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IN THE BEGINNING, God created the heaven and the earth. 
And the earth was without form, and void; and darkness 
was upon the face of the deep. And the Spirit of God moved 
upon the face of the waters. And God said, Let there be 
light: and there was light. And God saw the light, that it was 
good: and God divided the light from the darkness. And 
God called the light Day, and the darkness he called Night. 
And the evening and the morning were the first day. 

-GENESIS i, 1-5 

STRANGE is our situation here upon earth. Each of us comes 
for a short visit, not knowing why, yet sometimes seeming to 
divine a purpose. 

-ALBERT EINSTEIN 



Preface 

We are all impressed by the patterns and shapes that nature has 
used all around us. In some cases these shapes and patterns are 
highly orderly. Man has always tried to understand the patterns 
and shapes found in nature: galaxies, clouds, snowflakes, ocean 
waves, coastlines, leaves, forests, patterns on skin and on but­
terflies, shapes and forms of crystals and molecules and macro­
molecules (e.g., synthetic polymers and proteins), shapes of 
biological cells and viruses. 

Some decades ago, with the development of computers, the 
possibility arose of finding the geometrical laws that nature could 
have used (or uses) in these patterns and shapes. In order to 
characterize the so-called irregular geometrical structures, Man­
delbrot (1982) developed and introduced a new kind of geometry, 
fractal geometry (different from Euclidean geometry). It was shown 
that many naturally occurring structures that are usually described 
as irregular, random, or chaotic actually have shapes that can be 
measured and categorized. Many shapes and patterns found in 
everyday life can be described on the basis of somewhat simpler 
geometrical considerations. In fact, fractal geometry can be con­
sidered a new way of looking at nature. 

Later, some combinations with basic physical laws, such as 
those that describe the erratic motion of a dust particle in air 
(so-called Brownian motion), led to the discovery that in nature 
these shapes and patterns can be described by giving a dimension 

vii 



viii Preface 

to the geometrical analysis. This was called the concept of fractal 
dimension and is the subject described herein. Mandelbrot coined 
the word fractal from the Latin adjective fractus (Latin verb 
frangere, meaning to break, i.e., to create irregular fragments). 

These developments have given rise to a very extensive 
literature. There are many excellent current textbooks that de­
scribe at various levels the elaborate theory that has developed 
about the fractal dimension and fractal geometry found in various 
natural systems and in technology. The aim of this text is to 
introduce the experimental methods and analyses of fractal dimen­
sions in natural processes. The description is kept at a level such 
that anyone with a little mathematics and physical science training 
(high school and above) can succeed here. For those who feel that 
they need more advanced information, references are provided that 
give the appropriate guidance for high-level analyses. 

Simple experimental procedures are described that will be 
useful for the reader in conducting experiments and verifying 
through analyses some of the fractal phenomena. Experimental 
data on all kinds of fractal systems are given, making it easier to 
follow the text as well as to compare and construct a model. The 
geometrical analyses, in some cases, are delineated with the help of 
computer (PC-computer-Ievel) programs, which allow the reader to 
draw the shapes and patterns (although doing so is not a necessity 
for reading the text). Furthermore, the latest mathematical de­
velopments are included, which lead the reader to develop and 
analyze his or her own fractal shapes and patterns. Most recent 
developments are very useful for understanding the meaning and 
application of the fractal dimension to a variety of experimental 
data. These examples will further lead readers to find fractal 
dimensions in their own everyday observations. This point is 
emphasized wherever pertinent, since the usefulness of fractal 
geometry has now grown to such a level that it can be applied to a 
wide variety of phenomena. 

The concept of fractals, as it is applied to problems in 
chemistry, geochemistry, and biophysics, is presented in separate 
sections. A short discussion is given to identify these structures, 
followed by a short review of the work pertaining to fractal 
measurements. The subject matter is arranged in such a way that 
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the volume can be used as a text. The book should be of value both 
to beginners and to professionals who have a continuing interest in 
fractal geometrical theory and applications. 

I am very much indebted to many colleagues and students who 
have helped in various ways during the writing of this book. 
Finally, I am very thankful for the continuing support and 
encouragement given by my wife throughout this process. 

K. S. Birdi 
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1 

Introduction to Fractals 

1.1. Fractals in Physics and Chemistry 

Throughout the ages man has marveled at nature. The 
dimension of observation has increased from the eye to the 
electron microscope. All natural phenomena as observed by man 
seem very complex, at least at first sight. It may be the shape of 
riverbanks or hills or waves at the beach. Or it can be the shapes 
and colors of butterflies, leaves, and flowers, or the skin patterns 
(on the leopard or zebra). We may include here the shape of 
coastlines or of snowflakes. And we may also include the stars in 
the sky, the galaxy, and our solar system. The size range that has 
been studied varies from the shapes of craters on the moon, to the 
microscopic-level analyses of porous solid surfaces (catalysts, 
geological formations, oil reservoirs). Man is inquisitive, and 
therefore questions why he is here on earth, and whether the 
various phenomena mentioned above can be described by some 
mathematical geometry. Furthermore, man studies evolution and 
the ecological processes, which are in some ways related to these 
shapes and forms. 

In nature one finds many patterns that are (seemingly) so 
irregular (e.g., shape of a leaf or flower) and fragmented that they 
cannot be described by Euclidean geometry. This is in contrast to 
Euclidean geometrical measurement, where one deals with length, 
depth, and thickness. As we know, the length of a line is 
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one-dimensional, the area is two-dimensional, and the volume is 
three-dimensional. All of these objects have the so-called charac­
teristic length. 

These dimensional descriptions cannot be useful if one ex­
amines in any detail the shapes of objects with irregular outlines, 
such as a leaf or flower, coastline, snowflake, skin patterns, 
ecological phenomena, trends of economic ups and downs, lightn­
ing, adsorption of molecules on solid surfaces, and so forth. The 
magnitudes covered are from 1 km (1000 m = 105 cm) to 10-8 cm 
(A = molecular dimension). This was one of the reasons why many 
scientists became more and more interested in trying to find order 
behind such complex, and seemingly chaotic, systems in nature. 
Later, a new mathematical approach was invented that could be 
useful for analyzing those systems that deviated in shape and form 
from the Euclidean geometry. In recent developments, the role of 
the computer has become much more important, at various levels. 

But one may question whether all of this could not be the 
outcome of some kind of organized natural phenomena, at some 
level of complexity not obvious to the naked eye, or the time scale 
available to the human being. One of the main limitations that man 
faces when studying the natural phenomena is the eye as used to 
observe these phenomena. Furthermore, on the time scale of 
evolution, one talks of (hundreds of) millions of years, whereas the 
duration of a very long laboratory experiment is overnight. In 
addition, the scale used for observation can also be an important 
parameter. Basically, the fractal theory revolves around analyses of 
irregular shapes and forms of objects (see general references). 
Herein the procedures are described through both a constructive 
approach and practical examples. 

It is useful to introduce to the reader a simple approach for 
constructing a shape with some fractal geometrical dimension. 
After this example, we will proceed to discuss the basics of fractal 
dimension, and its application to everyday observations. 

1.2. A Simple Fractal Shape [Personal Computer 
(PC)-Drawn Fractal Program] 

The purpose of this example is twofold. First, a typical shape 
will be drawn in order to explain the need for fractal (geometry) 
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analyses. Second, a simple computer program will be used in 
drawing this shape. The impact of computers on many educational 
aspects of everyday life is becoming more and more important. A 
few (rather simple) computer programs mentioned here have much 
educational significance, but are not absolutely necessary for the 
general understanding of the subject matter. Those interested in 
more advanced computer fractal programs are given the necessary 
references. It will enable some of the descriptions given here to be 
interactive with the computer graphics, at a level such that any 
ordinary PC-compatible can be used. The programs (see Appendix 
programs) used to draw the figures are given in simple BASIC 

language. These can be easily rewritten to any language similar to 
BASIC. The following example is merely a typical program, which 
draws a shape with typical fractal dimension, as described later in 
much more detail. The reader is encouraged to look at these shapes 
as drawn by the program, and any difficulty that is encountered in 
understanding the procedure will be resolved in the next few pages. 

Dragon: A Fractal Shape 

As we learn in high school geometry, a straight line is the 
shortest distance between two points. Let us consider a simple 
example that can be used to introduce the fractal dimension for an 
object, starting from a straight line by using some geometrical 
rules. A few terms will be introduced to the reader through the 
patterns as drawn by using the fractal program DRAGON. The 
prime purpose of this example is to show how one can join by 
drawing a set of lines (fractional lines) from point A to point B, 
following various different procedures. As mentioned above, a 
straight line has a dimension one. A straight line, according to 
Euclidean theory, is the shortest and most easily seen connection 
between points A and B. Let us denote the distance between points 
A and B as L!..B (where index 1 denotes a straight line (the 
exponent here will be referred to as a dimension = 1)]. If one runs 
the program with n = 2, the distance between two points is 
traversed by four segments, where each segment has length = 1/2 
(=1/n) of the distance between the two points A and B (=LAB)' 
The total distance traversed then is 2LAB • Now, let us call this 
pattern the generator. If we put n = 4 in the next run, then each of 
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the four segments is again divided by four new but smaller 
segments [=(1/2)2LAB]' which gives 16 segments in going from 
point A to B. The distance traversed now is 16(1/2)2LAB. The 
distance traversed is thus found to increase from 2 (=21) to 4 (=22) 
to 16 (=24). This logarithmic increase (so-called fractal 
dimension = 2) is what one calls relations such as the power law 
dependence, as mentioned below. Mathematical analyses of the 
power law dependence show that there is a constant (=2 for the 
dragon) that gives rise to the increase in length as n increases. 

The most fascinating result becomes obvious if we now look at 
the pattern generated when n = 12. It has the shape of a dragon. 
The generator which makes the first variation in going from point 
A to B is repeatedly used, and by decreasing the size of the steps, 
the figure obtained (Figure 1.1) looks like a figure with some 
known shape. In other words, if a dragon can be generated by 
using a simple generator, then we may expect that other more 
complicated patterns or shapes could be the result of other 
generators (perhaps not as simple as this generator). The generator 
could be imagined to be a perturbation to a system in any natural 
process (like a stone that is dropped into a pond, and the ensuing 
ripples). This will be shown in the many examples given throughout 
the text. A similar procedure is what has now become known as 
self-similarity and fractal dimension description of non-Euclidean 
shapes and patterns. Self -similarity implies that a structure is 
invariant to changes of scale, i.e., it possesses dilational symmetry 
and thus there exists no characteristic length scale associated with 
the structure. If we magnify the picture of this dragon, we will thus 
find that the generator appears at all magnifications. Of course, this 
depends on the magnitude of n. If say n = CXl (which could be 
achieved if we were drawing this shape under a microscope), then 
an infinite number of magnifications can be carried out. Con­
versely, it is also self-evident that if one had started by looking at 
the shape of a dragon, and magnified the picture, one would end 
up with the generator at some level. However, this would 
disappear when further magnified. Furthermore, if the yardstick 
used was of molecular size (10-8 cm = A = 0.10 nm), then the 
possibilities of drawing natural shapes and figures become numer­
ous. Thus, the size of dragonlike shapes may vary from 1 km 
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(=1000m = Hfcm) to lO-Scm (A = 0.10nm). Additionally, two­
or three-dimensional dragons are also possible with a bit more 
effort (it will be left to the more interested reader to pursue this 
matter!). It is also easily seen that in case we had a figure that 
looked like a dragon, then it could be simplified by using this 
fractal procedure. In fact, this is precisely why fractal theory has 
become so useful, since it can provide a procedure for analyses of 
such irregular shapes and forms. Thus, the straight line between 
points A and B has turned into a well-recognized shape through 
some simple geometrical generator step procedure. 

This rather simple example thus suggests that one may find 
many shapes and forms, which when observed as we did with the 
dragon would repeatedly show self-similar characteristics. This 
observation has been reported in the literature and described in 
much detail (Mandelbrot, 1982). 

The total distance traversed between points A and B thus is 
seen to increase as we diminish the yardstick of steps. From the 
difference between the lengths we can determine the fractal 
dimension (=2, as follows). Of course, similar rules would apply in 
the case of three-dimensional forms (Mandelbrot, 1982; Avnir, 
1989; Takaytasu, 1990). 

1.3. Basic Concepts and Tenninology in Fractals 

Fractal theory was found to be of necessity for those systems 
that could not be described by Euclidean geometry. Some general 
examples are as follows: 

• Shape of a leaf or flower 
• Shape of a cloud 
• Shape of a riverbed 
• Patterns of skin 
• Patterns of a butterfly 
• Surface of a porous solid 
• Shape of a snow crystal 
• Heartbeat rhythm 
• Ecological phenomena 
• Surface and shape of molecules 
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A n: 2 

n - 4 -

n: ~ 

Figure 1.1. DRAGON (also called Harter-Heightway). The generator is shown in 
A. The increasing number of steps (n = 2, 4, 6, 8, 10, 12) can be drawn by the 
computer program, until a dragon shape is obtained. See Appendix A for 
computer program. 
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Figure 1.1. (Continued) 
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Fractal analyses thus attempt to give a more orderly picture of any 
(seemingly) disorderly systems (as might be evident from the above 
example of the dragon). It will be shown that the fractal analysis 
also adds increasing interest in the description of different systems 
through new ideas. These new analyses, as delineated here, would 
be expected to provide the reader with greater interest in natural 
phenomena with added vigor for application of this knowledge to 
some practical use, as compared to Euclidean geometry. This 
added interest to such mathematical analyses of natural phenomena 
is thus one of the aims of this monograph. 

Moreover, fractal analyses as described herein will give a basic 
understanding both to beginners and to others who desire to 
investigate at a much higher level in this field. This is achieved 
through numerous examples from nature or everyday phenomena, 
where actual data are used to describe the procedures. A large 
number of typical examples are included, where experimental data 
are given from which fractal dimension has been estimated. In the 
latter systems, it is hoped that through this approach the reader can 
acquire a better practical understanding of fractal analyses. 
Another difference between natural fractal (e.g., of a leaf) and an 
ideal object is that the former is not self-similar over a range of 
length scales. 

Further, we will point out at different places where the 
procedures described in these recent fractal theories are somewhat 
similar to the much older geometrical analyses. For instance, the 
magnitude of 1r was estimated by drawing a series of polygons of 
different side lengths, which is also used in fractal analyses of 
shapes and form (see Section 1.5). 

According to Euclidean geometry, we know that length L 
(cm1), area A (cm2), and volume V (cm3) are related to each other 
as (Figure 1.2): 

L ex A 112 ex V 1I3 (1.1) 

If we consider a line of· length L (say 1 cm), then a square of 
side L has A = L 2 (cm2), and a cube of length L has V = L3 (cm3). 

In other words, the area of a square increases by exponent 2 and 
the volume by exponent 3, as L increases. 
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A 

w 
z 
:::i 

SQUARE 

B LINE 

CIRCLE 

9 

CUBE 

SPHERE 

Figure 1.2. Simple geometrical shapes: (A) line, square, and cube; (B) line, circle, 
and sphere. 

A similar relation holds in the case of area of a circle (cm2) 

and the volume of a sphere (cm3). It is also worth noting that if we 
increase L1ine to 2Lline (by a factor of 2), then the magnitude of 
Aarea increases by 22 , and Vyolume increases by 23 . The exponents 
thus indicate that: 

• L1ine is one-dimensional 
• Aarea is two-dimensional 
• Vyolume is three-dimensional 

Now if we consider the (irregular) outline of a leaf, and if we 
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Figure 1.3. Outline of an elm leaf. (B) Magnification of A shows self-similar 
shape. The magnitude of Dleaf = 1.5 (see Section 1.3.2) . 

desire to determine the magnitude of its perimeter, we cannot 
perform this as easily as in the case of the square (Figure 1.3). We 
cannot use any of the ordinary geometrical (Euclidean) equations, 
like the circumference of the circle with radius R (=21rR). The leaf 
has no effective radius and therefore we need to develop some 
other appropriate procedure (described herein). Hence, in the case 
of non-Euclidean shapes and forms, we will have a quantity M, 
related to the above as follows: 

(1.2) 

where D is the fractal dimension. It will be shown herein that the 
value of D can be fractional, in contrast to the Euclidean 
(dimensions 1, 2, or 3) (Mandelbrot, 1982; Boccara and Daoud, 
1985; Feder, 1988; Peitgen, 1988; Avnir, 1989). 

Let us consider a somewhat different system. In general terms, 
a large molecule such as a protein or polyethylene is assumed to 
consist of a chain of segments connected in one dimension (same as 
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Figure 1.3. (Continued) 
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a string of beads). Similarly, the surface of a solid of any porous 
material is considered as two-dimensional. We thus find these two 
systems in varying dimensions as examples of perturbed states of an 
ideally ordered chain or surface. The ordered state can therefore 
be a periodic array of atoms (or molecular segments), a plane, a 
sphere, etc. The idea is that the disordered system inherits 
substantial physical and chemical properties found in the ordered 
system, provided that the deviation from the ordered system is of a 
degree that overall properties are the same. On the other hand, if 
the disordered state differs widely from the ordered state, then 
there is no way to estimate any useful physical properties from the 
ordered state. We thus introduce the usefulness of fractal analyses 
of irregular objects (Farin and Avnir, 1988). Unlike regular one-, 
two-, or three-dimensional geometrical objects, fractal objects will 
be shown to exhibit nonintegral dimensions. A randomly coiled 
polymer chain in solution will be shown to have a fractal dimension 
somewhere between 1 and 2, whereas the surface of a porous solid 
may be around 2 to 3. 

The fractal description of any such disordered state is what has 
been most useful, based on comparisons with the ordered state. 
The fractal analysis is based on description of the disordered state 
as being intrinsic rather than perturbed. 

In Figure 1.4, different types of disorder are given: 

a: No disorder 
b: Weak disorder 
c: Anisotropic disorder ( self-affine) 
d: Isotropic strong disorder (self-similar) 

It remains to be shown how these different kinds of disorder 
can be analyzed and evaluated by the following procedures. 
Further, one may also imagine certain phenomena that could be 
related to some combination of these states. 

In the case of a solid, different subsets might be important. 
This could be the surface or the pore space of the solid. Further, it 
can only be the set of all edges and comers. Additionally, the 
shape of pores as a function of depth could be considered 
(described below). 

As regards the local fractal structure, the analyses have shown 
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a 

b 

c 

d 

Figure 1.4. Different types of disorder (continuum model; see text) and their 
invariance properties. (a) No disorder; (b) weak disorder; (c) anisotropic strong 
disorder (self-affine); (d) isotropic strong disorder (self-similar). 

that it can also provide many useful results. One can proceed by 
taking a reference point of any object, and then study the 
concentration of fractals about this reference point. In other words, 
one can estimate the local densities and distribution of fractals 
around the reference point. It is obvious that knowledge of the 
local form of a fractal is expected to be useful in the development 
of theory and in its application. The reference point may be 
arbitrary and would add information, i.e., variation of D with 
respect to the choice of reference point. 

However, it is important to stress here that, depending on the 
yardstick used, the fractal dimension mayor may not change 
drastically. The term yardstick means the degree of magnification 
used when observing the dragon shape. This point is clearly under­
stood when considering Brownian motion and the mean free path 
of gas molecules (see Chapter 11 and Appendix B). Nevertheless, over 
a definite scale the analysis appears very much like fractals, and as 
such scales may usefully be regarded as fractals. The distinction 
between "natural fractals" and the mathematical "fractal sets" that 
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might be used to describe the objects was emphasized by various 
investigators (Mandelbrot, 1982; Stanley and Ostrowsky, 1986). 
This distinction must be kept in mind, for it seems to have become 
blurred in the current literature. Furthermore, one may also keep 
in mind that there are no true fractals in nature, just as there are 
no true straight lines or circles either! In the case of a circle, the 
circumference is equal to 21rR. Since 1r is not an exact integer (see 
later), the exact value of the term 21rR will depend on the accuracy 
of 1r [1r nowadays used in hand-held calculators or computers is 
given to an accuracy of 13 digits, whereas in ordinary calculations 
one generally uses 22/7 = 3.1428 ... , which differs from 1r by 
0.00126448927 (=22/7 - 1r)]. There is no clear need for higher 
accuracy, since all of the large bridges are based on calculations 
where the magnitude of 1r = 22/7. 

With regard to the notion of dimension (Le., the size of the 
yardstick), let us consider a ball (made of threads) of 10 cm 
diameter, and proceed to describe how we (Le., the eye) observe 
its outline at varying distances. Let us suppose that it is made up of 
thick threads of 1 mm diameter. Now, if someone saw the ball from 
a long distance away (say 1 km), it would merely seem to be a 
point. At a distance of 10 cm, it would look like a three­
dimensional ball. From a very short distance away (10 mm), it 
would be a tangle of threads. As we approach even closer, the 
fibers make the ball look completely different from our original 
perception of it being a ball. This clearly shows that the perception 
of an object is dependent on the distance of observation, as far as 
the dimensionality is concerned. Furthermore, most natural fractal 
patterns have the property of scale invariance, which means that 
these patterns appear the same at all levels of magnification or 
resolution between upper and lower cutoffs. 

An analogous example is the surface of the moon (although 
with a much larger dimension), as it looks quite smooth from the 
earth using the naked eye, whereas using a telescope it is seen to be 
completely pockmarked by craters. In fact, the first rocket 
equipped with a camera, which crashed on the surface of the moon 
(prior to the first manned landing) showed these features very 
clearly, so much so that the size distribution of craters (on the 
moon, earth, etc.) is found to be fractal. 
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1.3.1. Definition of the Fractal Dimension 

Perhaps it is better to ask why it is necessary to use fractal 
analyses in the first place. This we can answer by showing how the 
shape of the dragon requires a non-Euclidean analysis, i.e., fractal 
dimension, provided such a dimension is indeed present. The 
question one may ask then is: how can one identify and measure 
the fractal dimension? Further, since by necessity we need some 
useful procedure to analyze these irregular shapes, the fractal 
theory is the most convenient. 

What one does is measure the fractal dimension of objects in 
nature or of some appropriate model chosen to describe an 
experiment. This has given rise to much research activity in various 
fields of science. There are many different procedures that one may 
use in order to define the fractal dimension. In the continuum 
model, it is assumed that the structure remains so at any level of 
length scale. On the other hand, the lattice structure is based on 
larger length scales. If the structure is self-similar, then these two 
models are the same. 

1.3.2. Self-simllarity and Fractal Behavior 

1. 3. 2.1. Exact Fractals 

As already noted, Euclidean geometry is not sufficient to 
enable us to describe or analyze all of the shapes and forms in 
nature. One most remarkable shape that is completely lacking in 
any Euclidean analysis is that of the crack, be it in metal, cement, 
or earth. We generally notice that there are some patterns that 
repeat in the shape of these cracks. This repeating pattern is what 
we will discuss here. This is called mathematical fractals (Man­
delbrot, 1982; Stanley, 1984; Pietro nero and Tosatti, 1986; Stanley 
and Ostrowsky, 1986). 

As an example, let us analyze the two-dimensional triangular 
shape, the so-called Sierpinski gasket (Figure 1.5). This is con­
structed by using a triangle as the initiator. The generator removes 
a part in the middle as indicated. The Sierpinski gasket can be 
drawn both by simple geometrical steps or with the help of a simple 
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Figure 1.5. Sierpinski gasket. (A) The initiator (I) is the triangle that is initially 
filled; the generator (G) removes a central triangle as shown. (B) A more general 
Sierpinski triangle is generated by the computer program (see Appendix A). 
D = In 3/ln 2 = 1.58. 

computer program (see Appendix A). The algorithm is as follows: 

• Draw an equilateral triangle 
• Draw another triangle inside 
• Draw triangles in each section 
• Repeat the above procedure 
• 

The magnitude of D = log 3/log 2 = 1.58. It is clear that if one 
examines this triangle under some magnification, one finds more 
and more empty space. The density thus changes when the length 
scale used for observation changes. 

This observation does not seem to be in accord with everyday 
knowledge. According to Euclidean geometrical considerations, 
the area and volume of a square of cubic object increase as the 
length, L, of the side increases. However, let us consider an 
example to describe it in more detail. Say a container is full of 
sugar with mass M. If we increase the edge of the container from L 
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to 2L, then the mass would increase by a factor of 8: 

A general relation can be written as: 

17 

(1.3) 

(1.4) 

(1.5) 

where € is any positive number and D is the fractal dimension. The 
relation in Eq. (1.5) is functional, and thus if € = 1/ L, then we 
get: 

(1.6) 

The density D is 

(1.7) 

Hence, the lower the density, the smaller are the amplitudes that 
appear implicitly in Eq. (1.7). Furthermore, no matter how low the 
density, the exponent in Eqs. (1.6) and (1.7) is always the 
dimension D. 

It can be shown that the mass in the Sierpinski gasket is given 
as (Figure 1.6): 

where 

Df = ln3/ln2 = 10g23 

= 1.0986/0.693147 = 1.58496 

(1.8) 

(1.9) 

(1.10) 

These fractals are called deterministic fractals since their 
patterns are completely determined by the generating process. This 
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Figure 1.6. The prototype regular or exact fractal (Sierpinski), D = 2. On each 
iteration the density, p, decreases, which is a generic feature of fractal objects (plot 
of logp versus logL). 

means that one can calculate the coordinates of any point on the 
fractal. In other cases, some fractal structures exhibit a distribution 
of points that may be situated more or less at random. The latter 
do, however, obey the average scaling relationship: 

(1.11) 

These fractals are called stochastic or statistical fractals (Stanley 
and Ostrowsky, 1986). 

Under similar considerations, the density can be given as 
follows: 

62L = (3/4)6L 

= 2Dt- D 6L (1.12) 

where D - Df is called the co-dimension. 
In general, fractal objects can be described by functional 

equations of the kind: 

Df<D (1.13) 
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Figure 1.7. Square Sierpinski carpet. (A) Initiator: square; (B) generator; (C) 
second stage: eight squares. 

The relation in Eq. (1.13) is the general fractal equation 

(1.14) 

for this exact fractal there are no "correction to scaling terms"­
the leading "scaling" term suffices for all values of L. A similar 
analysis can be applied to the shape with initiator as square and the 
generator, Figure 1.7, where D = log 8/log 3 = 1.89. Actually, a 
variety of other shapes (polygons) can be obtained by using this 
procedure. 

1. 3. 2. 2. Statistical Fractals: Random Walk 

The simplest example of a statistical fractal is an N -step 
random walk on, say, a square lattice (Figure 1.8A) (more later). 
The walker, for example a drunken sailor at the waterfront, takes 
one step per time unit (t), so that N = t. Since there are four 
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Figure 1.8. Schematic illustration of (a) a random walk and (b) a self-avoiding 
walk (SAW) (each of M = t = 6 steps). Only one of the 46 possible walks is 
shown, most of which have zero weight for the SAW case. The log-log plots show 
the relation between the characteristic length scale L (the mean end-to-distance 
Re) and M, the number of steps. 

choices for the drunk for each next step, after a time t there are a 
total of 4' distinct configurations. Most configurations are not 
fractals, yet certain average quantities obey functional equations as 
obeyed by Sierpinski gasket. 

As an example, let us use for the length scale L the "range" of 
the walk-the Pythagorean distance from the origin after the t 
steps, averaged over the ensemble of all t-step walks. Further, let 
Lt+1 = 1 for the 4 one-step walks, Lz = 2112 for the 16 two-step 
walks, L3 = 3112 for the 64 three-step walks, etc. The general 
equation that one gets is: 

(1.15) 

This relation also holds for multidimensional systems. 
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A typical system where this type of model is used is when 
considering the shape and growth of a polymer by the polymeriza­
tion of each monomer unit. As an example, let us consider that 
after each step a monomer is placed, and that the steps correspond 
to chemical bonds between monomers in a polymer. The random 
walk traces out a "free-flight" polymer that ignores the 
Archimedes's principle that two objects cannot occupy the same 
point of space. The mass of the polymer, Mtotah after t steps is 
clearly proportional to t. The mean Pythagorean distance from the 
beginning to the end of a polymer chain [compare this to a 
necklace with the number of beads equal to t (Le., each bead is a 
monomer)] with N monomers is given as: 

(1.16) 

From these equations we get: 

(1.17) 

which in the random walk case gives: 

(1.18) 

The fractals are self-similar and the same is true for the 
self-avoiding random walk (SAW), which means that they look the 
same independent of the length scale at which they are observed. 
However, there are many systems in nature that exhibit different 
geometrical structures at different length scales (Ahrony et af., 
1987). Although they are homogeneous (on the average) for large 
length scales, they exhibit self-similarity on short length scales. In 
the latter case, such systems may be modeled by fractal structures. 
It is obvious that one may also ask how a fractal grows. It has also 
been mentioned that completely different growth mechanisms may 
lead to the same fractal object (Stanley and Ostrowsky, 1986). 
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1.3.3. Fractal Stmctures 

One can describe the basic concepts underlying fractal spaces 
as follows. The mathematical fractals have been defined as those 
objects that exhibit scale invariance, which means that the pattern 
is self-similar. In other words, as already shown by the dragon 
example, the pattern remains unchanged under dilation operations 
(within some limits). The concept of self-similarity is basic to 
fractal analyses of forms and shapes, as shown for the dragon 
example. It can also be seen that through some variations, these 
self-similar phenomena can be expected to cover a rather large 
number of natural systems. Furthermore, one can draw both two­
and three-dimensional objects (Mandelbrot, 1982). 

Self-similarity and Fractals 

We recall objects around us by associating them with their 
shapes and forms. Although the term self -similarity is well known, 
quantitative interpretations have only recently been exhaustively 
analyzed. Furthermore, this term is not found in Euclidean 
geometry. In other words, the shapes and forms that are easily 
analyzed by fractal geometry, cannot be described by simple 
Euclidean geometry. As already mentioned, for example, if one 
examines a crack in a cement wall or floor, one generally finds that 
some parts of the shapes repeat quite often. In fact, the same was 
described in the case of metal cracks some decades ago. In other 
words, even in such irregular shapes, one finds some similarity. 
Therefore, many scientists wondered whether such self-similarity 
could be analyzed by fractal theory. Another common observation 
is that ocean waves seem to be self-similar. This was known to 
ancient seafarers as mentioned in many old travel books. 

Further, if one looks at a drop of rainwater, then one can 
easily be led to imagine that inside this drop must be other smaller 
drops, and that inside these there must be still smaller drops, and 
so on. In fact, the answer lies somewhere else. What colloid science 
has suggested is how water molecules must approach each other in 
the gas phase (so-called embryo), such that at some proximity and 
shape a first drop of liquid water will be formed (Adamson, 1982). 
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It has been found that there must be a minimum of ~30 molecules 
of water before an embryo can be formed for the phase transition 
from gas to liquid to take place. This also suggests that the distance 
and orientation of molecules remain the same as the embryo grows 
from ca. 30 molecules to ca. 30 x 107 molecules (a drop of rain). 
The self-similarity remains in this multitude of decades (approxim­
ately 7 decades). This is important to keep in mind whenever we 
mention the term self -similarity. 

However, the notion of self-similarity is not new. It has been 
known that turbulence in rivers can be decomposed into small 
eddies, which remain self-similar (Figure 1.9). This may be one of 
the major reasons why rivers do not flow in a straight line. 

The instability caused by an eddy in a river can be explained as 
follows. If one drops a stone into a pond, it gives rise to some 
waves, which disappear shortly. However, if one drops a stone 
down the side of a hill, it may hit a larger stone, and the latter 
might hit one still larger , and so on. This gives rise to an avalanche. 
It could be that rivers receive an input as a stone that gives rise to 
many eddies, which in turn makes the rivers flow differently on the 
banks. At a molecular level, this would be analogous to a toxic 
molecule entering a biological cell and destroying the lipid bilayer. 
This is the mechanism by which the same amount of snake venom 
inj~cted into a human or an elephant is deadly. 

1.3.4. Diverse Self-simllar Fractals 

At this stage it is useful to present typical examples illustrating 
the multitude of self-similar patterns that can be realized. A variety 
of self-similar patterns have been described in the literature 
(Mandelbrot, 1982). The simplest kind, as given in the dragon case, 
was mentioned earlier. Here we discuss a variety of self-similar 
patterns, furthering our general understanding of fractals and 
self-similarity. It is also hoped that through these examples one 
may be guided to proceed with construction of other types of 
fractal shapes. Although for the sake of simplicity only two­
dimensional shapes are given here, it is also hoped that the reader 
through some help from computer programs can transform these 
shapes into three-dimensional space (especially with the help of 
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Figure 1.9. Small eddies (top) which are initiators and grow to larger vortex 
(bottom) (Le., growth of self-similar shape). 

simple computer-aided drawing programs). In a recent study, 
ray-tracing was applied to study such objects (Bouville, 1985). 

Triadic Koch Island or Snowflake. These patterns are fractals 
that are generated by triangular shapes as the initiator. The 
analogous initiator square will be described in the next section. 

The simplest shape occurs when the initiator is a triangle 
(Figure 1.10). Then each side is divided into thirds, and an 
equilateral triangle is constructed in the middle on each side, as the 
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Figure 1.10. Self-similar construction of the triadic Koch curve (D = 
log 4/log 3 = 1.2628) (first two stages). 

generator. The second stage is the star shape. The next stage 
merely subdivides the outer perimeter, which results in a pattern 
different from those that are open inside, such as the case of the 
Sierpinski. Further stages give a curve that is infinitely wiggly­
there are no straight lines in it whatsoever. This pattern looks like a 
snowflake. A snowflake has been characterized as a result of 
nonequilibrium phenomena. The imbalance of forces gives rise to 
such shapes, which are well defined but the driving forces are 
chaotic (due to fluctuations as present around us arising from 
temperature, pressure, density, charges, etc.). In a recent study 
based on a more advanced model [diffusion-limited aggregation 
(DLA)], the structure and formation of snowflakes were reported 
(Meakin, 1986). The patterns produced by this computer simula­
tion model are remarkably similar in appearance to real snowflakes 
observed in the microscope. As the structure grows, fluctuations of 
two general kinds appear. The first are radial extensions of the 
interface. These are rapidly destroyed as cluster mass accumulates 
on either side of the protrusion. The second type of fluctuations are 
depressions. 

Quadric Koch Island. The initiator is square, and the gener­
ator is as given in Figure 1.11A. Each step (E = 4) is one-fourth of 
the total length of the straight line. There are in all 8 (=N) steps. 
This gives the magnitude of D: 

D = log 8/10g(4) (1.19) 

= 3/2 = 1.5 (1.20) 
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Figure 1.11. (A) Quadric Koch Island with N = 8, each step = l/E = 1/4; 
D = 3/2 = 1.5; (B) curve with N = 18, E = 6, D = log 18/log 6 = 1.6131. 

Another example is where E = 6 and N = 18 (Figure 1. llB). 
From this we can calculate the magnitude of D: 

D = log 18/log 6 

= 1.6131 

(1.21) 

(1.22) 

If we consider the case where E = 8 and N = 32, D can be 
calculated as follows: 

D = log 32/log 8 

= log 24/log 23 

= 1.6667 

The case where N = 98 and E = 14 gives: 

D = log 98/log 14 

= 1.7373 

(1.23) 

(1.24) 

The detailed analysis of these fractals has been given in the 
literature (Mandelbrot, 1982; Feder, 1988). It is obvious, however, 
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that by combining € and N, different degrees of patterns with 
varying density can be obtained. In fact, when ink spreads after 
being carefully placed on water, it gives patterns with D = 1. 7 [the 
result we get from the pattern from Eq. (1.24)]. This is a very 
important finding: magnitudes of D can be the same for two objects 
of different kinds. 

The above are examples of a few typical fractals. The reader is 
encouraged to develop some variations of these and see what 
shapes develop. Furthermore, there are known random fractals 
analogous to the above-mentioned shapes (Falconer, 1990) (Figure 
1.12). The dragon shape can also be easily transformed into a 
random fractal shape [by including a random command in the 
computer program (see Appendix A)]. For instance, one can draw 
curves instead of straight lines for each step, which gives a different 
shape. Or one may use dots for each step. We thus find that by 
combination of these various examples, one can draw almost any 
kind of shape or form that might be encountered in practice. This 
will be shown herein in more detail with the use of appropriate 
examples. 

Figure 1.12. A random Koch curve. The shape at each step is determined by 
tossing a coin as regards to which side the segment is to be removed (three stages). 
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1.4. Fractal Dimension of Clouds, Rivers, and Coastlines: 
Length-Area-Volume Relations (Scaling Fractals) 

Perimeter-Area Relation. As mentioned above, the shapes in 
the Euclidean regime exhibit some exact relationships between 
perimeter and area or perimeter and volume. In seemingly 
complicated natural phenomena, one often feels quite lost, since 
there is no possibility of analyses of natural systems by using 
Euclidean geometry. The latter defines the simplest shapes as lines, 
planes, or spaces. In addition, the language of physics uses density, 
temperature, pressure, or velocity, which are distributed in the 
homogeneous phase. 

Furthermore, one can easily find the following relations 
between the perimeter and area inside any enclosed shape (Man­
delbrot, 1982): 

Circle -+ qJ = (perimeter)/(area)ll2 
= 2.7r112 (1.25) 

= 2.7rr/(.7rr2)112 = 2.7r112 (1.26) 

Square -+ qJ = (perimeter)/(area)ll2 
= (2 + 2 + 2 + 2)/(2 X 2)112 = 8/2 = 4 (1.27) 

Equilateral triangle -+ qJ = 6/3114 (1.28) 

It is also apparent that quantities of length, (area)ll2, and 
(volume)1/3 should provide ratios of any two, a parameter inde­
pendent of the units of measurement. 

In the case of area (A,5) of any shape or form (e.g., island), by 
placing squares with side = {) (yardstick), Figure 1.13 is found to 
give (Mandelbrot, 1982): 

Perimeter = L,5 

Area = A,5 

qJ D = (perimeter) lID / A 112 

(1.29) 

(1.30) 

(1.31) 

(1.32) 
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Unlike the circle (or square or other Euclidean shape or 
form), fractals are irregular geometrical objects that show greater 
and greater detail no matter how small the scale (Fogg, 1986), and 
additionally exhibit self-similarity. That is, the detail at small scales 
looks just like that at larger scales. Fractal geometry remains one 
of the most fascinating and useful areas of the physical sciences at 
all levels. Fractals are used to model natural phenomena such as 
turbulent flow, interactions of plant communities, Brownian mo­
tion, and the distribution of stars. Fractals can even describe the 
activity of the stock market (see Chapter 10). 

1.4.1. Box-Counting Fractal Method 

It thus becomes evident that in contrast to the Euclidean 
shapes (Figure 1.14A,B), we need other methods in order to 
estimate the magnitudes of length (L), area (A), or volume (V), in 
the case of fractal surfaces or shapes. The well-known Euclidean 
equations are not useful here, and we must find procedures by 
which the fractal length, area, or volume can be estimated for 
irregular shapes and forms. 

For example, in order to measure the area of an irregular 
surface, one proceeds by using tiles, or boxes (Figure 1.14). The 
space is divided into cells of side length E, and one counts how 
many are intersected by the curve or surface (Figure 1. 14C,D) . 

Figure 1.13. Fractal estima­
tion of an irregular shape 
(e.g., an island) by box­
counting method. 
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From this number of nonempty cells, Nbox(E)' one gets: 

Length of curve as measured by box of size E = LE 

(1.33) 

and 

Area as measured by box of size E = AE 

(1.34) 

where AE = E2. In other words, the magnitude of E can be 
conveniently chosen to suit the measuring method [e.g., ruler, 
divider, magnifying glass, computer screen, microscope (e.g., 
electron microscope, scanning tunneling microscope)]. 

If we wanted to measure the fractal dimension of the coastline 
of an island or the geometry of clouds (Lovejoy et al. 1987), we 
would proceed as above. Let us suppose that the area of the island 
is Aisland and the length of the coastline is Lisland. As shown in 
Figure 1.13, draw a Cartesian lattice on the plane and make the 
squares as fine as possible. If using a computer, one can apply any 
of the graphic programs to perform such analyses. The squares that 
cover the coastline can be filled with colors. The number of squares 
or boxes can be counted, LN. The area can be estimated from the 
unfilled boxes, SN. As described above, both Sisland and Lisland are 
proportional to LN and SN. If there exists a fractal relationship 
between SN and LN for different islands, then the following relation 
will hold: 

(1.35) 

It is worth mentioning that whether a fractal dimension exists 
or not, or in most cases the variation of the fractal dimension, is 
expected to be dependent on the range of yardstick used for the 

Figure 1.14. Fractal estimation of (A) a line; (B) a square and a rectangle; (C) an 
irregular line; (D) different (any) shapes. 
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analyses. Therefore, systems with such dependence will need to be 
analyzed with this bound. Further, there are systems where the 
fractal dimension is varying with the yardstick. The latter systems 
have not been extensively analyzed (Takayasu, 1990). 

In the case of a straight line (Figure 1.14A), we thus find that 
since the magnitude of length L£ is independent of size of E used, 
then Nbox(£) ex: 1/ E. This shows that the system has a dimensional 
equal to 1. 

The shape of a square (Figure 1.14B) has Abox(£), where 
nbox(£) ex: E-2 ; the exponent indicates that the surface has a dimen­
sion 2. Similarly, volume has a dimension 3. 

For the irregular shape (Figure 1.14C), decreasing the mag­
nitude of E gives rise to an increase in length (as was seen for the 
dragon form), and thus Nbox(£) never approaches a dependence on 
E-1• From this we conclude that: 

AT -D 
Hbox(£) ex: E (1.36) 

where D can be either integral or nonintegral. 
We thus find the following: 

D = 1: curve 

D = 2: surface (1.37) 

D = 3: solid 

If we look at the winding curves in Figure 1.14D, we find that 
D > 1 due to these irregular shapes. The larger the value of D, the 
greater is the meandering (or disordered shape of the surface or 
solid). This kind of analysis can thus be useful for the characteriza­
tion of surface roughness. In other words, the quantitative nature 
of fractal analyses can be very useful, under various conditions. A 
special application that has recently been adapted is the control of 
tumor growth in cancer. 

Covering by Balls and Self -similarity. Box counting is a very 
simple and efficient method for determining the fractal dimension. 
Nbox(£) can be estimated as an average over all possible positions 
and orientations of the grid. However, if one estimates by box 
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Figure 1.15. Overestimation of the len­
gth of a straight line by box counting. 
The estimated length N equals the len­
gth of the heavy stepped curve. 

.. 
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counting the c1assicallength measurement [Eq. (1.33) or D = 1], it 
turns out that it is accurate to only within a factor of 2, and the 
same is the case for area. This arises from the fact that the length 
of a straight line, at an arbitrary angle with respect to the grid, is 
approximated by the length of a stepped curve (Figure 1.15). This 
leads to an overestimation of the length. Furthermore, the 
difference does not vanish as the box size is reduced (to zero limit). 
These discords can be avoided by using balls instead of squares or 
cubes, and estimating the length in terms of length as found from 
the diameter of the balls. Let Nball,r be the minimum number of 
balls of radius r so that each point of surface lies on at least one 
ball. This procedure is termed covering by balls or spheres (Figure 
1.16). From this we find: 

Length = lim Nball,r2r 
1'->0 

(1.38) 

Area = lim N ball r3r2 
1'->0 ' 

(1.39) 

and instead of Eq. (1.36) one can write: 

1I.T -D 
lYball,r ex r (1.40) 
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L 

B 

L/3 
Figure 1.16. Definition of N and the construction of the curve. (A) The first stage 
is called the generator (top curve). It has end-to-end distance 1 and consists of four 
straight-line segments of length 1/3. If we replace each segment of stage k by the 
generator scaled down by the factor 1/3, we get stage k + 1 (k = 1,2, ... ). At 
stage k, the curve consists of 4k segments of length 1/3. (B) Balls of size Land L/3 
are shown (L = system diameter). 

We find that the covering system by balls instead of cubes gives the 
correct estimate of length/area and a definition of D almost 
identical with Eq. (1.36). However, it is obvious that any other 
suitable shape (e.g., polygon) can be used. 

