additional serial dependence remains.
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Figure 13.3 The estimated intensity process �̂�t using a factor model fit with constraints,
smoothing, and K = 4 factors; colored by day-of-week for February 2007.

Let êt = yt∕�̂�t denote the multiplicative residual in period t implied by the fitted
values �̂�t from the factor model. We now consider a generalized autoregressive time
series model for the latent CIIR process 𝜂t = E(yt∕𝜇t|t−1;X) to account for this
dependence. Additional CIIR models are discussed in [15].

Consider a CIIR model defined by the recursion

𝜂t = 𝜔 + �̃�êt−1 + 𝛽𝜂t−1. (13.6)

To ensure positivity, we restrict 𝜔 > 0 and �̃�, 𝛽 ≥ 0. When 𝜇t is constant with respect
to time, the resulting model for yt is an Integer-GARCH(1,1) (IntGARCH) model
[e.g., [24]]. It is worth noting some properties of this model for the constant 𝜇t case.
To ensure the stationarity of 𝜂t, we further require that �̃� + 𝛽 < 1, [cf. [25]]. This sum
determines the persistence of the process, with larger values of �̃� leading to more
adaptability. When this stationarity condition is satisfied, and 𝜂t is initialized from its
stationary distribution, the expectation of 𝜂t given X is

E(𝜂t;X) = 𝜔∕(1 − �̃� − 𝛽).

To ensure E(𝜂t;X) = 1 for the fitted model, we may parametrize 𝜔 = 1 − �̃� − 𝛽.
When 𝜇t is a nonstationary process, the conditional intensity

𝛿t = 𝜇t𝜂t
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Figure 13.4 (a) Sample autocorrelation function for bi-hourly demand counts yt during
February 2007; the conditional intensity inflation process �̂�t (b) autocorrelation and (c) par-
tial autocorrelation functions, given the fitted factor model �̂�t with k = 4 factors, applying
constraints and smoothing; (d) standardized residual 𝜖t = yt∕𝛿t = yt∕(�̂�t�̂�t) autocorrelation
function. Dashed horizontal lines give approximate 95% lag-wise confidence intervals about
zero.

is also nonstationary. Since E(𝜂t;X) = 1, we interpret 𝜂t as the stationary multiplica-
tive deviation, or inflation rate, between 𝛿t and 𝜇t. The sample autocorrelation and
partial autocorrelation for the fitted CIIR process �̂�t is shown in Figure 13.4(a) and
(b), respectively.

The observed bi-hour counts yt, the fitted factor model �̂�t applying constraints and
smoothing, and the factor model including the fitted IntGARCH(1,1) model 𝛿t are
shown in Figure 13.5(a). The fitted CIIR process �̂�t from the IntGARCH(1,1) model
for the same period is shown in Figure 13.5(b). The mean reversion in the �̂�t process
results in the 𝛿t process reverting to the �̂�t process. Let

𝜖t = yt∕𝛿t

denote the multiplicative standardized residual process given an estimated intensity
𝛿t = �̂�t�̂�t. If a fitted model defined by Equation (13.6) sufficiently explains the
observed linear dependence in êt, then an autocorrelation plot of 𝜖t should be
statistically insignificant for all lags. As shown in Figure 13.4(d), the standardized
residual autocorrelation appears to have been adequately removed.
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Figure 13.5 First two full weeks of February 2007: (a) observed counts per bi-hour yt, fit-
ted K = 4 dynamic factor model �̂�t applying constraints and smoothing, and factor model 𝛿t

including fitted IntGARCH(1,1); (b) the fitted conditional intensity inflation process �̂�t from
the IntGARCH(1,1) model.

13.3 SPATIOTEMPORAL AMBULANCE DEMAND ESTIMATION

In this section, we estimate a continuous spatial density of demand as it varies across
2-h intervals, that is, we model gt(⋅) in Equation (13.1). There are few studies that
model spatiotemporal ambulance demand. In [26], the authors apply a nonparametric
multiple change point algorithm [27] to spatiotemporal ambulance demand and
find many significant changes in the spatial density intraweek. In [3], the authors
consider applying artificial neural network (ANN) on discretized domains and
compare it to the industry method MEDIC (Section 13.1). While ANN was shown
to perform better than the industry practice at low spatial resolutions, both ANN
and the industry method produce noisy predictions at high spatial resolutions. We
propose a much-needed method for accurate ambulance demand estimation on fine
time and location scales.

We see in Section 13.2 that aggregate demand volumes exhibit seasonalities and
serial dependence. We explore characteristics of the spatial density of this demand
in Figure 13.6. We outline the downtown region of Toronto using a rectangle in
Figure 13.6(a). For each 2-h period, we compute the proportion of observations that
arises from within this rectangle. This proportion is a proxy for the spatial density
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Figure 13.6 (a) The training data from February 2007, with the downtown subregion outlined
by a rectangle; (b) time series (top) and autocorrelation function (bottom) of the proportions
of observations arising from the rectangle across 2-h periods. Weekly seasonality, daily sea-
sonality, and low-order autocorrelation are observed. Dashed lines depict approximate 95%
lag-wise confidence intervals about zero.

at downtown for any time period. We study the sample autocorrelation function of
this time series of proportions in Figure 13.6(b). The spatial density at downtown
exhibits weekly seasonality (at the 84th time period), daily seasonality (12th period),
and short-term serial dependence (first two periods). We also investigate temporal
patterns of spatial densities at other locations. We find consistent weekly seasonality,
but varying degrees of daily seasonality and short-term serial dependence (stronger
at denser areas and weaker at more dispersed areas).

Existing approaches to estimation of spatial or spatiotemporal densities in point
processes do not fully address the challenges presented in ambulance demand
estimation. Within the framework of NHPP for spatial point processes, Bayesian
semiparametric mixture modeling has been used to represent the heterogeneity in
the intensity function via Dirichlet processes [28, 29] and Gaussian mixture models
with a fixed number of components [30]. However, our data are sparse at the desired
temporal granularity for prediction in this industry; the average number of total
observations in each 2-h period is only 45. It is difficult to build an accurate mixture
model for each time period individually.

Recently, dependent Dirichlet processes have been developed to induce depen-
dence in a collection of dependent distribution [[31, 32], for example]. A similar
framework has been used to model correlated spatial densities across discrete
time, by letting the stick-breaking proportions of the Dirichlet process evolve
in a first-order autoregressive manner [33–36]. However, all components in this
Dirichlet process must vary according to the same first-order dependence structure.
For EMS data, it is essential to capture a much more complex set of temporal
dynamics, including short-term serial dependence as well as daily and weekly
seasonalities. Moreover, some of these dynamics vary from location to location. To
consider and enforce only the first-order dependence across the entire spatial domain
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would be very limiting. On the other hand, it is not straightforward to extend the
dependent Dirichlet processes to incorporate higher-order serial dependence and
multiple seasonalities. It is also not easy to make these dynamics location-specific.
Discretizing the spatial domain and imposing different autoregressive parameters
on each region would add considerable computational complexity. Furthermore,
given the large number of total observations and time periods considered, using an
infinite-dimensional Dirichlet process would be computationally intractable.

We propose a novel specification of a time-varying finite mixture model. We
fix the distributions of all components in the mixture model through time. This
allows for efficient learning of the spatial structure. We let the mixture weights vary
in time to capture complex temporal and spatial dynamics in the point process.
We represent seasonalities in the spatial densities by incorporating categorical
covariate information as constraints on the mixture component weights; we describe
location-specific temporal dynamics by applying a separate autoregressive prior on
the mixture weights for each component. We introduce our method in Section 13.3.1
and apply it to Toronto EMS data in Section 13.3.2. We demonstrate in Section
13.3.3 that our method compares favorably to industry practice, yielding higher
statistical predictive accuracy and lower error in measuring operational performance.

13.3.1 Spatiotemporal Finite Mixture Modeling

Following [37], we estimate gt(⋅) in Equation (13.1) using a sequence of bivariate
Gaussian mixture models, in which we fix the component distributions across time,
but let the mixture weights evolve over time. This promotes efficient information
sharing across time to estimate an accurate spatial structure. This is necessary because
data per time period is too sparse to describe the spatial structure well. Fixing the
component distributions in time is also natural because Toronto has well-established
neighborhoods, downtown, and traffic routes. The time-varying mixture weights can
capture people’s activities and dynamics within the spatial structure over time. Using
a fixed number of components C for now, we have for any t

gt(s; {pt,j}, {𝜇j}, {Σj}) =
C∑

j=1

pt,j 𝜙(s;𝜇j,Σj), ∀ s ∈  , (13.7)

in which 𝜙 is the bivariate Gaussian density with mean 𝜇j and covariance Σj, for each
j ∈ {1, · · · ,C}. Here, the pt,j are the component mixture weights such that pt,j ≥ 0 for
all t and j and

∑C
j=1 pt,j = 1 for all t. The means and covariances remain the same for

all time periods, and only the mixture weights change over time.
We observe weekly seasonality in the demand densities throughout Toronto. To

capture this weekly seasonality, we can estimate all time periods with the same rela-
tive position in a weekly cycle (e.g., all periods corresponding to Monday 8–10 a.m.)
to have the same mixture weights, and thus the same density, by introducing a cate-
gorical covariate indicating the intraweek subperiod. If B is the cycle length (B = 84
for a week in our analysis), we match each t ∈  to a value b ∈ {1, · · · ,B}.
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Let x = (x1, · · · , xT )′, in which each xt is a length B incidence vector,
which is 0 everywhere except at element b = t (mod B), which is 1. Next,
for each intraweek period define a length C vector of nonnegative mixture
weights 𝜛b = (𝜛b,1, · · · , 𝜛b,C)′, which sum to 1 for each period b, and let
𝜛 = (𝜛1, · · · , 𝜛B)′. Finally, we parametrize the mixture weights p = (p1, · · · ,pT )′
with pt = (pt,1, · · · , pt,C)′, as

p = 𝜛x, such that pt = 𝜛xt,

and for b = t (mod B), Equation (13.7) becomes

gt(s;p, {𝜇j}, {Σj}) = gb(s;𝜛, {𝜇j}, {Σj}) =
C∑

j=1

𝜛b,j 𝜙(s;𝜇j,Σj). (13.8)

Such parametrizations on the mixture weights could also be used to group together
consecutive time periods with similar characteristics, for example, midnight hours, or
indicate special times, for example, holidays. This framework easily extends beyond
categorical covariates.

In addition to weekly seasonality, we also find daily seasonality and short-term
serial dependence in the demand densities, and such dependence varies in strength
at different locations in Toronto. To capture this within the proposed mixture model
framework, we can apply a separate conditional autoregressive (CAR) prior on the
sequence of mixture weights for each component, that is, on𝜛 for each j in Equation
(13.8). We can describe any dependence pattern representable by structured time
series models. We also have the flexibility to use unique parameters and specifications
for each component j. This allows us to efficiently explore location-specific temporal
dynamics. Moreover, these autoregressive priors create smoothing, or shrinkage, of
the estimated spatial density across discrete time periods, which is desirable since
the spatial density is typically believed to vary smoothly across time. Autoregressive
priors have been used to smooth parameter estimates at adjacent locations in spatial
data [38, 39] and at adjacent times in temporal processes [40, 41].

The intraweek mixture weights 𝜛b,j require nonnegativity and sum-to-one con-
straints across components at every period b. As a result, special care needs to be
taken as we impose autoregressive priors and update them. To circumvent this, we
transform the {𝜛b,j} weights into unconstrained weights {𝜋b,j} via multinomial logit
transformation

𝜋b,r = log

(
𝜛b,r

1 −
∑C−1

j=1 𝜛b,j

)
, r ∈ {1, · · · ,C − 1} (13.9)

We then specify daily seasonality and short-term serial dependence on the uncon-
strained weights {𝜋b,j}. We assume that the demeaned weights in any period depend
on those from four other periods: immediately before and after, to capture short-term
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serial dependence, and exactly 1 day before and after, for daily seasonality. Specifi-
cally, we have the following priors:

𝜋b,r|𝜋−b,r ∼ N(cr + 𝜌r[(𝜋b−1,r − cr) + (𝜋b+1,r − cr) + (𝜋b−d,r − cr)

+ (𝜋b+d,r − cr)], 𝜈2
r ),

cr ∼ N(0, 104), 𝜌r ∼ U(0, 0.25), 𝜈2
r ∼ U(0, 104) (13.10)

for r ∈ {1, · · · ,C − 1} and b ∈ {1, · · · ,B}, in which 𝜋−b,r = (𝜋1,r, · · · , 𝜋b−1,r,

𝜋b+1,r, · · · , 𝜋B,r)′, and d is the number of time periods in a day (d = 12 in our case).
Here, we have linked 𝜋B,r with 𝜋1,r, such that {𝜋b,r} is defined circularly in

intraweek time. This is appropriate because we have the same weekly series of
spatial densities cycle through time. In the prior of {𝜋b,r}, the intercepts cr indicate
average levels of the weights over time, the autoregressive parameters 𝜌r represent
persistence of the weights across time, and the variances 𝜈2

r control for variability
of the weights across time. These three parameters are component-specific, and
thus location-specific. If 𝜌r ∈ (−0.25, 0.25), then the prior joint distribution of
(𝜋1,r, · · · , 𝜋B,r)′ is multivariate normal [42]. We restrict 𝜌r to take on values in
(0, 0.25) because we find positive short-term serial dependence and daily seasonality
in our application. As an alternative to the above definition, we could define
autoregressive priors by initiating {𝜋1,r} and letting each 𝜋b,r depend only on its
past. In either case, we can represent a rich set of temporal dynamics.

We follow [43, 44] in defining priors for other parameters. We have the following
independent, minimally informative, hierarchical priors

𝜇j ∼ Normal(𝜉, 𝜅−1), Σ−1
j |𝛽 ∼ Wishart(2𝛼, (2𝛽)−1),

𝛽 ∼ Wishart(2e, (2h)−1) (13.11)

for j ∈ {1, · · · ,C} and t ∈ {1, · · · ,T}. Again following [44], we set 𝛼 = 3, e = 1 and

𝜉 = (𝜉1, 𝜉2)′, 𝜅 = diag(R−2
1 ,R−2

2 ), h = diag(10R−2
1 , 10R−2

2 )

in which 𝜉1 and 𝜉2 are the medians of all observations in the first and second spatial
dimensions, and R1 and R2 are the lengths of the ranges of observations in the two
dimensions.

To summarize, our model is Equation (13.8) with transformations (13.9) and prior
distributions (13.10) and (13.11). We use Markov chain Monte Carlo (MCMC) for
estimation. We augment the data with latent component labels {zt,i}; each zt,i denotes
the mixture component to which an observation st,i belongs [45]. Upon initialization,
we update {zt,i}, {𝜇j}, 𝛽, and {Σj} using their full conditional posterior distribution
and update {𝜋b,r}, {cr}, {𝜌r}, and {𝜈r} using Metropolis-Hastings random walk.

In this model, we assume a fixed number of mixture components. We can add a
refinement to this model by estimating a variable number of components. We can do
so through a straightforward generalization of the Birth-and-Death MCMC (BDM-
CMC) [44] to the spatiotemporal setting. While the number of components varies
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across iterations, we assume that it is common to all time periods within any iteration.
This is not an unreasonable assumption since the spatial structure of Toronto does not
change over such a short amount of time. BDMCMC is a continuous-time alternative
to Reversible Jump MCMC (RJMCMC) [43, 46] and is shown to result in even bet-
ter mixing of all parameters than RJMCMC [44, 47]. Similar to [43, 44], we can put
a truncated Poisson prior on the number of components, C, that is, p(C) ∝ 𝜏C∕C!,
in which C ∈ {1, · · · ,Cmax} for some fixed 𝜏 and Cmax. However, given the large
amount of data, putting a vague prior on C would lead to an infeasibly large number
of components in the posterior, and potentially overfitting. A more viable option is to
impose a prior on C so as to encourage a small number of components.

13.3.2 Estimating Ambulance Demand

We apply our models to Toronto EMS data from February 2007. First, we use a fixed
number of 15 components. Through preliminary analysis, we found 15 components
to be able to adequately represent various business, residential, and transportation
regions in Toronto, while still being low enough for easy computation. We then use
a variable number of components via BDMCMC. We set Cmax = 50 and choose 𝜏
such that the posterior average numbers of components are 19 and 24 (with posterior
standard deviations of 3 and 5, respectively).

Each MCMC is run for 50,000 iterations, with the first 25,000 discarded as
burn-in. The chain length and mixing are deemed sufficient; we obtain Monte
Carlo standard errors for the statistical measure for predictive accuracy (detained in
Section 13.3.3) that are small enough to yield accuracy of at least three significant
figures [48, 49]. The computation time for the mixture model with 15 fixed compo-
nents is 4 s per iteration on a personal computer, while those for variable components
averaging 19 and 24 are 7 and 8 s per iteration, respectively. In practice, estimation
only needs to be performed infrequently (at most once a month in our application),
and density prediction for any future time period is almost immediate once estimation
is complete.

Figures 13.7 and 13.8 show the estimated mixture model using a fixed number
of C = 15 components. Figure 13.7 presents the posterior means and covariances
(ellipses at 90% level) of the 15 components at the last iteration of the MCMC sim-
ulation. Ellipses of the first 14 components are each shaded by the posterior mean
of the autoregressive parameter 𝜌r for that component. Components at the greater
downtown and coastal regions of Toronto have higher posterior means of 𝜌r. These
denser regions exhibit stronger daily seasonality and low-order serial dependence.
This indicates that our model can differentiate temporal dynamics based on locations.

Using a fixed number of 15 mixture components, we show in Figure 13.8 the
posterior spatial density on the log scale for two different time periods, averaged
across the last 25,000 MCMC samples. The ambulance demand is, perhaps not
suprisingly, concentrated at the heart of downtown during the mid-afternoon on
Wednesday (Figure 13.8(a)) and more spread out throughout the city during the very
early hours on Wednesday (Figure 13.8(b)). Our model successfully captures this
variation of demand density with time. We also show in Figure 13.9 the posterior
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Figure 13.7 Posterior means and covariance ellipses (at 90% level) using our mixture model
with 15 fixed components. Each ellipse (except that of the 15th component) is shaded with
posterior mean of 𝜌r. The greater downtown and coastal regions show stronger daily seasonality
and short-term serial dependence.
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Figure 13.8 Posterior log spatial densities using our mixture model with 15 fixed compo-
nents: (a) for Wednesday 2:00–4:00 p.m. (demand concentrated at downtown during the day);
(b) for Wednesday 2:00–4:00 a.m. (demand more spread out at night).
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Figure 13.9 Posterior log spatial densities using our mixture model with a variable number of
components for Wednesday 2:00–4:00 a.m., when the posterior average number of components
are (a) 19 and (b) 24.

log spatial densities during Wednesday night when we fit our mixture model using a
variable number of components. These densities are compared to and found similar
to that in Figure 13.8(b).

13.3.3 Model Performance

We fit our mixture models on the training data from February 2007 and use
the resulting density estimates to predict on two sets of test data, March 2007 and
February 2008, respectively. We compare our predictive accuracy to MEDIC, a
current industry practice mentioned in Section 13.1, and our proposed extension of
MEDIC using kernel density estimation (KDE).

The MEDIC method described in [3] predicts ambulance demand on discretized
time and space by averaging 20 corresponding demands in the preceding 4 weeks,
for the last 5 years. We implement the MEDIC method as far as we have data. We
use a temporal discretization of 2-h intervals and adopt the spatial discretization of
1 km ×1 km used by Toronto EMS. Since our goal is to predict demand densities,
we normalize demand volumes at any temporal and spatial bin by the total demand
that occurred for that time period. To predict for any 2-h period in March 2007, we
average four historical demand densities in the same hours of the preceding 4 weeks.
To predict for any 2-h period in February 2008, we average eight historical demand
densities in the same hours of the preceding 4 weeks and those of the same 4 weeks
in 2007.

We propose an extension of the MEDIC method to predict ambulance demand
continuously in space using KDE. We use the kernel density estimate of all data
in any 2-h period as the demand density for that period. Here, we use a bivariate
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Gaussian kernel and bandwidths chosen by cross-validation using the statistical pre-
dictive accuracy measure to be defined in Equation (13.12). Then, we predict demand
densities for March 2007 and February 2008 by averaging historical demand densities
according to the MEDIC formula. Note that the MEDIC and MEDIC-KDE meth-
ods use potentially more data that may be more recent than the proposed mixture
models. To ensure fair comparison, we numerically normalize predictive densities
produced by all three methods by Toronto’s boundary after estimation is complete.
This means we predict outside of Toronto with zero probability and elevate the pre-
dictive densities within the boundary proportionally. However, we do not normalize
to the boundary during estimation because it added little benefit for this application
given its additional computational cost. Numerical integration needs to be performed
for every Metropolis–Hastings proposal of 𝜇j and Σj for each time period.

We show in Figure 13.10 the log spatial densities produced by MEDIC and
MEDIC-KDE for February 6 2008 (Wednesday) at 2:00–4:00 am. These densities
are to be compared with those in Figure 13.8(b) and 13.9(a,b), which are the log
spatial densities for the same time period using our mixture models. Overall, the
MEDIC and MEDIC-KDE estimates appear noisier than those of our mixture
models.

To formally measure the statistical predictive accuracies of our mixture models,
MEDIC and MEDIC-KDE, we use average logarithmic score [50]. This performance
measure is widely used because it is a strictly proper scoring rule closely related to
the Bayes factor and BIC, the Bayesian Information Criterion (see details in [51]). It
is defined as

PA({s̃t,i}) =
1∑T

t=1 yt

T∑
t=1

yt∑
i=1

log ĝt(s̃t,i) (13.12)

in which ĝt(⋅) is the density estimate obtained from various methods for the tth period,
and s̃t,i represents the ith test data observation from the tth time period.
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Figure 13.10 Log spatial densities using an industry method (MEDIC) and its exten-
sion (MEDIC-KDE) for February 6 2008 (Wednesday) 2:00–4:00 am. Figure 13.8(b) and
Figure 13.9(a,b) show the densities for the same period estimated by the mixture models.
Compared to mixture models, estimates from the MEDIC and MEDIC-KDE are noisy.
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For our mixture models, we use the Monte Carlo estimate of Equation (13.12)

PAmix({s̃t,i}) =
1
M

M∑
m=1

(
1∑T

t=1 yt

T∑
t=1

yt∑
i=1

log ĝt(s̃t,i|𝜃(m))

)
(13.13)

in which 𝜃(m) are the posterior parameter estimates in the mth iteration of the MCMC
simulation, for m ∈ {1, · · · ,M} and some large M.

We show in Table 13.1 the predictive accuracies of various methods for the two test
periods. A less negative predictive accuracy indicates better performance. The pre-
dictive accuracies of the mixture models are presented with their 95% batch means
confidence intervals [52], indicating the accuracy of the MCMC estimates. The mix-
ture models outperform the industry practice and its extension. We note that using
a variable number of components only improves the predictive accuracies slightly.
Given that the computational expense almost doubles for these modest improvements,
we conclude that using a fixed number of 15 components is largely sufficient in this
application.

We also translate the statistical predictive advantage of our mixture models over
the industry methods to operational advantage in EMS practice. In particular, we show
that our mixture model predicts the industry’s operational performances much more
accurately. The prevalent EMS operational performance is measured by the propor-
tion of events with response times below various thresholds (e.g., 60% responded
to within 4 min). This operational performance is usually the optimization objective
for management decisions in the EMS industry. It is therefore critical to be able to
forecast this performance accurately, and this depends crucially on the accuracy of
spatiotemporal demand density forecasts.

First, we generate a time series of 2-h demand density forecasts for each of our two
test data sets using the mixture model, MEDIC, and MEDIC-KDE. Using the den-
sity forecasts produced by method  for time period t, we compute the operational
performance as the proportion of demand reachable by response time threshold r,
,t(r). We do this by numerically integrating the demand density forecasts within
all regions that can be covered within time r. Here, we assume a simplified set of

TABLE 13.1 Predictive Accuracies of Mixture Models (with 95% Batch Means
Confidence Intervals), MEDIC, and MEDIC-KDE on Test Data from March 2007 and
February 2008

Estimation Method PA for March 2007 PA for February 2008

Gaussian 15 components −6.1378 ± 0.0004 −6.1491 ± 0.0005
Mixture Variable number of comp:

average 19 comp −6.080 ± 0.002 −6.128 ± 0.002
average 24 comp −6.072 ± 0.003 −6.122 ± 0.004

Competing MEDIC −8.31 −7.62
Methods MEDIC-KDE −6.87 −6.56
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Figure 13.11 (a) The 44 ambulance bases in Toronto; (b) and (c) absolute error in measuring
operational performance averaged across time periods, using our mixture model (15 compo-
nents), MEDIC, and MEDIC-KDE, on test data of March 2007 and February 2008, respectively
(with 95% intervals for the averages). Our mixture model reduces this error significantly.

operational strategies: we use the L1 (Manhattan) distance metric, ambulances always
depart from one of the 44 bases in Toronto (see Figure 13.11(a)), and ambulances
always travel at the median speed of Toronto EMS trips, 46 km/h. We also calculate
the realized operational performance using the test data, test,t(r).

Our goal is to assess how close the operational performance ,t(r) using each
method  is to the true performance test,t(r) for a range of r values. We represent
this closeness by the average of absolute prediction errors across time periods, that
is, Error(, r) = 1

T

∑T
t=1 |,t(r) − test,t(r)|. In Figure 13.11 (b) and (c), we plot

Error(, r) against r for each method  (mixture model with 15 components,
MEDIC, and MEDIC-KDE), for the test data from March 2007 and February
2008, respectively. We also show the 95% confidence bands for the absolute errors,
indicating their variations across time periods.

We find that the mixture model predicts the operational performance much more
accurately. Our method reduces error by as much as two-thirds compared to the
MEDIC method, even though our method is sometimes trained on less recent data.
Although we use a simplified set of operational assumptions here, we expect similar
results under different operational strategies.

Finally, we examine the goodness-of-fit of our mixture models, using the model
checking method proposed in [36]. We have assumed that our point process follows
an NHPP with intensity 𝜆t(s) = 𝛿tgt(s) for each time period t. Estimates of {𝛿t} are
obtained by the factor model with covariates and smoothing described in Section
13.2, whereas our mixture models in Section 13.3 offer estimates of {gt(s)}. We
can marginalize our point process in the first and second spatial dimensions to two
one-dimensional NHPPs with intensities 𝜆1,t(⋅) and 𝜆2,t(⋅), obtained by marginaliz-
ing 𝜆t(⋅). We also compute the cumulative marginal intensities Λ1,t(⋅) and Λ2,t(⋅) and
order the observations along each marginal for each time period into {sj,1, · · · , sj,yt

}
along each margin j ∈ {1, 2}.



�

� �

�

CONCLUSIONS 409

15 Components

0.0

E
s
ti
m

a
te

d
 q

u
a
n
ti
le

 f
o
r 

lo
c
a
ti
o
n
s

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

Uinform quantile

0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Variable no. of components,
average = 19

Variable no. of components,
average = 24

Figure 13.12 Q–Q plots for goodness-of-fit using aggregate intensity estimates from the
factor model and spatiotemporal density estimates from various mixture models. The solid
lines are the posterior mean Q–Q lines, and the dash lines represent the 95% posterior intervals.
All three plots indicate that our models fit the data well.

If our models fit the data perfectly, then {Λj,t(sj,i) ∶ i = 1, · · · , yt} for each margin
j ∈ {1, 2} and time t follows a homogeneous Poisson process with unit rate. Then
the interarrival times along each margin in each time period are i.i.d uniform ran-

dom variables on (0, 1), that is, ui,j,t = 1 − exp {−(Λj,t(sj,i) − Λj,t(sj,i−1)}
iid∼ U(0, 1)

for observations i ∈ {2, · · · yt}, dimensions j ∈ {1, 2} and time t ∈  . We have a set
of ui,j,t using posterior parameter estimates from each MCMC sample. We compare
the posterior mean and 95% interval of ui,j,t with the true uniform distribution using
quantile–quantile (Q–Q) plots in Figure 13.12. All plots show high goodness-of-fit,
suggesting that the factor models and the mixture models, whether with a fixed or a
variable number of components, are adequate and appropriate.

13.4 CONCLUSIONS

Predicting ambulance demand accurately at fine temporal and spatial resolutions is
critical to optimal ambulance planning. The current industry method and other earlier
methods are often simple and do not give accurate predictions. We provide two
much-needed and highly accurate methods to predict temporal and spatiotemporal
ambulance demand in fine scales. We first model bi-hourly aggregate call arrivals
using an integer-valued time series model combined with a factor model that incor-
porates covariates and smoothing. We then estimate the spatial density of ambulance
demand as it varies over 2-h periods by extending Gaussian mixture models. We
jointly estimate mixture component distributions over time to promote efficient
learning of spatial structures even though data are sparse within each time period.
We express a diverse set of location-specific seasonalities and serial dependence
typical in the spatial densities of ambulance demand by re-parametrizing the mixture
weights and applying conditionally autoregressive priors. We have shown that
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estimation can be implemented with a fixed or a variable number of components.
Both of these methods are parsimonious, flexible, and easy to implement; they also
demonstrate substantial advantages over the current industry practice and similar
methods. Ultimately, we aim to optimize ambulance planning by providing more
accurate spatiotemporal demand estimates.

Our methods utilize the same data used by the current industry methods and do
not require any additional data collection. Future work will investigate the use of
additional covariates, such as weather, special events, population, and demographic
variables, in addition to historical data. A further challenge is to collect and make
use of data on population and demographic movement across fine timescales, for
example, bi-hourly. For aggregate demand estimation, a nonlinear time series model
could be considered, while for spatiotemporal density estimation, a computationally
feasible way of incorporating the boundary of Toronto would be an important
contribution.
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14.1 INTRODUCTION

Existing studies of organ transplant report various disparities in access to and out-
comes in transplantation. Disparities have been found in terms of race, socioeconomic
status, insurance type, and the location of candidate’s residency. While these dispar-
ities tend to coexist, disparity associated with candidates’ locations or “geographical
disparity” is the first and foremost discussed. Researchers worldwide have repeatedly
confirmed that the likelihood of receiving a transplant as well as pre- and posttrans-
plant mortality rates vary significantly from region to region [1–10]. Geographic
disparity in transplant access is a persistent issue ever since organ allocation became
a regulated process in 1984 under the National Organ Transplant Act (NOTA). As the
most important act in the history of the US transplantation, NOTA created the Organ
Procurement and Transplantation Network (OPTN) – a public–private network of
regional organ allocation offices known as Organ Procurement Organizations (OPOs)
[1]. NOTA also authorized the Department of Health and Human Services (HHS) to
contract with the United Network for Organ Sharing (UNOS) as the only adminis-
trative entity to administer OPTN. At first, all organs were distributed within each
OPO’s service area in order to limit cold ischemia time (CIT), the interval between
organ retrieval, and the time of transplantation during which an organ is preserved
in a cold-perfusion solution (ibid). Allocation of organs within each OPO was solely
based on the length of time that each candidate had spent waiting for an organ since
initial referral. In response to the concern that the waiting time varied significantly
by OPO, HHS introduced a new regulation known as the “Final Rule” (42 CFR Part
121) in 1998 to “assure that allocation of scarce organs will be based on common
medical criteria, not accidents of geography” (HHS, 1998b) [1].

As per the directives of the Final Rule, the allocation mechanism for a number
of vital organs has been rectified to address the criterion of medical necessity. For
liver allocation, HHS revised the Code of Federal Regulations that legislate the organ
allocation process and, in 2002, the Model for End-Stage Liver Disease (MELD) scor-
ing system was introduced and launched as a way to prioritize the candidates with a
higher medical urgency. Until the allocation rule was further revised in 2013, the adult
cadaver livers had been distributed, in principle, based on the algorithm summarized
in Figure 14.1. Figure 14.2 summarizes the current liver allocation system. As the
figures show, the current organ allocation system consists of three hierarchical geo-
graphic levels, which are OPO (aka, the Donor Service Area or DSA), UNOS region,
and National levels (ibid).

While several changes in allocation rules have been introduced to address the
disparities, transplant researchers still report that a number of key elements that
determine equity in transplantation vary significantly depending on the location of a
patient. Given this background, our study developed a mathematical programming
model to redesign liver allocation boundaries. The optimal boundaries were derived
to maximize efficiency and geographic equity in access to liver transplantation.
Part of this mathematical model also analyzed optimal locations for liver transplant
centers. In this analysis, we explored several scenarios to examine whether relocating
the 123 liver transplant centers can achieve the objectives specified in the model
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Figure 14.1 Pre-2013 deceased-donor adult liver allocation system.

• Status 1 patient refers to those with fulminant liver failure with a life expectancy without a
liver transplant of less than 7 days.

• Within each category of patients (i.e., Status 1, MELD scores≥ 15, MELD score< 15), a
liver is offered, in principle, in the descending order of first MELD score and then waiting
time.

• Extra points are added to the MELD score for those patients whose blood type is compat-
ible with that of the available liver and those with specific clinical circumstances such as
hepatocellular carcinoma (HCC).
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Figure 14.2 Current deceased-donor adult liver allocation system.

more efficiently than locating additional liver transplant centers at the locations
of “kidney-only” transplant centers. Using the locations of kidney-only transplant
centers as the candidate locations for additional liver transplant centers reflects that
most transplant centers start as a kidney transplant center and subsequently add
additional transplant program(s) for other organ type(s).

To evaluate the performance of the optimal boundaries in a realistic setting, we
developed a discrete-event simulation model that reflects the actual liver–candidate
matching and the actual liver allocation protocols practiced until 2013. The primary
data used for the analysis is UNOS’s Standard Transplant Analysis and Research
(STAR) Data set that records the clinical, administrative, demographic, and locational
information of 82,020 adult liver transplant candidates and recipients who appeared
on the wait-list between 2003 and 2011.
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14.2 METHODS

Our mathematical analysis has the twofold objectives of (i) identifying optimal loca-
tions for both existing and new liver transplant centers; and (ii) identifying new OPO
boundaries as alternatives to the existing OPO boundaries for liver allocation. Once
new OPO boundaries were specified, we evaluated the performance of the new bound-
aries through a series of discrete-event simulations. The simulation approach allowed
us to assess the performance of the new boundaries based on a variety of criteria,
including those not reflected in the mathematical models.

14.2.1 Mathematical Model: Optimal Locations of Transplant Centers
and OPO Boundaries

Two mathematical models are explored to achieve the two aforementioned objectives.
The first model (Model 1) addresses the problem of selecting a fixed number p of
transplant centers to be opened among a possible set of candidates. With each opened
transplant center, an organ acquisition area and a service area are defined. These areas
represent, respectively, the set of ZIP codes where donor hospitals provide livers to
the center and the set of counties whose recipients can be transplanted an organ in
the center. The second model (Model 2) aims at clustering the p selected centers
in a predefined number of clusters, each cluster representing an OPO. The union of
the acquisition areas and the service areas associated with the transplant centers that
belong to the same cluster defines the acquisition area and the service area of the
OPO, respectively. Such a clustering is carried out ensuring that the resulting organ
acquisition area and service area, associated with each OPO, are balanced both in
terms of total acquired and total requested organs and in terms of total number of
transplant centers clustered in each OPO. The two models are, respectively, specified
below.

14.2.1.1 Model 1 Let D = {1, 2, … ,m} represent the set of donor hospitals where
livers are recovered and let 𝑤j, j ∈ D be a weight associated with each donor hospi-
tal representing the total number of livers recovered at the hospital during our study
period. We use “county” as the smallest unit used to represent liver transplant can-
didates, and thus they are aggregated to the county level to measure the demand per
county. Let C = {1, 2, … , n} represent the set of counties and hi, i ∈ C the total
number of candidates waiting for a transplant in county i during the study period.
Let T = {1, 2,… , q} be the set of potential transplant centers to be opened. We also
define the parameter djt, j ∈ D, t ∈ T as the Euclidean distance between the donor
hospital j and the transplant center t, and fit, i ∈ C, t ∈ T as the Euclidean distance
between the centroid of county i and the transplant center t.

Model 1 solves the problem of selecting p liver transplant centers among the avail-
able |T| to be opened and associates a subset of donor hospitals and a subset of
counties with each transplant center. The former associations define the liver acquisi-
tion area of a transplant center while the latter associations define the patient service
area of a center. The model ensures that each donor hospital and each county are
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associated with exactly one transplant center. The distance between a donor hospital
and each of the transplant centers associated with the donor hospital is such that the
corresponding travel time is within a predefined maximum threshold to ensure that
livers are transplanted within a certain time length known as the maximum CIT. CIT is
defined as the time from the perfusion of an organ by cold solutions until transplanta-
tion in the recipient of the organ, and, for liver, the maximum medically accepted CIT
is set at 12 h [11]. Similarly, the distance between county centroid and the transplant
center assigned to the county is not greater than a predefined maximum threshold to
make sure that the distance traveled by a candidate for a transplant is within a realistic
range.

Using Model 1, we specifically examined four different scenarios for selecting
transplant centers to be activated. The results of these scenarios were compared to
the baseline, which represents the current situation. The scenarios are as follows:

• Scenarios 1-i, 1-ii, and 1-iii. This scenario selects additional 10 (1-i), 20
(1-ii), and 30 (1-iii) existing “kidney-only” transplant centers to operate as
“kidney–liver transplant centers” in addition to the existing 123 liver transplant
centers.

• Scenario 2. This scenario selects 123 liver transplant centers among the 123 cur-
rent liver transplant centers and 103 kidney-only transplant centers. In practice,
this scenario reflects the situation where some of the existing liver transplant
centers are relocated to kidney-only transplant centers.

The proposed model is similar to the model proposed by Bruni et al. [12] in the fact
that each selected transplant center is associated with an acquisition area and a service
area. However, unlike the model by Bruni et al. [12], we consider an additional set
of constraints to ensure that, for each opened transplant center, the ratio between the
available organs or “supply” (recovered in the acquisition area) and the total number
of recipients or “demand” (in the service area) is greater than a fixed threshold 𝛼. The
resulting model is specified as follows:

min
∑
j∈D

∑
t∈T

djtxjt +
∑
i∈C

∑
t∈T

fityit (14.1)

∑
t∈Nj

xjt = 1, ∀j ∈ D (14.2)

∑
t∈Ni

yit = 1, ∀i ∈ C (14.3)

xjt ≤ zt, ∀j ∈ D ∀t ∈ T (14.4)

yit ≤ zt, ∀i ∈ C ∀t ∈ T (14.5)∑
t∈T

zt = p (14.6)∑
j∈D

𝑤jxjt ≤ 𝛼
∑
i∈C

hiyit, ∀t ∈ T (14.7)
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The binary variable xjt assumes a value equal to 1 if the donor hospital j is assigned
to the transplant center t and is equal to 0 otherwise; the binary variable yit assumes
a value equal to 1 if county i is assigned to the transplant center t and is equal to 0
otherwise. Finally, the binary variable zt assumes a value equals to 1 if the transplant
center t is activated and is equal to 0 otherwise. The objective function 14.1 mini-
mizes the sum of the total Euclidean distance between the donor hospitals and the
associated opened transplant centers plus the total distance between the counties and
the associated opened transplant centers.

The set Nj = {t ∈ T ∶ djt ≤ dmax} in constraint 14.2 is the set of transplant centers
whose distance from the donor hospital j is less than or equal to a predefined thresh-
old dmax. Analogously, the set Ni = {t ∈ T ∶ fit ≤ fmax} in constraint 14.3 is the set of
transplant centers whose distance from centroid of county i is less than or equal to a
predefined threshold fmax. Constraints 14.2 and 14.3 require each donor hospital and
each county to be associated with exactly one transplant center that is located within
a predefined distance, respectively. Constraints 14.4 and 14.5 are logical constraints
that, respectively, ensure a donor hospital and a county are assigned to a transplant
center that is open. The total number of transplant centers to be opened must be equal
to p, as stipulated by constraint 14.6. Finally, for each opened transplant center, the
ratio between the total supply and the total demand must be greater than or equal to a
predefined threshold 𝛼. If a subset S ⊆ T of transplant centers is already opened, then
we would add the constraints: zt = 1 ∀t ∈ S and we would modify constraint 14.6
accordingly. dmax and fmax were, respectively, set to 2000 (miles) and 1100 (miles).
These values were chosen assuming that recovered livers are transported by heli-
copter and that recipients drive to their transplant centers for transplantation. Given
that the average speed of helicopter is 160 MPH, the value (dmax) translates to about
12 h of transportation time or to the aforementioned maximum medically accepted
CIT. p was set as 123 for Scenario 2 to reflect the number of liver transplant centers
currently existing in the contiguous United States. Scenario 1 tested three different
values of p, that is, 123+ 10, 123+ 20, and 123+ 30. Finally, 𝛼, the minimum sup-
ply/demand ratio, was arbitrary set to 0.4. While there is no organ allocation policy or
empirical work that suggests a specific optimal supply/demand ratio, we considered,
for this exploratory analysis, 𝛼 = 0.4 can serve as a good representative value, given
the minimum ratio observed under the current system is 0.3.

14.2.1.2 Model 2 This model addresses the problem of clustering a set of trans-
plant centers that have been selected to be opened in Model 1 into a predefined number
of clusters. Each cluster represents an OPO. The resulting OPOs are defined so that
they are balanced both in terms of ratio between supply and demand of livers and
in terms of total number of transplant centers that belong to the same OPO. The
boundary of each OPO is defined as the union of the service areas of the transplant
centers in the OPO. From a practical perspective, one important constraint to take
into account when defining the cluster is contiguity of the service areas. Thus, Model
2 takes a graph G= (V,E) as an input where each vertex i ∈ V is associated with a
transplant center, and vertex i and vertex j are connected by two oriented arcs (i,j)
and (j,i) if the corresponding service areas have a common border. Two weights, 𝑤i
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Figure 14.3 Model 2 Illustration.
An example region (a) where each polygon represents a county and polygons with the same
shade constitutes the service area associated with an allocated transplant center, and the asso-
ciated graph (b).

and hi, are associated with each vertex i of this graph representing, respectively, the
total supply and the total demand associated with the transplant center represented
by the vertex. A super vertex s is added to the graph and is connected with each
vertex of the graph by the set of arcs (s, i), ∀ i ∈ V . Hence, the resulting graph is
such that the total number of vertices is equal to p+1, and the total number of arcs
depends on the solution returned by Model 1. Figure 14.3 illustrates a region and
the associated graph. Each polygon in the region on the left represents a county,
and polygons with the same shade constitutes the service area associated with an
allocated transplant center. The figure represents an example where five transplant
centers are located. The associated graph is depicted on the right: a vertex is associ-
ated with each transplant center and the solid arcs in the graphs connect transplant
centers whose service areas share a border. The super vertex s is connected with
each vertex of the graph (dotted arcs). The resulting graph has 5+ 1 vertices and
19 arcs.

Model 2 looks for a spanning tree Ts of G rooted in s such that the total number
of children of the root is equal to the total number of clusters that need to be defined.
In this way, the vertices of each subtree Ti rooted at vertex i (i.e., one of the chil-
dren of the supervertex s) represent the set of transplant centers that belong to the
same cluster. The union of the service areas associated with the transplant centers
which belong to the same cluster defines the OPO region boundary. Connection of
the subtree ensures contiguity of the service area associated with the cluster. Refer to
Figure 14.4 where an example of a possible solution returned by Model 2 is shown
with respect to the graph of Figure 14.3. A spanning tree (Fig. 14.3a) is shown to rep-
resent a clusterization of the five transplant centers of Figure 14.3 into two clusters.
The first cluster contains transplant centers 1, 2, and 3. The second cluster contains
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Figure 14.4 An illustration of Model 2 solution.
The spanning tree on the left represents a clusterization of the five transplant centers of Figure
14.3 into two clusters. The two resulting OPO regions are represented on the right.

transplant centers 4 and 5. The two OPO regions corresponding to these two clusters
are represented on Figure 14.3b.

Additional constraints in the model ensure that each subtree is such that the ratio
between the sum of the weights𝑤i associated with the vertices of the subtree and the
sum of the weights hi associated with the vertices of the subtree is greater than or equal
to a predefined threshold 𝛼. The objective function of the model is the minimization
of the maximum number of vertices in each of the resulting subtrees, ensuring in this
way the resulting clusters are also balanced in terms of the total number of transplant
centers that belong to them.

Let O= {1,2,…, l} be the index set of the clusters that need to be defined. Then,
the proposed formulation is a Miller–Tucker–Zemlin (MTZ) formulation [13] where
we considered the following set of variables:

• Variable yik is a binary variable that is equal to one if vertex i∈V belongs to
cluster k∈O and is equal to 0 otherwise.

• Variable xijk is a binary variable that is equal to one if arc (i,j)∈E, that connects
vertices i and j in the cluster k, is selected to be in the spanning tree and is equal
to 0 otherwise.

• Variable ui, defined on each vertex i∈V, assigns a label to each vertex of the
graph. In particular, such a labeling ensures any directed arc that belongs to the
optimum spanning tree that goes from a vertex with a lower label to a vertex
with a higher label.

In Model 2, variables yik are used to define the clusters, while variables ui and xijk
are used to define the final spanning tree. In particular, the set of variables ui defined
on each vertex i ∈ V assigns a label to each vertex of the graph. Such a labeling
ensures any directed arc that belongs to the optimum spanning tree that goes from a
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vertex with a lower label to a vertex with a higher label. Such a label assignment is
aimed at subtour elimination. The resulting model is as follows:

minmax
k∈O

(∑
i∈V

yik

)
(14.8)∑

(s,j)∈E

xsjk = 1, ∀k ∈ O (14.9)

∑
k∈O

∑
(i,j)∈E

xijk = 1, ∀ j ∈ V , j ≠ s (14.10)

∑
k∈O

xijk ≤ 1, ∀(i, j) ∈ E (14.11)

xijk ≤ yik, ∀(i, j) ∈ E, i ≠ s, ∀k ∈ O (14.12)

yik ≤
∑

(i,j)∈E

xijk, ∀i ∈ V , i ≠ s, ∀k ∈ O (14.13)

us = 0 (14.14)

1 ≤ ui ≤ p, ∀ i ∈ V , i ≠ s (14.15)

(p + 1)xijk + ui − uj + (p − 1)xjik ≤ p, ∀(i, j) ∈ E, i ≠ s, ∀k ∈ O (14.16)∑
k∈O

yik = 1, ∀ i ∈ V , i ≠ s (14.17)∑
i∈V , i≠s

𝑤iyik ≤ 𝛼
∑

i∈V , i≠s

hiyik, ∀k ∈ O (14.18)

∑
i∈V , i≠s

yik ≥ 1, ∀k ∈ O (14.19)

The objective function 14.8 minimizes the maximum cardinality of the resulting
clusters. Constraint 14.9 ensures that the total number of children of the root s is equal
to the total number of clusters that need to be defined. Constraint 14.10 ensures that
each vertex has exactly one entering arc. Each arc can be associated with at most
one cluster, which is ensured by constraint 14.11. Constraints 14.12 and 14.13 are
logical constraints linking the binary variables. The spanning tree is defined by the
classical MTZ constraints 14.14–14.16. In particular, these constraints ensure that
(i) the root vertex s has label equal to zero (constraint 14.14), (ii) each vertex i in
the graph is assigned a label 1 ≤ ui ≤ p (constraint 14.15), and (iii) each selected
arc (i, j) is such that ui < uj (constraint 14.16). Note that the MTZ set of constraint
14.16 are such that for a given selected arc (i, j) the labeling variables are such that
uj = ui + 1 (Desrochers and Laporte [14]), so that ui indicates the position of vertex
i in the spanning tree, that is, the number of arcs in the path between the root s and
vertex i (see Fig. 14.4). The interested reader could refer to Desrochers and Laporte
[14], Gouveia [15], and Carrabs et al. [16] to explore additional lifting constraints and
different alternative formulations to define spanning trees. Constraint 14.17 ensures
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that each vertex belongs exactly to one cluster. The structure of the cluster is defined
by constraints 14.18 and 14.19. In particular, each cluster cannot be empty (constraint
14.19) and total supply/demand ratio at each cluster must be greater than or equal to
a predefined threshold 𝛼 (constraint 14.18).

Our model extends a handful of studies [12, 17–20] that investigate optimal bound-
aries for organ allocation using a mathematical approach. Most previous models [12,
17–20] are based on a set covering mathematical formulation of which feasible sets
are represented by all possible regional configurations resulting from different clus-
ters of OPOs. This approach tends to be computationally very demanding. The MTZ
formulation we proposed for Model 2 solves a constrained version of the spanning
tree problem. This approach enabled us to solve the problem to optimality through
the available commercial solvers, Cplex and Gurobi, in a reasonable amount of time.
In this study, all mathematical formulations were coded in AMPL and solved using
CPLEX 11 and Gurobi 5.1 on a 2.4 GHz Intel Core2 Q6600 processor.

Results of the mathematical analysis were visualized using maps generated in GIS
software, ArcView (ArcMap, Ver. 10, ESRI Corp). In addition to the standard tools
available in ArcView, a third-party Python program, “Spider Tools” [21], was down-
loaded and used in ArcView to visualize the associations between donor hospitals
and transplant centers. In addition, several statistics were calculated and interpreted
to validate the models.

14.2.2 Discrete-Event Simulation: Evaluation of Optimal OPO Boundaries

A series of discrete-event simulations were run to evaluate the performance of
the boundaries developed by the mathematical model. The following performance
metrics were used to evaluate the new OPO boundaries.

• Mean and median supply/demand ratio per OPO.

• Mean and median waiting time per OPO.

• Mean distance between donor hospitals and transplant centers in each OPO.

• Variation in waiting time for transplant across OPOs.

• Variation in supply/demand ratio across OPOs.

The first two metrics measure patients’ access to liver transplantation. The third
metric evaluates the new OPO boundaries from the transplant outcome perspective.
Longer graft travel distance brings a concomitant increase in CIT, which would in
turn increase the likelihood of a graft failure [22, 23]. The last two metrics assess
geographic equity in access to liver transplantation.

The key events and the parameters used to frame the simulation were as follows:
(i) patient arrival rate, (ii) length of time registered as a transplant candidate, (iii) rate
of death and dropout while waiting for an organ, (iv) rate of candidates who receive a
transplant, and (v) liver arrival rate. Both livers and patients arrive in the system with
certain characteristics used for “match-run” and other purposes. Those characteristics
included blood type, MELD score and category, age (below or over 65), and ethnicity.
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The first task of baseline simulation was to generate recipient and donor data.
Every OPO in the United States covers a group of counties. Every county in the United
States has a unique “FIPS” code as its identification. Furthermore, each county has a
historical pattern for the number of recipients and donors it generates per year and its
arrival rate per day of the year, which also follows the historical proportions for their
characteristics. Using the historical numbers and proportions from 2003 to 2009 as
described earlier, the simulation was able to generate both recipient and donor data
for 2010, which was then validated using the actual data from 2010.

The next step in the simulation was to allocate the donors to the recipients using
the current OPO boundaries and using the new OPO boundaries in which the ratio
of supply to demand has been balanced between the OPOs. First, a waiting list of
candidates as of January 1, 2010 was generated from the actual data from the STAR
database. This data set was used to initialize the simulation of liver allocation. Livers
were then allocated using the current system of allocation in which status 1 patients
were given the top priority followed by patients with MELD> 15 and MELD< 15
(Fig. 14.1). The performance metrics were the waiting time for transplants for sta-
tus 1, MELD< 15 and MELD> 15 recipients of liver, and the geographical disparity
measured in terms of the mean squared error, which captures the deviation of the
supply/demand ratio of the OPOs from the mean supply/demand ratio. Since there
were about 12,000 candidates on the wait-list on January 1, 2010 and about 10,000
candidates joined the list in 2010, the supply/demand ratio for 5000 donors in 2010
is about 0.23. After accounting for death while waiting (12.8%), the supply/demand
ratio is about 0.25 (including both waiting list and new candidates in 2010). However,
the supply/demand ratio is about 0.57 considering only the new candidate arrivals of
2010 against the supply of donors in 2010 (after accounting for 12.8% death while
waiting). For the evaluation of the new boundaries, we simplified the current alloca-
tion system to the two-layered system. Thus, the match-run was first implemented
within the OPO where the liver was recovered and then national level match-run was
performed if no candidate was found within the OPO. The simulation was written
and ran in MATLAB.

14.3 RESULTS

We first validated the mathematical model by preparing maps and calculating basic
statistics. The following sections summarize the outputs of our mathematical analysis
in terms of the locations of new transplant centers (3.1) and new OPO boundaries
(3.2), respectively.

14.3.1 New Locations of Transplant Centers

Figure 14.5a visualizes the results of the Scenario 1 analysis. The black triangles rep-
resent the locations of 123 existing liver transplant centers while the circles represent
the existing kidney-only transplant centers selected to become kidney–liver transplant



�

� �

�

424 MATHEMATICAL OPTIMIZATION AND SIMULATION ANALYSES

Legend

1–10 additional centers

11–20 additional centers
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Unselected liver transplant centers

New liver transplant centers
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Figure 14.5 (a) Results of Model 1-Scenarios 1-i, 1-ii, and 1-iii: Additional liver transplant
centers. (b) Results of Model 1-Scenario 2: New and unselected liver transplant centers.

centers. The shadow of the circles indicates the value of the parameter p(=10 (light
gray), 20, or 30 (dark gray)) that activated transplant centers that correspond to.

Although Model 1 was run independently to select 10, 20, and 30 locations of
additional liver transplant centers, those kidney transplant centers that were selected
as the top 10 locations for new liver transplant centers were also part of the top 20
locations. Similarly, the top 20 locations for new liver transplant centers were also
part of the top 30 locations. In the figure, the light gray circles correspond to the top
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(a)

(b)

(c)

Figure 14.6 (a) Baseline: Donor hospital–transplant center associations. (b) Results of
Model 1-Scenario 1-i: Donor hospital–transplant center associations. (c) Results of Model
1-Scenario 2: Donor hospital–transplant center associations.
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10 locations for new liver transplant programs (Scenario 1-i), while the gray circles
correspond to the second 10 locations (Scenario 1-ii). Finally, the dark gray circles
indicate the locations of the third 10 kidney transplant centers selected to become
kidney–liver transplant centers (Scenario 1-iii).

The Scenario 2 analysis indicated that, with p= 123, replacing 38 existing liver
transplant centers with the locations of existing kidney-only transplant centers would
optimize the objective function specified in Model 1. Figure 14.5b shows the locations
of both unselected existing liver transplant centers (black circles) and kidney-only
transplant centers selected to be opened as new liver transplant centers (gray cir-
cles). As seen in the Scenario 2 analysis, the locations of the newly activated 38
liver transplant centers included the 30 best locations selected to become kidney–liver
transplant centers in Scenario 1-iii.

These results seem to indicate that adding transplant centers in the North Central
region (North Dakota, South Dakota, Kansas, and New Mexico) where transplant
centers are relatively sparse can most effectively achieve the objective specified in
Model 1. In addition, Figure 14.5b indicates that no transplant centers are added in
the West Coast region and, moreover, some of the existing liver transplant centers
were inactivated in this region as a result of the Scenario 2 analysis.

Figure 14.6a–c exhibit the associations between donor hospitals and liver trans-
plant centers selected in the Scenario 1-i (Fig. 14.6b) and Scenario 2 (Fig. 14.6c)
compared to the baseline associations (Fig. 14.6a). The comparisons reveal that graft
transfer distance is, on average, shortened by either locating additional liver trans-
plant centers (Scenarios 1-i, 1-ii, 1-iii) or geographically redistributing the locations
of existing 123 liver transplant centers (Scenario 2).

Table 14.1 summarizes the average graft transfer distance of 58 OPOs under each
scenario. The average distances for all analyzed cases were lower than that of the
baseline. In particular, it was found that redistributing the locations of existing liver
transplant centers (Scenario 2) was more effective in reducing the average distance
than adding 30 additional liver transplant centers, producing more than 40% reduction
in average distance compared to the baseline case. The standard deviation, which
measures the degree of geographic disparity in terms of graft transfer distance, was
also the smallest in Scenario 2.

