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PROGRESS IN THEORETICAL CHEMISTRY
AND PHYSICS

A series reporting advances in theoretical molecular and material sciences, includ-
ing theoretical, mathematical and computational chemistry, physical chemistry and
chemical physics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: theory
is used to interpret experimental results and may suggest new experiments; experi-
ment helps to test theoretical predictions and may lead to improved theories. Theo-
retical Chemistry (including Physical Chemistry and Chemical Physics) provides the
conceptual and technical background and apparatus for the rationalisation of phe-
nomena in the chemical sciences. It is, therefore, a wide ranging subject, reflect-
ing the diversity of molecular and related species and processes arising in chemical
systems. The book series Progress in Theoretical Chemistry and Physics aims to
report advances in methods and applications in this extended domain. It will com-
prise monographs as well as collections of papers on particular themes, which may
arise from proceedings of symposia or invited papers on specific topics as well as
from initiatives from authors or translations.

The basic theories of physics – classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics
– support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the spectroscopic models employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous with
Theoretical Chemistry: it will, therefore, constitute a major part of this book series.
However, the scope of the series will also include other areas of theoretical chemistry,
such as mathematical chemistry (which involves the use of algebra and topology in
the analysis of molecular structures and reactions); molecular mechanics, molecular
dynamics and chemical thermodynamics, which play an important role in rational-
izing the geometric and electronic structures of molecular assemblies and polymers,
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clusters and crystals; surface, interface, solvent and solid-state effects; excited-state
dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific research,
based on the exploitation of fast electronic digital computers. Computation provides
a method of investigation which transcends the traditional division between theory
and experiment. Computer-assisted simulation and design may afford a solution to
complex problems which would otherwise be intractable to theoretical analysis, and
may also provide a viable alternative to difficult or costly laboratory experiments.
Though stemming from Theoretical Chemistry, Computational Chemistry is a field
of research in its own right, which can help to test theoretical predictions and may
also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical ques-
tions relevant to the molecular concept, through the statics and dynamics of isolated
molecules, aggregates and materials, molecular properties and interactions, and the
role of molecules in the biological sciences. Therefore, it involves the physical basis
for geometric and electronic structure, states of aggregation, physical and chemical
transformation, thermodynamic and kinetic properties, as well as unusual properties
such as extreme flexibility or strong relativistic or quantum-field effects, extreme
conditions such as intense radiation fields or interaction with the continuum, and the
specificity of biochemical reactions.

Theoretical chemistry has an applied branch – a part of molecular engineering,
which involves the investigation of structure–property relationships aiming at the
design, synthesis and application of molecules and materials endowed with spe-
cific functions, now in demand in such areas as molecular electronics, drug design
or genetic engineering. Relevant properties include conductivity (normal, semi-
and supra-), magnetism (ferro- or ferri-), optoelectronic effects (involving nonlin-
ear response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, and biological and pharmaceutical
activities; as well as properties favouring self-assembling mechanisms, and combina-
tion properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various fields of research. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular
or cluster physicist, and the biochemist or molecular biologist who wishes to employ
techniques developed in theoretical, mathematical or computational chemistry in his
research programme. It is also intended to provide the graduate student with a read-
ily accessible documentation on various branches of theoretical chemistry, physical
chemistry and chemical physics.
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PREFACE

This volume contains a representative selection of papers presented at the Tenth
European Workshop on Quantum Systems in Chemistry and Physics (QSCP-X), 
held at Beït al-Hikma, seat of the Académie Tunisienne des Sciences, des Arts et 
des Lettres, in Carthage, Tunisia, September 1-7, 2005. About 90 scientists from 
18 countries, half of them from North Africa, attended the meeting, which focus-
sed on the evolution of current issues and problems in methods and applications. 

This workshop continued the series that was established by Roy McWeeny 
near Pisa (Italy), in April 1996, then continued on a yearly basis: Oxford (1997), 
Granada (1998), Paris (1999), Uppsala (2000), Sofia (2001), Bratislava (2002), 
Athens (2003), Grenoble (2004) …. The purpose of QSCP workshops is to bring 
together chemists and physicists with a common field of interest – the quantum 
mechanical theory of the many-body problem – and foster collaboration at the 
fundamental level of innovative theory and conceptual development. Quantum 
mechanics provides a theoretical foundation for our understanding of the struc-
ture and properties of atoms, molecules and the solid state in terms of their com-
ponent particles, electrons and nuclei. The study of ‘Quantum Systems in Chem-
istry and Physics’ therefore underpins many of the emerging fields in science and 
technology: nanostructures, smart materials, drug design, and so on. 

The tenth workshop was the first in the series held outside Europe. Partici-
pants gathered on the coast of North Africa, in one of the most influential cities 
of the ancient world, Carthage. Founded by Phoenicians from Tyre in the ninth 
century BC, it challenged the power of Rome. The situation of Beït al-Hikma on 
the Gulf of Tunis provided an excellent venue for scientists from different scien-
tific and cultural backgrounds. They came from Western and Eastern Europe and 
North and South America as well as from Algeria, Morocco and, of course, Tuni-
sia. Participants from overseas discovered a young and vibrant local scientific 
community engaged in theoretical molecular physics and chemistry. 

The Carthage QSCP workshop was divided into 5 morning and 3 afternoon 
plenary sessions, during which a total of 36 lectures of about 30 minutes each, 
including discussion, were delivered by leading experts. There were also 2 eve-
ning sessions where 63 posters were presented, each being first described in a 3-
minute oral presentation. 
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Preface

The fifteen papers collected in this volume are gathered into three sections, 
each addressing different aspects of the study of quantum systems in chemistry 
and physics. They are:  

Part I: Advanced Methodologies 
Part II: Interactions and Clusters 
Part III: Excited States and Condensed Matter 

We are pleased to acknowledge the support given to the Carthage workshop 
by the University of Tunis, the Société Tunisienne d’Optique and the Académie
Tunisienne des Sciences, des Arts et des Lettres. The efforts of all members of the 
Local Organizing Committee were very much appreciated, especially the team of 
LSAMA (Laboratoire de Spectroscopie Atomique, Moléculaire et Applications), 
led by Pr Zohra Ben Lakhdar, including Drs Hassen Ghalila, Zoubeida Dhaouadi 
and Nejmeddine Jaidane. The material and logistic help of the Tunisian Academy
and of the Hotel Amilcar is also gratefully acknowledged. 

We are grateful to the participants not only for the high standard of the talks 
and posters presented at the workshop, which is reflected in this proceedings vol-
ume, but also for the friendly and constructive atmosphere throughout the formal 
and informal sessions. The QSCP workshops continue to provide a unique forum 
for the presentation and discussion of new ideas and developments. 

As usual, since the 2001 workshop in Sofia, an impressive ceremony took 
place at the banquet dinner, held at the Hotel Amilcar in Carthage. The Promis-
ing Scientist Prize of the Centre de Mécanique Ondulatoire Appliquée (PSP of 
CMOA) was shared between the two selected nominees: Dr Majdi Hochlaf and 
Dr Richard Taïeb: http://www.lcpmr.upmc.fr/prize.html.

We hope that this volume has captured some of the excitement and enthusi-
asm that participants showed during the QSCP-X workshop, and that it will con-
vey to a wider audience some of the concepts and innovations considered at Beït
al-Hikma.

Souad Lahmar 
Jean Maruani

Stephen Wilson
Gerardo Delgado-Barrio
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OBITUARY - RAYMOND DAUDEL (1920-2006) 

Raymond Daudel was born in Paris, France, on February 2, 1920, the only child in 
a middle-class French family. As early as eight he was fascinated by scientific ex-
periments, and at ten he was deeply impressed by a visit with his father to a Muse-
um of Chinese Arts in Paris. From these early experiences he kept, throughout his 
life, a common interest in the arts and the sciences. 
          In 1942, Raymond Daudel received a first-class degree in engineering from 
the prestigious Ecole Supérieure de Physique et Chimie Industrielles de la Ville de 
Paris (ESPCI). Then he became an assistant of Irène Joliot-Curie (the daughter of 
Pierre  and Marie Curie and the wife of Frédéric Joliot, all Nobel Laureates), who 
was at that time a Professor of Chemistry at the Sorbonne, and of Antoine Lacas-
sagne, a Professor of Medicine at the Collège de France (known for discovering 
carcinogenic effects of female hormones). His two supervisors were co-directors 
of the Institut du Radium (now part of the Institut Curie). While helping them in 
their research on the applications of radio-elements to the treatment of malignant 
tumours, Raymond Daudel prepared a Thèse de Doctorat ès-Sciences on chemical 
separation of radio-elements formed by neutron bombardment, which he presented 
in 1944. 
          After following the lectures of Louis de Broglie (who received the Nobel 
Prize for his discovery of matter waves: = h / p), Raymond Daudel realized that 
wave mechanics was becoming an essential tool in the understanding of the struc-
ture and dynamics of the large molecules from which living beings were built. In 
1944, he founded the Centre de Chimie Théorique de France (CCTF), with the 
backing of Irène Joliot-Curie, Antoine Lacassagne, Louis de Broglie, and famous 
chemists, in order to foster scientific research on the applications of wave mech-
anics in chemistry and medicine. 
          In 1954, CCTF became the Institut de Mécanique Ondulatoire Appliquée à 
la Chimie et à la Radioactivité, under the sponsorship of the Centre National de la 
Recherche Scientifique (CNRS); and, in 1957, this body changed its name to that 
of Centre de Mécanique Ondulatoire Appliquée (or CMOA) with Louis de Broglie 
as the President of the Board of Directors. In 1962 the CMOA du CNRS was trans-
ferred to a location closer to the large computers of the Institut Blaise-Pascal.
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Obituary – Raymond Daudel (1920-2006) 

          CMOA then involved about 40 academics, half of them originating from 10 
different countries, especially the USA. There Daudel, Lefebvre and Moser had 
become known through one of the first textbooks in Quantum Chemistry that was 
widely used in American universities. CMOA was at that time structured in four 
main teams:  
          - That of Raymond Daudel proper, mostly oriented towards (bio) chemical 
reactivity, with Odilon Chalvet, Simone Odiot, Federico Peradejordi, Georges and 
Nadine Bessis and a few others, from France and abroad. 
          - That of Carl Moser, rather oriented towards elaborated methods for the 
computation of smaller systems. In the late 1960’s Moser was to found the Centre
Européen de Calcul Atomique et Moléculaire (or CECAM), while his co-worker 
Hélène Lefebvre-Brion joined the newly founded Laboratoire de Photophysique 
Moléculaire (PPM) at Orsay. 
          - That of Roland Lefebvre, especially involved in the interpretation of mag-
netic resonance spectra in condensed phases with, e.g., Philémon Kottis and Jean 
Maruani, but also in open-shell methodology, with Yves Smeyers at Madrid, and 
in molecular dynamics, with M. Garcia Sucre at Caracas. Roland Lefebvre was to 
become a cofounder of the PPM, with Sydney Leach and a few others. 
          - That of Savo Bratos, especially involved in the interpretation of infrared 
spectra in condensed phases. In the late 1960’s, Bratos founded the Laboratoire de 
Physique Théorique des Liquides (PTL). Then, in 1984, former co-worker Marcel 
Allavena founded the Laboratoire de Dynamique des Interactions Moléculaires
(DIM). This latter attracted other researchers from Pullmans’ and Salem’s groups 
and became the Laboratoire de Chimie Théorique (LCT). 
          In the mid-1970’s, other teams were created within the framework of former 
CMOA: Earl Evleth (an organic chemist from UCSB); Jean Maruani (symmetries 
and properties of non-rigid molecules); Pierre Becker (molecular structure by X-
ray and neutron diffraction); Nicole Gupta (band structure in metal alloys); as well 
as other groups from the existing teams. 
          During its 30 years of existence, the CMOA du CNRS developed a broad 
activity in scientific research, education, and animation. Over a thousand papers 
and twenty volumes were published, and 80 doctorate theses presented, between 
the late 1950’s and mid 1980’s. Numerous workshops, congresses and Summer 
schools were organized under the auspices of the CMOA. The International Aca-
demy of Quantum Molecular Sciences (IAQMS), which has held triannual cong-
resses since 1973, was founded in 1967 by Raymond Daudel, together with the 
Pullmans and scientists from Sweden (Löwdin), England (Coulson, Pople), the 
USA (Parr, Roothaan), and other places. The World Association of Theoretical 
Organic Chemists (WATOC), which also organizes a congress - alternating with 
those of IAQMS - every three years, was founded in 1982 on the same pattern. 
          Hundreds of scientists from all over the world have paid visits to CMOA, 
and dozens have worked there, for periods ranging from a few days to a few years. 
One remembers, for instance: Atkins, Bader, Bagus, Barojas, Beveridge, Christov, 
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Cizek, Coope, Csizmadia, Dannenberg, Goodman, Heilbronner, Jaffe, Karplus, 
Kaufman, Lorquet, Ludeña, Löwdin, Lund, Lunell, Matsen, Mezey, McConnell, 
McDowell, McWeeny, Mulliken, Nesbet, Pople, Pyykkö, Richards, Smeyers, ….  
          By 1984, most of the former members of CMOA had joined other labora-
tories, except a few (S. Besnaïnou, G. Giorgi, J. Maruani) who were invited by Pr 
Christiane Bonnelle to follow Pr Raymond Daudel in her Laboratoire de Chimie 
Physique (LCP), close to the Institut Curie. A strong impulse in theoretical and 
computer-oriented methods was then given to this mostly experimental laboratory. 
But the name of CMOA was retained by Jean Maruani to found an international, 
non-profit organization devoted to the promotion of scientific exchange and the 
organization of scientific meetings. 
          Raymond Daudel was a man of the cities: he disliked the countryside and 
wild life and was inclined to sedentarity and meditation. On June 18, 1944, he had 
married his student, Pascaline Salzedo, who initiated him into mountain climbing 
and stimulated his interest in exotic journeys and artworks. She was a rather tiny 
woman but with a strong will, who gave him a steady help throughout his career, 
although she was also working as a scientist at the Institut Curie. When she was 
hit by cancer, an illness on which she had worked for years, she insisted on going 
regularly from her room at Hôpital Curie to her office at Institut Curie. After Pas-
caline died, in 1976, Raymond Daudel went through a depressive period in which 
he lost nearly all interest in his scientific activities. Another blow came when his 
long-time rival, Bernard Pullman, was elected as a full member of the Académie
des Sciences in succession to Daudel’s mentor, Louis de Broglie, thus putting an 
end to his hope of getting into that prestigious body. 
          At that time Senator-Mayor Francis Palmero, who had known Pr Raymond 
Daudel since the first IAQMS congress, held at Menton in 1973, was a political 
friend of the painter Nicole Lemaire D’Aggagio, who was a municipal counsellor 
at the nearby city of Antibes-Juan les Pins. He asked her to involve Pr Raymond 
Daudel in some common project. Mrs Lemaire was then President of the National 
Commission of Fine Arts at the Women’s Professional Union and, as such, had 
been invited, in 1972, to a meeting in the Soviet Union. She was received at the 
Kremlin and, in the midst of the Cold War, she advocated the creation of an inter-
national and interdisciplinary academy to foster peace through cooperation, bet-
ween scientists and artists from Western and Eastern Europe. After trying to invol-
ve various academics, she came to Pr Daudel. It was as if a heavenly voice had 
told him: "If you can’t join them, beat them". 
          The European Academy of Sciences, Arts and Humanities was founded, in 
1979, at the very same address (60 rue Monsieur-le-Prince in Paris) where Pierre 
de Fermat had created, three centuries earlier, the informal group that was to be-
come the French Académie des Sciences. The founding members of the European
Academy were Armand Lanoux from Académie Goncourt, René Huygues from 
Académie Française, Jean Bernard from Académie de Médecine, Louis Leprince-
Ringuet from Académie des Sciences, and such foreign scientists as Ilya Prigogine 
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(Belgium), Per-Olov Löwdin (Sweden), and Camille Sandorfy (Canada) - now all 
deceased. Today the European Academy, under the new presidency of Pr de Thé, 
from the Pasteur Institute, involves about 300 full members (all academician in 
their own country), including 70 Nobel Laureates, and 700 corresponding mem-
bers, from all over the world. It has the status of a non-governmental organization 
and acts as a consultant for such international bodies as UNESCO and WHO. 
          I have a personal debt towards the European Academy. It was through this 
body that I was invited, in 2002, by the President of the Tunisian Academy to give 
a talk at one of the European Academy meetings, held at Carthage. This allowed 
me to visit again, for the first time since forty years, the country where I was born. 
There I approached some Tunisian colleagues, whom I had never met before, and 
convinced them to organize the tenth QSCP workshop at Carthage. 
          In recent years, Pr Daudel was mainly involved in establishing a world net-
work on research against retroviruses, together with Luc Montagnier (whose team 
discovered the virus of AIDS), and also in promoting the teaching of global issues 
and cultural diversity to engineering students, in the context of rising concern for 
sustainable development. 
          Raymond Daudel passed away in Paris, France, on June 20, 2006, at the age 
of 86. He leaves two sons, both married and having children: Olivier (working in 
computer science in Paris) and Sylvain (involved in education for management in 
Singapore). A short ceremony took place in his honour during the eleventh QSCP 
workshop held at Kochubey Palace, St Petersburg, Russia, on August 23, 2006, 
and a larger one was organized by various bodies, on November 30, at the Royal
Chapel of Versailles. 
          Raymond Daudel was not a religious man, in the sense that he did not be-
long to any creed - even though he respected even the weirdest creeds. He was, I 
would say, rather close to the philosophy of the Stoics. But he was religious in the 
original sense of religare: to link. To link men of different backgrounds and cul-
tures; and also to link the visible world, which can be accessed by Science, and the 
invisible realm, which - he thought - could be best approached through Art. 

Jean Maruani 
Honorary Director

of Research at CNRS 
President of CMOA 

(Approved by Olivier and Sylvain Daudel
and by Nicole Lemaire D’Aggagio) 
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LITERATE MANY-BODY PERTURBATION THEORY
PROGRAMMING: THIRD-ORDER “RING” DIAGRAMS

STEPHEN WILSON

Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK

Abstract The application of literate programming methods in many-body perturbation theory is illus-
trated by considering the computation of the third-order “ring” diagram in the correlation
energy expansion for a closed-shell, singlet system. An a posteriori application of literate
programming techniques to a major component of the first published computer program for
performing many-body perturbation theory calculations within the algebraic approximation
is given.

1. INTRODUCTION

Science, by it very nature, is a body of public knowledge, to which each researcher makes his personal
contribution, and which is corrected and clarified by mutual criticism. It is a corporate activity in which
each of us builds upon the work of our predecessors, in competitive collaboration with our contemporaries.
The nature of the communication system is thus vital to science; it lies at the very heart of the ‘scientific
method’.

This quotation is taken from a volume entitled The Force of Knowledge: The Scientific
Dimension of Society (p. 90) published in 1976 [1] by the late Professor J. Ziman,
FRS. Ziman continues by pointing out that

The actual form of communication are varied, and have changed in emphasis over the centuries.

In his volume Public Knowledge: An Essay Concerning the Social Dimension of
Science [2], Ziman writes

... physicist and engineers will sometimes make available to their colleagues the tapes of instructions for
computer programs that they have devised for some particular purpose, such as for the solution of some
difficult equation, or for the reduction and analysis of certain types of data. These tapes are collected
in ‘libraries’ at computer centers, and are used directly to generate further knowledge. It seems to me
that these are not just tools of research; they embody information, and play just the same role as would
mathematical formulae published in books, or tables of physical data in scientific papers.

3
S. Lahmar et al. (eds.), Topics in the Theory of Chemical and Physical Systems, 3–33.
c© 2007 Springer.
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He continues

A computer tape is ... not unlike an algebraic formula, but this is not an essential limitation, except at the
stage when it is being prepared by a human mind. It can be transformed, in the computer, to something
much more complex, which is unintelligible to the bare human intellect, and can only be read, so to speak,
by another computer.

Although Ziman made these comments in the late 1960s, even today it remains the
case that many scientific computer programs are not placed in the public domain. On
the other hand, results obtained by executing these codes for specific applications are
widely published in the literature. Objectively, this cannot be regarded as a bone fide
application of the scientific method.

In a recent paper entitled Theory and computation in the study of molecular struc-
ture [3], Quiney and I have advocated the use of literate programming methods, first
introduced by Knuth [4], but now little used [5], as a means of placing quantum
chemistry computer code in the public domain along side the associated theoretical
apparatus. Such publication not only places the work in the body of scientific knowl-
edge but also serves to establish authorship.

In two other recent publications, Quiney and I have given examples of the appli-
cation of literate programming methods in quantum chemistry. In a paper entitled
Literate programming in quantum chemistry: A simple example [6], we describe an
application to the calculation of an approximation to the ground state of the helium
atom. The paper, we submit, demonstrates the pedagogical advantages of literate pro-
gramming. In a second paper entitled Literate programming in quantum chemistry: A
collaborative approach to code development for molecular electronic structure the-
ory [7], we describe the use of literate programming methods in collaborative code
development. We are also preparing a volume with the title Literate programming in
quantum chemistry: an introduction [8].

In the present paper, the application of literate programming methods in many-
body perturbation theory will be illustrated by considering the computation of the
third-order “ring” diagram in the correlation energy expansion for a closed-shell, sin-
glet system. The FORTRAN77 code for calculating this component of the correlation
energy was first published by the author [9] in 1978. The present work, therefore,
represents an a posteriori application of literate programming techniques to a major
component of the first published computer program for performing many-body per-
turbation theory calculations within the algebraic approximation, an approximation
which is the essential ingredient of molecular applications. Our central purpose here
is to demonstrate how literate programming methods can be used to place the com-
puter programs developed in quantum chemistry in the public domain.

The code presented here was published as part of a program package by
D.M. Silver and the present author [9–11] which calculated the components of the
correlation energy corresponding to all second and third-order diagrammatic terms.
The whole package was originally published in Computer Physics Communications
in 1978.
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Figure 1. Brandow diagram for the third-order “ring” energy.

The particular energy component that will be studied here is the third-order “ring”
energy also referred to as the third-order hole-particle energy, E3(hp) (for details
see, for example, [12] or [13]). The corresponding Brandow diagram (a diagram with
antisymmetrized vertices) is shown in Figure 1. The associated Goldstone diagrams
are shown in Figure 2.

The algebraic expression corresponding to the Brandow diagram shown in Figure 1
takes the form

E3(hp) = −
∑

i jk

∑

abc

〈i j | O |ab〉 〈ak| O |ic〉 〈bc| O | jk〉
Di jab D jkbc

where 〈pq| O |rs〉 denotes a two-electron integral with “antisymmetrized” interac-
tion

O = 1 − P12

r12

and Dpqrs is a denominator factor which depends on the choice of zero-order Hamil-
tonian for the perturbation expansion. The indices i , j and k label hole states whilst
the indices a, b and c label particle states.

2. A LITERATE MANY-BODY PERTURBATION THEORY PROGRAM

2.1. Background

Literate programming was introduced by Knuth in 1984 [4]. He suggested that

the time [was] ripe for significantly better documentation of programs, and that we [could] best achieve
this by considering programs to be works of literature.

This requires a radical shift of emphasis in the writing of computer programs. Knuth
writes

instead of imagining that our main task is to instruct a computer what to do

we should

concentrate rather on explaining to human beings what we want a computer to do
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Figure 2. All Goldstone diagrams for the third-order “ring” energy, including those for which the spin
labels differ. Taken from S. Wilson, Comput. Phys. Commun. 14, 91 (1978).

Thus the task facing a literate programmer extends beyond that of a computer pro-
grammer. The literate programmer must strive not only to create correct and efficient
code, but also a description of the theoretical concepts that lie behind the code.

Unfortunately, it appears that literate programming techniques are today little
used [5]. But, in recent work [3], we have emphasized their value as a means of
placing quantum chemistry computer code in the public domain along side the asso-
ciated theoretical apparatus. Such publication not only places the work in the body of
scientific knowledge, where it can be [14]

fully and freely available for open criticism and constructive use,

but also serves to establish authorship.
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2.2. A literate program for third-order many-body perturbation theory
“ring” diagram components

The following literate program has been constructed by taking the original
FORTRAN77 listing of the “ring” diagram code, removing all “comment” cards,
and then adding LATEX text, together with Figures, to provide a clear description of
the code and its functionality.

2.2.1. Controlling routine: sw

The controlling routine for the computation of E3(hp) is called sw and begins with
the following call, declarations and assignments:

subroutine sw (io,ktf,ktr,kts,iprnt)
implicit real*8 (a-h,o-z)
dimension gijk(2,1100),ktf(10),ktr(10),

dint(35,35)
nocctm=10
norbtm=35
nvirtm=25

In the arguments of sw, io is the print data set, ktf(10) data sets for labelled lists
of integrals, ktr(10) work data sets, kts is an internal output data set, and iprnt
is a print control parameter such that

iprnt=1: print out of intermediate results
iprnt=0: no print out of intermediate results

The three variables nocctm (nmax
occ ), norbtm (nmax

orb ) and nvirtm (nmax
vir t ) define

the maximum number of occupied orbitals, orbitals and virtual orbitals, respectively,
that can be consider with the array dimension settings indicated. The array gijk is
used to store the energy components corresponding to a given i , j , k combination

gi jk =
∑

abc

〈i j | O |ab〉 〈ak| O |ic〉 〈bc| O | jk〉
Di jab D jkbc

and is of dimension 2 × nmax
g , where

nmax
g = 2nmax

occ

((
nmax

occ
)2 + nmax

occ

)

The controlling routine sw calls three subroutines inpt:

call inpt(io,ktf,ktr,nocctm,norbtm,nvirtm,dint,
iprnt)

which initials certain arrays and controls the subroutines symt and ordr. symt
handles degenerate symmetry species for linear systems, whilst ordr arrange the
two-electron integrals of the type 〈i j | O |ab〉 in separate data sets in a manner that
will be described in more detail below; ring:
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call ring(gijk,io,ktf(5),ktr,dint)

which is the routine where the required correlation energy components are computed;
gwrt:

call gwrt(io,kts,gijk,iprnt)

which controls the printing of intermediate data where it is required. Control is then
returned to the controlling routine:

return
end

and this completes execution of the controlling routine sw for the “ring” diagram
energy components. Control is passed back to the calling routine, which is not con-
sidered explicitly here, where the “ring” diagram energy is added to other components
of the correlation energy.

2.2.2. Initialization of arrays: inpt

The subroutine inpt initializes certain arrays and also controls the subroutine symt,
which handles degenerate symmetry species for linear systems, and ordr, which
arranges the two-electron integrals of the type 〈i j | O |ab〉. All of the quantities
appearing in the argument list for inpt have been defined above:

subroutine inpt(io,ktf,ktr,nocctm,norbtm,nvirtm,
dint,$iprnt)

The declarations and common blocks are as follows:

implicit real*8 (a-h,o-z)
dimension ktf(10),ktr(10),label(20),dint(35,35)
logical lsym1(550),lsym2(550)
common/ptind/ ind(60),norb,nnorb,nocc,nnocc,

nvirt,nnvirt
common/ptsym/ lsym1,lsym2,invlab(60)
common/ptres/ etwo(2),etotal(2),ediag,eorb(60)

The three common blocks store: (i) various indices (ptind), (ii) symmetry data
(ptsym), (iii) results (ptres)

Execution begins with the reading of a label, nocc (nocc) – the number of occu-
pied orbitals, norb (norb) – the number of orbitals, eorb (εp) – the orbital energies,
invlab – a symmetry label, and dint – the denominator shift integrals. These
quantities are read from the data set ktf(10). invlab is stored in the common
block ptsym along with the logical arrays lsym1 and lsym2.

kt=ktf(10)
read(kt) label,nocc,norb,eorb,invlab
read (kt) dint
rewind kt
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If intermediate print out is switched on, print the title “Third-order hole-
particle ring diagram”:

if(iprnt.ne.0) write (io,6000)
6000 format(39h1Third-order hole-particle ring

diagram/)

The number of virtual orbitals, nvir t , is determined and the following conditions
checked

nocc ≤ nmax
occ ; norb ≤ nmax

orb ; nvir t ≤ nmax
vir t

If any of these inequalities are not satisfied then an error message is written and
execution terminated.

nvirt=norb-nocc
if(nocc.le.nocctm.and.norb.le.norbtm.and.
$nvirt.le.nvirtm) go to 3
write(io,6007) nocctm,nvirtm,norbtm

6007 format(38h0Dimension problem in ring
program sw //10x

$36hNumber of doubly occupied orbitals =,i2,5x,
$31hNumber of unoccupied orbitals =,i3,5x,
$20hNumber of orbitals =,i3)
stop

3 continue

Various indices stored in the common block ptind are set up. ind(i)contains val-
ues of

1
2
(i (i − 1))

This index is required to determine the position of the elements of a symmetric matrix
whose elements are stored in a one-dimensional array. nnocc (n̄occ), nnorb (n̄orb)
and nnvirt (n̄vir t ) are given by

n̄occ = 1
2
(nocc (nocc + 1)) ;

n̄orb = 1
2
(norb (norb + 1)) ;

n̄vir t = 1
2
(nvir t (nvir t + 1))

j=0
do 1 i=1,norb
ind(i)=j
j=j+i

1 continue
nnorb=(norb*(norb+1))/2
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nnocc=ind(nocc+1)
nnvirt=ind(nvirt+1)

Arrays in which the calculated energy components will be stored are set to zero.
etotal will contain the total energy whilst etwo will contain the two-body com-
ponent. iz=1 corresponds to the Hartree–Fock model zero-order Hamiltonian, that
is the Møller–Plesset expansion whereas iz=2 identifies the shifted denominator
scheme which uses the Epstein–Nesbet zero-order Hamiltonian. ediag will be used
to store the diagonal component. These energies are stored in the common block
ptres together with the orbital energy (eorb(60)).

do 5 iz=1,2
etotal(iz)=0.0d+00
etwo(iz)=0.0d+00

5 continue
ediag=0.0d+00

Control this then passed to the subroutine symt and then subroutine ordr before it
is returned to the controlling routine sw.

call symt
call ordr(ktf(6),ktr)
return
end

2.2.3. Handling of degenerate symmetry species for linear molecules: symt

Symmetry can be exploited to improve the efficiency of ab initio quantum chemical
programs. This program recognizes degenerate symmetry species for linear mole-
cules.

subroutine symt
implicit real*8 (a-h,o-z)
logical l1,l2,l3,l4,l5,l6,l7,l8,l9,lik,

lsym1(550),
$lsym2(550)
common/ptind/ ind(60),norb,nnorb,nocc,nnocc,

nvirt,nnvirt
common/ptsym/ lsym1,lsym2,invlab(60)

Element i of the array invlab identifies the symmetry of the orbital i . This index is
used for handling degenerate symmetry species that occur for linear molecules. All
elements of invlab are set equal to 1 if the molecule is not linear or if real spherical
harmonics are not used. For linear molecules, the elements of invlab are assigned
as follows:

σ → 1
π → 2
π̄ → 3
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If a π orbital is occupied then the corresponding π̄ orbital must also be occupied and
must follow the π orbital in consecutive order.

The logical arrays lsym1 and lsym2 are initialized by setting all elements to
.false..

do 1 i=1,550
lsym1(i)=.false.
lsym2(i)=.false.

1 continue

By considering all sets of indices

i, j, k with i ≥ k

all cases which will have a non-zero contribution because of symmetry considerations
can be identified. Set isym, jsym and ksym to invlab(i), invlab(j) and
invlab(k), respectively.

icount=0
do 10 i=1,nocc
isym=invlab(i)
do 10 k=1,i
lik=(i.ne.(k+1))
ksym=invlab(k)
do 10 j=1,nocc
jsym=invlab(j)

Set the logical variables l1, l2, ..., l9 according to values of isym, jsym and
ksym.

icount=icount+1
l1=(isym.eq.1)
l2=(isym.eq.2)
l3=(isym.eq.3)
l4=(jsym.eq.1)
l5=(jsym.eq.2)
l6=(jsym.eq.3)
l7=(ksym.eq.1)
l8=(ksym.eq.2)
l9=(ksym.eq.3)

Now set lsym1(icount) according to the symmetry of the orbital triple labelled
by the indices i , j and k.

if(l1.and.l6.and.l7) lsym1(icount)=.true.
if(l3.and.l4.and.l7) lsym1(icount)=.true.
if(l1.and.l4.and.l9) lsym1(icount)=.true.
if(l3.and.l6.and.l7) lsym1(icount)=.true.
if(l3.and.l4.and.l9) lsym1(icount)=.true.
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if(l1.and.l6.and.l9) lsym1(icount)=.true.
if(l3.and.l5.and.l7) lsym1(icount)=.true.
if(l3.and.l4.and.l8.and.lik) lsym1(icount)

=.true.
if(l1.and.l6.and.l8) lsym1(icount)=.true.
if(l3.and.l6.and.l9) lsym1(icount)=.true.
if(l3.and.l6.and.l8.and.lik) lsym1(icount)

=.true.
if(l3.and.l5.and.l9) lsym1(icount)=.true.
if(l3.and.l5.and.l8.and.lik) lsym1(icount)

=.true.

Similarly, set lsym2(icount) according to the symmetry of the orbital triple
labelled by the indices i , j and k.

if(l1.and.l5.and.l7) lsym2(icount)=.true.
if(l2.and.l4.and.l7) lsym2(icount)=.true.
if(l1.and.l4.and.l8) lsym2(icount)=.true.
if(l2.and.l5.and.l7) lsym2(icount)=.true.
if(l2.and.l4.and.l8) lsym2(icount)=.true.
if(l1.and.l5.and.l8) lsym2(icount)=.true.
if(l2.and.l6.and.l7) lsym2(icount)=.true.
if(l2.and.l4.and.l9) lsym2(icount)=.true.
if(l1.and.l5.and.l9) lsym2(icount)=.true.
if(l2.and.l5.and.l8) lsym2(icount)=.true.
if(l2.and.l5.and.l9) lsym2(icount)=.true.
if(l2.and.l6.and.l8) lsym2(icount)=.true.
if(l2.and.l6.and.l9) lsym2(icount)=.true.

10 continue
return
end

2.2.4. Processing of the two-electron integrals of the type 〈i j | O |ab〉: ordr
The subroutine ordr reads the integrals 〈i j | O |ab〉 from the data set jt and creates
nocc data sets ktr(i), i= 1, nocc, where data set ktr(i)contains 〈i j | O |ab〉 for a
given i arranged in blocks labelled by j. The disposition of the integrals 〈i j | O |ab〉
in the data sets ktr(i), i= 1, nocc is illustrated in Figure 3.

ktr(i):i = 1 ktr(i):i = 2 . . . ktr(i):i = nocc
j = 1 j = 1, all a, b j = 1, all a, b . . . j = 1, all a, b
j = 2 j = 2, all a, b j = 2, all a, b . . . j = 2, all a, b
. . . . . . . . . . . .

j = nocc j = nocc, all a, b j = nocc, all a, b . . . j = nocc, all a, b

Figure 3. Organization of the integrals 〈i j | O |ab〉.
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The argument list consists of jt and ktr:

subroutine ordr(jt,ktr)

The declarations, common block and equivalence statements are

implicit real*8 (a-h,o-z)
dimension a(625),ktr(10),indx(625),lblds(20),

na(1)
common/ptind/ ind(60),norb,nnorb,nocc,nnocc,

nvirt,nnvirt
equivalence (na(1),a(1))

Here a(625) is an array used to store values of the integral 〈i j | O |ab〉 for all a and
b for a given i and j . It has the dimensions n2

vir t . The array indx(625) is used
to store the corresponding integral labels. The various indices in the common block
ptind were set up by the subroutine ordr. Note the equivalence of the arrays na
and a, which is used for efficient reading and writing of integral lists.

read (jt) lblds
ies=1
is=0
js=0
do 7 i=1,nocc
do 7 j=1,i
n=0
if(ies.eq.0) go to 20

10 continue
if(is-i) 12,11,20

11 continue
if(js-j) 12,13,20

12 continue
read (jt,end=19) is,js,ns
go to 10

13 continue
n=ns
go to 20

19 continue
ies=0

20 continue
if(n.eq.0) go to 5

Now read the integral labels into the array indx and the integrals into the array a,
which is related to the array na by an equivalence

m=n+n
call rfst(indx,n,jt)
call rfst(na,m,jt)

5 continue
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Write the labels and integrals to the data set ktr(i)

kt=ktr(i)
write(kt) i,j,n
if(n.eq.0) go to 6
call wfst(indx,n,kt)
call wfst(na,m,kt)

6 continue

If i �= j write the labels and integrals to the data set ktr(j)

if(i.eq.j) goto 7
kt=ktr(j)
write(kt) i,j,n
if(n.eq.0) go to 7
call wfst(indx,n,kt)
call wfst(na,m,kt)

7 continue

Execution of the subroutine ordr concludes by rewinding the data sets jt and
ktr(i), i= 1, nocc.

3 continue
rewind jt
do 4 i=1,nocc
kt=ktr(i)

4 rewind kt
return
end

2.2.5. Evaluation of the third-order “ring” diagram energy components: ring

ring is the subroutine in which the third-order “ring” diagram energy components
are actually evaluated. The computation proceeds in two main steps.

In the first step, the integrals 〈i j | O |ab〉 and 〈bc| O | jk〉 together with the corre-
sponding denominator factors Di jab and D jkbc are combined to form an intermediate
fi jkac by summing over the index b

fi jkac =
∑

b

〈i j | O |ab〉 〈bc| O | jk〉
Di jab D jkbc

The summation shown here is over spin orbitals, but in practice it is carried out over
spatial orbitals. The different spin cases which can arise are summarized in Figure 4.
The difference spin cases are distinguished by the index µ.

The second step involves the contraction of the integrals of the type 〈ak| O |ic〉 by
summation over the indices a and c to give

gi jk =
∑

ac

fi jkac 〈ak| O |ic〉 .
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µ 〈I J | g |AB〉 〈I J | g |B A〉 〈J K | g |BC〉 〈J K | g |C B〉 FµI J K AC

1 (αααα) (αααα) (αααα) (αααα) (ααααα)

2 (αααα) (αααα) (αβαβ) (−) (ααβαβ)

3 (αβαβ) (−) (βαβα) (−) (αβααα)

4 (αβαβ) (−) (ββββ) (ββββ) (αββαβ)

5 (−) (αβαβ) (−) (βαβα) (αβαββ)

g = 1
r12

Figure 4. Spin cases which arise in the calculation of the intermediate FµI J K AC .

µ 〈I C | O |AK 〉 FµI J K AC GµI J K

1 (αααα) (ααααα) (ααα)

2
(αααα)

(αββα)

(αβααα)

(αβαββ)
(αβα)

3 (αβαβ) (ααβαβ) (ααβ)

4 (αβαβ) (αββαβ) (αββ)

Figure 5. Spin cases which arise in the calculation of the intermediate GµI J K .

In practice, the summation is carried out over spatial orbitals. The different spin cases
are again distinguished by the index µ. The spin case which arise are defined in
Figure 5.

The ring subroutine calling arguments are as follows:

subroutine ring(gijk,io,jt,ktr,dint)

where

gijk: energy components for a given i , j , k
io: printed output
jt: data sets containing 〈ic| O |ak〉 integrals

ktr: data sets containing 〈i j | O |ab〉 integrals
dint: denominator integrals

The declarations, data, common block and equivalence statements are:

implicit real*8 (a-h,o-z)
dimension g1(2),g2(2),g3(2),g4(2),
$f1(2,2),f2(2,2),f3(2,2),f4(2,2),f5(2,2),
$d1(2),d2(2),d3(2),d4(2),d5(2),
$vijab(625),vjkbc(625),gijk(2,1),
$ijab(625),jkbc(625),ktr(10),lblds(20),

dint(35,35),
$itypea(625),itypec(625),locab(325),locbc(325),
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$rint(950),icak(950),
$nint(1),nijab(1),njkbc(1),iar(950),icr(950),

ityper(950)
logical j1,j2,j3,j4,j5,l1,l2,l3,l4,l5,l6,l7,l8,

l9,l10,
$lsym1(550),lsym2(550)
data t1/0.0d+00/,t2/0.0d+00/,t3/0.0d+00/,
$t4/0.0d+00/,t5/0.0d+00/
common/ptind/ ind(60),norb,nnorb,nocc,nnocc,

nvirt,nnvirt
common/ptsym/ lsym1,lsym2,invlab(60)
common/ptres/ etwo(2),etotal(2),ediag,eorb(60)
equivalence (nijab(1),vijab(1)),(njkbc(1),

vjkbc(1))
1, (nint(1),rint(1))
limit=nvirt*nvirt+nnvirt
nd=2
read(jt) lblds
isym0=0
indx=0

Start a loop over i and assign the data set it containing the 〈i j | O |ab〉 for a given i .

do 1 i=1,nocc
it=ktr(i)

and then start a loop over k, assign isym, test for the case i = k, and assign the data
set kt containing the 〈 jk| O |bc〉 for a given k.

do 2 k=1,i
isym=isym0
l9=(i.eq.k)
kt=ktr(k)

The integrals of the type 〈ic| O |ak〉 are now read from the data set jt. First the
labels i (ir) and k (kr) are read together with the number of integrals in the block
nr (nr).

read(jt,end=900) ir,kr,nr

If an error is encountered control passes to statement 900. Check that the indices ir
and kr correspond to the required block of integrals:

if(ir.ne.i.and.kr.ne.k) goto 901

If they do not then handle the error by passing control to statement 901. Also check
that the number of integrals in the block, nr, is not greater than the program limita-
tions imposed by array dimensions.



Literate Many-Body Perturbation Theory 17

if(nr.gt.limit) goto 903

If this limit is exceeded, handle this error by passing control to statement 903. If the
number of integrals in the (i ,k) block is 0 then the processing of this block can be
skipped.

if(nr.eq.0) go to 2

The integral labels and the integrals 〈ic| O |ak〉 themselves are read from the data set
jt.

nnr=nr+nr
call rfst(icak,nr,jt)
call rfst(nint,nnr,jt)

The integral labels for the (i ,k) block of integrals are now unpacked. In this code,
iar(iz) contains the index a, icr(iz) the label c, and ityper(iz) contains
an index which defines the integral type.

do 3 iz=1,nr
label=icak(iz)
laba=label/1200
iar(iz)=laba-(laba/60)*60-nocc
labc=label/20
icr(iz)=labc-(labc/60)*60-nocc
ityper(iz)=label-(label/20)*20

3 continue

The integrals 〈ic| O |ak〉 are now available for all (a,c) for a given (i ,k). The pro-
gram now loops over the third occupied orbital index j .

do 7 j=1,nocc
isym=isym+1
read(it,end=900) mi,mj,mn

If an error is encountered control passes to statement 900. Check that the indices mi
and mj correspond to the required block of integrals:

if((mi.ne.i.or.mj.ne.j).and.
(mi.ne.j.or.mj.ne.i)) goto 901

If they do not then handle the error by passing control to statement 901. Also check
that the number of integrals in the block, mn, is not greater than the program limita-
tions imposed by array dimensions.

if(mn.gt.limit) goto 903

If they do not then handle the error by passing control to statement 903. Also check
that the number of integrals in the block, mn, is not greater than the program limita-
tions imposed by array dimensions.
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if(mn.eq.0) go to 5

The integral labels and the integrals 〈i j | O |ab〉 themselves are read from the data set
it.

mnn=mn+mn
call rfst(ijab,mn,it)
call rfst(nijab,mnn,it)

5 continue

If i = k, 〈 jk| O |bc〉 the block is equivalent to the 〈i j | O |ab〉 block and so the former
do not have to be read. Control therefore passes to 8.

if(l9) goto 8

The integrals of the type 〈 jk| O |bc〉 are now read from the data set kt. First the
labels j (ni) and k (nj) are read together with the number of integrals in the block
nn (nn)

read(kt,end=900) ni,nj,nn

If an error is encountered control passes to statement 900. Check that the indices ni
and nj correspond to the required block of integrals:

if((ni.ne.j.or.nj.ne.k).and.
(ni.ne.k.or.nj.ne.j)) goto 901

If they do not then handle the error by passing control to statement 901. Also check
that the number of integrals in the block, nn, is not greater than the program limita-
tions imposed by array dimensions.

if(nn.gt.limit) goto 903

If they do not then handle the error by passing control to statement 903. If the number
of integrals in the ( j ,k) block is 0 then the processing of this block can be skipped.

if(nn.eq.0) go to 7

The integral labels and the integrals 〈 jk| O |bc〉 are read from the data set kt.

nnn=nn+nn
call rfst(jkbc,nn,kt)
call rfst(njkbc,nnn,kt)

If the number of integrals in the 〈i j |O |ab〉 block is 0 then processing of this block
can be skipped.

if(mn.eq.0) go to 7
goto 9

The following code is only executed if i = k. The block of integrals 〈 jk| O |bc〉 is
obtained from the block 〈i j | O |ab〉.
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8 continue
if(mn.eq.0) go to 7
nn=mn
do 10 iz=1,nn
vjkbc(iz)=vijab(iz)
jkbc(iz)=ijab(iz)

10 continue
9 continue
if(lsym1(isym)) goto 7
l6=lsym2(isym)

Set the elements of the arrays g1, g2, g3 and g4 corresponding to the intermediate
GµI J K , µ = 1, 2, 3, 4, to 0. The index iz=1, nd distinguished different denomina-
tor factors.

do 4 iz=1,nd
g1(iz)=0.0d+00
g2(iz)=0.0d+00
g3(iz)=0.0d+00
g4(iz)=0.0d+00

4 continue
l7=(i.gt.j)
l8=(j.gt.k)

The arrays pointing to the integrals 〈i j | O |ab〉 and 〈 jk| O |bc〉 in the integral
arrays vijab and vjkbc, respectively, are now assigned. Set the elements of the
arrays locab and locbc to 0.

do 20 ix=1,nnvirt
locab(ix)=0
locbc(ix)=0

20 continue

The following code assigns the values of locab:

iz=0
21 continue

iz=iz+1
label=ijab(iz)
laba=label/1200
laba=laba-(laba/60)*60
laba=laba-nocc
labb=label/20
labb=labb-(labb/60)*60
labb=labb-nocc
itypea(iz)=label-(label/20)*20
indab=ind(laba)+labb
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if(locab(indab).eq.0) locab(indab)=iz
if(locab(indab).eq.iz-1) locab(indab)=1-iz
if(iz.lt.mn) goto 21

Execution reaches this point when iz=mn and then continues by assigning values of
locbc:

iz=0
22 continue

iz=iz+1
label=jkbc(iz)
labb=label/1200
labb=labb-(labb/60)*60
labb=labb-nocc
labc=label/20
labc=labc-(labc/60)*60
labc=labc-nocc
indbc=ind(labb)+labc
itypec(iz)=label-(label/20)*20
if(locbc(indbc).eq.0) locbc(indbc)=iz
if(locbc(indbc).eq.iz-1) locbc(indbc)=1-iz
if(iz.lt.nn) goto 22

Execution reaches this point when iz=nn and all the non-zero elements of locbc
are assigned.

The index ir counts the “ring” integrals. The program now processes the “ring”
integrals 〈ic| O |ak〉 to first form the intermediates FµI J K AC and then the GµI J K .

ir=0
25 continue

ir=ir+1
ia=iar(ir)
ic=icr(ir)
l10=(ia.eq.ic)
itype=ityper(ir)

Assign the three “ring” integrals to the scalars vr1, vr2, vr3:

vr1=0.0d+00
vr2=0.0d+00
vr3=0.0d+00
if(itype.ne.1.and.itype.ne.3.and.itype.ne.5.and.
$itype.ne.7) goto 50
vr1=rint(ir)
if(ir.ge.nr) go to 52
iaa=iar(ir+1)
icc=icr(ir+1)
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if(iaa.ne.ia.or.icc.ne.ic) goto 52
ir=ir+1
itype=ityper(ir)

50 continue
if(itype.ne.2.and.itype.ne.4.and.itype.ne.6.and.
$itype.ne.8) goto 51
vr2=rint(ir)
if(itype.ne.8) go to 52
if(ir.ge.nr) go to 52
iaa=iar(ir+1)
icc=icr(ir+1)
if(iaa.ne.ia.or.icc.ne.ic) goto 52
ir=ir+1
itype=ityper(ir)

51 continue
if(itype.ne.9) goto 901
vr3=rint(ir)

52 continue

Set the arrays used for storing the intermediates FµI J K AC to 0. f1, f2, f3, f4,
f5 correspond to the five different spin cases: µ = 1, 2, 3, 4, 5. ix=1,2 distinguish
FµI J K AC and FµI J K C A. iz=1,2 allows calculations for different denominator factors
to be carried out at the same time.

do 42 ix=1,2
do 42 iz=1,nd
f1(ix,iz)=0.0d+00
f2(ix,iz)=0.0d+00
f3(ix,iz)=0.0d+00
f4(ix,iz)=0.0d+00
f5(ix,iz)=0.0d+00

42 continue

Now the summation over b begins:

do 40 ib=1,nvirt
kb=ib+nocc

and the two cases FµI J K AC and FµI J K C A considered.

do 41 ix=1,2
ka=ia+nocc
kc=ic+nocc
l1=(ia.ge.ib)
l2=(ib.ge.ic)
if(l1) iab=ind(ia)+ib
if(l2) ibc=ind(ib)+ic
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if(.not.l1) iab=ind(ib)+ia
if(.not.l2) ibc=ind(ic)+ib
jab=locab(iab)
jbc=locbc(ibc)
if(jab.eq.0.or.jbc.eq.0) goto 43
v1=0.0d+00
v2=0.0d+00
v3=0.0d+00
v4=0.0d+00
if(jab.lt.0) goto 54
itype=itypea(jab)
if(itype.lt.5) v1=vijab(jab)
if(itype.eq.5) v3=vijab(jab)
goto 55

54 continue
jab=iabs(jab)
itype=itypea(jab)
v1=vijab(jab)
v3=vijab(jab+1)

55 continue
if(jbc.lt.0) goto 56
jtype=itypec(jbc)
if(jtype.lt.5) v2=vjkbc(jbc)
if(jtype.eq.5) v4=vjkbc(jbc)
goto 57

56 continue
jbc=iabs(jbc)
jtype=itypec(jbc)
v2=vjkbc(jbc)
v4=vjkbc(jbc+1)

57 continue

The denominator factors are now required. They are stored in the arrays d1, d2,
d3, d4, d5 corresponding to the different spin cases labelled by µ = 1, 2, 3, 4, 5.
This program handles both the Møller–Plesset and the Epstein–Nesbet perturbation
series. For the Møller–Plesset expansion, the denominators do not depend on the spin
case and are given by

Di jab = εi + ε j − εa − εb

and

D jkbc = ε j + εk − εb − εc.

The product of these denominator factors are assigned in the following code:

dijab=eorb(i)+eorb(j)-eorb(ka)-eorb(kb)
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djkbc=eorb(j)+eorb(k)-eorb(kb)-eorb(kc)
d=dijab*djkbc
if(d.lt.1.0d-10) goto 902
d=1.0d+00/d
iz=1
d1(iz)=d
d2(iz)=d
d3(iz)=d
d4(iz)=d
d5(iz)=d

which includes a check for vanishing denominator factors which would cause over-
flow. The detection of such factor provokes an error condition via a goto 902.

The third-order “ring” energy component for the perturbation series corresponding
to the Epstein–Nesbet zero-order Hamiltonian is given by

E3(hp) = −
∑

i jk

∑

abc

�ik,ac
〈i j | O |ab〉 〈ak| O |ic〉 〈bc| O | jk〉(

Di jab − di jab
) (

D jkbc − d jkbc
)

where

�ik,ac = 2−γpqγrs
(
γpq + γrs

)

in which

γpq =
{

0, if p = q
1, if p �= q

and

dpqrs =
(

〈pq| 1
r12

|pq〉 − 〈pq| 1
r12

|qp〉
)

+
(

〈rs| 1
r12

|rs〉 − 〈rs| 1
r12

|sr〉
)

+
(

〈pr | 1
r12

|pr〉 − 〈pr | 1
r12

|r p〉
)

+
(

〈ps| 1
r12

|sp〉 − 〈ps| 1
r12

|ps〉
)

+
(

〈qr | 1
r12

|rq〉 − 〈qr | 1
r12

|qr〉
)

+
(

〈qs| 1
r12

|sq〉 − 〈qs| 1
r12

|qs〉
)
.

The following code sets up the products of these denominator factors.

if(l1) x1=dint(ka,kb)
if(l1) x2=dint(kb,ka)
if(.not.l1) x1=dint(kb,ka)
if(.not.l1) x2=dint(ka,kb)
if(l7) x3=dint(i,j)
if(l7) x4=dint(j,i)
if(.not.l7) x3=dint(j,i)
if(.not.l7) x4=dint(i,j)
x5=dint(ka,i)
x6=dint(i,ka)
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x7=dint(kb,i)
x8=dint(i,kb)
x9=dint(ka,j)
x10=dint(j,ka)
x11=dint(kb,j)
x12=dint(j,kb)
y=x5-x6+x7-x8+x9-x10+x11-x12
if(i.ne.j.and.ia.ne.ib) s11=-x1+x2-x3+x4+y
if(i.ne.j.and.ia.eq.ib) s11=-x3+x4+y
if(i.eq.j.and.ia.ne.ib) s11=-x1+x2+y
if(i.eq.j.and.ia.eq.ib) s11=y
s12=-x1-x3+x5-x6+x7+x9+x11-x12
s13=-x1-x3+x5+x7-x8+x9-x10+x11
if(l2) x1=dint(kb,kc)
if(l2) x2=dint(kc,kb)
if(.not.l2) x1=dint(kc,kb)
if(.not.l2) x2=dint(kb,kc)
if(l8) x3=dint(j,k)
if(l8) x4=dint(k,j)
if(.not.l8) x3=dint(k,j)
if(.not.l8) x4=dint(j,k)
x5=dint(kb,j)
x6=dint(j,kb)
x7=dint(kc,j)
x8=dint(j,kc)
x9=dint(kb,k)
x10=dint(k,kb)
x11=dint(kc,k)
x12=dint(k,kc)
y=x5-x6+x7-x8+x9-x10+x11-x12
if(j.ne.k.and.ib.ne.ic) s21=-x1+x2-x3+x4+y
if(j.ne.k.and.ib.eq.ic) s21=-x3+x4+y
if(j.eq.k.and.ib.ne.ic) s21=-x1+x2+y
if(j.eq.k.and.ib.eq.ic) s21=y
s22=-x1-x3+x5-x6+x7+x9+x11-x12
s23=-x1-x3+x5+x7-x8+x9-x10+x11

Now the required products of denominator factors corresponding to the Epstein–
Nesbet perturbation expansion are formed for each of the possible spin cases. Code
to check for vanishing denominators is included so as to avoid overflow. A vanishing
denominator causes an error condition via a goto 902.

iz=2
d=(dijab+s11)*(djkbc+s21)
if(dabs(d).lt.1.0d-10) goto 902
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d1(iz)=1.0d+00/d
d=(dijab+s11)*(djkbc+s22)
if(dabs(d).lt.1.0d-10) goto 902
d2(iz)=1.0d+00/d
d=(dijab+s12)*(djkbc+s22)
if(dabs(d).lt.1.0d-10) goto 902
d3(iz)=1.0d+00/d
d=(dijab+s12)*(djkbc+s21)
if(dabs(d).lt.1.0d-10) goto 902
d4(iz)=1.0d+00/d
d=(dijab+s13)*(djkbc+s23)
if(dabs(d).lt.1.0d-10) goto 902
d5(iz)=1.0d+00/d

This completes the formation of the denominators factors.
It remains to construct the numerators in the expressions for the intermediates

FµI J K AC . The logical variables j1, j2, j3, j4, j5 correspond to the five spin cases
identified by the index µ = 1, 2, 3, 4, 5. They are initial set to .true. and will be
changed to .false. when a particular combination of numerator factors gives rise to a
vanishing contribution to the intermediate FµI J K AC .

j1=.true.
j2=.true.
j3=.true.
j4=.true.
j5=.true.

Set the logical variables l1, l2, l3 and l4.

l1=(itype.lt.4)
l2=(jtype.lt.4)
l3=((l7.and.ib.gt.ia).or.(.not.l7.and.ia.gt.ib))
l4=((l8.and.ic.gt.ib).or.(.not.l8.and.ib.gt.ic))

The code now branches according to the values of logical variables l1, l2, l3 and
l4. Nine distinct cases arise.

if(l1) goto 60
if(l2) goto 61
if(l3) goto 70
if(l4) goto 71

Case 1: l1=.false., l2=.false., l3=.false., l4=.false.

s13=v1-v3
s24=v2-v4
t1=s13*s24
t2=s13*v2
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t3=v1*v2
t4=v1*s24
t5=v3*v4
goto 46

Case 2: l1=.false., l2=.false., l3=.false., l4=.true.

71 continue
s13=v1-v3
s42=v4-v2
t1=s13*s42
t2=s13*v4
t3=v1*v4
t4=v1*s42
t5=v3*v2
goto 46

70 continue
if(l4) goto 72

Case 3: l1=.false., l2=.false., l3=.true., l4=.false.

s31=v3-v1
s24=v2-v4
t1=s31*s24
t2=s31*v2
t3=v3*v2
t4=v3*s24
t5=v1*v4
goto 46

72 continue

Case 4: l1=.false., l2=.false., l3=.true., l4=.true.

s31=v3-v1
s42=v4-v2
t1=s31*s42
t2=s31*v4
t3=v3*v4
t4=v3*s42
t5=v1*v2
goto 46

61 continue
if(l3) goto 75

Case 5: l1=.false., l2=.true., l3=.false.

j1=.false.
t2=(v1-v3)*v2
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t3=v1*v2
j4=.false.
t5=v3*v2
goto 46

Case 6: l1=.false., l2=.true., l3=.true.

75 continue
j1=.false.
t2=(v3-v1)*v2
t3=v3*v2
j4=.false.
t5=v1*v2
goto 46

60 continue
if(l2) goto 62
if(l4) goto 77

Case 7: l1=.true., l2=.false., l4=.false.

j1=.false.
j2=.false.
t3=v1*v2
t4=v1*(v2-v4)
t5=v1*v4
goto 46

Case 8: l1=.true., l2=.false., l4=.true.

77 continue
j1=.false.
j2=.false.
t3=v1*v4
t4=v1*(v4-v2)
t5=v1*v2
goto 46

Case 9: l1=.true., l2=.true.

62 continue
j1=.false.
j2=.false.
t3=v1*v2
j4=.false.
t5=t3

46 continue

Now double all components to allow for second spin case obtained by interchanging
α and β spins.
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t1=t1+t1
t2=t2+t2
t3=t3+t3
t4=t4+t4
t5=t5+t5

The elements of the arrays f1, f2, f3, f4, f5 can now be updated for both the
Møller–Plesset expansion and the Epstein–Nesbet series.

do 80 iz=1,nd
if(j1) f1(ix,iz)=f1(ix,iz)+t1*d1(iz)
if(j2) f2(ix,iz)=f2(ix,iz)+t2*d2(iz)
if(j3) f3(ix,iz)=f3(ix,iz)+t3*d3(iz)
if(j4) f4(ix,iz)=f4(ix,iz)+t4*d4(iz)
if(j5) f5(ix,iz)=f5(ix,iz)+t5*d5(iz)

80 continue
43 continue

If i = k or a = c then processing of this block of integrals is completed, otherwise
the indices ia and ic are interchanged and the computation repeated

if(l9.or.l10) goto 40
isave=ia
ia=ic
ic=isave

41 continue
40 continue

This completes the loop over the virtual orbital index b (ib).
Execution continues by calculating the energy components GµI J K .

if(l9.or.l10) goto 30
s13=vr1-vr3
s23=vr2-vr3
do 31 iz=1,nd
t1=f1(1,iz)*s13+f1(2,iz)*s23
t2=f3(1,iz)*s13+f3(2,iz)*s23-(f5(1,iz)+f5(2,iz))

*vr3
t3=f2(1,iz)*vr1+f2(2,iz)*vr2
t4=f4(1,iz)*vr1+f4(2,iz)*vr2
g1(iz)=g1(iz)+t1+t1
g2(iz)=g2(iz)+t2+t2
g3(iz)=g3(iz)+t3+t3
g4(iz)=g4(iz)+t4+t4

31 continue
goto 32

30 continue
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s12=vr1-vr2
do 34 iz=1,nd
t1=f1(1,iz)*s12
t2=f3(1,iz)*s12-f5(1,iz)*vr2
if(l9.and.l10) goto 33
t3=(f2(1,iz)+f4(1,iz))*vr1
t4=t3
t1=t1+t1
t2=t2+t2
goto 35

33 continue
t3=f2(1,iz)*vr1
t4=t3

35 continue
if(l9.and.l10.and.iz.eq.2) goto 38
g1(iz)=g1(iz)+t1
g2(iz)=g2(iz)+t2

38 continue
g3(iz)=g3(iz)+t3
g4(iz)=g4(iz)+t4
if(.not.(l9.and.l10).or.iz.eq.2) goto 34
t1=t1+t2
if(l6) t1=t1+t1
ediag=ediag+t1

34 continue
32 continue

if(ir.lt.nr) goto 25
do 39 iz=1,nd
t1=g1(iz)+g2(iz)
t2=t1+g3(iz)+g4(iz)
if(l6) t2=t2+t2
etotal(iz)=etotal(iz)+t2
if(.not.l9) goto 39
if(l6) t1=t1+t1
etwo(iz)=etwo(iz)+t1

39 continue

The (i , j ,k) energy components are stored in the array gijk( ).

indx=indx+1
gijk(1,indx)=g1(1)
gijk(2,indx)=g1(2)
indx=indx+1
gijk(1,indx)=g2(1)
gijk(2,indx)=g2(2)
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indx=indx+1
gijk(1,indx)=g3(1)
gijk(2,indx)=g3(2)
indx=indx+1
gijk(1,indx)=g4(1)
gijk(2,indx)=g4(2)

7 continue
rewind it
rewind kt

2 isym0=isym0+nocc
1 continue

This completes the computation of the energy components for each (i , j ,k) triple.
It remains to rewind the data set jt and return control to the calling routine.

rewind jt
return

The following code handles various error conditions.

900 write(io,6000) i,j,k,ir,kr,mi,mj,ni,nj
go to 999

901 write(io,6001) i,j,k,ir,kr,mi,mj,ni,nj
go to 999

902 write(io,6002) i,j,k,ia,ib,ic
go to 999

903 write(io,6003) nr,limit
6000 format(20h0End of file in ring,5x,9i5)
6001 format(37h0Expected integrals not found in ring,

5x,9i5)
6002 format(28h0Denominator is zero in ring,5x,6i5)
6003 format(45h0Insufficient store in ring for

integral list, $2i10)
999 stop

end

This completes the subroutine for evaluating the third-order “ring” energies.

2.2.6. Printing of intermediate results: gwrt

The subroutine gwrt prints out the intermediate results when required.

subroutine gwrt(io,jt,g,iprnt)
implicit real*8 (a-h,o-z)
dimension g(2,1),per(2,55),title(2),ethree(2)
data title(1)/8h(e0-h0) /,title(2)/8hshifted /
logical lsym1(550),lsym2(550)
common/ptind/ ind(60),norb,nnorb,nocc,nnocc,



Literate Many-Body Perturbation Theory 31

nvirt, $nnvirt
common/ptsym/ lsym1,lsym2,invlab(60)
common/ptres/ etwo(2),etotal(2),ediag,eorb(60)
do 5 id=1,2
ethree(id)=etotal(id)-etwo(id)
do 5 ij=1,nnocc

5 per(id,ij)=0.0d+00
if(iprnt.ne.0)
1write (io,6002) title,etotal,etwo,ethree,ediag
do 2 id=1,2
isym=0
index=0
if(iprnt.ne.0) write (io,6000) title(id)
do 2 i=1,nocc
do 2 k=1,i
do 2 j=1,nocc
isym=isym+1
if(lsym1(isym)) goto 2
if(iprnt.ne.0)
1write(io,6001) i,j,k,g(id,index+1),i,j,k,

g(id,index+2),
$ i,j,k,g(id,index+3),i,j,k,g(id,index+4)
if(i.ne.k) go to 3
t1=g(id,index+1)+g(id,index+2)
if(lsym2(isym)) t1=t1+t1
if(i.ge.j) ij=(i*i-i)/2+j
if(i.lt.j) ij=(j*j-j)/2+i
per(id,ij)=per(id,ij)+t1

3 index=index+4
2 continue
write (jt) etotal,etwo,per

6000 format(///36h0Components of the ring energy
with ,a8, $12hdenominators/)

6001 format(9x,i2,1ha,i2,1ha,i2,1ha,1x,f12.8,5x,i2,
1ha,i2,

$ 1hb,i2,1ha,1x,f12.8,5x,i2,1ha,i2,1ha,i2,
1hb,1x,

$ f12.8,5x,i2,1ha,i2,1hb,i2,1hb,1x,f12.8)
6002 format(// 1h0,48x,a8,16x,a8/

$32h0Total third-order ring energy =,
$8x,f19.14,5x,f19.14/
$35h0Two-body third-order ring energy =,
$5x,f19.14,5x,f19.14/
$37h0Three-body third-order ring energy =,
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$3x,f19.14,5x,f19.14/
$35h0Diagonal third-order ring energy =,
$5x,f19.14//)
return
end

2.2.7. Input/output subroutine: rfst

The input/output subroutine rfst performs “fast” unformatted read and write oper-
ations, the latter being carried out via the entry wfst. rfst has arguments i(n),
the integer array to be written, n, the length of the array, and kt the data set to be
read from. wfst contains the corresponding arguments for a write operation.

subroutine rfst(i,n,kt)
integer i(n)
read (kt) i
return
entry wfst(i,n,kt)
write (kt) i
return
end

This completes a literate program for evaluating third-order “ring” energies in the
many-body perturbation theory for closed-shell systems within the algebraic approx-
imation.

3. CONCLUDING REMARKS

We have described the a posteriori application of literate programming techniques to
part of the first published computer program for performing many-body perturbation
theory calculations within the algebraic approximation. The program considered in
this work was originally published by the author in Computer Physics Communica-
tions in 1978. It formed part of a set of programs for molecular many-body perturba-
tion theory calculations. The original code was documented by means of “comment”
cards within the code together with the companion publication [9].

We have demonstrated in this paper how literate programming methods can do
much to facilitate the understanding of computer code by the reader and at the same
time bring the coding details into the public domain where they can be critically
evaluated and perhaps used as the basis for future studies.

Quantum chemistry is a field of research which depends heavily on computation.
The potential of literate programming techniques to accelerate the development of
computational quantum chemistry is evident. By placing quantum chemistry com-
puter programs in the public domain in a form which can be easily read and com-
prehended by the human reader they are placed in the body of scientific knowledge
where they can be openly criticized and used constructively.
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MULTICOMPONENT MANY-BODY PERTURBATION
THEORY FOR THE SIMULTANEOUS DESCRIPTION
OF ELECTRONIC AND NUCLEAR MOTION:
TOWARDS A PRACTICAL IMPLEMENTATION
USING LITERATE PROGRAMMING METHODS

STEPHEN WILSON

Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK

Abstract The most widely used sequence of approximations in describing the structure and proper-
ties of molecules is first to assume the Born-Oppenheimer approximation to separate the
electronic and the nuclear motions, then to decouple the electronic problem by assuming an
independent particle model, and then to correct the mean field description by taking account
of the instantaneous interactions of the electrons. (Nuclear degrees of freedom are often
treated classically.) Many-body perturbation theory (MBPT) in its second-order form (des-
ignated MP2) remains the most widely used practical technique for describing the effects
of electron correlation. MBPT is also invaluable in understanding the relation between dif-
ferent approaches to the electron correlation problem such as configuration interaction and
various cluster expansions.

Recent years have seen a growing interest in the simultaneous description of electronic
and nuclear motion. The nonadiabatic coupling between the electronic and nuclear motion
manifest itself in numerous and rather diverse phenomena. An independent particle model
can be formulated in which the averaged interactions between the electrons, between the
electrons and the nuclei and between the nuclei are described quantum mechanically.
Multicomponent MBPT can then be used to formulate the corresponding correlation
problem accounting for electron-electron interactions, electron-nucleus interactions and
nucleus–nucleus interactions in either algebraic or diagrammatic terms.

The practical realization of multicomponent MBPT rests on the development of efficient
algorithms and the associated computer code. In recent work, we have advocated the use
literate programming techniques in the development and publication of computer code for
molecular structure calculations. We briefly discuss the application of these methods to the
multicomponent many-body perturbation expansion.
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1. INTRODUCTION

The vast majority of theoretical molecular structure studies attack the problem in
two distinct stages. First the electrons are assumed to move in the field of fixed
nuclei, that is, the Born–Oppenheimer approximation [1–3] is made. Solution of the
electronic Schrödinger equation yields a potential energy curve or surface which then
defines an effective potential in which nuclear motion takes place. The second stage
therefore involves the solution of the nuclear Schrödinger equation for the motion of
the nuclei in the effective potential generated by the electrons. The study of nuclear
motion necessitates the determination of a potential energy hypersurface which in
turn requires, in principle, the solution of the electronic Schrödinger equation for all
possible nuclear configurations. This problem becomes increasingly intractable as
molecular species containing larger numbers of atoms are considered. (For a recent
review of the approximate separation of electronic and nuclear motion in the molec-
ular structure problem within the framework of non-relativistic quantum mechanics
see the recent work of Sutcliffe [4–8].)

In a recent review, Woolley and Sutcliffe [9] repeat a comments made by Löwdin
[10] in 1990

One of the most urgent problems of modern quantum chemistry is to treat the motions of the atomic nuclei
and the electrons on a more or less equivalent basis.

In 1969, Thomas published two papers [11, 12] in which a molecular structure
theory was developed without invoking the Born–Oppenheimer approximation. In
these publications and two further papers published in 1970 [13,14], Thomas studied
methane, ammonia, water and hydrogen fluoride adding the kinetic energy operators
of the protons to the electronic hamiltonian and using Slater-type orbitals centered
on the heavier nuclei for the protonic wave functions. Over the years, a number of
authors [15–23] have attempted the development of a non-Born–Oppenheimer theory
of molecular structure, but problems of accuracy and/or feasibility remain for appli-
cations to arbitrary molecular systems.

In 2002, Nakai [24] presented a non-Born–Oppenheimer theory of molecular struc-
ture in which molecular orbitals (MO) are used to describe the motion of individual
electrons and nuclear orbitals (NO) are introduced each of which describes the motion
of single nuclei. Nakai presents an ab initio Hartree–Fock theory, which is designated
“NO+MO/HF theory”, which builds on the earlier work of Tachikawa et al. [25]. In
subsequent work published in 2003, Nakai and Sodeyama [26] apply MBPT to the
problem of simultaneously describing both the nuclear and electronic components of
a molecular system. Their approach will be considered in some detail in this paper
as a first step in the development of a literate quantum chemistry program for the
simultaneous description of electronic and nuclear motion.