Whether one uses cubes or balls or any other convenient 
reference probe (even molecules as mentioned later), this only 
affects the prefactor in Eqs. (1.39) and (1.40), and has no effect on 
the exponent. The only difference is that NbaIl,r involves a nontrivial 
minimization problem, whereas Nbox(E) requires only averages. 
From the covering by balls in Figure 1.16, the value of D = 
In 4/ln 3 = 1.26186. This relation is obtained as follows. The curve 
in Figure 1.16 consists of four copies of itself down-scaled by a 
factor 1/3, and hence of 4k copies down-scaled by a factor of 3-k 

(where k = 1, 2, 3, ... ). The curve can therefore be covered by 1 
ball of diameter L, by 4 balls of diameter L/3, by 16 balls of 
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diameter L/9, etc. Thus (Pfeifer et al., 1985): 

Nban(3- k L/2) = 4k 

35 

(1.41) 

(1.42) 

for k = 0, 1, . . .. Comparison with Eq. (1.42) gives D = 
In 4/1n 3 = 1.26. 

This example shows that a system can be decomposed into 
parts geometrically similar to the whole system, i.e., has self­
similarity. The synonym scale in variance emphasizes the fact that 
the system looks the same regardless of the magnification used for 
its observation. The argument that leads to D = In 4/1n 3 = 
1.26186, for the curve in Figure 1.16, can easily be generated. 

It is important to add that fractal dimension can be estimated 
by a suitable computer digitization procedure. Since there are 
many different procedures available, we merely point out that this 
technique will playa very crucial role in future fractal studies (for 
one-, two-, or three-dimensional systems). There are already 
reports of the use of the scanning tunneling microscope used for 
fractal analyses after digitization [at a yardstick on the order of 
1 nm (10-9 m)]. 

1.4.2. Rivers: Shapes and Fractal Dimension 
As exemplified in Figure 1.17, rivers meander and assume 

irregular shapes. Why don't rivers run straight? Further, it is of 

Figure 1.17. The shape (sche­
matic) of the mainstream of 
the Amazon River. 

500KM 
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interest to determine whether there is any self-similarity in such 
natural phenomena, with a geometrical fractal dimension. 

For many decades the shapes of rivers has been the subject of 
much interest. The great rivers, such as the Danube, Ganges, 
Yangtze, and Mississippi, meander with curves and loops toward 
the sea. This vast movement of water along with the contents of 
suspended particles and dissolved material is an overwhelming 
natural process. In this fluid flow, as the water hits the banks it 
creates currents and eddies. As chaotic as the movement of a river 
may seem, its analysis may provide a coherent result. In turbulent 
flow, eddies of a range of sizes occur, leading to the suggestion of 
self-similar phenomena. Furthermore, turbulence results in heat 
evolution, i.e., the energy of the fluid motion is dissipated because 
of fluid viscosity. It is also obvious that this dissipation is not 
homogeneously distributed throughout the volume of the fluid, i.e., 
some parts are warmer than other regions. Gusts of wind would 
also contribute to this temperature difference. Thus, one would 
find secondary currents inside the primary currents. The spiral 
movement from one bank to the other produces more and more 
power due to any little perturbation. Since this multitude of 
perturbations results in the shapes of our rivers, we can imagine 
that nature creates other patterns with similar combinations of 
perturbations. In other words, small eddies are the cause of 
turbulence of a large scale. Despite many years of intensive 
investigations, turbulence in fluids is still not completely under­
stood. Furthermore, there is no uniformly accepted definition of 
turbulent flow. This has the advantage that it can reasonably be 
identified with some convenient feature of a flow description. 

From the analyses of the shapes of river tributaries and area 
(Ariver), according to Hack's law (Hack, 1957; Takayasu, 1990), the 
length (Lriver) and Ariver are related: 

(1.43) 

or 

(1.44) 
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Figure 1.18. Plot of log (number 
of squares: N) versus length of the 
yardstick (R = km) for the Ama­
zon (D = 1.85). 

37 

N 

Hlee 

100 

where D = 1. 2. The values of D for various rivers are in the range 
from 1.1 to 1.9. 

The shape of a whole river has been found to be fractal. The 
Amazon river was analyzed by the box-counting method. A plot of 
log N versus log rboxsize gave D = 1.85 (Figure 1.18). By a similar 
procedure, the value of D for the Nile was found to be 1.4. From 
these differences it was concluded that the magnitude of D is larger 
in the areas with higher rainfall (Takayasu, 1990). In other words, 
if the river branched out and flooded completely, i.e., D = 2, high 
rainfall in that area would be expected. 

It has been further suggested that the variation of the water 
level in the rivers would be accordingly fractal. This gives a 
practical application of fractal analysis to water level control and 
other irrigation control projects. Further, these data can provide 
insight into the rather long-term changes in the environment (i.e., 
greenhouse effect, pollution effect, solar activity variations). Later, 
we will show, for example, how solar activity might affect economic 
variations. It must be stressed that in most systems, where diffusion 
processes are present, one expects a fractal basis (Unger et al., 
1987). This will become clearer as different theoretical develop­
ments are explained. 

It is clear that concerning various ecological analyses of rivers 
and climatic changes, fractal analyses will find many useful applica-



38 Chapter 1 

tions in the future, e.g., fractal analyses of satellite photos after 
digitization. Theoretical models have been described that are useful 
for river shape analyses (Takayasu et ai., 1988; Hack, 1990). 

1.4.3. Fractal Sbapes of Clouds 

In some of these examples the fractal dimension is correlated 
to the turbulence effects (Takayasu, 1990). This is especially seen 
in clouds and experiments where ink flows into another phase 
(so-called sumi-nagashi). In clouds the flow is regulated into 
streamlines of a fluid; the fractal dimension would thus be related 
to the turbulence and diffusion. The same considerations apply in 
the case of ink flow. These systems have been described by the 
so-called Richardson's 4/3 power law (Mandelbrot, 1982; Feder, 
1988; Takayasu, 1990). This law postulates that the distance R 
between two particles floating along some turbulence flux increases 
with time, as follows: 

(1.45) 

The flow of ink in a turbulent system is shown in Figure 1.19. Since 
ink spreads out isotropically, (R2) is almost equal to the area 
covered by ink. This shows that the area increases as given by Eq. 
(1.44). The magnitude of D is thus 4/3 = 1.333. The magnitude of 
D for clouds has been found to be ca. 1.35. From this we may 
conclude that the same kind of physical forces govern cloud 
formation and ink flow. This is the most important observation in 

DIAMETER 
Figure 1.19. Turbulent diffusion 
pattern (Richardson's power law 
with D = 4/3). 
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the analysis of fractal geometry, as it shows how very different 
phenomena are interrelated. The fractals as described here in the 
case of clouds or smoke patterns are only short-lived. These are 
typical examples of fractal shapes that appear (are born) and 
disappear (die). The dynamics of fractals are discussed elsewhere. 

1.4.4. Branching of Trees and Fractal Dimension 

In various systems found in nature, growth is a very complex 
process, involving the optimization of many variables. It must be 
emphasized here that in the natural selection process the time scale 
is on the order of millions of years. As an example, it is known that 
the leaves of a growing plant tend to maximize their surface area 
and minimize the distance from the branches in order to maximize 
food production and minimize food transportation. The rings in a 
tree are exactly equivalent to 1 year, and sequoia trees in 
California have been so dated to be some 2000 years old. 

It has been mentioned that the various shapes of different 
phenomena show a very strong resemblance. The shapes of tree 
branching are found to resemble very much those of rivers or 
dendrites, and show a well-defined pattern. The box-counting 
method applied to the branching of trees has found that D = 1. 3 to 
1.8. This is in contrast to the notion that being a three-dimensional 
structure the magnitude of D should have been greater than 2. This 
can be explained as follows. If the magnitude of Dtree was greater 
than 2, there would be more branches, and the lower branches 
would be in shadow and deprived of sunshine. Thus, the value of 
Dtree is less than 2, and more sunlight reaches the lower branches. 

Analysis of fern leaves of different sizes shows some simple 
mathematicai symmetry. The number of leaves of small size is 3, 
while in the next size it is 21 X 3 = 6. In a very large fully grown 
leaf there are now 22 X 3 = 12 sections. The leaves are growing by 
some factor 2D , where D = 2. 

In earlier observations (Leonardo da Vinci; see Mandelbrot, 
1982), it was postulated that all of the branches of a tree when 
added together are equal in thickness to the trunk. A similar 
observation is found in biology, such as the branches in the lung or 
heart (Takayasu, 1990). A relationship between the diameters, dD , 
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before and after bifurcation can be given as: 

d~ = dP + df (1.46) 

where D = 2. Similar considerations apply to other systems where 
growth and branching are present: 

Lung bronchi D = 3 

Arteries D =2.7 

Widths of rivers D =2 

Different biological systems are discussed in Chapter 9. 

1.4.5. Plants and Insects: Fractal of Size and Shapes 

A wide variety of insects live on the leaves of different plants. 
Although it may not be obvious at first sight, it is reasonable to 
expect a correlation between the surface size and roughness of the 
leaves, and the size of insects that live on the leaves (besides other 
ecological factors). Further, it is known that population density and 
body weight vary for terrestrial habitats. This is also found to 
exhibit fractal relations (Marquet et al., 1990). 

Large insects must of necessity live on large leaves, and 
smaller insects on smaller leaves. Further, the surface roughness of 
leaves would be expected to determine the ecosystems of insects. 
In fact, analogous considerations have been used in the analyses of 
the theories given for the disappearance of dinosaurs. 

In the case of insects and leaves, consider the following 
example (Takayasu, 1990). For D1eaf = 2.5 and insect size = 
0.1 cm, the area used by this insect as compared to one of 1 cm is 

l(f·5-2 = 3.16 times (1.47) 

The metabolic rate of insects (empirical) is given by 

(weight)o.75 (1.48) 
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Consumption by a 1-cm insect is 

10000.75 = 178 times greater than for a O.l-cm insect 

From these calculations, one can predict that the number of 
insects of size 0.1 cm is 3.16 x 178 = 560 times greater than the 
number of 1-em insects. This has been analyzed in much detail 
(Takayasu, 1990). The size distribution of plant-supported insects 
thus is found to be related to power law under these assumptions 
(Morse, 1985). 

Various algorithms have been used to analyze the fractals of 
plants (Prusinkiewicz and Lindenmayer, 1990). It is hoped that 
future studies will combine these correlations between insects and 
plant shapes and forms. 

The relation between the population density and body size of 
different terrestrial habitats has been investigated (Marquet et al., 
1990). The data used were from natural rocky intertidal com­
munities in central Chile, of the population density and body size 
for invertebrates. From log (individuals/m2) versus log weight, 
slopes were found to vary from -0.77 to -0.96. Explanations 
proposed for the scaling power of animal population density with 
body size have considered the action of ecological and evolutionary 
processes. It has been proposed that population density scales to 
body size with a slope of -0.75, which would be the result of 
interspecific competition acting to keep energy use of all species 
within similar bounds (in other words, energy use is independent of 
body size). However, if the slope is -1.0, this would suggest that 
the total biomass per unit area is independent of body size (i.e., all 
kinds of species attain the same biomass), and that this pattern is 
the result of numerical and facultative responses of predators. It 
was concluded that the population density scaling is difficult to 
explain at this stage. 

1.4.6. Coastlines: Fractal Dimension 

Observing the jagged coastlines with self-similar shapes, one is 
led to wonder whether the shapes were carved out by some natural 
forces, and by some self-similarity that could be analyzed by fractal 
means (or random fractal shapes). 
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The shapes look very irregular and chaotic. However, besides 
other factors, one that is responsible for these coastlines is the 
pounding of the waves and the erosion by winds. The waves, 
although at first appearing irregular, do seem to suggest some 
pattern. In fact, surfers are known to regard each seventh wave as 
being the largest. This suggests that the coastlines have some 
fractal geometry, as indeed analyzed by various investigators. 

The length of a coastline or boundaries between countries 
have been analyzed by many investigators (Richardson, 1961; 
Mandelbrot, 1982). For instance, as shown in Table 1.1, boundary 
lengths are variable. 

In geography books, one finds that the coast of a particular 
country can be some 2000 miles long. But the question raised here 
is whether the yardstick used to measure the coastline has an effect 
on the measured distance. That is, the distance between two points 
must include harbors, bays, and ports as added length. This would 
become more evident as the resolution, E, is varied from 100 km to 
20km or <1 m. 

These data suggest that in the various measuring methods 
used, the dimension of the yardstick differed by a factor of ca. 2 
(since log 2 = 0.3, which corresponds to the 20% difference). The 
length measured would thus depend on the magnitude of the 
yardstick used. The length, if just set equal to a straight line, would 
be smaller than the actual length, if measured by walking along the 
coast (Figure 1.20). 

If the length of each step is decreased (i.e., comparing the 
steps taken by a man and by a child), then the length traversed 

Table 1.1. Lengths of Boundaries between Ditrerent Countries-

Countries 

Spain-Portugal 
Netherlands-Belgium 

GSource: Richardson (1961). 

Length (km) 

987 
380 

1214 
449 

bData for A and B are from different atlases. 

Ratio 

1.23 
1.2 
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Figure 1.20. Estimation of the length of a coastline by the line segment method 
(yardstick = diameter of the circles). 

would be even larger. In other words, the length, L", would 
depend on the magnitude of each step, E i.e., 

length = (number of steps N,,) (magnitude of each step E) 

(1.49) 

This leads to the relation (Feder, 1988): 

(1.50) 

where A = LN when E is very small, and the exponent D = 1 in 
the case of a straight line or circle (see Figure 1.14). However, in 
the case of a coastline or boundary, we find that L" keeps 
increasing as the magnitude of E is made smaller. This is due to the 
fact that as E is decreased, one measures more detailed coastline, 
i.e., smaller bays or eroded coasts. There is in fact no limit on the 
increase in L" as E decreases further. The magnitude of the 
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Figure 1.21. Estimation of D for coastlines of different countries. gb, Great 
Britain; pr, Portugal; aus, Australia; sa, Spain; ge, Germany; circle, D = 1, for 
small yardstick (for comparison). Redrawn with modifications from Mandelbrot 
(1982). 

coastline length as measured would become infinity as E ~ 00, 

because the value of D > 1. 
From the relation in Eq. (1.49) we find that a plot of log L€ 

versus log E gives the slope (= 1 - D), where D is the fractal 
dimension (Figure 1.21). 

In a recent study, extensive tests were carried out on the 
fractal analyses of Random Island (situated near Newfoundland) 
from the digitized data of the contours of lake shores (Goodchild, 
1982). The data were taken from a 1: 50,000 scale topographic map 
and digitized to an accuracy of 0.01 inch. In the case of the 
shoreline, the data fit very well with the log-log fractal model. On 
the other hand, the log-log plots of lakes were sigmoid in shape, 
with D varying from 1.3 to 1.8. Thus, D is dependent on the 
yardstick used. Furthermore, the area/perimeter relationships 
showed that the contour envelopes and lake outlines were different 
for length/step size data. Similar investigations have been reported 
by other investigators (Mark and Aronson, 1984; Culling and 
Datko, 1987). The roughness of the San Andreas fault zone in 
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California has been analyzed (Aviles et ai., 1987; Power et ai., 
1987). 

Another argument can be given to support the finding that the 
magnitude of D for coastlines is very similar in different parts of 
the world. This may indicate that some movement in the oceans 
could be responsible for the erosion of the coast. This is supported 
by the observation that eight times within the past million years, 
something in the earth's climatic equation has changed. This has 
caused snow to remain in mountains where previously it had 
melted away. Furthermore, over the past 30 years, evidence has 
mounted that the glacial cycles are ultimately driven by astronomi­
cal factors: slow, cyclic changes in the eccentricity of the earth's 
orbit and in the tilt and orientation of its spin axis. Many scientists 
have proposed that the seasonal changes act directly on the ice 
sheets of the Northern Hemisphere (Broecker and Denton, 1990). 
A reduction in summer sunshine allows ice to build up, and an 
increase melts it away. The ice in tum alters the earth's climate. 
These cycles would affect evaporation and rainfall, and as well the 
ocean circulation. Thus, the overall effect could be that the fractal 
of coastlines would be more or less the same, as is observed. 

1.5. Basic Mathematics of Chaos 

In recent years, the word chaos has been mentioned in many 
contexts (Fisher and Smith, 1982; Kolb et ai., 1985; Holden, 1987; 
Pynn and Riste, 1987; Gleick, 1988; Avnir, 1989; Hecht, 1990). 
Before going into detail, some simple systems will be described as 
an introduction to basic ideas. For instance, the movement of a 
dust particle in a room was found to be erratic, due to collisions 
between gas molecules and the particle. However, the pressure 
exerted by a gas in a container can be described by a simple 
relation. The pressure (P) exerted by gas molecules arises from 
their collisions with the walls of the container with volume V at 
temperature T [273° + C = K (Kelvin)] (Figure 1.22). The gas law 
was derived from this theory (Berry et ai., 1980) (1 mole of gas): 

PV =RT (1.51) 
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Figure 1.22. Movement of gas molecules. (A) Gas molecules and the walls of the 
container; (B) collisions between gas molecules and chaotic (random walk) 
movement . 
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where R is the gas constant [=8.31441 J/(mole K) = k(1.38 X 

10-23 J/K)NA (6.03 X 1023 mole-I)]. This equation can also be de­
rived from the consideration that the total internal energy, U, of 
the gas is proportional to the pressure as: P = (2/3)(U/volume). 
Further, the energy per mole of gas is the average kinetic energy 
per molecule times the number of molecules: (3/2)NAkT = RT. 
Combining these relations gives the expression in Eq. (1.51). It is 
supposed that a gas consists of a large number of very small 
molecules, moving about in all directions. Taking air as an 
example, there are 6 x 1023 molecules in 28 grams of air. Air 
weighs roughly 0.001 gram per liter. In 1 liter of air we thus have 
10-3 x 6 X 1023/28 = 2 x 1019 molecules. In the case of an ideal 
gas, the kinetic theory postulates that the molecules are so small 
that their actual volume is negligible in comparison with the total 
volume of the gas, and that they exert no attraction upon each 
other. As a result of their continual movement in all directions, the 
molecules will frequently collide with each other and with the walls 
of the containing vessel, and it is the latter elastic impacts that, 
according to the kinetic theory, are responsible for the pressure 
exerted by the gas. Thus, the chaotic collisions of these tiny 
molecules give rise to the pressure (which is both easily measured 
and analyzed). The movements of the gas molecules are chaotic, 
but nonetheless one can derive the most fundamental equation in 
physics from this phenomenon (i.e., volume multiplied by the 
pressure exerted by the chaotic collisions of the molecules with the 
walls of the container = constant]. This is further related to the 
Brownian motion (see later). 

Molecules in dense systems are known to move with a random, 
zigzag motion. This is easily observed in the motion of a macro­
scopic particle, such as a smoke particle in air or a colloidal particle 
in a liquid. Photographs of its motion reveal a chaotic trajectory. 
This motion has been analyzed by the theory of Brownian motion. 
It is known from kinetic theory that the molecule moves as it 
collides with other molecules. However, if the movement of the 
molecule repeats itself over a given length of time, this may create 
a starting pattern for larger time-scale patterns, just as a very small 
ripple in water looks the same as a very large vortex. 

In another case, the heartbeat sometimes changes dramatically 
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from minute to minute and from hour to hour (Goldberger et al., 
1990). The interval between heartbeats is known to vary chaoti­
cally. Physiologists and physicians have attempted to quantify such 
chaotic phenomena through fractal procedures. These mathemati­
cal analyses can provide much useful insight into the disease 
treatment. 

The word chaos has at least two levels of meaning. In the case 
of gas molecules, their movement is chaotic. However, the pressure 
exerted by these molecules when hitting the container walls is 
exactly described by the rather simple Eq. (1.51). Furthermore, a 
gas molecule moves a certain well-defined average distance (on the 
order of 1 nm) in space before it encounters another molecule or 
the wall. This average distance is called the mean free path, A 
(Berry et aI., 1980). If one observes this movement under varying 
magnification in relation to the magnitude of A, then the picture 
will be different for different magnifications. Interestingly enough, 
one finds systems in everyday life where these patterns exhibit 
self-similarity, i.e., the movements of molecules repeat their 
pattern at varying scales of magnification used for observation. The 
magnitudes of the mean free path, A, also suggests that molecules 
move with very similar repetition. 

Furthermore, chaos is actually all around us. From the swirling 
patterns of a hurricane on a radarscope to the eddies and swirls of a 
mountain stream, from the ups and downs of the stock market to 
the uncontrollable patterns formed by smoke as it rises, all of these 
phenomena seem totally unpredictable and out of control. 

According to Ramsey's theory, complete disorder in nature is 
an impossibility. In the short time scale of man, the spatial 
arrangement of stars and galaxies seems to change very little. This 
supports the conjecture of Ramsey. This postulate, of course, has 
many direct relations to this monograph. The degree of order 
(including self-similarity) or disorder (chaos) in nature is the 
subject matter of this monograph. It was Henri Poincare (1890) 
who proved that the motion of three bodies is very complicated 
when movement takes place under the influence of gravitational 
forces (Thompson and Stewart, 1988). 

In the same way, the ecology of life around us is very complex 
and varying. The ecological chaos was therefore a subject of 
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Figure 1.23. The rising and decreasing population approaching an equilibrium 
state (schematic). 

interest to be analyzed by mathematical procedures. Of ecological 
phenomena, population growth is of the most interest. The growth 
is sometimes not easily visualized, since it may be rising steeply in 
the case of a small population and slowly in the case of a large 
population (for example, due to lack of food). Further, in most 
cases, this rise and fall brings the population close to some 
equilibrium (Figure 1.23). 

Chaos is fascinating because of its interplay of mathematics, 
science, and technology. It is not clear what role chaos plays in real 
chemical processes, in living systems. On the other hand, a system 
may look chaotic or simple, depending on the scale of observation. 
Therefore, the term chaos is not sufficient for a large number of 
systems. It also requires some definition about the dimensional 
criteria of time and space. Since one finds self-similar characteris­
tics in such phenomena, it is obvious that fractal dimension will be 
expected in some chaotic processes. 

Chaos can be defined as some situation in which a dynamical 
variable Xt (at time t) is extremely sensitive to the initial precise 
value Xo (at time t = 0). In some cases after a very short time 
only a statistical analysis is possible for the value of x" even 
when the nonlinear dynamical process is completely deterministic. 



50 Chapter 1 

This kind of occurrence is called deterministic chaos, since it is not 
influenced by any external effects. 

In order to describe this, the procedure of iteration has served 
as an example (Thompson and Stewart, 1988; Devaney, 1990). In 
mathematics, iteration can be used to estimate the value of x that 
would satisfy two equations at some value(s) of x, e.g., y = x and 
y = function(x). Iteration involves repeating a calculation process 
over and over again, using the result of the previous computation 
as the input for the next. In other words, one iterates by selecting 
an initial value as seed or input and then computing the value of a 
function. For example, to iterate the square root function, all we 
need to do is select an initial x value and calculate Yx several 
times. Let us proceed by selecting the value of x = 256: 

y = Yx, Xo = 256 

Yx = Y256 = 16 

v'16 = 4 

v'4 = 2 

'Ii = 1.414214 .. . 

y1.414214 ... = 1.189207 .. . 

Y1.189207 ... = 1.090508 .. . 

= 1 (1.52) 

Continuing in this fashion, we see that repeated application of the 
function square root eventually yields the number 1, which then 
remains unchanged or fixed under subsequent iterations (Devaney, 
1990). Moreover, if one selects the initial x value to be 0.6, it also 
leads to a value 1 after several iterations. This shows that 
regardless of the starting value, the function tends to the same 
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point in space (i.e., 1). This iteration procedure is depicted in 
Figure 1. 24A. The crossing point, i.e., where y = Vi and y = x 
have the same value, is the attractor (in the present context). This 
is an example where the iteration converges to a point. As a rule a 
strange attractor has a fractal dimension. For those who wish to 
pursue this further, a good survey can be found in the literature 
(Farmer et ai., 1983). 

Let us consider another function, such as x2, that leads to a 
different result. Here we find that on iteration the values tend to 
infinity (Figure 1.24B). This is an example where the iteration 

A 

Figure 1.24. Iteration of different func­
tions. (A) Convergent iteration: y = 
Yx. The initial value of Xo is chosen 
arbitrarily, and successive values are 
estimated from the intersection be­
tween the lines where y = Y x and 
y = x. (B) Divergent iteration of func­
tion y = x 2• 

1 

1 



52 Chapter 1 

diverges and there is no attractor point. An iteration of sin x is 
found to tend to 0 but very slowly (the reader can confirm this by 
using any simple calculator or a computer). The reader can study 
other functions by this approach. 

If we now look at the numbers, we find that it is these numbers 
that tend to 1 or infinity. As shown below, analogous numbers 
generated by simple mathematical equations can in fact produce a 
remarkable variety of data plots. Under certain conditions, these 
data can even exhibit chaotic phenomena as found in ecological 
cycles. In everyday life one has to find roots of an equation, i.e., 
where a certain value of x satisfies the relation that a function of x, 
Ix = O. In the year 1225, Leonardo of Pisa investigated a function, 
Ix = x3 + 2x2 + lOx - 20 (=0), and found that when x = 
1.368808107, it satisfies the relation Ix = O. If we rewrite the 
function (analogous to the above examples), such that some 
Xn = 20/(X~_1 + 2xn - 1 + 10), then we discover whether as n 
increases (starting with n = 1, and guessing Xl = 1) the value of Ix 
converges (or diverges). The value converges as given in Table 1.2. 
The rate of convergence is slow, but on a computer it would not be 
noticed. 

Especially for a biologist or ecologist studying the growth or 
decline of the populations of different species of birds or fish or 

Table 1.2. Iteration of a Function t = r + h Z + lCk -
20, for Various Values of n 

n Xn n Xn 

1 1.538461538 13 1.368817874 
2 1.295019157 14 1.368803773 
3 1.401825309 15 1.368810031 
4 1.354209390 16 1.368807254 
5 1.375298092 17 1.368808486 
6 1.365929788 18 1.368807940 
7 1.370086003 19 1.368808181 
8 1.368241023 20 1.368808075 
9 1.369059812 21 1.368808122 

10 1.368696397 22 1.368808101 
11 1.368857688 23 1.368808110 
12 1.368786102 24 1.368808107 
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animals or chemicals in rivers, an important goal is the selection of 
useful mathematical models that will give predictions on the 
population in the future. Or one might look backwards and try to 
understand (through appropriate models) the evolutionary pro­
cesses. In these situations, it is obvious that some numbers tend to 
oscillate (as in a pendulum) or they tend to the same level of 
population size (or some other criterion). Here it will suffice to give 
an introduction using some simple examples. For those interested 
in more advanced mathematical models, suitable references are 
given. 

Until the present decade, the study of nonlinear chemical 
reactions (i.e., reactions in which concentrations do not change 
regularly with time), multistability, traveling waves, and pattern 
formation, was generally the study of a single reaction. 

In biology, where fluctuations in population of a single species 
are present, one finds that certain types of mathematical relations 
are very useful. Some of these might exhibit attracting or repelling 
periodic plots. They can be described by the plots obtained when 
iteration is carried out between two rather simple equations: 
Constant reproduction rate (e.g., of children): 

(1.53) 

Declining reproduction rate with increasing population [or a 
pollution effect in a macroeconomic model (Stutzer, 1980)]: 

Ex = 1JX(1 - x) (1.54) 

The most interesting property of the relation in Eq. (1.54) arises 
from the fact that the magnitude of /J can give rise to a multitude of 
unstable phenomena as observed in nature, e.g., motion is peri­
odic, ergodic (or mixing or chaotic). This simple mathematical 
equation can give rise to plots that are useful for describing 
phenomena, e.g., from simple chemical reactions to complicated 
ecological phenomena. 

Let us examine the effect of different values of /J (Thompson 
and Stewart, 1988) in Eq. (1.54): 

for /J :5 3 (1.55) 
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Figure 1.25. The effect of magnitude of !l in Eq . (1.54) on the iteration pattern. 
(A) !l :5 3; (B) !l < 3.1 (period doubling); (C) !l > 3 (chaos). 
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All initial population sizes evolve toward a unique stable 
equilibrium, which is the same as the point of bisectrix (Figure 
1.25A): 

for I-' ~ 3.1 (1.56) 

When the slope of F'x = -1, the equilibrium bifurcates by 
period doubling; this period 2 attracting limit cycle is shown in 
Figure 1.25B. 

for I-' > 3 (1.57) 

The size and area of the limit cycle increase continuously when 
I-' > 3, with additional period doubling as I-' increases (Figure 
1.25C). 

The period doubling is depicted in Figure 1.26. This is where 
the population does not settle down to a single number, but begins 
to oscillate (analogous to a pendulum) between two different levels 
yearly. 

The example of period doubling is very important. It means 

y 

CHAOS 

1 2 a 
Figure 1.26. The state of period doubling leading to chaos. 
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that all systems starting with a large value settle down at a different 
cycle than those that start with a lower value. The 4-year cycle 
would be observed at larger Il values. The population is known to 
exhibit bifurcations as Il increases. Thus, even with such a simple 
mathematical plot, one can generate rather complicated systems. 
The period doubling may be put more qualitatively, as a plot where 
the period 1 > period 2 > period 4 > period 8 > period 16 > 
period 32 > period 64 > ... 

Thus, systems that look chaotic might just as well be partly 
periodic and partly steady, depending on the value of Il. In other 
words, mathematics need not be confronted with a hopeless case if 
one encounters chaotic data. 

The logistic equation (1.54) exhibits chaos at infinitely many 
values of Il > 3, while there is a dense set of values above 3 at 
which the system is periodic (i.e., nonchaotic). 

Fractal objects are quite common in the theory of chaos in 
general and of turbulence in particular (Fisher and Smith, 1982). 
The interfacial instabilities described elsewhere are examples of 
colloidal turbulence and chaotic phenomena. Further, it has been 
suggested that chaotic attractor must have a fractal dimension 
(Thompson and Stewart, 1988). An important application of the 
theory of nonlinear dynamics is the analysis of erratic experimental 
data (or the variation of the line Voltage) (Mayer-Kress, 1987). In 
this study a series of examples are discussed that should be fulfilled 
for serious dimension calculations, and applications of these 
methods to data from periodic signals are described. The effect of 
size of data set on the observed values of the dimension and the 
minimal number of data points required for a given sampling 
frequency are also delineated. 

Various biological popUlations have been found to fit the 
following equations, which are mathematically equivalent to Eq. 
(1.54): 

or 

/}.,x = ).. sin (.nx) 

Ax = x exp [)"(1 - x)] 

= x[1 + ),,(1 - x)] 

(1.58) 

(1.59) 

(1.60) 
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or 

= 4/(1 + ax)5 (1.61) 

By using these equations, we can describe phenomena with the 
following characteristics: 

Steady state ... Period doubling 

Chaotic region 

The relation between dynamic state and the magnitude of 1-' 
can be seen in Figure 1.27. These examples show that rather 
complicated fluctuations can be conveniently described by some 
simple mathematical analytical procedures. The reader may 
proceed on his or her own to further investigate the different 
features suggested from Eq. (1.54) and the value of 1-'. 

The long-term unpredictability associated with chaos has been 
suggested to be undesirable in certain systems (Peng et af., 1991). 
These analyses suggested that controlled chaos could be of impor­
tance in the self-regulation of living systems. This may be so 

Figure 1.27. Schematic plot o~ rela­
tion between stability and the mag­
nitude of ,.,. (see Eq. (1.54». 

STABLE 

x 

UNSTABLE 
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because of the fact that behavior is selected by some subtle 
feedback mechanisms. Three-dimensional phase portraits were 
developed by this model. 

In a different context, there has been much interest in the 
mathematics of iteration of different kinds of planes, i.e., complex 
planes. The iterations used in these have been basically the theory 
described by Julia (1918) and Fatou (1919) . These theories have 
recently been further advanced (Mandelbrot, 1980), which has 
given rise to a whole set of beautiful shapes and forms. A simple 
computer program describing the Julia set of a complex function 
has been given in a recent study (Devaney, 1990). The reader 
should consult these references in order to be able to pursue this 
fascinating area (Mandelbrot, 1980; Peitgen and Richter, 1986; 
Blanchard, 1984; Devaney, 1986; Saupe, 1987; Falconer, 1990). 

1.5.1. Noise: Fractal Dimension 

One way to introduce the term noise is as follows. If we 
measure the main voltage versus time, we find that the signal varies 
with a feature that looks like noise (Figure 1.28). This is one of the 
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Figure 1.28. Typical plot of a signal considered as noise. 
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most common examples where noise is a daily experience, but at 
the same time without any effects, in general (D'Amico and 
Mazzetti, 1986; Holden, 1987). In a particular example, the noise 
signal as measured from the voltage of a turbulent jet was analyzed 
by the box-counting method (Barnsley, 1988). The magnitude of D 
was ca. 1.5. This observation is also a very good example that the 
Euclidean geometrical laws of the past 2000 years would not help in 
its analyses. We will show later that there are other signals, such as 
heartbeat, that can be analyzed by the same procedure as the 
noise. The same analyses can be applied for noise as for making 
measurements in the laboratory (e.g., pH, spectroscopy, 
conductivity) . 

Any such data, so-called noise, can be represented by se­
quences of numbers that can be used as signals. A typical example 
is to analyze the successive digits [100 digits are given, but more are 
available (up to 1 million through the use of supercomputers)] in 
the decimal representation of Jr: 

Jr = 3.14159265358979323846264338327950288419716939937510 

5820974944592307816406286208998628034825342117068 ... 

(1.62) 

The most famous of all numbers, Jr, and can be seen from the 
above, is a nonrepeating decimal and can thus be specified only 
approximately. It was in the 3rd century B.C. that Archimedes 
rounded off Jr to the fraction 22/7 (=3.142857 ... ), and that was 
accurate enough for practical purposes, so much so that various 
mechanical machines have since been built to this day with this 
approximation. However, as early as 1596 the value of Jr was 
known to more than 20 decimal places. 

Archimedes's method of estimating the value of Jr resembles 
somewhat the procedure discussed above for the estimation of the 
fractal length of coastlines. In the case of a circle, Archimedes 
inscribed a polygon with as many sides as possible. The magnitude 
of the perimeter is calculated from this polygon. As the number of 
sides of the polygon increases, the more closely it resembles the 
circle, and thus more accurately estimates Jr. From a hexagon one 
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gets n as 3. In order to get a value of 3.14, one needs a polygon of 
96 sides! In order to get 20 decimal places, a polygon of 
32,212,254,720 sides has to be used! The reason for this mathe­
matical trial has many purposes. The most important of these 
concerns how closely n's digits resemble a random number 
sequence. One way mathematicians have defined a random string 
of digits is by a computer test: a truly random number is one that 
cannot be generated by a computer program shorter than the 
number itself. But another, less exclusive club to which n may also 
belong is as follows. According to mathematicians, a number is 
"normal" if any sequence of digits has an equal probability of 
appearing within it. In other words, each of the digits from 0 to 9 
appears 10% of the time; each of the two-digit sequences 00 to 99 
appears 1% of the time; each of the three-digit sequences appears 
0.1 % of the time, and so on. This concept of "normal" is close 
enough to "randomness" that in a loose talk mathematicians 
sometimes say "random" when actually they mean "normal." A 
plot of the first 100 digits of n are given in Figure 1.29. The plot 
looks like any noise signal one might measure. It is found that in 
almost all decimals the various digits repeat with uniform 
frequency. 
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Figure 1.29. Plot of the first 100 digits in 1C (Shanks and Wrench, 1962). 
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In order to analyze the frequency of digits, let us denote the 
first digit as Yl = 3, the second digit as Y2 = 1, the third digit as 
Y3 = 4, and so on. The sequence can be denoted as {Yt} (100 
digits): 

{Yt} = {3 14 15 92653589793238462643382795 

0288419716939937510582097494459 

2307816406286208998628034825342 

117068 ... } (1.63) 

The quantity of t may be associated with time, and the sequence of 
digits is represented per unit time interval. The mean of N digits 
can be given as: 

m = (Yl + Y2 + Y3 + Y4 + ... + YN)/N 
N 

= l/N2.Yt 
t=1 

(1.64) 

The magnitude of m (for N = 32) = 4.84. If it is assumed that 
these digits are drawn from a uniform supply, then the mean m 
would approach a limit IJ = 4.5 as N ---+ infinity. 

Another procedure that could be used in calculating IJ is to 
count the number of nines and multiply it by 9, multiply the 
number of eights by 8, and so on, and divide by N. Let ay be the 
number of times the value Y occurs (given in Table 1.3). From this 
we get: 

m = (al + 2a2 + ... + 8as + 9a9)/N (1.65) 

9 

= l/N 2. yay (1.66) 
y=o 

Table 1.3. Magnitudes of y, ay, and ay/N for Values of y from 0 
to 9 (N = 100) 

Y 0 1 2 3 4 5 6 7 8 9 
ay 0 2 4 7 3 4 3 2 3 4 

ay/N 0.08 0.08 0.12 0.12 0.10 0.08 0.09 0.07 0.13 0.13 
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Thus, we obtain: 

I-l = lim m 
N ...... infinity 

(1.67) 

lim l/N L yay 
N--+infinity y =0 

(1.68) 

= lim L y(ay/N) 
N--+infinity y=o 

(1.69) 

The magnitudes of y, ay, and ay/N are given in Table 1.3. The 
quantity ay/ N represents the fractional number of times the value 
of digit y occurs, and it is safe to assume that its limit for all values 
of y from 0 to 9 is 0.1. Thus, the probability, Py, that a value y will 
occur can be given as: 

Py = lim ay/N 
N-+infinity 

(1. 70) 

Since E ay = N, it is obvious that the term Py exhibits the property 
that E Py = 1, as required by any probability distribution. 

The data termed noise can be analyzed by various procedures. 
One of these is the box-counting method (Feder, 1988). The term 
noise is thus found to cover a wide variety of systems and numbers. 
The chaotic pattern can be tamed and understood by these tools. 
The application of computer data treatment simplifies even further 
any such analyses that examine a large set of data. The phenome­
non of noise was considered a nuisance a few decades ago. 
However, through these analyses it has been found that noise is 
actually an important source of information about the system. As 
described below, the Cantor set can also be applied in the analysis 
of noise. 

1.5.2. Cantor Set (and Dust) and Devil's Staircase 

It would be useful if one could draw shapes with some exact 
fractal dimension through simple procedures. In other words, if 
one has data of some observation, it would be useful to follow a 
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procedure such that one could draw a fractal shape. Another useful 
concept (Hausdorff dimension) was derived as a subset of a 
dimension D. This is the so-called Cantor set (with 0 < D < 1), as 
shown in Figure 1.30 (Mandelbrot, 1982; Avnir, 1989; Takayasu, 
1990). This is also one of the most important examples where the 
theory of fractal dimension is found to be very useful. In order to 
appreciate self-similarity as a symmetry property, we have to 
identify transformations that leave the system invariant. The 
calculation of any two such transformations will again leave the 
system invariant. It will be shown later how the Cantor set actually 
describes a wide variety of phenomena. 

We find that in many ways the Cantor set is indeed the 
simplest of all fractals. The Cantor set as given in Figure 1.30 is 
constructed as follows. A line of unit length is divided into three 
equal segments, and the middle segment is removed. The same 
procedure (i.e., the generator) is carried out for the remaining two 
segments, and so on ad infinitum. This is called the Cantor set 
(1883), which proves that any two line segments regardless of their 
length contain an equal number of points and that a line segment 
has as many points as a two-dimensional surface or a three­
dimensional volume. 

The Cantor set (devil's stair; Figure 1.30B) can be easily 
constructed by using any computer program. The formula needed 
is defined as a macro, and can produce any kind of curve (see 
Appendix A). 

It is seen that when s (step of the process) = 0, E = 1, which 
covers the unit line. When E = 1/3 (s = 1) and N = 2, cubes of 
side E are needed to cover the set. At E = 1/9 and N = 4, cubes of 
side E are needed. Thus, the general equation is: 

E = (1/3Y (1. 71) 

(1. 72) 

The limit as s ~ 00 in the process will give E ~ 0, and one then 
reaches the end point of this Cantor set. This gives an infinite set of 
points very nonuniformly distributed with a Euclidean length of 
zero and a topological dimension of zero since no cuts can be made 
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in a set of points. The Hausdorff dimension, D, is given as: 

D = lim In (28)/ln (38) 
lim £-+O(ass-+O) 

= In 2/ln 3 = 0.6309 (1.73) 

This has been called a dust for 0 < D < 1 regime. Notice the 
self-similarity or scaling nature of the final result. The full Cantor 
set between 0 and 1 looks the same as the part between 0 and 1/3 if 
this is magnified by a factor 3 or as the part between 0 and 1/9 
if this is magnified by a factor 9, and so on. 

It is found that after the 10th stage, there are .1024 intervals 
with length: 

1/310 = 1/59,049 = 0.0000169 (1.74) 

The Cantor set is found to be the basis for obtaining a wide 
variety of fractal shapes and forms. In fact, by using varying 
generator dimensions one can imagine all kinds of objects (see 
Chapter 5). 

Further, the total length of all intervals removed from Figure 
1.30 is: 

Length removed = 1/3 + 2(1/3Y + 4(1/3)3 + 8(1/3)4 + ... 
(1.75) 

whose sum is 1/3/(1 - 2/3) = 1. In other words, the length 
remaining must be zero. 

The devil's staircase can be analyzed with the help of a 
function dx : 

(1. 76) 

It is important to notice that the derivative of this function is equal 
to zero almost everywhere. One can use this kind of Cantor set to 
analyze a variety of natural phenomena. As mentioned elsewhere, 
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the Sierpinski gasket is indeed a generalized version of the Cantor 
set in two-dimensional space. The Sierpinski gasket is obtained by 
continuously removing the centers of triangles on a plane. A 
similar procedure can of course be carried out in three dimensions. 
Later, we will construct a fractal surface (two- or three­
dimensional) that corresponds to a Cantor set fractal dimension. 
By using these methods one can easily construct Cantor sets, such 
that the shape is similar to some known object [a metaphor of the 
Cantor set that represents lifeline has been described (Takayasu, 
1990)]. The random analogue of the Cantor set has been investi­
gated (Falconer, 1990). The procedure used to draw such a set is as 
follows. The middle third part may be randomized. In other words, 
the right or left third part may be randomized as the middle part 
under each step of construction. Actually, these random fractals do 
not have the self-similar shape as the nonrandom Cantor set. 
However, the random Cantor set resembles the shapes encoun­
tered in nature very closely, e.g., coastlines, topographical sur­
faces, clouds. The same procedures have been applied in drawing 
computer graphics of (for example) landscapes. A fractal can also 
be described in terms of numbers. The Cantor set provides 
numbers between 0 and 1, while the sets removed denote different 
sets of numbers. This can be used to represent noise (Falconer, 
1990). 

Products of Fractals-A Self-affine Set 

A self-affine set can be constructed as shown in Figure 1.31 
(Falconer, 1990). Each rectangle is replaced with an affine copy of 
the rectangles in E 1• After k subdivisions, Eb we have 6k number 
of rectangles of size 3-k x 4-k • Each of these rectangles may be 
covered by at most (4/3)k + 1 number of squares of side 4-\ by 
dividing the rectangles using a series of vertical cuts. Accordingly, 
we find that Ek may be covered by: 

number of squares of diameter 4 -kY2. This gives the width-to­
height ratio as k --+ 00, dimHF = dimBF = H. 
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El 

Figure 1.31. Product of fractals. 

1.5.3. Nonlinear Dynamics and Chaos 

We have mentioned that various phenomena can exhibit 
nonlinear behavior, before ascending to some of the more rarefied 
peaks of instabilities, bifurcation, and chaos (Barnsley and Demko, 
1986; Thompson and Stewart, 1988). These systems can be found 
in many areas of everyday life, such as physical science (electrical) 
and nonphysical science (economics and politics). Fractal dimen­
sional analysis of the reconstruction of phase portraits obtained 
from time series data in radar signals has been reported in the 
literature (King et ai., 1987). A complete discussion is beyond the 
scope of this text, and relevant references given herein should be 
consulted. 