14.3.2 New OPO Boundaries

Figure 14.7a–d shows the new OPO boundaries for Scenarios 1-i, I-ii, 1-iii, and 2
obtained from Model 2. The gray boundary lines on the maps represent the existing

TABLE 14.1 Average Graft Transfer Distance (km) of 58 OPOs

Scenario Mean SD Min Max

Baseline 46.39 40.95 0.02 198.81
Scenario 1-i 38.70 34.60 0.00 142.22
Scenario 1-ii 32.10 27.78 0.00 107.37
Scenario 1-iii 28.38 25.93 0.00 128.13
Scenario 2 26.69 20.64 0.70 82.74
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Figure 14.7 Results of Model 2: New OPO boundaries.
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TABLE 14.2 Average Supply/Demand Ratio of 58
OPOs

Scenario Mean SD Min

Baseline 0.64 0.22 0.30
Scenario 1-i 0.62 0.27 0.40
Scenario 1-ii 0.58 0.18 0.40
Scenario 1-iii 0.59 0.18 0.40
Scenario 2 0.63 0.21 0.40

OPO boundaries while the background represents new OPOs obtained as the results
of Model 2 in our mathematical model.

The Model 2 analysis revealed that some OPO boundaries were consistent for
all scenarios. For instance, the new OPOs covering the states of Maine and Texas
remained almost identical to the baseline and across Scenarios 1-i, 1-ii, 1-iii, and 3.
In contrast, the OPO boundaries changed significantly in size in the North Central
region where the distribution of transplant centers is relatively sparse. Yet, the size of
the OPOs in this region is consistently larger than that in other areas as both demand
and supply are lower in these relatively low populated areas.

Table 14.2 summarizes the supply/demand ratios of existing and new OPOs. The
minimum value of the ratio is 0.4 across the scenarios except the baseline, indicating
that the constraint, 𝛼 ≥ 0.4, is binding. Comparisons between scenarios indicate that
Scenario 2 achieves the highest supply/demand ratio (0.63), although that achieved
under Scenario 1-i comes in a close second. Standard deviations are, however, small-
est for the baseline and Scenario 1-ii and Scenario 1-iii. The minimum range of the
supply/demand ratios across all OPOs is accomplished by Scenario 1-ii.

14.3.3 Evaluation of New OPO Boundaries

The statistics presented earlier reflect neither realistic allocation of livers nor the
stochastic nature of liver–candidate matching. As seen in Figures 14.1 and 14.2, the
severity level of end-stage liver disease as well as candidate’s waiting time and blood
type play roles in determining priority level in the queue. Incorporating all factors
present in the complex liver allocation system is, however, challenging even if it is
possible. The simulation analysis allowed us to evaluate the performance of our new
OPO boundaries in a more realistic setting.

To perform the simulation of the donor–recipient matching process in the new
OPO boundaries, the following input data were gathered: (i) donor characteristics
per county (2003–2009); (ii) recipient characteristics per county (2003–2009); (iii)
actual waiting list of candidates as on January 1, 2010; (iv) actual donors in 2010
with their characteristics; (v) actual recipients in 2010 with their characteristics; (vi)
the donor hospital transplant center relationship (FIPS and ZIP code information)
for all the three OPO boundary scenarios; and (vii) the recipient (demand point) and
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transplant center accessibility relationship (FIPS and ZIP code information) for all
the three OPO boundary scenarios.

Verification of the simulation was done with 30 simulation runs (following stan-
dard conventions to ensure statistical significance) for each scenario and, in each run,
one full year of donors and candidates was generated along with their characteristics
such as FIPS code for location, blood type, MELD score, and so on. The simulation
was validated for each scenario using the 2010 actual data on donors and candidates.
Since each simulation of the scenarios was run for 1 year, for both verification and
validation, the waiting list at the beginning of the year was kept common by using
the actual waiting list as on January 1, 2010.

The matching process between the donor and candidate for each simulation fol-
lowed the layout in Figure 14.1. Death while waiting was excluded (12.8% die while
waiting) and patients (candidates) that were too sick for transplant were excluded as
well. As mentioned in Section 14.2.2, the liver allocation system under the new OPO
boundaries was simplified from the one depicted in Figure 14.1, consisting of two
hierarchical layers, that is, OPOs and national.

Figure 14.8 shows the distribution of the (i) number of counties per OPO, (ii) sup-
ply per OPO, (iii) demand per OPO, and (iv) supply/demand ratio per OPO for both
current (Baseline) and new OPO boundaries (Scenario 2), respectively, using 2010
actual donor and candidate data. By observing the current boundary (Fig. 14.8a) and
new boundary (Fig. 14.8b) in Figure 14.8, it can be concluded that there are several
OPOs in the current boundary in which the supply (donors) in certain OPOs were
disproportionately more than other OPOs when compared to the demand in these
OPOs. This is one of the primary causes for geographical disparity. Also as shown in
Figure 14.8, with the new boundaries, the number of instances of such disproportion-
ate supply in the OPOs with respect to the demand is much less due to the balancing
of the supply/demand ratio in these OPOs.

The statistics on the supply/demand ratio are summarized in Table 14.3. This table
shows that supply/demand ratio among OPOs is more uniform with the new OPO
boundaries in Scenario 2 compared to the other scenarios. The mean ratio for the new
OPO boundaries in Scenario 2 is the closest to 0.57 as described in Section 14.2.2.
It can be observed that the standard deviation of the ratios dropped with the new
boundaries, in particular for Scenario 2. The mean square error, which is the mean
of the squared deviation of errors (error of OPO i= supply/demand ratio of OPO
i – mean supply/demand ratio of all OPOs), was the lowest for Scenario 2 compared
to the current OPO boundaries (Baseline) and the boundaries under Scenarios 1-i, 1-ii,
and 1-iii, confirming that the new OPO boundaries obtained in Scenario 2 have a more
uniform supply/demand ratio. From the number of counties per OPO of Figure 14.8,
it can be observed that some of the OPOs have a large number of counties, which
indicates that these OPOs are large in size. In fact, all OPOs in Scenarios 1-i, 1-ii,
1-iii, and 2 had less than 200 counties while some OPOs in the baseline had more
than 200 counties.

Table 14.3 also presents the results of the waiting time for transplant under the
current and the new OPO boundaries. The waiting time is for those liver recipients
who were chosen by matching process from a pool of candidates that were already
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Figure 14.8 Current and new boundary system comparison.
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TABLE 14.3 Performance Metrics for 2010 Waiting and New Patient Data: (1)
Waiting Time for Transplants and (2) Supply/Demand Ratio

Performance Metric
Scenarios 1-i,
1-ii, and 1-iii

Scenario 2
Optimal Selection

Waiting Time for
Transplant (in Days) Baseline +10 +20 +30

Status 1
Median 1.00 1.00 1.00 1.00 1.00
Mean 1.59 1.55 1.63 1.22 1.23
Standard deviation 2.81 3.09 2.87 1.98 1.62
MELD< 15
Median 1202.00 1052.50 1269.00 1117.00 1110.50
Mean 1213.82 1218.45 1234.41 1180.59 1172.28
Standard deviation 870.50 885.47 818.60 821.19 857.06
MELD> 15
Median 279.00 267.00 262.00 255.00 284.00
Mean 498.48 496.06 495.60 495.19 509.42
Standard deviation 567.16 574.28 577.50 579.39 573.06

Geographical disparity 2010
Supply/demand ratio among 58 OPOs
Median 0.449 0.449 0.504 0.500 0.515
Mean 0.464 0.457 0.501 0.519 0.534
Standard deviation 0.231 0.221 0.231 0.226 0.201
Maximum 1.013 0.879 1.250 1.250 1.045
Minimum 0.000 0.000 0.000 0.049 0.154
Mean squared error 0.053 0.048 0.053 0.050 0.040

in the queue as on January 1, 2010 and those who arrived in 2010. The waiting
time is summarized for each of the severity category (Status 1, MELD< 15, and
MELD> 15). It is observed that the mean and the median waiting time for transplants
dropped for the new OPOs with most gain coming from Status 1 and MELD<15 cat-
egories. In terms of the number of transplants, it is observed that the MELD>15
categories has the highest number of transplants of about 85% of the 5000 donors.
In the new OPOs, the mean and median wait time increased for the MELD>15 can-
didates, although no significant difference was observed in the standard deviation.
One can conclude that (i) geographical disparity improved significantly with the new
OPO boundaries; and (ii) the overall waiting time for transplants improved for Status
1 and MELD< 15 candidates most significantly while for the MELD< 15 candidates,
it increased by about 2%.

Table 14.4 presents waiting time statistics for all three scenarios using only 2010
actual donors and actual candidates. Table 14.3 differs from Table 14.4 because the
former uses all data from waiting list as of January 1, 2010 and the new candidates that
arrive in 2010, whereas the latter uses only 2010 data. Scenario 2 performed better
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TABLE 14.4 Performance Metrics for 2010 Data: Waiting Time for Transplants

Performance Metric
Scenarios 1-i,
1-ii, and 1-iii

Scenario 2
Optimal Selection

Waiting Time for
Transplant (in Days) Baseline +10 +20 +30

Status 1
Median 1.00 1.00 1.00 1.00 1.00
Mean 1.59 1.55 1.63 1.22 1.23
Standard deviation 2.81 3.09 2.87 1.98 1.62
MELD< 15
Median 108.00 87.00 93.50 126.00 82.00
Mean 116.58 107.41 117.04 129.83 110.31
Standard deviation 88.39 90.66 86.97 95.22 94.80
MELD> 15
Median 63.00 55.00 63.00 59.00 60.00
Mean 87.46 83.30 86.27 84.28 87.05
Standard deviation 85.01 83.54 81.91 81.15 83.43

TABLE 14.5 Performance Metrics for 2010 Data: Graft Transfer Distance (km) and
the Number of Livers Transplanted outside OPO

Performance Metric
Scenarios 1-i,
1-ii, and 1-iii

Scenario 2
Optimal Selection

Graft Transfer Distance Baseline +10 +20 +30

Mean 44.56 37.27 32.17 28.01 26.39
Standard deviation 60.07 48.33 43.06 39.65 38.40
Median 13.94 13.23 12.25 10.26 11.06
Max 448.96 383.90 383.90 383.90 383.90
Min 0 0 0 0 0
No. of livers that were

transplanted in an OPO
outside the donor OPO
among a total of 5076
donated livers in 2010

627 706 784 775 260

than the current situation with the lowest waiting time for MELD< 15 candidates,
again confirming that Scenario 2 has a better distribution of transplant centers.

Table 14.5 presents the summary statistics for graft transfer distance measured
as the Euclidean distance between the donor hospital that recovered a liver and the
transplant center. The actual data on donor and candidate from 2010 were used to
obtain the statistics. It can be noticed that the mean values closely match those pre-
sented in Table 14.1, which was derived through the location-allocation algorithm.
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Scenario 2 achieved the lowest mean of graft transfer distance among all scenarios.
The matching process is dynamic and both donors and candidates have their time of
arrival in the system. Hence, it is possible that when liver arrived at a donor hospital in
a certain OPO, there was no matching candidate in the OPO. In such a case, the liver
is given to another eligible candidate outside the donor OPO. This is indicated by the
maximum distance that a liver had to travel in Table 14.5. These numbers are much
larger than the ideal situation presented in Table 14.1 with no real-time matching
process wherein the liver stays in the same OPO. Table 14.5 gives the actual number
of livers that would have to be transferred to an OPO outside the donor OPO under
each scenario.

14.4 CONCLUSIONS

A mathematical programming approach was used to identify optimal locations of
liver transplant centers and to establish liver allocation boundaries that improve trans-
plant outcome and reduce geographic inequity in access to liver transplants. Our
discrete-event simulation revealed that the new boundaries are successful in achiev-
ing better transplant outcomes and a more equal supply/demand ratio and equitable
waiting times across the new OPOs than with the existing boundaries.

As we compared the options between relocating and adding liver transplant cen-
ters, we discovered that relocations of the existing liver transplant centers is the most
efficient way to remedy geographic inequity in access to transplantation and also
to reduce graft transfer distance. It is expected that the administrative and political
hurdles would be significant for such relocations, even if they were feasible. While
the Center for Medicare & Medicaid Services (CMS) currently acts as the govern-
ing authority over transplant centers [24], it does not have the statutory power to
direct hospitals and kidney transplant centers to develop liver transplant programs.
However, the CMS is currently responsible for monitoring compliance with the set
of regulations governing transplant centers and also with the evaluation of transplant
centers for recertification (ibid). If a particular liver transplant center falls below a
given standard of care, our research may help the agency assess the consequence of
closing the transplant program.

Although our results also indicate that altering the existing OPO boundaries can
improve the current liver allocation system, their implementation would be equally
challenging. However, geographic inequalities in outcome of and access to trans-
plantation are one of the most discussed issues in the transplant community and in
transplant research. Furthermore, the allocation systems of various organ types have
experienced several modifications in the United States, even after the enactment of
the Final Rule in 1998 to achieve further equity among transplant candidates, includ-
ing the most recent change described in Figure 14.2. If a large body of research
reports sufficient merit and if policy makers are convinced, it is possible that boundary
restructuring may take place in the future.

From the methodological point of view, our study is one of a handful of stud-
ies that investigate optimal boundaries for organ allocation using a mathematical
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approach. This study extends previous studies [12, 17–20] in several ways. First, the
model introduced in this paper is computationally more manageable than those intro-
duced in [17–20]. The previous models are based on a set covering mathematical
formulation of which feasible sets are represented by all possible regional config-
urations that could result from different clusters of OPOs. This approach tends to
be computationally very demanding. Second, our mathematical model also analyzed
which “kidney-only” transplant centers in the current US system could be activated
to improve efficiency and geographic equity of the current liver allocation system.
Moreover, our study evaluated the mathematically optimized boundaries dynamically
using discrete-event simulation. The approach allowed us to evaluate the performance
of the new boundaries in a more realistic setting using additional criteria that are not
modeled in the mixed-integer linear programming. For instance, we found that the
new OPO boundaries, in general, improve the access to transplants for all categories
of disease severity, even though our mathematical model does not differentiate trans-
plant candidates by disease severity.

The usefulness of discrete-event simulation in evaluating organ allocation
policies/scenarios is already well established [25–33]. In fact, discrete-event
simulation-based software, SAM (Simulated Allocation Model), was developed
by the Scientific Registry of Transplant Recipients (SRTR) and has been used to
evaluate the impacts of various organ allocation policy alternatives. However, SAM
and other existing discrete-event simulation models to analyze organ allocation
scenarios are not designed to deal with geography explicitly, thereby limiting their
ability to simulate the impacts of boundary changes in detail. This study developed
a simulation model that simulates various allocation boundary scenarios in a more
direct manner.

Several directions for future research are apparent. Given the current environment
that limits the redistribution of liver transplant centers and boundary changes, inves-
tigation and evaluation of suboptimal locations of liver transplant centers and OPO
boundaries that incur minimum changes to the existing system would be beneficial.
Such attempts may be pursued by adding relevant constraints to our mathematical
model. Second, the parameters such as dmax, fmax, 𝛼, and p were set rather arbitrarily
in this study. Sensitivities of the mathematical model to the values of these parameters
need to be tested. Third, this study simplified the current allocation system by looking
at only the two allocation layers, that is, OPO and national levels. One of our future
studies could explore the possibility to adapt our approach to solve the problem of
clustering OPO into UNOS regions to take into account the trade-off between intrare-
gional efficiency and equity in the allocation process as seen in Demirci et al. [17] and
Kong et al. [18]. Another natural extension would be to incorporate MELD categories
in our optimization modeling as Gentry et al. explored in her model [20]. Another
exploratory study may be to perform our mathematical analysis for each MELD cat-
egory of patients to see if the optimal boundaries vary significantly for each MELD
category of patients. Lastly, given that the positive outcomes for the MELD> 15 cat-
egory of patients are relatively small compared to those seen among Status 1 and
MELD< 15 patients, we would like to extend our modeling approach to take into
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account a measure of the posttransplant outcome resulting from the allocation pro-
cess [34].

Despite the list of future tasks calling for further investigation, we believe that our
results clearly indicate that the current allocation system can be improved through
changes to the existing OPO boundaries and the locations of the existing liver trans-
plant centers. Liver transplantation faces the chronic scarcity of organs and lack of
alternative treatments, such as the dialysis available to the end-stage renal disease
patients. Giving serious consideration to any possible changes that could achieve fur-
ther equity among transplant candidates and better transplant outcomes would be
prudent.
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PREDICTIVE ANALYTICS IN 30-DAY
HOSPITAL READMISSIONS FOR
HEART FAILURE PATIENTS

Si-Chi Chin, Rui Liu, and Senjuti B. Roy
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Hospitalizations account for more than 30% of the 2 trillion annual cost of health care
in the United States. Around 20% of all hospital admissions occur within 30 days of a
previous discharge, and 3 out of 20 readmissions are considered preventable. Identi-
fying patients at the higher risk of readmission can guide quality patient care and effi-
cient resource utilization. The task of readmission prediction requires understanding
the interplay between multitude of complex factors that cause readmission and appro-
priate adaptation of advanced analytical models to effectively predict readmissions;
added to the complexity is the existence of large volume of noisy data with significant
missing values. In this work, we present the application of data mining techniques in
predicting 30-day hospital readmission risk for heart failure patients. We describe
our proposed solutions end-to-end that involve understanding and exploring complex
real-world data, applying and appropriately adapting the state-of-the-art predictive
modeling techniques. Moreover, we design principled solutions by learning the struc-
ture and parameters of a hierarchical Bayesian network from the available patient data
and designing rules to recommend personalized interventions. Finally, we demon-
strate the iterative process of using predictive analytics in predicting and managing
risk of readmission.

Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, First Edition.
Edited by Hui Yang and Eva K. Lee.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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15.1 INTRODUCTION

Heart failure (HF) afflicts about 5.1 million people in the United States, with a median
risk-standardized readmission rate of 24.5% [1]. Early readmission is a profound
indicator of the quality of care provided by the hospital. The Center for Medicare
& Medicaid Services (CMS) recently began reducing payments to hospitals with
excess readmissions, effective for discharges beginning on October 1 2012 [2]. The
estimated cost of unplanned readmissions was 17 billion annually [3], and more than
27% of them were considered avoidable [4]. Readmission is common and costly.
Many hospitals and health care systems are focusing on improving performance and
patient outcomes in cardiovascular services. Particular emphases are on how the man-
agement of HF can prevent readmissions, decrease the cost per case, and improve the
quality and satisfaction for this particular patient population.

Readmission can result from a variety of reasons, including early discharge of
patients, improper discharge planning, and poor care transitions. Prior studies have
shown that several interventions can effectively reduce the rate of readmission [5-7].
Many interventions are costly and therefore resources are limited. To deliver efficient
care, the highest intensity interventions should be targeted to patients who are most
likely to benefit. Therefore, identifying patients who have greater risk of readmis-
sion can guide implementation of appropriate interventions to prevent these readmis-
sions. Advanced predictive analytics will make progress in the field by bringing two
objectives – readmission reduction and intervention recommendations – together into
one integrated model.

Suggesting appropriate interventions is closely associated with a patient’s cur-
rent phase. For example, the post-discharge interventions may only be limited to
appropriate follow-ups or patient education, while physicians could suggest different
procedures or surgery, if the intervention is being administered during her hospital
stay. Patient’s clinical conditions can progress rapidly. Care providers often need to
constantly reexamine patient’s clinical conditions and adjust their treatment and inter-
vention strategies. Predictive analytics can aid to this iterative process, providing care
providers timely feedback on patient’s clinical risk to necessitate appropriate inter-
ventions. The development of predictive modeling should also allow the flexibility to
accommodate varying availability of clinical information at different stages of care.

This chapter presents solutions to two tasks: (i) predicting the 30-day readmis-
sion risk score (or percentage) of heart failure patients at two different stages of
care – pre-discharge and post-discharge; (ii) incorporating predictive analytics into
clinical care cycle to recommend effective personalized intervention strategies.

Existing research has studied different clinical risk prediction problems in silos.
Our work is one of the first efforts to study the risk prediction and management
problem in conjunction, providing solutions to facilitate real-time risk prediction and
effective intervention recommendations at any point of care.

The rest of the chapter is organized as follows. Section 15.2 presents the
process of predicting risk of 30-day hospital readmissions. Our experiment results
demonstrate the effectiveness of predicting risk before discharge and shortly after
discharge. Section 15.3 describes the integration of risk prediction and intervention
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recommendations. We construct Bayesian networks to estimate risk of readmission
and generate rules of recommendations. Section 15.4 surveys related prior studies
of the problem. Section 15.5 summarizes our contributions and outlines future
directions.

15.2 ANALYTICS IN PREDICTION HOSPITAL READMISSION RISK

15.2.1 The Overall Prediction Pipeline

Figure 15.1 illustrates the overall pipeline for predicting risk of readmission. The
framework involves five major stages: (i) problem definition; (ii) data exploration;
(iii) data preprocessing; (iv) predictive modeling; and (v) evaluation. At the first two
stages, it requires significant amount of effort to build an interdisciplinary research
team to understand the problem thoroughly and explore the data marts as described
in our prior work [8]. In this section, we describe the details of data preprocessing
(Section 15.2.2), the selected predictive models (Section 15.2.3), and the validation
results of our experiments (Section 15.2.4).

15.2.2 Data Preprocessing

Feature Selection In addition to the inputs provided by domain experts (e.g., clini-
cians), we used Pearson’s Chi-square test [9] to perform feature selection. Chi-square
is the sum of the squared difference between observed (O) and the expected (E)
data divided by the expected data in all possible categories (i.e., the class label Y ∶

Data exploration

Problem definition

Data preprocessing

Predictive modeling

Evaluation

Understanding readmissions

Clinical inputs

Literature review

Data collection
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Figure 15.1 Predictive modeling system architecture.
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Readmitted within 30 Days (= 1) vs. Not Readmitted within 30 Days (= 0)). The
value of the test statistic is computed as

𝜒2 =
n∑

i=1

(Oi − Ei)2

Ei

where 𝜒2 is Pearson’s cumulative test statistic; Oi is an observed frequency; Ei is
an expected frequency; n is the number of cells in the table. We evaluated all our
attributes individually with respect to the classes. Numeric features were discretized
into intervals. The p-value and the 𝜒2 revealed whether a feature was informative for
predictive modeling.

Missing Value Imputation We used a simple but effective clustering-based tech-
nique for imputing missing values. The data set (including instances with missing
values) is first divided into a set of clusters using the K-modes clustering method.
Then each instance with missing values is assigned to a cluster that is most similar
to it. Finally, missing values of an instance are patched up with the plausible values
generated from its respective cluster.

Reducing Class Imbalance Once the data are integrated, it is observed that
the labeled data set is highly skewed, that is, the number of instances with No
Readmission label significantly outnumbers the number of instances with class
label Readmission. To circumvent that problem, we used both oversampling and
undersampling. Oversampling works by re-sampling the rare class records [9], while
undersampling decreases the number of records belonging to the majority class by
randomly eliminating tuples.

15.2.3 Predictive Models

We explore the complex interplay among the magnitude of factors and how they con-
tribute to the hospital readmission for HF patients next and design supervised learning
algorithms from the available patient data.

15.2.3.1 Naive Bayesian Classifier Bayesian classifier is a statistical classifier that
predicts the class membership probability, in other words, the probability of a given
tuple belonging to a particular class. This classifier assumes that the effect of one
attribute value on a given class is independent of the values of the other attributes.
This assumption is called as class-conditional independence, which greatly simplifies
the learning process. The basic principle of this classifier is the Bayes theorem [9].
Naive Bayesian classification is called “naive” because it assumes class-conditional
independence. That is, the effect of an attribute value on a given class is independent
of the values of the other attributes. This assumption is made to reduce computational
costs, and hence is considered “naive.”

Let the number of classes be m, C1,C2,… ,Cm and X = (x1, x2,… , xn) be the
n dimensional attribute vector for which the prediction has to be done. The naive
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Bayesian classifier predicts that X belongs to the class having the highest posterior
probability. In other words, the classifier predicts that the tuple X belongs to the class
Ci only if the below condition is satisfied.

P(Ci|X) > P(Cj|X) for 1 <= j <= m, j ≠ i

The class Ci for which P(Ci|X) is maximized is called the maximum posteriori
hypothesis. From Bayes theorem:

P(Ci|X) =
P(X|Ci)P(Ci)

P(X)
(15.1)

Since P(X) is identical for all the classes, so it can be ignored, and so only
P((X)|Ci)P(Ci) needs to be maximized. For high-dimensional data, the estimation
of P((X)|Ci) from the given set of training tuples is computationally expensive. To
make the computation easy, the naive assumption of class-conditional independence
is made, which presumes that the attribute values are conditionally independent of
one another. Hence,

P(X|Ci) =
n∏

k=1

P(xk|Ci) (15.2)

With this assumption, naive Bayes classifier simplifies the learning process. In
various domains, the performance of naive Bayes classifier is comparable to other
sophisticated classifiers such as decision tree and neural network classifiers.

15.2.3.2 Support Vector Machine SVM searches for a hyperplane that has the
maximum distance to the closest points in the training set termed as support vectors.
This plane is also called maximum marginal hyperplane (MMH), which gives the
maximum separation between the classes. Let the data set D consists of a set of points
Xi where i = 1, 2,… ,N, and each point is associated with two class identified by
label yi ∈ {+1,−1}. If we consider that the data belonging to two classes are linearly
separable, then the separating hyperplane (MMH) can be written as

W ⋅ X + b = 0 (15.3)

where W is the weight vector, W = 𝑤1, 𝑤2,… , 𝑤n, n is the number of attributes, and
b is a scalar. The MMH can be rewritten as the decision boundary

d(XT) =
l∑

i=1

yi𝛼iXiX
T + b0 (15.4)

where yi is the class label of the support vector Xi, XT is the test tuple, 𝛼i and b0 are
numeric parameters determined by solving the quadratic optimization problem, and
l is the number of support vectors. If the data are not linearly separable, then each
input point X is mapped to another point Z = 𝜙(X) of a higher dimensional space.
The decision hyperplane in the new space is represented as

d(Z) = W.Z + b (15.5)
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15.2.3.3 Adaboost AdaBoost is an algorithm for constructing a “strong” classifier
as a linear combination of multiple simple “weak” classifiers. In particular, it makes
use of multiple (T) simple-weighted classifiers, each forced to learn a different aspect
of the data, to generate a final, comprehensive classifier, which outperforms in terms
of mis-classification error rate of any individual classifier with high probability. In
particular, if ht(x), s.t.t ∈ T is the tth weak classifier, and H(x) is the final strong clas-
sifier, then

f (X) = ΣT
t=1𝛼tht(X)

H(X) = sign( f (X))

In our settings, we used discrete AdaBoost with 2 classes ({−1, 1}) for a given
data set D consisting of a set of points Xi where i = 1, 2,… ,N. Imagine the class
label for each Xi is Yi (is either 1 or −1). Initially, each training sample is initialized
with uniform weights, that is, 𝑤(i) = 1∕N.

The algorithm runs in T iteration, where in each iteration, it updates the weight
function of each training sample and the algorithm stops, when a particular value of
the error function is satisfied (e.g., stop when the error is equal or more than 50%,
that is, 𝜀t ≥ 0.5). At each iteration t, a weak learner is selected and assigned a coef-
ficient 𝛼t such that the sum training error Et of the resulting t-stage boost classifier
is minimized. At each iteration t of the training process, a weight is assigned to each
sample Xi in the training set equal to the current error E(Ft−1(Xi)). Formally, for the
tth classifier, we find the weak learner classifier ht =  → {−1, 1} that minimizes the
error 𝜀t with respect to the distribution. Therefore,

ht = argmin{hj∈H}𝜀j

𝜀j = Σi=1..N𝑤t(i)[Yi ≠ hjXi]

𝛼t is computed using the logarithmic function 𝛼t = 1∕2ln 1−𝜀t

1+𝜀t
. Since the error func-

tion is exponential, the weight of the ith point is updated as follows:

𝑤t+1(i) = 𝑤t(i)e−𝛼tYiht(Xi)

This way, the output of T weak learners (classifiers) is combined to represent the
final output of the boosted classifier.

15.2.4 Experiment and Evaluation

15.2.4.1 Data: Clinical Patient Data This study included patients who have pri-
mary diagnosis of heart failure at MultiCare Health Systems (MHS)1. Patients who
died while in the hospital (n = 18) and patients who were discharged less than 30 days
(n = 52) were excluded from this analysis. The final cohort included 1919 encounters
with 1020 unique patients admitted between May 22 2010 and March 07 2014.

1http://www.multicare.org/.?



�

� �

�

ANALYTICS IN PREDICTION HOSPITAL READMISSION RISK 445

TABLE 15.1 Attribute Summary of Heart Failure Cohort

Set Category Description

1 Demographics 4 Attributes
2 Admission Abstract 3 Attributes
3 Medical Test 8 Attributes
4 Vital Sign 7 Attributes
5 Diagnosis 17 Attributes
6 Comorbidity 33 Attributes
7 Discharge Abstract 8 Attributes

Patient clinical data were abstracted from MHS hospital records as the attributes
for predictive modeling. These attributes were organized into seven sets: (i) Demo-
graphics; (ii) Admission Abstract; (iii) Medical Test; (iv) Vital Sign; (v) Diagnosis;
(vi) Comorbidity; (vii) Discharge Abstract, as shown in Table 15.1. All the attributes
were either suggested by clinicians or selected based on Chi-square test.

Assessing the effect of different types of attributes is critical for clinical under-
standing of the problem. We therefore designed the experiments to observe the
incremental effect of each attribute set based on their characteristics. We conducted
seven experiments with different sets of attributes. For each experiment, we add
one more set of attributes for the modeling. For example, the first experiment used
only attributes from Set 1 and the second experiment used attributes from Sets 1
and 2. Attributes in Set 1 to Set 5 are used in pre-discharge models. However,
because Comorbidity and Discharge Abstract are only available after a patient was
discharged, we used attributes in Set 6 and Set 7 only in post-discharge models. For
each experiment setting, we trained three predictive models – Naive Bayes, SVM,
and AdaBoost, as described in Section 15.2.3.

Analyses and predictive modeling were performed using R2 statistical tool. We
performed 10 times 10-fold cross-validation to validate the results. Our evaluation
measurements are Area Under ROC curve (AUC), Accuracy (ACC), Precision (PRE),
and Recall (RCL).

15.2.4.2 Results and Discussions Experiment results are summarized in
Figure 15.2 and Table 15.2. Prediction results have low variance consistently across
different models and across the evaluation metrics. The only exception is the preci-
sion for Naive Bayes when the attribute number is limited as shown in Figure 15.2c.
Among the three selected models, AdaBoost outperforms SVM and Naive Bayes
for most experiment settings. AdaBoost is also shown to be more robust as we
introduced more attribute sets, and the data become more noisy. However, SVM has
the highest AUC when number of attributes is limited to only Demographics and
Admission Abstract. It is observed that the prediction quality decreases for SVM
and Naive Bayes when Medical Test and Vital Sign are included. It indicates that

2http://www.r-project.org/.
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Figure 15.2 Effects of attribute sets to prediction results. (a) AUC, (b) accuracy, (c) precision,
and (d) recall.

TABLE 15.2 Prediction Results for Pre-discharge and Post-discharge Modeling

Pre-discharge Post-discharge

Metric Model 1 1-2 1-3 1-4 1-5 1-6 1-7

AUC Ada 0.5045 0.6333 0.6399a 0.6384a 0.6405a 0.6501a 0.6535a

SVM 0.5172 0.6344 0.6087 0.5972 0.6085 0.6084 0.6090
NB 0.5145 0.5318 0.5282 0.5246 0.5588 0.5717 0.5935

ACC Ada 0.4586 0.6064 0.5932a 0.5955a 0.6020a 0.6132a 0.6151a

SVM 0.4525 0.6045 0.5677 0.5595 0.5712 0.5749 0.5792
NB 0.5597 0.5586 0.5607 0.5605 0.5710 0.5738 0.5942

PRC Ada 0.4361 0.5419 0.5300 0.5335a 0.5404 0.5533 0.5576
SVM 0.4415 0.5413 0.5072 0.4998 0.5111 0.5153 0.5201
NB 0.5106 0.4438 0.5163 0.5099 0.5565a 0.5479 0.5796

RCL Ada 0.7832 0.6863 0.6749a 0.6488a 0.6436a 0.6308a 0.6099a

SVM 0.9179a 0.6676 0.6516 0.6243 0.6069 0.5877 0.5737
NB 0.0072 0.0128 0.0333 0.0549 0.1273 0.1844 0.2857

aThe model is significantly higher than the other two models.
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SVM and Naive Bayes are more sensitive to the noisy introduced by the new added
attribute sets.

15.3 ANALYTICS IN RECOMMENDING INTERVENTION
STRATEGIES

In this work, we propose a framework by formalizing the intervention recommen-
dation as a structure learning problem [10, 11], where the objective is to learn the
structure of a hierarchical Bayesian network involving a multitude of factors and
how they contribute to 30-day readmission risk. Each factor (i.e., socio-demographic,
diagnoses, procedures, readmission) in our settings contributes to a node in the net-
work, and the causal relationship between two nodes is represented as a weighted
(weight represents probability) directed edge, giving rise to a Directed Acyclic Graph
(DAG). A sample structure may look like the one presented in Figure 15.4 for the
simple case described in Example 15.1 in Section 15.3.2.1.

15.3.1 The Overall Intervention Pipeline

Figure 15.3 illustrates the overall pipeline for intervention recommendations.
The framework involves four major stages: (i) Bayesian network construction
(Section 15.3.2); (ii) Intervention rules generation (Section 15.3.3); (iii) Intervention
rules recommendations (Section 15.3.4); (iv) Evaluations (Section 15.3.5.2).

The underpinning of our proposed framework relies on the following three steps:
(i) Since we deal with high-dimensional data involving several hundreds of factors,
we first attempt to learn the structure of the network automatically from the data
itself. For structure learning, we propose several solutions: we use Constraint-Based
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Bayesian Network Learning Algorithm [12, 13] that uses conditional independence
test to detect the Markov Blanket [14] among the factors which in turn induces the
network structure. We also apply Score-Based Learning Algorithm [14] that uses
Hill-climbing-based greedy search on the space of the directed graphs for the prob-
lem. Finally, we learn the structure using a hybrid algorithm [11], which combines
both constraint-based and score-based approaches. (ii) Once the structure is defined,
we use parameter learning [15, 16] techniques to compute the probability of the
directed edges. (iii) Finally, we propose novel algorithm to generate a set of rules
as personalized intervention recommendations.

Our proposed approach is generic to include/exclude additional layers or factors,
and the design of the network would satisfy any constraint that the domain expert
specifies. Finally, the novelty of the solution lies in nontrivially adapting the Bayesian
network to a recommendation task, which is traditionally used for inference learning.
We describe our running example next, which will be used throughout the paper.

Example 15.1 Without loss of generality, let us consider a simple setting of the
problem, which consists of two socio-demographic factors such as age, gender; three
diagnoses (Congestive Heart Failure (CHF) DX4280, Acute Respiratory Failure
(ARF) DX51881, Pneumonia (PN) DX486); and three procedures (Continuous
Invasive Mechanical Ventilation < 96 h PR9671, Venous Cath NEC PR3893, Packed
Cell Transfusion PR9904).3 These eight factors are predictors and we wish to learn
how they relate to the 30-day heart failure readmission problem. The diagnoses,
procedures, and the gender are binary variables (factors), whereas age is a continuous
variable that has been discretized appropriately. Finally, the dependent variable
Readmission is a binary variable, where “Readmission=0” stands for no-30-day
readmission, and “Readmission=1” otherwise. For the simplicity of exposition,
we consider that only the procedures are actionable. Therefore, our task is to
recommend procedures to minimize readmission risk. Furthermore, assume that the
domain experts have specified a set of constraints, as follows: (i) there exists causal
relationship between the three diagnoses and the two socio-demographic factors;
but the two demographic factors are themselves independent; (ii) the diagnoses may
themselves be causally related; (iii) there exists causal relationship between the three
diagnoses and the three procedures; (iv) there may be causal relationship between the
procedures themselves; (v) procedures have causal relationship with readmission;
(vi) no edge can exist between two nodes that are not in consecutive layers.

15.3.2 Bayesian Network Construction

15.3.2.1 Structure Learning Bayesian Network: A Bayesian network is a
graphical model that encodes probabilistic relationships among variables of interest.
When used in conjunction with statistical techniques, the graphical model has

3Each diagnoses procedure has a unique code written after its name, and these procedures are applicable
during hospitalization.
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several advantages to offer. (1) As the model encodes dependencies among all
variables, it readily handles situations where some data entries are missing. (2) A
Bayesian network can be used to learn causal relationships, and hence can be used
to gain understanding about a problem domain and to predict the consequences of
intervention. (3) Because the model has both causal and probabilistic connotations,
it is an ideal representation for combining prior knowledge and data. (4) Bayesian
statistical methods in conjunction with Bayesian networks offer an efficient and
principled approach for avoiding the overfitting. In our work, we leverage this
model to understand the causal relationship among different factors (diagnosis,
procedures, socio-demographic factors) and how that contribute to readmission risk.
Furthermore, we combine the data-based evidence with the prior knowledge to learn
the model.

Relevant Notations: Relevant notations and their interpretations are represented
in Table 15.3. Bayesian network [10, 11] is a graphical representation of a probability
distribution over a set of variables or factors  = {X1,X2,… ,Xn}. It consists of two
parts:

• The directed network structure as a DAG. Given Example 15.1, a possible struc-
ture may look akin to the one described in Figure 15.4.

• A set of probability distribution (i.e., pdf), one on each node or variable, con-
ditional on each value combination of its parents. Altogether with the graph
structure, they are sufficient to represent the joint probability distribution of
the domain. Any probability distribution could be used to compute the pdf on
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Figure 15.4 System Architecture.
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TABLE 15.3 Notations and Interpretations

Notation Interpretation

 The data set
N Number of points in the data set, i.e., ——
X,Y ,Z Three variables
x, y, z Values of X, Y, Z, respectively
PX

a A set of nodes that are parent of X
 The entire set of predictor variables, or attributes, or factors

each node. More concretely, in our case, the variables are discrete (numeric
ones are appropriately discretized) and their respective pdf’s are represented
using multinomial distributions.

Pr(X1,X2,… ,Xn) =
i=n∏
i=1

Pr(Xi|PXi
a ) (15.6)

We now describe our solutions – first for structure learning, then model fitting, and
finally recommendation generation.

Our structure learning solution relies upon the Causal Sufficiency Assumption and
the Markov Assumption [17]. The former assumption represents that there does not
exist any latent variables (or nodes) that are parent of one or more observed variables,
whereas the latter represents that any node in the network is independent of all its
non-descendent nodes.

We use Constraint-Based, Score-Based, and Hybrid methods to learn the structure
of the network. We describe them briefly one by one next.

Constraint-Based Methods. These methods make use of the conditional indepen-
dence tests using statistical tests on the data set. We use a computationally efficient
algorithm, Grow and Shrink [18], which relies on detecting the Markov blanket [14]
of the variables to induce the network structure. Markov blanket for a node X in a
Bayesian network is the set of nodes composed of X’s parents, its children, and its
children’s other parents. It operates by identifying the local neighborhood of each
variable in the Bayesian network as a preprocessing step in order to facilitate the
recovery of the exact structure around each variable in subsequent steps.

Score-Based Methods. Score-based method creates several Bayesian network and
assigns a score to each candidate of them, typically one that measures how well that
Bayesian network describes the data set . Assuming a structure , its score is

Score(,) = Pr(|) = Pr(|) × Pr()
Pr()

A score-based algorithm attempts to maximize this posterior probability.
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As score-based algorithms attempt to optimize this score, returning the structure
 that maximizes it is prohibitively expensive. Since the search space of all possible
structures is exponential to the number of variables n, this poses tremendous compu-
tational challenges. In our solution, we apply Hill-climbing-based greedy heuristics
and use Bayesian information criterion (BIC) [19] to approximate Pr(|).

Hybrid Approach. We finally apply a hybrid approach to learn the network
structure, namely the max–min Hill-climbing algorithm [11], which combines ideas
from both the score-based approach and constraint-based approach. It first recon-
structs the skeleton of a Bayesian network and then performs a Bayesian-scoring
greedy Hill-climbing search to orient the edges. The latter phase does not provide
any theoretical guarantees. However, this algorithm appears effective in many
high-dimensional real-world problems (such as ours) and tackles the limitations
posed by the other algorithms.

15.3.2.2 Parameter Learning After the structure of the network is constructed,
the next step is to learn the parameters of the network, given the structure. Using
Example 15.1, this step is analogous to creating pdf’s to each node in the constructed
network to create the conditional probability table at each node. As an example, using
the sample network of Figure 15.4, this step will compute all the following probabil-
ities at node PR 9671.

Pr(PR 9671= i— DX 4280 =0 & DX 51881=0)

Pr(PR 9671= i— DX 4280 =0 & DX 51881=1)

Pr(PR 9671= i— DX 4280 =1 & DX 51881=0)

Pr(PR 9671= i— DX 4280 =1 & DX 51881=1),∀i=0,1

Typically, for parameter learning, a prior distribution is assumed over the param-
eters of the local pdf’s before the data are used (e.g., this can be uniform), or it could
be estimated using the given data itself. The distribution of a node X conditional upon
its parents may have any form. The conjugacy of this prior distribution is desirable;
a distribution family is called conjugate prior to a data distribution when the poste-
rior over the parameters belongs to the same family as the prior, albeit with different
parameters.

In our implementation, we use Bayesian parameter estimation [20] to learn the
parameter 𝜃. In this method, the prior distribution over 𝜃 (i.e., Pr(𝜃)) is known. Now
the posterior distribution of 𝜃 is calculated according to Bayes rule:

P(𝜃|D) = Pr(D|𝜃)Pr(𝜃)
∫ Pr(D|𝜃)Pr(𝜃)d𝜃

Our objective is to calculate the maximum a posteriori (MAP in short), that is,

�̂�MAP = argmax𝜃P(𝜃|D) = argmax𝜃 Pr(D|𝜃)Pr(𝜃)
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The prior Pr(𝜃) is calculated using a Beta distribution for binary variables, which
gives rise to a posterior that is also a Beta distribution.

Pr(𝜃) = Beta(𝜃|𝛼1, 𝛼0) = c𝜃𝛼1−1(1 − 𝜃)𝛼0−1

However, for multivalued (i.e., nonbinary) discrete variables, prior Pr(𝜃) is a
Dirichlet distribution with Dir(𝜃|𝛼) with hyperparameters 𝛼i’s. The posterior would
also be a Dirichlet distribution and will have the following form.

P(𝜃|D) = c Pr(D|𝜃)Pr(𝜃)

15.3.3 Recommendation Rule Generation

The final step of our proposed framework is to make use of the constructed Bayesian
network to generate a set of recommendation rules. While the complex relationship
between different factors associated with 30-day heart failure readmission lend them-
selves to be modeled as a Bayesian network, there does not exist any easy extension
to use the learned network to generate recommendation rule. Note that the network
constructed in our case may not be complete, that is, the constructed network may
not consist of all possible edges between the nodes in two successive layers. Con-
sider Example 15.1 again, and note that the variable “Gender” is not connected to all
diagnosis nodes. At the same time, it is unrealistic to force the network to have all
the edges, given its high dimensionality, because the search space increases exponen-
tially by the addition of edges between the nodes. At the same time, it may not be
possible to track back one entire inference path of the network because the network
is not complete between two successive levels.

We propose an innovative solution to that end, where the idea is to make use of
the inference learning of the network to perform recommendation. Using the con-
structed network after parameter learning, for each patient record d, we could com-
pute the probability Pr(Readmit = 1|d) and Pr(Readmit = 0|d). We describe next
how to make use of these inference probabilities to generate a set of recommendation
rules.

Without loss of generality, let us assume that a total of | ′| of || factors are
nonactionable, and the remaining set {} − { ′} of factors could be recommended
as interventions.

For each patient record d whose actual class label is 0 (i.e., Readmission = 0),
we use only | ′| attributes of record d (denoted as d( ′)) and feed it through the
constructed network to obtain the inference probability p1. Then, we use the entire
patient record (with both actionable and nonactionable attributes, modulo the class
label) and use that to make a second inference probability p2.

p1 = Pr(Readmission = 0|d( ′), p2 = Pr(Readmission = 0|d)
If p2 > p1 (which indicates that our constructed model infers that the set of pro-

cedures associated with the patient input is effective in further bringing down her
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readmission risk), we store the set of procedures {} − { ′} associated with d as the
generated recommendation, given the values for the nonprocedure attributes. Using
Example 15.1, a recommendation rule in our case may look as follows:

Recommendation Rule: 1

if Gender = Female & Age = 64 & diagnosis= PN & diagnosis= ARF & Readmit=0,
recommended interventions (i.e., procedures) P1 (PR3893) = 1 & P2 (PR9904) = 0
& P3 (PR9671)= 1.

Similarly, for each patient record d′ whose actual class label is 1 (i.e.,
Readmission = 1), we check if the following condition is satisfied.

p2 = Pr(Readmission = 1|d) < p1 = Pr(Readmission = 1|d( ′)

Recommendation Rule: 2

if Gender = Male & Age = 87 & diagnosis= CHF & diagnosis= ARF & Readmit=1,
recommended interventions (i.e., procedures) P1 (PR3893) = 1 & P2 (PR9904) = 0
& P3 (PR9671)= 1.

In that case, Rule 2 will be also stored. Following this process, a set of recommen-
dation rules are generated. As we shall see in Section 15.3.5, these recommendation
rules are used during the validation phase to evaluate the effectiveness of our proposed
framework.

15.3.4 Intervention Recommendation

Given an input patient record (only with nonprocedure attribute) d, we attempt to find
out the rule r, which gives rise to the highest similarity with the input. In particular,
the similarity between the patient record and the nonactionable part of the recommen-
dation rule is treated as binary attributes (e.g., the value of a patient’s age is compared
with the age value that is present in a recommendation rule and is considered same,
if both of these values match, no match otherwise) and is measured using Jaccard
index, as follows:

Jaccard(d, r) = {d ∩ r}
{d ∪ r}

where r denotes the vector comprising of attributes in Groups 1, 2, and 3 described in
Table 15.4 for the trained rules and d denotes the input vector (comprising the same
set of attributes as r) observed in the test data. This would give rise to a unique set of
recommendation rules that are uniquely applicable only to that phase. After that, the
rest of the process is akin to what we have described already, that is, the objective is to
simply choose the recommendation rule that would give rise to the highest similarity
for that phase.
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TABLE 15.4 Attribute Summary for SID-WA Heart Failure
Cohort

Group Category Description

1 Demographics 3 Attributes
2 Comorbidity 21 Attributes
3 Diagnosis 90 Attributes
4 Health services utilization 21 Attributes
5 Procedures 70 Attributes
6 Others 4 Attributes

15.3.5 Experiments

15.3.5.1 Data: Washington State Inpatient Databases We use the State Inpatient
Databases (SID) 4 of Washington State (referred as SID-WA for the rest of the
chapter) of years 2010 and 2011. SID are part of the family of databases developed
for the Healthcare Cost and Utilization Project (HCUP).4 The data set is a discharge
abstract that includes inpatient discharge records from community hospitals in the
State of Washington with all-payer, encounter-level information beginning in 2010
and 2011. SID-WA contains readmissions that occur at any hospital within the State
of Washington. SID of 1 year comprises four files that are associated with patients
and their encounters in the hospitals. The four files – core file (CORE), charges file
(CHGS), diagnosis and procedure groups file (DXPRGRPS), and disease severity
measures file (SEVERITY) – provide 596 attributes in total for a single patient
encounter. Each inpatient encounter has a unique identifier KEY, which can be
used to link records across files. Our initial data set used KEY to join CORE,
DXPRGRPS, and SEVERITY files and selected only attributes that are relevant to
the clinical aspect of a patient encounter

We use the attribute VisitLink in CORE to identify the same patients in the data.
The attribute DaysToEvent is used to compute the days between two consecutive
hospital admissions for each patient. In order to determine the number of days since
previous hospital discharge, we first calculate the number of days between two hos-
pital admissions and then subtract the length of stay of the first hospital admission.
For example, if the two hospital admission for a patient is 37 days and the length of
hospital stay for the first admission is 10 days, the number of days since previous
hospital discharge would be 27 days, which is considered as a 30-day readmission.

We construct a heart failure cohort based on the initial data set extracted from
SID-WA, as described earlier. The cohort contains patients whose primary or
secondary ICD9-CM diagnosis codes are listed in [8]. Initially, the cohort contains
3908 distinct diagnosis codes and 2049 procedure codes. In order to resolve the
issue of sparsity and high dimensionality of the data, we perform chi-square feature
selection to filter attributes that are less influential. Table 15.4 summarizes the

4http://www.hcup-us.ahrq.gov/sidoverview.jsp.
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TABLE 15.5 Evaluation Metrics

Jaccard Accuracy True Positive Rate

tp

tp + fp + fn

tp + tn

tp + tn + fp + fn
tp

tp+fn

209 attributes used in the cohort. Unless otherwise stated, all 70 procedures are
considered as interventions.

The final heart failure cohort contains data extracted from SID-WA 2010 and
SID-WA 2011. Our experiments used the 2010 data (67,967 patients) for training
and the 2011 data (52,021 patients) for testing.

15.3.5.2 Evaluation Measures We use four metrics to evaluate our experiment
results: (i) the number of exact matches from the rules of the test data (HIT); (ii) the
Jaccard index between the recommendation procedure vector and the actual observed
procedure vector (JAC); (iii) accuracy of the recommendations (ACCY); (iv) true
positive rate (TPR). For each pair of a set of recommended procedures and a set of
observed procedures, we define a true positive (tp) case, if a recommended procedure
appears in the observed procedure set. We define a true negative (tn) case, if a nonrec-
ommended procedure does not appear in the observed procedure set. False positive
(fp) occurs when the recommended procedure does not appear in the observed set.
False negative (fn) occurs when the nonrecommended procedure actually appears in
the observed procedure set. Therefore, we compute the three metrics as shown in
Table 15.5.

15.3.5.3 Results We design nine experiments based on three different structure
learning algorithms (Hill Climbing (HC), Grow–Shrink (GS), Hybrid (HY)) by vary-
ing the number of diagnosis attributes (30, 60, 90). The experimental results for the
four aforementioned measures are presented in Figure 15.5. Understandably the HIT
values are in the lower side for all the algorithms, while the other three measures
(especially Accuracy) are reasonable and demonstrates the effectiveness of our pro-
posed methods.

Interestingly, Figure 15.5 demonstrates that the effectiveness of recommendation
slightly increases (or remains same) with increasing number of attributes only for GS.
This demonstrates that the number of diagnoses does not have significant effect on the
recommendation results, meaning that we can achieve equivalent quality, even using
fewer input attributes. On the other hand, the other two algorithms (i.e., HC, HY)
exhibit similar behavior. For example, across all quality measures, the algorithms HC
and HY remain most effective for 30 attributes, degrade drastically for 60 attributes,
and somewhat improve (or remain same) for 90 attributes. We conjecture that the
reason of such observation is due to the greedy nature of these Hill-climbing-based
heuristics, which can end up in a local optima.

We perform paired t-test to further understand the statistical significance of the
obtained results. Table 15.6 enlists the output. The significance level is set to 95%. The
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Figure 15.5 Effectiveness of different algorithms for intervention recommendation; x-axis
varies the number of diagnoses attributes and y-axis captures the average of a respective quality
measure. (a) Jaccard index, (b) accuracy, (c) true positive rate, and (d) hits.

TABLE 15.6 Statistical Significance of Quality Results of Figure 15.5 is further
Explained Using Paired t-Test

HC GS HY

30 60 90 30 60 90 30 60 90

HIT 289 264 308 284 292 302 291 183 190
JAC 0.3083 0.3009 0.3104a,b 0.3067 0.3089b 0.3094 0.3082a 0.2843 0.2851
ACCY 0.9365 0.9354 0.9372a,b 0.9355 0.9360b 0.9362a 0.9355a 0.9306 0.9307
TPR 0.4775 0.4724 0.4785 0.4797b 0.4811b 0.4811b 0.4834 0.4681 0.4690

aThe result is significantly better than the others among the three variations of attribute numbers.
bThe result is significantly better than the others among the three structure learning algorithms.
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results show that for Jac, ACCY, and TPR, the results of GS outperforms HC and HY
(for the same number of attributes) with statistical significance. On the other hand, the
JAC and ACCY results of HC is statistically better for 90 attributes (in comparison to
30 and 60 attributes) and compared to other two algorithms (GS and HY). The results
of HY appear to show the least statistical significance. However, the results demon-
strate that JAC and ACCY of HY with 30 attributes outperform the other two variants,
that is, HY with 60 attributes and HY with 90 attributes. These results corroborate
that based on the underlying algorithm and the input diagnoses, the effectiveness of
different algorithm varies for the task of intervention recommendation.

15.3.5.4 Case Study: Effect of Iterative Predictions This section presents a case
study to demonstrate how predictive analytics can be used to facilitate real-time risk
predictions at any point of care. We aim to develop medical interventions and care
management strategies to reduce the risk score of an individual. Interventions could
take place during hospitalization, at discharge time, or post-discharge. Patients should
be treated and/or reached in a unique way in order to minimize the risk score. We con-
struct a predictive model that identifies and selects a subset of intervention factors that
are actionable at any stage of care, either during hospitalization, at time of discharge,
or post-discharge. After a patient is admitted with HF, a predictive model can be used
to evaluate the risk of readmission of the patient. We then suggest interventions that
can reduce the risk and their relative effect on risk reduction. Given the updated risk
assessment, healthcare provider could then re-evaluate whether the risk is minimized
and whether further opportunity for risk reduction exists.

In this case study, we select a patient from our HF cohort and demonstrate the
cycle of risk prediction and management. The selected patient is a male Caucasian in
the age group of 40–49. The patient is diagnosed with congestive heart failure, renal
failure, fluid, and electrolyte disorders. We first predict his risk of readmission and
then identify an intervention that would reduce the risk the most. The process repeats
until no risk reduction is observed.

Figure 15.6 shows how the risk decreases as we add the selected interventions
in order. Based on our model, the first recommendation is the utilization of emer-
gency room (U_ED), followed by nuclear medicine (U_NUCMED), cardiac stress
test (U_STRESS), percutaneous abdominal drainage (PR_5941), left heart cardiac
catheterization (PR_3722), speech therapy (U_SPEECHTHERAPY), respiratory ser-
vices (U_RESPTHERAPY), implant procedures (U_OTHIMPLANTS), Chest X-ray
(U_CHESTXRAY), and angiocardiography of left heart structures (PR_8853).

15.4 RELATED WORK

Preventing hospitalization is a prominent factor to improve patient outcomes and curb
healthcare costs. An increasing body of literature [2] attempts to develop predictive
models for hospital readmission risks. A systematic review from [2] shows that these
studies range from all-cause readmissions to readmission for specific diseases such as
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Figure 15.6 Results of risk management cycle.

heart failure, pneumonia, stroke, and asthma. Each of these models exploits various
predictor variables (attributes) assessed at various times related to index hospital-
ization (admission, discharge, first follow-up visit, etc.). However, great majority of
prior research applied only regression models to the problem. Research that leverage
advanced predictive modeling techniques to predict risk of readmission is still in its
infancy. We present one of the earliest effort of applying multiple predictive modeling
technique for the problem of predicting 30-day hospital readmissions.

In a closely related research, Yu et al. [23] modeled the readmission risk predic-
tion as a binary classification problem and a prognosis analysis problem. The authors
trained SVM model for classification and used Cox regression for prognosis analy-
sis. Compared to existing literature, our work applied multiple predictive modeling
technique and presented a complete analytic pipeline for the problem. Moreover, we
extend our scope to intervention recommendation problem. To the best of our knowl-
edge, no prior work has investigated the intervention recommendation problem for
heart failure.

Several recent research efforts have applied Bayesian network to enable decision
support in a clinical and healthcare setting. For example, a recent work has studied the
problem of deciding a treatment plan for dental caries based on intercausal association
between different sign-symptoms using Bayesian network [24]. The work considers
a rather low-dimensional data. Similar modeling effort has been observed to enable
decision support for generating treatment plan for other diseases as well, such as
coronary diseases [25], ulcers [26], sepsis [27], and depression [28]. Compared to
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the existing studies, our work addresses the problem of high dimensionality, scale, or
multilayered modeling. In addition, we generate recommendation rules and perform
large-scale validation to enrich clinical knowledge.