In section 2 we define the total molecular Hamiltonian operator describing both
nuclear and electronic motion. The Hartree–Fock theory for nuclei and electrons is
presented in section 3 and a many-body perturbation theory which uses this as a ref-
erence is developed in section 4. The diagrammatic perturbation theory of nuclei and
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electrons is reviewed in section 5. In section 6, we turn our attention to the problem
of developing a literate quantum chemistry program for the simultaneous descrip-
tion of electronic and nuclear motion. In section 7, we consider the prospects for this
area of research and briefly describe future research directions.

2. THE TOTAL MOLECULAR HAMILTONIAN OPERATOR

The total molecular Hamiltonian operator for a system containing N nuclei and n
electrons may be written

H = T + V(1)

where the kinetic energy operator, T , is a sum of a two one-body terms, a nuclear
term and an electronic term

T = Tn + Te.(2)

The nuclear kinetic energy operator, Tn , is a sum of one-particle operators, that is

Tn = −
N∑

P

1
2m P

∇2
P

=
N∑

P

tP(3)

where the one-particle nuclear kinetic operator is given by

tP = − 1
2m P

∇2
P(4)

in which m P is the mass of the nucleus labelled P . Similarly, the electronic kinetic
energy operator, Te, is a sum of one-electron operators, that is

Te = −
n∑

p

1
2
∇2

p

=
n∑

p

tp(5)

where the one-particle electronic kinetic operator is given by

tp = −1
2
∇2

p.(6)

The potential energy term, V , is a sum of three two-body terms, the first correspond-
ing to nucleus–nucleus interactions, the second to nucleus–electron interactions and
the third to electron-electron interactions.

V = Vnn + Vne + Vee(7)
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The nucleus–nucleus interaction term has the form

Vnn =
N∑

P>Q

vnn (P, Q)

=
N∑

P>Q

Z P Z Q

rP Q
(8)

where Z P is the charge associated with nucleus P and rP Q is the distance between
nucleus P and nucleus Q. The nucleus–electron interaction term takes the form

Vne =
n∑

p

N∑

P

ven (p, P)

=
n∑

p

N∑

P

Z P

rpP
(9)

where rpP is the distance between nucleus P and electron p. The electron–electron
interaction term takes the form

Vee =
n∑

p>q

vee (p, p)

=
n∑

p>q

1
rpq

(10)

where rpq is the distance between the electron labelled p and that labelled q.

3. THE HARTREE–FOCK THEORY OF NUCLEI AND ELECTRONS

In order to develop a theory for the motion of both the nuclei and the electrons in a
molecule, we write the total Hamiltonian operator, H , as a sum of an unperturbed or
zero order Hamiltonian, H0, and a perturbation, H1, that is

H = H0 + λH1.(11)

Here λ is a perturbation parameter which is introduced so as to define the order of
different terms in the perturbation series but which is set equal to 1 in order to recover
the physical situation.

The unperturbed Hamiltonian operator is based on an independent particle model,
that is, a model in which each particle, nucleus or electron, experiences an averaged
interaction with the other particles in the system. The unperturbed Hamiltonian oper-
ator is a sum of a kinetic energy term and an effective potential energy term

H0 = T + U(12)
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The kinetic energy component is the sum of one-particle terms defined in the previous
section. The effective potential is a sum of a nuclear and an electron component.

U = Un + Ue(13)

It is also a sum of one-particle terms.
The total wave function for a system of nuclei and electrons can be written as a

product of a nuclear component


n = ∥∥ϕPϕQ ...
∥∥(14)

in which ϕP is a single nucleus state function, or NO, and an electronic component


e = ∥∥ϕpϕq ...
∥∥(15)

in which ϕp is a single electron state function, or electronic orbitals – more usually
called a molecular orbital.

The single nucleus state function or nuclear orbital is an eigenfunction of a
Hartree–Fock eigenvalue equation for the nuclear motion

FnϕP = εPϕP(16)

in which the Fock operator has the form

Fn = tn +
N∑

P

(JP ∓ K P )+
n∑

p

Jp

= tn + un(17)

where the nuclear Fock potential is

un =
N∑

P

(JP ∓ K P )+
n∑

p

Jp(18)

J and K denote the Coulomb and exchange operators, respectively. In equation (16),
the effective field of the nuclear orbital is due to the motion of the electrons and the
remaining nuclei.

The Hartree–Fock equations for the electrons have the form

Feϕp = εpϕp(19)

where the Fock operator is given by

Fe = te +
n∑

p

(
Jp − K p

)+
N∑

P

JP

= te + ue(20)

The effective potential for the electrons is

ue =
n∑

p

(
Jp − K p

)+
N∑

P

JP(21)
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which includes a mean-field coupling between the electronic and the nuclear motion.
In equation (19) the effective field of the electronic (molecular) orbital is due to the
motion of the nuclei and the other electrons in the system.

4. THE MANY-BODY PERTURBATION THEORY OF NUCLEI
AND ELECTRONS

The unperturbed or zero order Hamiltonian can be rewritten in the form

H0 = T + U

= Tn + Te + Un + Ue

= (Tn + Un)+ (Te + Ue)

= Hn0 + He0(22)

where Hn0 is the unperturbed Hamiltonian describing the motion of the nuclei

Hn0 = Tn + Un(23)

and He0 is the unperturbed Hamiltonian for the motion of the electrons

He0 = Te + Ue.(24)

The perturbing operator is the difference between the full Hamiltonian and the zero
order Hamiltonian

H1 = H − H0(25)

so that

H1 = (T + V )− (T + U )(26)

and thus

H1 = V − U

= Vnn + Vne + Vee − Un − Ue(27)

Recall that the total molecular Hamiltonian is written

H (λ) = H0 + λH1(28)

where the unperturbed Hamiltonian, H (0) = H0, has eigenvalues Em and eigen-
functions |
m〉

H0 |
m〉 = Em |
m〉(29)

The Schrödinger equation for the perturbed system can then be written [27]

H (λ) |� (λ)〉 = E (λ) |� (λ)〉(30)

where it is assumed that the exact eigenvalue is an analytic function of the perturba-
tion parameter λ and can be expanded in a power series
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E = E (λ)

=
∞∑

k=0

E (k)λk(31)

and similarly that the exact eigenfunction is an analytic function of λ and can also be
written as a power series

|�〉 = |� (λ)〉

=
∞∑

k=0

∣∣∣χ(k)
〉
λk(32)

Obviously, the constant term in the power series expansion for E (λ) is

E (0) = E0(33)

and the corresponding term in the power series for the exact wave function is
∣∣∣χ(0)

〉
= |
0〉 .(34)

We write

E = E +�E(35)

so that the “level shift” is

�E = E − E(36)

In order to develop the Rayleigh–Schrödinger perturbation expansion for the energy
and the wave function, we define the resolvent

R0 = Q
E0 − H0

(37)

in which Q is the projection operator

Q =
∑

m �=0

|
m〉 〈
m |

= 1 − |
0〉 〈
0|
1 − P(38)

and P is its orthogonal complement.
The Rayleigh–Schrödinger perturbation expansion for the energy has the form

�E =
∞∑

n=1

〈
0| H1 [R0 (H1 −�E)]n−1 |
0〉

=
∞∑

n=1

〈
0| H1 [R0 H1]n−1 |
0〉 +�(39)

where � represents the “renormalization terms”.
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The many-body perturbation expansion for the energy takes the form

�E =
∞∑

n=1

〈
0| H1 [R0 H1]n−1 |
0〉linked(40)

where the subscript “linked” indicates that only terms corresponding to linked dia-
grams are included in the expansion.

A diagrammatic MBPT describing both nuclei and electrons requires a second
quantized formulation. (For a recent review of second quantization see the articles
by Pickup [28–30] and by Karwowski [31].) The unperturbed Hamiltonian can be
written in second quantized from as follows

H0 =
N∑

P

εP a+
P aP +

n∑

p

εpa+
p ap(41)

where the first term on the right-hand side is associated with the nuclei and the second
with the electrons. The εP are single particle energies for the nuclei. The εp are single
particle energies for the electrons. The perturbing operator can be written as a sum of
a one-particle and a two-particle part, that is

H1 = H (1)
1 + H (2)

1(42)

The one-particle component has the form

H (1)
1 = −

N∑

P,Q

〈P| un |Q〉 a+
P aQ +

n∑

p,q

〈p| ue |q〉 a+
p aq(43)

where un is the Fock operator associated with the motion of the nuclei and ue is the
corresponding operator for the electrons. The two-particle component is

H (2)
1 = 1

4

N∑

P,Q,R,S

〈P Q| |RS〉 a+
P a+

QaSaR

+
N∑

P,Q

n∑

p,q

〈Pp| |Qq〉 a+
P a+

p aQaq

+ 1
4

n∑

p,q,r,s

〈pq| |rs〉 a+
p a+

q asar(44)

where the first term on the right-hand side describes interactions between the nuclei,
the second term describes nucleus–electron interactions, and the third term describes
interactions between the electrons.

The operators
{

a+
P , a

+
Q, ...

}
and

{
aP , aQ,

}
are, respectively, the creation and anni-

hilation operators for nuclei. These operators satisfy the following relations:
[
a+

P , aQ
]
± ≡ a+

P aQ ± aQa+
P = δP Q
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[
a+

P , a
+
Q

]

± ≡ a+
P a+

Q ± a+
Qa+

P = 0
[
aP , aQ

]
± ≡ aP aQ ± aQaP = 0

where the + sign corresponds to nuclei that are fermions and the − sign to those
which are bosons. The creation and annihilation operators between different particles,
µ and ν, say, satisfy the commutation relations

[
a+
µ , aν

]
− ≡ a+

µ aν − aν+aµ = 0(45)
[
a+
µ , a

+
ν

]
− ≡ a+

µ a+
ν − aν+a+

µ = 0(46)
[
aµ, aν

]
− ≡ aµaν − aνaµ = 0(47)

The creation and annihilation operators for the electrons are
{

a+
p , a

+
q , ...

}
and

{
ap, aq , ...

}
, respectively. These operators satisfy the anticommutation relations
[
a+

p , aq

]

+ ≡ a+
p aq + aqa+

p = δpq(48)
[
a+

p , a
+
q

]

+ ≡ a+
p a+

q + a+
q a+

p = 0(49)
[
ap, aq

]
+ ≡ apaq + aqap = 0(50)

For ground states and low-lying excited states it is convenient to adopt a particle-hole
formalism. We use the indices

{I, J, K , L , ...i, j, k, l, ...}(51)

for occupied single particle state functions and the indices

{A, B,C, D, ..., a, b, c, d, ...}(52)

for unoccupied single particle state functions. The indices

{P, Q, R, S, ...p, q, r, s, ...}(53)

are employed for arbitrary single particle state functions. The normal product of a
second quantized operator is written

N [...](54)

where the ellipsis denotes an arbitrary product of creation and annihilation operators
and involves moving all annihilation operators to the right using the anticommutation
and commutation relations given above.

The exact Hamiltonian can be written in normal product form as

H N = H − 〈
0| H |
0〉(55)

The unperturbed Hamiltonian can also be written in normal product form as

H N
0 = H0 − 〈
0| H0 |
0〉

=
N∑

P

εP N
[
a+

P aP
]+

n∑

p

εp N
[
a+

p ap

]
(56)
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The perturbing Hamiltonian is written in normal product form using the relation

H N
1 = H N − H N

0

= H (1)N
1 + H (2)N

1(57)

where H (1)N
1 and H (2)N

1 are the normal product forms of the operators H (1)
1 and H (2)

1 .
Explicitly, the one-particle perturbation operator, H (1)N

1 , can be written as

H (1)N
1 =

N∑

P,Q

([ N∑

R

〈P R| |Q R〉
]

− 〈P| un |Q〉
)

N
[
a+

P aQ
]

+
n∑

p,q

([ n∑

r

〈pr | |qr〉
]

− 〈p| ue |q〉
)

N
[
a+

p aq

]
(58)

whilst the two-particle operator, H (2)N
1 , has the form

H (2)N
1 = V N

nn + V N
ne + V N

ee

=
N∑

P,Q,R,S

〈P Q| |RS〉 N
[
a+

P a+
QaSaR

]
+

+
N∑

P,Q

n∑

p,q

〈Pp| |Qq〉 N
[
a+

P a+
p aqaQ

]
+

+
n∑

p,q,r,s

〈pq| |rs〉 N
[
a+

p a+
q asar

]
(59)

Using the normal product unperturbed Hamiltonian, the zero-order Schrödinger
equation becomes

H N
0 |
m〉 = �E0

m |
m〉(60)

whilst the perturbed Schrödinger equation is

H N |�〉 = �E |�〉(61)

where

�E0
m = E0

m − E0(62)

and

�E = E − E0 = E (1) + Ecorrelation

5. THE DIAGRAMMATIC PERTURBATION THEORY OF NUCLEI
AND ELECTRONS

Diagrammatic methods are well established in handling the electron correlation
problem which arising in the description of molecular structure within the Born–
Oppenheimer approximation. In fact, for the relativistic electronic structure problem
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which involves an infinite number of bodies, the use of diagrams becomes almost
indispensable; cutting through complicated algebra to expose the essential physics of
the various interactions taking place. In lecture notes for the 1980 Coulson Summer
School in Theoretical Chemistry, the present author [32] wrote

It should perhaps be stated at this point that the use of diagrams in the many-body perturbation theory is
not obligatory. The whole of the theoretical apparatus can be set up in entirely algebraic terms. However,
the diagrams are both more physical and easier to handle than the algebraic expressions and it is well worth
the effort required to familiarize oneself with the diagrammatic rules and conventions.

This point has been made by many authors. In his lecture notes for the 1972 Oxford
Summer School, P.W. Atkins writes [33]

In the early books on quantum theory the pages were covered with integral signs and expression such as

∫ ∞

−∞
dxψ∗

n (x) Hψm (x) .(63)

But these soon gave way to the symbol

〈n| H |m〉(64)

which, as well as being more compact, enables the structure of an equation to be seen more clearly. In
recent years, a new change has occurred, and instead of equations containing cumbersome integrals as in
(1.1), or Dirac brackets as in (1.2), we now see the same thing written as

m
n

This diagram contains all the information contained in (1.1) and (1.2), but conveys it with remarkable
clarity. We see that a system in a state m is deflected into a state n by the action of the operator H.

The diagrams are interpreted in terms of the particle-hole formalism. The Fermi
level is defined such that all single particle states lying below it are occupied and all
above it are unoccupied. In the particle-hole picture, the reference state is taken to be
a vacuum state, containing no holes below the Fermi level and no particles above it.
Excitation leads to the creation of particle-hole pairs, with particles above the Fermi
level and holes below it.

The diagrammatic method can be extend to system containing both nuclei and
electrons by defining nuclear and electronic vertices. A nuclear vertex is represented
by an open dot ◦ whereas an electronic vertex is represented a filled dot •. When it is
necessary to describe the nuclear vertex associated with a particular nuclear species
corresponding to a specific element or mass number then the details are written close
to the relevant open dot. The basic components of the diagrams which are used to
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one-nucleus operator

one-electron operator

nucleus-nucleus interaction operator

nucleus-electron interaction operator

electron-electron interaction operator

X

X

Figure 1. Basic components of the diagrams for a system of nuclei and electrons.

describe processes in the particle-hole formalism are summarized in Figure 1. All
changes in the state of a many-body system are caused by an interaction which is
described by an operator. This operator may be a one-particle operator or a two-
particle operator. A one-particle operator is represented by a horizontal dashed inter-
action line terminated by a cross. For the one-nucleus operator the other end of the
horizontal dashed line is terminated by an open dot ◦, that is

◦ − − − −x

whereas for the one-electron operator a filled dot • is used, that is

• − − − −x.

Three types of two-particle interactions can occur. Each is represented by a horizontal
dashed interaction line. For the nucleus-nucleus interaction this line is terminated by
open dots, ◦, at both end, that is

◦ − − − −◦
The nucleus-electron interaction is represented by a horizontal dashed line terminated
by an open dot, ◦, at one end and a filled dot, •, at the other

◦ − − − −•
The electron-electron interaction is represented by a horizontal dashed line termi-
nated by filled dots, •, at both ends, that is

• − − − −•
In the convention which we shall follow here the two-electron interaction includes
permutation of the two electrons. The two-nucleus interaction does not include



Electronic and Nuclear Motion 47

permutation of the nuclei. The nucleus creation operators, a+
P , a

+
Q, ..., are represented

by arrows leaving the nucleus vertices. Similarly, the electron creation operators,
a+

p , a
+
q , ..., are represented by arrows leaving the electron vertices. The nucleus anni-

hilation operators, aP , aQ, ..., are represented by arrows directed into the nucleus
vertices. The electron annihilation operators, ap, aq , ..., are similarly represented by
arrows directed into the electron vertices. Upward arrows represent “particle” lines
whereas “downward” directed arrows “hole” lines. It should be noted that “particle”
and “hole” lines may not connect a vertex corresponding to a nucleus to one asso-
ciated with an electron and vice versa. Equally, “particle” and “hole” lines may not
connect vertices corresponding to different elements or difference mass numbers.

5.1. Types of interaction

The types of interactions which can arise in the diagrammatic perturbation theory of
nuclei and electrons can be classified according to the number and type of particles
involved. First we subdivide the interactions into one-particle and two-particle types.

5.1.1. One-particle interactions

Obviously, the one-particle interactions can be subdivided into those involving a
nucleus and those involving an electron. We consider each type in turn.

One-nucleus interactions The one-nucleus interactions that can arise in energy dia-
grams are classified in Figure 2 according to the level of excitation involved. There is
a total of four diagrams of this type. Two of these diagrams do not involve any change
in the level of excitation. They involve the interaction of the one-nucleus operator
with either a hole line or a particle line associate with a nuclear orbital. One dia-
gram in Figure 2 involves a single de-excitation; that is, the destruction of a nuclear
particle-hole pair. The remaining diagram in Figure 2 involves a single excitation;
that is, the creation of a nuclear particle-hole pair.

One-electron interactions The one-electron interactions that can arise in energy dia-
grams are classified in Figure 3 according to the level of excitation involved. There
are four diagrams of this type. Two of these diagrams do not involve any change in
the level of excitation. They involve the interaction of the one-electron operator with
either a hole line or a particle line associate with an electronic orbital. One diagram
in Figure 3 involves a single de-excitation; that is, the destruction of a electronic
particle-hole pair. The remaining diagram in Figure 3 involves a single excitation;
that is, the creation of an electronic particle-hole pair.

5.1.2. Two-particle interactions

The two-particle interactions can be subdivided into those between nuclei, those
between nuclei and electrons and those between electrons.
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change in level of excitation
−1 0 +1

Figure 2. Classification of one-nucleus interactions that can arise in energy diagrams according to the
level of excitation involved.

Nucleus-nucleus interactions Nucleus–nucleus interactions that can arise in energy
diagrams are classified in Figure 4 according to the level of excitation involved. If the
nuclei are identical then the matrix elements include a permutation operator which
interchanges the coordinates of the two nuclei. There is a total of fourteen types of
interaction between nuclei.

Four of these involve a “bubble” or self-energy. They can be classified in the same
way as the one-nucleus interaction; so one bubble diagram involves a single excita-
tion, two bubble diagrams involve no change in the level of excitation and the remain-
ing bubble diagram involves a single de-excitation.

Of the remaining ten nucleus–nucleus interaction diagrams, one involves a double
de-excitation; that is, the destruction of two nuclear particle-hole pairs, two diagrams
involve a single de-excitation; that is, the destruction of one nuclear particle-hole
pair, four diagrams involve no change in the level of excitation, two diagrams involve
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change in level of excitation
0−1 +1

Figure 3. Classification of one-electron interactions that can arise in energy diagrams according to the
level of excitation involved.

a single excitation; that is, the creation of a nuclear particle-hole pair, and, finally, one
diagram involve a double excitation; that is, the creation of two nuclear particle-hole
pairs.

Nucleus-electron interactions Nucleus–electron interactions that can arise in energy
diagrams are classified in Figure 5 according to the level of excitation involved. There
is a total of twenty-four types of interaction between nuclei.

Eight of these involve a “bubble” or self-energy. They can be classified in the
same way as the one-particle interaction; so two bubble diagram involves a single
excitation, four bubble diagrams involve no change in the level of excitation and the
remaining two bubble diagrams involves a single de-excitation.



50 Stephen Wilson

change in level of excitation
−2 −1 +1 +20

Figure 4. Classification of two-nucleus interactions that can arise in energy diagrams according to the
level of excitation involved.
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change in level of excitation
−2 −1 +1 +20

Figure 5a. Classification of nucleus–electron interactions that can arise in energy diagrams according to
the level of excitation involved.
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change in level of excitation
−2 −1 +1 +20

Figure 5b. Classification of nucleus–electron interactions that can arise in energy diagrams according to
the level of excitation involved.

Of the remaining sixteen nucleus–nucleus interaction diagrams, one involves a
double de-excitation; that is, the destruction of one nuclear particle-hole pair and one
electron particle-hole pair, four diagrams involve a single de-excitation; that is, the
destruction of either a nuclear particle-hole pair or an electron particle-hole pair, six
diagrams involve no change in the level of excitation, four diagrams involve a single
excitation; that is, the creation of a nuclear particle-hole pair or electron particle-hole
pair, and, finally, one diagram involve a double excitation; that is, the creation of a
nuclear particle-hole pair and an electron particle-hole pair.
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Electron-electron interactions Electron–electron interactions that can arise in
energy diagrams are classified in Figure 6 according to the level of excitation
involved. Since the electrons are identical the matrix elements include a permutation
operator which interchanges the coordinates of the two electrons. There is a total of
fourteen types of interaction between electrons.

Four of these involve a “bubble” or self-energy. They can be classified in the same
way as the one-electron interaction; so one bubble diagram involves a single excita-
tion, two bubble diagrams involve no change in the level of excitation and the remain-
ing bubble diagram involves a single de-excitation.

Of the remaining ten electron–electron interaction diagrams, one involves a dou-
ble de-excitation; that is, the destruction of two electronic particle-hole pairs, two
diagrams involve a single de-excitation; that is, the destruction of one electronic
particle-hole pair, four diagrams involve no change in the level of excitation, two
diagrams involve a single excitation; that is, the creation of an electronic particle-
hole pair, and, finally, one diagram involve a double excitation; that is, the creation
of two electronic particle-hole pairs.

5.2. First-order diagrammatic perturbation theory of nuclei and electrons

There are five first-order energy terms in the diagrammatic perturbation theory expan-
sion for the motion of nuclei and electrons. The diagrams are shown in Figure 7. Two
of the diagrams in Figure 7 describe interactions with the mean field potential. The
remaining three first-order diagrams describe the interaction of the nuclei, of the elec-
trons, and of the nuclei with the electrons.

5.3. Second-order diagrammatic perturbation theory of nuclei and electrons

The second-order energy diagrams can be usefully subdivided into those involving
only one-particle perturbations, those involving both one- and two-particle pertur-
bations and those involving two-particle perturbations. We consider each of these
classes of diagrams in turn.

5.3.1. Components involving a one-particle perturbation

There are only two second-order diagrams involving the one-particle mean field
potential. They are displayed in Figure 8. The left-hand diagram arises from inter-
action of the electrons with the mean field. The right-hand diagrams arises from the
interaction of the nuclei with the mean field.

5.3.2. Components involving one- and two-particle perturbations

The second-order energy diagrams involving both one- and two-particle perturba-
tions are collected in Figure 9. There is a total of eight such diagrams – four contain-
ing a mean field interaction for electrons whilst the remaining four contain a mean
field interaction for nuclei. Of the four diagrams containing a mean field interaction
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change in level of excitation
−2 −1 0 +1 +2

Figure 6. Classification of two-electron interactions that can arise in energy diagrams according to the
level of excitation involved.
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Figure 7. First-order diagrams in the perturbation theory of nuclei and electrons.

Figure 8. Second-order diagrams involving a one-particle interaction in the perturbation theory of nuclei
and electrons.

Figure 9. Second-order diagrams involving a one- and two-particle interactions in the perturbation theory
of nuclei and electrons.

for electrons, one contains a “bubble” interaction involving an electron, one con-
tains a “bubble” interaction involving a nucleus, and the remaining two diagrams are
obtained by “time reversal”. The four diagrams containing a mean field interaction
for nuclei can be classified in a similar fashion.

5.3.3. Components involving two-particle perturbations

The second-order energy diagrams involving two-particle perturbations are collected
in Figure 10. There is a total of eleven second-order diagrams of this type; eight
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Figure 10. Second-order diagrams involving two-particle interactions in the perturbation theory of nuclei
and electrons.

containing “bubble” interactions and three without such interactions. Of the eight
diagrams containing “bubble” interactions, four contain particle and hole lines asso-
ciated with electrons extending between the two interactions whereas the remaining
four diagrams contain similar lines describing nuclei. The four diagrams in each of
these subsets are distinguished by the nature of the “bubble interaction”: electrons in
both “bubbles”, nuclei in the upper “bubble” and electrons in the lower one, and vice
versa, and nuclei in both “bubbles”.

5.4. Third-order diagrammatic perturbation theory of nuclei and electrons

Some of examples of third-order energy diagrams in the perturbation theory of
nuclear and electronic motion are displayed in Figure 11. The energy diagrams in
the top row describe interactions between electrons only. The diagrams in the middle
row describe interactions between electrons and nuclei. The energy diagrams in the
bottom row describe only interactions between nuclei.

5.5. Fourth-order diagrammatic perturbation theory of nuclei and electrons

Some of the examples of the fourth-order energy diagrams in the perturbation theory
of nuclear and electronic motion are displayed in Figure 12. The three diagrams in the
top row are associated with excited states which are only doubly excited with respect
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Figure 11. Some examples of third-order energy diagrams in the perturbation theory of nuclei and
electrons.

Figure 12. Some examples of fourth-order energy diagrams in the perturbation theory of nuclei and
electrons.

to the reference function. The first of these diagrams involves only electrons. The
second-energy diagram involves interactions between electrons and nuclei. The third
diagram on the top row describes interactions between nuclei. The three diagrams in
the bottom row of Figure 12 involve a triply excited intermediate state. Again, the
first diagram describes the interaction only between electrons. The second diagram
is associated with electron-nucleus correlation. The third diagram in the lower row
describes nucleus-nucleus correlation effects.

6. TOWARDS A LITERATE PROGRAM

In a companion paper [34], we give an example of the a posteriori application of liter-
ate programming techniques to a quantum chemistry computer program - a program
for MBPT electronic structure calculations. Such calculations have been a mainstay
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of modern quantum chemistry for thirty years now. Reviews of both developments of
many-body Møller–Plesset theory and it applications have been provided in contri-
butions to the Royal Society of Chemistry’s Specialist Periodical Reports [35–39].

It is not our purpose to give a detailed description of literate programming and
its application in quantum chemistry. We restrict our attention here to those details
which are essential to our present purpose – the development of a literate quantum
chemistry program for the simultaneous description of electronic and nuclear motion
in molecules. For further details of literate programming methods we refer the reader
to the original publication of Knuth [40]. For further details of applications of literate
programming in quantum chemistry we refer the reader to our previous work [41–44]
as well as our paper in the present volume [34].

A literate program consists of tightly coupled computer code and associated docu-
mentation. Code and documentation are contained within the same file, called a .web
file, from which code and documentation can be extracted using the tangle and
weave commands, respectively. If LATEX is used for documentation and FORTRAN
for code then the structure of a literate program .web file is as shown in Figure 13.
The .web file consists of alternate fragments of LATEX and FORTRAN separated by
the symbol “@”. The LATEX source code may generate Tables and Figures as well
as text and equations. The FORTRAN may contain “comments”, but these should not
replace the documentation contained in the LATEX fragments. The present work is
written in LATEX2e and is being used as the basis for a literate program.

7. PROSPECTS

We began this paper by recalling Löwdin’s statement [10], made in 1990, that there is
an urgent need to describe the motions of electrons and nuclei in a more or less equiv-
alent manner. We have demonstrated in this paper that significant progress towards
this end has been achieved over recent years. The work of Nakai and Sodeyama [26],
in particular, has established a firm foundation for the approach in which electrons
and nuclei are treated on a more or less equivalent footing and further progress can be
expected. In very recent work, Nakai et al [45] have presented a translation-free and
rotation-free Hamiltonian for use in nuclear orbital plus molecular orbital theory. In
a comment on this recent paper by Nakai et al. Sutcliffe [46] has suggested that their
“chosen rotational term is not unique and is not valid over all regions of space”. We
are exploring an approach [47] based on the work of Hubač et al. [48–50] in which
the total molecular Hamiltonian is subjected to two canonical transformations –
a normal coordinate transformation and a momentum transformation. Progress will
be reported in due course.

We emphasize again that the ability to perform practical calculations which go
beyond the Born–Oppenheimer approximation is important not only for accurate
studies of small molecular species but also in studies of larger molecules, includ-
ing biomolecules, for which the number of nuclear configurations which have to be
considered in the usual Born–Oppenheimer-based approach can become very large
indeed. As an example of recent studies which underline the need for studies beyond
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@

LATEX source code describing the C code which follows below

...

@

C source code corresponding to the descriptive text above

...

@

LATEX source code describing the C code which follows below

...

@

C source code corresponding to the descriptive text above

...

@

LATEX source code describing the C code which follows below

...

@

C source code corresponding to the descriptive text above

...

@

LATEX source code describing the C code which follows below

...

...

Figure 13. Structure of a Web file, after Knuth (The Computer Journal, 1984, 27:2, 97). The Web file
consists of alternating fragments of LATEX source code, which may generate Tables and Figures as well as
text and equations, and C source code corresponding to the LATEX code fragments.
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the Born–Oppenheimer approximation in small molecules, we point to recent work
on the CH+

5 ion [51, 52]. As for large molecules, the importance of intra- and inter-
molecular proton scrambling in amino acids and proteins is widely recognized.
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48. I. Hubač and M. Svrček, In Methods in Computational Chemistry 4, Molecular Vibrations, ed.

S. Wilson, Plenum Press, New York, 1992.
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Abstract Conventional single-reference methods fail when bond breaking and other situations
characterized by larger non-dynamical correlation effects are examined. In consequence,
the adequate treatment of molecular potential energy surfaces involving significant bond
rearrangements has been the domain of expert multi-reference methods. The question
arises if one can develop practical single-reference procedures that could be applied to at
least some of the most frequent multi-reference situations, such as single and double bond
dissociations. This question is addressed in the present paper by examining the perfor-
mance of the conventional and renormalized coupled-cluster (CC) methods in calculations
of the potential enery surface of the water molecule. A comparison with the results of the
highly accurate internally contracted multi-reference configuration interaction calculations
including the quasi-degenerate Davidson correction (MRCI(Q)) and the spectroscopically
accurate potential energy surface of water resulting from the use of the energy switching
(ES) approach indicates that the relatively inexpensive completely renormalized (CR) CC
methods with singles (S), doubles (D), and a non-iterative treatment of triples (T) or triples
and quadruples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and the recently developed
rigorously size extensive extension of the CR-CCSD(T), termed CR-CC(2,3), provide
considerable improvements in the results of conventional CCSD(T) and CCSD(TQ)
calculations at larger internuclear separations. It is shown that the CR-CC(2,3) results
a posteriori corrected for the effect of quadruply excited clusters (the CR-CC(2,3)+Q
approach) can compete with the highly accurate MRCI(Q) data. The excellent agreement
between the CR-CC(2,3)+Q and MRCI(Q) results suggests ways of improving the global
potential energy surface of water resulting from the use of the ES approach in the regions
of intermediate bond stretches and intermediate and higher energies connecting the region
of the global minimum with the asymptotic regions. In addition to the examination of
the performance of the CR-CCSD(T), CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q
approaches, we provide a thorough review of the method of moments of CC equations
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(MMCC), as applied to ground electronic states, including the most recent biorthogonal
formulation of MMCC theory employing the left eigenstates of the similarity-transformed
Hamiltonian, and other mathematical and physical concepts that lie behind all renormal-
ized CC approximations. In particular, we discuss the similarities and differences between
the older CR-CCSD(T) and CR-CCSD(TQ) approximations and the recently formulated
size extensive renormalized CC methods, such as CR-CC(2,3), and open questions that
emerge in the process of designing higher-order schemes based on the biorthogonal MMCC
formalism, such as CR-CC(2,4), which describe the combined effect of triples (already
present in CR-CC(2,3) calculations) and quadruples in a proper manner.

1. INTRODUCTION

The key to a successful description of molecular potential energy surfaces involving
bond breaking is an accurate and balanced treatment of dynamical and non-dynamical
correlation effects. Conventional single-reference coupled-cluster (CC) methods
[1–5] (cf. Refs. [6–16] for selected reviews), such as CCSD[T] [17, 18] and
CCSD(T) [19], in which non-iterative corrections due to triply excited clusters are
added to the CCSD (CC singles and doubles) [20–22] energy, and their extensions
to quadruply excited clusters through the CCSD(TQf) [23] and CCSD(TQ),b [24]
approaches, provide an accurate description of dynamical correlation effects, which
dominate electron correlations in the closed-shell regions of potential energy sur-
faces, but they fail, often dramatically, when the bond breaking, biradicals, and other
situations characterized by larger non-dynamical correlation effects are investigated
(see, e.g. Refs. [8, 11–15, 24–58] for representative examples). Traditionally, the
adequate treatment of ground- and excited-state potential energy surfaces along bond
breaking coordinates and other cases of electronic quasi-degeneracies has been the
domain of expert multi-reference methods, but multi-reference approaches have their
limitations as well. For example, the low-order multi-reference perturbation theory
(MRPT) methods, such as the popular second-order CASPT2 approach [59–62],
may encounter serious difficulties with balancing dynamical and non-dynamical
correlations in studies of chemical reaction pathways and relative energetics of sys-
tems characterized by a varying degree of biradical character [53, 63], while the
more robust multi-reference configuration interaction (MRCI) approaches, including
the highly successful internally contracted MRCI approach with quasi-degenerate
Davidson corrections (the MRCI(Q) method [64, 65]), are often prohibitively expen-
sive. In the case of MRPT, one may be able to improve the results by using larger
active spaces or by switching to genuine multi-state MRPT theories (see, e.g.
Refs. [66, 67] and references therein), but there are cases where choosing an active
space for MRPT calculations becomes a major challenge [53] and where the use
of multi-state MRPT methods may result in the emergence of additional problems,
such as intruders [67–75]. Going beyond the second order in MRPT calculations
or performing MRCI(Q) calculations with large active spaces to improve accura-
cies is far from being routine and is usually prohibitively expensive, which shows
that there are problems in multi-reference theories that are not easily solvable, in
spite of the fact that multi-reference methods are specifically designed to address
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important issues of bond breaking and electronic quasi-degeneracies. One should
also remember about other shortcomings of MRCI, such as lack of size extensivity
(the fraction of the correlation energy recovered rather substantially decreases for
larger molecules; CASPT2 and some other MRPT methods are not size extensive
either [76]), its great computational cost, and the requirement that the user of MRCI
must specify several parameters, such as active orbitals or reference determinants and
numerical thresholds for neglecting unimportant electron configurations. At present,
a universally applicable and accepted methodology for choosing these parameters is
absent [77,78]. In fact, there is no general, commonly adopted, and systematic proce-
dure of improving the results of MRCI calculations (other than making the reference
space larger), since all of the existing implementations of MRCI are based on a single
MRCISD (MRCI singles and doubles) approximation, in which additional simplifi-
cations are made, with the Davidson or other similar a posteriori corrections added
to full or approximate MRCISD energies to account for the missing correlations and
lack of size extensivity.

In principle, one could address many of the above limitations of the MRPT and
MRCI methods by turning to multi-reference CC approaches (cf. Refs. [8, 79, 80]
for selected reviews and references therein for more information). Indeed, significant
progress has been made toward the development of practical MRCC schemes, par-
ticularly after the introduction of the elegant and very promising concept of general
model space MRCC approaches based on the Jeziorski-Monkhorst ansatz [81] by
Li and Paldus [82–87] (which might be combined with the non-iterative triples or
triples and quadruples corrections discussed in Refs. [80, 88–90] and an approxi-
mate treatment of core-virtual excitations described in Refs. [80, 91]) and the
state-selective active-space methods by Adamowicz, Piecuch, and their collabo-
rators [26, 28, 29, 35, 47, 92–111], which have already been adopted and successfully
applied by several research groups [112–117], in addition to groups of Adamowicz
and Piecuch, and which can provide very accurate results for ground- and excited-
state potential energy surfaces of closed- and open-shell systems. However, in spite
of tremendous progress in MRCC methodology and in spite of the existence of highly
efficient MRPT and MRCI algorithms in popular electronic structure packages, all
multi-reference methods require experienced expert users and one often faces diffi-
culties in obtaining consistent results, since in all multi-reference calculations each
molecular system requires an individual practical decision on the active space. In
many situations, this is not a major issue, but there are, probably equally many, chal-
lenging systems, such as the dicopper compounds that have recently been examined
by Cramer et al. [53] and Rode and Werner [63] in the context of the ongoing studies
of oxygen activation by copper metalloenzymes, where active spaces that one should
use in multi-reference calculations to obtain reasonable results are far too large to be
manageable, at least at this time. In this respect, practical single-reference procedures
that could be applied to at least some of the most frequent multi-reference situations,
such as single and double bond dissociations, biradicals, and excited states dominated
by two-electron transitions, and that could provide a balanced description of dynami-
cal and non-dynamical correlation effects with a more or less black-box effort would
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be an important step toward widespread progress. In this work, we discuss our recent
attempts to develop and test such procedures, focusing on the ground-state renormal-
ized CC methods [11–14,24,33–38,41,43–48,51–53] which have recently been incor-
porated (cf., e.g. Refs. [45,118]) in the GAMESS package [119]. We refer the reader
to the previous volumes of Progress in Theoretical Chemistry and Physics [13, 15],
earlier reviews [11, 12, 14, 33], and original Refs. [24, 34, 43–46, 120–123] for
the detailed information about the renormalized CC methods for ground as well
as excited states and formal aspects of the method of moments of CC equations
(MMCC) [11, 24, 34, 43–46, 89, 120, 121], on which all renormalized CC methods
are based. In this paper, we focus on systematically testing a variety of conven-
tional and renormalized CC methods, including the recently developed size exten-
sive CR-CC(2,3) approach [45, 46, 48] and its augmented CR-CC(2,3)+Q version,
in which the CR-CC(2,3) energies are approximately corrected for the dominant
quadruples effects. We also provide an updated overview of the ground-state MMCC
theory, including the recently developed biorthogonal MMCC formalism [45, 46],
which leads to the CR-CC(2,3) approach and which could not be reviewed in the
earlier volumes of Progress in Theoretical Chemistry and Physics. This includes the
discussion of interesting formal aspects that emerge in the process of designing
higher-order schemes based on the biorthogonal MMCC formalism, such as
CR-CC(2,4), which would describe the combined effect of triples (already present in
CR-CC(2,3) calculations) and quadruples in a proper manner.

All renormalized CC methods can be regarded as a new generation of non-iterative
single-reference CC approaches that are designed to improve the results of the
CCSD(T) and CCSD(TQ) calculations in the bond breaking/biradical regions
of molecular potential energy surfaces, while preserving the ease-of-use and
the relatively low computer cost of the CCSD(T) and CCSD(TQ) approxima-
tions. It has been demonstrated, by us and others, that the basic renormali-
zed CC approach, termed CR-CCSD(T) (completely renormalized CCSD(T)
method) [11–14, 24, 33, 34], in which a simple non-iterative correction due to
triply excited clusters is added to the CCSD energy, provides very good results
for single bond breaking [11–14, 33–35, 37, 38, 41, 44, 47, 118, 124], and reaction
pathways involving biradicals and similar cases of electronic quasi-degeneracies
[50–53, 67, 125, 126], eliminating the failures of the conventional CCSD(T) and
CCSD(TQ) methods in those multi-reference situations. The CR-CCSD(TQ) exten-
sion [11–14, 24, 33, 34] of CR-CCSD(T), in which a correction due to triply
and quadruply excited clusters is added to the CCSD energy, provides further
improvements in the results for single bond breaking [12–14, 33, 35, 37], while
helping to obtain reasonable accuracies in cases of multiple bond stretching or
breaking [12–14, 24, 32–34, 40, 43–45, 48] (cf., also, Ref. [58] for the analogous
findings for the approximate versions of CR-CCSD(TQ)). However, with an excep-
tion of one study of a global potential energy surface of the BeFH system [41], none
of the previous calculations have examined the performance of the CR-CCSD(T)
and CR-CCSD(TQ) approaches in large-basis-set calculations for different potential
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energy surface cuts of a triatomic molecule. Moreover, none of the earlier studies
employing larger basis sets have compared the results of the CR-CCSD(T) calcu-
lations with those obtained with the recently formulated rigorously size extensive
modification of CR-CCSD(T), termed CR-CC(2,3) [45, 46, 48]. The CR-CCSD(T)
and CR-CCSD(TQ) methods provide great improvements in the poor description
of bond breaking by the CCSD(T) and CCSD(TQ) methods, but they do it at the
expense of slightly violating the size extensivity of CC theory (at the level of
0.5–1% of the correlation energy or changes of the correlation energy when reac-
tion pathways are examined [12]). Moreover, the results of the CR-CCSD(T) and
CR-CCSD(TQ) calculations for closed-shell molecules near the equilibrium geome-
tries, where renormalization is not necessary, can be somewhat less accurate than
those obtained in the corresponding CCSD(T) and CCSD(TQ) calculations if the
number of electrons is larger. The issue of restoring strict size extensivity in CR-CC
calculations can be dealt with in two different ways. The first method is to employ the
idea of locally renormalized CC (LR-CC) approaches, which rely on the numerator-
denominator connected form of the MMCC energy expansion [44]. The resulting
methods, such as LR-CCSD(T) and LR-CCSD(TQ) [44, 127], provide size exten-
sive results when localized orbitals are employed [44]. It is not yet clear how the
localization of orbitals affects the accuracy of the LR-CCSD(T) and LR-CCSD(TQ)
results, but the idea of local renormalization is worth further exploration. The sec-
ond, in our view more robust, approach to size extensivity of CR-CC methods is
to employ the CR-CC(m A,m B) approximations, such as CR-CC(2,3), which are
based on the recently derived biorthogonal form of the MMCC theory [45, 46].
The CR-CC(2,3) approach, in which, in analogy to CR-CCSD(T), a non-iterative
correction due to triply excited clusters is added to CCSD energy, provides a size
extensive description without the need to localize orbitals [45, 46]. According to
the initial benchmark calculations reported in Refs. [45, 46, 48], the CR-CC(2,3)
approach provides the results which are competitive or at least as good as those
obtained with CCSD(T) for closed-shell molecules near the equilibrium geometries,
while improving the already reasonable results of the CR-CCSD(T) calculations in
the biradical/bond breaking regions. The CR-CC(2,3) approach is also more accurate
than the LR-CCSD(T) [44, 127] and CCSD(2)T [42] approaches, which both aim
at eliminating the failures of CCSD(T) in the biradical/bond breaking regions. As
shown in Refs. [45, 46, 48], the CR-CC(2,3) method seems to provide the results
of the full CCSDT (CC singles, doubles, and triples) [128, 129] quality when bond
breaking is examined. It is, therefore, interesting to investigate how the CR-CC(2,3)
approach performs when a few different potential energy surface cuts of a triatomic
molecule are examined, particularly that the aforementioned CCSD(2)T method
can be regarded as the simplest approximation to the full CR-CC(2,3) scheme
(the CCSD(2)T approach is equivalent to the CR-CC(2,3), A approach [45, 46, 48]).
As explained in Refs. [45, 46], the CR-CC(2,3) approach can be extended to quadru-
ple excitations through the CR-CC(2,4) theory, but the CR-CC(2,4) method has not
been implemented yet and we may have to investigate issues such as the coupling
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of triples and quadruples in the definition of the CR-CC(2,4) energy corrections
which was heuristically ignored in the original papers on the biorthogonal MMCC
formalism and CR-CC(m A,m B) methods. On the other hand, a highly accurate
description of potential energy surfaces along bond breaking coordinates that might
help various spectroscopic and dynamical studies may require the inclusion of
quadruples in addition to triples that are already well described by the CR-CC(2,3)
theory. Thus, in this paper we examine the effect of quadruples on the CR-CC(2,3)
results by adding the a posteriori corrections due to quadruply excited clusters,
extracted from the CR-CCSD(TQ) calculations, to the CR-CC(2,3) energies. The
resulting approximation is referred to as the CR-CC(2,3)+Q scheme.

The CR-CCSD(T), CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q methods are
carefully tested by using three important cuts of the global potential energy sur-
face of the water molecule. Those cuts are: (i) the dissociation of a single O–H
bond which correlates with the H(1s 2S) + OH(X 2�) asymptote, (ii) the simul-
taneous dissociation of both O–H bonds of the water molecule correlating with the
2H(1s 2S)+ O(2p4 3 P) channel, and (iii) the C2v dissociation pathway of the water
molecule into H2(X 1�+

g ) and O(2p4 1 D). The CR-CCSD(T), CR-CCSD(TQ),
CR-CC(2,3), and CR-CC(2,3)+Q results and the corresponding CCSD, CCSD(T),
and CCSD(TQ) results, all obtained with the basis sets of the aug-cc-pCVXZ
(X = D,T,Q) quality [130, 131], are compared with the results of the large-scale
MRCI(Q) calculations, also carried out in this work, and the spectroscopically accu-
rate global potential energy surface of water resulting from the use of the energy
switching (ES) approach [132].

We chose the water molecule as our benchmark system for a number of reasons.
Clearly, water is among the most important molecules and a prototype system for
a variety of spectroscopic and reaction dynamics studies. There are many applica-
tions involving water molecule in which the knowledge of reliable potential energy
surface is required. Selected examples of such applications include the spectrum
of the water vapor, which is important for the understanding of the absorption
and retention of sunlight in Earth’s atmosphere and physics of other planets and
stars [133–142], and combustion studies involving hot steam. For example, the
O(2p4 1 D) + H2(X 1�+

g ) → OH(X 2�) + H(1s 2S) reaction, which takes place
on the ground-state potential energy surface of water, is known to play a significant
role in combustion and atmospheric chemistry [143, 144]. Two of the dissociation
pathways examined in this work, namely, the dissociation of a single O–H bond and
the C2v dissociation path of the water molecule into H2(X 1�+

g ) and O(2p4 1 D)
are directly related to this important reaction. The water molecule has received con-
siderable attention in recent years due to several attempts to produce the spectro-
scopically and dynamically accurate global potential energy surface using ab initio
and other theoretical means [132, 139, 145–149]. One such attempt has resulted in
the ES potential function used in this work [132]. By comparing various CR-CC and
MRCI(Q) data with the energies provided by the ES potential function, we may sug-
gest ways of improving the ES and similar potentials in higher-energy regions where
no precise or well understood spectroscopic or ab initio data are available. Thus,
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in addition to testing CR-CC methods, we may contribute to the ongoing effort to
produce the high accuracy water surface which could be used in a variety of spectro-
scopic and dynamical applications.

The paper is organized as follows. In section 2, we provide the relevant background
information about the MMCC formalism and overview the CR-CC methods
employed in this study. In section 3, we examine the performance of various CC
and CR-CC methods in calculations for the three cuts of the water potential energy
surface described above and compare the results with those obtained with MRCI(Q)
and the ES potential function. Finally, in section 4, we provide the concluding
remarks.

2. METHOD OF MOMENTS OF COUPLED-CLUSTER EQUATIONS
AND RENORMALIZED COUPLED-CLUSTER APPROACHES

The main idea of the MMCC formalism and of the resulting CR–CC methods
[11–15, 24, 33, 34, 39, 40, 43–46, 48, 120–123] is that of the non-iterative energy
corrections which, when added to the energies obtained in the standard CC or
equation-of-motion CC [150–153] calculations, recover the exact, full CI, energies
of the electronic states of interest (for the genuine multi-reference extension of
the MMCC formalism, which is not discussed here, see Refs. [80, 89, 90]). Thus,
all MMCC methods, including the ground-state CR-CCSD(T) [11–14, 24, 33, 34],
CR-CCSD(TQ) [11–14, 24, 33, 34], CR-CC(2,3) [45, 46, 48], and CR-CC(2,3)+Q
approaches discussed and tested in this work, in which relatively simple non-iterative
corrections due to triples or triples and quadruples are added to CCSD energies, pre-
serve the conceptual and computational simplicity of the traditional non-iterative CC
methods, such as CCSD(T) or CCSD(TQ), while offering us a new way of control-
ling the quality of CC results by directly focusing on the quantity of interest, which
is the difference between the full CI and CC energies. By dealing with the remanent
errors that occur in the standard CC (e.g. CCSD) calculations, which we estimate
by using the explicit relationships between the CC and full CI energies defining the
MMCC theory, we can obtain significant improvements in the results in situations
such as bond breaking, where the usual arguments based on many-body perturba-
tion theory (MBPT) that are used to design the CCSD(T), CCSD(TQ), and similar
methods fail due to the divergent behavior of the MBPT series in cases of electronic
quasi-degeneracies.

In the ground-state MMCC theory, considered in this work, we focus on the non-
iterative energy correction

δ
(A)
0 ≡ E0 − E (A)0 ,(1)

which, when added to the energy E (A)0 , obtained in the standard single-reference CC
calculations, referred to as method A and defined by the truncated cluster operator
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T (A) =
m A∑

n=1

Tn,(2)

where

Tn =
∑

i1 < · · · < in
a1 < · · · < an

t i1...in
a1...an

aa1 · · · aan ain · · · ai1(3)

is the n-body component of T (A), recovers the corresponding exact, i.e. full CI energy
E0. In the CCSD case, which interest us here most, m A = 2; in general, m A ≤ N ,
where N is the number of correlated electrons in a system of interest. Here and else-
where in this chapter, we use the usual notation where i1, i2, . . . or i, j, . . . are the
spin-orbitals occupied in the reference determinant |
〉 and a1, a2, . . . or a, b, . . .
are the unoccupied spin-orbitals. The a p (ap) operators are the creation (annihilation)
operators associated with the spin-orbitals |p〉.

2.1. Preliminaries: basic elements of coupled-cluster theory

We assume that the reader is familiar with basic concepts of CC theory, such as the
exponential wave function ansatz defining all single-reference CC methods. How-
ever, for the consistency of this presentation, let us recall that the ground-state wave
function associated with the CC method A has the form

|�(A)0 〉 = eT (A) |
〉,(4)

where the cluster operator T (A), defined by Eq. (2), is obtained by solving the usual
system of CC equations,

〈
a1...an
i1...in

|H̄ (A)|
〉 = 0,(5)

where n = 1, . . . ,m A,

H̄ (A) = e−T (A)HeT (A) = (HeT (A) )C(6)

is the similarity-transformed Hamiltonian of the CC theory corresponding to approx-
imation A, subscript C designates the connected part of the corresponding operator
expression, and |
a1...an

i1...in
〉 ≡ aa1 · · · aan ain · · · ai1 |
〉 are the n-tuply excited determi-

nants relative to |
〉. Once the system of non-linear polynomial equations, Eq. (5),
is solved for the cluster components Tn or cluster amplitudes t i1...in

a1...an , n = 1, . . . ,m A,
that define them, we calculate the CC energy E (A)0 as follows:

E (A)0 = 〈
|H̄ (A)|
〉.(7)

In the case of many-electron systems, which are described by the Hamiltonians H
containing up to two-body interactions, the CC energy E (A)0 is determined using only
the T1 and T2 clusters,
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E (A)0 = 〈
|[H(1 + T1 + T2 + 1
2 T 2

1 )]C |
〉,(8)

independent of the truncation scheme used to define T (A) (assuming that m A ≥ 2).
The CR-CC(2,3) method [45, 46, 48] tested in this work, which is based on the

biorthogonal formulation of MMCC theory [45, 46], requires that in addition to the
usual ket or right CC state |�(A)0 〉, Eq. (4), one considers the corresponding bra or
left (or dual) CC state of method A [15, 16, 152, 153],

〈�̃(A)0 | = 〈
|L(A)e−T (A) ,(9)

which satisfies the normalization condition,

〈�̃(A)0 |�(A)0 〉 = 〈
|L(A)|
〉 = 1.(10)

The L(A) operator entering Eq. (9) and satisfying the normalization condition given
by Eq. (10) is a desexcitation operator defined as follows:

L(A) = 1 +�(A),(11)

where 1 is a unit operator and �(A) is the “lambda” operator of the analytic gradient
CC theory [154],

�(A) =
m A∑

n=1

�n .(12)

The many-body components of �(A),

�n =
∑

i1 < · · · < in
a1 < · · · < an

λ
a1...an
i1...in

ai1 · · · ain aan · · · aa1 ,(13)

and the corresponding amplitudes λa1...an
i1...in

are obtained by solving the linear system
of equations [15, 16, 153],

〈
|H̄ (A)|
a1...an
i1...in

〉 + 〈
|�(A) H̄ (A)|
a1...an
i1...in

〉 = E (A)0 λ
a1...an
i1...in

,(14)

in which n = 1, . . . ,m A and E (A)0 is the energy of CC method A, Eq. (7).

2.2. Generalized moments of CC equations, MMCC functional,
and MMCC expansions for the exact ground-state energy

The main purpose of all ground-state MMCC calculations, including the CR-CC
methods considered in this work, is to estimate correction δ(A)0 , Eq. (1), such that
the resulting energy, defined as

E (MMCC)
0 = E (A)0 + δ(A)0 ,(15)

is as close as possible to the corresponding full CI energy E0. In order to do this and
end up, at the same time, with practical computational schemes, we have to come up
with explicit many-body expansions of δ(A)0 in terms of the quantities that one can
easily extract from the usual CC (e.g. CCSD) calculations.
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In order to understand what quantities provided by the CC theory may be needed
to recover the full CI ground-state energy from the results of approximate CC cal-
culations, such as CCSD, we should recall that the system of single-reference CC
equations, Eq. (5), is formally obtained by inserting the exact CC wave function
|�0〉 = eT |
〉 into the electronic Schrödinger equation,

H |�0〉 = E0|�0〉,(16)

premultiplying both sides of Eq. (16) on the left by e−T to obtain the connected
cluster form of the Schrödinger equation [3, 4, 8, 10, 11, 79],

H̄ |
〉 = E0|
〉,(17)

with

H̄ = e−T HeT = (HeT )C ,(18)

and projecting Eq. (17), in which T = T (A), onto the excited determinants |
a1...an
i1...in

〉
corresponding to the excitations included in T (A). This general prescription how
to derive the equations for all standard CC methods, which was introduced by Čı́žek
[3,4], implies that projections of the connected cluster form of the Schrödinger equa-
tion, Eq. (17), on the excited determinants |
a1...an

i1...in
〉, i.e.

Mi1...in
a1...an

(m A) = 〈
a1...an
i1...in

|H̄ (A)|
〉,(19)

represent the most fundamental quantities for the CC theory. These projections define
the generalized moments of CC equations [11–15, 24, 33, 34, 45, 46, 120, 121] (for
a discussion of the relationship between the method of moments of Krylov [155]
used in various areas of mathematical physics and the single-reference CC theory,
see Ref. [156]). In the language of the method of moments of Krylov [155], we
might say that the standard CC equations, Eq. (5), are obtained by requiring that
all moments M

i1...in
a1...an (m A) with n = 1, . . . ,m A vanish. However, the use of the gen-

eralized moments of CC equations, Eq. (19), does not have to end there. Clearly, once
the cluster operator T (A), Eq. (2), is determined by zeroing moments M

i1...in
a1...an (m A)

with n = 1, . . . ,m A, we can calculate the remaining moments M
i1...in
a1...an (m A) with

n > m A. Since moments M
i1...in
a1...an (m A) with n = 1, . . . ,m A are needed to determine

the CC energy E (A)0 , it is natural to expect that the remaining moments M
i1...in
a1...an (m A)

with n > m A, which correspond to projections of the connected cluster form of the
Schrödinger equation on the excited determinants |
a1...an

i1...in
〉 with n > m A that are

normally disregarded in the CC calculations defining approximation A, can be used
to determine the difference δ(A)0 between the exact, full CI, energy E0 and E (A)0 . In
particular, if we want to recover the full CI energy E0 by adding the correction δ(A)0
to the CCSD energy (the m A = 2 case), we must calculate the generalized moments
of the CCSD equations, i.e. the projections of these equations on triply, quadruply,
pentuply, and hextuply excited determinants or

Mi1...in
a1...an

(2) = 〈
a1...an
i1...in

|H̄ (CCSD)|
〉, n = 3 − 6,(20)
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where

H̄ (CCSD) = e−(T1+T2)HeT1+T2 = (HeT1+T2)C(21)

is the similarity-transformed Hamiltonian of the CCSD approach (T1 and T2 are the
singly and doubly excited cluster components obtained in the CCSD calculations).
The projections of the CCSD equations on higher-than-hextuply excited determinants
do not have to be calculated, since for Hamiltonians containing up to two-body inter-
actions used in electronic structure calculations the generalized moments M

i1...in
a1...an (2)

with n> 6 vanish. This is, in fact, a general feature of the generalized moments of CC
equations: usually, moments M

i1...in
a1...an (m A) are non-zero for a relatively small range

of n values. Thus, we will use symbol NA to define the highest value of n for which
the corresponding n-body moments M

i1...in
a1...an (m A) are non-zero. For example, if the

CC method A is a standard CCSD approach, in which m A is set at 2, NA equals 6
(in this case, moments M

i1...in
a1...an (m A) also vanish for n = 1 and 2, since, by defin-

ition, the ground-state CCSD equations that are used to determine the correspond-
ing T1 and T2 clusters are obtained by zeroing moments M

i1...in
a1...an (2) with n = 1, 2;

cf. Eq. (5)).
The exact formula for the correction δ(A)0 which, when added to the CC energy

E (A)0 of method A recovers the full CI energy E0, in terms of the generalized moments
M

i1...in
a1...an (m A) with n = m A + 1, . . . , NA, can be given a few alternative, but equiva-

lent forms [11–15,24,33,34,43–46,120,121]. In this paper, we focus on the original
MMCC expansion introduced by Piecuch and Kowalski in Refs. [11, 24, 34] and the
ground-state biorthogonal MMCC theory introduced by Piecuch and Włoch [45] and
Piecuch et al. [46] (see, also, Refs. [15,48]). All MMCC expansions for ground elec-
tronic states are derived by considering the asymmetric energy expression

E[�] = 〈�|HeT (A) |
〉/〈�|eT (A) |
〉,(22)

or its slightly modified form obtained by subtracting the CC energy E (A)0 from
E[�], i.e.

�[�] = 〈�|(H − E (A)0 )eT (A) |
〉/〈�|eT (A) |
〉.(23)

The latter expression defines the MMCC functional. These expressions were intro-
duced in the original MMCC work [34], extended to excited and multi-reference
states in Refs. [89,120] (cf. Ref. [12] for a pedagogical overview), and later exploited
in Refs. [157–160] to examine the MMCC-based energy-corrected CC methods,
which belong to a family of the CI-corrected MMCC methods [11, 12, 14, 15, 33,
39, 120, 121]. Clearly, E[�], Eq. (22), gives the exact, full CI, ground-state energy
E0, independent of the truncation level m A defining T (A), when |�〉 entering Eq. (22)
is a full CI ground-state wave function |�0〉. Similarly, the MMCC functional �[�],
Eq. (23), gives the difference between the exact energy E0 and the CC energy E (A)0 ,
which defines the exact value of δ(A)0 , when |�〉 entering Eq. (23) is replaced by |�0〉,

�[�0] ≡ 〈�0|(H − E (A)0 )eT (A) |
〉/〈�0|eT (A) |
〉 = E0 − E (A)0 ≡ δ(A)0 .(24)



74 Piotr Piecuch et al.

The energy expansions that define all MMCC theories are obtained by expressing
�[�0], Eq. (24), in terms of moments M

i1...in
a1...an (m A) with n = m A + 1, . . . , NA.

This can be done in various ways [11–15, 33, 34, 43–46, 120, 121]. From now on, we
focus on two particular forms of δ(A)0 , which are relevant to the CR-CC approaches
examined in this work.

The CR-CCSD(T) and CR-CCSD(TQ) methods are obtained by considering the
truncated form of the following MMCC expansion for δ(A)0 [11–14, 24, 33, 34]:

δ
(A)
0 =

N∑

n=m A+1

min(n,NA)∑

k=m A+1

〈�0|Cn−k(m A)Mk(m A)|
〉/〈�0|eT (A) |
〉.(25)

Here,

Cn−k(m A) = (eT (A) )n−k(26)

are the (n − k)-body components of the CC wave operator eT (A) , defining method A,
|�0〉 is the exact ground-state wave function, and

Mk(m A) =
∑

i1 < · · · < ik
a1 < · · · < ak

Mi1...ik
a1...ak

(m A) aa1 · · · aak aik · · · ai1 ,(27)

with the generalized moments M
i1...ik
a1...ak (m A) defined by Eq. (19). The

Cn−k(m A) quantities are trivial to generate. The zero-body term, C0(m A), equals
1; the one-body term, C1(m A), equals T1; the two-body term, C2(m A), equals
T2 + 1

2 T 2
1 if m A ≥ 2; the three-body term C3(m A) equals T1T2 + 1

6 T 3
1 if m A = 2 and

T3 + T1T2 + 1
6 T 3

1 if m A ≥ 3, etc. As shown in the next subsection, the M
i1...ik
a1...ak (m A)

moments entering the CR-CCSD(T) and CR-CCSD(TQ) corrections to the CCSD
energy (the m A = 2 case) can be given the relatively simple form as well. In general,
the formula for the correction δ(CCSD)

0 , which must be added to the CCSD energy
E (CCSD)

0 to recover the exact energy E0, is

δ
(CCSD)
0 =

N∑

n=3

min(n,6)∑

k=3

〈�0|Cn−k(2)Mk(2)|
〉/〈�0|eT1+T2 |
〉,(28)

where

Mk(2) =
∑

i1 < · · · < ik
a1 < · · · < ak

Mi1...ik
a1...ak

(2) aa1 · · · aak aik · · · ai1 ,(29)

with the CCSD moments M
i1...ik
a1...ak (2) defined by Eq. (20).

As one can see, the above formula for the correction δ(A)0 , Eq. (25), or its CCSD
analog, Eq. (28), is a complete many-body expansion including up to n = N -body
terms, where N is the number of all correlated electrons (fermions) in a system.
Although moments M

i1...ik
a1...ak (m A)with m A > NA vanish and, hence, do not contribute
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to Eq. (25) (cf.
∑min(n,NA)

k=m A+1 in Eq. (25) or
∑min(n,6)

k=3 in Eq. (28)), no particular form
of the exact state |�0〉, on which we project in Eqs. (25) and (28), is assumed, so that
one has to use the entire full CI expansion of |�0〉 if we want to determine the exact
values of δ(A)0 and δ(CCSD)

0 using Eqs. (25) and (28). This may have some advantages
in practice, since we can use a variety of different forms of |�0〉 in approximate cal-
culations based on Eqs. (25) and (28), which may or may not be related to CC theory,
resulting in the renormalized CC methods [11–15,24,33,34,36,122,123], such as CR-
CCSD(T) and CR-CCSD(TQ) [11–14, 24, 33, 34], as well as the externally corrected
MMCC schemes [11, 12, 14, 15, 33, 39, 48, 49, 120, 121], including the aforemen-
tioned energy-corrected CC approaches [157–160] (for information about a broad
class of the externally corrected CC methods, pioneered by Paldus and collaborators,
in which CC and non-CC concepts are combined together to improve single-reference
CC results in the presence of quasi-degeneracies, see Refs. [8,18,161–168]). One may
wonder, however, if it is possible to rewrite Eq. (25) or its CCSD analog, Eq. (28),
in a form of a compact many-body expansion which terminates at the n = NA-body
terms, compatible with the highest many-body rank of the corresponding moments
M

i1...ik
a1...ak (m A), independent of the number of electrons in a system. The biorthogonal

formulation of the MMCC theory, introduced in Refs. [45, 46], on which the CR-
CC(2,3) and other CR-CC(m A,m B) approximations considered in Refs. [45, 46, 48]
are based, leads to such a compact expansion.

In the biorthogonal MMCC formalism, we calculate the correction δ(A)0 , Eq. (1),
as follows [45, 46]:

δ
(A)
0 =

NA∑

n=m A+1

〈
|Ln Mn(m A)|
〉 =
NA∑

n=m A+1

∑

i1 < · · · < in
a1 < · · · < an

�
a1...an
i1...in

Mi1...in
a1...an

(m A).(30)

The Mn(m A) operators, which enter the first form of Eq. (30), are defined by Eq. (27)
and, again, M

i1...in
a1...an (m A) are the generalized moments of CC equations of method A

defined by Eq. (19). The Ln operators in Eq. (30) are the n-body components of the
desexcitation operator L , which parameterizes the exact, full CI bra state 〈�0| as
follows:

〈�0| = 〈
|L e−T (A) .(31)

We have

L =
N∑

n=0

Ln,(32)

where

Ln =
∑

i1 < · · · < in
a1 < · · · < an

�
a1...an
i1...in

ai1 · · · ain aan · · · aa1(33)
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and �a1...an
i1...in

are the amplitudes defining Ln . In order to guarantee that Eq. (30) rep-
resents the exact difference between the full CI and CC energies, Eq. (1), we must
require that the full CI bra state 〈�0|, Eq. (31), is normalized as

〈�0|�(A)0 〉 ≡ 〈�0|eT (A) |
〉 = 1,(34)

where |�(A)0 〉 is the CC ket state of method A, Eq. (4). Clearly, the operator L that
produces the exact, full CI bra state 〈�0| according to Eq. (31), subject to the nor-
malization condition given by Eq. (34), always exists.

As one can see, the non-iterative correction δ(A)0 , Eq. (30), is defined in terms of
the n-body components of L with n > m A. These components originate from the
following decomposition of the operator L :

L = L (A) + δL (A),(35)

where

L (A) =
m A∑

n=0

Ln(36)

and

δL (A) =
N∑

n=m A+1

Ln .(37)

The normalization condition defined by Eq. (34) can be rewritten as

〈
|L (A)|
〉 = 1,(38)

so that the zero-body component L0 = 1, where 1 is a unit operator. The fact that
one does not have to consider the Ln components with n > NA in Eq. (30) is a
consequence of the property that, by definition of symbol NA, moments M

i1...in
a1...an (m A)

with n > NA vanish. In particular, the formula for the correction δ(CCSD)
0 , which must

be added to the CCSD energy E (CCSD)
0 to recover the exact energy E0, assumes now

the following very compact form which terminates at the hextuply excited terms:

δ
(CCSD)
0 =

6∑

n=3

〈
|Ln Mn(2)|
〉 =
6∑

n=3

∑

i1 < · · · < in
a1 < · · · < an

�
a1...an
i1...in

Mi1...in
a1...an

(2),(39)

with Mn(2) defined by Eq. (29) and M
i1...in
a1...an (2) representing the CCSD moments (cf.

Eq. (20)). In analogy to the general expression, Eq. (30), the Ln operators in Eq. (39)
are the n-body components of the desexcitation operator L , which parameterizes the
exact, full CI bra state 〈�0| as follows:

〈�0| = 〈
|L e−T1−T2(40)

and �a1...an
i1...in

are the amplitudes defining Ln . As in the general case, we must require
that the zero-body component of L entering Eq. (40), L0, is a unit operator.
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The compact nature of the biorthogonal MMCC expansions, Eqs. (30) and (39),
as described above, which even in the exact case terminate at the n-body terms with
the n values that are usually much smaller than the number of correlated electrons
N , constitutes one of the most essential differences between the original MMCC
theory, represented by Eqs. (25) and (28), which are full CI-like expansions includ-
ing up to N -body terms, and the biorthogonal MMCC theory. Let us, therefore,
end this subsection by pointing out other differences between Eqs. (25) and (30).
The older MMCC expression for δ(A)0 , Eq. (25), uses the projections on the exact,
full CI, state |�0〉, which we approximate in actual applications by truncating it
at some excitation level [11–14, 24, 33, 34, 39, 48, 49, 120–123], whereas the more
recent biorthogonal MMCC formula, Eq. (30), is expressed in terms of the n-body
components of the desexcitation operator L with m A < n ≤ NA, which we can
estimate by relating them, for example, to the many-body components of the left
eigenstate of the similarity-transformed Hamiltonian, Eq. (11), of the CC theory of
interest [45,46]. Operator L parameterizes the exact bra state 〈�0| via Eq. (31), sub-
ject to the normalization condition defined by Eq. (38), which enables us to eliminate
the overlap denominator term 〈�0|eT (A) |
〉 from Eq. (25). It is the presence of this
overlap denominator term in the original MMCC theory defined by Eq. (25), which
renormalizes the correction δ(A)0 to the CC energy E (A)0 due to higher-than-m A-body
excitations (e.g. triples in the CCSD, m A = 2, case), that often leads to the desired
improvements in the CCSD(T) and other standard CC results for potential energy
surfaces along bond breaking coordinates [11, 24, 34] and biradicals [51, 52]. The
calculation of the overlap denominator terms 〈�0|eT (A) |
〉 for the approximate wave
functions |�0〉 defining various MMCC approximations, such as CR-CCSD(T) or
CR-CCSD(TQ), which are nothing else but the truncated forms of |�0〉 at some exci-
tation level n (n = 3 in the CR-CCSD(T) case and n = 4 in the CR-CCSD(TQ) case;
see section 2.3), constitutes a small fraction of the total computer effort related to the
determination of approximate corrections δ(A)0 , but usually these denominators intro-
duce small size extensivity errors, estimated at ∼0.5−1% of the correlation energy
(changes in the correlation energy when the reaction pathways are examined) in the
ground-state calculations [12]. The incorporation of the overlap denominator term
〈�0|eT (A) |
〉 into the numerator of Eq. (25) through the use of the suitably chosen
parameterization of the exact bra state 〈�0|, Eq. (31), and the conveniently chosen
normalization of 〈�0|, Eq. (34), as is done in the biorthogonal MMCC formal-
ism [45, 46], has an advantage that at least the basic and most practical ground-state
approximations resulting from the biorthogonal MMCC expansions, Eqs. (30) and
(39), such as the CR-CC(2,3) method proposed in Refs. [45, 46] and discussed in
section 2.3, are rigorously size extensive (see Ref. [46] for a numerical example).
Without going into every detail, we might simply state that the CC bra state 〈�̃(A)0 |,
Eq. (9), and the corresponding ket CC state |�(A)0 〉, Eq. (4), satisfy the biorthonor-
mality relation given by Eq. (10), so that in the exact, full CI, limit the 〈�̃(A)0 | bra
state becomes the renormalized form of the ket state |�(A)0 〉. This is reflected in
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the normalization of the exact bra state 〈�0|, Eq. (34), used in the biorthogonal
MMCC theory, which should be contrasted with the fact that, in general,
〈�(A)0 |�(A)0 〉 �= 1 for |�(A)0 〉 defined by Eq. (4). The more precise mathemati-
cal argument that shows how the overlap denominator terms 〈�0|eT (A) |
〉 can be
absorbed by the numerator of Eq. (25), resulting in the biorthogonal MMCC expan-
sion, Eq. (30), in which the many-body components of the CC wave operator eT (A) ,
i.e. the Cn−k(m A) terms entering Eq. (25), are simultaneously eliminated through
a suitable resummation procedure, will be discussed in the future work [169]. It
is also worth mentioning that the fact that the Cn−k(m A) terms entering Eq. (25),
which appear at a given Mk(m A) term in Eq. (25) and are no longer present in
Eq. (30) since they are properly summed up to all orders, has a positive effect
on the accuracy of the CR-CC(2,3) calculations, when we compare them with the
corresponding CR-CCSD(T) calculations. Indeed, the L3 M3(2) term defining the
CR-CC(2,3) triples correction (see section 2.3) is essentially equivalent to the sum
of all Cn−3(m A)M3(2) (n = 3, 4, . . .) contributions in Eq. (28), including M3(2),
T1 M3(2), (T2+ 1

2 T 2
1 )M3(2), etc. The CR-CCSD(T) approximation uses only the bare

M3(2) component. Thus, in addition to restoring size extensivity, the CR-CC(2,3)
approach provides improvements in the CR-CCSD(T) results [45, 46, 48]. This
interesting feature will be discussed in detail in future work [169].