Most natural phenomena are intrinsically nonlinear, e.g., 
weather patterns and the turbulent motion of rapidly moving fluids 
or heartbeat. Although nonlinear effects are important in these and 
other physical phenomena, it is easier to introduce some of the 
important concepts in the context of theoretical ecology. 
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Example of a Nonlinear Chaos. We will study the example of 
how a population of insects varies from one summer to the next. 
The phenomenon is well known: the insects are born, lay eggs, and 
die in one summer and the process repeats itself the next summer. 
The population of insects during one summer, Pn+l, is related to 
the previous summer population, Pn, by a constant, 11, as follows: 

Pn+l = I1Pn (1. 77) 

As the population grows and the role of survival of the fittest is 
applied (e.g., competition for food), the above equation will 
become less valid and another factor needs to be included, e.g., 
dynamic birth rate l1eff,p: 

Pn+l = l1eff,Pn Pn (1. 78) 

with 

l1eff < 11 (1. 79) 

lim l1eff,p = 11 (1.80) 
p->O 

From this one obtains a simple form that satisfies these conditions: 

l1eff,p = 11 - fXP 

where a' is constant. Combining these equations gives: 

= I1Pn[1 - Pn(a'/I1)] 

= I1Pn(1 - xn) 

where we define Xn = fXPn/l1. 

(1.81) 

(1.82) 

(1.83) 

(1.84) 

By eliminating the terms related to the populations in Eq. 
(1.84), we get the standard form of the nonlinear equation (see 
above): 

(1.85) 
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where 

(1.86) 

is the ratio of the insect population in the summer corresponding to 
(n + 1) to what it would have been if the static model were valid. 
Further, Xn and (1 - xn) can only vary from 0 to 1, and Il must be 
in the range of 0 to 4, in order to keep Xn in this range in iteration. 
If Il is even slightly more than 4, the magnitude of Xn will tend to 
-00 on repeated iteration of Eq. (1.85). The phenomenon of 
bifurcation can be explained by the plot where pitchforklike curves 
are obtained when Eq. (1.85) is used (Holden, 1987). 

The plots show that for A < 1 only a population of zero is 
possible. When 1 < A ::; 3, then only a single stable nonzero 
population can exist. In the case when 3 < A ::; 3.45, the popula­
tion will oscillate between the two values on the upper and lower 
branches of the plot. When A > 3.45, the oscillation spreads over 
the four branches, and increases at higher values. The population 
becomes chaotic when A = 4. 

Pendulum Oscillation (An Example of Nonlinear Dynamic Motion) 

Besides the great role geometry plays in the analysis and 
description of physical and natural phenomena, the systems that 
undergo regular and repeating motion are just as important. 
Examples are: 

• Motion of the earth about the sun 
• A pendulum as in a grandfather clock 
• A plucked guitar string 
• Oscillations of the atoms in crystalline solids 
• Electromagnetic and atomic phenomena 

It is important to note that the magnitude of distances under 
consideration in these examples differs by a few orders of mag­
nitude. The same is true with regard to the magnitude of the 
frequency. In order to illustrate the important concepts involved 
with these oscillatory phenomena, it is useful to consider the 
motion in a simple pendulum (Figure 1.32). A simple pendulum 
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Figure 1.32. Motion of a simple 
pendulum. The sign of angle e is 
positive if the mass (M) is to the 
right of the vertical axis, and nega­
tive if it is to the left. 

consists of a particle or "bob" of mass M attached to the lower end 
of a rigid rod of length L. In the following analysis the mass of the 
rod is assumed to be negligible in comparison to M. As the bob is 
set in moton by pulling it to one side from its eqUilibrium position, 
the swing is initiated in a vertical plane. 

The position of the bob under its motion is given by the angle 
8, since it traverses an arc of a circle of radius L. The linear 
velocity, Vlin, and acceleration, aaee, are given as: 

Vlin = Ld8/dt (1.87) 

(1.88) 

If we neglect the bob-air friction, then the two forces that are 
acting on the motion of the bob are equal. The gravity component 
is (Mg sin 8), while the kinetic force is: 

(1.89) 

and we get: 

(1.90) 

The relation in Eq. (1.90) is very interesting. Since the plot of sin 8 
is nonlinear, we find that Eq. (1.90) is indeed an example of a 
nonlinear relationship. It is also known from differential equation 
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mathematics that most nonlinear equations do not have analytical 
solutions in terms of well-known functions. The relation as given in 
Eq. (1.90) is not an exception. In the limiting case, when the 
magnitude of a is very small, one finds that numerically sin a === 

a, from which we can rewrite Eq. (1.90) as: 

for a « 1 (1.91) 

here a is in radians. 
As will be noticed throughout this text, one equation or 

relation is common to many varied systems. The relation in Eq. 
(1.90) is one such general relationship. In the case where a « 1, 
the period of the simple pendulum, T, is found as: 

T = 21r(L/g)O.5 (1.92) 

where T is time per oscillation. 
The relation in Eq. (1.90) can be solved by numerical 

methods. The potential energy is considered. When the rod is 
situated at an angle, a, the bob is at the same time raised under 
the force of gravity by a height, h, as: 

h=L-Lcosa 

The potential energy (PE) is thus: 

PE = Mgh 

= MgL (1 - cos a) 

(1.93) 

(1.94) 

(1.95) 

and the magnitude of PE is zero at a = O. The kinetic energy, KE, 
which is equal to PE, as required by the conservation of energy in 
the system, is given as: 

KE = (1/2)(mass . velocity2) 

= (1/2)Mv2 

= (1/2)ML2(da/dt)2 

(1.96) 

(1.97) 

(1. 98) 
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From this we can write the expression for the total energy, TE: 

TE = PE + KE 

= (l/2)ML2(d9/dt)2 + MgL(1 - cos 9) 

(1.99) 

(1.100) 

As an example, consider a pendulum with L = 150.3 em and 
T = 246.7 sec/100 vibrations. The acceleration of gravity, g, can 
be estimated from: 

= 9.75 m/sec2 

(1.101) 

(1.102) 

This value of g is in agreement with literature data. It shows that 
the simple pendulum movement can give much useful information 
about earth's gravity forces. 

What is most important in this analysis of pendulum motion is 
that only one point in phase contains all of the information about 
the state of a dynamical system at any instant. In other words, if we 
know the position of the bob on one side, then we know exactly its 
position on the other side. Knowledge of the velocity and position 
is all that one needs. This merely points out that information of a 
large event can be embedded in just two simple data points. 

Now let us consider a swinging pendulum, which we know will 
gradually come to a stop. This means that a phenomenon of 
swinging has taken place, but the pendulum moves toward a point 
where it always ends, regardless of its starting position. We can call 
this point a place that our system moves toward, or, as usually 
termed, the attractor of the phenomenon, e.g., a pendulum, oil 
price fluctuations, dollar exchange rate, population of bees, pro­
duction of a product. 

The pendulum motion constitutes both potential energy and 
kinetic energy terms. This indicates that attractors that are gov­
erned by energetic factors can be analyzed analogously to the 
pendulum motion. We know that the pendulum velocity is zero 
before it is set in motion. It even has a sign with reference to the 
center (negative on the left side). The magnitude of the velocity 
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increases and is a maximum every time it passes through the point 
0,0 on the x-y plane. 

If we analyze the magnitude of velocity, we find that the 
pendulum is attracted to the point where all motion stops. In such a 
pendulum the energy is lost and the trajectory is a spiral that is 
attracted toward the point. 

The most important characteristic of pendulum motion is that 
it mimics different oscillating phenomena in everyday life. Even if 
one bumps into a pendulum clock, it switches back to its 6O-second 
per minute frequency. This behavior is exactly analogous to other 
phenomena such as heartbeat, trajectory disturbance, and tur­
bulence in a fluid. 

A pendulum is a system that has a stationary equilibrium point 
at which all motion ceases. This archetypal example of oscillating 
motion, which was originally studied by Newton, returns to its 
vertical hanging point regardless of its starting position or velocity. 
This is characterized as a system with a point attractor. In order to 
conform pendulum movement to other systems (e.g., weather, 
economics), one may replace the parameters in the above equa­
tions with the appropriate variables (e.g., replace height with 
dollars, angle with interest rate). Or one may denote right and left 
movements as export and import. If perturbations are to be 
included, then the procedures described in the literature should be 
pursued (Thompson and Stewart, 1988). 

Another important observation was reported by Foucault 
(Thompson and Stewart, 1988). Consider a pendulum set up at the 
North Pole. If started properly, it may vibrate as a simple 
pendulum in a vertical plane that is fixed in the Newtonian frame of 
reference. As the earth turns under the pendulum with angular 
velocity Om, the plane of vibration of the pendulum appears to an 
observer on the earth to tum with an angular velocity -Q. 
Foucault was the first to point out that a pendulum could be used 
to demonstrate the earth's rotation. It is not necessary that the 
pendulum be situated at one of the earth's poles; an apparent 
rotation (due to the rotation of the earth) may be observed at any 
latitude except on the equator. 
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Fractal Viscous Fingers 

2.1. Introduction 

Fluid motion or flow is generally uneventful. The fluid 
phase(s) is generally described by two main characteristics. One 
factor used to describe the flow is the viscosity. The second is the 
interfacial tension. As described elsewhere (Adamson, 1982; Chat­
toraj and Birdi, 1984; Birdi, 1989), when two fluid phases meet, the 
interfacial tension is proportional to the different forces that 
interact from one phase to the other. When the fluid flows, these 
two factors determine the characteristics of the system. However, 
the term viscosity, as used in the so-called Newtonian (as water) or 
non-Newtonian (such as toothpaste, cream, butter) case, requires 
some comments. The flow characteristics of fluid moving in any 
container or porous medium are quite common in everyday life 
(e.g., groundwater movement). However, the flow characteristics 
of two-phase fluid flow become much more interesting, and the 
latter type is also quite common and equally important. The flow 
phenomena concerning two phases (fluids) of different viscosity are 
somewhat special under certain conditions. The two fluids can be 
immiscible [e.g., oil-water (brine)] or miscible (groundwater; 
pollution). However, the investigation of such flow in three 
dimensions is obviously difficult because the motion will be quite 
complex, and the view of the interior parts will be obscured. In 
order to resolve this problem, a simplified cell was used by early 
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investigators (Hele-Shaw), which will be described herein. The 
data resulting from these investigations have achieved a very high 
level of information, besides simplicity (serving as a computer 
model). This model has been used to describe oil reservoirs, which 
may be located as deep as 5 km. Since we probably will never be 
able to visualize such reservoirs, these simple models thus become 
very useful. Further, in the case of oil recovery phenomena, 
viscous fingering in porous media has been considered an instability 
that occurs when a less viscous fluid (say brine) displaces a more 
viscous fluid (oil). In the oil industry, viscous fingering has resulted 
in serious problems when displacing viscous oil by miscible gas 
because it leads to a poor recovery of the hydrocarbon. 

In these model cells, the flow between two transparent glass 
(or polycarbonate) plates has been investigated. The phenomenon 
of interfacial motion between two immiscible viscous fluids in the 
narrow gap (ca. 1 mm) between two parallel plates (Hele-Shaw 
cell) has been considered (Saffman, 1986). This type of flow is 
currently of interest because of its relation to pattern selection 
mechanisms and the formation of fractal structures in a number of 
physical applications (e.g., oil recovery processes, drug delivery 
from gels, pollution control). Attention is concentrated on the 
fingers that result from the instability when a less-viscous fluid 
(water) is implemented to drive a more-viscous (oil) fluid. (These 
phenomena when studied in the thin cells give rise to patterns 
resembling fingers, thus the term viscous fingering.) The cells were 
found to be useful for taking photographs of the flow patterns, and 
later for qualitative and quantitative analyses. In some cases, 
viscous fingering occurs in systems consisting of gas (air)-fluid 
(water) (Feder, 1988; Viesek, 1989). The energy dissipation in such 
turbulent flow systems has been analyzed (Benzi et al., 1984; Pynn 
and Skjeltrop, 1985). The experimental data were found to exhibit 
dilation invariance, and multifractal behavior was present. 

The flow phenomena were recognized to be very useful as 
models for understanding more complicated systems (e.g., the 
trapped oil in reservoirs, underground water pollution, gel chroma­
tography, biological systems). 

The two phases (fluids) under very special conditions exhibit 
fingerlike patterns only when the difference in viscosity (the term 
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Figure 2.1. Typical viscous 
finger (digitized) phenomena 
[low viscosity: water (col­
ored); high viscosity; gelatin 
(5 g/liter»). D = 1.7. 
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viscosity needs special designation as given below) is >10,000 (in 
qualitative terms). The difference in viscosity primarily is found to 
give rise to a variety of finger forms (Figure 2.1). Typical systems 
which have been studied are described in Table 2.1. Viscous 
fingering has been extensively investigated in the current literature, 
not only because of its relation to some important industrial 
processes (oil recovery) and biological phenomena, but also 
because of purely academic interest. Moreover, the recently 
developed theoretical analyses of aggregation models and growth 
phenomena have been useful in describing the fingering shapes. 

Table 2.1. Systems for Which Viscous Fingering Has Been Reported 

High-viscosity medium 

Polysaccharides (scleroglucan, guar 
gum, hydroxy ethyl cellulose) 

Latex 
Gelatin 

Low-viscosity medium 

Water (" = 1 cP), glycerol (" = 
90 cP), corn syrup, polyvinyl alcohol 
(dyed with methylene blue) 

Water 
Water 
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In a recent report, extensive analysis of fractal systems has 
been reviewed (Ahrony, 1986). The paper reviews some recent 
results on random walks, nonlinear resistors, noise, spin dynamics, 
and viscous fingering. 

It is known that ramified patterns can be obtained in viscous 
fingering if the capillary number is sufficiently high, i.e., nonlami­
nar flow (Saffman and Taylor, 1958; Saffman, 1986). However, the 
ramification is not very important if the fluids are miscible, since 
the low-viscosity fingers do not displace the viscous fluid as a plug 
and most of the time they are not steady with respect to time 
(Haberman, 1960). These major drawbacks can be overcome by 
the selection of appropriate experimental conditions. The displace­
ment patterns so obtained can be investigated in much greater 
detail due to the simplifications these conditions bring to the flow 
equations. 

Furthermore, various patterns are known to be formed in 
hydrodynamic systems during the approach to turbulent flow 
(Beloshapkin et al., 1989). The various patterns, which are 
observed under a wide range of conditions, have a symmetry 
typical of crystals or quasi-crystals. These pattern elements are also 
found to be divided by thin layers that form a web, within which 
the streamlines are chaotic. It is interesting to note that within the 
web channels, transport occurs which is associated with dynamical 
chaos. 

Basically, viscous fingering is an interfacial instability phenom­
enon and in conjunction with the viscosity criteria, therefore, one 
should analyze the fractal dimension of its boundary. In most cases, 
it is the mass of the finger that has been analyzed rather than the 
surface. For DLA (diffusion-limited aggregation)-type fractal pat­
terns, which contain no loops and where the width of the individual 
branches (fingers) is statistically constant, both dimensions are 
equal. Thus, in the general case, each dimension contains specific 
information and is accordingly useful. 

The so-called Hele-Shaw cells (Figure 2.2) have been used in 
such studies. Unlike packed beds or etched network models, these 
model cells are perfectly isotropic. The viscous fluids generally used 
are of non-Newtonian type (described later). This gives rise to a 
pluglike motion of the interface. 
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Figure 2.2. Geometry of the Hele-Shaw cell (schematic): (A) two dimensions; (B) 
three dimensions. 

With regard to viscosity, it is necessary to describe this term 
somewhat elaborately here (in a qualitative sense) (Bird et af., 
1987; Goodwin, 1982). This is necessary because the term is not a 
simple physical property of a fluid (or solution). In general terms, 
the viscosity of a fluidlike phase is defined as: 

• Newtonian (fluids such as water, alcohol, glycerol) 
• Non-Newtonian (fluids such as thick oils, toothpaste, saliva) 

A Newtonian fluid is one that exhibits the same viscosity no 
matter how fast (within certain flow rates) it flows through a tube. 
Some fluids or solutions decrease (or in a few cases increase) in 
viscosity as the flow rate increases (non-Newtonian). This arises 
from the fact that the increased flow rate (shear rate) progressively 
aligns or breaks up large-scale structures made by the polymer 
molecules or the colloidal particles. In some fluids we may also find 
memory and elastic effects (such as in toothpaste or gel-like fluids 
or saliva). When viscosity is used in this text, we mean any of this 
multitude of phenomena, and it is apparent that viscous fingering is 
quite complicated. The flow of gel-like fluids consists in the 
rearrangement of molecular interactions which is dependent on the 
relaxation time constant. For flow rates much slower than the 
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slowest microscopic motions, the structure of the fluid is able to 
adapt itself synchronously to the external conditions, and the 
system flows. On the other hand, for flow rates faster than the 
fastest microscopic motions, the structure of the fluid does not have 
the time to adapt itself to the external conditions and the structure 
of the system breaks down. Despite many years of extensive 
investigations, the turbulence in fluids is still far from fully 
understood (despite the fact that many natural and industrial 
systems are turbulent). 

If the difference in viscosity is small, then the two phases may 
be analogous to the mixing of two fluids (Ottino et ai., 1988). This 
is studied by injecting a colored fluid into another fluid and 
analyzing the color patterns. The chaotic mixing has been found to 
mimic the movement of matter inside the earth. Self-similar 
patterns can be useful in understanding various technical and 
natural processes. 

In these systems there are a limited number of degrees of 
freedom. This could be ascribed to the intimately chaotic nature of 
the flow (turbulence) or reactive flow. This is again related to the 
fact that in chaotic phenomena, as described herein, the system is 
basically sensitive to the initial conditions. This was shown to be 
based on the observation that at some time two systems might look 
quite similar, but they will diverge at a later time, due to the initial 
conditions being different. But the most interesting feature of 
viscous fingering experiments is that one can easily visualize such 
observations. 

Turbulent flow is a phenomenon typical of low-viscosity and 
low-molecular-weight fluids (i.e., air and water). In fluid flow the 
turbulence is determined by the magnitude of a quantity called the 
Reynolds number, Re (one could call this a kind of degree of 
turbulence) (Moloy et ai., 1985): 

(2.1) 

where VOuid is the average velocity of the fluid, Ll is the length, and 
p.1 () is the ratio of the viscosity, p., and the density, () (kinematic 
viscosity). Actually, the term Re is proportional to the ratio of 
internal forces to viscous (internal friction) forces. It has been 
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observed that turbulence appears when the magnitude of Re > 1<t, 
regardless of the values of length and viscosity. This means that 
turbulence would occur at enormous velocities in the case of heavy 
and high-viscosity fluids. 

In order to understand the physical meaning attached to the 
magnitude of Re , it is useful to consider the patterns of fluid flow 
past a cylinder as visualized for different Reynolds numbers (Figure 
2.3). For small Re «20), fluid velocity is constant with time. In the 
case of larger Re values, the velocity exhibits two values with some 
periodicity. At even larger Re values (>104), turbulent or chaotic 
flow sets in. In fact, viscous fingering is a mixture of chaos and 
turbulent flow, characteristic of such fluids. 
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Figure 2.3. Visualization of patterns of fluid flow past a cylinder for fluid of 
different Reynolds number (Re). The breakup (chaotic) flow at high Re is depicted 
(schematic). 
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The motion of the interfaces under equilibrium distribution of 
forces can be described as follows (Feder, 1988; Vicsek and 
Kertesz, 1990). Assuming that the fluids under consideration are 
incompressible, the change in velocity is zero: 

Vu = 0 

and 

(2.2) 

where u is the distribution of pressure (viscous fingering) (or 
temperature in crystallization or electric field in electrodeposition). 
The normal velocity of the interface, Vn> is given by: 

(2.3) 

where k is a constant. The value of u on the interface r is given as: 

ur = -dok - {Jv~ (2.4) 

where the capillary length do is proportional to the surface tension, 
k is the local curvature of the interface, and t' is an exponent 
depending on the physical process considered. The first term on the 
right-hand side is related to the local thermodynamic equilibrium. 
The second term accounts for the departure from equilibrium 
arising from the velocity-dependent term with the kinetic 
coefficient {J. 

Various analytical procedures have been developed in order to 
use these equations. The role of interfacial tension on the pattern 
formation has been demonstrated. The magnitude of the interfacial 
tension can be varied by the addition of amphiphilic molecules 
(e.g., detergents or other molecules with hydrophobic-hydrophilic 
character). The hydrophobic interaction plays a very important role 
in such interfacial phenomena (Ben-Nairn, 1980; Tanford, 1980; 
Birdi, 1982). The random walk method has been applied in the 
DLA models, used to describe these phenomena (Stanley and 
Ostrowsky, 1986; Avnir, 1989). 
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2.1.1. Apparatus and Experimental Procedure 

The experimental setup that is generally used is relatively 
simple, consisting of two closely spaced rectangular glass (or 
polycarbonate; acrylic) plates (relatively stiff) closed along the sides 
(for linear cell) or open on all sides (for radial cell). 

A schematic diagram of the experiment is shown in Figure 2.4. 
The fluids are injected into the cell, and the displacement patterns 
can be recorded by different methods. 

A linear cell (length ca. 10-90 cm, breadth ca. 10-90 cm, and 
thickness adjustable from 0.1 to 3 mm) is shown in Figure 2.5. 

A radial cell consists of two plates with spacing, but here the 
fluid is injected in the center. The difference between the axial and 
radial cell is that in the latter the sides are open to the 
surroundings. 

The procedure used is, however, the same in both cells. The 
spacing between the plates is filled carefully with a high-viscosity 
fluid (gel phase and non-Newtonian). A low-velocity fluid (water or 
the like or gas) is then slowly pushed into the cell at a constant 
speed by using an appropriate pump. In order to visualize the flow 
pattern, suitable dyes as markers are generally used. 

In order to avoid bubbles, one should fill the high-viscosity 
fluid carefully and remove the bubbles (if present) by careful tilting 
and vibration. Spacers can be made of layers of thin polyethylene 
or Teflon tapes. For accurate studies the patterns are photographed 
and digitized by a convenient method. In more advanced proce­
dures, computer image analysis has been used. However, digital 
analysis of photographs is still the most accurate and inexpensive, 
even though tedious and time-consuming in some cases. 

The fingering phenomenon has also been studied for such 
systems as clay particles in water (as paste) and water in Hele­
Shaw cells. The dimensions of the cell were: 

1m x 0.3m x b 

where b is the thickness between the plates. The magnitude of b 
can be varied by using suitable spacers. The water phase was 
injected through a 1-mm hole in the closed part of the cell. 
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Figure 2.4. Diagram of Hele­
Shaw cell. (A) Axial cell (note 
that the cell is closed along the 
long sides); (B) radial cell (open 
on all sides). 
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Figure 2.5. A typical experimental cell for viscous finger studies. 

Even though the patterns observed are never exactly the same 
from one experiment to the next, the fractal analysis shows that the 
magnitude of D estimated is exactly the same. 

The solid (clay)/water ratio in the paste was varied from 0.05 
to 0.1 w/w. Bentonite pastes were used since they exhibit vis­
coelastic shear-thinning suspensions, with a threshold for flow. 

In another study (van Damme et ai., 1986a,b), a radial 
Hele-Shaw cell of dimensions 0.5 x 0.5 x 0.0003 m was used. The 
low-viscosity fluid (water) was injected through a syringe needle at 
the bottom of the plate center. The injection rate was between 1 
and 2 ml/sec. Slurries of composition 4-15% clay/water were used. 

2.1.2. Viscous Finger Width and the Cell Separation 

The most fascinating observation is that one can obtain all 
sorts of patterns with such a simple setup. If we inject water into 
water (with dye or ink for visibility), we merely see drops of one 
phase spreading into another phase, with no fingering. Now if we 
inject water [1] = 1 cP (centipoise)] into some thick fluid such as 
glycerol (1] = 1000 cP), we see a circular-shaped fluid spreading 
into glycerol. 

The dependence of the finger width on the separation of the 
cell has been investigated (van Damme, 1987). In these studies the 
cell thickness, b, was varied from 0.2 to 6 mm. The data showed 
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that the finger thickness, lfinger. was linearly related to b as follows: 

lfinger = 6.54' (2.5) 

where a = 1. A similar linear relationship has been reported by 
other investigators for the case of polymer solutions, where b was 
varied from 0.2 to 1.2 mm (Daccord et al., 1986). 

From Newtonian viscous fluid theory, the relation for the 
linearly unstable wavelength, Am, is given as: 

(2.6) 

It is seen that this relationship predicts a value lower than the 
experimental data. However, it is clear that one cannot expect such 
clear correlations for complicated systems. 

The pressure inside the low-viscosity fluid is quasi-constant, 
and therefore any defect in the interface gives rise to an increase in 
the pressure gradient toward the outlet in the high-viscosity fluid 
phase (Figure 2.6). Since the fluid velocity is directly proportional 
to the pressure gradient (Le., an increase in pressure produces an 
increase in flow velocity), this gives rise to acceleration of the more 

BUMP 
Figure 2.6. Pressure isobars 
that are found whenever a 
defect (bump) is present. 
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viscous fluid in front of the bump. Accordingly, as the less viscous 
fluid moves forward in the Hele-Shaw cell, the interface ripples 
(the degree would be dependent on the interfacial tension), and 
leads to a meandering pattern. It has been observed that very clear 
fractal behavior is obtained only by increasing the non-Newtonian 
character of the high-viscosity phase. The fingers are of constant 
width in such systems. If the non-Newtonian character is very 
large, lowering of the interfacial tension yields very little effect. 
However, some observations indicate that even if differences are 
small, the systems might exhibit some other significant variations 
(like the angles of branches). 

As known from surface chemistry (Chattoraj and Birdi, 1984), 
the interfacial force (interfacial tension) tends to stabilize the 
pattern. It is only recently that the theoretical description has been 
given for why one well-defined finger width is selected among other 
possibilities. 

2.2. Determination of Fractal Dimension of Viscous 
Fingers 

The rather complicated patterns obtained have been exten­
sively analyzed by fractal theory. This approach was used in order 
to determine the interfacial forces under which the fingers are 
formed. The structures appeared to be self-similar, the lower cutoff 
corresponding to the finger width and the upper being higher than 
the maximum size of the cell. In growth processes the structure is 
self-similar and the volume or mass of the region bounded by the 
interface, M, scales with the increasing linear size R of the object 
in a nontrivial way: 

(2.7) 

where D is the fractal dimension. D is reported to be 1.7 ± 0.05 
for a wide variety of systems. 

However, it has been argued that no universal value should be 
attached to the values of D. The case of the fractal dimension of 
the patterns generated in radial cells, where wall effects are absent 
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and no perturbation on growth is expected, gives more general 
values of D. For a wide variety of systems (e.g., polysaccharide 
solutions, latexes, clay suspensions), D = 1.7 ± 0.05. It must be 
emphasized that no two systems give exactly the same pattern, 
even if D is the same. In other words, the finger width, angle, and 
length may vary appreciably. This has been found to be dependent 
on the various properties of the two fluid phases, as mentioned. 

The fractal value of a water-polysaccharide solution has been 
estimated (Nittmann et ai., 1985; Daccord et ai., 1986). The fingers 
showed some fattening. The value of D was 1.4, which is low for 
such fractals (compared to D = 1. 7). 

Influence of the Thickness of the Gap. The thickness of the 
linear cell was investigated using values from 0.1 mm to 3 mm. This 
did not affect the nature of the pattern, which was always 
self-similar, but the average width of the fingers was found to be 
roughly proportional to the thickness, between 5 and 10 times the 
gap. 

Decreasing the gap narrows the range of conditions for 
obtaining steady fingers. Seepage and closed loops have been 
observed simultaneously for O.l-mm gaps. 

2.3. Instability of the Dift'usion Front 

It is well known from everyday observation that when a liquid 
drop is subjected to some violent force, it breaks up. This is 
commonly observed when a fluid drop lands at high speed on a 
solid surface. In fact, the breakup results in the formation of very 
symmetrical shapes, which is analogous to the instabilities observed 
here. The interface between a low-viscosity fluid pushing a high­
viscosity fluid will be unstable, as found from physical forces' 
(Figure 2.7). The dynamic behavior of the diffusion front has been 
analyzed by simulation calculation. This is explained by assuming 
that during the diffusion process, some microscopic event in the 
motion of single particles (Stanley and Ostrowsky, 1986) may 
induce semimacroscopic changes of the front. There exist relatively 
long periods when nothing happens, which are separated by such 
remarkable events. A preliminary study of these dynamics of the 
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Figure 2.7. Unstable conditions at the 
interface between a low-viscosity fluid 
[water, or gas (air)] and a high-viscosity 
fluid (e.g., oil). 
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diffusion fronts has shown that the variation of the number of 
points during a time follows on the average a power law. However, 
the most remarkable feature about front fluctuations is their very 
high frequency, which is much higher than the hopping frequency. 
For a fluctuation to appear, it is sufficient that one particle near the 
front move to a position such that, for example, a cluster is made 
a part of the front itself. One can predict the existence of an 
interaction noise at high frequency. It has been suggested that this 
erratic dynamic behavior of the diffuse form could have practical 
implication. This is an entirely new kind of noise source occurring 
in an inhomogeneous system. 

2.3.1. Newtonian Finger Formation and Noise 

All of the data reported so far suggest that Newtonian viscous 
fingers strongly resist destabilization. The interface between immis­
cible fluids in Hele-Shaw channels has been shown to exist 
between critical wavelength and the capillary number. 

When the flow velocity is very high, the appearance of 



Chapter 1 

STABLE UNSTABLE 

: : : : : : : : 
: : : : : : : 

: : : 

: : : : 
: : : : 
: : : : : : : : : ,B, e 

: : : 

.. : : : : : : : 

Figure 2.8. Tip splitting (of the low-viscosity phase or fluid) arising from instability 
at the curved fluid interface. 

asymmetric fingers leads to tip splitting (Figure 2.8) (Tabeling et 
al., 1987). In these various theoretical analyses, the effect of 
interfacial tension and velocity has been described. Numerically, 
the critical noise amplitude necessary to drive the system unstable 
in axial cells was found to be an exponential function of the control 
parameter. It was found that the critical noise amplitude decreases 
extremely quickly with velocity. 

2.3.2. Branching Angle and Finger Stability 

In the viscous finger experiments, one observes branching with 
varying angles, in all kinds of systems. As mentioned elsewhere 
herein, the branching angles are also of consequence in other 
natural processes, such as tIees, rivers, and thunder. These were 
associated with the least work principle. This means that the system 
strives to minimize the work of pressure forces (Murray, 1926, 
1927; Stevens, 1974). Thus, a narrow side branch will split off from 
the main branch at close to a 90° angle because this minimizes the 
work of pressure driving the fluid in the narrow branch. On the 
other hand, if the main and side branches are close to the same 
size, the fluid will, with little energy, switch over to the side 
branches and such side branches will grow away from the main 
branch at angles considerably narrower than 90°. 



Fractal Viscous Fingers 

Figure 2.9. Variation of the branching 
angle, fJ, with ratio between solid (S) 
and liquid (L). (Redrawn with mod­
ifications from van Damme, 1987.) 
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As shown in Figure 2.9, the average branching angles are 
related to the solid/liquid ratio as follows: 

25° at solid/liquid = 0.06 

85° at solid/liquid = 0.10 

It seems that the branching angle changes from almost parallel 
branching to perpendicular branching. 

Recent studies (Birdi, 1992) have shown that branching angles 
and shapes may be self-similar at a given radius from the center 
(water-gelatin systems). This observation shows that similar kinds 
of forces are operating at a circular symmetry. In other words, a 
power law of the kind: 

Pressure ~ radiusD (2.8) 

exists in the Hele-Shaw cells. These data also show that the fluid 
flow is circular and symmetrical, when using the experimental 
conditions described above. It is obvious that such observations are 
useful for the analyses of water injection in the oil recovery 
process, where the injection well is located at some geometrical 
pattern. 
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2.4. Chemical Dissolution of Porous Medium 

One of the most important phenomena on the earth's surface 
is erosion. Rains are responsible for many dissolution processes 
when penetration takes place in porous rocks. Daily, rivers carry 
away millions of tons of dissolved minerals into the sea. The 
dissolution process in these natural phenomena is not always easy 
to follow. Therefore, some model systems need to be used in the 
laboratory. Analogous to the above, the process of dissolution has 
been studied (Daccord, 1989) by using a cast of 1-mm-thick plate of 
plaster (CaS04' 0.5H20) between two transparent plates (glass or 
Plexiglas), and water is injected at the center. Since plaster is 
slightly soluble in water, it creates a pattern that looks like a 
viscous finger. The etched pattern is made visible by filling it with 
Wood's metal, and subsequent removal of the plaster by an acid 
solution. These patterns look very much the same as described 
above. The magnitude of the fractal dimension was found to be 
1.6. These data on interfacial instabilities in colloidal fluids are 
related to turbulence and chaotic phenomena. The transition from 
fractal fingering to turbulence or chaos in dynamic systems still 
remains to be investigated. 

The chaotic phenomena can be explained by these procedures. 
The data reported in the literature are concerned with spatial 
aspects of the fingers and patterns (instability modes, Le., finger 
shapes). There is a need for other parameters to be investigated, 
such as the temporal aspects (Le., pressure fluctuation, velocity 
fluctuation) . 

Critical analysis has concerned whether the pore topology of 
porous glass (Vycor) is fractal or effectively one-dimensional. 
Porous glass has been examined in various fractal kinetic studies. 
In one recent study, the fractals and fractal-like concepts in 
chemical analyses of controlled pore glass oxide surface were 
reported (Mottola, 1990). These analyses have supported a one­
dimensional topology. More studies are needed employing this 
methodology. 

In nature, since many phenomena occur in gel-like structures, 
it may be that the viscous finger process is much more important 
than has been realized. In the interior of the earth, such processes 
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are taking place under conditions of very high temperature and 
pressure. The object of this postulate is the origin of the so-called 
geological dendrites (see Chapter 4) that are formed in many 
clayey or carbonate sediments. It can be argued that these 
dendrites are in fact viscous fingering patterns that have been 
fossilized (over many millions of years) by a crystallization process 
occurring in the finger after the pattern was formed. Another very 
important example is the fetus in the womb. It may be that the 
origin of life is regulated by such fractal finger phenomena. Strong 
evidence for the latter is the fact that some dendrite structures do 
not grow after reaching a certain dimension. This is exactly what 
one finds for the fetus. 
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Colloidal Fractal Aggregates 

The size of a solid particle is known to playa very important role in 
both natural and technical phenomena. There are various reasons 
for this observation. The simplest arises from the fact that as the 
particle is reduced, the magnitude of surface area per gram 
increases. For example, if a cube of a solid of side 1 cm weighs 1 g, 
then the surface area = 6 cm2 • Now, if we subdivide this solid into 
cubes of 1 mm (e.g., by grinding), then the volume of each cube is 
0.13 cm3. The number of small cubes is 1/0.001 = 1000. The surface 
area of each of the smaller cubes is 6(0.12) = 6(0.01) cm2 • Thus, 
the surface area of the smaller cubes is 1000(6)(0.01) = 60 cm2 • 

This gives an increase in surface area by a factor of 10 when 
each side of the cube is reduced by a factor of 10. It is easily seen 
that in the case of even smaller cubes, this increase would be 
tremendous. The magnitude of surface area per gram for such 
powders as active charcoal is ca. 1000 m2 / g. This enormous surface 
area gives very special properties to such powders (e.g., adsorption 
of pollutants from drinking water). Further, in many cases when 
the particles are not smooth, the edges and corners will give rise to 
special characteristics. Another important parameter that is related 
to particle size is light reflection. As the size decreases, the degree 
of light reflection changes, such that in some cases one sees a bluish 
tinge. In nature, diverse phenomena are based on the aggregation 
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of small particles, e.g., 

• Aerosol 
• Colloidal aggregation 
• Soot, smoke particles 
• Polymer aggregation 
• Immunology 
• Phase transitions 
• Critical phenomena 

These aggregates are classified into two types: 

• Particle-cluster aggregation: freely moving particles are able 
to approach close enough to stick together to form clusters 
(e.g., electrodeposition, crystal growth) 

• Cluster-cluster aggregation: where larger clusters are 
formed. 

The fractal geometry has been found useful in describing these 
aggregates quite satisfactorily. Modern techniques have been used 
to analyze these phenomena. In some cases, the computer simula­
tions have provided further theoretical analyses for better under­
standing of such phenomena. The importance of diffusion (Brown­
ian motion; Appendix B) in colloidal aggregation has been 
recognized for many decades. However, only in recent years has it 
been practical to undertake computer simulations [diffusion-limited 
aggregation (DLA)] (Meakin, 1984; Stanley and Ostrowsky, 1986). 

3.1. Colloidal Aggregation 

The term colloid means gluelike. A particle is called colloidal 
when its size is on the order of 0.001-1 Jlm. It is customary to 
express size in micrometers (1 Jlm = 10-6 m), angstroms (1 A = 
10-8 cm), or nanometers (1 nm = 10-9 m). Because of its impor­
tance in a wide variety of natural and industrial processes, colloidal 
aggregation has been the subject of considerable interest for many 
decades. 

Colloidal particles may be spherical, or they may exhibit 
needlelike or platelike shapes. Colloidal particles aggregate to form 
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larger particles, in the case when the aggregated state is at a lower 
energy state than the single particle. A typical colloidal sol of gold 
is generally prepared by electrical charge, yielding a diameter of ca. 
100 A (Weitz and Oliveria, 1984). If we add pyridine to this 
negatively charged sol, the particles are attracted to each other by 
van der Waals forces as the charge is neutralized. As known from 
the kinetic theory of gases (Berry et ai., 1980), the energy of a 
particle is related to its temperature. The particles being very small 
give rise to an energy of attraction that is much larger than the 
thermal energy [=kT = 600 cal/mole = 2400 joule/mole, where k 
(=1.38 x 10-23 J/K = 1.38 X 1O-16 erg/K) is the Boltzmann con­
stant and T (Kelvin) is the absolute temperature] (see Chapter 1). 
This means that the particles stick almost irreversibly on contact. 
Since these particles move under the force of Brownian motion, 
small clusters are formed. Brownian motion is said to be a 
statistically self-similar process. Systems that qualify under these 
forces are: 

• Soot (carbon black) 
• Paint 
• Snow pack 
• Blood clot 

It is worth mentioning that an analogy exists among these 
phenomena, since the same analytical procedures can be applied in 
the analyses. An overview has been given in a recent study (Witten 
and Cates, 1986). A fractal cluster interpretation of laser scattering 
and extinction measurements in a sooting flame has been reported 
in a recent study (Hall and Bonczyk, 1990). These systems are 
examples where both temperature effects and kinetics become 
important parameters. Much of the behavior of these small 
particles may be explained by their very large surface-area-to­
weight ratio. 

It has long been known that the kinetics of aggregation can be 
classified into two kinds: slow and fast aggregation, each with 
different rate-limiting physics. These mechanisms can be related to 
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of col­
loidal particle pair interaction potential (Verwey & Overbeek, 
1948; Adamson, 1982; Chattoraj and Birdi, 1984). The interfacial 
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potential that is present between two colloidal particles in a stable 
state exhibits a "well" when the distance of separation is short, 
which arises from the van der Waals attractive force, while at larger 
distances there is another repulsive force arising from the electric 
double layer (at the surface of each particle). The sufficient 
reduction in the repulsive forces brings about fast aggregation, 
because particles can easily come close enough to stick (due to the 
attractive van der Waals forces). The slow aggregation process is 
induced by the remaining relatively small barrier. The resulting 
clusters have also been found to possess different fractal dimen­
sions and different size dimensions. A correlation between cluster 
size and fractal dimension remains to be investigated. Further, ions 
that move toward the solid surface will have to give up some 
loosely bound water in this process. This has obvious consequences 
on the dielectric constant around the ions. Since the potential is 
related to the dielectric constant, we thus find that such ion 
movement becomes dependent on the colloid surface roughness. 

Clusters formed by the aggregation of metal colloids, soot, or 
coagulated aerosols are characterized by their tenuous, chainlike 
structure. Iron particles can be formed in dense helium gas by a 
large pulse of electric current through a fine tungsten wire 
electroplated with ion. This evaporated the iron coating to form 
small iron particles with a diameter of ca. 70 A. The particles were 
found to aggregate, forming tenuous, chainlike structures. Trans­
mission electron microscope images showed that the iron aggreg­
ates were statistically self-similar with a fractal dimension of ca. 1.6 
(determined from mass versus radiusD plot) (Matsushita et al., 
1984). 

An aggregate of fine soot particles has a fractal dimension of 
1.5-1.6 (Forrest and Witten, 1979). The size of these particles was 
ca. 35 A. This size is important, since it shows that the fractal 
dimension remains of the same magnitude as long as DLA is the 
driving force. 

In another example, gold sols were studied. These sols are 
produced by the reduction of aqueous Na AUC4 solution with 
trisodium citrate (Weitz and Oliveria, 1984). An aqueous suspen­
sion of gold particles (150 A) is stable owing to the screened 
electrostatic repulsion between the gold particles, which have a net 
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charge as a result of ions adsorbed on their surfaces (electric 
double layer). A similar effect is obtained when excess electrolyte 
is added to the suspension (Le., salting-out effect). This causes 
clusters to stick to one other upon each collision (fast aggregation), 
and thus the aggregation is solely determined by the diffusion 
forces. This process has been called diffusion-limited c1uster­
cluster aggregation. Under these conditions, the number of par­
ticles, N, has been found to be related to the radius of the 
aggregate, R, as follows: 

(3.1) 

where D = 1. 77. However, if the charge-charge repulsion is very 
large, then more compact aggregates are formed. This gives 
D = 2.05, resulting from the slow aggregation. Thus, in such 
aggregation processes the value of D can tell the experimenter 
whether it is a fast or slow aggregating system. 

Similar data were obtained for colloidal silica (Ludox). The 
values of fast and slow D were 1.75 and 2.08, respectively (Aubert 
and Cannell, 1986). A variety of other systems have provided much 
useful data (Table 3.1). 

Two-dimensional experiments are obviously simpler than 
three-dimensional ones by an order of magnitude, and thus simple 
and useful model systems. A number of experiments have explored 
cluster-cluster aggregation in two-dimensional systems (Hurd and 
Schaefer, 1985). 

The aggregation of silica micro spheres confined to two dimen-

Table 3.1. Various Aggregation Systems and the Fractal Dimension" 

System Df• st Ds10w 

Gold (aqueous) 1.77 2.05 
Silica (aqueous) 1.75 2.08 
Polystyrene latex (aqueous) 1.65 
Silica (vapor phase) 1.84 2.34 
Silica aerogel 1.75 
Proteins (immunoglobulin) 2.56 

'Source: Avnir (1989). 
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sions at an air-water interface has been investigated (Hurd and 
Schaefer, 1985). In the experiments, silica particles (0.3 I'm) were 
suspended in methanol and spread on a salt solution (1.0 N CaClz). 
The cluster micrographs were analyzed by determining the radius 
of gyration, RG , as a function of particle number, N, in order to 
obtain the fractal dimension: 

(3.2) 

The data gave a value of D = 1. 2, which is well below the 
simulated value for diffusion-limited cluster-cluster aggregation 
models [D = 1.47 in two dimensions (Kolb et ai., 1983; Meakin, 
1984)]. The lower value of D was ascribed to electrostatic forces 
around the growing clusters. 

The aggregation of polystyrene and polyvinyltoluene micro­
spheres (0.2-2.0 I'm) has been investigated (Armstrong et ai., 
1986). D was found to be 1.42 in these systems. A special case is 
where the aggregation of charged colloids (e.g., silica or A120 3) can 
be induced by the adsorption of a polymer (generally of opposite 
charge). This kind of system has been reported to have very 
important industrial applications. The molecular weight, and hence 
the length of the polymer, is known to have a determining effect. 
In the case of long polymer chains, the chain can collect by 
adsorption many colloidal particles. This may serve as a fractal with 
both a self-similarity character as well as a dimension (Jullien, 
1987; Jullien et aI., 1987). Computer simulations have given 
D = 1.7, which agrees with the experimental observations. These 
models are being developed further in order to include three­
dimensional aggregates (e.g., smoke). 

In nature, however, geometrical clusters (e.g. tumors, gels, 
soot) are usually grown. A review of these aggregates has appeared 
(Herrmann, 1986). The growth of a single cluster as well as the 
growth distribution of clusters are found to be of importance. 
Growth models can be developed that consider the dimensionality 
and the specific rules of the growth. The fractal dimension and its 
relation to the growth phenomena are discussed. 
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3.2. Gelation (A Flocculation Phenomenon) 

The physical structure of a gel plays a very important role in 
everyday life. The human body is some 70% water. A great part of 
this water is actually found in gel form in various parts of the body. 
Fish (and other aquatic animals) are ca. 80% water, in the form of 
gel structure. From the very beginning of life, in the womb, the gel 
structure plays an important role, namely the egg has a very 
characteristic gel-like fluid. The function of gel structures in life 
processes is therefore of much fundamental importance. In some 
polymer systems, gelation is also observed prior to precipitation. 