15.5 CONCLUSION

In this work, we investigate the problem of predicting the risk of 30-day hospital
readmission for heart failure patients and recommending interventions to minimize
the risk. The problem is treated as a binary classification problem. Three classification
models – Naive Bayes, SVM, and AdaBoost – were selected for our risk prediction
experiments. The experiments are designed to understand the incremental effect of
different types of attributes. It is shown that AdaBoost is the most stable model and
is robust against noises in the data.

Our solution to intervention recommendation for risk management involves learn-
ing the structure and parameters of a hierarchical Bayesian network. We use the
network to capture the complex interplay between multitude of factors related to
heart failure, such as demographic, diagnoses, and procedures and how they con-
tribute to the 30-day heart failure readmission problem. Leveraging the knowledge
captured in the Bayesian network, we generate rules of interventions that could lead
to risk reduction. Interventions are recommended based on the similarity between
the observed patient characteristics (e.g., demographics, diagnoses) and the patient
profiles stored in the rule repository. Our case study demonstrates how predictive ana-
lytics can be used to integrate risk prediction and intervention recommendation in an
iterative process to facilitate the cycle of clinical care.

For future work, we plan to investigate all-cause readmission prediction leverag-
ing the developed risk prediction overall pipeline and predictive models. We also
plan to incorporate the objective of cost prediction to the existing modeling. We plan
to use predictive analytic techniques to provide personalized recommendations of
interventions to prevent readmissions while monitoring the cost of resource use. The
outcome of this future research will improve healthcare quality for HF patients as
well as enhance cost transparency for the prevention of hospital readmission.
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16.1 INTRODUCTION

US healthcare spending is approximately 17% of GDP (i.e., $2.5 trillion) and
will continue the historical upward trend, reaching 19.5% by 2017 [1]. The rapid
advancements of biomedical sensing and healthcare information technology have
resulted in data-rich environments in hospitals [2, 3]. However, the meaningful
information extracted from rich data sets is still limited. Laboratory tests and patient
monitoring are two of the primary information sources for estimating clinical statuses
of postsurgical patients and optimizing management policies in the Intensive Care
Units (ICU) [4]. Traditionally, clinicians make inferences about patient conditions
based on most recent test results, ignoring important factors such as historical test
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results and the relationships among different types of tests. In the general practice of
medicine, physicians lack decision-support tools that can help them delineate hidden
interactions among different laboratory tests, identify temporal variations of patient
conditions, and predict mortality risks.

Although massive data sets are readily available in the healthcare environment,
clinicians and nurses are facing significant challenges to improve the current utiliza-
tion of common measures, for example, laboratory test results and patient monitoring
signals. This is even more critical for high-risk patients in ICUs. It is estimated that
more than five million patients are admitted to ICUs yearly in the United States and
10–20% of them die in hospitals [5]. Realizing the full potential of postsurgical data
sets for ICU decision-making support depends to a great extent on the advancement
of information processing methodologies. There is a dire need to go beyond current
clinical practice and develop data-driven methods and tools that will enable and assist
(i) the extraction of pertinent knowledge about clinical status from heterogeneous
healthcare recordings, (ii) the prediction of mortality risks, and (iii) the provision of
personalized decision-support systems.

Predicting ICU mortality is critically important to improve the quality of
postsurgical healthcare services (e.g., surgical procedures, medication usages, care
guidelines, treatment plans, and resource allocations). Furthermore, it provides
data-driven performance measures to compare the differences of healthcare facilities
and services, thereby eliminating healthcare disparities in the country. In the state of
the art, general severity scoring systems that are widely used to describe the acuity
levels of ICU patients include Acute Physiology and Chronic Health Evaluation
(APACHE), Sequential Organ Failure Assessment (SOFA), and Simplified Acute
Physiology Score (SAPS) [6, 7]. However, they have thus far yielded limited
successes due to the fewer variables and shorter time period considered.

As shown in Figure 16.1a and b, postsurgical monitoring in ICU leads to a new
order-3 tensor form of data sets with unique properties (i.e., variable heterogeneity,
patient heterogeneity, and time asynchronization), as opposed to the table form of
predictor and response variables commonly seen in predictive modeling. The tensor
data and heterogeneous properties pose significant challenges to extract useful and

Missing data
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- Quantitative (continuous, discrete),

qualitative (categorical, factors,

dummy variables)

Patient heterogeneity:
- Various types of diseases, ages,

surgical procedures, populations

Time  asynchronization:
- Data collection per physician’s

discretion, missing data, non uniform

samplingTime asynchronization

T
im

e

P
a
ti
e
n
ts

Pat
ie
nt

s

Variables

Variables
(a) (b)

Figure 16.1 (a) Data in traditional table form for predictive modeling and (b) new tensor
form data generated in postsurgical sensing.
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meaningful knowledge from postsurgical data sets for the optimization of clinical
decision making.

1. Variable Heterogeneity. In order to capture a complete picture of the recovery
process of postsurgical patients, ICU monitoring includes a large number of
variables (e.g., laboratory test results, pulse oximetry, blood pressure, and heart
rate). Most importantly, there are different types of variables. Some are quantita-
tive (continuous, discrete), while others may be qualitative (categorical, factors,
dummy variables). As opposed to the conventional univariate analysis, it is crit-
ical to discover risk factors and interactions hidden in heterogeneous types of
variables, reducing them to a parsimonious set of sensitive biomarkers that will
help in the diagnosis, monitoring, and prediction.

2. Patient Heterogeneity. Furthermore, it may be noted that there are also hetero-
geneous types of patient populations, which may be classified by ages, gender,
diseases, surgical types, or ICU types (e.g., coronary care unit, cardiac surgery
recovery unit, medical ICU, surgical ICU). This also provides an opportunity to
investigate mortality rates for different patient populations.

3. Time Asynchronization. It should also be noted that data collection procedures
are not standardized in ICU. It is common that the frequency of data measure-
ments is at the physician’s discretion. Although each variable has an associated
time stamp indicating the time point of data recording, time stamps are often not
uniformly distributed along the time axis. During 48-h ICU monitoring, some
variables may be recorded in an extremely low-sampling rate while others may
be in a high-sampling rate. Missing data problem is also a common property of
ICU data sets.

Hence, there is an urgent need to address the issues of variable heterogeneity,
patient heterogeneity, and time asynchronization and further develop analytical meth-
ods for patient-specific prediction of in-hospital mortality. This chapter focuses on
the predictive modeling of postoperative outcomes in ICUs using patient-specific
and heterogeneous postsurgical data sets. To cope with the challenges in ICU data
sets, we developed the postsurgical decision-support system with a suite of ana-
lytical tools, including data categorization, data preprocessing, feature extraction,
feature selection, and predictive modeling. As the number of inpatient procedures
performed is about 51.4 million every year in the United States [38], such a post-
operative decision-support system is particularly timely in helping clinicians and
nurses leverage the large and readily available clinical data sets to achieve a substan-
tial boost in smart postoperative management. Realizing a better postoperative care
will achieve a remarkable reduction of healthcare costs and improve the health of
our society.

The remainder of this paper is organized as follows: Section 16.2 introduces
the state of the art in ICU risk-scoring systems. Section 16.3 presents the research
methodology of postsurgical data analytics. Section 16.4 provides the details of
materials and experimental design. Section 16.5 contains experimental results.
Section 16.6 presents the discussion and conclusions arising out of this study.
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16.2 RESEARCH BACKGROUND

Scoring systems have been widely used to predict the risk of mortality and treat-
ment outcomes for critically ill patients in intensive care medicine. The APGAR
(Appearance, Pulse, Grimace, Activity, Respiration) score is the first of such systems
introduced in 1952 to evaluate the effects of obstetric anesthesia on newborn babies
[8]. The Glasgow Coma Scale (GCS) is another example of scoring systems that
measures the conscious state of a subject [9]. In the field of intensive care, there are
a variety of prognostic scoring systems designed for either the general ICU patients
or defined subgroups. Examples include APACHE [6, 10–12], SAPS [13–16], MPM
[19–21], and SOFA score [20]. In the past few decades, these systems have been con-
tinuously updated and widely used in the clinical practice. Standardized mortality
ratio (SMR), the ratio of observed to predicted mortality, is a common performance
metric for benchmarking the scoring systems. In addition, disease-specific scoring
systems were developed to predict ICU outcomes for some disease subgroups such as
pancreatitis, hepatic failure, and adult respiratory distress syndrome [21]. This section
presents an overview of four ICU scoring systems commonly used in the ICU, namely
APACHE, SAPS, MPM and SOFA, and discusses their advantages and limitations in
the clinical practice.

16.2.1 Acute Physiology and Chronic Health Evaluation (APACHE)

The APACHE scoring system was first developed in 1981 as a physiologically based
classification system to measure severity of illness of ICU patients [10]. APACHE I
model derives the acute physiology score (APS) through the weighted summation of
34 physiologic variables. Each variable will be assigned a weight from 0 to 4 based
on its amplitude and range. The worst physiologic values, for example, the lowest BP
or the highest respiratory rate (RR), will be given a biggest weight. The time period
considered is the first 24 h after the ICU admission. The APS provides an indicator of
the risk of in-hospital death. A higher APS gives an increased probability in the risk of
in-hospital death. However, the APACHE I system requires formal multi-institutional
validation and is limited in its capability to handle missing data in 34 physiological
variables. In most cases, only the worst values in day 1 of ICU are used. Temporal
trends and correlations are not fully utilized in the APACHE I system.

In 1985, APACHE II was developed to mitigate the complexity of APACHE I
system and thereafter became the most widely used measurement of the severity
of illness for patients admitted to the ICU [6]. Notably, the number of physiologic
variables involved is reduced from 34 to 12, namely temperature, mean arterial pres-
sure (MAP), heart rate (HR), respiratory rate (RR), oxygenation, pH arterial, sodium
(Na), potassium (K), creatinine, hematocrit, white blood cell count (WCC), and GCS.
Reducing the number of involved variables partially overcomes the problem of miss-
ing values, as well as concerns about the normal assumption of an unmeasured vari-
able [6]. Similar to APACHE I, these 12 physiologic variables are from the initial 24 h
after ICU admission. As shown in Table 16.1, APACHE II optimized the calculation
of weighted score for paper schemas through 0–4 scales and reduced the number of
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variables to fit into a single-sheet paper. An increasing score (range from 0 to 71)
indicates a higher risk of subsequent in-hospital death. It is worth mentioning that
APACHE II score is not recalculated and updated through the period of ICU stay. If
a patient is discharged from the ICU and readmitted, a new APACHE II score will be
calculated. In the clinical practice, it was found that few patients have an APACHE
II score greater than 55 [6]. Furthermore, the probability of in-hospital mortality is
derived using a multivariate logistic regression model as ln

(
risk

1-risk

)
= a +

∑
ibixi,

where risk is the risk of death,
(

risk
1-risk

)
is the odds ratio, a is the intercept, bi is the coef-

ficient, and xi′s are independent variables such as APACHE II score, age group, severe
chronic health impairment, and 56 disease groups. However, the performance of
APACHE II model deteriorates for mortality prediction because case-mix adjustment
is not specifically considered and parameter estimation is based on 1979–1981 data.

Furthermore, APACHE III was developed in 1991 [11] to improve the scoring sys-
tem by changing the number and weights of physiological variables. Also, APACHE
III consists of predictive models for not only the in-hospital mortality but also hospital
length of stay. Such predictions provide benchmarks for the assessment and compar-
ison of ICU efficiency and resource use. Predictor variables are revised and updated
to include 78 disease groups, acute physiological score, age, preexisting functional
limitations, chronic health status measured with seven comorbidities, and admission
type and source. Compared with previous APACHE versions, the APACHE III score
has a five-point increase and ranges from 0 to 299 points. The points are mainly calcu-
lated from three components. The first component, also the largest one of APACHE
III score, attributes to acute physiological scores (APS) and ranges from 0 to 252.
The second component is chronic health index that measures the impact of comor-
bidities on a patient’s immunologic condition and ranges from 0 to 23. The third
component is a patient’s age that accounts for 0–24 points. The summation of three
components gives the APACHE III score, which stratifies the risk of mortality for crit-
ically ill patients within independently defined patient subgroups. Notably, APACHE
III scores were re-evaluated for the initial 1 h after admission and the following 23
and 24 h. Statistical tests showed no significant differences in predictive scores for
three readings. After the course of initial 24 h, the APACHE III system periodically
updates the models and re-estimates weights of APS score, chronic health, and age
components using the newly available physiologic data.

In 2006, a full review and update of APACHE III equations lead to the new
APACHE IV models that incorporate new developments in ICU protocols and
practices [12]. Note that APACHE III score provides risk stratification for ICU
patients, while APACHE IV provides a set of predictive equations for a specific
database. The APACHE III score is a major component in APACHE IV predictive
equations. Specifically, predictor variables in the APACHE IV system include
APS variables, chronic health variables, ICU admission diagnosis (116 disease
groups), ICU admission source, length of stay before ICU admission, emergency
surgery, thrombolytic therapy, GCS, and mechanical ventilation. A cubic spline
transformation is used to expand predictors to additional spline terms to allow the
estimation of nonlinear relationship in the predictive models. The APACHE IV
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predictive equations were developed and validated with a nationally representative
database of over 131,618 patients admitted to 104 ICUs in 45 hospitals in the
United States in 2002/2003 [12]. Three analytic methods were used to evaluate the
prediction performance of APACHE IV models over the entire range of risk, namely
graphical plotting of observed and predicted mortalities, goodness-of-fit test (i.e.,
Hosmer–Lemeshow C statistic), and Cox chi-square test. However, the APACHE
IV system has several limitations: (i) It is developed and tested in the ICUs of the
United States and may not be applicable to other countries due to the significant
differences in protocols and practices. (ii) The training and validation data are only
from hospitals that purchased the APACHE system, representing a selection bias.
(iii) The logistic regression model is not generalized and robust to the selection
of training data set. (iv) The prediction of mortality risk contains variance for an
individual. (v) The APACHE IV accuracy will deteriorate in the future due to new
knowledge, new therapies, and protocol changes in postsurgical care. There is a
need to periodically retest the models, re-estimate model parameters, and reselect
the variables with statistically significant prognostic values.

16.2.2 Simplified Acute Physiology Score (SAPS)

In 1984, a SAPS was developed for ICU comparative studies and management eval-
uation [13]. SAPS is a simpler and less time-consuming scoring system that uses
14 clinical variables (namely, GCS, HR, systolic blood pressure, temperature, RR,
urine output, blood urea nitrogen, hematocrit, TLC, serum glucose, sodium, potas-
sium, bicarbonate, and age) for predicting the risk of death of ICU patients. Similar to
the APACHE I, SAPS calculation was based on the worst values of clinical variables
during the first 24 h after ICU admission. However, clinical variables in SAPS were
subjectively selected by a panel of human experts. In addition, the SAPS system was
only validated with 679 patients from eight ICUs in France, which do not have a good
case-mix. The SAPS system lacks the generality for applications to heterogeneous
ICU patients worldwide.

In 1993, SAPS II was developed and validated using data from 13,152 patients
in 137 medical/surgical ICUs in the European/North America study [14]. The SAPS
II score is calculated from 17 variables: 12 physiological variables, age, admission
types (scheduled surgical, unscheduled surgical, or medical), and 3 disease variables
(immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Note
that logistic regression is used in the SAPS II system to help (i) select important
variables, (ii) perform optimal parameter (or weight) estimation, and (iii) predict the
probability of in-hospital mortality. As the SAPS II score is highly skewed, log trans-
formation is adopted. Hence, prediction equations for the mortality risks include two
predictor variables (i.e., SAPS II score and ln(SAPS II score+1)):

Pr(risk) =
exp(X𝜷)

1 + exp(X𝜷)

=
exp(𝛽0 + 𝛽1(SAPSIIScore) + 𝛽2[ln(SAPSIIScore + 1)])

1 + exp(𝛽0 + 𝛽1(SAPSIIScore) + 𝛽2[ln(SAPSIIScore + 1)])
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where 𝛽0 is estimated to be −7.7631, 𝛽1 is 0.0737, and 𝛽2 is 0.9971. However, the
SAPS II score only considered the first 24 h after ICU admission. The progression of
risk of death is not investigated through the continuous monitoring of SAPS II scores
using data collected on a daily basis.

In order to address the heterogeneity of ICU case-mix and typology, SAPS III
was proposed in 2005 and evaluated using a database of 19,577 patients from 307
ICUs worldwide [15, 16]. In addition to the first 24 h after admission, the SAPS III
system collects data continuously on days 1, 2, 3, and the last day of the ICU stay. It
is worth mentioning that SAPS III designed a set of detailed definitions and protocols
for data collection to avoid user-dependent problems. Also, SAPS III study aims to
address patient-dependent problems by establishing a multinational database that are
more representative of clinical variables and outcomes. As a result, this improves the
generalization of SAPS III models. The SAPS III score is ranged from 0 to 217, which
is the arithmetic sum of three subscores derived from 20 variables as follows:

• Subscore I (5 variables): patient characteristics before ICU admission, includ-
ing age, previous health status, comorbidities, location before ICU admission,
length of stay in the hospital before ICU admission, and use of major therapeutic
options before ICU admission.

• Subscore II (5 variables): reason(s) for ICU admission, anatomic site of surgery
(if applicable), planned or unplanned ICU admission, surgical status, and infec-
tion at ICU admission.

• Subscore III (10 variables): acute physiological variables (within 1 h before or
after admission).

Furthermore, logistic regression is used to predict the probability of death during
a certain period of time. The main model is to predict the probability of death at
hospital discharge. Note that stepwise logistic regression is employed for important
variable selection, and then a log transformation of SAPS III score is applied to reduce
the impact of highly skewed distribution on the modeling. Both SAPS III score and
log(SAPS III+ g) score are used to predict hospital mortality in the logistic regression
model, where g is a model parameter to be estimated. Fivefold cross-validation was
performed on patients, as well as ICUs in the multinational databases to evaluate the
SAPS III system. The model performances on the database were shown to have big
variations across the world.

16.2.3 Mortality Probability Model (MPM)

The MPM was first proposed in 1985 to predict the survival and mortality of ICU
patients at the time points of ICU admission and 24-h mark in the ICU [17]. Mul-
tiple logistic regression models were derived on the basis of data from 755 patients
in a single hospital, and model parameters for predictor variables were objectively
determined. The MPM system contained relatively few and easily obtained vari-
ables, including seven admission variables that are independent of ICU treatments,
and seven 24-h variables that describe medical treatments and patients’ conditions in
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the ICU. Notably, the admission model MPM0 is independent of ICU treatments and
can be used for patient stratification and ICU comparisons, while MPM24 is designed
for more complex patients staying in the ICU for more than 24 h.

As the ICU environment is changing over time, a major revision of MPM0 and
MPM24 was conducted in 1993. The new MPM II system [18] was developed and
validated with the data of 19,124 patients collected from 143 ICUs in 139 hospitals
in 12 countries (i.e., 6 ICUs in the northeastern United States, as well as the Euro-
pean\North American Study of Severity Systems in 137 ICUs in 12 countries). The
participating ICUs include diverse types, with 16% being medical, 24% surgical, and
60% mixed medical and surgical. Notably, the MPM II study excluded burn, coro-
nary care, cardiac surgery patients, as well as those patients under the age of 18. The
training data set includes 12,610 patients, and the testing data set consists of 6514
subjects. The admission model, MPM0, considered only main effects of 15 variables
that are readily obtainable at ICU admission. The MPM0 probability of in-hospital
mortality is calculated as follows:

1. Compute the logit value as logit = b0 + b1x1 +…+ bkxk, where b0 is the con-
stant, bi, i = 1,… , k is the coefficient for variable xi, i = 1,… , k. In contrast
with APACHE and SAPS systems, the MPM II system dichotomized each vari-
able xi, with an exception of age. In other words, the variables take the values
of 1 or 0 to describe the presence or absence.

2. Transform the logit into risk probability through the equation:

Pr(risk) = elogit∕(1 + elogit)

In addition, the 24-h model, MPM24, was designed for patients who stayed in the
ICU for more than 24 h. Those patients who were discharged alive or died in the
first 24 h after ICU admission were excluded. As a result, 10,357 patients with ICU
stays longer than 24 h were left for the development of MPM24. Similar to the MPM0
modeling, MPM24 used multiple logistic regression models that considered the main
effects for eight variables during the 24-h ICU stay and five variables from the MPM0
(see the detailed table of variables in [18]). It is worth mentioning that the MPM II
system includes dichotomous variables, but APACHE and SAPS systems used the
worst values in the 24-h period of ICU stays. The number of variables is relatively
small in the MPM II system. This greatly simplified the scoring but may omit useful
information in the clinical variables. Also, the MPM0 included a radiological variable
and the MPM24 consists of four variables from laboratory testing. However, a major
limitation of MPM II is the general applicability for the population of ICUs and their
patients. Because of fewer variables and dichotomous inputs, it is difficult to fully uti-
lize the dynamic information of ICU patients and then develop a generalized scoring
system to estimate the probability of in-hospital mortality.

However, the 1993 model of MPM0 II was found to overpredict in-hospital mor-
tality. Therefore, MPM0 III was proposed in 2007 to update the MPM0 II model
using data from 124,855 patients collected between 2001 and 2004 in 135 ICUs at
98 hospitals [19]. In addition to MPM0 II risk factors, MPM0 III added two new
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variables (i.e., “full code” – resuscitation status at ICU admission and “zero fac-
tors” – absence of all MPM0 II risk factors except age) and seven interaction terms
(i.e., between age and systolic blood pressure, metastatic neoplasm, cirrhosis, cardiac
dysrhythmia, intracranial mass, cardiopulmonary resuscitation, and coma/deep stu-
por). Notably, all independent variables take the binary values except the age and thus
greatly decrease the burden of data collection. The MPM0 III retained the “on admis-
sion” feature of MPM0 II and estimated the mortality probability using 16 variables
obtained within 1 h of ICU admission. There were 74,578 patients (59.7%) used in
model development and 50,307 (40.3%) in model validation. First, univariate analy-
sis was performed to select the important variables on mortality using statistical t-test
and chi-square tests with the significance level 𝛼 = 0.05. Second, multivariate logis-
tic regression models included those significant variables and interaction terms for
predicting the probability of mortality. Because APACHE and SAPS cover the first
24 h after ICU admissions, MPM24 is not updated. MPM0 characterization extracts
the “quality of care” metric before ICU care begins and thus facilitates the evaluation
of the appropriateness of ICU admissions, resource utilization, and patient flow. How-
ever, there are several limitations in the MPM0 III system. For example, MPM0 III
excludes some patients whose conditions are rapidly varying at admission. APACHE
IV and SAPS III were shown to yield better discrimination power than MPM models.
Also, the main purpose of MPM0 III is for patient stratification at ICU admission and
is not expected to precisely predict acuity or outcome for individual patients [19].

16.2.4 Sequential Organ Failure Assessment (SOFA)

Organ failures were shown to be highly pertinent to ICU morbidity and mortality.
The SOFA scoring system was developed to quantify the level of organ dysfunction
and then take repeated measurements of SOFA scores (i.e., alternations over time)
for predicting ICU mortality [20]. As shown in Table 16.2, SOFA assigns a subscore
of 0–4 for each of six organs, namely respiratory, coagulation, liver, cardiovascular,
neurological, and renal. The SOFA score is the sum of all six subscores and is ranged
from 0 to 24. A higher score indicates more severe failure. In order to effectively
represent the dynamics of illness, the SOFA score can be computed on admission
and every 48 h until discharge. Prior research studied predictor variables such as ini-
tial, highest, mean SOFA scores, and 𝛿-SOFA. The initial SOFA score measures the
level of organ dysfunction on admission. The 𝛿-SOFA score is the difference between
two subsequent scores and describes the variability of dysfunction in the period of
ICU stay. The mean SOFA score is calculated as the ratio of total SOFA score to the
length of ICU stay, which characterizes the average degree of organ dysfunction over
time. The highest SOFA score indicates the biggest variation of organ failure during
the period of ICU stay. Univariate logistic regression model was used to calculate
the odds ratio and 95% confidence interval for each predictor variable. The analy-
sis results showed that mean and highest SOFA scores are strongly correlated with
ICU mortality, followed by 𝛿-SOFA and initial SOFA scores. SOFA throughout the
ICU stay is shown to have great potentials for prognostic modeling of ICU outcomes.
Notably, the SOFA system differs from traditional scoring systems such as APACHE,
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TABLE 16.2 The SOFA Scoring System

0 1 2 3 4

Respiratory
FiO2/PaO2

>400 <400 <300 <200 <100

Coagulation
Platelets

>150 <150 <100 <50 <50

Liver
Bilirubin

<1.2 1.2–1.9 2–5.9 6–11.9 >12

Cardiovascular
Hypotension

No hypotension MAP<70 Dop≤5 or
dob (any)

Dop>5 or
norepi≤0.1

Dop>15 or
norepi>0.1

Central nervous
system

GCS

15 13–14 10–12 6–9 <6

Renal
Creatinine or

Urine Output

<1.2 1.2–1.9 2–3.4 3.5–4.9 or
<500

>5 or <200

Dop: dopamine; dob: dobutamine; norepi: norepinephrine.

SAPS, and MPM as follows: (i) SOFA is mainly targeted at the information of organ
dysfunction/failure to evaluate morbidity rather than evaluating mortality. (ii) SOFA
is designed to make description of ICU stay as opposed to making predictions. (iii)
SOFA is based on simple and easily repeatable variables pertinent to specific organs.
(iv) Serial SOFA scores provide a representation of the dynamics in the conditions of
critically ill patients, thereby taking the time factor into accounts in the prediction of
ICU outcomes.

Existing ICU scoring systems can be categorized into four groups, that is, gen-
eral scoring systems for the severity of illness, disease-specific risk-scoring systems,
organ dysfunction scoring systems, and trauma risk-scoring systems. However, most
previous ICU scoring systems either focus on the worst values in the monitoring
period or depend on human subjective decisions and visual inspection. Multiple logis-
tic regression is commonly used to build the predictive model. It is important to
note that temporal correlations among variables are not specifically considered. In
addition, missing data pose significant challenges on the construction of predictive
models. Although laboratory tests and patient monitoring provide rich information
sources for monitoring critical conditions of postsurgical patients, the meaningful
information extracted from the order-3 tensor form of ICU data sets (see Fig. 16.1b)
is limited. As such, physicians need to make inferences about patient conditions based
on most recent test results, ignoring important factors such as historical test results
and the relationships among different types of tests.

In the general practice of medicine, physicians lack decision-support tools that can
help them delineate hidden interactions among different lab tests, identify temporal
variations of patient conditions, and predict mortality risks. There is a dire need to
go beyond current medical practices and develop data-driven methods and tools that
will enable and help (i) the handling of big data, (ii) the extraction of data-driven
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knowledge, and (iii) the exploitation of acquired knowledge for optimizing clinical
decisions. In order to address the challenges of variable heterogeneity, patient
heterogeneity, and time asynchronization, this chapter presents a postsurgical
decision-support system that consists of a suite of analytical tools, including
data categorization, data preprocessing, feature extraction, feature selection, and
predictive modeling.

16.3 RESEARCH METHODOLOGY

Figure 16.2 shows the overall flowchart of the proposed data-driven postsurgical ICU
decision-support system. Notably, healthcare technology in the 21st century has given
rise to the big data in the ICU that involves a greater level of complexity and challenge,
including variable heterogeneity, patient heterogeneity, and time asynchronization
[22]. The proposed decision-support system is embodied by five core components

Predictive model

Cross-validation

ensemble voting

Decision support

Big data
Variable heterogeneity

Patient heterogeneity

Time asynchronization

Data categorization

Low-sampling

variables

General

descriptors

Med-sampling

variables

High-sampling

variables

Feature

extraction

Transformation

Feature selection

identify a sparse set of

sensitive biomarkers

Data preprocessing

Imputation

Derivation

Quality Control

Postsurgical ICU

decision support

system

Intensive Care Unit

Figure 16.2 Flow chart of data-driven postsurgical ICU decision-support system.
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(i.e., data categorization, data preprocessing, feature extraction, feature selection, and
predictive modeling) that are effectively integrated to improve patient-specific pre-
diction of in-hospital mortality.

First, we categorize various types of variables into four groups (namely, general
descriptors, low-sampling variables, med-sampling variables, and high-sampling
variables) based on the missing percentage in databases and the average number
of observations per variable. Second, these four categories of variables will be
preprocessed to ensure the data quality with various imputation and derivation
methods (see details in Table 16.3). Third, we transform variables into features that
contain critical clinical information and then use feature selection techniques to
reduce high-dimensional features into a sparse set of sensitive biomarkers. Finally,
we construct the predictive models with sensitive biomarkers that predict the clinical
outcomes for ICU patients. These five components are detailed in the following
sections.

16.3.1 Data Categorization

The common measurements in ICU consist of 44 variables (see details of variable
names in Table 16.3). Over the course of 48 h, certain variables were measured at dif-
ferent time points with physicians’ discretion due to different conditions of patients.
It is very often that not all the 44 variables are recorded for each patient. Each patient
may be monitored with a subset of variables at nonuniformly sampled time points.
Variables may be recorded once, more than once, or not at all within 48 h of ICU stay.

For example, Figure 16.3 shows the percentage of missing data for common vari-
ables in one ICU database. Here, six general descriptors are excluded because they
are recorded once in the beginning of ICU stay. It can be seen that none of variables is
completely recorded for all patients. Also, some variables have more than 50% miss-
ing in the database. Based on the percentage of missing data and the average number
of observations per variable, we categorize these 44 variables into four groups as
shown in Table 16.3.

• General Descriptors: This group of variables includes general properties of a
patient that are collected when the patient is first admitted into the ICU, for
example, RecordID, Age, Gender, Height, ICUType, MechVent.

• Low-Sampling Variables: More than 50% patients do not record these variables
in the database.

• Med-Sampling Variables: The average number of observations is less than 15
per patient per variable.

• High-Sampling Variables: Variables that do not meet with the above criteria.

16.3.2 Data Preprocessing and Missing Data Imputation

16.3.2.1 Data Preprocessing The step of data preprocessing is to ensure the data
quality with various imputation and derivation methods that are detailed in Table 16.3.
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Figure 16.3 The percentage of missing data for variables.

First, erroneous weight and height values are removed, and missing height/weight
values are replaced using a simple linear regression based on the most common
height/weight values by gender. Second, TroponinT is multiplied by 100 and then
combined with TroponinI as a new variable, Troponin. If one is missing, then the
new variable Troponin takes the value of the other. Otherwise, it will take the aver-
age value. Third, Creatinine is replaced by CreatinineClearance, which is calculated
based using the Cockcroft Gault equation:

CreatinineClearance = (140-Age)

× Weight × (0.85 + 0.15 × Gender)∕ (72 × Creatinine)

Fourth, Urine is replaced by a new variable Urine.Sum, which is the cumulative
sum of the Urine measurements. Fifth, three pairs of variables, that is, DiasABP
and NIDiasABP, MAP and NIMAP, SysABP and NISysABP, are combined, respec-
tively, as three new time series and add a binary variable that will be assigned 1 if the
majority observations were from the invasive procedure, 0 otherwise. Finally, missing
values for med-sampling and high-sampling variables are firstly imputed at every 4 h
and 1 h, respectively, via Gaussian process. The remaining missing data of all vari-
ables are then imputed by SOM imputation method. The detailed imputation methods
are expressed in the following section.

16.3.2.2 Missing Data Imputation In this investigation, self-organizing map
(SOM) is utilized for the imputation of low-sampling variables (see Table 16.3).
SOM automatically organizes data with similar structures close to each other in
the output layer of network [23, 24]. As shown in Figure 16.4, SOM neurons
are usually represented on a low-dimensional map (e.g., two-dimensional map).
Here, neurons will self-organize in the data space to recognize and characterize
similar structures. Suppose the map contains M neurons, each neuron i is a vector
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Figure 16.4 Self-organizing map model for imputation.

𝑤i = [𝑤i1, 𝑤i2,… , 𝑤id], i = 1, 2,… ,M, where d is the dimension that is the same as
the vector of input features (or ICU variables) x = [x1, x2, · · · , xd]. In each training
step, an input feature vector x is presented to SOM neurons. The index c of the
best-matching neuron (BMN) is determined by

c = argmin
i
‖x-𝑤i‖

The vector of BMN and its neighbors on the hexagonal map are updated by moving
toward the input feature vector with the rule of Kohonen update as

𝑤i(t + 1) = 𝑤i(t) + hci(t) ⋅ [x(t) −𝑤i(t)], i = 1, 2,… ,M

where t = 0, 1, 2,… is the iteration step of neurons. The neurons in an N-dimensional
SOM are initialized so that the initial weights 𝑤i are distributed across the space
spanned by the most significant N principal components of the input features. Here,
hci(t) is the neighborhood function, which is usually formed as hci(t) = h(‖rc − ri‖, t),
where rc, ri ∈ ℜ2 are the locations of neuron c and i. This neighborhood function
hci(t) → 0 when t → ∞, and hci(t) → 0 when ‖rc − ri‖ increases. Gaussian function
is used for hci(t) in this present investigation as

hci(t) = 𝛼(t) ⋅ exp

(
−
‖rc − ri‖2

2[𝜎(t)]2

)
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where 𝛼(t) is the learning-rate factor, and σ(t) is the width of the neighborhood kernel
function. Both 𝛼(t) and σ(t) are monotonically decreasing functions of time.

Training the SOM can either use the complete database that does not contain
missing variables or involve available variables from patients with some missing vari-
ables. Another advantage is that SOM training can be implemented in batches or in
a sequential way. As shown in Figure 16.4, when a new patient with missing vari-
ables is presented to the SOM map, we can ignore the missing variables and compute
the distances between this new patient and neurons using available variables. Then,
distance measures will help select the neighboring neurons. The imputed values of
missing variables in this new patient will be calculated based on the weights of neigh-
boring neurons in the missing dimensions. Note that the complete database may be
relatively small in terms of sample size, and thereby decrease the training perfor-
mance of SOM. In order to fully utilize incomplete samples, SOM weight updating
is flexible to incorporate the available variables from patients with missing variables.
The SOM imputation approach is similar to traditional hot-deck and multilayer per-
ceptron (MLP) imputation methods, but has an attractive feature of online sequential
update of weights as well as the utilization of incomplete samples in the training.

For med-sampling and high-sampling variables, there are significant temporal
variations involved in the data set. Therefore, missing values along the temporal
dimension will be imputed at every 4 and 1 h, respectively, via the Gaussian process
[25]. Let (t1, x1),… , (tn, xn) be time-varying ICU variables, where ti is the time
index and xi is the value of an ICU variable. The temporal function x = f (t) + 𝜀,
where 𝜀∼iidN(0, 𝜎2

n ) and f (t) is modeled as a Gaussian process that is specified by
the mean function m(t) and covariance function k(t, t′), that is,

f (t) ∼ (m(t), k(t, t′))

m(t) = 𝔼[f (t)]

k(t, t′) = 𝔼[(f (t) − m(t))(f (t′) − m(t′))]

The GP is defined as a collection of random variables, any finite set of which
follows a joint Gaussian distribution. The GP is treated as a functional prior on the
time-varying ICU variables. In this investigation, we used the following covariance
function to specify the covariance between pairs of random variables:

k(t, t′) = 𝜎2
f exp

(
−1

2
(t − t′)TM(t − t′)

)
where 𝜎2

f is the signal variance and M = diag(l)−2 with the length scale vector l.
Note that f (t) and f (t′) should be similar if t and t′ are sufficiently close in the tempo-
ral dimension. Therefore, the length scale l defines the separation between different
dimensions of input variables. For a missing data x∗ at the time t∗, the training out-
puts X = f (T) from T = (t1,… , tn), and the predicted x∗ = f∗(t∗) have a joint prior
distribution with zero mean:[

X
x∗

]
∼ N(0,

[
K(T,T) + 𝜎2

nI K(T, t∗)
K(t∗,T) K(t∗, t∗)

]
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In order to obtain the posterior distribution, this joint prior distribution is restricted
to include only those functions that agree with the computed observations from the
space-filling design. Hence, the posterior distribution of f∗(t∗) is

p(x∗|T,X, t∗) ∼  (x∗, cov(x∗))

x∗ = 𝔼(x∗|T,X, t∗) = K(t∗,T)[K(T,T) + 𝜎2
nI]−1X

cov(x∗) = K(t∗, t∗) − K(t∗,T)[K(T,T) + 𝜎2
nI]−1K(T, t∗)

However, the hyperparameters 𝜽 = {M, 𝜎f , 𝜎n} need to be optimally chosen in
order to yield the best GP model for predicting the imputed values. These hyper-
parameters can be learned by maximizing the log-marginal likelihood,

𝜽optimal = argmax
𝜽
{log p(X|T,𝜽)}

log p(XT,𝜽) = −1
2

log|K + 𝜎2
nI| − 1

2
XT [K + 𝜎2

nI]−1X − n
2

log 2𝜋

As such, the GP is optimally trained with the available data in the med-sampling
and high-sampling ICU variables. Notably, the GP model provides both mean and
variance for the imputed values of missing ICU variables in the temporal dimension.

16.3.3 Feature Extraction

After the data preprocessing, ICU data set is in the form of order-3 tensor. The next
step is to characterize the structure and correlation in the high-dimensional tensor
data and extract a sparse set of joint biomarkers sensitive to morbidity and mortality
in the postoperative process. Dimensionality reduction is a subspace representation
approach that not only transforms high-dimensional data into the low-dimensional
feature space but also retains the underlying structures. Traditionally, principal com-
ponent analysis (PCA) is a common approach for dimensionality reduction, but is not
applicable here for high-order tensors. Naive application of PCA needs to reshape
the tensor data into the form of 2D matrix. However, reshaping breaks the natu-
ral structure and correlation in the original tensor data. Hence, we propose a new
approach of constrained tensor decomposition to extract a low-dimensional set of
uncorrelated features from tensor data. This idea is originated from the recent lit-
erature on multilinear subspace learning in image and video processing [26, 27]. A
significant difference between image/video processing and postoperative applications
lies in data heterogeneity. Image/video data are homogeneous and synchronized in
time, but postoperative sensing involves heterogeneous variables that are asynchro-
nized and incomplete. Therefore, data preprocessing and missing data imputation (see
Section 16.3.2) are specifically designed to tackle these challenges and facilitate the
extraction of biomarkers using multilinear subspace learning in Section 16.3.3.

Multilinear subspace learning utilizes the tensor-to-vector projection (TVP) to
extract uncorrelated features from tensor data [39]. These low-dimensional features
are not only orthogonal to each other but also maximize the projection variances. The
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Figure 16.5 Illustration of reshaping order-3 tensor to matrix.

1-Mode 
projection

2-Mode 
projection

1-Mode 
vectors

Figure 16.6 An illustration of elementary multilinear projection (EMP) of the order-2 tensor
data.

TVP consists of multiple elementary multilinear projections (EMP), which project a
tensor  ∈ ℝI1×···×IN to a scalar 𝓍 through the N projection vectors as

𝓍 = ×1u(1)T×2u(2)T×N−1 · · · ×Nu(N)T

where u(n) is the nth projection vector and ×n is the nth-mode multiplication. In
order to calculate the nth-mode multiplication, we first need to reshape an order-N
tensor into matrices. The nth-mode multiplication ×n of tensor  and matrix M is
defined as ×nM = M(n), where (n) is the “flatting” of tensor data along the nth
dimension. Figure 16.5 illustrates that an order-3 tensor is flatted over the dimension
n, n = 1, 2, 3.

Figure 16.6 illustrates the EMP of an order-2 tensor to a scalar 𝓍 =  × 1u(1)T

×2u(2)T . First, the order-2 tensor data  ∈ ℝa×b is flatted along the first dimension
and then multiplied by the first projection vector u(1), resulting a vector ×1u(1)T =
u(1)T(1). Second, this vector of size 1 × b is multiplied by the second projection

vector u(2) to get the scalar 𝓍 = ×1u(1)T×2u(2)T .
The use of P EMPs will project the tensor data  to a vector x ∈ ℝP as

x =  ×N
n=1

{
u(n)T

p , n = 1, 2,… ,N
}P

p=1
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Figure 16.7 An illustration of uncorrelated multilinear subspace learning for order-3 data.

where p denotes the index of EMP. Figure 16.7 shows the projection of order-3 ten-
sor  to a 2D matrix Y. The xm(p) is the projection of the mth patient m by EMPs:

xm(p) = m ×N
n=1

{
u(n)T

p , n = 1, 2,… ,N
}

. As shown in Figure 16.7, gP denotes the
pth coordinate vector and gP(m) = xm(p). In order to maximize the variance of pro-
jections and extract uncorrelated features, a constraint function will be imposed on
the pth EMP: {

u(n)T
p , n = 1, 2,… ,N

}
= argmax

u(n)
T

p
Var(gp)

s.t.u(n)T
p u(n)

p = 1, p = 1,… ,P and gT
p gq = 0, forallp, q, p ≠ q.

It should be noted that multilinear subspace learning produces a low-dimensional
set of uncorrelated features. In order to solve the constrained objective function, a
sequential variance maximization algorithm is utilized (see details in Figure 16.8).

The P EMPs
{

u(n)T
p , n = 1, 2,… ,N

}P

p=1
are sequentially estimated in P steps subject

to the orthogonal and normalization constraints.

16.3.4 Feature Selection

Multilinear subspace learning transforms the tensor data of size a × b × M into the
matrix of uncorrelated features of size p × M. An advantage is that these features are
now in the conventional table form of data (see Fig. 16.1a) for predictive modeling.
However, there are still a large amount of features in the postdecomposition matrix,
which may bring the “curse of dimensionality” issues for classification models, for
example, increased number of model parameters and overfitting problems [28, 29].
There is an urgent need to select a sparse subset of features that are sensitive to ICU
morbidity and mortality, as opposed to extraneous noises. Feature selection not only
improves the robustness of predictive models but also increases the interpretability
of features to further investigate the cause of ICU mortality.
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Figure 16.8 The sequential variance maximization algorithm for tensor decomposition.

A common approach of feature selection is to maximize the feature relevance
(Max-Relevance) to response variables (or outcomes). In other words, it is highly
desirable to select feature variables that have the highest relevance to the response
variables. Traditionally, such interrelationship between variables is estimated with
correlation methods. Yet, correlation is a second-order quantity evaluating merely
linear dependency among data. Notably, mutual information quantifies both linear
and nonlinear dependency between variables, which is defined as

I(x, y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)

where p(x, y) is the joint probabilistic distribution and p(x) and p(y) are marginal
probabilities. Figure 16.9 shows the practical implementation to compute the mutual
information. In the scatterplot of two variables x and y, the histogram is shown for
each variable. Marginal probabilities p(xi) and p(yj) are computed as the number of
points in xi and yj divided by the total number of points in the 2D space. The joint
probability p(xi, yj) is computed as the number of points in box (xi, yj) divided by the
total number of points in the space. In the step of feature selection, features xi that
have bigger values of mutual information I(xi; c) with the response variable c reflect
the strongest interdependency.

However, it was shown that high correlations among features (or predictor
variables) often lead to sensitive predictive models that do not necessarily yield
good classification performance. Thus, feature selection also needs to minimize
the redundancy (Min-Redundancy) among features. In this chapter, we used a
filtering method, namely minimum redundancy and maximum relevance (mRMR)
[30], to reduce high-dimensional features into a sparse set of sensitive biomarkers.
The mRMR method selects features that are maximally relevant to the response
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Figure 16.9 An illustration for the computation of mutual information.

variable while minimizing redundancy between selected features. Redundancy RI
and relevancy DI are defined, respectively, according to the following equations:

RI =
1|S|2 ∑

xi,xj∈S

I(xi, xj); DI =
1|S| ∑

xi∈S

I(xi; c)

where |S| represents the cardinality of the feature set S, xi and xj denote the ith and jth
features, and c is the response variable. The mRMR aims to yield minimal redundancy
among predictor variables and maximal relevancy between predictor and response
variables. Here, a greedy search algorithm is utilized to achieve the mRMR objective
and identify near-optimal features. Suppose there is an optimally selected feature set
Sk−1 with k − 1 features, the next best feature (i.e., the kth one) is selected by max-
imizing Mutual Information Difference (MID) in the remaining feature set X∖Sk−1,
that is, MID = max(DI − RI). The higher the MID score, the more significant the
feature is. The objective function is defined as follows:

argmax
xj∈X∖Sk−1

(
I(xj; c) − 1

k − 1

∑
xi∈Sk−1

I(xj; xi)

)

It is worth mentioning that the greedy search algorithm is very efficient in terms
of computational complexity, which is o(|S| ⋅ K) for K selected features. The mRMR
methodology provides the most significant features by ranked scores from computa-
tionally efficient heuristic algorithms.
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16.3.5 Predictive Model

Furthermore, we construct the predictive models that associate the input feature pat-
tern 𝓈 to one of the  classes of outcomes 1,… , . In this present study, clinical
outcomes are binary ( = 2), that is, survival or in-hospital death. The whole data set
 is partitioned into the training data set 1 = {⟨c(i), 𝓈(i)⟩|i = 1,… ,N1} and test-
ing data set 2 = {⟨c(i), 𝓈(i)⟩|i = N1 + 1,… ,N1 + N2}, where N1 and N2 are the size
of training and testing data sets, c(i) takes values in the output sets 1,… , , and
𝓈(i) = {xi1, xi2,… , xi𝓁} is the set of 𝓁 selected features for the ith patient recording
in the database .

Figure 16.10 shows the structure diagram of MLP network [31, 32] that is used
to predict the ICU mortality. In this two-layered network, hyperbolic tangent sig-
moid transfer function (tansig) is used in the hidden layer and log-sigmoid transfer
function (logsig) in the output layer. The hidden layer includes S = 40 neurons and
the output layer contains O = 2 neurons. Network parameters (e.g., weights IW and
bias b1) were optimized to learn and model the input–output mapping function with
an efficient algorithm, namely backpropagation. In this literature, backpropagation
algorithm is commonly used to train the multilayer feedforward network models.
This section provides a brief introduction of backpropagation as follows:

1. Forward Propagation. As shown in Figure 16.10, the output of one layer in the
multilayer network becomes the input to the next layer. The operation for the
mth layer is defined as

am = f m(Wm ⋅ am−1 + bm), m = 0, 1,… ,M

where M is number of layers in the network, Wm is the weights, bm is the bias
term, and f m is the transfer function for the mth layer. If features are presented
to the network as external inputs, then network outputs are derived with the
forward propagation as follows:

a0 = x

am = f m(Wm ⋅ am−1 + bm), m = 0, 1,… ,M

y = aM

Input Hidden layer Output layer Output

∙ ∙

Figure 16.10 The structure diagram of multilayer neural network.
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However, network parameters such as weights and biases need to be
fine-tuned to achieve the optimal predictive performance. First, the multilayer
network is initialized by randomly assigning values to network weights
Wm(0) and biases bm(0) for m = 1, 2,… ,M at the iteration k = 0. Second, the
discrepancy between network output and the ICU outcomes c will be used to
sequentially update the weights Wm(k + 1) and biases Wm(k + 1) in each layer
for the next iteration k + 1.

2. Performance Index. The training data set 1 = {⟨c(i), 𝓈(i)⟩|i = 1,… ,N1} is
provided to learn network models and fine-tune network parameters. When
input features 𝓈(i) are given to the network, the network outputs aM are
compared to the target c(i). The discrepancy of network models is measured by
the performance index, namely the mean squared error (MSE) as

F(𝜽|⟨c, 𝓈⟩) = E(eTe) = E((c − a)T (c − a))

where 𝜽 is the parameter vector of network weights and biases. Therefore, the
approximated performance index at iteration k is

F̂(𝜽) = e(k)Te(k) = (t(k) − a(k))T (t(k) − a(k))

where the expected errors are replaced by the squared error at iteration k.
3. Backward Propagation. Now, the next step is to calculate the gradient descent of

squared errors with respect to model parameters. The error is an explicit function
of parameters in the output layer. Hence, the gradient (or sensitivity) for the
output layer is

sM = 𝜕F̂
𝜕nM

= −2Ḟ
M(nM)(t − a)

Ḟ
m(nm) =

⎡⎢⎢⎢⎣
ḟ m(nm

1 ) · · · 0

⋮ ⋱ ⋮

0 · · · ḟ m(nm
sm)

⎤⎥⎥⎥⎦ and ḟ m(nm
j ) =

𝜕f m(nm
j )

𝜕nm
j

where Ḟ
M(nM) is the derivative matrix of transfer function with respect to the

input nM . However, the performance index is not a direct function of model
parameters in the hidden layers. Hence, the chain rule in calculus is used to
compute the derivatives for each layer as

sm = 𝜕F̂
𝜕nm

=
(
𝜕nm+1

𝜕nm

)T
𝜕F̂

𝜕nm+1
= Ḟ

m(nm)(Wm+1)T 𝜕F̂
𝜕nm+1

= Ḟ
m(nm)(Wm+1)Tsm+1

m = M − 1,… , 2, 1

With the use of chain rule, the backpropagation algorithm calculates the sen-
sitivities backward through the network from the last layer to the first layer.
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As such, model parameters (i.e., weights and biases) are iteratively optimized
using the steepest descent algorithm as

Wm(k + 1) = Wm(k) − 𝛼sm(am−1)T

bm(k + 1) = bm(k) − 𝛼sm

The backpropagation algorithm continues to fine-tune parameters by choos-
ing input–output data from the training data set 1. This process will iterate
until the MSE between network outputs and the targets is minimized and con-
verged to an acceptable level.

16.3.6 Cross-Validation and Ensemble Voting Processes

In this chapter, both K-fold cross-validation and bootstrapping were utilized to reduce
the bias and overfitting of predictive models. K-fold cross-validation partitions the
total data set  into K folds, in which K − 1 folds are used for the training purpose
and the rest onefold for testing. After completion of all K folds, performance statistics
are computed from the testing data sets. However, it may be noted that the class sizes
are often not equal, that is, 3446 survivals and 554 in-hospital deaths. Conventional
classification models assume that each class has enough representative cases in the
training data set. The objective of classification algorithms is to maximize the overall
prediction accuracy. When it comes to a highly imbalanced data sets, classification
models tend to favor the majority class and relatively overlook the minority class [29,
33, 34]. Therefore, bootstrapping methods were utilized to reconstruct the balanced
data sets. Bootstrapping is a statistical approach that does random sampling with
replacement from a data set. It resamples the training data set to create a large number
of “bootstrapping samples.” It is generally agreed that the bootstrapping provides
better approximations of the underlying distribution.

As shown in Figure 16.11, our ICU data set consists of m survival and n in-hospital
death recordings (m > n). In the first place, the data set A is randomly partitioned
into two subsets, that is, the training subset T and the out-of-bag testing subset T (l).
The K-fold cross-validation uses (K − 1) folds for the training purpose and the rest
1 fold for testing. It may be noted that the partition ratio, that is, (K − 1) training
folds versus 1 validation fold, is the same for survival and in-hospital death groups.
Furthermore, a balanced training set T is reconstructed with the use of bootstrapping
methods. The in-hospital death group is enlarged to yield the same size as the sur-
vival group in the new training set T ′. In other words, in-hospital death recordings in
training set T are resampled with replacement to increase the size from (K − 1) ⋅ n∕K
to (K − 1) ⋅ m∕K. In addition, the bootstrapping procedure is randomly replicated for
R times to avoid biases. For each replicate of the training data sets T ′, a predictive
model will be constructed and trained. A total of R predictive models are yielded for
R replicated training data sets. A majority voting mechanism is designed to assign
the majority class label to each recording in the validation subset T (l). In other words,
a label that appears more than half (R∕2) the votes for R predictive models will be
assigned to this recording. The final prediction results are based on the majority vot-
ing from n classifiers trained. As such, this ensemble voting approach provides more
balanced estimates of performance metrics.
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Bootstrapping

Survivals In-hospital deaths

Training

Size (K – 1) · m/K

Size (K – 1) · m/K Size (K – 1) · m/K

Size (K – 1) · n/K

Training

Testing

Size m Size n

Testing Training

T

T′

Training TestingTraining Testing

Training

Predictive model

Classification 

models

Performance 

evaluation

T

Figure 16.11 The diagram of cross-validation and ensemble voting classification.

Performance metrics used to evaluate predictive models are sensitivity (SEN),
specificity (SPE), positive predictive value (PPV), negative predictive value (NPV),
and accuracy (ACC). It may be noted that all metrics are computed from testing data
set 2. Sensitivity measures the proportion of actual positives, that is, in-hospital
death conditions are correctly identified as such. While specificity measures the pro-
portion of actual negatives, that is, in-hospital survival conditions are correctly iden-
tified as such. PPV measures the proportion of positives in the diagnostic test that are
true positives, and NPV measures the proportion of negatives in the diagnostic test
that are true negatives. Moreover, the accuracy is the ratio of subjects (i.e., either sur-
vival or death) that are correctly identified in the testing data sets. The performance
metrics, that is, SEN, SPE, PPV, NPV, and ACC, are defined as

SEN = TP
TP + FN

,SPE = TN
FP + TN

,PPV = TP
TP + FP

,

NPV = TN
TN + FN

,ACC = TP + TN
TP + TN + FP + FN

where TP, TN, FN, and FP mean “true positive,” “true negative,” “false negative,” and
“false positive,” respectively. The final score of mortality prediction is the minimum
of sensitivity and PPV.
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16.4 MATERIALS AND EXPERIMENTAL DESIGN

Real-world ICU data set was used to evaluate and validate the proposed methodology
in this present study. This data set is extracted from Multiparameter Intelligent Moni-
toring in Intensive Care (MIMIC) II Clinical Database [35–37], which was developed
to advance intelligent patient monitoring research in the critical care environment.
This data set is divided into two groups, that is, Set A and Set B, and each of them
consists of 4,000 patient records from 48 h of ICU stays (including coronary care
unit, cardiac surgery recovery unit, medical ICU, and surgical ICU). Clinical out-
comes (i.e., in-hospital death or survival) are made available for Set A, but not for
Set B. The training of predictive models is only based on 4000 subjects in Set A.
As shown in Section 16.3, the proposed decision-support system consists of a suite
of analytical tools, including data categorization, data preprocessing, feature extrac-
tion, feature selection, and predictive modeling. We conducted experiments on both
Sets A and B to validate and evaluate the developed analytical tools for improving
patient-specific prediction of in-hospital mortality.

First, we categorize ICU variables into four groups (namely general descriptors,
low-sampling variables, med-sampling variables, and high-sampling variables) based
on the missing percentage and the average number of observations per variable in Set
A. Second, these four categories of variables will be preprocessed to ensure the data
quality (see details in Table 16.3). Missing data are imputed with the use of SOM and
Gaussian process models. In particular, med-sampling and high-sampling variables
are imputed at every 4 and 1 h, respectively. Therefore, we obtain a 14 × 12 × 8000
tensor for med-sampling variables, where 14 is the number of med-sampling vari-
ables, 12 is the number of temporal samples (1 sample per 4 for 48 h), and 8000 is the
total number of patients for Sets A and B. In addition, we generate a 9 × 48 × 8000
tensor for high-sampling variables, where 9 is the number of high-sampling vari-
ables, 48 is the number of temporal samples (1 sample/h for 48 h), and 8000 is the
total number of patients for Sets A and B. Note that data categorization and data
preprocessing are consistent for Sets A and B. Third, we transform the order-3 ten-
sor form of ICU variables into the traditional table form of features (i.e., uncorre-
lated and orthogonal) with multilinear subspace learning. The feature extraction fully
considers the inherent structure of tensor data, as opposed to the worst values dur-
ing 48 h in traditional scoring systems. Then, mRMR technique is used to further
reduce high-dimensional features (i.e., two feature matrices from med-sampling and
high-sampling tensors, general descriptors, and low-sampling variables) into a sparse
set of sensitive biomarkers. Finally, we construct the predictive models with sensitive
biomarkers that predict the clinical outcomes for ICU patients.

