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Preface

This book is mainly about goodness-of-fit testing, particularly about tests for
the one- and the two- and K-sample problems. In the one-sample problem
we need to test the hypothesis that the sample observations have a hypothe-
sised distribution, whereas the two-sample problem is concerned with testing
the equality of the distributions of two independent samples. Both testing
problems are almost as old as statistical science itself. For instance, the
well-known Pearson chi-squared test for testing goodness-of-fit to a discrete
multinomial distribution, was proposed back in 1900 by Karl Pearson, who
is generally recognised as one of the fathers of statistics. Another important
test is the smooth test for testing uniformity which was proposed in 1937
by Jerzy Neyman, another founder of modern statistics. The Kolmogorov–
Smirnov test dates from the same period, and in the middle of the century
the Anderson–Darling and Cramér–von Mises tests were published. The roots
of the two-sample problem also date back to the first half of the twentieth
century. Frank Wilcoxon published his nonparametric rank test in 1945, and
if we consider the Student-t test also as a two-sample test, though under very
restrictive parametric assumptions, then we even have to go back to 1908.
Despite the age of many of these methods, they are still very often used in
daily statistical practice, and they are taught in almost any basic statistics
course. These older methods are also frequently referred to in the contem-
porary statistical literature. Moreover, goodness-of-fit is still a very active
research domain, and many of the newer techniques are based on these older
tests. I give a few examples. In the 1980s Neyman’s smooth test was ex-
tended to more complex testing situations, and in the 1990s the method was
further improved so that the user does not have to make any arbitrary choices
anymore of the order of the test. These tests are now known as data-driven
smooth tests. In 1988 Read and Cressie dedicated a whole book to generali-
sations of the Pearson chi-squared test. Thanks to the advances made in the
theory of stochastic and empirical processes, the distribution theory of tests
like the Anderson–Darling and Cramér–von Mises are nowadays much eas-
ier to tackle. Because of their relation to the empirical distribution function
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(EDF), these tests are sometimes referred to as EDF tests. It is now also
known that these latter test statistics can be represented in their “princi-
pal component” representation, and their “principal components” are now
recognised as the components of Neyman’s smooth test statistic. Also many
tests for the two-sample problem belong to the class of EDF tests, and their
theory is thus quite similar. This is, however, not the only relation between
tests for the one- and the two-sample problems. Although they are maybe
not generally known, there is a group of smooth tests for the two-sample
problem, and, interestingly, their lower-order components are related to the
Wilcoxon rank sum statistic, and generalisations thereof.

In the previous paragraph I have very briefly illustrated that there are
many old and new tests for both the one- and the two-sample problems, and
many of these methods are related to one another. It is one of the objectives
of this book to give an overview of the several different classes of methods,
and how they interrelate.

In the beginning of this preface I said that this book is about goodness-
of-fit testing, but the title of the book is Comparing Distributions. This asks
for an explanation. It is indeed true that most of the goodness-of-fit tech-
niques are essentially statistical hypothesis tests, but testing does not give
the whole answer to the question. A statistical test is just a formal way to
make a decision between two mutually exclusive hypotheses: the null hypoth-
esis is very clear-cut and states the hypothesised distribution, whereas usually
the alternative hypothesis is very broad, and, as is the case of omnibus tests,
it is just the negation of the null hypothesis. Thus, when the null hypothe-
sis is rejected, many tests do not give any information about what the true
distribution might look like, or how the true distribution differs from the
hypothesised. The same reasoning holds for the two-sample problem: when
the null hypothesis of equality of the two populations is rejected, there is of-
ten no information about how the two distributions disagree. First note that
in the description of the testing problems just given, it might have become
clear that it is basically a question of comparing distributions: comparing the
true distribution of the sample with an hypothesised distribution, and com-
paring two unspecified distributions in the two-sample problem. Hypothesis
testing is just one, but very popular method to compare distributions. In
this book I look for more informative statistical analyses that provide use-
ful information about the differences between distributions. Although crude
application of goodness-of-fit tests is not informative in the sense just ex-
plained, a complementary analysis, sometimes even very closely related to
the test statistic, may shed some more light on the comparison question. For
instance, the goodness-of-fit test statistic is often an estimator of a distance
measure between two distributions. Thus if this distance measure is well un-
derstood, the rejection of the null hypothesis suggests in what “direction” the
distributions differ. Another example is the decomposition of a test statistic:
the smooth and EDF test statistics can often be decomposed into compo-
nent statistics, and each of them reflects another aspect of the difference
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between the distributions. This may help in, for instance, concluding that
two distributions only differ in scale, and not in skewness. This book stresses
such informative statistical analyses. Particularly for the two-sample prob-
lem, these informative analyses can give a deep understanding and a very
relevant answer to the comparison question. Because I have the impression
that, for instance, the conclusions from a nonparametric Wilcoxon rank sum
test are far too often misunderstood, because it is only used as a nonpara-
metric counterpart of the parametric t-test, I spend much time on explaining
the correct, but informative, application and interpretation of goodness-of-
fit tests.

Statistical hypothesis tests are not the only solutions to answer questions
about the comparison of distributions. Graphs are also most helpful in under-
standing what is going on. I discuss some graphical tools, and I particularly
focus on those graphs that are closely related to statistical tests. When a
graph is a visual representation of the information that the statistical test
uses in making its decision between the null and the alternative hypothesis,
it is unlikely that the graph suggests a different answer and confuses the
analyst. Examples of such graphs include the PP plot and the plot of the
comparison distribution.

The book is written at an intermediate level. I have tried to provide the
reader with some of the basic theory which is needed to understand the tech-
niques, but some of the more technical issues are ignored. For instance, I
give a very brief introduction to empirical processes, but I do not say any-
thing about the measure-theoretical aspects. I think that our introduction
to this theory is sufficient for the reader to understand the rationale of the
methods. For more details I refer to the literature. The text is aimed for two
groups: first, for researchers and for master or graduate students in statis-
tics. To understand all the theory in the book, I assume that the reader is
familiar with matrix algebra, calculus, and asymptotic statistical inference.
Although some theory is given, I also hope that the book may be useful for
applied statisticians and for practitioners who have to do statistical analy-
ses involving the comparison of distributions. Particularly because the prob-
lems treated here are very important and so widespread in daily statistical
practice, I feel that this book may be helpful for many practitioners of sta-
tistical methods. Throughout the book many of the statistical methods are
applied to example datasets, and a detailed interpretation and discussion is
given. All methods that I used are collected in an R-package that is avail-
able at the website accompanying this book: the cd package. The website is
http://biomath.ugent.be/∼othas/cd. The R-code is provided for most exam-
ples. Also, at the end of each chapter I give a summary from a purely practical
point of view. The examples, together with these practical guidelines should
be enough for a nonstatistician to help him or her in statistical analyses.

The book is organised as follows. The text is divided into two parts. The
first part concerns the one-sample problem, and the two- and K-sample prob-
lems are discussed in Part Two.
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The first part starts with an introduction in which a brief historical
overview is given of some of the main early contributions to the methods
for goodness-of-fit. In that same chapter, the Pearson chi-squared test is
reviewed. The second chapter provides some essential theory and methodol-
ogy that is used in further chapters. For instance, some very basic concepts,
such as the empirical distribution function, are introduced, but also some
more advanced topics such as empirical processes and Hilbert spaces are dis-
cussed. This chapter may be skipped at first reading, and depending on the
background of the reader, one or more sections may be of interest to under-
stand the theory in later chapters. In Chapter I introduce some graphical
exploration tools that are useful in assessing goodness-of-fit. As I mentioned
earlier, I prefer to focus on graphical aids that are in some way related to
the more formal goodness-of-fit tests. For instance, a PP plot can be used in
conjunction with a Kolmogorov–Smirnov test, as the Kolmogorov–Smirnov
statistic is defined as the maximal deviation between the sample PP plot and
the diagonal reference line. Chapter 4 is completely devoted to the important
class of smooth tests, and in Chapter 5 I discuss the class of EDF tests (e.g.,
Kolmogorov–Smirnov, Anderson–Darling, but also generalisations and some
more recent tests). The stress is on the relation among all methods, and on
how they can be applied in an informative manner. An important example of
an informative analysis is the diagnostic property and interpretation of the
components of smooth test statistics, which also appear as the components
of some EDF statistics. In particular, sometimes these components may be
helpful in understanding in which moments the true and the hypothesised
distributions are different.

In Part Two I treat the methods for the two-sample problem. In Chapter 6 I
define the two- and K-sample problems, and I introduce the example datasets.
Chapter 7 provides some more concepts and building blocks that are partic-
ularly useful for understanding the theories and concepts discussed in the
chapters following. For instance, the basic theory of rank tests and exact
permutation tests are introduced here. Graphical exploration tools are the
topic of Chapter 8. It includes PP and QQ plots, as well as graphs of the
comparison distribution.

In Chapter 9 some important statistical tests for the two- and K-sample
problem are discussed in detail: t-tests for comparisons of means and Wilcoxon
and other rank tests for nonparametric testing. I stress that all tests test dif-
ferent hypotheses, and that comparing means, as does the t-test, is not always
the most relevant question, and that the Wilcoxon rank sum test does not
necessarily test for equality of means. For the two next chapters I keep the
same classification of the methods as in Part I: smooth tests in Chapter 10
and EDF tests in Chapter 11. The analogy with the methods and concepts
from the one-sample problem in Part I are stressed, so that it provides us with
a better understanding, and more generalisations arise easily. For instance,
when a smooth test statistic for the two-sample is constructed in a partic-
ular way, its first component is the Wilcoxon rank sum statistic, its second
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component is the Mood rank statistic for comparing dispersions, and the
third component is a rank statistic that may be used to detect differences in
skewness, at least under some distributional assumptions. Throughout these
two chapters I always illustrate how the methods should be used to get the
most information out of the data. Some of the techniques are well known
to most statisticians, but I try to make clear that even these methods can
be used in a more informative and correct manner. Other methods are not
very common, but I aim at showing that they are just as simple as many
other popular tests, and that some of them can guide very well in under-
standing how the two populations differ. I always focus on the interpretation
of the tests so that eventually a very informative statistical analysis may be
obtained. The R-package helps using the methods in a flexible way.

I did, however, not aim at writing an encyclopedic work on goodness-of-
fit tests. Writing a book that describes all tests for goodness-of-fit might
have resulted in two volumes of about 500 pages. For this reason I had to
make some choices along the way, so that I could focus on the relations
among various types of tests and methods, and on how they may be used for
informative statistical analyses. As a result, I did not give as many details on
tests for discrete distributions as I did for tests for continuous distributions,
and I did not thoroughly discuss rank tests in the presence of ties.

Finally I want to thank some people without whom this book could never
have been at all possible. First I want to thank John Kimmel from Springer,
who kept believing in the project and whose endless patience I really appre-
ciate. This book could never have existed without the many scientific discus-
sions I had with my Australian colleagues and friends, John Rayner and John
Best. They are well known for their work on smooth tests of goodness-of-fit
for the one-sample problem, and they are the founders of the contingency ta-
ble approach. Both ideas are very central in this book. We share the idea that
statistical hypothesis testing should result in an informative analysis, not
necessarily focussing on the mean. I therefore want to thank them deeply,
and I hope that we can work further on these ideas in the future. Writing
a book takes time, a lot of time. It was not always straightforward to find
quality time during the “usual” office hours when I was also supposed to
teach, advise PhD students, and be absorbed with administrative jobs. Ev-
ery now and then I needed “time off” so that I could work intensively on the
book. Well, actually it was rather “extra time”, that is, time that I would
have loved to spend with my wife. I therefore thank Ingeborg; without her
continuing support I would have given up the project long before. Thanks.

I hope that this book may be stimulating for researchers in the field, and
that it may be helpful to practitioners, and I particularly hope that a more
informative statistical practice gets promoted.

Gent, Belgium Olivier Thas
April 2009
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Chapter 1

Introduction

In this introductory chapter we start with a brief historical note on the
one-sample problem (Section 1.1). A first step in a data analysis is often
the graphical exploration of the data. In Section 1.2 we give some graphical
techniques which may be very useful in assessing the goodness-of-fit. In this
section also most of the example datasets are introduced which are further
used to illustrate methods in the remainder of the first part of the book. One
of the earliest goodness-of-fit tests is the Pearson chi-squared test. Although
it is definitely not the best choice in many situations, it is still often applied.
It also often serves as a cornerstone in the construction of other goodness-of-
fit tests. We give an overview of the most important issues in applying the
Pearson test in Section 1.3. Moreover, many of the more recent methods still
rely on the intuition of this test.

1.1 The History of the One-Sample GOF Problem

Probably the oldest and best known goodness-of-fit test is the Pearson χ2

test (Pearson (1900)). The test was originally constructed for testing a sim-
ple null hypothesis in a multinomial distribution. For many years it was the
only GOF test, so that when other types of goodness-of-fit problems had to
be solved, statisticians tried to adapt the Pearson test to these new prob-
lems. For instance, in the first half of the twentieth century, the Pearson test
was frequently used to test the goodness-of-fit of continuous distributions.
Because the Pearson test actually works on multinomial data, the continu-
ous data had first to be grouped or categorised. It is even intuitively already
clear that this categorisation results in information loss, and consequently in
a less powerful testing method. Nowadays we have many GOF tests avail-
able which are constructed particularly for continuous data, and it is only
in very exceptional cases that one still chooses to apply the Pearson test to
grouped continuous data. However, because of the historical importance and

O. Thas, Comparing Distributions, 3
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4 1 Introduction

because some of the more modern methods described later in this book rely
on the Pearson χ2 test, we give a brief overview of its history and theory. For
a more detailed account, we refer to, e.g., Bishop et al. (1975) and Read and
Cressie (1988).

1.2 Example Datasets

1.2.1 Pseudo-Random Generator Data

The generation of random numbers is important in many areas. For instance,
in modern cryptographic algorithms ‘good’ random numbers are needed.
Good random number generators are also essential in many sciences, e.g.,
in physics and, of course, in statistics, where it is common practice today
to assess empirically the validity of theoretical distribution theory by means
of a simulation experiment in which statistics are calculated on repeatedly
generated random samples from a given distribution.

A device that generates true random numbers is hard to achieve. A true
random generator is, for instance, based on a radioactive source, but it is
unrealistic to have this built into every computer. Therefore, computer scien-
tists, mathematicians, and engineers have created algorithms that generate
pseudo-random numbers. These algorithms are based on a sound mathemat-
ical theory, and despite their deterministic nature they generate sequences
of numbers that come close to true random number sequences. Apart from
having as much randomness in the sequence as possible, pseudo-random gen-
erators ‘sample’ the numbers from a particular distribution. Often this is the
uniform distribution over [0, 1]. Whenever a new pseudo-random generator is
developed, it should be tested. Using the terminology of Knuth (1969), two
types of tests exist: theoretical and empirical tests. The former are based on
algorithmic properties and their application does not need to let the algo-
rithm generate sequences of pseudo-random numbers. The result of the test
is a score of the randomness. The empirical tests, on the other hand, are ba-
sically statistical goodness-of-fit tests that should be applied to a generated
sequence. These tests are used to test the null hypothesis that the generated
numbers are indeed sampled from a uniform distribution over [0, 1]. Atkin-
son (1980) is a reference in the statistical literature describing the problem.
A nice reference in the computer science literature in which goodness-of-fit
tests are applied to several pseudo-random generators, is Entacher and Leeb
(1995).

As an example we examine the quality of the uniform pseudo-random
generator in the R software, i.e., the runif function. We have generated 100,000
numbers. Because it would be quite useless to list all 100,000 numbers, we
only present the histogram and the boxplot in Figure 1.1. The dataset (PRG)
is available at the website accompanying the book.
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Fig. 1.1 The histogram (left) and the boxplot (right) of the pseudo-random generator
data

Table 1.1 Concentration of PCB in the yolk lipids of 65 pelican eggs

Concentration

452 184 115 315 139 177 214 356 166 246 177 289 175
324 260 188 208 109 204 89 320 256 138 198 191 193
305 203 396 250 230 214 46 256 204 150 218 261 143
132 175 236 220 212 119 144 147 171 216 232 216 164
199 236 237 206 87 205 122 173 216 296 316 229 185

1.2.2 PCB Concentration Data

In a study on the effect of environmental pollutants on animals, Risebrough
(1972) gives data on the concentration of several chemicals in the yolk lipids
of pelican eggs. The data considered here are the PCB (polychlorinated
biphenyl) concentrations for 65 Anacapa birds. The complete dataset is pre-
sented in Table 1.1. The example is referred to as the PCB concentration
data.

In the original study the mean PCB concentration in Anacapa eggs was
compared to the mean concentration in eggs of other birds. Here we con-
centrate on the Anacapa eggs. A histogram and a boxplot are presented in
Figure 1.2.

1.2.3 Pulse Rate Data

At a hospital the pulse rates of 50 patients were measured in beats per minute.
The data are presented in Table 1.2 and are taken from Hand et al. (1994)
(dataset 416). Figure 1.3 shows the histogram and the boxplot of the data.
The example is referred to as the pulse rate data.
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Histogram of PCB data
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Fig. 1.2 The histogram (left) and the boxplot (right) of the PCB data

Table 1.2 Pulse rate of 50 patients

Pulse rate (beats per minute)

68 80 84 80 80 80 92 92 80 80
80 80 80 78 90 80 72 80 82 76
84 70 80 82 84 116 80 95 80 76

100 88 90 90 90 80 76 80 84 80
80 80 80 104 80 68 84 64 84 72

Histogram of the pulse rate data
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Fig. 1.3 The histogram (left) and the boxplot (right) of the pulse rate data

1.2.4 Cultivars Data

The cultivars dataset is taken from Karpenstein-Machen et al. (1994) and
Karpenstein-Machan and Maschka (1996). It has also been analyzed by
Piepho (2000). This example is referred to as the cultivars data.
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Table 1.3 Yields (in tons per hectare) of two cultivars, and the fertility score (AZ) from
19 environments

Yield

Environment Alamo Modus AZ

1 98.250 96.200 61
2 112.950 115.400 60
3 66.875 69.175 39
4 106.500 123.900 82
5 64.800 53.750 30
6 82.900 88.350 55
7 96.433 101.033 35
8 78.950 82.650 75
9 74.200 80.000 28

10 71.600 79.300 42
11 88.550 86.250 28
12 93.650 95.550 42
13 75.000 71.300 54
14 94.450 100.450 80
15 95.033 98.067 85
16 84.150 80.150 33
17 93.350 97.200 50
18 64.650 60.000 24
19 67.750 70.600 45

Histogram of the cultivars data
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Fig. 1.4 The histogram (left) and the boxplot (right) of the cultivars data

The dataset contains the yields (in tons per hectare) of two triticale
cultivars: Alamo and Modus. Yields on both cultivars are obtained in 19
different environments. For each environment, a fertility score (“Ackerzahl”
(AZ)) was recorded. The data are presented in Table 1.3 and a histogram
and boxplot are shown in Figure 1.4.