The kinetics of gelation (Family and Landau, 1984) can be best 
depicted by the structures in Figure 3.1. This is analogous to the 
process described for aggregation phenomena. To begin with, one 
has clusters, which (slowly or quickly) aggregate through time and 
form a gel structure. Gelation occurs when one big cluster is 
formed, instead of small aggregates (Herrmann et ai., 1982). 

The lattice model of gelation has been described by the 
percolation theory (Desai et ai., 1989). A linkage or bonding is 
automatically assumed to take place between two polymers, giving 
rise to a cross-linked polymer. Because of this automatic linkage of 
nearest neighbor occupied sites, there is effectively no interaction 
between the monomers. The onset of a tortuous (fractal) connected 
path of nearest neighbors that reaches from one side of the lattice 
to the opposite side, thus represents the onset of gelation . 

..... It, ~ ~ •••• - . . . .. , .. ,.... It... 
" " " . . . \ - . 
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Figure 3.1. Sol-gel kinetic equilibria. 1;, denotes some critical time where 
transition to infinitely large cluster appears. 
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As described in Chapter 8, the swelling of a gel is another 
example of a fractal process. The addition of solvent to a polymer 
(e.g., gelatin) induces swelling. The volume of swelling may be ten 
times the original volume in some cases. This has found use in the 
gel chromatography employing different polymers, especially Seph­
adex (polydextrans) (Birdi, 1988). The initial solvent-polymer 
interaction proceeds with less excluded volume effect, and the 
fractal dimension of the gel is that of percolation. According to the 
Flory polymer theory (Flory, 1971), the mass (M) in a volume 
element with radius Xi is related as follows: 

where Xi is related to the gel fraction (Ggel): 

X - Gvlp - G-2 
i- gel- gel 

(3.3) 

(3.4) 

As more and more solvent is added, the phase corresponding to the 
sol is washed out of the gel phase. At this stage there is no 
screening effect and the gel exhibits the fractal dimension of 
random animals. Then the same mass, M, is contained in the 
volume of radius R f , where D = 3: 

(3.5) 

From these considerations the swelling ratio, Q, is derived: 

Q = G-312 
gel (3.6) 

It is thus observed that the degree of swelling ratio may become 
very large when the gelation threshold is approached. With regard 
to the sol-gel transition and the dynamics of sol clusters, the 
experimental and theoretical aspects have been described in the 
literature (Martin, 1987). In this study the kinetics of growth of the 
sol beneath the gel point have been discussed based on the spatial 
correlation length in undiluted gels. Much of this research on the 
dynamics of gels is new, so the theoretical ideas are either 
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qualitative or, in some cases, essentially nonexistent. Further, the 
swelling properties of flexible gels are found to be important. Some 
of these properties are described below in the section on polymers. 
These analyses have been applied to the swelling of vulcanized 
linear polymer chain systems (Daoud et aI., 1986). 

Fradal Nature of Gels 

Casein Gels 

The aggregation of colloidal particles has been much investi­
gated in recent years. The discussion of fractal-type structures in 
nondilute systems is much more complicated, due to the inter­
penetration of the clusters and the formation of the gel state. These 
gels are homogeneous on the macroscopic scale, but heterogeneous 
and possibly of a fractal nature at small scales (Kolb et al., 1983). 
Higher concentrations should lead to a higher fractal dimen­
sionality, owing to an increase in interpenetration between the 
developing clusters, leading to a dimensionality of 3 in the case of 
gelation. 

Consider casein (a macromolecule), the main component 
involved in the structure of gels made from milk. Casein includes a 
family of different casein molecules, whose common characteristic 
is that they are insoluble at pH 4.6. Under the natural conditions of 
milk, they are associated into large spherical particles, so-called 
casein micelles (aggregates). These aggregations consist of casein, 
water, and salts (mainly calcium and phosphate). At lower pH 
(Le., acidic), the calcium phosphate, which is essential for the 
integrity of casein micelles at the natural pH of milk, goes into 
solution together with part of the casein. At pH 5, the calcium 
phosphate is completely dissolved but most of the casein is still 
aggregated. At even lower pH (4.6), the casein becomes fully 
aggregated again in particles which are stable at lower tempera­
tures. The average diameter of these micelles is ca. 120 nm. At 
higher temperatures, the casein micelles are no longer stable, 
which can be ascribed to the weakening of the hydrogen bonding 
between water molecules. This leads to very large aggregates and 
eventual gelation. 
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Consider that the aggregates are present on lattice sites, and 
that the lattice sites are occupied either by a particle or by solvent. 
The fractal nature on the lattice can be expressed as (Bremer et al., 
1989): 

(3.7) 

where Np is the number of lattice sites occupied by a particle, R is 
the radius of the fractal, and at is the radius of one lattice, which 
can be equal to the radius of one primary particle if the lattice site 
is the same size as the particle. D is the fractal dimension of the 
aggregate. In real systems the magnitudes of both R and at are not 
well defined. Moreover, the aggregates are generally not spherical 
and the primary particles are not monodisperse (i.e., all particles of 
the same size). 

In the case of a three-dimensional lattice, the total number of 
lattice sites that have been occupied by an aggregate is: 

(3.8) 

The expression for the volume fraction of particles in an aggregate 
is: 

cp = Np/Na 

= (R/at)D-3 (3.9) 

This indicates that the fractal clusters grow until they jointly occupy 
the total liquid volume, i.e., the stage where gelation takes place. 
This suggests that the fractal dimensionality is retained in the gel. 
On the other hand, when at »R, the gel is homogeneous and 
obviously has a dimension of magnitude 3. 

The sum of all sites occupied by the individual fractal 
aggregates Na•i will be equal to the total number of lattice sites in 
the gel (~): 

n 

"" N . = N.t .LJ 8,1 (3.10) 
i-I 
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and 

(3.11) 

where CPt is the overall volume fraction of the particles and n is the 
total number of aggregates of casein. From these equations we get: 

(3.12) 

with 

(3.13) 

where R3D is the three-dimensional average cluster radius. 
The magnitude of D has been estimated to be 1.7 from model 

computer calculations for diffusion-limited cluster-cluster aggrega­
tion, and D = 2 for reaction-limited cluster-cluster aggregation. 
For more concentrated systems a higher D is anticipated. In these 
investigations the casein gels gave values of D around 2.23-2.39. 
The effect of ethanol on the aggregation of casein micelles was 
investigated (Horne, 1987). The aggregates formed were depend­
ent on the ethanol concentration, especially when the concentra­
tion was >29%. The magnitude of D was measured as a function of 
ethanol concentration. The magnitude of D increased from 2 to 
2.3, and was constant after ca. 29% ethanol. The value of D = 2.2 
is somewhat higher than that found for gold sols (1.7). This could 
be explained by the fact that casein micelles are rearranging when 
aggregates are formed, while gold sols are hard particles and 
rearrange very quickly. 

Gelatin Gels 

Gelatin is known to form stable gels in water solvent. In a 
recent study, gelatin-containing water-in-oil microemulsions were 
found to form clear gels at certain temperatures and polymer 
concentrations (Quellet et al., 1991). The difference between the 
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latter and the former was ascribed to the different properties of the 
solvents. The sol-gel transition here is known to be related to the 
aggregation of gelatin-filled aqueous droplets (of nanometer size). 
During this process, conductivity increases fourfold, which is 
related to the percolation threshold of the system (in other words, 
a state where an infinite sized cluster is formed, as mentioned 
above). Viscosity data indicated the onset of interdroplet cross­
linking. The fractal nature of both sol aggregates and polymer 
network was found to give a power-law dependence. Based on the 
assumption that a percolation-like phenomenon is present, the 
magnitude of fractal dimension was found to be D = 2.05. From 
these analyses it was concluded that the gel consisted of a swollen, 
tenuous network that also extended into the apolar phase of the 
dispersed medium. 

3.3. Geometrical Floc Structures 

Interesting features relating to floc structures are found in 
many reports in the current literature. Flocculation of particles 
involves their aggregation without the destruction of their in­
dividuality (Le., size and shape) and differs fundamentally from the 
processes of sintering and particle growth. Flocculation occurs 
spontaneously if it is accompanied by a decrease in the total free 
energy of the system (which means that particles when flocculated 
exhibit lower energy than when separated). The floc diameter is 
reported to obey the power law, Le., the density is related to the 
radius. Further, one also finds a self-similarity in these analyses 
(Adachi and Ooi, 1990). The approach of a single particle to the 
floc has been described as a random walk (Figure 3.2). The 
Brownian motion of the approaching particles causes a self-similar 
structure of the formed floc. 

In a recent review (Sood, 1987), light-scattering results were 
presented on static and dynamic properties of ordered colloidal 
suspensions of charged polystyrene particles and fractal colloidal 
aggregates. The studies discussed the static structure factor, S(Q), 
of ordered monodisperse colloidal suspensions and binary mixtures 
of particles with different particle diameters, measured by angle-



CoUoid81 Fractal Aggregates 

Figure 3.2. A random-walk model 
of floc aggregation (schematic). 
The particle at position 1 is 
able to move and stick to the 
aggregate, while from position 
2 the particle moves away with­
out sticking. 
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resolved Rayleigh scattering. This includes determination of bulk 
modulus using gravitational compression and observation of col­
loidal glass [inferred from splitting of the second peak in S(Q)]. 
Dynamic light scattering, with real-time analysis of scattered 
intensity fluctuations, is used to obtain information about Brownian 
dynamics of the particles. Recent advances in the field of light 
scattering from colloidal aggregates that show fractal geometry are 
also discussed. 

Polystyrene-latex (PSL) particles of spherical shape and 
uniform size have been investigated (Adachi and Ooi, 1990). PSL 
particles of 8.04l'm diameter were used. These particles consisted 
of spheres with a uniform diameter and a specific gravity of 1.05, 
which is equal to that of a 1.19 M KCI solution at 25°C. Therefore, 
by using a thick KCI solution the gravity effect becomes negligible. 
The electrochemical properties were also investigated. As the 
charge-charge effect was negligible, the Brownian coagUlation was 
due to the van der Waals potential. The flocs used were from 
solutions with concentrations from 6.4 x 107 to 1.6 X 1010 I1cm3 • 

The flocs of size (i) as large as lOS particles were investigated. 
These floes were found have a compact structure. The results of the 
table-tennis-ball simulations were also used for the precise analysis 
of the floc structure. 

It is known that floc structure can be described by many 
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different methods. The relation between the radius of gyration, Rg , 

and the number of particles, i, is often used to evaluate the 
calculated result of computer simulation. This relation is reported 
to obey the following so-called power law: 

R ex: illD 
g (3.14) 

Using the cluster model, the value of D has been reported to be 
1.85. However, in large-size simulation the value of D approaches 
2.0. From experimental studies of flocs, using electron micrographs 
of gold aggregates, the value of D was found to be 1.75 (Weitz et 
al., 1985, 1988). In another study the silica aggregates were studied 
by using dynamic light-scattering (Schaeffer et aI., 1984). The value 
of D was 2.12. However, other investigators found a dependence of 
D on concentration of silica and time, where D was reported to 
vary from 1.75 to 2.05 (Aubert and Cannell, 1986). The effect of 
pH has also been reported. In a recent study, the agglomeration of 
hydrogenated amorphous carbon/potassium chloride was reported 
(Liu et al., 1990). These systems were used as a crystallization 
fractal model for scaling property of aggregation phenomena. The 
fractal properties of polystyrene spheres suspended in aqueous salt 
solutions have been described in a recent study (Zhou and Chu, 
1991). 

The relation between the projected area of the floc, S, and Rg 
was found as follows: 

(3.15) 

(3.16) 

where a and fJ are constants, which can be regarded as indexes of 
structure. Plots of S versus i were found to be linear. These indexes 
are reported to be useful when considering other physical pro­
perties. The relation in Eq. (3.8) can also be expressed as: 

(3.17) 

where the constants a and a can be dependent on the short-length 
scale. 
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In a recent study, agglomeration of titanium oxide aerosol was 
investigated (Dziedzini and Botet, 1991). The fractal clusters 
formed by titanium oxide were analyzed. Excitation energy trans­
port in fractal aggregates has been investigated (Dewey, 1991). 

Self-similarity can thus be recognized as a phenomenon that 
contains symmetry information across scale. From physics, we can 
easily show that there is a limit as to how far one can continue 
enlarging a shape or form ad infinitum. This is due to the fact that 
as one approaches some molecular scale, the symmetry must break 
down. One cannot magnify an atom of hydrogen and compare it 
with a similarly enlarged picture of another atom, say nitrogen. On 
the other hand, one should rather consider self-similarity at some 
macroscale, in order to get a better working understanding of the 
fractal geometry. 

So far we have described cluster-cluster aggregation occurring 
in some liquids. In these systems the cluster trajectory is expected 
to be Brownian. On the other hand, in an atmosphere of very low 
pressure or very high temperature, the cluster trajectory is linear. 
This kind of situation is present in the case of various soot 
aggregates produced by rapid evaporation of metals, combustion of 
fossil fuels, aerosols, or similar phenomena. The aggregation 
behavior of iron particles in liquid argon has been investigated 
(Tence et al., 1986). The cluster is composed of spherical shapes 
with sizes ranging from 100 to 2000 A. The magnitude of D was 
found to be 1.9. The degree of polydispersity had no effect on the 
magnitude of D. Soot aggregates formed by the combustion of 
acetylene in a burner were investigated (Samson et al., 1987) and 
the cluster found to be of ultrafine carbon particles 200-300 A in 
diameter. These particles were analyzed by transmission electron 
microscopy. Particles in the range 5-12 /lm were found to have a 
fractal dimension of D = 1. 82. The smaller clusters with 
diameters < 1/lm had smaller values of D = 1.55. This finding is 
of much importance for pollution control in everyday life. 

3.4. Electrodeposition and Aggregation 

The technology related to electrodeposition is vast. The 
process of electrodeposition has been considered as an important 
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aggregation phenomenon. The complex structures observed in such 
processes have been analyzed by fractal geometry methods. In the 
case where the deposition is controlled only by diffusion, the 
aggregation represents statistically simple, self-similar, i.e., fractal 
structures, aggregates. This is argued from the fact that in such 
processes the driving force is Brownian motion. 

The chaotic dynamics in several solid-state systems have been 
reviewed (Jeffrie, 1985). In each case the physical system is 
described, relevant equations of motion are given, experimental 
results are presented and interpreted, more or less from the 
relevant equations, including numerical solutions. The systems are: 
(1) an electron-hole helical plasma density wave in a Ge (ger­
manium) crystal in parallel electric and magnetic fields; this shows 
period doubling and quasi-periodic routes to chaos. (2) Standing 
mode spin wave packets in ferrite spheres, excited by driving 
ferromagnetic resonance of the uniform mode; this system shows 
period doubling to chaos and periodic windows. (3) Resonantly 
driven p-n junctions in Si (silicon) show extremely nonlinear 
behavior due to charge stored during injection; one junction shows 
period doubling to chaos and period adding (i.e., frequency 
locking); coupled junctions show, in addition, quasi-periodicity, 
entrainment, and behavior generic to coupled nonlinear oscillators. 
The fractal dimension has been measured for these systems. In a 
recent study the simulated fractal formation in electrochemical 
switching of conducting polymer film into an insulating form on the 
basis of the conductive zone was reported (Aoki, 1991). In this 
report the electric conductivity, electric switching, and fractal 
properties of polymers were analyzed. 

Fractal Electrodes (BaUery Efficiency and Fractal Dimension) 

The discharge of a battery may take place under varying 
conditions, e.g., constant load, constant current, or constant 
power. The surface reactions that take place at the interface of an 
electrode are generally irreversible processes, which can be 
analyzed by fractal theory in order to explain these practical 
examples in electrochemistry. The procedure used has been to 
analyze an electrode on which an electrochemical reaction takes 
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place, and to determine the surface behavior in terms of fractal 
theory. In these reports, fractal volume relaxation was given in 
terms of electrical analogues, e.g., the transport properties of 
recrystallized ionic conducting polymer such as the ionic complexes 
of polyoxyethylene. The relaxation spectrum of the impedance of 
the system Li/solid electrolyte/Li revealed two main modes of 
relaxation. It was concluded that if the fractal has no thickness 
(i.e., D < 2) and is perpendicular to the flow, then it can be 
described as a Sierplnski grid (see Figure 1.5). 

The correlation between battery efficiency and the fractal 
dimension of the electrode has been the subject of various studies. 
The power available from a battery is generally determined by the 
fractal dimension of one or both of the electrodes and the test may 
easily be made by measuring the efficiency of the batteries 
associated with a change in the current (Fruchter et al., 1986). In 
this case, the capacity of the battery, Qt,E: 

(3.18) 

under galvanostatic conditions one gets; 

[*(D-l)Q - C 
t,E - E (3.19) 

where the subscript E is the cutoff potential (the interfacial 
polarization, ohmic drop being neglected), CE is a constant 
depending on E, and tE is the time for accessing the local 
polarization E of the electrode. It has been found to be easy to test 
the diffusion limitation in fractal electrode media, for instance by 
lowering the temperature or by increasing the current. 

Furthermore, as seen from the relation in Eq. (3.18), all of the 
discharge curves are self-affine in a ratio related to D. 

The correlation between fractal dimension through X-ray 
scattering, impedance measurements, and battery efficiencies has 
been experimentally established in the case of Li/SOCI2/carbon 
batteries. 

The electrode can be drawn with the help of the Cantor set 
(Figure 3.3), where each groove has two branches. Each branch is 
self-similar to the whole groove with a magnification, 1m (Takayasu, 
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FRACTAl SURFACE 

CURRENT 

Figure 3.3. A fractal electrode with current characteristics determined by the 
Cantor set (see text). 

1990). The dimension of this electrode surface is D = 2 + 
log 2/logfm. When current is measured, it branches from the 
bottom to the top. The resistance measured increases by the ratio 
fm in each branch. By combining the capacitance, one can write an 
expression for the impedance of this electrode surfaze, Z 
(Takayasu, 1990): 

Z ex. wi (3.20) 

where ll' = 1 - log 2/logfm = 3 - D. 
Other diverse electrochemical reactions that have been 

analyzed by nonlinear dynamics are: electrode dissolution of 
copper in an acidic environment (Albahadily et al. , 1989; Schell 
and Albahadily, 1989); the oxidation of formaldehyde or formic 
acid on a platinum surface (Xu and Schell, 1990). All of these 
electrode systems have exhibited typical far-from-equilibrium be­
havior like multi stability , oscillations (e.g., periodic, multi­
periodic), and chaos. A simple three-variable model satisfactorily 
described the mixed-mode and the chaotic oscillations observed 
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during the reduction of indium(III) at a mercury interface, in the 
presence of thiocyanate. 

This kind of correlation is very important for those who are 
investigating battery efficiency and performance. The investigations 
need to be expanded to include chemical kinetics in heterogeneous 
media, and further the entropy and the equilibrium thermo­
dynamics (see Chapter 10). The dynamics of bioelectrode inter­
faces have~~<) been analyzed by fractal methods (Onaral et al., 
1987). The ii11alyses have been more tutorial than in-depth discus­
sions. The implications of the interfacial electrical properties in 
bioelectric stimulation and sensing and in the design of new­
generation chemical sensors are summarized. Mathematical models 
showing the fractal nature of the interface dynamics are also 
discussed. 

3.5. Phase Transition and Critical Point 

Matter consists of molecules in motion. The distance traveled 
by a molecule before hitting another depends on the structure of 
the matter (see Chapter 1). The state of all such materials is 
defined on the basis of distance between molecules, since both the 
attractive and the repulsive forces are determined by the average 
distance between molecules. In order to follow a phase change, it is 
useful to consider the distance between two molecules in each 
phase. As an example, consider the differences between distances 
when molecules are either in the gas or liquid state. The volume 
occupied by 1 mole ( = 6 X l(f3 molecules) of water is: 

Liquid state: 18 cm2 

Gas state: 22,000 cm3 

Volumega.lvolumeliquid: ca. 1000 

From this we can estimate that the distance between molecules in 
the gas state is ca. 10 times larger than in the liquid state. The 
distance between molecules in the liquid phase is, in general, some 
10% larger than in the solid phase. As a solid is heated, the 
molecular motion increases such that at the melting point, a very 
sharp change in structure is observed. This suggests that all of the 
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temperature input within a very short interval is converted into 
increased molecular motion (which was an increase in distance by 
ca. 10%). This is defined as the entropy effect (Berry et al., 1980). 
As mentioned above, the state of matter that is approaching the 
transition region, the molecules that are going to change from 
phaseso,id to phase,iquid, must undergo rearrangement. The process 
of this rearrangement has been analyzed by different investigators. 

Furthermore, in the vicinity of the critical point, many bulk 
properties (e.g., density, surface tension, specific heat, magnetiza­
tion) of the material exhibit power laws. Phenomena observed near 
a critical point are referred to as critical phenomena. A mechanical 
variable that is undetermined, namely the density () (Berry et ai., 
1980) in the liquid-gas case, is referred to as the order parameter. 
At or near the critical point, these quantities or their derivatives 
are divergent. At the molecular scale, we may ascribe this to the 
divergence of the correlation length. Since the correlation length is 
a quantity that characterizes the system, the divergence implies that 
the system becomes invariant. 

This is best described by the following. Water is added to a 
glass capillary tube such that the liquid phase fills ca. one-fourth of 
the container, and the container is then sealed. On heating, the 
liquid phase expands and the pressure inside increases. At the 
critical point (Le., when T = T., and P = Pc), the liquid and gas 
phases merge into each other as an opalescent mass. The reason for 
this is that at the critical point, both of the phases exhibit identical 
physical properties (e.g., density, surface tension). In the case of 
water the critical temperature and pressure are 647 K (374°C) and 
218 atm, respectively. The material exhibits opalescence owing to 
the random reflection of light of any wavelength. 

A general relationship has been given, i.e., the physical 
property (e.g., density, surface tension) 

(3.21) 

where X is the variable (temperature or pressure) and the subscript 
c denotes the critical point. The magnitude of D thus provides 
information about the fractal dimension of the measured physical 
property. 



CoUoidal Fractal Aggregates 115 

It is further observed that critical phenomena in many different 
materials near various kinds of critical points have quite a few 
features in common. This immediately suggests that near the 
critical point the molecular movements are in some way similar. 

It is of interest to determine whether such a transition state of 
matter can exhibit fractal dimension. What we mean is whether the 
molecular movement during the change from one phase to another 
goes through some fractal structuring. As described elsewhere 
herein, the percolation problem is analogous to a phase transition 
fractal. 

3.6. Percolation and Cluster Size Distribution: Basic 
Concepts 

The term percolation is used to describe many different 
phenomena as regards fluid flow through porous media (and other 
systems such as insulators, ferromagnets). Actually a coffee per­
colator describes the process quite accurately, i.e., movement of 
fluid (water) through a porous medium (coffee). Another common 
system is water drainage in the earth. A qualitative description is 
that fluid moves through the porous medium (coffee or earth) and 
breaks up into small or large domains (also called ganglia in oil 
recovery processes). The movement of the fluid and its distribution 
within the porous medium, whether connected or disconnected, is 
the percolation termed fluid flow (Stauffer, 1985). If the pore size 
distribution is such that the fluid flows in connected form, this 
means the surface tension and the pore size are of some appropri­
ate magnitudes. The pore surfaces are recognized to be irregular. 
The irregularities are also known to repeat themselves over several 
length scales or degrees of magnification. On the other hand, due 
to interfacial forces present in such curved fluid surfaces, the fluid 
may break up and become disconnected. The percolation experi­
ments involve the investigation of these phenomena. The breaking 
up and rejoining of the fluid mass that takes place in the 
percolation process thus is a dynamic process. The percolation 
process is found in many types of disordered systems (Domb and 
Sykes, 1961; Broadbent and Hammersley, 1957), e.g., fragmenta­
tion and fractures, gels, forest fires, epidemic. 
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The forest fire and its relation to the distance between each 
tree is a good example for describing some of the principles 
involved here. If a tree catches fire in a forest, then it can ignite a 
neighboring tree only if the flames are large enough to reach the 
neighboring tree. However, if the distance between trees is large 
enough, then the fire cannot spread. House planning in Greenland 
is pursued similarly: If the maximum flame that can be produced 
around a house is say 10 m, then the flame cannot spread to a 
neighboring house situated 20 m away. 

A more dramatic example is the observation that a balloon 
remains floating in air at the outlet of an air nozzle. This means 
that as air flows around the balloon, it gets fixed in position. A 
similar phenomenon is observed when water is injected into oil 
reservoirs in order to push the oil. In many cases, however, one 
finds that instead water flows around the trapped oil ganglia. These 
examples are comparable, but on a qualitative level. 

More extensive results can be found in a recent review 
(Sokolov, 1986) of the studies of the dimensionality characteristics 
of percolation clusters. The purely geometric nature of a percola­
tion phase transition and the great variety of the quantities 
exhibiting critical behavior make this geometric approach both 
informative and useful. In addition to the fractal dimensionality of 
a cluster and its subsets (such as the backbone, hull, and other 
dimensionalities), it is necessary to introduce additional charac­
teristics. For example, the maximum velocity of propagation of 
excitations is determined by the chemical dimensionality of a 
cluster, and the critical behavior of the conductivity, diffusion 
coefficient, etc. is determined by spectral (or related) dimen­
sionalities. Scaling relationships between different dimensionalities, 
as well as relationships between these and conventional critical 
exponents are discussed. The application of supercomputers to 
understanding fractal growth and form has become very important 
(Auerbach et ai., 1987). In the past few years, many physicists have 
developed theoretical models related to the clusters. The different 
questions addressed are: how can we give quantitative detail of the 
form of an object and what are the forces that are responsible for 
these phenomena? However, everyone concerned agrees that these 
model studies must be regarded with some reservation. 
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Let us divide the system into many lattice sites. We can then 
give names to each site. A site is randomly occupied with 
probability p, and randomly empty with probability 1 - p. A 
cluster is denoted as a group of sites occupied with neighbors. A 
cluster thus indicates a continuous medium. A typical example is 
the process where water (flood) displaces the oil in a reservoir 
(Feder, 1988). The situation with Pc = 0.59273, which corresponds 
to a critical state, occurs when the oil phase breaks through 
(Bunde, 1986). This means that if oil is spread out in disconnected 
drops, then any medium surrounding it, like gas or brine, cannot 
push the oil as effectively as when oil is present connected (i.e., as 
ganglia). 

It is known that in different processes the diffusion and 
percolation can look alike. As mentioned earlier, the phase 
transition is like many other processes. Let us consider percolation: 
an experiment that can be considered is fine metal powder 
distributed over an insulator. Under the condition that each 
conducting metal particle is separated from the others, no current 
can pass and therefore the surface is an insulator. The surface 
becomes conducting when all of the metal particles touch each 
other at a coverage of degree 1. 

Between these two extremes there is found a critical ratio Pc, 
where the metal layer behaves as (Hughes and Ninham, 1983): 

• An insulator when p < Pc 
• A conductor when p > Pc 

This is analogous to the phase transition where the system 
changes from phase I to phase II (see above). 

The different stages of p values are shown schematically in 
Figure 3.4. Clusters of large size are depicted as dark areas. The 
values of p in panels (a) and (b) correspond to the insulator phase, 
or to the nonpercolating cluster. The stage in (e) obviously is the 
conducting cluster. The intermediate stages in (c) and (d) are near 
the critical point where we find rather large clusters that can 
conduct. Accordingly, the critical point, Pc, corresponds to the 
stage where with the smallest value of p we can start to observe 
conduction or percolation breakthrough. The magnitude of Pc in 
these experiments was found to be ca. 0.75. 
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a b c d e 

p = 0.56 = 0.659 = 0.707 = 0.752 = 0.836 

Figure 3.4. Schematic random metal configurations for different values of p. Dark 
shade indicates conducting phase. The metal is conducting in (e). 

Now it becomes important to determine the fractal dimension 
of the cluster size. This is carried out by calculating the total mass, 
M" of a connecting metal cluster within a radius r: 

(3.22) 

[this is analogous to the procedure used when analyzing the size 
distribution of craters on the moon (Chapter 7)] . 

A detailed presentation of percolation theory is beyond the 
scope of this book, and the reader should refer to the more 
advanced literature (Kersten, 1982). It is known from the general 
theory that at a concentration P not too far from Pc, the 
mean-square distance between two connected point is finite. This 
particular distance is called the correlation length, 1]: 

(3.23) 

where the exponent v depends only on the dimension D of the 
lattice. A rather simple computer program has been described by 
Takayasu (1990). 

Oil reservoirs: in the water-flooding process, the pores that are 
filled by the oil phase are going to be pushed by another fluid (Le., 
water). This important process has been studied by percolation 
theories in the current literature (Feder, 1988). 
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The aggregation of molecules to form crystals is one of the most 
common examples both in nature and in industry. Analogous to the 
movement of gas molecules (Chapter 1), molecules in dense phases 
collide and invariably stick together to form crystals or dendrites. 
The crystals can be those of sugar, salt, copper sulfate, quartz or 
other minerals. The salt crystals (mainly NaCl) near the oceans are 
formed under the sun's heat and ordinary temperature and 
pressure. On the other hand, quartz crystals (dendrites) found in 
nature are formed over a long time scale and under very high 
pressure and temperature. Dendrite growth has been suggested to 
be an interface-controlled crystal growth process. 

Theorists have long attempted to describe the complex spatial 
patterns found in nature, e.g., snowflakes or dendrites. The theory 
of dendrite growth has been described based on instabilities 
dependent on surface tension (Langer and Muller-Krumbhaar, 
1978a,b). The dendrite growth mechanism, however, needs to be 
given more extensive attention. This is due to the fact that dendrite 
growth takes many millions of years, whereas most crystal growth 
processes in the laboratory last at the most overnight! This 
difference thus requires some other kinds of process kinetics that 
occur in the laboratory time scale. Furthermore, dendrites grow 
under very high pressure and temperature (conditions that are not 
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easily attainable in the ordinary laboratory). It is also recognized 
that surface tension acts as a stabilizing agent and prevents the 
formation of deformations. These lead to beautiful shapes (such as 
the sixfold symmetry in snowflakes) during the growth process. The 
reason why dendrites grow under well-defined paths is thus the 
main interesting feature. The diffusion-limited aggregation (DLA) 
and diffusion-limited deposition models have also provided a basis 
for the development of more extensive and realistic models for 
dendrite growth and solidification (Szep et ai., 1985; Vicsek, 1984, 
1985, 1987; Nittmann and Stanley, 1986, 1987; Family et ai., 1987; 
Chen and Wilkinson, 1985; Liang, 1986). 

Recent progress in the understanding of the structure of fractal 
aggregates has been reviewed (Jullien and Botet, 1987). After 
describing a typical aggregation experiment leading to fractal 
aggregates, the concepts of fractal and fractal dimension are 
introduced and experimental methods are described to measure the 
fractal dimension of aggregates. Then, the two main theoretical 
models, particle-cluster and cluster-cluster aggregation, are intro­
duced, emphasizing their connections with experiments. Computer 
simulations have been used to describe the time evolution of a 
dendritic pattern growth mode. 

Let us consider an experiment where a fluid is pushed into a 
solid in resin form, and then allowed to polymerize. In this way, 
one would be able to fossilize the viscous finger. In nature, such 
processes did indeed take place some millions of years ago. This 
refers to the so-called geological dendrites found in various clay or 
carbonate sediments (Figure 4.1). It can be argued that dendrites 
are formed by crystallization process in the finger (analogous to the 
viscous finger phenomena) after a pattern has formed. 

4.1. Experimental Methods for Making Dendrites 
in the Laboratory 

In a typical procedure, a solution of zinc sulfate (ZnS04) of 
concentration 2 M is placed in a petri dish (ca. 5 mm deep) 
(Matsushita, 1985). A layer (a few millimeters thick) of organic 
liquid (immiscible with water), such as n-butylacetate (BA) , is 



Dendrite Growth and Fractal Dimension 

Figure 4.1. Typical dendrite 
shapes (schematic). 
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poured on top of the ZnS04 solution, thus giving an interface with 
very low interfacial tension [ca. 2 mN/m (=dyne/cm»). The nega­
tive electrode is placed in the center of the dish, while the positive 
electrode (zinc) is placed at the edge (Figure 4.2). When a current 
of 5 volts is applied, a dendrite-shaped leaf forms after a few 
minutes. The magnitude of D is found to be ca. 1.7 [from the 
relation log(mass) versus log(radius»). This compares with the 
magnitude of Dfmger of viscous fingers, described above. 

In another procedure (Matsushita et aI., 1984), experiments on 
the electrodeposition of zinc on a linear cathode were carried out. 
Rectangular cross-sectional pencil cores were used as cathode. In 
these metal forests the fractal dimension was also found to be 1.7, 
as expected from theory. 

Copper has been deposited from aqueous CUS04 solution onto 
the exposed end of an otherwise insulated thin copper wire. A 
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Figure 4.2. Experimental 
setup used for dendrite 
growth of Zn. BA, n­
butylacetate. 

polymer (polyethylene glycol) was added to avoid convection (by 
increasing the viscosity), while excess electrolyte (Na2S04) was 
added to screen the electric field . The whole process thus is carried 
out under conditions where the growth is conducted by diffusion of 
copper ions to the cathode. The path followed by Cu2+ ions is 
governed by Brownian motion, due to the electric field between 
cathode and anode. The magnitude of D was found to be 2.4, 
which is somewhat larger than the previous values. The dendrites 
of CUS04 grown under similar conditions (Evesque et al., 1986) 
have been investigated after digitization of the patterns. 

The reaction that occurs is the dissociation of CUS04 into 
Cu2+ and SO~- ions in aqueous media, which drift around 
randomly (Brownian motion). The copper ions that hit the cathode 
are deposited as copper after receiving two electrons (Cu2+ + 
2e- = Cu). The Cu2+ that contact any copper are also deposited. 
Assuming that these ions move in a random manner, following 
Brownian paths, the ions will more likely hit the exposed fingers 
rather than the protected interior of the dendrite. These dendrites 
have been described by DLA theory (Evesque et al., 1986) . 
Theoretical analyses showed some differences between this and the 
experimental data. This was ascribed to different factors . The DLA 
model is known to be an ideal model for describing electrodeposi­
tion . The model does not take into consideration any transport 
properties which could be very important. In the case of electrode-
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position, the Cu aggregates have a loose, porous structure instead 
of a compact, crystalline structure. This would also lead to some 
degree of defects in the aggregates, and to an increase in 
resistance. This affects the current density, and thus the rate of 
deposition is faster at the end of radial branches than at the end of 
more tortuous branches having the same distance from the center. 
The inhomogeneous depletion of the Cu ion concentration during 
the deposition is another possible reason. Stirring is not feasible 
due to the fragile nature of the dendrites. In all natural processes, 
stirring is always absent. 

The fractal analyses of such electrodeposition processes are of 
much practical importance. These experiments mimic processes 
that take place in batteries and similar systems 
(undercharging/discharging). In other words, both battery perfor­
mance and lifetime could be investigated by means of such fractal 
experiments. 

Precipitation fingers (Alsac et al., 1990) can be obtained by 
pushing an aqueous solution of iron(lI) sulfate (FeS04) at pH 3 
into a clay suspension at pH 10. The ion Fe2+ (ferrous) is oxidized 
to Fe3+ (ferric) when the two fluids meet at the interface, where 
precipitation of iron(III) hydroxide [Fe(OH)31 takes place as 
red-brown dendrites. 

It is worth mentioning that various systems--e.g., aggregation 
of solids, viscous finger formation of fluid flow, lightning discharge, 
cracks in rocks, and the dendrite patterns-all have about the same 
magnitude of D = 1. 7. These systems have also been analyzed by 
model simulations, stochastic models, and deterministic models. 
Dendrite growth has been analyzed by DLA theory (Evesque et 
al., 1986). Typical copper aggregates are shown in Figure 4.3. 

The patterns show a very strong radial symmetry. In these 
experiments, the dendritelike patterns formed branches of charac­
teristic width, Ro. The magnitude of Ro was 1-5 mm. Ro was found 
to be related to the thickness of the electrolyte and the applied 
voltage. The patterns could not be reproduced exactly, thus the 
value of Ro was varying. The data were analyzed by the mass 
versus radius relation: 

(4.1) 
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TIME • 
Figure 4.3. Copper aggregate patterns at different stages of growth. (Voltage = 

2 volts; copper ion concentration = 0.5 M; complete time of growth = 50 h.) The 
patterns show a very strong radial symmetry. (Redrawn with modifications from 
Evesque et al., 1986.) 

The average value of D was found to be 1.6. It is to be noted that 
such shapes could not be analyzed by Euclidean geometry. 

Studies on the fractal dimension of a fracture surface formed 
during slow stable crack propagation in steel have been reported 
(Long et at., 1991). 

4.2. Fractal Growth in Lipid Monolayers 

When a very small amount of a virtually insoluble and 
nonvolatile organic substance is placed on the surface of water, 
which has a relatively high surface tension, either of the following 
results may be observed: 

1. The substance may remain as a compact drop (or as a solid 
mass), leaving the rest of the liquid surface clean. 

2. It may spread out as a monomolecular film over the entire 
available surface of water. 

The formation of a stable monolayer by any substance is 
determined by the interactive forces between that substance and 
the subphase, i.e., water. In other words, a stable monolayer is 
fOffiied when the work of adhesion between the substance and 
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water is greater than the work of cohesion of the substance itself. 
Under these conditions, the substance spreads over the entire 
available water surface and forms a stable film. Similar energetic 
considerations would apply for the formation of monomolecular 
films for other interfaces (Birdi, 1989), e.g., 

• Oil-water 
• Mercury-water 
• Solid-water (or other fluid) 

The lipid molecules (amphiphiles) are known to form stable 
monomolecular films when spread on the surface of water (Chat­
toraj and Birdi, 1984; Birdi, 1989). This is a two-dimensional 
arrangement of amphiphiles as formed at the interface of air-water 
(or oil-water). The alkyl chains pack together avoiding water 
molecules, while the polar part of the lipid molecule interacts with 
water molecules (through hydrogen bonding). In some cases we 
find liquid-crystal structures (Birdi, 1989, 1992). These monolayers 
of lipids have been found to be useful cell membrane models. It is 
remarkable that a few micrograms of lipid (such as fatty acids, fatty 
alcohol, or lecithin) is enough to cover a few hundred square 
centimeters. The molecules rearrange to form a monomolecular 
film. The growth of such two-dimensional assemblies thus is an 
important system for investigation, as regards the fractal geometry. 

In these two-dimensional monolayers, fractal growth of crys­
talline domains in phospholipid [L-a-dimyristoyl-phosphatidyl­
ethanolamine (DMPE); Miller and Mohwald, 1987] and fatty 
alcohols (Birdi, 1989) at an air-water interface has been observed. 
In the former studies, a fluorescent dye was used to visualize the 
crystalline domains. The magnitude of dendritelike domains was 
found to be 1.5. This suggests that the growth mechanism may be 
determined by the two-dimensional diffusion of dye from the 
solid-substrate boundary of the phospholipid. Analogous investi­
gations of organized assemblies of lipid (palmitoylphos­
phatidylcholine) vesicles have been reported (Lianos, 1990). Also 
consistent with these results is the finding that emerged in a 
lattice-based study of sequestering and the influence of domain 
structure on excimer formation in spread monolayers (Politowicz 
and Kozak, 1988). In these monolayers, the changes in lifetime of 
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the diffusing, excited-state monomer probe molecule, studied 
experimentally by monitoring the excimer-monomer steady-state 
photoexcitation of the probe, were examined. An overall conclu­
sion was that the lifetime of the probe molecule was always longer 
on domains of lower coordination valency. More studies are 
needed at this stage, in order to understand these two-dimensional 
fractal growths in monolayers. 

4.3. Fractal Character of Interfaces 

In many different natural systems, it is apparent that various 
processes take place at the line of contact between a liquid phase 
and a solid phase. Although much interest has been shown 
regarding the fractal structures in bulk phases, much less has been 
reported about these structures at interfaces (e.g., gas-solid-liquid 
or liquid1-solid-liquidz). The molecules in the liquid phase can 
move larger distances than those in the solid phase. Therefore, 
since the molecules in the solid phase are well fixed, it is in general 
not possible to study the surface forces of the solid phase in the 
same way as for the liquid phase. Furthermore, there exist surface 
defects and irregularities on a solid surface that account for such 
special properties as catalysis. The interfaces playa very important 
role in diverse industrial fields, especially in the heterogeneous 
kinetics of catalysis and their overall selectivity (Meakin, 1986). In 
a recent study (Pospisil, 1988), the AC technique was applied to 
the investigation of the growth of a compact film of bis(2,2'­
bipyridine) cobalt(II) perchlorate at the mercury-aqueous solution 
interface. From the capacitance (C) versus time (t) measurements, 
it was concluded that the electrode exhibited surface roughness, 
which affected the electrode impedance. A model based on a rough 
surface with grooves and pore branches was developed, in terms of 
fractal geometry. The roughness effects are observed experimen­
tally as the power-law dependence of the electrode impedance 
(Nyikos and Pajkossy, 1985): 

(4.2) 
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Table 4.1. Hexagonal Surface Arrangement 

No. of particles (0) 

0-.7 0-.49 0-.343 0 

Mass 
Size 

o denotes particles. 
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where 0 < ll' S; 1. The exponent ll' has a direct relation to the 
effective fractal dimension D as follows: 

ll' = 1/(D - 1) (4.3) 

as long as the deviation of the rough electrode surface from the 
smooth plane has an average self-similar property. Since the 
mercury drop electrode would behave as an ideally smooth 
interface with ll' = 1, its use is suitable for detecting the fractal 
structure during the compact film growth. 

The magnitude of D was found to be 2.14-2.16. In the case of 
a smooth two-dimensional surface, D = 2. Further, in the case of a 
rough surface with hexagonal packing, D = log 7/log 3 = 1.771 
(Table 4.1). 

The experimental value of D (=2.16) compares with the 
fractal structure obtained by dividing a square (or cube) by a factor 
of two, thus producing four subsquares (Matsushita, 1985). One of 
these squares survives, while the other three squares are again 
divided by two, and so on. This gives a fractal of dimension 
D = 2.16. This is in agreement with earlier observations that the 
fractal nature of objects can be experienced over a large range of 
dimension. More investigations are needed in order to evaluate D 
for different electrochemical systems with other crystallographic 
structures. 



Porous Solid Media 
(Fractal Surfaces) 

5 

The porous media are of much importance in different aspects of 
technology, e.g., geoscience (evolution), oil recovery, catalysis, 
water seepage and drinking water treatment, chromatography 
[high-pressure liquid chromatography (HPLC)]. At the microscopic 
scale, chemical reactions in soil take place at the interface between 
water, air, mineral grains, and organic complexes; fluids through 
soils and rock pores. At the macroscopic scale, fluids are stored in 
reservoirs or move through rock fissures. Caves in limestones are 
the result of solution reactions involving dissolved carbon dioxide 
to enlarge initial weaknesses along joint, fracture, or rock in­
homogeneities. A major theoretical and practical difficulty with 
heterogeneous porous media is the problem of relating laboratory­
scale data to the field scale. 

The problems of porous media are now being analyzed using 
fractal models. In some cases, as in oil recovery, it is necessary only 
to be able to model a reservoir that is situated perhaps 5 km deep. 
Furthermore, porous materials, aggregates, and ramified structures 
are known to exhibit frequently self-similarity, i.e., their structure 
is associated with power-law density-density correlation function. 

In the past (Reich et aI., 1990), the measurement of surface 
areas and pore volumes of porous solids by gas adsorption and 
liquid intrusion (Hg porosimetry method) has led to variable and 

U9 
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often ambiguous results. The range of surface areas of solids is 
rather large, i.e., ca. 1000 m2/ g (e.g., active charcoal or talc 
powder) to a few square meters per gram (e.g., most powders used 
in paints) (Chattoraj and Birdi, 1984; Birdi and Vu, 1991). A 
powder, or solids in general, are characterized by surface rough­
ness. The detailed nature of a solid surface is studied by adsorp­
tion. The variable surface roughness is naturally of much interest, 
as regards the surface interactions. For example, the surface areas 
appeared to vary enormously according to the method used to 
determine these areas (e.g., using either N2 or CO2 as adsorbed 
gas) (Unger et al., 1987; Birdi, et al., 1991; Birdi, 1992). 