16.5 EXPERIMENTAL RESULTS

Figure 16.12 shows an example of raw and imputed data for med-sampling and
high-sampling variables of patient ID 133581. As mentioned in Section 16.3.1,
we categorize 44 ICU variables into four groups (namely, general descriptor,
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Figure 16.12 An example of missing data imputation for patient ID 133581: (a) raw data; (b) imputed data for med-sampling (from “Lactate” to
“pH”) and high-sampling variables (from “FiO2” to “Weight”).
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low-sampling, med-sampling, high-sampling) based on the percentage of missing
data and the average number of observations per variable. Figure 16.12 shows
the imputation results for med-sampling variables from “Lactate” to “pH” and
high-sampling variables from “FiO2” to “Weight.” As the protocol is not stan-
dardized for data collection in ICU, missing data and time asynchronization pose
significant challenges for predictive modeling. In order to tackle these issues, we
performed missing data imputation for med-sampling variables at the synchronized
frequency of one sample per 4 h, as well as for high-sampling variables at the pace
of one sample per 1 h. As shown in Figure 16.12a, missing values are common in
the raw data. Also, the raw data are not synchronized for all variables. In most cases,
data collection is subject to the physician’s discretion. One way is to standardize
the protocol of ICU data collection and then perform the data analysis. However,
this cannot be practically implemented in a short time frame. The other way is to
perform missing data imputation and take full advantage of available data. In this
present study, we made an attempt to develop a hybrid method that integrates SOM
with Gaussian process for imputing missing values and synchronizing variables in
the tensor-form ICU data.

As illustrated in Figure 16.13, if two variables are collected arbitrarily, our objec-
tive is to impute the missing values as well as synchronize the data. Traditional
methods for missing data imputation mainly focus on missing values in the table
form data (see Fig. 16.1a) and have little considerations on the data synchronization.
Therefore, we propose the hybrid method for ICU missing data imputation as follows:

Step 1 – Gaussian process kriging
Initialization
Check the number of data points N for patient m
If N > MinTol

Xi(m) = {xit1 (m),x
i
t1
(m),…,xitN (m)} // the ith variable for patient m

T = {t1,t2,…,tN} // time of recorded data
Construct a new time index Tk, k = 1 ∶ K
// K = 12 for med-sampling variable; K = 48 for high-sampling

variable
If t1 ≤ Tk ≤ tN // Tk is the time index of imputed data[

Xi(m)
xiTk (m)

]
∼ 

(
0,

[
K(T,T) + 𝜎2nI K(T,Tk)

K(Tk,t) K(Tk,Tk)

])
// xiTk (m) is imputed data at time Tk, K(⋅, ⋅) is covariance

matrix
x̃iTk (m) ≜ 𝔼(xiTk |T ,X,Tk) = K(Tk,T)[K(T,T) + 𝜎2nI]−1X

End
Else

This variable is sparse or completely missing.
goto step 2 – SOM imputation

End

Step 2 – SOM imputation
Initialization

Flat the array of ICU data into a vector X(i,T)(m) for patient m
X(i,T)(m) = {x1T1 (m),…,x

1
TK

(m),…,xIT1 (m),…,x
I
TK

(m)}
// 1 ≤ i ≤ I, where I is the total number of variables
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// synchronized time index Tk, k = 1 ∶ K
// K = 12 for med-sampling variable; K = 48 for high-sampling

variable
Find the best matching neuron for patient m

c = argmin
j

{X(i,T)(m) − w (i,T)(j)(i,T)∈m
} // where m is the set of

synchronized index
// Missing variables are not included in the computation

Missing data imputation for xiTk (m)
If Xi(m) is not completely missing
// some data points {xiT1 (m),…,x

i
TK

(m) } are available for the
ith variable

xiTk (m) =
1
2
(xiTk′ (m) +𝑤

i
Tk
(c)) // where k′ = argmin

l
k − kl

Else
xiTk (m) = 𝑤i

Tk
(c) // replace the missing values with the weight of the

best matching neuron
End

As shown in Figure 16.12b, the proposed hybrid method handles both missing
data imputation and data synchronization and generates uniformly sampled data for
med-sampling and high-sampling variables. This greatly facilitates the following
steps of feature extraction and predictive modeling. In particular, SOM map char-
acterizes the population distribution of variables among patients, while Gaussian
process kriging captures the temporal correlation among variables. An attractive
feature of our proposed hybrid method is that both population distribution and
temporal correlation are utilized in the missing data imputation. However, most of
previous imputation methods considered either of these two but not both.

Figure 16.14a shows the U-matrix that characterizes the distances between neu-
rons in the SOM (10-by-10 neuron map) for Set A. The dark gray hexagons represent
neurons, and light gray lines are connections between two adjacent neurons. The dis-
tances between neurons are shown as colored hexagons that embrace red lines. The
darker color indicates a larger distance between neurons, and the lighter color is for
a smaller distance between neurons. The pattern of U-matrix describes the complex
distribution of ICU variables. SOM automatically organizes neurons in the space of
ICU data. Each neuron represents a cluster of patients that share similar data patterns

Raw data

Imputed data

Time

Variable 1

Variable 2

Figure 16.13 An illustration of missing data imputation to achieve data synchronization.
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Figure 16.14 Optimized SOM structures for training Set A: (a) U-matrix of SOM neurons;
(b) SOM sample hits.

in ICU variables. Figure 16.14b shows the hits of patients onto each neuron. In other
words, each patient is associated with its BMN. Each hexagon in Figure 16.14b rep-
resents a neuron, and the number on hexagons is the number of patients hitting on this
neuron. Because the recordings in Set A are highly imbalanced, that is, 3446 survivals
and 554 in-hospital deaths, our experimental results show that most of the in-hospital
deaths hit in the lower-right region. Based on the label information of patients in Set
A, it is interesting to find that neurons in the lower-right region captures the data pat-
terns of in-hospital deaths, while the upper-left region captures the data patterns for
the survivals.

After the step of missing data imputation, we generated a 14 × 12 × 8000 tensor
for med-sampling variables, where 14 is the number of med-sampling variables, 12
is the number of temporal samples (1 sample per 4 h for 48 h), and 8000 is the total
number of patients for Sets A and B. In addition, we generate a 9 × 48 × 8000 ten-
sor for high-sampling variables. Note that data categorization and data preprocessing
are consistent for Sets A and B. Furthermore, we transform the order-3 tensor form
of ICU variables into the traditional table form of features (i.e., uncorrelated and
orthogonal) with multilinear subspace learning. The feature extraction takes full con-
sideration of inherent structures of tensor data. As a result, 20 features are extracted
from med-sampling variables and 9 features from high-sampling variables. Both fea-
ture sets retain 95% variances in the original data. Therefore, there is a total of 43
features (2 feature matrices from med-sampling and high-sampling tensors, 5 general
descriptors, and 9 low-sampling variables). Figure 16.15 shows the sorted mRMR
scores of all features extracted. It is worth mentioning that the first few principal
components of med- and high-sampling variables are shown to be more significant
than other features and contain sensitive information for the prediction of mortality
risks. To this end, we selected 26 features with the mRMR score above 0 to build the
classification model.
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Figure 16.15 The sorted mRMR scores for all the extracted features.

Set A results
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Figure 16.16 Performance measures of the ensemble NN model.

Figure 16.16 shows the average performance metrics of ensemble NN models (i.e.,
sensitivity, specificity, PPV, NPV, and accuracy) that are computed from 100 ran-
dom replications of fourfold cross-validation of Set A. Note that the final score is
the minimum of sensitivity and PPV. Figure 16.16 also shows the receive operating
characteristic (ROC) curve, and the area under the curve (AUC) reaches 90.24% for
the NN model. Table 16.4 shows the comparison of the proposed method with var-
ious methods in the state of the art [37]. The proposed method achieves the score
of 74.83%, indicating that data-driven models can not only effectively extract the
sensitive biomarkers but also provide accurate prediction of ICU mortality risks. In
addition, it may be noted that the final score for Set B with undisclosed outcomes
is 0.50, which was evaluated with the help of Dr Ikaro Silva at the Harvard-MIT
Division of Health Sciences and Technology.
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TABLE 16.4 Performance Comparisons of Predictive Models

Methods Random
Classifier

SOFA SAPS-I Fuzzy Rule Cascaded
AdaBoost

Scores (%) 15 28 32 36 38
Methods Time Series

Motifs
LR & HMM Neural Network Bayesian

Ensemble
Proposed

Method
Scores (%) 50 50 51 53 74.83

The score of proposed method is the minimum of sensitivity and PPV, according to Figure 16.16, the score
of proposed method is 74.83%.

16.6 DISCUSSION AND CONCLUSIONS

The rapid advancement of sensing and information technology has resulted in
data-rich environment in ICUs. After surgical operations, clinicians and nurses
closely monitor clinical statuses of critically ill patients. ICU monitoring involves a
large number of clinical variables such as heart rate, pulse oximetry, blood pressure,
gas exchange, and blood test results (e.g., metabolic panel, complete blood count).
Although clinicians have access to a great deal of ICU data, it is not uncommon
that they make inferences about patient conditions based on most recent test results,
ignoring important factors such as historical test results and the relationships among
different types of tests. Notably, ICU monitoring leads to a new order-3 tensor form
of data sets with unique properties (i.e., variable heterogeneity, patient heterogeneity,
and time asynchronization), as opposed to the table form of data commonly used
in predictive modeling. These data are not processed to be easily interpretable and
then be useful for medical decision making. The tensor data and heterogeneous
properties pose significant challenges to extract useful and meaningful knowledge
from postsurgical data sets for the optimization of clinical decision making.

In the general practice of medicine, physicians lack decision-support tools that
can help them delineate hidden interactions among clinical variables, identify tem-
poral variations of patient conditions, and predict mortality risks. Over the past few
decades, many efforts have been made to develop ICU scoring systems, for example,
SAPS I-III, APACHE I-IV, MPM I-III, and SOFA. However, previous investigations
either focus on the worst values in the monitoring period or depend on human subjec-
tive decisions and visual inspection. Multiple logistic regression is commonly used to
build the predictive model. It is worth mentioning that temporal correlations among
variables are not specifically considered. In addition, missing data pose significant
challenges on the construction of predictive models. Although laboratory tests and
patient monitoring provide rich information sources for monitoring critical conditions
of postsurgical patients, the meaningful information extracted from the order-3 tensor
form of ICU data sets is rather limited. As such, physicians need to make inferences
about patient conditions based on most recent test results, ignoring important factors
such as historical test results and the relationships among different types of tests.

This chapter reviews the state of the art of ICU scoring systems and discusses their
advantages and limitations in the clinical practice. Furthermore, this chapter presents



�

� �

�

REFERENCES 499

our preliminary studies on the development of data-driven ICU decision-support sys-
tem with a series of analytical tools, including data categorization, data preprocessing,
feature extraction, feature selection, and predictive modeling. As opposed to tradi-
tional ICU scoring systems, this investigation specifically considered the underlying
structure and correlation in the order-3 tensor form of ICU data sets. In addition, we
have made attempts to address the challenges of ICU data, including variable hetero-
geneity, patient heterogeneity, and time asynchronization. Real-world ICU data set
from Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II Clinical
Database was used to evaluate and validate the proposed methodology in this present
study. Experimental results on real-world data show great potentials of data-driven
analytics for improving the prediction of ICU mortality risks. Advances in postsur-
gical monitoring practices for patients who undergo surgical procedures will signifi-
cantly decrease the mortality rates in ICU, improve the quality of healthcare services,
and lead to broader social impacts.

ACKNOWLEDGMENTS

The authors thank the National Science Foundation (CMMI-1266331, IIP-1447289,
and IOS-1146882) for support the research presented in this book chapter. In addition,
the authors would like to thank Dr Ikaro Silva, Harvard-MIT Division of Health Sci-
ences and Technology, for his kind help on the evaluation and scoring of the proposed
methodology presented in this paper.

REFERENCES

[1] Keehan S, Sisko A, Truffer C, Smith S, Cowan C, Poisal J, Clemens MK, National Health
Expenditure Accounts Projections Team. Health spending projections through 2017: The
baby-boom generation is coming to Medicare. Health Aff 2008;27:w145–w155.

[2] Alemdar H, Ersoy C. Wireless sensor networks for healthcare: A survey. Comput Netw
2010;54:2688–2710.

[3] López G, Custodio V, Moreno JI. LOBIN: E-textile and wireless-sensor-network-based
platform for healthcare monitoring in future hospital environments. Inf Technol Biomed
2010;14:1446–1458.

[4] Strand K, Flaatten H. Severity scoring in the ICU: A review. Acta Anaesthesiol Scand
2008;52:467–478.

[5] Pronovost PJ, Needham DM, Waters H, Birkmeyer CM, Calinawan JR, Birkmeyer JD,
Dorman T. Intensive care unit physician staffing: financial modeling of the Leapfrog stan-
dard. Crit Care Med 2004;32:1247–1253.

[6] Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: A severity of disease
classification system. Crit Care Med 1985;13:818–829.

[7] Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart
CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score
to describe organ dysfunction/failure. On behalf of the working group on sepsis-related
problems of the European Society of Intensive Care Medicine. Intensive Care Med
1996;22:707–710.



�

� �

�

500 HETEROGENEOUS SENSING AND PREDICTIVE MODELING

[8] Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res
Anesth Analg 1953;32:260–267.

[9] Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical
scale. Lancet 1974;13:81–84.

[10] Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE – acute
physiology and chronic health evaluation: a physiologically based classification system.
Crit Care Med 1981;9:591–597.

[11] Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Berqner M, Bastos PG, Sirio CA,
Murphy DJ, Lotrinq T, Damiano A. The APACHE III prognostic system. Risk prediction
of hospital mortality for critically ill hospitalized adults. Chest 1991;100:1619–1636.

[12] Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic
health evaluation (APACHE) IV: Hospital mortality assessment for today’s critically ill
patients. Crit Care Med 2006;34:1297–1310.

[13] Le Gall J, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathiesu D, Mercier P, Thomas
R, Villers D. A simplified acute physiology score for ICU patients. Crit Care Med
1984;12:975–977.

[14] Le Gall J, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II)
based on a European/North American multicenter study. JAMA 1992;270:2957–2963.

[15] Metnitz PGH, Moreno RP, Almeida E, Jordan B, Bauer P, Abizanda CR, Lapichino G,
Edbrooke D, Capuzzo M, Le Gall J. SAPS 3 – From evaluation of the patient to evaluation
of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive
Care Med 2005;31:1336–1344.

[16] Metnitz PGH, Moreno RP, Almeida E, Jordan B, Bauer P, Abizanda CR, Lapichino G,
Edbrooke D, Capuzzo M, Le Gall J. SAPS 3 – From evaluation of the patient to evaluation
of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality
at ICU admission. Intensive Care Med 2005;31:1345–1355.

[17] Lemeshow S, Teres D, Pastides H, Avrunin JS, Steinqrub JS. A method for predicting
survival and mortality of ICU patients using objectively derived weights. Crit Care Med
1985;13:519–525.

[18] Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality proba-
bility models (MPM II) based on an international cohort of intensive care unit patients.
JAMA 1993;270:2478–2486.

[19] Higgins TL, Teres D, Copes WS, Nathanson BH, Stark M, Kramer AA. Assessing con-
temporary intensive care unit outcome: an updated mortality probability admission model
(MPM0-III). Crit Care Med 2007;35:827–835.

[20] Ferreira FL, Bota DP, Bross A, Melot C, Vincent J. Serial evaluation of the SOFA score
to predict outcome in critically ill patients. JAMA 2001;286:1754–1758.

[21] Ranson JH, Rifkind KM, Roses DF, Fink SD, Enq K, Spencer FC. Prognostic signs
and the role of operative management in acute pancreatitis. Surg Gynecol Obstet
1974;139:69–81.

[22] Chen Y and Yang H. Heterogeneous postsurgical data analytics for predictive model-
ing of mortality risks in intensive care units. In: Proceedings of 2014 IEEE Engineering
in Medicine and Biology Society Conference (EMBC); 2014 Aug 26–30; Chicago, IL;
2014.

[23] Kohonen T. Self-Organizing Maps. New York: Springer; 1997.



�

� �

�

REFERENCES 501

[24] Chen Y, Yang H. Self-organized neural network for the quality control of 12-lead ECG
signals. Physiol Meas 2012;33:1399.

[25] Ba S, Joseph VR. Composite Gaussian process models for emulating expensive functions.
Ann Appl Stat 2012;6:1838–1860.

[26] Ye J. Generalized low rank approximations of matric. Mach Learn 2005;61:167–191.

[27] Nolker C, Ritter H. Visual recognition of continuous hand postures. IEEE Trans Neural
Netw 2002;13:983–994.

[28] Daly K, Beale R, Chang RW. Reduction in mortality after inappropriate early discharge
from intensive care unit: Logistic regression triage model. BMJ 2001;322:1274–1276.

[29] Chen Y, Yang H. Multiscale recurrence analysis of long-term nonlinear and nonstationary
time series. Chaos, Solitons Fractals 2012;45:978–987.

[30] Byon E, Shrivastava AK, Ding Y. A classification procedure for highly imbalanced class
sizes. IIE Trans 2010;42:288.

[31] Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm.
IEEE Trans Neural Netw 1994;5:989–993.

[32] Hagan MT, Demuth HB, Beale MH, editors. Neural Network Design. University of Col-
orado Bookstore, Campus Pub. Service; 2002.

[33] Yang H. Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram
(VCG) signals. IEEE Trans Biomed Eng February, 2011;58:339–347.

[34] Chen JJ, Tsai CA, Young JF, Kodell RL. Classification ensembles for unbalanced class
sizes in predictive toxicology. SAR QSAR Environ Res 2005;16:517–529.

[35] Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman L, Moody G, Heldt T,
Kyaw TH, Moody B, Mark RG. Multiparameter intelligent monitoring in intensive
care II (MIMIC-II): A public-access intensive care unit database. Crit Care Med
2011;39:952–960.

[36] Goldberger AL, Amaral L, Glass L, Haussdorff J, Ivanov PC, Mark R, Mietus J, Moody
G, Peng C-K, Stanley HE. PhysioBank, physiotoolkit, and physionet: Components of a
new research resource for complex physiologic signals. Circulation 2000;23:e215–e220.

[37] Silva I, Moody G, Scott J, Celi LA, Mark RG. Predicting in-hospital mortality of
ICU patients: The PhysioNet/computing in cardiology challenge 2012. Comput Cardiol
2012;39:245–248.

[38] Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman A. National Hospital
Discharge Survey: 2007 Summary. National Health Statistics Reports 2010;29:1–24.

[39] Lu H, Plataniotis KN, Venetsanopoulos AN. Uncorrelated multilinear principal compo-
nent analysis for unsupervised multilinear subspace learning. IEEE Trans Neural Netw
2009;20:1820–1836.



�

� �

�

17
ANALYZING PATIENT–PHYSICIAN
INTERACTION IN CONSULTATION
FOR SHARED DECISION MAKING

Thembi Mdluli, Joyatee Sarker, Carolina Vivas-Valencia,
and Nan Kong
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

Cleveland G. Shields
Department of Human Development and Family Studies, Purdue University, West Lafayette,
IN, USA

17.1 INTRODUCTION

Healthcare systems now strive to provide patient-centered care, which takes into
account patient’s needs, values, and perspectives [1]. A 2001 Institute of Medicine
report identified patient-centeredness as one of six interrelated factors constituting
high-quality health care, together with efficiency, effectiveness, safety, equity,
and timeliness [1]. “Patient-centeredness” means considering patients’ cultural
traditions, personal preferences and values, family situations, social circumstances,
and lifestyles [2]. Patient-centered care is expected to provide care guidance to
patients in the context of full and unbiased information about options, benefits, and
risks through most common patient–physician interactions as well as alternative
means. Physicians practicing patient-centered care improve their patients’ clinical
outcomes and satisfaction rates by improving the quality of the patient–physician
relationship, while at the same time decreasing the utilization of diagnostic testing,
prescriptions, hospitalizations, and referrals. Although the principle behind the
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growing movement toward patient-centered care is well established now, it remains
unclear how to effectively implement patient-centered care in various settings, to
different patient populations, and by practitioners from distinct medical specialties.

Effective care is typically defined by shared decision making in consultation
with patients rather than by physician-dependent tools or standards. As an example,
orthopedic surgeons employ the Harris Hip Score to judge the success of total hip
replacements. It was designed solely by physicians and does not even ask patients
to rate their satisfaction with the procedure, and it answers questions important to
the physicians and only thought to be important to patients. However, it is unknown
whether these tools, such as the Harris Hip Score, accurately reflect patient experi-
ence with a hip replacement or other aspects of their medical care. In this chapter,
we focus on improving patient–physician interaction during outpatient oncology
visits. It is well established that improved interaction helps ensure effective medical
decision making and improved patient–physician relationship [3]. Patient-centered
practitioners have thus been recommended to focus on employing measurable
communication skills and behaviors to improve different aspects of the interaction.
However, key questions remain, including what communication skills and behaviors
would lead to improved outcomes and how they would be employed.

Traditionally, studies conducted by health psychologists and communication
researchers are hypothesis driven, for which the key to success is designing mea-
surement instruments of patient-centered interactions and controlling the human
subject experimentation such that the hypothesis testing can be performed in a less
variable condition. These studies verified certain associations of communication
behaviors with interaction effectiveness for certain discussion topics. By identifying
important markers on patient–physician communication effectiveness, these studies
are expected to help develop promising strategies to educate physicians on how to
improve their ability to collect critical information and attend to patient concerns.
At present, as more surveys and conversational audio recordings become available,
an increasing number of prediction models are developed that include more features
than any hypothesis testing research has dealt with. Additionally, these models focus
on the overall patient satisfaction of the interaction. In the future, it is anticipated
that more sophisticated data mining techniques will be applied to develop models
based on a much larger set of potential features from the interaction.

The remainder of this chapter is organized as follows. In Section 17.2, we survey
the literature on patient-centered communication with emphasis on prognosis discus-
sion and pain assessment with end-stage cancer patients. Our objective is to introduce
this exciting applied decision theory research area to data analytics researchers with
anticipation that soon the area of quantitative shared medical decision making will
emerge. In Section 17.3, we describe our recent work on exploring the use of rat-
ing information and conversation topical data in predicting patient satisfaction in
patient–physician communication. We clearly see the path lay ahead of us on making
data-informed recommendations to physicians’ communication skills and behaviors.
In Section 17.4, we outline potential directions of applying data analytics tools to pre-
dict patient–physician interaction effectiveness and shared decision outcomes, and,
more generally, to investigate smart medical encounter management. We conclude
the chapter by providing final remarks in Section 17.5.
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17.2 LITERATURE REVIEW

In the past 20 years, researchers from different areas (e.g., psychology, medicine,
economics, sociology) have published a large number of papers, studying different
aspects of shared decision making in various forms of medical encounters. The inter-
est in shared decision making is so great in the various research communities that it
has propelled a “paradigm shift” in medical practice in which the concept of shared
decision making is said to be replacing the old notion of “doctor knows best” [4].
In 1998, a new international journal Health Expectations was launched. The aim
of the journal is to disseminate research findings in the area of patient and pub-
lic involvement in healthcare decision making [5]. In addition, a special issue on
patient partnership was published in the British Medical Journal acknowledging the
need of future study on the “paradigm shift.” While seemingly, this new approach
to medical decision making is promoted, the term shared decision making is used
without a clear definition or, in fact, even without an agreement on what it is. The
literature seems to suggest many other terms are used as synonyms for shared deci-
sion making, including informed decision making, informed shared decision making,
partnership, patient involvement, patient-centered care, and evidence-based patient
choice. Moumjid et al. [6] searched articles that were published in English and French
between 1997 and 2014 and were available from Medline, HealthStar, Cancerlit,
Cinahl, Sociological Abstracts, and Econlit. The authors highlighted several issues
for those involved in shared decision-making research and those whose aim is to
translate innovative research ideas into medical practice. They concluded that many
researchers decided to provide their own definition when realizing the existing defi-
nitions were inadequate. However, it was problematic when no definition was given
or cited in an article or the use of the definition was not being consistent. The authors
called for a clear definition and typology of the terms used, which reflects the com-
plexity of the study and consequently demands sophisticated data analytics tools to
decipher the correlations among the terms. In addition to the ambiguity on the studied
outcomes, it may be challenging to design reliable and valid measurement instru-
ments. For example, to measure patient-centered communication, instruments may
include eliciting and validating patient concerns and attentiveness voice tone. Fur-
thermore, the study design is likely to be challenging due to the fact that knowing
the purpose of the study may alter both patients’ and physicians’ behaviors. Hence, it
is common to use trained actors to portray patients seeking new consultations and
prompt physicians to assess pain, prognosis, and progression. This methodology,
known as standardized patient (SP) methodology, implies that it is challenging to
record a large number of interactions.

In previous studies, eliciting and validating patient concerns has been intensively
studied and proven to be the most reliable and valid component of the measure [7].
However, there could be a large number of items related to measuring the carefulness
of the physician in gathering relevant information about the patient. There can also
be significant variation in quantifying the actual measurements. At present, we focus
on analyzing various easily attainable features to predict communication effective-
ness outcomes. Given the inaccuracy of data collection inherent in postinteraction
surveys, text and audio recordings of patient–physician interactions in consultation
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have increasingly been used in the analysis. With the availability of text and audio
information, one could potentially synthesize enormous amount of predictive fea-
tures for the communication effectiveness. As a result, analyzing patient–physician
interaction tends to face the large p small n paradigm, that is, there are few data
points and many features. There are some fundamental challenges in the near future
on enabling big data analytics techniques in the analysis. First, for reliability consid-
eration, multiple coders are needed to code for the presence of physician behaviors.
This, however, can lead to remarked variations between different coders. Second,
since human interaction tends to present significant temporal causality, the varia-
tions on the final communication effectiveness may be aggregated over multiple time
points during the interaction. In the remainder of the section, we provide details on
two studies conducted by Shields et al. [8, 9]. These studies showcase some of the
aforementioned challenges and motivate our recent studies that apply advanced data
analytic tools to improve the predictions.

17.2.1 Patient–Physician Interaction on Prognosis Discussion

Shields et al. [8] examined patient–physician interaction on cancer prognosis discus-
sion, which tends to be emotionally difficult. Prognosis discussions are hampered
by the different focuses of patients and physicians [10]. Patients are focused on the
impact of cancer on their lives and their discomfort and pain. Physicians, by contrast,
are focused on the illness, particularly on its progression and treatment. While guide-
lines exist for discussing prognosis [11], there is no firm evidence supporting any
one approach [12]. A large number of factors affect prognosis discussion in medical
encounters [13]. Such factors include physician’s style when discussing the prognosis
[14] and patient’s preference of knowing her prognosis [15]. The literature has also
attributed culture to a main factor on the preference [16, 17].

Shields et al. [8] hypothesized that eliciting and validating patient concerns is a
marker of physician willingness to discuss emotionally difficult topics. Eliciting and
validating is a multifaceted construct that includes physicians’ eliciting and under-
standing patients’ perspective, understanding the patients’ psychosocial context,
developing a shared understanding of the problem, and sharing decision-making
power if patients desire [18]. Eliciting and validating has been found to be associated
with greater satisfaction with visits [7], reduced healthcare costs [17], and more
appropriate prescription of antidepressants [19]. Eliciting and validating is also
hypothesized to be an outcome of mindful practice [20]; thus, the authors hypothe-
sized that an attentive posture in consultation would also be associated with greater
eliciting and validating patient’s concerns during prognosis communication.

To test these hypotheses, Shields et al. [8] recruited both family physicians
and oncologists for a pilot study on prognosis discussion. The authors controlled
patient characteristics by using SPs to present a consistent message about their
desire for prognostic information. The SP methodology has been extensively used in
primary care research [7, 21], but not in examination of oncology visits. The authors
developed a model transcript complete with biological data for training the SPs to
portray patients with end-stage cancer. They also sent a complete medical record to
the recruited physician prior to each visit. The purpose of the medical record was
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to make the SP’s diagnosis and stage of cancer believable. While making the visit,
each SP carried two digital recorders that fit into his pocket in order to record the
visit surreptitiously. The SP turned on the recorders in his car before entering the
physician’s office.

To test the above hypotheses, Shields et al. [8] designed measurement instru-
ments for eliciting and validating patient concerns, using Component I in the Measure
of Patient-Centered Communication [22] (see Table 17.1). Items for the measure
were used to assess whether physicians conducted preliminary information elici-
tation, further exploration, and validation of discussion topics such as medication,
mood/depression, family support, cancer’s impact on life, and previous physicians.
Table 17.2 shows the response categories for coding elicitation and validating. Two
graduate students and two undergraduate students listened to the audio recordings and
coded the physician behaviors during preliminary exploration, further exploration,
validation, or cut-off in response to each issue discussed by the SP and the physi-
cian. Twenty recordings were coded by two different coders for reliability purposes.

TABLE 17.1 Eliciting and Validating Items [8]

Item Retained in Scale Mean SD Range

1. Inquiries/discussion about mood/depression 0.8 1.5 0.0–5.0
2. Inquiries/discussion about cancer’s impact on life 0.7 1.2 0.0–4.0
3. Inquiries/discussion about sleep 0.7 1.1 0.0–3.0
4. Inquiries/discussion about weight loss 1.7 1.4 0.0–5.0
5. Inquiries/discussion about appetite 0.7 1.1 0.0–3.0
6. Inquiries/discussion about previous physicians 2.1 1.4 0.0–5.0
7. Inquiries/discussion about current medications 2.3 1.2 0.0–3.0
8. Inquiries/discussion about alcohol use 1.3 1.5 0.0–5.0
9. Discusses working status 1.9 1.4 0.0–4.0
10. Discusses marital status 1.8 1.6 0.0–5.0
11. Treatment plan: discuss medication for treatment 1.9 1.3 0.0–3.0
12. Ask about ADLs and IADLs 0.5 1.1 0.0–3.0

Items Dropped from Scale

13. Inquiries/discussion about medical problems
unrelated to cancer

2.7 0.8 0.0–5.0

14. Conducts a physician exam 2.7 0.9 0.0–3.0
15. Inquiries/discussion about smoking 2.4 1.2 0.0–5.0
16. Discuss any at-risk exposure to carcinogens 0.1 0.5 0.0–3.0
17. Recommended change in pain medications 0.3 0.9 0.0–3.0
18. Cancer: scans done since treatment 1.4 1.3 0.0–3.0
19. Cancer: radiation done to back 2.6 1.2 0.0–5.0
20. Treatment plan: PET scan or some other scan 2.5 1.1 0.0–3.0
21. Treatment plan: discuss referral for radiation oncologist 1.4 1.5 0.0–5.0
22. Treatment plan: other blood tests 1.4 1.4 0.0–3.0

These items are dropped because (1) the behaviors happened too infrequently to be coded reliably, or (2)
they did not correlate with the total score and their removal is conducive to improve Cronbach’s alpha.
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TABLE 17.2 Response Categories for Coding Eliciting and Validating Concerns and
Prognosis Discussion [8]

Preliminary
Exploration
(PE)

Further
Exploration
(FE)

Validation
(VAL)

Cut-off
(CO) Score

Scoring protocol
each item was
scored on
scale

0= none
1= occurred

0= none
1= occurred

0= none
1= occurred

0= none
1= occurred

1= PE, FE,
and CO

2= PE or FE
3= PE and FE

or PE, FE,
VAL, and CO

4= PE and VAL
5= PE, FE,

and VAL

Preliminary exploration (PE) is scored when the physician acknowledges the patient concerns by saying
“uh huh” or any other simple statement.
Further exploration (FE) is scored when the physician encourages the patient to tell him or her more
about the concern.
Validation (VAL) is scored when the physician underscores or supports the patients about his or her
concerns by using phrases as “I am glad you came to see me about this” or “I can see why you are worried
about this.”
Cut-off (CO) is scored when the patient talks about an issue but the physician responds by changing the
topic rather than exploring the patient’s concerns.

Each item was quantified with a 1–5 scale and the average score was reported. An item
analysis was then conducted to eliminate several items. The final scale had a satis-
factory level of coding reliability, that is, Cronbach’s alpha of 0.78 and the intraclass
correlation coefficient was 0.88, indicating that the coding differentiated the cases,
not the coders. For details on internal consistency, we refer to [23].

The authors measured attentive voice tone by rating four separate factors, warmth,
concern, worry, and openness, for each physician on a 1–7 scale. The authors also
assessed prognosis communication by creating 10 items based on the components of
the SPIKES protocol for delivering bad news [24]. The coding for these items was
similar to coding elicitation and validating in that they both used the same physician
response code. Nevertheless, they remain separate constructs because they coded very
different communication behaviors.

From the above coding and rating, Shields et al. [8] collected a number of study
variables related to prognosis communication. Additional variables included those
related to a survey to the physicians on their suspicion on some patients visiting in the
past being SPs and on adherence of SPs to their roles. The authors reported descrip-
tive statistics of these study variables and examined the variables for their adherence
to assumption of normality and for the presence of outliers. They also conducted cor-
relation and regression analyses to examine which variables explained variance in
prognosis communication.
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17.2.2 Physician–Patient Interaction on Pain Assessment

Shields et al. [9] examined whether patient–physician interaction (particularly lan-
guage indicating physician certainty) was associated with incomplete (i.e., premature
closure) pain assessment among patients with serious illness. To conduct the exami-
nation, the authors again applied the SP method and used the same set of physicians.
They also followed the same procedures for coding and reliability checking as those
in [8]. In addition to measures already included in [8], the authors in [9] coded extent
of pain management, additional aspects of physician voice tone, and physician use
of certainty in their language. First, the authors developed a measure for premature
closure of physician pain assessment by coding the presence and rating the degree of
physician pain assessment behavior (see Table 17.3). Items for the measure were gen-
erated from self-report pain questionnaires [25, 26] and medical interviewing texts
[27, 28]. Second, the authors assessed anxious/concerned voice tone using a 1–7 scale
in a manner similar to the Roter Interaction Analysis System (RIAS) [29]. Lastly, the
authors used Linguistic Inquiry and Word Count, a text program [30], to tally the
amount and percentage of certainty words said by the physicians in consultation with
the SPs. These certainty words include absolute, certain, clear, complete, confident,
definite, and sure. Physicians who use more certainty-conveying words seek causal
understandings [30], an important task for physicians making assessment. However,
because physicians who have a need for certainty tend to be less tolerant of ambiguity,
they may curtail data gathering and engage them in premature closure [31]. With the
above coding and rating, Shields et al. [9] collected a set of study variables related to
pain assessment. The authors again reported descriptive statistics of the study vari-
ables and conducted correlation and regression analyses to examine which variables
explained variance in pain assessment.

TABLE 17.3 Measure of Physician Pain Assessment Items [9]

Item Retained in Scale Mean SD

1. Onset (when, duration, time course) 1.4 1.3
2. Location 2.5 0.9
3. Intensity/severity 0.9 1.1
4. Aggravating/alleviating factors 1.1 1.2
5. Associated symptoms 1.9 1.4
6. Previous/current methods of treatment 2.8 0.9
7. Other med/surge procedures 2.4 1.1

Items Dropped from Scale

8. Temporal pattern 0.7 1.0
9. Substance use (tobacco, alcohol, illegal) 2.6 1.3
10. Evaluate pain on the 0–10 scale 0.1 0.6
11. Was medication offered 1.4 1.4
12. Did physician insist patient take new medication 0.3 0.9
13. Did physician deny patient new or more medication 0.2 0.8
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Shields et al. [8, 9] implied that (i) there could be many markers that help explain
the variations in patient–physician interaction; (ii) many of these markers are highly
correlated; (iii) coding and rating consistency may be an issue. In [8, 9], the authors
conducted mostly hypothesis-driven research, which mainly studied the effect of
individual markers. Recently, we apply advanced data analytics tools to conduct
more systematic investigations in the interdisciplinary area of quantitative health
communication.

17.3 OUR RECENT DATA MINING STUDIES

Our recent studies examine satisfaction of end-stage cancer patients from interaction
with physicians. We combined almost all independent variables investigated in [8, 9]
to improve the model interpretability. To address the potential overfitting, we explored
variable subset selection techniques in regression modeling.

17.3.1 Predicting Patient Satisfaction with Survey Data

In Fang et al. [32], we used sample interaction data of 39 physicians (20 family physi-
cians and 19 oncologists). We used patient satisfaction as the outcome measure, which
was acquired from a postvisit questionnaire given the SPs. The questionnaire contains
five sections. They are (i) SP’s perception on the physician’s prognosis communica-
tion (HCCQ section with five questions); (ii) SP’s believe on how well the physician
knows his/her (KNOW section with four questions); (iii) how satisfied the SP is with
the physician (sp_satisfied); (iv) SP’s trust on the physician (TRUST section with
seven questions); and (v) SP’s overall trust on the physician (sp_overall_trust). All
items in the HCCQ, KNOW, and TRUST sections were rated on a 1–5 scale and the
sum scores were calculated. Variables sp_satisfied and sp_overall_trust were rated
using a 1–6 scale with 1 being completely satisfied couldn’t be better and 6 being the
complete opposite, and a 0–10 scale with 0 being not trusting at all and 10 being com-
plete trusting, respectively. Table 17.4 lists all five variables from the five sections.
Given the fact that these variables were defined on different scales, we rescaled them
to standard scores. We averaged the standard scores to get the final patient satisfaction
outcome measure.

Based on several hypotheses in the existing literature [8, 9, 21], we selected 13
predictive variables (or features). The majority of them fall into four categories on
eliciting/validating patient concerns, voice tone, physician use of certainty language,
and assessment of prognosis communication. Other variables include total interac-
tion time, patient’s word count, as well as physician’s gender, age, and occupation.
Table 17.5 lists the descriptive statistics about these predictive variables.

To summarize, we have one predictive variable from the category of eliciting/
validating patient concerns, three variables related to voice tone (i.e., the additional
one is associated with hostile voice tone), two variables related to physician use of
certainty in the language (i.e., an indicator was recorded on whether the physician
used phrases to strongly imply the mortality possibility to the SP), and two variables
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TABLE 17.5 Measures Pertaining to Patient Satisfaction and
Descriptive Statistics about Them [32]

Variable Name Oncologist Family Physician

Mean SD Range Mean SD Range

hccq 10.78 3.21 6–18 10 3.73 6–17
know 9.83 2.81 5–16 10 3.13 5–16
sp_satisfied 2.61 1.14 1–5 3 1.20 1–5
trust 19.56 1.98 16–22 20 2.00 18–27
sp_overall_trust 7.44 1.38 5–9 6 2.02 3–10

related to assessing prognosis communication. In addition, we included one variable
measuring the total patient–physician interaction time (in minutes), one variable mea-
suring patient engagement by counting the words he/she spoke during the interaction,
three variables indicating the physician’s age (integer), gender (1 being Male and 0
being Female), and occupation (1 being an oncologist and 0 being a family physician).
A preliminary correlation analysis indicated that most of the variables are signifi-
cantly correlated. This motivated us to explore the use of variable selection techniques
to systematically conduct regression analysis. We applied principal component anal-
ysis (PCA) to feature selection and applied linear regression to the selected principal
components. We also applied standard linear regression assisted by model selection
for comparison.

PCA [33] is a valuable and commonly used multivariate statistical analysis tech-
nique for finding patterns and reducing correlations in data of high dimensions. PCA
uses orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal compo-
nents. The transform is defined in such a way that the first principal component has the
largest possible variance, accounting for as much of the variability in the data as pos-
sible. Each succeeding component, in turn, has the largest variance possible under the
constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components.
Once we selected the first few principal components, we identified their associations
with the predictive variables. Through preliminary experiment, we concluded that it
would be reasonable to select four to eight principal components. With such selection,
about 70–90% of the variability in the data could be explained. Table 17.6 shows the
association pattern between the features and the principal components. For example,
features Elicit_val, attentive, P_WC, prog_sum, prog_freq, D_WC should be grouped
and they contribute significantly in explaining the variance in the data. We developed
a regression model based on the selected principal components.

For comparison purpose, we performed correlation analysis and model selec-
tion on all 13 predictive variables. We then applied generalized linear regression
with the selected variables. For model selection, we used the following criteria
progressively: (i) higher adjusted R-square value; (ii) smaller difference between
Mallow’s Cp statistic [34] and the number of model coefficients plus 1; (iii) smaller
Akaike information criterion (AIC) measure [35]; and (iv) Bayesian information
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TABLE 17.6 Principal Component (PC) Pattern Table [32]

Var.\PC PC1 PC2 PC3 PC4 PC5

Elicit_val 0.635 −0.324 0.272 0.153 −0.388
attentive 0.720 −0.152 −0.089 −0.373 0.216
anxious −0.296 0.759 0.110 0.019 −0.115
hostile −0.568 0.587 0.247 0.005 −0.128
P_WC 0.641 0.059 0.321 −0.303 −0.128
youdying 0.267 0.800 −0.177 −0.031 −0.004
prog_sum 0.814 0.198 −0.349 0.198 −0.200
prog_freq 0.762 0.146 −0.436 0.236 −0.217
D_WC 0.583 0.294 0.459 0.077 0.426
Totaltime 0.478 0.323 0.575 0.291 0.283
Age −0.146 −0.022 0.216 0.748 −0.267
Male −0.058 0.224 −0.388 0.567 0.504
Oncologist 0.018 0.460 −0.654 −0.062 0.092

TABLE 17.7 Prediction Model Comparison [32]

Predictive Modeling Method
SSE from

Cross-Validation
Variance

Explained

PCA in standard linear regression 4 PCs selected 17.40 68.9%
5 PCs selected 16.96 76.0%
6 PCs selected 17.32 81.8%
7 PCs selected 16.01 86.9%
8 PCs selected 18.90 90.6%

GLM with model selectiona 26.88 n/a
GLM w/o model selectiona 35.51 n/a

aThe best SSE was reported over various assumptions on the residual distribution.

criterion (BIC) measure [36]. To compare the two models as earlier, we conducted
leave-one-out cross-validation that used 38 samples to build a regression model and
tested it with the remaining sample. We used the sum of square errors over all sam-
ples as the comparison criterion. Table 17.7 shows the comparison results. From the
table, we observed that applying PCA in the framework of standard linear regression
with normal distribution on the residual outperformed applying correlation analysis
and model selection in the framework of generalized linear regression.

17.3.2 Predicting Patient Satisfaction with Conservation Data

In a more recent work, we further extended the studied data set to include conversa-
tional sequence data. We explored the use of several standard analytics methods for
data processing, feature selection, and outlier detection. In Table 17.8, we display a
portion of the conversational sequence data from the interaction between an SP and
a physician, labeled no. 1 in the data set.
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Usually, unstructured data as those in our study have to be preprocessed for
efficient analysis. Thus, the first step in our analysis was to format the sequence data
in a meaningful and amenable way for analysis. Formatting the data is a challenging
task. In one approach, we considered each instance of a conversation sequence
(each row in Table 17.8) as a time point. Then we assigned each time point with a
numerical value based on whether the patient or doctor was speaking. A sequence
was developed for each patient and topic/core, based on who was speaking (medical
practitioners were assigned a “−1”, patients was assigned a “+1”). When neither the
patient nor the doctor was speaking for a particular topic (e.g., pain medication) at a
given time point, another symbol (i.e., “NaN”) was assigned. Each topic had a matrix
associated with it. The dimensions of such matrix were m× n and where m is the
number of patients and n is the length of the longest sequence, as shown in Table 17.9.

TABLE 17.8 Portion of Data Received from One Conversation
Sequence

Case Coder Topic Who Code

1 LM Oncologist visit M Init
1 LM Oncologist visit M Rec
1 LM Oncologist visit P Go Along
1 LM Oncologist visit M Init
1 LM Oncologist visit M Rec
1 LM Oncologist visit P AG Plan
1 LM Oncologist visit M Init
1 LM Oncologist visit M Ask FB
1 LM Oncologist visit P AG Plan
1 LM Pain Meds M Init
1 LM Pain Meds M Ask FB
1 LM Pain Meds P Give Info

TABLE 17.9 Portion of Coded Sequence Data Matrix for “Init”

1 2 3 4 5 6 7 8 9 10

1 −1 NaN NaN −1 NaN NaN −1 NaN NaN −1
2 +1 NaN NaN NaN NaN −1 NaN NaN NaN −1
3 +1 NaN NaN NaN −1 NaN NaN NaN NaN NaN
4 −1 NaN NaN −1 NaN NaN NaN NaN −1 NaN
5 −1 NaN NaN NaN NaN NaN −1 NaN NaN NaN
6 −1 NaN NaN NaN NaN NaN NaN −1 NaN NaN
7 NaN NaN NaN NaN NaN −1 NaN NaN NaN NaN
8 +1 NaN NaN NaN NaN NaN NaN −1 NaN NaN
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
10 −1 NaN NaN NaN NaN NaN −1 NaN NaN NaN
11 −1 NaN NaN NaN NaN NaN NaN NaN NaN −1
12 −1 NaN NaN NaN NaN NaN −1 NaN NaN NaN



�

� �

�

FUTURE DIRECTIONS 515

After enumerating all the interactions, there was a large list of topics. In order to
extract useful information, we consolidated the topics to a smaller topic set.

With the formatted data, dimensionality became a big challenge in our problem.
Hence, we next applied feature selection techniques to determine features that could
be influential to patient’s satisfaction. In this work, we intuitively extracted the fol-
lowing features either directly from the information provided or with appropriate
summation queries. We used K-mean clustering to compare the different features in
terms of patient satisfaction and applied stepwise forward model selection to deter-
mine which features were more influential. Finally, with suspicion that physician
outliers may have caused the unsatisfied results in the regression, we used the local
weighted scatterplot smoothing (LOWESS) method [37] to detect outliers and applied
regression on the reduced sets of data points.

We concluded from this work that it is difficult to make inferences with a lot of
confidence from the analyses. The major challenge is that there were many features
compared to the number of data points. In addition, to many features, there is a
large amount of NaN data. Other challenges are more fundamental that lie in data
formatting and feature selection. We outline the potential future directions in the
next section.

17.4 FUTURE DIRECTIONS

In this section, we review the literature of (i) regression shrinkage and selection and
(ii) conversational characterization for medical encounters. The former area has the
potential to directly address the issue of large amount of features in a regression
framework. The latter one shows the potentials of some current studies and general
directions for empowering more personalized patient–physician communication.

17.4.1 Regression Shrinkage and Selection

The method of least square is a standard approach in data fitting and regression. The
best fit in the least square sense minimizes the sum of squared residuals. The problem
statement is as follows. Let us consider a data set consisting of n points (data pairs)
(xi, yi), i= 1, …, N, where xi is a feature (predictor) and yi is an outcome (or label,
category) whose value is found by observation. The model function has the form f(x,
𝛽), where the p parameters associated with the features can be adjusted with the goal
of finding a set of parameter values (a p-dimensional parameter vector 𝛽) to best fit
the data set. The least square method is intended to find the “best fit” when the sum

S of squared residuals, defined as S =
n∑
i=

r2
i , is a minimum. A residual r is defined as

the difference between the actual values of the features and the value predicted by the
model, that is, ri = yi − f (xi, 𝛽).

In some contexts, a regularized version of the least squares solution may be prefer-
able. An important regularized version of least square is lasso (least absolute and
selection operator) proposed by Tibshirani [38]. Lasso inserts into the least square
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problem the constraint that ‖𝛽‖1, the L1-norm of the parameter vector, is no greater
than a given value. For notational convenience, we assume the underlying model is
linear. As in the usual regression setup, we assume either that the observations are
independent or that the yi’s are conditionally independent given the xij’s. The lasso
estimate 𝛽 is defined by

𝛽 = arg min

⎧⎪⎨⎪⎩
N∑

i=1

(
yi −

∑
j

𝛽jxij

)2⎫⎪⎬⎪⎭ , subject to
p∑

j=1

|𝛽j| ≤ t.

The parameter t ≥ 0 is a tuning parameter. This parameter controls the amount of
shrinkage that is applied to the estimates. The above problem is a quadratic program-
ming problem with linear inequity constraints (in this case, a lasso constraint). It can
be solved using quadratic programming or more general convex optimization meth-
ods, as well as by specific algorithms such as the least angle regression algorithm
[39]. For example, Lawson and Hansen [40] provided the ingredients for a proce-
dure that solves the least squares problem subject to a general inequality constraint
H𝛽 ≤ h. Here H is a m × p matrix, corresponding to m linear inequality constraints
on the p-dimensional vector 𝛽. For this problem, however, m = 2p may be very large
so that direct application of this procedure is not practical. To alleviate the computa-
tional difficulty, one can solve the problem by introducing the inequality constraints
sequentially, seeking a feasible solution satisfying the so-called Kuhn–Tucker condi-
tions [40].

The lasso constraint
p∑

j=1
|𝛽j| ≤ t is equivalent to the addition of a penalty term

𝛼
p∑

j=1
|𝛽j| to the residual sum of squares [41, Chapter 5]. Knowing |𝛽j| is proportional

to the (minus) log density of the double-exponential distribution, one can derive the
lasso estimate as the Bayes posterior mode under independent double-exponential
priors for the 𝛽 j’s, f (𝛽j) =

𝜆

2
exp(−𝜆|𝛽j|). In other words, in the Bayesian context, the

problem is equivalent to placing a zero-mean Laplace prior distribution on the param-
eter vector. Consequently, the above-mentioned optimization problem is equivalent
to unconstrained minimization of the least squares penalty with 𝛼‖𝛽‖1 added, where
𝛼 is a constant. This minimization problem is the essentially Lagrangian form of the
constrained problem.

Let 𝛽 0
j be the full least square estimates and t0 =

∑
j
|𝛽 0

j |. Values of t < t0 will cause

shrinkage of the solutions toward 0, and some coefficients may be exactly equal to 0.
For example, if t = t0∕2, the effect will be roughly similar to finding the best subset of
size p/2. Estimating t can be done with cross-validation, generalized cross-validation,
and an analytical unbiased estimate of risk. The third method proposed in Stein [42]
enjoys a significant computational advantage over the other two methods.

The idea of the lasso method was motivated from non-negative garrote in Breiman
[43]. The garotte starts with the ordinary least square (OLS) estimates and shrinks
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them by nonnegative factors whose sum is constrained. To compute the garrote, the
optimization problem is presented as

arg min

{
N∑
i=

(yi − f (xi, 𝛽))2
}
, subject to cj ≥ 0,

∑
j

cj ≤ t.

In extensive simulation studies, Breiman [43] showed that the garotte has con-
sistently lower prediction error than subset selection and is competitive with ridge
regression except when the true model has many small nonzero coefficients. We
briefly describe ridge regression here. Ridge regression, also known as Tikhonov reg-
ularization in the context of statistics, is an alternative version of regularization for
least square problems. It adds a constraint that ‖𝛽‖2, the L2-norm of the parameter
vector, is no greater than the given value t. It is equivalent to an unconstrained mini-
mization of the least squares penalty with 𝛼‖𝛽‖2 added, where 𝛼 is a constant. One of
the prime differences between lasso and ridge regression is that in ridge regression,
as the penalty is increased, all parameters are reduced while still remaining nonzero,
while in lasso, increasing the penalty will cause more and more of the parameters to
be driven to zero. This, in fact, is due to the difference on the assumption of residual
sum of squares between double-exponential density, used by the lasso, and normal
density, used by ridge regression.

A drawback of the garotte is that its solution depends on both sign and magnitude
of the OLS estimates. In overfit or highly correlated settings where the OLS estimates
behave poorly, the garotte may suffer as a result. In contrast, the lasso avoids the
explicit use of the OLS estimates. Frank and Friedman [44] proposed using a bound
on the Lq-norm of the parameters, where q ≥ 0; the lasso corresponds to q= 1 and
ridge regression corresponds to q= 2.

In summary, the L1-regularized formulation, in many contexts, enjoy the fact that
it has the tendency to result in solutions with fewer nonzero parameter values. Con-
sequently, one can efficiently reduce the number of variables that are effective to the
given solution. For this reason, lasso and its variants are fundamental to the field of
compressed sensing. An extension of the lasso method is the elastic net regularization,
which linearly combines the L1 and L2 penalties of the lasso and ridge methods.

17.4.2 Conversational Characterization

Data analysis for conversational sequence data in shared medical decision has so far
been mostly focused on verbal communication, for example, the two studies pre-
sented in this chapter [8, 9]. Verbal communication-based data analysis biases the
results to the notion of “doctor knows best” because physicians tend to be the fre-
quent speakers in the conversation. Advanced data mining tools have been used in
the area of automated speech characterization. Among various aspects in automated
speech characterization, intonation pattern categorization could be of great potential
to move forward the area of shared medical decision making. Intonation patterns,
which are evident to determine feelings across phrases and sentences, have been of
great interest to linguists. For example, fundamental frequency on speech segments
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can be governed by stress and syntax [45]. Taylor [46] designed the tilt intonation
model to facilitate automatic intonation processing for speech technology applica-
tions. In the model, intonation is represented as a linear sequence of events, which can
be pitch accents or boundary tones. Each event is characterized by continuous param-
eters representing amplitude, duration, and tilt (a measure of the shape of the event).
The tilt model is used to detect linguistically meaningful information while speak-
ing. The most recognized applications are in the area of synthesis and recognition of
speech processing. Recently, Taylor et al. [47] showed a way of using intonation to
improve the performance of automatic speech recognition system by implementing
a word error rate on spontaneous dialog.

Verbal communication is not isolated in conversation; nonverbal communication
could also be essential to human interaction and conversation [48, 49]. Previous
studies have shown that nonverbal cues in communication are critical to the
quality of patient care [50, 51]. Riess and Kraft-Todd [52] introduce the concept of
assessing nonverbal behavior in physician–patient communication with a tool called
E.M.P.A.T.H.Y. This tool is a first attempt to help guide the detection of nonverbal
cues in physician–patient communication. Although nonverbal cues have been
assessed qualitatively in healthcare, data analysis tools have barely been applied
in this area. Moving toward data mining in nonverbal communication, there is a
need for advance methods in data collection, such as video recordings to capture
nonverbal cues in physician–patient conversations. Data analysis tools could be used
to map and associate the verbal and nonverbal cues [53] in speech categorization
of physician–patient conversations in order to improve the shared medical decision
process. Weighting schemes might also be considered to investigate the relative
importance of different forms of communication.

It is widely understood that a conversation is a sequential process. Therefore,
conversation analysis (CA) needs to take advantage of the correlation of prior utter-
ances and responses to quantify mutual understanding and knowledge evolution in the
conversation. Toyoaki [54] termed the interaction that brings mutual understanding
between the participants of the conversation dynamical knowledge interaction. This
will be particularly important in shared medical decisions because it allows physi-
cians to determine how much patients follow a conversation in the way the interaction
is expected to evolve in terms of responses, suggestions, nonverbal cues, and so on.
Models that quantify the degree of mutual understanding of prior communication
need to be developed, which can help physicians to determine the next action of con-
versation: to continue with conversation, ask more questions, or to further explain
previous points. These models could outline the sequential logic of a conversation
to improve its quality in terms of understanding and encouragement of all partici-
pating individuals. It is possible that the patient may not ask the physician questions
about things they do not understand; therefore, deducting their understanding from
the dynamics of the conversation could help guide the course of the conversation.
In a shared decision process, it is important that the patient understands every step
of the conversation for effective cooperation. Models that allow detecting whether
the patient follows a conversation and informing the next action will enhance the
effectiveness of shared medical decision by increasing the participation of the patient
in the process.
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Adaptive models are expected to allow physicians to adapt themselves to
the level of understanding of patients and thus select appropriate conversational
features to facilitate maximum patient participation in the decision-making process.
Speech recognition systems have used Bayesian approaches to design adaptive
online learning algorithms via hidden Markov models and construct decision rules
for speech recognition [55]. Similar strategies could be effective in constructing
adaptive conversation models that can learn the speech, knowledge, and behavior
of a patient in order to predict how to engage them in the medical decision process.
Furthermore, combining adaptive models and predictive models is another area that
needs to be explored with data mining tools in the shared medical decision process.
With a move toward adaptive and predictive models, data need to be collected and
implemented into the models online and faster. This would direct the field of shared
medical decision toward automated systems similar to Interactive Voice Response
(IVS) systems used in marketing and customer service telephone responses for
businesses. The use of IVS in health care has been proposed by Kedar et al. [56] to
act as automated answering machines for hospital and schedule appointments for
patients. The authors also proposed the potential use of the IVS systems as simple
diagnosis machines to assist physicians in guided medical decision making. The
use of IVS systems may also be extended to speedily collect conversation data,
adapt conversation models, and guide the physician toward the next effective course
of conversation.