One of the aims of the study was to assess if a difference existed between
both cultivars in terms of the average yield. This question may be solved
by performing a paired t-test on the paired data. An assumption underlying
a paired t-test is that the difference between the yields of the cultivars is
normally distributed. This is a classical one-sample goodness-of-fit problem.
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1.3 The Pearson Chi-Squared Test

1.3.1 Pearson Chi-Squared Test for the Multinomial
Distribution

1.3.1.1 The Simple Null Hypothesis Case

To introduce the original Pearson test, we consider a typical example dataset
from the time that Karl Pearson developed his test. In the late 1800s and
the early 1900s, there was a heavy discussion going on among scientists about
the correctness of the theory of Mendel about inheritance. Mendelian law
can be summarized as follows. (1) The two members of a gene pair (alleles)
segregate (separate) from each other in the formation of gametes for the
offspring. Half the gametes carry one allele, and the other half carry the
other allele. (2) Genes for different traits assort independently of one another
in the formation of gametes. The genotype of an individual is determined
by the two alleles. Meldel further assumed that each gene consists of one
of two possible alleles: a recessive and a dominant allele. The individual’s
phenotype, which is the characteristic that is expressed, corresponds to that
of the dominant allele as soon as one of the two alleles is of the dominant type.
Thus, a recessive phenotype only occurs if the individual has two recessive
alleles.

Mendel did many experiments in his search for evidence for his theory. In
one of these experiments, he collected observations from 556 peas which he
classified according to shape (round (R) or angular (a)) and to colour (yellow
(Y) or green (g)). The dominant characteristics are “round” and “yellow”,
denoted by capital letters. The 16 genotype combinations are RRYY, RRYg,
RRgY, RRgg, RaYY, RaYg, RagY, Ragg, aRYY, aRYg, aRgY, aRgg, aaYY,
aaYg, aagY, and aagg, but only the phenotypes can be observed. By the
recessive/dominant system, only 4 phenotypes are observed. By applying
Mendel’s law, we expect that the phenotypes R+Y, R+g, a+Y, and a+g
occur according to the ratio 9:3:3:1. The observed data are shown in Table 1.4.

In statistical terms, Mendel had n = 556 observations which can be clas-
sified into four classes. The observations can be denoted by Yi (i = 1, . . . , n)
which can take one of the values in {1, . . . , 4}, but usually the data are
represented as counts. Let Nj denote the count of observations in class j

(j = 1, . . . , 4). Clearly, n =
∑4

j=1 Nj . Note that we use capital letters for ran-
dom variables, and their lowercase versions for their realisations or observed

Table 1.4 Counts of the phenotypes of 556 peas

Phenotype
R+Y R+g a+Y a+g

n1 = 315 n2 = 108 n3 = 101 n4 = 32



1.3 The Pearson Chi-Squared Test 9

values. The vector N t = (N1, N2, N3, N4) has thus a multinomial distribution
with parameters n and πt = (π1, π2, π3, π4), where πj = Pr {Y = j}. This is
denoted by N ∼ Mult(n,π). If Mendel’s law is correct, the probabilities are
equal to πt

0 = (π01, π02, π03, π04) = ( 9
16 , 3

16 , 3
16 , 1

16 ). Thus, we are interested
in testing the simple null hypothesis

H0 : π = π0

versus the alternative hypothesis that the Mendelian law is incorrect,

H1 : π �= π0.

For the general case where there are k classes, Pearson’s test statistic is
given by

X2
n =

k∑
j=1

(Nj − nπ0j)
2

nπ0j
, (1.1)

which is often written as
k∑

j=1

(Oj − Ej)
2

Ej
,

where Oj and Ej refer to the observed and the expected counts or frequencies,
respectively. Pearson proved the next theorem, the proof of which is provided
in Appendix A.1.

Theorem 1.1. Suppose H0 holds true. Then, as n → ∞,

X2
n

d−→ χ2
k−1.

Because the Pearson χ2 test relies on asymptotic theory, it is important to
understand under which finite sample size conditions the asymptotic χ2 null
distribution is a good approximation to the exact null distribution. This has
been studied by many authors before. See, e.g., Lancaster (1969) or Bishop
et al. (1975). A very often applied rule of thumb is that all expected number
of counts Ej should be at least equal to 5 to have a good approximation. Note
that under the simple null hypothesis, however, the exact null distribution of
X2

n may also easily be approximated by simulation.

Example 1.1 (peas). Under the null hypothesis that the phenotypes R+Y,
R+g, a+Y, and a+g occur with probabilities 9

16 , 3
16 , 3

16 and 1
16 , respectively,

the expected frequencies of the n = 556 are computed as

E1 = nπ01 = 556 × 9
16

= 312.75 , E2 = nπ02 = 556 × 3
16

= 104.25

E3 = nπ03 = 556 × 3
16

= 104.25 , E4 = nπ04 = 556 × 1
16

= 34.75.

This gives X2
n = 0.47. Under the null hypothesis X2

n is asymptotically
distributed as χ2

4−1 = χ2
3. If X2 denotes a χ2

3 random variable, the p-value is
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given by Pr
{
X2 ≥ 0.47

}
= 0.9254. Thus the null hypothesis is accepted at

the 5% level of significance.
The same analysis in R gives the following output.

> peas<-c(315,108,101,32)
> chisq.test(peas,p=c(9/16,3/16,3/16,1/16))

Chi-squared test for given probabilities

data: peas
X-squared = 0.47, df = 3, p-value = 0.9254

Note that the observed test statistic (X2
n = 0.47) is extremely small. Even

if the null hypothesis is true there is only a probability of Pr
{
X2 < 0.47

}
=

0.0746 that a smaller value is observed. In the early 1900s, this led to the
suspicion that Mendel (or his coworkers) might have cheated with the data
to make them more supportive for his theory.

1.3.1.2 The Composite Null Hypothesis Case

We first introduce an example in which the multinomial distribution proba-
bility parameter π depends on an m-dimensional nuisance parameter β.

Example 1.2 (Hardy–Weinberg equilibrium). InpopulationgeneticstheHardy–
Weinberg equilibrium is a model which predicts genotype and allele frequen-
cies in stationary populations. There are five assumptions underlying the
model: (1) the population is large; (2) there is no gene flow between different
populations; (3) the number of mutations is negligible; (4) individuals mate
randomly; and (5) natural selection is not operating on the population. For
one single gene, we consider two types of alleles which are denoted by a and
A. Let p denote the probability in the population of the occurrence of A; i.e.,
p = Pr {A}. Because there are only two alleles, we have q = Pr {a} = 1 − p.
Under the conditions of the Hardy–Weinberg model, the probabilities of the
three possible genotypes AA, aA, and aa are given by p2, 2pq, and q2, re-
spectively. Note that p2 + 2pq + q2 ≡ 1. Thus, if N t = (N1, N2, N3) de-
notes the vector of counts of the three genotypes in a random sample of size
n = N1+N2+N3, and if the Hardy–Weinberg equilibrium applies, the proba-
bilities of the multinomial distribution of N are given by πt

0 = (π01, π02, π03),
where

π01 = p2 π02 = 2pq π03 = q2.

These three probability parameters depend on the nuisance parameter β = p.
Therefore, π0 is actually a function that maps the m-dimensional parameter
β ∈ B into a subset of Π = {(p1, . . . , pk); pi ≥ 0, i = 1, . . . , k;

∑k
i=1 pi = 1},

and B is typically a subset of IRp. We write π0(β) to stress that π0 is a
function. It is convenient to assume that m < k.
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Table 1.5 Counts of individuals with a given genotype for three different loci

Locus EST

Genotype SS SF FF
Counts 37 20 7

Locus ICD

Genotype SS SF FF
Counts 48 4 3

Locus LA

Genotype SS SF FF
Counts 20 11 2

Table 1.5 is taken from Lidicker and McCollum (1997). They studied one
single isolated population of sea otters in California. When in 1911 this pop-
ulation became protected by law, it contained only 50 sea otters. It was the
only group of sea otters left along the central California coast. Fur hunting
had nearly led to their complete extinction. When Lidicker and McCollum
studied the population, the population had grown to about 1500 sea otters.
At six different loci (here we present only the results for three loci), they
counted the number of sea otters with a given genotype. The genes they
studied code for allozymes, which are a particular type of enzymes that can
be easily genotyped. The alleles are represented by the letters S and F. The
researchers were interested in testing the null hypothesis that the population
of sea otters is in Hardy–Weinberg equilibrium, which implies that there is
sufficient genetic variation in the population. Table 1.5 contains the data.

In statistical terms the null hypothesis is

H0 : π = π0(β) for some β ∈ B. (1.2)

We want a test to test H0 against the alternative hypothesis H1 : not H0.
A natural procedure is to first estimate the nuisance parameter, plugin this
estimate in π0, and compute the Pearson X2 test statistic as before. We
first give some more details on how the nuisance parameter is estimated, and
then, in Theorem 1.2 the asymptotic null distribution of the test statistic is
established.

From the Hardy–Weinberg example it is clear that the nuisance parameter
appears in the probabilistic model as specified under the null hypothesis. It
is therefore obvious that it must be estimated under the assumption that the
null hypothesis holds true. Because the null hypothesis in (1.2) completely
specifies a multinomial distribution for N , the maximum likelihood method
is available. Let β̂ denote the MLE of β. Pearson’s X2 statistic then becomes

X̂2
n = X2

n(β̂) =
k∑

j=1

(
Nj − nπ0j(β̂)

)2

nπ0j(β̂)
.
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Theorem 1.2 gives the asymptotic null distribution of X2
n under slightly more

general conditions on the estimator of β. In particular, the theorem holds
under the assumption that the estimator β̂ is best asymptotically normal
(BAN). An estimator is BAN if (1) it is a consistent estimator, (2) it is
asymptotically normally distributed, and (3) it is asymptotically efficient.
Birch (1964) gives six regularity conditions for the function π0(β). See also
Bishop et al. (1975) for a detailed discussion. The proof of the theorem is
given in Section A.2.

Theorem 1.2. Suppose that β̂ is a BAN estimator of the p-dimensional pa-
rameter β. Then, as n → ∞,

X̂2
n

d−→ χ2
k−p−1.

The test based on X̂2
n is referred to as the Pearson–Fisher test because it

was Sir Ronald Fisher who correctly proved that the number of degrees of
freedom of the χ2 distribution should take the number of estimated nuisance
parameters into account. Karl Pearson, on the other hand, was convinced
that the correct number of degrees of freedom was still k − 1. This famous
controversy between Pearson and Fisher is told in a lively manner by Box
(1978).

Example 1.3 (Hardy–Weinberg equilibrium). First the MLE of the parameter
p = Pr {S} must be found. Let N0, N1, and N2 denote the counts of genotypes
SS, SF, and FF, respectively. The log-likelihood is

l(p) = 2N0 ln p + N1 ln p(1 − p) + 2N2 ln(1 − p).

Hence, the MLE is given by p̂ = 1
2 ((N1+2N2)/n). The results of the Pearson–

Fisher tests on the three loci are presented in Table 1.6. We may conclude
that at the 5% level of significance, only the gene at the ICD locus is not

Table 1.6 Results of the Pearson–Fisher tests on the Hardy–Weinberg equilibrium
example dataset

Locus EST p̂ X̂2
n p-value

Genotype SS SF FF
Counts 37 20 7
Expected counts 34.5 25 4.5 0.266 2.53 0.111

Locus ICD

Genotype SS SF FF
Counts 48 4 3
Expected counts 45.5 9.1 0.4 0.091 17.2 < 0.001

Locus LA

Genotype SS SF FF
Counts 20 11 2
Expected Counts 19.7 11.6 1.7 0.227 0.086 0.770
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at the Hardy–Weinberg equilibrium. The sea otter population thus shows
insufficient genetic variation, particularly at the ICD locus where the SS
genotype is overrepresented. Thus at least one of the five assumptions under-
lying the Hardy–Weinberg model must be violated (e.g., no random mating,
natural selection may have interfered, mutations may have changed the gene
pool).

1.3.2 Generalisations of the Pearson χ2 Test

In the previous section we relied on likelihood theory to obtain the Pearson–
Fisher test. Inasmuch as likelihood theory is basically an asymptotic theory
we can approximate the multinomial distribution of N by k Poisson distribu-
tions for the Ni (i = 1, . . . , k) with means given by nπi (or nπ0i under H0).
Using this Poisson model, the Pearson–Fisher test arises naturally as the
score test. In a similar way, the Wald test statistic turns out to be Neyman’s
modified X2 statistic (Neyman (1949)),

N̂Mn =
k∑

j=1

(
Nj − nπ0j(β̂)

)2

Nj
.

The Wald statistic is a quadratic approximation of the likelihood ratio test
statistic,

L̂Rn = 2
k∑

j=1

Nj ln
Nj

nπ0j(β̂)
. (1.3)

Based on the likelihood theory, all three test statistics have the same asymp-
totic null distribution.

The three likelihood-based statistics are not the only ones used for goodness-
of-fit testing in a multinomial distribution. For instance, the Freeman–Tukey
statistic is derived independently from the likelihood, but it also has the
same asymptotic χ2 null distribution. Cressie and Read (1984) introduced
a generalisation of the above-mentioned statistics. They found a family of
statistics indexed by a real-valued parameter λ. The family is called the
family of power divergence statistics and it is given by

2nIλ(N ; β̂) =
2

λ(λ + 1)

k∑
j=1

Nj

⎧⎨⎩
(

Nj

nπ0j(β̂)

)λ

− 1

⎫⎬⎭ .

For λ = 0 and λ = −1, the corresponding statistics are defined by continuity.
Then, λ = 0, λ = 1, λ = −2, and λ = − 1

2 give the likelihood ratio, Pearson,
Neyman’s modified, and the Freeman–Tukey statistic, respectively.
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We summarise the main results of Cressie and Read (1984) in the next
theorem. For more details on the power divergence statistics, we refer to a
monograph on these statistics by Read and Cressie (1988).

Theorem 1.3. (1) Suppose that N is a multinomial random vector with
probability vector π and let π̂ denote any

√
n-consistent estimator of π. Then,

as n → ∞,

2nIλ(N ; β̂) − 2nI1(N ; β̂)
p−→ 0 −∞ < λ < +∞.

(2) Suppose H0 is true, and β̂ is a BAN estimator of β. Then, as n → ∞,

2nIλ(N ; β̂) d−→ χ2
k−p−1 −∞ < λ < +∞.

Cressie and Read (1984) thoroughly studied the large and small sample
properties of goodness-of-fit tests based on their power divergence statistics.
They concluded that the Pearson test (λ = 1) is good in the sense that its null
distribution is well approximated by the χ2 distribution in small samples, and
it has quite good power against many alternatives. From many perspectives
(χ2 approximation and power) they generally recommend λ ≥ 0, and because
the likelihood ratio test is at the boundary of this recommendation (λ = 0),
they suggest not to use this test. Based on their study, they eventually pro-
posed a new test with overall good properties in terms of χ2 approximation
and power,

2nI2/3(N ; β̂) =
9
5

k∑
j=1

Nj

⎡⎣( Nj

nπ0j(β̂)

)2/3

− 1

⎤⎦ .

1.3.3 A Note on the Nuisance Parameter Estimation

Theorems 1.2 and 1.3 rely on the condition that β̂ is a BAN estimator.
Although in many situations this will be the MLE, there is a more general
class of estimators that possess this property. Holland (1967), for instance,
showed that the minimum chi-square estimator is also BAN. The latter is
defined as

β̂ = ArgMinβ∈BX2
n(β).

If one believes that the Pearson X2 statistic measures the discrepancy be-
tween the observed data and the hypothesised model at the right scale, it
seems indeed meaningful to replace β by that value of the nuisance param-
eter that moves the hypothesised model as close as possible to the observed
data. Note that the MLE minimises the likelihood ratio statistic of Equation
(1.3). Because the Pearson X2 and the likelihood ratio statistics are no true
distance measures, these estimators are generally referred to as minimum
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discrepancy estimators. Cressie and Read (1984) introduced a large class of
such estimators. They defined

β̂ = ArgMinβ∈BIλ(N ;β)

as the minimum Iλ-discrepancy estimator. They showed that this β̂ is a BAN
estimator, provided that the function π0(β) satisfies the six Birch regularity
conditions.

A BAN estimator is also a locally asymptotically linear estimator. See
Section 2.7 for more details.

1.4 Pearson X2 Tests for Continuous Distributions

Although the Pearson X2 test is clearly developed for testing goodness-of-fit
for a multinomial distribution, it is also a popular test to use with continuous
distributions. When put into an historical perspective, it is easy to under-
stand: in the early years of statistics, say in the first few decades of the
1900s, the Pearson X2 test was the only goodness-of-fit test available. Thus
when testing goodness-of-fit for a continuous distribution, the data were first
grouped into k groups or cells so that counts from a multinomial distribution
were obtained. In this section, we give only a few general comments on this
procedure, but no details are given because we believe that nowadays one
should use other types of goodness-of-fit tests for continuous distributions.
This does, however, not mean that there is no active research going on any-
more. For instance, Aguirre and Nikulin (1994) and Pya (2004) constructed
Pearson-type tests for the logistic distribution. The book of Greenwood and
Nikulin (1996) is completely devoted to this class of tests.