Furthermore, soil physicists have been applying in recent years 
the scaling methods in an attempt to rationalize the heterogeneity 
and nonlinearity they encounter when studying the movement of 
water through soil (Miller, 1980). These procedures have been 
applied in situations where the movement of soil water is con­
strained only by the physical dimensions of the porous media. For 
example, scaling soil-water movement from a fine silt to a coarse 
sand allows demonstrations and laboratory experiments to be 
speeded up greatly. Scaling methods were found to be less 
successful, however, when adsorption and movement of water are 
governed by chemical and physical properties that result from 
different kinds of soil particles and their size. For example, the 
finest soil particles «2Ilm) are very often clay colloids whose 
physical behavior is strongly dependent on their crystalline struc­
tures. This behavior is often well understood, and it is not 
necessarily helpful to adopt a fractal approach for their analysis. 
Further, recent work suggests an analogy between viscous fingering 
at an infinite viscosity ratio and diffusion-limited aggregation 
(DLA), and hence that the fingers may be fractal with D = ca. 1.7 
(in two dimensions). This observation leads to some unanswered 
questions regarding the nature of the fingered patterns at a finite 
viscosity ratio. In some analyses the rock has been modeled as a 
lattice of capillary tubes of random radius through which miscible 
displacement takes place. The fractal dimension has been found to 
be important as it gives a measure of the efficiciency of oil recovery 
processes. 

The surface roughness can thus be easily compared (qualita-
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tively) with the coastline problem previously described, and hence 
the fractal surface. The surface adsorption processes are well 
defined, as discussed in various surface chemistry textbooks (see 
References). We will mainly be concerned here with adsorption 
processes where no chemical reaction takes place (systems where 
reactions occur on solid surfaces are discussed elsewhere). 

It has been extensively reported that there is good reason to 
expect fractal structures in natural geological or artificial porous 
media. The interfacial phenomena at the fluid-solid interface will 
be described below. The porous solid can be expected to exhibit 
fractal features at three different levels: 

• The pore space 
• The solid phase 
• Solid-pore interface 

This clearly shows the complex nature of porous solid surfaces. 
It is accepted at this stage in the literature that flow in porous 
media is not satisfactorily understood due to the absence of an 
adequate description of the material itself and due to the difficulty 
in its mathematical analysis. However, it is hoped that fractal 
analysis will provide one key to a more complete description of 
these media. 

A systematic treatment of microstructure has been proposed 
(Avnir, 1989). This structural level of solid matter includes all 
features that do not belong to the bulk structure, or phase structure 
(crystals, gas). Zero to three-dimensional discontinuities in the 
phase structure are defined as microstructural elements. Prototypes 
of two-phase microstructures are dispersion, net, cell, and duplex. 
Further, it has been recognized that a high-energy particle colliding 
with lattice atoms would create a disordered region of damage and 
that the central region of this damage would be rich in vacancies 
while the outer part would be rich in interstitials (Williams et al., 
1987). Fractals thus have enabled the recognition of a characteristic 
structure in the spatial distribution of the vacancies and raise the 
issue of describing the order of electronic features due to this 
cascade structure. There may exist microstructural order, gradi­
ents, anisotropy, as well as mixtures and transformations of 
microstructural elements and types. Microstructural energy is given 
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by the product of the density of a microstructural element and its 
specific energy. The scale of microstructure must be based on 
relation to properties. Fractal analysis may become useful for the 
description of rugged, fissured, and branched microstructure. 

The pore space of various sandstone specimens was found 
[from scanning electron microscopy (SEM)] to be fractal, with D in 
the range of 2.57-2.87, with pore size ranging from 10 nm to 
100 /lm. 

The method used to estimate the fractal dimension of any 
surface is based on the determination of the number of objects 
(molecules) of a given size that would completely cover the surface 
(Figure 5.1). Furthermore, one then also determines the relation 
between the size of the object used and the effect of the latter on 
the number. It is obvious that the excluded volume, VEX, would be 
larger the larger the size of the molecules adsorbed. The various 
methods that have been used are: 

• Molecules of varying sizes (Avnir et al., 1984) 
• Numerical simulations (van Damme and Fripiat, 1985; van 

Damme et al., 1986a,b; Fripiat et al., 1986) 
• Latex spheres and polymer molecules (Brochard, 1985). 
• Capillary length as the yardstick (Lenormand et al., 1987) 

SOUD 
Figure 5.1. Surface coverage of porous solids and the excluded volume (VEX). 
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5.1. on Recovery Processes 

Many millions of years ago, forests or materials such as shells 
were buried in the earth. Depending on the conditions of pressure 
and temperature, one now finds either coal, oil, or gas. Oil [a 
mixture of alkanes (mainly) plus some phenyl derivatives and 
larger molecules such as asphaltenes] and gas (mostly methane, 
CH4) are found under the earth's surface (at depths of -100 m to 
-5000 m) in pockets where it has been trapped, unable to move on 
its own accord (generally under the pressure of gas). The reservoir 
rock consists of pores of variable size (ca. 10 Ilm) and shape 
(noncircular). The efficiency of oil recovery is determined by 
different physical and geological aspects. The main factor that is 
generally investigated is the flow of gas or water as it pushes oil 
through the narrow pores. Knowledge of the exact pore size and 
shape thus becomes of much importance. It is generally accepted 
that the average shape of pores in the oil reservoirs is indeed 
noncircular (i.e., mostly rectangular) (Birdi et ai., 1987). In many 
oil recovery processes, chemicals such as acids are routinely 
injected into oil reservoirs in order to activate the production 
(Daccord, 1989). After reaction, the acid produces unstable 
patterns consisting of highly ramified empty channels. Fractal 
analysis of this has been reported by various investigators. 

The flow is intrinsically unstable for the same reason that 
viscous fingering is; i.e., as some rock is dissolved, the permeability 
increases, giving rise to enhanced fluid flow. This increase further 
increases the dissolution rate. This is the kind of perturbation we 
have mentioned elsewhere, which changes a smooth flow into a 
more chaotic one. In the case of reservoirs, very conductive 
channels ("wormholes") are formed that bypass completely most of 
the rock matrix. 

The multiphase flow in porous media and fluid models of 
geological hotspots have been reviewed (Lumley et aI., 1988; 
Feder, 1988). The analyses have been aided by digital image 
processing in flow visualization and secondary instability of bound­
ary layers. The various subjects that have been covered are: 
fractals in fluid mechanics; multiphase flow in porous media; fluid 
models of geological hotspots; remote sensing of the sea surface; 
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initial stage of water impact; surf-zone dynamics; sand transport on 
the continental shelf; foam flows; instability mechanisms in shear 
flow transition. 

A completely different aspect of oil recovery-the effects of 
waves on the offshore structures-has become an important area of 
investigation (Thompson and Stewart, 1988). It has been found 
that mooring towers exhibited unexpected sub harmonic resonance 
in steady waves. The buoys are actually inverted pendulums. The 
mooring gives rise to two opposite forces: buoyancy plus mooring 
and plain buoyancy. 

5.2. Fractal Surfaces of Solid Porous Media 

The surface property of a solid is characterized by the nature 
of the surface boundary. A detailed investigation of the surface is 
necessary because the geometrical arrangement of molecules at the 
surface is different from that of molecules inside the solid. The 
surface boundary is expected to be related to its fractal dimension, 
D, as well as to the pore space. These characteristics can be 
separated into different fractal spaces (Figure 5.2) (Pfeifer, 1985; 
Pfeifer and Obert, 1989): 

• Mass fractal 
• Surface fractal 
• Pore fractal 
• Subfractal 

The power-law relationship's dependence on radius, R, can be 
given as; 

M (R) oc RDm~ mass (5.1) 

(5.2) 

M (R) oc RDpore pore (5.3) 

The different fractals (mass, surface, pore) are related as follows. 
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A B 

c 
Figure 5.2. Schematic description of the different fractals in porous solid surfaces: 
(A) Surface fractal; (8) mass fractal ; (C) pore fractal. 

The values of D, Dmass, and Dp<ne can be estimated from such 
experiments as monolayer capacity, multilayer adsorption, porosi­
me try , and small-angle scattering. 

The Cantor set has also been used to describe the porous 
structure (see Chapter 1) . A three-dimensional porous medium is 
obtained as given in Figure 5.3. This porous structure is spatially 
periodic at a large scale and fractal (with D = 0.63) at a small 
scale. The porous medium represents such structures as formed by 
random packing of solid particles that are identical , such as spheres 
or needles. Other shapes and forms can be easily drawn by using 
the Cantor set with a different fractal dimension. 

The simple procedure used here to construct such three­
dimensional fractal solid surfaces thus shows that the Cantor set 
can be easily used to draw different forms of fractal surfaces. At 
this stage, more investigations using this procedure are needed to 
describe the pore size and distribution of solid surfaces. The Cantor 
set seems to be very useful for describing such systems. We thus 
are able to draw by a simple set of rules a shape with a well-defined 
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CANTOR SET 

A 

1/3 

POROUS SOLID 

Figure 5.3. The Cantor brush of porous medium (D = 0.63); various geometrical 
parameters are indicated. 

fractal dimension. This example has considerable use in a vast 
number of systems, as mentioned herein. 

As described earlier, geological phenomena are expected to be 
fractal. It is therefore of interest to determine whether the pores 
found in rocks exhibit such property. This was analyzed (Bale and 
Schmidt, 1984) for the case of pore surfaces of lignite coal, and the 
X-ray scattering data were found to fit the relation: 

Scattering vector (Sq) = qD-6 (5.4) 

where the scattering relation is the same as described for colloidal 
aggregates. The magnitude of D was found to be 2.56: 

log(scattering intensity) = 4 log (scattering angle) (5.5) 

Other investigators (Wong, 1985; Wong et al., 1986) have de­
scribed these scattering data as indicative of rough pore surfaces. 
The fractal value of sandstone and shale were of magnitude 
2.55-2.96, dependent on the rock (Wong et at., 1986). 

Surface fractal analyses of coal. An important example of 
much interest is the surface of coal. Coal is by far the most 
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abundant source of energy available to man. Its surface is both 
porous and of very small particle size. The necessity for coal 
gasification and pollution control has made information about its 
surface structure of great importance. The combustion reactions of 
coal (Mohanty et aI., 1982; Kerstein and Bug, 1986) can be 
described as follows: 

• Reactions at the outer surface (so-called burning) 
• Reactions occurring inside the particles (so-called 

fragmentation) 

The extent of diffusion and reaction will determine the 
mechanisms involved, especially the reaction products. The com­
bustion has been suggested to lead to the opening of the pores. 
This leads to more and more fragmentation of the solids. These 
considerations also apply to analogous systems, such as gasification 
of straw. 

Furthermore, one of the most important groups of porous 
solids is the so-called amorphous carbon-based materials such as 
charcoal, activated carbon, and coal. In fact, as far as coal and 
coal-based materials are concerned, it is usually maintained that 
their single most important physical characteristic is their surface 
morphology. In other words, the pore structure mainly determines 
both the mechanical strength and the access and egress of reactants 
and products in coal processing. 

These models have been applied to the opposite processes, 
i.e., plugging of porous media. This occurs in the removal of S02 
or H2S from smokes by reaction with calcinated limestone (Simons 
and Garman, 1986), and in deposition of coke on a catalytic pellet. 

The use of both small-angle X-ray (SAXS) and neutron 
scattering (SANS) to characterize porous solids has a long tradi­
tion. The use of SAXS to measure porous structure has several 
advantages over other methods where adsorption or intrusion is 
used: 

• It is nonintrusive. 
• No drying or pretreatment such as degassing is needed. 
• One can study under dynamic conditions. 
• Both open and closed pores can be measured. 
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However, the disadvantages must be considered: 

• Both open and closed porosity are measured, while only 
open pores may be of interest. 

• Only certain length scales may be probed. 

However, a combination of gas adsorption [Brunaer-Emmett­
Teller (BET) method] liquid intrusion, and SAXS could be the 
most useful, but obviously a tedious procedure. The X-ray intensity 
is dependent on the surface morphology. A typical log (intensity) 
versus scattering angle plot shows a good fit when the assumption is 
made that D = 2.44 (Reich et ai., 1990). The different carbon 
samples that were analyzed by this procedure (Table 5.1) showed 
varying magnitudes of D = 2-3. It has been pointed out that this 
analysis is of global character and does not describe any of the 
geometrical shapes. This is due to the fact that in coals there are 
present some molecular-sized systems. Fractal dimension will be 
present over a given range of length scales. These data indeed 
indicated that D may be different for different length scales. 
Correlation between these fractal dimensions and the combustion 
rates and efficiency remains to be investigated. 

In order to apply SAXS under dynamic conditions, the 
oxidation of a high-rank coal in a stream of oxygen at 100°C was 
followed as a function of time (Table 5.2). The data showed that as 
oxidation proceeded, the magnitude of D decreased slightly (be­
cause of the smoothening of the surface) and the surface measure 
increased (since the pores become more and more open). A similar 

Table 5.1. Fractal nata on Porous Carbon-Based Materials" 

Material D Tmax 'min 

Activated charcoal 2.05 4000 305 
North Dakota black coal 2.08 2900 370 
AJAX activated charcoal 2.21 2800 390 
Lignite coal 2.54 3900 230 
Brown coal 2.86 4100 520 
Glassy carbon film 3.04 3900 420 

·Source: Reich et al. (1990.) 
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Table 5.2. Change in D versus Time for Oxidized Coal" 

Days of oxidation D rmax rmin 

0 2.25 2500 390 
5 2.05 1300 150 

10 2.02 3900 250 
20 1.93 4400 250 

·Source: Reich et al. (1990). 

trend has been reported for the activation process of charcoal 
(Avnir et al., 1983). 

In the case of porous media (coal), reaction can take place 
within particles that have accessible porosity. The behavior de­
pends on the relative importance of the reaction outside versus 
inside the coal particles. Knowledge of the porosity of particles is 
thus of much importance. 

Fractal analyses of porous sandstone surfaces have been 
carried out using SEM (Katz and Thompson, 1985). The value of 
D = 2.78 was reported (over three to four orders of magnitude; 
lengths ranged from 10 nm to 100 ,urn]. From these data, the 
relation between porosity, q;, and D was given as: 

(5.6) 

where 11 (=20 A) is the lower cutoff of the pore space and 12 is the 
upper cutoff (Table 5.3). 

Table 5.3. Magnitude of the Fractal Dimension of Porous Rocks" 

Porosity (%) 

Sample D 12 (Ilm) Caiculatedb Measured 

Sand #965 2.57 2.5 4.7 5.45 
Sand #466 2.68 6 7.6 7.3 
Coconino 2.78 98 10 11.8 
Navajo 2.81 50 15 16.4 
St. Peters 2.87 50 27 26 

·Source: Katz and Thompson (1985). 
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The exact pore shape and size distribution is not known 
completely for any solid. Therefore, the relationship given in Eq. 
(5.6) has been criticized (Roberts, 1986; Katz and Thompson, 
1986), and needs further investigations (Birdi and Vu, 1991b). 

Flow of liquid around fractal structures. The process by which 
a fluid flows around a porous medium with fractal structure is an 
important phenomenon. The flow of fluids with suspended particles 
is another area of theoretical and practical interest (drinking water 
treatment). 

5.3. Molecular Fractal Surfaces 

5.3.1. Porosity and Adsorption 

Finely divided, powdered materials have been characterized by 
adsorption studies. Powdered materials generally exhibit a variable 
degree of roughness and a diversity of pore shapes. The application 
of fractal models to such surfaces is of much interest and necessity. 

In the case where the surface area is estimated by measuring 
the amount of gas adsorbed [the well-known BET method (Adam­
son, 1982), described below], the molecules adsorbed on a rough 
solid surface may be depicted as shown in Figures 5.1 and 5.4. It is 
obvious that according to this the excluded volume, VEX, will be 
related to the radius of the molecules. Multilayer adsorption data 
on a fractally rough solid surface have been reported (Pfeifer et al., 
1989). Hence, adsorption studies carried out by summing molecules 
of varying radius provide much information about the surface 
fractal structure. 

5.3.2. Molecular Fradal Surfaces 

An exact description of solid surfaces at the molecular level 
has been very difficult. The task is even more complicated when 
materials used in the catalysis are probed. These materials exhibit 
such a variety of porous surfaces that the analyses are far from 
satisfactory (Birdi and Vu, 1991b; Christensen and Tops0e, 1989). 
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Recent studies have shown that porous materials often have 
fractal internal surfaces (Ridgefield, 1987). A brief review is given 
as to what fractal surfaces are, how they are observed experimen­
tally, why they form, and how they affect the AC electrical 
transport properties through the media. Theoretical results are 
compared to real systems such as sedimentary rocks and 
rough/porous electrodes. 

Since the information needed is necessarily in the dimension 
range of simple molecules such as methane or methanol, one may 
proceed by determining the adsorption of such molecules (Avnir, 
1989). 

The experimental data one obtains are based on (Adamson, 
1982; Chattoraj and Birdi, 1984): 

• nads = number of molecules adsorbed 
• nm = number of molecules adsorbed at monolayer coverage 
• P = pressure of gas 

These data are analyzed by using the Langmuir adsorption 
equation: 

(5.7) 

where b is a constant. The surface area (m2/g) of a solid material, 
l:, can be written as: 

(5.8) 

where NA is the Avogadro number (6.023 x 1<f3 molecules/mole) 
and 0'0 is the area occupied by the adsorbent. 

If we suppose that the specific surface of the sample depends 
on the size, 6, (form and shape) of the molecules adsorbed (Avnir 
et ai., 1983, 1984; Avnir and Pfeifer, 1983; Pfeifer and Avnir, 1984; 
Pfeifer, 1985; Christensen and Tops0e, 1989), then: 

(5.9) 
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The amount adsorbed for each molecule with Di is: 
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(5.10) 

(5.11) 

As an example, the data regarding the adsorption of small alcohol 
molecules [assumed to be spherical (this needs further confirma­
tion)] on silica are given in Figure 5.5. This plot shows the variation 
of millimoles of alcohols adsorbed at monolayer coverage versus 
the molecular cross section. The data fit the equation (Avnir et aI., 
1984; Farin and Avnir, 1987): 

lognm = constant - 1.510g(area/molecule of alcohol) (5.12) 

the slope gives D = 3. It is remarkable that the surface of silica, 
which is known to be very rough on the molecular scale, still fits 
the fractal equation. The size range of molecules employed varied 
from 18 to 35 A2. Further investigations need be carried out on the 
effect of temperature. 

LOG [MMOL] 
1.00 ~--------------, 

0.75 

2 

0.50 3 

0.25 

1.0 1.4 1.8 

LOG AREA 
Figure 5.5. Adsorbed millimoles (millimoles adsorbed at monolayer coverage) 
versus cross section of molecules (adsorbents). 1, N2; 2, CH30H; 3, CH3CH20H; 
4, CH3CHOHCH3; 5, CH3CH3CH3COH; 6, CH3CH3CH3CH2COH; 7, 
CH3CH2CH3CH2CH3CH2COH. (Redrawn with modifications from Farin and 
Avnir, 1987.) 
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Table 5.4. Surface Area of Silicic Acid Solid Measured by 
Adsorption of Different Size Molecules" 

Probe molecule 

Methanol 
Ethanol 
I-Propanol 
2-Propanol 
I-Butanol 
Nitrogen (BET) 

·Source: Avnir et ai., (1983). 

Cross section 
(A2) 

19.9 
25.5 
30.2 
30.8 
34.4 
16.2 

Surface area 
(C) 

(m2jg) 

540 
474 
438 
450 
409 
590 

Another example is the fractal dimension of silicic acid 
powder. The amount of different molecules adsorbed from benzene 
solutions was measured (Table 5.4 and Figure 5.6). 

The surface area estimated by this procedure thus is found to 
increase with a decrease in size of the adsorbed molecule (with the 
exception of 2-propanol). This is acceptable, since the surface 
roughness gives rise to this phenomenon. In order to estimate the 

600~ 
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----------- "--. 
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Cross section [A2/moleculel 

Figure 5.6. Fractal surface analysis of silicic acid powder from adsorption studies. 
(Redrawn with modifications from Avnir et aI., 1983.) 
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fractal dimension, the data in Table 5.4 were plotted as log A 
(surface area) versus log ~ (Figure 5.6) (Avnir et al. 1983). The 
slope of these data was found to be -0.472[=2(2 - D)/2] (cor­
relation coefficient 0.994), which gives D = 2.94. This value is very 
close to 3, where maximum coverage would take place, and 
indicates extreme wiggliness of this surface. Comparing the value 
of D = 2.73 for the Sierpinski gasket, we can conclude that these 
are similar fractal surfaces. It is also safe to conclude that in 
general, a high value of D indicates a very rough surface, which in 
turn means that the value of D would be strongly dependent on the 
size of the probe, as expected. 

5.4. Estimation of Pore and Surface Analyses of Solids: 
Fractal Surface 

In solids, pores that are much smaller than 1 nm in diameter 
are classified as micropores. These are responsible for the en­
hanced amount of adsorption observed on porous solid surfaces, 
e.g., activated charcoal. Further, in some cases they also lead to 
changes in the physicochemical properties of the adsorbed mole­
cules. Theoretical and experimental studies of these microporous 
solids of high surface area are required in order to characterize 
their adsorption and surface properties. For example, nitrogen 
oxide is reported to be adsorbed as dimer on activated carbon fiber 
(ACF) (at 30°C; O.8-nm-diameter micropores) (Kaneko et al., 
1987). In another case, the dielectric relaxation of water adsorbed 
in micropores (1.0-nm diameter) on porous jarosite was 500 times 
larger than that of ice (at 25°C). 

As already mentioned, the micropore structures are not easily 
measured (Gregg and Sing, 1982). This is mainly ascribed to the 
fact that the Kelvin equation (which relates the curvature to liquid 
vapor pressure) is not valid in this region of pore diameter. 

In recent studies (Ozeki, 1989), a new method was described 
that allows one to estimate the micropore structure. In this 
method, the pore structure of ACF was estimated from the 
adsorption of dye molecules with varying sizes and shapes. In these 
experiments, ACF was used after drying at 110°C for 2 h. The 
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Table 5.5. Dift'erent Molecules Used for Adsorption on ACF' 

Molecular Amount Specific 
area adsorbed area 

Adsorbate Structureb (nm2) (mmole/g) (m2/g) 

011 S03PNNFOH 1.05 1.33 841 
AR88 S03FNNPOH 1.2 1.06 766 
MB Me2NPNSPNMe2 1.0 1.38 831 
CV [Me2NP]3C 1.4 0.398 335 
PCB 1.95 0.234 275 
AR27 S03FNNFS03S030H 1.40 0.223 188 
NG Fe02NFS03 3.2 0.074 143 
N2 0.162 14.5 1410 
CJi6 0.4 4.79 1155 

·Source: Ozeki (1989). 
b P, phenyl; F, naphthyl; Me, methyl. 

power was equilibrated in dye solutions of various concentrations 
at 30°C. The amount of adsorbed dye was determined from the 
difference between the initial and the final concentrations (con­
centrations of dye were measured by spectroscopic method). The 
dyes used (Table 5.5) were adsorbed from solutions with con­
centrations lower than 5 g/liter (=ca. 5 mmole/liter). In this 
concentration range, one can assume that all dye is adsorbed. The 
adsorption isotherms are given in Figure 5.7. 

The amount adsorbed at saturation from the Langmuir plot is 
given in Table 5.5. The magnitude of specific area as estimated 
from these dye adsorption data, assuming flat cross-sectional area 
(Sdye), is also given in Table 5.5. The data are compared with the 
N2 (SN2) and benzene adsorption data (Sbenzene). 

In the case of charged dyes, and dyes of large size, we find 
weaker adsorption (e.g., AR27, PCB, NG, and CV). 

In the case of 011, preadsorption experiments were investi­
gated. The amount of N2 adsorbed (as measured by weight) 
decreased with the pre adsorbed 011. The specific area, ~o, at an 
OIl coverage e was calculated from a BET plot of the N2 
adsorption isotherm. ~o corresponds to the N2 surface area of 
ACF covered with 011 molecules at 0 coverage. 
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Figure 5.7. Adsorption iso­
therms of various dyes on 
ACF (at 30°C). MB, 
methylene blue; 011, Or­
ange II; AR88 , Acid Red 
88; CV, crystal violet; PCB, 
Phthalocyanine Blue; AR27, 
Acid Red 27; NG, Naphthol 
Green. (Redrawn with modi­
fications from Ozeki, 1989.) 
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The magnitude of SNO decreased only slightly below e = 0.36 
(165 mg OIl/g) and then decreased steeply to zero at coverage of 
8 = 1 (460mg/g). The sum of SNO and SDO, on the other hand, 
first increased with dye adsorption and then decreased to SDO at 
8 = 1, passing through a maximum at e = 0.36. 

The slopes of the SNO versus e curve gave apparent occupa­
tion areas of a dye on ACF surface that are 0.94 nm2 below 
e = 0.23 (105 mg/g) , and 0.4 nm2 in the range e = 0.23-0.36, and 
2.04 nm2 at larger e values (i.e., >0.36). 

These data suggest that: 

1. all molecules adsorb on ACF instead of N2 molecules 
when the coverage e is low. 

2. N2 adsorption occurs on adsorbed dye molecules with 
increasing e. This is expected, as the solubility of gas 
molecules in dye would be larger than on ACF. 

3. When the degree of coverage e = 0.36-0.75, each dye 
molecule adsorbed excludes twice its molecular area. 

4. The changes in SNO and SNO + SDO with preadsorbed dye 
are related to the pore size distribution. 
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Furthermore, from these data it was found that the pore width 
decreased gradually from 0.9 nm for bare ACF to 0.85 nm at 
e = 0.93. The pore size distribution was also analyzed. The width 
of the peak porosity was found to change from 1.08 mm for bare 
ACF to 0.95 nm for preabsorbed ACF. 

As is well known, such adsorption phenomena are complex, 
due to solvation of the adsorbent and/or adsorbate, competitive 
adsorption with free ions or molecules, interactions between 
adsorbates, etc. 

These data were analyzed by using the relation described 
earlier between the monolayer coverage, nm , and the size of the 
adsorbed molecule, a: 

(5.13) 

where we have the surface roughness or the surface fractal 
dimension, D. The log nm versus log a plot of the data in Table 5.6 
gave a value of D = 2.4. The fractal dimension (D = 2.6-2.8) of 
three kinds of microporous carbon fibers has been measured from 
adsorption experiments (Kaneko et ai., 1991). 

A recent study has reviewed the fractal geometry of fused 
pigment surfaces (Kaye, 1991) and fractal analyses of catalysts have 
been reported (Liu and Scott, 1991). The fractal dimensions of 
geometrically irregularly shaped solid surfaces have also been 
investigated by the adsorption method (Sokolowska et ai., 1989). 
An analytical and numerical study of the role of local surface 

Table 5.6. Fractal Analysis of Rates of Dissolution of Solids in Liquids-

Material 

Dolomite CaC03-MgC03 
Coral-CaC03 

Quartz 
Silica 

·Source: Farin and Avnir (1987). 

Particle 
size 

range 
(I'm) 

163-2606 
51-513 
45-1000 
0.4-12.6 

2.15/2.9 
1.98/2.73 
2.14/2.0 
1.95/2.03 
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defects and macroscopic inhomogeneities that might influence the 
diffusion-controlled reactive processes on a solid surface (Garza­
Lopez et al., 1990) showed that for both Euclidean and fractal 
surfaces (i.e., the triangular lattice and the Sierpinski gasket, 
respectively), the higher the local valency of the site at which the 
reaction occurred, the faster the rate. The surfaces that were 
considered were mainly of two types. First, the difference in 
reaction efficiency was ascribed to a regular versus a defect center. 
A very special example considered was the cell membrane. In the 
membrane, spatial inhomogeneities could be present due to the 
transmembrane proteins which break the translational symmetry 
and interfere significantly with the lateral motion of the diffusing 
molecule. Second, in the case of zeolites, mordenite has a channel 
structure that allows for two possible sieving mechanisms (suitable 
in size for small molecules or rare gases). 

5.5. Reactive Fractal Solid Surfaces 

In a recent study (Farin and Avnir, 1987), fractal analysis at 
the molecular scale of reactive solid surfaces was undertaken. It is 
obvious that the parameters expected to dictate the chemical 
reactivity of such fractal solid surfaces will be both numerous and 
quite difficult to separate. However, under these conditions, it is 
reasonable to expect that fractal analyses will be useful, as was also 
demonstrated. Different stages may be of primary interest in such 
systems. In some cases, one may be interested in the overall 
reaction rates. In other cases, the change in particle size distribu­
tion during the reaction may become essential. Lastly, the particle 
shape may change, which will induce some drastic effects. 

It was argued that a priori, DR would be expected to be 
smaller than the surface fractal dimension, D.urface ' This would arise 
from the selective participation of surface sites in reaction, while on 
the other hand, heterogeneous reactions might show the opposite, 
i.e., DR > D.urface ' 

As given above, the fractal surface area, A.unace , is propor­
tional to its radius, R: 

(5.14) 
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Figure 5.8. The rate of dissolution 
versus the particle size of tridymite 
(in 0.1 M HF). (Redrawn with mod­
ifications from Farin and Avnir, 
1987.) 

In the case where the absorbing species reacts with the solid 
surface, the process would be related to the effective reactive 
surface sites. In this analysis only the diffusion to the surface was 
considered, while the diffusion on the surface was neglected. If we 
now replace the quantity Asurface with the corresponding effective 
area, Aeffective, we can rewrite the above equation: 

Aeffective ex: R~-3 (5.15) 

where DR is the effective surface reactive fractal dimension of 
Aeffective' Since the initial reaction of such a system is proportional 
to Aeffective, the magnitude of DR can be estimated from log (rate) 
versus log R. 

The plot of such a system is given in Figure 5.8 (Table 5.6). 
The data show that DR is not the same as D in most cases. 

In the case of drug delivery, analogous fractal analyses on the 
dissolution rates have provided useful information (Loeppert et al., 
1984; Avnir, 1987). The magnitude of the dissolution rate of 
various drugs was found to give values of DR of ca. 2. This 
indicated that the dissolution takes place at the outer surface of the 
drug powder or tablets. The fractal analyses will be useful to 
understanding the mechanisms of controlled drug release. 

5.6. Fractal Dimension at Fluid-SoUd Interface 
(Wettability and Contact Angle) 

The process whereby a fluid comes in contact with a solid 
surface is very common in everyday life. At any interface formed 
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between two phases (e.g., liquid-solid, liquid-gas, oil-water), the 
adjacent interfacial multimolecular layers are subjected to an 
unsymmetric force field and consequently the interfacial tension is 
the net result of these forces. When a liquid contacts a solid 
surface, the molecules at the interface are of considerable impor­
tance regarding reactions taking place on the solid surface. As 
already described, the surface of a porous solid can be analyzed by 
fractal methods. Since the interface where a liquid or gas meets the 
solid surface will be dependent on the surface roughness, we also 
expect an interfacial fractal dimension. The fluid-solid interaction 
requires knowledge of the surface area of the porous solid. 

The liquid-so lid-gas (or liquid) interface has been described 
by many investigators (Chattoraj and Birdi, 1984). The proximity 
of different molecules in the two phases gives rise to interfacial 
forces with which the phases interact. This interaction creates a 
specific contact angle, e, at the liquidll-solid-liquid/2 (or gas) 
interface: 

'Ys.11 = 'Ys./2 + 1'112 cos e (5.16) 

where surface tensions (I') of the different interfaces are given for 
solid-liquidl (s, 11), solid-liquid2 (s, 12), and liquidl-liquid2 (112). 
The contact angle, e, is the angle obtained when all of the various 
interfacial forces are at equilibrium. A more extensive analysis of 
this equation can be found elsewhere (Chattoraj and Birdi, 1984). 
This is in fact an equation of state for the system gas-solid-liquid 
or liquidc solid-liquid2 • 

In the case of rough solid surfaces, with fractal characteristics, 
the interfacial force balance as used in the derivation of Eq. (5.16) 
requires some modification. As seen in Figure 5.9, the contact 
angle is dependent on the surface roughness. A thermodynamic 
derivation has been published in which the area of the liquid-solid 
interface is a function of the fluid that contacts the fractal surface 
(Hazlett, 1990). The derivation is based on the reference state 
being a drop of liquid phasel (with radius Ro) that on the fractal 
surface spreads to give a contact angle e (with radius R) (Figure 
5.10). The change in surface free energy, AG., is given as; 

AG - C l-DI2 C l-DI2 + A A 
U • - 'Ys.11 al - 'Ys./2a2 L.l.rl12'Y112 (5.17) 
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AIR [GAS I 

SMOOTH SOLID SURFACE 

Figure 5.9. Contact angle at gas-liquid (L)­
solid interface: smooth (a) or fractal (b) solid 

FRACTAl SOLID SURFACE surfaces. 

where a l and a2 are the occupational area of molecular species 1 
and 2, D is the fractal dimension, and M12 is the change in 
fluid-fluid interfacial area. Based on these assumptions, the 
magnitude of cos 8 was obtained as; 

where f = a2/av r = Ys,12/Ys,/lJ and eEuciid = Euclidean contact 
angle. 

Ro 
7 ~ 

0 / 
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Figure 5.10. Change in surface free energy at the interface between a drop of 
liquid and a rough surface: (a) e < 900 (wetting); (b) e > W (nonwetting). 
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The application of both fractal and Euclidean concepts ob­
viously requires some crossover point where an object ceases to be 
fractal. A correlation to the size of water molecules (10.8 A2) and 
alkane molecules was used in the analyses of wetting and oil 
recovery. Further, the degree of wetting or larger molecules (e.g., 
asphaltenes, 380-1100 A 2) was analyzed. 

With the reported differences in fractal and topological dimen­
sions of reservoir rocks, these analyses suggest that such porous 
media will be either perfectly wetting (8 = 0) or perfectly nonwet­
ting (8 = 180°) for most tluid pairs. For example, a fractal 
dimension of 2.14 is sufficient to shift the contact angle for water on 
a surface of polytetratluoroethylene from 108° to 180°, assuming 
that fractal behavior is exhibited from atomic dimensions to the 
micrometer range. These results further showed that a new set of 
wettability indices for reservoir materials is needed, consisting of 
the fraction of each wetting phase and some measure of the spatial 
distribution of those types. This is analogous to the wetting phase 
saturation and scaling behavior for fractal pore models as a 
function of Laplace pressure (Alder et al., 1985). 

As far as oil reservoirs are concerned, it is worth considering 
the molecular yardsticks (natural) that are present in these systems: 

Water 10.8 A 2 

CH4 19.4A2 

N2 16.2 A2 

Asphaltenes 380-1100 N 

The smaller tluids will cover the surface of the reservoir solid better 
than the larger molecules, such as the higher hydrocarbons or 
asphaltenes. Analogous phenomena have been observed in other 
porous solid systems, such as cement or water reservoirs. 

In oil recovery, aggregation and deposition poses a very 
difficult problem in production. Especially asphaltene is known to 
cause such problems due to its precipitation under certain reservoir 
conditions. The precipitation is related to the composition of the 
oil, pressure, and temperature. Fractal aggregation and deposition 
of heavy organics in petroleum crudes has also been recently 
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investigated (Park and Mansoori, 1988). The model was based on 
the concepts of continuous thermodynamics, theory of liquid-solid 
phase transition, fractal theory of growth, and steric colloidal 
collapse and deposition. The latter are analogous to the colloidal 
aggregation processes already discussed above. The phase behavior 
of asphaltene was discussed based on the kinetics of cluster 
formation. It is thus reasonable to believe that the cluster size 
distribution will determine such aggregation processes. 

5.7. Gel (Fractal) Chromatography 

In certain kinds of chromatographic separation methods, one 
uses cross-linked gels as the medium upon which the molecular 
separation takes place (Dubin, 1988). This section describes the 
potential of such chromatographic methods using gels. This in­
volves the fractal description of the gel phases and the interfacial 
phenomena. 

The liquid space can be accessible to a varying degree to the 
solvent molecules. This would limit the movement of the solvent 
molecules throughout the gel matrix. The interface between these 
regions would be expected to be fractal. The basic model is 
considered to be the cumulative pore volume, Vp , of the gel matrix, 
which is dependent on the number N of volume elements of size 
f E3, where f is the form factor and E is the measuring yardstick. 
Size exclusion chromatography and gel permeation are based on 
(Kuga, 1981; Sernetz et ai., 1989): 

(5.19) 

The area of the matrix-liquid phase, A", is given as: 

(5.20) 

i.e., change in volume with E. 

In a different approach, one can use the E2 elements, which 
gives: 

(5.21) 
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Table 5.7. Fractal Dimension Dr of Gel 
Pores, Derived from Volume Distributions 

by Gel Permeation Chromatography" 

Gel 

Eupergit 
Ultrogel 
Sephadex Gl00 
Polyacrylamide 

aSource: Semetz et al. (1989). 

Dr 

2.2 
1.57 
1.77 
1.48 

ISS 

In principle, the separation of molecules on a gel matrix can be 
described by two different kinds of mechanisms: (1) differential 
interaction of the solutes with the surface of the stationary gel 
matrix (arising from adsorption and affinity), and (2) size exclusion 
chromatography, i.e., based on the different volumes accessible in 
the liquid and stationary gel phase for solutes of different molecular 
size. These studies clearly showed that the pore size distribution of 
gels is fractal. 

In the case of size exclusion chromatography (Birdi, 1988), 
one assumes that there is no interaction (or negligible adsorption 
energy) between the solute and the gel phase. The magnitudes of 
the fractal dimension of four gels are given in Table 5.7. 

5.8. Application of Fractal Chromatography to Biology 

It has been proposed that these fractal investigations can be 
useful in explaining other biological phenomena. The reason is that 
the correlation between the self-similarity and the upper and lower 
limits and a log-logistic distribution, suggests a possible fractal 
phenomena. Examples that have been given are: 

• General adsorption phenomena 
• Cooperative enzyme kinetics 
• Oxygen-binding isotherm of hemoglobin (Hill exponent) 
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• Heterogeneity of antibody affinities 
• Antibody-antigen interaction 
• Enzyme cascades in blood clotting 
• Dose-response curve for the general drug-receptor interac­

tion in pharmacology. 
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Fractals and Geochemistry 

The fascinating world of patterns and shapes found in geochemistry 
is indeed worth analysis by the fractal model, since not too many of 
them can be analyzed by classical Euclidean geometry. Further­
more, since Brownian motion is known to play an important role in 
geoscience (especially in evolutionary processes), it is reasonable to 
expect that fractal geometry is useful analytical tool. The time 
scales involved are of such large dimensions (>1 million years) that 
newer analytical procedures are needed. The fractal nature of 
geochemistry is only beginning to be analyzed in more detail. For 
instance, the following phenomena have recently been examined: 

• Landforms made by weathering 
• Caves and coral reefs 
• Size of islands 
• Ore bodies and mineral distribution 
• Pollution patterns (weather patterns) 
• Earthquakes 

The future application of fractal geometry to other geoscience 
phenomena will likely play a very important role in some of these 
systems. The reason for using fractal analysis in these systems is 
that it attempts to give a mathematical picture of seemingly 
complicated and chaotic structures and physicochemical phenom­
ena. Since in all of these geochemical systems there is a varying 
degree of surface roughness, the fractal approach is quite logical. 

157 



158 Chapter (I 

The magnitude of D is expected to have remained constant over 
large time intervals (i.e., geological time scales). This may be 
analogous to the counting of rings in a tree. If there has been 
varying yearly weather, then both the distance between rings and 
the shapes are affected. This demonstrates geometrical analysis is 
useful for past ecological processes. 

The dependence of pattern and form as mentioned above 
needs to be considered here in the case of thermatic maps of soil 
and geology. If the pattern of soil or geology of an area is mapped 
at a small scale, say 1: 1,000,000, the surveyor will divide the 
landscape into mapping units that express the major sources of 
variation at that scale. However, if one part of the same area is 
mapped at a larger scale, say 1: 1000, new details will appear that 
were taken to be uniform previously. This process can be carried 
further until one has reached a magnification such that different 
mineral accumulations are identified in thin sections of rocks or 
soil. 

If the real data can be described by the Brownian fractal 
model, then there must be some validity in this procedure. The 
knowledge of the fractal dimension of a given geochemical pheno­
menon could be useful either for a scientific description or when 
estimating spatial patterns or amounts of resources. Clearly, the 
larger the fractal dimension, the less easy it will be to make smooth 
interpolations from point data using well-established conventional 
mathematical methods. 

Some typical data as listed in Table 6.1 give convincing 
support to such analysis on the fractal dimension of a range of 
geochemical and geographical distribution. In another study 
(Gajem et ai., 1981), data of minerals in soil gave linear plots for a 
total area of 2000 m2 (using dimensions of 0.2, 2, 20, and 200 m). 
The distribution of gold ore in South African mines has been 
analyzed by these procedures (Journel and Huijbregts, 1978). 

Caves have been regarded as a kind of superpore structure 
formed by the chemical action of carbon dioxide-rich water on 
limestone rocks. Further, coral reef formation is in some ways the 
antithesis of caves. Coral rocks, where chemical deposition takes 
place, are the precursor of the limestone in which caves form. The 
surface area of coral reefs is very large. The magnitude of the 
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Table 6.1. Estimated Fractal Dimension, D, for 
Geochemical and Topographical Data" 

Location 

Wales 
Australia 

France 
England 
Borneo 

Property 

Sodium/soil 
Soil 
Phosphorus 
pH 
Potassium 
Iron/rocks 
pH 
Caves 

·Source: Burrough (1989). 

D 

1.8 

2.0 
1.5 
1.6 
1.4-1.9 
1.7 

1.074-1.546 
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fractal dimension of coral reefs was reported to be 1.13-1.16 
(Laverty, 1987). 

Further, it seems that the variation of many properties of soil 
and geology occurs over many different scales. The reason for this 
lies in the chemical, biological, and geological processes that shape 
the earth's surface (or for that matter other planets). The move­
ment of clay in a soil profile may occur over a distance of a few 
hundredths of a millimeter to a few centimeters. The biological 
effects of plants and small insects such as ants may affect areas from 
a few centimeters to a few meters. The river erosion and 
sedimentation processes may occur over distances from a few 
meters to several tens of kilometers and the mountain-building 
processes of plate tectonics act at continental scales (over thous­
ands of kilometers). It is obvious that the sum of all of these effects 
is the total observed. 

6.1. Zipf's Law 

Certain phenomena that show similarities can be described by 
the same fractal analytical procedure. For example, the frequency 
of words that appear in a text can be analyzed by Zipfs law 
(Takayasu, 1990). This power law gives a relation between the 
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probability Px for the occurrence of X at N times: 

10gX ()( log (N - 1)D (6.1) 

where Px ()( 1/ X. This is a fractal distribution with D = 1. This law 
has been applied in the analysis of mineral reserves, as follows. 

6.1.1. Estimation of Mineral Reserves and Pollutant Levels 

In general, the presence of minerals varies in different parts of 
the world. As more and more important minerals become scarce, it 
becomes very essential to have a useful prediction model. Analo­
gous to the oil reservoirs, where one does find some geographical 
correlation between oil and other materials such as coal reserves, 
one would expect some correlation between mineral reserves and 
other materials or minerals in the surrounding earth. 

The assessment of potential reserves of lead and zinc in India 
was made by using Zipf's law. This procedure could be used to 
extrapolate from the knowledge of existing deposits to the possible 
complete but currently unknown set of deposits around India. 

The data in Figure 6.1 are irregular and appeared to fit no 
known distribution. However, by assuming a hyperbolic distribu-
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Figure 6.1. Lead and zinc abundance data analyzed by different methods. (A) 
Original data (+); (B) log-normal distribution; (C) using Zipfs law. (Redrawn 
with modifications from Paliwal et ai., 1986.) 
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tion, and assuming that there still is 18.7 million tons (twice the 
current largest deposit), then a reasonably good fit was found. It 
was concluded that only 25% of the total resources had been 
discovered. It was therefore suggested that further explorations be 
made (Paliwal et al., 1986). 

It may be argued that fractal analyses cannot be expected to 
completely map the actual picture of the deposits. On the other 
hand, one still lacks the relationship between any given geological 
or soil-forming process and the resulting actual patterns of distribu­
tion and their possible fractal dimension. 