2.3. Renormalized coupled-cluster approaches: CR-CCSD(T),
CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q

There are two issues that have to be addressed before one can use Eqs. (25) or (28) in
practical calculations. First of all, the exact MMCC corrections δ(A)0 and δ(CCSD)

0 , Eqs.
(25) and (28), respectively, have the form of long many-body expansions involving
all n-tuply excited configurations with n = m A + 1, . . . , N , where N is the number
of correlated electrons in a system. Thus, in order to propose the computationally
inexpensive MMCC methods, we have to truncate the many-body expansions for δ(A)0
or δ(CCSD)

0 at some, preferably low, excitation level m B . This leads to the so-called
MMCC(m A,m B) schemes [11–15,24,33,34,39,48,120,121]. The CR-CCSD(T) and
CR-CCSD(TQ) methods [11–14,24,33,34], reviewed and tested in this work, are the
MMCC(m A,m B) schemes with m A = 2 and m B = 3 (the CR-CCSD(T) case) or
4 (the CR-CCSD(TQ) case). Second of all, the wave function |�0〉 that enters the
exact Eqs. (25) or (28) is a full CI ground state, which we usually do not know (if we
knew the exact |�0〉 state, we would not have to perform any calculations!). Thus,
in order to propose the computationally tractable approaches based on the MMCC
theory defined by Eqs. (25) and (28), we must approximate |�0〉 in some way as
well. The CR-CCSD(T) and CR-CCSD(TQ) methods employ the low-order MBPT-
like expressions to define |�0〉 [11–14, 24, 33, 34].

Similar remarks apply to practical computational schemes, such as CR-CC(2,3),
based on the biorthogonal MMCC theory, as defined by Eqs. (30) and (39). In this
case, to avoid the calculation of the entire set of moments of CC equations for a given
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CC approximation A, which in the case of correcting the CCSD energy by Eq. (39)
includes up to the hextuply excited moments M

i jklmn
abcde f (2), it may be prudent to trun-

cate Eqs. (30) or (39) at some lower-order moments, such as M
i jk
abc(2) or M

i jkl
abcd(2).

Truncation of Eq. (30) at terms containing moments M
i1...in
a1...an (m A) with n = m B

leads to the biorthogonal analogs of the MMCC(m A,m B) schemes, designated as the
MMCC(m A,m B)L approximations [45, 46, 48]. The CR-CC(2,3) approach of Refs.
[45, 46] is an example of the MMCC(m A,m B)L truncation scheme with m A = 2
and m B = 3. The second issue that needs to be addressed in all biorthogonal MMCC
calculations is that we do not know the exact L operators that define the full CI wave
functions |�0〉 through Eqs. (31) or (40) and that enter Eqs. (30) or (39) for δ(A)0 or
δ
(CCSD)
0 , respectively. Thus, we must use some approximate forms of the relevant

many-body components of L that enter the MMCC(m A,m B)L energy expressions.
In the CR-CC(2,3) and other CR-CC(m A,m B) approaches [45, 46], we use the left
eigenstates of the similarity-transformed Hamiltonian H̄ (A), i.e. the 〈
|L(A) states
generated by the desexcitation operator L(A), Eq. (11), obtained by solving the left
CC problem, Eq. (14), to construct an approximate form of δ(A)0 or δ(CCSD)

0 .
Let us begin with the MMCC(m A,m B) schemes and the resulting CR-CCSD(T)

and CR-CCSD(TQ) approximations. In all MMCC(m A,m B) methods, we enforce
the CI-like truncation of the complete many-body expansion for δ(A)0 , Eq. (25),
by limiting ourselves to wave functions |�0〉 in that do not contain higher-than-
m B-tuply excited components relative to |
〉. The resulting MMCC(m A,m B)
energies, E0(m A,m B), are given by the following expression [11–15, 24, 33, 34,
39, 48, 120, 121]:

E0(m A,m B) = E (A)0 + δ0(m A,m B),(41)

where E (A)0 is the energy obtained with the CC method A and

δ0(m A,m B) =
m B∑

n=m A+1

n∑

k=m A+1

〈�0|Cn−k(m A)Mk(m A)|
〉/〈�0|eT (A) |
〉(42)

is the relevant MMCC correction. The non-zero corrections δ0(m A,m B) are obtained
only when m B > m A. When m B = N and when |�0〉 is the exact ground state,
the MMCC(m A,m B) energy E0(m A,m B) becomes equivalent to the exact, full CI,
energy.

In this article, we focus on the MMCC(m A,m B) schemes with m A = 2, which
can be used to correct the CCSD energy. Two truncation schemes of this type are
particularly useful, namely, MMCC(2,3), which results in the CR-CCSD(T) method,
and MMCC(2,4), which leads to the CR-CCSD(TQ),x (x = a, b) approximations.
In the MMCC(2,3) and MMCC(2,4) approaches, we add the relevant energy correc-
tions, δ0(2, 3) and δ0(2, 4), respectively, to the CCSD energy E (CCSD)

0 to obtain the
following total energies [11–15, 24, 33, 34, 39, 48, 120, 121]:

E0(2, 3) = E (CCSD)
0 + 〈�0|M3(2)|
〉/〈�0|eT1+T2 |
〉,(43)
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E0(2, 4) = E (CCSD)
0 + 〈�0|{M3(2)+ [M4(2)+ T1 M3(2)]}|
〉/

〈�0|eT1+T2 |
〉 ,(44)

where M3(2) and M4(2) are defined by Eq. (29). The MMCC(2,3) approach requires
that we determine moments M

i jk
abc(2), which correspond to projections of the

CCSD equations on triply excited determinants |
abc
i jk 〉 (Eq. (20) with n = 3). The

MMCC(2,4) approach requires that we determine moments M
i jk
abc(2) and M

i jkl
abcd(2).

The latter moments represent the projections of the CCSD equations on quadruply
excited determinants |
abcd

i jkl 〉 (Eq. (20) with n = 4). Assuming that the Hamiltonian
does not contain higher-than-two-body interactions, we can write the following,
relatively simple, expressions for moments M

i jk
abc(2) and M

i jkl
abcd(2), in terms of the

T1 and T2 clusters (cf. Eq. (20)):

M
i jk
abc(2)=〈
abc

i jk |[HN (T2+T1T2+ 1
2 T 2

2 + 1
2 T 2

1 T2+ 1
2 T1T 2

2 + 1
6 T 3

1 T2)]C |
〉,(45)

M
i jkl
abcd(2) = 〈
abcd

i jkl |[HN (
1
2 T 2

2 + 1
2 T1T 2

2 + 1
6 T 3

2 + 1
4 T 2

1 T 2
2 )]C |
〉,(46)

where HN = H − 〈
|H |
〉 is the Hamiltonian in the normal-ordered form.
Equations (43) and (44) provide a formal basis for designing the CR-CCSD(T) and

CR-CCSD(TQ),x (x = a, b) approximations. The CR-CCSD(T) method is an exam-
ple of the MMCC(2,3) approach, in which the wave function |�0〉 entering Eq. (43)
is replaced by the expression, which is reminiscent of the MBPT(2)[SDT] wave
function (recall that the second-order MBPT wave function is the lowest-order wave
function that provides information about triply excited clusters). This expression is
[11–14, 24, 33, 34]

|�(CR-CCSD(T))
0 〉 = (1 + T1 + T2 + T [2]

3 + Z3)|
〉,(47)

where T1 and T2 are the singly and doubly excited clusters obtained in the CCSD
calculations, the

T [2]
3 |
〉 = R(3)0 (VN T2)C |
〉(48)

term is an approximation of the connected triples (T3) contribution, which is correct
through second order, and

Z3|
〉 = R(3)0 VN T1|
〉(49)

is the disconnected triples correction, which is responsible for the difference between
the [T] and (T) triples corrections defining the standard CCSD[T] and CCSD(T)
methods. We use the notation, in which R(3)0 designates the three-body component of
the MBPT reduced resolvent and VN is the two-body part of HN . After replacing the
wave function |�0〉 in the MMCC(2,3) energy formula, Eq. (43), by |�(CR-CCSD(T))

0 〉,
Eq. (47), we obtain the following compact and computationally convenient expres-
sion for the CR-CCSD(T) energy [12–14]:

E (CR-CCSD(T))
0 = E (CCSD)

0 + N (CR(T))/D(T),(50)
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where

N (CR(T)) = 〈�(CR-CCSD(T))
0 |M3(2)|
〉 = 〈
|(T [2]

3 + Z3)
† M3(2)|
〉(51)

and

D(T) = 〈�(CR-CCSD(T))
0 |eT1+T2 |
〉

= 1 + 〈
|T †
1 T1|
〉 + 〈
|T †

2

(
T2 + 1

2 T 2
1

)
|
〉

+ 〈
|(T [2]
3 + Z3)

†(T1T2 + 1
6 T 3

1 )|
〉.(52)

The above equations allow us to see that the CR-CCSD(T) approach reduces to
the standard CCSD(T) method, when the overlap denominator D(T) in Eq. (50) is
replaced by 1 and moments M

i jk
abc(2) that enter Eq. (51) are replaced by the lead term

〈
abc
i jk |(VN T2)C |
〉 (cf. Eq. (45)). Indeed, by performing the above simplifications in

Eq. (50), we obtain

E (CCSD(T))
0 = E (CCSD)

0 + 〈
|(T [2]
3 + Z3)

†(VN T2)C |
〉,(53)

which is the well-known formula for the CCSD(T) energy [19]. As explained in
Refs. [11, 34], the approximation of the D(T) denominator by 1 can be viewed as
a justified step from the point of view of MBPT, since D(T) equals 1 plus terms
which are at least of the second order in the perturbation VN (see Eq. (52); if we
ignore 1, the lowest-order term in Eq. (52) is 〈
|T †

2 T2|
〉; since T2 contains the
first-order contributions in VN , 〈
|T †

2 T2|
〉 is at least of the second order). One
can, in fact, expect that for the closed-shell molecules at or near their equilibrium
geometries, where the MBPT series usually converges and T1 and T2 amplitudes are
small, the D(T) denominator, Eq. (52), defining the CR-CCSD(T) approach, is very
close to 1. This is what we observe in actual calculations if the number of electrons
in a system is not too large [12]. The situation changes when chemical bonds are
stretched or broken and when the biradical systems are examined. In the region of
stretched nuclear geometries and in the region of a significant increase of biradical
character, where the MBPT series is usually strongly divergent, the D(T) denomi-
nator, Eq. (52), can be significantly greater than 1 (cf., e.g. Refs. [11, 24, 34, 51]).
For example, when a single bond is broken, the leading T2 cluster amplitude is often
close to −1. Thus, assuming that other amplitudes are small, the D(T) denominator
becomes close to 1 + 〈
|T †

2 T2|
〉 ≈ 1 + (−1) × (−1) = 2, damping the exces-
sively negative triples correction of CCSD(T) by a factor of ≈2 (in reality, this factor
will be somewhat greater than 2, since other T2 and T1 amplitudes are not zero [34]).
This increase in the value of D(T), as one proceeds from the closed-shell region of
the potential energy surface to the bond breaking or biradical region, is the main
reason for the excellent performance of the CR-CCSD(T) method in improving the
poor CCSD(T) results in cases of large non-dynamical correlation effects. The over-
lap of the |�CR-CCSD(T)

0 〉 and CCSD wave functions, defining the denominator D(T),
plays a role of a natural damping factor, which renormalizes the excessively large
and, thus, completely unphysical values of the non-iterative triples corrections of
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CCSD(T) at larger internuclear separations and in the biradical regions of potential
energy surfaces. Because of the use of intermediate normalization, no such denomi-
nators are present in the conventional CCSD(T) theory, resulting in the pathological
description of potential energy surfaces in the bond breaking and biradical regions
(cf. Refs. [8, 11–15, 24–58]; see, also, the next section).

The idea of renormalizing the CCSD(T) method via the MMCC formal-
ism, as described above, can be easily extended to the CCSD(TQ) case. The
resulting CR-CCSD(TQ) approaches are examples of the MMCC(2,4) scheme,
defined by Eq. (44), in which we improve the results of the CCSD calculations
by adding the non-iterative corrections δ0(2, 4), defined in terms of moments
M

i jk
abc(2) and M

i jkl
abcd(2), to the CCSD energies. Two variants of the CR-CCSD(TQ)

method, labeled by the extra letters “a” and “b”, are particularly useful. The
CR-CCSD(TQ),a and CR-CCSD(TQ),b energies are calculated in the following
manner [11–14, 24, 33, 34]:

E (CR-CCSD(TQ),x)
0 = E (CCSD)

0 + 〈�(CR-CCSD(TQ),x)
0 |{M3(2)+ [T1 M3(2)

+ M4(2)]}|
〉/〈�(CR-CCSD(TQ),x)
0 |eT1+T2 |
〉,(54)

where x = a or b and

|�(CR-CCSD(TQ),a)
0 〉 = |�(CR-CCSD(T))

0 〉 + 1
2 T2T (1)2 |
〉(55)

and

|�(CR-CCSD(TQ),b)
0 〉 = |�(CR-CCSD(T))

0 〉 + 1
2 T 2

2 |
〉(56)

are the wave functions |�0〉 used to define the relevant MMCC(2,4) energy
corrections, with T (1)2 representing the first-order MBPT estimate of the T2 clus-
ter and |�(CR-CCSD(T))

0 〉 given by Eq. (47). In analogy to |�(CR-CCSD(T))
0 〉, the wave

functions |�(CR-CCSD(TQ),a)
0 〉 and |�(CR-CCSD(TQ),b)

0 〉, Eqs. (55) and (56), respec-
tively, are the MBPT(2)-like expressions, obtained by augmenting |�(CR-CCSD(T))

0 〉
that defines the CR-CCSD(T) approach by the lowest-order contributions due to
quadruple excitations. As in the case of the CR-CCSD(T) method, we can rewrite
the above expressions for the CR-CCSD(TQ),a and CR-CCSD(TQ),b energies in the
computationally convenient, compact form, namely [12–14],

E (CR-CCSD(TQ),x)
0 = E (CCSD)

0 + N (CR(TQ),x)/D(TQ),x (x = a, b),(57)

where

N (CR(TQ),a) = N (CR(T)) + 1
2 〈
|T †

2 (T
(1)
2 )†[T1 M3(2)+ M4(2)]|
〉,(58)

N (CR(TQ),b) = N (CR(T)) + 1
2 〈
|(T †

2 )
2[T1 M3(2)+ M4(2)]|
〉,(59)

D(TQ),a = D(T) + 1
2 〈
|T †

2 (T
(1)
2 )†( 1

2 T 2
2 + 1

2 T 2
1 T2 + 1

24 T 4
1 )|
〉,(60)

D(TQ),b = D(T) + 1
2 〈
|(T †

2 )
2( 1

2 T 2
2 + 1

2 T 2
1 T2 + 1

24 T 4
1 )|
〉,(61)
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with N (CR(T)) and D(T) defined by Eqs. (51) and (52), respectively. In analogy to the
CR-CCSD(T) approach, the CR-CCSD(TQ),a and CR-CCSD(TQ),b methods reduce
to the standard approximations of the CCSD(TQ) type, such as the CCSD(TQf)
method of Ref. [23] or the closely related CCSD(TQ),b approach [24, 36], if we
simplify or slightly modify the expressions for the numerators N (CR(TQ),a) and
N (CR(TQ),b), and replace the denominators D(TQ),a and D(TQ),b by 1. For example,
we obtain the CCSD(TQ),b energy expression [24, 36],

E (CCSD(TQ),b)
0 = E (CCSD)

0 + 〈
|(T [2]
3 + Z3)

†(VN T2)C |
〉
+ 1

2 〈
|(T †
2 )

2[VN (
1
2 T 2

2 + T [2]
3 )]C |
〉,(62)

by replacing moments M
i jk
abc(2) and M

i jkl
abcd(2), which enter the CR-CCSD(TQ),b

energy, Eq. (57), by 〈
abc
i jk |(VN T2)C |
〉 and 〈
abcd

i jkl |[VN (
1
2 T 2

2 + T [2]
3 )]C |
〉,

respectively, where T [2]
3 is defined by Eq. (48), while approximating D(TQ),b

by 1 and neglecting the T1 M3(2) term in Eq. (59). Again, the key difference
between the standard methods of the CCSD(TQ) type and the CR-CCSD(TQ),x
approximations is the presence of the D(TQ),x overlap denominators in Eq. (57),
which increase their values much above 1 in the bond breaking and biradical
regions and damp, in this way, the excessively large corrections due to triples
and quadruples that lead to pathological shapes of potential energy surfaces
in situations involving large non-dynamical correlation effects (cf., e.g. Refs.
[12–14, 24, 32–37, 40, 43, 44, 58]).

As already mentioned, the CR-CCSD(T) and CR-CCSD(TQ) methods provide
great improvements in the poor description of bond breaking and biradicals by the
CCSD(T) and CCSD(TQ) methods, but they do it at the expense of slightly vio-
lating the rigorous size extensivity of CC theory. Moreover, the overlap denomina-
tors 〈�0|eT1+T2 |
〉, which enter the CR-CCSD(T) and CR-CCSD(TQ) expressions,
may somewhat overdamp the corrections due to triples or triples and quadruples in
the equilibrium region, when compared to the standard CCSD(T) and CCSD(TQ)
approaches, when the number of correlated electrons in a system becomes large [12].
Although none of these features of the CR-CCSD(T) and CR-CCSD(TQ) meth-
ods create serious problems in molecular applications, even when the number of
correlated electrons in a system is on the order of 50–80 (cf., e.g. Refs. [52, 53]
for the successful, large scale applications of the CR-CCSD(T) and CR-CCSD(TQ)
approaches to systems with up to 80 correlated electrons), which is a consequence
of the facts that bulk of the correlation energy, represented by the CCSD part of the
CR-CCSD(T) and CR-CCSD(TQ) energies, is calculated in a size extensive man-
ner and the triples or the triples and quadruples corrections of the CR-CCSD(T) and
CR-CCSD(TQ) methods are constructed with the T1 and T2 clusters originating from
the strictly size extensive CCSD calculations, it is useful to contemplate alternative
formulations of renormalized CC methods, which are rigorously size extensive and
which do not reduce the accuracy of the standard CCSD(T) and CCSD(TQ) calcu-
lations near the equilibrium geometries of larger systems, where renormalization is
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not necessary. The biorthogonal MMCC formalism, as defined by Eqs. (30) and (39),
and the aforementioned MMCC(m A,m B)L truncation schemes, which result in the
family of the CR-CC(m A,m B) methods including CR-CC(2,3), provide such alter-
natives.

In the MMCC(m A,m B)L approximations and the ensuing CR-CC(m A,m B)
approaches, we calculate the total ground-state energy as [45, 46, 48]

E0(m A,m B)L = E (A)0 + δ0(m A,m B)L ,(63)

where

δ0(m A,m B)L =
m B∑

n=m A+1

〈
|Ln Mn(m A)|
〉

=
m B∑

n=m A+1

∑

i1 < · · · < in
a1 < · · · < an

�
a1...an
i1...in

Mi1...in
a1...an

(m A)(64)

is the relevant correction to the CC energy E (A)0 due to higher-than-m A-tuply excited
clusters. The excitation level m B satisfies the condition m A < m B ≤ NA, since NA
is the highest value of n for which moments M

i1...in
a1...an (m A) are nonzero and m B must

be greater than m A to obtain a non-zero value of δ0(m A,m B)L . As explained earlier,
in the CCSD, m A = 2, case, NA = 6, which means that the highest MMCC(2,m B)
scheme is MMCC(2,6).

An example of the MMCC(m A,m B)L method is the MMCC(2,3)L approxima-
tion, in which, in analogy to the MMCC(2,3) truncation scheme defined by Eq. (43),
we correct the results of the CCSD calculations by adding the triples correction

δ0(2, 3)L =
∑

i < j < k
a < b < c

�abc
i jk M

i jk
abc(2)(65)

to the CCSD energy E (CCSD)
0 . As in the case of MMCC(2,3), the only moments that

are needed in the MMCC(2,3)L calculations are the CCSD moments M
i jk
abc(2) cor-

responding to triple excitations, which one can calculate using Eq. (45). In the more
complete MMCC(2,4)L scheme, which might be regarded as a biorthogonal analog
of the MMCC(2,4) approach defined by Eq. (44), we add the following correction
due to the combined effect of triples and quadruples,

δ0(2, 4)L =
∑

i < j < k
a < b < c

�abc
i jk M

i jk
abc(2)+

∑

i < j < k < l
a < b < c < d

�abcd
i jkl M

i jkl
abcd(2),(66)

to the CCSD energy.
In analogy to the CR-CCSD(T) and CR-CCSD(TQ) methods, in order to propose

practical computational methods, based on the MMCC(m A,m B)L truncation
schemes such as MMCC(2,3)L , we have to come up with reasonably accurate
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approximations for the amplitudes �a1...an
i1...in

with n = m A + 1, . . . ,m B , which enter
Eq. (64). These amplitudes define the many-body components of the desexcitation
operator L which generates the similarity-transformed form of the exact, full CI,
bra state 〈�0| via Eq. (31). The following observation is useful in this context. The
operator L or, more precisely, the A part of L , i.e. L (A), defined by Eq. (36),
is similar to the desexcitation operator L(A), Eq. (11), which defines the left CC
state of method A, 〈�̃(A)0 |, Eq. (9). For example, both operators satisfy the same
normalization condition, given by Eq. (10) for L(A) and Eq. (38) for L (A). Clearly,
they do not satisfy identical systems of equations, but there are similarities between
systems of equations defining L and L(A). Indeed, the exact �a1...an

i1...in
amplitudes

defining the operator L and, through Eq. (31), the full CI bra state 〈�0|, satisfy the
left eigenvalue equation involving H̄ (A),

〈
|L H̄ (A) = E0 〈
|L ,(67)

which is equivalent to the adjoint form of the Schrödinger equation, 〈�0|H =
E0 〈�0|, in the entire N -electron Hilbert space if 〈
|L e−T (A) is the exact bra state
〈�0|. The λa1...an

i1...in
amplitudes, which define the�(A) component of L(A), are obtained

by solving the left ground-state eigenvalue problem involving H̄ (A), Eq. (14), which
is similar to Eq. (67), although we must immediately point out that the left eigenvalue
problem for �(A) or L(A) is an eigenvalue problem in the subspace of the N -electron
Hilbert space spanned by the reference determinant |
〉 and the excited determinants
|
a1...an

i1...in
〉 with n = 1, . . . ,m A. Thus, only when m A = N , the L(A) and L (A) opera-

tors become identical and satisfy the same equations. There is, however, a similarity
between the A part of the exact operator L , i.e. L (A), Eq. (36), and the desexcita-
tion operator L(A), Eq. (11), defining the left CC state of method A, which provides
us with a basis for obtaining the approximate values of the n-body components of
L with n > m A that define the remainder of L (A), i.e. δL (A) (cf. Eq. (37)), and,
ultimately, the energy correction δ(A)0 , Eq. (30). This observation is exploited in for-
mulating the CR-CC(2,3) and other CR-CC(m A,m B) approaches [45, 46].

We begin with the CR-CC(2,3) method. The CR-CC(2,3) method is a special
case of the MMCC(2,3)L truncation scheme, in which the �abc

i jk amplitudes enter-
ing Eq. (65) are approximated by [45, 46, 48]

�̃abc
i jk (CCSD) = 〈
|L(CCSD) H̄ (CCSD)|
abc

i jk 〉/Di jk
abc(CCSD)

= 〈
|�(CCSD) H̄ (CCSD)|
abc
i jk 〉/Di jk

abc(CCSD)

= 〈
|[(�1 H̄ (CCSD)
2 )DC + (�2 H̄ (CCSD)

1 )DC

+ (�2 H̄ (CCSD)
2 )C ]|
abc

i jk 〉/Di jk
abc(CCSD),(68)

where �1 and �2 are the one- and two-body components of the “lambda” operator
�(CCSD) of the analytic gradient CCSD theory, obtained by solving Eq. (14) in which
m A = 2, L(CCSD) = 1 +�(CCSD), and
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Di jk
abc(CCSD) = E (CCSD)

0 − 〈
abc
i jk |H̄ (CCSD)|
abc

i jk 〉
= − 〈
abc

i jk |H̄ (CCSD)
1 |
abc

i jk 〉
− 〈
abc

i jk |H̄ (CCSD)
2 |
abc

i jk 〉
− 〈
abc

i jk |H̄ (CCSD)
3 |
abc

i jk 〉,(69)

where H̄ (CCSD)
1 , H̄ (CCSD)

2 , and H̄ (CCSD)
3 represent the one, two-, and three-body com-

ponents of the similarity-transformed Hamiltonian H̄ (CCSD) of the CCSD theory,
Eq. (21), and subscript DC refers to the disconnected part of the corresponding oper-
ator product. The final formula for the ground-state CR-CC(2,3) energy is [45,46,48]
(cf. Eqs. (63) and (64) for m A = 2 and m B = 3)

E (CR-CC(2,3))
0 = E (CCSD)

0 + δ(CR(T)L )
0 (CCSD),(70)

where the triples correction δ(CR(T)L )
0 (CCSD) is calculated as (cf. Eq. (65))

δ
(CR(T)L )
0 (CCSD) =

∑

i < j < k
a < b < c

�̃abc
i jk (CCSD)M

i jk
abc(2),(71)

with moments M
i jk
abc(2) and amplitudes �̃abc

i jk (CCSD) given by Eqs. (45) and (68),
respectively.

We can extend the above expressions to higher-order CR-CC(m A,m B) approaches
[45, 46, 169], such as CR-CC(2,4), but since we have not implemented the
CR-CC(m A,m B) methods other than CR-CC(2,3), we only make a few remarks
about how to design such methods in general and what are the remaining open
issues in this area that will have to be addressed in the future. This will also
help us to explain where the above equations for �̃abc

i jk (CCSD), which enter the
CR-CC(2,3) energy formula, come from. The basic idea behind all CR-CC(m A,m B)
approaches is to determine the approximate values of the relevant amplitudes
�

a1...an
i1...in

, n = m A + 1, . . . ,m B (�abc
i jk in the CR-CC(2,3) case), which enter the

MMCC(m A,m B)L correction δ0(m A,m B)L , Eq. (64), by considering the exact
form of the similarity-transformed bra Schrödinger equation, Eq. (67), which we
right-project on the excited determinants |
a1...an

i1...in
〉 corresponding to the amplitudes

�
a1...an
i1...in

with n = m A + 1, . . . ,m B that we want to determine. Next, based on the
aforementioned similarity between the A part of the exact operator L , i.e. L (A),
Eq. (36), and the desexcitation operator L(A), Eq. (11), defining the left CC state of
method A, we approximate the exact operator L in the resulting equation as follows:

L ≈ L(A) +
m B∑

n=m A+1

L̃ (A)
n ,(72)

where L(A), defined by Eq. (11), is obtained by solving the linear system of equations,
Eq. (14), and
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L̃ (A)
n =

∑

i1 < · · · < in
a1 < · · · < an

�̃
a1...an
i1...in

(A) ai1 · · · ain aan · · · aa1 ,(73)

where n = m A + 1, . . . ,m B , are the approximate n-body components of L that
we want to determine to ultimately calculate the energy correction δ0(m A,m B)L ,
Eq. (64). This leads to the following system of equations for the approximate
�̃

a1...an
i1...in

(A) amplitudes that one might eventually use in the CR-CC(m A,m B) calcula-
tions [45, 46]:

〈
|L(A) H̄ (A)|
a1...an
i1...in

〉+
m B∑

m=m A+1

〈
|L̃ (A)
m H̄ (A)|
a1...an

i1...in
〉 = E0 �̃

a1...an
i1...in

(A),(74)

where n = m A + 1, . . . ,m B . In order to solve this system, while keeping the costs
of calculations at the low level, one has to introduce additional approximations. One
possibility is to rewrite Eq. (74) in the following manner [169]:

〈
|L(A) H̄ (A)|
a1...an
i1...in

〉 +
m B∑

m=m A+1 (m �=n)

〈
|L̃ (A)
m H̄ (A)|
a1...an

i1...in
〉

+ 〈
|L̃ (A)
n H̄ (A)|
a1...an

i1...in
〉 = E0 �̃

a1...an
i1...in

(A),(75)

where we separated the m = n term in the summation over m, which corresponds
to the many-body rank of the amplitude �̃a1...an

i1...in
(A) on the right-hand side of

Eq. (74), from the rest of the summation over m. By replacing the expensive
〈
|L̃ (A)

n H̄ (A)|
a1...an
i1...in

〉 term on the left-hand side of Eq. (75) by its diagonal part,
�̃

a1...an
i1...in

(A) 〈
a1...an
i1...in

|H̄ (A)|
a1...an
i1...in

〉, and by approximating the exact energy E0 in the

resulting equation by the CC energy of method A, i.e. E (A)0 , we obtain the follow-
ing simplified form of Eq. (75), which may be useful in actual CR-CC(m A,m B)
calculations [169]:

〈
|L(A) H̄ (A)|
a1...an
i1...in

〉 +
m B∑

m=m A+1 (m �=n)

〈
|L̃ (A)
m H̄ (A)|
a1...an

i1...in
〉

= Di1...in
a1...an

(A) �̃a1...an
i1...in

(A),(76)

where

Di1...in
a1...an

(A) = E (A)0 − 〈
a1...an
i1...in

|H̄ (A)|
a1...an
i1...in

〉.(77)

The amplitudes �̃a1...an
i1...in

(A), n = m A + 1, . . . ,m B , obtained by solving Eq. (77),
can be used to define the CR-CC(m A,m B) energies by replacing the exact �a1...an

i1...in
amplitudes in the MMCC(m A,m B)L correction δ0(m A,m B)L , Eq. (64), by their
approximate �̃a1...an

i1...in
(A) counterparts.

The above description provides the general framework for designing the hierar-
chy of CR-CC(m A,m B) approaches, but there are various details which will require
future study. For example, the above system of equations for �̃a1...an

i1...in
(A), Eq. (76),



88 Piotr Piecuch et al.

has an advantage in that it eliminates the main problem of having to deal with the
most expensive blocks of the similarity-transformed Hamiltonian along the diago-
nal (e.g. the triples–triples, quadruples–quadruples, etc. blocks of H̄ (CCSD)), which
we approximated in Eq. (76) by the diagonal matrix elements 〈
a1...an

i1...in
|H̄ (A)|
a1...an

i1...in
〉

entering Di1...in
a1...an (A), but one has to propose now an efficient computational procedure

how to handle the off-diagonal terms 〈
|L̃ (A)
m H̄ (A)|
a1...an

i1...in
〉 with m �= n in Eq. (76),

which couple different excitations from the range of m values m = m A + 1, . . . ,m B
(for example, triples and quadruples in the CR-CC(2,4) scheme). In the simplest
approach, suggested in Refs. [45, 46], one can ignore the 〈
|L̃ (A)

m H̄ (A)|
a1...an
i1...in

〉
coupling terms with m �= n in Eq. (76) altogether, but our recent numerical exper-
iments indicate that this may not be the best idea if the objective is to obtain the
highest possible accuracy with methods such as CR-CC(2,4), where coupling terms
involving triples and quadruples appear [169]. This is, in fact, understandable, since
triples calculated alone, as is done in the CR-CC(2,3) approach where quadruples are
simply neglected (meaning, decoupled from triples and assumed to be very small),
and triples that are part of the CR-CC(2,4) correction δ0(2, 4), which describes the
combined effect of triples and quadruples, are, generally, different objects (the differ-
ence between them grows as the importance of quadruples increases). We have not yet
solved the problem of the best way of handling the 〈
|L̃ (A)

m H̄ (A)|
a1...an
i1...in

〉 coupling
terms with m �= n in the CR-CC(m A,m B) approaches with m B ≥ m A + 2, including
the CR-CC(2,4) method, so in the following we focus on the CR-CC(2,3) approach
and simpler, a posteriori, ways of correcting the CR-CC(2,3) results for quadruple
excitations using the information provided by the CR-CCSD(TQ) approach.

The good news is that in the CR-CC(2,3) approach and all CR-CC(m A,m B)
methods with m B = m A + 1 the situation is rather straightforward, since the∑m B

m=m A+1 (m �=n)〈
|L̃ (A)
m H̄ (A)|
a1...an

i1...in
〉 coupling term in Eq. (76) is zero in this

case. Thus, in the CR-CC(m A,m A + 1) methods, including CR-CC(2,3), we can
determine the relevant �̃a1...an

i1...in
(A) amplitudes using the equation [45, 46],

�̃
a1...an
i1...in

(A) = 〈
|L(A) H̄ (A)|
a1...an
i1...in

〉/Di1...in
a1...an

(A),(78)

where L(A) is defined by Eq. (11) and Di1...in
a1...an (A) is given by Eq. (77). One can

immediately recognize that Eq. (68) for the desexcitation amplitudes �̃abc
i jk (CCSD)

entering the CR-CC(2,3) triples energy correction δ(CR(T)L )
0 (CCSD), Eq. (71), is a

special case of Eq. (78), written for m A = 2. This shows how the basic equations
defining the recently proposed CR-CC(2,3) approach emerge from the more general
considerations.

Before discussing different variants of the CR-CC(2,3) method and the CR-CC(2,3)
+Q approach, in which the CR-CC(2,3) energy is corrected for the effect of quadru-
ples, we should mention that the above expression for the amplitudes �̃a1...an

i1...in
(A),

Eq. (78), which is used in the CR-CC(m A,m A +1) calculations, has to be modified if
one of the indices i1, . . . , in or a1, . . . , an corresponds to the orbital which is degen-
erate with some other orbitals. In that case, we should replace Eq. (78) by a more
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elaborate expression in which, instead of simply using the diagonal matrix elements
〈
a1...an

i1...in
|H̄ (A)|
a1...an

i1...in
〉 that enter Di1...in

a1...an (A), one solves a small system of linear
equations, similar to Eq. (76), where all amplitudes �̃a1...an

i1...in
(A) involving indices of

degenerate spin-orbitals are coupled together through the off-diagonal matrix ele-
ments of H̄ (A) involving the n-tuply excited determinants |
a1...an

i1...in
〉 that carry the

indices of degenerate spin-orbitals. This remark applies, in particular, to the formula
for the amplitudes �̃abc

i jk (CCSD), Eq. (68), defining the CR-CC(2,3) energy correction

δ
(CR(T)L )
0 (CCSD), which should be modified in cases of orbital degeneracies. With-

out taking care of this issue, the CR-CC(2,3) energy correction δ(CR(T)L )
0 (CCSD)

and similar corrections defining the CR-CC(m A,m A + 1) energies are no longer
strictly invariant with respect to the rotations among degenerate orbitals. Although
all of our numerous tests indicate that changes in the values of δ(CR(T)L )

0 (CCSD)
due to the rotations among degenerate orbitals do not exceed 0.1 millihartree when
we uncritically use Eq. (68) for all amplitudes �̃abc

i jk (CCSD), it is better (and safer) to

calculate amplitudes �̃abc
i jk (CCSD) involving degenerate orbitals in a different way, by

considering their couplings through the appropriate off-diagonal matrix elements of
the similarity-transformed Hamiltonian, as described above. Clearly, if the molecule
has at most an Abelian symmetry, so that there are no orbital degeneracies, one can
apply Eq. (68) and its generalization, Eq. (78), to all amplitudes �̃abc

i jk (CCSD) and

�̃
a1...an
i1...in

(A), without risking any formal problems.
Equations (68)–(71) describe the most complete variant of the CR-CC(2,3)

approach which, in analogy to some of our earlier publications, such as Refs.
[14, 122, 123], can also be designated by an additional letter D (e.g. CR-CC(2,3),D).
Other variants can be suggested by considering approximate forms of the denom-
inator Di jk

abc(CCSD), Eq. (69) [48]. For example, variant C is obtained by ignor-
ing the last, three-body, term in Eq. (69) and the B variant of CR-CC(2,3)
is obtained by ignoring the last two terms, leaving the one-body contribution
−〈
abc

i jk |H̄ (CCSD)
1 |
abc

i jk 〉 in Di jk
abc(CCSD) only. Finally, variant A of the CR-CC(2,3)

approach is obtained by replacing the denominator Di jk
abc(CCSD), Eq. (69), by the

usual MBPT denominator for triple excitations, (εi + ε j + εk − εa − εb − εc),
where εp’s are the spin-orbital energies. In this paper, we focus on the most complete
variant D, for which we do not use any additional letter, and the simplified variant A,
which we continue to call CR-CC(2,3),A. Similar variants could be introduced for
other CR-CC(m A,m B) approaches.

The CR-CC(2,3) and other CR-CC(m A,m B) methods have several interesting
features. In particular, they reduce to the previously formulated non-iterative
CC methods if we make additional approximations [45, 46]. For example, the
CR-CC(2,3) approach reduces to the CCSD(T) method if we replace the denom-
inator Di jk

abc(CCSD), Eq. (69), in Eq. (68) by the spin-orbital energy difference
(εi + ε j + εk − εa − εb − εc) (as is done in the CR-CC(2,3),A approximation),
neglect the (�2 H̄ (CCSD)

1 )DC term in Eq. (68), which is at least the fourth-order term
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in MBPT if the Hartree-Fock reference is employed, replace the (�1 H̄ (CCSD)
2 )DC and

(�2 H̄ (CCSD)
2 )C terms in the resulting expression, which appear in the third and sec-

ond orders of MBPT, respectively, by (T †
1 VN )DC and (T †

2 VN )C , where T1 and
T2 are obtained in the CCSD calculations, and approximate moment M

i jk
abc(2)

by the lead term 〈
abc
i jk |(VN T2)C |
〉. Thus, the CR-CC(2,3) approach provides a

rigorous justification for the CCSD(T) method (see, e.g. Ref. [170] for a related
discussion). The simplified CR-CC(2,3),A variant of CR-CC(2,3), defined above, is
equivalent to the CCSD(2)T method of Ref. [42]. The higher-order CR-CC(2,4)
approach, in which we add a correction due to triples and quadruples to the
CCSD energy, as in Eq. (66), reduces to the CCSD(2) or CC(2)PT(2) method
of Refs. [42, 171] in a similar manner, if we use Eq. (78) to calculate the rele-
vant �̃abc

i jk (CCSD) and �̃abcd
i jkl (CCSD) amplitudes. The analogous relationships exist

between the CR-CC(2,4) method and the CCSD(2) approach of Refs. [54–57].
Essentially, the CCSD(2)T and CCSD(2) methods of Refs. [42, 54–57, 171] rely on
the Møller–Plesset-type forms of the corresponding denominators Di jk

abc(CCSD) and
Di jkl

abcd(CCSD), respectively, whereas the CR-CC(2,3) and other CR-CC(m A,m B)
schemes discussed here rely on the Epstein–Nesbet-type denominators, such as
Di jk

abc(CCSD), although we could obviously consider alternative forms of these
denominators as well, as implied by the above considerations. Just like CCSD(2)T
and CCSD(2), the CR-CC(2,3) and CR-CC(2,4) methods are rigorously size exten-
sive. This has been illustrated numerically in Ref. [46].

As already pointed out, we have not implemented the CR-CC(2,4) approach
yet and there remain open issues, such as the role of terms that couple triples
and quadruples in a system of equations for the relevant �̃abc

i jk (CCSD) and

�̃abcd
i jkl (CCSD) amplitudes, as defined by Eq. (76), where m A = 2 and m B = 4 (the

〈
|L̃ (CCSD)
4 H̄ (CCSD)|
abc

i jk 〉 and 〈
|L̃ (CCSD)
3 H̄ (CCSD)|
abcd

i jkl 〉 terms in Eq. (76)).
Thus, for the time being, we consider two heuristic models of accounting for con-
nected quadruple excitations, termed CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b), in
which the CR-CC(2,3) energy (the complete CR-CC(2,3),D approximation) is cor-
rected for the effect of quadruples in the following manner:

E (CR-CC(2,3)+Q(a))
0 = E (CR-CC(2,3))

0 +
[

E (CR-CCSD(TQ),a)
0 − E (CR-CCSD(T))

0

]
,(79)

E (CR-CC(2,3)+Q(b))
0 = E (CR-CC(2,3))

0 +
[

E (CR-CCSD(TQ),b)
0 − E (CR-CCSD(T))

0

]
,(80)

where E (CR-CCSD(TQ),a)
0 and E (CR-CCSD(TQ),b)

0 are the CR-CCSD(TQ),a and
CR-CCSD(TQ),b energies, defined by Eq. (57), and E (CR-CCSD(T))

0 is the CR-CCSD
(T) energy, Eq. (50). In other words, we use the difference between the CR-
CCSD(TQ),a or CR-CCSD(TQ),b and CR-CCSD(T) energies to estimate the effect
of quadruples. As shown in the earlier part of this subsection, the CR-CCSD(TQ),a
or CR-CCSD(TQ),b methods are the natural extensions of CR-CCSD(T) to quadru-
ple excitations, so we expect the CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) methods
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to describe the combined effect of triples and quadruples in a reasonable manner.
Since the CR-CCSD(T) and CR-CCSD(TQ) methods are quite robust in the bond
breaking region, the estimate of the effects due to quadruples provided by the
difference between the CR-CCSD(TQ),a or CR-CCSD(TQ),b and CR-CCSD(T)
energies should be quite accurate, even when the internuclear separations become
large. We expect the CR-CC(2,3)+Q(b) method to be somewhat more robust than
the CR-CC(2,3)+Q(a) approach, since the CR-CCSD(TQ),a scheme uses the sim-
plest possible estimate of T2 clusters, originating from the first order of MBPT, in
the corresponding energy expression, whereas the CR-CCSD(TQ),b method relies
on the more accurate values of these clusters obtained in the CCSD calculations
(cf., e.g. Eqs. (55) and (56)).

Before ending this section and discussing the results for the water molecule, let
us make a few remarks about the computer costs characterizing the CR-CCSD(T),
CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q calculations. As already explained,
the CR-CCSD(T) and CR-CC(2,3) approaches are closely related to the standard
CCSD(T) theory. Similarly, the CR-CCSD(TQ) and CR-CC(2,3)+Q methods repre-
sent the renormalized extensions of the standard CCSD(TQ) approximations, such
as CCSD(TQf) [23] and CCSD(TQ),b [24, 36]. These rather simple relationships
between the conventional CCSD(T) and CCSD(TQ) methods and their CR-CC coun-
terparts imply that computer costs of the CR-CC calculations are essentially identical
to the costs of the corresponding standard CC calculations. Thus, in analogy to the
CCSD(T) method, the CR-CCSD(T) and CR-CC(2,3) approaches are n3

on4
u proce-

dures in the non-iterative steps involving triples and n2
on4

u procedures in the iterative
CCSD steps (no and nu are, respectively, the numbers of occupied and unoccupied
orbitals used in the correlated calculations). To be more precise, the cost of calcula-
ting the triples corrections of CR-CCSD(T) and CR-CC(2,3), if we ignore the CCSD
steps, is exactly twice the cost of calculating the triples correction of CCSD(T). The
CR-CC(2,3) method is slightly more expensive than CR-CCSD(T), since in addition
to the iterative n2

on4
u steps of CCSD, one has to use similar steps to obtain the �1

and �2 components of the CCSD “lambda” operator, but the overall costs of the
CR-CC(2,3) and CR-CCSD(T) calculations are similar, particularly that the calcu-
lation of the �1 and �2 components constitutes a rather small fraction of the time
spent on the CCSD iterations for T1 and T2, since �1 and �2 are obtained by solv-
ing a linear system of equations, Eq. (14), using the previously determined matrix
elements of the similarity-transformed Hamiltonian of the CCSD approach. The fact
that one is, so to speak, “forced” to calculate the CCSD “lambda” amplitudes in
the CR-CC(2,3) calculations has an advantage since, in addition to highly accurate
CR-CC(2,3) energies, one gets an immediate access to the first-order reduced density
matrices, calculated at the CCSD level of theory, i.e. [6, 15, 16, 152, 153],

γ
p

q = 〈
|(1 +�1 +�2) a paq |
〉,(81)

where a paq = e−T1−T2 a paq eT1+T2 = (a paq eT1+T2)C , and all kinds of one-
electron properties resulting from these matrices, which are determined using the
T1 and T2 clusters obtained in CCSD calculations and �1 and �2 desexcitation
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operators that define the left CCSD ground state. In analogy to the non-iterative
triples corrections, the cost of the CR-CCSD(TQ) calculations is similar to the cost
of the CCSD(TQf) or CCSD(TQ),b calculations (the CCSD(TQf) and CCSD(TQ),b
methods are n3

on4
u procedures in the triples part and n2

on5
u procedures in steps involv-

ing the T4 cluster contributions). Again, if we put aside the iterative CCSD steps,
the CR-CCSD(TQ),a and CR-CCSD(TQ),b approaches are only twice as expensive
as the conventional CCSD(TQf) and CCSD(TQ),b methods in the steps involving
the non-iterative corrections to the CCSD energy. Thus, one can almost always per-
form the CR-CCSD(T), CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q calcula-
tions if the corresponding CCSD(T) and CCSD(TQ) calculations are affordable. This
is an important remark since, just like CCSD(T) and CCSD(TQ), the CR-CCSD(T),
CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q procedures are more robust in the
bond breaking situations, while being the relatively easy-to-use single-reference pro-
cedures which can be used by experts as well as non-experts. As shown in the next
section, the CR-CC methods, particularly CR-CC(2,3) and CR-CC(2,3)+Q, can com-
pete with the CCSD(T) and CCSD(TQ) methods in the equilibrium region, while
being often as effective as the MRCI(Q) approach when chemical bonds are stretched.

3. NUMERICAL RESULTS: PROBING THE POTENTIAL ENERGY
SURFACE OF THE WATER MOLECULE WITH THE STANDARD
AND RENORMALIZED COUPLED-CLUSTER METHODS

In order to illustrate the performance of the renormalized CC methods discussed in
section 2 and explore the potential benefits of exploiting the recently proposed size
extensive CR-CC(2,3) approach, which will eventually be extended to quadruples via
the CR-CC(2,4) approximation, we performed the CR-CCSD(T), CR-CCSD(TQ),a,
CR-CCSD(TQ),b, CR-CC(2,3),A, CR-CC(2,3) (=CR-CC(2, 3),D), CR-CC(2,3)+
Q(a), and CR-CC(2,3)+Q(b) calculations for the three cuts of the global potential
energy surface of the water molecule. Those cuts are: (i) the dissociation of a
single O–H bond, which correlates with the H(1s 2S) + OH(X 2�) asymptote,
(ii) the simultaneous dissociation of both O–H bonds, which correlates with
the 2H(1s 2S) + O(2p4 3 P) channel, and (iii) the C2v dissociation pathway of
the water molecule into H2(X 1�+

g ) and O(2p4 1 D). In the case of cut (i), one
of the two O–H bonds and the H–O–H angle were kept fixed at their respective
equilibrium values taken from Ref. [139] (Re = 0.95785 Å and αe = 104.501
degree, respectively). In the case of the C2v-symmetric cut (ii), the H–O–H angle α
was kept fixed at its equilibrium value taken from Ref. [139] (αe = 104.501 degree).
In the case of another C2v-symmetric cut, namely cut (iii), we followed the approxi-
mate energy path toward the dissociation of the water molecule into H2(X 1�+

g ) and
O(2p4 1 D), determined using the potential function of Ref. [132] and defined by the
coordinate Y , which is the distance between the O nucleus and the line connecting
the H nuclei, and the properly optimized H–O–H angle α [143,144]. The equilibrium
values of Y and α are Ye = 0.58641 Å and αe = 104.501 degree. The results of the
CR-CC calculations are compared with the results obtained with the conventional
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CCSD, CCSD(T), and CCSD(TQ),b methods, which are very well suited for the
equilibrium region but are expected to face considerable difficulties when water
starts to dissociate into open-shell fragments, and with the results obtained with
the MRCI(Q) approach, which is capable of providing an accurate global potential
energy surface, including all three dissociation channels listed above.

We also compare the results of various CR-CC and MRCI(Q) calculations with the
highly accurate global potential energy surface of water resulting from the use of the
ES approach of Varandas [132]. The ES surface of Ref. [132] was obtained by com-
bining and further refining the many-body expansion [172] potential of Murrell and
Carter [145] and the polynomial potential form of Polyansky, Jensen, and Tennyson
[146]. The ES surface has a spectroscopic or nearly spectroscopic (∼1−10 cm−1)
accuracy up to about 19000 cm−1 above the global minimum and remains quite accu-
rate at higher energies. With the proper treatment of long-range forces and other
suitable refinements, the ES potential of Ref. [132] has an overall double many-
body expansion [173–176] quality, making it very useful to study reaction dynamics
involving water. In particular, the ES potential of Ref. [132] used in this work, and its
multi-sheeted extensions [148, 149], have been exploited in a number of dynamical
calculations, including, for example, the successful rate constant and cross-section
calculations for the O(2p4 1 D) + H2(X 1�+

g ) reaction [143, 144]. As mentioned in
the Introduction, the O(2p4 1 D)+ H2(X 1�+

g )→ OH(X 2�)+ H(1s 2S) reaction,
which takes place on the ground-state potential energy surface of water, is known to
play a significant role in combustion and atmospheric chemistry. Two of the above
cuts (cut (i) and (iii)) are directly related to this process. In addition to testing the CR-
CC (also, MRCI(Q)) methods, by comparing the best CR-CC and MRCI(Q) data with
the energies provided by the ES potential function, we suggest ways of improving the
ES potential, particularly in intermediate and selected higher-energy regions where
precise or well understood spectroscopic data are not always available and where the
best CR-CC and MRCI(Q) calculations almost perfectly agree with each other.

All CC and CR-CC calculations were performed using the spin- and symmetry-
adapted restricted Hartree-Fock (RHF) determinant as a reference. The MRCI(Q)
calculations were performed using the usual multi-determinantal reference obtained
in the single-root complete-active-space self-consistent-field (CASSCF) calculations.
The active space used in the CASSCF and subsequent MRCI(Q) calculations con-
sisted of six valence orbitals that correlate with the 1s shells of the hydrogen atoms
and the 2s and 2p shells of the oxygen atom. In analogy to active orbitals, the
lowest-energy molecular orbital (∼1s orbital of oxygen) was optimized in CASSCF
calculations, but unlike active orbitals that change occupancies it remained doubly
occupied in all reference determinants defining the CASSCF and MRCI(Q) wave
functions. Since our ab initio results are compared with the spectroscopically accu-
rate ES surface of Ref. [132] and since it is well known that core electrons can
significantly contribute to the many-electron correlation effects and affect energy
differences between different points on the potential energy surface, including the
water potential [139, 147, 177], all electrons were correlated in the CC, CR-CC,
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and CASSCF-based MRCI(Q) calculations. This distinguishes our calculations from
the earlier calculations reported, for example, in Refs. [139,177], in which the effects
of core electrons were added as the a posteriori corrections to the results of valence-
electron calculations.

The calculations were performed with the aug-cc-pCVXZ basis sets with X =
D,T,Q [130, 131], in which additional tight functions are added to the valence
basis sets of the aug-cc-pVXZ quality to improve the description of core and core-
valence correlation effects. The CCSD, CCSD(T), CCSD(TQ),b, CR-CCSD(T), CR-
CCSD(TQ),a, CR-CCSD(TQ),b, CR-CC(2,3),A, CR-CC(2,3) (= CR-CC(2, 3),D),
CR-CC(2,3)+Q(a), and CR-CC(2,3)+Q(b) calculations were performed with the sys-
tem of CC/CR-CC computer codes described in Refs. [24, 34, 45, 118] and incorpo-
rated in the GAMESS package [119]. The MRCI(Q) calculations were performed
with the MOLPRO package [178]. In addition to the series of MRCI(Q) calcula-
tions using the aug-cc-pCVXZ basis sets with X = D,T,Q, we performed the high
accuracy MRCI(Q) calculations using the aug-cc-pCV5Z basis, to determine if the
aug-cc-pCVQZ results are reasonably well converged. We could not perform such
calculations using the CC and CR-CC methods, since the atomic integral package
used by GAMESS is restricted to g functions and the aug-cc-pCV5Z basis contains
h functions which we did not want to drop in an ad hoc manner. Fortunately, we do
not observe substantial changes in the results, when going from the aug-cc-pCVQZ
to aug-cc-pCV5Z basis sets, which would affect our main conclusions. To facilitate
our presentation, we use the simplified notation, in which we refer to the aug-cc-
pCVXZ basis set by mentioning the value of it’s cardinal number X (X = 2 for
aug-cc-pCVDZ, X = 3 for aug-cc-pCVTZ, X = 4 for aug-cc-pCVQZ, and X = 5
for aug-cc-pCV5Z). For example, we write “the X = 3 basis set” instead of “the aug-
cc-pCVTZ basis set.” Instead of writing “the CR-CC(2,3) calculations with the the
aug-cc-pCVTZ basis set,” we simply write “the CR-CC(2,3)/X = 3 calculations.”

The results of our calculations are summarized in Tables 1–8. Table 1 serves as a
reference for the remaining tables, providing the MRCI(Q) and ES energies along the
three dissociation pathways considered in our calculations. As one can see, the three
potential energy surface cuts probe different energy regions. The single O–H bond
dissociation is characterized by the lowest energies (always reported in this work
relative to the corresponding energies at the equilibrium geometry of Ref. [139],
so that all energies are 0 at the equilibrium geometry), which do not exceed 44000
cm−1. The C2v-symmetric dissociation pathway that leads to the H2(X 1�+

g ) and
O(2p4 1 D) products goes to higher energies, on the order of 59000 cm−1, and the
highest energies, on the order of 81000 cm−1, are reached, when the simultaneous
dissociation of both O–H bonds is examined. The results in Table 1 show that the
large scale MRCI(Q) calculations with the X = 5 basis set agree with the ES poten-
tial, to within ∼10−200 cm−1, in the Re ≤ R ≤ 2Re and R ≥ 4Re regions of cut
(i), Re ≤ R < 1.5Re and R ≥ 2.5Re regions of cut (ii), and Ye ≤ Y ≤ 1.0 Å
and Y ≥ 1.75 Å of cut (iii) (R is the O–H separation for the dissociating O–H
bond or bonds; the meaning of Y has been explained above). The MRCI(Q)/X = 4
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Table 1. The ES and MRCI(Q) energies for the three potential energy surface cuts of water exam-
ined in this study: (i) the dissociation of a single O–H bond, (ii) the C2v-symmetric dissociation
of both O-H bonds, and (iii) the C2v dissociation into H2(X 1�+

g ) and O(2p4 1 D). R is an O–H
distance defining the dissociating O–H bond(s), Y (in Å) is the distance between O and the line
connecting both H nuclei, and α (in degree) is the H–O–H angle. The equilibrium values of R,
Y , and α are Re = 0.95785 Å, Ye = 0.58641 Å, and αe = 104.501 degree [139]. All energies E
(in cm−1) are reported as E − E(Re, αe), where E(Re, αe) are the corresponding values of E
at the equilibrium geometry. X is a cardinal number defining the aug-cc-pCVXZ basis sets used
in the MRCI(Q) calculations. In all MRCI(Q) calculations, all electrons were correlated.

H2O(X̃ 1 A1)→ H(1s 2S)+ OH(X 2�)

R α ES MRCI(Q)

X = 2 X = 3 X = 4 X = 5

1.25Re 104.501 7367 6753 7177 7354 7396
1.50Re 104.501 18862 17945 18733 18990 19059
1.75Re 104.501 28857 27478 28510 28838 28928
2.00Re 104.501 35583 34067 35226 35615 35721
2.50Re 104.501 41024 40030 41277 41736 41857
3.00Re 104.501 42816 41521 42811 43282 43407
4.00Re 104.501 43779 41938 43250 43723 43848
5.00Re 104.501 43887 41970 43281 43754 43879

H2O(X̃ 1 A1)→ 2H(1s 2S)+ O(2p4 3 P)

R α ES MRCI(Q)

X = 2 X = 3 X = 4 X = 5

1.25Re 104.501 14366 13119 14027 14380 14464
1.50Re 104.501 36152 34506 36188 36706 36843
1.75Re 104.501 54629 52359 54555 55224 55407
2.00Re 104.501 67354 64408 66912 67730 67950
2.50Re 104.501 78170 74341 77126 78113 78374
3.00Re 104.501 80585 76298 79196 80207 80478
4.00Re 104.501 81191 76792 79732 80752 81020
5.00Re 104.501 81219 76840 79776 80795 81062

H2O(X̃ 1 A1)→ H2(X 1�+
g )+ O(2p4 1 D)

Y α ES MRCI(Q)

X = 2 X = 3 X = 4 X = 5

0.80 78.808 4998 4501 4809 4981 5023
0.90 69.118 10660 9888 10374 10639 10701
1.00 61.113 17927 16642 17326 17666 17745
1.10 56.072 26589 23953 24887 25287 25383
1.20 53.429 36326 31497 32699 33148 33260
1.30 48.314 43726 38301 39623 40095 40215
1.50 38.432 52137 48794 50171 50662 50786
1.75 29.171 57311 55342 56604 57116 57236
2.00 22.855 58486 56770 57663 58181 58294
4.00 10.589 58696 57534 58058 58590 58694
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results are not much different, producing the results that in most cases do not dif-
fer from the MRCI(Q)/X = 5 results by more than 100–200 cm−1 in the higher-
energy regions. Thus, with an exception of the region of intermediate R and Y values
(2Re < R < 4Re for cut (i), 1.5Re ≤ R < 2.5Re for cut (ii), and 1.0 Å < Y < 1.75
Å for cut (iii), the MRCI(Q)/X = 4 or MRCI(Q)/X = 5 and ES potential functions
agree very well. Clearly, they cannot perfectly agree, since MRCI(Q) is not the exact
theory. Moreover, our MRCI(Q) calculations are the standard non-relativistic cal-
culations, ignoring relativistic, non-adiabatic, and quantum electrodynamical effects
which all contribute to the water potential energy surface [139]. Besides, the min-
imum energy path defining cut (iii) determined from the ES function is certainly
not identical to the similar path that would result from the MRCI(Q) calculations
and there may be other small differences in the details of the MRCI(Q)/X = 4 or
MRCI(Q)/X = 5 and ES potentials. On the other hand, the differences between
the MRCI(Q)/X = 4 or MRCI(Q)/X = 5 and ES potential energy surfaces in the
afore-mentioned regions of intermediate R and Y values, and intermediate or higher,
but not the highest energies, which are as much as 700–800 cm−1 for cut (i) in the
R ≈ 2.5Re region, 600–800 cm−1 for cut (ii) in the R ≈ 1.75Re region, and 3500–
3600 cm−1 for cut (iii) in the Y ≈ 1.3 Å region, cannot be explained by the mere
neglect of the relativistic, non-adiabatic, and quantum electrodynamical effects. They
indicate that either the MRCI(Q) approach is insufficiently accurate or the ES poten-
tial needs further refinement. The former is always possible, but the latter expla-
nation would not be a complete surprise either, since we must remember that the
ES potential function is constructed by combining the many-body expansion poten-
tial of Murrell and Carter [145] and the polynomial potential form of Polyansky,
Jensen, and Tennyson [146]. This makes the ES potential very accurate around the
minimum, up to about 19000 cm−1, and in the asymptotic regions, including the
H(1s 2S) + OH(X 2�), 2H(1s 2S) + O(2p4 3 P), and H2(X 1�+

g ) + O(2p4 1 D)
asymptotes examined in this study, but the accuracy of the ES potential function in
the regions of intermediate internuclear separations and energies which connect the
spectroscopic and asymptotic regions of the water surface is less certain. A compar-
ison of the MRCI(Q) and best CR-CC data may help us to decide if the ES potential
needs further improvements in the regions of intermediate R or Y values and energies
that connect the region of the global minimum with the asymptotes.

The various CC and CR-CC results, as compared with the corresponding MRCI(Q)
and ES data, are collected in Tables 2–8. The main CC and CR-CC results for the
three potential energy surface cuts examined in this work (the CC and CR-CC ener-
gies calculated relative to the corresponding energies at the minimum taken from
Ref. [139]) are given in Tables 2–4. In order to facilitate the analysis of the data
collected in these tables and reading of this section, we give in Tables 5–7 the differ-
ences between the CC/CR-CC and the corresponding MRCI(Q) energies for each of
the three aug-cc-pCVXZ basis sets used in the CC/CR-CC calculations. In Table 8,
we compare the errors in the best CR-CC(2,3)+Q(b)/X = 4 results, relative to the
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Å
an

d
α

e
=

10
4.

50
1

de
gr

ee
[1

39
].

A
ll

en
er

gi
es

E
(i

n
cm

−1
)a

re
re

po
rt

ed
as

E
−

E
(Y

e,
α

e)
,w

he
re

E
(Y

e,
α

e)

ar
e

th
e

co
rr

es
po

nd
in

g
va

lu
es

of
E

at
th

e
eq

ui
lib

ri
um

ge
om

et
ry

.
X

is
a

ca
rd

in
al

nu
m

be
r

de
fin

in
g

th
e

au
g-

cc
-p

C
V

X
Z

ba
si

s
se

ts
us

ed
in

th
e

ca
lc

ul
at

io
ns

.I
n

al
lC

C
ca

lc
ul

at
io

ns
,a

ll
el

ec
tr

on
s

w
er

e
co

rr
el

at
ed

.

Y
α

C
C

SD
C

C
SD

(T
)

C
R

-C
C

SD
(T

)
C

R
-C

C
(2

,3
),A

C
R

-C
C

(2
,3

)

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

0.
80

78
.8

08
47

74
51

26
53

03
45

55
48

47
50

17
45

97
49

04
50

74
45

79
48

80
50

49
45

58
48

67
50

44
0.

90
69

.1
18

10
37

6
10

92
8

11
20

1
99

77
10

43
2

10
69

1
10

05
6

10
53

6
10

79
7

10
02

2
10

49
2

10
75

2
99

92
10

46
8

10
74

4
1.

00
61

.1
13

17
38

4
18

14
7

18
49

9
16

77
0

17
40

7
17

73
9

16
89

7
17

56
8

17
90

3
16

84
4

17
50

0
17

83
3

16
78

9
17

47
0

17
82

7
1.

10
56

.0
72

24
97

4
25

99
5

26
41

1
24

12
2

24
99

7
25

38
5

24
31

0
25

22
8

25
62

1
24

24
0

25
13

5
25

52
5

24
15

5
25

08
8

25
51

4
1.

20
53

.4
29

32
80

8
34

10
3

34
56

8
31

70
0

32
83

6
33

26
8

31
96

9
33

15
8

33
59

7
31

88
7

33
03

9
33

47
1

31
77

1
32

96
3

33
43

8
1.

30
48

.3
14

39
72

6
41

12
9

41
61

5
38

51
3

39
78

3
40

23
8

38
83

0
40

15
5

40
61

8
38

76
0

40
03

1
40

48
3

38
61

7
39

92
3

40
41

6
1.

50
38

.4
32

49
95

3
51

35
5

51
85

3
48

99
8

50
38

2
50

86
4

49
25

9
50

67
5

51
16

3
49

23
1

50
58

6
51

06
0

49
05

1
50

43
3

50
94

3
1.

75
29

.1
71

55
89

9
57

13
0

57
64

2
55

48
5

56
83

8
57

35
8

55
59

6
56

94
1

57
46

2
55

59
5

56
91

5
57

43
0

55
44

4
56

78
7

57
33

1
2.

00
22

.8
55

57
68

8
58

69
3

59
24

3
57

33
5

58
52

5
59

10
2

57
44

4
58

60
9

59
18

0
57

45
6

58
61

5
59

18
6

57
29

9
58

50
3

59
08

3
4.

00
10

.5
89

59
49

5
60

31
6

60
92

6
58

73
8

59
82

5
60

48
3

59
00

6
60

03
1

60
67

2
59

03
7

60
06

3
60

70
4

58
76

8
59

87
2

60
54

3

Y
α

C
C

SD
(T

Q
),b

C
R

-C
C

SD
(T

Q
),a

C
R

-C
C

SD
(T

Q
),b

C
R

-C
C

(2
,3

)+
Q

(a
)a

C
R

-C
C

(2
,3

)+
Q

(b
)a

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

0.
80

78
.8

08
45

35
48

38
50

08
45

49
48

58
50

29
45

51
48

61
50

32
45

10
48

21
49

99
45

13
48

24
50

02
0.

90
69

.1
18

99
45

10
41

6
10

67
6

99
69

10
45

2
10

71
5

99
73

10
45

8
10

72
1

99
05

10
38

5
10

66
2

99
09

10
39

0
10

66
8

1.
00

61
.1

13
16

72
7

17
38

5
17

71
7

16
76

7
17

44
3

17
77

9
16

77
2

17
45

0
17

78
7

16
65

9
17

34
5

17
70

3
16

66
4

17
35

2
17

71
1

1.
10

56
.0

72
24

06
7

24
96

6
25

35
7

24
13

8
25

06
1

25
45

7
24

14
0

25
06

7
25

46
4

23
98

3
24

92
1

25
34

9
23

98
6

24
92

6
25

35
6

1.
20

53
.4

29
31

63
1

32
79

7
33

23
4

31
76

5
32

95
8

33
40

0
31

75
9

32
95

7
33

40
1

31
56

8
32

76
4

33
24

2
31

56
2

32
76

3
33

24
2

1.
30

48
.3

14
38

45
4

39
75

7
40

21
8

38
65

5
39

97
9

40
44

4
38

63
3

39
96

4
40

43
0

38
44

2
39

74
7

40
24

2
38

42
0

39
73

2
40

22
9

1.
50

38
.4

32
48

99
6

50
40

2
50

89
1

49
21

1
50

61
5

51
10

1
49

17
7

50
58

4
51

07
2

49
00

3
50

37
2

50
88

1
48

97
0

50
34

1
50

85
1

1.
75

29
.1

71
55

50
0

56
83

7
57

36
1

55
63

6
56

96
8

57
48

7
55

60
5

56
93

7
57

45
7

55
48

4
56

81
4

57
35

6
55

45
2

56
78

3
57

32
6

2.
00

22
.8

55
57

31
2

58
46

8
59

04
7

57
49

8
58

65
3

59
22

5
57

46
3

58
61

8
59

19
1

57
35

4
58

54
8

59
12

8
57

31
8

58
51

2
59

09
4

4.
00

10
.5

89
58

68
9

59
72

4
60

38
4

59
03

6
60

05
8

60
70

1
59

01
4

60
02

5
60

67
0

58
79

8
59

89
9

60
57

2
58

77
6

59
86

6
60

54
1

a
C

R
-C

C
(2
,
3)

+Q
(x
)
=

C
R

-C
C
(2
,
3)

+
[C

R
-C

C
SD
(T

Q
),

x
−

C
R

-C
C

SD
(T
)],

x
=

a,
b;

cf
.E

qs
.(

79
)a

nd
(8

0)
.



100 Piotr Piecuch et al.

Ta
bl

e
5.

T
he

di
ff

er
en

ce
s

be
tw

ee
n

C
C

/C
R

-C
C

en
er

gi
es

,c
al

cu
la

te
d

re
la

tiv
e

to
th

ei
r

eq
ui

lib
ri

um
va

lu
es

(t
he

C
C

/C
R

-C
C

[E
−

E
(
R

e,
α

e)
]

va
lu

es
in

Ta
bl

e
3)

an
d

th
e

co
rr

es
po

nd
in

g
M

R
C

I(
Q

)r
el

at
iv

e
en

er
gi

es
(t

he
M

R
C

I(
Q

)[
E

−
E
(
R

e,
α

e)
]v

al
ue

s
in

Ta
bl

e
1)

fo
rt

he
di

ss
oc

ia
tio

n
of

a
si

ng
le

O
–H

bo
nd

in
w

at
er

(i
nt

o
H
(1

s
2

S)
+

O
H
(
X

2 �
);

cu
t(

i)
).

X
is

a
ca

rd
in

al
nu

m
be

rd
efi

ni
ng

th
e

au
g-

cc
-p

C
V

X
Z

ba
si

s
se

ts
us

ed
in

th
e

ca
lc

ul
at

io
ns

.

R
C

C
SD

C
C

SD
(T

)
C

R
-C

C
SD

(T
)

C
R

-C
C

(2
,3

),A
C

R
-C

C
(2

,3
)

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

1.
25

R
e

28
0

30
6

30
8

43
4

−3
92

70
65

72
42

35
57

39
39

1.
50

R
e

64
2

69
5

70
1

78
11

−2
20

6
17

6
16

7
16

0
11

0
97

11
8

96
97

1.
75

R
e

11
32

12
53

12
70

89
19

6
36

5
36

3
35

6
28

6
24

3
22

7
17

5
18

6
18

6
2.

00
R

e
18

22
20

77
21

24
42

5
5

60
8

68
7

69
8

48
7

49
0

48
3

24
8

32
1

35
1

2.
50

R
e

34
21

40
31

41
68

−6
67

−6
49

−6
19

11
15

14
10

14
69

88
9

10
19

10
39

36
9

66
2

72
5

3.
00

R
e

44
79

53
47

55
54

−2
13

4
−2

21
1

−2
19

5
13

07
17

26
18

11
99

7
11

85
12

13
32

6
70

6
81

3
4.

00
R

e
52

07
62

77
65

39
−4

38
5

−4
73

2
−4

78
5

12
50

17
26

18
18

87
1

10
68

10
92

16
8

58
4

72
0

5.
00

R
e

53
55

64
79

67
54

−5
21

1
−5

68
9

−5
77

9
11

37
16

11
16

99
74

6
93

4
95

4
93

49
0

62
5

R
C

C
SD

(T
Q

),b
C

R
-C

C
SD

(T
Q

),a
C

R
-C

C
SD

(T
Q

),b
C

R
-C

C
(2

,3
)+

Q
(a

)a
C

R
-C

C
(2

,3
)+

Q
(b

)a

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

1.
25

R
e

18
−1

0
−1

6
40

20
16

41
22

18
5

−1
1

−1
0

6
−9

−8
1.