Let Sn and S denote the sample and the sample space (i.e., the support of
the hypothesised distribution G). Consider a partition of the sample space,
say S = ∪k

j=1Sj , where the Sj are disjoint subsets of S. Usually, the partition
is of the form S = {] −∞, c1[, [c1, c2[, . . . , [ck−1,+∞[}, where the constants
cj are called the cell boundaries. The multinomial counts are then computed
as Nj = #{1 ≤ i ≤ n : Xi ∈ Sj}, and their corresponding probabilities under
the goodness-of-fit null hypothesis are given by

π0j(β) =
∫
Sj

g(x;β)dx,

(j = 1, . . . , k) where the nuisance parameter may be replaced by an estimator
(see later).

When testing a simple null hypothesis, no nuisance parameter estimation
is needed, and the Pearson X2 statistic of Equation (1.1) has asymptot-
ically a χ2

k−1 null distribution, as before. Despite the apparent simplicity
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of the procedure, there are some important issues left unanswered: how to
choose the number of partitions (k) and where to place the cell boundaries
(cj). The optimal grouping depends on the alternative against which a large
power is desirable, but in many realistic situations there is no clear idea
about the alternative. Many of the theoretical studies about these issues are
asymptotic in nature, and some of these even suggest to let the number
of cells (k) grow with the sample size n. Among all grouping schemes that
have been suggested, we only mention a simple but popular solution which
says that the cell boundaries must be chosen so that equiprobable classes
are obtained (Mann and Wald (1942)), i.e., π01 = · · · = π0k = 1/k. Un-
der these conditions Mann and Wald (1942) showed that the Pearson test is
unbiased. Later, Cohen and Sackrowitz (1975) and Bednarski and Ledwina
(1978) showed that in most cases Pearson’s test is biased when applied to an
unequiprobable grouping. Mann and Wald also give a formula to determine
an appropriate number of equiprobable cells based on some minimum power
requirement. The intuitively appealing reasoning that the more cells are con-
structed the more information from the original sample of continuous data
is retained and the higher the power will be is, however, not always correct
(Oosterhoff (1985)) because the increase of the number of cells implies both
an increase in the noncentrality parameter of the noncentral χ2-distribution
of the test statistic under a local alternative hypothesis, and an increase
of the variance of the limiting central χ2-distribution under H0. Whenever
the second implication beats the first, an increase in power under partition
refinements is not guaranteed anymore. Since the publication of the Mann
and Wald paper, many more papers on the choice and the number of cells
have appeared. In general it is concluded that the Mann–Wald number of
cells is too high (see, e.g., Quine and Robinson (1985)) and may even re-
duce the power for some specific alternatives. A comprehensive and practical
oriented summary can be found in Moore (1986). A more modern approach
to the problem of choosing k is to make this choice data dependent (see,
e.g., Bogdan (1995) and Inglot and Janic-Wróblewska (2003)). In most of the
papers on the subject the authors agree with the initial recommendation of
equiprobable cells; still it is important to recognise that some others have
other recommendations. Kallenberg et al. (1985), for instance, suggest that
for heavy-tailed distributions under the alternative hypothesis, smaller cells
in the tails may result in better power characteristics.

When there are nuisance parameters involved the problem becomes even
more complex. Only when the nuisance parameters are estimated as a BAN
estimator (e.g., the MLE) based on the grouped data N , the theory of Sec-
tion 1.3.1 applies, and thus the Pearson–Fisher X̂2

n statistic has a limiting
χ2

k−p−1 distribution under the null hypothesis. However, when the original
ungrouped observations X1, . . . , Xn are available, it may seem more appropri-
ate to use them directly for estimating the nuisance parameter, for example,
the (ungrouped) MLE defined as ArgMaxβ∈B

∑n
i=1 ln g(Xi;β). When this

ungrouped MLE is plugged into the Pearson X2 statistic, the asymptotic
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null distribution has no simple expression anymore (it is a weighted sum
of χ2

1 variates, but the weights may depend on G and on the unknown nui-
sance parameter β). This test, which is known as the Chernoff–Lehmann test
(Chernoff and Lehmann (1954)), has thus little value in practice. Rao and
Robson (1974) showed that if the X2

n test statistic is changed by replacing
the variance–covariance matrix Σ in Equation (A.1) by a more complicated
form (not shown), the resulting test statistic has asymptotically a χ2

k−1 null
distribution, which does not depend on the number of nuisance parameters!
This test is known as the Rao–Robson test. Numerous simulation studies have
indicated that the Rao–Robson test has the largest power for many different
alternatives (see, e.g., Moore (1986)). As in the no-nuisance parameter case,
here also the issues related to the choice of the number and position of the
cell boundaries are important. Many systems of choosing the cell boundaries
(e.g., equiprobable cells) now result in random cell boundaries because of the
dependence on the same data through G(.; β̂), which further complicates the
theory.

Finally, we refer the interested reader to D’Agostino and Stephens (1986),
Drost (1988), Rayner et al. (2009), and Greenwood and Nikulin (1996) for
more detailed discussions on the issues briefly introduced here.



Chapter 2

Preliminaries (Building Blocks)

This chapter provides an introduction to some methods and concepts on
which many of the goodness-of-fit methods are based. For instance, the
empirical distribution function (EDF) plays a central role in many GOF
techniques. Instead of introducing and discussing the EDF in the section
where it is used for the first time, we have chosen to isolate it and put it
into this chapter. When in further chapters a method is described which
relies heavily on the EDF, the reader is referred to this introductory chapter.
Other concepts treated in this way are empirical processes, comparison
distributions, Hilbert spaces, parameter estimation, and nonparametric den-
sity estimation. Some of the topics are quite technical, but we have tried to
focus on the rationale and intuition behind them, rather than providing all
the technical details.

Despite the heterogeneity of topics included here, we have tried writing
this chapter so that it can also be read as an introduction which demonstrates
that GOF can be viewed from many different angles.

2.1 The Empirical Distribution Function

2.1.1 Definition and Construction

The empirical distribution function (EDF) is basically an estimator of the
distribution function F of a random variable X, and it is directly based on
the probability interpretation of F . In particular, for each x,

F (x) = Pr {X ≤ x} .

O. Thas, Comparing Distributions, 19
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Thus, for each x, F (x) is a probability, and because probabilities are easy
to estimate, F (x) also has a simple estimator. In particular, let Sn =
{X1, . . . , Xn} denote a sample of n i.i.d. observations; then F (x) is con-
sistently estimated as

F̂n(x) =
1
n

#{Xi ∈ Sn : Xi ≤ x} =
1
n

n∑
i=1

I (Xi ≤ x) ; (2.1)

i.e., F̂n(x) equals the number of sample observations not larger than x, di-
vided by the sample size n. From this construction, it is clear that F̂n(x) is a
nondecreasing step function, with steps at the sample observations x = Xi.
Each step is a multiple of 1/n.

The EDF may also be constructed by using the order statistics. Suppose
that no ties occur in the sample: i.e., all sample observations are different (this
happens with probability one when F is continuous). Then the n observations
can be ordered so that X1 < X2 < · · · < Xn. For this ordering, the ith order
statistic, denoted by X(i), equals Xi (i = 1, . . . , n). Using the order statistics,
the EDF may be defined as⎧⎨⎩

F̂n(x) = 0 if x < X(1)

F̂n(x) = i
n if X(i) ≤ x < X(i+1), i = 1, . . . , n − 1

F̂n(x) = 1 if X(n) ≤ x .

Example 2.1 (PCB concentration). Figure 2.1 shows the EDF of the PCB
data. The R-code is given below.

> PCB.edf<-ecdf(PCB)
> plot(PCB.edf,verticals= TRUE, do.p = FALSE,
+ main="EDF of PCB data")

The EDF is closely related to the binomial distribution. From its definition
in (2.1), we may see that, for each x, nF̂n(x) is binomially distributed with
parameters n and F (x). Thus, for every x the exact distribution of F̂n(x) is
known. Many of the results presented later in this chapter, however, are based
on asymptotic properties of the EDF. For instance, the next three properties
follow immediately from the binomial distribution of nF̂n(x).

1. F̂n(x) is an unbiased estimator of F (x); i.e.,

E
{

F̂n(x)
}

= F (x) for every x and every n.

2. By the strong law of large numbers, F̂n(x) is consistent; i.e., as n → ∞,

F̂n(x) a.s.−→ F (x) for every x.
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Fig. 2.1 The EDF of the PCB data

3. By the central limit theorem (CLT), the asymptotic normality of
√

nF̂n(x)
follows; i.e., as n → ∞,

√
n
(
F̂n(x) − F (x)

)
d−→ N (0, F (x) (1 − F (x))) for every x.

Note that these are all pointwise convergences. Property (2) may even be
extended,

sup
x

|F̂n(x) − F (x)| a.s.−→ 0.

This result is known as the Glivenko–Cantelli theorem . The estimation error
of F̂n is controlled by the Dvoretzky–Kiefer–Wolfowitz inequality, which says
that for any ε > 0,

Pr
{

sup
x

|F̂n(x) − F (x)| > ε

}
≤ 2 exp(−2nε2).

2.1.2 Rationale for Using the EDF

All these properties essentially say that F̂n is close to F for large sample sizes.
Thus, when the interest is in testing the GOF null hypothesis H0 : F (x) =
G(x), it is sensible to measure in some sense how different the EDF is from
the hypothesised distribution G. This is exactly what EDF test statistics do
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(see Chapter 5). They are distance measures between the sample-based EDF
and the hypothesised distribution function G. Statistics within this class may
be generally denoted by

Tn = c(n)d(F̂n, G), (2.2)

where c(n) is a scaling factor depending on the sample size n to make the
asymptotic null distribution of Tn nondegenerate, and d(., .) denotes a dis-
tance or a divergence function. All these distance measure have in common
that they satisfy

d(F,G) = 0 ⇔ H0 is true,

and
d(F̂n, G) is a consistent estimator of d(F,G).

In Sections 5.1, 5.2, and 5.3 we discuss several choices for distance functions d.
Once a distance function d is chosen, the properties of Tn can be studied

(e.g., the null distribution, power, consistency). In this respect the asymptotic
normality of

√
n
(
F̂n(x) − F (x)

)
plays a crucial role. However, it turns out

that pointwise convergence is not sufficient for obtaining the null distribution
of most Tn. Intuitively, this may be seen from (2.2), where d is a distance be-
tween two functions. Hence, some functional central limit theorem is needed.
This is the topic of Section 2.2.

2.2 Empirical Processes

2.2.1 Definition

In the previous section the EDF was introduced, and some of its asymptotic
properties were given. It is important to see that all these properties only hold
in a pointwise fashion; i.e., they are statements about F̂n(x) for a given x.
On the other hand, F̂n(x) is clearly a function of x, and it is in this sense
that the EDF is used in the distance function in (2.2). Although our focus is
on F̂n(x), it turns out that it is more convenient to work with the empirical
process

IBn(x) =
√

n
(
F̂n(x) − F (x)

)
.

When F is the uniform distribution, IBn is sometimes referred to as the uni-
form empirical process. Because IBn depends on the sample observations it is
a random function. Figure 2.2 illustrates the concept of a random function by
showing some realisations of the uniform empirical process IBn. A realisation
of an empirical process is called a sample path.
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Fig. 2.2 Realisations of a uniform empirical process with n = 50 (left), and with n = 1000
(right)

2.2.2 Weak Convergence

When going from pointwise to functional properties of IBn(x), it is a natural
step to first have a look at the properties of the finite-dimensional random
vector

(IBn(x1), . . . , IBn(xk)) , (2.3)

for any x1, . . . , xk in the support of F . In particular, it is the multivariate
CLT that gives, for any x1, . . . , xk,

(IBn(x1), . . . , IBn(xk)) d−→ (IB(x1), . . . , IB(xk)) ,

where the vector on the right has a multivariate normal distribution with zero
mean and a variance–covariance matrix with the (i, j)th element given by

Cov {IB(xi), IB(xj)} = F (xi ∧ xj) − F (xi)F (xj). (2.4)

As the dimension k grows, the vector (2.3) becomes a better approximation of
the function IBn. To move further on to a functional CLT, however, it is not
sufficient to let k grow infinitely large. A more technical condition (tightness)
is needed. Nevertheless, for most results in this book, it is sufficient to think
of a functional CLT as the limit of a multivariate CLT. We say that the
empirical process IBn converges weakly to a limiting process IB, which is
denoted by

IBn
w−→ IB.

Here, the limiting process is a zero-mean Gaussian process with covariance
function

c(x, y) = Cov {IB(x), IB(y)} = F (x ∧ y) − F (x)F (y), (2.5)
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which is basically the same as (2.4), but now it is defined as a function
of (x, y). For the uniform empirical process, the covariance function is
c(x, y) = x ∧ y − xy, and IB is called a Brownian bridge. For general F , IB is
sometimes referred to as an F -Brownian bridge. Figure 2.2 illustrates nicely
where the name bridge comes from: at the two endpoints x = 0 and x = 1
the process IBn(x) ≡ 0 ≡ IB(x), and in between the process may look like a
bridge.

In general a Gaussian process is a zero-mean random process, say IP, for
which for every finite-dimensional vector (x1, . . . , xk), (IP(x1), . . . IP(xk)) is
multivariate normal. The Gaussian process is further characterised by its
covariance function, say c(x, y) = Cov {IP(x), IP(y)}. We only mention briefly
one more important theorem here: the continuous mapping theorem. This
result is loosely stated in Theorem 2.1 in which we discarded the measura-
bility conditions.

Theorem 2.1. Let g denote a continuous function. If IBn
w−→ IB, then

g(IBn) d−→ g(IB) as n → ∞.

Note that in the statement of Theorem 2.1 the term “function” is used in
the general sense that it maps elements of the sample space of IBn to another
metric space. This may have consequences for how continuity is defined. We
refer to Shorack and Wellner (1986) for a careful study of weak convergences
of the empirical process, continuous mapping theorems, and strong approx-
imations. More recent accounts can be found in Van der Vaart and Wellner
(2000) and Kosorok (2008).

2.2.3 Kac–Siegert Decomposition of Gausian Processes

Kac and Siegert (1947) suggested a very convenient decomposition of a
Gaussian process which can be used, for instance, for simulating the process.
Later in the book the decomposition is used to get a deeper understanding
of the EDF-type tests such as, e.g., the Anderson–Darling test. We give here
an intuitive introduction to the decomposition. More details can be found in
Chapter 5 of Shorack and Wellner (1986).

Consider a zero-mean Gaussian process IP, defined over [0, 1], and let
c(x, y) denote its covariance function. Suppose that the covariance function
is a continuous and positive semidefinite symmetric kernel function; then
Mercer’s theorem applies. Mercer’s theorem states that the kernel function
c(x, y) has the following expansion,

c(x, y) =
∞∑

j=1

λjhj(x)hj(y), (2.6)
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for 0 ≤ x, y ≤ 1, and where {λj} and {hj} are the eigenvalues and the
eigenfunctions of the kernel c(x, y). The eigenvalues and the eigenfunctions
are the solutions to the integral equation∫ 1

0

h(x)c(x, y)dx = λh(y).

We refer to Kanwal (1971) for more detailed properties of kernel func-
tions and on Mercer’s theorem. Throughout this book, we assume that∫ 1

0

∫ 1

0
c(x, y)dxdy < ∞. This further implies that

∑∞
j=1 λ2

j < ∞, and be-
cause proper covariance functions are positive semidefinite, we also know
that all eigenvalues are nonnegative. Another important property is that the
eigenfunctions form an orthonormal basis of the function space of all contin-
uous square-integrateble functions on [0, 1]. This space, which is denoted as
L2([0, 1]) is a Hilbert space. See Section 2.5 for more details. In particular,
for any eigenfunctions hj and hl,∫ 1

0

hj(x)hl(x)dx = δjl,

where δjl is Knonecker’s delta.
The main results of Kac and Siegert (1947) are summarised in the following

theorem.

Theorem 2.2. Consider the zero-mean Gaussian process IP and its positive
semidefinite covariance function c(x, y), and suppose that Mercer’s theorem
applies to c(x, y). Let Z1, Z2, . . . be i.i.d. standard normal random variables,
and define

IKm(x) =
m∑

j=1

√
λjhj(x)Zj . (2.7)

Then,

E
{

(IKm(x) − IP(x))2
}
→ 0 for each x as m → ∞.

Moreover the random variables

1√
λj

∫ 1

0

IP(x)hj(x)dx = Zj (2.8)

(j = 1, . . . , m) are standard normally distributed, and they are all mutually
independent.

This theorem importantly says that IK∞ =
∑∞

j=1

√
λjhj(x)Zj is an equiva-

lent representation of the process IP, and the components Zj given by equa-
tion (2.8) are called the principal components of the process IP.
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Although we do not give a formal proof of the theorem here, the core of
the proof is easy to understand. First, we compute the covariance function
of the process IK∞,

Cov {IK∞(x), IK∞(y)} = Cov

⎧⎨⎩
∞∑

j=1

√
λjhj(x)Zj ,

∞∑
l=1

√
λlhl(y)Zl

⎫⎬⎭
=

∞∑
j=1

∞∑
l=1

√
λj

√
λlhj(x)hl(y)Cov {Zj , Zl}

=
∞∑

j=1

λjhj(x)hj(y)Var {Zj}

=
∞∑

j=1

λjhj(x)hj(y)

= c(x, y).

The principal components arrise from Equation (2.8) as

1√
λj

∫ 1

0

IP(x)hj(x)dx =
1√
λj

∫ 1

0

( ∞∑
l=1

√
λlhl(x)Zl

)
hj(x)dx

=
1√
λj

∞∑
l=1

√
λl

(∫ 1

0

hl(x)hj(x)dx

)
Zl

=
1√
λj

√
λjZj

= Zj .

Now that we have seen that IK∞ is an equivalent representation of the
Gaussian process IP, we may understand, at least intuitively, the following
important result, which may be useful in combination with the CMT.