6.1.2. Soil and Atmospheric Pollution 

We are all aware of the need to control and manipulate 
environmental pollution. Analogous to the mineral resources, one 
also needs to estimate the degree of pollution in soil, in order to 
assess and control the amount and distribution of toxic or dan­
gerous materials in the ground. The main idea is to determine 
whether a given piece of land is suitable or not for a particular kind 
of usage (e.g., housing, CUltivation). It is also clear that the 
movement of pollutants in the earth will not be easily described by 
any simple treatment. The same is true in the case of pollution in 
the sea or rivers or atmosphere. The estimation of various 
pollutants, such as heavy metals, chlorinated hydrocarbons, and a 
diversity of other organic and inorganic chemicals, is generally 
carried out from rather small samples. The ratio of the size of the 
sample to the size of the polluted area may be some 1: 1,000,000. 
The analyses are much more useful in predicting the extent of 
pollution if the data fit some well-known fractal model. The data, 
however, may also tum out to be not as simple as one would expect 
from the fractal models. The plots in Figure 6.1 show that such 
analyses give rather useful information. 

Furthermore, soil pollution is generally a result of human 
activity that operates at a given reactivity scale and intensity. True 
fractal behavior will arise only if the process is self-similar over 
very many scales, and the scaling is unlikely when the pollution 
process is dominated by activities at a single, human scale. 
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Let us consider the distribution of minerals in a piece of rock. 
Let M be the mass of a certain kind of mineral in the rock. If we 
divide the rock specimen into two pieces, one piece contains fXM 
mineral and the other piece contains (1 - fX)M, where fX is the 
fraction. If we again divide the two pieces into two more, then the 
four pieces of rock of equal volume contain (Takayasu, 1990): 

filM, fX(l - fX)M, fX(l - fX)M, 

The ratio on each division is fX: 1 - fX. 
In the case that fX = 1/2, we find that the mineral is 

homogeneously distributed, and no matter how many times we 
divide the original specimen, the mineral is evenly distributed in 
each subdivided piece. However, it can be shown experimentally 
that if fX > 1/2, then the distribution becomes constant and 
independent of the step of division (Figure 6.2). The limit of this 
distribution is called de Wijs's fractal (Takayasu, 1990): 

D = -[fXlog2fX + (1- fX)log2(1- fX)] (6.3) 

If fX = 1/2, then D = 1, whereas if fX > 1/2, then D < 1. For 
fX = 1 or 0, D = o. This equation therefore shows that the 
magnitude of D can indeed become nonuniform. 

X 

1 2 
(i-a) 

i-a 
(l-a)a 

1 ... 
a(l-a) 

i-a 
0 

a 2 

Figure 6.2. de Wijs's fractal (see text for details). 
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Further, de Wijs's fractal is different from that of Cantor's set 
in that any integral over a finite interval takes a positive value of 
D > O. This means that the magnitude of dimension is always 1. 

Furthermore, as D decreases, the distribution of the mineral 
becomes strongly concentrated in a limited region, such that when 
D = 0, the mineral is localized at one point. In other words, while 
most of the mineral will be found in just one rock sample, traces 
could be present in all of the others. For example, while gold is 
found singly (almost 100% pure), it is still present in very minor 
concentrations almost everywhere (e.g., sea water). It seems that 
the variation of many properties of soil and chemicals occurs over 
many different scales. This may be ascribed to different scales in 
the chemical, biological, geomorphological, and geological pro­
cesses that shape the earth's surface. It is hoped that evolutionary 
processes may be more useful for such model analyses. This will 
provide input to pollution control and regulation worldwide. 

A new development in these analyses is related to the very 
small fluctuations (noise) in pollution control. This noise can be 
analyzed by fractal theory (see Chapter 1), and will be expected to 
add much useful information in future model analyses. In a recent 
study, fractal concepts were applied in the analysis of atmospheric 
inhomogeneities (in the case of smoke plume diffusion) (Ludwig, 
1989). Another example is the nuclear winter theory, where 
sunlight absorbs on smoke as it lifts into the atmosphere, thereby 
cooling the surface of our planet. This description has been given 
as an aftermath of a world war where the optical properties of 
smoke are assumed to produce an inverse greenhouse effect. In 
early studies, important factors were neglected, e.g., coagulation of 
individual smoke particles (which are smaller than the wavelength 
of light) into fractal clusters. The fractal dimension, D, was found 
to be of magnitude 1.78 (Berry and Percival, 1986). The size of 
these fractal clusters may be larger than the wavelength of light. 
This model is also of much interest for theoretical optics studies. It 
was concluded that fractality would have an adverse effect on the 
nuclear winter. 

Earthquakes have recently been explained based on a self­
organized criticality theory (Bak and Chen, 1991). Generally, one 
explains earthquakes as arising due to the movement of the upper 
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crust of the earth, e.g., the instability in the San Andreas fault in 
California. However, these immense movements of materials can 
be investigated by studying simple models. A model based on the 
movement of sand corns has been developed. Similarly, avalanches 
have been explained as a chain reaction. In the initial stages of an 
avalanche, just a grain of earth moves down hill. If this grain comes 
to rest somewhere by itself, then nothing more happens. On the 
other hand, if this grain meets another unstable grain, then there 
are two grains moving downhill, and if these meet other similarly 
unstable grains a minor avalanche is growing. The size of an 
avalanche is thus related to the number of particles that moved 
altogether. The critical value can be estimated by studying simple 
models using sand grains. 



7 

Galaxy Clusters and Fractals 

The world is full of clusters, from clusters of quarks to metal and 
molecular clusters on surfaces and in molecular beams, from ion 
clusters in the atmosphere to stellar clusters in the galaxy. The big 
bang theory, which is postulated to describe creation, holds that 
the matter in the universe has been distributed by natural forces. It 
is fascinating to study the degree of distribution of stars, galaxies, 
and planets. The number of atoms and molecules suggested to 
compose our universe is estimated as follows (Dauvillier, 1963; 
Shklovskii and Sagan, 1966). According to Einstein's theory of the 
structure of the universe, the total mass of the universe is some 
2 X 1055 grams. This has been transformed into ca. 500 billion 
galaxies, each with a mass of 20 billion solar systems (= 2 x 1033 g). 
In the universe, out of each 1000 atoms, there are 875 hydrogen, 
124 helium, and 1 oxygen, carbon, or neon; other atoms are 
negligible in comparison. From these data, the total number of 
atoms in the universe is 88 x 1077 [= (2 x 1055)(6 x 1023)/ 

(0.875 + 0.124 x 4)]. 
At first sight, the stars in the sky seem to be scattered at 

random. However, stars have a strong tendency to cluster to form 
galaxies (Mandelbrot, 1982). Each cluster may consist of hundreds 
of galaxies, forming a so-called supergalaxy. The diameter can be 
as large as 20 million light-years (1 light-year is the distance 
traveled by light in 1 year, which equals 9.45 x 1012 km). 

From cosmological considerations, one might expect (as a first 
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approximation) that the distribution of matter follows precisely the 
same laws for the different systems, regardless of their origin and 
axes. This means that the distribution of masses would be 
translationally invariant. 

Some 3500 years ago, the Sumerians noticed that stars were 
arranged such that one could see a lion, a bull, and a scorpion. We 
also find that the night sky appears to be filled with constellations 
shaped by straight lines, rectangles, and pentagons. It is therefore 
quite tempting to imagine that such geometric patterns arise from 
unknown forces in the cosmos. It was conjectured by Ramsey in 
1928 (Graham et al., 1990) that if given enough stars, one could 
always find a group that very nearly forms a particular pattern. 
Infact, according to Ramsey's theory, complete disorder in nature 
is an impossibility. 

The correlation function for galaxy distribution (mass versus 
radius power law) was found to follow the power law, with 
D = 1.2 (Mandelbrot, 1982; Szalag and Schramm, 1985). Com­
pared with D = 3, the magnitude of galaxy fractal dimension is 
much too low. There appears to be no explanation for this result at 
the present time. 

Consider the solar system. Orbiting around the sun at equi­
librium with the centrifugal forces are nine planets. The sun is a 
star, and a very ordinary star compared to others in the universe. It 
is 93 million miles away from the Earth on the average, and has a 
diameter of about 863,000 miles. Its volume is 1 million times that 
of the Earth, yet its mass is only about 250,000 times greater. 

The planets orbit the sun in paths that are elliptical and all lie 
more or less in the same plane. The planets are divided into two 
groups (see Table 7.1). The planets are at various distances from 
the sun, and it is interesting to determine the mass (or volume or 
radius) versus distance relationship and the fractal dimension. The 
mass (MR) can be estimated from the volume (from radius) x 
escape velocity, as given in Table 7.1. Figure 7.1 is a plot of log MR 
versus log R. The plot can be fitted to the following power-law 
equation (Birdi, 1992c): 

MR oc RD 

logMR oc logRD = A + DlogR = -29 + 5.21ogR (7.1) 
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Table 7.1. Planets of the Solar System"·b 

Distance from Escape 
the sun Diameter velocity Density 
(miles) (miles) (miles/sec) (g/cm3) 

Mercury 36,000,000 3,008 2.12 5.5 
Venus 67,250,000 7,575 6 5.2 
Earth 93,000,000 7,926 7 5.5 
Mars 141,650,000 4,200 3.12 4.0 

Jupiter 483,000,000 88,698 60 1.3 
Saturn 887,000,000 75,000 0.7 
Uranus 1,783,000,000 30,000 1.3 
Neptune 2,796,000,000 27,700 1.7 
Pluto 4,567,000,000 

·Source: Birdi (l992c). 
bMass (estimated) = volume x escape velocity = (4/3)1rR 3 x escape velocity. 
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Figure 7.1. Plot of mass of planets versus distance from the sun (Birdi, 1992c). 
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where A is a constant and the magnitude of D is found to be 5.2. 
The significance of this value of D needs further analysis, since it 
may be dependent on some evolutionary parameter. If we consider 
the above-mentioned distribution of mass in the universe as a 
whole, MR , the mass inside a sphere of radius R will vary as: 

(7.2) 

where for small R, if we take the origin to be the center of the 
Earth, D = 3. However, as the value of R increases far beyond the 
Earth's radius, D will go to zero and the system becomes-on the 
scale of matter-isolated "points," which is what one calls the 
interstellar scale. At much larger values of R, i.e., in the case of a 
galaxy or cluster of galaxies, D = 1.23 (see above). A projection 
onto a two-dimensional surface such as the "sky," i.e., the surface 
of the celestial sphere as seen from the Earth, will have the same 
dimensionality as that of the projected object as long as its 
dimensionality is less than 2. Hence, all of the stars of the universe 
will give a projection of D = 1.23, and thus of zero area on the 
celestial sphere of the Earth. This provides a geometrical resolution 
of the so-called blazing sky effect, which states that if D = 3 for 
galaxy distribution, any direction taken from the Earth would 
sooner or later encounter a star, with the result that the sky would 
always appear (day and night) uniformly bright. It has been 
maintained that physical arguments based on relativity theory and 
the finite lifetime of galaxies (Wesson, 1987) can also explain away 
the effect even if D = 3. 

This analysis shows that the mass distribution in the solar 
system is indeed fractal, and that all of the planets were most likely 
created under similar force input. In other words, this finding is in 
accord with the big bang theory. This might additionally suggest 
that during the creation of planets, a wave of mass erupted from 
the source. The wave thus seems to have had a fractal nature 
[perhaps a kind of viscous fingering phenomenon (see Chapter 2)]. 

We are thus able to predict, with the help of the fractal Eq. 
(7.1), the magnitude of the mass of a planet at any distance from 
the sun. We can also imagine that the big bang sent masses of 
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material in a fractal distribution. Whether this conclusion is valid 
on more detailed geothermal grounds remains to be analyzed. 

7.1. Dynamical Models of Neptune's Dark Spot 
and Other Phenomena 

Based on the information from the recent encounter of the 
Voyager spacecraft with Neptune, the presence of a large coherent 
structure in its atmosphere was revealed, the so-called Great Dark 
Spot (Polvani et ai., 1990), which undergoes dramatic variations in 
its shape. These large oscillations of the Spot were reproduced by 
using a simple dynamical model of an isolated vortex embedded in 
a background shear flow. The chaotic zones of a dynamical system 
are most easily exhibited by computing the Poincare surface of 
section. The characteristic property of chaotic motion is that 
nearby trajectories diverge exponentially from one another. The 
models imply that there exists a planetary-scale zone of determinis­
tic chaotic convection in the atmosphere of Neptune. It has also 
been suggested that it would be of much importance to apply this 
model to the "brown barge" -type vortices on Jupiter, whose aspect 
ratios have been reported to vary by about 10% over a IS-day 
period. 

Analysis of the dust around Coronae Borealis stars has been 
reported (Hecht, 1991). The nature of the dust in circumstellar 
shell was suggested to be of graphite fractal type. 

The twinkling of stars arises from fluctuations of the refractive 
index of the atmosphere. The refractive index is related to the 
density and humidity of the atmosphere. This turbulence of the 
atmosphere thus produces the phenomenon of twinkling (Takay­
asu, 1990). The change in distance during this process of the star 
(from 2 m to 200 m) is related by a power law to the fractal 
dimension. The value of D has been found to be 2.5. 

7.2. Diameter Distribution of Craters and Asteroids 

Examination of the surface of the moon by even a low-power 
telescope reveals a multitude of craters. These craters have been 
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analyzed very extensively. Their size can be studied by using the 
distribution function. Let PR define the probability that any 
arbitrarily chosen crater has a radius greater than R. The probabil­
ity of finding such a crater is determined by the probability density 
LlR as follows (Takayasu, 1990): 

(7.3) 

It is known that the only mathematical function that can satisfy 
such constraints is the so-called power law: 

(7.4) 

The log PR versus log R plot will give a straight line with slope 
equal to D. As an example, in the case of craters, we can 
determine how the size R affects the results. Let us count the 
number of craters with radius ~R, which means that craters with 
radius <R are invisible. If we increase the value of R by a factor of 
2, then it can be shown that the number of craters observed will 
increase by a factor of 2D. 

This example shows how to apply such procedure for the 
fractal analysis of similar kinds of systems. The term probability 
can cover all kinds of phenomena, e.g., size of particles or stars, 
magnitude of signal. 

The plot of cumulative number of craters versus diameter, 
deraten is given as a log-log relation in Figure 7.2. These data can 
be related to the following equation: 

Ndiameter ex: d;!!er (7.5) 

where D = 2. The term Ndiameter denotes the number of craters that 
have diameters larger than derater. It is very interesting that the 
value 2 for the fractal dimension has been found to be universal, 
i.e., it is also the same in the case of craters on Mars and Venus 
(Mizutani, 1980). 

In a recent study the impact craters on Venus were analyzed 
(Phillips et al., 1991). Their morphology, locations, and size-



Galaxy Clusters and Fractals 

1000 

N 

10 

1 100 
R 

171 

Figure 7.2. Diameter distribu­
tion of craters on the moon. 
(Redrawn with modifications 
from Mizutani, 1980.) 

frequency distributions were studied to provide information about 
the nature, rate, and timing of Venusian resurfacing processes. It is 
obvious that if the craters are preserved with time, then the total 
number increases. From this rate, one can calculate the age of the 
surface. On the other hand, erosion might remove the craters (or 
reduce them in size), and this would be useful information. The 
slope of the log-log plot of Venusian craters was the same as for 
the moon. Impact craters were found not to be uniformly distrib­
uted, and it was concluded that the surface of Venus is active. 

In order to determine the theoretical basis of such natural 
phenomena, one may conduct some model analyses. As mentioned 
elsewhere, the brittle fracture distribution follows a power law. 
Furthermore, one can understand this phenomenon if it is com­
pared to the shattering of a piece of rock by a bullet. The 
distribution of the splinter size has been found to give D of 
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approximately 2. Thus, we can conclude that if asteroids and 
meteorites are indeed broken pieces of a larger body, then it would 
be a natural consequence for their size distribution to follow a 
power law with D = 2. The theoretical analyses of fracture need 
more in-depth investigation at this stage. 



Fractal Analyses of 
~acromnolecules 

8 

Life on our planet is a manifestation of light-element-especially 
carbon--chemistry. As we know from nature around us, the 
organization of natural things requires storage of information. This 
information storage and transmission (through evolution) is of 
chemical nature and stored in the molecules (as a molecular 
computer). The chemistry of living matter is, in addition, charac­
terized by a sophisticated degree of molecular complexity, i.e., a 
very precise information content. In this respect there is no 
difference between the smallest viruses and the most advanced 
animals: nucleic acids and proteins and the most advanced animals: 
nucleic acids and proteins are fundamental to both. Furthermore, 
the capacity for generating, storing, replicating, and utilizing large 
amounts of information implies an underlying molecular com­
plexity that is known only among compounds found in the 
biological world (mainly based on carbon). The information that is 
referred to here (Calvin, 1969) (and is stored as chemical informa­
tion) is of much larger dimension than is available in any 
supercomputer. For example, a protein molecule such as hemoglo­
bin (molecular weight of 68,000) may take millions of years to 
develop, in order to function as a carrier for the transport of 
oxygen in the blood. 

Now let us consider the size of various molecules to be 
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discussed in the present context. In a system like salt, NaCI 
(molecular weight 58.5), dissolved in water (H20, molecular weight 
18), the size ratio is roughly 58: 18 ~ 3: 1; in comparison, the size 
ratio of protein (say hemoglobin) to water in aqueous systems is 
orders of magnitude greater. In the latter case, the relatively large 
solute is termed a macromolecule. Macromolecules also playa very 
significant role in various aspects of everyday life: paints, oils, 
emulsions, plastics, rubbers, and composite materials. The hydro­
dynamics of macromolecular solutions is an old and important 
problem in polymer science (Muthukumar, 1985a,b). The hydro­
dynamic properties and viscosity and the diffusion coefficient are 
intimately related to the molecular dimensions of the polymers and 
their measurement provides a useful method of molecular charac­
terization. For instance, determination of the viscoelastic prop­
erties of polymer solutions provides considerable information about 
the nature and rates of the conformational rearrangements. These 
properties of solutions containing flexible polymer chains, rodlike 
molecules, spheres, and arbitrary fractals have been discussed (see 
Chapter 2). Further, the viscosity change, frictional coefficients, 
relaxation times, hydrodynamic screening, and modifications from 
the two-dimensional confinement were explained in detail. 

The fractal analyses suggested the existence of self-similarity in 
polymers in solution. The dynamic properties of flexible polymers 
have been found to be related to scaling laws. It was recognized 
that the self-similarity of a macromolecule in a dilute solution is 
related not only to its dilute macroscopic properties, but also 
controls the equation of state of concentrated solutions. 

A review of cluster theory and the effective medium theory 
of solutions containing flexible polymer chains, rodlike mole­
cules, spheres, arbitrary fractals, etc. has appeared (Muthukumar, 
1985a,b). The viscosity change, frictional coefficients, relaxation 
times, hydrodynamic screening, and modifications from the two­
dimensional confinement were discussed. 

Apart from linear polymers, the dynamic properties of fractal 
structures are essentially unexplored (Schaefer et ai., 1985). This 
paucity of data is due to the fact that dynamic light scattering, the 
technique of choice for such studies, is expected to display unique 
features only for objects that are fractal over dimensional scales 
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comparable to the wavelength of light (5000 A). Recently, how­
ever, colloidal aggregates were shown both to be fractal over 
lengths up to 1 nm and to display interesting dynamics. The 
dynamics of such aggregates has been reviewed (for polymers and 
colloidal particles). In all cases, these systems are studied in a 
dilute suspension by quasi-elastic light scattering. 

A characteristic of a synthetic macromolecule is that it is 
constructed by repetition of a basic unit called a monomer. Each 
monomer has a specific functional property. Macromolecules are 
thus synthesized by polymerization of the monomer unit. This may 
produce linear or nonlinear chains. In the case of multifunctional 
monomers, the nonlinear network gives rise to gel structures. The 
latter exhibit elasticity, whereas linear macromolecules are viscous 
liquids. 

8.1. Fractal Nature of Polymers 

In the case of linear polymers, interpolymer interactions are 
easily neglected. The random walk model gives the following 
relationship, in the case of an ideal state (Daoud and Martin, 
1989), for a polymer with N monomeric units: 

N = Rf, = Rftt' (8.1) 

where the characteristic length Ro can be radius of gyration or 
end-to-end distance (see Chapter 1). This shows that the fractal 
dimension Do of an ideal chain is 2. In a recent study, the transition 
temperature of microgels formed by divinylbenzene styrene co­
polymers was analyzed by fractal theory (Antonietti and Rose­
nauer, 1991). The fractal analysis was found to be related to the 
viscoelasticity of the polymer gels. 

In real solutions of polymers, two-body interactions are not 
absent. In the so-called good solvents, the major interactions arise 
from the volume that each monomer unit excludes from the others, 
thus preventing any self-intersection of the polymer chain (Le., 
self-avoiding walk). This interaction is also the cause of swelling of 
polymers on the addition of solvent (e.g., a rubber stopper on 
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exposure to benzene or toluene swells to more than twice its 
original volume) (Hildebrand and Scott, 1970). 

Under these conditions, the more general power-law relation­
ship is found: 

(8.2) 

In a recent study the fractal and statistical mechanics of 
networks formed by macromolecules were reported (Kardar, 
1989). 

8.2. Surface Adsorption of Polymers and Biopolymers 

Analogous to the adsorption at any interface of surface-active 
molecules such as soaps and detergents, polymers (such as proteins 
and biopolymers) are known to adsorb at interfaces (air-water, 
water-oil, or liquid-solid) (Chattoraj and Birdi, 1984; Birdi, 1989). 
In the case of air-water interface, this leads to a change in surface 
tension of a solution, depending on the degree of adsorption, i.e., 
it is related to the difference in energy when the molecule is in the 
bulk and at the interface (Birdi, 1989). 

The self-similar scaling property has been used to describe the 
adsorption process (Birshtein, 1983; de Gennes and Pincus, 1983; 
Binder and Kremer, 1985; de Gennes, 1985). The quantity p is 
used to describe surface contact energy per monomer. Let us 
consider a system where p < 1. Since each monomer contributes 
contact energy individually to the total sum of the polymer 
molecule, even small contributions can add up to large energetic 
effects. There are many physicochemical characteristics that are 
related to the molecular weight, e.g., adsorption and viscosity. It is 
also important to realize that p is dependent on the difference 
between the surface tension of the solvent and the polymer. This is 
easily seen from the fact that the surface tension of a liquid under 
ideal packing conditions (i.e., hexagonal) is just one-half the value 
of its heat of vaporization (Birdi, 1989). 

Consider the adsorption of a single chain of the polymer at the 
surface: 

N. = N<fJ (8.3) 
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where Ns denotes the number of monomers at the surface and qJ is 
a crossover exponent (approximately 3/5 for three-dimensional 
systems). In analogy to the scaling law, a connection between 
fractal dimension, D, and qJ was delineated. 

Particles of up to 1000 A (Lubensky and Pincus, 1984) act like 
atoms or molecules and come together to form flexible chains, 
periodic lattices, and entities with fractal geometries. The theoreti­
cal models of the growth and properties of these superpolymers, 
ultraweak solids and aggregates have been discussed briefly. 

Adsorption of Polymers on Fractal S06d Surfaces 
The adsorption mechanism of polymers on solid surfaces 

differs from that of small adsorbing molecules (Chattoraj and Birdi, 
1984; Birdi, 1989). As already mentioned, the problem of evaluat­
ing the cross-sectional area of an adosrbed polymer is sometimes 
difficult, especially in the case of flexible linear polymers. In the 
latter case, one has to consider the following: 

• Segment-segment interactions with the polymer 
• Polymer-solvent interactions 
• Polymer-surface interaction 
• Solvent -surface interaction 

The polymer can therefore assume conformations ranging from 
complete spreading on the surface, through spheroidal conforma­
tions, and up to very elongated prolate conformation in which the 
polymer is attached through only a few segments, vertical to the 
surface. These considerations are analogous to the monolayer 
studies carried out on the surface of water (Birdi, 1989). 

One can proceed by assuming that the radius of gyration, Rg , 

is related to the molecular weight as: 

(8.4) 

where vp is related to the conformation of the polymer. It was 
shown (Avnir, 1989) that the fractal mass distribution, Dp , is: 

(8.5) 

The adsorption data of styrene-methyl methacrylate gave verifica­
tion of this relation (Farin and Avnir, 1987). 
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8.3. Fractals and Protein Structure 

Protein molecules are comprised of some 25 different amino 
acids, each with specific physical properties (Dickerson and Geis, 
1969; Chothia, 1984; Creighton, 1984; Birdi, 1989; King, 1989; 
Richards, 1991). The polypeptide chain or backbone forms a linear 
polymer composed of repeating units. There are few cross-linkings, 
such as disulfide bonds. Proteins vary widely in molecular weight 
(1000 to 10,000 atoms), composed of 20 to 500 amino acid residues. 
The protein structures have been elucidated by the technique of 
X-ray crystallography. In the protein molecule, approximately half 
of the atoms are hydrogen. The rest are carbon (molecular weight 
12), nitrogen (molecular weight 14), oxygen (molecular weight 16), 
and sulfur (molecular weight 32). The specific property exhibited 
by a protein is related to both the number of amino acids and their 
sequence. This is well established from the fact that a difference of 
a single amino acid in the hemoglobin molecule can give rise to the 
sickle-cell disease. 

The sequence of amino acids, referred to as the primary 
structure of the protein, actually determines the native conforma­
tion, the structure that is stable under physiological conditions. 
This conformation is the one yielding the minimum in free energy, 
thus imparting maximum stability (at a given temperature and pH) 
(Tanford, 1961; Dickerson and Geis, 1969; Chattoraj and Birdi, 
1984; Birdi, 1989). 

From X-ray crystallography, the folding of portions of the 
polypeptide chain often shows regularities, referred to as secondary 
structure. These are characterized as lr-helical and p-pleated 
sheets. The lr helix is a compact rodlike structure, whereas the 
p-pleated sheet is an extended structure. Since a protein has a 
finite size with a radius of gyration from 16 to 80 A or so, the 
secondary structural elements are limited in length. Furthermore, 
on the average, ca.25% of the amino acids form helices, 25% 
sheets, 25% turns, and the remaining 25% the regular configura­
tion (called the random coil) (King, 1989; Birdi, 1989). There can 
be deviations from this rule. For example, myoglobin shows 85% 
lr-helical structure while the remainder is random coil. 
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As described elsewhere, the nonpolar amino acids are gen­
erally found in the interior of the molecule, while the polar amino 
acids (Birdi, 1989) are mostly present at the outer part of the 
molecule. Whenever hydrogen bonds are unavailable for the 
long-range cross-linking (as found in the a-helical structure), the 
weaker van der Waals and electrostatic forces are the dominant 
form of interaction between the polypeptide chain. These peculiar 
properties ascribed to the weaker interactions are known to 
determine the anomalous size of the fractal dimension. 

The objective of any fractal analysis is to find a relationship of 
some kind of power law: 

Physical property ex: variablefractal dimension (8.6) 

where the variable and the exponent are related to the fractal 
dimension. This relation is obviously one that can cover a very 
broad range of protein structures. However, this kind of power law 
requires some symmetry in these structures. 

In biology, the binding of antibody to antigen is a very 
complex phenomenon. The binding of monoclonal antibodies to 
surface-immobilized antigen was investigated with regard to fractal 
theory (Werthen et aI., 1990). These studies indicated that such 
binding processes are indeed complex. The initial binding is a 
diffusion-rate-limited process. The reaction is slowed down with 
time. On the other hand, since the reverse reaction is slow, the 
total reaction behaves as an irreversible adsorption process. The 
adsorption was followed by using ellipsometry. The rate of 
adsorption was found to follow a power law (t I - D ), where t is time. 
The magnitude of D was found to be 1.52-1.70. 

The aggregation equilibrium of immunoglobulin proteins was 
investigated by using quasi-elastic light scattering (Feder, 1988). 
These studies showed that the effective hydrodynamic radius of the 
protein cluster, R, which grew with time (t) was: 

(8.7) 

where Ro is the radius of the monomer and t' is a kinetic 
temperature-dependent constant (i.e., kinetic energy). The mag­
nitude of D was found to be 2.56. 
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Nontrivial scaling behavior of various molecular properties has 
long been known to arise from empirical scaling laws according to 
power functions, as described above. Thus, in the case of chromat­
ographic separation of proteins, the data yield the following 
relationship between molecular weight (MW) and molecular radius 
(RM): 

(8.8) 

where D = 2.7. In the ideal case, one would have expected D = 3 
(Basedow et ai., 1980). The data are shown in Figure 8.1, where a 
linear plot is found [Eq. (8.8)]. 

Protein Surfa(!e Area and Fractal Dimension 

The surface area of a protein molecule is known to determine 
many of its physical properties, e.g., association, recognition, 
binding, and diffusion of a ligand. Protein surfaces have been 
analyzed by using molecular graphic methods. In earlier studies the 
protein surface area was estimated by rolling a molecule (such as 
water with a radius of 1.4 A) over the protein. The surface 
corrugation can be analyzed by using fractal theory. In various 
surface analyses, there has been found to be two kinds of fractal 
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Figure 8.1. Plot of molecular 
weight (MW) of various pro­
teins versus radius (RR). 
(Redrawn with modifications 
from Felgenhauer, 1974.) 
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dimensions, Ds. In some cases, only one Ds has been assigned, 
whereas in other systems various D. values were used for the 
different parts of the surface. It is obvious that in order for the 
scaling law to be valid, the value of Ds must hold for a reasonable 
length scale. 

The surface area of a protein molecule can be estimated by 
using different procedures. The magnitude of the surface can be 
estimated by using a probe, which can be a yardstick for a 
two-dimensional cross section or a small sphere for a three­
dimensional representation of the macromolecule. The surface area 
can be estimated as the area of the probe (molecule) times the 
number of probes required to cover the surface completely. 

In one procedure, Ds was calculated by examining the two­
dimensional cross sections of the protein. The length of the contour 
that closes the cross-section using different step lengths of E was 
employed. The number of steps NE required to close the cross 
section is a function of the step length, E. From the following 
relation (Lewis and Rees, 1985; Pfeifer et al., 1985; Elber, 1989): 

(8.9) 

the value of Ds was estimated (Table 8.1). If a more detailed 
analysis is preferred, then several values of the fractal dimension 
can be assigned to different parts of the protein surface (this 
introduces the concept of multifractal analysis). The magnitudes of 
Ds are found to vary significantly, with no correlation with the 
amino acid composition (as regards the polar-apolar amino acid 
ratio) (Birdi, 1989). Studies analyzing the protein as a function of 
its fractal data are in progress. 

Another question addressed was the relationship between the 
fractal dimension and the protein flexibility. The effect of thermal 
fluctuation on this topic has not been investigated. These fractal 
analyses give an overall average information as regards the surface 
of the large molecules. This may be useful in the interpretation of 
the available results, and in some mathematical interpretation of 
complex properties. The fractal dimesion may also be correlated to 
the flexibility of the protein molecule. The surface roughness was 
given a fractal dimensionality. It is important to mention that in 
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Table 8.1. Magnitudes of Surface Fractal Dimension, 
D., of Various Protein Molecules" 

Protein 

Immunoglobulin (mouse) 
a-cobratoxin 
Bacterial serine protease 
Lysozyme 
Subtilisin inhibitor BPN complex 
Cytochrome C 
Ribosomal protein 
Retinol binding protein 
Pre-albumin tetramer 
Satellite tobacco necrosis virus 
Trypsin 

·Source: Pfeifer et al. (1985). 

D. 

2.145 
2.133 
2.088 
2.53 
2.110 
2.117 
2.132 
2.18 
2.21 
2.15 
2.62 
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both the physiological and the biochemical sense these analyses are 
of much value (especially in the molecular design of pharmaceutical 
molecules). 

There are two length scales by which we can analyze a polymer 
macromolecule. One scale is associated with the monomer unit (in 
the case of proteins it will be the average size of an amino acid, 
i.e., ca. 4 x 4 A2 = 16 A2) (Birdi, 1989). The other scale is much 
larger and is associated with some length R of the polymer, e.g., its 
radius of gyration, Ro, or its mean end-to-end length (or ap­
proximately M 1I3 , where M is the molecular weight). On the scale 
of R, the different physical properties of a polymer become 
independent of the detailed properties of the individual monomer 
units. Then, in analogy with thermal critical phenomena, there 
should be some scaling relationship. In the polymer theory of Flory 
(Flory, 1971; Tanford, 1961), it is known that as the number of 
monomer units in a polymer, N, increases toward infinitum, the 
variation of R is: 

(8.10) 

where am is a constant on the order of the length of a monomer and 
VF is related to the fractal dimension. Hence, in terms of the fractal 
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geometry, we can define the fractal dimension D as: 

D = l/vp (8.11) 

If excluded volume effects can be neglected, then a linear polymer 
can be modeled by an ordinary N -step random walk with Vp = 
1/2 = 1/ D. Thus, we get: 

(8.12) 

In the same way, in the case of a branched polymer modeled by 
independent random walks on each branch and neglecting the 
excluded volume effects: 

(8.13) 

Detergents are known to bind to proteins, and a great number 
of studies have been reported in the literature (Steinhardt and 
Reynolds, 1969; Birdi and Steinhardt, 1978). The fractal nature of 
protein-detergent binding was recently reported (Teixeira, 1986). 
The change in scattering intensity of protein (BSA) on the addition 
of SDS (C12H2SS04Na) is given in Figure 8.2. The values of D were 
determined from the slopes of the plots. It is seen that both the 

Figure 8.2. Variation of scattering intensity 
(SI) of 1 % BSA (bovine serum albumin) 
versus radius (I/R) and % SDS. The variation 
in D was (A) x = 1%; 2.3, (B) x = 2%; 1.91, 
(C) x = 3%; 1.76. (Redrawn with modifica­
tions from Teixeira, 1986.) 
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radius of the complex and the magnitude of D change (from 2.3 to 
1.76) with the concentration of SDS, as the protein unfolds on 
binding. 

The class of proteins called enzymes exhibit flexible conforma­
tion. Due to the Brownian motion of the surrounding solvent 
molecules, temperature fluctuations and collisions create coupled 
and rather complex vibrations. Whenever a ligand moves from its 
location in the solvent phase toward the protein, the conformation 
of the latter has to change on binding. Thus, this principle requires 
that the system come to equilibrium with a minimum free energy 
state. It can be postulated that these changes in the protein 
molecule have been encoded during the evolution of the macro­
molecule, i.e., that evolutionary considerations are built into the 
molecular information. The location and the extent of the confor­
mational change in the enzyme molecule after ligand binding are 
estimated from the difference in the plot between the enzyme and 
the acyl-enzyme of the distribution of the flexibility parameter of 
the peptide chain. A simple model based on an established 
structural feature, as is commonly known in the case of trypsinlike 
molecules, to extensive coaxial half cylinders of fJ sheets, to which 
previously no mechanistic function could be assigned, is proposed 
to reveal the attractor in the catalytic phenomenon (Havsteen, 
1989). In the case of such enzymes, the reactions may take place 
after a molecule moves a specific area on the surface of the 
enzyme. In this approach, Brownian motion thus plays an impor­
tant role (McCammon et al., 1987). A typical example is the 
diffusion-controlled reaction between superoxide (02) and the 
enzyme superoxide dismutase (SOD). The reaction takes place at 
the poles of this spherical molecule. A more detailed description of 
the binding site of O2 is as follows. The active-site region contains 
the amino acids glutamic acid, lysine, and arginine. The distance 
between the last two amino acids is estimated to be 10 A. The log 
(kinetic rate) versus log (ionic strength) plots were linear when the 
ionic strength was ca.O.1. The magnitude of D was clearly 
dependent on the ionic strength (i.e., increasing with increasing 
ionic strength). Further investigations are needed employing im­
provements in the electrostatic components of this system. The role 
of water in the approach of superoxide has not been analyzed. In 
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another study, it was reported that fractal methodology in enzyme 
kinetics makes analyses much more meaningful (Lopez-Quintela 
and Casado, 1989). It was shown that the fractal approach 
dispenses with calculation of parameters that have no clear 
physicochemical significance. The magnitude of the fractal dimen­
sion was found to vary from D = 1 to D < l. 

It is clear that the fractal analysis of proteins is a useful 
approach considering such complicated molecular structures. It is 
important to remark that segments less than 10 amino acids long 
may represent secondary structure elements. On the other hand, 
larger scale segments represent tertiary structure packing. What 
remains to be discovered is how these power-law relationships are 
of importance in the biological processes that are dependent on 
protein structure and function. In a recent study, a fractal 
dimension of 2.34 was reported for chromosomes and chromosomal 
DNA replication (Takahashi, 1989). A primary structural unit of 
DNA is 2 nm in diameter. This can be easily visualized with a 
scanning tunneling microscope. The DNA molecule is coiled. 
Coiling is not only a device for making the macromolecule more 
compact; it also induces structural changes for absoring and 
releasing torsional stress. An electron micrograph of a chromosome 
spread as a monolayer at an air-liquid interface shows looplike 
fibers at least 10-30 Jlm long that run in parallel. It is thus 
important to realize that fractal analyses of such complex molecules 
as proteins will lead to a better understanding of structure at the 
molecular level. 

Adsorption of proteins on solid surfaces. In general, proteins 
are adsorbed from their aqueous solutions very rapidly when they 
contact solid surfaces (Chattoraj and Birdi, 1984; Birdi, 1989). 
Most of these adsorption processes are irreversible. The adsorption 
mechanism of the protein ferritin on quartz has been investigated 
(Nygren and Stenberg, 1990). The adsorbed ferritin was analyzed 
by using electron microscopy. When the concentration of ferritin 
was 10 Jlg/ml, molecules were found to be adsorbed initially as 
monomer. At later stages, clusters varying from 2 to 9 molecules 
were seen on the quartz surface. After 100 sec, only aggregates 
were present, 10-100 molecules/aggregate. Similar data have been 
reported for the surface of carbon. This surface-induced aggrega-
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tion of protein molecules from aqueous solution was interpreted as 
a nucleation and growth phenomenon. It was concluded that the 
initially monomer-adsorbed species act as nucleation sites. The 
fractal dimension was found to be 1.05. This agrees with the 
surface fractal of silica particles on water, i.e., D = 1.2. Computer 
simulations of such surface adsorption processes have been de­
scribed (Stenberg and Nygren, 1990). The magnitude of the fractal 
dimension of adsorbed protein aggregates was estimated. These 
values were larger than the measured values. In the simulation 
procedure, hexagonal lattices were used as the sites. This may have 
had some effect on the estimated D. 

8.4. Fractal Analyses of Adsorption (of Vapors) 
on Polymers 

As described above in the case of adsorption from liquids to 
solids, the BET adsorption equilibrium is also valid in the case of 
gas or liquid vapor adsorption on solids. In this section we consider 
the fractal analysis of gas vapor adsorption on polymers. When gas 
molecules are found in the presence of a nonvolatile solid powder 
surface, they often accumulate on the surface as a result of 
attractive forces between the solid and the gas molecules. These 
forces may be chemical or physical (e.g., van der Waals) or 
intermediate (e.g., hydrogen bonds) (Berry et a/., 1980). For 
simplicity, we restrict ourselves in this section to a special case. It is 
known that gas adsorption is related to the pressure of the gas or 
the number of gas molecules in vapor (i.e., vapor pressure). When 
the gas pressure is extremely low, the equilibrium amount of 
adsorption is slight and Henry's law is observed, i.e., the amount of 
adsorption is proportional to the gas pressure. This means that 
each adsorbed molecule behaves independently of the others (as in 
a very dilute gas, i.e., low gas pressure). An adsorbed molecule 
may move freely (mobile adsorption) over the surface if the 
temperature is high enough. Under these conditions, the adsorbed 
phase behaves as a two-dimensional ideal gas. On the other hand, 
at low temperatures an adsorbed molecule is localized or confined 
to a "site," and it undergoes vibrational motion about that "site." 
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The "site" is merely a position, on the surface, of mInImUm 
potential energy for an adsorbed molecule. It is also known that a 
localized molecule may occasionally jump from one site to another, 
which is known as surface diffusion. Intuitively, one can conclude 
that as pressure increases, the number of molecules adsorbed will 
increase. However, the adsorption is expected to proceed in such a 
way that at first a monolayer of adsorption is formed on the 
polymer; at higher pressures, multilayer adsorption may be ob­
served in some cases. 

The adsorption of water vapor and of gas on polymers has 
been analyzed by fractal theory (Birdi, to be published). It is 
widely accepted that proteins adsorb water vapor by binding water 
molecules to specific hydrophilic sites at lower relative humidities 
followed by condensation or multilayer adsorption as the humidity 
increases. The nature of these hydrophilic sites has, however, been 
the subject of much research, and there is no general agreement 
concerning the helical groupings in proteins to which water is 
bound. The nature of these binding sites has been studied indirectly 
by the H20 sorption capacity of proteins versus that of chemically 
modified forms of the same proteins and more directly by using 
such techniques as infrared spectroscopy or calorimetry methods 
(Berlin et aI., 1969; Birdi, 1992d). 

The method generally used is based on gravimetric procedure. 
Equilibrium between water vapor and protein (solid) is typically 
achieved after 8-12 hrs. A typical adsorption isotherm is shown in 
Figure 8.3 (Berlin et a/., 1969). 

The adsorption is seen to increase as humidity (P / Po) in­
creases, as expected. The monolayer (i.e., a single layer of 
molecules adsorbed on the surface of the polymer) is complete at 
the break in the isotherm. The transition from the first to the 
second layer is usually accompanied by a sharp decrease in the 
binding energy of the adsorbate, as the first layer is directly held by 
the substrate (polymer) whereas multilayers involve mostly water 
molecules. The inflection point thus occurs approximately at the 
pressure where the substrate is covered with a fully compressed 
monolayer. 

These data can be explained based on multilayer adsorption, 
and that the principal interaction arises from the dispersion forces. 
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Figure 8.3. Adsorption isotherm of water 
vapor on Il'-casein (variation of amount 
adsorbed versus Pol P). (Redrawn with 
modifications from Berlin et aI., 1969.) 

Under these assumptions, the potential, Ex, will decrease with the 
increase in the cube of the distance, x (Adamson, 1980): 

(8.14) 

where am is a distance on the order of a molecular radius. The 
potential is related to the gas pressure, P: 

RT In (Po/P) = Eo/(am + X)3 (8.15) 

A more general relationship is derived from these equations 
relating amount adsorbed, r, and P: 

(8.16) 

where A = Eo/(X':o RT). The film thickness at the monolayer state 
is given by Xm • This equation is called the Frenkel-Halsey-Hill, 
and is useful since it can be transformed into a power law from 
which the fractal dimension can be estimated (Birdi, 1992d). 

The adsorption data of gas (N2) and water vapor on casein are 
of much interest as regards the fractal theory. The adsorption 
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Figure 8.4. A plot of log (f = M.) versus log [log (Pol P)] for water vapor 
adsorption on casein powder. (Redrawn with modifications from Berlin et al., 
1969.) 

isotherm given in Figure 8.3 can be analyzed by the above power 
law (Birdi, 1992d): 

log [log (Pol P)] = D log r + constant (8.17) 

The magnitude of D is found to be 2.5 in the case of adsorption of 
N2 on casein. On the other hand, the water vapor data (Figure 8.3) 
showed two linear portions. The first part yielded D = 2.5, which 
is the same as for the N2 adsorption. It may be safe to conclude 
that in all such adsorption processes, the value of D will be 
expected to be 2.5, where strictly only multilayer adsorption is 
occurring. The higher regions of these isotherms indicate that 
capillary condensation is occurring in very fine pores such that the 
sorbent is undergoing swelling. Similar isotherms have been 
obtained for adsorption of various vapors by polypeptides, and 
morphological changes were suggested (Brandt and Budrys, 1965). 
It was concluded that the data in Figure 8.4 reflect swelling in the 
case of water vapor. Deviations from a linear log-log plot are 
found useful for the detection of capillary condensation. 



Biological Systems 
(Cells, Lungs, Heart) 

9 

The biological systems are indeed complex and very difficult to 
simplify as model studies. However, despite this complexity, one 
does find much order in some systems. For example, the human 
body has complicated networks of blood vessels, nerves, and ducts. 
The shape of the airways of the lung, through evolution and 
embryogenesis resembles fractals generated by some computer 
programs. It is worth comparing the fractal analyses of tree 
branches with lung pathways. 

Biological patterns ultimately result from the selective action 
of genes. The genes are activated in specific spatial and temporal 
order, which results ultimately in production of a specific structure. 
Activation leads to cellular organization and creates form and the 
growth of shapes (such as patterns) (Stanley and Ostrowsky, 1986). 