50
R

e
20

−3
0

−4
1

91
64

56
90

65
58

2
−1

6
−1

4
1

−1
5

−1
2

1.
75

R
e

−1
7

−6
4

−7
4

17
8

17
9

17
4

17
0

17
5

17
2

−1
2

2
5

−2
1

−1
2

2.
00

R
e

−1
19

−1
28

−1
24

35
3

43
3

44
5

33
1

41
7

43
2

−7
67

99
−3

0
51

86
2.

50
R

e
−8

85
−8

45
−8

11
78

1
10

63
11

22
72

9
10

20
10

84
36

31
5

37
8

−1
6

27
2

33
9

3.
00

R
e

−2
28

7
−2

36
6

−2
35

4
96

1
13

51
14

33
91

1
13

08
13

94
−2

0
33

0
43

4
−7

0
28

7
39

5
4.

00
R

e
−4

30
8

−4
71

4
−4

78
2

90
4

13
30

14
17

90
7

13
41

14
31

−1
79

18
8

31
9

−1
75

19
9

33
3

5.
00

R
e

−5
00

6
−5

56
8

−5
67

9
76

5
11

79
12

62
82

8
12

55
13

41
−2

80
58

18
7

−2
16

13
5

26
7

a
C

R
−

C
C
(2
,
3)

+
Q
(x
)
=

C
R

−
C

C
(2
,
3)

+
[C

R
−

C
C

SD
(T

Q
),

x
−

C
R

−
C

C
SD
(T
)],

x
=

a,
b;

cf
.E

qs
.(

79
)a

nd
(8

0)
.



Renormalized Coupled-Cluster Methods 101

Ta
bl

e
6.

T
he

di
ff

er
en

ce
sb

et
w

ee
n

C
C

/C
R

-C
C

en
er

gi
es

,c
al

cu
la

te
d

re
la

tiv
e

to
th

ei
re

qu
ili

br
iu

m
va

lu
es

(t
he

C
C

/C
R

-C
C

[E
−E
(
R

e,
α

e)
]v

al
ue

si
n

Ta
bl

e
3)

an
d

th
e

co
rr

es
po

nd
in

g
M

R
C

I(
Q

)
re

la
tiv

e
en

er
gi

es
(t

he
M

R
C

I(
Q

)
[E

−
E
(
R

e,
α

e)
]v

al
ue

s
in

Ta
bl

e
1)

fo
r

th
e

C
2v

-s
ym

m
et

ri
c

do
ub

le
di

ss
oc

ia
tio

n
of

w
at

er
(i

nt
o

2H
(1

s
2

S)
+

O
(2

p4
3

P
);

cu
t(

ii)
).

X
is

a
ca

rd
in

al
nu

m
be

rd
efi

ni
ng

th
e

au
g-

cc
-p

C
V

X
Z

ba
si

s
se

ts
us

ed
in

th
e

ca
lc

ul
at

io
ns

.

R
C

C
SD

C
C

SD
(T

)
C

R
-C

C
SD

(T
)

C
R

-C
C

(2
,3

),A
C

R
-C

C
(2

,3
)

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

1.
25

R
e

60
0

65
7

66
2

93
14

1
20

6
16

4
15

4
16

0
10

0
86

10
7

73
79

1.
50

R
e

14
66

15
94

16
09

18
9

65
38

53
0

48
8

46
9

40
2

31
3

28
6

27
4

23
3

25
4

1.
75

R
e

26
44

29
42

29
84

19
7

91
66

10
28

10
71

10
59

74
1

69
0

66
0

47
4

53
8

54
7

2.
00

R
e

40
63

47
03

48
08

−2
85

−2
46

−2
32

16
12

18
89

19
17

94
9

10
61

10
59

38
1

64
7

70
9

2.
50

R
e

51
56

70
68

74
60

−7
30

2
−6

48
6

−6
25

8
84

5
20

97
23

29
−2

01
2

−1
26

0
−1

11
1

−3
31

4
−2

23
0

−1
97

1
3.

00
R

e
33

98
60

65
66

46
−1

96
59

−1
92

79
−1

91
33

−1
86

2
−1

70
15

7
−6

33
4

−5
74

6
−5

64
7

−7
76

0
−6

90
4

−6
58

9
4.

00
R

e
14

36
43

21
49

56
−3

32
44

−3
44

23
−3

46
97

−4
29

3
−2

57
9

−2
25

8
−9

43
3

−9
07

9
−9

05
2

−1
04

97
−9

85
4

−9
63

6
5.

00
R

e
85

9
37

50
43

88
−3

71
03

−3
89

61
−3

94
12

−5
03

2
−3

36
0

−3
04

9
−1

02
91

−9
99

9
−9

98
5

−1
10

98
−1

05
42

−1
05

63

R
C

C
SD

(T
Q

),b
C

R
-C

C
SD

(T
Q

),a
C

R
-C

C
SD

(T
Q

),b
C

R
-C

C
(2

,3
)+

Q
(a

)a
C

R
-C

C
(2

,3
)+

Q
(b

)a

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

1.
25

R
e

38
−1

7
−2

9
89

52
44

93
58

50
−1

0
−3

9
−3

1
−6

−3
4

−2
5

1.
50

R
e

46
−4

2
−6

5
24

3
20

7
19

1
24

6
21

5
20

2
−1

3
−4

9
−2

4
−1

0
−4

0
−1

3
1.

75
R

e
−4

5
−1

18
−1

38
54

8
58

9
58

0
53

3
58

7
58

2
−7

56
69

−2
1

53
71

2.
00

R
e

−3
34

−3
63

−3
66

10
73

13
07

13
29

10
61

12
96

13
23

−1
58

64
12

1
−1

70
53

11
5

2.
50

R
e

10
15

−6
35

−9
15

19
96

28
80

30
40

33
45

38
27

39
08

−2
16

4
−1

44
7

−1
26

0
−8

15
−5

00
−3

91
3.

00
R

e
16

80
6

95
51

80
69

27
40

39
57

41
94

66
02

71
74

72
70

−3
15

8
−2

77
8

−2
55

3
70

5
43

9
52

3
4.

00
R

e
49

30
3

35
87

8
33

02
1

54
49

68
68

71
59

89
56

99
57

10
15

5
−7

55
−4

07
−2

19
27

52
26

83
27

77
5.

00
R

e
62

54
4

47
42

8
44

15
0

81
49

96
60

99
78

91
88

10
33

3
10

56
6

20
83

24
77

24
65

31
22

31
50

30
53

a
C

R
-C

C
(2
,
3)

+Q
(x
)
=

C
R

-C
C
(2
,
3)

+
[C

R
-C

C
SD
(T

Q
),

x
−

C
R

-C
C

SD
(T
)],

x
=

a,
b;

cf
.E

qs
.(

79
)a

nd
(8

0)
.



102 Piotr Piecuch et al.

Ta
bl

e
7.

T
he

di
ff

er
en

ce
s

be
tw

ee
n

C
C

/C
R

-C
C

en
er

gi
es

,c
al

cu
la

te
d

re
la

tiv
e

to
th

ei
re

qu
ili

br
iu

m
va

lu
es

(t
he

C
C

/C
R

-C
C

[E
−

E
(
R

e,
α

e)
]v

al
ue

s
in

Ta
bl

e
4)

an
d

th
e

co
rr

es
po

nd
in

g
M

R
C

I(
Q

)r
el

at
iv

e
en

er
gi

es
(t

he
M

R
C

I(
Q

)[
E

−
E
(
R

e,
α

e)
]v

al
ue

s
in

Ta
bl

e
1)

fo
rt

he
C

2v
di

ss
oc

ia
tio

n
of

w
at

er
in

to
H

2(
X

1 �
+ g
)

an
d

O
(2

p4
1

D
)

al
on

g
th

e
ap

pr
ox

im
at

e
m

in
im

um
en

er
gy

pa
th

de
te

rm
in

ed
us

in
g

th
e

po
te

nt
ia

lf
un

ct
io

n
of

R
ef

.[
13

2]
(c

ut
(i

ii)
).

X
is

a
ca

rd
in

al
nu

m
be

rd
efi

ni
ng

th
e

au
g-

cc
-p

C
V

X
Z

ba
si

s
se

ts
us

ed
in

th
e

ca
lc

ul
at

io
ns

.

Y
α

C
C

SD
C

C
SD

(T
)

C
R

-C
C

SD
(T

)
C

R
-C

C
(2

,3
),A

C
R

-C
C

(2
,3

)

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

0.
80

78
.8

08
27

3
31

7
32

2
54

38
36

96
95

93
78

71
68

57
58

63
0.

90
69

.1
18

48
8

55
4

56
2

89
58

52
16

8
16

2
15

8
13

4
11

8
11

3
10

4
94

10
5

1.
00

61
.1

13
74

2
82

1
83

3
12

8
81

73
25

5
24

2
23

7
20

2
17

4
16

7
14

7
14

4
16

1
1.

10
56

.0
72

10
21

11
08

11
24

16
9

11
0

98
35

7
34

1
33

4
28

7
24

8
23

8
20

2
20

1
22

7
1.

20
53

.4
29

13
11

14
04

14
20

20
3

13
7

12
0

47
2

45
9

44
9

39
0

34
0

32
3

27
4

26
4

29
0

1.
30

48
.3

14
14

25
15

06
15

20
21

2
16

0
14

3
52

9
53

2
52

3
45

9
40

8
38

8
31

6
30

0
32

1
1.

50
38

.4
32

11
59

11
84

11
91

20
4

21
1

20
2

46
5

50
4

50
1

43
7

41
5

39
8

25
7

26
2

28
1

1.
75

29
.1

71
55

7
52

6
52

6
14

3
23

4
24

2
25

4
33

7
34

6
25

3
31

1
31

4
10

2
18

3
21

5
2.

00
22

.8
55

91
8

10
30

10
62

56
5

86
2

92
1

67
4

94
6

99
9

68
6

95
2

10
05

52
9

84
0

90
2

4.
00

10
.5

89
19

61
22

58
23

36
12

04
17

67
18

93
14

72
19

73
20

82
15

03
20

05
21

14
12

34
18

14
19

53

Y
α

C
C

SD
(T

Q
),b

C
R

-C
C

SD
(T

Q
),a

C
R

-C
C

SD
(T

Q
),b

C
R

-C
C

(2
,3

)+
Q

(a
)a

C
R

-C
C

(2
,3

)+
Q

(b
)a

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4
X

=
2

X
=

3
X

=
4

X
=

2
X

=
3

X
=

4

0.
80

78
.8

08
34

29
27

48
49

48
50

52
51

9
12

18
12

15
21

0.
90

69
.1

18
57

42
37

81
78

76
85

84
82

17
11

23
21

16
29

1.
00

61
.1

13
85

59
51

12
5

11
7

11
3

13
0

12
4

12
1

17
19

37
22

26
45

1.
10

56
.0

72
11

4
79

70
18

5
17

4
17

0
18

7
18

0
17

7
30

34
62

33
39

69
1.

20
53

.4
29

13
4

98
86

26
8

25
9

25
2

26
2

25
8

25
3

71
65

94
65

64
94

1.
30

48
.3

14
15

3
13

4
12

3
35

4
35

6
34

9
33

2
34

1
33

5
14

1
12

4
14

7
11

9
10

9
13

4
1.

50
38

.4
32

20
2

23
1

22
9

41
7

44
4

43
9

38
3

41
3

41
0

20
9

20
1

21
9

17
6

17
0

18
9

1.
75

29
.1

71
15

8
23

3
24

5
29

4
36

4
37

1
26

3
33

3
34

1
14

2
21

0
24

0
11

0
17

9
21

0
2.

00
22

.8
55

54
2

80
5

86
6

72
8

99
0

10
44

69
3

95
5

10
10

58
4

88
5

94
7

54
8

84
9

91
3

4.
00

10
.5

89
11

55
16

66
17

94
15

02
20

00
21

11
14

80
19

67
20

80
12

64
18

41
19

82
12

42
18

08
19

51

a
C

R
-C

C
(2
,
3)

+Q
(x
)
=

C
R

-C
C
(2
,
3)

+
[C

R
-C

C
SD
(T

Q
),

x
−

C
R

-C
C

SD
(T
)],

x
=

a,
b;

cf
.E

qs
.(

79
)a

nd
(8

0)
.



Renormalized Coupled-Cluster Methods 103

Table 8. The differences between the CR-CC(2,3) + Q(b) and MRCI(Q) energies obtained
with the aug-cc-pCVQZ (X = 4) basis; between the CR-CC(2,3) + Q(b)/aug-cc-pCVQZ
and ES energies; and between the MRCI(Q)/aug-cc-pCVXZ (X = 4, 5) and ES energies
(all energies being calculated relative to their corresponding equilibrium values, as in the
earlier tables), for the three cuts of the water potential energy surface: (i) the dissociation
of a single O–H bond, (ii) the C2v-symmetric dissociation of both O-H bonds, and (iii)
the C2v dissociation into H2(X 1�+

g ) and O(2p4 1 D) (see Table 1 for the definitions of
R and Y , the corresponding values of the H–O–H angle α, and the equilibrium values of
R, Y , and α). All energy differences are in cm−1.

H2O(X̃ 1 A1)→ H(1s 2S)+ OH(X 2�)

R CR-CC(2,3)+Q(b)/X=4 CR-CC(2,3)+Q(b)/X=4 MRCI(Q)/X=4 MRCI(Q)/X=5
−MRCI(Q)/X=4 −ES −ES −ES

1.25Re −8 −21 −13 29
1.50Re −12 116 128 197
1.75Re 2 −17 −19 71
2.00Re 86 118 32 138
2.50Re 339 1051 712 833
3.00Re 395 861 466 591
4.00Re 333 277 −56 69
5.00Re 267 134 −133 −8

H2O(X̃ 1 A1)→ 2H(1s 2S)+ O(2p4 3 P)

R CR-CC(2,3)+Q(b),X=4 CR-CC(2,3)+Q(b),X=4 MRCI(Q),X=4 MRCI(Q),X=5
−MRCI(Q),X=4 −ES −ES −ES

1.25Re −25 −11 14 98
1.50Re −13 541 554 691
1.75Re 71 666 595 778
2.00Re 115 491 376 596
2.50Re −391 −448 −57 204
3.00Re 523 145 −378 −107
4.00Re 2777 2338 −439 −171
5.00Re 3053 2629 −424 −157

H2O(X̃ 1 A1)→ H2(X 1�+
g )+ O(2p4 1 D)

Y CR-CC(2,3)+Q(b),X=4 CR-CC(2,3)+Q(b),X=4 MRCI(Q),X=4 MRCI(Q),X=5
−MRCI(Q),X=4 −ES −ES −ES

0.80 21 4 −17 25
0.90 29 8 −21 41
1.00 45 −216 −261 −182
1.10 69 −1233 −1302 −1206
1.20 94 −3084 −3178 −3066
1.30 134 −3497 −3631 −3511
1.50 189 −1286 −1475 −1351
1.75 210 15 −195 −75
2.00 913 608 −305 −192
4.00 1951 1845 −106 −2
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MRCI(Q)/X = 4 data, with the differences between the CR-CC(2,3)+Q(b)/X = 4
and ES energies and the analogous differences between the MRCI(Q)/X = 4, 5 and
ES energies.

A close inspection of Tables 2–7, particularly Tables 5–7, allows us to appreci-
ate the nature of the challenges the single-reference CC methods are facing when
describing global potential energy surfaces along bond breaking coordinates. It also
allows us to reemphasize the usefulness of the three dissociation pathways that we
chose in this study to test the CC and CR-CC methods, which create different types of
bond breaking or bond stretching situations. Indeed, the relatively large differences
between the CCSD and MRCI(Q) energies, which exceed ∼300−700 cm−1 for small
stretches of the O-H bond(s) (R ≈ 1.25Re −1.5Re in the case of cut (i), R ≈ 1.25Re
in the case of cut (ii), and Y ≈ 0.8 − 0.9 Å in the case of cut (iii)), and huge differ-
ences between the CCSD and MRCI(Q) energies, on the order of 4000–7000 cm−1,
in the R ≥ 3Re region of cut (i) and R ≈ 2Re − 3Re region of cut (ii), and more
than 1000 cm−1 for larger Y values in the case of cut (iii), clearly show that one
needs to include higher-than-doubly excited clusters in the CC calculations to obtain
reasonable results. Not surprisingly, the CCSD approach is qualitatively correct in
the case of cut (i), which corresponds to single-bond breaking (which is, in the zero-
order approximation, a two-electron process), producing errors relative to MRCI(Q)
which monotonically increase with R, while being completely erratic in the case of
the double O–H dissociation defining cut (ii), producing a large hump in the region
of intermediate R values. The CCSD approach is also erratic in the case of cut (iii), in
which two O–H bonds have to be significantly stretched during the formation of the
H2(X 1�+

g ) and O(2p4 1 D) products, although the errors relative to MRCI(Q) are
not as large in this case as in the other two cuts. One of the reasons is that unlike cuts
(i) and (ii), which lead to the fragmentations of the closed-shell water molecule on the
singlet ground-state surface into open-shell (doublet or even triplet) products, which
introduce very large non-dynamic correlation effects, the minimum energy path that
defines cut (iii) leads to the formation of the closed-shell (H2(X 1�+

g )) or singlet
(O(2p4 1 D)) fragments while the O–H bonds are broken. Moreover, the hydrogen
product molecule is a two-electron system, which is described exactly by the CCSD
approach. These differences between cuts (i) and (ii), on the one hand, and cut (iii),
on the other hand, can be seen by examining the largest T2 cluster amplitudes. The
largest spin-free T2 amplitude, which corresponds to the HOMO → LUMO double
excitation at R = 5Re of cut (i) equals, according to the CCSD/X = 4 calculations,
−0.858278 (this is a single-bond breaking case, so other T2 amplitudes are much
smaller). The two largest T2 amplitudes, which correspond to the HOMO → LUMO
and (HOMO − 1)→ (LUMO + 1) double excitations at R = 5Re of cut (ii) equal,
according to the CCSD/X = 4 calculations, −0.774880 and −0.774382, respect-
ively (clearly, there are a few other large T2 amplitudes in this case, which engage
the highest two occupied and lowest two unoccupied orbitals, since this is a double
dissociation of water into 2H(1s 2S) + O(2p4 3 P) that involves, in the zero-order
description, four active orbitals and four electrons). For comparison, the largest T2
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amplitudes along the minimum energy path defining cut (iii) never exceed ≈0.2 and
are usually considerably smaller. This explains the observed differences in the per-
formance of the CCSD and various CCSD-based non-iterative CC methods in the
calculations for cut (iii), where the overall behavior of the single-reference CC meth-
ods, although not perfect, remains quite reasonable, and the other two cuts examined
in this work, where the standard CC approximations, including CCSD, CCSD(T),
and CCSD(TQ),b, display catastrophic failures.

The above discussion confirms the known fact that one has to go beyond the basic
CCSD approximation and account for higher-than-doubly excited clusters to obtain a
quantitatively accurate description of the potential energy surface, even in the vicinity
of the equilibrium geometry. This is often done with the CCSD(T) approach, which
describes the leading effects due to triply excited clusters via non-iterative corrections
to the CCSD energy. As shown in our tables, particularly Tables 5–7, the CCSD(T)
approach provides excellent results that almost perfectly agree with the results of
MRCI(Q) calculations, when stretches of the O–H bonds are small. For example, in
the case of cut (i), the differences between the CCSD(T)/X = 4 and MRCI(Q)/X = 4
energies do not exceed 6 cm−1 up to R = 2Re and for cut (ii) they remain smaller
than 38 cm−1 up to R = 1.5Re. This is impressive, if we realize that the R ≈ 2Re and
R ≈ 1.5Re regions of cuts (i) and (ii), respectively, are characterized by the energies
of ≈36000 cm−1. A similarly impressive performance of CCSD(T) is observed for
other aug-cc-pCVXZ basis sets, although we should note a rather substantial error
increase, relative to MRCI(Q), when the X = 2 basis sets is employed (particularly
for cuts (i) and (ii); cf. Tables 5 and 6). Interestingly enough, in the case of cut (ii),
the CCSD(T) results remain reasonable up to ∼67000 cm−1 or R ≈ 2Re (unsigned
errors relative to MRCI(Q) on the order of 200–300 cm−1). One has to be very care-
ful, however, in interpreting these high accuracies obtained with CCSD(T) for small
and, in the case of cut (ii), intermediate stretches of the O–H bonds, particularly that
CCSD(T) eventually suffers significant breakdowns and it may not always be easy to
predict when one should stop trusting the CCSD(T) approach. Indeed, if we correct
the CCSD(T) results for the dominant effects due to T4 clusters, as is done by the
CCSD(TQ),b approach, which can only improve the quality of CC calculations in
non-degenerate regions of the potential energy surface, the agreement between the
CC and MRCI(Q) results in the R ≤ 2Re regions of cuts (i) and (ii) is no longer
as impressive as in the CCSD(T) case. For example, the −2 and 5 cm−1 differ-
ences between the CCSD(T)/X = 4 and MRCI(Q)/X = 4 energies obtained for
cut (i) at R = 1.5Re and 2Re increase to −41 and −124 cm−1, respectively, when
the CCSD(TQ),b method is employed. The 1 and 38 cm−1 differences between the
CCSD(T)/X = 4 and MRCI(Q)/X = 4 energies obtained for cut (ii) at R = 1.25Re
and 1.5Re increase, in absolute value, to 29 and 65 cm−1, when instead of CCSD(T)
we use the CCSD(TQ),b method. This means that either the CCSD(T) results are very
accurate due to fortuitous cancellation of errors or the MRCI(Q) results that we use as
a benchmark are not as accurate as the CCSD(TQ),b results in the region of smaller
stretches of the O–H bonds, where CCSD(TQ),b can be safely applied, creating a
false impression about superb accuracy of the CCSD(T) approximation. Clearly, both
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interpretations are possible (the CCSD(T) approach is known to provide the results
which are often better than those obtained with the full CCSDT approach, which
makes no physical sense whatsoever), but we believe that the CCSD(TQ),b approach
is more accurate than MRCI(Q) in the spectroscopic region and moderate stretches
of the O–H bond(s), although both methods provide high quality results. The overall
superiority of CCSD(TQ),b over MRCI(Q) for moderate stretches of the O–H bond(s)
can be seen by comparing the differences between the CCSD(TQ),b/X = 4 and ES
energies in the R ≤ 2Re regions of cuts (i) and (ii) with the corresponding differ-
ences between the MRCI(Q)/X = 4 and ES energies. This illustrates the well-known
advantage of using the CC methods over MRCI techniques, which are not as effec-
tive in accounting for the dynamical correlation effects that dominate electron corre-
lations near the equilibrium geometry as the high-level CC approaches. Interestingly
enough, further increase of the basis set makes the agreement between the MRCI(Q)
and ES surfaces in the region of smaller stretches of the O–H bond(s), where the ES
potential function is nearly spectroscopic, even worse (cf. the MRCI(Q)/X = 4 and
MRCI(Q)/X = 5 results in Table 8). The superiority of the CCSD(TQ),b and related
CCSD(TQf) methods, which account for triply and quadruply excited clusters, over
the CCSD(T) approach, which ignores the latter clusters, in applications involving
potential energy surfaces near the equilibrium geometry is well-documented as well
(cf., e.g. Refs. [12–14, 23, 24, 34, 36, 58, 179–181]) and our calculations confirm this
superiority, in spite of the tiny differences between the CCSD(T) and MRCI(Q) ener-
gies for cuts (i) and (ii) discussed above.

Before discussing the failures of the CCSD(T) and CCSD(TQ),b methods at larger
O–H separations of cuts (i) and (ii) and improvements offered by the CR-CC meth-
ods, which are quite apparent when we examine the results shown in Tables 2–7, let us
point out that in the case of cut (iii), the behavior of the CCSD(T) and CCSD(TQ),b
methods vs. the MRCI(Q) approach is somewhat different, when compared to the
other two cuts explored in this work. As already pointed out above, the T2 (also, T1)
cluster amplitudes along the minimum energy path defining cut (iii) never become
large and the corresponding H2(X 1�+

g ) and O(2p4 1 D) dissociation products are
of the closed-shell (H2(X 1�+

g )) or open-shell singlet (O(2p4 1 D)) type. Thus, it is
not completely surprising to observe the relatively good performance of the stand-
ard single-reference CCSD(T) and CCSD(TQ),b approaches in the entire region of
Y values shown in our tables (with the exception, perhaps, of the last two points,
Y = 2.0 and 4.0 Å, although we must remember that these points are located at more
than 58000 cm−1 above the global minimum, which makes the ∼500−1900 cm−1

errors relatively small, particularly for the relatively inexpensive single-reference
calculations using the RHF reference; cf. the discussion below for the additional
remarks). In particular, the differences between the CCSD(T) and MRCI(Q) energies
do not exceed 250 cm−1 in the entire Ye ≤ Y ≤ 1.75 Å region, in which energies
become as large as ∼57000 cm−1 (recall that Ye = 0.58641 Å), and are smaller
than 100 cm−1 when Y does not exceed 1.1 Å (energies below ∼27000 cm−1). The
CCSD(TQ),b approach reduces these differences even further, showing a nice and
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systematic behavior of the single-reference CC theory in this case. Clearly, it is inter-
esting to examine if the CR-CC approaches, which are primarily designed to improve
the CC results when a system is fragmented into open-shell fragments, can maintain
the high accuracies of the CCSD(T) and CCSD(TQ),b calculations and systematic
improvements in the results when going from the triples to the quadruples levels of
CC theory in the case of the minimum energy path that leads to the closed-shell and
singlet, non-closed-shell products.

One issue that we do not address in this study and that may affect the results of all
CC and CR-CC calculations in the Y ≥ 2.0 Å region of cut (iii) (and, perhaps, the
best CR-CC results in the R > 3Re region of cut (ii)) is the issue of the existence
of the avoided crossings of ground and excited states of water at larger internuclear
separations (see, e.g. Refs. [143, 144, 148, 149] and references therein). For exam-
ple, for larger values of Y of cut (ii), one can speculate that other dissociation chan-
nels may compete with the ground-state H2(X 1�+

g ) + O(2p4 1 D) channel, such
as H2(b 3�+

u ) + O(2p4 3 P), when the H–H bond is somewhat stretched. Thus, it
is possible that the CCSD solutions that we found, for example, at Y = 4.0 Å, are
not necessarily the solutions that correlate with the lowest-energy state of water of
the 1 A1 symmetry. If this speculation turned out to be true, this would explain a steep
increase in the errors of the CCSD(T), CCSD(TQ),b, and all, otherwise very accurate,
CR-CC calculations in the Y ≥ 2.0 Å region of cut (iii), from ∼200−400 cm−1 at
Y = 1.75 Å to ∼1800−2100 cm−1 at Y = 4.0 Å. We tried to find other CCSD solu-
tions in the Y ≥ 2.0 Å region, but we have not been successful. We know, however,
that when we perform the calculations of ground and excited states at Y = 4.0 Å,
using the MMCC-based CR-EOMCCSD(T) approach, in which renormalized triples
corrections are added to the energies obtained in the equation-of-motion CCSD calcu-
lations [122,123], we see the appearance of one 1 A1 state with a small negative exci-
tation energy, suggesting that the CC and CR-CC energies at Y = 4.0 Å reported in
Tables 2–4 may not necessarily correlate with the ground-state of water in this region
(we have also observed the appearance of the state of 1 B1 symmetry at Y = 4.0 Å,
located in the CR-EOMCCSD(T) calculations ∼2500−3000 cm−1 below the 1 A1
state, but this is a state of different symmetry than the ground state, which has no
impact on the ground-state CC/CR-CC calculations). We will examine the issue of
avoided crossings and the potential of switching between ground and excited states in
solving CC equations at larger internuclear distances in the future, using, for example,
the excited-states CR-CC methods, such as CR-EOMCCSD(T), and the excited-state
variant of CR-CC(2,3) tested in Refs. [15, 48]. The recent study of the ground and
excited states of the ammonia molecule indicates that it is not unusual to observe the
switching between the ground and low-lying excited states of the same symmetry in
CC calculations in the vicinity of avoided crossings [182].

Much of the above discussion points to the importance of properly balancing var-
ious correlation effects and the need to account for the triple as well as quadru-
ple excitations in the high quality calculations of molecular potential energy sur-
faces. The properly constructed theory should provide an accurate description of
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triply, quadruply, and, if need be, other higher-order clusters, without the fortuitous
cancellation of errors that the CCSD(T) approach often displays, as demonstrated
above. Clearly, the good theory should also eliminate the significant failures of the
CCSD(T), CCSD(TQ),b, and other similar methods at larger internuclear separations
or at least be more robust in this regard. In the case of the water potential examined
in this work, these failures are dramatic. As shown in Tables 2–7 (particularly, in
Tables 5–7), the unsigned errors in the CCSD(T)/X = 2 − 4 energies, relative to
the corresponding MRCI(Q)/X = 2 − 4 data, range between 619 and 5779 cm−1,
when the R = 2.5Re − 5Re region of cut (i) is examined, and 6258 and 39412 cm−1,
when the R = 2.5Re − 5Re region of cut (ii) is explored, and the CCSD(T) ener-
gies go considerably below the MRCI(Q) energies. The CCSD(TQ),b approach does
not improve the situation at all, producing the 811–5679 cm−1 unsigned errors, rela-
tive to MRCI(Q), in the R = 2.5Re − 5Re region of cut (i) and the 635–62544 cm−1

unsigned errors, relative to the corresponding MRCI(Q) data, in the R = 2.5Re −5Re
region of cut (ii). Unlike CCSD(T), the CCSD(TQ),b energies are significantly
above the corresponding MRCI(Q) energies at larger O–H separations of cut (ii),
while being below the MRCI(Q) energies for cut (i). All of this clearly demonstrates
the divergent behavior of the standard single-reference CC methods, caused by the
large non-dynamic correlation effects (which manifest themselves through large T2
cluster amplitudes, as described above), the poor description of the wave function by
the CCSD approach, on which the CCSD(T) and CCSD(TQ),b methods rely, and the
strongly divergent nature of the MBPT series, on which the standard (T) and (TQ)
energy corrections are based, in the regions of larger internuclear separations.

As shown in Tables 5–7, the CR-CCSD(T) method, based on the original formu-
lation of the MMCC theory, provides considerable improvements in the CCSD(T)
results for the single-bond breaking defining cut (i), reducing, for example, the
4385–4785 cm−1 and 5211–5779 cm−1 errors in the CCSD(T)/X = 2 − 4 ener-
gies at R = 4Re and 5Re, relative to the corresponding MRCI(Q)/X = 2 − 4
data, to 1250–1818 cm−1 and 1137–1699 cm−1, respectively. The CR-CCSD(TQ),a
and CR-CCSD(TQ),b methods provide further improvements and a very nice and
smooth description of the entire cut (i), with an exception, perhaps, of the last point
at R = 5Re, where a small error reduction compared to R = 4Re may be a signa-
ture of the eventual problems somewhere in the R � 5Re region, although we are
not sure about it. For example, the differences between the CR-CCSD(TQ),b/X = 4
and MRCI(Q)/X = 4 energies smoothly increase with R, from 18 and 58 cm−1

at R = 1.25Re and 1.5Re, respectively (energies on the order of 7400 and 18900
cm−1), to 432 cm−1 at R = 2Re, and 1431 cm−1 at R = 4Re, where the energy
is almost 44000 cm−1. The situation for the more challenging cut (ii), where both
O–H bonds are broken, is, at least to some extent, similar to that observed in the
case of cut (i), with the CR-CCSD(TQ),a and CR-CCSD(TQ),b methods eliminating
the pathological behavior of CCSD(T) and CCSD(TQ),b at larger stretches of both
O–H bonds. Again, we observe a smooth increase of the differences between the
CR-CCSD(TQ),a or CR-CCSD(TQ),b and MRCI(Q) energies with R, from 44 (50)
and 191 (202) cm−1 at R = 1.25Re and 1.5Re, where energies are on the order of
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∼14000 and 36000 cm−1, respectively, through 1329 (1323) cm−1 at R = 2Re,
where the energy exceeds 67000 cm−1, and 9978 (10566) cm−1 at R = 5Re,
where the energies exceed 81000 cm−1, when the CR-CCSD(TQ),a/X = 4 (CR-
CCSD(TQ),b/X = 4) results are examined. We do not want to claim that these are
superb results, but it is quite encouraging to see that the CR-CC methodology is capa-
ble of providing significant improvements over the standard CC results, even when
the double dissociation of water is examined. There is, of course, a difference between
the behavior of the CR-CCSD(T) method in the case of the double O–H dissociation
defining cut (ii) and the single-bond breaking defining cut (i). The CR-CCSD(T)
approach provides a reasonably smooth description of cut (i), while failing in the
case of cut (ii). This is a consequence of ignoring the quadruply excited clusters in
the CR-CCSD(T) calculations, which are absolutely critical in cases of double bond
breaking (while improving accuracies in the calculations for single-bond breaking). It
is interesting to observe, though, the substantial improvements in the poor CCSD(T)
results in the R = 2.5Re − 5Re region of cut (ii) by the CR-CCSD(T) approach
(error reduction in the X = 4 calculations at R = 5Re, relative to the correspond-
ing MRCI(Q)/X = 4 result, from more than 39000 cm−1 in the CCSD(T) case to
≈3000 cm−1 in the CR-CCSD(T) case). It is also interesting to observe that the CR-
CCSD(T), CR-CCSD(TQ),a, and CR-CCSD(TQ),b approaches provide a nice and
smooth description of the “easier” cut (iii) as well. In this case, as pointed out above,
the conventional CCSD(T) and CCSD(TQ),b approximations work quite well, but it
is good to see that the CR-CCSD(T) and CR-CCSD(TQ),x (x = a, b) methods are,
more or less, equally effective, with the CR-CCSD(TQ),x approaches providing sys-
tematic improvements over the relatively good CR-CCSD(T) results. The ∼90−530
cm−1 differences between the CR-CCSD(T) and MRCI(Q) energies and the slightly
smaller ∼50−440 cm−1 differences between the CR-CCSD(TQ),x and MRCI(Q)
energies in the entire Y = 0.8 − 1.75 Å region, where energies grow from about
5000 to more than 57000 cm−1 above the global minimum, is clearly an encouraging
result, confirming the usefulness of the single-reference CR-CC methods.

The CR-CCSD(T) and CR-CCSD(TQ),x (x = a, b) methods provide substantial
improvements in the regions of larger internuclear separations, where the standard
CCSD(T) and CCSD(TQ),b approaches fail, but it would be useful to achieve further
error reduction in the CR-CC calculations, particularly in the cases of cuts (i) and
(ii), which are more challenging for the single-reference CC methods than cut (iii). It
would also be useful to improve the results of CR-CC calculations in the vicinity of
the equilibrium region, where the CCSD(T) and CCSD(TQ),b methods are somewhat
more accurate than the CR-CCSD(T) and CR-CCSD(TQ),x (x = a, b) approaches.
As mentioned earlier, the recently proposed CR-CC(2,3) theory not only eliminates
the small size extensivity errors from the CR-CCSD(T) results (which in the case of
water are negligible, since water molecule is a small, 10-electron system), but it also
improves the accuracy of CR-CC calculations by adding various product terms of the
T1 M3(2), (T2+ 1

2 T 2
1 )M3(2), etc. (in general, Cn−3(m A)M3(2)) type to the bare M3(2)

terms that are already present in the CR-CCSD(T) triples correction formula (cf., e.g.
the discussion at the end of section 2.2). As shown in the earlier studies [45, 46, 48],
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reporting the discovery and initial tests of the CR-CC(2,3) approach, the CR-CC(2,3)
method is essentially as accurate as the full CCSDT approach in the equilibrium
and bond breaking region, providing, therefore, the best description of the triples
effects that any non-iterative triples CC method can offer. It is, thus, interesting to
examine the performance of the CR-CC(2,3) approach using the three cuts of the
water potential examined in this work. Since we have already noticed the importance
of quadruply excited clusters in improving the results, particularly for the double
O–H dissociation defining cut (ii), it is also useful to investigate if correcting the CR-
CC(2,3) results for quadruples through the CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b)
methods defined by Eqs. (79) and (80) gives the desired high accuracies for a wide
range of nuclear geometries of the water system explored in this work.

As explained in the previous section, one can consider a few CR-CC(2,3) approx-
imations which differ by the form of the denominator Di jk

abc(CCSD), Eq. (69), which
enters the relevant desexcitation amplitudes �̃abc

i jk (CCSD), Eq. (68). Here, we con-
sider only two extreme variants, namely, the most complete variant D, for which
we continue to use an acronym CR-CC(2,3) without additional letters, and the sim-
plest variant A, called CR-CC(2,3),A, which is obtained by replacing the denomi-
nator Di jk

abc(CCSD) by the usual MBPT denominator defining triple excitations, i.e.
(εi +ε j +εk −εa −εb −εc). As mentioned in section 2.3, the CR-CC(2,3),A approach
is equivalent to the CCSD(2)T method of Ref. [42].

As shown in Tables 2–7, the CR-CC(2,3),A and full CR-CC(2,3) (= CR-
CC(2, 3), D) approaches provide improvements in the CR-CCSD(T) results for
the single-bond breaking defining cut (i) and the C2v dissociation pathway into
H2(X 1�+

g ) and O(2p4 1 D) in the entire regions of the corresponding R and Y val-
ues. They also improve the description of the double dissociation of water defining
cut (ii) by the CR-CCSD(T) method in the R = Re − 2.5Re region. For example,
in the case of cut (i), the CR-CC(2,3),A approach reduces the 65, 167, 698, 1811,
and 1699 cm−1 errors in the CR-CCSD(T)/X = 4 results, relative to the corre-
sponding MRCI(Q)/X = 4 data, at R = 1.25Re, 1.5Re, 2Re, 3Re, and 5Re to 35,
97, 483, 1213, and 954 cm−1, respectively. With an exception of R = 1.25Re and
1.5Re, where errors remain almost unchanged, the full CR-CC(2,3) method improves
the agreement with the MRCI(Q)/X = 4 energies even further, reducing the 483,
1213, and 954 cm−1 errors in the CR-CC(2,3),A energies, relative to MRCI(Q), at
R = 2Re, 3Re, and 5Re to 351, 813, and 625 cm−1, respectively. We can clearly see
the benefits of using the full CR-CC(2,3) approach, where one does not make any
additional simplifications in the formula for the denominator Di jk

abc(CCSD), Eq. (69),
entering the CR-CC(2,3) triples correction. Similar benefits of using the complete
expression for Di jk

abc(CCSD) are observed, when we compare the results of the
CR-CC(2,3),A and full CR-CC(2,3) calculations in the R = Re − 2Re region of cut
(ii) and for the the entire cut (iii). The 86–1059 cm−1 errors, relative to MRCI(Q),
in the CR-CC(2,3),A/X = 4 results obtained in the R = Re − 2Re region of cut
(ii), which are obviously smaller than the 154–1917 cm−1 errors obtained with
CR-CCSD(T), reduce to 79–709 cm−1, when the full CR-CC(2,3)/X = 4 method
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is employed. The 68–398 cm−1 differences between the CR-CC(2,3),A/X = 4
and MRCI(Q)/X = 4 energies in the Y = 0.8 − 1.75 Å region of cut (iii) reduce
to 63–321 cm−1, when the full CR-CC(2,3)/X = 4 method is used. The use of
other aug-cc-pCVXZ basis sets does not change any of these accuracy patterns in a
substantial manner.

We can conclude that the CR-CC(2,3) approach, with the complete treatment of the
Di jk

abc(CCSD) denominator, as defined by Eq. (69), provides the overall best results
when compared to other non-iterative triples methods examined in this work. It is true
that the CR-CC(2,3) approach fails in the R > 2Re region of cut (ii) and it is also
true that the CR-CC(2,3) energies for smaller stretches of the O–H bond(s) appear
to be less accurate than the corresponding CCSD(T) energies. We must remember,
however, that one needs quadruply excited clusters in the R > 2Re region of cut
(ii), while the perfect agreement between the CCSD(T) and MRCI(Q) data at smaller
stretches of the O–H bond(s) is not necessarily a desired behavior. Indeed, the explicit
inclusion of quadruples in CC calculations, which can be done in the region of smaller
stretches of the O–H bond(s) via the CCSD(TQ),b approach, makes the agreement
between the CC and MRCI(Q) data less perfect, as already explained above. These
observations agree with the performance of the CR-CC(2,3) approach in a variety of
benchmark calculations reported in Refs. [45, 46, 48], where it has been noted that
the CR-CC(2,3) energies are very close to the full CCSDT energies, not only when
CCSDT works, but also when it fails, as is the case of multiple bond dissociations.
In particular, as shown in Refs. [45, 48], the full CCSDT approach completely fails
in the R > 2Re region of the double dissociation of water, analogous to our cut
(ii). Thus, the failure of CR-CC(2,3) in the same region is, in a way, a desired result,
since one cannot and should not break both O–H bonds in the water molecule without
quadruply excited clusters, and the approximate triples methods, such as CR-CC(2,3),
should not be better than the full CCSDT approach.

In view of the above discussion, it is very important to examine what happens
with the CR-CC(2,3) energies if we augment them by quadruples, as is done in
the CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) calculations. As shown in Tables 2–8,
the overall agreement between the CR-CC(2,3)+Q(x) (x = a, b) and MRCI(Q)
data is quite remarkable. For example, in the case of cut (i), corresponding to
the dissociation of a single O–H bond, the 39–351 cm−1 unsigned differences
between the CR-CC(2,3)/X = 4 and MRCI(Q)/X = 4 energies in the R =
Re−2Re region, in which these energies increase to more than 35000 cm−1, reduce to
2–86 cm−1 when the CR-CC(2,3)+Q(b)/X = 4 approach is employed. The CR-
CC(2,3)+Q(a)/X = 4 method provides similar results, although the somewhat more
complete CR-CC(2,3)+Q(b) approximation seems better. The maximum error, rel-
ative to MRCI(Q), characterizing the CR-CC(2,3)/X = 4 calculations in the entire
range of R values, of 813 cm−1, reduces in the CR-CC(2,3)+Q(b)/X = 4 calculations
to 395 cm−1. Again, the CR-CC(2,3)+Q(a)/X = 4 approach is almost as effective.
The use of other aug-cc-pCVXZ basis sets leads to similar error reductions.

The 79–709 cm−1 differences between the CR-CC(2,3)/X = 4 and MRCI(Q)/X=4
energies in the R = Re − 2Re region of cut (ii), where both O–H bonds are
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simultaneously stretched and where the energy goes up to more than 67000 cm−1,
reduce (in absolute value) to 24–121 cm−1, when the CR-CC(2,3)+Q(a)/X = 4
method is employed, and 13–115 cm−1, when the CR-CC(2,3)+Q(b)/X = 4
approach is used. The CR-CC(2,3)+Q(b) approach remains quite accurate up to
R = 3Re, where the energy is already larger than 80000 cm−1. The difference
between the CR-CC(2,3)+Q(b)/X = 4 and MRCI(Q)/X = 4 energies is only slightly
larger than 500 cm−1 in the R = 3Re region. The CR-CC(2,3)+Q(a) approximation
shows the signs of unstable behavior in the R > 2Re region, with the signed errors
relative to MRCI(Q) changing from more than +2000 cm−1 to ∼(−3000)−(−2000)
cm−1, which is partly due to the fact that we use the first-order MBPT estimates
of T2 cluster amplitudes in defining the (Q) corrections of CR-CC(2,3)+Q(a) (or
CR-CCSD(TQ),a) and partly due to the heuristic nature of the CR-CC(2,3)+Q
approaches, which should eventually be replaced by the more consistent CR-CC(2,4)
theory. The somewhat ad hoc nature of the CR-CC(2,3)+Q approximations may
also be responsible, at least in part, for the ∼3000 cm−1 differences between the CR-
CC(2,3)+Q(b) and MRCI(Q) energies in the R = 4Re −5Re region of cut (ii). Again,
the accuracy patterns observed in the CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) cal-
culations for cut (ii), when compared to MRCI(Q), are essentially independent of the
aug-cc-pCVXZ basis set employed in these calculations.

The CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) results for cut (iii), corresponding to
the C2v dissociation pathway into H2(X 1�+

g ) and O(2p4 1 D), are very good as well.
Both CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) methods reduce the errors resulting
from the CR-CC(2,3) calculations and, as a matter of fact, the overall accuracy of the
CR-CC(2,3)+Q(b) approach in the Y = 0.8 − 1.75 Å region of cut (iii), as judged
by the differences with MRCI(Q), is better than the accuracy of the CCSD(TQ),b
method, which performs very well in this case. It is quite encouraging to see the
relatively small and monotonically increasing 21–210 cm−1 differences between the
CR-CC(2,3)+Q(b)/X = 4 and MRCI(Q)/X = 4 energies in the Y = 0.8 − 1.75 Å
region of cut (iii), where energies go up to ∼57000 cm−1 above the minimum.

The overall agreement between the CR-CC(2,3)+Q(b) and MRCI(Q) results for all
three potential surface cuts examined in this study is excellent, particularly if we keep
in mind the black-box, single-reference nature of the CR-CC(2,3)+Q(b) calculations.
The fact that with an exception of the R = 4Re − 5Re region of cut (ii) and the
Y = 2.0 − 4.0 Å region of cut (iii), the CR-CC(2,3)+Q(b) and MRCI(Q) energies
agree to within 500 cm−1 and, in most cases, to within 100 cm−1 or less is a clear
demonstration of the large potential offered by the CR-CC theories. The CR-CC(2,3)
and CR-CC(2,3)+Q(b) methods seem to be at least as effective as the CCSD(T) and
CCSD(TQ),b methods in the vicinity of the equilibrium geometry, where the many-
electron correlation effects are primarily of dynamical nature, while providing the
accuracy comparable to the MRCI(Q) approach in the higher-energy potential energy
surface regions characterized by large non-dynamical correlation effects. In the case
of the water molecule, we seem to be able to obtain the relatively small differences
between the results of the CR-CC(2,3)+Q(b) and MRCI(Q) calculations, on the order
of 100–500 cm−1 or less, for the energies as large as 60000–70000 cm−1 above
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the global minimum. This is a remarkable finding, considering the single-reference
character and the relatively low cost of all CR-CC calculations. This is also very
promising from the point of view of applying the CR-CC methods, particularly
the most recent approaches based on the biorthogonal MMCC theory, in calcula-
tions aiming at the construction of accurate global potential functions for dynam-
ical studies. The proximity of the CR-CC(2,3)+Q(b) and MRCI(Q) results for the
large portion of the global potential energy surface of water and the fact that the
CR-CC(2,3)+Q(b) approach remains as accurate as the CCSD(TQ),b method in
the vicinity of the equilibrium geometry open up new avenues for constructing
highly accurate global potentials, since switching between the CR-CC(2,3)+Q(b) and
MRCI(Q) energies which are so similar, should be quite straightforward. Clearly, in
the future, one should replace the heuristic CR-CC(2,3)+Q approximations tested in
this work by the genuine and properly derived CR-CC(2,4) theory, exploiting the
biorthogonal MMCC formalism of Refs. [45,46], as discussed in the earlier sections.
The excellent CR-CC(2,3)+Q results for water obtained in this work prompt such
development.

Last, but not least, let us address the aforementioned issue of the rather substan-
tial differences between the MRCI(Q)/X = 4 or MRCI(Q)/X = 5 and ES potential
energy surfaces in the regions of the intermediate R and Y values, and intermediate
or higher, but not the highest energies, which are as much as 700–800 cm−1 for cut
(i) in the R ≈ 2.5Re region, 600–800 cm−1 for cut (ii) in the R ≈ 1.75Re region,
and 3500–3600 cm−1 for cut (iii) in the Y ≈ 1.3 Å region. Such differences cannot
be explained by the neglect of the relativistic, non-adiabatic, and quantum electro-
dynamical effects in MRCI(Q) calculations. They indicate that either the MRCI(Q)
approach employing large basis sets is insufficiently accurate or the ES potential
needs further refinement in the above regions. Although, as explained earlier, both
interpretations are possible, we tend to believe that the accuracy of the ES poten-
tial function in the regions of intermediate internuclear separations and energies,
which connect the spectroscopic and asymptotic regions, is not as high as the accu-
racy of the ES surface around the minimum, up to about 19000 cm−1, and in the
H(1s 2S) + OH(X 2�), 2H(1s 2S) + O(2p4 3 P), and H2(X 1�+

g ) + O(2p4 1 D)
asymptotic regions. We base our belief on the close proximity of the MRCI(Q) and
CR-CC(2,3)+Q(b) energies in the regions of the intermediate R and Y values, where
the MRCI(Q)/X = 4 or MRCI(Q)/X = 5 and ES potentials significantly differ.
This is shown in Table 8, where we compare the differences between the best CR-
CC(2,3)+Q(b)/X = 4 energies and the corresponding MRCI(Q)/X = 4 data with
the differences between the CR-CC(2,3)+Q(b)/X = 4 and ES energies, and the anal-
ogous differences between the MRCI(Q)/X = 4, 5 and ES energies. As one can
see, the 700–800 cm−1 differences between the MRCI(Q)/X = 4, 5 and ES ener-
gies in the R ≈ 2.5Re region of cut (i) are very similar to the ∼1000 cm−1 differ-
ence between the CR-CC(2,3)+Q(b)/X = 4 and ES energies in the same region.
The 600–800 cm−1 differences between the MRCI(Q)/X = 4, 5 and ES energies
in the R ≈ 1.75Re region of cut (ii) are not much different than the ∼700 cm−1

difference between the CR-CC(2,3)+Q(b)/X = 4 and ES energies in this region.
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Finally, the 3500–3600 cm−1 differences between the MRCI(Q)/X = 4, 5 and ES
energies in the Y ≈ 1.3 Å region of cut (iii) are very similar to the 3000−3500 cm−1

differences between the CR-CC(2,3)+Q(b)/X = 4 and ES for Y ≈ 1.2 − 1.3 Å. The
large consistency between the MRCI(Q)/X = 4, 5 and CR-CC(2,3)+Q(b)/X = 4
results in the above regions of the potential energy surface of water makes us believe
that the energy values provided by both ab initio approaches in these regions are more
accurate than those provided by the existing ES potential. This gives us an opportu-
nity to refine the ES global potential in the future by incorporating some MRCI(Q)
or CR-CC(2,3)+Q(b) data from the regions of the intermediate R and Y values in the
appropriate fitting and ES procedures.

4. SUMMARY AND CONCLUDING REMARKS

In this chapter, we have explored an important issue of the development of black-
box single-reference procedures that could be applied to at least some of the most
frequent multi-reference situations, such as single and double bond dissociations,
by reviewing the recently proposed renormalized CC methods and by reporting
test calculations for the potential energy surface of the water molecule. We have
focused on a few basic renormalized CC methods, including the older CR-CCSD(T)
and CR-CCSD(TQ) approximations [11–14, 24, 33, 34] and the most recent size
extensive CR-CC(2,3) and other CR-CC(m A,m B) approaches [45, 46]. In the
CR-CCSD(T) and CR-CC(2,3) methods, the relatively inexpensive corrections due
to triply excited clusters, similar in the computer cost to the triples corrections
of the conventional CCSD(T) theory [19], are added to the CCSD energy. In the
CR-CCSD(TQ) and CR-CC(2,4) approaches, the CCSD energy is corrected for the
dominant effects of triply and quadruply excited clusters in a manner reminiscent
of the conventional CCSD(TQ) approximations, such as CCSD(TQ),b [24, 36] or
CCSD(TQf) [23]. Since the CR-CC(2,4) approach has not been fully developed and
implemented yet (we have discussed open issues that one needs to address before
proposing the optimum CR-CC(2,4) model), we have considered an approximate
form of the CR-CC(2,4) theory, abbreviated as CR-CC(2,3)+Q, in which the CR-
CC(2,3) energies are a posteriori corrected for the effect of quadruply excited clus-
ters by using the information about quadruples extracted from the CR-CCSD(TQ)
calculations.

In addition to discussing specific renormalized CC methods, we have reviewed the
MMCC formalism, which is the key concept behind all renormalized CC approaches.
In this discussion, we have included the most recent biorthogonal formulation of the
MMCC theory employing the left eigenstates of the similarity-transformed Hamil-
tonian which leads to the CR-CC(2,3) and other CR-CC(m A,m B) approaches. We
have discussed the similarities and differences between the original MMCC theory of
Piecuch and Kowalski, introduced in Refs. [11,24,34], and the biorthogonal MMCC
formalism of Piecuch and Włoch, introduced in Ref. [45] and further elaborated on
in Ref. [46]. In particular, we have pointed out how the biorthogonal formulation
of the MMCC theory enables one to eliminate the overlap denominators, which are
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present in the original MMCC formalism and which cause small departures from
the rigorous size extensivity in the CR-CCSD(T) and CR-CCSD(TQ) calculations,
but which are also important to properly renormalize the CCSD(T) and CCSD(TQ)
approximations, and how to achieve the size extensive renormalization of the energy
corrections due to triples or triples and quadruples through the use of the suitable
ansatz for the bra wave function entering the MMCC correction formula.

In order to test the performance and potential benefits of using the single-reference
renormalized CC methods, we have compared the results of the CR-CCSD(T),
CR-CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q calculations for the three impor-
tant cuts of the potential energy surface of the water molecule, including the dis-
sociation of one O–H bond, which correlates with the H(1s 2S) + OH(X 2�)

asymptote, the simultaneous dissociation of both O–H bonds, which leads to the
2H(1s 2S)+ O(2p4 3 P) products, and the C2v-symmetric dissociation pathway into
H2(X 1�+

g ) and O(2p4 1 D), with those obtained in the highly accurate MRCI(Q)
calculations and those provided by the spectroscopically accurate ES potential func-
tion [132]. We have demonstrated that all renormalized CC methods eliminate or
considerably reduce the failures of the conventional CCSD(T) and CCSD(TQ),b
approaches in the bond breaking regions of the water potential, while retaining high
accuracies of the CCSD(T) and CCSD(TQ),b methods in the vicinity of the equilib-
rium geometry. The CR-CC(2,3) and CR-CC(2,3)+Q methods are particularly effec-
tive in this regard. Unlike CCSD(T), the CR-CC(2,3) approach provides a faithful
description of triply excited clusters [45, 46, 48], even in the equilibrium region,
where the CCSD(T) approach works well. After correcting the CR-CC(2,3) results
for quadruples, as is done in the CR-CC(2,3)+Q(x) (x = a, b) schemes, we obtain
the potential energy surfaces of excellent quality. Indeed, as shown in this work,
the single-reference, RHF-based, CR-CC(2,3)+Q(b) approach describes the above
three cuts of the global potential energy surface of water with accuracies that can
only be matched by the high accuracy, CASSCF-based, MRCI(Q) calculations. We
find the small differences between the CR-CC(2,3)+Q(b) and MRCI(Q) energies, on
the order of 100–500 cm−1 or less, for energies as large 60000–70000 cm−1, where
the highest possible energies corresponding to the complete atomization of water are
on the order of 80000 cm−1 and where the existing spectroscopically accurate poten-
tials, such as the ES function, can guarantee very high accuracies up to about 19000
cm−1, to be the most remarkable finding. At the same time, the CR-CC(2,3)+Q(b)
approach, which is based on the excellent description of the T3 cluster contributions
by the size extensive CR-CC(2,3) approximation, corrected for T4 effects, provides a
balanced description of triples and quadruples in the bond breaking and equilibrium
regions. In the equilibrium region, the accuracy of the CR-CC(2,3)+Q(x) (x = a, b)
methods is essentially the same as the accuracy of the CCSD(TQ),b approach, which
describes the combined effect of T3 and T4 clusters in non-degenerate situations
extremely well. Thus, the CR-CC(2,3) method corrected for quadruples enables us
to bridge the closed-shell and bond breaking regions of the global potential energy
surface of water, while preserving the high accuracy of the CCSD(TQ),b results in



116 Piotr Piecuch et al.

the closed-shell regions and matching the high quality of MRCI(Q) results in regions
of stretched chemical bonds, where CCSD(TQ),b (and CCSD(T), of course) fails.

The excellent agreement between the CR-CC(2,3)+Q and MRCI(Q) results in
regions of intermediate stretches of chemical bonds and higher, but not the high-
est energies, where the ES surface may be somewhat less accurate, has enabled us to
suggest ways of improving the global ES potential function of water that might poten-
tially benefit future reaction dynamics studies. The regions of intermediate stretches
of chemical bonds that connect the spectroscopic and asymptotic regions of the water
potential energy surface are not as well understood as the spectroscopic and asymp-
totic regions. Thus, it is difficult to construct the global potential of water without
the high accuracy ab initio data. The large consistency between the CR-CC(2,3)+Q
and MRCI(Q) results in these intermediate regions of the water potential suggest that
we should be able to use the CR-CC(2,3)+Q approach and, hopefully, the future CR-
CC(2,4) approach to provide the necessary information to improve the ES and other
existing global potential functions.
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Abstract We present an explicit list of relevant formulae connecting the various coordinate sets for
the representation of the potential energy surface of triatomic systems. The connections
are made to those coordinates which give the potential energy surface dependence on the
internuclear distances. Reference will also be made to computer programs which are made
available on the Internet. Applications are indicated for molecular and chemical physics.

1. INTRODUCTION

In this paper we consider some coordinate sets used for the treatment in classical and
quantum mechanics of the motion of three particles in space. The alternative sets of
coordinate systems for the three-body problem have been studied extensively [1–5]
and a good choice of the coordinate systems is of crucial importance. Key references
for the basic theory are [1–4, 6], where also history is sketched and credits are given.

In the laboratory frame the motion of the three particles depends on nine vari-
ables, three of which define the position of the center-of-mass. Other three coordi-
nates are needed to describe the rotation of the system in the space and therefore
the internal motion is described by the three remaining coordinates. For example,
in molecular dynamics the potential energy surface in general is calculated and pre-
sented using geometrical coordinates, such the interparticle distances, or two “bond”
distances and an angle. But it is convenient and necessary to use different coordi-
nate systems to describe and understand the dynamics of the particles, because of the
rotational terms which appear in the full Hamiltonian. In this context, we will present
the transformation equations from the interparticle distances to coordinate sets of
the hyperspherical and related types, successful in the treatment of the dynamics.

123
S. Lahmar et al. (eds.), Topics in the Theory of Chemical and Physical Systems, 123–146.
c© 2007 Springer.



124 Mirco Ragni et al.

Early basic formulations [7] and applications were restricted to physically collinear
(mathematically two-dimensional) problems [8] and semiclassical approaches [9],
nonadiabatic effects [10] and resonances [11] were studied.

A historical account of the development of orthogonal coordinates for elementary
chemical reactions has been given by one of the protagonists [12]. The early hyper-
spherical treatment for the helium atom as a tree-body quantum-mechanical prob-
lem [13, 14], reviewed in Morse and Feshbach’s treatise [15], was taken up in two
basic papers by Fock [16]. They essentially used the parametrization referred to as
asymmetrical in the following. Further important work in atomic physics [17,18] used
the same hyperspherical parametrization, as did the investigations by Delves [19] on
the breakdown of systems of many particles.

Gallina et al. [20] introduced the hyperspherical symmetrical parametriza-
tion in a particle-physics context, as did Zickendraht later [21, 22]. At the same
time, F.T. Smith [23] gave the definitions of internal coordinates following Fock’s
work already mentioned [16], Clapp [24, 25] and others and established, for the
symmetrical and asymmetrical parametrization, the basic properties and the notation
we follow. Since then, applications have been extensive, especially for bound states.
For example, the symmetrical coordinates have often been used in atomic [26],
nuclear [27] and molecular [28–31] physics. This paper accounts for modern appli-
cations, with particular reference to the field of reaction dynamics, in view of the
prominent role played by these coordinates for dealing with rearrangement problems.

Exploiting a four-dimensional rotation group analysis, the transformation between
harmonic expansions in the two coordinates systems was given explicitly [32], as
well as the most general representation in terms of Jacobi functions [2]. In prac-
tice, however, the two representations are in one form or another those being used
in all applications and specifically in recent treatments of the elementary chemi-
cal reactions as a three-body problem [11, 33–36]. For example, Eqs. (29)–(31) and
Eqs. (47)–(49) permitted to establish [37] the explicit connection between coordi-
nates for entrance and exit channels to be used in sudden approximation treatments
of chemical reactions [38].

The full three-body problem in the physical three-dimensional space required
development of hyperspherical harmonic expansions [39]. Crucial for further
progress was the introduction of discrete analogues for the latter [40–43], based
on hyperangular momentum theory [44, 45] and leading to the efficient hyperquanti-
zation algorithm [46–49]. For other hyperspherical approaches to reaction dynamics,
see [50–63].

The content of the paper is as follows. In section 2 we revisit formulas for the
various coordinate sets; in section 3 we list relationships with interatomic distances;
in section 4 the computer implementation for the use of these formulas is described.
An overview of past and perspective applications concludes the paper (section 5).

All programs can be downloaded from the web site http://www.chm.unipg.it/
chimgen/mb/theo2/home/pagine/ricerca/cc3.html.
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2. DEFINITION OF SETS AND RELATIONS

Here, we present the various sets, starting from that commonly used where a molecule
is seen as a central atom, B, two bonds and an internal angle. We consider a system of
three particles (A, B, and C), with masses m A, m B , and mC , respectively. Distances
will be indicated as rAB , rBC , and rAC .

2.1. Two distances and one angle
2.1.1. Vectors with center at B

In this coordinate set, we use two vectors and an angle, which can be defined consid-
ering two vectors, connecting the particle, centered on one particle. Assuming B as
center at Figure 1, the vectors with center at B are

|rAB | = rAB(1)
|rBC | = rBC(2)

cos γ = r2
AB + r2

BC − r2
AC

2rBCrAB
.(3)

2.1.2. Jacobi vectors

To proceed, we choose a particular configuration, indicated by the suffix α, where the
atom A is assumed to impinge on the molecule BC . Other two choices are clearly
possible. Quantities independent of this choice are called “kinematic invariants”.

In the three-body problem we can write down two Jacobi vectors, one (xα) is the
interparticle distance between two particles and the other (Xα) connects their center-
of-mass to the third particle. So, the choice of the Jacobi vectors is not unique [1].
Here we will consider xα as the vector from the particle B to the particle C, and Xα as
the vector from the particle A to the center-of-mass of the BC couple (see Figure 2).

A, mA

rBC

rAB

C, mC
B, mB

γ

Figure 1. Vectors with center at B.
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y

C, mc

A, mA

B, mB

Xα O

Xα

Figure 2. The Jacobi vectors.

Then, from the interparticle distances we have:

|Xα| =
[

m B

m B + mC
r2

AB + mC

m B + mC
r2

AC − m BmC

(m B + mC )2
r2

BC

] 1
2

(4)

|xα| = rBC(5)

cosϑ = r2
AC − r2

AB − m B−mC
m B+mC

r2
BC

rBC

[
4m B

m B+mC
r2

AB + 4mC
m B+mC

r2
AC − 4m B mC

(m B+mC )2
r2

BC

] 1
2

(6)

When the denominator of (6) vanishes, cosϑ is zero. The interparticle distances from
the Jacobi vectors can be calculated by:

rBC = |xα|(7)

rAB =
[

m2
C

(m B + mC )2
|xα|2 − 2mC

m B + mC
|xα||Xα| cosϑ + |Xα|2

] 1
2

(8)

rAC =
[

m2
B

(m B + mC )2
|xα|2 + 2m B

m B + mC
|xα||Xα| cosϑ + |Xα|2

] 1
2

(9)

2.1.3. The mass-scaled Jacobi vectors

Under proper mass-scaling the three possible Jacobi vectors sets can be related to
each other by a planar rotation by an angle which depends only on the masses of A,
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B, and C particles and is an extension of the so-called skewing angle concept [3]. For
each set of the two Jacobi vectors the mass-scaling can be written

rα =
[
µBC

µ

] 1
2

xα and Rα =
[
µ

µBC

] 1
2

Xα(10)

where µBC is the two-body reduced mass for the BC couple and

µ = √
m Am BmC/(m A + m B + mC ) .(11)

is the three-body reduced mass. Equivalently, we can write

rα =
[
µBC

µA,BC

] 1
4

xα and Rα =
[
µA,BC

µBC

] 1
4

Xα(12)

where

µA,BC = m A(m B + mC )

m A + m B + mC
.(13)

2.1.4. The Radau–Smith vectors

Besides this coordinate sets, other sets of orthogonal vectors have been considered
in the literature. Kinematic Rotations by mass-dependent matrices allows to relate
different particle couplings in the Jacobi scheme, and to build up alternative sys-
tems such as those based on the Radau–Smith vectors and hyperspherical coordinates
[1, 3]. The Radau–Smith vectors RS1, RS2 and the angle cosϑRS (0 ≤ ϑRS ≤ π ),
showed in Figure 3 (the D point is defined by O D

2 = O E × O A, where O is the
center-of-mass of the BC couple, E is the center-of-mass of the three particles and A
is the position of the A particle), can be calculated from the Jacobi vectors xα and Xα
using:

Figure 3. The Radau Smith vectors.
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|RS1| =
[

m2
C

(m B + mC )2
|xα|2 − 2mC

m B + mC

√
m A

mT
|xα||Xα| cosϑ

+ m A

mT
|Xα|2

] 1
2

(14)

|RS2| =
[

m2
B

(m B + mC )2
|xα|2 + 2m B

m B + mC

√
m A

mT
|xα||Xα| cosϑ

+ m A

mT
|Xα|2

] 1
2

(15)

cosϑRS = |RS1|2 + |RS2|2 − |xα|2
−2|RS1||RS2|(16)

where mT indicates the total mass of the system:

mT = m A + m B + mC(17)

The Jacobi vectors from the Radau–Smith vectors can be calculated by:

|xα| =
[
|RS1|2 + |RS2|2 − 2|RS1||RS2| cosϑRS

] 1
2

(18)

|Xα| =
[

m BmT

m A(m B + mC )
|RS1|2 + mC mT

m A(m B + mC )
|RS2|2

+ m BmC mT

m A(m B + mC )2
|xα|2

] 1
2

(19)

cosϑ =
|RS1|2 − m2

C
(m B+mC )2

|xα|2 − m A
mT

|Xα|2

−2 mC
m B+mC

√
m A
mT

|xα||Xα|
(20)

where |xα| cannot vanish because it is the distance between B and C; instead |Xα|
can vanish: in this case the particle A is in the barycenter of B and C, here cosϑ is
taken as zero.

2.2. Hyperspherical and related coordinates
2.2.1. Basic invariants and the hyperradius

The basic idea of the hyperspherical approach is the introduction of the ρ variable,
which plays the role of a radius of a hypersphere. In hyperspherical coordinates sys-
tems the hyperradius is a critical quantity and is found to be:

ρ2 = |Rα|2 + |rα|2(21)

and enjoys the important property of being independent on the particular choice of
A, B, and C, i.e. of being kinematically invariant.
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Let’s define three coordinates in terms of mass-scaled Jacobi vectors:

w1 = |rα|2 − |Rα|2(22)
w2 = 2 (rα · Rα)(23)
w3 = 2 |(rα × Rα)|(24)

with −∞ < w1, w2 <∞, and 0 ≤ w3 <∞. It can be shown thatw3 is kinematically
invariant, while w1 and w2 are not. These have very interesting proprieties, but are
seldom used. It is convenient to define:

ξα = w2/ρ(25)
η = w3/ρ(26)
ζα = w1/ρ(27)

where only η is kinematic invariant and −∞ < ξα, ζα < ∞, and 0 < η < ∞. In
function of these sets one can define the hyperradius as

ρ2 =
[
w2

1 + w2
2 + w2

3

] 1
2 = ξ2

α + η2 + ζ 2
α(28)

2.2.2. Asymmetric hyperspherical coordinates

The (hyper)-angles ϑα and χα can be defined by as a polar representation of
Eq. (25)-(27):

ξα = ρ sin(2χα) cos(ϑα)(29)
η = ρ sin(2χα) sin(ϑα)(30)
ζα = ρ cos(2χα)(31)

Therefore the asymmetric parametrization [2] can be expressed in terms of two coor-
dinates referred to an internal system: the angle ϑα is the same encountered before
as that formed by the two Jacobi vectors and the angle χα is related to their ratio:

tanχα = |Rα|
|rα|(32)

The asymmetric hyperspherical coordinates from the mass-scaled Jacobi vectors can
be calculated by:

|Rα| =
√
ρ2 tanχ2

α

1 + tanχ2
α

(33)

|rα| =
√

ρ2

1 + tanχ2
α

(34)

2.2.3. Symmetric hyperspherical coordinates

The variables ξα, η and ζα of the Eq. (25)-(27) serve to define the so-called symmet-
ric hyperspherical coordinates.
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ξα = ρ cos(2�) sin(2
α)(35)
η = ρ sin(2�)(36)
ζα = ρ cos(2�) cos(2
α)(37)

where 0 ≤ � ≤ π/4 and 0 ≤ 
α < π . The dependence of 
 on change of
labelling (kinematic rotation) is trivial. The suffix α will be implied in the follow-
ing but neglected to simplify the notation.

The symmetric parametrization can be achieved by taking as internal reference
system the one that diagonalizes the inertia tensor, placing the principal axis in corre-
spondence with that of maximal inertia [6, 64]. The symmetric hyperspherical coor-
dinates can be calculated from the asymmetric hyperspherical coordinates:

sin(2�) = 2 tanχ
1 + tan2 χ

sinϑ(38)

cos(2
) = 1 − tan2 χ

1 + tan2 χ

1
cos(2�)

(39)

sin(2
) = 2 tanχ
1 + tan2 χ

cosϑ
cos(2�)

(40)

When cos(2�) vanishes 
 is undefined. The asymmetric hyperspherical coordinates
from the symmetric hyperspherical coordinates can be calculated by:

tanχ =
√

1 − cos(2�) cos(2
)
1 + cos(2�) cos(2
)

(41)

cosϑ = cos(2�) sin(2
)
1 + tan2 χ

2 tanχ
(42)

Coherently with the definition of asymmetric hyperspherical coordinates, cosϑ is
zero when tanχα vanishes.

2.2.4. Other relationships

It can be useful to know the relationship between these new coordinate sets. So here
we present some inverse formulae. For example, to pass from the ξ , η, and ζ set to
symmetric hyperspherical coordinates one can use:

ρ =
[
ξ2 + η2 + ζ 2

] 1
2(43)

cos(2�) =
[

ξ2 + ζ 2

ξ2 + η2 + ζ 2

] 1
2

(44)

cos(2
) = ζ

ρ cos(2�)
(45)

sin(2
) = ξ

ρ cos(2�)
(46)

As in Eqs. (41) and (42), when cos(2�) vanishes the angle 
 is undefined.
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The variables w1, w2, and w3 using Eqs. (25)–(27), and Eqs. (35)–(37) are given
by following relations [5]:

w1 = ρ2 cos(2�) cos(2
)(47)
w2 = ρ2 cos(2�) sin(2
)(48)
w3 = ρ2 sin(2�)(49)

And the inverses are:

ρ =
[
w2

1 + w2
2 + w2

3

] 1
4(50)

cos(2�) =
[

w2
1 + w2

2

w2
1 + w2

2 + w2
3

] 1
2

(51)

cos(2
) = w1

ρ2 cos(2�)
(52)

sin(2
) = w2

ρ2 cos(2�)
(53)

where the angle 
 is undefined when cos(2�) vanishes.