Theorem 2.3. Let IP(x) denote a Gaussian process defined over x ∈ [0, 1]
with continuous mean and covariance functions m(x) and c(x, y), respectively.
Let g(x) denote a continuous weight function so that

∫ 1

0
|g(x)|dt < ∞. Then,∫ 1

0

IP(x)g(x)dx ∼ P,

where P is a normally distributed random variable with mean and variance
equal to ∫ 1

0

m(x)g(x)dx and
∫ 1

0

∫ 1

0

c(x, y)g(x)g(y)dxdy, (2.9)

respectively, provided the integrals involved exist.
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When IP = IB is a standard Brownian bridge the mean and the variance
used in Theorem 2.3 may be simplified. First, because the mean of IB(x) is
zero for all x, we have that the mean of P is also zero. Let ϕ(x) =

∫ x

0
g(t)dt;

i.e., g(x)dx = dϕ(x). The variance in (2.9) now becomes∫ 1

0

∫ 1

0

(x ∧ y − xy)dϕ(x)dϕ(y) = Var {ϕ(U)} , (2.10)

where U ∼ [0, 1]. This last step makes use of an alternative formulation of
the variance. See, e.g., pp. 116–117 in Shorack (2000) for more details.

2.3 The Quantile Function and the Quantile Process

2.3.1 The Quantile Function and Its Estimator

A distribution may also be characterised by its quantile function, which is
usually defined as

Q(p) = F−1(p) = inf{y ∈ S : p ≤ F (y)}, (2.11)

which is the inverse function of F , as F is always a right-continuous function.
For p = 0.25, p = 0.50, and p = 0.75, the quantile function gives the three
quartiles. In particular, F−1(0.5) is the median, and F−1(0.75) − F−1(0.25)
is the interquartile range (IQR).

Just as the EDF F̂n is a natural estimator of F , the empirical quantile
function (EQF) is defined as the empirical version of F−1(p); i.e.,

Q̂(p) = F̂−1
n (p) = X(i) if

i − 1
n

≤ p <
i

n
for some 1 ≤ i ≤ n, (2.12)

where X(i) is the ith order statistic of the sample X1, . . . , Xn. For a given p,
F̂−1

n (p) is recognised as a sample quantile. Note that F̂−1
n (p) always equals

one of the n sample observations. With this definition of the EQF we imme-
diately also have estimators of the median, the other quartiles, and any other
individual quantile. A pointwise asymptotic distribution theory for F̂−1

n (p)
could thus be useful for inference on quantiles. However, for later purposes,
it is more important to consider F̂−1

n (p) as a process over p ∈ [0, 1].
A more general definition was proposed by Hyndman and Fan (1996). They

defined a class of empirical quantile functions, indexed by two parameters
m ∈ IR and γ. The “parameter” γ is actually a function of j = �pn+m�, where
p is the percentile corresponding to which the quantile is to be calculated,
and g = pn + m − j. Let

Q̂m,γ(p) = (1 − γ)X(j) + γX(j+1) where
j − m

n
≤ p <

j − m + 1
n

.
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The parameter m may be interpreted as a kind of continuity correction.
With m = 0 and γ = 1 when g > 0, and γ = 0 otherwise, this quantile
estimator coincides with the traditional estimator using F̂−1

n . Other choices
of γ result in averaging of two subsequent order statistics. Hyndman and Fan
(1996) discussed nine types of quantile estimators using their class. In R (R
Development Core Team (2008)) the default is “type 7”, which is given by
γ = 0.5 and m = 1 − p, so that j = �p(n − 1)� = 1. This gives for the
three most important quantiles that are often used as summary statistics in
a data exploration, (i.e., the first quartile Q1, the median Q2, and the third
quartile Q3)

Q1 =
1
2
X(�1/4n+3/4�) +

1
2
X(�1/4n+3/4�+1) (2.13)

Q2 =
1
2
X(�1/2n+1/2�) +

1
2
X(�1/2n+1/2�+1) (2.14)

Q3 =
1
2
X(�3/4n+1/4�) +

1
2
X(�3/4n+1/4�+1). (2.15)

2.3.2 The Quantile Process

The quantile process is defined as

IQn(p) =
√

n
(
F̂−1

n (p) − F−1(p)
)

p ∈ [0, 1].

Although a quantile process is defined in terms of the inverse of the CDF,
it is asymptotically related to the empirical process IBn. The relation is es-
tablished by using the Bahadur representation of a sample quantile, which
is basically a strong approximation of the sample quantile. In particular, for
continuous F and positive differentiable density function f , the Bahadur–
Kiefer theorem (Kiefer (1970)) shows that

F̂−1
n (p) = F−1(p) − F̂n(F−1(p)) − p

f(F−1(p))
+ Rn(p), (2.16)

where sup0≤p<1 |Rn(p)| p−→ 0 (the actual result is a refinement of this state-
ment). A more general, but weaker result may be found in Doss and Gill
(1992). Equation (2.16) implies the asymptotic equivalence of the quantile
process and a transformed empirical process. In particular, we may write

sup
0≤p<1

∣∣∣∣√n(F̂−1
n (p) − F−1(p)) −√

n(F̂n(F−1(p)) − p)
(
− 1

f(F−1(p))

)∣∣∣∣ p−→ 0,

as n → ∞. The process within the |.| is generally known as the empirical
difference process. This result almost immediately gives the weak convergence
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of IQn(p), which is stated here as a theorem (see, e.g., Section 21.2 of van der
Vaart (1998)).

Theorem 2.4. Suppose that F is continuously differentiable on an interval
[a, b] = [F−1(p1)− ε, F−1(p2)+ ε] for some 0 < p1 < p2 < 1 and some ε > 0,
or, if F has a compact support, suppose that F is continuously differentiable
on its compact support, and suppose that the derivative f is positive; then, as
n → ∞,

IQn(p) w−→ − IB(p)
f(F−1(p))

.

2.4 Comparison Distribution

An important tool in goodness-of-fit testing is the probability integral trans-
formation (PIT) of a random variable X to U = G(X). If X has CDF G,
then U is uniformly distributed over [0, 1]. In some literature the PIT is also
known as the grade transformation. Thus, with this transformation at hand,
there is actually only need for goodness-of-fit methods for the uniform distri-
bution. This partly explains its popularity, but, as we later show, it is often
more informative to apply methods particularly designed for a given G.

The CDF of the random variable U = G(X) may be obtained as follows.
Suppose X has CDF F instead of G. Then U = G(X) has CDF

R(u) = Prf {U ≤ u} = Prf {G(X)≤u} = Prf

{
X ≤ G−1(u)

}
= F (G−1(u)).

(2.17)

Later, in Section 3.2.1, we show that this is exactly the population PP plot.
The interpretation as a distribution function was first used by Parzen (1979),
who called it the comparison distribution. In some literature it appears also
as the ordinal dominance curve (e.g., Bamber (1975); Carolan and Tebbs
(2005)) or the relative distribution function in, e.g., Handcock and Morris
(1999). Parzen and Handcock and Morris consider also the density function
of U ,

r(U) =
f(G−1(u))
g(G−1(u))

, (2.18)

which is named the relative density function. Handcock and Morris (1999)
have developed a complete methodology based on a graphical representation
of the relative density function. Their technique is particularly suited to get
a detailed and easily interpretable graphical description of how distributions
differ. As Equation (2.18) shows, the relative density needs the unknown den-
sity f rather than the CDF F as was the case in the methods discussed up to
now. In contrast to the CDF, a nonparametric estimator of a density func-
tion requires more complex statistical methods, such as kernel smoothers.
The advantage, on the other hand, is that such methods give smoother
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graphical representations than does the step function F̂n. More details on
nonparametric density estimators are given in Section 2.8. In Section 3.3 the
use of the comparison density as a graphical tool for assessing the goodness-
of-fit is further illustrated.

2.5 Hilbert Spaces

Many constructions and characteristics of GOF methods make much sense
when they are embedded in a Hilbert space. For instance, in Section 2.1.2 we
have related the GOF problem to a distance function d(F,G). Hilbert spaces
are used to define an appropriate distance measure.

A Hilbert space may be interpreted as an extension of an Euclidean space
in the sense that it has an infinite-dimensional basis. It is also an inner prod-
uct space which has vectors as elements. For the applications that we are
interested in, these vectors are functions (e.g., density functions, score func-
tions, or relative density functions). In the next few paragraphs we give a
very brief introduction to Hilbert spaces. We only mention definitions and
properties that are useful in further chapters. Because we only use Hilbert
spaces for functions, we restrict the discussion to Hilbert function spaces.

Let G denote a CDF. The Hilbert space L2(S, G) is a set of functions
u : S ⊆ IR �→ IR. The space is equipped with the inner product

< u, v >g =
∫
S

u(x)v(x)g(x)dx =
∫
S

u(x)v(x)dG(x),

and the L2 norm of an element u is defined as

||u||g =
√

< u, u >g =

√∫
S

u2(x)g(x)dx.

The L2(S, G) space is the set of all functions u : S ⊆ IR �→ IR for which ||u||g
is finite.

Hilbert spaces may be defined for vector-valued functions. For example,
consider a Hilbert space L2(S, G) of functions v : S ⊆ IR �→ IRq. For u,v ∈
L2(S, G), the inner product is then defined as

< u,v >g =
∫
S

u(x)vt(x)dG(x),

which is a q × q matrix.
The Hilbert space that is described here is actually a Lebesgue space be-

cause of the use of the measure G in the definition of the inner product. This
links the function space with the measure space on which the random vari-
ables (random sample observations) are defined. We do not further elaborate
on this because we try to avoid measurability issues throughout the book.
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We next list some useful properties of the inner product: for all u, v, w ∈
L2(S, G), and all x ∈ IR,

< u, v >g = < v, u >g

< u + v, w >g = < u,w >g + < v,w >g

< xu,w >g = x < u,w >g

||u||g = 0 ⇔ u ≡ 0,

where 0 is the zero element; i.e., 0 ∈ L2(S, G) satisfies < 0, u >g =< u, 0 >g

= 0 for all u ∈ L2(S, G).
In the Hilbert space L2(S, G) there exists an infinite-dimensional or-

thonormal basis, say {hj}k∈IN. The orthonormality condition gives for every
i, j ∈ IN,

< hi, hj >g = δij , (2.19)

where δij = 0 if i �= j and δij = 1 if i = j. For every element u ∈ L2(S, G)
there exists a set of constants {aj}j∈IN (aj ∈ IR) so that

u =
∞∑

j=1

ajhj . (2.20)

Sometimes, when confusion between functions and scalars may appear, we
write u(x) =

∑∞
j=1 ajhj(x) instead of Equation (2.20). Using the orthonor-

mality property of the basis functions, we immediately find

< u, hj >g =

〈 ∞∑
i=1

aihi, hj

〉
g

=
∞∑

i=1

< aihi, hj >g = aj < hj , hj >g= aj .

Equation (2.20) thus becomes

u =
∞∑

j=1

< u, hj >g hj . (2.21)

The right-hand side of Equation (2.20) or (2.21) is known as an expansion of
the function u.

The inner product and the norm in Hilbert spaces have similar geometric
interpretations as in the Euclidean space. For instance,

uv =< u, v >g
v

||v||2g
=
〈

u,
v

||v||g

〉
g

v

||v||g
is the orthogonal projection of u onto v. The orthogonal projection onto v ∈
L2(S, G) is a transformation which is sometimes denoted by the operator Pv.
It satisfies the relations

Pvv = v



32 2 Preliminaries (Building Blocks)

and

< u − Pvu, v >g = < u, v >g − < Pvu, v >g (2.22)

= < u, v >g −
〈〈

u,
v

||v||g

〉
g

v

||v||g , v

〉
g

= < u, v >g − < u, v >g
< v, v >g

||v||2g
= < u, v >g − < u, v >g= 0. (2.23)

The function uT = u − Pvu is the residual of u after orthogonal projection
onto v. Equation (2.23) shows that u�

v = u−Pvu is orthogonal to v. Moreover,
any element u can be decomposed as u = Pvu + (u−Pvu) = uv + u�

v , where
the two components are orthogonal in L2(S, G).

Let v1, . . . , vk ∈ L2(S, G) (k > 1). A subspace P of L2(S, G) can be
defined as the space spanned by the vectors v1, . . . , vk, denoted as P =
span(v1, . . . , vk). The orthogonal complement of P is given by

P� = {u ∈ L2(S, G) : Pvu = 0 for all v ∈ P} .

Note that all uT
vi

∈ PT (i = 1, . . . , k). In later chapters we often consider
expansions of an element u ∈ L2(S, G) of the form (2.20), where aj = θj is a
parameter to be estimated from the sample observations. Often only a finite
number of parameters can be estimated and therefore a series expansion is
truncated at some finite order, say k. Define

w =
k∑

j=1

θjhj .

Interestingly, θj =< w, hj >g =< u, hj >g is also the solution to minimising∣∣∣∣∣∣
∣∣∣∣∣∣u −

k∑
j=1

θjhj

∣∣∣∣∣∣
∣∣∣∣∣∣
g

.

The latter formulation of the problem has a simple geometric interpreta-
tion. First note that w =

∑k
j=1 θjhj is a vector in the subspace Pk =

span(h1, . . . , hk). Hence, w is the vector in Pk that is closest to u in the
Hilbert space L2(S, G), or, w is the orthogonal projection of u onto the sub-
space Pk, which may be denoted as w = PPk

u. A more general discussion on
orthogonal projections on subspaces is given in the next paragraph.

More generally we may want to know the orthogonal projection of u ∈
L2(S, G) onto a subspace Pk = span(v1, . . . , vk), where now the v1, . . . , vk

are not necessary orthogonal w.r.t. the inner product in L2(S, G). We only
assume that the v1, . . . , vk are linearly independent. Let w = PPk

u denote the
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orthogonal projection for which we are looking. By definition an orthogonal
projection satisfies

〈u − PPk
u,w〉g = 0 for all w ∈ Pk, (2.24)

i.e. the orthogonal complement of u is orthogonal to each element of Pk. Note
the analogy with (2.22). Some simple algebra shows that the condition (2.24)
immediately implies

PPk
u = 〈u, v〉g 〈v,v〉−1

g v,

where vt = (v1, . . . , vk) and in which < v,v >g = Eg {vvt} is invertible
because of the assumptions on v1, . . . , vk.

2.6 Orthonormal Functions

In the previous section we said that the Hilbert space L2(S, G) may be pro-
vided with a basis {hj} of orthonormal functions hj that satisfy the orthonor-
mality condition (2.19). In this section we give some important examples of
such functions.

2.6.1 The Fourier Basis

The first example is the well-known Fourier or sine basis. When g is the
uniform density, the functions

h0(x) = 1

h2j−1(x) =
√

2 sin(2πjx)

h2j(x) =
√

2 cos(2πjx)

(j = 1, . . .) form an orthonormal basis of the Hilbert space L2([0, 1], 1).

2.6.2 Orthonormal Polynomials

A very important class of orthonormal functions in goodness-of-fit testing is
the class of orthonormal polynomials; i.e., each function hj(x) is a polynomial
of degree j in x. The simplest system of polynomials is hj(x) = xj , but these
do usually not form an orthonormal basis. We denote this simple choice by
pj(x) = xj . These functions can, however, be orthogonalised by means of
the Gram–Schmidt orthogonalisation scheme. In particular, in the previous
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section we have seen that for any u, v,∈ L2(S, G), the elements v and u−Pvu
are orthogonal. Thus, with v = pj−1 and u = pj , we find that pj−1 and

h′
j = pj − Ppj−1pj = pj− < pj , pj−1 >g

pj−1

||pj−1||1/2
g

(2.25)

are orthogonal. This scheme is often initialised by the choice h0(x) = p0(x) =
x0 = 1, and applying the recurrence relation (2.25) for j = 1, . . .. To get the
orthonormal system {hj}, the polynomials h′

j must be normalised, i.e., take
hj = h′

j/||h′
j ||g.

If in the Gram–Schmidt recurrence relation (2.25) the density function g
is explicitly filled in, then for each density g a particular system of recurrence
relations for the construction of the orthonormal polynomials is obtained.
Appendix C of Rayner et al. (2009) gives polynomials for many important
distributions. Many of them have been given specific names. For instance,
for the uniform, the normal, and the exponential distributions, the polyno-
mials are referred to as the Legendre, Hermite, and Laguerre polynomials,
respectively. An efficient method for finding the orthonormal polynomials for
a given density function g is based on simple recurrence relations and is de-
scribed in Rayner et al. (2008). Most of the popular orthonormal polynomials
are available in the cd R-package through the function orth.poly.

For further purposes it is interesting to note that all integrals of the type
< pj , pj−1 >g occurring in Equation (2.25), are of the form

∫
S xj+j−1g(x)dx,

which is equal to the (2j − 1)th noncentral moment of g. The coefficients of
the orthonormal polynomials hj are thus characterised by the moments of
the distribution g.

Finally, we give the first five Legendre polynomials:

h0(x) = 1 h1(x) =
√

12
(

x − 1
2

)
h2(x) =

√
5
(
6x2 − 6x + 1

)
h3(x) =

√
7
(
20x3 − 30x2 + 12x − 1

)
h4(x) = 3

(
70x4 − 140x3 + 90x2 − 20x + 1

)
.

2.7 Parameter Estimation

2.7.1 Locally Asymptotically Linear Estimators

Let β denote a p-dimensional parameter. One of the important assumptions
that is used frequently in this book is that the estimator β̂n is locally asymp-
totically linear, which means that the following expansion holds,
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β̂n − β =
1
n

n∑
i=1

Ψ(Xi;β) + oP (n−1/2), (2.26)

where Ψ t = (Ψ1, . . . , Ψp) is a continuously differentiable vector function
IRp → IRp and has E {Ψ (X;β)} = 0 and E

{
Ψ(X;β)Ψ t(X;β)

}
is finite

and nonsingular. This property holds for many well-known estimators (max-
imum likelihood estimators, moment estimators, M- and Z-estimators). As
an example, we show how the expansion in Equation (2.26) is obtained
for Z-estimators. M- and Z-estimators are well studied, starting with Huber
(1967). Good references are the books by Huber (1974) and Hampel et al.
(1986), which mainly focus on the use of M-estimators in robust statistics.
In robust statistics the function Ψ is known as the influence function. Its
name refers to the interpretation of Ψ(Xi; β̂n) as a measure for the influence
of the i th observation on the estimation of β. A very concise and modern
treatment is given by van der Vaart (1998) (Chapter 5).