There is no object of study available that offers the fantastic 
conglomeration of rhythmic motion on scales from macroscopic to 
microscopic as do the motion of muscles, of fluids, of currents, of 
fibers, of cells. The lung function and heartbeat are other examples 
of very complicated systems. The mathematics involved in biologi­
cal processes has been investigated in early reports (Maynard­
Smith, 1971). In spite of all this, we know that these patterns are 
quite self-similar (Holden, 1987; Goldberger et ai., 1987). In fact, it 
has recently been recognized that the effects of such factors as 

191 
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stress on the self-similarity in biological systems might be useful for 
medical treatment of many diseases. 

As another example, consider the average temperature of the 
human body. It is fairly constant at ca. 37°C (98.4°F) in the case of 
a healthy person, so much so that an individual is considered sick if 
the temperature is either 36°C or 38°C. A temperature of 41°C is 
very serious. The lipids of a cell melt at temperature greater than 
37°C and the flow of molecules across the membranes becomes 
nonselective, thus giving rise to fever. The magnitude of heat 
involved (under dynamic conditions) in producing a 1°C difference 
in the case of a 100-kg human can be estimated as follows: 

Number of calories needed to heat 100 kg by 1°C 

= 100 x 1 = ca. 100 kcal = 419 kJ 

The average temperature (i.e., 37°C) is the sum of all of the heat 
produced by various biological reactions (at different rates) in 
various types of metabolism (e.g., stomach, heart, lungs, brain, 
liver). This could be demonstrated by quantifying the heat pro­
duced (so-called entropy production) by each metabolism, and the 
sum at all times being equal to 37°C. In a recent study, the entropy 
inflow and outflow for the human body due to convection, 
evaporation of water, and mass flow were calculated using the 
energy data (Aoki, 1989). The perpetual loss of water from the 
human body as vapor, from exposed surfaces of apparently dry skin 
to ambient air, is termed insensible perspiration. The amount of 
water liberated was reported to vary from 5 to 35 g/hr (=5.5 x 
10-4 mole/sec). The body's heat control is based on the evapora­
tion rate of water from the surface of the body. Further, the slow 
dynamics of embryonic development and evolution is suggestive of 
fractal systems with self-similarity. The evaporation process may be 
expected to be fractal, since diffusion forces are involved. Then it is 
reasonable to expect that the temperature locally is fractal (this 
remains to be shown). Furthermore, apart from evaporation 
kinetics and dynamics being related to human comfort, they are 
also important for protecting newborns, burn victims, and skin 
diseases from dehydration. 
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The surface area of a system is known to play a very crucial 
role in many phenomena. This is especially true in the case of 
lungs. The surface area of the human lung is on the order of a 
football field. The exchange of CO2 and O2 is determined by this 
large interfacial surface area. The fractal dimension of this surface 
has been found to be 2.2 (Takayasu, 1990; Mandelbrot, 1982). 

An early view assumed that all biochemical reactions in­
evitably converged rapidly to a thermodynamic steady state (analo­
gous to a stone moving downhill into a valley). Further, if any 
physiological state was disturbed, it was assumed to move toward 
some equilibrium state. The current view is much different. At 
present, complex dynamical behavior is seen as an aspect of almost 
all kinds of biological regulation and function. 

The diameter of blood vessels has been found to exhibit a 
fractal dimension (Takayasu and Nishikawa, 1986): 

(9.1) 

where NT is the number of vessels with diameter greater than 
diameter r. The value of D was found to be 2.3. 

9.1. Fractal Nature of Heartbeat 

The accuracy of blood circulation is so high that our technol­
ogy has not been able to construct a substitute of equal precision. 
Arteries and veins are known to be fractal-like (compare with 
viscous fingering or dendrites) (Goldberger et a/., 1990). The 
contraction of the ventricle is stimulated by a nerve impulse 
generated upon contraction of the auricle. The patterns of the 
heart rate of a healthy person at spans of 5, 50, and 500 min 
(Figure 9.1) reveal a clear self-similarity. In fact, the heartbeat can 
be compared to the movement of a simple pendulum. If one 
perturbs the pendulum, it oscillates back to its original rhythm, just 
as the heartbeat can adjust itself to many minor disturbances. This 
was further analyzed by the chaos and fractal dimension. 

The heart rate fluctuates considerably in young adults (average 
of about 60 beats/min), while it may vary by 20 beats/min every 
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Figure 9.1. Schematic pat­
terns of heartbeat over vary­
ing times of observation. 

few heartbeats. The variation during a day can be as large as 40 to 
180 beats/min. 

It has long been known that the fluctuations in heart rate can 
be explained in terms of homeostasis (i.e., physiological systems 
normally operate to reduce variability and to maintain a constancy 
of internal function). This suggests that any biological phenome­
non, if perturbed, returns to its normal steady state after some time 
lapse. This can safely be compared to movement of a pendulum 
(see Chapter 1); i.e., if one pushes a pendulum that is swinging at a 
stable rate, the pendulum is found to return to its normal rate after 
a few minutes. Thus, it is suggested that homeostasis merely arises 
as a reaction to some transient response in a fluctuating environ­
ment. It is also known that the body has difficulty in maintaining a 
stable heart rate when subjected to illness (fever) or due to old age. 

Analysis of the heartbeat carried out for varying time spans­
over a day, a few hours, or a few minutes-has provided some 
insight into the shape of the fluctuations. These beat-to-beat 
fluctuations have been found to be self-similar. This has been 
considered to suggest that the heart may fluctuate without any 
outside perturbation. These kinds of fluctuations are, among other 
chemical processes, determined by the transport kinetics of ions 
(calcium, potassium, and sodium). 



Biological Systems 

Analyses of the heart rate (using the Fourier spectrum 
procedure) have shown that it is indeed chaotic. The mechanism 
for this chaos in the beat-to-beat variability of the normal heart was 
suggested to arise from the nervous system. It is universally known 
that stress causes a rather dramatic change in heartbeat. The 
question has arisen as to why the heart rate and other systems 
controlled by the nervous system should exhibit chaotic dynamics. 
It has been postulated that this plasticity allows systems to cope 
with the exigencies of an unpredictable and changing (even a 
sudden change) environment. This was described above in the 
section on mathematics of chaos (chaotic or periodic). The 
nonlinear dynamics would thus be useful for such physiological 
phenomena. 

In another report (van der Pol and van der Mark, 1928; 
Nagumo et aZ., 1962) an electrical circuit composed of coupled 
relaxation oscillators was proposed as a qualitative model for the 
beating heart. 

From these considerations, it is clear that physiology should be 
considered a suitable system for fractal and chaos analyses. The 
connection between disease and medicine could be a very useful 
area for fractal dimension analysis. Further, disease and drug 
toxicity could be better understood if fractal analysis were applied. 

The heartbeat can be compared to a pendulum, in a much 
simplified sense. A pendulum swings with a constant period, and a 
heart beats with some regular pattern. If we push the pendulum, 
the period changes for some time, and thereafter returns to its 
normal pace. Similarly, if we apply a jolt of electricity to the heart, 
its pattern changes but settles down to its normal rhythm after 
some time. In fact, chaotic dynamics has been recognized in 
electrocardiography for a much longer period of time than the 
recent surge of interest among mathematicians and physicists. It is 
thus not surprising that fractal geometry has been applied to the 
heartbeat and disease treatment. 

9.2. Mammalian Brain Size Fractal 

The brain is a chemical computer with extraordinary state-of­
the-art as regards information storage and retrieval. It has been 
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idealized as a network of neurons that are connected in a random 
manner by synapses (Krassner, 1983). The stimulus is transmitted 
by the firing process of a neuron. The latter will fire when the sum 
of the received stimuli exceeds a certain threshold value. Further­
more, the brain transforms sensory messages into conscious per­
ceptions almost instantly. It has been suggested that there is an 
analogy to this approach in music. The chaotic arrival of these 
information signals is sorted out immediately (Freeman, 1991). 
This may be simply called the taming of chaos in the brain. The 
chaotic patterns generated by mathematical models (e.g., as 
produced by the simple equations described in Section 1.5) have 
been suggested to be useful for the brain function. 

The size of the brain in comparison to body weight in different 
animals is known to be different. It has been suggested that the 
superior intellect of humans may be due to the large size of the 
brain. In the same way that the size of the gut varies with the 
feeding habits of the different animal species, one might expect that 
brain size could be determined by the information retrieval and 
storage processes and needs. 

Mammalian brain volumes (=weights) are found to vary from 
0.3 to 3000 ml. The human brain weighs ca. 1.3 kg. Some whales 
have brains as large as 5-8 kg (the brain of elephants weighs 5 kg) 
(Harvey and Krebs, 1990). It is known that brain weight increases 
with overall body weight. In one study (Sacher, 1959), the 
maximum recorded life span was highly correlated with adult brain 
weight rather than with adult weight among mammalian species. 
From this analysis it was postulated that life span was controlled by 
brain weight. 

A relationship between brain weight and body weight has been 
proposed (Gould, 1975). A dependence equal to two-thirds (0.75) 
power of body weight was proposed. There have been many 
attempts in the literature to describe the two-thirds dependency. In 
one case (Armstrong, 1983), it was argued that among extant 
mammals an increase in brain size keeps pace with an increase in 
body size when the size is adjusted for the availability of energy. 
However, it is not clear why mammals should have been selected to 
supply a constant proportion of their daily basal energy turnover to 
the brain. In a second analysis (Martin, 1983), it was argued that 
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the previous postulate was not general. The exponent linking brain 
and body weight across birds and reptiles was 0.56 and lower than 
the 0.75. This discrepancy was explained by the argument that if 
two consecutive metabolic processes were present in birds and 
reptiles, then (0.75)2 = ca. 0.56. 

The metabolic rate (Martin, 1983) in mammals increases with 
the 0.75 power of adult weight (B), and the weight of the neonatal 
brain (N) is determined by the maternal metabolic rate. According 
to this scheme, neonatal brain weight scales to the 0.75 power of 
maternal body weight. At birth, all neuronal division is complete, 
such that postnatal brain development consists of the expansion of 
existing neurons and the addition of glial cells. From this we can 
add that the adult brain weight (A) is a body-size-independent 
multiple of neonatal brain weight and therefore scales with the 0.75 
power of adult body weight (subscript m denotes mammals): 

Mm ex: B:!;75 (9.2) 

and 

Nmex:Mm (9.3) 

From this we get: 

Nm ex: B~75 (9.4) 

Amex:Nm (9.5) 

which gives: 

Am ex: B:!;75 (9.6) 

The two-stage metabolism process limits brain weight in birds and 
reptiles because of the fact that the mother has to provide for the 
egg, which must produce the neonatal brain. The egg weight (E) 
was suggested to be determined by maternal metabolic rate, such 
that the egg weight scales with the 0.75 power of maternal body 
weight. The metabolism of the egg (P) is proportional to the egg 
weight as the power 0.75. The hatching brain weight (H) is directly 
proportional to the metabolism of the egg. From this one can 
derive that the hatching brain weight scales with 0.56 (=0.75 x 
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0.75) of maternal body weight. As it is known (Nottebohm, 1989) 
that neuronal division determining the size of most components of 
the adult brain is complete at birth, it has been argued that adult 
brain weight is a multiple of hatching brain weight and, therefore, 
scales with the 0.56 power of adult weight, as follows (subscript b 
denotes birds or reptiles): 

and one gets: 

This gives; 

From these relations one thus finds; 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

However, these postulates have not been explained thoroughly 
(Harvey and Krebs, 1990). Mainly the following questions remain: 

• Why should birds, mammals, and reptiles be selected to 
have as large a brain as their metabolic rates will allow? 

• Why should the proportion of metabolic turnover that is 
allocated to the neonatal brain be the same, irrespective of 
species difference in adult body weight? 

• Why should hatching brain weight scale in proportion to the 
metabolic rate of the egg, which must provide not only for 
the chick at the time it hatches but also for the developing 
embryo? 
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Recent analysis has, however, indicated that these postulates 
by Martin are not sufficiently valid and therefore need further 
examination (Harvey and Krebs, 1990). However, it must be 
remembered that during the hatching period the formation of the 
egg shell requires utilization of CO2 in order to convert it to 
CaC03 . This arises from the fact that lungs exhale CO2 while 
exchanging with O2 , In order to conserve CO2 , the amount exhaled 
is appreciably decreased during the hatching period. 

The volume of gray matter is found to be roughly equal to its 
thickness multiplied by the area of the brain's surface membrane 
(termed the pia). Assuming that the thickness is the same in all 
species, the magnitude of the pial area would be proportional not 
only to the gray matter volume but also to the white matter 
volume, hence to the total volume, Vbrain' 

The area-volume data were found to give; 

(9.15) 

where the magnitude of D/3 was ca. 0.91-0.93 (Mandelbrot, 
1982). 

Ever since Huxley (1924) suggested the biological significance 
of relative size and shape, evolutionary and functional biologists 
have studied the relation of body size to function. The movement 
of animals against the gravity of the earth has yielded a wide range 
of sizes. The size varies by factor of 6 in body mass. The most 
important criterion is that body structure not break down under 
motion. Selection therefore may be expected to favor changes in 
the form, material organization, or mass of biological structures 
that decrease the probability of their failure during lifetime use. In 
the case of animals of different sizes, there is used a phrase called 
"elastic similarity": 

(9.16) 

where L is the length of the object with diameter D. These 
relations have further been investigated on the basis of modulus of 
bone structures and mass (M). From these investigations, the 
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following have been found (Hokkanen, 1986; Biewener, 1990): 

(9.17) 

(9.18) 

where allometric (Greek allouetrov, meaning "the strange scale") 
exponents d and 1 were introduced (Peters, 1983). 

The magnitudes of d and 1 were analyzed (Table 9.1) using the 
following relation (Hokkanen, 1986): 

d/I = 1/2 + 1/41 (9.19) 

It was concluded that evolution may prefer the most simple 
physical situation. That is, buckling effects of a growing bone under 
a static load, which is needed to adjust bone proportions, and the 
dynamic loads are coped "afterwards" with an appropriate choice 
of running styles. Further, if we accept that only minor changes 
occur in bone shape, mass-specific forces acting on the skeleton 
must decrease to maintain a uniform safety factor in larger animals. 
Rather than alter shape or material strength, selection appears to 
have forced an allometric change in muscle mechanical advantage 
and the configuration of the limb elements, as the primary means 
to lower mass-specific bone and muscle force as animals increase in 

Table 9.1. Allometric Exponents for Ungu1ate Leg Bone Lengths (I) 
and Diameters (d)" 

Experimental Eq. 
(9.16) Predicted [Eq. (9.19)] 

Bone d d/l d/l d/l 

Femur 0.27 0.35 1.3 1.5 1.43 
Tibia 0.22 0.35 1.59 1.5 1.64 
Metatarsal 0.2 0.33 1.65 1.5 1.75 
Humerus 0.27 0.39 1.44 1.5 1.43 
Metacarpal 0.19 0.34 1.79 1.5 1.82 

B Source: Hokkanen (1986). 
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size. Consequently, with a greater mechanical advantage, the 
muscles of larger animals produce greater joint moments for a 
given mass-specific force. It is found that animals generally exert 
ground reaction forces that are a constant multiple of body weight 
(two to three times body weight for each limb) (Biewener, 1990). 
Based on these assumptions, the analysis gives a fractal dimension 
of 0.74 for force versus muscle mass data. As regards the speed of 
movement, in nearly all mammalian species studied, rates of 
aerobic energy expenditure generally increase with running speed 
and change of gait. In the case of horses, however, energy use 
increases as a nonlinear (power greater than 1) function of speed 
within a gait and actually decreases when the animals change gait. 

Diet has also been found to be a determining factor for the 
fractal dimension of different ratios between brain weight and body 
weight. It is known that fruit-eating bats have a larger ratio of brain 
to body weight than do the insectivorous species. 

The size of organisms is a good predictor of the biological rates 
at which they produce energy and consume food. The metabolic 
rates have been analyzed by fractal theory (Sernetz et al., 1985), 
since many biological parameters are determined by the size of the 
organism. An allometric relationship was suggested between 
species and within the same species. The power law found to 
describe the metabolic rate (MER) versus body weight (BW) was 
as follows; 

log MER = log a + D log BW (9.20) 

The data for different species (rat, dog, man, horse) are plotted in 
Figure 9.2. These data show that the metabolic rates summed 
together exhibit a fractal rate. The basic idea assumes that the body 
is an area that fractally evolves into a volume object. The 
structures of similar, and more or less comparable, organisms are 
considered to be made up of similar internal compartments. The 
kinds and the relative sizes of these biological compartments are 
also similar. Based on this assumption, one can consider that these 
systems are self-similar with regard to fractal geometry. Within one 
organism, self-similar compartmentalization is found over the 
entire range from macroscopic structures (e.g., the vascular system 
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Figure 9.2. Plot of log MER versus 
log BW of different species: R, rat; 
D, dog; M, man; H, horse. 
(Redrawn with modifications from 
Semetz et aI., 1985.) 

and the lungs), to microscopic structures (connective tissue, trabe­
culae, capillaries) down to the subcellular level (cytoskeleton, 
organelles). In a recent study (Strathmann, 1990), it has been 
pointed out that there are probably many pitfalls in testing the 
hypothesis about the size-abundance relationships. The main 
difficulty concerns the scatter in the plots. It is clear that more 
careful analyses need to be performed on this subject. In previous 
analyses the underlying cause of these scaling relations was seldom 
well understood. Confidence in the generality of such mathematical 
relationship depends mainly on the extent of samples used. 
However, since there are certain subtle differences between these 
species (e.g., body temperatures are different), further studies are 
needed concerning these observations. 



________________________ 10 

Diverse Fractal Systems 

10.1. Ecological and Economic Cycles and Fractals 

The driving force in both economic and ecological systems can 
be considered to be effective under analogous conditions (Smale, 
1980; Mandelbrot, 1982). The high oil prices of the 1970s en­
couraged energy conservation and increased oil exploration, pre­
cipitating a predictable drop in prices by the early 1980s. According 
to conventional economic theory, the equilibrium marks the most 
reasonable outcome possible under these circumstances. Let us 
consider a few examples that may be useful in showing fractal 
trends in economic growth. 

Economy. In economic growth, one needs energy input to 
start a commodity production. This is analogous to ecosystems. 
Furthermore, economic theory is built on the assumption of 
diminishing returns (Arthur, 1990). 

As an example, competition between two technological pro­
ducts A and B can be considered (Figure 10.1). Which product 
wins is determined by the path as depicted. 

This example shows the tendency of the sales of one product 
to suddenly switch from one kind of cycle to another. This is 
analogous to the examples described in the section on chaos 
(Section 1.5). 

The conventional economic texts have described the economy 
in terms of Newtonian systems, with a unique solution preordained 
by patterns of mineral resources, geography, population, consumer 
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ALL B ALL A 
Figure 10.1. Random walk on a convex surface illustrating increasing-return 
competition between two kinds of technologies [car = A; computer = B). Chance 
will determine early pattern formation of adoption and therefore influences how 
fast each competitor improves. Alternatively stated, as one technology gains more 
attractors (which is related to movement downhill toward either edge of the 
surface), further adoption is increasingly likely. (Redrawn with modifications from 
Arthur, 1990.) 

tastes, and technological possibilities. The perturbation events, 
such as the oil price shock of 1973 or the crash of the stock market 
of 1987, are quickly weighted by the opposing forces they elicit. 

As in many economic cycles, it is generally held that cotton 
prices exhibit two cycles, one due to orderly and one due to 
random sources. If observation of these cycles is taken over a long 
time, then the price cycles could be related to production and trade 
turnover. The computer has had a very strong impact on prediction 
of economic price developments. The small-scale ups and downs 
occurring in a short (24 hr) cycle are just noise, which arise from 
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very unpredictable sources. However, as already observed for 
other systems, the effect of changing forces would suggest a 
coherent effect, even if the cycle was of larger scale. 

Well-accepted prediction schemes of corn production in many 
countries (e.g., India and Egypt) have regarded production to 
occur in cycles of 7 years, i.e., plentiful crops for 7 years followed 
by drought for 7 years. Of course, one may correlate this to floods, 
which may be the result of rains, which in turn may be related to 
solar flares. To a casual observer, the sum shines constantly with a 
bright white light that changes to reds and yellow only when 
scattered or absorbed by dust particles and vapors in the air. A 
closer look reveals, however, that the sun is far more dynamic than 
the Earth. Cataclysmic storms periodically erupt on the sun's 
surface, and these storms sometimes are large enough to easily 
envelop several Earth-sized planets. One can see this clearly 
written in the shapes and colors of cliffs on the surface of the 
Earth, where one sometimes finds repeating patterns, i.e., self­
similarity, that have been connected to these activities. 

The new theory of chaos may be helpful in setting asset 
allocation. As is well known, asset allocation seems like a neat and 
tidy process, conventionally governed by mechanistic rules of 
economy. The theory of chaos may lead to new insights into the 
financial market mechanisms and more effective ways of dealing 
with risk and return in asset allocation. Although the random-walk 
hypothesis has been proposed to be useful for explaining the ups 
and down of economy, there are still some who doubt this. On the 
other hand, it is well accepted that some traders do make 
above-average profits by following these theories. Current interest 
toward developing such fractal models is increasingly. However, it 
is not easy to explain why one finds some trends in the economy's 
ups and downs. Or it may be that some as-yet-unknown nonlinear 
developments are driving these trends. It has been suggested that 
analysis of the stock market by fractal theory is very useful in the 
interpretation of risk and return measures (Speidell, 1988). It is of 
further interest to consider whether in some cases the food 
production cycles may even influence the political balance of a 
country. In other words, fractal analysis might be regarded as a 
very useful parameter for such political developments as ex­
perienced in recent years in Eastern Europe. 
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10.2. Distribution of Wealth 

It is expected that the distribution of wealth will follow some 
fractal law, at least within a certain range of yardstick used for the 
observation. The cumulative income in the United States has been 
analyzed (Figure 10.2). The income, I, and the cumulative popula­
tion with a given income, Pt, were related by a power law. The data 
show that the first part of the population (Le., from 9 to 90%) 
follows a straight line with a lower value of D than for the data 
above that: 

(10.1) 

This allows us to conclude that the distribution of wealth is fractal, 
with two different values. This is a typical example of a system that 
exhibits two (or more) different values of fractal dimension. 

This probability relationship may be analyzed as follows. Let 
Po denotes the probability of success of any primary task. If the 
task requires success from many primary tasks, then (Schlesinger 
and Montroll, 1983): 
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Po = P1P2P3' .. (10.2) 
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Figure 10.2. Distribution of income 
(during 1935 in the United States) as 
log(income/year) versus log(cumula­
tive percentage). (Redrawn with mo­
difications from Takayasu, 1990.) 
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where Pi indicates the probability of success of the ith subtask. By 
taking the log of both sides we can write: 

log Po = logpl + logp2 + logp3 + ... (10.3) 

Since the terms Pi are independent random variables, the critical 
limit theorem can be applied, and accordingly the expression log Po 
will have a Gaussian distribution. 

Other areas where fractal geometry theory has been applied 
are filmmaking, town planning, and economics (Lamb, 1987). 

10.3. Cellular Automata 

As mentioned above, one often finds in nature systems whose 
overall behavior is extremely complex, yet whose fundamental 
components are quite simple. It has been argued that the com­
plexity is generated by the cooperative effect of various com­
ponents. In diverse physical and biological systems, one knows very 
little regarding the overall complexity. 

If we consider the reverse procedure of the above descriptions, 
it should be possible to produce complicated structures by some 
simple fractal algorithm or equation. In this context, consider the 
DNA molecule (molecular weight >106), which is known to 
determine the heredity of living systems. Certain fractal proce­
dures, the so-called cellular automata, attempt to analyze these 
systems (Wolfram, 1984; Hecht, 1990). 

The different properties to be considered are: 

• A discrete lattice is the basis. 
• Time evolution is discrete. 
• Number of states at each site is finite. 
• Rule of evolution is deterministic. 
• Evolution rule is governed by the state of the neighboring 

sites. 

As regards the thermodynamics of such systems, the reversible 
and irreversible states are of current interest. Most fundamental 
physical laws appear to be reversible; macroscopic systems often 
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seem to be irreversible phenomena. These phenomena have been 
discussed in detail in the literature with respect to cellular automata 
(Wolfram, 1984). 

10.4. Fractal Interfaces in Ditfusion and Corrosion 

Porous silicon made by anodic reaction of p-doped silicon with 
hydrofluoric acid displays a ramified microstructure, which is 
determined by the applied voltage, acid concentration, and amount 
of doping (Daccord, 1989). These patterns need to be investigated 
as regards their fractal geometry. Stress corrosion or cracking (due 
to self-similar patterns) is another area that may be fractal (Avnir, 
1989). 

Fracture surfaces of metals. The metal surface plays a very 
important role in everyday life. The surface roughness thus is 
better analyzed if its fractal dimension can be estimated. The data 
for the fracture surface of steel gave the following relationship 
(Shleisinger et ai., 1984): 

A = L2ID (10.4) 

where the value of D was found to be 1.28. 
We have seen that self-similarity is observed in various natural 

phenomena, especially cracks in metals (or cement). The phenom­
ena of material failure and deformation are recognized to be of 
much importance. The deformation phenomena take place in a 
variety of systems and over a wide range of time and length scales. 
They indicate nonlinear behavior under nonequilibrium conditions. 
The patterns formed in metals are quite similar to the viscous 
fingering described earlier (Chapter 2). In simulation theory of 
mechanical properties of metals, the material is represented as 
consisting of bonds, springs, and beams. These unit structures 
break down at some rate of failure (Meakin, 1991). It is well 
known that the rate of failure of many materials increases very 
rapidly with increasing stress and strain. This shows how the 
microscopic structure propagates macroscopic failure. In the vis­
cous fingering experiments, cracking patterns are observed when 
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the concentration of the solids increases. Thus, most of the theory 
is comparable in these two phenomena. The magnitudes of the 
fractal dimension have been found to vary from D = 1.12 to 1.66. 

10.5. Reaction Kinetics and Fractals 

In the case where stirring is not possible, such as reactions 
taking place on solids (porous solids; e.g., oil recovery, ground­
water) or in viscous media, the diffusion processes predominate. 
Furthermore, many physicochemical and biological reactions are 
diffusion-controlled, for the same reason. Other examples are 
industrial catalysis and electrode surface reactions, as well as 
bioenzymatic and membrane reactions. 

The concept of fractals, as applied to problems in physical 
chemistry, has been described in the literature (Argyrakis, 1988). 
Before describing the fractal analysis (Kopelman, 1989) of such 
reactions, it is worthwhile to review the classical chemical kinetics 
(Berry et al., 1980; Argyrakis, 1988). We will consider two 
examples, i.e., either substance A reacts with A, or A reacts with 
substance B, as follows: 

A + A ~ products (1O.5a) 

or 

A + B ~ products (1O.5b) 

These reactions are defined as second-order rates: 

Rate = K[A]2 for A + A (10.6) 

Rate = K[A][B] for A + B (10.7) 

where [A] and [B] are the reactant concentrations of each species, 
and K is the reaction constant and is independent of [A] or [B] and 
time. It is obvious that when A = B, then the latter equation is 
analogous to the former. 
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The batch and steady-state condition are of interest. Stirring of 
such reactions seems to provide a quantitative way of controlling 
their rate, and in a sense provides a new approach to catalysis. In 
fact, batch reactions are also called big-bang reactions. In this case, 
at time t = 0, we have: 

Rate = -d[A]ldt = -d[B]ldt (10.8) 

i.e., the rates of disappearance of species A or B per unit time. 
From these equations we can obtain: 

-dAldt = K[A]2 (10.9) 

On integration one gets: 

(10.10) 

where [Ao] is the initial concentration of species A at t = O. 
A genuine steady-state reaction (Kopelman, 1989) is inde­

pendent of time, by definition. The fractal nature now expresses 
itself in an anomalous reaction order O. For instance, for the 
bimolecular A + A reaction: 

Rate = K[A]X (10.11) 

where X is not 2 as in Eq. (10.9). If the reaction is diffusion-driven 
(diffusion-limited) : 

X = 1 + 2/Ds (10.12) 

where Ds < 2. Hence, we expect X = 2.46 for the Sierpinski 
gasket, X = 2.5 for the percolating cluster, and X = 3 for the 
one-dimensional (A + A) reaction. 

A percolation model of the reactions taking place in the 
ignition of propellant powders has been reported (Grabski, 1990). 
It is thus seen that analogous considerations will be valid in 
heterogeneous reaction kinetics in chemistry, biology, geochem­
istry, solid-state physics, astrophysics, atmospheric sciences, etc. 
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Another study (Argyrakis, 1988) has reported some related ap­
plications to fractal chaotic motion in polyatomic molecules, and 
entropy functions as a measure of disorder. 

The 8elousov-Zhabotinsky Reaction 

Oscillations are familiar phenomena in mechanical and electric 
circuits. The direction of motion of an object or an electric current 
may repeatedly reverse itself with or without damping of the 
amplitude of oscillation, and repetitive standing or traveling waves 
may be generated in a continuous medium. A simple pendulum 
describes these movements quite satisfactorily (Chapter 1). In 
stirred-reactor investigations of any chemical reaction, the con­
centrations are conveniently taken as spatially uniform throughout 
the phases. Chemical systems are less prone to oscillations, and 
their evolution usually leads to monotonic change of chemical 
parameters (Borman, 1991). Electrochemical oscillations have been 
observed in a variety of electrochemical systems (KeIzer and 
Noyes, 1980, Koper and Gaspard, 1991). The simplest of this sort 
of oscillation involves a coupling to the impedance of the external 
circuit, and the resulting oscillations are easily understood on the 
basis of elementary circuit theory. A more complicated and 
picturesque oscillation occurs in the beating mercury heart (Field 
and Noyes, 1977). In that system, oscillations are triggered by the 
reduction of a variety of electron acceptors adsorbed on a mercury 
surface. The switching mechanism, which leads to voltage and 
shape oscillations of the mercury, involves a periodic short circuit 
caused by the electrocapillary effect. These oscillations are driven 
by a corroding metal electrode but do not otherwise depend on the 
external circuit. 

Oscillations have also been observed during homogeneous gas 
reactions (Noyes and Field, 1974). Living organisms exhibit many 
processes like heartbeats (see Section 9.1) or nerve impulses that 
generate repetitive temporal or spatial changes. The mechanisms 
and energy sources driving these biological processes are ultimately 
chemical in nature, and the dynamics of many biological and 
chemical oscillators are likely to contain analogous feature. A 
review on the theoretical and practical aspects of oscillation in 
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chemical and biological systems has appeared (Noyes and Field, 
1974). In most oscillating reactions, there may be present a metal 
ion. A typical system that has been investigated consists of 
methylene blue (a dye), oxygen, and sodium sulfide (Na2S). This 
reaction has been analyzed by theoretical models based on noise 
and bifurcation (Resch et al., 1991). The fluctuations and the 
amplitude of the reactant species were estimated. The hysteresis 
was found to be related to these factors. 

A general discussion on the aspects of chemical oscillators 
using a specific model to illustrate some important concepts 
concerning the theory of chemical oscillators has been published 
(Field and Noyes, 1977). Although mechanical, electrical, and 
chemical systems are all susceptible to oscillation, chemical os­
cillators differ from the others in important ways. In a frictionless 
(conservative) oscillating mechanical system, the sum of potential 
and kinetic energies remains constant while they are repeatedly 
interconverted. Although total energy is sufficient to define the 
repetitive trajectory in such a conservative system, both a coordin­
ate and a momentum must be stated simultaneously to define the 
instantaneous state. Inertia repeatedly carries the system through 
the position of minimum potential energy to which it will even­
tually decay if any friction is present. 

In an electrical oscillator, the voltage and the current behave 
very much like potential and kinetic energies, respectively, and 
both must be specified to define the instantaneous state. If there is 
no external source of power, the oscillations repeatedly carry the 
voltage through the value to which the system eventually decays; 
the overshoot arises because induction associated with the current 
behaves very much like mechanical inertia. 

One of the most extensively studied oscillating chemical 
reactions the so-called Belousov-Zhabotinsky reaction, involves 
the cerium-catalyzed bromination and oxidation of malonic acid by 
a sulfuric acid solution of bromate ion (Field and Burger, 1984; 
Holden, 1987; Zhabotinsky and Rovinsky, 1990). The reaction can 
be maintained in a steady state away from equilibrium by pumping 
the chemicals into a stirred flow reactor. The qualitative description 
is as follows: 

(10.13) 
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where A reacts with B to produce C, with forward and backward 
kinetic rates, k f and kb' respectively. If in the reactor the flow rate, 
r, of the chemicals is kept constant (with concentrations Ao and 
Bo), then we get a set of nonlinear differential equations: 

(10.14) 

(10.15) 

(10.16) 

The oscillations observed are very dramatic and can be easily 
measured, and are dependent on the flow rate, r . 

In a recent study of the Belousov-Zhabotinsky reaction, 
spiral-like shapes were observed (Plesser et al., 1990; Nagy­
Ungvarai et aI. , 1990) (Figure 10.3). The wave profiles and 

Figure to.3 . Spiral-like shapes in BZ reactions. (Redrawn with modifications from 
Plesser et at. , 1990.) 
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gradients were analyzed by high-precision two-dimensional meas­
urements. The data suggested clearly that the geometry and the 
dynamic properties of the spiral waves are predominantly deter­
mined by the chemical composition of the reacting species. Since 
the periodic nature is indeed an indication of fractal and self­
similarity, the spiral-like reactions are of much interest at this 
stage. In another study (Weis and McConnell, 1984, 1985; Keller et 
al., 1986), spiral-like shapes were observed in mixed monolayers of 
cholesterol-lecithin spread on the surface of water. Another 
example where such cycles are observed is in the case of childhood 
diseases (measles, mumps, chickenpox). Analyses have shown that 
the data exhibit an interesting yearly cycle with some kind of noise 
superimposed (Holden, 1987). 

In another system, consisting of sodium iodide, malonic acid, 
sodium chlorate, sulfuric acid, and starch as indicator, one can 
observe trigger wave patterns (de Kepper et al., 1990). The waves 
are seen in a dish with a thin (2 mm) layer of reactant solutions. 
The waves formed annihilate on collision and can be sheared to 
produce double rotating spirals. This dramatic performance lasts 
for a short time. 

Chemical oscillation has been found in many biological sys­
tems. The glycolytic cycle exhibits such oscillations (Pye and 
Chance, 1966; Hess et al., 1966), and is considered to be central to 
the process of integration, ordering, and the turnover in living 
organisms. A new approach was used to determine how encapsula­
tion can aid further ordering of the chemical components. The 
Belousov-Zhabotinsky reaction in reverse micelles of Aerosol OT 
[sodium bis(2-ethylhexyl)sulfosuccinate (AOT)] showed that the 
characteristics of the oscillations are substantially different from 
those of the same system in water phase (Balasubramanian and 
Rodley, 1988; Gonda and Rodley, 1990). In a recent study the 
Belousov-Zhabotinsky reaction was studied in a ternary mixed 
system: water/isooctane/ AOT liquid-crystal phase (Balasubrama­
nian and Rodley, 1991). The purpose of this study was to 
determine the effects on the length of time that oscillations can be 
maintained, and the period. It was known that in reverse micelles 
these parameters were affected. In liquid-crystal structures, the 
bulk concentrations would be in compartments. In these organized 
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assemblies, the period decreases toward the end of oscillation. The 
other effect was period lengthening. 

The effect of stirring in such oscillating reactions was reported 
in a recent study (Menzinger and Jankowski, 1986). It was found 
that in a stirred batch reactor, large concentration variations did 
exist and appeared in the ferro-ion-catalyzed Belousov­
Zhabotinsky reaction. The reaction was spatially distributed rather 
than homogeneous. Stirring was found to affect both the amplitude 
and the spectrum, as well as the period and amplitude of the limit 
cycle. These data were characterized by use of this macroscopic 
stirring parameter in terms of noise-induced transitions. 

These oscillating reactions create variations in concentrations. 
If the variation is considered in three-dimensional space, one finds 
a wide variety of shapes and forms that can be described by using 
the same procedures (Winfree and Strogatz, 1984). Periodicity was 
reported to be the main principle cause of these oscillations. A thin 
layer of excitable medium thus has a finite thickness. The flat spiral 
is actually a cross section of a three-dimensional wave shaped like a 
scroll. Three-dimensional images were created by computer 
programs. 

Dynamics of toxic chemicals. The toxicity of different mole­
cules has been investigated in the current literature by using 
dynamical models (Hallam and Huang, 1989). This arises from the 
fact that the toxic effects on an organism are determined both by 
the chemical and by the organism. Further, various toxic phenom­
ena are generally known to be related to biological and interfacial 
phenomena. Attention has especially focused on the magnitude of 
the surface area in the assessment of toxic effects. In the dose­
response functional analysis, the quantitative structure-activity 
relationship (QSAR) has been used. The oscillation that sets in 
arises from the variation in concentration of the chemical as the 
metabolism affects its concentration (through dilution, uptake, 
breakdown, etc.). Furthermore, it is of interest to determine 
whether the toxic property of a chemical arises from its interaction 
with biological reactions in some catastrophe mechanism. This 
would then easily explain why some chemicals are 100 million times 
more toxic than others. The catastrophe model could be initiated 
by using the procedures described earlier (Section 1.5). In this 
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model, a single molecule with toxic properties interacts with the 
bilayer structure of a cell membrane, leading to a cascade of 
structural breakdown of the lipid bilayer. This mechanism is in 
accord with the observation that very minute amounts of toxic 
substances are sufficient to destroy living cells in all kinds of 
biological systems. Fractal theory is thus the one most appropriate 
for classification and prediction models of toxic molecules. 

10.6. Diverse Chaotic Phenomena 

Almost all natural phenomena are governed by chaotic mo­
tion. However, as seen above, there are a variety of situations 
where any phenomenon can exhibit chaos, and it may become 
increasingly complex as the dimension of the reference space is 
increased. Some examples follow. 

Weather forecasting (Lorenz, 1963). The world climate that we 
know and consider normal is in fact a geologically recent develop­
ment. Forty million years ago, most of the planet was both warmer 
and wetter than it is now. Rainfall tended to be evenly distributed 
throughout the year, and evergreen and warm forests covered 
much of the Earth's surface. In many global climate models, a 
system of equations estimates time-dependent changes in wind as 
well as temperature and moisture changes in the atmosphere and 
on the land. We know that part of the motion of the atmosphere is 
caused by thermal convection, when air warmed near the Earth's 
surface rises toward the sky. This process may give rise to 
spontaneous but organized currents of air which may even look like 
a honeycomb (Figure 10.4). 

An example of a similar kind of heat-generated convection is 
found in cooking. As oil is heated in a pan, one keeps a reasonably 
constant difference in temperature from top to bottom. The 
patterns (also called Rayleigh-Benard) produced in the oil look 
like honeycombs (Velard and Normand, 1980; Berge et at., 1984; 
Behringer, 1985). These patterns are found to be related to 
temperature gradient, distance across the gradient zone, thermal 
diffusivity and viscosity of the fluid. 
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Figure 10.4. An idealized rectangu­
lar region of thermal convection as a 
model used for analysis by Lorentz 
equations. The temperature differ­
ence between the heat at the bottom 
and the cold at the top is held 
constant. 
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Fluid rotation (Couette-Taylor) system. If fluid is subjected to 
rotational forces when contained between concentric cylinders that 
rotate with some angular velocity, viscosity-dependent instabilities 
are observed (Andereck et al., 1983). The patterns are also 
dependent on the radius of the cylinder and the speed of rotation. 

This system can be described by a differential equation: 

x = -~(X - Y) (10.17) 

The particle accelerator and dynamics. In celestial mechanics 
and high-energy physics, there are some important problems that 
need to be considered as being nonlinear and chaotic systems in the 
design of particle accelerators (Thompson and Stewart, 1988). 
Accelerators are used to study subatomic particles, produced upon 
collision between two beams of heavy particles, protons or elec­
trons. In spite of the very high speeds with which these particles 
move, the data can be analyzed by some simple nonlinear 
procedures. Typically, a proton undergoes some 1011 revolutions in 
a storage ring. Accordingly, one must use very sophisticated 
procedures to obtain stability results. 

10.7. Thin-Film Deposition 

Man-made solid films are Ubiquitous in technological societies. 
A wide variety of thin-film deposition processes are used to 
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manufacture magnetic, electronic, optical, and tribological devices. 
Particles such as atoms or molecules are deposited on a substrate 
using trajectories that are more nearly ballistic than Brownian 
because the deposition processes are usually carried out in an 
atmosphere of very low pressure. In practice, the deposition 
processes are carried out under conditions of complex physical and 
chemical processes aimed at obtaining high-quality deposited films 
or layers with a homogeneous internal structure and a smooth 
outer surface. Because of the practical importance of these 
processes, considerable effort has been devoted to achieving a 
better understanding of the relationships between morphology and 
deposition conditions. 

Two-dimensional structures that are clearly reminiscent of 
DLA patterns are sometimes observed on the surface of a variety 
of sputter-deposited thin films, as in the case of NbGe2 thin films 
sputter-deposited onto quartz substrate. It was found that whereas 
the fractal dimension of the original clusters with thick outer arms 
is about 1.88, the underlying skeletal structure obtained by 
defoliating the thick limbs of the clusters gives D = 1.7. This value 
is very close to that expected for two-dimensional DLA. Similar 
data were obtained for deposition of gold films on a NUcleopore 
filter. Local scaling properties of fractal observed in nickel­
zirconium alloy films have been reported (Ding et ai., 1990). In a 
recent article (Bales et ai., 1990), a macroscopic theoretical 
approach was used (in combination with scanning tunneling micro­
scopy) to analyze the morphological evolution of thin films grown 
or eroded by sputtering. The growth surface was found to be very 
ramified and was, in fact, fractal. 

A recent study reported the adsorption isotherms of silver and 
gold films evaporated onto the surface electrodes of a quartz crystal 
microbalance (Krim and Panella, 1991). The adsorption isotherms 
were measured by depositing thin films on the quartz crystal 
microbalance, in order to increase the sensitivity. This procedure 
employed as little as 1 cm2 of surface area. The data were analyzed 
by the Frenkel-Halsey-Hill equation [Eq. (8.16)]. The data for 
silver films showed two values of D. In the case of optically 
polished films D = 2.0; for mechanically polished films, 2.4. 

In those adsorption processes where the surface reactions are 
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Table 10.1. Magnitudes of Fradal Dimension, D, for 
Chemisorption on Dispersed Metal Catalysts" 

Metal 
particle 

size 
Catalyst Adsorbate (A) D 

Pt-Si02 H2 13-40 1.67 
Pt-Si02 CO 66-270 1.6 
Pt-Al20 3 H2 13-103 1.91 
Ag-silica O2 55-400 1.82 
Ag-Al20 3 O2 336-512 2.03 
Rh-Al20 3 O2 17-150 1.9 
Ni-Si02 H2 27-87 2.13 
Fe-charcoal CO O.ll-let 1.6 

·Source: Farin and Avnir (1989). 
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dependent on the chemical accessibility at the surface, other 
procedures are required for the analyses. This has been described 
for the case where the molecule-surface interaction is the interac­
tion with dispersed metal catalysts (Parin and Avnir, 1989). Even 
though the metal surfaces are not perfect, it has been observed that 
D = ca. 2. As seen from the data in Table 10.1, this is indeed 
correct. 

10.S. Thermodynamics of Equilibrium Potential and Fractal 
Dimension 

Gas molecules possess kinetic energy, which is equal to the 
Boltzmann constant (k) times the temperature (in Kelvin). If we 
consider the transition between different phases, like gas--+ 
liquid --+ solid, it is obvious that the movement of molecules 
decreases as we compress the gas to the liquid or solid state. These 
molecular movements will exhibit fractal properties if self-similarity 
exists. Accordingly, it is necessary to consider the general thermo­
dynamic properties within this framework. 