2.2.5. Elliptic coordinates

In the elliptic coordinates set, introduced in [2] (see also [5]), the three variables are
indicated with ρ,ψ , and ω. Similar coordinates have been used in other types of prob-
lems, especially in connection with momentum space techniques [65] and Sturmian
basis sets [66] of interest in quantum chemistry. In [5] we also describe relationship
with a set which Tolstikhin and coworkers [67–75] presented and utilized. The vari-
able ρ is again the hyperradius and can be calculated with Eq. (28). The last two
variables are two angles and have ranges 0 ≤ ψ ≤ π and −π/2 ≤ ω ≤ π/2. To give
more flexibility to the elliptic set, there are two parameters k and k′:

k2 + k′2 = 1(54)

where 0 ≤ k, k′ ≤ 1. Sometimes, for a process A + BC → AB + C, k is equal to the
the cosine of the angle [5]:

γ = tan−1
√

m BmT

m AmC
(55)

This set is defined [5] by

w1 = ρ2 cosψ
√

1 − k′2 cos2 ω(56)
w2 = ρ2 sinψ sinω(57)

w3 = ρ2 cosω
√

1 − k2 cos2 ψ(58)

and the inverse, when k and k′ are different from zero, are:

cos2 ω = k′2w2
3 + ρ4 − k2w2

1 −
√(

k′2w2
3 + ρ4 − k2w2

1
)2 − 4ρ4k′2w2

3

2ρ4k′2(59)
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cos2 ψ = k2w2
1 + ρ4 − k′2w2

3 −
√(

k2w2
1 + ρ4 − k′2w2

3
)2 − 4ρ4k2w2

1

2ρ4k2(60)

where cosψ and sinω have the same sign of w1 and w2 respectively. Notice that the
values under the roots of the Eqs. (59) and (60) are identical.

The relations valid for k = 0 (k′ = 1) are:

w1 = ρ2 cosψ sinω(61)
w2 = ρ2 sinψ sinω(62)
w3 = ρ2 cosω(63)

and the inverses are:

cosω = w3

ρ2(64)

cosψ = w1

ρ2 sinω
(65)

From Eq. (62) we deduce that sinω has the sign of w2, and when sinω vanishes the
angle ψ is undefined.

Another case is obtained with k = 1 (k′ = 0) and the relationships are:

w1 = ρ2 cosψ(66)
w2 = ρ2 sinω sinψ(67)
w3 = ρ2 cosω sinψ(68)

and the inverses are:

cosψ = w1

ρ2(69)

sinω = w2

ρ2 sinψ
(70)

When sinψ vanishes the angle ω is undefined.

2.2.6. Other notations

As far as applications are concerned, a list of alternative notations used by recent
authors follows. Regarding the choice of the arbitrary mass and the consequent mass-
scaling, our definitions (section 2.1.3) lead to a hyperradius ρ whose unit is length,
and is used by most. Babamov and Marcus [76] impose a unitary three body mass,
with the consequence that theie hyperradius is (µBCµA,BC )

1
2 ρ. In their numerous

applications, Manz, Römelt, and co-workers [33] do not scale rBC , and their hyper-
radius is (µ/µBC )

1
2 ρ.

Symbols and scalings for hyperangles may lead to confusion. As discussed in
section 2, Eqs. (29)–(31), often angles parameterizing the (center-of-mass frame)
internal coordinates are twice those which parameterize the (laboratory-frame) six-
dimensional vector. In considering what we called Smith’s kinetic plane [3] for the
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representation of the potential-energy surfaces, Kuppermann [77] proposed to dou-
ble the χα angle. Actually, Kuppermann in this pioneering and recent work [35] uses
twice the angle

ηα = arctan
|xα|
|Xα|(71)

i.e. ηα = π/2+χα, (see also ref. [37] and [38]). This eliminates the superfluous rep-
etitions due to an inversion-plus-reflection symmetry in the kinetic plane: a sequence
like ABC is indistinguishable from C B A in 2D and 3D, even if not in 1D, but in
any case the potential-energy surface is invariant to such a symmetry operation (see
ref. [2] for a full discussion). Kuppermann’s doubling of the angle of the asymmetri-
cal hyperspherical parametrization appears to have stimulated Johnson [78] to rede-
fine the angles of the symmetrical parametrization: he used an angle θα = π/2−2�α
and an angle φα = πα/2−2
α. He also gave useful explicit quantum [79] and clas-
sical [80] Hamiltonians, used since then by many [81, 82]. Pack [83], in what he
defines APH coordinates, uses the symbol χ for the kinematic angle 
α, and θ as
Johnson instead of � (he also suggests an alternative orientation of the three atoms
from that of Smith, a choice unimportant for exact calculations but of perspective
interest for some approximations). Other representations are also simply related: for
example, Linderberg and co-workers [84, 85], following Mead [86], use coordinates
which, in the present notation, are ρ, ξα/ρ, and ζα.

For his the principal inertial axis formulation, Eckart (and the recent applications
by Robert and Baudon [87–89]) defined r1 and r2 corresponding to Q and q. De
Celles and Darling [90] used ξ and η, respectively.

3. RELATIONS WITH THE INTERPARTICLE DISTANCES

In this section we present the formulas to obtain the different sets, introduced
in the previous section, directly from the interparticle distances as well as their
inverses.

3.1. Radau–Smith vectors

The interparticle distances are related with Radau–Smith vectors by:

rBC =
[
|RS1|2 + |RS2|2 − 2|RS1||RS2| cosϑRS

] 1
2(72)

rAB =
[
CRS2|RS1|2 + CRS3|RS2|2 + CRS4|RS1||RS2| cosϑRS

] 1
2(73)

rAC =
[
CRS5|RS1|2 + CRS6|RS2|2 + CRS7|RS1||RS2| cosϑRS

] 1
2(74)

and the inverses are:

|RS1| =
[
CDI 2r2

BC + CDI 3r2
AB + CDI 4r2

AC

] 1
2(75)
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|RS2| =
[
CDI 5r2

BC + CDI 6r2
AB + CDI 7r2

AC

] 1
2(76)

cosϑRS = |RS1|2 + |RS2|2 − r2
BC

2|RS1||RS2|(77)

where the coefficients are the following:

CRS2 =
[

mC

m B + mC
+ m B

m B + mC

√
mT

m A

]2

CRS3 = m2
C

(m B + mC )2

[√
mT

m A
− 1

]2

CRS4 = 2
[ −m2

C

(m B + mC )2
+ m2

C − m BmC

(m B + mC )2

√
mT

m A
+ m BmC mT

(m B + mC )2m A

]

CRS5 = m2
B

(m B + mC )2

[√
mT

m A
− 1

]2

CRS6 =
[

m B

m B + mC
+ mC

m B + mC

√
mT

m A

]2

CRS7 = 2
[ −m2

B
(m B + mC )2

+ m2
B − m BmC

(m B + mC )2

√
mT

m A
+ m BmC mT

(m B + mC )2m A

]

CDI 2 = m2
C

(m B + mC )2
+ m BmC − m2

C

(m B + mC )2

√
m A

mT
− m Am BmC

(m B + mC )2mT

CDI 3 = mC

m B + mC

√
m A

mT
+ m Am B

(m B + mC )mT

CDI 4 = −mC

m B + mC

√
m A

mT
+ m AmC

(m B + mC )mT

CDI 5 = m2
B

(m B + mC )2
+ m BmC − m2

B
(m B + mC )2

√
m A

mT
− m Am BmC

(m B + mC )2mT

CDI 6 = −m B

m B + mC

√
m A

mT
+ m Am B

(m B + mC )mT

CDI 7 = m B

m B + mC

√
m A

mT
+ m AmC

(m B + mC )mT

3.2. Hyperspherical and related coordinates

To simplify the notation of the following equations we define these parameters:

d =
[

m A(m B + mC )
2

m BmC mT

] 1
4

(78)
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E = d2mC

m B + mC
=
√

m AmC

m BmT
(79)

F = d2m B

m B + mC
=
√

m Am B

mC mT
(80)

3.2.1. Asymmetric hyperspherical coordinates

The interparticle distances are related with asymmetric hyperspherical coordinates
by the following relations:

rBC = ρ d√
1 + tan2 χ

(81)

rAB = ρd√
1 + tan2 χ

[
E2 + tan2 χ − 2E cosϑ tanχ

] 1
2(82)

rAC = ρd√
1 + tan2 χ

[
F2 + tan2 χ + 2F cosϑ tanχ

] 1
2(83)

and the inverses are:

ρ2 =
√

m Am B

mC mT
r2

AB +
√

m AmC

m BmT
r2

AC +
√

m BmC

m AmT
r2

BC(84)

tanχα =
[

m A(m B + mC )

mC mT

r2
AB

r2
BC

+ m A(m B + mC )

m BmT

r2
AC

r2
BC

− m A

mT

] 1
2

(85)

cosϑ = r2
AC − r2

AB − m B−mC
m B+mC

r2
BC

rBC

[
4m B

m B+mC
r2

AB + 4mC
m B+mC

r2
AC − 4m B mC

(m B+mC )2
r2

BC

] 1
2

(86)

When the denominator of Eq. (86) is zero, cosϑ vanishes.

3.2.2. Symmetric hyperspherical coordinates

The interparticle distances are related with symmetric hyperspherical coordinates by:

rBC = ρd√
2

[
1 + cos(2�) cos(2
)

] 1
2(87)

rAB = ρ

d
√

2

[
E2 + 1 + cos(2�) cos(2
)(E2 − 1)

− cos(2�) sin(2
)2E
] 1

2(88)

rAC = ρ

d
√

2

[
F2 + 1 + cos(2�) cos(2
)(F2 − 1)

+ cos(2�) sin(2
)2F
] 1

2(89)
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The symmetric hyperspherical coordinates from the interparticle distances, where ρ
is given by the Eq. (84), can be written as:

sin(2�) =
[
2(r2

ABr2
BC + r2

ACr2
BC + r2

ABr2
AC )− r4

AB − r4
AC − r4

BC

] 1
2

√
m Am B
mC mT

r2
AB +

√
m AmC
m B mT

r2
AC +

√
m B mC
m AmT

r2
BC

(90)

cos(2
) =
[

2r2
BC

ρ2d2 − 1
]
/ cos(2�)(91)

When cos(2�) vanishes in Eq. (91), 
 is not defined.

3.2.3. Other relationships

The interparticle distances are related with ζ , ξ , and η coordinates by:

rBC = d√
2

[
η2 + ξ2 + ζ 2 + (η2 + ξ2 + ζ 2)

1
2 ζ
] 1

2(92)

rAB = 1

d
√

2

[
(E2 + 1)(η2 + ξ2 + ζ 2)

+ [ζ(E2 − 1)− 2ξE](η2 + ξ2 + ζ 2)
1
2

] 1
2(93)

rAC = 1

d
√

2

[
(F2 + 1)(η2 + ξ2 + ζ 2)

+ [ζ(F2 − 1)+ 2ξF](η2 + ξ2 + ζ 2)
1
2

] 1
2(94)

and the inverse are:

ζ = 2r2
BC

ρd2 − ρ(95)

ξ = r2
AC − r2

AB − m B−mC
m B+mC

r2
BC

ρ
(96)

η =
[
ρ2 − ζ 2 − ξ2

] 1
2
.(97)

The interparticle distances are related with w1, w2, w3 coordinates by:

rBC = d√
2

[
(w2

1 + w2
2 + w2

3)
1
2 + w1

] 1
2(98)

rAB = 1

d
√

2

[
(E2 + 1)(w2

1 + w2
2 + w2

3)
1
2 + w1(E2 − 1)− 2w2 E

] 1
2(99)

rAC = 1

d
√

2

[
(F2 + 1)(w2

1 + w2
2 + w2

3)
1
2 + w1(F2 − 1)+ 2w2 F

] 1
2(100)

and the inverses are:
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w1 =
[

1 + E F
d2

]
r2

BC − F r2
AB − E r2

AC(101)

w2 = r2
AC − r2

AB −
[

m B − mC

m B + mC

]
r2

BC(102)

w3 =
[
ρ4 − w2

1 − w2
2

] 1
2(103)

Where ρ is defined at Eq. (84).

3.2.4. Elliptic coordinates

The interparticle distances are related with elliptic coordinates by:

rBC = ρd√
2

[
1 + cosψ

√
1 − k′2 cos2 ω

] 1
2(104)

rAB = ρ

d
√

2

[
E2 + 1 + cosψ

√
1 − k′2 cos2 ω(E2 − 1)

− 2E sinψ sinω
] 1

2(105)

rAC = ρ

d
√

2

[
F2 + 1 + cosψ

√
1 − k′2 cos2 ω(F2 − 1)

+ 2F sinψ sinω
] 1

2(106)

When k′ = 0 the elliptic coordinates become:

rBC = ρd√
2

[
1 + cosψ

] 1
2(107)

rAB = ρ

d
√

2

[
E2 + 1 + (E2 − 1) cosψ − 2E sinψ sinω

] 1
2(108)

rAC = ρ

d
√

2

[
F2 + 1 + (F2 − 1) cosψ + 2F sinψ sinω

] 1
2(109)

and when k′ = 1 the elliptic coordinates become:

rBC = ρd√
2

[
1 + cosψ sinω

] 1
2(110)

rAB = ρ

d
√

2

[
E2 + 1 + (E2 − 1) cosψ sinω − 2E sinψ sinω

] 1
2(111)

rAC = ρ

d
√

2

[
F2 + 1 + (F2 − 1) cosψ sinω + 2F sinψ sinω

] 1
2
.(112)

Here we present the inverse relationships of the elliptic coordinates from the inter-
particle distances. The hyperradius can be calculated from the interparticle distances
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using Eq. (84). To calculate the angle ψ and ω it is necessary to consider the value of
k′. When k′ is different of 0 and 1 the two angles can be calculate using the inverses
of Eqs. (104)–(106):

cos2 ω = −δ −√
δ2 + 4k′2(β2 + α2 − 1)

2k′2(113)

cosψ = α√
1 − k′2 cos2 ω

(114)

sinψ =
√

1 − cos2 ψ(115)

sinω = β

sinψ
(116)

where

α = cosψ
√

1 − k′2 cos2 ω = 2r2
BC

ρ2d2 − 1(117)

β = sinψ sinω = d2

E

[
E2 + 1

2d2 + E2 − 1
2d2 α − r2

AB
ρ2

]
(118)

δ = α2 + k′2(β2 − 1)− 1(119)

In Eq. (115) 0 ≤ sinψ ≤ 1 because 0 ≤ ψ ≤ π . When k′ = 0 the valid relations are:

cosψ = 2r2
BC

ρ2d2 − 1(120)

sinω = d2

E sinψ

[
E2 + 1

2d2 + E2 − 1
2d2 cosψ − r2

AB
ρ2

]
(121)

The angle ω is undefined when sinψ vanishes. The relation for k′ = 1 are:

cosψ sinω = 2r2
BC

ρ2d2 − 1(122)

sinψ sinω = d2

E

[
E2 + 1

2d2 + E2 − 1
2d2 cosψ sinω − r2

AB
ρ2

]
(123)

sinω = ±
[

cos2 ψ sin2 ω + sin2 ψ sin2 ω
] 1

2(124)

When sinω is zero the angle ψ is undefined, otherwise its sign is given by the sign
of sinψ sinω.
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4. IMPLEMENTATION

We have implemented all the equations described previously in three programming
languages (C, FORTRAN and, JAVA). Also we have constructed two useful pro-
grams. The first program, called Zmatrix, permits to describe the configuration of the
three particles from one of the sets above to the standard of the Z Matrix implemented
in common quantum chemical programs (e.g. Gaussian, Gamess, and Molpro). The
second program implements the conversion routines in a Interface Programming.
This program, called Pcc3, allows us to understand the behavior of the set. This
was made using the Graphical User Interfaces (GUI) of the Operative System (OS),
in this way simplifying the introduction of the coordinates in the program. A goal of
this implementation is that one can see on the screen the position of the three par-
ticles. So we can familiarize with the nature of the coordinate sets and follow the
evolution of the system when the coordinates are varying.

4.1. Routines

The conversion equations, in section 2 and 3, are functions of some coefficients that
depend from the masses of the three particles. Since in the routines these coefficients
are calculated separately from the coordinates, we do not need to calculate them
each time we want a conversion. This also permitted to write conversion routines for
general purposes and very simple calling procedures.

4.2. Programs

The wide possibilities of conversion routines have allowed us to write two much
faster programs.

4.2.1. Zmatrix

The first program works with the command line, with an appropriate input from file
and/or keyboard it acquires the coordinates of the point in the pre-chosen set. Then it
converts these coordinates into the Z matrix. This comes out on a file. This program
can do the inverse calculation too. It takes a file that describes the position of the
three particles with the Z matrix and it calculates its representation in the chosen set.

4.2.2. Pcc3

Another program has been developed (Pcc3). With this program it is very easy to
understand the behavior of the coordinates. In fact it shows what happens to the
particles when one varies the coordinates and/or the masses. Inserting the data and
making them vary it is possible to visualize the mutual position of three particles. To
print those three particles on the plane of the screen we need six degrees of freedom.
Three of these six are the interparticle distances and we have introduced the other
three degrees according to the Figures 2 and 4.
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Figure 4. Cartesian coordinates.

Here we present the equations that permit to calculate the Cartesian coordinates
directly from the distances:

xA = −
[

m B

m B + mC
r2

AB + mC

m B + mC
r2

AC − m BmC

(m B + m B)2
r2

BC

] 1
2

yA = 0

xB = r2
AB − r2

AC + m B−mC
m B+mC

r2
BC

[
4m B (m B+mC )

m2
C

r2
AB + 4(m B+mC )

mC
r2

AC − 4m B
mC

r2
BC

] 1
2

yB = −
[−r4

AC + 2r2
ACr2

AB + 2r2
ACr2

BC − r4
AB + 2r2

ABr2
BC − r4

BC
4m B (m B+mC )

m2
C

r2
AB + 4(m B+mC )

mC
r2

AC − 4m B
mC

r2
BC

] 1
2

xC = r2
AC − r2

AB − m B−mC
m B+mC

r2
BC

[
4(m B+mC )

m B
r2

AB + 4mC (mC +mC )

m2
B

r2
AC − 4mC

m B
r2

BC

] 1
2

yC =
[−r4

AC + 2r2
ACr2

AB + 2r2
ACr2

BC − r4
AB + 2r2

ABr2
BC − r4

BC
4(m B+mC )

m B
r2

AB + 4mC (mC +mC )

m2
B

r2
AC − 4mC

m B
r2

BC

] 1
2

The two denominators vanish when the particle A is in the center-of-mass of
particles B and C. In this case (xA, yA) = (0, 0), (xB, yB) = (0,−rAB) and
(xC , yC ) = (0, rAC ).
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We released a version for “Windows SO” that can be downloaded from the website
http://www.chm.unipg.it/chimgen/mb/theo2/home/pagine/ricerca/cc3.html. Also it is
possible to run a JAVA version of the Pcc3 program directly online.

5. APPLICATIONS AND PERSPECTIVES

The hyperspherical and related coordinates which have been considered in this work
have served for the visualization of critical features of potential energy surfaces
[91, 92], crucial for the understanding of reactivity (role of the ridge [93] and the
kinetic paths [94]). In [95], the PES for the O + H2 reaction was studied. A discrete
hyperspherical harmonics representation is presented in [96] for proton transfer in
malonaldehyde.

For a review of the use of hyperspherical harmonics as orbitals in quantum chem-
istry, (see [97]). Applications to bound state problems have mainly regarded nuclear
physics, and are outside the scope of this article. The hyperquantization algorithm
had been successfully applied to the prototype ion–molecule reaction He + H+

2 →
HeH+ + H [98, 99] and atom–molecule reaction F + H2 → HF + H [100, 101].
For the latter, resonances were characterized [102,103] and benchmark state-to-state
differential cross sections and rate constants [104, 105] were given.

Progress towards extension to four or more bodies is to be recorded [106–111].
See also [112–116]. Recently, application of the hyperspherical view to many
body systems had been made to the study of classical dynamics of atomic clusters
[117–121]
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Abstract Recently, there has been some interest in finding exact solutions to the time-dependent
Schrödinger equation, specifically in the case of a time-dependent linear potential, though
surprisingly in all those works very cumbersome methods are used. In the present report
we want to emphasize that there exists another method, quite general and simple, to solve
such kind of problems. The method was proposed several years ago and it is based on the
so called Wei–Norman theorem.

Recently, there has been some interest in the solutions of the Schrödinger equation
for the time-dependent linear potential [1–6]. Most of the authors use the method of
the Lewis–Riesenfeld invariant while Feng [6] used a a space time transformation
method. In this work we want to emphasize that there is yet another method, simpler
and straightforward, based on the Wei–Norman theorem [7]. A particular version of
this method has been used by Rau et al. [8] to analyze the same problem and later on
applied to the quantum Liouville–Bloch equation [9]. Curiously, in this publication
[9], they do not give credit to the work of Wei and Norman although they do in the
first one [8]. Our approach is quite different from that of Rau et al. since we avoid
guessing the solution (ansatz) and, instead, a closed algebra is defined by adding
some operators to the original problem. Although this would seem to complicate the
problem, it happens to be just the opposite: the problem can be solved straightforward
and, from the very beginning, the coefficients of the new operators are set equal to
zero, thus leading to the solution we are looking for.

As an example of how this method works, let us consider the equation [8]

i
∂ψ

∂t
=
{

−1
2
∂2

∂x2 + E0x sinwt

}
ψ,(1)
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which can be written as

i
∂ψ

∂t
=
{ 4∑

i=1

ai Hi

}
ψ(2)

where a1 = 0, H1 = 1; a2 = E0 sinwt, H2 = x; a3 = 0, H3 = ∂
∂x ; a4 =

− 1
2 , H4 = ∂2

∂x2 . It is very simple to show that £ = {H1, H2, H3, H4} is a solvable Lie
Algebra [7] since £′′ = {0}, so that the problem can be solved by quadratures.

Actually, solving the above equation is equivalent to do so for the evolution
operator

i
∂U
∂t

= ġ1 H1U + ġ2 H2U + ġ3U H3 + ġ4U H4,(3)

where �(x, t) = U (t)�(x, 0) = eg1 H1 eg2 H2 eg3 H3 eg4 H4ϕ(x) and the upper dots
denote differentiation with respect to t , and �(x, 0) = ϕ(x) is the solution of the
time independent Schrödinger equation.

Application of some well–known operator algebra techniques, leads to a set of four
linear equations:

i ġ4 = −1
2

(4a)

i ġ2 = E0 sinwt(4b)
ġ3 − 2ġ4g2 = 0(4c)

ġ1 − ġ3g2 + ġ4g2
2 = 0(4d)

which can be easily integrated to give the desired solution, that is, the one reported by
Rau and Unnikrishnan [8]. The case with E = E0 coswt can be treated in a similar
fashion, and also those analyzed in references [1–6]. The advantage of using properly
the Wei–Norman method is that we can know in advance whether the problem is
soluble or not, as it is shown to be the case here, because it corresponds to a solvable
Lie algebra.

Another important feature of the Wei–Norman method is that the solution is global
[10], i.e. it is valid in the whole domain of variable t , restricted only to time-dependent
equations where solutions are of the exponential type.

Let us consider a more general equation, the one which is called the reduced
velocity gauge or the Airy–Gordon–Volkov wave equation [11].

i
∂ψ

∂t
=
{

− 1
2m

∂2

∂x2 + i
A0 coswt

m
∂

∂x
+ V − Fx

}
ψ,(5)

which can be transformed to an equivalent one for the evolution operator, as we did
in the previous case:

dU
dt

=
{

i
2m

∂2

∂x2 + A0 coswt
m

∂

∂x
+ i Fx − iV

}
U (t) = H(t)U (t).(6)
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Introducing now the definitions

a1(t) = i
2m

(7a)

a2(t) = A0 coswt
m

(7b)

a3(t) = i F(7c)

a4(t) = iV(7d)

H1 = ∂2

∂x2(7e)

H2 = ∂

∂x
(7f)

H3 = x(7g)

H4 = I(7h)

This set of four operators forms a solvable Lie algebra, as we pointed out above,
and the proposed Eq. (5) must have an elementary solution. In order to find it, we
propose again:

�(x1t) = U (t)�(x, 0) = eg1 H1eg2 H2eg3 H3eg4 H4ϕ(x)(8)

Repeating the procedure outlined above we obtain a set of four linear differential
equations:

ġ1 = a1(9a)

ġ2 + 2ġ3g1 = a2(9b)

ġ3 = a3(9c)

ġ4 + ġ3g2 = a4(9d)

which can be easily integrated thus obtaining:

g1(t) = i t
2m

(10a)

g2(t) = A0 sinwt
mw

+ F
2m

t2(10b)

g3(t) = i Ft(10c)

g4(t) = iV t + i
A0 F coswt

mw2 − i
F2

6m
t3 − i

A0 F
mw2(10d)

It is important to point out that this solution for the evolution operator U (t) is
not unique, since it depends on the order in which we arrange the elements of the
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corresponding Lie algebra, we can obtain a unique solution by using the BCH formula
[12]:

�(x, t) = e−i Et ei F A0 coswt
mw2 Ai

[
− (2m F)1/3

(
x + A0 sinwt

mw
+ E − V

F

)]
(11)

where Ai is the Airy function.
There are several other similar cases, called length gauge, velocity gauge,

Kramers–Henneberger frame, which are particular cases of Eq. (2) with appropriate
coefficient a′

i s. All of them are related to the same Lie algebra but with different
Hamiltonians and their solution has been reported elsewhere [13].

We have shown in this work the power and elegance of Lie algebraic methods
in the solution of differential equations, which, when used properly, lead easily to
the desired solution. Application of this method to the case of the Caldirola–Kanai
Hamiltonian is in progress and will be published elsewhere.
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Abstract In this work we discuss a fully symmetrized vibrational calculation designed for studying
the vibrational level structure and the ground electronic state 6-D potential energy surface
(PES) of ammonia. The PES of ammonia was modeled in a simple analytical form, as
a Taylor series expansion in terms of the molecular vibrational coordinates. Calculations
on the energy levels of ammonia 14NH3 at the higher excess vibrational energies (up to
about 7000 cm−1) are presented; and compared to the experimental data. The values of the
most important force constants of the ammonia PES were determined from a fitting of the
calculated and experimentally measured data.

1. INTRODUCTION

The potential energy surface (PES) of ammonia has been studied repeatedly by many
authors ( [1–11], and references therein), and continues to be an object of active the-
oretical interest. Most authors start their analysis with an abinitio (or semi-empirical)
calculation of the PES and then perform an additional refinement to achieve an
agreement between the calculated and experimental vibrational frequencies. Lately,
the discrete variable representation has received particular attention and is currently
one of the preferred methods [3, 7, 8, 10–12].

Full-scale vibrational calculations on polyatomic molecules (including all vibra-
tional degrees of freedom) represent a difficult problem, especially at the higher
vibrational excitation energies, due to the steeply growing vibrational level densities.
In our recent work [13] we described our fully symmetrized procedure and algo-
rithm, especially designed for large-scale vibrational calculations on ammonia, and
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in general, XH3 molecules. The specific symmetric top symmetry of these molecules
has been exploited by constructing an unrestricted, fully symmetrized, and separable
(in product form) vibrational basis set, allowing for the reduction of the available
level density to the submanifold of levels that belong to a single symmetry species.
This approach enables the reliable exploration of highly excited vibrational levels
in symmetric top molecules at reduced computational cost. For the purposes of the
calculation, the ammonia PES was modeled in a simple analytical form, depending
parametrically on a limited number of the most important harmonic and anharmonic
force constants. The ammonia PES is expanded in a Taylor series around the totally
symmetric planar configuration, in the way typical for a semirigid molecule, of D3h
symmetry. The flexibility is then taken into account by adopting a specific analytical
form for the double well potential along the large amplitude out-of-plane vibration.

In this work we elaborate and extend our model description of the ammonia 6-D
PES [13], in order to achieve a better reproduction of the molecular vibrational level
structure at the higher vibrational energies. Our major aim is to propose a simple and
transparent analytical expression for the PES of the electronic ground state of ammo-
nia, which allows a straightforward assessment of the major intramolecular inter-
actions and the determination of the complex rovibronic level structure [1, 15–18].
Making use of our model-vibrational Hamiltonian and method, which were specifi-
cally designed for symmetric top molecules, we have performed 6-D vibrational
calculations using a least squares fitting routine to adjust the calculated vibrational
frequencies to experimentally measured data. In this manner, we have been able to
determine the values of a number of harmonic and anharmonic force constants as
well as of other parameters which characterize the PES of ammonia.

2. VIBRATIONAL COORDINATES, HAMILTONIAN AND BASIS SET

We start with the six conventional curvilinear vibrational coordinates for ammo-
nia [7,14]: three (N–H) bond stretches ri, and three interbond angle (H–N–H) distor-
tions θi, (i = 1, 2, 3). The molecular vibrational Hamiltonian and, in particular, our
analytical PES are built with reference to the molecular totally symmetrical planar
configuration. A basic feature of this formalism is its full D3h symmetrization. For
this purpose we define symmetrized curvilinear vibrational coordinates in a some-
what unconventional, complex form:

q1(A′
1) = (r1 + r2 + r3)/

√
3,

q3a(E ′
a) = (r1 + G∗r2 + Gr3)/

√
3,

q3b(E ′
b) = (r1 + Gr2 + G∗r3)/

√
3,

q4a(E ′
a) = R0(ϕ1 + G∗ϕ2 + Gϕ3)/

√
3,

q4b(E ′
b) = R0(ϕ1 + Gϕ2 + G∗ϕ3)/

√
3,

q ′
2(A

′
1) = R0(ϕ1 + ϕ2 + ϕ3)/

√
3,(1)
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where R0 is the N–H bond length at planar configuration and G = e2iπ/3,G∗ =
e−2iπ/3. They correspond to the symmetric stretch (q1), the doubly degenerate anti-
symmetric stretch (q3a, q3b), and the antisymmetric bend (q4a, q4b). Instead of the
symmetric bend coordinate q ′

2, we shall employ q2 = R0θ (that has the required
symmetry A′′), where θ is the out-of-plane angle between one N–H bond and the
plane of two remaining bonds, for a symmetrical pyramidal configuration. Here q2 is
a function of q ′

2 defined by the relation:

cos(q2/R0) = − cos(2π/3 − q ′
2/R0

√
3)/ cos(2π/6 − q ′

2/R0
√

12).

The zeroth-order vibrational Hamiltonian H0 has been defined as the sum of three
major parts [13]: a local mode (LM) Hamiltonian H0

NH(r1, r2.r3), involving three
identical (N–H stretch) Morse oscillators, a 2D harmonic oscillator Hamiltonian
H0
(4)(q4a, q4b), describing the asymmetric bend (mode #4) in terms of the pair

of symmetrized coordinates q4a, q4b and the inversion Hamiltonian H0
(2)(q2). The

eigenfunctions of the zeroth Hamiltonian H0, i.e. the basis functions for the present
vibrational treatment, are obtained as products of the eigenfunctions for each one of
these three parts, each one in fully symmetrized form. The symmetrized eigenfunc-
tions of the LM Hamiltonian H0

NH(r1, r2.r3) have been obtained in complex form, as
simple linear combinations over the products of three Morse eigenfunctions, as dis-
cussed in detail in our preceding work [13]. They are designated as |L;S(f);p1k2l3),
where p1, k2, l3 are occupation (excitation) quantum numbers for Morse oscillators
#1,2,3 respectively, S is the symmetry, L (taking values 1,3, or 6) is the number of
terms in the linear combination, and f is 1 or i (imaginary unit). The eigenfunctions
(n4a, n4b) (where n4a, n4b = 0, 1, 2, . . .) of H0

(4)(q4a, q4b) are directly obtained in
complex symmetrized form [13].

The inversion double well potential in ammonia is a difficult problem that has been
the object of numerous theoretical studies over the years [2–12]. We chose to model
this potential as the superposition of a harmonic part [modeling its overall shape to
the zeroth Hamiltonian H0

(2)(q2)], and two Gaussian terms (modeling the barrier),
supplemented by three small corrections to the overall shape, of fourth, sixth, and
eighth powers in (q2):

U (q2) = 0.5F2.2q 2
2 /(hc)+ B exp(−dq 2

2 /K 2
2 )

+ B1 exp(−d1q 2
2 /K 2

2 )+ (F4q 4
2 + F6q 6

2 + F8q 8
2 )/(hc)[cm−1],(2)

The kinetic energy dependence on the out-of-plane angle θ , can be derived in the
form [14]:

G (2)
θθ = µH

R 2
0

[
1 + 2

cos2 θ
− 32 tan2 θ

16 − [cos2 θ − cos θ
√

cos2 θ + 8]2

]

+ 3
µN

R 2
0

4 − cos2 θ + cos θ
√

cos2 θ + 8

4 + cos2 θ − cos θ
√

cos2 θ + 8
.(3)
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At θ = 0 (planar configuration), this expression is reduced to: G (2)
00 = (3µH +

9µN)/R 2
0 . Here µH and µN are the inverse masses of the H and N–atoms, respec-

tively, K2 =
√

h̄
√

G00
(2)F2,2, h is Planck’s constant, c the light velocity, and

B, B1[cm−1], d, d1[dimensionless], F4, F6, F8 [aJ and Angström] are variable para-
meters. The basis functions for the treatment of this mode serve as the eigenfunc-
tions |n2〉 of the harmonic oscillator zeroth-order Hamiltonian H0

(2), with frequency

ω2 =
√

F2,2G00
(2)/(2ωc)[cm−1], with symmetries A′ and A′′ for n2 even or uneven,

respectively.
As was pointed out above, a basic feature of this approach is the completely sym-

metrized, separable and unrestricted basis set employed: |i〉 = |L; S(f); p1k2l3) ×
(n4a, n4b) × |n2〉. Besides |i〉, each factor in this product is symmetrized (belongs
to well defined symmetry species of D3h) and, in addition, all (excitation) quantum
numbers involved can take arbitrarily high values: p, k, l, n4a, n4b, n2 = 0, 1, 2, . . .
In order to account for the various (anharmonic) interactions among basis states |i〉,
we employ interaction Hamiltonian H int terms of orders from 2 to 8. These inter-
action terms can be either kinetic or potential. The kinetic terms are obtained as
G-matrix derivatives of appropriate orders, in the symmetrized curvilinear coordi-
nates, as discussed in our previous work [13]. Only for the inversion mode has an
explicit q2-dependent kinetic energy expression (Eq. 3) been employed. The follow-
ing potential terms have been included in the calculations, involving the relevant force
constants that correspond to a Taylor series expansion of the PES at the planar totally
symmetric reference configuration. The only potential terms that are not of this type
are those modeling the large amplitude inversion motion (Eq. 2):

Zeroth potential:

U0(r1, r2, r3, q2, q4a, q4b) = D[1 − exp(−arr1)]2 +
D[1 − exp(−arr2)]2 + D[1 − exp(−arr3)]2 +
F4,4q4aq4b + 0.5F2,2q2

2,(4)

where: D[1 − exp(−arr)]2 = frrr2/2 + frrrr3/6 + . . ..
Interaction potential:

U int(r1, r2, r3, q2, q4a, q4b) = f1,2(r1r2 + r2r3 + r3r1)+ f1,2,3r1r2r3

+ f1,1,2[r1
2(r2 + r3)+ r2

2(r1 + r3)+ r3
2(r1 + r2)]

+ f1,1,2,2(r1
2r2

2 + r2
2r3

2 + r3
2r1

2)

+ f1,1,2,3(r1
2r2r3 + r2

2r3r1 + r3
2r1r2)

+ f1,1,1,2[r1
3(r2 + r3)+ r2

3(r1 + r3)+ r3
3(r2 + r1)]

+ f1,1,2,2,3,3r1
2r2

2r3
2 + f1,1,1,2,2,2(r1

3r2
3 + r2

3r3
3 + r3

3r1
3)

+ f1,1,1,1,2,3(r1
4r2r3 + r2

4r3r1 + r3
4r1r2)

+ f1,1,1,1,1,2[r1
5(r2 + r3)+ r2

5(r3 + r1)+ r3
5(r1 + r2)]

+ f1,1,1,2,2,3[r1
3(r2

2r3 + r3
2r2)+ r2

3(r3
2r1
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+ r1
2r3)+ r3

3(r2
2r1 + r1

2r2)] + f1,1,1,1,2,2[r1
4(r2

2 + r3
2)

+ r2
4(r3

2 + r1
2)+ r3

4(r1
2 + r2

2)] + F3,4(q3aq4b + q3bq4a)

+ F3,4,4(q3aq4a
2 + q3bq4b

2)+ F1,4,4q1q4aq4b + F1,2,2q1q2
2

+ F2,2,4,4q2
2(q4aq4b)+ F2,2,2,2,4,4q2

4(q4aq4b)

+ F2,2,4,4,4,4q2
2(q4aq4b)

2 + F1,1,1,1,2,2q1
4q2

2

+ F1,1,2,2,2,2q1
2q2

4 + F1,1,1,1,1,1,2,2q1
6q2

2

+ F1,1,1,1,2,2,2,2q1
4q2

4 + F1,1,2,2,2,2,2,2q1
2q2

6

+ F2,2,3,4q2
2(q3aq4b + q3bq4a)+ F4,4,4,4(q4aq4b)

2

+ F4,4,4,4,4,4(q4aq4b)
3 + (hc)[B exp(−dq2

2/K 2
2 )

+ B1 exp(−d1q2
2/K2

2)] + F2
(4)q2

4 + F2
(6)q2

6 + F2
(8)q2

8.

Here, U0 is the potential part of H0, while U int pertains to H int. All Hamiltonian
interaction terms [both kinetic and potential, except Gθθ

(2) (Eq. 3)] were expressed,
in terms of raising and lowering operators, in explicit totally symmetric form, thus
allowing an analytical calculation of the required matrix elements 〈i | H int |k〉 for the
Hamiltonian matrix.

3. VIBRATIONAL CALCULATIONS. RESULTS AND DISCUSSION

Six-dimension (6-D) calculations of the vibrational energy-level structure of ammo-
nia were carried out, using a nonperturbative vibrational procedure including the fol-
lowing stages: (i) artificial intelligence (AI) search for the selection of an active space
(AS) of N basis vectors |i〉 that are involved in substantial couplings among each
other, all of them belonging to one and the same symmetry species of the molecular
group D3h. The algorithm and criteria for the search have been described earlier [13].
During this search, the relevant N × N Hamiltonian matrix Hi,k was calculated;
(ii) next, the resulting Hi,k matrix was first Lanczos tridiagonalized and then diag-
onalized for the eigenvalues, i.e. the molecular vibrational energy levels of a given
symmetry species, in an energy range around an appropriately chosen initial basis
state |0〉 (for starting the AI search). However, the search algorithm selects also basis
vectors |i〉 that are energetically located at some distance from |0〉 if they can con-
tribute to the vibrational mixing pattern around |0〉. We employed a nonlinear least
squares fitting routine, to adjust the calculated frequencies to a set of experimentally
measured and reliably assigned fundamental, overtone and combination vibrational
levels of ammonia 14 NH3, in the range up to about 7000 cm−1, by varying the values
of the force constants defined above (Eqs. 4, 5). We note that, using this vibrational
calculation procedure, it is possible to compute very highly excited vibrational states
in ammonia; however such results are not reported here, since the vibrational levels
are congested and it was difficult to assign reliably the calculated vibrational frequen-
cies. The results from calculations on higher vibrational levels in ammonia will be the
object of a forthcoming detailed publication.
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Table 1 contains the vibrational frequencies of ammonia calculated in this work
together with experimentally measured values. Table 2 summarizes the values of
all the force constants and parameters characterizing the ammonia PES (Eqs. 4, 5)
corresponding to the vibrational frequencies of Table 1. The parameters of the
calculation algorithm (see Ref. 13 for details) were fixed at values ensuring con-
version of the calculated frequencies, ∼0.1 cm−1.

As it is seen on Table 1, the vibrational frequencies of ammonia are adequately
reproduced by the PES given in Eqs. 4, 5, and in Table 2, both for the fundamentals,
the highly excited inversion levels, and the overtones and combinations of all vibra-
tional modes. From a comparison with our preceding work [13] it is seen that some
of the force constants for ammonia are different from our previous work. This is

Table 1. Calculated vibrational frequencies for ammonia 14NH3, compared to experimentally measured
data.

Our notation n2 = 1 N2 = 2 n2 = 3 n2 = 4 n2 = 5 n2 = 6

NM 0(A′′
1) ν2(A′

1) ν2(A′′
1) 2ν2(A′

1) 2ν2(A′′
1) 3ν2(A′

1)
Calculated 0.56 931.2 967.8 1597. 8 1882.8 2383.0
Experim.Ref. 0.795 932.435 968.125 1597.4715 1882.1815 2384.1516

n2 = 7 n2 = 8 n4a = 1 n4a = n4b = 1 N4a = 2 n4a = n2 = 1 n4a = 1, n2 = 2

3ν2(A′′
1) 4ν2(A′

1) ν4(E ′) 2ν4(A′
1) 2ν4(E ′) ν4(E ′′) ν2 + ν4(E ′)

2895.8 3461.8 1626.3 3216.5 3240.9 1626.5 2538.2
2895.5216 346217 1626.2815 3216.118 3240.4418 1627.315 2540.4318

n4a =1, n2 =3 n4a,4b =1, n2 =2 n4a,4b =1, n2 =3 |3; A′
1; 11) |3; E ′

a;11) |3; A′
1;11), n2 =1

ν2 + ν4(E ′′) ν2 + 2ν4(A′
1) ν2 + 2ν4(A′′

1) ν1(A′
1) ν3(E ′

a) ν1(A′′
1)

2583.0 4117.3 4172.2 3336.0 3443.2 3336.7
2586.0218 4115.6218 4173.2518 3336.0817 3443.6817 3337.1017

|3; A′
1;11), n2 = 2 |3; A′

1; 11), n2 = 3 |3; E ′
a ;11) |3; E ′

a; 11), n2 = 1 |3; E ′
a; 11), n2 = 2

ν1 + ν2(A′
1) ν1 + ν2(A′′

1) ν3(E ′) ν3(E ′′) ν2 + ν3(E ′)
4292.3 4320.5 3443.0 3443.4 4413.2
4294.5118 4320.9318 3443.6817 3443.9917 4416.9118

|3; E ′
a;11), n2 = 3 |3; A′

1; 21) |3; E ′
a;21) |3; A′

1;1111) |3; E ′
a; 1111)

ν2 + ν3(E ′′) 2ν1(A′
1) ν1 + ν3(E ′) 2ν3

0(A′
1) 2ν3

2(E ′)
4431.6 6606.1 6609.1 6796.2 6850
4435.4018 6606.01 6608.831 6795.311 6850.201
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Table 2. Force constants and parameters characterizing the ammonia PES. The description and units for
the force constants are given in Eqs. 4, 5.

frr frrr f1,2 f1,1,2 f1,2,3 f1,1,2,2 F1,1,2,3 f1,1,1,2

7.0811 −42.537 −0.0938 0.8174 0.3526 −24.627 41.7442 −6.0178

f1,1,1,2,2,2 f1,1,2,2,3,3 f1,1,1,1,2,3 f1,1,1,1,1,2 f1,1,1,2,2,3 f1,1,1,1,2,2

886.59 38.9629 172.344 −123.064 −168.873 134.365

F4,4 F4,4,4,4 F4,4,4,4,4 F3,4 F3,4,4

0.21943 −0.00927 0.276474 0.00872 −0.002437

F1,4,4 F1,1,4,4

−0.005703 −0.06185

F1,2,2 F3,2,2,4 F1,1,2,2 F2,2,4,4 F2,2,2,2,4,4 F2,2,4,4,4,4

−0.00374 0.03747 −0.22782 0.024768 −0.012765 0.029736

F1,1,1,1,2,2 F1,1,2,2,2,2 F1,1,1,1,1,1,2,2 F1,1,1,1,2,2,2,2 F1,1,2,2,2,2,2,2

0.228428 −0.007123 −0.487485 0.7552235 0.188535

F2,2 F2
(4) F2

(6) F2
(8) B d

0.07457 0.0054 0.00324 −0.000882 15986.3 0.05456

partially due to the improved accuracy of the present determination in reproducing
a large number of higher excited vibrational levels, including a larger number of
(anharmonic) force constants, in the description of the molecular PES, as well as to
the removal of some errors connected with the description of the inversion mode in
ammonia.

4. CONCLUSIONS

In this study we have further elaborated and improved our fully symmetrized vibra-
tional Hamiltonian description of ammonia, which was presented in recent work [13].
Our main objective was to develop the molecular 6-D PES in simple analytical form,
as a Taylor series expansion in terms of the conventionally defined symmetrized force
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constants (harmonic and anharmonic) of various orders. Based on this PES, we have
performed 6-D vibrational calculations allowing for a satisfactory reproduction of the
experimental frequencies of both fundamental, overtone, and combination levels of
ammonia 14NH3, up to about 7000 cm−1 of vibrational excitation energy. From this
fit the values of the molecular force constants of various orders were determined. The
values, especially for the higher-order anharmonic constants, should not be consid-
ered as final: they will be subject to further refinement as we introduce higher excited
vibrational levels in the treatment.
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A REVIEW ON GOLD–AMMONIA BONDING PATTERNS
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Bonding Patterns that Neutral and Charged Gold Clusters form with Small Ammonia
Clusters and which implement Quantum Logic Gates

Abstract We demonstrate that the charge states of the gold atom and of the triangular gold cluster
drastically influence their reactive properties and bonding patterns with ammonia clusters.
These bonding patterns are a multifaceted phenomenon that exhibits different characteris-
tics. We show how the specific bonding patterns of the landscapes of the potential energy
surfaces of Au1,3

Z-(NH3)1≤n≤3 can be used for implementing two single-qubit quantum
gates.

Keywords: gold, gold cluster, ammonia oligomer, anchoring bond, nonconventional hydrogen bond,
proton acceptor ability, quantum gate, logic gate, Hadamard gate.

1. INTRODUCTION

The investigation of the gold–nitrogen (Au–N) bond, up to now, has mostly been
confined to either the gold atom and its cation (i.e. Au1

0,+1) or gold surfaces and
wires (that is, literally, to ∼ Au∞ compared to a given N-containing molecule). The
former category of studies probed the Au–N bond with ammonia and ammonia
dimer [1–4], pyridine [5–7], and DNA bases and pairs [8], whereas the latter was
limited to the adsorption of ammonia on the Au(111) surface [9], the mechanical and
conductance properties of 4, 4′ bipyridine attached to gold electrodes [10] or gold
wires [11], and the bonding of 4-(dimethylamino) pyridine to gold nanoparticles [12].
Other works concern the short-lived (of ∼sub microseconds) dianion Au(N3)4

2−
[13a], the covalent Au–N bonding in Au–NPPh2 [13b], the gold–porphyrin cation
[13c], and the interaction of Aun

0,+1 clusters with nitric oxide [13d–e].
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Very recently, it has been well established that the Au–N bond plays a key
stabilization role in the hybridization of the DNA bases and Watson–Crick base pairs
on gold clusters and surfaces [14–17]. Stimulated by these results, we further explore
in this work the main features of the Au–N bond, and consider how the (neutral and
charged) gold clusters Au3

Z(Z = 0,±1) interact with the small ammonia clusters
(NH3)1≤n≤3. Our aim is to provide a new consistent insight on the Au3

Z–(NH3)n
bonding patterns and on their dependence on the charge states of gold clusters which
have been overlooked in earlier studies, mainly focused on the cationic species.

The choice of a triangular gold cluster, Au3
Z, a few angstroms of size, is moti-

vated by the fact that it can be considered as the simplest reference model of gold
nanoparticles that demonstrates their exceptional catalytic features [ [14,18]a–b]. We
hereby partly cover the gap between the gold atom and the gold surface, rather on the
former side.

The simplest complexes stabilized by the Au–N bond that have been already
studied are gold–ammonia (Au–NH3) and Au+–NH3, both of C3v symmetry but
markedly different in all other aspects. The first one is the Au–N equilibrium
bond that anchors the ammonia molecule to AuZ(Z = 0,+1). In Au–NH3, using
the Douglas–Kroll method which is based on the spin-adapted single and double
coupled-cluster excitation amplitudes, with perturbative estimate of the triple excita-
tions (CCSD(T)) and the ROHF reference function [2], the Au–N bond is predicted
to be equal to 2.277 Å and therefore appears to be much longer than Au+–NH3, with
R(Au+–N) = 2.013 Å (B3LYP [3]; 2.10 Å in Ref. [4]; MP2 predicts 2.028 Å). It is
natural to anticipate a correlation between the Au–N bond and the binding energies of
Au–NH3 and of Au+–NH3: the binding energy Eb(Au+–NH3) = 63.5 kcal · mol−1

with the shorter Au–N bond (B3LYP; 68.6 kcal ·mol−1 for MP2; 65.3 kcal ·mol−1 for
CCSD(T) [3a–c]; also 54.9 kcal · mol−1 [3d]) considerably exceeds Eb(Au–NH3) =
9.19 kcal · mol−1 ( [2]; 13–15 kcal · mol−1 in Ref. [1] using the method CCSD with
19-electron RECP), where the Au–N anchor is longer.

It appears that, in the complexes of Au–pyridine and Au+–pyridine, the Au–N
bond is longer, viz., 2.391 Å and 2.056 Å, as compared to Au–NH3 and Au+–NH3.
This is to be compared, on one hand, to Eb(Au–pyridine) = 9.12 kcal · mol−1,

(B3LYP/6–311 + G(d,p) (C5H5N)∪ LANL2DZ (Au) computational level [5];
see also Refs [6, 7]), almost equal to that of Au–NH3; and, on the other hand, to
Eb(Au+–pyridine) = 76.09 kcal · mol−1, larger than Eb(Au+-NH3). In this respect it
is worth noting that the electronic ground states of Au and Au+ are [Xe]5d106s1 and
[Xe]5d106s0, respectively. The 6s valence atomic orbital (AO) serves as an acceptor,
in contrast to the donor valence 5d AOs [17]. The effective radius of the gold 6s
orbital is approximately 1.62 Å, due to the well-known relativistic effect that causes
this orbital to contract in an atom with high atomic mass, whereas the effective
radius of its valence 5d orbitals is only ∼0.86 Å. The Au–N bond of pyridine-
AuZ(Z = 0,+1) complexes exhibits an efficient σ–donation bond which, in turn,
leads to significant π–back-donation interaction [5]. Due to Coulomb interaction, the
σ–donation obviously prevails for the cationic complex compared to the neutral one
and thus explains the shortening of the Au–N bond under ionization of Au.
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This paper is organized as follows. The computational framework is separately
out-lined in notes [19–28]. Section 2 examines the complexes AuZ-(NH3)1≤n≤3(Z =
0,±1). On one hand, it partially overlaps with the recent work by Reimers and
co-workers [4] on the single and double ammination of Au+ while, on the other hand,
it extends their study to the triple ammination, as well as to the similar reactions with
neutral and negatevely charged gold. The primary goal of section 2 is to set the stage
for the further studies of bonding patterns between gold and ammonia clusters, which
are presented in section 3. It is shown that the Au–NH3 bonding is not limited to a
simple Au–N bond, but is a rather complex phenomenon which involves also the
nonconventional hydrogen bond of N–H· · · Au type where gold acts a nonconven-
tional proton acceptor. This type of interaction controls the bonding patterns in the
systems studied, especially for the negative charge state of the gold cluster and for
the double and higher amminations of the neutral cluster. Section 4 illustrates how
the computed potential energy surfaces (PESs) of Au1,3

Z-(NH3)1≤n≤3(Z = 0,±1)
can be used to implement molecular qubit logic gate operations, and enables quantum
information processing. In section 5 we summarize the key results of this work and
outline perspectives particularly related to further design of molecular logic gates.

2. COMPLEXES AuZ-(NH3)1≤n≤3(Z=0,±1)

The equilibrium geometry of the complex Au–NH3 is displayed in Figure 1. Its for-
mation results from a so-called “anchoring” Au–N bond, with R(Au-N) = 2.354 Å.
The binding energy Eb of Au–NH3 amounts to 9.55 kcal · mol−1 without the ZPVE
correction, which agrees with the previously reported values [1, 2], and to 7.83 kcal ·
mol−1 after including ZPVE (notice that the Eb’s reported hereafter are ZPVE-
corrected). A charge transfer from the nitrogen to the gold atom which in terms of
Mulliken charge amounts to �qM(N) = 0.024 e is one of the major effects that
leads to the Au–N anchoring. The formation of the latter obviously weakens the N–H
bonds, which undergo a small contraction and whose N–H stretching frequencies
are lowered. Due to Coulomb repulsion, such anchoring is no longer possible in the
Au−–NH3 complex – this is in contrast to a variety of anchoring patterns arising
between the gold cation and the ammonia dimer or trimer as illustrated in Table 1.
These patterns are closely related to the phenomenon of successive ammination of
coinage metals [29] (also Ref. [4] and references therein).

The first ammination reaction of the cation Au+ yields the complex Au+–NH3
with a shorter anchoring Au–N bond, R(Au+–N) = 2.100 Å, and larger binding
energy, Eb(Au+–NH3) ≈ 63.8 kcal·mol−1, than in Au–NH3 (Table 1). Under the sec-
ond ammination, Au+ forms the more stable complex Au+–(NH3)2

I, D3d symmetry
(see Table 1 for geometry), whose Au–N bond is further shortened by 0.014 Å with
respect to Au+–NH3. Such a shortening could be interpreted as a sign favoring a sec-
ond ammination. However, this is not the case in thermodynamical terms because,
relative to the first ammination, the second ammination, at room temperature, is
characterized by the positive difference in enthalpy ��H298

◦ ≈0.9 kcal · mol−1 and
the negative difference in entropy��S◦ = −49.4 cal · K−1 · mol−1 which altogether
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1.017
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1.018
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1.017

1.031
162.2

2.030

1.017

Au-NH3Au-(NH3)2I Au-(NH3)2II

N1

Figure 1. Complexes Au–(NH3)1≤n≤2. The enthalpy of formation �H298
◦(Au–NH3) = −7.21 kcal ·

mol−1, �S◦(Au–NH3) = 22.33 cal · K−1 · mol−1, and the Gibbs free energy �G298
◦(Au–NH3) =

−13.86 kcal · mol−1. Relative to asymptote Au–NH3 + NH3, the binding energy of Au–(NH3)2
II

amounts to 4.84 kcal · mol−1 (also�H298
◦(Au–(NH3)2

II) = −5.09 kcal·mol−1,�S◦(Au–(NH3)2
II) =

−23.96 cal · K−1 · mol−1, and �G298
◦(Au–(NH3)2

II) = +2.05 kcal · mol−1), whereas relative to
Au + (NH3)2 it is equal to 10.74 kcal · mol−1. The energy difference �EI–II between Au–(NH3)2

I and
Au–(NH3)2

II is 4.31 kcal · mol−1. Comparing with the ammonia dimer, �ν(N1–H4) of Au–(NH3)2
II is

equal to −131 cm−1 and IR activity of the ν(N1–H4) stretch is enhanced by a factor of ∼ 3.2. The H-
bridge stretching vibrational mode νσ(H4 · · · N3) = 198 cm−1. The Au-N stretching mode ν(Au–N) =
314 cm−1 in Au–(NH3)2

II and splits into νsym(Au–N) = 155 cm−1 and νasym(Au–N) = 175 cm−1 in
the complex Au–(NH3)2

I. Bond lengths are given in Å and bond angles in degrees.

result in the Gibbs free energy difference ��G298
◦ ≈15.6 kcal · mol−1. Therefore,

the second ammination of Au+ can be regarded as primarily unfavorable compared
to the first one [4] (see [30]).

Note that in a solution, where association of ammonia molecules can occur, there
may exist another pathway for the second ammination reaction, where Au+ anchors
the H-bonded ammonia dimer and forms the complex Au+–(NH3)2

II (Table 1
for its geometry). This latter, however, is less stable, by ca. 43.6 kcal · mol−1,
than Au+–(NH3)2

I. Such a reaction pathway, thermodynamically characterized
by ��H298

◦ = −16.7 kcal · mol−1, ��S◦ = −10.2 cal · K−1 · mol−1, and
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Table 1. Multiple amminations of Au+ (compare with the neutral analogs in Figure 1). The corresponding
reactant asymptotes are indicated in bold.

Complex Selected features �G298
◦(kcal·

mol−1)

�H298
◦(kcal·

mol−1)�S◦(cal·
K−1 · mol−1)

Au+–NH3 R(Au+–N) = 2.100 Å Au+ + NH3: Au+ + NH3:

Au

R(N–H)a = 1.022 Å −69.01 −63.49
Eb(Au+ + NH3) =
63.76 kcal · mol−1

−56.8 (B3LYP [8]c) −63.7
(B3LYP [8]c)

−65.4 (PW91 [8]c) −72.4 (PW91 [8]c)
IE(Au–NH3)

b = 6.94 eV
18.53
−23.2
(B3LYP [8]c)
−23.5 (PW91 [8]c)

Au+–(NH3)2
I(D3d) R(Au+–N) = 2.086 Å Au+ + 2NH3: Au+ + 2NH3:

Au

R(N–H) = 1.021 Å −122.42 −126.10
Eb(Au+ + 2NH3) =
125.58 kcal · mol−1

−107.9 (B3LYP [8]c) −124.7
(B3LYP [8]c)
−139.5
(PW91 [8]c)

Eb(Au+–NH3 + NH3) =
61.82 kcal · mol−1

−120.8 (PW91 [8]c)

−12.33
−56.2
(B3LYP [8]c)
−62.8 (PW91 [8]c)
Au+–NH3 + NH3:

Au+–NH3 + NH3: −62.61
−53.41 −61.0

(B3LYP [8]c)
−51.2 (B3LYP [8]c) −67.1 (PW91 [8]c)
−55.4 (PW91 [8]c)

−30.87
−33.0
(B3LYP [8]c)
−39.4 (PW91 [8]c)

Au+–(NH3)2
II R(Au+–N) = 2.072 Å Au+ + (NH3)2: Au+ + (NH3)2:

R(N1–H4)
d = 1.077 Å −82.72 −80.23

r(H4 · · · N3)
d = 1.727 Å

� N1H4N3
d = 176.6◦ 8.36

�ν(N1–H4)
d = −874 cm−1

AIR(Au+–(NH3)2
II)/AIR

((NH3)2)
d = 17.8

Eb(Au+ + (NH3)2) =
80.07 kcal · mol−1

�EI–II = −43.59 kcal·mol−1
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Table 1. continued

Au+–(NH3)3
I R(Au+–N1) = 2.094 Å Au+–(NH3)2

I + NH3: Au+–(NH3)2
I + NH3:

R(Au+–N3) = 2.070 Å −13.96
R(N3–H4) = 1.056 Å −6.40
r(H4 · · · N5) = 1.844 Å −25.36
� N3H4N5 = 176.9◦
�ν(N3–H4)

d = −533 cm−1

AIR(Au+–(NH3)3
I)/AIR

((NH3)2)
d = 11.4

Eb(Au+–(NH3)2
I + NH3) =

13.57 kcal · mol−1

Au+–(NH3)3
II R(Au+–N1) = 2.064 Å Au+–(NH3)2

II +NH3: Au+–(NH3)2
II +NH3:

R(N1–H5) = 1.118 Å −9.75
R(N3–H6) = 1.039 Å −2.45
r(H5 · · · N3) = 1.586 Å −24.48
r(H6 · · · N4) = 2.005 Å
� N1H5N3 = 176.8◦
� N3H6N4 = 177.4◦
�ν(N1–H5)

d =
−1481 cm−1

�ν(N3–H6)
d = −230 cm−1

Eb(Au+–(NH3)2
II + NH3) =

9.43 kcal · mol−1

�EI–II = −47.72 kcal·mol−1

a NH3 : R(N–H) = 1.016 Å.
b The first ionization energy IE(Au) = 9.42 eV.
c Basis set [8]: aug-cc-pVDZ (NH3) ∪ SDD (Au).
d Relative to (NH3)2: R(N1–H4) = 1.022 Å, r(H4 · · · N3) = 2.229 Å, � N1H4N3 = 167.6◦,
�ν(N1–H4) = −63 cm−1, the ratio of IR activities AIR((NH3)2)/AIR(NH3) = 43.7,
Eb((NH3)2 → 2NH3) = 1.92 kcal · mol−1.

��G298
◦ = −13.7 kcal · mol−1, reveals some preference over the successive double

ammination of Au+. It is worth noting also that the neutral charge state of Au reverses
the order of stability of Au–(NH3)2

I and Au–(NH3)2
II (Figure 1): the latter appears

to be more stable by 4.3 kcal · mol−1. This phenomenon will be further discussed in
section 4.

The third ammination pathway illustrated in Table 1 shows, first, that Au+ enables
to directly accommodate at most two anchoring Au–N bonds and, second, that the
scenario of all higher (n ≥ 3) ammination reactions proceeds through H-associated
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ammonia clusters. The weakness of the intramolecular H-bonding in ammonia
clusters predetermines the weaker energetics of all higher ammination reactions.

The strength of the anchoring Au–N bond is therefore largely predetermined by
the charge which transfers from the nitrogen moiety to the gold atom while this
bond is formed – obviously, the charge transfer is larger for Au+ than for Au since
EA(Au+) ≡ IE(Au) = 9.42 eV > EA(Au) = 2.13 eV. This explains the stronger
anchoring of ammonia clusters with Au+ and the considerable weakening of N–H
bonds adjacent to gold. If one of the N–H bonds is weakly H-bonded to a neighbor-
ing ammonia molecule, the anchoring bond increases the antibonding character of
the N–H bond and causes the corresponding proton to transfer towards the proton
acceptor, strengthening this hydrogen bond and converting it to the class of the mod-
erate ones. The complex Au+–(NH3)2

II is likely the most impressive example of
modulation of the H-bonding network of ammonia clusters by its anchoring to gold.
Herein, the N1–H4 bond is elongated by 0.061 Å, the hydrogen bond H4 · · · N3 is
shortened by 0.502 Å and the ν(N1–H4) stretch downshifts by 874 cm−1, compared
to the ammonia dimer.

In contrast to the neutral and positive charge states of Au, the gold anion Au−
interacts with the ammonia molecule in a different fashion – as seen in Figure 2, the
anchoring Au–N bond is no longer formed. Au−, however, is bonded to NH3 via the
contact bridge N–H. . .Au−, which involves the hydrogen atom and resembles, by all
features, a conventional hydrogen bond [31]. To be more specific (compare with the
necessary and sufficient conditions listed in Refs. [14, 26]):

(i) the N1–H3 bond is elongated by 0.015 Å; (ii) the H3 · · · Au2 separation is typ-
ical of the strength of H-bond. It is equal to 2.690 Å and is smaller than the sum of
the van der Waals radii of H and Au (the concomitant H-bridge vibrational mode
νσ = 92 cm−1) and (iii) the ν1(N1–H3) stretch is red-shifted by 160 cm−1. There-
fore, the interaction between Au− and NH3 is of a hydrogen bonding type where
the gold anion acts as a nonconventional proton acceptor to form a nonconventional
N–H · · · Au hydrogen bond with typical conventional proton donor group N–H.

The molecular orbital picture of the formation of the nonconventional
N1–H3 · · · Au2 hydrogen bond in Au−–NH3 provides an insight on the propen-
sity of Au− to behave as a nonconventional proton acceptor. The outermost occupied
AOs of open-shell ground-state electronic configuration [Xe]5d106s1 of the gold
atom are the 5-degenerate d±2,±1,0 − AOα

′ s 5–9, which consist of the spin-
up HOAO − 1α with the AO energy ε5–9

α of −8.30 eV, the s − HOAOα with
ε10

α = −6.62 eV, and the similar 5-degenerate d±2,±1,0 − AOβ
′s 5–9, the spin-

down HOAOβ with ε5–9
β = −8.06 eV (see Figure 3). The lowest unoccupied

py − LUAOα and s–LUAOβ of Au are correspondingly characterized by the orbital
energies ε11

α = +1.50 eV and ε10
β = −4.59 eV. The two outermost occupied AOs,

the d-HOAO-1 being split into the d±2,±1,0–AOs5–9 and the s–HOAO determine
the ground-state electronic configuration [Xe]5d106s2 of Au− (Figure 4). Their AO
energies amount to −0.87(−0.0319 au) and +0.25 eV(+0.0092 au), respectively.

The molecular orbital (MO) picture of the formation of the nonconventional
hydrogen bond N1–H3 · · · Au2 between the ammonia molecule and Au− is illustrated
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Figure 2. The complexes Au−–(NH3)1≤n≤3. Their selected vibrational modes: (i) Au−–(NH3)2
I:

ν(N1–H3) = 3253 cm−1(467 km·mol−1); ν(N2–H5–7) = 3415 cm−1(65 km·mol−1), 3504 cm−1(4 km·
mol−1), and 3508 cm−1(44 km · mol−1); νσ(H7 · · · N1) = 118 cm−1; νσ(H3 · · · Au) = 100 cm−1;
(ii) Au−–(NH3)2

II: ν(N1–H3, N2–H5) = 3345 cm−1(558 km · mol−1), 3351 cm−1(0 km · mol−1);
νσ(H3,5 · · · Au) = 84, 89 cm−1; (iii) Au−–(NH3)3

I: ν(N2–H9) = 3360 cm−1(157 km · mol−1);
ν(N1–H10) = 3366 cm−1(141 km · mol−1); ν(N3- H8) = 3370 cm−1(226 km · mol−1); ν(N3–H6) =
3492 cm−1(50 km ·mol−1); ν(N2–H12) = 3494 cm−1(41 km ·mol−1); ν(N1–H5) = 3494 cm−1(59 km ·
mol−1); (iv) Au−–(NH3)3

II: ν(N1–H5, N3–H7, N10–H11) = 3359 cm−1(350 km · mol−1), 3360 cm−1

(342 km · mol−1), 3363 cm−1(5 km · mol−1). Bond lengths are given in Å and bond angles in deg.
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Figure 3. The selected atomic orbitals of Au.

in Figure 5 in terms of the two bonding MO8 (ε8 = −8.27 eV) and MO9 (ε9 =
−3.54 eV) and the two antibonding MO10 (ε10 = −1.41 eV) and MO12 (ε12 =
−1.39 eV). On Au−, the bonding MO8 and MO9 are correspondingly represented
by the hybridized s(∼84%) and d+2(∼15%), and the s(∼70%), d0(∼19%), and
d0+2(∼21%) AOs, and are therefore characterized by the dominant long-range s
character. The antibonding MO10 and MO12 are decomposed into the s(∼3%),
d0(∼12%), d+1(∼30%), d+2(∼55%), and d0(∼20%), d+1(∼60%), and d+2(∼20%)
AOs, respectively, and in contrast reveal the leading short-range d character. The
HOMO of the Au−–NH3 complex with ε15 = −0.20 eV has a dominant s and p
character.
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Figure 4. The selected atomic orbitals of Au−.

Natural Bond Analysis (NBO) demonstrates that the formation of the nonconven-
tional N1–H3 · · · Au2 hydrogen bond in the complex Au−–NH3 induces a charge flow
resulting in a decrease of the natural charge qN(N1) of N1 from −1.138e to −1.171e
(note that, instead, the Mulliken charge qM(N1) increases from −0.848e to −0.766e),
and an increase of qN(H3) by �qN(H3) = 0.034e (in contrast, �qM(H3) =
−0.083e). In other words, the bridging proton H3 loses its electron density and the
electron density flows from lone pairs of the nonconventional proton acceptor to the
σ∗–antibonding MO of the proton donor, and thus induces a larger negative charge
on N1. Simultaneously, a larger positive charge indicated by �qN(Au2) = 0.036e
is induced on the nonconventional proton acceptor Au2. The occupancy of the
σ∗(N1–H3)MO increases by +2.4 me which causes the N1–H3 bond weakening and
the concomitant red-shifting of its stretching vibrational frequency. The s character
of the σ∗(N1–H3)MO amounts to 27.7 %.

The binding energy Eb(Au−–NH3), which fully arises from the nonconventional
N–H. . . Au–hydrogen bonding, amounts to 6.01 kcal · mol−1, three times larger than
the conventional N–H · · · N H–bond of the ammonia dimer. The related enthalpy
of formation �H298

◦(Au−–NH3) = −4.90 kcal · mol−1. A positive character of
the entropy of formation �S◦(Au−–NH3) and its large magnitude, 26.41 cal ·
K−1 · mol−1, leads to Gibbs free energy of the first ammination of Au−, equal
to �G298

◦(Au−–NH3) = −12.77 kcal · mol−1. This value is considerably larger
than �H298

◦. Therefore, due to a substantial entropy effect, the formation of the
nonconventional hydrogen bond in Au−–NH3 is highly favored.
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Figure 5. The selected molecular orbital patterns of Au−–NH3.

The nonconventional N–H · · · Au− hydrogen bond coexists with the conventional
one in the ammonia dimer when the latter forms with Au− the complex Au−–(NH3)2

I

on the PES of Au−–(NH3)2 (see Figure 2). This latter is quasi isoenergetic to the
chain complex Au−–(NH3)2

II; the small energy difference, �EI-II, between
Au−–(NH3)2

I and Au−–(NH3)2
II amounts to only −0.34 kcal · mol−1. Since

�SI-II
◦ = −11.19 cal · K−1 · mol−1, the order of stability of these complexes is

reversed at T ≥ 30 K.
Adding the second NH3 to the dimer Au−–NH3 leads to the formation of the com-

plex Au−–(NH3)2
I, and further strengthens the dimeric N1–H3 · · · Au− H–bond, as

indicated by a small elongation of R(N1–H3), 0.003 Å, a shortening of r(H3 · · · Au),
by 0.135 Å, an increase of the H-bond angle � N1H3Au from 157.4◦ to 177.6◦, and
a further red shift of the ν(N1–H3) stretching vibrational mode, by 72 cm−1. Even
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though the additional contact N2–H5 · · · Au− with r(H5 · · · Au−) = 3.070 Å is much
weaker than N1–H3 · · · Au− it can also be treated, in some sense, as an extremely
weak nonconventional H-bond, since it largely obeys the conditions imposed on the
conventional H-bond as well (see Ref. [31f] and note [21]).