A Z-estimator β̂n is defined as the solution to estimation equations,

n∑
i=1

b(Xi; β̂n) = 0, (2.27)

where b = (b1, . . . , bp) is a vector function satisfying the same conditions as
Ψ and for which its first-order derivative w.r.t. β, say ḃ, exists and satisfies
E
{

ḃ(X;β)
}

is finite and E
{

ḃ(X;β)ḃ
t
(X;β)

}
is finite and nonsingular. For

this class of estimators the asymptotic linear representation is obtained with

Ψ(X) = E
{
−ḃ(X)

}−1

b(X).

Under the conditions given above, the estimator β̂ is asymptotically normal,
i.e., as n → ∞, √

n(β̂n − β) d−→ N(0,Σβ),

where
Σβ = E

{
−ḃ(X)

}−1

E
{
b(X)bt(X)

}
E
{
−ḃ(X)

}−t

.

Note that MLE belongs to the class of M-estimators with b(X) = (∂ log f(X))/
∂β, which is the score function of β. In the next section we briefly introduce
method of moments estimators.

2.7.2 Method of Moments Estimators

In the context of goodness-of-fit testing the method of moments estimators
(MME) of a p-dimensional parameter β, say β̃n, is basically the estimator
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that makes p moments of the fitted density coincide with the correspond-
ing sample moments. Suppose the objective is the estimation of β of the
density function g(.;β). Let μ = μ1 = μ1(β) denote the mean of g(.;β),
and μm = μm(β) (m = 2, . . .) is the mth central moment; i.e., μm(β) =∫
S(x − μ)mg(x;β)dx. The corresponding sample moments are denoted as

M1 = X̄ for the sample mean, and Mm = (1/n)
∑n

i=1(Xi − X̄)m for the
central moments. The MME of β is described in the following definition.

Definition 2.1. The MME of β is given by β̃n that is the solution of the
estimation equations

μm(β̃n) = Mm (2.28)

for m = 1, . . . p.

For m = 2, . . . , p Equation (2.28) may be expressed as

n∑
i=1

{(
Xi − X̄

)m − μm(β̃n)
}

= 0,

from which we immediately read the estimating function b of (2.27).

2.7.3 Efficiency and Semiparametric Inference

In parameter estimation the concept of efficiency is very important. Be-
cause this book is about hypothesis testing, we are not much concerned with
efficiency.

An efficient parameter estimator is basically an estimator that among a
wider class of estimators and within a specified class of distributions has
the smallest variance (sometimes defined in an asymptotic sense, related to
rates of convergence). It is, for example, well known that under quite mild
regularity conditions the MLE is efficient. The MME, on the other hand, is
sometimes not efficient. Why would MME be used then? Later in the book
two reasons are made clear. One important reason is that MME will often
improve the interpretability of the goodness-of-fit test. This is often stressed
later. The other reason is that MLE can only be defined when the density
function of the observations is specified. The MME requires only the knowl-
edge of p moments, and may thus be used in a less parametric setting, i.e., in
a semiparametric model. In this sense the MME is actually a semiparamet-
ric estimator. For such estimators the efficiency concept is extended to the
semiparametric efficiency bound, which is basically the smallest variance an
estimator can obtain within a class of semiparametric models. This semipara-
metric class is typically larger than the full parametric class that contains at
most a family of density functions indexed by a nuisance parameter. We refer
to Tsiatis (2006) and Kosorok (2008) for recent accounts on semiparametric
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inference. The relation between locally asymptotically linear estimators and
efficiency is also well explained in Hall and Mathiason (1990).

In Section 1.3.1, while discussing Pearson’s χ2 tests, some results were
given that required the nuisance parameter estimator to be best asymptot-
ically normal (BAN). This estimator is also locally asymptotically linear,
as well as asymptotically efficient. The BAN estimator allows a particular
expansion, which is used, e.g., in a proof presented in Appendix A.2.

2.8 Nonparametric Density Estimation

2.8.1 Introduction

Nonparametric density estimation is, just as goodness-of-fit, a very old and
important field of statistical research with many applications. The objec-
tive of density estimation is the estimation of a density function based on
a sample of n observations (here we consider only the i.i.d. case). When no
restrictive distributional assumptions are made, the problem is referred to
as nonparametric density estimation (NDE). In some sense NDE and GOF
are two approaches to the same set of statistical inference problems. The
latter is the hypothesis testing approach, whereas the former the estimation.
Strangely enough, the literature about both techniques is almost completely
separated. In this section we only give a very brief introduction to NDE, and
we limit the overview to the NDE methods that are relevant for the GOF
tests treated in the book.

First we introduce some notation. When f is the density function of the n
i.i.d. sample observations X1, . . . , Xn, then we use f̂n to denote a NDE of f .
Many papers present NDE methods and study their properties. We mention
here some of the properties that are desirable for the estimators.

1. The NDE f̂n should be a bona fide density function; i.e., with probability
one, for all n

f̂n(x) ≥ 0 for all x ∈ S and
∫
S

f̂n(x)dx = 1.

2. The NDE f̂n should be unbiased; i.e.,

Ef

{
f̂n(x)

}
= f(x) for all x ∈ S and for all n.

It is, however, more realistic to look for an NDE that has this property
asymptotically; i.e.,

lim
n→∞Ef

{
f̂n(x)

}
= f(x) for all x ∈ S.
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3. Weak pointwise consistency is expressed as

f̂n(x)
p−→ f(x) for all x ∈ S,

as n → ∞, and strong pointwise consistency as

f̂n(x) a.s.−→ f(x) for all x ∈ S,

as n → ∞.

These properties are all pointwise, whereas one typically wants estimators
that behave well over the whole support S. The study of such properties is
usually done based on an error criterion. As there are many error criteria
described in the literature, we here only describe a couple of criteria that
may be useful in other parts of this book too.

1. The integrated squared error (ISE) is defined as

ISEn =
∫
S

(
f̂n(x) − f(x)

)2

dx,

which is considered to be a good criterion when one want to measure how
good an estimate f̂n is for a given dataset.

2. When an estimator has to be theoretically evaluated, it is better to use
the mean integrated squared error (MISE), which is defined as

MISEn = Ef {ISEn} =
∫
S

Ef

{(
f̂n(x) − f(x)

)2
}

dx, (2.29)

and which is sometimes also known under the name integrated mean
squared error. It measures the average performance of an estimator.

3. The integrand of the right-hand side of (2.29) may also be written as
MISEn =

∫
S MSEn(x)dx, with MSEn the (pointwise) mean squared error

given by

MSEn(x) = Ef

{(
f̂n(x) − f(x)

)2
}

= Varf

{
f̂n(x)

}
+
{

bias(f̂n(x))
}2

.

(2.30)

All these criteria are based on L2 norms. All the criteria listed here may
be extended to weighted versions. Without introducing extra notation we

define the weighted ISE as ISEn =
∫
S w(x)

(
f̂n(x) − f(x)

)2

dx, the weighted

MISE as MISEn =
∫
S Ef

{
w(x)

(
f̂n(x) − f(x)

)2
}

dx and the weighted MSE

as MSEn(x) = Ef

{
w(x)

(
f̂n(x) − f(x)

)2
}

, where w(x) is a weight function
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that is positive for all x ∈ S and integrates to 1 over the domain of f . As a
last error criterion we mention the expected Kullback–Leibler loss,

Ef

{∫
S

f(x) log
f(x)

f̂n(x)
dx

}
,

which was studied by, among others, Hall (1987).
Many papers in the NDE literature study the rate of convergence of an

estimator f̂n in terms of the convergence rate of one of these error crite-
ria to zero; the MISE is particularly popular. For example, Farrell (1972)
showed that the fastest convergence rate of the MISE for a bona fide NDE is
O(n−4/5).

2.8.2 Orthogonal Series Estimators

Orthogonal series estimators are most closely related to the GOF methods
described in this book. They were introduced by Cencov (1962), and studied
since by many others. In their simplest form they are based on an expansion of
f using orthogonal series expansions. First suppose that f has finite support,
say [0, 1] without loss of generallity. When {hj} denotes a complete system
of orthonormal functions on the uniform [0, 1] distribution, then f(x) has
expansion

f(x) =
∞∑

j=0

θjhj(x),

which is basically (2.20). An unbiased estimator of θj is given by

θ̂j =
1
n

n∑
i=1

hj(Xi), (2.31)

because

Ef

{
θ̂j

}
=
∫ 1

0

hj(x)

( ∞∑
m=0

θmhm(x)

)
dx = θj .

A natural estimator of f is thus

f̂n∞ =
∞∑

j=0

θ̂jhj(x),

but unfortunately with n observations the estimator based on an infinite
number of θ̂j (j = 1, . . .) is useless, because it has infinite variance. Before we
give typical solutions for this problem, we first introduce some other types of
orthogonal series expansions.
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Let {hj} now be a set of orthogonal functions on some distribution function
G (i.e., hj ∈ L2(S, G)), and consider the expansion

f(x) = g(x)

⎧⎨⎩1 +
∞∑

j=1

θjhj(x)

⎫⎬⎭ ; (2.32)

then f can be estimated by replacing the θj in the expansion by θ̂j of (2.31).
This estimator is again unbiased, as may be seen from

Ef

{
θ̂j

}
=
∫
S

hj(x)g(x)

(
1 +

∞∑
m=1

θmhm(x)

)
dx

=
∫
S

θjhj(x)hj(x)g(x)dx = θj .

The density function g in (2.32) has received several names in the statistical
literature. For example, Hjort and Glad (1995) referred to it as a parametric
start, Buckland (1992) called it a parametric key, and Efron and Tibshirani
(1996) gave it the name carrier density.

Yet another method is to consider {hj} to be a set of orthonormal functions
on the uniform distribution; consider the expansion

f(x) = g(x)

⎧⎨⎩1 +
∞∑

j=1

θjhj(G(x))

⎫⎬⎭ ,

and estimate θj by θ̂j = (1/n)
∑n

i=1 hj(G(Xi)). Unbiasedness follows from

Ef

{
θ̂j

}
=
∫
S

hj(G(x))g(x)

(
1 +

∞∑
m=1

θmhj(G(x))

)
dx

=
∫
S

θjhj(G(x))hm(G(x))dG(x)

= θj

∫ 1

0

hj(p)hj(p)dp = θj .

The problem mentioned earlier about the infinite variance of f̂n∞ origi-
nates from the use of an infinite number of parameter estimators, all based
on n observations. A general solution exists in tapering or modulating the
estimator, proposed by Watson (1969). Consider the orthogonal series esti-
mator

f̂n(x) =
∞∑

j=0

bj θ̂jhj(x)
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(or using one of the other types of expansions), where {bj} is a set of tapering
coefficients that basically shrink the tapered estimators bj θ̂j towards zero. We
list a few tapering systems:

1. A partial sum orthogonal series estimator results from bj = 1 for j ≤ k,
and bj = 0 for j > k, with k some constant. The constant k may be chosen
by the user prior to observing the data, or it can be selected in an adaptive
fashion, in which case we denote it by Kn to stress its dependence on the
sample size and its randomness.

2. A parameterised weighting system was suggested by Wahba (1958),

bj =
1

1 + λ(2πj)2m
,

with λ and m some tuning parameters.
3. Among others, Hall (1983) and Hall (1986) proposed weighting schemes

that depend on the variance of θ̂j so that the terms with larger variance
get shrunken more than those with small variance. This is related to the
variance–bias trade-off, that could, for example, be seen from (2.30).

4. The modulators bj can also be chosen from a large set of modulators
so that a certain risk function is minimised. For example, the ISE or a
estimator of the MISE.

We conclude this section by remarking that an orthogonal series estimator
is not necessarily bona fide. There is particularly no guarantee that the NDE
is positive over S. This can be repaired by using the correction methods of
Gajek (1986) or Glad et al. (2003). First note that the perhaps most intuitive
method, that consists in truncating the NDE at zero and renormalisation of
the truncated NDE, is not a good method. See, for example, Hall and Murison
(1993) and Kaluszka (1998).

We now present the correction method of Gajek (1986), but we limit the
exposition to orthogonal series estimators based on the expansion (2.32) that
includes only terms of order j ∈ S, with S a finite index set. This will be
sufficiently general for later purposes. Let f̂n denote the uncorrected NDE.
The Gajek-corrected NDE then becomes

f̂c
n(x) = g(x)max

⎧⎨⎩0, 1 +
∑
j∈S

θ̂jhj(x) − a

⎫⎬⎭ ,

where a is chosen so that the corrected NDE integrates to one. Gajek (1986)
showed that in terms of the weighted MISE, defined as

MISEn(p) = Ef

{∫
S

(p(x) − f(x))2

g(x)
dx

}
,

the corrected NDE possesses the property

MISEn(f̂ c
n) ≤ MISEn(f̂n).
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2.8.3 Kernel Density Estimation

A very popular type of NDE is kernel density estimation. They were first
studied by Rosenblatt (1956) and Parzen (1962). Let K denote a symmetric
kernel function which satisfies

K(x) ≥ x for all x ∈ S and
∫
S

K(x)dx = 1.

All bona fide density functions, for example, are proper kernel functions. The
kernel density estimator is then given by

f̂nh(x) =
1
n

n∑
i=1

1
h

K

(
x − Xi

h

)
,

where h is the bandwidth, which determines the roughness of the estimator or
the variance–bias balance. Convergence rates of the MISE for this estimator
have been studied in detail. These studies often allow the bandwidth to de-
crease with increasing sample size. In this case the bandwidth is denoted by
hn. Optimal bandwidths have been found, depending on the type of kernel
function and on the true distribution F of the data. For example, when K
is the Gaussian kernel, and when F is the normal distribution with variance
σ2, the optimal bandwidth is given by hn = 1.06σ−1/5. The best achievable
convergence rate of the MISE is shown to be O(n−4/5).

We refer to the books of Scott (1992) and Silverman (1986) for good in-
troductions to the field of kernel estimation.

2.8.4 Regression-Based Density Estimation

Fan and Gijbels (1996) described a NDE method that makes use of regression
methods that are available in many software packages. Because this method is
particularly based on the histogram as a NDE, and because the histogram is a
very commonly used graphical exploratory tool, we have chosen to postpone
its description to Chapter 3. Thus this regression-based density estimator is
also discussed there.

2.9 Hypothesis Testing

Because this book is merely about hypothesis testing, we cannot avoid having
an introductory section on this topic. Despite the importance of the basic
theory of hypothesis testing we cannot, however, go into deep detail, as this
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would require another lengthy book. In this section we only present some
very basic minimal theory that is needed to understand some of the topics
treated later in this book. We restrict the discussion to one-sided tests, but
the generalisation of the concepts presented here is mostly straightforward.
For a more detailed treatment of hypothesis testing, we refer to the textbook
of Lehmann and Romano (2005).

2.9.1 General Construction of a Hypothesis Test

Let X1, . . . , Xn denote the n sample observations, which are i.i.d. with density
function f . Suppose the null and alternative hypotheses are formulated as

H0 : f ∈ F0 and H1 : f ∈ F1,

where the disjoint sets F0 and F1 can contain one or more densities. In the for-
mer case the hypothesis is called simple, otherwise it is composite. In general a
statistical hypothesis test is defined through a test statistic which is a function
of the n sample observations, say Tn = Tn(X1, . . . , Xn). We further assume
that the function Tn is invariant to permutations of the entries X1, . . . , Xn

under the null hypothesis. Let Xt = (X1, . . . , Xn). A second ingredient of a
statistical test is the test function φ, which is in general defined as

φ(X) =

⎧⎨⎩0 if Tn(X) < cα

γ if Tn(X) = cα

1 if Tn(X) > cα

,

where γ and cα are chosen so that the test has size α, i.e., so that

sup
f∈F0

Ef {φ(X)} = sup
f∈F0

Prf {reject H0|H0} = α. (2.33)

Let M = M(α,F0) denote the set of test functions for which (2.33) holds
true. Note that if H0 is a simple null hypothesis, say H0 : f = g, Equation
(2.33) reduces to Eg {φ(X)} = α. Sometimes the equality in (2.33) only holds
asymptotically. The power function for a fixed density f of a level α test φ is
defined as

βn(α, φ, f) = Ef {φ(X)} ;

it is the probability to reject the null hypothesis at level-α, when the n sample
observations are i.i.d. f . A level-α test φ0 is called consistent for testing H0

versus H1 if
lim

n→∞βn(α, φ0, f) = 1 for all f ∈ F1.

An unbiased test is a test for which (2.33) holds, as well as

inf
f∈F1

Ef {φ(X)} = inf
f∈F1

βn(α, φ0, f) = inf
f∈F1

Prf {reject H0|H1} ≥ α,
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which says that under the alternative hypothesis, the power may never be
smaller than the level of the test. Again, sometimes this property is only
obtained asymptotically.

It is often the aim to find the level-α test that has maximal power to test
H0 versus H1, therefore we need to know what the maximal achievable power
is. This is measured by the envelope power function

β�
n(α,M,F1) = sup

φ∈M(α,F0)

inf
f∈F1

Ef {φ(X)} .

The infimum in this expression is needed for composite alternative hypothe-
ses; for a given level-α test φ the power is defined as the minimal power of
that test over all densities covered by the alternative hypothesis (F1). The
power envelope measures thus the power of the best level-α test under the
worst detectable alternative.

2.9.2 Optimality Criteria

2.9.2.1 Finite Sample Criteria

A test φ0 for testing H0 versus a simple alternative, say F1 = {f1}, is said
to be the most powerful test (MPT) at level α when

βn(α, φ0, f1) = β�
n(α,M, f1). (2.34)

When testing H0 versus a composite alternative, a level-α test φ0 is called
a uniformly most powerful test (UMPT) if (2.34) holds for all f1 ∈ F1. A
level-α test φ0 is a maximin most powerful test if

inf
f∈F1

βn(α, φ0, f) = β�
n(α,M,F1).