In the current literature, unfortunately, very few reports have 
analyzed the fractal dimension of the thermodynamic quantities. 
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As is well known from thermodynamics, the concept of extensity 
(Q) is essentially determined by the local existence of a volume 
density (p) such that (Berry et al., 1980): 

(10.18) 

wlIere the integral is taken over the volume, V. The concept of 
intensity (Il) is related to Q as follows; 

Il = dS/dQ (10.19) 

where S is the entropy function. In classical thermodynamics, the 
volume element is easily estimated from Euclidean geometry. 
However, recently (Fruchter et aI., 1986) it has been mentioned 
that the metric of the medium could have an effect on the value of 
this thermodynamic quantity. Thus, it has been shown that S is a 
function of D, i.e., SD. Further, the fundamental relationship: 

Il = h - TSD (10.20) 

suggests that provided h, the molar enthalpy, is invariant with 
change of the metric, a correlation must exist between dimension 
and chemical potential (Il) (Mehaute and Dugast, 1983). This 
concept was mentioned above when we considered the fractal 
nature of the interfacial forces in the gas-solid-liquid systems. The 
thermodynamics of adsorption phenomena on fractal objects have 
been reported in a recent study (Yakubov, 1988). An advanced 
application (Bessis and Moussa, 1985) of fractal structures (using 
the so-called Julia sets) has been given for explaining: the 
two-dimensional electrostatic, one-dimensional almost-periodic 
Schrodinger equation, vibrational spectra, and location of the zeros 
of the partition function for exactly renormalizable lattice spin 
systems. In these analyses one may also need to consider the role 
of fractional calculus. This arises from the fact that the order of 
differentiation or integration can be elaborated to include fractal 
dimensions (Holden, 1990; Takayasu, 1990). The dimension of a 
derivative may be on the order of say 0.24 or integral with a value 
of 0.35. This has been termed fractal calculus. 
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In another example, the mixing process of two liquids was 
analyzed by using the fractal theory of molecular packing model 
(Birdi, 1992a). It was assumed that in the mixing process of alkane 
and alcohol molecules, the enthalpy was related to the placement 
of methylene groups (-CH2-) of alkanes around the alkyl part of 
the alcohol, while avoiding contacts with the hydrogen-bonded 
hydroxyl groups. The size of the alkane molecule can be considered 
in terms of surface area of the alkane molecule, SAaikane, as 
described in the literature (Birdi, 1989). If we imagine that the 
alcohol associates as a dimer (through hydrogen bonding) (Figure 
10.5), then the hydroxyl groups are oriented toward each other. 
This can be considered as a Cantor set with some appropriate 
magnitude of D, depending on the alkyl part of the alcohol 
molecule. The enthalpy data for systems of n-alkanes (pentane; 
hexane; heptane; octane; decane; dodecane) + n-alcohols (meth­
anol; ethanol; n-propanol; n-butanol) were investigated. The en­
thalpy for mixing -CH2- units of alkane per mole of an alcohol was 
found to fit the following model: 

a 
u 
-.J 
a: 

1. Alcohol molecules are present mostly as dimers. 
2. -CH2- units of alkanes are arranged around the alkyl part 

of the alcohol (preferentially). 

1 

113 2/3 1 

Figure 10.5. A Cantor set model with D = 0.63 for the mixing process of alkanes 
with alcohols [Eq. (10.21»). (Birdi, 1992d.) 
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Accordingly, the enthalpy of mixing 1 mole of alcohol, Hmix,h 

will be related to the ratio of moles of alkane to mole of alcohol 
(nalkane/nalCOhol), and the fractal geometry as follows: 

(10.21) 

The data for various alkane-alcohol mixtures fit this equation for 
D = 0.6, with a correlation coefficient ~ 0.99. The data are found 
to fit the Cantor set model of the alcohol dimer with D = 0.63 
(Figures 5.3 and 10.5). 

10.9. Liquid Droplet Growth and Evaporation by Diffusion 
and Fractal Dimension 

The phenomena of liquid droplet growth and evaporation play 
an important role in everyday life (e.g., raindrop to fog; combus­
tion of oil in engines; emulsion formation). Accordingly, these 
phenomena have been extensively investigated by different meth­
ods, and recently by fractal methods. The surface of any liquid, 
even though it may look very stable, is actually very turbulent at 
the molecular level. From kinetic theory the number of molecules 
of water striking 1 cm2 is found to be 1.2 x 10n molecules/cm2-sec. 
At equilibrium in a closed container, the same number of mole­
cules will be leaving the liquid phase. Despite the enormous traffic, 
there is no direct method for visualizing this phenomenon. Current 
studies on evaporation of liquid droplets confirm the presence of 
noiselike data, which indicates the fractal nature of the process 
(Birdi, unpublished). 

Liquid droplet growth. The growth of a liquid droplet has been 
described by many investigators (Langer, 1980; Mullins and Se­
kerka, 1963). The liquid droplet can be imagined to grow in size 
due to condensation from the supersaturated solution. The mole­
cules execute a random walk, and this diffusion process determines 
the physical conditions. However, the droplet only grows after a 
cluster of critical size has been formed, whereafter the growth is 
very simple. This growth phenomenon has been of interest to many 
researchers. The main question relates to how many atoms it takes 
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to form a cluster that changes over to a new phase (say from gas to 
liquid or liquid to solid). One clue to this number is the point at 
which the atoms start organizing themselves (with self-similarity) in 
some regular fashion, such that a cluster stops behaving as a liquid 
and becomes a solid (Duncan and Rouvray, 1989). An estimate of 
1500 atoms has been proposed from experimental studies. A steady 
state is observed, i.e., rate of mass adsorbed per unit time 
(dM/dt = flux) becomes constant. In fact, recent investigations 
carried out on the reverse phenomenon, i.e., rate of evaporation of 
liquid droplets, have confirmed this very clearly for a variety of 
fluids (Birdi et al., 1989). 

Evaporation of liquid drops. The evaporation of liquid drops 
in air is of importance in many natural (rain, fog) and industrial 
processes (spraying fluids in agriculture). In spray ponds, cooling of 
water is obtained by spraying water into the atmosphere. In 
pharmaceutical and food industries, certain materials like malt 
extract, milk, eggs, and different fruits are dried by spray drying. 
Another example is the ordinary combustion-type engine found in 
cars, where gasoline droplets evaporate and ignition follows to 
provide the necessary propulsion force. 

Under specific conditions, oscillation of a small drop of liquid 
is observed under its own surface tension (Srikrishna et ai., 1982). 
Oscillations refer to periodic changes of shape of the drop from 
spherical to ellipsoidal and back. The oscillation of a small liquid 
drop under the influence of its own surface tension and in the 
absence of gravity is given as (Raleigh, 1892): 

f = (V/2)ll 

= (1/2)ll[(8~)/(pR3)]1/D 

(10.22) 

(10.23) 

where V = vibrations, and R is the radius of the drop. For a drop 
of mass m: 

f = [(8~)/(3llm)]1/D (10.24) 

The oscillation frequencies of drops of different liquids (drop 
diameters: 2-8/lm; densities of liquid: 0.66-3 g/cm3 ; viscosities: 
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0.3-20 cP; surface tension: 18-73 dynes/cm) have been investi­
gated by photographic technique. Oscillation frequencies of liquid 
drops were measured by a stroboscope, with 60 to 60,000 flashes 
per minute. The flash duration was 50 Ilsec. These investigations 
showed that drops of liquids oscillate about a mean drop shape. 
The frequencies of these oscillations were found to fit Eq. (10.20) 
(with D = 2). The rates of evaporation of liquid drops (of volume 
100-5 Ill) when placed on smooth solid surfaces have been investi­
gated (Birdi et ai., 1989, 1990). The data exhibit fluctuations 
(noise) with a power-law characteristic (Le., fractal surface evapo­
ration). These investigations have shown that important informa­
tion about the solid (especially porous)-liquid interface can be 
obtained from such dynamic investigations. The rate of evaporation 
of fluids versus time on glass surface was absolutely linear (Le., 
dM/dT = constant). Nonlinear rates were observed on rough or 
porous solid surfaces (Birdi and Vu, 1991). 
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Physical Applications of Fractals 

Cloud boundaries, dendrites, coastlines, lightning, riverbeds, 
shapes of molecules (macromolecules)-all of these have a form or 
shape that is much better described by fractal geometrical theory 
than by Euclidean geometry (i.e., straight lines and smooth curves) 
(Table 11.1). Fractal theory provides a basis for studying these 
phenomena by modeling and making predictions. 

However, in many cases there would be considerable 
difficulties trying to apply the mathematical analyses of fractal 
theory. We showed that the power laws are only valid within the 
limits of the size of the yardsticks used. The power law would not 
be valid when the length of the yardstick used is either too large or 
too small, as well as dependent on the characteristics of the system. 
In other words, the length of a coastline would increase as the 
yardstick used (/j) to measure it is decreased from say 200 km to 
20 m, while log N" versus log /j is found to be a straight line with 
slope equal to D = 1.2. But if /j used is = 1 nm, the data would be 
meaningless. On the other hand, in the case of analyses employing 
electron or scanning-tunneling microscopy, /j = nm would be 
mandatory. 

Under these circumstances, one may question whether true 
fractals actually are found in nature. One answer is that there is 
nothing like "frictionless" or an "exact answer." However, it is 
more appropriate to answer that, within the framework delineated 
above, fractal analysis is of value when keeping in mind the basis of 
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Table 11.1. Some General Methods of Estimating D from Measured 
Data 

Estimation of 
D from 

Method Relationship log-log plots 

1. Length of trail Le = Ke l - D log L vs. log e 
dividers method e = step size slope = 1 - D 

K is constant 
2. Area/perimeter A = Kp2ID log A vs. log P 

A = area slope = 2/D 
P ... perimeter 

3. Box counting Nl ex L-D log Nl vs. log L 
Nl = number of boxes of slope = -D 

size 1 
4. Variogram 2gh = h4- 2D log gh vs. log h 

h = sampling interval slope = 4 - 2D 
5. Power spectrum Pw = W-(S-2D) log Pw vs. log w 

Pw is power slope = -(5 - 2D) 
w is frequency 

6. Korcak/Zipf Nr(A > a) = Fa-Df2 log Nr(A > a) vs. log a 
law NrA > a number of is- slope = -D/2 

lands larger than size a 
F is constant 

7. Functional NL ex L-D log NL vs. log L 
box NL is the number of slope = -D 
counting squares (or cubes) of 

side L needed to cover 
set 

·Source: Burrough (1989). 

the theory and its limitations (as determined by the theoretical 
models). 

This argument of course is not valid in the case of exact 
fractals. Under these circumstances, if one compares any natural 
phenomenon to a model based on exact fractal dimension, one is 
doing alright. This is analogous to models that accept the Earth as 
a sphere, when we know that it is puckered at the poles. 

Perhaps the most convincing example of a physical phenome­
non with a fractal model is that of Brownian motion (Appendix B). 
The basic assumption-that a particle subject to random molecular 
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bombardment moves with increments distributed according to a 
normal distribution-leads to the conclusion that the particle path 
has a dimension 2. This can be. confirmed experimentally using the 
box-counting method. The motion can also be simulated on a 
computer, by tracing a path formed by large number of small 
random increments. The dimension of such computer simulation 
can also be estimated by the box-counting method. 

Thus, fractal analysis is seen to be guided by experimental 
data, simulation, and theoretical analyses. The procedure is simply 
that one measures any physical object or phenomenon, and some 
of its dimension. There can be two levels of results. One is that the 
analysis shows the presence of a fractal geometry. The second is 
that the data fit some kind of power law (within the limits related 
to the yardstick used), without allowing one to attach any clear 
significance to the fractal geometry. In any case, when considering 
complicated natural phenomena, it may suffice to take this as a 
useful conclusion. 

Fractals are used to model natural phenomena such as 
turbulent flow, interactions of plant communities, Brownian mo­
tion, and the distribution of stars. Fractals can even describe the 
activity of the stock market. 

Beyond this, one may be able to devise a model that is useful 
in the analysis. The model could be useful in describing the 
dependence of different features on the various parameters, and, 
ideally, may be useful in predictions as well as being descriptive. 
As expected, in general the fractal phenomena in nature are 
complicated in terms of mathematical analysis. The main reason is 
that the time scale in nature is often far too long (millions of 
years). On the other hand, we have seen that some very compli­
cated phenomena (e.g., dendrites, chaos) can be easily handled by 
simple mathematical equations. Additionally, in some systems one 
might need to apply a multifractal theoretical approach (Jensen, 
1987; Ahrony et al., 1987). 

It is clear that, at least over some range of length scales, many 
physical structures exhibit fractal geometry. Research has been 
divided into two main directions. First, attempts have been made 
to understand the physical mechanics that govern the froth of 
structures (e.g. aggregates) into their particular shapes. There 
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remain many open questions to be studied in this direction. In the 
second direction, the fractal geometry is taken as given, and the 
physical properties of the structure are then investigated. Different 
physical properties turn out to be determined by subsets of sites (or 
bonds, or particles) on the structure, each having its own fractal 
nature. At the present time, several infinite sets of independent 
fractal dimensionalities, or critical exponents, have been identified 
and studied. 

Further, it is obvious that in many cases it will not be sufficient 
to describe the shape or form of an object by just one number, i.e., 
fractal dimension. This suggests that one will need to use various 
fractal dimensions, or the so-called multifractal analysis. As these 
theories are developed, it is hoped that more complicated objects 
will be SUbjected to fractal analysis. In this context, the following 
example extends these ideas even further. The shadow of a circular 
ring is a circle or ellipse or line, depending on how one orients the 
ring. In the same way, the shadow of any object with D would give 
rise to another fractal dimension of its shadow, Dshadow, depending 
on the angle of shadow. This may be considered to be the case 
when a tumor is analyzed by taking its reflections by a suitable 
procedure (gamma rays) at different angles. The shape and form 
can be analyzed by following these transforms. 

The current literature is very extensive and covers a variety of 
topics (see General References). However, there is still much to be 
investigated by fractal analysis in some areas. One is the relation 
between the fractal dimension of the surface of a metal and its 
other surface properties (such as friction or radiation). A second 
area concerns the natural forces that give rise to the fractal 
dimension of landscape being 2.2. Another area is the relation 
between the fractal geometry of tree branches and roots. Fluid flow 
under turbulent conditions needs to be investigated in more detail. 

The reader is now on his or her own to explore the world and 
grasp the irregular shapes and forms through fractal analysis. Much 
remains to be learned about the basic principles involved in fractal 
analysis. 
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Computer Fractal Programs 

A.t. Computer Program for Dragon 

The following program listing (in BASIC) can be used to 
generate the forms given in Figure 1.1. The size of the generator 
can be changed by using different values of L. A variety of 
different shapes can be drawn by making the following changes: 

• Adding random instruction 
• Using circle instead of point 
• Using geometrical functions 

However, the main idea is to provide computer support for 
drawing fractal shapes. 

Program for Dragon 

90 dim sn( 14) : key off 
100 cIs: screen 0 

[14 maximum n] 
[type of screen] 

110 print • • enter even number' , 
120 input • • or zero to qui t: ' , ; nc 
130 IF NC=O THEN KEY ON: END 
140 IF NC MOD 2=1 OR NC < 2 OR NC < 14 THEN 100 
150 L=128: FOR C=2 TO NC STEP 2: L=L/2: NEXT 
160X=192: Y=133: CLS: SCREEN 2: PSET(X, Y), 1 
170 FOR c=o TO NC: SN( C) =0 : NEXT 
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230 

1800=0: FOR C=l TO NC: IF SN{ C-1) =SN{ C) 
THEN 0=0-1: GOTO 200 

1900=0+1 
200 IF 0=-1 THEN 0=7 
210 IF 0=8 THEN 0=0 
220 NEXT 
230 IF 0=0 THEN X=X+L+L: GOTO 270 
240 IF 0=2 THEN Y=Y+L: GOTO 270 
250 IF 0=4 THEN X=X-L-L: GOTO 270 
260 Y=Y-L 
270 LINE-{X, Y), 1: SN{NC)=SN{NC)+l 

Appendix A 

280 FOR C=NC TO 1 STEP-I: IF SN (C) < > 2 THEN 300 
290 SN{C)=O: SN{C-1)=SN{C-1)+1: NEXT 
300 IF SN{ 0) =0 THEN 180 
310 IF INKEY$=' , , , THEN 310 
320 GOTO 100 
330 END 

A.2. Computer Construction of Cantor Set 

A simple algorithm can be used to construct the following 
table (on page 231) that contains the data points for a Cantor set (a 
spreadsheet program is very easy to use). The generator is a line 
from 0 to 1 on each side of a square. The Cantor set with 
D = 0.63, where one removes 1/3 of the line, gives the following 
data. 

Data Points for Drawing a Cantor Set with D = 0.63 

The first set is a line (the initiator), it divides the line into 
three equal parts (each equal to 1/3), and it is placed at y = 1/2 
(the generator). This procedure is repeated (ad infinitum if 
desired). The table is self-similar and easily obtained if using a 
simple computer program (e.g., a spreadsheet). The magnitude of 
D = log 2/log 3 = 0.6309 (Figure 1.30c). The data points for the 
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~ step.l ... 2 ...... 3 ......... 4 
Xl Yl X2 Y2 X3 Y3 X 4 Y4 

0 0 0 0 0 0 0 0 
1 1 1/3 1/2 1/9 1/4 1/81 1/16 

2/3 1/2 2/9 1/4 2/81 1/16 
1 1 1/3 1/2 1/27 1/8 

2/3 1/2 2/27 1/8 
7/9 3/4 1/9 1/4 
8/9 3/4 2/9 1/4 
1 1 1/3 1/2 

2/3 1/2 
7/9 3/4 
8/9 3/4 

25/27 7/8 
26/27 7/8 
79/81 15/16 
SO/81 15/16 

1 1 

Each series indicates the step that gives rise to the plot in Figure 1. JOe. 
Subscripts denote the stages of iteration. 

series for X,Y coordinates are after the second step: 

x -+ 0, 1/9, 2/9, 1/3, 2/3, 7/9, 8/9, 1 
y -+ 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1 

231 

If one wanted to construct another set with different D, the 
generators 1/2 or 1/3 can be modified accordingly. For example, if 
the y axis is changed from 1/2 to 1/10, the series will become, with 
D = log 1O/10g 3 = 2.09: 

x -+ 0, 1/9, 2/9, 1/3, 2/3, 7/9, 8/9, 1 
Y -+ 0, 1/100, 1/100, 1/10, 1/10, 11/100, 11/100, 1 

It is also obvious that a large variety of Cantor sets can be 
constructed by a simple algorithm, such that the curve obtained is 
similar to some form (data) encountered in practice. This proce-
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dure can be used to estimate the magnitude of the fractal 
dimension of any irregular fractal form (described in Chapter 5). 

A.3. Diverse Algorithms for Computing Fractals 

The fractal shapes and forms delineated above can be drawn 
by computer programs with the help of different algorithms. 
Development in this area has been very active in the past decade. 
The complete details are beyond the scope of this book, and the 
reader is given the sources where the details can be found. 

In general, the most useful algorithms that have been de­
scribed are based on computer programs that can be easily 
developed on an ordinary PC (Barnsley and Sloan, 1988; Barnsley, 
1988; Prusinkiewicz and Lindenmayer, 1990; Devaney, 1990). Only 
those computer programs that are relatively simple to write and run 
will be given here (Barnsley and Sloan, 1988; Barnsley, 1988; 
Devaney, 1990). 

The main idea is to be able to draw a shape (as a line or curve) 
with the help of linear equations. If we have two points A and B, 
then either we can just draw a line between them, or we can carry 
out an iteration. The iteration makes it a more general type of 
computer drawing. The Sierpinski triangle can be drawn by using 
these procedures. This means that the triangle with three points 
A = 0, 0, B = 0, 300, and C = 300,300 needs to be filled in with 
dots at random. The dots are only allowed if the calculated values 
of x,y are within the coordinates of A, B, and C. By using this 
algorithm, one can draw all kinds of shapes (e.g. leaves, trees, 
flowers). The number of points to be used can be chosen according 
to the speed of the computer; a larger number requires a longer 
time for computation. 

In the following program, on an ordinary computer it is useful 
to begin with i = 100,000 or more. A random generator; 

q = 3*RND 

allows one to choose one of the three triangles of the Sierpinski 
gasket. If the value of q < 1 or <2, then we choose to fill in either 
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of the three triangles (Devaney, 1990): 

if' q < 1 goto 10 
if' q < 2 goto 20 
M= (300+m) /2 
N=(300+N) /2 

10 M=M/2 
N=N/2 
Goto 100 

20 M=M/2 
N=(300+N)/2 

[midpoint] 
[midpoint] 

100 if' i < 1000 then goto 200 
PSET (M, N) 

200 next i 
end 

In order to be able to draw other shapes, one can follow the same 
algorithm. A somewhat different approach has been given by other 
investigators (Barnsley and Sloan, 1988; Barnsley, 1988). 

The figures and shape drawn by this algorithm are also called 
iterated function schemes (Falconer, 1990). The procedures 
employed have enabled the capturing of self-similarity and repeti­
tion (as in shapes of leaves or trees or skin patterns, etc.), thus 
reducing the transformations by a factor of 1000 or more. The main 
approach has been to be able to compress the programs such that 
even an ordinary computer can be used to draw rather complex 
figures or shapes. On the other hand, in the compression process, 
there appears too high a degree of repetition of shape and form. 
This is sometimes observed in nature, but often is not. Therefore, 
at this stage, further developments are envisaged in order to 
provide forms with less repetition. 
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Basic Aspects of Brownian 
Motion 

Molecules in dense systems are known to move in random, zigzag 
paths. Examination of a pure substance, for example a drop of 
liquid, with the most powerful microscope available cannot reveal 
the presence of any such rapidly moving particles. With regard to 
how these molecules can be made visible, this is easily done using a 
macroscopic particle such as a smoke particle in air or a colloidal 
particle in a liquid. A snapshot of its movement would reveal a 
chaotic trajectory as shown in Figure B.1 (Perrin, 1923). This 
motion is called Brownian; it was originally described in 1827 when 
the botanist Robert Brown noticed that minute particles suspended 
in a liquid moved in highly erratic paths. This, and a similar 
phenomenon for smoke particles in air, was explained ultimately as 
resulting from molecular bombardment of the particles. As is 
known from kinetic theory, the moleucle moves and collides with 
other molecules. The diameters of air (i.e., nitrogen) and a dust 
particle are ca. 3.6 A and 11-'m, respectively. It is now well known 
that objects generated by diffusion forces are fractal. In fact, 
diffusion is characterized as being the consequence of random 
walks of different particles. In this context, the objects or particles 
may be electrons, holes, ions, atoms or molecules (or macro­
molecules), or even bacteria. 
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Figure B.l. Micrographs (schematic) of a col­
loidal solution of mastic at three different levels 
ca. 12 ",m apart. 

Let us consider the movement of a particle in only one 
dimension. The particle is assumed to move in a positive or 
negative direction with some probability for each direction. This is 
only demonstrable if we observe the movement over a very long 
period of time. Although we cannot by any method presently 
known see the movement of molecules of a liquid, this can be 
accomplished indirectly, i.e., by stirring into a liquid some in­
soluble substance (e.g., pollen grains or the like) in a very finely 
dispersed (colloidal) state. The fast movement of the liquid 
molecules will be revealed upon collision with the colloidal 
particles. This was first noticed by Robert Brown in 1827 while 
observing pollen grains suspended in water. This chaotic movement 
of pollen was henceforth called Brownian motion. In other words, 
the small visible colloidal particles are knocked about by collisions 
with the invisible molecules, like footballs in the midst of a crowd 
of invisible players. 

The theoretical analysis of fractional Brownian motion has 
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been extensively described in the literature. Brownian motion is 
said to be a statistically self-similar process in the sense that if the 
intervals are divided by a positive ratio, it exhibits properties with a 
probability function that is identical with that of the original 
function (Falconer, 1990). Computational methods for drawing 
Brownian tracks and three-dimensional surfaces have been de­
scribed (Voss, 1985; Feder, 1988; Peitgen and Saupe, 1988; 
Falconer, 1990). 

Brownian motion can also be described as follows. Consider a 
particle that moves a step of length equal to T at a time. Each step 
is assumed to be very small (i.e., in terms of molecular dimen­
sions), and is taken randomly. If the probability for each step is 
entirely independent of the previous history and the location of the 
particle, then we have the well-known problem of random walk, or 
Brownian motion or diffusion. If the additional feature is added 
that the particle tends to avoid places it has already visited, we 
have the self-avoiding random walk problem (Chapter 1). Diffusion 
is the overall consequence of random walks of particles. Actually, 
each observation time yardstick is a self-similar motion. It is thus 
obvious that qualitatively, Brownian motion will always follow a 
self-similar fractal path, in general terms. 

It was further shown that air molecules move about by 
Brownian motion, such that the density of air varies with height 
above the surface of Earth: 

(B.l) 

where c5 1 and c52 are the densities of air at heights hI and h2' 
respectively, M the molecular weight of air (=28), g the accelera­
tion due to gravity, R (1.98cal/K-mole or 8.314J/K-mole) the gas 
constant, and T the absolute temperature. 

In the case of a colloidal suspension, one can derive a similar 
relation: 

(B.2) 

(B.3) 

(BA) 
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where m is the mass of a colloidal particle, NA is Avogadro's 
number, v., is the volume of the colloidal particle, and the density 
of the colloidal particle suspended in solution = Dc = Dco - Dlo ' 

Analogous to Eq. (B. 1), we then get: 

log (Dl/ D2) = log (ndn2) 

= NA V(Dco - Dlo)g(h2 - h1)/RT (B.5) 

where nl and n2 are the average numbers of colloidal particles in a 
given volume at heights hI and h2' respectively. 

The magnitudes of n1 and n2 were estimated from photographs 
of colloidal solution of mastic at different levels (see Figure B.1). 
The measured and calculated values at different levels were very 
close. For example, measured/calculated were: 116/119; 146/142; 
170/169; 200/201. 

The path of a colloidal particle was given in Figure B.2. This 
shows that the horizontal projection of the path of a colloidal 
particle that initially was at position A at the beginning of the 
experiment has moved to position B, some t minutes later, while 
having traversed the indicated zigzag course. The distance from A 
to B in a direct line is called the horizontal displacement X of the 
particle during a time interval t. This is determined by the energy 
of agitation of the particle and the resistance offered to its motion 
by the viscosity of the suspending liquid. On the assumption that 

Figure B.2. Brownian motion of a 
colloidal particle (schematic). 
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the Brownian motion was the result of the collision of the 
molecules of the liquid with the colloidal particles, for a large 
number of observations the average value of the square of the 
horizontal displacement (X2) of a spherical particle in time tis: 

(B.6) 

where r is the radius of the particle and TJ is the viscosity of the 
medium. Note that the mass of the particle does not appear 
explicitly in this equation; the mean square displacement is 
proportional to its radius, and hence to the reciprocal of the cube 
root of its volume. This means that smaller the particle, the more 
extensive the Brownian motion. 

In deducing this relation, it was assumed that the motion of 
the particle under a constant force, /, took place in accordance with 
Stokes's law: 

u = / /6;rrTJ (B.7) 

where u is the velocity of the particle. Measurements carried out on 
colloidal systems (gamboge and mastic) gave results in agreement 
with these equations (Table B.1). 

The linear relationship between X 2 and time has been clearly 
established from experimental data. 

Table B.l. Brownian Motion Dataa 

Number 
Particle Mass of NA 

Solution radius X 1015 displace- X 10-23 

composition (/lm) (g) ments (calcd)b 

Gamboge/water 0.5 600 100 8 
0.367 246 1500 6.9 
0.212 48 900 6.9 

Mastic/water 0.52 650 1000 7.3 

·Perrin (1923). 
bNA (Avogadro's number) = 6 x Ion molecules/mole. 
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Diffusion and random walk. In a dense medium such as a 
liquid, a particle will be closely surrounded by a set of nearest 
neighbors and will undergo a series of repeated collisions with them 
without significantly changing the location of its center of mass. It 
is easily seen that the mechanism of diffusion is actually one in 
which particles move in a series of small steps, and thus gradually 
move away from the reference position (Figure B.2). If it moves a 
distance dp after each time interval t:, then: 

Distance moved after time t = (tlt:)dp (B.8) 

This is not the distance from the reference point, but the total sum 
of right (R) and left (L) movements. A simple system is the 
one-dimensional random walk, where we assume that the molecule 
only moves a distance d towards the right or left on a straight line. 

Let us proceed to find the probability that the molecule is at a 
distance x from the origin (x = 0, t = 0) after some given time t. 
The number of steps, n: 

n = tIt: 

Since the step can be either nL or nR, then we have; 

Total number of steps = n = nL + nR 

Distance traveled = x = nRd - nLd 

Total number of possibilities = 2n 

(B.9) 

(B.lO) 

(B.l» 

(B.l2) 

If we consider a system with only 4 steps, for the sake of simplicity, 
then there are 24 possible step sequences: 

LLLL LLLR LLRR LRRR RRRR 
LLRL LRLR RLRR 
LRLL LRRL RRLR 
RLLL RLLR RRRL 

RLRL 
RRLL 



Basic Aspects of Brownian Motion 241 

and clearly there are 6 ways of taking 2 steps to the right and 2 to 
the left, which gives 4!/2!2! = 6. The probability (P) that the 
particle is at the origin after 4 steps is therefore 6/16. The 
probability that it is at x = 4d is 1/16. This is because, in order to 
be there, all 4 steps must be to the right, and there is only way of 
achieving this. These patterns can be compared with the above­
mentioned fractal shapes, such as dragon. Each step may represent 
the line as drawn in the dragon. It is clear that fractal shapes can be 
analyzed by this procedure (Falconer, 1990). 

A more general expression can now be written: 

Probability at x = Px 

= n!/[n! (n - nR)! 2n] (B.13) 

We can derive: 

nR = (l/2)(n + x/d), n - nR = (1/2)(n - x/d) (B.14) 

thus: 

Px = n!/{[(1/2)(n + s)]! [(l/2)(n - s)]! 2n} (B.15) 

where s = x/dp • This relationship takes the form of the well-known 
Gaussian distribution under limited conditions (e.g., n is large; sin 
is small; x is not far from the origin): 

(B.16) 

From this, we find that diffusion can be interpreted as the result of 
a very large number of small steps in a random direction. This also 
indicates the region of invalidity of the diffusion equation. 

If we compare the two exponents: 

(B.17) 

we get the expression: 

(B.18) 
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As an example, consider a molecule with a diffusion constant of 
D = 10-5 cm2/sec, with effective radius = 206 pm. If we assume 
that it jumps through its own diameter, then we can estimate T: 

T = 2(206 X 10-12 m)2/2(10-9 m2/sec) 

= 8 x 10-11 sec 
(B.19) 

This leads to the connection between these microscopic movements 
and the rather large diffusion movements of macroscopic scales. 
Further, since average path length is related to the magnitude of D 
through the equation: 

D = (1/2)Ac (B.20) 

we get a relation between random walk and the kinetic gas theory. 
In the case of a random walk whose mean free path is finite, 

we get the following. Even though the fractal dimension for a 
trajectory of ideal Brownian motion is 2 (Takayasu, 1990), in the 
case of a finite mean free path we expect that the fractal dimension 
depends on the observation scale. If we use a scale that is much 
shorter than the mean free path, we will find that the trajectory is 
nearly a straight line. However, if the yardstick of observation is 
larger, the random walk may be reduced to the usual Brownian 
motion. As an example, Figure B.3 depicts the random walk of a 
particle on a Sierpinski gasket (or some other fractal surface), 
which would result in D = 2. The Sierpinski gasket has attracted 
much interest since many physical problems using it as a substrate 
can be solved exactly. This is due to the self-similarity property and 
to the fact that the Sierpinski gasket is finitely ramified. A fractal is 
ramified if any bounded subset of the fractal can be isolated by 
cutting a finite number of bonds, sites, or interactions. The kinetics 
of diffusion-controlled processes on fractals have been analyzed 
(Mosolov, 1991). Further, it has been shown that diffusion of 
Brownian particles on random fractal structures, self-avoiding 
random walks, and percolation clusters serve as useful model 
systems for polymers in solutions (Roman et ai., 1989). The more 
detailed relation between the mean free path and the magnitude of 
D needs to be investigated in greater detail. 
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Figure B.3. Diffusion of an object on a Sierpinski gasket. 

The role of local defects and inhomogeneities in influencing 
the diffusion-controlled processes occurring on the solid surface has 
been reported (Garza-Lopez et ai., 1990). The surface reaction was 
based on a coreactant migrating across a surface where a reaction 
center is fixed at some particular location. The surface in­
homogeneities were considered to be of two kinds. First, there may 
be differences between reaction sites on regular versus defect sites. 
As for the second factor, we may consider the cell surface, which 
has transmembrane protein molecules which may interfere with any 
movement of a coreactant. In order to consider these in­
homogeneities, the Sierpinski gasket was used. The broken struc­
ture of this fractal lattice effectively restricts the diffusing coreac-
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tant to a subset of the overall sites. This model was used to 
describe a variety of diffusion-controlled processes taking place on 
the surface of a supported catalyst or molecular organized as­
semblies formed by lipids (e.g., cell surface, fatty acid or other 
lipid monolayer at the air-water or oil-water interface). 
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carbon, 109 
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fractal, 99 
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polystyrene, 99 
proteins, 99 
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Aggregation 
cluster, 100 
diffusion-limited, 82, 98 
fractal, 99 
kinetics, 99 
protein, 99 
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displacing glycerol, 85 

Allometric exponents, 200 
Amino acids, 178 
Amplitude 

noise, 90 
Analysis 

multifractal, 228 
Analysis of 

fractional Brownian motion, 243 

Analysis of (Cont.) 
fracture, 208 
porosity, 139 

Angle of contact: see Contact angle 
Algorithms 

for computing fractals, 232 
Animal population, 41 
Antibody, 179 
Antigen, 179 
Applications of fractals, 225 
Archimedes, 59 
Area 

cloud,28 
measurement, 28 

Area-length relation, 8 
Area-perimeter relation, 28 
Area-volume relation, 8 
Artery, 40 
Asphaltene, 153 
Attractor, 56 

Balls 
covering by, 32 

Batteries 
efficiency, 110 
fractal electrodes, 110 
LilSOCl2/carbon, 111 

Belousov-Zhabotinsky, 211 
spiral-like shapes, 213 
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BET isotherm, 138, 186 Chaos (Cont.) 
Bifurcation ratio basic mathematics of, 45 

in biology, 67 in biology, 193 
in physiology, 94 chemical, 45, 211 

Biological clock in ecology, 203 
cells, 191 in economics, 203 
heart, 191 fluctuations and, 53 
lungs, 191 in human heart, 193 

Biological systems, 56 noise, 58 
heartbeat, 193 nonlinear dynamics, 66 
mammalian brain size, 195 period doubling, 55, 57 

Blob and ink, 38 population growth, 49 
Blood vessels,193 Ramsey's theory, 48 
Body weight, 196 and stability, 55 
Box counting, 29 Chaotic phenomena, 216 

fractal, 30 Chemical dissolution, 92 
island,29 Chromatography, 154 

Brain size fractal, 195 fractal, 155 
Brownian Circular Hele-Shaw cell, 79 

fractal, 243 Cloud 
motion, 235 area, 28 
motion of a colloid, 238 fractal dimension of, 28, 38 
SieIP,inski gasket, 242 Cluster 

aggregation, 100 
Cantor and fractal, 165 

computer construction of, 230 galaxy, 165 
dust, 62 gold,98 
set, 62 silica colloidal, 108 

Capillary number, 78 size, 117 
Carbon, 138 Coal 

activated, 145-148 combustion, 137 
Carpet (Sierpinski), 16 fractal, 136 
Casein, 188 gasification, 137 

adsorption of vapor on, 188 lignite, 136 
CaS04 ,92 oxidized, 139 
Catalysis, 129 Coastline 
Catalysts of countries, 42, 44 

chemisorption on, 219 fractal, 41 
Catastrophe model, 215 Cobratoxin, 182 
Caves, 158 Colloidal 
Cell (Hele-Shaw), 78 aggregation, 96 

channel,79 fractal aggregates, 95 
circular, 79 silica, 108 

Cellular automata, 207 soot, 98 
Chaos Computer simulation, 229 

in astronomy, 165 Contact angle, 150 
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Contact angle (Cant.) 
fractal, 151 

Copper electrodeposition, 122 
Corn production, 205 
Corrosion 

fractal interfaces in, 208 
Craters 

diameter, 169 
Critical 

phenomena, 114 
point, 113 

Curve 
fractal, 5 
Koch,25 
length, 8 
Sierpinski, 16 

Cycles 
in ecology, 203 
in economics, 203 

Dendrite 
of copper, 122 
geological, 120 
methods, 120 
growth,119 
iron sulfate, 123 
of ZnS04 , 120 

Detergents, 183 
de Wijs's fractal, 162 
Devil's staircase, 65 
Diameter distribution 

of craters and asteroids, 169 
Diffusion and random walk, 240 
Dimension: see Fractal 
Dissolution rates, 148 
Distribution 

of minerals, 160 
of wealth, 206 

DNA,185 
DRAGON,3 

Drug delivery, 150 
Dust 

Cantor, 62 
Dynamical systems, 53 

Earthquakes, 163 

Ecology 
cycles, 205 

Economic cycles, 204 
Economics, 203 
Eddies, 23 
Electrodeposition 

and aggregation, 109 
Energy, 71 
Enthalpy of mixing, 221 
Entropy, 220 
Entropy fractal, 220 
Enzyme fractal reactions, 184 
Enzymes, 184 

superoxide dismutase, 184 
Euclidean geometry, 1, 28, 152 
Excluded volume 

surface, 13 2 
Experiment 

Hele-Shaw cell, 78 
Experimental methods 

dendrites, 120 
Evaporation of liquid drops, 223 

Fern leaves, 39 
Film 

gold films, 218 
Fingering, 75 

fractal dimension, 75 
in porous media, 92 
radial viscous, 91 
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Fluid 

motion, 75 
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Fractal 

aggregate, 109 
applications of, 225 
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Fractal (Cont.) 
Brownian, 243 
cluster, 115, 165 
coastline, 41 
computer programs, 229 
contact angle, 151 
curve, 5 
definition, 4 
diffusion, 240 
dimension, 4, 15 
of DRAGON, 3, 6 
dust, 62 
electrode, III 
fingering, 75 
fracture, 208 
of galaxies, 166 
geometry, 8 
of interfaces, 126 
Koch surface, 24 
landscape, 28 
macromolecules, 173 
mammalian brain size, 195 
measure, 28 
mineral distribution, 159 
molecular, 140 
noise, 58 
percolation, 115 
physical application of, 225 
polymers, 175 
products of, 66 
random, 27 
scaling, 28 
shape, 2 
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solar system, 166 
statistics, 19 
structures, 12, 22 
surface, 151 
surface molecular, 140 
surface of silica, 143 
terminology in, 5 
viscous fingering, 75 

Fractal analyses 
of adsorption on polymers, 186 
of macromolecules, 175 
of polymers, 175 

Fractal analyses (Cont.) 
of porous sandstone, 139 
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of interfaces, 126 

Fractal chromatography 
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Fractal dimension, 15 
of caves, 159 
for chemisorption, 219 
of clouds, 28 
at fluid-solid interface, 150 
of minerals, 159 
of percolation, 115 
of perimeter, 28 
of pH, 159 
of rivers, 35 
of shadows, 228 
of soil, 159 
thermodynamics and, 219 
of viscous fingering, 75 

Fractal interfaces 
in diffusion and corrosion, 208 

Fractals 
and geochemistry, 157 

Fractal surfaces, 129 
Fractional lines, 3 
Fracture surfaces 

of metals, 208 
Free energy, 151 

Galaxy 
and fractal, 165 

Gas law, 45 
Gasket (Sierpinski), 16 
Gel fractal 

application, 155 
chromatography, 154 
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flocculation, 101 

Gels 
casein, 103 
fractal nature of, 103, 155 
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Generator, 16 
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Geochemistry Length-area relation, 8 
de Wijs's fractal, 162 Light-scattering 
earthquakes, 163 dynamic, 108 
fractals and, 157 Lipid monolayers, 124 
mineral reserves, 160 Liquid droplet 
soil and atmosphere, 161 growth and evaporation, 222 
Zipf's law, 159 fractal dimension, 222 

Geometry Lung, 40 
Euclidean, I, 8 Lysozyme, 182 

Glacial cycles, 45 
Growth Macromolecules 

dendrite, 119 fractal, 173 
Mass fractal, 134 

Hack's law, 36 Metabolic rates, 201 
Heartbeat, 193 Metals 
Heat of mixing, 221 fracture surfaces of, 208 
Hele-Shaw cell, 78 Methane, 153 

circular, 83 Methods of estimating fractals, 226 
channel,83 Micropore structures, 145 

Minerals 
Immunoglobulin, 179 fractal distribution, 160, 163 
Insects Models 

metabolic rates of, 40, 68 in economics, 53 
Interface for heartbeat, 193 

electrode, 126 Molecular fractal surfaces, 140 
fractal of, 126 Monolayers 
mercury, 126 lipid, 124 
stability of, 76 Moon craters, 169 

Island 
fractal dimension of, 29 Neptune 

Isotherm adsorption fractal, 169 
BET,138 Nile, 37 

Iteration, 50 Noise 
fractal, 58 

Koch curve, 24 Nonlinear dynamics, 67 
random, 27 and chaos, 67 

Nonlinearity 
Langmuir adsorption, 142 in fluid models, 69, 76 
Laplace pressure, 153 in pendulum, 69 
Law 

power, 170, 179 Oil recovery, 133, 153 
scaling, 16 Order parameter, 114 

Leaves, 39 Oscillations 
Length electrochemical, 211 

coastline, 28 
of curve, 31 Particle accelerators, 217 



Patterns 
generated by fractal geometry, 218 
leaves and trees, 233 

Pendulum, 195 
equation of, 70 
Foucalt,73 
motion of, 69 
nonlinearity, 73 

Percolation 
and cluster size, 115 

Period doubling, 55 
Phase transition, 113 
Physiology 

complexity of, 193 
fractal geometry of, 94 

pi (1T), 59 
Planet's mass fractal, 166 
Plants and insects, 40 
Pollution 

soil and atmosphere, 161 
Polymers 

adsorption of vapors on, 186 
adsorption on fractal solids, 176-177 
radius of gyration, 177 
self-similarity, 174 

Pore fractal, 134 
Porous medium 

dissolution, 92 
Porous rocks, 139 

sand, 139 
Potential energy, 71 
Power law, 170, 179 
Products of fractal, 66 
Proteins 

adsorption on solids, 185 
a-helix, 178 
amino acid, 178 
~-structure, 178 
cluster, 179 
fractals and, 178 
molecular weight, 180 
surface area, 180 
surface fractals, 182 

QSAR (quantitative structure-activity 
relationship), 215 

Rain 
and rivers, 35 

Ramsey's theory, 48 
Random fractals, 27 
Random walk 

self-avoiding, 21 
Rates 

of dissolution, 146 
reproduction, 53 

Reaction kinetics 
Belousov-Zhabotinsky,211 
and fractal, 209 
spiral-like, 213 

Reynolds number, 80 
Richardson's power law, 38 
Rivers 

area, 36 
shapes and fractal, 35 

Scaling laws, 19, 116 
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Scanning electron microscope (SEM), 132, 
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Scattering intensity, 183 
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diverse, 23 
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Sephadex, 155 
Sierpinski carpet, 16 

diffusion on a, 242 
square, 19 

Silicic acid 
surface area, 144 

Snowflake, 24, 119 
Solar system, 166 
Solid porous 

Cantor brush, 136 
carbon (coal), 138 
dissolution, 148 
fractal surface, 129, 134 
mass fractal, 134 
molecular fractal, 140 
pore and surface, 145 
pore fractal, 134 
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Solid porous (Cont.) 
reactive fractal, 149 
rocks, 139 
silicic acid, 144 
subfractal, 134 

Solids 
dissolution rates, 148 

Soot particle fractal, 98 
Stars 

and galaxy, 169 
Statistical fractals, 19 
Strange attractors, 51 
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Surface adsorption 

of polymers, 176 
Surface coverage, 132 
Surface fractal, 134, 149 

of coal, 136 
Surface free energy, 151 
Surface tension, 151 
Surfaces 
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of solid, 145 

Thermodynamics 
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Thin film 
sputter-deposited, 218 

Thin-film deposition, 217 

Toxic chemicals 
dynamics of, 215 

Trees 
fractal dimension, 39 

Trypsin, 182 
Thmors, 100 
Turbulence, 80 

Viscosity, 75 
Newtonian, 79 
Non-Newtonian, 79 

Viscous fingering, 75 
branching angle, 90 
finger width, 85 
fractal dimension, 87 
Hele-Shaw cell, 76 
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Wealth distribution, 206 
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X-ray scattering, 136 
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