The binding energy of Au−–(NH3)2
I is 4.90 kcal · mol−1 with respect to

Au−–NH3 + NH3 and is lower than Eb(Au−–NH3). The related enthalpy of
formation, �H298

◦(Au−–(NH3)2
I) = −5.01 kcal · mol−1, is slightly larger than

�H298
◦(Au−–NH3) in absolute value (note that �H298

◦(Au−–(NH3)2
I) −

�H298
◦(Au−–(NH3)2

II) = −0.25 kcal · mol−1). A negative entropy effect, �S◦
(Au−–(NH3)2

I) = −23.81 cal·K−1·mol−1 and�S◦(Au−–(NH3)2
II) = −12.62 cal·

K−1 · mol−1, leads to a positive �G298
◦(Au−–(NH3)2

I) = 2.09 kcal · mol−1 and
a slightly negative �G298

◦(Au−–(NH3)2
II) = −1.10 kcal · mol−1. These results

demonstrate a noticeable resilience of the gold anion to its second ammination at
room temperature as compared to the first one.

The formation of Au−–(NH3)2
I and Au−–(NH3)2

II can be interpreted in two
different ways, namely, either as the ammination of Au− by the ammonia dimer
or as its simultaneous double ammination. The energetics of the former reaction is
characterized by Eb = 8.99 kcal · mol−1, �H298

◦ = −7.84 kcal · mol−1, �S◦ =
19.56 cal · K−1 · mol−1, and �G298

◦ = −13.67 kcal · mol−1. The latter value of
�G298

◦ marks a little preference (≈−1 kcal · mol−1) of the dimer ammination of
Au− over the first one at room temperature.

Interestingly, the difference in enthalpy between the second and first amminations,
�2–1�H298

◦(Au−) ≡ �H298
◦(Au−–(NH3)

I
2)−�H298

◦(Au−–NH3) = −0.11 kcal·
mol−1, is slightly negative, meaning that the second ammination at 0 K is slightly
preferential. Such a trend holds for the third ammination of Au− whose PES shown in
Figure 2 consists of two lower-energy conformers, Au−–(NH3)3

I and Au−–(NH3)3
II.

They both have three non conventional N–H · · · Au− hydrogen bonds where the gold
anion plays a role of a triple nonconventional proton acceptor. The former can be
geometrically viewed as Au− triply H-bonded to the ammonia trimer whereas the
latter is merely the result of the third ammination of Au−–(NH3)2

II.
With respect to Au−–(NH3)2

I + NH3, Eb(Au−–(NH3)3
I) amounts to 4.56 kcal ·

mol−1. The corresponding enthalpy of formation �H◦
298(Au−–(NH3)3

I) =
−5.12 kcal · mol−1 and hence, �3−2�H298

◦(Au−) ≡ �H298
◦(Au−–(NH3)3

I) −
�H◦

298(Au−–(NH3)2
I) = −0.11 kcal · mol−1. A large entropy factor �S◦

(Au−–(NH3)3
I) = −32.99 cal · K−1 · mol−1 diminishes however the enthalpy

contribution and leads to a positive �G298
◦(Au−–(NH3)3

I) = 4.71 kcal · mol−1.
The energy difference �EI-II between Au−–(NH3)3

I and Au−–(NH3)3
II is only

−0.25 kcal · mol−1; hence, we can treat these two complexes as nearly isoenergetic,
at least at 0 K.

The complex Au−–(NH3)3
II is less compact than Au−–(NH3)3

I and is therefore
characterized by a larger entropy, which determines a negative difference,
�SI-II

◦ = −35.64 cal · K−1 · mol−1, and reverses the order of stability of these
complexes, already at T ≥ 7 K. A large entropy of Au−–(NH3)3

II has a remarkable
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effect on the third ammination of the gold anion. As �H298
◦(Au−–(NH3)3

II) =
−3.98 kcal · mol−1 relative to Au−-(NH3)2

II + NH3, the small magnitude
of �S◦(Au−–(NH3)3

II) = −8.54 cal · K−1 · mol−1 has a smaller effect on
�G298

◦(Au−–(NH3)3
II), amounting to −1.44 kcal · mol−1. As a consequence,

�3−2�G298
◦(Au−) ≡ �G298

◦(Au−–(NH3)3
II) − �G298

◦(Au−–(NH3)2
II), equal

to −0.34 kcal · mol−1, reveals a small anomaly of the third ammination of Au−, by
analogy with the anomalous second ammination of the silver cation [29].

3. COMPLEXES Au3
Z–(NH3)1≤n≤3(Z = 0,±1)

The bonding patterns formed between the triangular gold cluster and the ammonia
molecule, illustrated in Table 2, differ from those described for AuZ–NH3, especially
for Au3. This can be anticipated from the more smeared redistribution of the electron
charge over the entire cluster and the different shapes of the high occupied and
low unoccupied frontier molecular orbitals, which determine its reactivity (see
Ref. [26]c).

We observe two opposite trends in the bonding patterns when increasing the
cluster size from AuZ to Au3

Z. On one hand, the neutral Au3 anchors NH3
more strongly than Au: Eb(Au3–NH3) = 24.42 kcal · mol−1 > Eb(Au–NH3) =
7.83 kcal · mol−1, and the anchor bond is contracted by 0.16 Å with respect to that
in Au–NH3. On the other hand, both charged species, Au3

+ and Au3
−, bind NH3

in a weaker way (Table 2): (i) the anchoring Au-N bond of Au3
+–NH3 is longer

by 0.06 Å than Au+–NH3; (ii) the nonconventional N–H · · · Au hydrogen bond that

Table 2. Multiple amminations of AuZ
3 in terms of the most stable complexes (see Figures 6–11).

n Au3–(NH3)1≤n≤3 Au3
+–(NH3)1≤n≤3 Au3

−–(NH3)1≤n≤3

1 Au3 + NH3: Au3
+ + NH3: Au3

− + NH3:
R(Au–N) = 2.194 Å R(Au–N) = 2.161 Å R(N–H) = 1.022 Å
R(Au–Au) = 2.711, 2.670, 2.781 Å R(Au–Au) = 2.722, 2.722, 2.623 Å R(H. . .Au) = 2.993 Å

� NHAu = 159.7◦
Eb = 24.42 kcal · mol−1 Eb = 43.81 kcal · mol−1 ν(N-H) = 3445 cm−1

�H298
◦ = −24.84 kcal · mol−1 �H298

◦ = −44.30 kcal · mol−1 R(Au–Au) = 2.634, 2.630 Å
�S◦ = −27.37 cal · K−1 · mol−1 �S◦ = −29.82 cal · K−1 · mol−1

�G298
◦ = −16.68 kcal · mol−1 �G298

◦ = −35.42 kcal · mol−1 Eb = 3.21 kcal · mol−1

�H298
◦ = −2.65 kcal · mol−1

�S◦ = −9.97 cal · K−1 · mol−1

�G298
◦ = +0.32 kcal · mol−1

2 Au3–NH3 + NH3: Au3
+–NH3 + NH3: Au3

−–NH3 + NH3:
Eb = 14.85 kcal · mol−1 Eb = 38.74 kcal · mol−1 Eb = 3.71 kcal · mol−1

�H298
◦ = −15.17 kcal · mol−1 �H298

◦ = −39.20 kcal · mol−1 �H298
◦ = −3.88 kcal · mol−1

�S◦ = −29.17 cal · K−1 · mol−1 �S◦ = −27.67 cal · K−1 · mol−1 �S◦ = −25.11 cal·K−1 ·mol−1

�G298
◦ = −6.48 kcal · mol−1 �G298

◦ = −30.95 kcal · mol−1 �G298
◦ = +3.60 kcal · mol−1

3 Au3–(NH3)2
I + NH3: Au3

+–(NH3)2
I + NH3: Au3

−–(NH3)2
II + NH3:

Eb = 7.44 kcal · mol−1 Eb = 31.63 kcal · mol−1 Eb = 2.44 kcal · mol−1

�H298
◦ = −7.91 kcal · mol−1 �H298

◦ = −32.07 kcal · mol−1 �H298
◦ = −3.03 kcal · mol−1

�S◦ = −31.12 cal · K−1 · mol−1 �S◦ = −28.79 cal · K−1 · mol−1 �S◦ = −35.61 cal·K−1 ·mol−1

�G298
◦ = +1.36 kcal · mol−1 �G298

◦ = −23.49 kcal · mol−1 �G298
◦ = +7.58 kcal · mol−1
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Figure 6. The complex Au3
−–NH3. Notice that no bonding of NH3 to the central atom of the Au3

−
cluster is found. Bond lengths are given in Å and bond angles in degrees.

solely stabilizes the complex Au3
−–NH3 (see Figure 6) is weaker. It is characterized

by a smaller elongation of the involved N–H bond (�R(N–H) = 0.006 Å in
Au3

−–NH3 vs. �R(N–H) = 0.015 Å in Au−–NH3), by a much longer H-bond
(r(H · · · Au) = 2.993 Å vs. r(H · · · Au) = 2.690 Å), and finally by a less notice-
able red shift (�ν(N–H) = −40 cm−1 vs. �ν(N–H) = −160 cm−1). Table 2
presents the thermodynamics of the first ammination of AuZ

3 and particularly
indicates a preference of neutral Au3(�G298

◦ = −16.68 kcal · mol−1) over
Au(�G298

◦ = −13.86 kcal · mol−1) to the first ammination, despite a disfavoring
entropy effect (�S◦ = −27.37 cal · K−1 · mol−1 vs.�S◦ = 22.33 cal · K−1 · mol−1).

Three different low-energy pathways, displayed in Figures 7 and 8, govern the
second ammination of the neutral and charged Au3

Z. On the neutral and cationic
sheets of the total PES of Au3

Z–(NH3)2, the most favorable pathways proceed to the
structures Au3

0,+1–(NH3)2
I – they lie above the asymptote Au3

0,+1–NH3 + NH3 by
Eb(Au3

0–(NH3)2
I) = 14.85 kcal · mol−1 and Eb(Au3

+–(NH3)2
I) = 38.74 kcal ·

mol−1, respectively. The thermo-dynamics of these reaction pathways presented
in Table 2 demonstrates that, by analogy with Au0,+1, the second ammination of
Au3

0,+1 is less favorable too. Interestingly, the second ammination of Au3 reduces
its ionization energy IE(Au3), defined as the energy difference between Au3–(NH3)2

I

and Au3
+–(NH3)2

I, to 5.15 eV, i.e. by 1.88 eV.
In both structures Au3

0,+1–(NH3)2
I, each of two gold atoms anchors a single

ammonia molecule. Their formation markedly changes the gold clusters: in the
neutral Au3–(NH3)2

I, the gold–gold bond that couples the anchoring bonds is
considerably strengthened whereas the other two are slightly weakened, and the
opposite effect is predicted for the cationic Au3

+–(NH3)2
I complex.

Less favorable are the pathways leading to either Au3
0,+1–(NH3)2

II(�EI–II
0,+1 =

−6.61 and −26.00 kcal · mol−1) or Au3
0,+1–(NH3)2

III(�EII–III
0,+1 = −8.12 and

+1.64 kcal · mol−1). A partial structural resemblance of Au3
0,+1–(NH3)2

II involv-
ing the H-bonded ammonia dimer with Au0,+1–(NH3)2

II can readily be noticed for
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Figure 7. The low-energy complexes Au3
0,+1–(NH3)2. The selected vibrational modes of

Au3
0,+1–(NH3)2

II: (i) Z = 0 : ν(N1–H6) = 3145 cm−1(504 km · mol−1); ν(N5–H7) = 3429 cm−1

(89 km · mol−1); (ii) Z = +1 : ν(N1–H6) = 2933 cm−1(1667 km · mol−1). Bond lengths are given in Å
and bond angles in degrees.
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Figure 8. The low-energy complexes Au3
−–(NH3)2. Their selected vibrational modes: (i)

Au3
−–(NH3)2

II: ν(N5–H6) = 3348 cm−1(385 km · mol−1); ν(N1–H7) = 3435 cm−1(26 km · mol−1);
(ii) Au3

−–(NH3)2
Ia: ν(N1–H6) = 3443 cm−1(12 km · mol−1); ν(N5–H7–9) = 3464 cm−1(41 km ·

mol−1); (iii) Au3
−–(NH3)2

Ib: ν(N5–H7) = 3031 cm−1(1334 km · mol−1); ν(N1–H6) = 3389 cm−1

(144 km · mol−1); (iv) Au3
−–(NH3)2

III: ν(N5–H7; N1–H6) = 3443, 3446 cm−1(13, 9 km · mol−1).
Units as in Figure 7.

each value of Z. Their differences are easily seen as well, mostly in their H-bonding
part, which bonding patterns are governed by the total charge of the complex. In
the neutral case, the anchoring bond of Au3–(NH3)2

II is much shorter and strongly
activates the adjacent N1–H6 bond, as is also the case for the anchoring bond in
Au–(NH3)2

II, which strengthens N1–H6 · · · N5 hydrogen bond, causing the N1–H6
stretch to be red-shifted by 177 cm−1 with respect to the ammonia dimer. The cationic
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state exhibits the opposite effect. The difference between the neutral and cationic
states of Au3–(NH3)2

II is also manifested by the orientation of the second ammonia
molecule relative to the gold cluster: when Z = 0 this molecule forms a weak
nonconventional N5–H7. . .Au3 hydrogen bond, for Z = 1 the latter breaks and the
second ammonia molecule rotates along the intramolecular N1–H6 · · · N5 bond from
the gold. These are the key features that allow to distinguish the neutral and cationic
states on the PES of Au3

Z–(NH3)2. We discuss in section 4 how these features can
be used to encode qubits.

Switching the neutral charge state on the PES of the second ammination to the
negative one drastically changes the reaction and bonding patterns (see Figure 8).
Instead of Au3

0–(NH3)2
I, which energetically prevails in the neutral charge state,

the lowest-energy complex in the anionic state turns out to be the Au3
−–(NH3)2

II

complex, which originates from the less favorable neutral parent Au3
0–(NH3)2

II as
a result of alternating the anchoring Au–N bond by the nonconventional N–H · · · Au
hydrogen bond.

The enthalpy of such an alternation is estimated as equal to 2.46 eV, that is, about
1.18 eV smaller than EA(Au3). In the other words, the ammonium microsolvation
leads to considerable decrease of the electron affinity of a given gold cluster.

In addition, the neutral reaction pathway linked to Au3
0–(NH3)2

I bifurcates on the
negatively charged sheet, giving a rise to Au3

−–(NH3)2
Ia and Au3

−–(NH3)2
Ib. The

former complex is slightly less stable, by 1.40 kcal · mol−1, than Au3
−–(NH3)2

II and
more stable by 7.31 kcal · mol−1 compared to Au3

−–(NH3)2
I b. Despite lower stabil-

ity of Au3
−–(NH3)2

I b, its formation is quite peculiar since it involves breaking two
Au–Au bonds of the triangular neutral gold cluster in order to form a new Au4–N5
bond, which bridges the fragmented Au3 atom via the two strong nonconventional
hydrogen bonds N5–H7 · · · Au3 and N1–H6 · · · Au3. It is also worth mentioning
the complexes Au3

−–(NH3)2
Ia and Au3

−–(NH3)2
III are almost degenerate (within

0.67 kcal · mol−1). In the latter one, two separate ammonia molecules form noncon-
ventional N- H · · · Au H-bonds with different terminal atoms of the Au3

− chain (see
Figure 8 and corresponding legend).

The energetics of the 3rd ammination of the Au3
Z cluster is determined by

the low-energy portion of the PES displayed in Figures 9–11. The neutral charge
state of this PES exhibits two branches of conformers, both originating from the
complexes Au3–(NH3)2

I and Au3–(NH3)2
II and being apart by approximately 6 kcal·

mol−1. The higher-energy branch consists of the cyclic complex Au3–(NH3)3
I,

whose ammonia trimer is Au–N anchored to the triangular gold cluster on the
one side and forms the nonconventional N–H · · · Au bond on the other, and the
complex Au3–(NH3)3

II which involves three anchoring Au–N bonds. The lower-
energy branch is represented by the complexes Au3–(NH3)3

III and Au3–(NH3)3
IV

whose binding energies are respectively equal to 7.44 and 5.36 kcal · mol−1 relative
to the asymptote Au3–(NH3)2

I +NH3 (see also Table 2 for the related thermodynam-
ics). Structurally, these two complexes can be viewed as formed from Au3–(NH3)2

I

and the third ammonia molecule via the N1–H5 · · · N6 hydrogen bond. The latter is
significantly stronger than the one that dimerizes two ammonia molecules.
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Figure 9. The low-energy complexes Au3–(NH3)3. Their selected vibrational modes: (i) Au3–(NH3)
I
3:

ν(N1–H5) = 3013 cm−1(1077 km · mol−1); ν(N6–H7) = 3289 cm−1(375 km · mol−1); ν(N8–H9) =
3409 cm−1(108 km · mol−1); (ii) Au3–(NH3)3

III: ν(N1–H5) = 3214 cm−1(362 km · mol−1);
ν(N6–H7) = 3401 cm−1(159 km · mol−1); (iii) Au3–(NH3)3

IV: ν(N1–H5) = 3294 cm−1(446 km ·
mol−1). Bond lengths are given in Å and bond angles in degrees.

For example, in Au3–(NH3)3
III the N1–H5 · · · N6 H-bond is characterized, with

respect to the ammonia dimer, by �R(N1–H5) = 0.014 Å, �r(H5 · · · N6) =
−0.240 Å, �ν(N1–H5) = −208 cm−1. By simply juxtaposing the geometries of
Au3–(NH3)3

III and Au3–(NH3)3
IV, we can get a rough estimate of the energy of for-

mation of the nonconventional N6–H7 · · · Au4 hydrogen bond, which amount to the
difference in their binding energies and is equal to ∼2 kcal ·mol−1. It is, on one hand,
weaker than in Au−–NH3 and, on the other hand, stronger than in Au3

−–NH3. Its
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Figure 10. The low-energy complexes Au3
+ − (NH3)3. Their selected vibrational modes: (i) Au3

+ −
(NH3)3

I: ν(N1–H5) = 2656 cm−1(2588 km · mol−1); ν(N6–H7) = 3281 cm−1(514 km · mol−1); (ii)
Au3

+–(NH3)3
III–IV: ν(N1–H5) = 2999 cm−1(1501 km · mol−1). Units as in Figure 9.

strength can be estimated with respect to the ammonia dimer:�R(N6–H7) = 0.008 Å
and �ν(N6–H7) = −215 cm−1. We may therefore infer that two bonding factors
determine the larger stability of the structure Au3–(NH3)3

III, on the neutral sheet of
the PES which governs the third ammination of triangular gold cluster. A leading role
is attributed to the anchoring Au–N bond and a minor one to the nonconventional
N–H · · · Au H–bond. The former causes the redistribution of the electron charge over
the entire gold cluster, which directs the unanchored atom to act as a nonconventional
proton acceptor and also activates the adjacent N–H bond. Both effects occurring in
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Figure 11. The low-energy complexes Au3
−–(NH3)3. Their selected vibrational modes:

(i) Au3
−–(NH3)3

I: ν(N8–H7) = 3391 cm−1(89 km · mol−1); ν(N1–H5) = 3414 cm−1(53 km · mol−1);
ν(N6–H9,11) = 3420, 3526 cm−1(77, 61 km · mol−1); ν(N1–H5,10) = 3530 cm−1(71 km · mol−1);
(ii) Au3

−–(NH3)3
II: ν(N8–H7) = 3326 cm−1(473 km · mol−1); ν(N1–H5) = 3396 cm−1(90 km ·

mol−1); ν(N6–H9) = 3412 cm−1(76 km · mol−1); ν(N1–H10) = 3497 cm−1(45 km · mol−1);
(iii) Au3

−–(NH3)3
III-IV: ν(N8–H9) = 3134 cm−1(1120 km · mol−1); ν(N1–H5) = 3378 cm−1

(42 km · mol−1); ν(N6–H7) = 3393 cm−1(270 km · mol−1). Units as in Figure 9.

the ammonia dimer, the substantial activation of the N1–H6 bond and the formation
of a nonconventional H-bond, significantly reinforce the anchoring bond. This can
be seen from a comparison of the two anchoring bonds, Au2–N1 and Au3–N8 (see
Figure 9), which differ by 0.046 Å.

The landscape of the PES of cationic Au3
+–(NH3)3 is markedly different from

that of its neutral cousin (see Figure 10).
First, the most stable complex turns out to be Au3

+–(NH3)3
II, whose neutral

parent resides on the higher-energy branch. Relative to the reaction asymptote of
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Au3
+–(NH3)2

I + NH3, Eb(Au3
+–(NH3)3

II) = 31.63 kcal · mol−1, which, com-
pared to Eb(Au3

+–(NH3)2
I) = 38.74 kcal · mol−1, demonstrates a small decrease

of the third ammination for Au3
+. The thermodynamics of the formation of

Au3
+–(NH3)3

II, quantitatively described by�H◦
298(Au3

+–(NH3)3
II) =−32.07 kcal·

mol−1,�S◦(Au3
+–(NH3)3

II) =−28.79 cal·K−1·mol−1,�G◦
298 (Au3

+–(NH3)3
II)=

−23.49 kcal · mol−1 (see Table 2), shows the same trend. However, comparing with
Au+ (Table 1), the third ammination of Au3

+ is more likely since more gold atoms
are available for Au–N anchoring.

Secondly, the ionization of Au3–(NH3)3
III and Au3–(NH3)3

IV converges to
the same cation Au+

3 –(NH3)3
III−IV, which is 20.21 kcal · mol−1 higher than

Au+
3 –(NH3)3

II. The intramolecular N1–H5 · · · N6 hydrogen bond which exists in
Au3–(NH3)3

III and Au3–(NH3)3
IV is significantly strengthened under ionization (for

example, ν(N1–H5) of Au3–(NH3)3
III is red-shifted by 212 cm−1).

Third, the ionization substantially deepens, to 50.65 kcal · mol−1, the energy gap
between Au3–(NH3)3

II and Au3–(NH3)3
I.

The order of stability established for the neutral charge state of the PES of
Au3

Z–(NH3)3 is completely reversed for the negative state (Figure 11). Moreover,
by analogy with Au3

−–(NH3)2, the lowest-energy state is almost doubly degenerate
(at 0 K) and occupied by the complexes Au3

−–(NH3)3
I and Au3

−–(NH3)3
II, which

are on the high-energy branch of the neutral charge state. These complexes are quite
different in that, while the former is actually the nonconventionally H-bonded com-
plex between Au3

− and the cyclic (NH3)3, the latter is that between Au3
− and the

open one. The binding energy of Au3
−–(NH3)3

I with respect to Au3
−–(NH3)2

II +
NH3 is 2.44 kcal · mol−1. This value almost coincides with its binding energy
(2.21 kcal ·mol−1) taken relative to the asymptote corresponding to the infinitely sep-
arated Au3

− and the cyclic ammonia trimer. The energy difference �EI−II between
Au3

−–(NH3)3
I and Au3

−–(NH3)3
II is mostly due to the ZPVE effect, which amounts

only to 0.89 kcal · mol−1, and hence we can treat these two complexes as nearly
isoenergetic, at least at 0 K. A lesser compactness of Au3

−–(NH3)3
II with respect

to Au3
−–(NH3)3

I results in a negative difference �SI−II
◦ = −10.76 cal · K−1 ·

mol−1, whose contribution to the Gibbs free energy difference amounts to 3.21 kcal ·
mol−1 at room temperature (for thermodynamic characteristics of Au3

−–(NH3)3
I,

see Table 2).
Both lowest-energy neutral conformers Au3–(NH3)3

III and Au3–(NH3)3
IV are

transformed into the negatively charged complex Au−
3 –(NH3)3

III−IV, structurally
similar to Au3

−–(NH3)2
Ib. The difference in energy between Au3

−–(NH3)3
I and

Au3
−–(NH3)3

III−IV amounts to 5.79 kcal · mol−1.
The structural aspects of negatively charged complexes Au3

−–(NH3)3
I, Au3

−
–(NH3)3

II and Au3
−–(NH3)3

III−IV can be readily seen on Figure 11. The selected
frequencies listed in the legend allow distinguishing the former two and both from
the latter. The lowest stretching vibrational modes of Au3

−–(NH3)3
II, centered at

3326 and 3396 cm−1, are referred to the stretches of the intramolecular H-bonds,
N8–H7 · · · N1 and N1–H5 · · · N6, of the open ammonia trimer. The next stretching
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mode, peaked at 3412 cm−1, is associated with the nonconventional H-bond
N6–H9 · · · Au2, where the central atom of the Au−

3 gold chain acts as a nonconven-
tional proton acceptor and which, according to its parameters R(N6–H9) = 1.024 Å
and r(H9 · · · Au2) = 2.698 Å, is stronger than in Au3

−–(NH3)2
II. Three nonconven-

tional H-bonds of Au3
−–(NH3)3

I, which bind the cyclic ammonia trimer to Au3
−,

are generally weaker than in Au3
−–(NH3)2

II. Also, the nonconventional H-bond
N8–H9 · · · Au4 of the less stable complex Au3

−–(NH3)3
III−IV is weaker than the

analogous one in Au3
−–(NH3)2

Ib, but another one, N6–H7 · · · Au2, in this complex
is stronger and comparable with the strongest intramolecular bond N8–H7 · · · N1 of
Au3

−–(NH3)3
I.

4. APPLICATION TO QUANTUM LOGIC: MOLECULAR SWITCHES

The aim of this section is to illustrate how the calculated landscape of the PESs of
Auk=1,3

Z–(NH3)1≤n≤3(Z = 0,±1) can be used to implement molecular qubit logic
gate operations. Quantum information processing [32] has recently been under exten-
sive studies in both areas of physics and chemistry [33]. A novelty of the present
approach is based on our findings reported in sections 2 and 3 that the different
charged states of the Au atom and the triangular Au3 gold cluster admit specific and
fundamentally different bonding patterns with ammonia molecule and its oligomers,
switching from the anchoring Au–N bond to the nonconventional N–H · · · Au hydro-
gen bond. The charge of the species Au1,3 can, for instance, be varied using different
metallic supporters and /or applied voltages and the NeNePo (“negative ion – to neu-
tral – to positive ion”) experimental technique [34]. The description of the NeNePO
experimental setup is given in Refs. [34, c–d]. A switching from the neutral state of a
given complex Auk

0–(NH3)1≤n≤3(k = 1, 3) to its cationic state Auk
+–(NH3)1≤n≤3

can also be initiated by resonant photoionization [35].
Two basic and essentially different ingredients of the bonding patterns discussed

in sections 2 and 3 are used to design logic gates: (i) the anchoring Au–N bond, and
(ii) the nonconventional N–H · · · Au hydrogen bond. The bonding of the ammonia
oligomers (NH3)2 and (NH3)3 to Au1 or Au3 can be switched to one or the other by
alternating the neutral or positively charged sheet of the PES to the negatively charged
one. Herein, we give insight on how these ingredients could be tailored experimen-
tally by defining a set of control parameters of the model, in order to realize a gate
set. Additionally, as far as the number of ammonia molecules increases, different dis-
positions of a so-called “armed” ammonia chains and the inter-ammonia hydrogen
bonding patterns can be also used for encoding.

We start by discussing the simplest situation of the complex AuZ–NH3, that
contains a single atom of gold. The dependence of its structural and energetic
properties on the charge state is discussed in detail in section 2. We model the
complex AuZ–NH3 by a two-level system with total Hamiltonian:

ĤZ
11 = ĤZ

Au + ĤNH3 + λVint,11
Z(1)
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The subscript 11 stands for one Au atom and one NH3 molecule (precisely, k = 1
and n = 1). Ĥ Z

Au and ĤNH3 are the sub-Hamiltonians of the AuZ and NH3 sub-
systems, respectively, and λVint,11

Z is the interaction energy, λ being the coupling
constant. The following two scenarios are possible, depending on the charge state of
the Au atom:
(i) When Z = 0 or +1, there can be an Au–N anchoring in Au0,+1–NH3. In that

case Ĥ Z
11 acts on the “anchoring” two-dimensional Hilbert space A (stands for

“anchoring”), spanned by the states |0A〉 and |1A〉 over the real field �1. Varying
λ results in a mixed “anchor” qubit α|0A〉 + β|1A〉(α2 + β2 = 1; α,β ∈ �1). In
other words, λ controls the probability of anchoring: if λ is “off” (λ = 0), we have
a “no-anchor” qubit |0A〉; the opposite case, when λ is “on” (λ = 1), yields a pure
“anchor” qubit |1A〉.

(ii) When Z = −1, we are located on the negative sheet of the PES of Au–NH3, and
Ĥ −1

11 acts on the “H-bonding” two-dimensional Hilbert space H spanned by the
states |0H〉 and |1H〉 over �1. |0H〉 is the state with “no nonconventional hydrogen
bonding”, whereas |1H〉 stands for the case where a hydrogen bond is present.
Let us now consider the electronic ground-state PES of the system AuZ–(NH3)2

consisting of a single Au atom and an ammonia dimer (NH3)2. Its total Hamiltonian
Ĥ Z

12 is written as

Ĥ Z
12 = Ĥ Z

Au + Ĥ(NH3)2 + λVint,12
Z.(2)

It was shown in section 2 that the low-energy portion of the PES of AuZ–(NH3)2
admits either two different anchoring Au–N bonding patterns in the neutral or
positively charged complexes Au0,+–(NH3)2

I and Au0,+–(NH3)2
II or two different

nonconventional N-H · · · Au H-bonds as it takes place in the complexes Au−–(NH3)2
I

and Au−–(NH3)2
II.

As can be seen on Figure 1, the higher-energy conformer Au–(NH3)
I exhibits

two anchor bonds while the most stable complex Au–(NH3)
II has only one. The

order of stability of the two conformers is inverted on the positively charged PES:
Au+–(NH3)

I that retains two anchoring bonds becomes the most stable complex,
whereas the less stable one, Au+–(NH3)

II, has only one as its neutral parent. For
the negatively charged complexes of Au−–(NH3) shown in Figure 2, Au−–(NH3)

I

exhibits two nonconventional H-bonds with the dimer (NH3)2, while Au−–(NH3)
II

has two such H-bonds with the non-dimerized NH3 molecules. Therefore, for a given
Z, Ĥ Z

12 acts upon the bipartite Hilbert spaces: (i) if Z = 0,+1, it is A1 ⊗A2 spanned
over the basis composed of the direct product states |iA1〉 ⊗ |jA2〉 ≡ |iA1jA2〉, and (ii)
if Z = −1, it is H1 ⊗ H2 spanned over the basis |iH1〉 ⊗ |jH2〉 ≡ |iH1jH2〉(i, j =
0, 1). An additional substructure of the basis originates from the sub-Hamiltonian
Ĥ(NH3)2 = 2ĤNH3 +λ′Vint

′ which can also be treated as acting on the states |0N〉 and
|1N〉 belonging to N: the former describes two infinitely separated NH3 molecules
(“the intramolecular H-bond is off”; λ′ = 0) and the latter describes the H-bonded
ammonia dimer (NH3)2 (“the intramolecular H-bond is on”; λ′ = 1).

Alternation of the neutral and charge states on the general PES of AuZ–(NH3)2 is
associated with the Hamiltonian
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Ĥ switch
12 = P0 Ĥ 0

12 P0 + P+1 Ĥ +1
12 P+1 + P−1 Ĥ −1

12 P−1(3)

where PZ is the projector on the Zth charge state. In the NeNePo process the
interaction of Ĥ switch

12 with the femtosecond laser pulse specifically selects one of
the projectors: the inversion of the charge state occurs sequentially from the negative
(P−1) via neutral (P0) to the positive one (P+1). Note that the cationic state can also
be prepared from the neutral state by resonant photoionization [35].

We assume that, generally speaking, Ĥ switch
12 acts upon the 5-qubit product

Hilbert space H = A1 ⊗ A2 ⊗ H1 ⊗ H2 ⊗ N, encodes the qubits and realizes the
following two qubit gates, which could be controlled by an applied current and IR
spectroscopy – the latter probes the charge states in the NeNePo process [34]. It is
worth mentioning that the 5-qubit product Hilbert space allows a better experimental
determination of the logic state of the system and can be projected onto a lower-
dimensional one, for example onto A1 ⊗ A2 ⊗ H1, to obtain a cruder description.

To build a NOT gate, we encode the target qubit, which can be either |0〉 =
(

1
0

)
or

|1〉 =
(

0
1

)
, into the two lowest-energy conformers, Au–(NH3)2

II and Au–(NH3)2
I,

on the neutral sheet of the PES of the AuZ–(NH3)2 cluster. As noticed section 2,
Au–(NH3)2

II ≡ |0〉0 lies lower than Au–(NH3)2
I ≡ |1〉0 by 4.3 kcal · mol−1. In

the 5-qubit encoding they are represented as |0〉0 ≡ |1A10A20H10H21N〉 and |1〉0 ≡
|1A11A20H10H20N〉. The quantum NOT gate [32] is a one-qubit gate associated with
the matrix

X =
[

0 1
1 0

]
(4)

So that if the initial value of the qubit is |0〉 =
(

1
0

)
we get the NOT logic operation,

as X
(

1
0

)
=
(

0
1

)
≡ |1〉, and vice versa if the initial value of the quibit is |1〉. In

the 5-qubit encoding, the action of X is to simultaneously flip the pair of the qubits
|0A2〉 and |1N〉(∈ |0〉0) into |1A2〉 and |0N〉(∈ |1〉0). The action of the NOT gate can
therefore be implemented on the neutral PES by using an IR laser pulse.

On the positively charged PES, the conformer Au+–(NH3)2
I is the global mini-

mum, that is, Au+–(NH3)2
I ≡ |0〉+1 ≡ |1A11A20H10H20N〉, whereas a higher-energy

conformer is Au+–(NH3)2
II ≡ |1〉+1 ≡ |1A10A20H10H21N〉. Their energy differ-

ence amounts to 43.6 kcal · mol−1. Clearly, a simultaneous flip of the qubits |1A2〉
and |0N〉(∈ |0〉+) into |0A2〉 and |1N〉(∈ |1〉+), which can be generated optically by
using a UV photon, implements another quantum NOT gate (4). Notice that the qubit
substructure of the states |0〉0,+1 and |1〉0,+1 originated from the bipartite Hilbert
space H1 ⊗ H2 is irrelevant under these NOT gate operations. This implies that in
order to implement the NOT gate one can work in the smaller 3-qubit Hilbert space
A1 ⊗ A2 ⊗ N.

The quantum NOT gate (4) is also realized, within the Hamiltonian Ĥ switch
12

given by Eq. (3), by switching from the neutral charge state of the studied PES to
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its positively charged state. This latter can be prepared from the neutral state by
resonant photoionization [35]. The NOT operation (4) is implemented as follows,
using a consistent labeling of the target qubits assigned, e.g. to the neutral charge
state:

• the neutral global minimum (“ground”) state is |0〉0 ≡ |1A10A20H10H21N〉, that is
Au–(NH3)2

II maps into |1〉+1 ≡ |1A11A20H10H20N〉, which is Au+–(NH3)2
I; and

vice versa:
• the neutral higher-energy (“excited”) state Au–(NH3)2

I≡|1〉0≡|1A11A20H10H20N〉
maps into Au+–(NH3)2

II ≡ |0〉+1 ≡ |1A10A20H10H21N〉.
This operation correlates the ground and excited states on both surfaces. The

two-level charge-induced interchange of the conformers can occur on a timescale
of a few picoseconds, which is typical for the resonant photoionization process [35].
The dynamics of such a process, |0〉0 → |1〉+1 and |1〉0 → |0〉+1, is monitored in
real time by the change in the anchoring A–N stretch, equal to �ν(Au–N) = 145,
165 (due to the appearance of the A–N stretch doublet), and by the disappearance of
the vibrational mode ν(N–H · · · N) (see Table 3) using, e.g. time-resolved picosecond
UV/IR pump-probe ionization depletion spectroscopy [35].

In section 2 we described how the low-energy portion of the negatively
charged PES of Au−–(NH3)2 cluster consists of two nearly degenerate con-
formers Au−–(NH3)2

I and Au−–(NH3)2
II. By analogy with their neutral parent

states, they can be correspondingly designated by |0〉−1 and |1〉−1 and encoded
within the 5-qubit product Hilbert space as |0〉−1 = |0A10A21H10H21N〉 and
|1〉−1 = |0A10A21H11H20N〉. Due to quasi degeneracy of |0〉−1 and |1〉−1, the
low-energy portion of the PES of the anionic Au−–(NH3)2 cluster itself represents a

Table 3. The IR readout of the AuZ–(NH3)2 cluster qubits. Frequency of a given vibrational mode in
cm−1 and corresponding IR activity (in parentheses) in km · mol−1.

Qubit ν(Au-N) ν(N- H · · · Au) ν(N-H · · · N)
νσ(H · · · Au) νσ(H · · · N)

|0〉0 = |1A10A20H10H21N〉 314 3291 (425)
198

|1〉0 = |1A11A20H10H20N〉 νsym = 155
νasym = 175

|0〉+1 = |1A11A20H10H20N〉 νsym = 459
νasym = 479

|1〉+1 = |1A10A20H10H21N〉 493 2548 (2335)
261

|0〉−1 = |0A10A21H10H21N〉 3253 (467) 3415 (65)
100 118

|1〉−1 = |0A10A21H11H20N〉 νsym = 3345(558)
νasym = 3351(0)
ν

sym
σ = 84

ν
asym
σ = 89
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quasi-symmetric double well, characterized by the lowest-energy eigenstates |g±〉−1

of Ĥ −1
12 :

|g±〉−1 = |0〉−1 ± |1〉−1.(5)

Therefore, the one-qubit Hadamard gate [32] can be implemented as a switch that
operates within the Hamiltonian Ĥ switch

12 and transform its neutral-state component
into the negative-state one:

H = 1√
2

[
1 1
1 −1

]
.(6)

Note that a similar Hadamard gate can be realized for the positive-negative switch
that operates between the positively and negatively charged sheets of the PES of the
AuZ–(NH3)2 cluster. A readout of the AuZ–(NH3)2 cluster qubits can be achieved in
various ways, for instance by measuring its IR spectrum. Each state of the 5 qubits
can be detected by IR spectroscopy – the IR identifier of each 5-qubit state is given
in Table 3.

5. SUMMARY AND CONCLUSION

We have discussed how the properties of the charged states of the gold atom and
the triangular gold cluster govern their reactive properties and bonding patterns
with ammonia clusters. We have shown that these bonding patterns are actually a
multifacet phenomenon that exhibits different characteristics. These allow to propose
a scheme for encoding qubits on the PES of Au1,3

Z–(NH3)1≤n≤3 and implementing
two simple one qubit quantum gates: the NOT and the Hadamard gates. We suggest
that this way of processing quantum information on nanosize hybrid gold-organic
clusters might open new horizons for the development of qubit logic-gate operations.
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S. Vajda, T.M. Bernhardt, and L. Wöste, Ultrafast nuclear dynamics induced by photodetachment of
Ag2

− and Ag2O2
−: oxygen desorption from a molecular silver surface. Phys. Chem. Chem. Phys.

7, 2706–2709, 2005, and references therein; (c) R. Mitrić, M. Hartmann, B. Stanca, V. Bonačić-
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Abstract Van der Waals complexes formed by a bromine molecule and one or several He atoms are
analyzed from first principles. Multidimensional potential energy surfaces and the structure
and dynamics of Br2–(He)N clusters, of increasing size N, are presented and discussed.

1. INTRODUCTION

For more than three decades, van der Waals (vdW) complexes have become
prototypes for studying energy transfer mechanisms and weak intermolecular forces.
During these years, the understanding of vdW forces has expanded dramatically. With
the development of experimental techniques such as supersonic nozzle expansion,
and by performing more accurate ab initio electronic structure calculations, it became
possible to study the structure and dynamics of vdW complexes in more detail.

vdW complexes of a dihalogen molecule surrounded by several rare gas atoms
have been intensely studied over the past decades by high resolution spectroscopy
techniques. In fact, and depending on their size, these clusters, produced by jet super-
sonic expansion at extremely low temperatures, are amenable to spectroscopic studies
where the diatomic molecule acts as a chromosphere. Thus, for the smaller complexes
incorporating one or two rare gas atoms, spectroscopy in the visible region involving
an electronic B ← X transition [1, 2] offers the possibility of a detailed compari-
son with the theory [3, 4]. In this case, an accurate description of the driving forces
through the relevant electronic potential energy surfaces (PES), and also of the photo-
predissociation dynamics and energy redistribution mechanisms, becomes necessary.
In turn, for helium droplets doped with a variety of molecules, rotational and infrared
spectroscopic studies are currently conducted, in order to answer new and challenging
questions on the role of the “quantum environment” [5–7]. A number of additional
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experiments, based on helium nanodroplet isolation techniques [8] on small and
intermediate-size doped helium clusters [9, 10], have been recently performed. The
first issue in this context, from the theoretical side, is how to properly describe the
multidimensional PES or, in other words, at what extent the usual assumption of addi-
tive forces holds. Then, some approximate treatment to study the spatial structure,
and therefore the corresponding spectroscopy, has to be used in order to deal with the
many-body system.

This review is devoted to Br2 · · · HeN clusters and is organized as follows. In
section 2 we briefly overview, for N = 1, the photo-dissociation process Br2(X) · · ·
He + h̄ω →Br2(B, vB, jB)+ He and discuss the different PES’s used, namely
empirical and ab initio surfaces. Then, in section 3, we show, through ab initio
calculations, how the full Br2(X) · · · He2 surface can be accurately described by
the addition of two triatomic Br2(X) · · · He potentials plus the He–He interaction,
enabling the study of larger clusters. Then in section 4, we present our Hartree
approach for describing doped bosonic helium clusters and their energetics and
density distributions are analyzed.

2. PHOTO-PREDISSOCIATION OF Br2 · · · He

In this process, complexes of Br2(X) · · · He are formed in a supersonic expansion
at very low temperatures, seemingly at very low vibrational and rotational states
of both the diatomic and triatomic systems. In the simplest picture, a photon pro-
motes selectively the complex towards an state in which the bromine is in an excited
electronic and vibrational state. The excess of vibrational energy stored in the diatom
flows to the vdW bond giving rise to its breaking up, constituting the so called vibra-
tional predissociation (VP) process. This produces a broadening in the spectral lines
which is related to the VP rate. Within the electric dipole approximation, denoting
by J the quantum number associated to the total angular momentum, the selection
rules (assuming that the diatomic dipole moment is not affected by complexation) are
�J = 0,±1, 0 �→ 0. Thus, even at low temperatures, a large amount of rotational
states have to be included in the simulations [4].

Two kind of potentials were used to describe the X and B states of this triatomic
cluster: (1) The simple addition of Morse atom–atom interactions [11], and (2) An
ab initio surface at the CCSD(T) level of the theory [12] for the X state combined with
a perturbation model based on the diatomics-in-molecule approach to represent the
B surface [13]. By fitting the potential parameters within the scenario (1) to repro-
duce the experimental blue-shifts at low diatomic vB vibrational excitations [14],
the calculations reproduce this magnitude (and also VP rates) even for moderate vB
values (≤30) [11]. However only the potentials of the framework (2) were able to
reproduce the oscillations of such magnitudes appearing at higher vB levels. For the
(B, vB = 8 ← X, vX = 0) transition there is also a very good agreement as regards
the main band of the measured excitation spectrum [15], corresponding essentially
to transitions B ← X keeping a T-shaped geometry of the complex. Moreover, a
weak secondary band could be mainly assigned to a transition from the collinear
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Figure 1. (a) Main and (b) secondary bands of the B, vB = 8 ← X, vX = 0 excitation spectra. Solid
lines: experiment, dotted lines: simulations. The assignment of the peaks to different nX − nB vibronic
transitions are also presented.

X configuration, almost degenerated in energy with the T-shaped one, to excited
bending states in the B state [16] by using this set of more elaborated surfaces.

Measured and simulated spectrum profiles of the main and secondary band are
presented in Figure 1, showing a remarkable agreement. For the this system, laser-
induced fluorescence spectra have been recently recorded at different temperature
regimes [17]. Besides, the B state has been replaced by a further ab initio surface
from our group [18], performing also theoretical simulations of the spectra which
confirm the main conclusions of the precedent work [16]. In this context, HeBr2 is the
first example in which a rotational partially resolved secondary band in the spectrum
has been unambiguously assigned to the linear isomer.

3. Br2(X) · · · HeN CLUSTERS

3.1. Additivity of the PES

Electronic studies of larger species are more complex and the difficulty in the
evaluation of the PES increases with their size. Four-body systems as Br2(X) · · · He2
are now amenable for performing ab initio calculations with a satisfactory degree
of accuracy, which then permit the testing of various models of additivity in order
to describe the PES of larger Br2(X) · · · HeN clusters. Recently, ab initio calcula-
tions [19] at the fourth-order Møller–Plesset (MP4) and coupled-cluster [CCSD(T)]
levels of theory have been performed [20] for the above-mentioned tetra-atomic
system. The surface is characterized by three minima and the minimum energy
pathways through them. The global minimum corresponds to a linear He–Br2–He
configuration, while the two other ones to “police-nightstick” (one He atom in the
linear configuration, and the other in the T-shaped one with respect to the bromine)
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and tetrahedral (with the two He atoms along a plane perpendicular to the bromine
bond) structures.

Analytical representations based on a sum of pairwise atom–atom interactions
and a sum of three-body HeBr2 CCSD(T) potentials [12] and He–He interaction
[21] were checked in comparison with the tetratomic ab initio results. The sum
of the three-body interactions form is found to be able to accurately represent the
MP4(SDTQ)/CCSD(T) data (see Figure 2). In order to extract information on nonad-
ditive interactions in He2Br2 we examine its equilibrium structures based on the ab
initio calculations [20]. By partitioning the interaction energy into components, we
found a similar nature of binding in triatomic and tetratomic complexes of such type,
and thus information on intermolecular interactions available for triatomic species
might serve to study larger systems. For first time an analytical expression in accord
with high level ab initio studies is proposed for describing the intermolecular inter-
actions for such two atoms rare gas–dihalogen complexes.
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Figure 2. (a) Comparison of MP4(SDTQ) interaction energies (squares) and potential values for the
He2–Br2 complex, obtained using the sum of the three-body MP4 HeBr2 potentials (stars), at selected
points along to the minimum energy path. (b) Same as Figure 1(a) for the CCSD(T) interaction energies
(circles) and potential values of the complex, obtained using the sum of the three-body CCSD(T) HeBr2
potentials (crosses).
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Variational bound state calculation is carried out for the above surface and vdW
energy levels and eigenfunctions for J = 0 are evaluated for He2Br2. Radial and
angular distributions are calculated for the three lower vdW states and three differ-
ent structural models, which correspond to linear, police-nightstick’ and tetrahedral
isomers are determined. The binding energies and the average structures for these
species are computed to be D0 = 32.240 cm−1 with R0

1,2 = 4.867 Å, D0 = 31.437
cm−1 with R0

1,2 = 4.491 Å, and D0 = 30.930 cm−1 with R0
1,2 = 4.171 Å, respec-

tively. The above values are in excellent agreement with recent LiF experimental
data available [22]. This finding in combination with the very good agreement with
the MP4

/
CCSD(T) tetratomic calculations, contribute to evaluate the present surface

and justify our predictions.
We conclude, therefore, that the potential surface based on the sum of the

He–Br2(X) ab initio CCSD(T) potentials plus the He–He interaction, provides
reliable results quantitatively comparable with the experimental observations.

4. HARTREE APPROACH: ENERGY AND DENSITY DISTRIBUTIONS
OF Br2(X) · · · HeN CLUSTERS

4.1. Overview of the methodological approach

We first define the nuclear Hamiltonian for the system as consisting of the Br2
molecule solvated by N He atoms. Using satellite coordinates (r,Rk), where r is the
vector joining the two bromine atoms and Rk are vectors from the diatomic center of
mass to the different He atoms, this Hamiltonian can be written as

H (N ) = − h̄2

2m
∂2

∂r2 + U (r)+ j2

2mr2 +
N∑

k=1

hk(Rk, r)

+
∑

k<l

Vkl(|Rk − Rl |)− h̄2

m Br2

∑

k<l

∇k · ∇l ,(1)

where the first three terms correspond to the Hamiltonian of the free diatomic
molecule with m, j, and U being the diatomic reduced mass, the angular momen-
tum associated with r, and the Br2 intramolecular potential, respectively. The fourth
term consists of N triatomic He–Br2 Hamiltonians which are given by

hk(Rk, r) = − h̄2

2µ
∂2

∂R2
k

+ l2k
2µεR2

k
+ W (r, Rk, θk),(2)

where µ is the reduced He–Br2 mass, lk is the angular momentum associated with
Rk, and W is the atom–diatom intermolecular interaction potential, which depends
on the (r, Rk) distances and the angle between the r and Rk vectors. In the fifth term
of Eq. (1), Vkl , represents the pair interaction potential between the kth and the lth
He atoms. Finally, in the sixth term, − h̄2

m Br2
∇k · ∇l , is the kinetic energy coupling

between the kth and the lth He atoms.
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Choosing a body-fixed (BF) coordinate system with the Z axis parallel to r, and a
fixed value of the intramolecular distance r , the ground-state of the bound cluster of
N He atoms is obtained by solving the Schrödinger equation

[ N∑

k=1

hk +
∑

k<l

Vkl − E (N )� (r)

]


(N )
� ({Rk}; r) = 0(3)

in which the r -dependent eigenvalues are labeled by �, the projection of the orbital
angular momentum L = ∑Nε

k=1 lk on the molecular axis. Note that this representation
is equivalent to the Born–Oppenheimer approximation in which the Br2 molecule
and the He atoms play the role of the nuclei and the electrons, respectively. In order
to solve Eq. (3) we have developed a Hartree approach. Therefore, the wavefunction
of the N bound He atoms is approximated as a symmetrized Hartree product of one-
particle wavefunctions. If Ni bosons occupy the same one-particle orbital of index
i , the total wavefunction of the system of N = ∑M

i Ni (M ≤ N ) bosons can be
expressed as



(N )
(N1,...,NM )

= 1√
N

Ŝ

⎛

⎝
N1∏

i=1

ψ1(Ri ; r)
N1+N2∏

j=N1+1

ψ2(R j ; r) · · ·
N∏

k

ψM (Rk; r)

⎞

⎠ ,(4)

where k = (N1 + · · · + NM−1)+ 1, Ŝ is the symmetrization operator, 1/
√
N is the

normalization factor, and N is the number of different Hartree products obtained by
interchanging the bosons occupying different orbitals,

N =
(

N
N1

)(
N − N1

N2

)
. . .

(
N − (N1 + · · · + NM−1)

NM

)
.(5)

The energy of the N–boson system can be written as

E (N )� =
M∑

i=1

Niεi +
M∑

i, j=1

Ni (N j − δi j )

2(1 + δi j )

(
Ji j + Ki j

)
,(6)

where

εi =
∫

dR ψ∗
i (R; r)h(R, r)ψi (R; r)(7)

is the average kinetic and potential energy (that of each He atom with the dopant) of
a boson described by the orbital ψi (R; r). The term

Ji j =
∫ ∫

dR1dR2 |ψi (R1; r)|2 V ′
12(|R1 − R2|)

∣∣ψ j (R2; r)
∣∣2(8)

where

V ′
12 = V12 − h̄2

m Br2

∇1 · ∇2,(9)
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represents the interaction between the two bosonic clouds |ψi (R1; r)|2 and∣∣ψ j (R2; r)
∣∣2. It is equivalent to the Coulomb integral in electronic structure theory.

Note that Eq. (9) explicitly incorporates the kinetic coupling. The term

Ki j =
∫ ∫

dR1dR2 ψ
∗
i (R1; r)ψ j (R1; r)

V ′
12(|R1 − R2|)ψ∗

j (R2; r)ψi (R2; r)(10)

is an analog of the exchange integral.
A finite basis set composed of products of radial and angular functions was used

χ(n�m)(R; r) = gn(R; r)Y�m(θ, φ)(11)

where Y�m(θ, φ) are spherical harmonics. The radial gn(R; r) functions were
obtained by solving the Schrödinger equation corresponding to the triatomic He–Br2
subsystem at different fixed orientations. The orbitals were optimized through a
direct minimization tecnique [23] to ensure convergence to the global minimum.

4.2. Energy and density distributions for N = 2–60 clusters

As described in Ref. [25], the Hartree approach has been applied to get energies
and density probability distributions of Br2(X) · · ·4HeN clusters. The lowest ener-
gies were obtained for the value � = 0 of the projection of the orbital angular
momentum onto the molecular axis, and the symmetric N–boson wavefunction, i.e.
the “�g” state in which all the He atoms occupy the same orbital (in contrast to the
case of fermions). It stressed that both energetics and helium distributions on small
clusters (N ≤ 18) showed very good agreement with those obtained in “exact” DMC
computations [24].

In Figure 3, total energy E(N ) (open squares) and energy per He atom, E(N )/N
(full squares), as a function of the cluster size N . The negative of the cohesive energy
of the bulk 4 He is also shown. Note that the total energy and energy per He atom
change continuously and monotonically with the cluster size giving no indication for
shell-closure effects. The energy per atom, E(N )/N , increases rapidly as the cluster
size increase to N ∼ 15 and then it slowly tends to the bulk value of −4.94 cm−1

(see e.g Ref. [26]), which would be, obviously, attained for much larger cluster sizes
than those analyzed here.

In Figure 4, helium angular density distributions around the Br2 molecule for
different cluster sizes (N = 2–40) are displayed. Note that for the smaller clusters
the angular density distributions are highly anisotropic peaking at θ = π/2. This
is a consequence of the strong anisotropy in the He–Br2 potential which favors the
T-shape arrangement. The He atoms populate primarily the well associated with this
arrangement up to about N = 6. For larger N , the increasing He–He repulsion causes
the density distribution to flow from T-configuration well into the other potential
regions. Indications for formation of two side peaks at θ = π/4 and 3π/4 are evident
for N=12, and these peaks are clearly present in the graphs corresponding to N=16
and 18. For N=24, about 4% of the He density is found at peaks adjacent to θ = 0



200 Gerardo Delgado-Barrio et al.

−500

−400

−300

−200

−100

0

10 20 30

N

40 50 60
−18

−16

−14

−12

−10

−8

−6

−4

T
ot

al
 E

ne
rg

y 
(c

m
−1

)

T
ot

al
 E

ne
rg

y/
N

 (
cm

−1
)

Bulk

Figure 3. Total energy (open squares) and energy per helium atom (solid squares), as a function of the
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and π . For N ≥ 30, the He distributions are almost independent of the cluster size
and markedly more isotropic than those for N ≤ 6. This can be explained by taking
into account that the strongly anisotropic potential is felt mainly by the He atoms that
are close to the dopant molecule whereas the spatial clustering of the He atoms more
distant from the impurity is driven primarily by the He–He interaction.

Finally, we stress that the quantum chemical method presented here has the
advantage over DFT-based techniques that it also furnishes wavefunctions that can
be used to perform computations of spectra, and therefore have a better contact
with the experiment. Another advantage of this approach is that, unlike the diffu-
sion Monte–Carlo method, it can coherently be applied to studies of fermion and
mixed boson / fermion doped clusters. An example can be found in our recent work
on the Raman spectra of (He)N –Br2(X) clusters [27, 28].
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25. M.P. de Lara-Castells, D. López-Durán, G. Delgado-Barrio, P. Villarreal, C. Di Paola, F.A. Gianturco,

and J. Jellinek, Phys. Rev. A 71:033203, 2005.
26. M.H. Kalos, M.A. Lee, P.A. Whitlock, and G.V. Chester, Phys. Rev. B 24:115, 1981.
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28. D. López-Durán, M.P. de Lara-Castells, G. Delgado-Barrio, P. Villarreal, C. Di Paola, F.A. Gianturco,

and J. Jellinek, Phys. Rev. Lett. 93:053401, 2004.



THEORETICAL TREATMENT OF CHARGE TRANSFER
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Abstract A unified approach is proposed for the treatment of charge transfer processes occurring
in collisions of ions on atomic or molecular targets. The theoretical treatment, including
ab initio molecular calculations of the potential energy curves and couplings followed by
a semi-classical collision dynamics, is extended in particular to polyatomic molecules of
biological interest. The method is presented on the example of the important astrophysical
reaction S3+(3s23p)+ H, and extended to the charge transfer of the RNA base Uracil onto
Cq+ ions (q = 2–5). In that sense a simple model is proposed, correlated to experimental
investigations on ionization and fragmentation processes in Cq+-Uracil collisions.

1. INTRODUCTION

Electron transfer is an important process in physics, chemistry, and biochemistry.
Charge transfer of multiply charged ions in collision with atomic or molecular tar-
gets has been shown to be a determinant process in controlled thermonuclear fusion
research, as well as in astrophysical plasmas at low collision energy [1–4]. In such
processes, an electron is in general captured in an excited state of the ion followed by
line emission, and observation of line intensities may provide information on elec-
tron temperature, density, and spatial distribution in the emitting region of the plasma.
Such approaches, previously developed for ion/atom or ion/diatomic molecule colli-
sion systems, could be applied for systems of increasing complexity and theoretical
models can be extended for charge transfer reactions between multicharged ions and
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systems of biological interest. In that sense, a uniform treatment may be developed
with an ab initio determination of potential energies and couplings of the states
involved in the process, followed by a semi-classical or quantum collision dynam-
ics, with regard to the collision energy range of interest. We propose to illustrate this
point on two examples, taken in completely different physicochemical domains, and
to show in each case which data may be extracted from the theoretical approach to be
compared to the experimental measurements, leading to complementary information.

As a first example, we present a detailed study of the S3+(3s23p) + H collision
system [4, 5], which plays an important role in the reactions occurring in the inter-
stellar medium [6,7]. Experimental translational energy spectroscopy experiments in
the 2.4–9.0 keV energy range [8] show evidence of a dominant S2+(3s23p3d)3F◦ cap-
ture channel over the entire range of impact energies, largely underestimated by the
multi-channel Landau–Zener approach. In that case, a complete ab initio treatment,
including all the triplet and singlet states correlated to the 1,3� and 1,3� entry chan-
nels by means of radial or rotational coupling matrix elements, has been undertaken,
leading to a quantitative comparison with measured charge transfer cross-sections.
The metastable S3+(3s3p2)4P ion, evidenced in the beam, has not, however, been
taken into account.

A similar method may be developed to study the action of ions on biomolecules. In
that sense, we have considered the collision of Cq+ ions on the Uracil molecule, one
of the RNA bases [9]. Effectively, it is well known that interaction of ionizing radia-
tion with biological tissue can induce severe damage to DNA and RNA [10], with
single and double strand breaks which appear to be the main underlying mechanisms
for cancer disease and controlled cell killing used in radiotherapy. Important damage
has been shown [11] to be due to secondary particles, low-energy electrons, radicals,
or singly and multiply charged ions, generated along the track, after interaction of the
ionizing radiation with a biological medium. Consequently, experiments have been
performed recently in order to investigate the action of these secondary particles on
biological relevant molecules and a number of experimental investigations have been
devoted to the action of ions on biomolecules, generally at relatively low collision
energies in the range [2–150] keV. In particular, coincidence measurements between
outgoing projectiles have been carried out in collisions of Cq+ ions on Uracil [12]
or Thymine [13], with analysis of the fragment mass distribution by time-of-flight
spectrometry. In such collisions various processes may be considered: excitation and
fragmentation of the biomolecule, ionization of the gaseous target, and also possible
charge transfer from the multi-charged ion onto the biomolecule.

From the experimental point of view, the peak integration of the mass spectra as
a function of collision velocity leads to an evaluation of the relative cross-sections
for the different ionization and fragmentation channels, but cannot give any informa-
tion on possible charge transfer, which should however be a complementary process.
In a recent study on collisions of Cq+ ions with Uracil at keV energies [8], it has
been observed, in particular, a strong influence of the electronic structure and charge
q (q = 1–6) of the Cq+ ion on the ionization and fragmentation processes. At low
velocities, almost complete fragmentation was observed for the C2+ projectile ion,
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whereas for all the other projectile charge states the induced fragment yield was
markedly lower. A complete theoretical treatment, taking account of all degrees of
freedom of the problem, cannot, of course, be handled, and a simple model has thus
been proposed in order to investigate the charge transfer processes.

2. MOLECULAR CALCULATIONS

The potential energy curve calculations have been performed using the MOLPRO
suite of ab initio programs [14], at the state average CASSCF–MRCI level. Spin–
orbit coupling being negligible in the energy range of interest, we have assumed the
electron spin to be conserved in the collision processes.

In the case of the S3+(3s23p) + H system, a complete treatment has been under-
taken, with consideration of all molecular states involved in the process, in both the
singlet and triplet manifolds. The active space includes the 1s orbital of hydrogen and
n = 3, 4(sp) orbitals of sulphur. The correlation-consistent aug-cc-pVQZ basis sets
of Dunning [15] with a ECP10sdf relativistic pseudo-potential to take account of the
10 sulphur core electrons [16] have been used in the calculation and lead to a good
agreement with experimental atomic energy levels [17] (Table 1).

The collision system appears relatively complex, with consideration of the
{S2+(3s23p3d)3F◦+H+} level accessible from the 1,3� and 1,3�+{S3+(3s23p)2P◦+
H(1s)2S} entry channel. A great number of states have been taken into account in
both the singlet and triplet manifolds, including one-electron capture processes as
well as re-actions of capture and excitation of the 3s core electron:

S3+(3s23p)2P◦ + H(1s)2S 3�, 3�+ 1�, 1�+ entry channel
S2+(3s3p3)1P◦ + H+1S 1�, 1�+

S2+(3s3p3)3S◦ + H+1S 3�−

S2+(3s23p3d)3F◦ + H+1S 3
, 3�, 3�, 3�+

S2+(3s3p3)1D◦ + H+1S 1�, 1�, 1�−

S2+(3s3p3)3P◦ + H+1S3�, 3�+

S2+(3s3p3)3D◦ + H+1S 3�, 3�, 3�−

S2+(3s23p2)1S + H+1S 1�+

S2+(3s23p2)1D + H+1S 1�, 1�, 1�+

S2+(3s23p2)3P + H+1S 3�, 3�−

The�− levels are not correlated to the entry channel and have not been calculated.

Table 1. Comparison of atomic energy levels with experiment [17] (in eV).

MRCI calculation Experiment

S3+(3s23p)2P◦ 35.11 34.98
S2+(3s3p3)3P◦ 12.31 12.17
S2+(3s3p3)3D◦ 10.34 10.35
S2+(3s23p2)3P 0.0 0.0
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According to statistical weight, the triplet manifold is preponderant in the charge
transfer mechanism, and the main features of the potential energy curves, cor-
related to the 3� and 3�+{S3+(3s23p)2P◦ + H} entry channel, are displayed in
Figure 1a,b. They show several important avoided crossings. First of all, one around
R = 9.7 a.u., with an energy defect of 5.6 eV, between the entry channel and the
{S2+(3s23p3d)3F◦ + H+1S} exit channel, in both 3�+ and 3� symmetries. The
energy defect appears however slightly lower than evidenced for the experimental
peak A [8]. Two short range avoided crossings around R = 6 a.u., associated to an
energy defect of 9.19 eV, are also observed with 3�, 3�+{S2+(3s3p3)3P◦ + H+1S}
levels, and may contribute to the experimental peak B. Another interaction appears
with the 3�{S2+(3s3p3)3D◦ + H+1S} level around R = 5 a.u. which may contribute
to peak C, with an energy defect of 11.16 eV.

Radial and rotational coupling matrix elements have been calculated in both the
triplet and singlet manifolds. The radial coupling between all pairs of states of the
same symmetry have been calculated by means of the finite difference technique:

gK L(R) = 〈ψK |∂/∂R |ψL〉 = lim
�→0

1
�

〈ψK (R)| ψL(R +�)〉 ,
with the parameter � = 0.0012 a.u., as previously tested, and using the three-point
numerical differentiation method, for reasons of numerical accuracy. The sulphur
nucleus has been chosen as the origin of the electron coordinates. They present the
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Figure 1. (a) Adiabatic potential energy curves of the 3�+ and 3� states of the S3+(3s23p) + H colli-
sional system. — 3�+ states; - - - 3� states. (2) 3� state corresponding to {S2+(3s3p3)3D◦ + H+1S}.
(3)3�+ state corresponding to {S2+(3s3p3)3P◦ + H+1S}. (4) 3�+ and 3� states corresponding to
{S2+(3s23p3d)3F◦ +H+1S}. (5) 3�+ state corresponding to the {S3+(3s23p)2P◦ +H(1s)2S} entry chan-
nel. (b) Adiabatic potential energy curves of the 3� and 3
 states of the S3+(3s23p) + H collisional
system. — 3� states; - - -3
 state. (1) 3� state corresponding to {S2+(3s23p2)3P + H+1S}. (2) 3� state
corresponding to {S2+(3s3p3)3D◦ + H+1S}. (3) 3� state corresponding to {S2+(3s3p3)3P◦ + H+1S}.
(4) 3� and 3
 states corresponding to {S2+(3s23p3d)3F◦ + H+1S}. (5) 3� state corresponding to the
{S3+(3s23p)2P◦ + H(1s)2S} entry channel.
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Figure 2. (a) Radial coupling matrix elements between 3�+ and 3� states of the S3+(3s23p)+ H
collision system (see labels in Figure 1a). (b) Radial coupling between 3� states of the S3+(3s23p) + H
collision system (see labels in Figure 1b).

same features as exhibited by the potential energy curves, with strong peaks in corre-
spondence with the sharp avoided crossings (Figure 2a,b). In particular, a very sharp
peak, about 3 a.u. high, is observed for R=9.7 a.u., in correspondence with the strong
avoided crossing between the entry channel and the 3�+, 3�{S2+(3s23p3d)3F◦ +
H+1S} capture level. Radial coupling between 3� states remains small for all inter-
nuclear distances. The rotational coupling matrix elements between states of angular
momentum �� = ±1 have been calculated directly from the quadrupole moment
tensor, and are also connected to the potential energy features.

Such a complete treatment cannot, of course, be considered for the collision of the
Cq+ ions on the Uracil biomolecule. A simple model of this polyatomic complex sys-
tem may, however, be proposed by means of the one-dimensional reaction coordinate
approximation, widely used in a number of cases [18]. Effectively, the collision may
be represented as the evolution of the polyatomic Cq+. . .. Uracil complex treated,
in a first approximation, as a pseudo diatomic system, the reaction coordinate corre-
sponding to the distance between the centre-of-mass of the Uracil molecule and the
colliding carbon ion. The rearrangement of the Uracil molecule when it approaches
the Cq+ ion can be taken into account by relaxating the geometry of the Cq+. . .Uracil
complex along the reaction path. Such an approach does not take into account all the
degrees of freedom of the complex and the internal motions of the molecule, but it
seems reasonable in a very fast collision process where nuclear vibration and rotation
periods are assumed to be much longer than the collision time.

The potentials of the different states of the Cq+-Uracil collision system may then
be calculated along the reaction coordinate R for different approach angles θ, from
perpendicular (θ = 90◦) to planar geometry (θ = 0◦) (Figure 3a), in order to
take into account the anisotropy of the process. This requires, of course, extensive
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Figure 3. (a) Internal coordinates of the Cq+-Uracil system. (b) Geometry of the Uracil molecule.

calculations. In a first step, we have focused our attention on the planar attack
(θ = 0◦) of the carbon ion on the Uracil molecule where calculations can be per-
formed using the Cs symmetry group, in order to compare the capture mechanism
for the different charges of the colliding carbon ion. A large number of complexes
between the Uracil molecule and a series of single or double charged ions have
been investigated already [19–24] with calculation of the optimized structures and
attachment sites. These studies show, for the different metal ions, a minimum energy
for the metal-Uracil complex, corresponding to an attachment site on oxygen O4
(Figure 3b). We have thus considered a collision attack of the carbon ion Cq+ along
the C4–O4 direction, corresponding to θ = 0◦, for the charges q = (2–5).

Calculations were carried out for the A′ states involved in the process; the rota-
tional interaction has not been taken into account in that case. Spin symmetry being
conserved, singlet states have been considered in the cases of C2+(1s22s2) and
C4+(1s2) projectile cations, and doublet states in the case of C3+(1s22s) and C5+(1s)
ions. The calculations have been performed in the Cs symmetry group with considera-
tion of a planar approach along the C4–O4 chemical bond. The active space included
the five highest valence orbitals as well as the n = 2,3 levels of the colliding car-
bon atom which might be involved in the process, the corresponding 1s orbital being
treated as a frozen core. The 6-31 G∗∗ atomic basis set has been used throughout this
study. The radial coupling matrix elements have been calculated, as in the previous
case, by means of the finite difference technique, the centre-of-mass of the Uracil
molecule being chosen, in this case, as the origin of the electron coordinates.

The geometries of the ground state as well as of the singly and doubly ionized
Uracil molecules have been optimized by means of DFT calculations using the B3-
LYP functional. The vertical and adiabatic first and second ionization potentials
presented in Table 2 compare favourably to previous calculations [25, 26] and to
experimental data [27, 28].

The potential energy curves and radial coupling matrix elements have been cal-
culated for a distance Cq+-O4 varying from 0.5 to 5 Å. The charge transfer levels
are presented in Figure 4 for the series q = (2–5). For the charges q = (2–4), the
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Table 2. Ionization potentials of the Uracil molecule (in eV).

This calculation [25] B3PW91 [26] PMP2/ Experiment
B3LYP/6-31 G∗∗ 6-31++G(d,p)

PI1 : U → U+ 9.56 9.43 9.50 [27]
vertical

PI1 : U → U+ 9.34 9.32 TZVP 9.36 9.32 [27]
adiabatic 9.33 6–311 ++G∗∗ 9.35 [28]

PI2 : U+ → U2+ 17.57
vertical

PI2 : U+ → U2+ 17.33
adiabatic

−445.5

U + C5+

U + C4+

U + C3+

U + C2+

E
 (

a.
u.

)

−446

−447

−448

−449

0 10.5 1.5 2
Distance 04−Cq+ (angstrom)

2.5 3

−446.5

−447.5

−448.5

−449.5

Figure 4. Adiabatic potential energy curves for the A′ charge transfer levels of the Cq+-Uracil collisional
systems (by increasing energy for each system):

U + C2+ : 1A′πC5C6 → 2pz; 1A′πC4O4 → 2pz; 1A′πC2O2 → 2pz

U + C3+ : 2A′πC5C6 → 2pz; 2A′πC4O4 → 2pz

U + C4+ : 1A′px
O2 → 2px; 1A′px

O2 → 2px,πC4O4 → πC5C6; 1A′px
O2 →

2px,πC2O2 → πC5C6

U + C5+ : 2A′px
O4; 2A′px

O4,πC4O4 → πC5C6; 2A′px
O4,πC2O2 → πC5C6.

charge transfer potentials show clearly avoided crossings in the 1.5–2.0 Å range, cor-
responding to a strong interaction with the entry channel. Such an interaction appears
at a very short range in the case of the C5+-Uracil system. For the C2+(1s22s2)-
Uracil system, single charge transfer is observed, and the corresponding levels are
correlated clearly to an excitation of the highest occupied molecular orbitals of the
Uracil molecule to the unoccupied 2pz orbital of the carbon ion. The excited states
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correspond respectively, by increasing energy, to excitations of the out-of-plane (a′′
symmetry) πC5C6 and πC4O4, πC2O2 orbitals towards the 2pz orbital of the colliding
carbon, leading to the 1A′{C+(1s22s22p)+ U+} molecular charge transfer levels.