The optimality criteria described in the previous paragraph are strong in
the sense that they hold for all sample sizes, and for alternatives within a
large class F1. Later it becomes clear that it is often very hard to prove
these optimalities because (1) no small sample theory is available, or (2)
power evaluation under a fixed alternative f1 ∈ F1 is very hard. There are
basically two solutions to get around this problem. A first solution exists in
studying the power only against local alternatives, i.e., alternatives f1 ∈ F1

that are very close to densities in F0. More details are provided in the next
paragraph. The second way around is to study the behaviour of tests in an
asymptotic sense, i.e., for large sample sizes. Also here only local alternatives
are of importance, because usually a (consistent) test has asymptotically a
trivial power equal to one under an alternative that is far away from H0.
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A locally most powerful test (LMPT) is defined as follows. Let f(.; θ) denote
a family of densities indexed by a parameter θ ≥ 0, and assume that f(.; θ) ∈
F0 if and only if θ = 0. Otherwise f(.; θ) ∈ F1. Consider now a small subset
of F1 given by F1ε = {f(.; θ) ∈ F1 : 0 < θ < ε}. In this setting the null
hypothesis can be rephrased as H0 : θ = 0. A level-α test φ0 is said to be
locally most powerful for testing H0 against H1 : f ∈ F1ε if there exists an
ε > 0 so that φ0 is uniformly most powerful for this testing problem.

2.9.2.2 Asymptotic Criteria

To further stress the dependence of the testing procedure on the sample size,
we write φn for the test function. All properties discussed in this section are
defined for test sequences φn for which

lim sup
n→∞

sup
f∈F0

Ef {φn(X)} ≤ α.

Tests that satisfy this condition are referred to as asymptotic level-α tests.
We still use the notation M = M(α,F0) to denote the set of such tests.

Because many tests are consistent, and they therefore have asymptotic
power one against fixed alternatives, we need to study here sequences of
alternatives that approach F0 as the sample size increases. To keep the expo-
sition general here, we use the notation fn for such a sequence of alternatives.
In particular, fn ∈ F1 so that for some f0 ∈ F0, fn → f0 as n → ∞. At this
point we do not give details on the mode of convergence. To introduce the
asymptotic version of the envelope power function we also need a sequence
of sets F1n ⊆ F1 so that, as n → ∞, there is an f0 ∈ F0 so that

lim
n→∞ sup

f∈F1n

||f − f0|| = 0.

The envelope power function now becomes

β�(α,M,F1n) = lim
n→∞β�

n(α,M,F1n).

Note that the index n in F1n in β�(α,M,F1n) is only used to stress that the
envelope power function depends on the sequence of alternatives chosen.

An asymptotic level-α test φn is said to be asymptotically most powerful
(AMP) for testing H0 against H1 : f = fn if

lim
n→∞βn(α, φn, fn) = lim

n→∞β�
n(α,M, {fn}).

The notion of an asymptotically uniformly most powerful test (AUMP) also
exists. It is a test which is AMP for any sequence fn ∈ F1 that approaches
some f ∈ F0. A special case of an AMP test is a locally asymptotically most



46 2 Preliminaries (Building Blocks)

powerful test (LAMPT), which is an AMP test against alternatives fn that
approach f ∈ F0 at the rate n−1/2.

An asymptotically maximin test φn of asymptotic level α for testing H0

versus F1n satisfies

lim
n→∞β�

n(α, φn,F1n) = β�(α,M,F1n).

The (asymptotic) power performance of a test is also often quantified by
its asymptotic relative efficiency (ARE) or asymptotic efficiency. The ARE
is also known as the Pitman efficiency. The central idea here is to compute
the limit of the ratio of the minimal sample sizes of two level-α tests so
that asymptotically they have equal power. Most of the interesting tests are
consistent, thus they have asymptotic power equal to one under a fixed alter-
native f1 ∈ F1. Therefore, asymptotic test performance is measured under
sequences of alternatives, fn, that converge to f0 at a suitable rate so that
the asymptotic power is kept away from 0 and 1. For many regular testing
problems for testing H0 : θ = 0 versus H1 : θ > 0, the rate equals 1/

√
n; i.e.,

the sequence of alternatives in terms of the parameter θ may be represented
as θn = δ/

√
n (δ > 0).

Consider now two level-α tests, say φ1n and φ2n; then let ν denote a “time”
parameter (ν > 1), and let n1ν and n2ν denote the minimal sample sizes so
that, for some α < γ < 1 and for all ν > 1,

βn(α, φ1n1ν
, fν) = βn(α, φ2n2ν

, fν) = γ.

When the sample sizes n1ν and n2ν increase with increasing time ν, the ARE
of test 1 relative to test 2 is then defined as

ARE1,2 = lim
ν→∞

n2ν

n1ν
.

An ARE larger than one means that test 2 requires more observations than
test 1 for obtaining the same power γ; test 1 is thus better than test 2.
Similarly, an ARE smaller than one indicates that test 2 is asymptotically
more powerful than test 1. Although the definition of ARE depends on α, γ,
and δ, it has been shown that for a large class of important tests the ARE
is independent of these parameters. For example, this happens for many test
statistics that have an asymptotic normal distribution under both the null
hypothesis and under the sequence of alternatives. Le Cam’s third lemma may
be very useful in establishing this asymptotic normality under sequences of
alternatives. See, e.g., Chapter 7 in van der Vaart (1998) and Chapter 7 in
Hájek et al. (1999) for good introductions to local asymptotic normality and
Le Cam’s third lemma. In Chapter 4 we give theory that uses Le Cam’s third
lemma.

The asymptotic efficiency of a test is the ARE of that test, relative to the
AMP test.
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2.9.3 The Neyman–Pearson Lemma

The Neyman–Pearson lemma, which is also known as the fundamental lemma
of Neyman and Pearson, shows the existence and the construction of a MPT
for testing a simple null versus a simple alternative hypothesis. Although this
setting is the most simple setting, which hardly ever occurs in real situations,
it is considered as THE basis of statistical hypothesis testing. Many of the
extensions of this lemma to more complicated settings (composite hypothe-
ses) still possess a flavour of this original lemma. For this reason, we state
the lemma here. We use here the notation f0n(x) and f1n(x) for the joint
densities of Xt = (X1, . . . , Xn) under the null and the alternative hypothesis,
respectively.

Lemma 2.1. The most powerful level-α test for testing H0 : f = f0 versus
H1 : f = f1 is given by

φ(X) =

⎧⎪⎨⎪⎩
0 if f1n(X)

f0n(X) < cα

γ if f1n(X)
f0n(X) = cα

1 if f1n(X)
f0n(X) > cα

,

where cα and γ can always be chosen so that Ef0 {φ(X)} = α.

The Neyman–Pearson lemma shows thus that the likelihood ratio test
statistic

Tn =
f1n(X)
f0n(X)

=
n∏

i=1

f1(Xi)
f0(Xi)

is the MPT for this simple testing problem.



Chapter 3

Graphical Tools

A graphical presentation of the data is typically one of the first steps in an
exploratory data analysis. This is not different in the goodness-of-fit context.
Although many of the graphs presented in the chapter are well known by
most statisticians, we think it is still important to give some further details
on those methods, particularly because some of the goodness-of-fit tests are
very closely related to some of the graphs presented here. We start in Section
3.1 with the description of the histogram and the boxplot, of which the former
is basically a nonparametric density estimator. Probability plots (PP and
QQ) and comparison distributions are the topics of Sections 3.2 and 3.3,
respectively. Both types of plots are related to very important goodness-of-fit
tests, and we therefore spend quite some space on these methods.

3.1 Histograms and Box Plots

Among the simplest graphical techniques we find the histogram and the box
plot. Although they are well known we give a brief description.

3.1.1 The Histogram

3.1.1.1 The Construction

The histogram is basically a nonparametric density estimator, and could thus
just as well have been described in Section 2.8. It can be considered as an
estimator of the categorised distribution of X. For simplicity in this section
we further assume that X has a bounded support, denoted by S = [l, u].
It becomes clear that this does not affect the practical implementation of

O. Thas, Comparing Distributions, 49
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the histogram. The construction of the histogram may proceed along the
following steps.

1. Construct a partition of the support:

S = [l, dn1) ∪ [dn1, dn2) ∪ · · · ∪ [dnc−1, u],

where dn0 = l, dn1, . . . , dnc−1, dnc = u are the bin edges. The c intervals
are referred to as the bins. The index n stresses that the edges may depend
on the sample size.

2. Count the number of sample observations within each of the c bins. In
particular, let (j = 1, . . . , c)

Nj = # {Xi, i = 1, . . . , n : Xi ∈ [dnj−1, dnj)} . (3.1)

3. Let hnj = dnj − dnj−1 (j = 1, . . . , c) denote the bin widths.

With this notation the histogram is given by the following nonparametric
density estimator,

f̂n(x) =
1
n

c∑
j=1

Nj

hnj
I (x ∈ [dnj−1, dnj)) . (3.2)

The partition is frequently chosen so that hn1 = · · · = hnc = hn, i.e., equal
bin widths. Equation (3.2) then simplifies to

f̂n(x) =
1

nhn

c∑
j=1

NjI (x ∈ [dnj−1, dnj)) . (3.3)

Sometimes nhnf̂n(x) is plotted versus x, so that the observation counts can
be read directly from the vertical axis.

3.1.1.2 Some Properties

When the sample sizes increase it is natural to let the bin width decrease.
This is similar to the bandwidth of the kernel density estimators of Section
2.8. The rate of convergence of the MISE can again be optimised by choosing
hn appropriately. As for many nonparametric density estimators, the opti-
mal choice of hn depends not only on the sample size, but also on the true
unknown distribution of X. For the histogram density estimator it has been
shown that the convergence rate of MISE can never be faster than O(n−2/3),
which is slower than many other types of estimators. This demonstrates that
the histogram is not the best choice for density estimation. On the other
hand it is still a very popular graphical tool for exploring the shape of the
distribution of X.
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Fig. 3.1 Two histograms of the PCB concentration data, with different bin locations and
equal bin widths. Kernel density estimates with a Gaussian kernel (upper pannel) and
rectangular kernel (lower pannel) are added

The simplicity of the histogram is definitely an advantage, but it also
suffers from a few shortcomings. We name a few. The first is the slow conver-
gence rate that was mentioned in the previous paragraph. A second undesir-
able characteristic is that the histogram strongly depends on the choice of the
bin edges, even for a fixed bin width. This is illustrated in Figure 3.1 which
shows two histograms of the same data (PCB concentration data), but the
locations of the bins have been shifted 30 units. The lower panel suggests that
the distribution is quite peaked, but this feature is not observed in the upper
panel. Such problems are avoided when, for example, kernel density estima-
tors are used. For illustration purposes we have added two different kernel
density estimates to the histograms. For the Gaussian kernel used in the up-
per panel the Gaussian density is used as kernel function K. The rectangular
kernel can be considered as a moving window version of the histogram, so
that at least the bin location choice problem is resolved. The R code follows.

> par(mfrow=c(2,1))
> hist(PCB,breaks=seq(0,550,50),xlim=c(-50,550),prob=T,
+ ylim=c(0,0.008))
> lines(density(PCB,kernel="gaussian"))
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> hist(PCB,breaks=seq(0,550,50)-30,xlim=c(-50,550),prob=T,
+ ylim=c(0,0.008))
> lines(density(PCB,kernel="rectangular"))

3.1.1.3 Regression-Based Density Estimation

In Section 2.8.4 it was mentioned that the histogram forms the basis of a
regression-based nonparametric density estimator (NDE). As this method is
also used later for the estimation of the comparison densities, we introduce
the method here.

The histogram estimator (3.3) has the following mean and variance,

E
{

f̂n(x)
}
≈ f(x) and Var

{
f̂n(x)

}
≈ f(x)

nhn
.

This suggests that nhnf̂n(x), which is simply the count of sample observations
falling in the bin to which x belongs, behaves approximately as a Poisson
distributed random variable in terms of mean and variance. Because the
mean and variance depend on x, Poisson regression methods may be used
for the modelling of the mean function. In particular, nonparametric Poisson
regression methods are appropriate, because after all we are looking for a
NDE. In such regression methods the conditional mean of the counts Nj

(3.1) is modelled as a function of rj , where rj is the center of the jth bin
(j = 1, . . . , c). We could write

E {Nj} = m(rj),

where the mean function m is estimated by means of smoothing splines or
local polynomial regression. We refer to Fan and Gijbels (1996) and Simonoff
(1996) for more details on these regression methods. The estimator resulting
from the nonparametric Poisson regression, say m̂, is, however, not normalised
and should thus be normalised before it can be used as a density estimator.

3.1.2 The Box Plot

The box plot, or the box and whisker plot, was originally suggested by Tukey
(1977). It is typically used in a data exploration phase of the statistical anal-
ysis, and is used to get a rough idea of the shape of the distribution sample
observations. It is particularly useful for assessing the asymmetry of the dis-
tribution and for detecting outliers.

Although many versions of the box plot have been described in the lit-
erature, we focus here on the implementation of boxplot in the R statistical
software (R Development Core Team (2008)).



3.1 Histograms and Box Plots 53

The box plot is essentially a one-dimensional plot of a few sample quantiles
and statistics derived from the sample quantiles. The median and the first
and third quartiles, denoted by Q2, Q1, and Q3, respectively, are computed as
in (2.14), (2.13), and (2.15), respectively. This corresponds to “type 7” of the
class of quartile estimators of Hyndman and Fan (1996). The box plot also
makes use of the interquartile range (IQR), defined as IQR = Q3 − Q1. The
IQR serves sometimes as the basis for the calculation of robust estimators
of the variance. In the box plot the IQR is used for the calculation of the
whiskers. First define the statistics

Pl = Q1 − k × IQR and Pu = Q3 + k × IQR,

where k = 1.5 in the R implementation, as well as in most other box plot
constructions. Let Mn and Mx denote the smallest and largest sample ob-
servation, respectively. The lower and upper whiskers are then defined as

Wl = max{Pl,Mn} and Wu = min{Pu,Mx},

respectively. A further interpretation and the definition of outliers are pro-
vided by means of two artificial examples.

Example 3.1 (Two toy examples). The left panel in Figure 3.2 illustrates how
these statistics are depicted in the box plot. The box plot presented here is
based on a sample of 100 observations from a standard normal distribution.
The summary statistics used in the box plot are provided by the summary
function in R. The output is shown below

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0650 -0.4909 0.1121 0.2208 0.9200 2.6970

Because Q1 − 1.5 × IQR = −2.607 < −2.065 = Mn, the lower whisker cor-
responds to the smallest sample observation. Similarly, because Q3 + 1.5 ×
IQR = 3.036 > 2.697 = Mx the upper whisker is plotted at Mx. The box
plot looks quite symmetric (median in the middle of the two other quartiles,
and box in the middle of the two whiskers), suggesting that the sample comes
from a symmetric distribution, which is indeed the case here (normal distri-
bution). It is important to stress that this plot does not give any information
about the number of observations on which it is based. Obviously, the more
observations it is based on, the more confidence may be placed on the graph.

For a second toy example we have sampled 100 observations from a stan-
dard lognormal distribution. The summary statistics are shown below.

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04848 0.47690 1.07800 1.44500 1.76900 5.78000
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Fig. 3.2 Box plots of a sample of n = 100 observations from a standard normal distribu-
tion (left panel) and from a standard lognormal distribution (right panel). Quartiles and
whiskers are indicated
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Fig. 3.3 Box plots of a subsample of n = 10 of the PCB dataset (left panel) and a strip
chart of the same sample (right panel)

The box plot is shown in the right panel of Figure 3.2. The lower whisker
coincides again with the smallest sample observation, but now the upper
whisker is located at Wu = Q3 + 1.5 × IQR = 3.707, because this is
smaller than the largest observation Mx = 5.780. The box plot now sug-
gests that the sample data come from an asymmetric distribution with a
long right tail. This is suggested by the asymmetric placement of the box
relative to the whiskers. The plot further shows a few dots located above the
upper whisker Wu. These correspond to observations identified as outliers
according to the definition given further below.

Box plots may also give information on the tails of the distribution. For
example, in the left panel of Figure 3.2 we notice that the box, of which the
width is given by the IQR, is well separated from the two whiskers. This
indicates that the tails are not very short. The left panel of Figure 3.3, on
the other hand, shows a box of which the lower and upper borders are very
close to the whiskers. This is an indication of short tails.
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Definition 3.1 (outliers). All observations smaller than the lower whisker
Wl are referred to as outliers, and, similarly, all observations larger than
the upper whisker Wu are also referred to as outliers. This happens when
Mn < Wl or Wu < Mx.

Finally we stress once more that the traditional visualisation of the box
plot does not provide any information on the sample size, so that one should
always be careful not to overinterpret the graph. When the sample size is
really small, it may be better to make a strip chart, using the stripchart
function in R. This is illustrated in the next example.

Example 3.2 (PCB concentration data). The box plot of the PCB concentra-
tion data has been shown already in Figure 1.2 (right panel). To illustrate the
danger of overinterpreting the box plot with small samples, we have sampled
at random ten observations from the PCB dataset, and used these ten ob-
servations for constructing the box plot in the left panel of Figure 3.3. Based
on this plot, one could perhaps conclude that the tails of the distribution are
short (see earlier in this section). This conclusion is definitely not confirmed
by the plot based on the complete dataset (Figure 1.2). Thus the shape of
the plot may be misleading, but this is of course a simple consequence of the
large variance on the quartile estimators (and maximum and minimum obser-
vations) used for the construction. For small samples it may be safer to plot a
strip chart. The strip chart of the subsample of ten observations is presented
in the right panel of Figure 3.3. This is basically a plot of the individual ob-
servations, with no adding of the sample quartiles so that overinterpretation
is harder. The plot just shows ten points, quite evenly distributed over the
range, but by observing that there are only ten observations, one should be
warranted that there is not much information in the sample.

Example 3.3 (Combined plots). To conclude we demonstrate the use of the
Boxplot function in the R-package accompanying the book. The first graph,
which is presented in the left panel of Figure 3.4 shows a combined graphical
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Fig. 3.4 Box and bar code plots of a subsample of n = 10 of the PCB dataset (left panel)
and a box and jitter plot of 100 standard lognormal observations (right panel)
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display of the box plot and a bar code plot (similar to strip chart) of the
subsample of ten PCB concentration observations. In the right panel of Fig-
ure 3.4 the box plot of the 100 lognormal observations of Example 3.1 is
shown. The right margin of the plot shows the individual observations, but
their horizontal position is randomly jittered so as to give a better view on the
individual observations. This visualisation thus gives a better impression of
the size of large samples. Variants similar to these graphs were also presented
by Lee and Tu (1997). The R-code follows.