17.5 CONCLUDING REMARKS

In this chapter, we survey existing research of physician–patient communication stud-
ies, describe our ongoing data mining research on analyzing coded communication
sequence data, and outline future directions in the general areas of text and speech
characterization to truly facilitate patient-centered medical decision making. In terms
of data mining methodology research, we conclude that analyzing communication
sequence data for decision-making effectiveness characterization face challenges in
aspects of data formatting, feature selection, and regression modeling. We point out
the potential of using methods such as lasso to alleviate the difficulties.

As the paradigm of medical practice is moving toward personalized medicine,
it becomes increasingly crucial to develop research on personalized conversation
analysis for improving shared medical decision processes. This development will
propel the use of integrated predictive-adaptive models, which have the ability to
track conversation dynamics and adapt the conversation in real time to allow for
effective communication. Meanwhile, these models are designed to have the abil-
ity to accommodate personalized communication for patients who have different
knowledge about their medical conditions and different levels of comfort about com-
municating with their physicians. Finally, this line of research will benefit various
forms of patient–physician communication moving toward patient-centeredness in
the new era of medical practice, which include more and more heterogeneous and
decentralized healthcare delivery, for example, home care, telemedicine, and online
medical consultation.
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18.1 INTRODUCTION

Nearly every encounter that a patient has with a healthcare provider produces a health
insurance claim. Health claims data, also called administrative data, consists of
billing codes that hospitals, physicians, pharmacies, and other healthcare providers
submit to third-party payers to receive payment for their services. A medical claim
typically contains a Provider ID, Procedure Code, Diagnosis Code, Service Date,
and billing data. Diagnosis coding uses the International Classification of Disease,
Ninth Revision, Clinical Modification (ICD-9 CM) codes, soon to be updated to the
10th revision. A pharmacy claim usually contains data to identify the medication
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and its form, for example, National Drug Code (NDC), Quantity, Service Date, and
billing data.

To the best of the authors’ knowledge, the earliest claims-based research in
health care was published by Roos et al. in 1979 in Evaluation Review [1]. This
study explored methods of organizing and checking administrative data banks to
increase their usefulness for research and evaluation. The claims data used in the
study came from the Manitoba Health Services Commission data bank in Manitoba,
Canada, which was a provincial health insurance database characterized by universal
coverage.

Beginning in the 1980s and into the early 1990s, researchers started to explore
claims data as a new data source on patient care, provider services, and resource
utilization [2–6]. Most of the claims-based studies used data from government health
plans such as Medicare and Medicaid [3, 7, 8]. In the mid-1990s, claims data from
commercial (or private) insurance plans gradually started to be used for research [9].
Since the 2000s, claims data-based research has become increasingly popular in the
healthcare domain [10, 11]. Figure 18.1 summarizes some of the highlights in the use
of claims data in healthcare research.

In the 1980s, the value of health insurance claims databases for healthcare research
was questioned due to the fact that these databases are not designed for medical
research; hence, the comprehensiveness and quality of the data were a concern [12].
In the early 1990s, there was a heated debate on the usefulness of claims data for
healthcare research. Some researchers found that claims data lack important diag-
nostic and prognostic information compared to clinical data [13], and the accuracy of
diagnosis and procedure coding varies substantially across conditions [7]. Others saw
the potential of claims data as a cost-effective alternative to traditional clinical data.
Quam et al. concluded that more thoroughly investigated, claims data should become
a more widely accepted resource for epidemiologic research since claims data pro-
vides high level of agreement with alternative and more costly data [14]. Lewis et al.
further pointed out that improvements to claims databases would enhance the bene-
fit of such databases [2]. Since the early 2000s, claims-based medical studies have
become increasingly common and claims data have been shown to be valuable in a
wide array of health applications [10].

1980 1990 2000

Claims data became
common in

healthcare research

2005 20101985

Heated debate
about the value
of claims data

1995

First paper discussing claims
databases (Ross et al. [1])

Most studies used
Medicare,

Medicaid data

Data from private
insurance plans came to
healthcare research

Figure 18.1 Timeline of healthcare research using claims data.
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Figure 18.2 Maximum database or population log(size*1000) reported in top 10 cited
claims-based studies.

The last three decades witnessed the emergence of claims databases in healthcare
research and the rapid growth in the size of such databases. To reflect the trend in
the scale of the claims databases used in healthcare research, we reviewed the 10
most cited research articles published in every 5-year period over the last 30 years
(provided by Google Scholar when searching for “health” AND “claims data OR
administrative data”) and plotted the maximum database size or population/cohort
size reported in the 10 articles, as shown in Figure 18.2. The vertical axis is in loga-
rithmic scale.

18.1.1 Advantages and Limitations of Claims Data

Claims data have several strengths that explain their increasing popularity in health-
care research. They are population-based patient-level data and are often representa-
tive and complete for large populations [11]. Claims data have the breadth to allow
long patient follow-up time, hence are extremely useful in longitudinal studies on
chronic diseases. Their large scale enables the study of uncommon diseases and spe-
cific patient subgroups (based, e.g., on age, gender, or medical condition), which
could be difficult to collect in other types of data [10]. Claims data are usually quickly
available (a delay of 3 months can be expected due to processing and data cleaning);
hence, large-scale real-time studies can be more efficient using claims data than clin-
ical data. Their availability in electronic format makes claims data inexpensive and
easy to access for researchers. In addition, claims data have billing information that is
crucial to economic evaluations of health service utilization [2]. Another advantage
of claims data is that patient bias, such as nonresponse or recall bias, does not exist in
claims data because claims data are independent of a patient’s memory [11], whereas
patient bias usually exists in survey or interview data [10].

The limitations of claims data stem from the fact that the data are generated for
insurance reimbursement; therefore, information irrelevant to reimbursement may
be incomplete or excluded. Major complaints are coding inaccuracy, undercoding
of comorbidities, overcoding of complications, typos and inconsistencies, and
the inherent variability in the data recording process [2, 11]. Although diagnosis
and procedure coding for medical claims start with a clinician, claims are often
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completed and submitted by a separate dedicated billing operator, which could
result in discrepancies. In contrast to clinical data or electronic medical records
(EMR), claims data do not contain the same level of medical details. For example,
claims data do not include procedure outcomes, such as blood test results, although
the results of tests can sometimes be inferred by subsequent procedures and/or
diagnoses. Acknowledging the strengths and limitations of claims data, choosing
appropriate data source(s) and utilizing methodologies driven by the data source(s)
are crucial in research using claims data.

18.1.2 Application Areas

The applications of claims data studies have evolved over time. Early applications
of claims data include drug utilization pattern research, disease burden estimation,
quality-of-care assessment, and health policy evaluation. In the past 10 years, adverse
drug event detection and outcome prediction emerged as new applications. In this
section, we describe each of these application areas and provide references to several
well-known studies in the area to demonstrate the range of applications.

In drug utilization pattern research, claims data have been used to investigate drug
use both at a population level and within defined patient groups. Research stud-
ies have revealed information about prescription patterns, efficacy, and safety. As
an example, Kotzan et al. used Medicaid data from 17,128 patients to study the
influence of age, gender, and race on prescription drug use. They found that among
all race–gender–age groups, white female patients of age greater than 65 had the
most prescriptions per patient while nonwhite male patients of age between 6 and
23 had the fewest [15]. A second example is a study by Melander et al. that used
prescription drug claims data from Sweden to investigate the relationships between
anxiolytic–hypnotic drug1 (AHD) prescribing, abuse, and suicide rates and found
that AHD abuse and suicide can be greatly reduced by restricted prescribing of AHD
[16]. Another example of drug utilization study is a research conducted by Glauber
and Brown who used data from the northwest region of Kaiser Permanente, a health
maintenance organization (HMO), to evaluate the use of medications by patients with
diabetes. They found that the prescription data in the HMO database provided use-
ful information on the cost impact and that patients with diabetes received a greater
number of most types of medications with a greater overall cost than nondiabetic
patients [17].

Early on, claims data became popular for estimating population disease burden for
diseases such as hypertension, diabetes, stroke, and different heart conditions [8, 14,
18]. Subsequently claims data were used to develop a comorbidity index (a measure of
coexisting medical conditions that are distinct from the primary diagnosis) to predict
patient mortality, length of hospital stay, and hospital charges [19–21]. Pharmacy

1Anxiolytic–hypnotic drug is commonly prescribed by nonpsychiatrists for outpatient care in Sweden. In
1978, it was found that a large Swedish city (Malmo), which had the highest suicide frequency in Sweden,
had a high rate of prescription of AHD [16].
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claims data have also been used to develop a chronic disease score that measures
chronic disease status [22]. These chronic disease scores are widely used in medical
research and for reimbursement adjustment and pricing. More recently, diagnosis and
procedure codes in claims data have been used to develop a computerized method, the
Complications Screening Program, to identify potentially preventable complications
of hospital care [23].

In Section 18.3, we discuss the development of quality measures from claims data
in detail, both at population level and at patient level, as this is an important applica-
tion area. Two examples that can provide insights into how claims data have been used
to measure quality of care are as follows: Weiner et al. used claims data to identify
categories of care that could be used to develop quality indicators such as preven-
tive care, diagnostic services, and treatment and management [24]; Krumholz et al.
developed a hierarchical regression model using Medicare claims data that produced
hospital risk-standardized 30-day mortality rates, which were used to profile hospital
performance among patients with heart failure. They concluded that the estimates of
the risk-standardized state mortality produced by the claims-based model were very
good surrogates for estimates derived from a medical record model [25].

Another active area of claims-based research is health policy evaluation. Because
the data are generated for reimbursement purpose, they are extremely useful for eval-
uating the clinical and economic consequences of reimbursement policy changes. In
1991, Soumerai et al. analyzed 36 months of Medicaid data to determine if limit-
ing the number of reimbursable medications in Medicaid would lead to an increased
risk of admission to hospitals and nursing homes. They concluded that such a reim-
bursement policy change increased the risk of admission to nursing homes for frail,
low-income, elderly patients [26]. A few years later, Grootendorst estimated the effect
of enhanced insurance coverage in British Columbia, Canada, on the drug use among
its residents aged 65 and older and found that the extension of insurance did not
permanently increase drug use for most individuals and made only a minor con-
tribution to growth in seniors’ drug use [27]. In 2001, Tamblyn et al. used claims
data from the Canadian province of Quebec to evaluate the impact of introducing
prescription drug cost-sharing on drug use among elderly persons and welfare recip-
ients, and concluded that increased cost-sharing was followed by reductions in use
of essential drugs (defined as medications that would not likely be prescribed with-
out a definitive diagnosis), which was associated with higher rates of serious adverse
events and emergency department visits [28]. Around the same time, Schneeweiss
et al. studied provincial health insurance claims data from British Columbia, Canada,
to analyze the outcome of reference pricing (in which insurance covers the cost up
to the reference price for drugs within a specific class) for angiotensin-converting
enzyme (ACE) inhibitors for patients aged 65 or older. They found no evidence that
patients would stop treatment for hypertension and no healthcare utilization and cost
increases [29]. The above examples demonstrate that claims data can help evaluate,
inform, and influence healthcare policy.

An emerging application of claims data is adverse drug event detection. A Google
Scholar search on “adverse drug event” AND “claims data OR administrative
data” returned 23 articles published between 1990 and 2000, 388 articles published
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between 2000 and 2010, and 312 articles published since 2010. Recent studies have
shown claims data a promising data source for postmarketing drug surveillance and
a cost-effective alternative to postmarketing clinical trial data [30–34]. Graham et al.
used claims data from Kaiser Permanente in California to find an increased risk of
serious coronary heart disease associated with the use of Rofecoxib (marketed under
the name Vioxx) [35], which is one of the most well-known claim-based studies.
Researchers have also used claims data to develop active surveillance systems for
postmarketing drug and vaccine safety, aiming at early safety-signal detection [32,
34, 36]. In active surveillance designs, claims data have the advantage of large
population size, which helps in the detection of rare events. At the same time, special
adjustments and data modeling are needed to account for the limitations of claims
data. As a sign of the importance of claims data in this area, the Food and Drug
Administration is including claims data as one of the cornerstones of the Sentinel
Project [37], a redesign of the US drug surveillance system aimed at monitoring
adverse drug events using data of over 100 million lives.

Another more recent and active area of claims-based research is outcome pre-
diction. A Google Scholar search on “outcome prediction” AND “claims data OR
administrative data” returned 44 articles published between 1990 and 2000, 148 arti-
cles published between 2000 and 2010, and 148 articles published since 2010. An
example of claim-based outcome prediction is the prediction of longevity and life-
time Medicare costs [38], where Cai et al. found that chronic obesity in middle age
increased lifetime Medicare costs relative to those who remained normal weight. In
Section 18.2, we elaborate on the use of claims data in cost prediction.

18.1.3 Statistical Methodologies Used in Claims-Based Studies

Various statistical methodologies have been used in mining claims data in the last
three decades. When claims data first came to healthcare research, survival analysis
was a widely used approach in measuring rates of outcomes [9, 26]. Classical hypoth-
esis tests, such as t-tests and chi-square tests, were commonly used to test statistical
significance of comparisons [3, 9, 17]. Regression models (e.g., logistic regression
and linear regression) were used generally to identify significant predictors of the
outcomes under study and to predict future outcomes [3, 9, 21, 24, 39]. We discuss
the modeling of regression, clustering, and association rules in more detail later using
three claim-based studies.

The following example demonstrates how regression is used to predict future
healthcare costs. Fishman et al. [40] developed a pharmacy-based risk assessment
model that first establishes an empirical relationship between prescription drugs
and chronic conditions (e.g., prescriptions of insulins are linked to diabetes) and
then uses a single-equation least squares regression model to estimate the risk
weights (regression coefficients) associated with each of the demographic (age,
gender, insurance benefit status) and chronic disease characteristics (described as a
summarizing variable RxRisk). In this study, since the authors chose total healthcare
costs as a proxy for medical risk, the risk weights were used to predict future
healthcare cost. Specifically, medical risk (or total costs) in year t is modeled as a
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function of each individual’s age, gender, health insurance (commercial, Medicare,
or Medicaid) and RxRisk during year t− 1.

That is, for each individual i, total healthcare costs in year t, noted as Riski,t, are
predicted by the following weighted least squares regression model:

Riski,t = Xi,t−1𝛽i + Ui

where Xi,t−1 is the set of independent variables for individual i in year t− 1, and 𝛽i are
the regression coefficients associated with each of the variables and Ui is a disturbance
(error) term.

More recently, modern data-mining techniques have been utilized in claims-based
studies. Clustering algorithms have been used to select comparison groups of eligi-
ble enrollees [41] and to predict healthcare costs [42]. Clustering algorithms have
also been proposed as a method for discovering behavioral patterns in large-scale
claim data [43]. Tsoi et al. [43] developed a two-step approach to apply recursively
to Australian national claims database to reveal individual behavioral patterns. First,
k-means clustering is used to segment the data into clusters based on the total benefit
received within a rolling time-window. Second, hidden Markov models (HMM) are
used to conduct pattern recognition within each of the clusters to further group those
with similar temporal behavior patterns together into subclusters. Recursively apply-
ing the two steps yields a hierarchical tree model with multiple layers, where each
layer describes the cluster of individuals of similar behavior patterns in increasing
details. The key modeling steps in this approach are as follows.

The authors define an individual’s profile as the total benefits paid (the amount paid
by insurance policy) within a rolling 14-day time-window over 365 days, namely,
individual i’s profile is represented by a 352(=365− 14+ 1) – dimensional vector,
denoted as yi, i= 1,2, …, n (n= total population size). The goal of clustering is to
group similar data points into a cluster. The k-means clustering algorithm is initiated
by randomly selecting K points in the data set as cluster centroids. Individual data
points are then assigned to clusters based on a distance metric, and the cluster cen-
troids are recalculated. The algorithm terminates when there is no more update. In
[43], the n data points are grouped together based on the total Euclidean norm from
the centroids of the K clusters, as defined by

K∑
k=1

∑
yi∈Dk

‖yi − mk‖2

where D =
K⋃

k=1
Dk is a possible partition of the n data points into K clusters and

Dk denotes the kth cluster. mk is the vector denoting the centroid of the kth cluster.
The authors apply the k-means clustering algorithm with k= 10, which results in six
coarse clusters of profiles (four clusters containing very small number of profiles are
excluded). For each cluster, an HMM is then applied to detect sequences of events
embedded in the profiles, and therefore to find finer grouping of the data based on
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temporal patterns. The HMM model in [43] assumes that the observed profiles are
generated by a mixture of M Gaussian probability density function. After training
an HMM on a training set in each cluster, the trained HMM is evaluated on all data
within the cluster (e.g., cluster A) to label these data as cluster A, B, C, D, E, and F.
As a result, the HMM misclassifies a number of profiles from one cluster as patterns
from other clusters. To minimize the number of misclassifications, the authors apply
k-means and HMM recursively to find more finely separated subclasses. The recur-
sion can continue until either the k-means or the HMM is unable to find more clusters
and classes.

The fine subclasses produced by the above-mentioned recursive two-step approach
provide detailed representations to patient’s behavior in claims data. For instance, one
subclass represents patients who had frequent visits to doctors within 12 months with
most benefit paid under $300, while another subclass represents patients who had a
sudden change in their medical behavior, which incurred benefit paid of $800 in 12
months. These representations allow identification of common sequences of events
as well as rare behavior patterns.

In addition to clustering, neural networks and association rule mining have been
identified as two effective knowledge discovery approaches that can be applied to
claims data to evaluate the relations between prespecified factors [44, 45]. An asso-
ciation rule takes the form X ⇒ Y , where X is called the “antecedent” and Y is called
the “consequent” are two disjoint frequent item sets in a given database, that is,
X ∩ Y = ∅. Association rules are defined to have several properties based on the
prevalence of the antecedent and consequent item sets. The support of the rule X ⇒ Y
is the percentage of observations that contain both X and Y, that is, P(X ∪ Y). The con-
fidence of the rule X ⇒ Y is its support divided by the support of X, which can be
viewed as an estimate of P(Y|X) [46]. Association rule algorithms are used to find
all the association rules among item sets in a given database, where the support and
confidence of these rules satisfy the user-specified minimum support and minimum
confidence.

Kuo et al. [45] proposed a two-stage knowledge discovery approach that mines
National Health Insurance databases in Taiwan using association rules following a
preclustering of the data. The first stage uses clustering algorithms to cluster the
data in order to dramatically decrease the association rule mining time due to the
large-scale nature of the data (12 million individuals). The second stage involves the
ant colony system-based (ACS-based) association rules mining algorithm to discover
useful hidden relations between diseases within each cluster, for instance, “Essen-
tial hypertension=>Hyperlipidemia,” “Headache=>Dizziness and giddiness,” and
“Conjunctival xerosis=>Chronic conjunctivitis, unspecified.” Fast discovering this
type of useful rules from claims data allows researchers to pay attention to important
groups (clusters) and to expose hidden relationships in the groups. Readers can find
the details of the ACS-based association rules mining in [45]. In Section 18.2.7, we
discuss the use of association rule mining in finding important variable interactions
in regression modeling.

In summary, early on the focus of healthcare research using claims data was often
on population-wide effects, using counting and traditional statistical techniques.
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As computing power and database sizes have increased and modern data-mining
techniques have been developed, healthcare analytics based on claims data have
become more sophisticated. Prediction and risk adjustments, quality measurement,
and drug surveillance have become increasingly common applications. Recent
research efforts range from using advanced machine learning methods for knowl-
edge discovery and pattern recognition, to discovering new correlations, as well
as for early warning signals of patient’s health [47] and increasingly sophisticated
methodologies for the early detection of disease [48].

18.2 HEALTHCARE COST PREDICTIONS

The results of accurate cost prediction models have numerous applications such as
group and individual insurance pricing, identification of members for disease and
case management, fair reimbursement design, organizational planning, and benefit
design. The predictive power of claims data became a topic of research in the 1980s
[49], and numerous studies have since established the predictive power of admin-
istrative data for healthcare costs [49–52]. A number of health analytics companies
have developed their own (proprietary) algorithms, for example, VeRisk Health and
MEDai, and academic researchers have worked on the problem of cost prediction
as well. In the following, we discuss some of the key aspects behind successful cost
prediction based on claims data and discuss some of the models reported in the litera-
ture. For consistency, let the observation period be the time period for which data are
observable and let the result period be the time period for which a prediction is made.
In the following, we first discuss some of the high-level modeling considerations and
performance measurement before discussing the applicable algorithms.

18.2.1 Modeling of Healthcare Costs

The distribution of healthcare costs is left-skewed, that is, a large part of the pop-
ulation has low healthcare costs, while a small fraction has healthcare costs in the
hundreds of thousands of USD each year. The cumulative healthcare cost distribution,
therefore, reflects the fact that a large proportion of population healthcare costs are
the result of a small fraction of the population. This is displayed in Figure 18.3. The
exact shape of the distribution will differ based on the population, and an older pop-
ulation with a heavier disease burden will display a “flatter” curve while a younger,
healthier population will display a steeper curve.

Associated with this type of cost distribution are a few very high-cost members,
who can be thought of as outliers. If these high-cost members are not addressed during
the modeling stage depending on the selected method, they can overly influence the
prediction model. There are a number of different ways to address high-cost members,
including transforming the dependent variable, the cost. A common transformation is
to use log (healthcare cost) as the dependent variable rather than the healthcare cost
directly. Another approach taken in the literature [53] is to round down high-cost
members to some user-defined upper limit. A third approach taken in the literature
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Figure 18.3 The fraction of population healthcare dollars as a function of the fraction of the
population when the population is ordered in a descending order based on their healthcare
spending.

is to divide up the range of healthcare costs into “cost buckets” [42], in which first
predict the cost range of each member and then in a second step translate the cost
range predictions into dollar amounts.

Healthcare costs are a very good surrogate for overall health conditions. In fact,
the single most powerful predictor of future healthcare costs is a member’s current
healthcare costs [42]. However, it is not only the magnitude of costs that matter but
also the temporal pattern. As a concrete example, consider the three members labeled
A, B, and C in Figure 18.4. Member A has an acute spending pattern – a period of con-
sistently low healthcare spending, then a high spike followed by a decline, returning
to low healthcare spending for the remainder of the observation period. Such spending
patterns are often the result of pregnancy complications or accidents and have limited
risk of high costs in the result period. Member B has relatively low but rising health-
care costs, and member C has constant above average healthcare costs. The pattern of
member C can be described as a chronic spending pattern and has a high probability
of continuing. Perhaps surprisingly, increasing costs toward the end of the observa-
tion period are not universally an indicator of rising healthcare costs in the result
period. Rather, only for specific subgroups are these costs an indicator. For example,
members with such a spending pattern and their first cancer diagnosis of toward the
end of the observation period have a high risk of high future healthcare costs.
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Figure 18.4 The cost trajectories of three members with different spending characteristics.

18.2.2 Modeling of Disease Burden and Interactions

One of the key considerations when modeling an individual’s health condition is the
compounding effect of multiple diseases. The cost effects of two (or more) conditions,
for example, obesity and diabetes may be larger than the contributions of the two
individual conditions in isolation. Other examples of such interactions include car-
diac disease and being an older male, depression and a number of chronic conditions
[54], and the combination of coronary artery disease (CAD) and hypertension. Given
the large number of possible diagnosis codes, directly adding all possible two-way
(and higher order) interactions to a prediction model may lead to overfitting, and as
a result the modeler needs to either employ regularization, careful variable selection,
or variable reduction. Of these approaches, variable selection has seen the widest use.

Variable selection for interactions can be done in several ways. One approach is
to rely on the medical literature and expert knowledge and directly build (and test)
variables based on this information, in essence to build in expert business rules. A sec-
ond data-driven approach is to use association rule algorithms to identify high-impact
rules that can be used in a secondary stage in the cost prediction model. To use associ-
ation rules for cost prediction, one would mine for rules of the form {group of medical
codes in the observation period}⇒ {high costs in the result period}. An example of
such groups of codes include {thyroid agents/hormones, insulin, antihyperlipidemic
drugs} and another example is {renal failure, diabetes mellitus, and insulin} [55].

In addition to including specific interactions in prediction models, the use of
comorbidity indices such as the Charlson index [56] is common practice. Other
summarizing variables include a member’s number of diagnoses, number of different
classes of drugs taken, and other utilization measures such as the number of doctors
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and/or emergency department visits. All of these measures are correlated with higher
costs in the result period.

18.2.3 Performance Measures and Baselines

Early on, R2 was the error measure of choice in cost prediction, as much of the earlier
research focused on the utilization of regression models, which maximize R2. But R2

is very sensitive to outliers and is dominated by the small high-cost group. As such,
it does not reflect the overall quality of the predictions. Alternative error measures
have been suggested, such as the mean absolute deviation (MAD).

Due to the skewed distribution of healthcare costs, the errors are not randomly
distributed; rather they tend to be a function of the current health conditions and costs.
This applies both to traditional R2 as well as MAD and similarly defined measures. As
a result, it may be advisable to analyze the error of the prediction model as a function
of risk groups (low risk through high risk). The errors of current low-cost members
will be very different in distribution than the errors of current higher cost members.
The chosen error measure should reflect the cost of the errors to the user of the model.
As an example, if the goal of the model is to identify impactable high-risk members
for case management, penalizing missing those members (and, therefore, cost-saving
opportunities) should carry a higher weight than inaccuracies in cost predictions for
low-cost, low-risk members.

Baseline comparisons can also be used to assess prediction models. As previously
mentioned, costs are a strong summary signal of overall health. Therefore, a naive
prediction model that simply predicts the same cost in the observation period to be
repeated in the result period will be fairly accurate. Any prediction algorithm should
be able to significantly outperform this baseline model in order to add value, inde-
pendent of the error measure.

18.2.4 Prediction Algorithms

Depending on the model’s purpose, a balance needs to be struck between inter-
pretability and predictive performance, as in most cases there is a trade-off between
the two. Early researchers concentrated on using classical regression models
[50–53, 57] for overall cost predictions. Regression models have the benefit of
easy interpretability, but they are sensitive to outliers and as a result care needs to
be taken when fitting them. This is less of a concern if the population size is in
the millions, but for smaller sample approaches such as rounding down the costs
of the highest cost members, regularization, or combining rare codes can help the
fit and robustness of the model. Commonly regression models are combined with
heuristic classification rules, that is, the regression models are built separately for
different parts of the population. Commercial health analytics companies often use
risk categories based on business rules, known as risk groups, and each member is
assigned to a group based on his/her (chronic) disease burden measured by either
diagnosis codes, pharmaceutical information, or both. Often, additional prediction
modeling of cost is provided for each risk group. The Society of Actuaries has
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conducted comparison studies of many of the commercially available predictors
and reported R2 in the range of 0.16–0.31 depending on the application [53, 58].
The commercial models compared used both diagnosis and prescription data,
sometimes augmented with cost information, which in all cases improved predictive
performance.

More advanced machine learning algorithms applied to cost predictions include
neural networks [59], classification trees, and clustering [42]. Classification trees have
the advantage of being robust to the number of (correlated) variables, as well as out-
liers, and have a high accuracy, especially on a healthier population. Classification
trees have the added benefit of being very interpretable and easily embedded into soft-
ware, as the trees can be straightforwardly translated into if–then–else statements. For
the most expensive members of a population, where the members’ data are denser,
methods that take advantage of the more complicated data structure such as clustering
have been shown to outperform the simpler classification trees. The increased perfor-
mance comes at the cost of more difficult interpretation, and the models are not as
easily embedded in decision support software.

In addition to the observed improvement in commercial forecasting software when
cost data are added, Bertsimas et al. [42] further showed the power of using cost data.
The accuracy of trees using only cost information was the same as for trees using
additional diagnostic, procedural, and drug information and indicator variables for
risk factors identified in the medical literature. For clustering, the overall performance
metrics were no more than 12% worse when using only cost information than when
using the full set of information. Therefore, careful use of the cost information in
claims data can be the key to increased prediction accuracy. However, if the use of
the model is reimbursement, it has been argued that using prior costs may create the
wrong incentives. In particular, there is a risk of indirectly awarding unnecessary care
during the observation period as it would lead to higher expected payments during
the reimbursement (result) period [60].

In summary, a number of supervised and unsupervised learning methods have been
applied to cost prediction, ranging from simple linear regression with a small num-
ber of variables to advanced neural networks. Recent developments include using
unsupervised learning methods such as clustering as the basis for prediction. In the
following two sections, we discuss regression trees and clustering in more detail cov-
ering some technical considerations and providing insight into appropriately applying
these methods to healthcare costs predictions.

18.2.5 Applying Regression Trees to Cost Predictions

Traditional linear regression models are global models, that is, a single prespecified
model describes the effects of independent variables Xi (medical and cost character-
istics in the observation period) on a dependent variable Y, in our case the healthcare
costs in the result period. In contrast, Regression Trees recursively partition the inde-
pendent variable space into a set of subspaces and assign a separate prediction rule
to each subspace.
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Figure 18.5 A demonstration of a first split in a regression tree.

The algorithm starts with the whole sample at a root node and then partitions
the subspace, first into two subsets according to a splitting rule that minimizes a
user-selected node impurity measure. The splitting rule commonly consists of an
independent variable and a split value, that is, the population is split up into two
groups, those with the value of the independent variable below the split value and
those with the value above the split value. An example of the first split is shown in
Figure 18.5. The split can be represented by a tree with the initial node containing
the whole population and two terminal nodes containing the two subpopulations. The
algorithm proceeds to continue to divide up the subspaces (represented by nodes in
a tree) in a greedy manner until a defined stopping criterion is satisfied. Examples
of stopping criteria include a minimum number of records in any node, a maximum
level of the tree is reached or further splits give less than some minimal amount of
improvement in predictive performance or reduction in node impurity. In practice,
applying stopping rules has often proven unsuccessful, and therefore, especially in
data-rich situations, using a validation sample to prune back the tree is preferred and
avoids overfitting the training data.

Independent of whether a stopping rule or pruning is used to avoid overfitting, an
impurity measure needs to be chosen to measure the goodness of possible splits and
improvement in performance. Commonly used is the sum of the squared deviations
from the mean. Let yj be the healthcare costs in the result period of members in node
j. Let S be the sum of squared errors for that node, that is, let

S = Σi∈j(Yi − yj)2.

When considering a split, S is calculated for a given node, and when evaluating
a split into subnodes 1 and 2, the sum of S1 and S2 is compared to S. A split is only
considered if the sum is smaller than S.

Tree algorithms can be split up into two types depending on the variable-split
selection. Exhaustive search algorithms [61] are based on exhaustive search for the
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best split over all possible combinations of variable and split values. These exhaustive
search algorithms have been shown to be biased toward numerical variables over
categorical variables [62], as there are more possible splits for a numerical variable
compared to a categorical variable. For example, consider two independent variables,
the first one the overall healthcare cost in the observation periods and the second one
an indicator variable for diabetes. When an exhaustive search algorithm searches for
the best variable-value split, it will try a split between any two values of members’
healthcare costs in the sample while there is only one possible split for the indicator
variable, whether or not a member is diabetic. Since oftentimes the set of independent
variables is a mix of binary, low-count categorical variables, and continuous variables,
the second approach, a hypothesis-based algorithm, that first chooses the splitting
variable based on a statistical hypothesis test before selecting the split may prove
beneficial [63].

Once the tree is finalized, the mean (most commonly) of each node is assigned as
a prediction rule for the members in each terminal node. An alternative is to assign
the median if the goal is to minimize the MAD. In addition, fitting small one-variable
regression models in the terminal nodes has been found to improve prediction for
some data, but makes the interpretation of the tree more complex.

18.2.6 Applying Clustering Algorithms to Cost Predictions

Originally, clustering was developed as an exploratory methodology in contrast to
a prediction algorithm. But based on the hypothesis that similar patients may have
similar futures, a prediction algorithm can be built based on a clustering methodol-
ogy. Multiple clustering algorithms exist ranging from simple hierarchical clustering
to the more advanced, as many clever heuristics have been developed for different
applications. A clustering approach that has proven successful in a range of applica-
tions is that of spectral clustering, which is based on dividing up a matrix of records
based on the top singular vectors (for more details, see [64]). Independent of the
clustering algorithm used, a similarity (or distance) function needs to be defined to
measure how similar the members of the population are. Two key observations need
to be accounted for when applying clustering to healthcare cost predictions. First, not
all medical codes are equally important. For example, kidney disease is less serious
than renal failure. Second, if a medical code is very common, it is not very distinctive,
for example, some ENT coding is very common as it can include everything from the
common cold to more serious ear, nose, and throat infections. Therefore, one should
both weight more serious conditions more heavily in the similarity function and dis-
count very common codes (ENT, labs indicators, etc.). Let k be an indicator for the
distinct medical variables in the data and i and j be two members, Let their similarity
sij be defined as

sij =
∑

k

𝑤k

xikxjk

log(Nk)
,

where Nk is the number of members with independent variable k greater than zero. The
weights wk can be derived from medical severity of conditions as ranked by experts,
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or alternatively be found via optimization or regression, for example, by fitting a
regularized linear regression with the medical variables as the independent variables
and the result period healthcare costs as the dependent variable.

An additional challenge of applying clustering to healthcare cost prediction
results from the high dimensionality of the problem that leads to very few “similar”
members. One approach to overcome this challenge is to implement a two-step
approach based on the insight that costs in the observation period are strong
predictors of costs in the result period. As a result, in the first step, members are
clustered together using only their cost information. For example, using members’
monthly cost and weighting the later months of the observation period more
heavily than the early months. Then, once a clustering of cost-similar members is
achieved, a clustering algorithm is applied again to each cost cluster separately using
members’ medical variables to form cost-similar and medical-similar clusters as
shown schematically in Figure 18.6. In numerical experiments [42], it was found
that cost information can distinguish members with different costs in the result
period at a coarse level, which is difficult to achieve using only medical variables.
On the other hand, medical information improves prediction accuracy at a finer
level. Clustering algorithms have not traditionally been applied to healthcare costs
prediction using claims data, but have been shown to perform well, especially for
higher costs members.

The
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Figure 18.6 A schematic picture of a two-step clustering algorithm that uses first cost
information to create cost-homogeneous subgroups before applying clustering with medical
information.
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18.2.7 Identifying High-Cost Members

Identifying members at high risk of high healthcare cost has been of interest to
researchers and practitioners due to the potential of early intervention programs,
such as case management, to curb healthcare costs. In their 2003 study, Meenan
et al. [65] compare the ability of commercial healthcare cost prediction software in
identifying the top 0.5% and top 1% of the population and compared the performance
of the commercial applications to a baseline model of prior cost rankings (i.e., the
top 0.5% or 1% in the observation period is predicted to be the top spenders in the
result period). The researchers found that in some cases the commercial software
outperformed the baseline model, but in other cases their performance was very
similar. Additional work has focused on the use of more advanced algorithms. For
example, Crawford et al. [66] use neural networks to identify disease-specific at-risk
members and report performance, as measured by the area under the ROC curve, on
par with Meenan et al.

In contrast to predicting high healthcare costs, a different approach to identifying
members at risk of bad outcomes is to model the outcomes directly. Using logistic
regression and careful variable modeling (indicator variables of undesirable utiliza-
tion patterns such as visits to three or more different primary care physicians or poor
treatment patterns such as risky drug combinations), researchers were able to iden-
tify members at increased risk of hospital readmission [67]. An additional study [68]
looked at how well risk groups and a prior utilization model predict members with
the highest utilization, which is defined as the number of days in the result period in
which a member receives either inpatient or outpatient services. Using logistic regres-
sion the authors show that if the goal is to identify 90% of the top 2.2% of utilization
members (sensitivity set to 0.9), the false positive rate is too high to be useful. How-
ever, when identifying the top 1% of healthcare users, one can do so almost perfectly
with the prior utilization model. That is, the current top 1% will almost all be the
next year’s 1% (the sample used in the study only included members that survived
the duration of the result period).

Independent of whether the dependent variable is next year’s healthcare costs or an
undesirable outcome, if the goal is cost reduction the key is the potential for impact.
That is, the key to cost reduction is to distinguish preventable high-risk cases from
nonpreventable cases. For example, looking forward a diabetic with end-stage renal
failure is at high risk of high healthcare costs, but not much can be done to pre-
vent these high costs. In contrast, a member with irregular utilization patterns and an
underlying chronic condition without appropriate medication may be an example of a
high-risk member for whom case management can have an impact. With this goal in
mind, researchers have started to build models using association rule infused regres-
sion models [55] to identify current low-cost members at high risk of large costs in
the result period.

18.2.8 Discussion

When applying cost prediction models in practice there are additional considerations.
Many times there is a lag in the claims processing, and therefore case managers and
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planners may not have up-to-date information. Models therefore need to be trained
and measured on lagged data to provide realistic picture of the models’ performance.
In addition, many times, insurance pricing and renewal decisions have to be made
months in advance, which combined with the data-lag may result in an “information
gap” of up to half a year, an important considerations when basing decision making
on these models.

Earlier we have summarized some of the methods and modeling considerations
used for cost prediction and high-risk member identification. One of the more
recent developments in the data-mining community is the extensive use of ensemble
methods, which combine a number of (independent) models into a single prediction
model. The application of ensemble methods to healthcare cost predictions has,
to the authors’ best knowledge, not been attempted, at least not published, and
may be a promising avenue to pursue to improve predictive performance. A good
prediction model needs to be tailored to the application, whether it is pricing,
planning, or prevention, and for those different purposes, different models and
different performance measures may be appropriate.

18.3 MEASURING QUALITY OF CARE

The quality of care delivered in the United States varies considerably and in many
cases is substandard [69, 70]. The measurement of quality is of vital interest to a
number of stakeholders. For government agencies, measures of quality at the national,
state, or local level are important for guiding and assessing healthcare policy. Qual-
ity measures of providers – such as hospitals, medical groups, or individual physi-
cians – can be used by the providers to identify deficiencies in the care they are deliv-
ering. Consumers can also benefit from information about the quality of providers,
for example, to choose a physician or to select a hospital at which to have a proce-
dure performed. Measuring quality is also of interest to healthcare payers, such as
Medicare and private insurers, who want to make sure they are getting their money’s
worth and pre-empt expenses that could result from poor care. Payers are experi-
menting with incentivizing quality care through “pay-for-performance” policies that
tie reimbursements to quality measures [71]. Finally, measuring the quality of care
received by individual patients can help identify those patients who are receiving poor
care and who might benefit from interventions designed to improve their care.

18.3.1 Structure, Process, and Outcomes

There are three dimensions of healthcare quality: structure, process, and outcomes
[72]. Structural aspects of care pertain to the setting in which healthcare takes place.
This includes such aspects of care as physical facilities, the supply of doctors, access
to medical technology, and government policies. The process of care refers to the
steps taken by a patient’s physician or team of providers in caring for them. For
example, the process of care for a sore throat might involve taking the patient’s
temperature, ordering a strep test, and/or prescribing a medicine. The quality of the



�

� �

�

MEASURING QUALITY OF CARE 541

process of care indicates whether the care provided adhered with best practices or
the relevant clinical guidelines. The quality of outcomes refers to the results of the
patient’s care. At its simplest level: did the patient get better or not? Different out-
come measures are appropriate for different situations. For example, 5-year survival
rates are a commonly used measure of the quality of cancer treatment. Blood glucose
level would be a relevant outcome for measuring the quality of care for a diabetic.

Claims data are perhaps best suited to measuring the quality of the process of care.
Many specialty medical societies have developed clinical guidelines that outline opti-
mal care for a disease. The degree to which actual care coincides with the guidelines
can be employed as a measure of quality. In this manner, claims data has played a
role in measuring quality of care for a wide range of diseases including asthma [73],
cancer [74], chronic obstructive pulmonary disease (COPD) [73], depression [75],
and diabetes [73, 76–80].

Claims data can be used indirectly to study how structural aspects affect qual-
ity of care by comparing process of care in different structural settings. Differences
revealed via the claims data in the quality of care delivered in the different settings
could be attributed to differences in the settings. Two such studies measured how
the quality of process of care for Medicare patients has changed over time [77, 81].
Kuo et al. [77] found that over the period 1992–2001, the rate of preventative care
for diabetics in the Medicare program improved. The rate of short-term complica-
tions also improved although changes in the rates of long-term complications were
mixed. Jencks et al. [81] analyzed the change in 22 quality indicators using a mix of
claims data, medical records, and surveys for Medicare patients between the periods
1998–1999 and 2000–2001. They found improvements in 20 of the 22 indicators.
Changes in quality over time are presumably the result of changes at the structural
level for example, government policy, organizational changes geared toward quality,
improved technology, or improved education.

Structural aspects of care have also been studied using claims data collected at the
same time in different settings. Hollander et al. [76] compared the care received by
diabetics in a fee-for-service setting to a managed care setting (HMO) and to the Vet-
erans Administration (VA) using a mix of claims data and medical records. Contrary
to what they expected to find, the care provided in the fee-for-service system was of
high quality comparable to HMOs and the VA. Weiner et al. [80] found variations in
the care provided to diabetics along a number of structural dimensions, including the
type of primary care provider the patient saw and whether care was provided in an
urban or rural setting. Piecoro et al. [82], in a study of the prescribing of inappropriate
drugs to the elderly, found that nursing home residents were prescribed inappropriate
drugs more frequently than non-nursing home residents. The authors posit a number
of reasons why this might be.

In some situations, claims data are also useful for measuring outcomes [83],
although in many cases they lack the necessary clinical details. For example, for a
patient with hypertension, a successful outcome would be a lowering of their blood
pressure. Since lab results and readings such as blood pressure are not recorded in
claims data, claims data would not be useful in this case. On the other hand, for
patients treated for heart attacks, a relevant outcome measure is whether they are
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re-admitted to the hospital within the next 30 days (re-admittance would be consid-
ered a negative outcome). Since claims data provide a record of hospitalizations,
they would be useful in this case.

18.3.2 The Quality of Quality Data

While claims data have been shown to have high enough accuracy for many research
purposes, their use for measuring quality of care continues to be scrutinized. The
reason for this is likely tied to the fact that quality measures derived from claims
data have been proposed for such high-stakes applications as facility ratings and
pay-for-performance. If the quality of a provider’s care is being assessed, it would be
reasonable for the provider to insist that the data being used is an accurate reflection of
the care actually provided. This can be contrasted with cost predictions, which attempt
to forecast the future and so are inherently uncertain. In light of the large statistical
uncertainty involved in predictions, the uncertainty introduced by any inaccuracies in
the claims data is less significant. With pay-for-performance assessment, on the other
hand, the care being assessed has already occurred so any uncertainty is strictly the
result of the data or the method of measurement.

A number of limitations of claims data as a tool for quality measurement have
been reported in the literature. Farmer et al. [84] discuss how the use of claims data
for pay-for-performance and ranking of hospitals could lead to a change in behavior
of what is recorded in claims. Ryoo et al. [85] demonstrated that some patients’ care
is inaccurately scored of lower quality because they did not receive care dictated by
clinical guidelines when in fact the care was not appropriate due to contraindications
recorded in their medical records (which may not be present in claims data). Keat-
ing et al. [86] found that a patient’s race and age, and the type of clinic in which
they received care, affected the accuracy of their claims data when compared to their
medical record. The authors hypothesized that differences in the sophistication of
the billing systems used by different clinics may account for some of this difference
in accuracy. The limited ability to determine timing of events, particularly during
hospitalizations, based on claims data limits their usefulness for identifying compli-
cations resulting from poor quality care [23, 87, 88]. Researchers must keep these
challenges and limitation in mind while using claims data to assess quality of care.
In what follows, we discuss some of the mathematical (Section 18.3.3) and practical
(Section 18.3.4) considerations involved in constructing quality measures, a recent
statistical approach (Section 18.3.5), and the application of quality measures to case
management (Section 18.3.6).

18.3.3 Composite Quality Measures

Often, a quality score for a patient or provider is constructed from several individual
quality indicators. For example, suppose a diabetic’s quality of care was measured on
four dimensions and he was found to have had his HbA1c measured and dilated eye
exam, both performed at the appropriate frequency, but did not have his urine albumin
level checked or have a foot exam. A simple numeric summary of his quality of care
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would be that he had two out of the four recommended procedures performed, or
50%. Similarly, if a physician treated 100 diabetics and performed foot exams on 75
of them, the physician’s quality of care on this dimension could be summarized as
75%. Although both of these examples use simple averaging, quality indicators can
be combined into a single composite measure in a number of ways. The choice of
an appropriate composite measure can play a crucial role in the acceptance of the
measurement by those being assessed.

There are two levels at which aggregation of quality indicators can take place:
at the patient level or the provider level. At the individual patient level, the quality
measures consist of a binary n-vector x where n is the number of quality indicators
and xi = 1 if the patient’s care was in compliance with the ith quality measure and
xi = 0 otherwise. At the provider level, the quality measures consist of a real-valued
vector y where yi represents the percent of patients whose care was in compliance
with the ith quality measure. If the size of the population served by the provider is p,
then the relationship between x and y is

yi =
1
p

p∑
j=1

xij (18.1)

where xij is the ith quality indicator on the jth patient.
The most straightforward approach to combining the patient-level quality mea-

sures is to take their average, as in the diabetes example above. For an individual
patient, the composite quality metric would be

1
n

n∑
i=1

xi (18.2)

That is, the fraction of the indicators with which the patient’s care was in compli-
ance. At the provider level, the computation would be

1
n

n∑
i=1

yi (18.3)

which would be the average rate of compliance across all indicators. However, not
all quality indicators may be of equal importance. Therefore, the indicators can
be weighted by their importance before averaging, and a number of approaches to
weighting have been suggested [89].

• Judgment Weights. The weights come from the judgment of medical experts.

• Cost-based Weights. The difference in average (or median) cost of care for
patients in and out of compliance with a particular indicator can be used as
weights. Indicators that are tied to larger differences in costs would have larger
weights. To reduce noise, median cost rather than average cost can be used.
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• Opportunity-based Weights. Not all quality indicators are applicable to all mem-
bers of the patient population, since some patients may have contraindications
to certain tests or procedures. Opportunity-based weights place more weight
on broadly applicable processes [89]. Let pi be the number of patients who the
ith quality indicator applies to and let p* be the number of patients for whom at
least one of the quality indicators applies. Then the opportunity-based weighted
composite score is

1
p∗

n∑
i=1

piyi. (18.4)

• Benefit-of-the-doubt Weights. The rate at which each indicator is complied with
may implicitly reveal the importance that the provider places on that partic-
ular indicator [89]. For example, if a provider is in compliance with Hba1c
testing for a high percentage of patients, it may reflect the fact that the provider
feels Hba1c testing is very important. By using the compliance rates themselves
to determine the weights, weightings can be constructed to give the provider
“the benefit of the doubt,” that is, the provider is emphasizing those measures
that they deem most important. Note the relationship to judgment weights, for
which an external medical expert assigns weights based on importance; here the
providers themselves act as the experts.

Shwartz et al. [89] show that benefit-of-the-doubt weights wi can be deter-
mined using a linear optimization model of the form

Maximize 𝑤iyi subject to
n∑

i=1

𝑤i = 1, 𝑤i ≥ 0∀i, (18.5)

along with side constraints that bound the deviation of the weights from the
weights based on one of the other methods. Shwartz et al. show that under a
broad range of bounds on the weights, the same providers tend to rise to the top.

• Statistical Weights. In this case, weights are derived from a statistical model
of quality [90] where a single binary quality indicator for a patient’s care is
assigned by a medical expert after review of the patient’s claims history. Next,
a logistic regression model is fit that determines weights for individual compo-
nents of care. Note the relationship with judgment weights, which also rely on
a medical expert, but here the judgment is done at the level of the patient’s over-
all care, not for each individual component of care. This approach is discussed
further in Section 18.3.5.

18.3.4 Practical Considerations for Constructing Quality Scores

Comparing actual care to clinical guidelines is the most common approach to measur-
ing quality of care. The approach can be applied at virtually any level of the healthcare
system – physicians, medical groups, hospitals, or geographic regions such as states
or nations. Each can be analyzed by aggregating care across the relevant patients and
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calculating the percent who received care that was in accordance with each item from
the guidelines. But, the approach does have practical and theoretical limitations.

In practice, the analysis can be complicated when a patient sees multiple providers
or has multiple payers for their care (such as a combination of Medicare and private
insurance). In such a case, the entirety of the patient’s care may not be contained
within a single claims database. The researcher, as a result, may have an incomplete
picture of the care that the patient received. To compound this problem, it is gener-
ally not readily apparent from the data recorded in a claims database whether another
payer exists. Similarly, if one is assessing providers and the providers accept payment
from different sources, then the entirety of their patients may not be contained within
a single claims database. In this case, the researcher may only have access to a non-
random sample of a provider’s patients. This problem is obviated if the researcher
has access to the provider’s own billing database or if there is only a single payer, as
is the case in many countries.

Quality can also be more complex to assess when a patient has multiple chronic
diseases (although, for diabetes care at least, Halanych et al. [91] did not find a rela-
tionship between the number of diseases a patient had and the diabetes care they
received). Treatment guidelines for one disease may come into conflict with the treat-
ment guidelines for another. That is, it may not be possible (or appropriate) to give
care that is “optimal” according to each guideline individually [92]. Or, when the
disease burden is particularly high, it may become infeasible to perform all of the
recommended tests and procedures because the time it would take would detract from
the patient’s quality of life.

Accurately assessing quality of care for complex patients with multiple chronic
diseases is important for several reasons. From the payer’s perspective, the most
complex cases are the most costly and ensuring quality care is delivered can help
contain costs. From a patient’s perspective, the more complex their case, the more
crucial quality care becomes. (It is easy to survive suboptimal care for a sore throat.
A suboptimal open-heart surgery is another matter.)

18.3.5 A Statistical Approach to Measuring Quality

An alternative to the “checklist” approach of using clinical guidelines is to develop
a statistical model of quality of care. Bertsimas et al. [90] used a logistic regression
model to identify diabetes patients receiving poor quality care. Logistic regression
models a binary response variable, in this case an indicator of poor quality of care,
as a nonlinear function of a set of independent variables. Let Y be a vector of binary
response outcomes for the data set and X be the corresponding matrix of independent
variables. The logistic regression model is given by

Y = 1
1 + e−(𝛽0+𝛽X)

In contrast to ordinary linear regression that has a closed-form solution, the logistic
regression model is fit via maximum-likelihood method. Logistic regression is widely
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used for modeling binary responses, in social and life sciences alike. Its popularity in
part stems from the interpretability of the model; exp(𝛽k) is the increase in the odds
of the quality of care being poor, when the kth independent variable is increased by
one, everything else being equal. The modeling process in [90] relied on an experi-
enced physician who reviewed the claims data of 101 diabetics, rating the quality of
care they received. The logistic regression model was fit to the quality ratings, using
variables derived from the patients’ claims data.

The resulting model was able to classify 80% of cases accurately in an
out-of-sample test (compared to a baseline accuracy of 63% for a naïve model
classifying all care as good). The model used only three variables: the number of
HbA1c tests a patient had during the study period, an indicator for polypharmacy
(initiating treatment with two or more drugs simultaneously), and a measure of the
frequency of use of acute pharmaceuticals (such as antibiotics).

The advantages of a statistical approach to measuring quality are several. Because
it does not need to hew to clinical guidelines, a statistical model can capture aspects
of care that are beyond the guidelines’ purview. In fact, a statistical model of qual-
ity does not even require an explicit definition of quality [90]. Another benefit is
that a statistical model is not reliant on a priori weights for different components of
care – rather, it determines weights that best fit the data. Finally, because a statistical
model need not be based on the guidelines for a specific disease, such an approach
could be used for developing a model of quality that could be applied to a general
patient population.

The statistical approach described in [90] is a “top-down” approach to measuring
quality – the physician provides a rating of the patient’s overall quality of care, which
is then used to identify, through the statistical modeling process, particular aspects of
care that correlate with the physician’s ratings. The checklist approach to measuring
quality, on the other hand, is “bottom-up” in that it begins with particular aspects
of care – the individual quality indicators – which are then aggregated to yield an
overall measure of quality. A limitation of the statistical modeling approach is that it
is reliant on human medical experts, which limits the sample size that is practical for
model building or makes the data collection expensive. One approach to overcoming
this limitation is discussed in Section 18.3.6.

18.3.6 Quality as a Case Management Tool

Ongoing quality-of-care monitoring can be of benefit to case management organiza-
tions. In a typical case management setting, case workers (often nurses) interact with
patients by phone or in person. As it is practiced today, case management is reac-
tive – after a patient begins incurring high costs, a case manager intervenes. The case
manager may educate the patient about their disease, help the patient navigate the
healthcare system, encourage the patient to comply with their treatment, and so on.

Using cost predictions and measures of quality of care, a more proactive approach
to case management can be taken. Rather than reacting to patients who have already
incurred high costs, case managers can intervene ahead of time with patients who are
predicted to have high costs in the future. Furthermore, intervention can be focused on
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those patients who have high predicted cost and are currently receiving poor quality
care. This combination of high predicted costs and poor care may provide the most
opportunity for the case manager to have an impact, improving the patients’ care and
containing costs before they balloon.

The use of quality measures based on claims data are less controversial for identi-
fying candidates for case management, since the measures are not being used to judge
any of the care providers nor tied to compensation. Even if the quality measure is not
perfect, it can still help the case management team focus on patients who are more
likely to be receiving poor care than the general population [90]. For these reasons, a
statistical model of quality may be more suitable for use in this context than it would
be, for example, for ranking hospitals.

The case management context also provides an opportunity to increase the sample
size on which the statistical model is based. As case managers review cases, they
can record their own quality rating in the database. Although the case managers are
not highly trained physicians, they are often registered nurses. Furthermore, based
on their experience, they may have a better sense of the types of patients who would
benefit from case management. So perhaps they would identify different types of poor
quality care than a physician would, but for the purposes of case management this is
fine. As the quality ratings of the case managers accrue in the database, the model
can then be refit and refined. The additional work load for the case managers would
be small, since they would be reviewing the case anyway prior to their contact with
the patients.

18.3.7 Discussion

An improved ability to measure quality of care has the potential to help target health-
care resources where they are needed. Quality measures based on insurance claims
data have been developed for a broad array of chronic diseases, although the mea-
surement is mainly done in a checklist manner. This is problematic because often
the clinical guidelines that the measures are derived from are not applicable to all
patients due to comorbidities, incompatibilities between treatments, and other exten-
uating circumstances. More recent studies have been careful to exclude such patients
from the study population. This leads to more accurate assessment of the quality of
care being delivered to the study population, uncontaminated by patients to whom the
clinical guidelines do not apply. But at the same time, the quality of care received by
patients excluded from studies due to complicating factors is no less important than
the quality of care received by those patients who fit cleanly in study guidelines. So
while more carefully applying exclusion criteria may lead to a more accurate picture
of compliance with treatment guidelines, it leaves more and more patients out of the
picture, their quality of care not as thoroughly measured. This is where more holistic
measures of quality of care hold promise.

Quality of care has not seen the same innovative application of advanced ana-
lytics that cost prediction has. There is an opportunity for more sophisticated sta-
tistical approaches to overcome some of the limitations of the checklist approach,
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particularly by measuring the quality of care of patients with multiple chronic dis-
eases and other complex cases to whom narrow clinical guidelines do not apply.

18.4 CONCLUSIONS

Ever larger claims databases provide the opportunity for improving the healthcare
system and the health of individuals. Claims data provide a unique bird’s-eye view
of individual member’s healthcare state, and as such offer not only opportunities
for population-based research, but individual analysis as well. Currently, no other
source of healthcare data comes close to the sheer volume of claims data. They offer
a promising vista for the quantitative researcher with the statistical and data-mining
tools needed to subdue their inherent noise. The health implications of the knowledge
that can potentially be extracted from claims data make them intrinsically worthy of
further research. In the field of claims data research, there is opportunity to develop
new analytical techniques and to extract interesting medical knowledge using exist-
ing techniques. As the fields of computing and machine learning continue to evolve,
pattern recognition and knowledge discovery have the potential to improve medical
knowledge and healthcare practices, as these methods take advantage of the large size
of the data that enables detection of patterns that would otherwise lie undiscovered.
It is clear that claims data will continue to serve as a source for policy evaluation,
population analysis, and inspiration of new knowledge discovery and data-mining
algorithms.
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19.1 INTRODUCTION

The convergence of health reform regulation, consumer demand, market realities, and
technology developments are driving healthcare organizations to explore new mod-
els of care and payment across the delivery spectrum [1, 2]. The Affordable Health
Care (AHC) Act has emerged as a catalyst for changes in how insurance is obtained
and how care is provided [3]. The focus has shifted toward consumers and there is
an increasing demand for customer service as the concept of outcome-based health
management grows [4]. Employers are increasingly turning to their health insurance
providers to assist them to actively manage the health of their employees in an effort
to sustain high levels of productivity [5, 6]. Layered onto this is the explosion of
social media, creating an opportunity for insurers to not only market themselves using
innovative tools but also engage their customers in highly accessible and customized
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ways [7, 8]. Recent reports by the Pew Research Center indicate that 45% of the US
adult population is living with one or more chronic conditions, are likely to be older,
and also “seriously social” about seeking information from their healthcare providers,
family members, and friends [9].