Such features appear somewhat different for the higher-charged collision systems.
In the case of the collision with the C3+(1s22s) ion, an initial delocalization of
the electrons leading to C2+(1s22s2) is clearly observed. The charge transfer levels
are then attributed, similarly to the C2+(1s22s2) -Uracil system, to the out-of-
plane πC5C6 → 2pz and πC4O4 → 2pz excitations. For the {C4+(1s2) + U} and
{C5+(1s)+U} systems, a first excitation of the in-the plane (a′ symmetry) px

O2 orbital
towards the 2px orbital of the colliding carbon is observed, followed by out-of plane
π–π excitations among the electron cloud of the Uracil ring. In all cases, Mulliken
population analysis shows that the electronic molecular levels correspond to a charge
around +1 on the colliding carbon at long range, attributed to C+(1s22s22p). The
Uracil molecule appears as an electron reservoir which fills up the electron deficit
of the colliding ion, and an initial delocalization of the electron of the Uracil ring
towards the carbon projectile, to reach the C2+(1s22s2) configuration, is observed at
long range, followed by a charge transfer characterized by the interaction around 2 Å.

3. COLLISION DYNAMICS

In the keV energy domain, where experiments are available on both examples, semi-
classical approaches using the EIKONXS code, based on an efficient propagation
method [29], may be used with a good accuracy.

For the S3+(3s23p) + H collision system, calculations have been performed in
the [2–8] keV energy range, in order to be compared to the experimental data. Both
radial and rotational coupling matrix elements were taken into account as well as
translational effects using the common translation factors [30]. The sulphur nucleus
was taken as the origin of the electron coordinates. The cross-sections corresponding
to the different exit channels were calculated with respect to the statistical weights 1/4
and 3/4, respectively, for the singlet and triplet manifolds, taking account of the 1/3
and 2/3 statistical weights for the � and � entry channels. The results are presented
in Table 3 and Figure 5. They appear to be in good agreement with experimental data.

Table 3. Partial cross-sections on the different exit channels (in 10−16 cm2).

Elab S2+i S2+3F◦ S2+1D◦ S2+3P◦ S2+3D◦ S2+3P σA/σB σB/σC
keV P◦ peak A peak B peak B peak C

2.002 0.06 17.63 0.02 9.49 6.40 0.0001 1.8 1.5
2.883 0.79 16.29 0.03 11.90 6.85 0.0004 1.3 1.7
3.924 0.63 14.57 0.05 12.19 8.08 0.0006 1.2 1.5
5.125 0.73 13.54 0.12 10.54 7.78 0.0016 1.3 1.3
6.487 0.73 13.08 0.23 9.52 7.87 0.0018 1.3 1.2
8.009 0.87 11.85 0.31 8.37 7.63 0.0036 1.3 1.1
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Figure 5. Calculated cross-sections on peak A, B, C (in 10−16 cm2).

Effectively, the S2+(3s23p3 d)3F◦ capture channel attributed to peak A is clearly
the dominant charge transfer channel. With regard to the energy defect, both
S2+(3s3p3)1D◦ and S2+(3s3p3)3P◦ contribute to experimental peak B, with a dom-
inant contribution of the S2+(3s3p3)3P◦ channel. The ratio σA/σB of the partial
cross-sections between peaks A and B is about 1.3, as observed on the experimen-
tal spectra. Both peaks A and B are shown to decrease at higher energies. The
partial cross-section on peak C corresponding to the S2+(3s3p3)3D◦ exit channel
is slightly under-estimated and remains always lower than peak B; nevertheless it
increases at higher energies and reaches the same order of magnitude as peak B, as
observed experimentally. The partial cross-sections on the S2+(3s3p3)1P◦ channel
also increase with energy but remains much lower. The cross–sections towards
the S2+(3s23p2)1S and S2+(3s23p2)1D exit channels are almost zero for all colli-
sion energies, and the cross-sections on the S2+(3s23p2)3P capture channel remain
negligible.

In the case of the collision of Cq+ ions with Uracil, the collision dynamics was
treated in the framework of the sudden approximation hypothesis, which assumes
the electronic transition to occur so quickly that the rovibrational motion remains
unchanged. The molecular vibration is thus ignored, and the ion-molecule collision
may be visualized as an ion bumping onto an anisotropic atom. The charge transfer
mechanism may be induced by very fast electronic transitions, and the Uracil mole-
cule considered as frozen during the process. This is, of course, a first order level
of approximation, but it has shown its efficiency in a number of ion-diatomic colli-
sions [31–34] in the energy range we are dealing with.

The collision dynamics has been performed in the 0.1–0.7 a.u. collision velocity
range (3–20 keV laboratory energies), corresponding to the same impact energies as
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the fragmentation experiments [8]. All the transitions between the A′ states, driven
by radial coupling elements, have been considered for the series of colliding Cq+
(q = 2–5) carbon ions, and the centre-of-mass of the Uracil molecule was taken as the
origin of the electron coordinates. As previously stated, rotational couplings have not
been taken into account in this calculation. The results are presented in Table 4 and
Figure 6.

At low energies, they show clearly a strong increase of the charge transfer cross-
section with increasing velocity in the case of the C2+-Uracil collision system. For
this system, the charge transfer cross-section is very small, of the order of 10−18 cm2

at v = 0.1 a.u. (Elab = 3 keV), in quite a good agreement with the experimental
measurements, which assume almost complete fragmentation of the Uracil molecule
in that case. The relative yield for fragmentation is experimentally shown to decrease
with increasing impact velocity, which is corroborated by the first increase of
the charge transfer cross-section. For velocities higher than 0.4 a.u. (Elab = 48 keV),

Table 4. Charge transfer cross-sections for Cq+-Uracil, q = (2–5) (in 10−16 cm2).

Velocity Elab C2+ + U C3+ + U C4+ + U C5+ + U
(a.u.) (keV) 1Σ states 2Σ states 1Σ states 2Σ states

0.1 3 0.0098 0.327 0.099 0.576
0.2 12 0.175 0.128 0.112 0.359
0.3 27 0.209 0.059 0.123 0.166
0.4 48 0.165 0.034 0.142 0.094
0.5 75 0.123 0.022 0.211 0.061
0.6 108 0.093 0.015 0.215 0.042
0.7 147 0.072 0.011 0.247 0.031
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Figure 6. Charge transfer cross-sections for the Cq+-Uracil systems.
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the charge transfer cross-section of C2+-Uracil decreases smoothly with velocity
to ca. 0.1 10−16 cm2, in good correlation with the increase of fragmentation at
v = 0.4 a.u.

The behaviour of the other colliding species appears quite different. The C4+-
Uracil collision system shows only small variations of charge transfer cross-sections
with velocity, around [0.1–0.25] 10−16 cm2, which is corroborated by fragmentation
experiments. At higher velocities, the calculated charge transfer cross-sections are
higher when compared to the case of C2+-Uracil, in agreement with the lower frag-
mentation yield observed experimentally. The C3+ and C5+-Uracil collision sys-
tems appear to have a very similar behaviour, with a regular decrease of the charge
transfer cross-section with increasing velocity. This global variation is still in accor-
dance with the experimental measurements which show a regular increasing yield for
fragmentation in the velocity range. This discussion remains of course qualitative, as
we consider only the two main processes, fragmentation and charge transfer, but do
not take into account the ionization processes, which could be significant. Besides,
the orientation dependence of these processes is not taken into account. Nevertheless,
this shows that these processes can be considered, with quite a significant accuracy,
as complementary with regard to the variation with the impact energy. This work
provides also an order of magnitude of the absolute charge-transfer cross-sections
which cannot be achieved experimentally.

4. CONCLUSION

This work shows, in a first approach, the possibility to extend the close-coupling
method, well-adapted to the treatment of ion-atom collisions, to much more complex
systems, in particular of biological interest. The model presented in the case of the
Cq+-Uracil collision system, although very simple, could provide results compa-rable
to experimental data. Such an approach, of course, does not take into account all the
motions of the biomolecule; in particular, the orientation of the biomolecule with
respect to the angle of attack of the ion should be considered and orientation-average
calculations be performed. Nevertheless, this first approach appears very encouraging
and further developments are in progress.
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SHELL EFFECTS AND HOMOTHETIC EXPRESSIONS
FOR ELECTRON RELAXATION AND OTHER
CORRECTIONS TO 2p-CORE IONIZATION ENERGIES
AND SPIN–ORBIT SPLITTING FOR ATOMS FROM Cl TO Ba

JEAN MARUANI AND CHRISTIANE BONNELLE

Laboratoire de Chimie Physique – Matière et Rayonnement, CNRS and UPMC,
11, rue Pierre et Marie Curie – 75005 Paris, France

Abstract On the basis of numerical ab initio,�BDF and MCBDF computations, we have investigated
the electron relaxation, Breit interactions, quantum electrodynamics (qed) and nuclear size
and motion (nuc) effects in the 2p-core ionization energies and spin–orbit splitting of atoms
from Cl to Ba, excluding transition elements. Calculations made by mixing the ground and
the ionized configurations (gsm) yield significant improvement in the ionization energies,
but not in the spin–orbit splitting, with respect to experimental data. As with the relativis-
tic contributions to 1s- and 2s-core ionization energies investigated in earlier papers, we
have identified shell effects and performed homothetic fits of corrections to the 2p-core
ionization energies and spin–orbit splitting in homologous families of atoms.

Keywords: 2p-core ionization; spin–orbit splitting; electron relaxation; ground-state mixing; shell
effects; homothetic fits.

1. INTRODUCTION

A longstanding problem in the interpretation of X-ray photoelectron and absorp-
tion spectra (XPS, XAS, . . . ) is the theoretical calculation of the core excitation and
ionization energies (CIE’s) and of their chemical shifts, experimentally measured in
molecular systems or in condensed matter [1–3]. In computing these properties, one
has to take into account various effects: (i) electron correlation, particularly strong
between inner-core electrons [4, 5], which prevents the use of simple SCF schemes;
(ii) electron relaxation, which increases with the number of electrons [6–9], making
the use of Koopmans’ theorem [10] rather inaccurate; (iii) for systems containing
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heavy atoms, various relativistic, quantum electrodynamics (qed) and nuclear size
and motion (nuc) effects, which may overcome the previous effects in inner-core
excitations [8, 9, 11–13].

Consecutive steps of approximation for computing inner-core energies may follow
various paths. The simplest step is to use Koopmans’ theorem (no relaxation:
nx), with nonrelativistic (nt) self-consistent field (SCF) Hartree–Fock (HF) orbital
energies (no correlation: nc). In order to include relaxation (yx), one may take
differences between the total SCF energies computed for the ground and excited
states, this yielding �SCF results. This requires the use of core-hole adapted meth-
ods for avoiding “variational collapse” [14–21]. One may include correlation (yc) by
replacing the SCF by, e.g. EHF, CI, MCSCF, CC, or DFT-type methods. If necessary,
relativity may be included (yt) by using a Breit–Dirac–Fock (BDF) procedure, and
quantum electrodynamics (qed) and nuclear size and motion (nuc) corrections by
perturbation. The ultimate step would be to take differences between the corrected
relativistic, correlated total energies for the ground and excited states.

In earlier papers [6–8] we have proposed a procedure for evaluating core ioniza-
tion/excitation chemical shifts in molecules from computed core ionization/excitation
energies for the relevant isolated atom in neutral and valence-ionized states and from
computed charge transfer relative to this atom within the molecule. The atomic calcu-
lations involved relaxation, possibly correlation and, when appropriate, relativity and
other effects, while in the molecule one could use any approximate method (possibly
involving effective core potentials) yielding reliable charges.

In later papers [9] we have investigated relaxation and relativity effects in the 1s-
[9a] and 2s- [9b] core ionization energies of neutral atoms, from Be/Mg to Xe, not
including the inner-core correlation arising from ground-state mixing. We showed
that an allometric function [22] can allow accurately for the relativistic corrections
to the 1s- and 2s-core ionization energies [9]. However, due to shell effects [23, 24],
the variations of energy contributions with atomic number Z are not monotonous,
but involve an oscillating irregular part. As a result, a monotonous expression such
as the allometric formula could not yield a perfect fit throughout the periodic table.
Therefore, we have fitted this formula separately for series of atoms whose external
configuration expresses the filling of a given subshell.

More generally, in order to estimate specific corrections to uncorrected energy
values for complex systems, one may compute these corrections for a set of sim-
pler structures, then derive parameterized formulae between the corrected and uncor-
rected values for this set, assuming the relations derived for the simpler structures
can be applied to the complex ones. In previous papers, the problem has been split
into including, in this manner, either relaxation, or correlation, or relativity, in an
approximation involving only the other contributions.

In this paper, we shall present a procedure for evaluating electron relaxation, inner-
core correlation, and Breit, qed, and nuc corrections to 2p-core ionization energies
and spin–orbit splitting in molecular systems, from tabulated results on atoms from
Cl to Ba, excluding transition elements.
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2. PROCEDURES

The 2p levels are split by spin–orbit coupling into sublevels labeled j = 1/2 and
j = 3/2. The following relations define the correspondence between the measured
sublevel energies E1/2 and E3/2, their weighted average E, and the level splittingΛ:

Λ = E1/2 − E3/2, E = (E1/2 + 2E3/2)/3;(1a, 1b)
E3/2 = E −Λ/3, E1/2 = E + 2Λ/3.(1c, 1d)

In Table 1 we have gathered measured values of 2p-core ionization energies and
spin–orbit splitting of atoms from Al through Ba [25].

Figure 1 displays the variations of these properties and their second-order finite
differences (discrete derivatives) with atomic number Z. As shown earlier [24], the
second derivative possesses two advantages over the first one: a stronger signal (but
also noise) enhancement and a maximum located as in the function itself.

However, the second-order finite differences involve, in their computation, four
values around each considered point, which may therefore be affected by their anom-
alies. Due to the irregularities occurring with fully filled and half-filled shells and
the transition-element series, the discrete derivatives show an oscillating behavior,
similar to that appearing in the 1s- and 2s-core ionization energy variations [9].

For the ionization energies (lower left), minima appear at P, As and (before) Sb, as
well as at Mn and (after) Tc (half-filled shells), but also at Sc and Y (start of transition
series); while maxima appear at Cl, Br, I, but also at Cu and Ag (close to full shell).

Table 1. For elements from Al (Z = 13) to Ba (Z = 56), measured 2p-core ionization energies [25b] and
resulting spin–orbit splitting Λ (in eV). Energy values are given as being accurate to within 0.3–0.7 eV.

ZEl.
LII LIII Λ ZEl.

LII LIII Λ ZEl.
LII LIII Λ

(2p1/2) (2p3/2) (2p1/2) (2p3/2) (2p1/2) (2p3/2)

13Al 73.3 72.9 0.4 31Ga 1142.3 1115.4 26.9 49In 3938.0 3730.1 207.9
14Si 99.5 98.9 0.6 32Ge 1247.8 1216.7 31.1 50Sn 4156.1 3928.8 227.3
15P 136.2 135.3 0.9 33As 1358.6 1323.1 35.5 51Sb 4380.4 4132.2 248.2
16S 165.4 164.2 1.2 34Se 1476.2 1435.8 40.4 52Te 4612.0 4341.4 270.6

17Cl 201.6 200.0 1.6 35Br 1596.0 1549.9 46.1 53I 4852.1 4557.1 295.0
18Ar 247.3 245.2 2.1 36Kr 1727.2 1674.9 52.3 54Xe 5103.7 4782.2 3215
19K 296.3 293.6 2.7 37Rb 1863.9 1804.4 59.5 55Cs 5359.4 5011.9 347.5

20Ca 350.0 346.4 3.6 38Sr 2006.8 1939.6 67.2 56Ba 5623.6 5247.0 376.6
21Sc 406.7 402.2 4.5 39Y 2155.5 2080.0 75.5 71Lu
22Ti 460.4 454.5 5.9 40Zr 2306.7 2222.3 84.4 72Hf
23V 520.5 512.9 7.6 41Nb 2464.7 2370.5 94.2 73Ta

24Cr 583.7 574.5 9.2 42Mo 2625.1 2520.2 104.9 74W
25Mn 651.4 640.3 11.1 43Tc 2793.2 2676.9 116.3 75Re
26Fe 720.5 707.5 13.0 44Ru 2966.9 2837.9 129.0 76Os
27Co 793.6 778.6 15.0 45Rh 3146.1 3003.8 142.3 77Ir
28Ni 871.9 854.7 17.2 46Pd 3330.3 3173.3 157.0 78Pt
29Cu 950.9 930.9 20.0 47Ag 3523.7 3351.1 172.6 79Au
30Zn 1042.8 1019.7 23.1 48Cd 3727.0 3537.5 189.5 80Hg
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Figure 1. Experimental variations of 2p-core ionization energies (in eV) for atoms from Al(Z = 13)
to Ba(Z = 56). Upper left: 2p1/2 and 2p3/2 energies; lower left: their weighted-average second-order
discrete derivative, as functions of Z; upper right: spin–orbit splitting between the 2p1/2 and 2p3/2 levels;
lower right: its second derivative, as functions of Z. On the derivative diagrams shell effects appear about
fully filled and half-filled shells and near filling irregularities of the transition elements.

Anomalies (such as V) come from irregularities in the shell filling process around
the element. For the spin–orbit splitting (lower right), maxima do not appear at P,
As, Sb, or Mn and Tc (half filled shells), but do appear at Sc, Ar, Zn, Kr, Cd (full
shells); while minima appear at Sr and Xe. The variations of this property present
more anomalies because its values result from small differences between large val-
ues, which cumulates experimental errors and anomalies due to the finite-difference
procedure.

2a. COMPUTATIONS

The computations of 2p-core ionization energies were performed using a pattern
similar to that used for 1s- and 2s-core ionization energies [9]. Here again we have
used Bruneau’s multiconfiguration Dirac–Fock (MCDF) ab initio program [26–28],
which is based on a numerical resolution of the Dirac equation corrected for Breit
terms, vacuum polarization, and radiative (qed) contributions, and nuclear size and
motion (nuc) effects.
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Earlier [22] it was noticed that, for lighter elements, an artifact deviation from the
real variation could occur, because some of the 2p5 states involved in the weighted
averages did not have a well defined quantum number j . In these elements, the inter-
action between the 2p core vacancy and 3p valence open shell is large compared to
spin–orbit coupling. The problem does not arise when the core hole level is deep
enough relative to the valence open shell, and we have restricted the present investi-
gation to these elements.

In order to assess the various energy contributions, for each element three sets of
computations were performed: (1) one for the atom in the ground state; (2) one for the
atom in the 2p-ionized state; (3) and one mixing the ground and ionized states (gsm).
For each of these sets computations were made at four successive levels: (a) Dirac–
Fock with no correction; (b) Dirac–Fock including the Breit terms (BDF); (c) BDF
including qed effects, and (d) also including nuc effects. From level (1a) one derives
the simplest relativistic, Koopmans energies, EK . From level (3a) one derives ER ,
energies that include electron relaxation and part of inner-core correlation, through
gsm, but not Breit, qed and nuc contributions. From a combination of (1c) and (2c)
one derives EQ , energies that include electron relaxation and the Breit, qed and nuc
contributions, but not gsm correlation. And from level (3c) one derives EG , energies
which include all effects.

In Table 2 there are displayed, as landmarks in our set of elements, the results
obtained for the rare gases at the different steps of computation.

Four observations can be made: (1) Although the nuc contributions are not negli-
gible and increase with Z, they are practically the same for the ground and ionized
states and therefore do not contribute to the ionization energies and spin–orbit split-
ting. This justifies their neglect in our previous 1 s and 2 s investigations [9]. (2) The
same holds true for qed effects in lighter atoms, but in the heavier ones their contri-
bution to spin–orbit splitting may reach 0.5 eV, at the limit of the experimental errors.
(3) The main correction comes from the Breit terms, which may decrease the ioni-
zation energies by up to 16.2 eV (for Xe) and the spin–orbit splitting by 4.3 eV. (4)
Ground-state mixing (as defined earlier) increases all computed energies. For those
including fnoy (defined earlier) the increase is less for the upper sublevel than for the
ground state and still a little less for the lower sublevel (see subtable). As a result
there appears a decrease of the ionization energy for 2p3/2 and an increase for 2p1/2,
resulting in an increase of the spin–orbit splitting, as will be discussed later.

2b. FITTINGS

Ideally, in order to determine the ionization/excitation energies of complex systems
one would like to make simple, e.g. Koopmans SCF (KSCF) computations of these
energies and deduce, from the approximate results thus obtained, more accurate
values by making use of some simple formula (or scaling table) where the cor-
rective terms would appear as a parameterized (possibly nonlinear) function of the
approximate value:

Eacc = Eapp +�Ecor where �Ecor ∼= �E ′
cor ≡ fzq(k; Eapp).(2)
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Table 2. For the three rare gases investigated (Ar, Kr, and Xe), there are given the computed relativistic
energies for the ground state (GS: j = 0), the lower 2p sublevel (LT: j = 3/2) and the upper 2p sublevel
(UT: j = 1/2), with and without ground-state mixing (gsm). For each level, there are given the Dirac–
Fock energy (label mcdf ) and energies obtained by including the Breit terms (hbrt), qed effects (crrd),
and nuc corrections (fnoy), and the corresponding contributions �. The lower subtable shows the effects
of gsm on the fnoy values. All energies are given in eV.

with gsm Ar � Kr � Xe �

UT (1/2) fnoy −14 127.104 +0.164 −74 085.683 +0.398 −197 267.172 0.727
UT (1/2) crrd −14 127.268 +2.211 −74 086.081 +24.527 −197 267.899 +98.193
UT (1/2) hbrt −14 129.479 +3.551 −74 110.608 +35.404 −197 366.092 +142.447
UT (1/2) mcdf −14 132.830 Ref val. −74 146.012 Ref val. −197 508.539 Ref val.
LT (3/2) fnoy −14 129.299 +0.164 −74 138.855 +0.398 −197 588.497 0.728
LT (3/2) crrd −14 129.463 +2.208 −74 139.253 +24.439 −197 589.225 +97.720
LT (3/2) hbrt −14 131.671 +3.433 −74 163.692 +36.392 −197 686.945 +146.780
LT (3/2) mcdf −14 135.104 Ref val. −74 200.084 Ref val. −197 833.725 Ref val.
GS (0) fnoy −14 377.291 +0.167 −75 817.001 +0.402 −202 371.875 +0.729
GS (0) crrd −14 377.458 +2.211 −75 817.403 +24.501 −202 372.604 +98.170
GS (0) hbrt −14 379.669 +3.664 −75 841.904 +39.309 −202 470.774 +158.673
GS (0) mcdf −14 383.333 Ref val. −75 881.213 Ref val. −202 629.447 Ref val.

no gsm Ar � Kr � Xe �

UT (1/2) fnoy −14 129.922 +0.165 −74 092.711 +0.401 −197 275.881 +0.731
UT (1/2) crrd −14 130.087 +2.222 −74 093.112 +24.603 −197 276.612 +98.449
UT (1/2) hbrt −14 132.309 +3.411 −74 117.715 +35.872 −197 375.061 +143.905
UT (1/2) mcdf −14 135.720 Ref val. −74 153.587 Ref val. −197 518.966 Ref val.
LT (3/2) fnoy −14 132.079 +0.165 −74 145.641 +0.401 −197 596.508 +0.732
LT (3/2) crrd −14 132.244 +2.219 −74 146.042 +24.515 −197 597.240 +97.975
LT (3/2) hbrt −14 134.463 +3.496 −74 170.557 +36.864 −197 695.215 +148.248
LT (3/2) mcdf −14 137.959 Ref val. −74 207.421 Ref val. −197 843.463 Ref val.
GS (0) fnoy −14 380.251 +0.166 −75 825.040 +0.400 −202 383.664 0.725
GS (0) crrd −14 380.417 +2.200 −75 825.440 +24.424 −202 384.389 +97.916
GS (0) hbrt −14 382.617 +3.602 −75 849.864 +38.825 −202 482.305 +157.152
GS (0) mcdf −14 386.219 Ref val. −75 888.689 Ref val. −202 639.457 Ref val.

�gsm Ar δ Kr δ Xe δ

UT (1/2) fnoy +2.818 +0.038 +7.03 +0.24 +8.71 +0.70
LT (3/2) fnoy +2.780 −0.106 +6.79 −1.25 +8.01 −3.78
GS (0) fnoy +2.886 Ref val. +8.04 Ref val. +11.79 Ref val.

Here we call f “homothetic” in the sense that the correction �Ecor is expressed
as a parameterized function of the approximate value Eapp. The index z labels the
set of atomic numbers Z and orbitals (n, l) for the considered family of atoms,
and q is the degree of (positive or negative) valence ionization for charged atoms
(for neutral atoms, q = 0). For different z and q, f may be different. The func-
tion f being given, the label k represents the set of values of the function para-
meters yielded by a best-fit procedure. In Eq. (1), �Ecor , which is computed from
the energies provided by quantum-mechanical calculations, designates the “exact”
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correction, whereas �E’cor , which is yielded by the use of the best-fit function fzq ,
is the “estimated” correction.

The best-fit function fzq is determined by computing Eapp and Eacc for some
ionization/excitation energy in a given family of atoms/ions of the periodic table, and
then fitting their difference �Ecor to various homothetic functions:

�Ecor ≡ Eacc − Eapp ∼= fzq(k; Eapp).(3)

The selected function fzq is that which gives the smallest mean-square deviation δ
(msd) with the optimized parameters k.

We have tried the following formulae in looking for best fits of the variations
of the corrective terms as functions of the approximate values. In the following,
y represents �Ecor , x stands for Eapp, and the set of optimized parameters k =
{x0, y0, b, c, λ, . . .} may depend on z and q:

Linear(2 parameters, y0 and b) : y = y0 + bx(4a)
Allometric(2 parameters, y0 and b) : log y = log y0 + b log x, or y = y0xb(4b)
Quadratic(3 parameters, y0, b, and c) : y = y0 + bx + cx2(4c)
Exponential-decay(3 parameters, y0, b, andλ) : y = y0 + b exp(−x/λ)(4d)
Sigmoid(4 parameters, y0, b, x0, and λ) : y = y0 + b/[1 + exp(x − x0)/λ](4e)

3. RESULTS

The various approximate energies obtained for the 2p1/2 and 2p3/2 sublevels of atoms
from Cl to Ba are given in Table 3. There are also given the most significant energy
differences.

In Figure 2 there are displayed the variations, with atomic number Z , of our best
computed values EG (left) and their second-order finite differences (right). For the
discrete derivative of the average energy, one observes a minimum for half-filling (As,
Sb) and a large value for fulfilling (Kr, Xe), not too different from the experimental
trend (Figure 1, lower left). For the discrete derivative of the spin–orbit splitting, there
is no apparent modulation, contrary to the experimental oscillations (Figure 1, lower
right). Therefore, one may expect to represent all theoretical values of the spin–orbit
splitting in the investigated range by a single functional form.

In Figure 3 we have compared the effects of the various corrections to the
Koopmans energies: relaxation and gsm (R), relaxation and Breit, qed, and nuc
(Q), and all contributions (G). It is to be remembered that, contrary to our previ-
ous 1s- and 2s-core calculations [9], the comparisons are made in the frame of the
Dirac–Fock scheme. It can be seen that just after the middle of the periodic table
(Ba) the Breit, qed, and nuc corrections amount to nearly half the relaxation and gsm
corrections for ionization energies, and are up to six times larger for spin–orbit split-
ting. Including gsm improves significantly the ionization energies (left diagrams)
but slightly degrades the spin–orbit splitting (right diagrams) with respect to the
experimental values. It is also seen that the differences with the measured values are
smaller for rare gases, for which experiments are made on atoms.
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Table 3. For elements from Cl(Z = 17) to Ba(Z = 56), there are given computed 2p1/2 and 2p3/2
ionization energies. These are obtained by applying Koopmans’ theorem to the ground-state 2p-core
orbitals computed relativistically but without Breit, qed, and nuc corrections (EK ); or by difference
between ground and excited state energies computed together (gsm) to account for relaxation and
inner-core correlation (ER); or by two separate calculations (not including gsm) including Breit,
qed, and nuc corrections (EQ); or with all corrections included (EG ). In col. 1, the index + stands
for 2p-core vacancy and in col. 2, the second line gives the numbers of states in neutral atoms
and in j = 1/2 and 3/2 2p-core vacancy ions. Columns 7 and 8 give differences between our
best computed values and Koopmans or experimental energies. The last columns give the K and G
computed spin–orbit splittings Λ and their departures from the experimental values X. All energies
are given in eV.

Elt Term EK(2p1/2) ER(2p1/2) EQ(2p1/2) EG(2p1/2) �KG(1/2) �GX(1/2) ΛK δ ΛKX
EK(2p3/2) ER(2p3/2) EQ(2p3/2) EG(2p3/2) �KG(3/2) �GX(3/2) ΛG δ ΛGX

Cl 2P3/2 220.879 210.419 210.157 210.172 10.707 8.572 1.762 0.162
Cl+ 2/4/6 219.117 208.132 208.100 207.893 11.224 7.893 2.279 0.679
Ar 1S0 262.099 250.504 250.329 250.187 11.912 2.887 2.310 0.210
Ar+ 1/1/1 259.789 248.229 248.172 247.992 11.787 2.792 2.195 0.095
K 2S1/2 315.614 303.365 303.157 302.976 12.638 6.676 2.980 0.280
K+ 1/2/2 312.634 300.425 300.355 300.133 12.501 6.533 2.843 0.143
Ca 1S0 373.657 360.933 360.664 360.462 13.195 10.462 3.787 0.187
Ca+ 1/1/1 369.870 357.191 357.085 356.837 13.033 10.437 3.625 0.025
Cu 2S1/2 988.323 960.181 958.978 958.374 29.949 7.474 20.795 0.795
Cu+ 1/2/2 967.528 939.511 938.869 938.132 29.396 7.232 20.242 0.242
Zn 1S0 1081.389 1053.338 1051.940 1051.299 30.090 8.499 24.191 1.091
Zn+ 1/1/1 1057.198 1029.285 1028.514 1027.728 29.470 8.028 23.571 0.471
Ga 2P1/2 1182.076 1153.308 1152.160 1151.466 30.610 9.166 27.992 1.092
Ga+ 2/4/6 1154.084 1125.465 1125.000 1124.163 29.921 8.763 27.303 0.403
Ge 3P0 1288.054 1259.380 1257.650 1256.904 31.150 9.104 32.233 1.133
Ge+ 5/8/13 1255.821 1227.310 1226.355 1225.435 30.386 8.735 31.469 0.369
As 4S3/2 1399.374 1370.462 1368.407 1367.605 31.770 9.005 36.948 1.448
As+ 5/10/18 1362.426 1333.692 1332.495 1331.502 30.924 8.402 36.103 0.603
Se 3P2 1516.026 1486.739 1484.425 1483.564 32.462 7.364 42.173 1.773
Se+ 5/8/13 1473.853 1444.760 1443.392 1442.325 31.528 6.525 41.239 0.839
Br 2P3/2 1638.009 1608.302 1605.820 1604.784 32.225 8.784 47.945 1.845
Br+ 2/4/6 1590.064 1560.569 1559.137 1557.868 32.196 7.968 46.916 0.816
Kr 1S0 1765.334 1735.201 1732.330 1731.318 33.004 4.118 54.303 2.003
Kr+ 1/1/1 1711.031 1681.129 1679.400 1678.146 31.631 3.246 52.930 0.872
Rb 2S1/2 1905.247 1874.766 1871.593 1870.490 34.757 6.590 61.288 1.788
Rb+ 1/2/2 1843.959 1813.727 1811.803 1810.441 33.518 6.041 60.049 0.549
Sr 1S0 2051.089 2020.409 2016.894 2015.713 35.376 8.913 68.944 1.744
Sr+ 1/1/1 1982.145 1951.732 1949.580 1948.121 34.024 8.521 67.592 0.392
Ag 2S1/2 3579.146 3540.710 3532.890 3530.788 48.358 7.088 176.220 3.620
Ag+ 1/2/2 3402.926 3364.954 3359.925 3357.340 45.586 6.240 173.448 0.848
Cd 1S0 3783.002 3744.423 3735.961 3733.737 49.265 6.737 193.399 3.899
Cd+ 1/1/1 3589.603 3551.516 3546.056 3543.323 46.280 5.823 190.414 0.914
In 2P1/2 3995.461 3956.530 3947.397 3945.037 50.424 7.037 211.855 3.955
In+ 2/4/6 3783.606 3745.194 3739.288 3736.390 47.216 6.290 208.647 0.747
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Sn 3P0 4214.663 4175.441 4165.591 4163.099 51.564 6.999 231.661 4.361
Sn+ 5/8/13 3983.002 3944.330 3937.943 3934.882 48.120 6.082 228.217 0.917
Sb 4S3/2 4440.780 4401.255 4390.648 4388.019 52.761 7.619 252.887 4.687
Sb+ 5/10/18 4187.893 4148.946 4142.054 4138.825 49.068 6.625 249.194 0.994
Te 3P2 4673.899 4634.051 4622.646 4619.874 54.025 7.874 275.610 5.010
Te+ 5/8/13 4398.289 4359.051 4351.626 4348.223 50.066 6.823 271.651 1.051
I 2P3/2 4914.097 4873.905 4861.669 4858.739 55.358 6.639 299.908 4.908
I+ 2/4/6 4614.189 4574.640 4566.664 4563.071 51.118 5.971 295.668 0.668
Xe 1S0 5161.454 5120.908 5107.784 5104.704 56.750 0.704 325.862 4.862
Xe+ 1/1/1 4835.592 4795.722 4787.156 4783.378 52.214 0.378 321.326 0.326
Cs 2S1/2 5421.760 5380.844 5366.804 5363.550 58.210 4.150 353.552 6.052
Cs+ 1/2/2 5068.208 5027.999 5018.828 5014.884 53.324 2.984 348.666 1.166
Ba 1S0 5689.577 5648.436 5633.415 5629.999 59.578 6.399 383.076 6.476
Ba+ 1/1/1 5306.501 5266.104 5256.284 5252.101 54.400 5.101 377.898 1.298
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Figure 2. 2p ionization energies computed including relaxation and ground-state mixing (gsm) as well
as quantum-electrodynamics (qed) and nuclear size and motion (nuc) effects. Upper left: 2p1/2 and
2p3/2 energies; lower left: resulting spin–orbit splitting; upper right: second-order finite difference of
the weighted average of upper left energies; lower right second-order finite difference of lower left energy
splitting.
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Figure 3. Corrections to 2p Koopmans ionization energies when including: (R) relaxation and gsm; (Q)
relaxation and qed plus nuc terms; (G) relaxation and gsm plus qed, and nuc terms. Upper left: 2p1/2
corrections; lower left: 2p3/2 corrections; upper right: spin–orbit splitting corrections to Koopmans values;
lower right: spin–orbit splitting discrepancies with respect to experimental values.

The fact that ground-state mixing has an effect smaller than electron relaxation
or Breit, qed, and nuc effects confirms that in these systems, inner-core correlation
is overcome by electron relaxation and, for heavy systems, relativity effects [6, 8].
However, it has been seen earlier (Table 2), the closer the ionized level is to the
ground state, the less it is increased by gsm.

This entails an increase in spin–orbit splitting. As all computed values are larger
than the measured ones this will appear as a decrease of the correction to the
Koopmans values (Figure 3, upper right), and therefore will increase the discrepancy
with the experiment (Figure 3, lower right).

Table 3 and Figure 3 show that, while the R, Q, and G corrections to the K ener-
gies tend to increase with Z, the difference between our best computed (G) and the
measured (X) values remains about 5–10 eV – slightly smaller for the lower (2p3/2)

excited level, with a tendency to decrease while Z increases and some irregularities
around filled shells (Ar, Zn, Kr, Cd, Xe; Ca, and Sr do not appear in the diagrams).
The lower-right diagram shows that, for spin–orbit splitting, the discrepancy of the
Q-computed values with the measured values remains between −0.5 and +0.5 eV,
which is well within experimental errors.
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It should be remembered that most of the measured data reported in Table 1 do
not refer to ionization to the continuum, as in our calculations, but to excitation
to the Fermi level (for conductors) or to the lowest unoccupied level (for the other
elements). This makes the measured values systematically lower than the computed
values, by about 3–4 eV. In addition, our calculations were performed on a single
spectroscopic term of the isolated atom (Table 2), whereas the measurements were
made on single atoms for rare gases only: for some nonmetals they were made on
molecules and for most other elements, including metals, on the solid. Due to the
chemical environment, and atomic bonding, this induces an additional decrease, of
about 2–6 eV, in the measured values. These two effects account nearly perfectly
for the discrepancies, of about 5–10 eV, between the theoretical and experimental
ionization/excitation energies. However, as these effects cancel out in the difference
between the 2p1/2 and 2p3/2 levels, it is not surprising that the computed splittings
reproduce nearly perfectly the measured values, within experimental errors.

The splitting Λ between the 2p levels, when it is solely due to spin–orbit interac-
tion, is believed to increase roughly as Z4, due to its quantum mechanical perturbative
formulation. This is actually the trend appearing on the second discrete derivative of
measured values (Figure 1, lower right). Here we have investigated the accurate Z
variation of the components of Λ. In a polynomial fit involving only powers of Z4,
one has to go up to Z28 (8 terms) to reach a fit accuracy (R2 = 1; Sd = 0.030)
comparable to that obtained with terms up to Z6 (4 terms) in a formula involving
also powers of Z2(R2 = 1; Sd = 0.032). The adjunction of a Z2 term to a fit of the
form A + C Z4 already increases the correlation coefficient R2 from .9995 to .9999
and reduces the square deviation Sd from 4.163 to 1.285. Our best bet is to use a
4-parameter polynomial of Z2 (where the last term may be neglected for the lighter
elements). Detailed results are reported in Table 4, which is the translation of the
observations made on Figure 3 (right diagrams).

As explained earlier, in order to transfer atomic results to molecular systems, it
is useful to search for homothetic relations between the corrective terms and the
non-corrected values. This is because the dependence of energy properties on the

Table 4. Best bets for polynomial fits of Koopmans (K) and experimental (X) spin–orbit splittings. Similar
fits are used for the increments due to relaxation and gsm (�R) plus qed and nuc (�G) corrections.

P(Z2) K(Z2) +�R(Z2) +�G(Z2) X(Z2)

A 0.752 −0.014 −0.058 1.200
±0.040 ±0.003 ±0.011 ±0.301

+B Z2 −0.631e-2 1.305e-4 3.156e-4 −0.819e-2
± 0.009e-2 ± 0.068e-4 ± 0.239e-4 ± 0.069e-2

+C Z4 3.387e-5 0.485e-7 3.036e-7 3.416e-5
± 0.006e-5 ± 0.046e-7 ± 0.160e-7 ± 0.046e-5

+D Z6 2.238e-9 −0.419e-11 1.712e-11 2.121e-9
± 0.012e-9 ± 0.091e-11 ± 0.319e-11 ± 0.091e-9

R2; Sd 1.0000; 0.0316 0.9999; 0.0023 1.0000; 0.0082 1.0000; 0.2350
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atomic number Z is not molecular dependent, whereas the corrective terms and the
non-corrected values depend both critically on the charge transferred to or from the
excited/ionized atom in the molecule. In Figure 4 there are displayed, as functions
of the Koopmans values, the total G-corrections (relaxation, gsm, Breit, qed, and
nuc) for the 2p1/2 and 2p3/2 ionization energies (left) and the spin–orbit splitting
(upper right) for atoms from Cl to Ba (excluding transition elements). There are also
shown the deviations of the Koopmans values from measured ones (lower right). On
these diagrams it appears clearly that, as with our earlier 1s and 2s results [22], any
functional fitting of the variations must be made separately on the three homologous
families Cl–Ca, Cu–Sr, and Ag–Ba, at least for the ionization energies (Figure 5). For
the spin–orbit splitting, a single functional form can be used (Figure 4). Solid lines
in Figures 4 and 5 are computed using the functional forms and best-fit parameters
listed in Table 5.

In Table 5 we have gathered the optimized parameters (and mean deviations) for
the best-fit functions representing the total G-corrections to the Koopmans 2p1/2 and
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Figure 4. Total corrections to the Koopmans values, as functions of these same values, for the 2p1/2 (upper
left) and 2p3/2 (lower left) ionization energies and the spin–orbit splitting (upper right) of atoms from Cl
to Ba, excluding transition elements. There are also shown the deviations of the Koopmans values from
measured ones (lower right). Solid lines are computed using the functional forms and best-fit parameters
listed in Table 5.
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Figure 5. Total corrections (Y axis) to the Koopmans values as functions of these same values (X axis), for
the 2p1/2 (left) and 2p3/2 (right) ionization energies of the homologous series of atoms Cl–Ca, Cu–Sr, and
Ag–Ba. Elements corresponding to half or full filling of a (sub) shell are shown. Solid lines are computed
using the functional forms and best-fit parameters listed in Table 5.

2p3/2 ionization energies and spin–orbit splitting for the atoms in the investigated
set. There are shown only the results obtained from the functions yielding the best
fits (Eq. 3a–e). The allometric function appears less appropriate here than it was for
relativity corrections to 1s- and 2s-core ionization energies [22]. There are displayed:
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Table 5. Optimized parameters and standard deviations for best-fit functions representing corrections to
Koopmans 2p1/2 and 2p3/2 ionization energies and spin–orbit splitting for the investigated atoms. There
are shown the results obtained from the functions giving the best fits: linear, quadratic, exponential-decay,
or sigmoid. The solid lines shown in Figures 4 and 5 are computed using these functions.

Level Series B/eV Y0/eV X0/eV λ or C/eV χ2/eV2 R2/eV2

2p1/2
Cl-Ba −56.042 63.378 2555.827

3.762 0.9859
(expdec) ±1.838 ±2.280 ±273.354

2p1/2
Cl-Ca −42.419 13.619 82.305

0.008 0.9978
(expdec) ±19.759 ±0.265 ±16.502

2p1/2
Cu-Sr −7.959 36.760 1565.130 312.144

0.003 0.9995
(sigmoid) ±0.274 ±0.307 ±16.482 ±27.316

2p1/2
Ag-Ba 0.00538 28.927

0.9998
(linear) ±0.00004 ±0.173

2p3/2
Cl-Ba −49.785 56.741 2152.075

3.233 0.9849
(expdec) ±1.481 ±1.745 ±215.109

2p3/2
Cl-Ca −9.725 15.190 244.940

0.001 0.9992
(expdec) ±0.582 ±0.928 ±76.881

2p3/2
Cu-Sr −6.487 35.041 1518.819 275.618

0.003 0.9993
(sigmoid) ±0.234 ±0.264 ±16.744 ±26.090

2p3/2
Ag-Ba 0.00468 29.525

0.9994
(linear) ±0.00006 ±0.261

Λ
� G/K 0.01617 0.2087 −0.872∗10−5

0.066 0.9986
(quadratic) ±0.00045 ±0.0254 ±0.126∗10−5

Λ
� X/K 0.02091 0.4654 −0.167∗10−4

0.303 0.9791
(quadratic) ±0.00198 ±0.1091 ±0.057∗10−4

1. for the 2p1/2 (line 2) and 2p3/2 (line 6) ionization energies of atoms from Cl
to Ba, the overall parameters B, Y0, and λ (and standard deviations) of exponential-
decay best fits;

2. for the 2p1/2 (lines 3–5) and 2p3/2 (lines 8–9) ionization energies in the homo-
logous series Cl–Ca, Cu–Sr, and Ag–Ba, the specific parameters (and standard devia-
tions) corresponding to exponential-decay, sigmoid, and linear best fits, respectively
(see Figure 5, left and right);

3. for the spin–orbit splitting of atoms from Cl to Ba, the parameters B, Y0, and C
(and standard deviations) of quadratic best fits of the variations of the G-corrections
to Koopmans values as a function of these latter (see Figure 4, upper right) and of
the X-deviations from them (see Figure 4, lower right).

The following observations can be made on the diagrams shown in Figures 4 and
5 and on the coefficients given in Table 5.
(i) The best overall fits for the 2p1/2 and 2p3/2 energies in the Cl–Ba range are

obtained by using exponential-decay functions (Eq. 3d). However, the uncertain-
ties are of the order of 3% for the parameters B and Y0 and of 10% for the
parameter λ, and the msd is much larger than 1 eV.

(ii) The best fits in the Cl–Ca series are obtained with exponential-decay functions,
while in the Cu-Sr series one must use sigmoid functions (Eq. 3e) and in the
Ag–Ba series simple linear functions (Eq. 3a) give the best fits.
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(iii) The fits with linear functions are more accurate than those with sigmoid or
exponential-decay functions. The series Cl–Ca, which involves only four ele-
ments, expectedly gives less reliable results than the series Cu–Sr or Ag–Ba,
which involve ten elements. However, in all the fits with homologous elements
the msd is much smaller than 1 eV.

(iv) The best overall fits for spin–orbit splitting in the Cl–Ba range, both for the G
corrections and for the X deviations from K values, as functions of these values,
are obtained by using quadratic functions (Eq. 3c). Although relative uncertain-
ties on parameters C and Y0 are rather large (while those on the linear factor B
are 3–4 times smaller), the reliability of the fit is rather good even for the more
irregular X deviations (Figure 4, right diagrams).

4. CONCLUSION

In this paper we have investigated the variations of the corrections to Koopmans 2p-
core ionization energies in atoms as functions of the atomic number Z or of uncor-
rected Koopmans values. These latter were computed using Bruneau’s numerical
ab initio, relativistic program, in order to get consistent results for the spin–orbit
splitting. Corrections involved electron relaxation obtained through a �DF proce-
dure, inner-core correlation yielded by ground-state mixing, the second-order Breit
terms, quantum-electrodynamics effects, and nuclear size and motion effects, intro-
duced by perturbation. The present investigation differs from our previous ones [9]
on 1s- and 2s-core ionization energies, where the stress was on the variations of the
relativistic corrections and where nuclear effects were neglected.

The results described in the previous section provide a rational ground for using
homothetic formulas in representing various corrections to uncorrected atomic cal-
culations. Due to shell effects, such formulas ought to be derived, in principle, for
homologous families of atoms. Contrary to the relativistic corrections to the 1s- and
2s-core ionization energies [9], the allometric formula does not show very relevant
here, and various 2, 3, or 4-parameter functions have to be used to obtain best fits. The
sets of optimized parameters gathered in Table 5 are those of the best functions rep-
resenting the total corrections to the Koopmans 2p1/2 and 2p3/2 ionization energies
and spin–orbit splitting.

The interest of the procedure described in this paper for incorporating specific
corrections to approximate values resides in the possibility that our results may be
transferable to complex molecules. Indeed, for heavy atoms there exists a variety of
computer programs taking all the effects into account, especially the MCBDF and
coupled-cluster four-component relativistic codes used in the study of superheavy
elements [13]. In contrast, for complex molecules there are no available programs
allowing computations of core-hole excitations including relativity, relaxation, and
correlation together. This is the reason why we choose to fit the total corrections to
the uncorrected energies rather than to the atomic number Z. Although these latter
are related in the atomic case, in the molecular case shifts induced by the chemical
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environment of the ionized atom, mainly through the relative electronegativities of
this latter and the bonded chemical groups [1, 7], make Z partly irrelevant.

As the relativistic and qed corrections essentially depend on the velocities of the
involved electrons, which in turn critically depend on the charge transferred onto or
from the core-ionized atom, and as the relaxation and correlation corrections also
depend, in a different way, on charge transfer [6–8], one may conjecture that in a
molecule all significant corrections to Koopmans energies depend on charge transfer
about the ionized atom, and thus on chemically shifted ionization energies, in the
same way as for a bare atom they depend on the uncorrected ionization energy.

Tests of this methodology on hemoglobin and phthalocyanine-like molecules are
in progress.
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3. S. Hüfner, in M. Cardona, P. Fulde, K. von Klitzing, and H.-J. Queisser (eds.), Photoelectron Spec-
troscopy, Series in Solid-State Physics 82, Springer Verlag, Berlin, 1995, pp. 31 ff.

4. C.L. Pekeris, Phys. Rev. 112, 1649, 1958; 115, 1216, 1959; 126, 1470, 1962, and references therein.
5. J. Rychlewski (ed.), Explicitly Correlated Wave Functions in Chemistry and Physics, Progress in

Theoretical Chemistry and Physics 13, Kluwer, Dordrecht, 2003, and references therein.
6. J. Maruani, M. Tronc, and C. Dezarnaud, C. R. Acad. Sci. Paris II 318, 1191, 1994, and references

therein.
7. A. Khoudir, J. Maruani, and M. Tronc, in A. Hernandez-Laguna, J. Maruani, R. McWeeny and S.

Wilson (eds.), Quantum Systems in Chemistry and Physics, vol. 2, Progress in Theoretical Chemistry
and Physics 3 Kluwer, Dordrecht, 2000, pp. 57–89.

8. J. Maruani, A. Khoudir, A. Kuleff, M. Tronc, G. Giorgi, and C. Bonnelle, Adv. Quant. Chem. 39, 307,
2001.

9. J. Maruani, A.I. Kuleff, Ya.I. Delchev, and C. Bonnelle: (a) in E.J. Brändas and E.S. Kryachko (eds.),
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ON THE ROLE OF ELECTRONIC MOLECULAR STATES
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Abstract Several examples are presented in order to illustrate the crucial role of high spin multi-
plicity electronic states on the formation and decomposition of the corresponding molec-
ular systems. For instance, these states are good candidates where electronically excited,
metastable negative ions can be found. Moreover, they are needed in order to explain fully
unimolecular and bimolecular reaction pathways. During these reactions, the importance of
the couplings between these states, such as vibronic and Renner–Teller, and with the states
of lower spin multiplicity, such as spin–orbit, are pointed out.

1. INTRODUCTION

In this review, we are considering the case of molecular species where the electronic
ground state is of low spin multiplicity (for instance, singlet, doublet, or triplet) and
where high spin multiplicity can be found in electronically excited states. These lat-
ter are less known: generally, they are hardly accessible by standard spectroscopic
techniques. For example, when photoionizing a singlet neutral state only the doublet
cationic states can be reached in the experimental spectra: higher spin multiplicities
are not observed. Moreover, when the spin multiplicity increases it is hard to find deep
potential wells for the corresponding electronic states, where conventional spectro-
scopic techniques can be used for their identification. Finally, the bound rovibrational
levels of the electronic states of interest here are mostly located relatively far from
the Franck–Condon regions reached by these techniques.

Our methodology is the following: large ab initio calculations are performed in
order to compute the potential energy curves for these electronic states and their
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spin–orbit coupling with the close lying electronic states. These calculations are
performed using large basis sets (e.g. cc-pVQZ, cc-pV5Z Dunning’s basis sets
[1]) and interaction configuration methods, such as the complete active space self-
consistent field (CASSCF) approach [2], followed by internally contracted multi-
reference configuration interaction (MRCI) [3], and the coupled cluster approach
with perturbative treatment of triple excitations (RCCSD(T)) [4]. These methods have
the advantage of taking into account a large part of the electronic correlation, which
is needed for better describing that kind of electronic states.

In the following, four examples will be investigated. The first one, considering the
CS− negative ion, illustrates that CS− metastable electronically excited states can be
formed only in the high angular momentum states. However, the low CS− angular
momentum states undergo rapid autoionization, hence reducing their lifetime. Then
we are presenting the unimolecular decomposition of a diatomic ion (SO+(b̃ 4�−))
and that of a triatomic ion (CO2

+(C̃ 2�g
+)). The quartets (in both cases) and the

sextets (for SO+) are needed to fully describe the corresponding reactive processes.
Finally, the S− + N → SN− bimolecular reactive processes are detailed in the last
section, where the electronically excited bound quintet state of SN− is found to be
the main intermediate.

2. ELECTRONICALLY EXCITED METASTABLE NEGATIVE IONS: CS−

Stable and metastable states have been characterized for several negatively charged
atoms and molecules both in their ground and/or electronically excited states. Long-
lived electronically excited molecular systems, where the anionic electronic ground
state is not bound, do exist and have been characterized experimentally. A detailed
discussion and a full presentation of the examples known are reviewed in Refs. [5,6].
In this section, we are treating the case of the CS− anion.

Below the C(3P) + S(3P) asymptote there are two asymptotes, C−(4S) + S(3P)
followed by C(3P) + S−(2P), with bound states of the C− and S− atoms. The low-
est doublets (X̃ 2�, 2�+, 2�−, 2�) and quartets (ã 4�−, b̃ 4�, c̃ 4�, d̃ 4�+, ẽ 4�)

and the two sextets (ã 6� and b̃ 6�+) of the CS− negative ion correlate to these two
dissociation limits. Therefore all these states will be bound at long internuclear sepa-
ration with respect to electron detachment, before reaching the molecular regions of
the electronic states of the neutral CS, related to short-lived core excited resonances.
Only the vibrational ground level of CS−(X̃ 2�) is lying below the autodetachment
threshold, i.e. the energy of CS(X̃ 1�+)v′ = 0 (cf. Figure 1). The CS−(X̃ 2�)v > 0
levels can autodetach rapidly to CS(X̃ 1�+). The CS(X̃ 1�+) is also the parent state
of the CS−(2�+) state. The 2� and 2�− anionic states are formed by binding an
extra electron to the CS(ã 3�) state. Our calculations show that these doublets are
located, in the molecular region, above their respective parent states, thus reducing
their lifetimes, and only their long range parts are predicted to be bound.

Hence, electronically excited metastable CS− ions should be found only in the
higher spin multiplicities. Three conditions should be fulfilled by these electronic
states in order to exist: first, they should possess positive electron affinity with
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respect to their parent neutral state; secondly, they should exhibit slow depletion
by spin-forbidden autodetachment for at least one fine-structure component and by
radiative depletion; third, their wavefunctions should undergo weak interaction with
the electron continuum wave.

The CS(ã 3�) state has a leading 5σ26σ27σ12π43π1 configuration and is the
parent state of the ã 4�− state. The CS−(b̃ 4�) state has a leading configuration
5σ26σ27σ22π33π2 (for RCS > 1.6 Å) by adding an electron to the CS(ã′ 3�+) state
of 5σ26σ27σ22π33π1 leading configuration. Figure 1 shows that these two anionic
states are lying definitely below their respective parent neutral states. For ã 4�−, how-
ever, the angular momentum of the fine-structure component (i.e. J = 3/2) has its
counterpart in the low-lying CS−(X̃ 2�) state and will probably autodetach rapidly
to the final electronic ground state of CS. Similarly, the CS−(b̃ 4�)J = 1/2 and 3/2
fine-structure components have their counterparts in the CS−(X̃ 2�1/2,3/2) state. In
contrast, the ã 4�J = 5/2 fine-structure component has no lower-lying counter-part
and it lies below its parent state. Our calculations presented in Ref. [7] show that at
least four vibrational states are expected to exist below CS(ã′ 3�+)v′ = 0.

Long-lived CS− ions may also be formed at large internuclear distances in the
shallow potential wells of CS−(ã 6�). Indeed, the sextet is located well below its
parent neutral state [i.e. CS(ã 5�)] at these distances. Here again, the J = 7/2 fine
component of this sextet has no counterpart in the lower electronic states of the CS−
anion. This potential well is due to polarization effects. More than ten vibrational
states were calculated to be bound there.

3. UNIMOLECULAR DECOMPOSITION OF DIATOMICS: SPIN–ORBIT
INDUCED PREDISSOCIATION OF SO+(b̃ 4�−) LEADING TO S+(4Su)
AND O(3Pg)

The predissociative nature of the SO+(b̃ 4�−)v ≥ 7 vibrational levels forming the
S+ and O species in their electronic ground states has been established 20 years ago
in Cosby’s SO+ photofragmentation study [8]. Several attempts have been made in
order to propose an explanation to this predissociation [9–11]. The proposed mecha-
nisms are spin–orbit based induced predissociation pathways involving the repulsive
1 4�+, which leads directly to the S+(2Pu)+ O(3Pg) asymptote. However, the poten-
tial energy curves of the electronic states of SO+ lying at these energy ranges and
computed at the cc-pV5Z/MRCI level of theory (cf. Figure 2), show that the crossing
between the b̃ 4�− and the 1 4�+ states is occurring close to b̃ v = 9 level, i.e. far
from SO+(b̃ 4�−, v = 7) corresponding to the onset of this predissociation. Ornellas
and Borin [11] in their ab initio investigations of the quartet states of SO+, have sug-
gested the involvement of the 2 4� state crossing the b̃ 4�− electronic state close to
v = 13. Finally, Bissantz et al. [10] have confirmed the rapid predissociation of the
b̃ 4�−(v ≥ 13) levels already stressed out by Cosby based on their later photofrag-
ment spectroscopic study. The analysis of the corresponding data has permitted to
deduce the shape of the “predissociating” electronic state, which has been found to
be naturally repulsive. Bissantz et al. have wrongly identified this state to 1 4�+.
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Recently, Ornellas and Borin found that the short range part of this experimental
potential curve is coinciding with the short range potential curve of 24�. No further
details are given in the literature about the nature of the long range part of this exper-
imentally determined curve. Moreover, the predissociation onset at b̃ v = 7 remained
unexplained. In Ref. [12] a detailed discussion is given on the predissociation mech-
anisms proposed in light of the potential energy curves of Figure 2 and their mutual
spin–orbit coupling functions. In the present review, only the role of the 1 6�+ and
1 6� states will be enlightened.

Figure 2 shows that the b̃ v ≥ 16 vibrational levels are located above the crossing
of b̃ 4�− with 1 6� state. Hence, they may be predissociated via this sextet. Indeed,
the spin–orbit conversion of the SO+(b̃ 4�−) ions is allowed: the i< b̃ 4�, ms =
3/2|LxSx|16�x,ms = 5/2 > integral is calculated to be −122 cm−1 at RSO ∼3.8 B,
corresponding to the crossing of the quartet and the sextet. This coupling is high
enough to permit such a conversion. Then, the SO+b̃ → S+ + O reaction follows the
potential energy curve of the repulsive 16� state. However, the direct participation of
the dissociative 1 6�+ state should be ruled out here despite its crossing of the b̃ state
close to v ∼ 11. At these internuclear ranges, the i < b̃ 4�−, ms = 3/2|LzSz|1 6�+,
ms = 5/2 > integral is computed to be close to zero (cf. Ref. [12]).
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Figure 2 reveals that the 16� state is crossing the 24� state, which has already
been proposed by Ornellas and Borin [11] as the starting point for the predisso-
ciation of the SO+(b̃ 4�−, v ≥ 13) levels. The SO+(24�) ions hence prepared
may be predissociated later by the 16� state after spin–orbit interactions. Indeed,
the i < 24�y, ms = 3/2|LzSz|16�x, ms = 3/2 > spin–orbit integral is com-
puted to be 21.5 cm−1 at this crossing (RSO ∼ 4.17 Bohr), allowing efficient con-
version. Moreover, the experimentally determined potential energy curve is found
corresponding to that of the 16� for long range internuclear separations. Simi-
larly, the 16�+ is crossing the 24� for RSO ∼ 3.63 Bohr, where the i < 24�y,
ms = 3/2|LxSx|16�+, ms = 5/2 > integral is evaluated to be 135.5 cm−1. Accord-
ingly, the SO+(24�) → SO+(1 6�+) → S+ + O reactive pathway can also be
proposed. The involvement of the sextet states in the predissociation of SO+(b̃ 4�−)
has never been considered before, and not yet checked for the predissociation of the
important isovalent O+

2 cation.

4. UNIMOLECULAR DECAY PATHWAYS OF A TRIATOMIC
MOLECULAR SPECIES: THE CASE OF THE CO+

2 (C̃
2�g

+)
VIBRONIC LEVELS

The ground vibrational level of the quartet CO2
+(C̃ 2�g

+) is located above the first
dissociation limit {O+(4Su)+ CO(X̃ 1�+)}. The CO2

+(C̃ 2�g
+) excited vibrational

levels are positioned above the first and second asymptotes {CO+(X̃ 2�+)+O(3Pg)}.
Hence they are expected to be predissociated to these limits. The dissociative pho-
toionization of CO2 has been extensively studied experimentally [13]. These exper-
imental works have provided evidence that CO2

+(C̃ 2�g
+) selected in its ground

vibrational level dissociates completely to O+(4S) + CO(X̃ 1�+, ν′′ = 0, 1) and
that the excited vibrational bands of the C̃ state are also fully predissociated, forming
both the O+ and the CO+ products. The direct formation of O+(4S)+CO(X̃ 1�+) by
dissociation of CO2

+(C̃ 2�g
+) is a spin-forbidden process according to the Wigner–

Witmer correlation rules [14]. The involvement of a quartet state was first sug-
gested in the theoretical work of Praet et al. [15]. This quartet either dissociates to
O+(4S) + CO(X̃ 1�+) or undergoes a fast intersystem crossing to the ground state
CO2

+(X̃2�g) and then dissociates to CO+(X̃ 2�+)+O(3P). However, the role of this
high spin multiplicity electronic state during the decomposition of CO2

+(C̃ 2�g
+)

ions was not fully explained. Therefore, we have performed a high-level ab initio
study on the potential energy functions (PEF) of CO2

+(C̃ 2�g
+) and of the lower

doublet and quartet states of CO2
+, along with their spin–orbit interactions. These

calculations were performed at the CASSCF/MRCI level, using the spdf cc-pVQZ
subset basis of Dunning [1]. The results are depicted in Figures 3–5. These potential
curves provide insight into the possible predissociation pathways of excited CO2

+
prepared in the internal energy range of 5.2–6.2 eV.

Close examination of Figure 3 reveals that only the repulsive ã 4�− state correlates
adiabatically to the lowest dissociation limit O+(4S)+ CO(X̃ 1�+). As a result, each
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predissociation process forming the O+ ions in their electronic ground states should
involve this quartet.

The b̃ 4�u state correlates at long range to the second dissociation limit, forming
the CO+ X̃ ions. Figure 3 shows that these two quartets cross the lower doublet states
for collinear configurations, where spin–orbit couplings can take place. By bending
the CO2

+ ion, the b̃ 4�u state splits into two components, due to the well-known
Renner–Teller effect and that this quartet possesses a strongly bent component (the
4B1), which also crosses the lower electronic states of CO2

+ for bent geometries (cf.
Figure 4). In contrast to the example detailed in the previous section, the unimolec-
ular decomposition of the CO2

+ triatomic ions may occur for both linear and bent
structures. Generally the selection rules are relaxed for non-linear geometries where
additional couplings may take place, favouring the mixings between these electronic
states.

Let us explicit the role of the ã 4�u
− and b̃ 4�u states during the formation of the

two lowest dissociation channels of interest. Despite the fact that ã 4�− is cross-
ing the C̃ state (Figure 3), the direct predissociation of CO2

+(C̃ 2�g
+) ions via the

ã 4�g
− state is not possible, because the spin–orbit coupling integral for these states,

< ã 4�g
−, ms = 3/2|L.S|C̃ 2�g

+, ms = 1/2 >, gives no contribution for �ms = 1.
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Nevertheless, multistep mechanisms can be proposed where both quartet states are
the main intermediate in order to explain the formation of both O+ and CO+ ions.
For the C̃ 2�g

+(0, 0, 0) level undergoing predissociation only to the first dissocia-
tion limit {O+(4Su) + CO(X̃ 1�+)}, Figures 3 and 5 show that the C̃ 2�g

+(0, 0, 0)
ions formed can be converted first into the CO2

+( Ã 2�u) ions after vibronic cou-
plings, followed by spin–orbit interaction between the CO2

+( Ã 2�u) and ã 4�-states,
which leads directly to this asymptote. Readers are referred to Figures 3 and 5
and Table 1 for the evaluation of the corresponding spin–orbit couplings and the
determination of the crossings between these states. The efficient dissociation path-
way CO2

+(C̃ 2�g
+; 0, 0, 0) → CO2

+( Ã 2�u) → CO2
+(ã 4�g

−) → O+(4Su) +
CO(X̃ 1�+) may account for the absence of fluorescence from C̃ 2�g

+(0, 0, 0)
to A 2�u, which has never been observed experimentally. Concerning the b̃ 4�u
state, Figure 3 shows that for linear configurations this quartet is crossing the C̃
state for internal energies of ∼ 9 eV. However, the bent component of this quartet,
i.e. 4B1, is crossing the X̃ 2�g, Ã 2�u, B̃ 2�u

+, C̃ 2�g
+ states of CO2

+ for bent
geometries (cf. Figure 4) at lower internal energies (even lower than the energy of
CO2

+(C̃ 2�g
+, 0, 0, 0). Accordingly, a second multistep reactive pathway can be pro-

posed via the b̃ 4�u state. First, the CO2
+(C̃ 2�g

+) vibrational levels can be predis-
sociated by this quartet since the spin–orbit coupling between the doublet and the
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Figure 5. CASSCF collinear evolution of spin–orbit couplings between: (a) doublet–doublet, quartet–
quartet and (b) doublet–quartet electronic states of CO2

+, where the other CO distance is kept fixed at the
equilibrium geometry of the neutral molecule (i.e. 2.2 Bohr). See Table 1 for the definition of these terms.
Strictly speaking, the g–u symmetry is only applicable for RCO = 2.2 Bohr.
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Table 1. spin–orbit integrals between doublet–doublet, quartet–quartet, and
doublet–quartet states of CO2

+. Between parentheses there are given the
schematic representations used in Figure 5.

i < X̃ 2�g,x, ms = 1/2|LzSz|X̃ 2�g,y, ms = 1/2 >= (X̃ 2�g − X̃ 2�g)

i < Ã 2�u,x, ms = 1/2|LzSz| Ã 2�u,y, ms = 1/2 >= ( Ã 2�u − Ã 2�u)

i < b̃ 4�u,x, ms = 1/2|LxSx|ã 4�g
−, ms = 3/2 >= (b̃ 4�u − ã 4�g

−)
i < Ã 2�u,x, ms = 1/2|LzSz|X̃ 2�g,y, ms = 1/2 >= ( Ã 2�u − X̃ 2�g)

i < b̃ 4�u,x, ms = 3/2|LzSz|b̃ 4�u,y, ms = 3/2 >= (b̃ 4�u − b̃ 4�u)

i < C̃ 2�g
+, ms = 1/2|LySy|b̃ 4�u,x, ms = 3/2 >= (C̃ 2�g

+ − b̃ 4�u)

i < Ã 2�u,x, ms = 1/2|LxSx|ã 4�g
−, ms = 3/2 >= ( Ã 2�u − ã 4�g

−)
i < b̃ 4�u,x, ms = 1/2|LzSz|X̃ 2�g,y, ms = 1/2 >= (b̃ 4�u − X̃ 2�g)

i < ã 4�g
−, ms = 3/2|LxSx|X̃ 2�g,x, ms = 1/2 >= (ã 4�g

− − X̃ 2�g)

i < B̃ 2�u
+, ms = 1/2|LySy|b̃ 4�u,x, ms = 3/2 >= (B̃ 2�u

+ − b̃ 4�u)

i < Ã 2�u,y, ms = 1/2|LzSz|b̃ 4�u,x, ms = 1/2 >= ( Ã 2�u − b̃ 4�u)

quartet (∼40 cm−1 at their crossing, cf. Figures 3 and 5) is high enough to allow such
conversion. The CO2

+(b̃ 4�u) ions can also be obtained after spin–orbit conversion
of the CO2

+( Ã 2�u) ions formed in the mechanism given above. At large internuclear
distances, the CO2

+(b̃ 4�u) ions may form directly the CO+ ions, because b̃ 4�u cor-
relates adiabatically to the second limit, or be predissociated by ã 4�g

− after spin–
orbit coupling between both quartets, forming the O+ ions in their electronic ground
state. Finally, the b̃ 4�u state, via the bent 4B1 component, can undergo an intersystem
crossing to the ground X̃ 2�g state, by more efficient spin–orbit interaction [15]. It is
worth noting that, close to the barrier to linearity of the b̃ 4�u state, the Renner–Teller
effect in this quartet should also play a role, mixing rather more the wavefunctions of
the electronic states involved during the mechanisms proposed above.

The mechanisms suggested here have been confirmed, using state-of-the-art exper-
imental techniques where the dynamics of state-selected vibronic levels of the C̃ state
were investigated. More details can be found in Ref. [13].

5. BIMOLECULAR REACTIVE COLLISIONS BETWEEN S−(2Pu)
AND N(4Su)

In Figure 6 there are depicted the spdfg aug-cc-pV5Z/MRCI+Q potential energy
curves of the SN(X̃ 2� and ã 4�) electronic states and those of the anionic states
correlating to the unique bound asymptote of SN−[S−(2Pg) + N(4Su)]. In addition
to the bound electronic states of SN− (i.e. X̃ 3�− and 1�) already known, our large
MRCI+Q computations reveal that the 3� state is lying energetically below its quar-
tet parent neutral state (ã 4�). The depletion of the J = 3 component of SN−(3�)
will mainly occur via weak interactions with the electron continuum wave. At large
internuclear distances, SN−(5�) state is predicted to possess a shallow polarization
minimum supporting long-lived SN− ions. Further details can be found in Ref. [17].
In the following, we concentrate on the role of the 5� state in the formation of this
negative ion from the S− and N species taken in their ground electronic state. These
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0. The ab initio computed anionic PECs were shifted by −0.162 eV to match the experimental EA of
SN−(X̃ 3�−). The horizontal lines correspond to the positions of the ground vibrational levels (from [17]).

reactive processes are occurring along the potential energy curves of SN− presented
in Figure 6 and their mutual interactions. Full discussion of all reactive pathways can
be found in Ref. [17].

When the S− and N in their electronic ground states are colliding together, the
low vibrational states in the shallow minimum of SN−(5�) are formed directly. The
relative stability of the corresponding rovibrational levels may contribute to the effi-
ciency of this reaction. Hence, electronically excited SN− ions are surely formed
in this high spin multiplicity electronic state. The quintet may also be involved as
an intermediate state to form the SN− ions in the bound 1�, 1�+ states and in the
metastable 3�, J = 3 component via the 3� state. Indeed, the formation of SN−(1�,
1�+, 3�) ions can take place first along the 3� potential energy curve at long inter-
nuclear separations. In the molecular region, the SN−(3�) ions may be converted
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either to SN−(1�, 1�+, 3�) ions at the crossings between 3� and these electronic
states directly, or following spin–orbit conversion of the SN−(5�) ions formed after
reaction between the S−(2Pu) and N(4Su), as illustrated above. Indeed, the quintet
is crossing the triplet for RSN ∼ 4.67 Bohr, where the i < 3�y; ms = 1|LzSz|5�x;
ms = 1 > integral is evaluated to be ∼126.1 cm−1, which is high enough to allow
this conversion. These reactive pathways are permitted by spin–orbit selection rules.
One is referred to Ref. [17] for the values of the corresponding integrals and for the
identification of the respective crossings.

However, the 5�− state is viewed to play a minor role here in spite of the fact that it
crosses the (1�, 1�+, 3�) potential energy curves (Figure 6). The off-diagonal spin–
orbit coupling terms between this quintet and these electronic states are computed to
be equal to zero (for 1�, 1�+) or close to zero (for 3�) [17].