> Boxplot(s,ylab="PCB concentration",side="bar")
> Boxplot(x,side="jitter")

3.2 Probability Plots and Comparison Distribution

3.2.1 Population Probability Plots

Together with the boxplot and the histogram, the probability plots are among
the most widely used graphical methods for exploring the distribution of
the data. There are two types of probability plots: probability–probability
(PP) and quantile–quantile (QQ) plots. Whereas boxplots and histograms
are purely exploratory in the sense that they only visualise the data at hand
without trying to answer a particular question, QQ and PP plots are used
in a more directional manner. QQ and PP plots are graphs used to compare
the EDF with the hypothesised distribution function G, and so they are
extremely useful in the setting of the one-sample problem.

Before giving the sample versions of the probability plots we give their
definitions in the more general setting of comparing two distribution func-
tions F and G, both defined on the same support S. To stress the distinction
from the sample versions, we call them population probability plots. Proba-
bility plots are curves in a two-dimensional plane indexed by a probability
parameter p ∈ [0, 1]. In particular, the QQ plot is defined as

Q : [0, 1] �→ S2 : p → (G−1(p), F−1(p)), (3.4)

and the PP plot as

P : [0, 1] �→ [0, 1]2 : p → (p, F (G−1(p))).

The latter can also be written in its functional form as

P : S �→ [0, 1]2 : x → (G(x), F (x)). (3.5)
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Both plots have the property that they show a straight 45 degree line through
the origin if and only if F = G. Any deviation from this straight line indicates
that F �= G, and the shape of the curve tells something about how the
two distributions differ. This property makes the probability plots suited for
one-sample goodness-of-fit purposes where G is the hypothesised distribution
and F is replaced by its sample version (see next section), and for two-sample
goodness-of-fit problems where both F and G are replaced by their respective
sample versions (see Section 8.1). Also note that the PP plot is related to
the comparison distribution (Section 2.4). In particular (3.5) is a plot of the
CDF of the comparison distribution (2.17).

3.2.2 PP and QQ plots

The sample versions of the probability plots are obtained by replacing the
true, but unknown distribution F by the EDF F̂n. The convention is to draw
the probability plot as a scatterplot with exactly n points. This makes sense
because the EDF and its inverse are piecewise constant functions. Moreover,
an advantage of a scatterplot representation is that the number of points
gives visually an appreciation of the amount of information present in the
sample. The reduction of a line plot to a scatterplot leaves the question open
for which values of p to construct the plot. These values are referred to as
the plotting positions. A general form for the plotting positions is proposed
by Blom (1958),

pi =
i − ci

n + 1 − 2ci
, (3.6)

where 0 ≤ ci < 1 (i = 1, . . . , n). Equation (3.6) is often simplified by setting
c1 = · · · = cn = c. Note that for all c, (i − 1)/n < pi ≤ i/n. This has the
following consequences for the QQ plot: F̂−1

n (pi) = X(i) for all 0 ≤ c < 1 and
i = 1, . . . , n. Every observation is thus plotted exactly once on the vertical
axis. A similar property does not hold for the PP plot.

The choice of c turns out to be much more important for the QQ plot
than for the PP plot. Kimball (1960), Mage (1982), and Thode (2002) give
overviews of popular choices for c, which are summarised in Table 3.1. Kimball
(1960) stresses that the choice of c depends on the goal of the data analysis.
He recognises three purposes: (1) goodness-of-fit, (2) parameter estimation,
and (3) extrapolation to the extremes. Because our primary aim is goodness-
of-fit, we only briefly describe (2) and (3) in the next paragraphs.

QQ plots have also been popular for parameter estimation in location-
scale families (e.g., the normal, logistic, and extreme-value distributions).
Suppose both F and G belong to the same location-scale family. A location-
scale family is characterised by the property F (x;μ, σ) = F ((x − μ)/σ; 0, 1),
where μ and σ are the location and scale parameters, respectively.
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Table 3.1 Plotting positions proposed in the statistical literature

Value of c Plotting position pi References

0 i
n+1

Kimball (1960); Filliben (1975)

0.3 i−0.3
n+0.4

Bernard and Bos-Levenbach (1953)

0.3175 i−0.3175
n+0.365

Filliben (1975)

0.375 (=3/8) i−0.375
n+0.25

Filliben (1975)

0.4 i−0.4
n+0.2

Cunnane (1978)

0.44 i−0.44
n+0.12

Gringorten (1963); Mage (1982)

0.5 i−0.5
n

Blom (1958); Hazen (1930)

0.567 i−0.567
n−0.124

Larsen et al. (1980); Mage (1982)

1 i−1
n−1

Filliben (1975)

Let G be the standard distribution (i.e., location parameter μ = 0 and
scale parameter σ = 1), and let F have arbitrary parameters μ and σ. Then,

F−1(p) = μ + σG−1(p),

and the population QQ plot now still shows a straight line, but with intercept
μ and slope σ. Thus, fitting a linear regression model to the points in the QQ
plot results immediately in estimates of the location and scale parameters.
Plotting positions can be determined by adopting an optimality criterion
to which the estimators should apply, for instance, unbiased and minimum
variance. The optimal plotting positions, however, depend on the family to
which F and G belong.

The third kind of purpose that can be served by QQ plots is extrapolation.
In particular in the analysis of extreme events the focus is often on quantiles
corresponding to very small or very large probabilities. For instance, based on
a data set of the yearly maximum water levels at a fixed location, a QQ plot
with respect to a standard extreme value distribution may be constructed,
and the location and scale parameters may be estimated by fitting a regression
line to the QQ plot. This fitted regression line is subsequently used to predict
the quantile (water level), say q̂, that corresponds to a return period of 10,000
years, which is equivalent to a probability of p = 1/10000 = 0.0001 that an
extreme high water level of q occurs at most once every 10,000 years. Because
it is very likely that an extreme water level as high as q̂ is not observed in the
period that the data were collected, this prediction is clearly an extrapolation.
Plotting positions may now be found to give the most accurate predictions
at small or large p.

Back to goodness-of-fit. The following values of c are often used:

• c = 0.375 or c = 0.5, resulting in

pi =
i − 0.375
n + 0.25

or pi =
i − 0.5

n
,
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respectively. The rationale is found in trying to give the QQ plot the fol-
lowing interpretation: observed quantiles (X(i)) are plotted against their
expectations, so one expects the points to lie on the diagonal. Thus on
the horizontal axis we need the expectation of the order statistics under
the null hypothesis F = G; i.e., we need to find Eg

{
X(i)

}
. Because the

horizontal axis of a QQ plot is generally determined by G−1(pi), plotting
positions pi can be found by solving Eg

{
X(i)

}
= G−1(pi). Exact solutions

exist for the normal distribution, but they require the cis to be noncon-
stant. Fortunately, the cis show only small variation, so that usually an
approximate solution is used. Both c = 0.375 and c = 0.5 give good ap-
proximations. When the standard error is to be estimated from the fitted
regression line in the QQ plot, these solutions also give a nearly unbiased
estimator, and a biased estimator with minimum variance, respectively.

• The choice of c = 0.5, resulting in pi = (i−0.5)/n, has also another origin.
This plotting position is also found as the middle point between (i− 1)/n
and i/n (note that F̂−1

n remains constant within this interval).
• c = 0, resulting in pi = i/(n+1). This corresponds to the exact solution to

the equation Eg

{
X(i)

}
= G−1(pi), when G is the uniform distribution over

[0, 1]. Thus, when X is uniformly distributed, the order statistics X(i) are
plotted against their expected values i/(n + 1). Because any random vari-
able can be transformed to be uniformly distributed by applying the prob-
ability integral transformation (i.e., when X ∼ G, then G(X) ∼ U(0, 1)),
this plotting position system is quite generally applicable. It is also the
most common choice when constructing PP plots.

Example 3.4 (Pseudo-random generator data). The R function qqplot only
works with the normal distribution as the reference distribution G, but in the
cd package there is a more generic function QQplot that can be used with any
distribution G. The function PPplot is used to plot the PP plot. The R code
is shown below, and the QQ and PP plots are presented in Figure 3.5. From
these plots it is again concluded that the runif function generates uniformly
distributed numbers.

> QQplot(PRG,distr=qunif,pars=c(0,1),blom=0)
> PPplot(PRG,distr=qunif,pars=c(0,1),blom=0)

Example 3.5 (PCB concentration data). A QQ plot is plotted for the PCB
concentration to assess whether the data are normally distributed. The mean
and the standard deviation are estimated from the sample. We have now used
c = 0.375 because the reference distribution is the normal distribution. See
Figure 3.6

> QQplot(PCB,distr=qnorm,pars=c(mean(PCB),sd(PCB)),
blom=0.375)

> PPplot(PCB,distr=qnorm,par=c(mean(PCB),sd(PCB)),blom=0.375)
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Fig. 3.5 QQ (left panel) and PP (right panel) plots of the PRG dataset
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Fig. 3.6 QQ (left panel) and PP (right panel) plots of the PCB dataset

One of the comments often given to QQ plots, is that the variability of
the order statistics X(i) is not constant over the range of plotting positions.
Theoretically, it is easy to show that the variance of the ith order statistic
with distribution G can be approximated by

Var
{
X(i)

}
=

pi(1 − pi)
ng(G−1(pi))

,

where g is the density function of X. In Figure 3.7 we show QQ plots of
100 independent samples of 20 observations from a normal distribution with
mean 10 and standard deviation 2. The graph clearly illustrates that the
variances of the more extreme order statistics are larger than those of the
order statistics close to the median. This phenomenon is present in individual
QQ plots. Figure 3.8 shows a few of the individual QQ plots. In the two
upper panels and the lower left panel there seems to be a deviation from the
45 degree line in the tails of the distribution, from which one may be inclined
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Fig. 3.7 QQ plots of 100 independent samples of 20 observations from a normal
distribution
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Fig. 3.8 Individual QQ plots of four independent samples from a normal distribution

to conclude that the sample did not arise from the hypothesised normal
distribution. This is definitely not the case here for we used simulated data.
The larger variability in the tails has led practitioners to focus less on what



62 3 Graphical Tools

the QQ plot shows in the tails. There have been some attempts to stabilise
the probability plots by applying transformations on the observations and
plotting positions before constructing the plots (see, e.g., Michael (1983)).

The PP plot is constructed by plotting F̂n(G−1(pi)) versus pi. Under the
simple null hypothesis, the variance of the ordinate is given by

Var
{

F̂n(G−1(pi))
}

=
pi(1 − pi)

n
,

which is minimal in the tails and has a maximum at the median. Thus, for
many distributions the PP plot shows the opposite behavior in terms of the
variability.

From this discussion we may conclude that the choice between QQ and
PP plots is driven by the importance of having a good fit in the tails or
rather near the median. But, of course, it may even be better to plot both a
QQ and a PP plot in an exploratory phase of the data analysis. Finally, an
advantage of QQ plots is that both axes are expressed in the same units as
the observations.

3.3 Comparison Distribution

The comparison distribution was briefly introduced in Section 2.4. There the
comparison CDF and the comparison pdf were defined as the CDF and pdf
of the random variable U = G(X), where X has has CDF F , and G is the
reference distribution in the terminology of Handcock and Morris (1999). In
this section we illustrate how the graph of the comparison density function
may be used as an exploratory tool. Just as with the probability plots, we
first discuss the interpretation of the plots by using the population version
of the comparison density, and after that we introduce the empirical versions
that can be estimated from the sample data.

3.3.1 Population Comparison Distributions

3.3.1.1 Definition and Interpretation

The comparison density is defined as the pdf of the random variable U =
G(X) and it is given by

r(u) =
f(G−1(u)
g(G−1(u)

. (3.7)

The population comparison density is then defined as

C : [0, 1] �→ [0, 1] × IR+ : u → (u, r(u)).
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This plot has the property that it shows a horizontal line at r(u) = 1 if
and only if F = G. Any deviation from this straight line implies that the null
hypothesis is not true, and the type of the deviation is informative about how
the two distributions differ. Because r(u) is basically a ratio of two densities
evaluated at the percentile 0 ≤ u ≤ 1, it may be interpreted as follows.

• r(u) > 1: We expect a larger frequency of observations around the uth
percentile of the reference distribution G, than if the observations had
distribution function G.

• r(u) < 1: We expect a smaller frequency of observations around the uth
percentile of the reference distribution G, than if the observations had
distribution function G.

Although, for instance, Handcock and Morris (1999) prefer to plot r(u)
versus the percentile u, the interpretation may sometimes be easier when
x = G−1(u) is used instead, leading to an alternative definition of the popu-
lation comparison density,

C ′ : S �→ S × IR+ : x → (x, r(G(x))).

We further illustrate the interpretation through some hypothetical exam-
ples. Figure 3.9 presents the densities and the population comparison densi-
ties of two normal distributions with equal variance (1) and means 0 and 0.5.
To make the two plots comparable, both horizontal axes are on the same scale
(according to the alternative definition C ′). The plot shows the population
comparison density which is here an increasing function. It can be proven
that this always holds for location-shift models, irrespective of the parent
distribution. A detailed interpretation of the plot says that for values smaller
than 0.25 (the vertical reference line) the true density f is smaller than the
reference density g, but for observations larger than 0.25 the opposite is true.
The second example is presented in Figure 3.10. Here two normal distribu-
tions with equal mean but with different scales are shown. The comparison
density has now a typical U -shape. It further demonstrates that within the
interval [−1.2,+1.2] the true density f is smaller than the reference density
g. Outside of the interval, we may expect a larger frequency of observations
than expected under the hypothesised distribution. Thus observations under
f show a larger variability.

3.3.1.2 Decomposition of the Comparison Density

Although the comparison densities can always be interpreted in terms of the
ratio of two densities, as in Equation (3.7), it is not always easy to recognise
shifts in means or variances, particularly when there is no pure shift in mean
or variance. This is illustrated in Figure 3.11, where again two normal distri-
butions are considered, but now they differ both in mean and variance. The
comparison density looks like an asymmetric U -shape, and it is hard, if not
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Fig. 3.9 The upper panel shows the densities f (full line) and g (dotted line) of two
normal distributions with mean shifted over 0.5, and the lower pannel shows the population
comparison density. The vertical reference line indicates the position where the comparison
density equals 1

impossible, to uniquely conclude that this is caused by a difference in mean
and variance. Therefore, Handcock and Morris (1999) proposed to decompose
the comparison density in factors that can be attributed to mean, scale, and
more general shape differences. Consider the identity (with x = G−1(u))
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Fig. 3.10 The upper panel shows the densities f (full line) and g (dotted line) of two
normal distributions with variances 1.5 and 1, respectively, and the lower panel shows the
population comparison density. The vertical reference line indicates the position where the
comparison density equals 1

r(x) =
f(x)
g(x)

=
gL(x)
g(x)

× gLS(x)
gL(x)

× f(x)
gLS(x)

,

where gL is the density of a random variable X+δ, where X has density g and
δ is such that the mean of X + δ equals the mean of distribution f . Similarly,
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Fig. 3.11 The upper panel shows the densities f (full line) and g (dotted line) of two nor-
mal distributions with mean (variances) equal to 0.5 (1.5) and 0 (1), respectively, and the
lower panel shows the population comparison density. The vertical reference line indicates
the position where the comparison density equals 1

gLS is the density of the random variable γ(X+δ), where X has again density
g, and γ and δ are so that the mean and variance of γ(X+δ) equal those of the
distribution f . With these definitions, the ratio rL(x) = gL(x)/g(x) contains
only information about a mean difference, and rLS(x) = gLS(x)/gL(x) only
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tells something about a difference in scale. The “residual” ratio rR(x) =
f(x)/gLS(x) contains all the information on shape differences not caused by
a mean shift or a difference in scale. Note that when both f and g belong to
the same location-scale family, rR(x) = 1 for all x ∈ S.

As an illustration we consider the comparison of a normal distribution
with mean and variance equal to 2.15 and 1, respectively, with a standard
log-normal distribution, which is a right-skewed distribution. The normal dis-
tribution acts as the reference distribution g. Figure 3.12 shows the densities
and the population comparison density. From the latter it is hard to deter-
mine if there is a shift in mean and/or a difference in scale. Nevertheless, the
comparison density is interpretable as the ratio of densities. More explana-
tory plots are given in Figure 3.13 which shows the graphs representing the
components rL, rLS , and rR. From rL and rLS we learn that there is both
a difference in mean and scale between f and g. The graph of rR shows the
pure shape differences that are not due to mean and scale differences.
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Fig. 3.12 The upper panel shows the densities f (full line) and g (dotted line) of a log-
normal and a normal distribution, respectively, and the lower panel shows the population
comparison density. The vertical reference line indicates the position where the comparison
density equals 1
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Fig. 3.13 The upper left, lower left, and upper right panels show the components rL, rLS ,
and rR of the comparison density. The lower right panel shows the densities f and gLS

3.3.2 Empirical Comparison Distributions

3.3.2.1 Estimators of the Comparison Density

In the previous section we introduced the population comparison distribution
which can only be computed when both g and f are known. In this section we
explain how this comparison density can be estimated when only a sample of
observations from f is observed. Because we are working in a goodness-of-fit
setting, the density g is known, or at least up to a p-dimensional nuisance
parameter β.

A naive approach to estimate r is to first obtain an estimate of the un-
known density f , and use this estimate in Equation (3.7) to compute r. This
is, however, a two-step method, and it is usually not preferred. A better
method is to estimate r directly from the relative data,

Ui = G(Xi;β),
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where β is replaced by its estimator β̂ if it is not specified under the null
hypothesis. At this point we do not impose any assumptions on this estimator,
as we are using the comparison density only as an exploratory tool. As soon
as inference based on r is needed, some restrictions on β are required. The
rationale behind the use of the relative data is given in Section 2.4 where
it was shown that the comparison density r is exactly the density of U =
G(X). The problem is thus reduced to finding a good nonparametric density
estimator of r based on the relative data. All methods described in Section
2.8 may be applied here.

Handcock and Morris (1999) gave several techniques for this estimation
problem. In particular they discussed a histogram estimator, kernel density
estimators, regression based density estimators, and exponential series den-
sity estimators. We, however, do not go into the details of the properties
of these estimators in the present context. We only mention a few general
comments.

• The kernel density estimators suffer from edge or boundary effect; i.e.,
near the boundaries u ≈ 0 and u ≈ 1 the estimators have a downward
bias.