Health insurance plans are thus exploring new and creative methods to reach out to
members to offer health information, provide support, encourage healthy behaviors,
and leverage the emerging trend among consumers to play a more active and engaging
role in self-health management. In general, more people turn to the Internet than any
other source for health-related information and support. A reason for this trend can
be attributed to the increasing healthcare costs and resulting changes in consumer
behavior [10]. The explosion of Internet technologies has opened up new platforms
to connect stakeholders such as patients, providers, and insurers. These relationships
are vital to the long-term success of healthcare organizations.

Consumption of online media is widespread among the adult population who are
active online users and is correlated with the growing penetration of broadband Inter-
net access in the United States [11]. According to a survey that measured patient
activation, less than half of the adults in the United States, at 41.4%, have the highest
(fourth) level of activation [12]. At this level, people have the skills and confidence to
manage their health; moreover, they are more likely to obtain preventive care, such as
yearly health screenings, immunizations, and seek information about healthy eating
habits and physical activity. At the third level, 37.2% individuals may lack confidence
and skills to take action. Individuals in the first and the second levels are passive and
more likely to be incapable of managing their own health effectively. The ability to
move up and down rankings is possible with the accumulation of health information
in conjunction with willingness to be active in personal health management. This is
where the use of social media can provide value, namely, to offer health information
and self-health management tools and services in a quick, credible, and convenient
manner. The popularity of social media can be a transforming landscape for health
management and healthcare delivery [13].

The rest of the chapter is organized as follows. Section 19.2 contains a comprehen-
sive review of the existing literature on the use of social media for healthcare purposes
along with the application of analytics tools in this field, Section 19.3 provides details
about our particular case study based on a large health plan in Pennsylvania, and
Section 19.4 introduces the analytical tools we employed. In Section 19.5, we include
all our results along with discussions. We conclude in Section 19.6.

19.2 LITERATURE REVIEW

Whether it is Facebook, LinkedIn, or Twitter, social media is a big part of people’s
lives today. Social media uses the Internet and web technologies to facilitate
social interactions by allowing for the exchange of user-generated content to share
information, communicate, and collaborate [13]. The explosive growth of social
networking sites – Facebook (1.2 billion active users as of March 2014), Twitter
(200 million active users as of 2013), to name a few – has given users the ability to
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easily share information online by connecting individuals and groups [14–16]. These
users are able to communicate their moods, opinions, thoughts, ideas, and actions
through multimedia platforms such as networking sites, blogs, social forums, and
wikis, allowing conversations to spread across these platforms reaching users with
similar interests for particular topics, creating communities for knowledge sharing
and interaction. User-generated content promotes a sense of belonging, creating a
loyalty to the social media product itself [17].

Social media impacts us personally and professionally on a daily basis. Most of
us could not have envisioned the effect that social media has had upon us within the
healthcare sector. Recent studies have shown that consumers are increasingly turn-
ing to different forms of social media communities for healthcare-related information
[18, 19]. A PwC consumer survey [6] showed that more people now turn to the Inter-
net (48%) to make decisions about their healthcare than to doctors (43%). In a poll
conducted in February 2012, 45% of consumers indicated that information found via
social media affects their decision to seek a second opinion from another doctor, 42%
use social media to cope with chronic conditions, diet, exercise or stress management,
and 41% to help them choose a specific physician or a hospital. A similar survey
by Accenture found that more than three-quarters of consumers used online sources
to seek information about insurers [4]. Pew Research Center’s Internet & American
Life Project study, focusing on the impact of the Internet on health and health care,
states that there is a shifting landscape where people are increasingly more reliant
upon health information online compared to personalized physician visit [20, 21].
Today, about 75% of all American adults are connected to the Internet and 61% of
them search online for health information [17]. A recent Frost and Sullivan survey of
provider organizations indicated very high use of social media for both personal and
professional purposes, particularly for marketing and brand awareness, and business
development [22].

Leveraging existing social networks and peer groups within the workplace creates
an environment of peer support and a culture of health-seeking behavior [23]. Peo-
ple get the opportunity to interact with peers with similar health goals leading to
greater adoption of health-improving activities ranging from becoming more active
and eating healthy foods to seeking preventive care and better management of chronic
conditions. This is thus a very cost-effective way for consumers to maintain a healthy
life, since such practices can potentially reduce their out-of-pocket medical expenses
[24, 25]. On the other hand, this provides a great opportunity to healthcare companies
of all types and sizes to improve their interactions with their customers. They can use
these social media platforms to connect, engage, and educate customers in new ways
by sharing news about new treatments or drugs for certain ailments via video streams,
podcasts, webcasts or webinars, and online live chat groups, and in the process they
gain insights into their needs and desires for reacting accordingly in a timely manner.
Not only that, social media also provide healthcare companies a unique avenue for
combating the negativity that often surrounds the industry and enhance their brands,
thus equipping them with a new marketing strategy that is cost-efficient as well, since
it has the capability of reaching millions of people at the same time with negligible
amount of additional investment in terms of time and money [4].
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For both government and commercial payers, when it comes to social media,
it is critical to know and understand the audience, focusing not only on content
but also on how it will be used. Companies with strong wellness programs, for
example, have been able to extend the value of their existing programs by creating
new, socially enhanced versions of their programs. Humana’s HumanaVille [26]
is one such endeavor, taking advantage of the increasing number of seniors who
are actively engaging online. Humanaville is a dynamic social world filled with
information, tools, games, and forums for seniors to get educated on health and
wellness issues and concerns. Independence Blue Cross is building on its customers’
desire for healthier lifestyles with its Health Steps campaign, which includes not
only a Facebook page, Twitter handle, and blog but also the IBX Healthy Steps
Pedometer app downloadable from iTunes and Android marketplaces [9]. Another
health industry segment leader who is successfully engaging in social health is
Aetna, offering Life Game, an online social game that engages people in setting
and working toward personal wellness goals [27]. Kaiser Permanente, the country’s
largest nonprofit healthcare provider, also uses social media tools such as Facebook
and Twitter to improve customer service and outreach. A recent report indicates that
this has helped it grow its positive mentions close to 500% in the last 5 years [28].

Recent research has found that use of social media platforms by healthcare
organizations continues to increase [29]. Analysis of a data set surveying 600 major
healthcare organizations indicates that 470 healthcare organizations (of the 600
total surveyed) have at least one Twitter account with active updates; 280 also
utilize YouTube as a means of communication; 82 use blogs actively; and, most
significantly, 382 have an active Facebook profile for interaction with patients and
other consumers.

Figure 19.1 depicts this breakdown. Of the 18 hospitals surveyed in Pennsylvania
alone, 10 have YouTube profiles, 15 are on Facebook, and 12 use Twitter. Although

March 28 2010

Hospital social
media accounts

600 hospitals:
280 YouTube
470 Twitter
382 Facebook
82 Blogs

1214 Social media sites

Source:
ebennett.org/hsnl

Figure 19.1 Social media use by healthcare organizations [29].
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none are using blogs, one-third of these facilities are using all three major social media
platforms (YouTube, Facebook, and Twitter). These studies motivated the health plan
in this case study to investigate the potential of social media for reaching out to its
member population with new services and tools for health and wellness management.

Additionally, with the advancement of mobile technology and the growing
popularity of smartphones (iPhones, Android), many users are constantly connected
to the Internet. People want to find health information fast, on-the-go, and in the
cheapest possible way, with 69% of US adults tracking a health indicator such as
weight and diet [21]. As of August to September 2012, 85% of Americans owned a
cell phone or a smartphone and 55% of all adult phone users use it to access the Inter-
net [7]. As of April 2012, there were 13,600 health, medical, and fitness applications
within the Apple App Store, the official source for downloadable applications for
iPhones, with the majority intended for use by patients [30]. Some popular examples
of mobile applications include Text4baby [31], a free mobile information service
that was designed to promote maternal and child health, and California’s cellular
texting to maximize the spread of knowledge about the 2009–2010 pandemic flu
crisis [32].

19.2.1 Privacy and Security Concerns in Social Media and Healthcare

The main challenges for any organization, and more so for health plans, are in the
area of risk considerations in the domains of security, privacy, and reliability. The
implementation of a social media initiative for any health plan is not without risk. As
an insurance company clearly in the business of risk assessment, health plans must
carefully consider the different types of risks associated with each media platform
before implementation. These risks primarily pertain to privacy, accuracy, financial,
and legal issues.

The healthcare industry’s concerns about the privacy, security, and confidentiality
of patient information are not unique. The financial services industries, including
banks and credit card companies, have been at the forefront of developing protections
for personally identifiable financial information. Yet many consumers consider their
health information to be more “private” than a bank account statement, which is rou-
tinely accessed by mortgage lenders, landlords, and other third parties. Patients with
chronic health problems or more serious conditions, such as cancer or HIV/AIDS,
may be vulnerable to involuntary disclosure that could affect their job status or rela-
tionships with peers. Therefore, it is reasonable to expect that a critical issue when
accessing or using a social media site when communicating with and about patients
is the degree of privacy and security available within that medium. As is common
knowledge, patients are entitled to confidentiality and whichever form of social media
outlet you use, it remains of the utmost importance.

Each medium has the opportunity to pose issues for the organization itself and
the users of each of the platforms. The dynamic nature of social media makes their
use particularly challenging to maintain reputable information and conversation. As
such, social media users and the content they provide are often steered greatly by
mood, current news, and personal biases. Many learn from others, although many
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are also interested in their own participation primarily. Excellent social media, with
the purpose of enhancing the lives of those participating, that is, those pointed toward
health promotion and wellness initiatives, will best involve users interested in learning
and sharing, rather than simply broadcasting their lives and opinions.

As the degree of free response within a medium increases, the risk of privacy
violations also increases. Forums, blogs, and WIKI-style media run the risk of
potentially malicious users gaining a great deal of information about other users.
Some individuals may be willing to share information ranging from demographics
to medical history, but others may find reassurance in simply revealing under an
alias username with little or no medical information [33]. These two bias extremes
make it challenging to design an effective social media-enabled technology solution
where all users will feel satisfied with the required level of input, with the varying
levels of risk aversion related to privacy concerns potentially leading to incomplete
or inaccurate information.

Social media, such as Facebook, inspire daily disputes about privacy controls
and availability of particular types of information to third-party users, friends within
social networks, and the site’s administrators. Users do not seem reluctant to provide
and post this type of information in the first place, but are particularly protective
of their privacy rights once they have done so. Most major social networking sites
are committed to ensuring that use of their services is as safe as possible. Users
of personal health records (PHR) sites such as Microsoft HealthVault [34] place
confidence in user agreements that guarantee the privacy of their information,
although these sites are only loosely constrained by privacy legislation such as the
Health Insurance Portability and Accountability Act (HIPAA for short) passed by
the US Congress in 1996 to address the need for a national patient record privacy
standard [35].

The risk of potentially inaccurate information is also significant. The social
media strategies of the health plan, in order to be effective, would need to dedicate
resources to protect the reliability and accountability of users and moderators of each
medium. Users would expect accurate and reliable information to be provided from
accountable and intelligent sources. Accuracy of facts, respectfulness of opinions,
and sustainability of service should be the founding principles upon which the social
media solutions that the health plan chooses to deploy will become reputable. Some
sites proactively preview and approve content before it is publicly posted so that the
information is accurate and reliable.

Additionally, the health plans may also be concerned about slanderous comments
made about the company or particular individuals associated with it (e.g., specific
physicians) and the resultant liability issues raised. Lastly, variations in population
demographics, degree of technical knowledge of particular segments, and related fac-
tors clearly indicate that the notion of “one-size-fits-all” is certainly not appropriate
in the social media arena, hence software services and tools need to be designed to be
accessible to a disparate demographic population with respect to varying age, gender,
education, technical knowledge, and Internet access. Thus, this study can potentially
assist health plans to conduct a comprehensive assessment of benefits and risks by
providing insights into stated member needs and usage preferences.
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19.2.2 Analytics in Healthcare and Social Media

The use of analytics in the healthcare industry as well as in social media is becoming
increasingly popular with the advancement of technology and computing resources,
and availability of a large amount of data. With increasing demands from consumers
for enhanced healthcare quality and increased value, healthcare providers and payers
are under pressure to deliver better outcomes. Primary care physician and nursing
shortages require overworked professionals to be even more productive and efficient.
The cost dynamics of healthcare are changing, driven by people living longer, the
pervasiveness of chronic illnesses and infectious diseases, and defensive medicine
practices [36]. New market entrants and new approaches to healthcare delivery are
increasing complexity and competition. Analytics can provide the mechanism to sort
through this torrent of complexity and data and help healthcare organizations deliver
on these demands. But it takes big plans, discrete actions, and some very specific
management approaches to gain the benefits of analytics.

The types of analytics used can be categorized into the following: (i) descrip-
tive analytics, which provides insights based on exploratory methods including
visualization tools and summary statistics; (ii) predictive analytics, which uses
statistical modeling and data mining techniques, and (iii) prescriptive analytics,
which uses decision models based on simulation and optimization methods to make
recommendations. Descriptive analytics are primarily used in analyzing survey data
where simple frequency distributions and graphical techniques are employed to
represent the underlying patterns in the data. Analysis of variance (ANOVA) or sim-
ple statistical hypothesis tests are also sometimes performed to determine whether
different segments of the surveyed population are significantly different with respect
to certain characteristics of interest included in the study. Unsupervised learning
methods, such as clustering, and also association rules (also called “Market basket
analysis”) are employed to determine significant clusters in the population as well as
study associations among variables. Predictive analytics includes rigorous statistical
models such as linear regression, logistic regression, generalized linear models, and
hierarchical regression; however, data mining or machine learning algorithms are
used for performing classification such as decision trees, k-nearest neighbors, naïve
Bayes, neural networks, and linear discriminant analysis (LDA). Dimensionality
reduction is another major component of any data analytic task since most real data
sets contain several variables (often hundreds of them in some applications), most of
which are irrelevant or uncorrelated with the outcome variable of interest. Principal
component analysis (PCA) is a well-known tool for this purpose; another commonly
used method is subset selection in the case of regression models. Sarasohn-Kahn
[37] includes details about the various statistical and data mining techniques that are
popularly used to analyze data arising in different industries.

Analytics is widely being used in different areas of the healthcare industry today,
from tracking and monitoring revenues and operational performance to monitoring
quality initiatives and care programs to predicting outcomes relating to disease out-
breaks and making decisions regarding treatment plans. Several healthcare companies
have social media sites that help connect patients with providers and care givers
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and also offer communities for people suffering from chronic diseases via which
they can communicate and share experiences and also provide support. Social media
produces unstructured and complex data in massive volumes at a very rapid pace.
Due to the overwhelming diversity of platforms and participants, it is challenging
to discover relevant content, standardize extraction, and generate meaningful ana-
lytics that help in making decisions. An optimum blend of automated listening and
human analysis is indispensable when it comes to contextualizing and interpreting
patient-generated content. Text-based analytics are used often to perform “sentiment
analysis” to discover patients’ opinions and reactions to certain drugs or initiatives
and programs conducted by a healthcare company (such as fitness programs, weight
loss programs, to name a few). Moreover, time series and forecasting methods can be
applied to detect trends in consumer opinions about certain products, how they vary
over time, and predict outcomes at future time points. Clustering is also used in appli-
cations where the goal is to determine targeted population segments. For instance, a
healthcare provider might be interested in knowing which people particularly express
negative opinions about a certain product or how people in different geographic loca-
tions react to a certain new drug. This is useful not only for marketing purposes but
also for identifying areas of improvements to better serve the consumer population.

The challenges associated with the huge amounts of data amassed by the health-
care organizations lie not only in processing and analysis but also in reporting the
results in a consolidated way that can provide meaningful insights easily for efficient
decision making. A number of industry solutions have emerged in this field in the
recent years from companies such as SAS and IBM that help in communicating the
outcomes through metrics-based scorecards and dashboards that are widely being
adopted in the healthcare industry. Visualization analytics software such as Tableau,
Spotfire, and QlikView are also being deployed widely to represent a wide variety of
data using user-friendly and interactive interfaces. Moreover, several platforms are
available now to handle the massive volumes of complex data (such as HADOOP).

19.3 CASE STUDY DESCRIPTION

This case study is associated with a large health plan in western Pennsylvania. The
health plan offers five basic medical plan designs, which are distinguished mainly
by varying levels of provider-coordinated versus self-directed care and the use of
network versus out-of-network providers. Apart from consumer-specific plans, the
health plan also offers a full range of commercial and government health management
products and services, including commercial group health insurance, Medicare Assis-
tance, Special Needs (SNP), Children’s Health Insurance (CHIP), and customized
benefit options for smaller employer groups. It also offers disease and behavioral
health management programs, including programs to help employers promote health,
prevention, and wellness in the workplace.

Recognizing that social media-based platforms for consumer engagement is
building momentum, the health plan initiated a project to identify and develop
strategies and solutions for the integration of these platforms to increase awareness
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of health-risk factors, promote healthy lifestyle behaviors, and deliver health
coaching. In this chapter, we present results of a survey conducted among members
of the health plan to assess the extent to which they are interested in adopting social
media-enabled practices, tools, and services for their health and wellness needs.
Recent studies have reported descriptive statistics using bar charts, proportions, and
pie charts [29]. Our methods, on the contrary, include rigorous statistical analyses,
from inference to predictive modeling, that enable us to draw statistically valid
conclusions.

19.3.1 Survey Design

Collaborating with an academic institution, the health plan developed and executed
a health and wellness survey among members to understand their propensity for
social media usage and the potential to connect technology with members’ health and
wellness needs. The survey tool was created in a multistep process that included an
extensive literature review; interviews with experts in nutrition, health coaching, and
wellness promotion; and health plan administrators and executives; and several itera-
tions for review and redesign based on a pilot survey in the academic institution [38].
Thus, the main goal of the overall study was to examine behaviors and stated prefer-
ences of a sample of health plan members to understand and identify technology and
social media-enabled healthcare services to offer for effective self-health manage-
ment. The platforms that were chosen for this study included social networking sites
such as Facebook, MySpace, and LinkedIn; media sharing sites such as YouTube,
online forums, blogs, and wikis; and microblogging sites such as Twitter.

The analysis in this case study examines the opportunities for social media for
health and wellness promotion in the context of the particular demographics, needs,
and current usage habits of health plan members. The main hypothesis of interest
was to test whether there is general interest among members of the health plan to
adopt different social media solutions for obtaining distinct types of health-related
information and services, and to understand the factors that drive this interest. In
order to test this hypothesis, we analyzed member responses with respect to adoption
of social media for health-related information based on key demographic, clinical,
and technology factors, the primary ones being (i) gender, (ii) age, (iii) general health
condition, (iv) presence of a chronic condition, (v) level and frequency of computer
use, (vi) level of social media usage, and (vi) types of online activities engaged in.

The survey was categorized into five main sections: (i) baseline technology usage,
(ii) social media usage, (iii) health and wellness objectives, (iv) current behavior and
interest associated with health-related information via the Internet, and (v) health
status and demographic information. There were 28 questions on the survey, which
was expected to take approximately 15 min to complete. It was completely voluntary
and anonymous in order to protect the privacy of respondents.

The survey was administered using Survey Monkey to a subset of the health plan
members who were current employees of the larger health system that included a
provider organization. As an incentive to successfully complete the survey, partic-
ipants were automatically entered into a raffle to win one of 10 $100 gift cards.
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The survey was initially distributed through a company-wide email newsletter before
being posted as a fixed link to the health system’s intranet. The survey was available
for approximately 2 weeks during which 4212 members participated and 4058 com-
pleted the survey (determined by the total number of responses to the last mandatory
question), resulting in a yield of 96.3%.

19.4 RESEARCH METHODS AND ANALYTICS TOOLS

Descriptive analytics provides basic initial insights into the distribution of participants
across the different categories and the relationship of key variables with social and
mobile media usage for health-related information. We thus begin by presenting a
descriptive summary of the different background variables in the study via tabular
and visualization techniques. Next, we perform clustering of the member population
based on the demographic, clinical, and technology factors via chi-square tests [39]
since our variables are nominal or categorical in nature. p-Values obtained from these
tests enable us to determine statistically significant associations that are not attributed
to chance alone, and thus define the clusters.

We then develop a predictive model to assess the chances of members adopting
different types of social media for health-related purposes based on logistic regression
[40]. Logistic regression extends the idea of linear regression to the case when the
outcome or the dependent variable (typically denoted by Y) is categorical in nature
[25]. It can thus be used for predicting the class or category of a new observation
(where the class is unknown) based on the values of the independent or predictor
variables (typically denoted by X1, X2, …). We use binary logistic regression as our
model instance in which the observed outcome can have only two possible types.

19.4.1 The Logistic Regression Model

Let Y be a binary random variable that takes the values 0 and 1. By convention, the
value of 1 is used to indicate “success” and the value of 0 is used to signify “failure.”
Let X1, X2, …, Xk be k predictors or independent variables that have an effect on Y,
so that we can define p=P(Y= 1| X1, X2, …, Xk). Hence, p can take any value in the
interval [0,1]. Instead of using Y as the outcome or the dependent variable as in linear
regression, logistic regression uses a function of Y, called logit, as the dependent
variable. Logit is defined as the logarithm of odds, log(odds), where

odds =
p

1 − p

with p=P(Y= 1) as defined earlier. It is thus a type of generalized linear model with
logit as the link function. So the logistic regression model with k predictors or inde-
pendent variables X1, X2, …, Xk can be written as

log(odds) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽kxk
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where 𝛽0, 𝛽1, … are the regression coefficients or parameters associated with the
predictor variables that describe the relationship between the predictors and the odds
of the outcome variable belonging to class 1. For example, 𝛽 j can be interpreted as
follows: a unit increase in the value of the predictor xj is associated with an average
increase of 𝛽 j × 100% in the odds of Y belonging to class 1, holding all the other
predictors constant.

The k+ 1 regression coefficients (𝛽’s) are usually unknown and estimated from
a given data set using the method of maximum-likelihood estimation. Unlike linear
regression with normally distributed residuals, it is not possible to find a closed-form
expression for the coefficient values that maximizes the likelihood function, so an
iterative process must be used instead, for example, Newton’s method. This process
begins with a tentative solution, revises it slightly to see if it can be improved, and
repeats this revision until improvement is negligible, at which point the process is said
to have converged. In the following, the details of the estimation process are outlined.

19.4.1.1 Maximum-Likelihood Estimation The maximum-likelihood estimation
procedure entails finding the set of parameters for which the probability of the
observed data is greatest. The maximum-likelihood equation is derived from the
probability distribution of the dependent variable that has a binomial distribution
with n= 1 (also called the Bernoulli distribution). The probability distribution of the
random variable Y is thus given by

f (y) = p(1 − p)

where p is as defined earlier. Now since we estimate the parameters using the training
set, let us assume that there are n records in the training set that are denoted by Y1,
Y2, …, Yn. Each Yi then has a Bernoulli distribution with parameter pi, and all the Yi’s
are independent of each other. Each pi in turn depends on the k independent variables
X1, X2, …, Xk and on the unknown parameters 𝛽0, 𝛽1, . . . . Thus, in essence, p is a
function of the unknown parameters 𝛽’s as the Xi’s are known. Let Xi1, Xi2, …, Xik
denote the predictor values corresponding to Yi. So the likelihood function for the
entire training sample is given by

L(y) =
n∏

i=1

f (yi) =
n∏

i=1

pyi
i (1 − pi)1−yi.

Here, L(.) denotes the likelihood function when written in terms of the pi’s, which
are functions of 𝛽0, 𝛽1, . . . . Taking logarithm on both sides, we can write down the
log-likelihood function (denoted by l(y)) of the training sample as

l(y) =
n∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
=

n∑
i=1

log
(
1 − pi

)
+

n∑
i=1

yi log
pi

1 − pi
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Now recall that each pi is a function of the independent variables and the regression
coefficients via the relationship (we write out the formulas and expressions using
general “p” for the sake of convenience; for each pi, we have to replace x1 by x1i, x2
by x2i, etc.):

log
p

1 − p
= 𝛽0 + 𝛽1x1 + 𝛽2x2 +…+ 𝛽kxk, so that

p

1 − p
= e𝛽0+𝛽1x1+𝛽2x2+…+𝛽kxk

After some algebraic calculations, we get the expression for p as

p = e𝛽0+ 𝛽1x1+ 𝛽2x2+···+ 𝛽kxk

1 + e𝛽0+ 𝛽1x1+ 𝛽2x2+···+ 𝛽kxk
= 1

1 + e−(𝛽0+ 𝛽1x1+ 𝛽2x2+···+ 𝛽kxk)
, and so on

1 − p = 1
1 + e𝛽0+𝛽1x1+𝛽2x2+…+𝛽kxk

Substituting the value of p in the expression for the log-likelihood above, we get

l(y) =
n∑

i=1

− log
[
1 + e𝛽0+ 𝛽1x1i+ 𝛽2x2i+···+ 𝛽kxki

]
+

n∑
i=1

yi

[
𝛽0 + 𝛽1x1i + 𝛽2x2i + · · · + 𝛽kxki

]
Note that the log-likelihood is a function of yi’s, xi’s, and the 𝛽’s. Of these, the 𝛽’s

are the only unknown quantities. The maximum-likelihood method works by finding
those estimates for the 𝛽’s that will maximize the log-likelihood function. This is
done by differentiating the latter with respect to each 𝛽 coefficient and solving by
setting the derivatives to zero. To demonstrate the process, let us take the derivative
with one component of 𝛽, say 𝛽 j, the expression being shown as follows:

𝜕l
𝜕𝛽j

= −
n∑

i=1

1
1 + e𝛽0+𝛽1x1i+𝛽2x2i+…+𝛽kxki

e𝛽0+𝛽1x1i+𝛽2x2i+…+𝛽k xji +
n∑

i=1

yixji

=
n∑

i=1

(yi-pi)xji

by substituting the expression for pi. As is clear, it is not possible to obtain
a closed-form expression for 𝛽 j by solving this equation; hence, numerical
optimization techniques need to be applied in order to get an approximate solution.

19.4.1.2 Newton’s Method for Numerical Optimization There are a large number
of numerical optimization methods available to solve the above-mentioned derivative
equation. However, we illustrate the use of one of the oldest, yet popular, numerical
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methods called the Newton–Raphson method (or Newton’s method, for short). In this
section, we briefly describe the application of this method to the simplest case of
minimizing a function of one scalar variable, say f (𝑤).

We wish to find the location of the global minimum w* and begin with the
assumption that f is a smooth function. This will ensure that the derivative of f at w*
will be zero; hence, applying a Taylor expansion near the minimum, we get

f (𝑤) = f (𝑤∗) + 1
2
(𝑤 −𝑤∗)

d2f

d𝑤2
|𝑤=𝑤∗ ,

since df
d𝑤

= 0 at w=w*. Newton’s method works by starting with an initial value of
w, say w0 so that the Taylor expansion at w0 will be as follows:

f (𝑤) ≈ f (𝑤0) + (𝑤 −𝑤0)
df

d𝑤
|𝑤= 𝑤0

+ 1
2
(𝑤 −𝑤0)

d2f

d𝑤2
|𝑤= 𝑤0

Now if w0 is close to w*, the above expression will be fairly accurate. Let us
denote the first and second derivatives at w=w0 by f ′(𝑤0) and f ′′(𝑤0) for the sake
of convenience. Then taking the derivative of the right-hand side of the last equation
and setting it equal to zero at a point w1, we have

0 = f ′(𝑤0) +
1
2

f ′′(𝑤0) 2(𝑤1 −𝑤0)

=> 𝑤1 = 𝑤0 −
f ′(𝑤0)
f ′′(𝑤0)

The value w1 should provide a better approximation to the minimum value w* than
the initial guess w0. Iterating this procedure several times, we arrive at the (n+ 1)th
step:

𝑤n+1 = 𝑤n −
f ′(𝑤n)
f ′′(𝑤n)

The procedure stops when wn+1 and wn are very close. It can actually be proved that
if w0 is close enough to w*, then wn is converged to w*, in fact |wn – w*| =O(n−2), a
very rapid rate of convergence. wn is then the estimate of w*, the value that minimizes
the function f(w).

In case of a high-dimensional coefficient vector w= (w1, w2,…, wk), we
replace f ′(𝑤0) by 𝛻f , which is the gradient of f, its vector of partial derivatives
[𝜕f∕𝜕𝑤1, 𝜕f∕𝜕𝑤2,… , 𝜕f∕𝜕𝑤k], and f ′′(𝑤0) by H, which is the Hessian of f, its
matrix of second derivatives Hij = 𝜕2f∕𝜕𝑤i𝜕𝑤j.

19.4.1.3 Model Implementation Software packages are available to compute the
estimates of the coefficients of the logistic regression model. After estimation, the
classification is performed using two steps: the first step yields an estimate of the prob-
ability of belonging to each class for each observation in the test set. In the binary case,
we get an estimate of P(Y= 1), the probability of belonging to class 1 (which implies
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P(Y= 0)= 1 – P(Y= 1)). In the next step, we use a cut-off value on these probabilities
in order to classify each new observation or case into one of these two classes. The
typical cut-off value used is 0.5, which means that if P(Y= 1)> 0.5 for a new case,
it is classified as belonging to class 1, whereas a case for which P(Y= 1)< 0.5, it is
classified as belonging to class 0. However, this cut-off value is not fixed and can be
changed based on a particular problem scenario although 0.5 is known to provide the
optimal accuracies.

In our analysis, we use this model to determine the factors that can significantly
affect people’s interest in adopting various social media platforms for health infor-
mation offered by the health plan, as well as predict the chances or odds of adopting
the proposed platforms based on these factors.

19.5 RESULTS AND DISCUSSIONS

This section includes all our results from the data-driven analytics.

19.5.1 Descriptive Statistics

Tables 19.1 and 19.2 and Figures 19.2 and 19.3 depict breakdown of survey
participants by key demographic and clinical variables via descriptive analytics.
We see a substantially higher percentage of women responding to the survey
(Table 19.1), which is consistent with prior research that women generally use the
Internet more for getting health-related information [10]. A majority of respondents
are aged between 31 and 65 (63%), with about 1% being under the age of 18 or over
the age of 65 (Table 19.2).

TABLE 19.1 Breakdown of Participants
by Gender (n= 3994, missing= 218)

Gender Frequency (%)

Male 555 (13%)
Female 3439 (82%)

TABLE 19.2 Breakdown of Participants
by Age Group (n= 3432, missing= 780)

Age Group Frequency (%)

<18 1 (≈0%)
19–30 744 (18%)
31–50 1635 (39%)
51–65 1025 (24%)
>65 27 (1%)
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Figure 19.2 Perceived health conditions of health plan members.
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Figure 19.3 Presence of chronic condition (a) in self and (b) in household members.

As far as the perceived health condition of participants is concerned, Figure 19.2
shows that majority consider themselves to be in good or very good shape compared
to others (72%), whereas only 1% believe that their condition is poor. Only one-third
of the members mentioned that they are suffering from a chronic condition (Fig. 19.4).
Given the high prevalence of multiple chronic conditions in the general population,
particularly in the 51–65 age group [25], wide perception of health condition being
excellent and lack of knowledge/willingness to share this information (missing values
in Figs 19.2 and 19.3) may have a detrimental impact on self-health management
initiatives.
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Figure 19.4 Proportion of members by the presence of a chronic condition (Yes/No) versus
level of interest in listening to health-related podcasts. Interest-level categories: Not interested,
might be interested, and very interested. (a) Cell phones (mobile apps) and (b) computer.

19.5.2 Baseline of Technology Usage

The technology section comprised of the first set of questions on the survey. These
questions were intended to gauge technology integration in respondents’ lives as
well as measure the level of their knowledge about and frequency of use of current
technology to assess the likelihood of adoption of these online and social media-based
platforms for different segments of the population.

Table 19.3 shows the frequency distribution for the use of cell phones and
computers (both desktop and laptop) at home as well as at work. According to this,
cell phone usage is most popular with less than 1% of respondents, mentioning that
they own neither a cell phone nor a computer.

However, cell phones also have other functions that should not be overlooked. The
possibility of connecting to the Internet, downloading applications, and performing
daily tasks has great potential when it comes to implementing new features for the
health plan. Although we observed that majority of the users owned smartphones
(33.9%: Blackberry, 25.5%: iPhone, 14.9%: Android) that possessed advanced capa-
bilities, most of them do not access the Internet on their mobile phones measured at

TABLE 19.3 Breakdown of Participants by the Type of Technology
They Own or Have Access

Devices Owned/Used Frequency

Cell phone 4019 (95.4%)
Computer w/ Internet access at workplace 3491 (82.9%)
Computer w/ Internet access in the evenings 3786 (89.9%)
None of the above 28 (0.7%)

Note here that members were allowed to check as many options here as applicable
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68%. Similarly, 77% stated that they do not download mobile applications on their
cell phones. On the other hand, more people were inclined to use text messaging on
their cell phones – more than 55% of people send or receive at least one text mes-
sage daily whereas about 24% reported never or rarely using this service. Similarly,
people tend to use their cell phones significantly more for emailing and chatting than
for recreational activities such as watching videos, reading news, shopping, as well
as for online banking.

In order for the health plan to cater to its members’ needs through Internet-based
technology, it is imperative to recognize the level of the respondents’ computer usage
and their ability to access features of the health plan through the Web. The data
revealed that 45% reported spending their entire workdays in front of a computer
with Internet access while another 15% reported spending more than half of their
workday in front of a computer with Internet access. Furthermore, we found a sig-
nificant portion (60%) of the health plan members have access to the Internet during
most of the working day. This demonstrates the degree of penetration of the Internet
within the daily routine of health plan members and suggests a strong potential to
reach the members via that medium. In addition, about 80% of individuals access the
Internet on a computer during their free time in the evenings with 50% spending less
than an hour and 30% spending between 1 and 3 h. It can thus be concluded that a
significant portion of the population spends at least some time on the computer during
off-work hours.

The level of usage of different activities on computers such as sending and
receiving emails, reading news online, followed by banking revealed similar trends
as in case of cell phones. It is also interesting to observe that a significant portion of
individuals (52.7%) do not use their computers to chat online. It is not only important
to recognize the popular activities but also the unpopular activities as well to enable
the health plan to offer appropriate online products.

19.5.3 Mobile and Social Media Usage

By understanding what forms of social media are accessed through the computers and
cell phones by its members, the health plan can gain an insight into what members are
currently engaged with online and use this channel to introduce health and wellness
programs. The use of social media activities on cell phones, such as posting comments
to an online blog and visiting sites such as Facebook, Twitter, LinkedIn, and so on
appears to be quite limited among the health plan members. Nearly 90% of members
never or rarely accessed Twitter, LinkedIn, and MySpace on their phones. Around
20–25% of the respondents had posted comments on online blogs and forums and
visited Wikipedia on their cell phones at least couple of times a week and nearly 40%
mentioned using Facebook at least once a day.

Social media usage on computers also appears to be quite low among the member
population. The results show that most of the members have never used social
networking sites such as Twitter, measured at 91.2%, MySpace at 86.4%, and
LinkedIn at 87.0%. Facebook was the only platform that was claimed to have been
utilized fairly frequently at 42.0%. Additionally, individuals show low levels of
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engagement regarding posting comments on online news groups, websites, blogs, and
photo sites.

19.5.4 Clustering of Member Population by Technology, Social, and Mobile
Media Usage

We now cluster the health plan member population based on technological, mobile,
and social media usage by the demographic and clinical factors included in the study.
For instance, we can determine if members’ usage frequency of Facebook is sig-
nificantly different across age groups. Some of the highlights of our findings are
summarized in the following for cell phones:

• Use of text messaging differs significantly across age groups (p-value:
<0.0001). Younger people (age group 18–30) tend to use text messaging more
than older people.

• Use of Internet on the cell phone is significantly different across gender, age
groups, and people with a chronic condition (p-values: <0.0001). Younger peo-
ple tend to use the Internet and download mobile apps on their cell phones
significantly more often, as do people without a chronic condition. Moreover, a
higher percentage of male health plan members use Internet on their cell phones
more than female members as well as download mobile apps.

• Gender seems to be the main segmenting factor with respect to the frequency
of online activities performed on cell phones (p-values: <0.05) – men are found
to engage in each of these activities significantly more frequently than women.
The effect of age is also widespread, except for chatting (p-value: 0.0691), and
in all of these cases, younger people are found to engage more than older people.
Health status of members and the presence of chronic conditions do not have a
significant effect on usage of online activities on cell phones.

• As far as social media usage on cell phones is concerned, there is very little
variation across the various segments of the health plan member population with
respect to demographic factors. The only predominant factor seems to be age,
and we find significant differences in the usage between younger and older peo-
ple for all the social media platforms except LinkedIn and Wikipedia (p-values:
0.0540 and 0.2786, respectively). Men seem to use Wikipedia and LinkedIn
significantly more than women (p-values: <0.0001 and 0.0239, respectively);
however, there is no significant usage difference between the two genders as far
as using Facebook, Twitter, My Space, and blogs are concerned. No significant
effect of health conditions was observed.

Some highlights of the effects of the different factors on computer activities are
included as follows:

• The use of computer during the day seems to vary significantly across age
groups but remain consistent across gender. Older people tend to spend sig-
nificantly more time on a computer during the workday than younger people.
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On the other hand, the length of time spent on the computer during the evenings
varies significantly across gender and age. Men tend to spend significantly more
time on the computer during the evenings than women, and older people spend
more time than younger ones, but presence of a chronic condition (either self
or in a household member) does not seem to have any statistically significant
effects.

• There is a significant relationship between how often people engage in different
online activities and demographic factors. Specifically, we see that age has very
strong relationship with all the six activities and gender with emails and online
banking. Men were observed to participate in such activities more than women,
and younger people tend to participate more often than older people. Health con-
dition or the presence of a chronic condition does not seem to be an important
factor.

• Participants report different levels of usage of social media across demographic
and clinical factors. Age and gender have the maximum effect, followed by
perceived health status while presence of chronic condition has no significant
relationship with social media usage habits. LinkedIn usage is the least variable
across demographic factors (only effect is for gender: males using significantly
more frequently than females), whereas Twitter shows the strongest statistical
evidence of variation across demographic factors. Older people are seen to use
twitter.com much less than younger people, and a similar behavior is observed
for the other platforms also. For perceived health status, a higher proportion of
people with poor to good health are found to be using MySpace.

19.5.5 Interest in Adopting Online Tools for Healthcare Purposes

Various Web and social media platforms that the health plan can offer to its members
were explored through their potential to be incorporated into the members’ health
management programs. Seven different activities were investigated to assess the level
of interest among the survey participants as follows:

• Activity 1: Connecting with others with similar health goals via an online forum

• Activity 2: Reading health-related blogs

• Activity 3: Adding comments to a health-related blog

• Activity 4: Watching health-related instructional videos

• Activity 5: Watching health-related webcasts and webinars

• Activity 6: Listening to health-related podcasts

• Activity 7: Interactive group chats with health experts

Three categories representing the level of member interest in these activities
were as follows: “Not interested at all,” “Might be interested,” and Very interested.”
Looking at descriptive statistics, we find that the health plan members’ interest in
commenting on and consulting health-related blogs is the highest (17.7%). Watching
health-related webcasts/webinars ranked low at 11%. The general trend shows that
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members are interested in collaborating with one another, whether it is interacting
through blogs or receiving advice from experts. A summary of the clusters based on
interest in the various health-related platforms with respect to demographic, clinical,
and technology factors is listed as follows [41]:

• Demographic and Clinical Factors. Male clients of the health plan have a
significantly higher interest in watching health-related instructional videos
than women, but no gender differences were observed in case of the other
seven activities. A greater proportion of members who are older than 65 years
are very interested in watching videos and webcasts and listening to podcasts
that deliver health-related information than the younger population.

There is overwhelming evidence of significant differences in the level of interest
among members with varying health conditions for Activities 1 and 7. Slightly
less, yet significant, evidence of difference is also noted for Activities 3 and 4. In
all of these cases, the pattern observed is consistent – a higher proportion of people
with poor to good health condition have higher interest in these activities than
people whose health is in very good or excellent condition. People suffering from
chronic illness have significantly higher level on interest in all the online activities
except for Activities 2 and 7. Similarly, people who have a household member
with a chronic condition have more interest in all activities, except Activity 6.

• Computer Usage. People who use computers more during their leisure time in
the evenings have significantly higher propensity to adopt online platforms for
health-related purposes. On the other hand, computer usage during the work-
day has a significant relationship with the level of interest in three out of the
seven activities, namely, connecting with others with similar health goals via
an online forum, reading health-related blogs, and watching health-related web-
casts. Thus, there is stronger statistical evidence of clusters based on the length
of time members spend in front of a computer during the evenings, while the
case for daytime is much weaker.

• Online Activities and Social Media Usage. Analysis also indicates strong
statistical evidence that the level of interest in online health-related activities
(that the health plan may consider) differs significantly across people who
engage in different (nonhealth-related) activities online with different fre-
quencies. Those members who engage in online chatting and watching videos
online more expressed a significantly higher level of interest in using these
online platforms for receiving health-related information (p-values: <0.0001).
Similarly, people using social media more expressed significantly higher
interest in various online activities for health-related information, the least
interest being among Facebook and MySpace users.

19.5.6 Interest in Adopting Mobile Apps for Healthcare Purposes

The health plan members were asked to express their level of interest in downloading
seven different types of health-related mobile apps on their cell phones that the health
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plan was considering to offer to them, which are as follows (abbreviated names in
brackets for ease of future reference):

• [Card app] App to display information included on their health insurance cards
• [Search app] App to search for doctors, hospitals, and pharmacies
• [PHR app] A mobile version of their PHR
• [Game app] App for health-related games
• [Claim app] App to display the status of their insurance claims
• [Video app] App with streaming health-related videos
• [Pod app] App with health-related podcasts

Table 19.4 provides the frequency distribution of the member responses that
indicate maximum interest in obtaining a mobile version of PHR and least interest in
obtaining mobile apps for health-related games, videos, and podcasts. Thus overall
members seem to be more willing to obtain information about their own health via
mobile apps than general health information.

Next, we present a summary of our conclusions regarding how the different
demographic, clinical, and technological factors influence the level of interest in
adopting these various mobile media for health-related purposes, thus leading to
distinct clusters of the member population.

• Demographic and Clinical Factors. The level of interest among health plan
members in downloading health-related apps on their cell phones does not vary
significantly across people with varying health conditions and across different
age groups. The only significant factor is gender. Men were found to have a
significantly higher interest in using all these seven apps from the health plan
than women.

• Online Activity Usage on Cell Phones. The effects observed here are far
more widespread than in the case of the demographic factors. Of the six
online activities, chatting has the least significant association with the level of
interest in obtaining health-related information on cell phones, whereas the
strongest associations are observed for watching videos, reading news, online

TABLE 19.4 Frequency Distribution of Members’ Interest in the Different
Health-Related Apps on Their Cell Phones

Not Interested (%) Might Be Interested (%) Very Interested (%)

Card app 4.01 8.76 9.07
Search app 3.49 8.88 9.43
PHR app 4.23 7.24 10.26
Game app 10.80 7.19 3.63
Claim app 6.46 8.76 6.48
Video app 11.28 7.55 2.85
Pod app 10.30 8.17 3.09
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banking, and shopping (p-values: <0.0001). In all of these cases, people who
participated in online activities more frequently (say, at least a couple of times
a month) were found to have an increased interest in adopting the mobile apps.
Finally, people who used their cell phones to send or receive emails frequently
had a greater interest in adopting health-related mobile apps.

• Social Media Usage on Cell Phones. As expected, our analysis revealed that
people who engage in social media activities on their cell phones are more likely
to express an interest in adopting social and mobile media for health-related
information. The most widespread effect is found in case of commenting on
blogs and using Wikipedia. People who participate in both of these cell phone
activities at least a couple of times per month have a greater interest in adopting
all the seven health-related mobile apps if offered by the health plan. On the
other hand, we find that the frequency of MySpace usage on cell phones does
not generally have a significant association with the level of interest in receiv-
ing health-related information via mobile apps. Finally, the frequency of using
Facebook, Twitter, and LinkedIn had a significant association with the level of
interest in using four out of the six mobile apps. The most popular mobile apps
that people had interest in using were those for receiving PHRs and status of
their insurance claims.

• Seeking Health-related Information Online. Our analyses revealed that people
who visit the health plan’s website quite frequently are significantly more likely
to adopt a mobile version of their own PHR (p-value: 0.0212), but there is no
significant effect on the other six mobile apps.

19.5.6.1 Comparison of Clusters Based on Interest in Adopting Social Media
on Computers and on Cell Phones Some major differences in the clusters
obtained with respect to interest in adopting online and social media platforms
for health-related purposes between computers and cell phones are enumerated as
follows:

• Although more people own cell phones than computers, people use the Internet
significantly more on their computers than on their cell phones.

• We observed significantly lower interest in downloading health-related mobile
apps on cell phones than receiving online health information on their computers.

• We detected that members in poorer health and suffering from a chronic
condition had a significantly elevated level of interest in receiving health
information from various online and social media sources but not via mobile
apps. Members with no chronic condition were seen to use cell phones,
especially for text messaging, more than those with one. The multiple bar
charts in Figure 19.4 highlight this distinctive difference in case of one social
media platform – health-related podcasts. Similar patterns are observed for the
remaining six applications too.

• Younger people (age group: 18–30) were found to use cell phones more, as
expected, although the interest level for health-related mobile apps was not
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found to be significantly different between older and younger people. However,
in the case of computer use, older people (over 50 years of age) were found
to have a significantly higher interest than the younger population in some of
the social media platforms – watching health-related videos and listening to
podcasts.

• With respect to the effect of usage frequency of online activities and social
media on interest in adopting health-related social media was similar for cell
phones and computers.

We thus conclude that people are more willing to utilize social media platforms
for obtaining information pertaining to their health and wellness on the computer
than on cell phones. Although the use of mobile apps and smartphones has increased
considerably today, that is, mostly among the younger people, Zulman et al. [42]
showed that older adults still distrust the Internet for health-related purposes based
on a nationally representative survey of 1450 adults 50 years of age or older in the
United States. Since our study included a higher proportion of respondents over 30
years of age, we expect our results to be relevant with the current trends. Furthermore,
current literature shows that the use of health-related social and mobile media is still
not as widespread as people would expect given the technological advancement with
respect to cell phones. For instance, a recent study based on a national survey of 3104
adults living in the United States reports that 31% of people have looked at health
information on their cell phone as opposed to 17% that was revealed by a national
survey conducted 2 years ago [20]. Moreover, only 9% of cell phone owners say that
they receive text updates or alerts about health or medical issues (although a whopping
80% of them said that they use text messaging) and only 19% of smartphone owners
have a health app on their mobile phone.

19.5.7 Health and Wellness Objectives

This section of the survey aims at understanding the participants’ perception of their
current health status and their personal responsibilities for their wellness and health
maintenance. A total of 25.3% of the individuals regularly look for health-related
information online (at least once a week). Additionally, 97.2% of all members have
used the Internet to search for health information at some point of time. Table 19.5
shows the relative frequency distribution for member visits to the health plan’s web-
site, wherein it is evident that more than 80% of the members had accessed that at
least once in the last 10 months. Moreover, about 60% of the respondents use PHR
offered by their health plan.

TABLE 19.5 Frequency of Visiting the Health Plan’s Website by the Survey
Respondents

Never Not Sure
More Than a

Year Ago
Within the Past
2–10 Months

Within the Past
Month

Within the Past
Week

4.6% 10.1% 2.7% 25% 29.4% 28.2%
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The specific reasons for members’ visits to the health plan’s website are
summarized as follows: (i) finding a provider: 31.5%, (ii) billing: 18.7%, (iii)
benefits research: 24.8%, (iv) health information: 22.9%, (v) health and wellness
management: 33.2%, (vi) participate in their “healthy step” program: 56.1%, (vii)
customer service: 6.5%, and (ix) chat online with a representative: 1.2%.

Analyzing by demographic factors, we find that women are significantly more
likely to obtain health information online as well as visit the health plan’s website
more frequently than men (p-values <0.0001). Moreover, people in the age group of
31–50 are significantly more likely to visit the website more frequently than people
who are under 30 years of age and those who are more than 50 years of age (p-value:
0.019). A significantly higher number of women visit the website for health and well-
ness management and participate in healthy step program than men (p-value: 0.01).
For the other seven activities, no statistically significant differences are observed
between two genders as indicated by p-values >0.05. As far as age is concerned,
members in the age group 31–50 are significantly more likely to participate in health
and wellness management as well as find a provider online and look for general health
information than people in other age categories (p-values: <0.0001, 0.023 and 0.033,
respectively). Members’ health condition did not have any significant effect on the
frequency of accessing the health plan’s website as well as on conducting any of the
activities. However, people suffering from a chronic disease were found to have a
significantly higher likelihood of visiting the health plan’s website (p-value: 0.0105)
as well as accessing health information, billing information, and conducting benefits
research than people who do not (p-values: <0.0001 in all cases). All of these obser-
vations can lead the health plan to gain an understanding of what purposes customers
are using different online services and which segments of the population are availing
of which services more regularly than others.

19.5.7.1 Health Goals and Maintaining Them In order to facilitate the health
plan’s program development to improve its members’ health and lifestyles, it is
important to understand the current goals that they are pursuing and the level of
success achieved with these goals. A total of 11.7% of the members reported that
they did not actively pursue any health goals in the past year. Of the rest who
pursued some health goals, the responses can be summarized as follows: (i) chronic
condition management, 4.6%; (ii) healthy eating, 18.3%; (iii) increased physical
activity, 18.4%; (iv) stress management, 6.8%; (v) tobacco cessation, 2.7%; and (vi)
weight loss, 36%.

Thus, majority of members are willing to improve their health by pursuing some
goals, the most popular one being weight loss. When asked about their ability to
achieve their personal goals, 53.9% mentioned working currently on that, whereas
about 31% stated that they have already achieved and maintained their goals. About
16% of the members either did not achieve their goals or were not pursuing them
anymore. For the latter group of people, majority mentioned lack of motivation as
the main reason for their failure to achieve the goal (57%), followed by stress (48%)
and work constraints (30%).
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As to the media platform that members reported to prefer to assist them in achiev-
ing and/or maintaining their health goals, majority expressed an interest in online
tools to track progress (52.3%) and to access online educational health information
(53.6%). A total of 26.6% preferred tools to schedule appointments, 13.4% wished
to join an online social support group, and 34.3% wished to receive online health
coaching and health mentoring. Thus, although there seems to be a need for supervi-
sion and assistance with health information, there does not seem to be a high level of
interest regarding the use of social groups.

Clustering revealed again that women are significantly more likely to pursue most
of the health goals than men, particularly those involving weight loss, healthy eating,
and increased physical activity (p-values<0.0001 for all cases). A significantly higher
proportion of women expressed an interest in accessing online educational health
information (p-value: 0.0178). With respect to age, a significantly greater number of
people in age group 31–50 had weight loss as their goal (p-value: 0.041) although no
significant age effect was observed for the other categories. As to the achievement of
their goals, no significant differences were observed among the different age groups
and between the two genders. Health conditions and the presence of chronic disease
had no effect on people’s choices of healthy lifestyle goals.

19.5.7.2 Association with Computer Usage The p-values in Table 19.6 clearly
demonstrate that there is significantly strong dependence of the frequency with which
people seek health-related online as well as visit their health plan’s website on the
amount of time they spend on the computer during the entire day, the statistical evi-
dence being stronger in the former case. While computer usage during the evenings is
more strongly related to how often people access health information online, the dura-
tion of computer use during the day has a stronger relationship with how frequently
people seek information from their health plan’s website.

Moreover, chi-square tests indicate overwhelming evidence in support of a
significant relationship between time spent on six different social media sites and the
time spent on seeking health-related information online and from the health plan’s
website, both on the computers and using cell phones (p-values: <0.0001). The
general trend depicted increasing engagement with social media platforms, from
Facebook and Twitter to Wikipedia, with higher access to health-related information
online. Similar results were obtained in case of online activities as well, such as
emailing, chatting, banking, and so on.

TABLE 19.6 Chi-Square Tests for Studying the Dependence of
Frequency of Obtaining Health-Related Information Online and
Visiting the Health Plan Website on Computer Usage

Computer Usage Health Info Online Visit Health Plan Website

During workday <0.0001 <0.0001
During evenings <0.0001 0.0082
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TABLE 19.7 Frequency Statistics for the Level of Concern Expressed in Different
Areas about the Use of Online Technologies for Health Purposes

Not
Concerned

Somewhat
Concerned

Very
Concerned Missing

Too many messages 542 (13%) 1737 (41%) 1783 (42%) 150 (4%)
Privacy, confidentiality 702 (17%) 1416 (34%) 1939 (46%) 155 (3%)
Credibility and reliability 962 (23%) 1758 (42%) 1316 (31%) 176 (4%)
Relevance 807 (19%) 2130 (50%) 1083 (26%) 192 (5%)
Anonymity 887 (21%) 1598 (38%) 1526 (36%) 201 (5%)

19.5.8 Privacy and Security Concerns

The survey respondents were asked to report their level of concern, either “not
concerned” or “somewhat concerned” or “very concerned” (three categories) in
each of five different areas related to the use of online technology for health-related
information, namely: (i) receiving too many unwanted messages, (ii) privacy and
confidentiality of their own information, (iii) credibility and reliability of the infor-
mation received, (iv) relevance of information, and (v) ability to remain anonymous,
if so desired. Table 19.7 displays the frequency statistics for these.

These results clearly demonstrate that majority of the health plan members who
took part in the survey had significant concerns about different aspects of privacy
and security in relation to obtaining health-related information from online sources.
The maximum concern was seen in case of privacy and confidentiality of their infor-
mation, in keeping with expectations, followed by receiving too many messages and
the ability to remain anonymous on the website. The least concern exists in cases of
relevance, reliability, and credibility of the information received. So to sum it all up,
people are mostly worried about the security of their own information and privacy
intrusions, which is justified.

The effects of the different factors – demographical, clinical, and technologi-
cal – are also investigated and the different clusters obtained are summarized as
follows [43]:

• Demographic and Clinical Factors. Surprisingly, not much significant
association was observed with people’s perceived notions of security concerns
for most of the demographic and clinical factors included in the study, the
only noticeable one being concerns about privacy and confidentiality versus
health status (p-value: 0.0351). People who were in good to very good health
were found to be significantly less concerned about these issues than people
in poorer health. We thus conclude that there is remarkable uniformity among
the various segments in the general population (as defined by age, gender)
regarding privacy and security concerns about the use of online and social
media-based platforms for health-related information.

• Online Technology and Social Media Usage. Just as in the case of the demo-
graphic factors, there is overall uniformity in the level of different types of
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privacy and security concerns based on the frequency of use of several online
activities on the computer. Differences were mostly noted in case of emailing
and chatting – people who engage in these two activities more frequently
have significantly less concerns about privacy and security. The minimum
overall association was seen in case of watching videos followed by banking,
news, and shopping online. Similarly, the frequency and level of use of social
media activities have not much significant effect on the level of privacy and
security-related concerns that people may have about obtaining health-related
information from different online platforms. The only significant outcome was
that people who commented on online blogs more frequently had relatively
lesser concerns about privacy and confidentiality in using online media for
health and wellness purposes. The minimum effects were in cases of the use of
Wikipedia.

• Interest in Adopting Online Health-related Activities if Offered by the Health
Plan. People’s propensity to use various social media sites had no significant
association with their level of concerns about adopting online platforms for
health purposes. We observed only significant differences in the levels of secu-
rity concerns in terms of relevance of information obtained among users of
a couple of activities (podcasts and group chats with health experts). In both
cases, we found that people who were more interested in receiving health infor-
mation via these two online sources had greater concerns about the relevance
of information obtained from these sources.