6. CONCLUSION

The dynamics of the reactions presented in this review are found to be largely deter-
mined by the pattern of curve crossings of the relevant electronic states and their
mutual couplings. We have treated examples of positively and negatively charged
molecular species. It is worth noting that similar processes can be also found for
the neutral molecules [14]. Generally, when the system size increases the symmetry
restrictions are relaxed and additional couplings may show up, such as vibronic cou-
plings, Renner–Teller effects and intramolecular isomerization processes involving
these high spin multiplicities, together with spin–orbit coupling. They are expected
to mix further the wavefunctions of the electronic states having the same and /or dif-
ferent spin multiplicities, complicating even more the reactive pathways. Hence, the
lifetimes of corresponding rovibrational levels are reduced.
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AB INITIO CHARACTERIZATION OF ELECTRONICALLY
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Abstract Accurate ab initio calculations of the potential energy curves (PEC) of the electronic
states of the neutral S2 molecule and the S2

− negative ion, correlating to the bound
S−(2Pu) + S(3Pg) asymptote, reveal that the depletion of the J = 7/2 component of the
S2

−(14�g) state occurs mainly via weak interactions with the electron continuum wave.
This quartet is found to possess several long-lived rovibrational levels which are located
below the S2(c1�u

−) parent neutral state. Those levels may be populated, at least, during
low-energy collisions between S−(2Pu) and S(3Pg).

1. INTRODUCTION

Several conditions must be fulfilled for an anionic electronic state to exist: (i) it
should possess positive electron affinity with respect to its parent neutral state;
(ii) it should exhibit slow depletion by spin-forbidden autodetachment for at least
one fine-structure component and by radiative depletion; and (iii) its wave-function
should undergo weak interaction with the electron continuum wave. Such stable
and metastable states have been identified for several negatively charged atoms and
molecules, in both ground and electronically excited states. Long-lived electronically
excited molecular systems, where the anionic ground state is not bound, do exist
and have been observed experimentally. For a detailed presentation of the examples
already known is referred in Refs. [1–3].

The S2
− anion possesses a unique bound asymptote [S−(2Pu) + S(3Pg)], located

at ∼2.08 eV below the neutral S(3Pg) + S(3Pg) dissociation limit [4]. Photoelec-
tron spectroscopy has allowed to deduce the electron affinity of disulfur (measured
as 1.670 ± 0.015 eV [5–7]) and an estimate of the spectroscopic parameters for the
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S2
−(X2�g) ground state, including the equilibrium distance (Re = 2.005 ± 0.015 Å)

and the harmonic frequency (ωe = 570 ± 100 cm−1). The vibrational structure of
S2

−(X2�g) trapped in solid matrices has been also characterized by using Raman
spectroscopy [8]. The optically-allowed X2�g ← A2�u emission (at ∼20000 cm−1

for the 0–0 transition) has been observed for S2
− the ions doped in alkali iodides,

chlorides, and bromides after laser excitation [9, 10]. The lifetime of the emitting
A2�u rovibrational levels are probably lengthened in matrices since the expected gas
phase rapid nonradiative autodetachment of the J = 1/2 and J = 3/2 fine com-
ponents of the A2�u state to their corresponding X state counterparts is quenched
there. Therefore, no experimental evidence was made previously for the existence of
electronically excited metastable S2

− ions in the gas phase. Theoretically and in addi-
tion to relatively small scale calculations on S2

− at the DFT and MP2 levels of the-
ory [11–13], extensive MRCI calculations on the lowest doublets and the first quartet
state (i.e. 14�u

−) of S2
− were performed by Heinemann et al. [14]. These authors

have deduced the spectroscopic properties of these electronic states and their dipole
allowed transition elements. Close examination of these theoretical results shows that
only the S2

−(X2�g both J = 1/2 & 3/2) components are expected to be long-lived
in the doublets. However, nothing is known yet about the higher quartet states which
may present metastable components.

Recently, metastable negative ions, such as SN− and CS−, have been predicted
to exist in electronic states having high-spin multiplicity [1, 2, 15]. Such high-spin
electronic states are good candidates for metastable negative ions. In the present work
we will consider the case of the S2

− anion by calculating the PEC for all its doublet
and quartet electronic states correlating to the S−(2Pu) + S(3Pg) dissociation limit,
together with the potentials of their S2 respective parent states. These calculations
are carried out at the highest achievable level of theory, by using highly correlated ab
initio methods and a large basis set of aug-cc-pV5Z quality [16]. Reliable predictive
properties for the quartet states of S2

− can be deduced from these computations.

2. ELECTRONIC STRUCTURE CALCULATIONS: METHODS

The calculations were performed using state-of-the-art ab initio methods, including
the complete active space self-consistent field (CASSCF) approach [17], followed
by internally contracted multi-reference configuration interaction, and the Davidson
correction (MRCI + Q) method [18, 19], both implemented in the MOLPRO pro-
gram [20]. Sulfur atoms were described using a large basis set (spdfgh aug-cc-
pV5Z [16]) comprising 262 contracted Gaussian functions. In these calculations,
the CASSCF active space included all configurations (configuration state functions
(CSF)) obtained after excitation of all valence electrons in valence orbitals. For MRCI
calculations, all configurations in the CI expansion of the CASSCF wavefunctions
were taken as a reference, resulting in more than 5 × 106 CSFs to be treated in the
D2h point group. All valence electrons were correlated. The nuclear motion problem
was solved by using the method of Cooley [21]. The spectroscopic constants were
computed from the derivatives of the potentials at their respective minima, and the
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spin–orbit couplings were evaluated over the CASSCF wavefunctions by using the
one-electron term of the Breit–Pauli Hamiltonian as implemented in the MOLPRO
program.

3. ELECTRONIC STRUCTURE CALCULATIONS: RESULTS

In Figure 1 there are depicted the MRCI + Q PEC for all 24 electronic states of
S2

− (thin lines) correlating to the bound asymptote S−(2Pu)+ S(3Pg), together with
those of the neutral S2 (X3�g

−, c1�u
−, B′3�u, B′′3�g, 15�u

−, 15�g, 15�u, and
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Figure 1. MRCI + Q PEC of the electronic states of S2
− (thin lines) together with those of S2 (X3�g

−,
c1�u

−, B′3�u, B′′3�g, 15�u
−, 15�g, 15�u, and 15�g) (thick lines). These curves are given with

respect to the energy of S2(X3�g
−)v′ = 0. The ab initio computed anionic PEC were shifted to lower

energies by 0.23 eV in order to match the experimental electron affinity of S2(X3�g
−) (see text). The

horizontal lines correspond to the positions of the ground vibrational levels.
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15�g) states (thick lines). Our curves for the anionic lowest doublets and for the
S2

−(14�u
−) state are consistent with those of Heinemann et al. [14] and complete

this previous theoretical work. All the S2
− electronic states are bound at large inter-

nuclear distances since they are located below their respective parent states. The
situation, however, is quite different in the molecular region, and these electronic
states should be considered one by one. Here we are presenting only the bound parts
of our anionic potentials, since our approach is not valid to describe accurately the
negative ion resonances above the autodetachment threshold [1–3]. We noticed that
our initially computed PECs for S2

− were shifted to lower energies (by 0.23 eV) in
order to match the experimental electron affinity of S2(X3�g

−) [5, 6]. Such a pro-
cedure has already been used in previous theoretical studies dealing with CS− and
SN− [1,2]. Figure 1 shows the high density of electronic states for this anion favoring
their mutual couplings by vibronic and spin–orbit, and complicating the computa-
tions for this molecular system. For better clarity, we are depicting in Figure 2 these
anionic PECs together with those of their respective parent state separately, useful for
judging the metastability of the S2

− states (see below). These figures show that some
of the anionic states are lying so close in energy that one cannot clearly distinguish
them. For instance, this is the case for the 14�g and the 14�g

+ states, for which the
insert in Figure 2B shows that these two states are surely close but do correspond to
two different PECs.

By examining Figures 1 and 2, we see that several electronic states possess rela-
tively deep potential wells. This is the case for almost all the states located below
the anionic dissociation limit. The upper ones are mostly repulsive. Table 1 gives
the spectroscopic constants for S2(X3�g

−) and for the S2
− states possessing poten-

tial wells together with their comparison with previous works. These spectroscopic
properties include the adiabatic excitation energies before shifting the S2

− PECs
(T0, including zero point vibrational energy correction computed variationally), equi-
librium distances (Re), the harmonic wavenumbers (ωe), the anharmonic terms
(ωexe,ωeye), and the rotational constants (Be, αe, and γe). The agreement for the
neutral spectroscopic parameters and with previous works for S2

− makes possible
reliable predictions for the unknown anionic states. Indeed, for S2(X3�g

−) our MRCI
+ Q internuclear distance of 1.898 Å differs by less than 0.01 Å from both the experi-
mental (1.889 Å [26]) and earlier MRCI + Q (1.907 Å [14]) values, and the har-
monic wavenumber (716.8 cm−1) compares rather well with the values (725.65 cm−1

and 734 cm−1) given in [26] and [14], respectively. For S2
−(X2�g), there is also a

good agreement between our Re value (2.021 Å) and previous experimental (2.005 ±
0.015 Å [5]) and theoretical (2.018 Å [14]) determinations. The harmonic wavenum-
ber ωe = 555.5 cm−1 for S2

−(X2�g) is within photoelectron spectroscopy error bars
(570 ± 100 cm−1 [5]) and in close accord with the value of 584 cm−1 derived from
studies of S2

− trapped in silicate solid matrices [23]. However, an ωe of 600.8 cm−1

given in Ref. [24] is out of the range of these determinations. Finally, Table 1 lists the
equilibrium spin–orbit constant (Aso,e) for S2

−(X2�g,A2�u, 12�u, 14�g, 12�g,
and 14�u). For the X state, our computed value, −355.8 cm−1, compares reason-
ably well with the experimental determinations: −410 cm−1 [5], 420 cm−1 [22, 23],
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and 440 cm−1 [25]. The differences are within our estimation of ∼5% accuracy for
this property [1, 25–27]. This agreement suggests that the experimentally unknown
spin–orbit constants for the S2

− electronic states should be of similar accuracy. We
refer to Table 1 for the corresponding fine-structure constants.

4. DISCUSSION

In the present section we focus on discussing the metastability of the electronic states
of S2

− in the light of their PEC (cf. Figures 2 and 3), their electronic configurations
(cf. Table 2), and the spin–orbit coupling functions (depicted in Figure 3). It is worth
noting again here that their long-range parts are bound, and we will consider only
their behavior in the molecular region.

Table 2 lists the dominant electronic configurations of the quartets and the doublets
of S2

− together with the dominant electronic configurations of their neutral parent
states. The anionic states of interest are obtained by attaching an extra electron onto
either the 5σu or the 2πg orbitals of S2. The X2�g, 14�u

−, 12�u, 12�u
+, and 12�u

−
anionic electronic states have the S2(X3�g

−) ground state as the parent neutral state
(cf. Figure 2A). The S2

−(A2�u, 14�g
+, 12�g

−, 14�g
−, 22�g

−, 12�g, and 14�g)

0

87654
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Figure 3. Evolution of the spin–orbit couplings involving the S2
−(4�g) state along the internuclear dis-

tance. See Table 3 for the definition of these terms.
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Table 2. Dominant electronic configurations for the electronic states of S2
− and S2 investigated. These

configurations are quoted for an internuclear separation of 5.5 bohr.

S2 S2
− S2

−

X3�g
− (5σg)

2(5σu)
0(2�u)

4(2�g)
2 X2�g (5σg)

2(5σu)
0(2�u)

4(2�g)
3

c1�u
− (5σg)

2(5σu)
0(2�u)

3(2�g)
3 14�u

− (5σg)
2(5σu)

1(2�u)
4(2�g)

2

15�g (5σg)
2(5σu)

1(2�u)
3(2�g)

2 A2�u (5σg)
2(5σu)

0(2�u)
3(2�g)

4

B′′3�u (5σg)
2(5σu)

1(2�u)
4(2�g)

1 12�u (5σg)
2(5σu)

1(2�u)
4(2�g)

2

B′3�g (5σg)
1(5σu)

0(2�u)
4(2�g)

3 14�g (5σg)
2(5σu)

1(2�u)
3(2�g)

3

15�u
− (5σg)

1(5σu)
1(2�u)

4(2�g)
2 14�g

+ (5σg)
2(5σu)

1(2�u)
3(2�g)

3

15�u (5σg)
2(5σu)

1(2�u)
2(2�g)

3 12�u
+ (5σg)

2(5σu)
1(2�u)

4(2�g)
2

15�g (5σg)
1(5σu)

1(2�u)
3(2�g)

3 12�g
− (5σg)

2(5σu)
1(2�u)

3(2�g)
3

12�u
− (5σg)

2(5σu)
1(2�u)

4(2�g)
2

12�g
+ (5σg)

1(5σu)
0(2�u)

4(2�g)
4

12�g (5σg)
2(5σu)

1(2�u)
3(2�g)

3

14�u (5σg)
1(5σu)

1(2�u)
4(2�g)

3

14�g
− (5σg)

2(5σu)
1(2�u)

3(2�g)
3

22�g
− (5σg)

2(5σu)
1(2�u)

3(2�g)
3

22�g (5σg)
2(5σu)

2(2�u)
4(2�g)

1

24�u (5σg)
2(5σu)

2(2�u)
3(2�g)

2

22�u (5σg)
1(5σu)

1(2�u)
4(2�g)

3

24�u
− (5σg)

2(5σu)
1(2�u)

2(2�g)
4

14�g (5σg)
1(5σu)

1(2�u)
3(2�g)

4

22�u
− (5σg)

2(5σu)
1(2�u)

2(2�g)
4

24�g (5σg)
2(5σu)

2(2�u)
2(2�g)

3

24�g
− (5σg)

1(5σu)
2(2�u)

4(2�g)
2

14�u (5σg)
1(5σu)

2(2�u)
3(2�g)

3

14�u
+ (5σg)

1(5σu)
2(2�u)

3(2�g)
3

states are formed by binding an extra electron to S2(c1�u
−) (cf. Figure 2B). The

S2(B′′3�u) and S2(B′3�g) are the parent states of the S2
−(22�g) (Figure 2D) and

S2
−(14�u, 12�g

+, and 22�u) (Figure 2C) states, respectively. The remaining S2
−

electronic states of Figure 1 present quintets as parent states (Figures 2E, 2F, 2G, 2H).
According to our theoretical results, it is worth noting that among all the anionic

states depicted in Figures 2 and 3 only the X2�g and 14�g states are long-lived
although several S2

− states are located well below their neutral parent state. Indeed,
Figure 2A shows that the low vibrational levels of S2

−(X2�g) are lying well below
their autodetachment threshold, i.e. the energy of S2(X3�g

−) v′ = 0. However, the
other states in this Figure are lying above it, where fast electron loss is expected to
occur. For all the S2

− states given in Figure 2B, with the exception of the J = 7/2
fine structure component of 14�g, the angular momentum of the fine structure com-
ponents (i.e. J = 1/2 and 3/2) have their counterparts in the low-lying X2�g state.
Similarly, the J = 5/2 component of the 14�g state may couple with its counter-
part in 12�u which, however, may autodetach rapidly to S2(X3�g

−). Nevertheless,
14�g (J = 7/2) does not possess any low-lying counterpart. Moreover, the spin–
orbit coupling functions involving S2

−(14�g) (cf. Figure 3 and Table 3) reveal
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Table 3. Definition of the spin–orbit matrix
elements involving the S2

−(14�g) state,
together with our schematic representation
given in Figure 3.

< X2�g|HSO|4�g >= X2�g − 4�g
< 22�g|HSO|4�g >= 22�g − 4�g
< 14�g|HSO|4�g >= 14�g − 4�g
< 24�g|HSO|4�g >= 24�g − 4�g
<2 �g|HSO|4�g >= 2�g − 4�g
<4 �g|HSO|4�g >= 4�g − 4�g

that couplings involving the 14�g state with close-lying states are small or null:
for instance, the <2 �+

g|HSO|4�g>, < 4�+
g|HSO|4�g>, < 4�g|HSO|14�−

g>,
<4�g|HSO|24�−

g>,<4�g|HSO|22�−
g>,<4�g|HSO|12�−

g>matrix elements are
null due to spin–orbit selection rules. Hence, the depletion of the metastable J = 7/2
component of this quartet should occur via weak interactions. Finally, regarding the
states located above the 14�g state their fine structure components are expected to
undergo rapid intersystem conversion into the lower counterparts, thus reducing their
lifetime even for those lying below their respective neutral state. As an illustration, we
can mention the lowest S2

−(12�g
+) rovibrational levels, which are lying definitely

well below the S2(B′3�g) neutral parent state (Figure 2C) and which can couple, at
least, with the S2

−(X2�g; J = 1/2) component.

5. CONCLUSION

Accurate ab initio computations were performed on the S2
− electronic states corre-

lating to the unique bound asymptote of this molecular system and to those of their
respective neutral parent states, together with some diagonal and off-diagonal spin–
orbit matrix elements. In the light of these calculations, the stability of the electronic
states of this anion has been studied and, in addition to the well-known bound-ground
state of S2

− (i.e. the X2�g state), the J = 7/2 component of the S2
−(14�g) state

is predicted to be long-lived in the gas phase. The present theoretical predictions are
helpful for discussing the rapid decomposition reaction pathways that may be under-
gone by S2

− and occur in competition with the autodetachment process (leading to
S2 + e−) and also for proposing the reaction pathways followed when the S and S−
species in their ground states collide together. This theoretical work should motivate
state-of-the-art experiments dealing with this negatively charged ion, to check the
assumptions discussed above using, for instance, heavy ion storage rings.

Acknowledgements

M.H. would like to acknowledge a visiting fellowship at the University of Tunis from
the Tunisian Ministry of Higher Education and Research.



Electronically Excited Metastable States of S2
− 259

References

1. M. Hochlaf, G. Chambaud, P. Rosmus, T. Andersen, and H.J. Werner, J. Chem. Phys. 110, 11835,
1999, and references therein.

2. S. Ben Yaghlane, S. Lahmar, Z. Ben Lakhdar, and M. Hochlaf, J. Phys. B 38, 3395, 2005.
3. A. Dreuw, T. Sommerfeld, and L.S. Cederbaum, J. Chem. Phys. 116, 6039, 2002, and references

therein.
4. http://webbook.nist.gov.
5. S. Moran and G.B. Ellison, J. Phys. Chem. 92, 1794, 1988.
6. R.J. Celotta, R.A. Bennett, and J.L. Hall, J. Chem. Phys. 60, 1740, 1974.
7. S. Hunsicker, R.O. Jones, and G. Gantefor, J. Chem. Phys. 102, 5917, 1995.
8. G.-G. Lindner, Ph D thesis, Shaker, Aachen, 1994. R.J.H. Clark, T.J. Dines, and M. Curmoo, Inorg.

Chem. 22, 2766, 1983.
9. M. Ikezawa and J. Rolfe, J. Chem. Phys. 58, 2024, 1974.

10. C.A. Sawicki and D.B. Fitchen, J. Chem. Phys. 65, 4497, 1976.
11. F.A. Cotton, J.B. Harmon, and R.M. Hedges, J. Am. Chem. Soc. 98, 1417, 1976.
12. F. Ramondo, N. Sanna, and L. Bencivenni, J. Mol. Struc. THEOCHEM, 258, 361, 1992.
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Abstract We provide information on structural and electronic properties of highly doped silicon
fullerenes, obtained by replacing as much as 30 carbon atoms by an equivalent number of
silicon atoms. A large number of isomers results from our optimization study based on the
first-principles molecular dynamics approach within density functional theory. We are able
to rationalize the topology taken by these clusters on the basis of preferential segregated
arrangements, in which groups of atoms of the same nature form homogeneous regions on
the cage.

1. INTRODUCTION

Fullerenes attract a great deal of interest since their discovery [1], stimulating the
synthesis of doped derivatives enhancing chemical reactivity. Also, the search of a
connection between molecular and material science has prompted investigations on a
large number of doped fullerenes, expected to be building blocks of fullerene-based
new nanomaterials. Among the doping methods, substitutional doping is regarded as
the best method to create a reactive site in the cage and to modify the electronic prop-
erties of the fullerene itself. To date, various types of substitutional heterofullerenes
have been reported, where B, N, and transition metal atoms, such as Fe, Co, Ni, Rh,
Ir have been successfully incorporated into the fullerene cage [2–8]. However, the
interest for silicon as a dopant atom is largely predominant, due to a striking sequence
of similarities and differences among these two elements. We remind that carbon and
silicon have the same number of valence electrons. Therefore, at first glance, the
replacement of carbon with silicon appears trivial. However, a deeper analysis shows
that the bonding nature of carbon and silicon differs notably. Silicon prefers to form
multi-directional sp3 single bonds. These are expected not to be easily adjustable
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into the carbon cage where carbon is bonded through sp2 threefold connections. The
existence of silicon doped heterofullerenes was confirmed by ion mobility and mass
spectroscopy experiments [9–12], where at least two silicon atoms are doped into
the cage. A combination of mass spectroscopy and photofragmentation experiments
showed the existence of C60−mSim with m = 12 as an upper limit of the number of
doped silicon atoms [13, 14].

In addition to these experimental results, intensive calculations began on the
theoretical side. First principles studies have been performed in the case of one or
two silicon atoms doping C60 (C59Si, C58Si2) [12, 15]. Then, the number of silicon
atoms has been gradually increased up to m = 12 [16–21]. Very recently we showed
the possibility of silicon-doped fullerenes with m> 12, such as C40Si20, C36Si24,
and C30Si30 [22, 23]. These studies have made possible a remarkable breakthrough
in the area of doped fullerenes, obtained via a combination of a careful analysis of
charge topology and an observation of the fragmentation mechanism at high tempera-
tures [24]. We were able to show that highly Si-doped fullerenes are thermally stable
as long as Si atoms neighbors of C atoms in segregated regions (the outer atoms)
are predominant over inner Si atoms. Due to its polar character, the Si–C interaction
is able to stabilize the cage and offsets the energetic costs of sp2 interactions for a
number of dopant atoms smaller than 20. We demonstrated that beyond this threshold,
repulsive interactions among inner Si atoms cause fragmentation. From the electronic
point of view, a clear localization of the HOMO (highest occupied molecular orbital)
is the chemical bonding fingerprint of this behavior [24].

We have pursued our search of structural isomers for the largest number of Si atoms
considered. This allows to complement effectively our description of the C30Si30
isomers, thereby exemplifying the complexity of their classification in terms of
binding energy. The present paper is intended to attain this goal. In this contribution
we provide an extensive analysis of 15 silicon doped heterofullerenes C30Si30 by
focusing on their structural and electronic properties. Accurate data are given on
bonding distances. The distribution of the charges as well as the topology of the
relevant electronic localization concur to describe the correlation among the dop-
ing content and changes in the electronic properties. Part of the information made
available is obtained for isomers unexplored before, bringing complementary and
novel insight on these new nanosystems. Indeed, nine of these isomers have been the
object of a previous preliminary report, where we claimed that our research of the
most stable structures had been essentially exhaustive [23]. By insisting on the iso-
mer search, we are now in a position to present additional information, with an even
larger number of isomers lying very close in energy. A view of the fragmentation
mechanism characterizing the dynamics at high temperatures is also provided.

2. COMPUTATIONAL METHODS

The calculations are performed within the framework of the Carr–Parrinello mole-
cular dynamics [25, 26]. Our approach is based on the density functional theory
with generalized gradient approximations after Becke for the exchange energy [27]
and Lee, Yang, and Parr for the correlation energy [28]. Troullier–Martins type
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norm-conserving pseudopotentials are used to describe the core–valence interaction.
Periodic boundary conditions have been adopted and a face-centered cubic cell with
an edge of 21.17 Å provides a system size much larger than the diameter of the opti-
mized structures. Wavefunctions are expanded in plane waves with an energy cutoff
of 40 Ry. We considered 15 different isomers. In order to select the appropriate ini-
tial configurations we have taken advantage of the fact that these heterofullerenes are
more stable when the Si atoms lie close together in the cage [16, 19, 20, 22]. There-
fore, our starting configurations for C30Si30 are obtained from C36Si24 by further
replacing six C atoms. Then we optimized self-consistently the structures by mini-
mizing the atomic forces. Optimization is allowed to proceed until the largest force
component is less than 5 × 10−4 a.u. and the average force is one order of magnitude
smaller. An analysis of electronic properties is performed by projecting Kohn–Sham
(KS) orbitals on atomic orbitals centered on each atom and calculating the atomic
populations and the probability densities. A population analysis is also performed to
obtain Mulliken charges on each atom [29]. Concerning molecular dynamics, more
details on the simulation parameters are given elsewhere [24].

3. RESULTS

3.1. Structural properties

In Figure 1 we give a two-dimensional schematic representations of 15 different
isomers of C30Si30. Interatomic distances are listed in the Table 1. In the table,
ph is the bond between a pentagon and a hexagon, while hh is the bond between
two hexagons. The total number of occurrences for each bond is also given in the
parenthesis. For stretched Si–Si distances, the notion of bond has to be intended as
indicative of an interatomic distance, customary Si–Si bond lengths being signifi-
cantly smaller than some of the Si–Si distances recorded in this study.

In all these isomers C–C bond lengths are almost the same as those of C60, meaning
that the conjugated pattern of C60 is preserved in the carbon region despite the large
number of doping Si atoms. In some of the isomers, Si–Si bond distances are highly
stretched (as much as 2.66 Å), suggesting that these connections will be the first to
break as a reaction to thermal motion. While this preliminary conclusion is intuitively
correct, we have demonstrated that these weak interactions are not necessarily a pre-
cursor of unavoidable fragmentation [19]. The different isomers have in common
an unmistakable relationship between their energetic stability and the formation of
homogeneous regions made by Si atoms well segregated from C atoms. This behavior
goes along with the peculiar shape taken by these clusters. With increasing number
of silicon atoms, two half portions can be clearly distinguished (see Figures 3 and
4 for representative cases). One, occupied by C atoms, is surprisingly similar to the
undoped C60 cage. The second, hosting Si atoms, has a larger diameter and reflects
the attempt to restore a more favorable sp3 bonding configuration. We have calcu-
lated the average angle taken by Si–Si–Si triads, by obtaining a value very close to
109.5◦, the tetrahedral angle for sp3 bonding. At a first glance, one might wonder
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(D) 0.49 eV (E) 0.55 eV(B) 0.05 eV (C) 0.43 eV

(G) 0.72 eV (H) 0.85 eV (I) 1.15 eV (J) 1.20 eV(F) 0.68 eV

(K) 1.96 eV (M) 2.40 eV(L) 2.05 eV (O) 5.76 eV

(A) 0 eV

(N) 2.62 eV

Figure 1. Two-dimensional schematic representations of 15 different isomers of C30Si30. Si atoms are
denoted by the black dots. The difference of the total energies relative to the energy of isomer A is
also given.

whether the stability of such deformed structures is real or simply resulting from a
“fake” local minimum, i.e. a saddle point in the configurational space. Vibrational
analysis reveals that most of these isomers are indeed vibrationally stable, thereby
standing small displacements in the harmonic regime. Also, differences in zero-point
energy among isomers (typically 0.002 eV) are much smaller than the differences in
total energies. Therefore, no effect is found in the isomers energy scale.

3.1.1. Electronic properties

To better understand the origins of this enhanced and unexpected structural stability
and see how they are deeply rooted into the electronic structure, we provide here
information on the electronic properties after doping the fullerene cage with a large
number of silicon atoms. By focusing on the five most stable isomers (from A to E),
which are found within 0.01 eV/atom, we consider first the values of the Mulliken
charges (see Figure 2).

Non negligible negative charges on the C atoms are found when C atoms have
nearest-neighbor Si atoms. Conversely, when C atoms have no Si nearest-neighbors,
the charges are vanishingly small. In the case of Si atoms, substantial positive charges
appear when the Si atoms are nearest neighbors to C atoms. Positive charges tend to
vanish whenever a Si atom is bound to three neighbors of the same kind. In this case,
small negative charges can also be found on the Si atoms. One notice that the residual
charges on the Si atoms not neighboring C atoms take alternate signs within a specific
Si-made ring, as in an attempt to reduce repulsive effects. However, the presence of
odd-membered rings (pentagons) precludes systematic sequences of alternate charges
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Table 1. Bond lengths of C30Si30 calculated in this work. The smallest and the largest values and the total
number of occurrences for each bond are given.

Isomers Si–Si (Å) Si–C (Å) C–C (Å)

A ph(26) 2.35–2.49 ph(8) 1.89–2.01 ph 1.45–1.51
hh(14) 2.30–2.41 hh(2) 1.84–1.85 hh 1.40–1.44

B ph(24) 2.36–2.51 ph(12) 1.86–1.92 ph 1.45–1.52
hh(12) 2.27–2.40 hh(6) 1.82–1.86 hh 1.40–1.44

C ph(24) 2.34–2.66 ph(12) 1.88–1.98 ph 1.45–1.53
hh(15) 2.27–2.53 hh(0) hh 1.40–1.45

D ph(24) 2.34–2.45 ph(12) 1.88–2.02 ph 1.44–1.52
hh(15) 2.31–2.43 hh(0) hh 1.40–1.44

E ph(30) 2.30–2.48 ph(0) ph 1.45–1.49
hh(10) 2.31–2.40 hh(10) 1.85–1.91 hh 1.40–1.44

F ph(26) 2.31–2.48 ph(8) 1.89–1.97 ph 1.45–1.51
hh(13) 2.32–2.48 hh(4) 1.85–1.86 hh 1.40–1.46

G ph(28) 2.31–2.52 ph(4) 1.90–1.98 ph 1.44–1.51
hh(12) 2.33–2.48 hh(6) 1.84–1.91 hh 1.40–1.46

H ph(28) 2.32–2.53 ph(4) 1.90–2.00 ph 1.44–1.50
hh(12) 2.29–2.39 hh(6) 1.86–1.92 hh 1.40–1.45

I ph(26) 2.30–2.42 ph(8) 1.87–1.98 ph 1.45–1.51
hh(13) 2.29–2.36 hh(4) 1.84–1.89 hh 1.40–1.45

J ph(27) 2.29–2.53 ph(6) 1.87–1.93 ph 1.44–1.49
hh(12) 2.30–2.45 hh(6) 1.83–1.90 hh 1.39–1.45

K ph(26) 2.30–2.59 ph(8) 1.89–2.02 ph 1.44–1.51
hh(13) 2.30–2.45 hh(4) 1.86–1.88 hh 1.39–1.45

L ph(30) 2.31–2.63 ph(0) ph 1.45–1.50
hh(9) 2.32–2.38 hh(12) 1.87–1.90 hh 1.39–1.44

M ph(24) 2.33–2.57 ph(12) 1.89–2.02 ph 1.44–1.51
hh(14) 2.30–2.46 hh(2) 1.88–1.89 hh 1.40–1.44

N ph(22) 2.34–2.51 ph(16) 1.89–2.05 ph 1.45–1.49
hh(15) 2.31–2.56 hh(0) hh 1.40–1.46

O ph(22) 2.33–2.53 ph(16) 1.90–2.02 ph 1.44–1.50
hh(14) 2.30–2.56 hh(2) 1.87 hh 1.42–1.47

on Si atoms. Overall, these results indicate two major facts. First, Si–C bonds at
the Si-C border are highly coulombic due to significant charge transfer from the Si
atoms to the neighboring C atoms. Second, the charges associated with the Si atoms
located far from the frontier with C atoms are vanishingly small and either positive
or negative. Therefore, a correspondence can be established between the location in
the cage and the electronic character of the Si atoms, leading to the identification of
two groups of Si atoms. The first takes advantage of a strong coulombic interaction
with the C atoms to be tightly linked to C-made part of the cage. The second is
formed by those Si atoms less affected by the coulombic attraction. These atoms have
been found to behave as seeds of dynamical instability, since any residual repulsion
occurring among a pair of them can result in rapid fragmentation [24].
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Figure 2. A flattened view of the five most stable isomers with the shading codes corresponding to values
of Mulliken charges.

In Figures 3 and 4, we show a three dimensional representation of the isomers A
and C (see (a)). The plots of their total electron densities ρ for the isosurfaces corres-
ponding to ρ = 0.07 e/(a.u.)3 are also given as (b) in each figure. The probability
density of the KS orbitals corresponding to the isosurfaces of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) at
ρ = 0.005 e/(a.u.)3 are given as (c) and (d), respectively, in each figure. The charge
transfer effect caused by doping is clearly visualized in the total electron density
plot, where the electron density appears largely predominant in the carbon region.
By keeping in mind that the results presented here refer to the structural optimization
at zero temperature only, it is conceivable to associate the HOMO localization sites
to those most reactive for these specific conditions (T = 0 K). Similarly, the LUMO
corresponds to regions where enhanced chemical reactivity can manifest itself when
sufficient energy is injected as thermal motion. A substantial gap reduction goes
along with the introduction of temperature (going from typical values of 0.6 eV at
T = 0 K down to 0.1 eV at T = 3000K). This allows to attribute to the LUMO, in
terms of localization, the same significance of the HOMO but at a higher tempera-
tures. Accordingly, looking for the LUMO localization sites is a viable approximation
to identify the HOMO localization sites at high temperature. In view of these consid-
erations, we can conclude that the inner Si atoms are the best candidates for important
bonding changes at finite temperatures, as those occurring when cluster fragmenta-
tion takes place. Indeed, the LUMO is localized on these inner Si sites. This analy-
sis has been recently substantiated by an extensive set of first-principles molecular
dynamics simulations, showing that at high temperatures the HOMO shifts its region
of localization from the outer to the inner part of the Si region [24].
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(a) (b)

(c) (d)

Figure 3. (a) Three-dimensional ball and stick representations of the most stable isomer A. Isodensity
surfaces associated with (b) the total electronic density at ρ = 0.07 e/(a.u.)3 and (c) the HOMO and (d)
the LUMO at ρ = 0.005 e/(a.u.)3.

(b)(a)

(d)(c)

Figure 4. (a) Three-dimensional ball and stick representations of the third most stable isomer C. Isodensity
surfaces associated with (b) the total electronic density at ρ = 0.07 e/(a.u.)3 and (c) the HOMO and (d)
the LUMO at ρ = 0.005 e/(a.u.)3.
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16.00 ps 16.14 ps

16.29 ps 16.43 ps

Figure 5. Snapshots of configurations taken at T = 3000K for the isomer D during the first stages of
fragmentation.

3.1.2. Fragmentation mechanism

The above pieces of evidence are indicative of the role played by loosely connected Si
atoms in inducing thermal instability. In Figure 5 we display a sequence of configu-
rations taken at the beginning of the fragmentation process occurring at T = 3000
K. The Si atoms belonging to the inner regions are the first to move away from each
other, even though fluctuations can even induce temporary recombination. The border
region between Si and C is characterized by a remarkable stability, with Si–C pairs
firmly connected by ionic interactions. On the other hand, whenever Si atoms find
neighbors of the same kind bearing the same residual charge, energetically unfavo-
rable local configurations lead to the disruption of the cage, that opens in the inner Si
region.

4. CONCLUSION

We have performed extensive search of equilibrium geometries for a fairly large
number of configurations of C30Si30, as much as 15 isomers, and investigated their
structural and electronic properties. Whenever the cage is formed by fully segregated
Si and C regions, the stability of the heterofullerene is enhanced. Visual inspection



Heterofullerene C30Si30 269

of the electronic densities associated with the total valence charge, the HOMO and
the LUMO gives clear evidence for the highly polar character of these isomers. We
highlighted the existence of chemically reactive sites moving from the Si–C border
to the inner Si regions with increasing temperature.
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14. M. Pellarin, C. Ray, J. Lermé, J.L. Vialle, M. Broyer, X. Blase, P. Kéghélian, P. Mélinon, and A. Perez,
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Abstract The study of molecular materials presenting magnetic properties is currently one of the
main research areas in Materials Science. However, the progress in this field has been
hampered by the lack of tools allowing a proper rationalization of the mechanism of
magnetic interactions. Previous theories commonly used to explain the nature of magnetic
interactions at the microscopic level (like the so-called McConnell-I and II approaches) fail
in many cases, and do not have a sound theoretical basis. In the present work, we review a
recent theoretical methodology developed by us, called first-principles bottom-up method-
ology, which allows an accurate and systematic study of the magnetism in molecule-based
crystals. The approach is bottom-up because it begins by computing the microscopic mag-
netic interactions and, using these values, the macroscopic magnetic properties. It is also
“first-principles” because the magnetic interactions are evaluated without making prelimi-
nary assumptions about the nature of these interactions. The way in which the methodology
works is illustrated on a molecular crystal, the 2-hydronitronyl-nitroxide, experimentally
known to present antiferromagnetic properties.

1. INTRODUCTION

The discovery of bulk ferromagnetic properties in molecular crystals of radicals
containing only C, O, N, and H atoms in their structure [1] started a widespread inter-
est, within the scientific community, towards what are now known as purely organic
molecular magnets. These magnets are solids resulting from the aggregation of purely
organic stable radicals. The crystal packing allows the propagation of the magnetic
interactions along two or more directions within the solid (basic principles preclude
the existence of magnetism in one dimension above 0 K [2]). Currently, the field
of purely organic molecular magnets is a subset of the more general molecule-based
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magnets field, which includes crystals whose radicals contain atoms other than C, O,
N, and H.

Well-known pure organic molecule-based magnets are many derivatives of the
nitronyl nitroxide family of neutral radicals [3] (see Figure 1 for the general struc-
ture) and some C60 molecular crystals (e.g. C60TDAE salts [4a] and pressed / heated
polymeric C60-fullerene neutral crystals [4b]). Among the non-purely organic subset
one can mention the Prussian Blue derivatives [5] and [Fe(Cp∗)2]TCNE (decamethyl
ferrocinium tetracyano ethenide) salts [6], both presenting ferromagnetism above
room temperature.

Progress in the field of molecule-based magnets has been fast, and a large num-
ber of compounds showing interesting macroscopic magnetic behaviors have been
found (e.g. ferromagnetism, ferrimagnetism, antiferromagnetism, metamagnetism,
spin-glass, spin-ladders . . . ). However, due to improper knowledge of the magnetic
interactions at the microscopic level, and also due to a lack of rigorous procedures to
compute macroscopic properties from microscopic interactions, the progress in this
field has been difficult. As a consequence, there are currently no rigorous procedures
to design molecule-based magnets showing a given desired macroscopic magnetic
behavior.

With the aim of filling this gap, we have recently proposed a methodological pro-
cedure [7], hereafter called first-principles bottom-up methodology, which allows
a rigorous computation of the macroscopic magnetic behavior from the only
knowledge of the microscopic magnetic interactions (obtained from first-principles
computations of all unique radical–radical pairs found in the crystal, making no
a priori assumptions about the mechanism of the magnetic interaction). Therefore,
this procedure allows connecting the crystal geometry with the macroscopic mag-
netic properties in a rigorous and unbiased manner. Consequently, the macroscopic
behavior can be associated to specific interactions between pairs of radicals.

The nature and strength of all radical–radical microscopic magnetic interactions
can be described in terms of the associated JAB parameter, which can be computed

C

N

C C

N

O
-

O

R

CH3
CH3 CH3CH3

+

Figure 1. Chemical structure of a nitronyl nitroxide radical, where R is the substituent that different-
iates among members of this family (representative cases range from a simple H atom up to substituted
six-membered rings).
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from the energy difference between different electronic states of the radical–radical
pairs (the energies of these states are computed using first-principles methods, like
density functional or ab initio techniques). Once all JAB parameters are obtained,
the connectivity they establish among the radicals within the crystal defines the mag-
netic topology of the crystal. Such a topology is necessary to find a finite model
of the crystal that would properly represent its magnetic properties. The spin func-
tions of this finite model are used as a basis to compute the matrix representation of
the Heisenberg Hamiltonian (which is a function only of the JAB parameters). The
full energy spectrum of the Heisenberg Hamiltonian is then obtained by diagonali-
zing the matrix. Once these energies are inserted in the proper Statistical Mechanics
expressions, one can compute the macroscopic magnetic properties of interest and
also define the macroscopic magnetic behavior of the crystals.

In the following sections, our first-principles bottom-up methodology will be
described from a physical perspective (a full description on mathematical terms can
be found in Ref. [7]). Then, the use of this methodology will be illustrated on the
α-2-hydro nitronyl nitroxide [8] (hereafter called α-HNN), the simplest member
of the nitronyl nitroxide family (R = H in Figure 1). The macroscopic magnetic
properties and crystal structure of this compound are well known (its crystal struc-
ture is stored in the Cambridge Crystallographic Database [9] with refcode name
TOLKEK).

2. MAGNETISM IN MOLECULAR CRYSTALS

The presence of magnetism in a crystal requires the existence of spin-containing units
capable of interacting with each other. Examples of spin-containing units are mole-
cules having unpaired electrons, e.g. free radicals (if all electrons are coupled, no net
spin is left in the molecule and its aggregates become diamagnetic). Experimentally,
it has been observed [3] that the same spin-containing units can pack in different
forms (called polymorphs) which, in some cases, present different magnetic proper-
ties. Therefore, the type of magnetic interactions depends on the spatial arrangement
of the spin-containing units in the crystal.

The net spin of these spin-containing units in organic molecules is usually well
represented by the total spin quantum number S. For non-purely organic molecules
the use of the quantum number J is sometimes required, when a non-negligible cou-
pling with the angular momentum L is present. When the spin-containing units do
not interact (the spin states of the aggregate being degenerate), the aggregate behaves
as a set of isolated spin units, and is usually referred to as a paramagnet. When the
spin-containing units interact with nearby units, non-degenerate states result from
that interaction. For instance, in the case of the interaction between two doublet units,
one can obtain one singlet state and three energetically degenerate triplet states. When
the triplet state is energetically the lowest in energy, one talks about the presence of
a ferromagnetic interaction. When the ground state is a singlet one talks about an
antiferromagnetic interaction. The strength of the magnetic interaction between two
radicals A and B is evaluated by the parameter JAB , which is proportional to the
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energy difference between the highest and lowest spin states. Using the Heisenberg
Hamiltonian: Ĥ = −2

∑
JAB ŜA · ŜB , values of JAB > 0 stand for ferromagnetic

interactions, while JAB < 0 stand for antiferromagnetic interactions. It is also worth
pointing out the existence of a dimerization problem. Sometimes, the unpaired elec-
trons of two adjacent radicals form a new bond between the two radicals. The result
is the formation of diamagnetic dimers. Dimerization should be avoided if one wants
to obtain crystals presenting magnetic properties.

When the coupled spin-containing units are structurally different and also have
different total spins, S1 and S2, the allowed spin states for the dimer vary from (S1 +
S2) to |S1 − S2| in −1 steps. In the high spin ferromagnetic case (S1 + S2), one still
talks about ferromagnetic interactions, but in the low spin case, necessarily different
from zero, one talks about ferrimagnetic interactions (in a certain way, all the allowed
states from (S1 + S2)− 1 to |S1 − S2| can be considered as ferrimagnetic).

In general, any crystal can present more than one type of magnetic interactions.
They can be ferromagnetic between some of the nearby units and antiferromagnetic
between others. Sometimes, one or some of these interactions are much larger than
the rest and are said to be the dominant magnetic interactions. In many of the experi-
mental crystals, the interplay between the different classes of interactions is far from
having a clear dominancy, and computations are required to establish the macroscopic
magnetic behavior.

The macroscopic properties depend on the temperature (for instance, above a temp-
erature called critical temperature all ferromagnets become paramagnets, but more
complex phenomena are also possible). The dependence of the macroscopic magnetic
properties with the temperature can help define the dominant magnetic character of
the crystal. Consequently, one of the first objectives of any computational procedure
is to study the dependence of the common macroscopic magnetic properties against
temperature.

The interaction between the spin-containing units can be 0D, 1D, 2D, or 3D.
In the first case (0D), the units A and B interact, but their interaction with the other
surrounding spin-containing units is negligible and the crystal has to be visualized
as a set of isolated pairs (the extension to isolated aggregates is obvious). For 1D
magnetic interactions, the A–B pair interacts in such a form that the A–B interaction
is extended along one crystallographic direction, i.e. there are infinite ...AB AB AB ...

chains within the crystal that do not interact among them. One refers to 2D magnetic
interactions, if these chains interact with nearby chains in such a way that infinite lay-
ers along two dimensions are formed. An n-leg spin ladder (i.e. n chains that interact
among themselves but not with the remaining n + 1 chains) can be considered as a
1D motif with partial 2D character (i.e., it is a 1D/2D magnetic motif). Finally, the
chains can interact along all three directions of space. In this case one speaks of 3D
magnetic interactions. A particular case of 3D magnetism is bulk ferromagnetism,
where the dominant JAB interactions are ferromagnetic.

From a microscopic point of view, the cause for the existence of magnetism is the
energy splitting among states of different multiplicities when the radicals interact.
In purely organic molecules, using a simplistic molecular orbital model, the splitting
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is induced by the overlap of the singly occupied orbitals (SOMO) of the interacting
units. This explains why these interactions are sometimes identified as through-space
magnetism (there is another type of magnetism, called through-bond magnetism,
where the two interacting units are covalently bonded by a diamagnetic ligand, as in
the case of the Cu(II)–OH–Cu(II) interaction).

The underlying principles behind the magnetic through-space interactions are
an extrapolation to the supramolecular world of the principles governing the
interaction between two H atoms to form H2 (see Figure 2). The overlap of
two 1 s orbitals, centered on atoms HA and HB, at very large distances gives
rise to four energetically degenerate states, resulting from antisymmetrization
of 1 sAα(1)1 sBα(2), 1 sAα(1)1 sBβ(2), 1 sAβ(1)1 sBα(2), and 1 sAβ(1)1 sBβ(2)
configurations. Such degenerate states are equally populated at any temperature, a
fact that explains the paramagnetism (lack of net spin) of a pair of non-interacting HA
and HB atoms. As the H atoms move closer to each other, the 1 s orbitals of A and B
interact to form 1 sA + 1 sB bonding and 1 sA − 1 sB antibonding molecular orbitals
(MOs). Once again, there are four states clustered into one singlet (S1) and three
degenerate triplet (T1) states. At larger distances, the bonding and antibonding MOs
are nearly degenerate, and Hund’s rule indicates that the ground state is the maximum
occupancy and highest multiplicity MO, i.e. the triplet T1 state. This state has one
electron in the bonding MO and another in the antibonding MO. It is energetically
repulsive (see Figure 2).

So

T1

S1

E

So�

H−... H+

H. ... H.

rA-B

Figure 2. Scheme showing the variation of the energy of the So,S1, and T1 diabatic curves as a function of
the interfragment distance rA-B in the case of two atoms whose electrons are placed in the corresponding
1 s orbitals. The So curve describes the situation in which the new bond formed is not very strong (notice
the presence of a barrier in the So–S1 and So–T1 crossing). The So

′ curve describes a much stronger bond
(notice the decrease in H. · · · H. towards H2 energy barriers when going from the So to the So

′ curve).
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The S1 state is an open-shell singlet and, for similar reasons, is also repulsive
(though less stable than T1, according to Hund’s rule). As the distance between the
H atoms decreases the splitting between the bonding and antibonding MOs increa-
ses, finally leading to a lowest energy configuration with two electrons of opposite
spins in the bonding MO. In valence-bond (VB) language, it is equivalent to say
there is a crossing between S1 and So diabatic surfaces. Notice that the So diabatic
surface dissociates into H− and H+ (see Figure 2). The So diabatic surface is then
associated to the H–H bond formation. Thus, So is energetically much stable than
S1, which is related to the dissociation into two H atoms, and the So–S1 crossing is
an early one implying a negligible barrier, if any. When designing molecule-based
crystals, one is particularly interested in working with molecular fragments with S1
and T1 curves being the lowest in energy (see large rAB region in Figure 2). In such
a case, one has antiferromagnetic or ferromagnetic interactions between the pair of
fragments. Instead, when the ground state is the So curve, the interfragment interac-
tion is diamagnetic and thus of no magnetic relevance.

The diagram of Figure 2 can be more complex for radicals where overlapping
orbitals are molecular and distributed over many atoms. They often present nodes
between the atoms (some qualitative theories [10] suggest that these nodal regions
are orientations where possible ferromagnetic interactions can be induced). The radi-
cal center must be protected to avoid the formation of radical dimers covalently
bonded. Such a protection is provided by the presence of bulky groups or various
lone-pair electrons in the vicinity of the radical center. The ONCNO radical center in
the nitronyl nitroxides (see Figures 2 and 3) are of the latter class. Their electronic
structure presents an open-shell CX2H center (X = NO) and two open-shell NO
groups. Notice that each NO group has one electron on the O atom, two lone-pair
orbitals on the O atom and one on the N atom.

The electronic structure of such a group (see Figure 3a) is similar to that of the
H3 radical, with two electrons in the bonding MO (which has no nodes) and one
electron in the nonbonding MO (which has a node on the central H atom). In this
model, the spin is delocalized half on each lateral H atom, and so is the case in
the ONCNO radical centers where the spin is delocalized over the lateral NO frag-
ments. Accurate ab initio computations on a large number of nitronyl nitroxides [11]
show that this is indeed the case in most of these radicals, although a small polar-
ization is found in the central C atom of the ONCNO group, normally referred to as
spin polarization, which is only reproduced [11] by methods which go beyond the
restricted-open-Hartree–Fock (ROHF) formalism like the UHF method, among oth-
ers. The interaction between two ONCNO groups can be analyzed for the smallest
molecule containing such a group, the (HNO)–CH–(HNO) molecule, as shown in
Figure 3b. As seen there, the tendency of the open-shell centers to form a new bond
between the spin centers is counterbalanced by the repulsive interactions between
the lone-pair electrons of the NO groups. The net effect of the interfragment lone-
pair···lone-pair interactions is a shift of the So diabatic towards less stable values
(see Figure 2). By doing this we avoid the formation of a new bond between these
fragments. A similar effect is induced in spin-containing units that have net charges
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Figure 3. (a) Valence bond representation of the electronic structure of the (HON)–CH–(NOH) radical, a
prototype of nitronyl nitroxide. (b) Potential energy curve for the interaction of two (HON)–CH–(NOH)
radicals placed one on top of the other (the coordinates differing by a displacement along the vertical
coordinate z). Each fragment is a doublet state, and the curve was computed for the triplet state at the
UB3LYP/6−31+G(d) level.

of the same sign. In this case, the resulting dimer can be, at best, a metastable sys-
tem (that is, the dimer minimum lies above the dissociation energy of the neutral
fragments, as in TCNE− dimers [12]).

Most currently available theoretical analyses of purely organic crystals are focused
only on estimating the sign and size of the JAB pair interaction, using qualitative or
quantitative evaluations, and then the macroscopic behavior is inferred in simple
terms (“one interaction dominates”, “there is a competition between two or more
interactions”, . . . ). This is clearly not a valid procedure in many cases. Our first-
principles methodology supersedes these theories, since it allows a rigorous quantita-
tive connection between the microscopic and macroscopic magnetic properties. The
sign and size of the through-space JAB pair interactions are normally estimated using
the so-called McConnell-I [13] and McConnell-II [14] mechanisms. Both are qualita-
tive proposals that predict the sign and order of magnitude of the JAB parameters by
looking at the orientations of the interacting radicals. The McConnell-I mechanism
looks at the signs of the atomic spin population on the atoms of the dimer establishing
the shortest contacts (it predicts that the atomic spin populations must be of opposite
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signs for a ferromagnetic interaction). The McConnell-II mechanism works on the
basis of the stability of the charge transfer electronic configurations in the dimer.

Both McConnell mechanisms of through-space magnetism have been shown to
fail [15, 16] due to the oversimplifications that they present. Their validity in other
cases is associated to fortuitous error compensations. Consequently, its general use
is untrustworthy. The failure of the McConnell-I mechanism is also seen when doing
statistical analysis of the packing of nitronyl nitroxide crystals that present dominant
ferromagnetic or antiferromagnetic interactions. According to McConnell-I these
nitronyl nitroxide crystals should present specific orientations of the radicals within
crystals showing an overall dominant ferromagnetic (or antiferromagnetic) behavior.
However, a recent study [17] showed the absence of simple correlations between the
relative orientations of the spin-containing groups (the ONCNO group of the five-
membered ring, see Figure 1) and the dominant magnetic interactions.

Given the lack of solid magneto-structural correlations, a proper determination of
the JAB values can be obtained using quantum mechanical methods [18]. Once these
pair interactions are known, one still needs a quantitative and rigorous procedure in
order to connect the microscopic magnetic information contained in the JAB pairs
and the macroscopic magnetic properties, for instance, the magnetic susceptibility.
A numerical procedure of this kind would provide the possibility of quantitatively
exploring how changes in the microscopic pair interactions induce changes in the
macroscopic properties, in particular magnetic susceptibility. This would allow to
find what changes should be induced in the crystal packing to improve the macro-
scopic magnetic properties, thus providing new perspectives towards crystal engi-
neering of purely organic molecular magnets. In the following sections, we review a
quantitative numerical procedure connecting the microscopic and macroscopic data,
the so-called first-principles bottom-up methodology [7], and we will illustrate it on
the α-HNN crystal. Experimental studies indicate that this crystal presents antiferro-
magnetic interactions.

3. THE FIRST-PRINCIPLES BOTTOM-UP METHODOLOGY

The first-principles bottom-up methodology is a quantitative procedure to analyze
rigorously the magnetism of molecular crystals in a totally unbiased form. Its only
input data are the geometry of the crystal to be analyzed. The magnetic properties
are computed using first-principles methods, without making any hypothesis on the
nature of the magnetic interactions. More specifically, the procedure computes the
JAB parameters for all unique microscopic magnetic interactions present in the crys-
tal. Then, using these JAB values, it calculates in a rigorous form its macroscopic
magnetic properties. These calculations are done following a series of steps designed
to make the process systematic and rigorous. The validity of the procedure and the
quality of its results have been proven on a series of representative crystals [19]. In the
following section, we shall describe the main steps of this procedure for the α-HNN
crystal in order to get a proper picture of the work strategy.
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The HNN crystal presents two different polymorphic phases [8], called in the
literature the α and β phases. As already mentioned, here we focus only on the α

phase, sometimes called TOLKEK (Cambridge Crystallographic Database). This
crystal belongs to the P21/n space group (a = 11.879 Å, b = 11.611 Å, c = 6.332 Å,
β = 104.48◦,Z = 4)with four radicals per unit cell. Its crystal packing (see Figure 4)
can been rationalized [20] as planes that pile up along the a axis (four per unit cell),
stacked in an ABBA pattern (Figure 4a). Each plane is identical, and only differs
from the others in its relative position within the unit cell. These planes result from
the aggregation of HNN radicals (Figure 4b). Ab initio computations [20] indicate
that the strongest radical–radical intermolecular interactions are two C(sp2)–H...O–N
hydrogen bonds (they form the primary structure of the crystal). Thus, they first
form HNN dimers. These dimers then aggregate by means of the C(sp3)–H...O–N

Figure 4. Crystal packing of TOLKEK showing the C–H···O contacts shorter than 3.20 Å. (a) view along
the b axis, where one can see four layers (ABBA) within the unit cell; (b) view of one layer (along the bc
plane), stressing the dimeric entities and their C(sp2)–H...ON hydrogen bonds.
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hydrogen bonds and form planes (secondary structure of the crystal). Nearby planes
can aggregate using the remaining C(sp3)–H...O–N hydrogen bonds (the stacks are
the tertiary structure of the crystal).

As already mentioned the magnetic properties of TOLKEK are those of a crystal
which presents antiferromagnetic interactions. The dependence of the experimental
magnetic susceptibility on temperature has been fitted to a “pure” Bleaney–Bowers
model (isolated radical dimers), the fitted values being C = 0.5 emu K mol−1 and
J/kB = −11.2 K (that is, −7.8 cm−1). Note that this J parameter is the result of
a least-squares fitting and does not necessarily have a real physical meaning (such
meaning is only possible when the model chosen properly represents the real mag-
netic topology of the crystal).

In order to carry out a first-principles bottom-up study of the TOLKEK crystal, one
has to perform the following four steps in sequential order.
1. Analysis of the crystal structure in order to find all unique radical–radical pairs

present in the crystal.
2. Computation of the JAB microscopic magnetic interactions for all pairs.
3. Determination of the real magnetic topology of the crystal and of its minimal mag-

netic model space.
4. Calculation of the macroscopic magnetic properties.
We now describe each of these steps in detail for the case of the antiferromagnetic
HNN crystal.
Step 1: Computation of all unique radical–radical pair interactions in the crystal.

For such a task, it is necessary to analyze in a systematic way the crystal struc-
ture (see Figure 4) and find all unique radical–radical pairs potentially relevant to
magnetic interactions. As it has been shown that the strength of the through-space
magnetic interactions decreases exponentially with the distance between the mole-
cules [21], only those pairs involving first and second-nearest neighbors to a given
radical will be important. In practical terms, the unique radical pairs are identified by
looking at all radical–radical pairs whose distance is smaller than a given cutoff value
(which is selected to include all first-nearest neighbors and the closest next-nearest
neighbors). Notice that this procedure does not assume the presence of a given micro-
scopic magnetic interaction or the size of a JAB parameter. In the case of TOLKEK, a
cutoff of 7.4 Å between the ONCNO groups of the five-membered ring (those found
to localize 90% of the spin density of the HNN molecule) is enough to satisfy the
above criteria [22].
Figure 5 shows the seven unique radical–radical pairs found in the crystal (d1–d7).
Step 2: Computation of the JAB microscopic magnetic interactions for all pairs.

The value of the JAB magnetic interaction, hereafter identified as JAB(d1)–
JAB(d7), is now computed for each of the radical–radical pairs selected in Step 1.
The HNN radical is a doublet. Therefore, the only two possible states for the radical–
radical pairs are a singlet and a triplet. The value of the JAB parameter for each pair is
obtained from the energy difference of the singlet and the triplet using the geometry
that each pair has in the crystal.
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Figure 5. Unique radical–radical pairs (d1–d7) found in the α-HNN crystal. There are five identical piles
of dimers, the central one is surrounded by four lateral ones identified by the numbers 1, 2, 3, and 4. Methyl
groups are omitted for clarity.

The exact expression of JAB depends on the Heisenberg Hamiltonian used. In the
case of the most widely-used expression for this Hamiltonian:

Ĥ = −2
∑

JAB ŜA · ŜB(1)

one finds that E S−ET = 2JAB = 2(E S
BS−ET ), where ET is the energy of the triplet

and E S
BS that of the singlet, computed using the broken symmetry approach [23]

(this expression derives from the original broken-symmetry equations when doing
Sab = 0 [23], the normal case for through-space interactions). According to our
experience, this expression gives values closer to the experimental results, although
one should mention that the use of the broken-symmetry approach within the DFT
context has been controversial, particularly in relation to the use of projection in
computing the values of the JAB parameters (for a detailed discussion, the reader is
addressed to reference [23]).

The values of the JAB parameters for the seven radical–radical pairs in Figure 5
were computed using the UB3LYP functional [24] with the 6−31+G(d) basis set.
The computations were performed using the Gaussian-98 program suite [25]. The
results obtained are collected in Table 1. Only five of the seven JAB(di) parameters
are non-negligible. Two of them correspond to antiferromagnetic interactions while
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Table 1. Values of the JAB pair interactions compu-
ted for the d1–d7 radical pairs using broken sym-
metry UB3LYP/6−31+G(d)

Pair di(O···O)/ Å JAB (di)/cm−1

d1 3.80 −7.26
d2 4.27 +1.54
d3 4.65 +0.22
d4 4.79 +0.24
d5 6.12 −0.13
d6 6.22 < |0.05|
d7 7.01 < |0.05|

Figure 6. Lateral view of the TOLKEK crystal, showing the position of the JAB (d1), JAB (d2), and
JAB (d4) pairs (the JAB (d3), and JAB (d5) pairs are not shown for simplicity). Note that in the Figure
JAB (di) = Ji . Methyl groups are omitted for clarity.

the remaining ones correspond to ferromagnetic interactions. One can now correlate
these pair interactions with the crystal packing. The dimers involved in the primary
crystal packing structure of TOLKEK (that is, the dimers encircled in Figure 4b)
correspond to the d2 dimer, and have a JAB(d2) value of +1.54 cm−1. The strongest
JAB pair (JAB(d1) = −7.26 cm−1) connects two radicals in adjacent planes placed
in opposite directions, while JAB(d4) connects radicals pointing in the same direction
(see Figure 6).
Step 3: Determination of the real magnetic topology of the crystal and of its minimal
magnetic model space.

From the magnetic point of view, the magnetic interactions define the topology of a
2-leg spin-ladder. Figure 5 shows five of such spin-ladders: a central one surrounded
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by four others, identified as 1, 2, 3, and 4 (Figure 6 presents a lateral view). JAB(d3)
and JAB(d5) link magnetically adjacent ladders. This structure of connected two-leg
spin-ladders is the magnetic topology of the crystal. Figure 7 shows a schematic view
of this magnetic topology, where each radical is replaced by a point site located in its
center of mass. Notice that the magnetic topology represents the network of magnetic
interactions that are found between all the radicals of the crystal, and it is a good
graphical depiction of its magnetic properties.

The topology displayed in Figure 7 can be visualized as five weakly interacting
two-leg spin-ladders (a central one and four surrounding ladders, numbered 1, 2, 3,
and 4, according to Figure 5). Within each two-leg spin-ladder, one finds a strong
JAB(d1) interaction along the rungs, a weaker JAB(d2) interaction along the diago-
nals of the rails, and a weak JAB(d4) along the rails. The ladders are interconnected
by means of very weak JAB(d3)and JAB(d5) interactions. Depending on the rele-
vance of these latter two interactions with respect to the others, the magnetic topol-
ogy is: (i) a weakly interacting set of spin-ladders (a 3D magnetic motif), or (ii) a set
of isolated spin-ladders (a 1D/2D magnetic motif). One way of establishing which of
these two descriptions is correct is to check which one reproduces best macroscopic
magnetic properties (for instance, the temperature dependence curve of the magnetic
susceptibility χ (T)).

The computation of the macroscopic properties requires a previous calculation of
the energy spectrum (the eigenvalues for all possible states that can be found in the
crystal). In principle, such a calculation can be performed by diagonalizing the matrix
representation of the Heisenberg Hamiltonian for a finite crystal, using the basis of all

Figure 7. Magnetic topology of the TOLKEK crystal. Each radical is represented by a point site and the
connection lines indicate pairs of radicals where the JAB (di) interaction is non-negligible. Note that in
the Figure JAB (di) = Ji . There is a central spin-ladder (their J1, J2, and J4 pairs are specified) and four
surrounding spin-ladders, numbered 1 to 4 as in Figure 5.
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the spin functions of this finite crystal. However our crystal is infinite. How then do
we represent properly the energy spectrum of the infinite crystal by a finite one?

We have done numerical simulations with models of increasing size that mimic the
crystal, and also methodological studies using a regionally reduced density matrix
approach [26]. Both show it is possible to obtain an energy spectrum that has similar
macroscopic results than larger spaces by using properly selected subspaces. The key
is to use subspaces that include all the physically significant JAB interactions and
in the same proportion found in the larger space. When these subspaces are properly
selected, the macroscopic results converge towards the results obtained with the larger
space when increasing the size of the subspace. The process can be extrapolated to
an infinite crystal if one uses as convergence data the experimental data of the macro-
scopic property of interest. Obviously the full crystal must result from the extension
of the smaller model subspaces. The smallest finite model capable of describing the
magnetic properties of the infinite crystal is called the minimal magnetic model space.
Step 4: Calculation of the macroscopic magnetic properties of the crystal.

Once a reasonable minimal magnetic model space has been selected, the basis
set for the representation of the Heisenberg Hamiltonian is built by adding all the
spin functions for each spin-containing unit (for instance, α and β functions when
the spin unit is a doublet) and selecting just those that are antisymmetric (because
electrons are Fermions). Therefore, the matrix representation increases with the num-
ber of sites (N ) as N !/[(N/2)!(N/2)!], thus increasing the computational cost and
required resources. Using this basis set, the matrix representation of the Heisenberg
Hamiltonian is computed and diagonalized. In many ways, such a matrix represen-
tation is like a topological Hückel matrix, where the β parameters are substituted by
JAB pairs. We have used the following Heisenberg Hamiltonian, which allows the
use of faster computer codes:

Ĥ = −
N∑

A,B

JAB

(
2ŜA · ŜB + 1/2 ÎAB

)
(2)

where ÎAB is the identity operator. The energy spectra computed using this
Hamiltonian present the same energy difference between the different eigenvalues
than those obtained using Eq. (1). Therefore, both predict the same macroscopic
properties.

As a final comment, we should like to mention that the subspaces can be built
either by imposing periodic boundary conditions or in an open way (that is, just trun-
cating the crystal without periodic boundary conditions). Extensive numerical tests
indicate that both choices provide nearly identical results. We decided to use open
finite models in our implementation.

Once the energy spectrum of the finite model space is known, one can use its
eigenvalues to compute the macroscopic property of interest, using its exact Statis-
tical Mechanics expression. For instance, the magnetic susceptibility χ at a given
temperature (T) is computed by using the formula:
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χ = Ng2µ2
B

3kB T
µo

⎡

⎢⎣

∑
n

Sn(Sn + 1)(2Sn + 1) exp
[
− En−Eo

kB T

]

∑
n
(2Sn + 1) exp

[
− En−Eo

kB T

]

⎤

⎥⎦(3)

where Sn and En are the spin quantum number and total energy for the nth state, Eo
is the energy of the ground state, T is the absolute temperature, µB the Bohr magne-
ton, kB the Boltzmann factor, N is Avogadro’s number, g the electron gyromagnetic
factor, and µo the permeability of free space. This equation can be solved for a given
range of temperatures (usually from room temperature to nearly 0 K). This allows a
direct comparison between the theoretical and experimental χ(T ) curves.

The similarity of shape of these two curves is an indication of the goodness-of-fit
of the selected minimal model space. One should keep in mind that as one extends
this space, the computed curves should converge towards the experimental curve.

Let us illustrate the previous steps on the α-HNN crystal. As mentioned above, a
first reasonable form of visualizing the magnetic topology of this crystal is as a set of
noninteracting two-leg spin-ladders (see Figure 7). A minimal magnetic model space
capable of describing the isolated 2-leg spin-ladders found in α-HNN is the 4-site
model defined by J1, J2, and J4 (see Figure 7). Such a model includes two rungs
of the ladder and can be called 2 mbb (each rung in one mbb). Extending the 2mbb
model by adding more rungs to the ladder generates the rest of the ladder. This 2mbb
model contains 4 spin centers and two rungs. As the spin centers are doublets, the
size of the matrix representation of the Heisenberg Hamiltonian for the 2mbb model
is 6 × 6. Thus, for the 5mbb model (5 connected rungs, that is 10 spin centers), the
matrix representation of the Heisenberg Hamiltonian is of dimension 252 × 252.

An alternative form of visualizing the magnetic topology of the α-HNN crystal
is as a set of interacting spin-ladders. Such model can be described by adding the
2mbb model (that describes one isolated 2-leg spin-ladder) and the four rungs of the
nearby ladders (identified as 1–4 in Figure 7). This addition introduces the J3 and J5
interactions. The resulting extended model will be called the 2mbb–(mbb)4 model.
The convergence of this model can be tested by increasing the number of rungs in
the central spin-ladder (as in the 3mbb, 4mbb, 5mbb, . . . models) and/or the lateral
ladders.

The χ(T ) curves computed by using the 2mbb (+), 3mbb (�), 4mbb (�), and
2mbb–(mbb)4 (×) models are shown in Figure 8. A comparison of the first three
curves shows that convergence is achieved. The same convergence (not shown) is
also found when extending the lateral ladders. The negligible difference between the
2mbb (+) and 2mbb–(mbb)4 (×) curves also shows that the isolated spin-ladder is
the proper form for describing the magnetic topology of the α-HNN crystal.

Although the convergence is achieved, at low temperatures there is a small differ-
ence between the curve calculated with the largest model and the experimental one.
We have found, in this and many other cases, that such differences disappear when
a small linear-scaling factor is applied to all eigenvalues of the energy spectrum (in
this case, the linear factor required is 1.1). Such a scaling factor accounts for the
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Figure 8. Experimental (solid line with solid circles, •) and computed magnetic susceptibility curves (the
inset expands the low temperature region). The computed curves are for model spaces 2mbb (+), 3mbb
(�), 4mbb (�), 2mbb–(mbb)4 (×), and model 2mbb with a scaling factor 1.1 (•), which reproduces best
the experimental curve.

small errors introduced in the computed JAB values using DFT methods instead
of more accurate ones [27], the use of high-temperature crystal structures instead
of low-temperature structures, and the neglect of polarization effects that could be
present in the crystal but are not accounted for in our radical–radical calculations. We
thus obtain a very good agreement between the computed and experimental magnetic
susceptibility curves. Although not shown here, agreement is also found for other
macroscopic properties, as the heat capacity curve. Such good agreement has also
been found in many other magnetic crystals presenting a wide variety of macroscopic
magnetic properties. Therefore, we can be confident in the quality of the predictions
achieved by the first-principles bottom-up methodology.

We also reproduce other well-known properties of two-leg spin-ladders. For
instance, it is well known that antiferromagnetic two-leg spin-ladders should present
a gap between their lowest-energy singlet and triplet states. We have found such a
gap (the singlet-triplet energy gap being −12.5 ± 3.5 cm−1 when no scaling factor is
used, and −13.8 cm−1 when the 1.1 linear-scaling factor is applied).

Let us summarize the main physical information obtained from this first-principles
bottom-up study, and how it can be used to make a rational design of crystals present-
ing improved magnetic properties. We have found that the α-HNN crystal presents
the magnetic topology of an isolated two-leg spin-ladder having ferro and antiferro-
magnetic interactions, these latter being the dominant ones. Such a topology is not
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predicted by a simple inspection of the crystal packing. We have also found that the
strongest magnetic interaction is JAB(d1). By changing the chemical structure of
the radical, one can modify the geometry of the dimer and thus tailor the strength
of JAB(d1). Therefore, this methodology provides a tool to rationally design new
molecular crystals presenting improved magnetic properties.

4. CONCLUSIONS

The results presented in this study show that the first-principles bottom-up method-
ology is a powerful tool for analyzing the mechanisms of magnetic interactions in
molecule-based magnetic crystals. This approach not only accurately reproduces the
macroscopic magnetic properties of these crystals but also provides a deep insight
into the details of the interactions at the microscopic level. Furthermore, it connects
the macroscopic properties to their microscopic origin, thus providing a tool for start-
ing the rational design of such molecular materials.

As an illustrative example, we have applied the first-principles bottom-up method-
ology to the study of the magnetism of the α-HNN crystal. We have been able to
reproduce with accuracy the macroscopic magnetic susceptibility curve of this crys-
tal. We have also concluded that the magnetic topology of the crystal can be described
as a set of isolated two-leg spin-ladders presenting ferro and antiferromagnetic inter-
actions, the latter being the dominant ones.
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