19.5.9 Predictive Models

For each of the seven technology platforms that the health plan was contemplating
offering to its member population, we build a separate logistic regression model to
predict the chances and odds of adopting each of them. Note that we have only devel-
oped models for the social media platforms on computers so far and plan to pursue
this for the mobile apps in the near future as well.

The binary outcome variable in each case is so defined as to have the two classes:
Interested (“1”) and Not interested (“0”). The responses in the “might be interested”
class were few in number and hence were not considered. Each model is built using
60% of the data records (which constitute our “training set”) and the rest 40% is
treated as a “validation set” for generating predictions and measuring model accuracy.

First of all, we fitted several smaller models for each group of factors, where the
goal was to determine which subset of a particular type of factor helps determine
the chances of adopting social media-based channels for health-related information.
These are as follows:

1. Model 1: Demographic and clinical factors

2. Model 2: Technical factors (include level of usage of computers during the
whole day, frequency of use of online banking, shopping, watching news, etc.)

3. Model 3: Social media usage-related factors

4. Model 4: Privacy and security-related factors
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The final modeling experiment consisted of using all the sets of factors together in
a single model. Toward this end, we consolidated some factors to create new variables
that are representative of those factors, and at the same time are able to reduce the
model dimensionality to a considerable extent. It is always desirable to build statis-
tical models that are “parsimonious,” that is, simple with not too many variables and
at the same time optimal in terms of performance. We have a total of 19 variables,
which necessitated this step.

In order to achieve this, the factors representing online and social media activities
are combined together to create two new variables representing two general categori-
cal variables: frequency of online activities on computer and frequency of social media
usage on computer (without considering the individual activities in each category).
Each variable has four categories defined in the following manner:

1. Heavy Users. Use at least one out of the six activities one or more times a day.

2. Medium Users. Use at least three out of the six activities couple of times per
month or at least one activity couple of times a week.

3. Light Users. Rarely use all six activities or use at most two out of six activities
couple of times per month or never/rarely use all six activities (with at least one
“rarely” – not “never” on all six).

4. Nonusers. Never use any of the six activities.

Another advantage of creating these generalized variables is that with the rapid
evolution of Internet-based technology in recent times, new social media sites and
online activities are being introduced regularly, so the specific ones included in this
study (such as Facebook, Twitter, online blogs) may not accurately reflect the online
and social media landscape after a decade or so. If this happens, the models using the
isolated factors described earlier will fail to provide a valid representation and will
be useless for predicting future consumer behavior. The generalized model, on the
other hand, can still be useful in such a scenario provided consumer usage pattern of
online and social media in general does not change drastically.

The number of independent variables is now reduced from 19 to 9 which are as
follows: (i) X1: gender, (ii) X2: age, (iii) X3: general health condition, (iv) X4: pres-
ence of a chronic condition (self), (v) X5: presence of a chronic condition (household
member), (vi) X6: computer usage (workday), (vii) X7: computer usage (evenings),
(viii) X8: online activity usage, and (ix) X9: social media usage. As before, the depen-
dent variable in each case is the odds of being interested in adopting a particular social
media platform for health-related purposes if offered by the health plan. Privacy and
security-related factors are omitted due to their nonsignificance observed earlier with
the statistical tests as well as with the smaller models.

We report here the results from the combined models only since they are very
similar to those from the smaller models fitted in the first stage. Table 19.8 shows
the significant predictors identified for these models using a 5% significance level.
Social media usage is seen to be statistically significant in case of five out of the
seven activities. Computer use during evenings is also significant for five out of the
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TABLE 19.8 Significant Predictors for the Seven Online Social Media-Based Activities
Chosen by the Health Plan

Activities Significant Factors

(1) Connect with others via online forum Social media usage
(2) Reading health-related blogs Age, social media usage
(3) Commenting on health blogs Computer use (eve), social media usage
(4) Watching health-related videos Computer use (eve), social media usage
(5) Watching health-related

webinars/webcasts
Age, computer use (eve)

(6) Listening to health-related podcasts Computer use (eve)
(7) Group chats with health experts Computer use (day), computer use (eve),

social media usage

seven activities, a fact that is consistent with our findings via the smaller models.
Age is a significant factor only in case of reading health-related blogs and watching
health-related webcasts and webinars. Gender and health conditions are not relevant
in any of these models.

The estimated coefficients 𝛽’s help determine quantitatively how much the odds of
adopting health-related online platforms will change for changes in the values of the
predictor variables. For example, for Activity 1, the coefficient for X4 is −0.18, which
tells us that the members’ odds of connecting with people with similar health goals
via online forums is less (due to the negative sign) by a factor of e−0.18 = 0.84 for those
with a chronic condition than those without, provided the other factors are held con-
stant. Thus, people suffering from a chronic condition are less likely to be interested
in this specific online activity related to their health and wellness management.

19.5.9.1 Predictive Model Results The goal of the predictive models is to estimate
or predict health plan members’ interest in adopting the social media platforms to be
offered by their health plan for obtaining health-related information.

As briefly mentioned earlier, the coefficients are estimated using the training data
set and predictions are generated for the validation set. Each record in the latter set
is classified as belonging to the class “1” (interested) or “0” (not interested) based on
the predicted odds and probability from the fitted models. The proportion of incorrect
predictions for each training/test set combination constitutes the “error rate” and is
typically expressed in a percentage form. In order to remove selection bias underlying
training and test set combinations, we repeat the random splitting 40 times and the
final prediction errors and model accuracies are calculated by averaging over the set
of 40 iterations.

Table 19.9 shows the accuracies (100 – error rates) expressed as percentages for
the seven models along with standard deviations computed over the 40 repetitions.
Overall, the average accuracies are around 60%. The maximum accuracy is obtained
in case of participating group chats with health experts and highest in case of connect-
ing with others with similar health goals via online forums. All these accuracy rates
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TABLE 19.9 Prediction Error Rates and Accuracies from the
Logistic Regression Models

Activities Accuracy Rates (%)

(1) Connect with others via online forum 54 (±4)
(2) Reading health-related blogs 59 (±3)
(3) Commenting on health blogs 61 (±4)
(4) Watching health-related videos 60 (±3)
(5) Watching health-related webinars/webcasts 56 (±2)
(6) Listening to health-related podcasts 58 (±4)
(7) Group chats with health experts 64 (±2)

are considerably better than random chance without any background information on
them (50% error for predicting randomly whether a person is or is not interested in a
certain activity offered by the health plan) so that we can conclude that it is possible
to predict a consumer’s level of interest more accurately, given the knowledge about
his demographic profile as well as behavior with respect to general computer usage
and usage of online and social media-based activities. Based on these results, the
health plan can make informed decisions about which of its members to target these
activities toward maximum possible adoption chances. Furthermore, we note that the
standard errors are considerably low, thus indicating the stability of our models and
robustness to the selection of the training and the test sets for prediction.

As is clear, these prediction results have considerable room for improvement, thus
calling for a refinement of our fitted logistic models. Extensions include (i) multino-
mial logistic model with three categories for the response variable, thus incorporating
a separate class for “might be interested” and (ii) incorporating interactions among
the variables.

19.6 CONCLUSIONS

All sectors of the healthcare industry are exploring the use of social media for making
health information more accessible to consumers. This study examines how health
plan members might respond to these new tools and identify segments of member
population based on demographic and health condition related factors. Our overall
primary findings include the following: (i) younger people and men are more inter-
ested in adopting social media-based platforms from the health plan via computers;
(ii) people who engage in online activities and social media activities and use com-
puters and mobile phone more regularly are more likely to adopt these technologies
offered by the health plan via similar channels; (iii) people use their cell phones for
Internet-based activities considerably less than computers, and a smaller number of
significant clusters were detected with respect to most of the factors included in this
study; (iv) members in poorer health and suffering from a chronic condition had a sig-
nificantly elevated level of interest in receiving health information from various online
and social media sources but not via mobile apps. Specifically, although the use of cell
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phones and mobile apps were found to be widespread among the younger segment
of the population, no significant difference with respect to interest in adopting the
proposed platforms of health-related information from their health plan was observed
among the different age groups included in this study. Privacy and security-related
concerns seemed to be fairly uniform across all segments of the populations and
were not found to predict people’s willingness to adopt technology-based platforms
for their health and wellness management. Moreover, the predictive models helped
us identify significant predictors of people’s likelihood of adopting health-related
online platforms on their computers as planned by their health plan provider, among
a host of several factors initially believed to be of relevance in this context. The
model-generated predictions also help characterize particular subpopulations of the
health plan members that are most likely to adopt these technologies.

Our findings are expected to be greatly beneficial to this health plan as well as
to other health plans exploring similar opportunities in designing effective social
and mobile media-based tools for imparting valuable health and wellness-related
information to their members. Particularly, the findings of this study enable them to
tailor their products to specific population segments for the maximum outreach. For
instance, the health plan should target members who already use their mobile phones
for several online activities and accessing social media sites to deploy health-related
information via these platforms. They may also devise health-related mobile apps
specifically designed by gender, particularly for male members to begin with. Since
age was surprisingly not found to have a significant association with interest in
adopting mobile apps for health purposes, the health plan may not need to focus on
age-specific, health-related, mobile apps for their members currently.

Future work includes integrating healthy lifestyle goals into the predictive models
as well as building similar models for predicting people’s interest in adopting
health-related mobile apps. Moreover, career type and work-related activities are
two important factors that play a large role in determining how, when, and what type
of mobile applications fit into people’s lifestyles. The current survey did not collect
data on these factors but we plan to incorporate them in our future studies.
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20.1 INTRODUCTION

The convergence of health reform regulation, consumer demand, market realities, and
technology developments are driving healthcare organizations to explore new mod-
els of care and payment across the delivery spectrum [1, 2]. The Affordable Health
Care (AHC) Act has emerged as a catalyst for changes in how insurance is obtained
and how care is provided [3]. The focus has shifted toward consumers and there is
an increasing demand for customer service as the concept of outcome-based health
management grows [4]. Employers are increasingly turning to their health insurance
providers to assist them to actively manage the health of their employees in an effort
to sustain high levels of productivity [5, 6]. Layered onto this is the explosion of
social media, creating an opportunity for insurers to not only market themselves using
innovative tools but also engage their customers in highly accessible and customized
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ways [7, 8]. Recent reports by the Pew Research Center indicate that 45% of the US
adult population is living with one or more chronic conditions, are likely to be older,
and also “seriously social” about seeking information from their healthcare providers,
family members, and friends [9].

Health insurance plans are thus exploring new and creative methods to reach out to
members to offer health information, provide support, encourage healthy behaviors,
and leverage the emerging trend among consumers to play a more active and engaging
role in self-health management. In general, more people turn to the Internet than any
other source for health-related information and support. A reason for this trend can
be attributed to the increasing healthcare costs and resulting changes in consumer
behavior [10]. The explosion of Internet technologies has opened up new platforms
to connect stakeholders such as patients, providers, and insurers. These relationships
are vital to the long-term success of healthcare organizations.

Consumption of online media is widespread among the adult population who are
active online users and is correlated with the growing penetration of broadband Inter-
net access in the United States [11]. According to a survey that measured patient
activation, less than half of the adults in the United States, at 41.4%, have the highest
(fourth) level of activation [12]. At this level, people have the skills and confidence to
manage their health; moreover, they are more likely to obtain preventive care, such as
yearly health screenings, immunizations, and seek information about healthy eating
habits and physical activity. At the third level, 37.2% individuals may lack confidence
and skills to take action. Individuals in the first and the second levels are passive and
more likely to be incapable of managing their own health effectively. The ability to
move up and down rankings is possible with the accumulation of health information
in conjunction with willingness to be active in personal health management. This is
where the use of social media can provide value, namely, to offer health information
and self-health management tools and services in a quick, credible, and convenient
manner. The popularity of social media can be a transforming landscape for health
management and healthcare delivery [13].

The rest of the chapter is organized as follows. Section 20.2 contains a comprehen-
sive review of the existing literature on the use of social media for healthcare purposes
along with the application of analytics tools in this field, Section 20.3 provides details
about our particular case study based on a large health plan in Pennsylvania, and
Section 20.4 introduces the analytical tools we employed. In Section 20.5, we include
all our results along with discussions. We conclude in Section 20.6.

20.2 LITERATURE REVIEW

Whether it is Facebook, LinkedIn, or Twitter, social media is a big part of people’s
lives today. Social media uses the Internet and web technologies to facilitate social
interactions by allowing for the exchange of user-generated content to share informa-
tion, communicate, and collaborate [13]. The explosive growth of social networking
sites – Facebook (1.2 billion active users as of March 2014), Twitter (200 million
active users as of 2013), to name a few – has given users the ability to easily share
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information online by connecting individuals and groups [14–16]. These users are
able to communicate their moods, opinions, thoughts, ideas, and actions through mul-
timedia platforms such as networking sites, blogs, social forums, and wikis, allowing
conversations to spread across these platforms reaching users with similar interests
for particular topics, creating communities for knowledge sharing and interaction.
User-generated content promotes a sense of belonging, creating a loyalty to the social
media product itself [17].

Social media impacts us personally and professionally on a daily basis. Most of
us could not have envisioned the effect that social media has had upon us within the
healthcare sector. Recent studies have shown that consumers are increasingly turn-
ing to different forms of social media communities for healthcare-related information
[18, 19]. A PwC consumer survey [6] showed that more people now turn to the Inter-
net (48%) to make decisions about their healthcare than to doctors (43%). In a poll
conducted in February 2012, 45% of consumers indicated that information found via
social media affects their decision to seek a second opinion from another doctor, 42%
use social media to cope with chronic conditions, diet, exercise or stress management,
and 41% to help them choose a specific physician or a hospital. A similar survey
by Accenture found that more than three-quarters of consumers used online sources
to seek information about insurers [4]. Pew Research Center’s Internet & American
Life Project study, focusing on the impact of the Internet on health and health care,
states that there is a shifting landscape where people are increasingly more reliant
upon health information online compared to personalized physician visit [20, 21].
Today, about 75% of all American adults are connected to the Internet and 61% of
them search online for health information [17]. A recent Frost and Sullivan survey of
provider organizations indicated very high use of social media for both personal and
professional purposes, particularly for marketing and brand awareness, and business
development [22].

Leveraging existing social networks and peer groups within the workplace creates
an environment of peer support and a culture of health-seeking behavior [23]. Peo-
ple get the opportunity to interact with peers with similar health goals leading to
greater adoption of health-improving activities ranging from becoming more active
and eating healthy foods to seeking preventive care and better management of chronic
conditions. This is thus a very cost-effective way for consumers to maintain a healthy
life, since such practices can potentially reduce their out-of-pocket medical expenses
[24, 25]. On the other hand, this provides a great opportunity to healthcare companies
of all types and sizes to improve their interactions with their customers. They can use
these social media platforms to connect, engage, and educate customers in new ways
by sharing news about new treatments or drugs for certain ailments via video streams,
podcasts, webcasts or webinars, and online live chat groups, and in the process they
gain insights into their needs and desires for reacting accordingly in a timely manner.
Not only that, social media also provide healthcare companies a unique avenue for
combating the negativity that often surrounds the industry and enhance their brands,
thus equipping them with a new marketing strategy that is cost-efficient as well, since
it has the capability of reaching millions of people at the same time with negligible
amount of additional investment in terms of time and money [4].
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For both government and commercial payers, when it comes to social media,
it is critical to know and understand the audience, focusing not only on content
but also on how it will be used. Companies with strong wellness programs, for
example, have been able to extend the value of their existing programs by creating
new, socially enhanced versions of their programs. Humana’s HumanaVille [26]
is one such endeavor, taking advantage of the increasing number of seniors who
are actively engaging online. Humanaville is a dynamic social world filled with
information, tools, games, and forums for seniors to get educated on health and
wellness issues and concerns. Independence Blue Cross is building on its customers’
desire for healthier lifestyles with its Health Steps campaign, which includes not
only a Facebook page, Twitter handle, and blog but also the IBX Healthy Steps
Pedometer app downloadable from iTunes and Android marketplaces [9]. Another
health industry segment leader who is successfully engaging in social health is
Aetna, offering Life Game, an online social game that engages people in setting
and working toward personal wellness goals [27]. Kaiser Permanente, the country’s
largest nonprofit healthcare provider, also uses social media tools such as Facebook
and Twitter to improve customer service and outreach. A recent report indicates that
this has helped it grow its positive mentions close to 500% in the last 5 years [28].

Recent research has found that use of social media platforms by healthcare
organizations continues to increase [29]. Analysis of a data set surveying 600 major
healthcare organizations indicates that 470 healthcare organizations (of the 600
total surveyed) have at least one Twitter account with active updates; 280 also
utilize YouTube as a means of communication; 82 use blogs actively; and, most
significantly, 382 have an active Facebook profile for interaction with patients and
other consumers.

Figure 20.1 depicts this breakdown. Of the 18 hospitals surveyed in Pennsylvania
alone, 10 have YouTube profiles, 15 are on Facebook, and 12 use Twitter. Although

March 28 2010

Hospital social
media accounts

600 hospitals:
280 YouTube
470 Twitter
382 Facebook
82 Blogs

1214 Social media sites

Source:
ebennett.org/hsnl

Figure 20.1 Social media use by healthcare organizations [29].
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none are using blogs, one-third of these facilities are using all three major social media
platforms (YouTube, Facebook, and Twitter). These studies motivated the health plan
in this case study to investigate the potential of social media for reaching out to its
member population with new services and tools for health and wellness management.

Additionally, with the advancement of mobile technology and the growing
popularity of smartphones (iPhones, Android), many users are constantly connected
to the Internet. People want to find health information fast, on-the-go, and in the
cheapest possible way, with 69% of US adults tracking a health indicator such as
weight and diet [21]. As of August to September 2012, 85% of Americans owned a
cell phone or a smartphone and 55% of all adult phone users use it to access the Inter-
net [7]. As of April 2012, there were 13,600 health, medical, and fitness applications
within the Apple App Store, the official source for downloadable applications for
iPhones, with the majority intended for use by patients [30]. Some popular examples
of mobile applications include Text4baby [31], a free mobile information service
that was designed to promote maternal and child health, and California’s cellular
texting to maximize the spread of knowledge about the 2009–2010 pandemic flu
crisis [32].

20.2.1 Privacy and Security Concerns in Social Media and Healthcare

The main challenges for any organization, and more so for health plans, are in the
area of risk considerations in the domains of security, privacy, and reliability. The
implementation of a social media initiative for any health plan is not without risk. As
an insurance company clearly in the business of risk assessment, health plans must
carefully consider the different types of risks associated with each media platform
before implementation. These risks primarily pertain to privacy, accuracy, financial,
and legal issues.

The healthcare industry’s concerns about the privacy, security, and confidentiality
of patient information are not unique. The financial services industries, including
banks and credit card companies, have been at the forefront of developing protections
for personally identifiable financial information. Yet many consumers consider their
health information to be more “private” than a bank account statement, which is rou-
tinely accessed by mortgage lenders, landlords, and other third parties. Patients with
chronic health problems or more serious conditions, such as cancer or HIV/AIDS,
may be vulnerable to involuntary disclosure that could affect their job status or rela-
tionships with peers. Therefore, it is reasonable to expect that a critical issue when
accessing or using a social media site when communicating with and about patients
is the degree of privacy and security available within that medium. As is common
knowledge, patients are entitled to confidentiality and whichever form of social media
outlet you use, it remains of the utmost importance.

Each medium has the opportunity to pose issues for the organization itself and
the users of each of the platforms. The dynamic nature of social media makes their
use particularly challenging to maintain reputable information and conversation. As
such, social media users and the content they provide are often steered greatly by
mood, current news, and personal biases. Many learn from others, although many
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are also interested in their own participation primarily. Excellent social media, with
the purpose of enhancing the lives of those participating, that is, those pointed toward
health promotion and wellness initiatives, will best involve users interested in learning
and sharing, rather than simply broadcasting their lives and opinions.

As the degree of free response within a medium increases, the risk of privacy
violations also increases. Forums, blogs, and WIKI-style media run the risk of
potentially malicious users gaining a great deal of information about other users.
Some individuals may be willing to share information ranging from demographics
to medical history, but others may find reassurance in simply revealing under an
alias username with little or no medical information [33]. These two bias extremes
make it challenging to design an effective social media-enabled technology solution
where all users will feel satisfied with the required level of input, with the varying
levels of risk aversion related to privacy concerns potentially leading to incomplete
or inaccurate information.

Social media, such as Facebook, inspire daily disputes about privacy controls
and availability of particular types of information to third-party users, friends within
social networks, and the site’s administrators. Users do not seem reluctant to provide
and post this type of information in the first place, but are particularly protective
of their privacy rights once they have done so. Most major social networking sites
are committed to ensuring that use of their services is as safe as possible. Users
of personal health records (PHR) sites such as Microsoft HealthVault [34] place
confidence in user agreements that guarantee the privacy of their information,
although these sites are only loosely constrained by privacy legislation such as the
Health Insurance Portability and Accountability Act (HIPAA for short) passed by
the US Congress in 1996 to address the need for a national patient record privacy
standard [35].

The risk of potentially inaccurate information is also significant. The social
media strategies of the health plan, in order to be effective, would need to dedicate
resources to protect the reliability and accountability of users and moderators of each
medium. Users would expect accurate and reliable information to be provided from
accountable and intelligent sources. Accuracy of facts, respectfulness of opinions,
and sustainability of service should be the founding principles upon which the social
media solutions that the health plan chooses to deploy will become reputable. Some
sites proactively preview and approve content before it is publicly posted so that the
information is accurate and reliable.

Additionally, the health plans may also be concerned about slanderous comments
made about the company or particular individuals associated with it (e.g., specific
physicians) and the resultant liability issues raised. Lastly, variations in population
demographics, degree of technical knowledge of particular segments, and related fac-
tors clearly indicate that the notion of “one-size-fits-all” is certainly not appropriate
in the social media arena, hence software services and tools need to be designed to be
accessible to a disparate demographic population with respect to varying age, gender,
education, technical knowledge, and Internet access. Thus, this study can potentially
assist health plans to conduct a comprehensive assessment of benefits and risks by
providing insights into stated member needs and usage preferences.
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20.2.2 Analytics in Healthcare and Social Media

The use of analytics in the healthcare industry as well as in social media is becoming
increasingly popular with the advancement of technology and computing resources,
and availability of a large amount of data. With increasing demands from consumers
for enhanced healthcare quality and increased value, healthcare providers and payers
are under pressure to deliver better outcomes. Primary care physician and nursing
shortages require overworked professionals to be even more productive and efficient.
The cost dynamics of healthcare are changing, driven by people living longer, the
pervasiveness of chronic illnesses and infectious diseases, and defensive medicine
practices [36]. New market entrants and new approaches to healthcare delivery are
increasing complexity and competition. Analytics can provide the mechanism to sort
through this torrent of complexity and data and help healthcare organizations deliver
on these demands. But it takes big plans, discrete actions, and some very specific
management approaches to gain the benefits of analytics.

The types of analytics used can be categorized into the following: (i) descrip-
tive analytics, which provides insights based on exploratory methods including
visualization tools and summary statistics; (ii) predictive analytics, which uses
statistical modeling and data mining techniques, and (iii) prescriptive analytics,
which uses decision models based on simulation and optimization methods to make
recommendations. Descriptive analytics are primarily used in analyzing survey data
where simple frequency distributions and graphical techniques are employed to
represent the underlying patterns in the data. Analysis of variance (ANOVA) or sim-
ple statistical hypothesis tests are also sometimes performed to determine whether
different segments of the surveyed population are significantly different with respect
to certain characteristics of interest included in the study. Unsupervised learning
methods, such as clustering, and also association rules (also called “Market basket
analysis”) are employed to determine significant clusters in the population as well as
study associations among variables. Predictive analytics includes rigorous statistical
models such as linear regression, logistic regression, generalized linear models, and
hierarchical regression; however, data mining or machine learning algorithms are
used for performing classification such as decision trees, k-nearest neighbors, naïve
Bayes, neural networks, and linear discriminant analysis (LDA). Dimensionality
reduction is another major component of any data analytic task since most real data
sets contain several variables (often hundreds of them in some applications), most of
which are irrelevant or uncorrelated with the outcome variable of interest. Principal
component analysis (PCA) is a well-known tool for this purpose; another commonly
used method is subset selection in the case of regression models. Sarasohn-Kahn
[37] includes details about the various statistical and data mining techniques that are
popularly used to analyze data arising in different industries.

Analytics is widely being used in different areas of the healthcare industry today,
from tracking and monitoring revenues and operational performance to monitoring
quality initiatives and care programs to predicting outcomes relating to disease out-
breaks and making decisions regarding treatment plans. Several healthcare companies
have social media sites that help connect patients with providers and care givers
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and also offer communities for people suffering from chronic diseases via which
they can communicate and share experiences and also provide support. Social media
produces unstructured and complex data in massive volumes at a very rapid pace.
Due to the overwhelming diversity of platforms and participants, it is challenging
to discover relevant content, standardize extraction, and generate meaningful ana-
lytics that help in making decisions. An optimum blend of automated listening and
human analysis is indispensable when it comes to contextualizing and interpreting
patient-generated content. Text-based analytics are used often to perform “sentiment
analysis” to discover patients’ opinions and reactions to certain drugs or initiatives
and programs conducted by a healthcare company (such as fitness programs, weight
loss programs, to name a few). Moreover, time series and forecasting methods can be
applied to detect trends in consumer opinions about certain products, how they vary
over time, and predict outcomes at future time points. Clustering is also used in appli-
cations where the goal is to determine targeted population segments. For instance, a
healthcare provider might be interested in knowing which people particularly express
negative opinions about a certain product or how people in different geographic loca-
tions react to a certain new drug. This is useful not only for marketing purposes but
also for identifying areas of improvements to better serve the consumer population.

The challenges associated with the huge amounts of data amassed by the health-
care organizations lie not only in processing and analysis but also in reporting the
results in a consolidated way that can provide meaningful insights easily for efficient
decision making. A number of industry solutions have emerged in this field in the
recent years from companies such as SAS and IBM that help in communicating the
outcomes through metrics-based scorecards and dashboards that are widely being
adopted in the healthcare industry. Visualization analytics software such as Tableau,
Spotfire, and QlikView are also being deployed widely to represent a wide variety of
data using user-friendly and interactive interfaces. Moreover, several platforms are
available now to handle the massive volumes of complex data (such as HADOOP).

20.3 CASE STUDY DESCRIPTION

This case study is associated with a large health plan in western Pennsylvania. The
health plan offers five basic medical plan designs, which are distinguished mainly
by varying levels of provider-coordinated versus self-directed care and the use of
network versus out-of-network providers. Apart from consumer-specific plans, the
health plan also offers a full range of commercial and government health management
products and services, including commercial group health insurance, Medicare Assis-
tance, Special Needs (SNP), Children’s Health Insurance (CHIP), and customized
benefit options for smaller employer groups. It also offers disease and behavioral
health management programs, including programs to help employers promote health,
prevention, and wellness in the workplace.

Recognizing that social media-based platforms for consumer engagement is
building momentum, the health plan initiated a project to identify and develop
strategies and solutions for the integration of these platforms to increase awareness
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of health-risk factors, promote healthy lifestyle behaviors, and deliver health
coaching. In this chapter, we present results of a survey conducted among members
of the health plan to assess the extent to which they are interested in adopting social
media-enabled practices, tools, and services for their health and wellness needs.
Recent studies have reported descriptive statistics using bar charts, proportions, and
pie charts [29]. Our methods, on the contrary, include rigorous statistical analyses,
from inference to predictive modeling, that enable us to draw statistically valid
conclusions.

20.3.1 Survey Design

Collaborating with an academic institution, the health plan developed and executed
a health and wellness survey among members to understand their propensity for
social media usage and the potential to connect technology with members’ health and
wellness needs. The survey tool was created in a multistep process that included an
extensive literature review; interviews with experts in nutrition, health coaching, and
wellness promotion; and health plan administrators and executives; and several itera-
tions for review and redesign based on a pilot survey in the academic institution [38].
Thus, the main goal of the overall study was to examine behaviors and stated prefer-
ences of a sample of health plan members to understand and identify technology and
social media-enabled healthcare services to offer for effective self-health manage-
ment. The platforms that were chosen for this study included social networking sites
such as Facebook, MySpace, and LinkedIn; media sharing sites such as YouTube,
online forums, blogs, and wikis; and microblogging sites such as Twitter.

The analysis in this case study examines the opportunities for social media for
health and wellness promotion in the context of the particular demographics, needs,
and current usage habits of health plan members. The main hypothesis of interest
was to test whether there is general interest among members of the health plan to
adopt different social media solutions for obtaining distinct types of health-related
information and services, and to understand the factors that drive this interest. In
order to test this hypothesis, we analyzed member responses with respect to adoption
of social media for health-related information based on key demographic, clinical,
and technology factors, the primary ones being (i) gender, (ii) age, (iii) general health
condition, (iv) presence of a chronic condition, (v) level and frequency of computer
use, (vi) level of social media usage, and (vi) types of online activities engaged in.

The survey was categorized into five main sections: (i) baseline technology usage,
(ii) social media usage, (iii) health and wellness objectives, (iv) current behavior and
interest associated with health-related information via the Internet, and (v) health
status and demographic information. There were 28 questions on the survey, which
was expected to take approximately 15 min to complete. It was completely voluntary
and anonymous in order to protect the privacy of respondents.

The survey was administered using Survey Monkey to a subset of the health plan
members who were current employees of the larger health system that included a
provider organization. As an incentive to successfully complete the survey, partic-
ipants were automatically entered into a raffle to win one of 10 $100 gift cards.
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The survey was initially distributed through a company-wide email newsletter before
being posted as a fixed link to the health system’s intranet. The survey was available
for approximately 2 weeks during which 4212 members participated and 4058 com-
pleted the survey (determined by the total number of responses to the last mandatory
question), resulting in a yield of 96.3%.

20.4 RESEARCH METHODS AND ANALYTICS TOOLS

Descriptive analytics provides basic initial insights into the distribution of participants
across the different categories and the relationship of key variables with social and
mobile media usage for health-related information. We thus begin by presenting a
descriptive summary of the different background variables in the study via tabular
and visualization techniques. Next, we perform clustering of the member population
based on the demographic, clinical, and technology factors via chi-square tests [39]
since our variables are nominal or categorical in nature. p-Values obtained from these
tests enable us to determine statistically significant associations that are not attributed
to chance alone, and thus define the clusters.

We then develop a predictive model to assess the chances of members’ adopting
different types of social media for health-related purposes based on logistic regression
[40]. Logistic regression extends the idea of linear regression to the case when the
outcome or the dependent variable (typically denoted by Y) is categorical in nature
[25]. It can thus be used for predicting the class or category of a new observation
(where the class is unknown) based on the values of the independent or predictor
variables (typically denoted by X1, X2, …). We use binary logistic regression as our
model instance in which the observed outcome can have only two possible types.

20.4.1 The Logistic Regression Model

Let Y be a binary random variable that takes the values 0 and 1. By convention, the
value of 1 is used to indicate “success” and the value of 0 is used to signify “failure.”
Let X1, X2, …, Xk be k predictors or independent variables that have an effect on Y,
so that we can define p=P(Y= 1| X1, X2, …, Xk). Hence, p can take any value in the
interval [0,1]. Instead of using Y as the outcome or the dependent variable as in linear
regression, logistic regression uses a function of Y, called logit, as the dependent
variable. Logit is defined as the logarithm of odds, log(odds), where

odds =
p

1 − p

with p=P(Y= 1) as defined earlier. It is thus a type of generalized linear model with
logit as the link function. So the logistic regression model with k predictors or inde-
pendent variables X1, X2, …, Xk can be written as

log(odds) = 𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽kxk
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where 𝛽0, 𝛽1, … are the regression coefficients or parameters associated with the
predictor variables that describe the relationship between the predictors and the odds
of the outcome variable belonging to class 1. For example, 𝛽 j can be interpreted as
follows: a unit increase in the value of the predictor xj is associated with an average
increase of 𝛽 j × 100% in the odds of Y belonging to class 1, holding all the other
predictors constant.

The k+ 1 regression coefficients (𝛽’s) are usually unknown and estimated from
a given data set using the method of maximum-likelihood estimation. Unlike linear
regression with normally distributed residuals, it is not possible to find a closed-form
expression for the coefficient values that maximizes the likelihood function, so an
iterative process must be used instead, for example, Newton’s method. This process
begins with a tentative solution, revises it slightly to see if it can be improved, and
repeats this revision until improvement is negligible, at which point the process is said
to have converged. In the following, the details of the estimation process are outlined.

20.4.1.1 Maximum-Likelihood Estimation The maximum-likelihood estimation
procedure entails finding the set of parameters for which the probability of the
observed data is greatest. The maximum-likelihood equation is derived from the
probability distribution of the dependent variable that has a binomial distribution
with n= 1 (also called the Bernoulli distribution). The probability distribution of the
random variable Y is thus given by

f (y) = p(1 − p)

where p is as defined earlier. Now since we estimate the parameters using the training
set, let us assume that there are n records in the training set that are denoted by Y1,
Y2, …, Yn. Each Yi then has a Bernoulli distribution with parameter pi, and all the Yi’s
are independent of each other. Each pi in turn depends on the k independent variables
X1, X2, …, Xk and on the unknown parameters 𝛽0, 𝛽1, . . . . Thus, in essence, p is a
function of the unknown parameters 𝛽’s as the Xi’s are known. Let Xi1, Xi2, …, Xik
denote the predictor values corresponding to Yi. So the likelihood function for the
entire training sample is given by

L(y) =
n∏

i=1

f (yi) =
n∏

i=1

pyi
i (1 − pi)1−yi.

Here, L(.) denotes the likelihood function when written in terms of the pi’s, which
are functions of 𝛽0, 𝛽1, . . . . Taking logarithm on both sides, we can write down the
log-likelihood function (denoted by l(y)) of the training sample as

l(y) =
n∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
=

n∑
i=1

log
(
1 − pi

)
+

n∑
i=1

yi log
pi

1 − pi
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Now recall that each pi is a function of the independent variables and the regression
coefficients via the relationship (we write out the formulas and expressions using
general “p” for the sake of convenience; for each pi, we have to replace x1 by x1i, x2
by x2i, etc.):

log
p

1 − p
= 𝛽0 + 𝛽1x1 + 𝛽2x2 +…+ 𝛽kxk, so that

p

1 − p
= e𝛽0+𝛽1x1+𝛽2x2+…+𝛽kxk

After some algebraic calculations, we get the expression for p as

p = e𝛽0+ 𝛽1x1+ 𝛽2x2+···+ 𝛽kxk

1 + e𝛽0+ 𝛽1x1+ 𝛽2x2+···+ 𝛽kxk
= 1

1 + e−(𝛽0+ 𝛽1x1+ 𝛽2x2+···+ 𝛽kxk)
, and so on

1 − p = 1
1 + e𝛽0+𝛽1x1+𝛽2x2+…+𝛽kxk

Substituting the value of p in the expression for the log-likelihood above, we get

l(y) =
n∑

i=1

− log
[
1 + e𝛽0+ 𝛽1x1i+ 𝛽2x2i+···+ 𝛽kxki

]
+

n∑
i=1

yi

[
𝛽0 + 𝛽1x1i + 𝛽2x2i + · · · + 𝛽kxki

]
Note that the log-likelihood is a function of yi’s, xi’s, and the 𝛽’s. Of these, the 𝛽’s

are the only unknown quantities. The maximum-likelihood method works by finding
those estimates for the 𝛽’s that will maximize the log-likelihood function. This is
done by differentiating the latter with respect to each 𝛽 coefficient and solving by
setting the derivatives to zero. To demonstrate the process, let us take the derivative
with one component of 𝛽, say 𝛽 j, the expression being shown as follows:

𝜕l
𝜕𝛽j

= −
n∑

i=1

1
1 + e𝛽0+𝛽1x1i+𝛽2x2i+…+𝛽kxki

e𝛽0+𝛽1x1i+𝛽2x2i+…+𝛽k xji +
n∑

i=1

yixji

=
n∑

i=1

(yi-pi)xji

by substituting the expression for pi. As is clear, it is not possible to obtain
a closed-form expression for 𝛽 j by solving this equation; hence, numerical
optimization techniques need to be applied in order to get an approximate solution.

20.4.1.2 Newton’s Method for Numerical Optimization There are a large number
of numerical optimization methods available to solve the above-mentioned derivative
equation. However, we illustrate the use of one of the oldest, yet popular, numerical
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methods called the Newton–Raphson method (or Newton’s method, for short). In this
section, we briefly describe the application of this method to the simplest case of
minimizing a function of one scalar variable, say f (𝑤).

We wish to find the location of the global minimum w* and begin with the
assumption that f is a smooth function. This will ensure that the derivative of f at w*
will be zero; hence, applying a Taylor expansion near the minimum, we get

f (𝑤) = f (𝑤∗) + 1
2
(𝑤 −𝑤∗)

d2f

d𝑤2
|𝑤=𝑤∗ ,

since df
d𝑤

= 0 at w=w*. Newton’s method works by starting with an initial value of
w, say w0 so that the Taylor expansion at w0 will be as follows:

f (𝑤) ≈ f (𝑤0) + (𝑤 −𝑤0)
df

d𝑤
|𝑤= 𝑤0

+ 1
2
(𝑤 −𝑤0)

d2f

d𝑤2
|𝑤= 𝑤0

Now if w0 is close to w*, the above expression will be fairly accurate. Let us
denote the first and second derivatives at w=w0 by f ′(𝑤0) and f ′′(𝑤0) for the sake
of convenience. Then taking the derivative of the right-hand side of the last equation
and setting it equal to zero at a point w1, we have

0 = f ′(𝑤0) +
1
2

f ′′(𝑤0) 2(𝑤1 −𝑤0)

=> 𝑤1 = 𝑤0 −
f ′(𝑤0)
f ′′(𝑤0)

The value w1 should provide a better approximation to the minimum value w* than
the initial guess w0. Iterating this procedure several times, we arrive at the (n+ 1)th
step:

𝑤n+1 = 𝑤n −
f ′(𝑤n)
f ′′(𝑤n)

The procedure stops when wn+1 and wn are very close. It can actually be proved that
if w0 is close enough to w*, then wn is converged to w*, in fact |wn – w*| =O(n−2), a
very rapid rate of convergence. wn is then the estimate of w*, the value that minimizes
the function f(w).

In case of a high-dimensional coefficient vector w= (w1, w2,…, wk), we
replace f ′(𝑤0) by 𝛻f , which is the gradient of f, its vector of partial derivatives
[𝜕f∕𝜕𝑤1, 𝜕f∕𝜕𝑤2,… , 𝜕f∕𝜕𝑤k], and f ′′(𝑤0) by H, which is the Hessian of f, its
matrix of second derivatives Hij = 𝜕2f∕𝜕𝑤i𝜕𝑤j.

20.4.1.3 Model Implementation Software packages are available to compute the
estimates of the coefficients of the logistic regression model. After estimation, the
classification is performed using two steps: the first step yields an estimate of the prob-
ability of belonging to each class for each observation in the test set. In the binary case,
we get an estimate of P(Y= 1), the probability of belonging to class 1 (which implies



�

� �

�

606 UNDERSTANDING THE ROLE OF SOCIAL MEDIA IN HEALTHCARE VIA ANALYTICS

P(Y= 0)= 1 – P(Y= 1)). In the next step, we use a cut-off value on these probabilities
in order to classify each new observation or case into one of these two classes. The
typical cut-off value used is 0.5, which means that if P(Y= 1)> 0.5 for a new case,
it is classified as belonging to class 1, whereas a case for which P(Y= 1)< 0.5, it is
classified as belonging to class 0. However, this cut-off value is not fixed and can be
changed based on a particular problem scenario although 0.5 is known to provide the
optimal accuracies.

In our analysis, we use this model to determine the factors that can significantly
affect people’s interest in adopting various social media platforms for health infor-
mation offered by the health plan, as well as predict the chances or odds of adopting
the proposed platforms based on these factors.

20.5 RESULTS AND DISCUSSIONS

This section includes all our results from the data-driven analytics.

20.5.1 Descriptive Statistics

Tables 20.1 and 20.2 and Figures 20.2 and 20.3 depict breakdown of survey
participants by key demographic and clinical variables via descriptive analytics.
We see a substantially higher percentage of women responding to the survey
(Table 20.1), which is consistent with prior research that women generally use the
Internet more for getting health-related information [10]. A majority of respondents
are aged between 31 and 65 (63%), with about 1% being under the age of 18 or over
the age of 65 (Table 20.2).

TABLE 20.1 Breakdown of Participants
by Gender (n= 3994, missing= 218)

Gender Frequency (%)

Male 555 (13%)
Female 3439 (82%)

TABLE 20.2 Breakdown of Participants
by Age Group (n= 3432, missing= 780)

Age Group Frequency (%)

<18 1 (≈0%)
19–30 744 (18%)
31–50 1635 (39%)
51–65 1025 (24%)
>65 27 (1%)
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Figure 20.2 Perceived health conditions of health plan members.
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Figure 20.3 Presence of chronic condition (a) in self and (b) in household members.

As far as the perceived health condition of participants are concerned, Figure 20.2
shows that majority consider themselves to be in good or very good shape compared
to others (72%), whereas only 1% believe that their condition is poor. Only one-third
of the members mentioned that they are suffering from a chronic condition (Fig. 20.4).
Given the high prevalence of multiple chronic conditions in the general population,
particularly in the 51–65 age group [25], wide perception of health condition being
excellent and lack of knowledge/willingness to share this information (missing values
in Figs 20.2 and 20.3) may have a detrimental impact on self-health management
initiatives.
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Figure 20.4 Proportion of members by the presence of a chronic condition (Yes/No) versus
level of interest in listening to health-related podcasts. Interest-level categories: Not interested,
might be interested, and very interested. (a) Cell phones (mobile apps) and (b) computer.

20.5.2 Baseline of Technology Usage

The technology section comprised of the first set of questions on the survey. These
questions were intended to gauge technology integration in respondents’ lives as
well as measure the level of their knowledge about and frequency of use of current
technology to assess the likelihood of adoption of these online and social media-based
platforms for different segments of the population.

Table 20.3 shows the frequency distribution for the use of cell phones and
computers (both desktop and laptop) at home as well as at work. According to this,
cell phone usage is most popular with less than 1% of respondents, mentioning that
they own neither a cell phone nor a computer.

However, cell phones also have other functions that should not be overlooked. The
possibility of connecting to the Internet, downloading applications, and performing
daily tasks has great potential when it comes to implementing new features for the
health plan. Although we observed that majority of the users owned smartphones
(33.9%: Blackberry, 25.5%: iPhone, 14.9%: Android) that possessed advanced capa-
bilities, most of them do not access the Internet on their mobile phones measured at

TABLE 20.3 Breakdown of Participants by the Type of Technology
They Own or Have Access

Devices Owned/Used Frequency

Cell phone 4019 (95.4%)
Computer w/ Internet access at workplace 3491 (82.9%)
Computer w/ Internet access in the evenings 3786 (89.9%)
None of the above 28 (0.7%)

Note here that members were allowed to check as many options here as applicable
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68%. Similarly, 77% stated that they do not download mobile applications on their
cell phones. On the other hand, more people were inclined to use text messaging on
their cell phones – more than 55% of people send or receive at least one text mes-
sage daily whereas about 24% reported never or rarely using this service. Similarly,
people tend to use their cell phones significantly more for emailing and chatting than
for recreational activities such as watching videos, reading news, shopping, as well
as for online banking.

In order for the health plan to cater to its members’ needs through Internet-based
technology, it is imperative to recognize the level of the respondents’ computer usage
and their ability to access features of the health plan through the Web. The data
revealed that 45% reported spending their entire workdays in front of a computer
with Internet access while another 15% reported spending more than half of their
workday in front of a computer with Internet access. Furthermore, we found a sig-
nificant portion (60%) of the health plan members have access to the Internet during
most of the working day. This demonstrates the degree of penetration of the Internet
within the daily routine of health plan members and suggests a strong potential to
reach the members via that medium. In addition, about 80% of individuals access the
Internet on a computer during their free time in the evenings with 50% spending less
than an hour and 30% spending between 1 and 3 h. It can thus be concluded that a
significant portion of the population spends at least some time on the computer during
off-work hours.

The level of usage of different activities on computers such as sending and
receiving emails, reading news online, followed by banking revealed similar trends
as in case of cell phones. It is also interesting to observe that a significant portion of
individuals (52.7%) do not use their computers to chat online. It is not only important
to recognize the popular activities but also the unpopular activities as well to enable
the health plan to offer appropriate online products.

20.5.3 Mobile and Social Media Usage

By understanding what forms of social media are accessed through the computers and
cell phones by its members, the health plan can gain an insight into what members are
currently engaged with online and use this channel to introduce health and wellness
programs. The use of social media activities on cell phones, such as posting comments
to an online blog and visiting sites such as Facebook, Twitter, LinkedIn, and so on
appears to be quite limited among the health plan members. Nearly 90% of members
never or rarely accessed Twitter, LinkedIn, and MySpace on their phones. Around
20–25% of the respondents had posted comments on online blogs and forums and
visited Wikipedia on their cell phones at least couple of times a week and nearly 40%
mentioned using Facebook at least once a day.

Social media usage on computers also appears to be quite low among the member
population. The results show that most of the members have never used social
networking sites such as Twitter, measured at 91.2%, MySpace at 86.4%, and
LinkedIn at 87.0%. Facebook was the only platform that was claimed to have been
utilized fairly frequently at 42.0%. Additionally, individuals show low levels of
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engagement regarding posting comments on online news groups, websites, blogs, and
photo sites.

20.5.4 Clustering of Member Population by Technology, Social, and Mobile
Media usage

We now cluster the health plan member population based on technological, mobile,
and social media usage by the demographic and clinical factors included in the study.
For instance, we can determine if members’ usage frequency of Facebook is sig-
nificantly different across age groups. Some of the highlights of our findings are
summarized in the following for cell phones:

• Use of text messaging differs significantly across age groups (p-value:
<0.0001). Younger people (age group 18–30) tend to use text messaging more
than older people.

• Use of Internet on the cell phone is significantly different across gender, age
groups, and people with a chronic condition (p-values: <0.0001). Younger peo-
ple tend to use the Internet and download mobile apps on their cell phones
significantly more often, as do people without a chronic condition. Moreover, a
higher percentage of male health plan members use Internet on their cell phones
more than female members as well as download mobile apps.

• Gender seems to be the main segmenting factor with respect to the frequency
of online activities performed on cell phones (p-values: <0.05) – men are found
to engage in each of these activities significantly more frequently than women.
The effect of age is also widespread, except for chatting (p-value: 0.0691), and
in all of these cases, younger people are found to engage more than older people.
Health status of members and the presence of chronic conditions do not have a
significant effect on usage of online activities on cell phones.

• As far as social media usage on cell phones is concerned, there is very little
variation across the various segments of the health plan member population with
respect to demographic factors. The only predominant factor seems to be age,
and we find significant differences in the usage between younger and older peo-
ple for all the social media platforms except LinkedIn and Wikipedia (p-values:
0.0540 and 0.2786, respectively). Men seem to use Wikipedia and LinkedIn
significantly more than women (p-values: <0.0001 and 0.0239, respectively);
however, there is no significant usage difference between the two genders as far
as using Facebook, Twitter, My Space, and blogs are concerned. No significant
effect of health conditions was observed.

Some highlights of the effects of the different factors on computer activities are
included as follows:

• The use of computer during the day seems to vary significantly across age
groups but remain consistent across gender. Older people tend to spend sig-
nificantly more time on a computer during the workday than younger people.
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On the other hand, the length of time spent on the computer during the evenings
varies significantly across gender and age. Men tend to spend significantly more
time on the computer during the evenings than women, and older people spend
more time than younger ones, but presence of a chronic condition (either self
or in a household member) does not seem to have any statistically significant
effects.

• There is a significant relationship between how often people engage in different
online activities and demographic factors. Specifically, we see that age has very
strong relationship with all the six activities and gender with emails and online
banking. Men were observed to participate in such activities more than women,
and younger people tend to participate more often than older people. Health con-
dition or the presence of a chronic condition does not seem to be an important
factor.

• Participants report different levels of usage of social media across demographic
and clinical factors. Age and gender have the maximum effect, followed by
perceived health status while presence of chronic condition has no significant
relationship with social media usage habits. LinkedIn usage is the least variable
across demographic factors (only effect is for gender: males using significantly
more frequently than females), whereas Twitter shows the strongest statistical
evidence of variation across demographic factors. Older people are seen to use
twitter.com much less than younger people, and a similar behavior is observed
for the other platforms also. For perceived health status, a higher proportion of
people with poor to good health are found to be using MySpace.

20.5.5 Interest in Adopting Online Tools for Healthcare Purposes

Various Web and social media platforms that the health plan can offer to its members
were explored through their potential to be incorporated into the members’ health
management programs. Seven different activities were investigated to assess the level
of interest among the survey participants as follows:

• Activity 1: Connecting with others with similar health goals via an online forum

• Activity 2: Reading health-related blogs

• Activity 3: Adding comments to a health-related blog

• Activity 4: Watching health-related instructional videos

• Activity 5: Watching health-related webcasts and webinars

• Activity 6: Listening to health-related podcasts

• Activity 7: Interactive group chats with health experts

Three categories representing the level of member interest in these activities
were as follows: “Not interested at all,” “Might be interested,” and Very interested.”
Looking at descriptive statistics, we find that the health plan members’ interest in
commenting on and consulting health-related blogs is the highest (17.7%). Watching
health-related webcasts/webinars ranked low at 11%. The general trend shows that
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members are interested in collaborating with one another, whether it is interacting
through blogs or receiving advice from experts. A summary of the clusters based on
interest in the various health-related platforms with respect to demographic, clinical,
and technology factors is listed as follows [41]:

• Demographic and Clinical Factors. Male clients of the health plan have a
significantly higher interest in watching health-related instructional videos
than women, but no gender differences were observed in case of the other
seven activities. A greater proportion of members who are older than 65 years
are very interested in watching videos and webcasts and listening to podcasts
that deliver health-related information than the younger population.

There is overwhelming evidence of significant differences in the level of interest
among members with varying health conditions for Activities 1 and 7. Slightly
less, yet significant, evidence of difference is also noted for Activities 3 and 4. In
all of these cases, the pattern observed is consistent – a higher proportion of people
with poor to good health condition have higher interest in these activities than
people whose health is in very good or excellent condition. People suffering from
chronic illness have significantly higher level on interest in all the online activities
except for Activities 2 and 7. Similarly, people who have a household member
with a chronic condition have more interest in all activities, except Activity 6.

• Computer Usage. People who use computers more during their leisure time in
the evenings have significantly higher propensity to adopt online platforms for
health-related purposes. On the other hand, computer usage during the work-
day has a significant relationship with the level of interest in three out of the
seven activities, namely, connecting with others with similar health goals via
an online forum, reading health-related blogs, and watching health-related web-
casts. Thus, there is stronger statistical evidence of clusters based on the length
of time members spend in front of a computer during the evenings, while the
case for daytime is much weaker.

• Online Activities and Social Media Usage. Analysis also indicates strong
statistical evidence that the level of interest in online health-related activities
(that the health plan may consider) differs significantly across people who
engage in different (nonhealth-related) activities online with different fre-
quencies. Those members who engage in online chatting and watching videos
online more expressed a significantly higher level of interest in using these
online platforms for receiving health-related information (p-values: <0.0001).
Similarly, people using social media more expressed significantly higher
interest in various online activities for health-related information, the least
interest being among Facebook and MySpace users.

20.5.6 Interest in Adopting Mobile Apps for Healthcare Purposes

The health plan members were asked to express their level of interest in downloading
seven different types of health-related mobile apps on their cell phones that the health
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plan was considering to offer to them, which are as follows (abbreviated names in
brackets for ease of future reference):

• [Card app] App to display information included on their health insurance cards
• [Search app] App to search for doctors, hospitals, and pharmacies
• [PHR app] A mobile version of their PHR
• [Game app] App for health-related games
• [Claim app] App to display the status of their insurance claims
• [Video app] App with streaming health-related videos
• [Pod app] App with health-related podcasts

Table 20.4 provides the frequency distribution of the member responses that
indicate maximum interest in obtaining a mobile version of PHR and least interest in
obtaining mobile apps for health-related games, videos, and podcasts. Thus overall
members seem to be more willing to obtain information about their own health via
mobile apps than general health information.

Next, we present a summary of our conclusions regarding how the different
demographic, clinical, and technological factors influence the level of interest in
adopting these various mobile media for health-related purposes, thus leading to
distinct clusters of the member population.

• Demographic and Clinical Factors. The level of interest among health plan
members in downloading health-related apps on their cell phones does not vary
significantly across people with varying health conditions and across different
age groups. The only significant factor is gender. Men were found to have a
significantly higher interest in using all these seven apps from the health plan
than women.

• Online Activity Usage on Cell Phones. The effects observed here are far
more widespread than in the case of the demographic factors. Of the six
online activities, chatting has the least significant association with the level of
interest in obtaining health-related information on cell phones, whereas the
strongest associations are observed for watching videos, reading news, online

TABLE 20.4 Frequency Distribution of Members’ Interest in the Different
Health-Related Apps on Their Cell Phones

Not Interested (%) Might Be Interested (%) Very Interested (%)

Card app 4.01 8.76 9.07
Search app 3.49 8.88 9.43
PHR app 4.23 7.24 10.26
Game app 10.80 7.19 3.63
Claim app 6.46 8.76 6.48
Video app 11.28 7.55 2.85
Pod app 10.30 8.17 3.09
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banking, and shopping (p-values: <0.0001). In all of these cases, people who
participated in online activities more frequently (say, at least a couple of times
a month) were found to have an increased interest in adopting the mobile apps.
Finally, people who used their cell phones to send or receive emails frequently
had a greater interest in adopting health-related mobile apps.

• Social Media Usage on Cell Phones. As expected, our analysis revealed that
people who engage in social media activities on their cell phones are more likely
to express an interest in adopting social and mobile media for health-related
information. The most widespread effect is found in case of commenting on
blogs and using Wikipedia. People who participate in both of these cell phone
activities at least a couple of times per month have a greater interest in adopting
all the seven health-related mobile apps if offered by the health plan. On the
other hand, we find that the frequency of MySpace usage on cell phones does
not generally have a significant association with the level of interest in receiv-
ing health-related information via mobile apps. Finally, the frequency of using
Facebook, Twitter, and LinkedIn had a significant association with the level of
interest in using four out of the six mobile apps. The most popular mobile apps
that people had interest in using were those for receiving PHRs and status of
their insurance claims.

• Seeking Health-related Information Online. Our analyses revealed that people
who visit the health plan’s website quite frequently are significantly more likely
to adopt a mobile version of their own PHR (p-value: 0.0212), but there is no
significant effect on the other six mobile apps.

20.5.6.1 Comparison of Clusters Based on Interest in Adopting Social Media
on Computers and on Cell Phones Some major differences in the clusters
obtained with respect to interest in adopting online and social media platforms
for health-related purposes between computers and cell phones are enumerated as
follows:

• Although more people own cell phones than computers, people use the Internet
significantly more on their computers than on their cell phones.

• We observed significantly lower interest in downloading health-related mobile
apps on cell phones than receiving online health information on their computers.

• We detected that members in poorer health and suffering from a chronic
condition had a significantly elevated level of interest in receiving health
information from various online and social media sources but not via mobile
apps. Members with no chronic condition were seen to use cell phones,
especially for text messaging, more than those with one. The multiple bar
charts in Figure 20.4 highlight this distinctive difference in case of one social
media platform – health-related podcasts. Similar patterns are observed for the
remaining six applications too.

• Younger people (age group: 18–30) were found to use cell phones more, as
expected, although the interest level for health-related mobile apps was not
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found to be significantly different between older and younger people. However,
in the case of computer use, older people (over 50 years of age) were found
to have a significantly higher interest than the younger population in some of
the social media platforms – watching health-related videos and listening to
podcasts.

• With respect to the effect of usage frequency of online activities and social
media on interest in adopting health-related social media was similar for cell
phones and computers.

We thus conclude that people are more willing to utilize social media platforms
for obtaining information pertaining to their health and wellness on the computer
than on cell phones. Although the use of mobile apps and smartphones has increased
considerably today, that is, mostly among the younger people, Zulman et al. [42]
showed that older adults still distrust the Internet for health-related purposes based
on a nationally representative survey of 1450 adults 50 years of age or older in the
United States. Since our study included a higher proportion of respondents over 30
years of age, we expect our results to be relevant with the current trends. Furthermore,
current literature shows that the use of health-related social and mobile media is still
not as widespread as people would expect given the technological advancement with
respect to cell phones. For instance, a recent study based on a national survey of 3104
adults living in the United States reports that 31% of people have looked at health
information on their cell phone as opposed to 17% that was revealed by a national
survey conducted 2 years ago [20]. Moreover, only 9% of cell phone owners say that
they receive text updates or alerts about health or medical issues (although a whopping
80% of them said that they use text messaging) and only 19% of smartphone owners
have a health app on their mobile phone.

20.5.7 Health and Wellness Objectives

This section of the survey aims at understanding the participants’ perception of their
current health status and their personal responsibilities for their wellness and health
maintenance. A total of 25.3% of the individuals regularly look for health-related
information online (at least once a week). Additionally, 97.2% of all members have
used the Internet to search for health information at some point of time. Table 20.5
shows the relative frequency distribution for member visits to the health plan’s web-
site, wherein it is evident that more than 80% of the members had accessed that at
least once in the last 10 months. Moreover, about 60% of the respondents use PHR
offered by their health plan.

TABLE 20.5 Frequency of Visiting the Health Plan’s Website by the Survey
Respondents

Never Not Sure
More Than a

Year Ago
Within the Past
2–10 Months

Within the Past
Month

Within the Past
Week

4.6% 10.1% 2.7% 25% 29.4% 28.2%
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The specific reasons for members’ visits to the health plan’s website are
summarized as follows: (i) finding a provider: 31.5%, (ii) billing: 18.7%, (iii)
benefits research: 24.8%, (iv) health information: 22.9%, (v) health and wellness
management: 33.2%, (vi) participate in their “healthy step” program: 56.1%, (vii)
customer service: 6.5%, and (ix) chat online with a representative: 1.2%.

Analyzing by demographic factors, we find that women are significantly more
likely to obtain health information online as well as visit the health plan’s website
more frequently than men (p-values <0.0001). Moreover, people in the age group of
31–50 are significantly more likely to visit the website more frequently than people
who are under 30 years of age and those who are more than 50 years of age (p-value:
0.019). A significantly higher number of women visit the website for health and well-
ness management and participate in healthy step program than men (p-value: 0.01).
For the other seven activities, no statistically significant differences are observed
between two genders as indicated by p-values >0.05. As far as age is concerned,
members in the age group 31–50 are significantly more likely to participate in health
and wellness management as well as find a provider online and look for general health
information than people in other age categories (p-values: <0.0001, 0.023 and 0.033,
respectively). Members’ health condition did not have any significant effect on the
frequency of accessing the health plan’s website as well as on conducting any of the
activities. However, people suffering from a chronic disease were found to have a
significantly higher likelihood of visiting the health plan’s website (p-value: 0.0105)
as well as accessing health information, billing information, and conducting benefits
research than people who do not (p-values: <0.0001 in all cases). All of these obser-
vations can lead the health plan to gain an understanding of what purposes customers
are using different online services and which segments of the population are availing
of which services more regularly than others.

20.5.7.1 Health Goals and Maintaining Them In order to facilitate the health
plan’s program development to improve its members’ health and lifestyles, it is
important to understand the current goals that they are pursuing and the level of
success achieved with these goals. A total of 11.7% of the members reported that
they did not actively pursue any health goals in the past year. Of the rest who
pursued some health goals, the responses can be summarized as follows: (i) chronic
condition management, 4.6%; (ii) healthy eating, 18.3%; (iii) increased physical
activity, 18.4%; (iv) stress management, 6.8%; (v) tobacco cessation, 2.7%; and (vi)
weight loss, 36%.

Thus, majority of members are willing to improve their health by pursuing some
goals, the most popular one being weight loss. When asked about their ability to
achieve their personal goals, 53.9% mentioned working currently on that, whereas
about 31% stated that they have already achieved and maintaining their goals. About
16% of the members either did not achieve their goals or were not pursuing them
anymore. For the latter group of people, majority mentioned lack of motivation as
the main reason for their failure to achieve the goal (57%), followed by stress (48%)
and work constraints (30%).
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As to the media platform that members reported to prefer to assist them in achiev-
ing and/or maintaining their health goals, majority expressed an interest in online
tools to track progress (52.3%) and to access online educational health information
(53.6%). A total of 26.6% preferred tools to schedule appointments, 13.4% wished
to join an online social support group, and 34.3% wished to receive online health
coaching and health mentoring. Thus, although there seems to be a need for supervi-
sion and assistance with health information, there does not seem to be a high level of
interest regarding the use of social groups.

Clustering revealed again that women are significantly more likely to pursue most
of the health goals than men, particularly those involving weight loss, healthy eating,
and increased physical activity (p-values<0.0001 for all cases). A significantly higher
proportion of women expressed an interest in accessing online educational health
information (p-value: 0.0178). With respect to age, a significantly greater number of
people in age group 31–50 had weight loss as their goal (p-value: 0.041) although no
significant age effect was observed for the other categories. As to the achievement of
their goals, no significant differences were observed among the different age groups
and between the two genders. Health conditions and the presence of chronic disease
had no effect on people’s choices of healthy lifestyle goals.

20.5.7.2 Association with Computer Usage The p-values in Table 20.6 clearly
demonstrate that there is significantly strong dependence of the frequency with which
people seek health-related online as well as visit their health plan’s website on the
amount of time they spend on the computer during the entire day, the statistical evi-
dence being stronger in the former case. While computer usage during the evenings is
more strongly related to how often people access health information online, the dura-
tion of computer use during the day has a stronger relationship with how frequently
people seek information from their health plan’s website.

Moreover, chi-square tests indicate overwhelming evidence in support of a
significant relationship between time spent on six different social media sites and the
time spent on seeking health-related information online and from the health plan’s
website, both on the computers and using cell phones (p-values: <0.0001). The
general trend depicted increasing engagement with social media platforms, from
Facebook and Twitter to Wikipedia, with higher access to health-related information
online. Similar results were obtained in case of online activities as well, such as
emailing, chatting, banking, and so on.

TABLE 20.6 Chi-Square Tests for Studying the Dependence of
Frequency of Obtaining Health-Related Information Online and
Visiting the Health Plan Website on Computer Usage

Computer Usage Health Info Online Visit Health Plan Website

During workday <0.0001 <0.0001
During evenings <0.0001 0.0082
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TABLE 20.7 Frequency Statistics for the Level of Concern Expressed in Different
Areas about the Use of Online Technologies for Health Purposes

Not
Concerned

Somewhat
Concerned

Very
Concerned Missing

Too many messages 542 (13%) 1737 (41%) 1783 (42%) 150 (4%)
Privacy, confidentiality 702 (17%) 1416 (34%) 1939 (46%) 155 (3%)
Credibility and reliability 962 (23%) 1758 (42%) 1316 (31%) 176 (4%)
Relevance 807 (19%) 2130 (50%) 1083 (26%) 192 (5%)
Anonymity 887 (21%) 1598 (38%) 1526 (36%) 201 (5%)

20.5.8 Privacy and Security Concerns

The survey respondents were asked to report their level of concern, either “not
concerned” or “somewhat concerned” or “very concerned” (three categories) in
each of five different areas related to the use of online technology for health-related
information, namely: (i) receiving too many unwanted messages, (ii) privacy and
confidentiality of their own information, (iii) credibility and reliability of the infor-
mation received, (iv) relevance of information, and (iv) ability to remain anonymous,
if so desired. Table 20.7 displays the frequency statistics for these.

These results clearly demonstrate that majority of the health plan members who
took part in the survey had significant concerns about different aspects of privacy
and security in relation to obtaining health-related information from online sources.
The maximum concern was seen in case of privacy and confidentiality of their infor-
mation, in keeping with expectations, followed by receiving too many messages and
the ability to remain anonymous on the website. The least concern exists in cases of
relevance, reliability, and credibility of the information received. So to sum it all up,
people are mostly worried about the security of their own information and privacy
intrusions, which is justified.

The effects of the different factors – demographical, clinical, and technologi-
cal – are also investigated and the different clusters obtained are summarized as
follows [43]:

• Demographic and Clinical Factors. Surprisingly, not much significant
association was observed with people’s perceived notions of security concerns
for most of the demographic and clinical factors included in the study, the
only noticeable one being concerns about privacy and confidentiality versus
health status (p-value: 0.0351). People who were in good to very good health
were found to be significantly less concerned about these issues than people
in poorer health. We thus conclude that there is remarkable uniformity among
the various segments in the general population (as defined by age, gender)
regarding privacy and security concerns about the use of online and social
media-based platforms for health-related information.

• Online Technology and Social Media Usage. Just as in the case of the demo-
graphic factors, there is overall uniformity in the level of different types of
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privacy and security concerns based on the frequency of use of several online
activities on the computer. Differences were mostly noted in case of emailing
and chatting – people who engage in these two activities more frequently
have significantly less concerns about privacy and security. The minimum
overall association was seen in case of watching videos followed by banking,
news, and shopping online. Similarly, the frequency and level of use of social
media activities have not much significant effect on the level of privacy and
security-related concerns that people may have about obtaining health-related
information from different online platforms. The only significant outcome was
that people who commented on online blogs more frequently had relatively
lesser concerns about privacy and confidentiality in using online media for
health and wellness purposes. The minimum effects were in cases of the use of
Wikipedia.

• Interest in Adopting Online Health-related Activities if Offered by the Health
Plan. People’s propensity to use various social media sites had no significant
association with their level of concerns about adopting online platforms for
health purposes. We observed only significant differences in the levels of secu-
rity concerns in terms of relevance of information obtained among users of
a couple of activities (podcasts and group chats with health experts). In both
cases, we found that people who were more interested in receiving health infor-
mation via these two online sources had greater concerns about the relevance
of information obtained from these sources.

20.5.9 Predictive Models

For each of the seven technology platforms that the health plan was contemplating
offering to its member population, we build a separate logistic regression model to
predict the chances and odds of adopting each of them. Note that we have only devel-
oped models for the social media platforms on computers so far and plan to pursue
this for the mobile apps in the near future as well.

The binary outcome variable in each case is so defined as to have the two classes:
Interested (“1”) and Not interested (“0”). The responses in the “might be interested”
class were few in number and hence were not considered. Each model is built using
60% of the data records (which constitute our “training set”) and the rest 40% is
treated as a “validation set” for generating predictions and measuring model accuracy.

First of all, we fitted several smaller models for each group of factors, where the
goal was to determine which subset of a particular type of factor helps determine
the chances of adopting social media-based channels for health-related information.
These are as follows:

1. Model 1: Demographic and clinical factors

2. Model 2: Technical factors (include level of usage of computers during the
whole day, frequency of use of online banking, shopping, watching news, etc.)

3. Model 3: Social media usage-related factors

4. Model 4: Privacy and security-related factors
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The final modeling experiment consisted of using all the sets of factors together in
a single model. Toward this end, we consolidated some factors to create new variables
that are representative of those factors, and at the same time are able to reduce the
model dimensionality to a considerable extent. It is always desirable to build statis-
tical models that are “parsimonious,” that is, simple with not too many variables and
at the same time optimal in terms of performance. We have a total of 19 variables,
which necessitated this step.

In order to achieve this, the factors representing online and social media activities
are combined together to create two new variables representing two general categori-
cal variables: frequency of online activities on computer and frequency of social media
usage on computer (without considering the individual activities in each category).
Each variable has four categories defined in the following manner:

1. Heavy Users. Use at least one out of the six activities one or more times a day.

2. Medium Users. Use at least three out of the six activities couple of times per
month or at least one activity couple of times a week.

3. Light Users. Rarely use all six activities or use at most two out of six activities
couple of times per month or never/rarely use all six activities (with at least one
“rarely” – not “never” on all six).

4. Nonusers. Never use any of the six activities.

Another advantage of creating these generalized variables is that with the rapid
evolution of Internet-based technology in recent times, new social media sites and
online activities are being introduced regularly, so the specific ones included in this
study (such as Facebook, Twitter, online blogs) may not accurately reflect the online
and social media landscape after a decade or so. If this happens, the models using the
isolated factors described earlier will fail to provide a valid representation and will
be useless for predicting future consumer behavior. The generalized model, on the
other hand, can still be useful in such a scenario provided consumer usage pattern of
online and social media in general does not change drastically.

The number of independent variables is now reduced from 19 to 9 which are as
follows: (i) X1: gender, (ii) X2: age, (iii) X3: general health condition, (iv) X4: pres-
ence of a chronic condition (self), (v) X5: presence of a chronic condition (household
member), (vi) X6: computer usage (workday), (vii) X7: computer usage (evenings),
(viii) X8: online activity usage, and (ix) X9: social media usage. As before, the depen-
dent variable in each case is the odds of being interested in adopting a particular social
media platform for health-related purposes if offered by the health plan. Privacy and
security-related factors are omitted due to their nonsignificance observed earlier with
the statistical tests as well as with the smaller models.

We report here the results from the combined models only since they are very
similar to those from the smaller models fitted in the first stage. Table 20.8 shows
the significant predictors identified for these models using a 5% significance level.
Social media usage is seen to be statistically significant in case of five out of the
seven activities. Computer use during evenings is also significant for five out of the
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TABLE 20.8 Significant Predictors for the Seven Online Social Media-Based Activities
Chosen by the Health Plan

Activities Significant Factors

(1) Connect with others via online forum Social media usage
(2) Reading health-related blogs Age, social media usage
(3) Commenting on health blogs Computer use (eve), social media usage
(4) Watching health-related videos Computer use (eve), social media usage
(5) Watching health-related

webinars/webcasts
Age, computer use (eve)

(6) Listening to health-related podcasts Computer use (eve)
(7) Group chats with health experts Computer use (day), computer use (eve),

social media usage

seven activities, a fact that is consistent with our findings via the smaller models.
Age is a significant factor only in case of reading health-related blogs and watching
health-related webcasts and webinars. Gender and health conditions are not relevant
in any of these models.

The estimated coefficients 𝛽’s help determine quantitatively how much the odds of
adopting health-related online platforms will change for changes in the values of the
predictor variables. For example, for Activity 1, the coefficient for X4 is −0.18, which
tells us that the members’ odds of connecting with people with similar health goals
via online forums is less (due to the negative sign) by a factor of e−0.18 = 0.84 for those
with a chronic condition than those without, provided the other factors are held con-
stant. Thus, people suffering from a chronic condition are less likely to be interested
in this specific online activity related to their health and wellness management.

20.5.9.1 Predictive Model Results The goal of the predictive models is to estimate
or predict health plan members’ interest in adopting the social media platforms to be
offered by their health plan for obtaining health-related information.

As briefly mentioned earlier, the coefficients are estimated using the training data
set and predictions are generated for the validation set. Each record in the latter set
is classified as belonging to the class “1” (interested) or “0” (not interested) based on
the predicted odds and probability from the fitted models. The proportion of incorrect
predictions for each training/test set combination constitutes the “error rate” and is
typically expressed in a percentage form. In order to remove selection bias underlying
training and test set combinations, we repeat the random splitting 40 times and the
final prediction errors and model accuracies are calculated by averaging over the set
of 40 iterations.

Table 20.9 shows the accuracies (100 – error rates) expressed as percentages for
the seven models along with standard deviations computed over the 40 repetitions.
Overall, the average accuracies are around 60%. The maximum accuracy is obtained
in case of participating group chats with health experts and highest in case of connect-
ing with others with similar health goals via online forums. All these accuracy rates
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TABLE 20.9 Prediction Error Rates and Accuracies from the
Logistic Regression Models

Activities Accuracy Rates (%)

(1) Connect with others via online forum 54 (±4)
(2) Reading health-related blogs 59 (±3)
(3) Commenting on health blogs 61 (±4)
(4) Watching health-related videos 60 (±3)
(5) Watching health-related webinars/webcasts 56 (±2)
(6) Listening to health-related podcasts 58 (±4)
(7) Group chats with health experts 64 (±2)

are considerably better than random chance without any background information on
them (50% error for predicting randomly whether a person is or is not interested in a
certain activity offered by the health plan) so that we can conclude that it is possible
to predict a consumer’s level of interest more accurately, given the knowledge about
his demographic profile as well as behavior with respect to general computer usage
and usage of online and social media-based activities. Based on these results, the
health plan can make informed decisions about which of its members to target these
activities toward maximum possible adoption chances. Furthermore, we note that the
standard errors are considerably low, thus indicating the stability of our models and
robustness to the selection of the training and the test sets for prediction.

As is clear, these prediction results have considerable room for improvement, thus
calling for a refinement of our fitted logistic models. Extensions include (i) multino-
mial logistic model with three categories for the response variable, thus incorporating
a separate class for “might be interested” and (ii) incorporating interactions among
the variables.

20.6 CONCLUSIONS

All sectors of the healthcare industry are exploring the use of social media for making
health information more accessible to consumers. This study examines how health
plan members might respond to these new tools and identify segments of member
population based on demographic and health condition related factors. Our overall
primary findings include the following: (i) younger people and men are more inter-
ested in adopting social media-based platforms from the health plan via computers;
(ii) people who engage in online activities and social media activities and use com-
puters and mobile phone more regularly are more likely to adopt these technologies
offered by the health plan via similar channels; (iii) people use their cell phones for
Internet-based activities considerably less than computers, and a smaller number of
significant clusters were detected with respect to most of the factors included in this
study; (iv) members in poorer health and suffering from a chronic condition had a sig-
nificantly elevated level of interest in receiving health information from various online
and social media sources but not via mobile apps. Specifically, although the use of cell
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phones and mobile apps were found to be widespread among the younger segment
of the population, no significant difference with respect to interest in adopting the
proposed platforms of health-related information from their health plan was observed
among the different age groups included in this study. Privacy and security-related
concerns seemed to be fairly uniform across all segments of the populations and
were not found to predict people’s willingness to adopt technology-based platforms
for their health and wellness management. Moreover, the predictive models helped
us identify significant predictors of people’s likelihood of adopting health-related
online platforms on their computers as planned by their health plan provider, among
a host of several factors initially believed to be of relevance in this context. The
model-generated predictions also help characterize particular subpopulations of the
health plan members that are most likely to adopt these technologies.

Our findings are expected to be greatly beneficial to this health plan as well as
to other health plans exploring similar opportunities in designing effective social
and mobile media-based tools for imparting valuable health and wellness-related
information to their members. Particularly, the findings of this study enable them to
tailor their products to specific population segments for the maximum outreach. For
instance, the health plan should target members who already use their mobile phones
for several online activities and accessing social media sites to deploy health-related
information via these platforms. They may also devise health-related mobile apps
specifically designed by gender, particularly for male members to begin with. Since
age was surprisingly not found to have a significant association with interest in
adopting mobile apps for health purposes, the health plan may not need to focus on
age-specific, health-related, mobile apps for their members currently.

Future work includes integrating healthy lifestyle goals into the predictive models
as well as building similar models for predicting people’s interest in adopting
health-related mobile apps. Moreover, career type and work-related activities are
two important factors that play a large role in determining how, when, and what type
of mobile applications fit into people’s lifestyles. The current survey did not collect
data on these factors but we plan to incorporate them in our future studies.
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(BI-RADS), 195

calibrator materials, uncertainty statements for,
135

cancer, 189, 215
CpG island methylation, in human cancer,

175–176
esophageal cancer, CRT, 199–205
lung, 199
radiation therapy for, 211

Cancer Cell Line Encyclopedia(CCLE) Project, 20
cardiac catheterization lab, simulation-based

alternatives, 305
cardiac disease detection and classification

ambulatory ECG recording, 111
artificial neural network, 112–114
support vector machine, 114–115
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case-mix index (CMI), 348–350
catnet package, 24
cecal ligation and puncture (CLP), 251
cellular signaling network, in flow cytometry data,

20–23
Center for Medicare & Medicaid Services (CMS),

433
certified reference material (CRM), 138
chemoradiotherapy (CRT), esophageal cancer,

199–200, 205
feature selection and predictive model

construction, 200–202
input features, 200
results, 202–204

CHF. see congestive heart failure (CHF)
Children’s Health Insurance (CHIP), 562
China’s urban healthcare system

determining preference vector, 311–312
linear standardization, 311
preference-based multiobjective optimization

procedure
DES simulation model, 312–313
flow chart, 312
Random Search and R&S algorithm,

313–314
SA and Response Surface Method algorithm,

314–316
problem description, 308–309
system modeling, 310–312

classification, in medicine and biology
definition, 159
machine-learning framework, 163

cLasso method, 11, 16, 21
Clinical Laboratory Improvement Amendments

act (1998), 128
clinical laboratory measurement uncertainity

process
accuracy and reliability, 134
ALP clinical assay, 141–152
analytical stage of, 129
calibration phase, 138
conceptualization of, 138, 139
definitive method, 134
estimation methods, 130
EURACHEM guide, 134
field method, 134
GUM (1993), 130, 134, 136
instrument manufacturers, 153, 154
modeling guidelines, 139–141
Monte Carlo method (see Monte Carlo method,

for measurement uncertainity estimation)
physical assumptions, 152
postanalytical stage of, 129
preanalytical stage of, 129

Recommendation INC-1, 130
sample analysis phase, 138
sources of, 129
statistical assumptions, 152
system description and process phases,

138–139
clinical laboratory tests, 127, 128
clock uncertainity, 147, 148
CLP. see cecal ligation and puncture (CLP)
cognitive science, 159
cold ischemia time (CIT), 414
Community Healthcare Centers (CHCs), in China,

303
community hospitals, 338
complete partial DAG (cpDAG), 6
Complications Screening Program, 527
composite quality measures

benefit-of-the-doubt weights, 544
cost-based weights, 543
individual patient, 543
judgment weights, 543
opportunity-based weights, 544
quality indicators, 543
quality score, 542
statistical weights, 544

computer-aided ECG, 95, 96
computerized ED system workflow model

Grady Hospital, 277–279
integrating machine learning within RealOpt

simulation–optimization environment,
280

nonlinear mixed-integer program, 277,
280–281

RealOpt© simulation, 277
validation, 282–284

conditional independence test, 15
congestive heart failure (CHF), 81–82
Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD) word list,
173, 174

constrained discrimination rules. see partial
discrimination rules

continuous wavelet transform (CWT), 70–72
conversation analysis (CA), 518
CpG island methylation, in human cancer,

175–176
cross-sectional computer modeling analysis,

305–306
cross-validation (CV), 13
current deceased-donor adult liver allocation

system, 414–415
custodial ancillary services, 349
Cyberknife Synchrony system, 211–212, 214
cytokine release mechanism, 228, 229
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DAGs. see directed acyclic graphs (DAGs)
damaged tissue model, 233–234
DAMIP. see discriminate analysis via a

mixed-integer program (DAMIP)
data and information system, in primary care, 364
data-driven postsurgical ICU decision-support

system, 474
data envelopment analysis (DEA), 341
deal package, 24
decision tree

for Grade 2 rectal complication classification,
209

predictive modeling techniques, 193–194
DEM. see digital elevation model (DEM)
DES. see discrete-event simulation (DES)
descriptive analytics, 41
determination of reactive oxygen metabolites

(d-ROMs) test, 177, 178
detrend fluctuation analysis (DFA), 110–111
diabetes diagnosis, 134–135
diagnostic ancillary services, 349
diagnostic assays, total analytical error estimation

for, 135–136
dimension, definition of, 65
directed acyclic graphs (DAGs), 4

optimization technique, 14
R software, 23
traveling salesman problem, 14

direct measurands, 138
discrete-event simulation (DES), 422–423

antineoplastic medication preparation and
delivery, 367

bed unit utilizations, 368
emergency department, 366–367
imaging costs and outcomes, 369
intensive care units, 367
patient flow analysis, 367–368
physiotherapy clinic, performance of, 368–369
primary care outpatient clinics, 368–369
radiation therapy process, 367

discrete support vector machine, 161
discrete support vector machine predictive models

discriminant analysis via mixed-integer
programming, 165–166, 170–182

features, 163–170, 182
heuristic linear MIP model, 167
linear mixed-integer model, 167
model size, 169
reserved-judgment region for general groups,

164
variations, 167–169

discrete wavelet transform (DWT), 101
discriminant analysis

description, 160

fundamental problem, 160
fundamental steps, 160
objective, 161, 170

discriminant analysis via mixed-integer
programming (DAMIP), 166

advantages, 183
characteristics, 170
CpG island methylation, in human cancer,

175–176
discriminant rule derivation, 165
early atherosclerosis prediction, 177–178
erythemato-squamous disease type

determination, 179
heart disease prediction, 179–180
immune responses to flu shots, 171–173
microangiographic fingerprint, 178–179
mild cognitive impairment and Alzheimer’s

disease detection, 173–175
NP-complete, 170
protein localization sites, 180–181
sarcoma treatment, 176–177
ultrasonic assisted cell disruption, for drug

delivery, 176
validation and computational effort, 171

discriminant rules, 161
discriminate analysis via a mixed-integer program

(DAMIP), 274–276
disease-altered recurrence dynamics, 88
DIST algorithm, 14, 15
DNA damage, 3–4
DNA repair gene, 4
dose-volume histogram (DVH) constraint, 209
dose-volume (DV) thresholds, radiation therapy,

205–206
downward referral policy, 304
DREAM5 Network Inference, 7
d-separation, 5–6

early atherosclerosis prediction, discriminant
analysis, 177–178

ECG-derived respiration (EDR) signal, 115, 117
ED. see emergency department (ED)
effective care, 504
electrocardiography (ECG)

baseline of, 98
characteristics of, 60
development stages, 95
EDR signal, 117
electrodes and lead connections, 97
elements of, 96–99
feature set, 117–118
heart rate variability, 106, 107
OSA detection (see obstructive sleep apnea

(OSA), from single ECG lead)
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signal morphology, 96
statistical modeling for disease detection

disease diagnosis techniques, 99, 111–115
ECG signal denoising, 100–105
feature extraction approach, 99, 106–111
preprocessing techniques, 99
stages of, 99, 100
waveform detection methods, 99, 105–106

waveform durations and wave amplitudes, 98,
99

waveforms and intervals, 97, 98
electronic health records (EHR), 363
electronic patient records (EPR), 364
emergency department (ED), 366–405. see also

Grady Hospital
ABS model, 308
challenges and objectives, 267–268
computerized ED system workflow model,

277–282
crowding, 266, 267
data collection and time-motion studies,

270–271
discrete-time survival analysis, 267
Edelman–Wagner project, 268
efficiency, 305
ethnographic approach, 267
facility design, 269
human-centered computational modeling, 268
length of stay and throughput comparisons, 285,

286
machine learning techniques, 274–276
model validation, 282–284
operations improvement options, 285, 287
patient care and resources, 270, 271
performance characteristics, 266
quality and flow, 266
readmissions, 267, 268
split-flow process improvement, 306
visits, in US healthcare system, 264
volume-driven protocol, 266
workflow and services, 269–270

emergency medical services (EMS), 389
emergency rooms (ER), 357
emergency severity index (ESI), 269, 285
empirical mode decomposition (EMD), for ECG

denoising, 102–104
enzyme unit per liter (U/l), 141
erythemato-squamous disease type, DAMIP

model, 179
esophageal cancer, CRT, 199–205
extracellular potentials, of single cardiac fiber, 96

false discovery rate (FDR), of proteins, 32
false nearest neighbor (FNN) method, 62–64

false neighbors, 64
feature extraction approach, for disease detection,

99
approximate entropy, 109–110
detrend fluctuation analysis, 110–111
frequency-domain methods, 108
RR intervals, 107
time-domain methods, 107–108

feature selection, 160
feed-forward neural network, 112–113
finite mixture modeling, ambulance demand

ambulance demand density, 400
autoregressive parameters, 401
BDMCMC, 403
bivariate Gaussian density, 400
daily seasonality, 401
intraweek mixture weights, 401
Markov chain Monte Carlo model, 402
Metropolis-Hastings random walk, 402
mixture weights, 401

flu shots, immune responses to, 171–173
fractal dimension

box-counting method, 66–68
Euclidean geometry, 66
Koch snowflake curve, 66
and self-similarity, 65, 66
singularity spectrum, 69

fractals, definition of, 65
Framingham risk score, 177, 178
full model stability analysis, 245–247
fuzzy AHP, 307

gene network problem
Bayesian networks (see Bayesian networks)
CCLE Project, 20
cellular signaling network, 20–23
issues, 13
score function formulation, 9–12
SKCM data, 16–20
structural equation model, 8
two-step learning technique, 12–13

General Hospitals (GH), in China, 303
generalized additive models (GAMs), 394
generalized linear discriminant analysis (GLDA),

197
The Genotype-Tissue Expression (GTEx)

project, 7
geriatric depression scale (GDS), 173, 174
Glasgow Coma Scale (GCS), 466
GLDA. see generalized linear discriminant

analysis (GLDA)
glioblastoma multiforme (GBM) brain cancer

network, 50, 51
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glucose measurements, uncertainty estimates for,
134–135

Grade 2 rectal complication classification
decision tree for, 209
prediction of, 210, 211

Grady Hospital
benefits, 265
blue zone, workflow process map, 269, 272
Edelman–Wagner work, 266
emergency department, 265

annual financial savings and revenues, 295
continuous improvement and adaptive

advances, 297
emergency care, improved efficiency of, 294
external sponsorship, 295
global resource allocation and changes, 290
health cost reductions, 296
hospital care delivery advances, 297
improved quality of care, 296–297
operations research advances, 298
patient characteristics, 282
Phase I adoption and implementation, 288
Phase II adoption and implementation,

290–292
potential death and disability reduction

estimates, 296
qualitative benefits, 296–297
quantitative benefits, 294–296
readmission statistics, 282
RealOpt flowchart, of ED workflow,

277–279
results, 288, 290
ten fold cross-validation results and

blind-prediction accuracy, 282, 284
financial collapse, 265
length of stay and throughput comparisons, 281,

283
GSUA. see global sensitivity and uncertainty

analyses (GSUA)
Guide to the Expression of Measurement in

Uncertainty (GUM (1993)), 136
uncertainty of measurement

definition, 130–131
evaluation of, 131–133

updated edition of, 133

Harris Hip Score, 504
health and wellness objectives, 577–580
healthcare activity, 344
healthcare applications, nonlinear dynamics,

80–81
HRV analysis, 81–86
space–time physiological signals, multiscale

recurrence analysis, 85–88

Healthcare Cost and Utilization Project (HCUP),
454

healthcare cost predictions
clustering algorithms, 537–538
disease burden and interactions, 533–534
high-cost members, 539
high-risk member identification, 540
modeling, 531–533
performance measures and baselines, 534
prediction algorithms, 534–535
regression trees, 535–537

Healthcare Cost Report Information System
(HCRIS), 343, 344, 347

healthcare organizations, 558
health goals, 578–579
Health Insurance Portability and Accountability

Act (HIPAA), 560
heart disease prediction, DAMIP model,

179–180
heart rate variability (HRV)

classification performance, 85, 86
ECG signal, 106, 107
feature analysis, 83–85
feature extraction, 83
feature selection, 83
nonlinear characterization of, 81–85
time and frequency domains, 107, 108

heuristic algorithm, for local optimal solution,
14–15

hierarchical healthcare system, in China,
303–342. see also China’s urban healthcare
system

high motility group box-1 (HMGB-1), 222
Hodgkin’s lymphoma exceptional responder,

48–50
Hopf bifurcation, 242
Hopf point, 241–245
hospital-acquired conditions (HACs), 297
hospital care delivery advances, 297
hospital productivity measurement, 335
hospital readmission risk prediction

AdaBoost, 444
clinical patient data, 444–445
feature selection, 441–442
missing value imputation, 442
Naive Bayesian classifier, 442–443
overall prediction pipeline, 441
reducing class imbalance, 442
results and discussions, 445–447
support vector machine, 443

Hospital Unit of Care (HUC) model
activity-based view, of hospital operations, 344,

346
assumption, 336
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baseline HUC, 347
component activity levels, 350, 351
HUC measure development, 348
inpatient general med/surg, 348
intensive care services, 348
IP and OP ancillary services, 349
nursery services, 349
outpatient care services, 349
output activity components, 348

HRV. see heart rate variability (HRV)
human heart, 80
human immune response, 222
hypoxia pathway, in oncogenesis and

embryogenesis, 50–51

immune responses to flu shots, DAMIP model,
171–173

immunohistochemistry (IHC), 34
indirect measurands, 138
Ingenuity Pathway Analysis (IPA), 23
innate immunity of AIR, mathematical models,

239–241
anti-inflammatory cytokines inhibition, 239
stability analysis, 241–247

insurance claims
administrative data, 523
advantages and limitations of claims data,

525–526
application areas, 526–528
claims-based medical studies, 524
claims databases, 525
clustering algorithms, 537–538
high-cost members, 539
insurance pricing and renewal decisions,

540
Manitoba Health Services Commission data

bank, 524
Medicare and Medicaid, 524
modeling of disease burden and interactions,

533–534
modeling of healthcare costs, 531–533
performance measures and baselines, 534
pharmacy claim, 523–524
prediction algorithms, 534–535
quality of care, 540–548
regression trees, 535–537
statistical methodologies, 528–531
timeline of healthcare research, 524

integer-valued time series model, 390
integrated biomedical and morphoproteomic

analyses
Hodgkin’s lymphoma exceptional responder,

48–50

hypoxia pathway, in oncogenesis/
embryogenesis, 50–51

pancreatic adenocarcinoma, therapeutic
recommendations for, 46–48

intensive care unit (ICU)
bed occupancy levels in, 305
risk-scoring systems, 466
services, sample data for, 345

Interactive Voice Response (IVS) systems, 519
interleukins (IL)-10, 237–240
International Classification of Disease, Ninth

Revision, Clinical Modification (ICD-9 CM)
codes, 523

intracellular multicolor flow cytometry, 20
intrinsic mode functions (IMF), 102, 103

Kaiser Permanente, 526
Kalman filters, 104–105
kernel density estimation (KDE), 405
kidney-only transplant centers, 415
Koch curve, fractal dimension calculation of,

67–68
Kolmogorov–Smirnov (KS) test, 83–85
Kupffer local response model, 224–228

large-scale wavelets, 71
lasso approach, 5
law of propagation of uncertainty, 133, 137
leave-one-out cross-validation (LOOCV) scheme,

118
limit points (LPs), 241, 242
logistic regression (LR), 85

analysis, 190
predictive modeling techniques, 193

long-term recurrence analysis, 88
L1-penalized method, 5
LR. see logistic regression (LR)
𝜆-type hospital classification system, 355–358
Luenberger indicator, 341
lung cancer, 199

machine learning (ML)
definition, 159
with discrete support vector machine predictive

models, 163–170
in mammography, 195
for medical image processing, 194–195
for predicting patient characteristics

DAMIP, 274
optimization-based classifier, 275–276
supervised classification approach, 274
10-fold cross-validation, 274
wrapper approach, 274
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machine learning (ML) (Continued)
for predicting radiotherapy response, 197–199
in real-time tumor localization, 196–197
tools, 190

macrophages, 224–225
malignant neoplasms, 3
mammography, machine learning in, 195
Manitoba Health Services Commission data bank,

524
massive training artificial neural network

(MTANN) filter, 195
mass spectrometry, 33
Matcont, 241
Max–Min Hill-Climbing (MMHC) algorithm, 5
measurand, 138
Medicaid and Medicare, 524
medical image processing, machine learning for,

194–195
Medicare Administrative Contractor (MAC), 343
Medicare Assistance, 562
medicare data sources, for hospital operations,

343–344
Medicare Provider Analysis and Review

(MEDPAR), 343, 344
outpatient care services, 347

MEDIC method, 390, 405
MGMT, 4
microangiographic fingerprint, 178–179
Microsoft HealthVault, 560
mild cognitive impairment, DAMIP model,

173–175
Mini Mental State Examination (MMSE),

173–174
miRNA-150, 18
miRNA-155, 4
missing data imputation, 479–482
ML. see machine learning (ML)
mobile and social media, 571–572
mobile apps, for healthcare purposes, 574–577
Model for End-Stage Liver Disease (MELD), 414
modENCODE Project, 7
molecular profiling for clinical decision making

algorithms and protocols, 34
genotyping, 33
immunoassays, 34
immunohistochemistry, 34
literature review, 35–37
mass spectrometry, 33–34
proteomics, 33

monocytes immune response model, 234–237
monocyte subsystem stability analysis, 244–245
Monte Carlo AHP, 307
Monte Carlo method, for measurement

uncertainity estimation

advantage, 137, 140
analytical chemistry, 137
characteristics, 137
statistical conditions, 133

morphoproteomics
and biomedical analytics integration, 44–46
definition, 39
Hodgkin’s lymphoma exceptional responder,

48–50
hypoxia pathway, 50–51
methodology, 39–40
and methodology flowchart, 38, 39
molecular signature, 37
pancreatic adenocarcinoma, therapeutic

recommendations for, 46–48
mortality probability model (MPM), 470–472
motile enterobacteria, 226
MS-based proteomic discovery, workflow

algorithm for, 34
MTANN-based segmentation method, 195
MTANN filter. see massive training artificial

neural network (MTANN) filter
multifractal spectrum analysis of nonlinear time

series, 65–75
Multiparameter Intelligent Monitoring in Intensive

Care (MIMIC), 491, 499
multiplex immunoassays, 34
multiscale recurrence quantification analysis,

78–80
mutual information, computation of, 63

National Organ Transplant Act (NOTA), 414
neural networks, 112–114
neuropsychological tests, 173
neutral saddle point, 241
neutrophils immune response model, 228–233
neutrophil subsystem stability analysis, 242–244
NN50 measures, 117
noise-free ECG, 99
nonlinear dynamics, 59

healthcare applications, 80–88
phase-space domain, 60
sensor-based characterization and modeling

multifractal spectrum analysis of nonlinear
time series, 65–75

multiscale recurrence quantification analysis,
78–80

recurrence quantification analysis, 75–78
theory, 61–62

nonlinear mixed-integer program (NMIP), for
multiple-resource allocation, 276, 279–280

nonlinear recurrence analysis, 77
nonlinear time series, multifractal spectrum

analysis of
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continuous wavelet transformation, 70–72
fractal dimension, 65–70
wavelet transform modulus maxima method,

72–75
Non-Peds visit, 371
nonrenewal random point process, 99

observational equivalence, 4, 6
obstructive sleep apnea (OSA), from single ECG

lead
BioSig toolbox, 116
classifier training with feature selection,

118–120
database, 115–116
description, 115
detection results, 120
EDR signal, 117
feature set, 117–118
minute-by-minute segments, 115
obstructive sleep apnea detection, 115
QRS detection algorithm, 116–119
RR correction, 116–119
R wave amplitudes, 117
signal morphology, 96

Odana Atrium (OA) communication center, 369
online health-related activities, 581
online social media-based activities, 582–583
online tools, healthcare purposes, 573–574
open access. see advanced access, in primary care
operations research (OR) advances, 298
OPO boundaries

ArcView, 422
binary variable, 418
CIT, 417
donor hospitals, 416
donor–recipient matching process, 428
Euclidean distance, 418
geographical disparity, 429
graft transfer distance, 432–433
label assignment, 421
liver acquisition area, 416
Miller–Tucker–Zemlin formulation, 420
patient service area, 416
service areas, 419
spanning tree, 421
super vertex, 419
supply and demand, 418
supply/demand ratio, 428
waiting time, 429, 431

optimal liver allocation boundaries
current deceased-donor adult liver allocation

system, 414–415
discrete-event simulations, 422–423
geographic disparity, 414

kidney-only transplant centers, 415
liver transplant centers, 414
mathematical model, 416–422
new locations of transplant centers, 423–426
new OPO boundaries, 426–433
pre-2013 deceased-donor adult liver allocation

system, 414–415
Standard Transplant Analysis and Research,

415
optimization-based analytics approaches, 194
Organization for Economic Cooperation and

Development (OECD), 127
Organ Procurement and Transplantation Network

(OPTN), 414
Organ Procurement Organization (OPO)

boundaries
acquisition area and service area, 417

Organ Procurement Organizations (OPOs), 414
organs-at-risk (OARs) complications,

dose-volume thresholds, 205–206
orthopedic outpatient clinic, simulation study of,

368
oxidative stress, 177

pain assessment, 509–510
pancreatic adenocarcinoma, therapeutic

recommendations for, 46–48
parasympathetic nervous system (PNS), 107
partial discrimination rules

description, 161–162
disadvantage, 162

pathogen strain selection
anti-inflammatory immune response model,

237–239
damaged tissue model, 233–234
Kupffer local response model, 224–228
monocytes immune response model, 234–237
neutrophils immune response model, 228–233

Pathway Interaction Database, 7
Pathway Studio, 23
patient ambulatory care express (PACe) area, 270
patient arrival, in pediatric clinic

appointment template, 371, 372
appointment vacancy probability distribution,

372
and composition, 371
medical assistants-only visits, 371
Non-Peds visit, 371

patient-centered medical home, 364
patient-centeredness, 503
patient flow

analytic hierarchy process, 307
behavioral operations research, 330
discrete-event simulation, 367–368



�

� �

�

598 INDEX

patient flow (Continued)
mental health system, in Pennsylvania, 306
multiobjective optimization problem, 306–307
objective dimensionality reduction, 306
pediatric clinic, 369–371
PUTH case study (see Peking University Third

Hospital (PUTH), two-level healthcare
system)

and service process, in two-level healthcare
system, 308, 309

simulation modeling on, 305–306
simulation optimization, 307–308
weighted goal programming technique,

306–307
patient heterogeneity, 465
patient–physician interaction

big data analytics techniques, 506
communication skills and behaviors, 504
conversational characterization, 517–519
data-informed recommendations, 504
data mining, 510–515
data mining techniques, 504
effective care, 504
Harris Hip Score, 504
medical decision making, 505
pain assessment, 509–510
paradigm shift, 505
patient-centered communication, 505
patient-centeredness, 503
prognosis discussion, 506–508
regression shrinkage and selection, 515–517
standardized patient methodology, 505

patient satisfaction
conservation data, 513–515
survey data, 510–513

patient visits, in pediatric clinic, 369
sequential stages of, 370–371
types of, 370

pattern recognition, 159
fingerprinting native and angiogenic

microvascular networks, 178–179
in satellite images, for soil type determination,

181–182
pay-for-performance policies, 540
pay-for-performance programs, 365
PCA. see principal component analysis (PCA)
PC algorithm, 5, 15–16
pcalg package, 24
pediatric clinic, simulation case study

control logics, 373, 374
in-room service, 374
model validation, 376
operation times, 373
patient arrival

appointment template, 371, 372
appointment vacancy probability distribution,

372
and composition, 371
medical assistants-only visits, 371
Non-Peds visit, 371

patient flow, 369–371
patient flow simulation model, 375
post-room service, 374
pre-rooming service process, 374
resources, 372
SIMUL8 software tool, 371

Peking University Third Hospital (PUTH),
two-level healthcare system

analysis and system estimation, 319–320
decision variables, 316, 317
fixed parameters, 316, 317
managerial insights and recommendations,

328–329
model validation, 320–321
optimization through algorithms, 321–328
system simulation results, 318–319
upper and lower bounds, 316, 317

performance-based payments, in primary care, 365
personal health records (PHR) sites, 560
Petri net model, 366
Pew Research Center’s Internet & American Life

Project study, 557
physiological signals, 59, 60, 121
plasma oxidative stress, 177
pNN50 measures, 107, 108, 117
Poincaré recurrence theorem, 77
postoperative outcomes

APACHE, 466–469
clinical status estimation, 463
cross-validation and ensemble voting processes,

489–490
data categorization, 475–479
data-driven methods, 464
data-driven postsurgical ICU decision-support

system, 474
data preprocessing, 475–479
data synchronization, 494–495
ensemble NN model, 497
feature extraction, 482–484
feature selection, 484–486
Gaussian process, 494
ICU monitoring, 498
ICU scoring systems, 498
inpatient procedures, 465
management policies, 463
materials and experimental design, 491
med-sampling variables, 496
MIMIC, 499
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missing data imputation, 479–482
MPM, 470–472
patient heterogeneity, 465
performance comparisons, 497–498
postsurgical healthcare services, 464
postsurgical sensing, 464
predictive models, 487–489
raw and imputed data for med-sampling,

491–493
SAPS, 469–470
SOFA, 472–474
sorted mRMR scores, 496–497
time asynchronization, 465
U-matrix, 495–496
variable heterogeneity, 465

postsurgical ICU data characteristics,
categorization, and preprocessing, 475–479

power spectral density (PSD) estimation
procedure, 108

nonparametric vs. parametric methods, 108, 109
pre-2013 deceased-donor adult liver allocation

system, 414–415
predictive analytics, 41
predictive modeling techniques

applications, 194–199
decision tree, 193–194
feature selection, 191–192
logistic regression, 193
machine learning, 194–199
support vector machine, 192–193

prescriptive analytics, 41
primary care redesign. see also discrete-event

simulation (DES)
advanced access, 365
block booking template, 377, 378
early start time, 380–382
electronic health records, 363
electronic patient records, 364
global experiences, 365–366
goal of, 361
medical homes, 364
non-double booking template, 377, 378, 381
patient volume under different templates, 379,

380
payment system, 364–365
queue length at registration, 382
resident doctor, 377
reviews, 362–363
room assignment, 379, 381
staffing analysis, 376–377
team work, 363
template comparison, 377, 379

principal component analysis (PCA), 196
probabilistic graphical modeling, 4

d-separation, 5–6
observational equivalence, 6
theoretical background, 5–6

proteins
analyte activity, 40
false discovery rate of, 32
localization sites, DAMIP model, 180–181

proteomics
antibody-based methods, 33
description, 33
mass spectrometry, 33
primary high-throughput technology, 32

Qiagen’s Ingenuity Pathway Analysis (IPA),
42–43

Q-SNARE protein complex, 228
quadratic programming (QP) optimization

problem, 191, 192
quality of care

case management tool, 546–547
composite quality measures, 542–544
healthcare resources, 547
quality data, 542
quality scores, 544–545
statistical approach, 545–546
structure, process, and outcomes, 540–542

quality scores, 544–545

radiation-induced outcomes, 197
radiation oncology, predictive modeling

techniques in. see predictive modeling
techniques

radiation therapy
for cancer, 211
dose-volume thresholds, 205–206
goal of, 189–190
modeling clinical complications after, 205–211
modeling results, 208–211
radiation-induced complications, treatment plan

surface, 206–208
R codes, 20–23
reactive oxygen species (ROS), 233
RealOpt© simulation, 277
real-time tumor localization, machine learning in,

196–197
real-world physiological systems, 88
Recommendation INC-1, 130
recurrence quantification analysis, 75–78
recurrence quantification analysis (RQA), 75–78

multiscale, 78–80
recurrence quantifiers, examples of, 77–78
recurrent or refractory cancers. see biomedical

analytics; morphoproteomics
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reform strategies, in primary care, 363
regression methods, 190
resource use profile, of hospitals, 351–357
Restriction Landmark Genome Scanning (RLGS),

175
root mean square of successive differences

(RMSSD) measures, 107, 108, 118
ROS. see reactive oxygen species (ROS)
Roter Interaction Analysis System (RIAS), 509
R-SNARE protein complex, 228
RSS. see residual sum of squares (RSS)

saliva flow rate
mean-predicted vs. actual flow, 208
prediction of, 209, 210

Salmonella sepsis, 224
same-day scheduling. see advanced access, in

primary care
sarcoma treatment, DAMIP model, 176–177
Scientific Registry of Transplant Recipients

(SRTR), 434
score function

formulation, 9–12
minimization (see solution search algorithms)

SDMM. see system dynamic mathematical model
(SDMM)

SDSD measures, 117
semisupervised learning, 160
sensor-based characterization/modeling, nonlinear

dynamics
multifractal spectrum analysis of nonlinear time

series, 65–75
multiscale recurrence quantification analysis,

78–80
recurrence quantification analysis, 75–78

sepsis, 221–222
sepsis progression

initial pathogen load effects on, 247–250
pro-and anti-inflammatory cytokines effects on,

250–253
sequential minimal optimization (SMO)

algorithm, 192
Sequential Organ Failure Assessment (SOFA),

472–474
short-time Fourier transform (STFT), 70
signal denoising, for disease diagnosis

advantages and disadvantages, 104–105
approaches for, 100
empirical mode decomposition, 102–104
wavelet-based methods, 100–102

Simplified Acute Physiology Score (SAPS),
469–470

simulation optimization, in healthcare area
vs. deterministic optimization, 307

gradient-search mechanism, 308
metaheuristic methods, 308
nonintelligent global search, 307, 308
Ranking and Selection, 307

single cardiac fiber, activation process of, 96
single-scale vs. multiscale recurrence analysis,

88
SIR. see systemic inflammatory response (SIR)
SIR model. see susceptible–infected–recovered

(SIR) model
skin cutaneous melanoma (SKCM) data, 16–20
small-scale wavelets, 71
SMO algorithm. see sequential minimal

optimization (SMO) algorithm
social media

analytics, 561–562
baseline of technology usage, 570–571
customer service, 555
descriptive statistics, 568–570
Facebook, 556
generalized linear model, 564
health and wellness objectives, 577–580
healthcare organizations, 558
health insurance plans, 556
health plan member population, 572–573
Health Steps campaign, 558
HumanaVille, 558
Internet technologies, 556
Life Game, 558
maximum-likelihood estimation, 565–566
mobile apps, 574–577
mobile usage, 571–572
Newton’s method, 566–567
online tools, 573–574
out-of-pocket medical expenses, 557
personal health management, 556
predictive models, 581–584
privacy and security concerns, 559–560,

580–581
survey design, 563–564
Text4baby, 559
Twitter, 556
user-generated content, 557

SOFA. see Sequential Organ Failure Assessment
(SOFA)

solution search algorithms
global optimal solution search, 13–14
heuristic algorithm, for local optimal solution,

14–15
PC algorithm, 15–16

space–time physiological signals, multiscale
recurrence analysis, 85–88

spatiotemporal ambulance demand estimation
artificial neural network, 398
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Bayesian semiparametric mixture modeling,
399

Dirichlet processes, 399
downtown region of Toronto, 398–399
Gaussian mixture models, 399
model performance, 405–409
posterior log spatial densities, 403–404
posterior means and covariance ellipses,

403–404
spatial density intraweek, 398
spatiotemporal finite mixture modeling,

400–403
time-varying finite mixture model, 400
weekly seasonality, 399

spatiotemporal vectorcardiogram (VCG) signals,
81

SPIKES protocol, 508
stability analysis, 241

anti-inflammatory cytokines, medium effect of,
247

full model stability analysis, 245–247
monocyte subsystem stability analysis,

244–245
neutrophil subsystem stability analysis,

242–244
standardized patient (SP) methodology, 505
Standard Transplant Analysis and Research

(STAR), 415
statistical ECG modeling, for disease detection

disease diagnosis techniques, 99, 111–115
ECG signal denoising, 100–105
feature extraction approach, 99, 106–111
preprocessing techniques, 99
stages of, 99, 100
waveform detection methods, 99, 105–106

statistical pattern classification, 160
statistical pattern recognition, 159
Stochastic Approximation (SA), 308
Stochastic Comparison (SC) algorithm, 308
stochastic cost frontier analysis (SCFA), 341
Stochastic Ruler (SR) algorithm, 308
sum of difference (SD) calculation, 103
supervised learning, 160
support vector machine (SVM), 114–115,

191–193
SVM. see support vector machine (SVM)
sympathetic nervous system (SNS), 107
Synchrony respiratory tracking system, 196
system dynamic mathematical model (SDMM),

223–224
systemic inflammatory response (SIR), 221

TABU list, 14, 15
Takens’ delay embedding theorem, 60, 62

TCGA Data Portal, 16–17
TCGA data types, 17
team work, in primary care, 363
temporal ambulance demand estimation

day-of-week effects, 392
demand pattern, 391–392
dynamic latent factor structure, 392
factor modeling, 393–395
Gaussian autoregressive moving-average

model, 391
notation, 392–393
parsimonious modeling, 391
time series models, 395–398

10-fold cross-validation, 274
Text4baby, 559
The Cancer Genome Atlas (TCGA) project, 7
therapeutic ancillary services, 349
30-day hospital readmissions, heart failure patients

AdaBoost, 444
binary classification problem, 459
clinical patient data, 444–445
Cox regression, 458
effect of iterative predictions, 457
effects of attribute sets, 445–446
evaluation measures, 455
feature selection, 441–442
healthcare costs, 457
healthcare quality, 459
highest intensity interventions, 440
intervention recommendation, 453–454
missing value imputation, 442
Naive Bayesian classifier, 442–443
overall intervention pipeline, 447–448
overall prediction pipeline, 441
parameter learning, 451–452
post-discharge interventions, 440
pre-discharge and post-discharge modeling,

445–446
recommendation rule generation, 452–453
reducing class imbalance, 442
statistical significance of quality results,

455–456
structure learning Bayesian network, 448–451
support vector machine, 443
Washington State inpatient databases, 454–455

3-lead VCG signals, 85–87
time-delay reconstruction, 62
time-domain algorithms, 81
time–frequency representation (TFR), 70
topological dimension, 65
Toronto’s ambulance demand, 390
tracking problem, 197
transcription process, 3
translation process, 3
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traveling salesman problem (TSP), 14
triadic Cantor set, 69–70
trimodality therapy, 199
tumor motion modeling, with respiratory

surrogates, 211–215
Cyberknife Synchrony system, 211–212
prediction error summary, 212, 213
tumor positions prediction, 212–214

tumor necrosis factor-𝛼 (TNF-𝛼), 222
tumor positions prediction

modeling for, 212
results, 212–214

12-lead ECG recording system, 97
two-class classification tracking problem, 197
two-way referral policy (TWRP), 304
type 2 diabetes mellitus, diagnosis and

measurement uncertainty, 135

ultrasonic assisted cell disruption, for drug
delivery, 176

uncertainty profile, 150
United Network for Organ Sharing (UNOS),

414
University of Wisconsin Health improvement

projects, 369
University of Wisconsin Health primary care

redesign, 361
unpaired t-test, 83–85
unsupervised learning, 160
upward referral policy, 304
US hospitals

activity-based modeling, 344–351
acute care hospital, 338
adjusted patient days, 340
classification rules, application of, 355–358
community hospitals, 338
cost-efficiency measure, 341
count by control type, 337, 338
create your own pathway approach, 342
data envelopment analysis, 341
electronic health records, 342

emergency department visits, 264
equivalent patient units, 340, 341
functional relationships, 338, 339
Grady Hospital (see Grady Hospital)
hospital operation data sources, 342
long-term rehabilitation, 337
medicare data sources, 343–344
operational data sets, 341–342
operational resources, 338
patient heterogeneity, 340
process and quality, of differences, 340
productivity analysis, 339–341
psychiatric care, 337
reimbursement rates, 343
resource usage, 338
resource use profile, 351–357
short-term acute care, 337
size class, 337
stochastic cost frontier analysis, 341
structural classification, 337–339
systemic inefficiencies, 264

US News and World Report ranking, 335

variable-length wavelet function, 71, 72
verbal communication-based data analysis, 517

Washington State inpatient databases, 454–455
waveform detection, for disease diagnosis, 99

description, 105
QRS detection algorithm, 105–106

wavelet-based methods, for ECG denoising,
100–102

wavelet functions, 70
wavelet packet decomposition (WPD), 79, 80
wavelet transform modulus maxima (WTMM)

method, 72–75
weighted goal programming technique, 306–307
white noise, 105

Z-transform statistics, 15
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Operations Research and Management Science (ORMS) is a broad, interdisciplinary
branch of applied mathematics concerned with improving the quality of decisions
and processes and is a major component of the global modern movement towards
the use of advanced analytics in industry and scientific research. The Wiley Series in
Operations Research and Management Science features a broad collection of books
that meet the varied needs of researchers, practitioners, policy makers, and students
who use or need to improve their use of analytics. Reflecting the wide range of
current research within the ORMS community, the Series encompasses application,
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the field, this collection is appropriate for students as well as professionals from
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