• The regression-based estimators are based on a Poisson approximation of
the counts in the histogram estimator. The Poisson mean is modelled by
means of smoothing splines or local polynomial estimators. These estima-
tors do not suffer from the boundary bias, but they have a larger variance
near the boundaries (cfr. bias–variance trade-off). See Section 3.1.1.3 for
more details.

• Both the nonparametric density estimator and the local polynomial re-
gression estimator require the specification of a bandwidth. For the for-
mer the Sheater–Jones bandwidth selector is recommended, and for the
latter, a bandwidth minimising the generalised cross-validation criterion
or a corrected Akaike’s information criterion (AIC) are recommended by
Handcock and Morris (1999).

• The exponential series density estimator is closely related to the smooth
tests presented in Chapter 4. We therefore postpone the discussion of this
estimation technique to that chapter.

In the remainder of this section we use the regression-based estimator in
combination with local quadratic polynomials.

3.3.2.2 Confidence Intervals of the Comparison Density

Just as with the PP and QQ plots, care should be taken with the interpre-
tation because these diagnostic graphs only show point estimates. There is
no information in these graphs about the sampling variability. Here we first
illustrate some aspects of this variability and we mention briefly something
about confidence intervals that can be added to the plots. The importance of
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confidence intervals is greater with comparison densities than with PP plots
because with the latter the scales on both axes are always fixed at [0, 1],
whereas the range of the comparison density is in itself informative.

As an illustration of the variance of the comparison density estimator,
we have simulated ten random samples of 100 observations from a standard
normal distribution. For each sample, we have computed the comparison den-
sity estimator based on local quadratic polynomials for which the bandwidth
was selected by minimising the generalised cross-validation criterion. The re-
sults are shown in Figure 3.14. The plot shows ten different lines. Most of
them look more or less straight. Some suggest a positive shift in mean, oth-
ers a negative shift. This is because the bandwidth selector often results in
large bandwidths, particularly when the distribution of the sample is close
to g. Still there are a few comparison densities that suggest a scale difference
or an even more complicated difference in shape. The graph further illus-
trates that the estimator has a larger variance near the boundaries u ≈ 0
and u ≈ 1. An important observation is the following. Although none of the
comparison densities is a horizontal line at r(u) = 1, as is the population
version, they all are bounded between approximately 2/3 and 3/2. Thus, de-
spite the shapes are often quite distinct from a horizontal line at r(u) = 1, the
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Fig. 3.14 Comparison densities of ten random samples of 100 observations from a
standard normal distribution. The horizontal axis is on the scale of the relative data;
i.e., u = G(x)
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range of r(u) is rather small. On the other hand, for instance, in Figure 3.12,
where f and g are very different (normal and lognormal), the range r(u) is
much larger. Therefore, we suggest that the user should look very carefully
at this range before interpreting the graph. This remark becomes very im-
portant when software is used which automatically determines the “optimal”
range. For many applications a user-defined range of [0, 2] up to [0, 10] is very
informative.

To find out if an observed pattern of the comparison density is not just a
consequence of sampling variability, confidence bands can be computed and
added to the graph of the comparison density. We should make a distinction
between two types of confidence bands: pointwise and simultaneous confi-
dence bands. The former have a pointwise interpretation in the sense that
their coverage only holds pointwise for a given value of u. The coverage of
simultaneous confidence bands holds simultaneously for all u ∈ [0, 1]. It is ac-
tually the latter type that is most convenient in the present setting, but this
falls outside the scope of this book. Handcock and Morris (1999) give some
theory about pointwise confidence intervals, but only for the case where g is
completely determined. Nevertheless, we think that it is still better to plot
these pointwise intervals than to plot nothing. Pointwise bands are typically
more narrow than simultaneous bands. Thus if the line r(u) = 1 is contained
in the pointwise bands, then it is very likely that it is also contained in the
simultaneous bands. The opposite is, however, not true.

We further illustrate the use of the comparison density by applying it to
some example datasets.

Example 3.6 (PCB). We want to graphically assess normality of the PCB
data, but the mean μ and the variance σ2 are not specified. Thus before we
can compute the relative data Ui = G(Xi;μ, σ2), we need to replace the un-
known nuisance parameters by their estimates. Here we take the sample mean
μ̂ = 210 and sample variance σ̂2 = 5303.656. The upper panel in Figure 3.15
shows the histogram of the PCB data, a nonparametric density smoother and
the density g(.; μ̂, σ̂2).

With the next R-code the comparison density in the middle panel of
Figure 3.15 is constructed. We have used the reldist function which is avail-
able in the reldist package. Here we have used the default bandwidth selector,
which is the minimiser of the generalised cross-validation criterion. The reld-
ist function actually plots the percentiles u on the horizontal axis, but here
we have used the original scale of the data.

> PCB<-sort(PCB)
> sd.PCB<-sd(PCB)
> m.PCB<-mean(PCB)
> n<-length(PCB)
> rd<-reldist(y=PCB,yo=qnorm((1:n+0.5)/(n+1),sd=sd.PCB,
+ mean=m.PCB),ci=T,graph=F)
Smoothing the maximum amount
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Fig. 3.15 The histogram, nonparametric density estimator, and fitted normal density
(upper panel) of the PCB data. The middle and lower panels show the comparison densities
of the PCB data based on the generalised cross-validation and AIC bandwidth selector,
respectively. The horizontal axis is on the scale of the relative data; i.e., u = G(x; μ̂, σ̂2)
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> x<-qnorm(rd$x,sd=sd.PCB,mean=m.PCB)
> plot(x,rd$y,type="l",xlab="PCB",ylab="relative density",
+ ylim=c(0,2))
> lines(x,rd$ci$l,lty=3)
> lines(x,rd$ci$u,lty=3)
> abline(h=1,lty=2)

The graph in Figure 3.15 shows no substantial deviation from the hypoth-
esised normal distribution. This conclusion is supported by the observa-
tion that the line r(x) = 1 lies well in between the (pointwise) confidence
bands.

The next R-code provides the comparison density based on the minimum
AIC bandwidth selector (option smooth=-1). The result is shown in the lower
panel of Figure 3.15. Again the null hypothesis seems to be supported, but
now the comparison density is less smooth (this seems to be a general charac-
teristic of the AIC-based bandwidth selection). The upper limit of the confi-
dence band goes slightly below r(x) = 1 for values of x around 270. For these
values, the plot suggests weakly that the frequency of PCB concentrations
is smaller than expected under the hypothesis of normality. This can also be
seen from the (smoothed) histogram in the upper panel in Figure 3.15.

> rd<-reldist(y=PCB,yo=qnorm((1:n+0.5)/(n+1),sd=sd.PCB,
+ mean=m.PCB),ci=T,graph=F,smooth=-1)
Smoothing using 5
> x<-qnorm(rd$x,sd=sd.PCB,mean=m.PCB)
> plot(x,rd$y,type="l",xlab="PCB",ylab="relative density",
+ ylim=c(0,2))
> lines(x,rd$ci$l,lty=3)
> lines(x,rd$ci$u,lty=3)
> abline(h=1,lty=2)

Inasmuch the mean and the variance of the hypothesised normal distribu-
tion are estimated from the data, it makes no sense to perform the decompo-
sition of r(u). Finally note that this example illustrates that the conclusions
depend largely on the choice of the bandwidth.

3.3.3 Comparison Distribution for Discrete Data

Suppose the random variable X is discrete and it takes values in the ordered
set {x1, . . . , xm} (x1 < · · · < xm), where m > 1 may be infinite (e.g., for
a Poisson distribution). We assume that the distributions f and g have the
same outcome set. We use the notation
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fi = f(xi) = Prf {X = xi} and gi = g(xi) = Prg {X = xi} .

The CDF of g is given by

G(x) =
∑

i:x≤xi

gi,

which is a step function with jumps of size gi at position xi. Therefore,
the PIT transformation U = G(X) is not appropriate here. To make G a
continuous transformation, we define G(x0) = 0 for any x0 < x1 and

Gd(x) = U [G(xi−1), G(xi)] for xi−1 < x ≤ xi, i = 1, . . . , m,

where U [a, b] is a uniform random variable over the interval [a, b]. With this
definition, Gd is a continuous transformation, and U = Gd(X) has a continu-
ous distribution. Moreover, X has distribution g if and only if U = Gd(X) is
uniformly distributed with density function r(u) = 1 for 0 ≤ u ≤ 1. Based on
this argument, it again makes sense to define the discrete comparison density
for a discrete random variable as the density of U = Gd(X). It can be shown
that this density function is a step function given by

r(u) =
fi

gi
for G(xi−1) < u ≤ G(xi) for 0 ≤ u ≤ 1.

A natural estimator of r(u) is obtained by replacing fi by its empirical
probability estimator,

f̂i = f̂(xi) =
1
n

n∑
j=1

I (Xj = xi) .

The estimator of the discrete comparison density then becomes

r̂(u) =
f̂i

gi
for G(xi−1) < u ≤ G(xi) for 0 ≤ u ≤ 1.

When the hypothesised distribution G (and hence g) depends on a nuisance
parameter β, then β is replaced by an estimator.

Example 3.7 (Pulse rate). The pulse rate is measured as the number of pulses
per minute. This is thus a discrete variable, and because counts are often
distributed as a Poisson distribution, we assess the fit of the data to a Poisson
distribution with mean equal to the sample mean (x̄ = 82.3). The upper panel
in Figure 3.16 shows the histogram of the data, the fitted Poisson distribution,
and a nonparametric kernel density estimator, and the comparison density
is shown in the lower panel. This graph suggests that as compared to a
Poisson distribution with mean 82.3, there are far too many counts around
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Fig. 3.16 The histogram, nonparametric density estimator, and fitted Poisson density
(upper panel) of the pulse rate data. The lower panel shows the comparison density of the
pulse rate data. The horizontal axis is the percentile u = G(x)

the 40th percentile of the hypothesized Poisson distribution, i.e., counts close
to G−1(0.4; λ̂ = 82.3) = 80.

The R-code for the comparison density is presented below.

> pulse<-pulse$Pulse
> pulse<-sort(pulse)
> n<-length(pulse)
> wgt<-rep(1,length(pulse))
> rd<-reldist(y=pulse,yo=qpois((1:n+0.5)/(n+1),lambda=mean
+ (pulse)),discrete=T,ywgt=wgt,yogt=wgt)



Chapter 4

Smooth Tests

In this chapter we discuss smooth tests. This class of tests actually dates back
from Neyman (1937), who developed a smooth test as a score test for which
he proved some optimality properties. Although smooth tests are considered
as nonparametric tests, they are actually constructed by first considering a
k-dimensional smooth family of alternatives in which the hypothesised dis-
tribution is embedded. These smooth alternatives are the subject of Section
4.1. The tests are given in Section 4.2. The power of the test depends on
how well the true distribution is approximated by the k-dimensional smooth
alternative. In particular, for each data-generating distribution there exists
an optimal order k. In Section 4.3 we discuss adaptive smooth tests of which
the order is estimated from the data so that often the power is improved.
Sections 4.1 up to 4.3 are limited to continuous distributions; smooth tests for
discrete distributions are the topic of Section 4.4, and in Section 4.5 we show
how smooth tests may be viewed from within a semiparametric framework.
Finally, in Section 4.7 we give a brief summary from a practical viewpoint.

4.1 Smooth Models

4.1.1 Construction of the Smooth Model

The general idea behind smooth tests is to first embed the hypothesised dis-
tribution g into a larger family of distributions, say gk, which is indexed
by a k-dimensional parameter vector θt = (θ1, . . . , θk) in such a way that
θ = 0 corresponds to the hypothesised distribution. Such a family is called
a smooth model, or a smooth order k alternative to the null. The adjective
“smooth” was invented by Neyman (1937) to indicate that these alternatives
depart smoothly from the hypothesised density. The exact construction of gk

is important. It should be large enough so that it is likely to include the true
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density f . By doing so, the original null hypothesis H0 : f(x) = g(x) (for all
x) reduces to K0 : θ = 0. In some sense, the former null hypothesis requires
a nonparametric test because the unknown density f may involve an infinite
number of nuisance parameters, whereas the latter is clearly parametric for
which actually any parametric test may be considered. The alternative hy-
pothesis is usually formulated as H1 : f(x) �= g(x) (for at least one x). As it
is soon shown, the alternative is implied by K1 : θ �= 0; i.e., K1 ⇒ H1, but
the implication does not necessarily hold true the other way around. This
argument is important later on to understand the power and the limitations
of the smooth tests. In particular, when H0 is tested by means of a paramet-
ric test for K0, then the rejection of K0 will immediately imply the rejection
of the original H0, but when K0 cannot be rejected, it is still possible that f
does not equal g, even with very large sample sizes. In Section 4.5, where we
discuss a semiparametric framework, we come back to the interpretation of
tests for the original hypotheses H0 and H1 versus tests for hypotheses K0

and K1.
To keep the exposition general, we allow g to depend on a p-dimensional

vector β of nuisance parameters. At this point only the models are defined,
therefore it is not important to know whether β is specified (simple null) or
has to be estimated (composite null).

We define a first type of an order k family of smooth alternatives given by
the density function

gk(x;θ,β) = C(θ,β) exp

⎛⎝ k∑
j=1

θjhj(x;β)

⎞⎠ g(x;β), (4.1)

where C(θ,β) is a normalisation constant, and {hj} represents a set of or-
thonormal functions in the Hilbert space L2(S, G). See Sections 2.5 and 2.6
for more details on Hilbert spaces and orthonormal functions. The orthogo-
nality condition has two important consequences: (1) in Section 4.2 we show
that the smooth test statistic is often decomposable in asymptotically inde-
pendent components that say something about how the true distribution may
depart from the hypothesised distribution; (2) it allows the construction of
a flexible k-order family of distributions with a minimal number of uniquely
identifiable θ-parameters.

Note that model (4.1) is only well defined if the functions hj (j = 1, . . . , k)
are bounded in L2(S;G). In his original paper, Neyman (1937) actually only
considered testing for uniformity, i.e., g(x) = 1 for all x ∈ [0, 1], and so the
hj are the Legendre polynomials over [0, 1], which are bounded functions.
Although any distribution may be transformed to a uniform, we show in
the next section that taking g explicitly into account, as in (4.1), results
in a more informative assessment. Thus, methods based on model (4.1) are
actually extensions of the work of Neyman. They were first introduced by
Rayner and Best (1986). The book of Rayner et al. (2009) is completely
devoted to smooth tests of this class.
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A similar model has been given by Barton (1953). He defines the order k
smooth alternative as

gk(x;θ,β) =

⎛⎝1 +
k∑

j=1

θjhj(x;β)

⎞⎠ g(x;β), (4.2)

where {hj} is as before. This model has the advantage that no normalisation
constant is needed. On the other hand, the model does not guarantee that
gk(x) is positive for all x ∈ S. A possible solution consists in restricting
the parameter space of θ, but this usually brings many complications along.
Other solutions have been discussed by, e.g., Gajek (1986), Glad et al. (2003),
Hall and Murison (1993), and Kaluszka (1998). See Section 2.8.2 for details
on the method of Gajek (1986).

From Section 2.8 we know that in the nonparametric density estimation lit-
erature models (4.2) and (4.1) are known as an orthonormal series expansion
and a log-linear orthogonal series expansion. However, in the present context
we prefer to call them the Barton and the Neyman model, respectively.

Both the Neyman and the Barton alternatives may be motivated from
a function approximation theory point of view within the framework of
Hilbert spaces. As before, f denotes the true density function, and suppose
f, g ∈ L2(S;G), where L2(S;G) is a Hilbert space spanned by a system of
orthonormal functions h0, h1, . . ., where for later convenience h0 ≡ 1.

Rather than by applying the expansion directly to the density function
f , the Barton model appears when it is applied to the comparison density
f(x)/g(x),

f(x)
g(x)

=
∞∑

j=0

θjhj(x) = θ0 +
∞∑

j=1

θjhj(x). (4.3)

Because θ0 = 1 guarantees that
∫
S f(x)dx = 1, we further restrict the dis-

cussion to
f(x)
g(x)

= 1 +
∞∑

j=1

θjhj(x). (4.4)

With this choice, we find f(x) = (1+
∑∞

j=1 θjhj(x))g(x), which is the Barton
model (4.2) with order k → ∞. The Barton density gk is thus to be inter-
preted as an expansion truncated at some finite order k. Note that the θs in
(4.4) are still found as θj = < hj , (f/g) >g, i.e. they are the orthogonal pro-
jections of the comparison density f/g onto the basis functions of the Hilbert
space L2(S;G). The θ parameters in the Barton model have also an inter-
pretation in terms of the Pearson φ2 measure (Lancaster (1969), pp. 86–87)
which is defined as

φ2 =
∫
S

(f(x) − g(x))2

g(x)
dx.
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Note that φ2 measures in some sense how far f and g are apart, but because
it is asymmetric it is not a real distance measure. In information theory this is
called an information divergence. Also note that if X were a discrete random
variable, then φ2 would be similar to the Pearson χ2 statistic. Straightforward
algebra shows

φ2 =
∫
S

(
f(x) − g(x)

g(x)

)2

g(x)dx

=
∫
S

⎛⎝ ∞∑
j=1

θjhj(x)

⎞⎠2

g(x)dx

=
∞∑

i=1

∞∑
j=1

θiθj

∫
S

hi(x)hj(x)g(x)dx

=
∞∑

j=1

θ2
j . (4.5)

This relationship is known as Parseval’s relation. In the present context of
goodness-of-fit testing, this was also recognised by Eubank et al. (1987).

A further argument which shows the usefulness of (4.5) is obtained by
having a closer look at the Argmin definition of the θs in the truncated
series representation, which, applied to f/g, gives the following. The solution
θj =< hj , f/g >g minimises∣∣∣∣∣∣

∣∣∣∣∣∣fg −
⎛⎝1 +

k∑
j=1

θjhj

⎞⎠∣∣∣∣∣∣
∣∣∣∣∣∣
2

g

=
∫
S

(
f(x) − (1 +

∑k
j=1 θjhj(x))g(x)

)2

g(x)
dx

=
∫
S

(f(x) − gk(x))2

g(x)
dx. (4.6)

If we now replace f(x) by the k = ∞ Barton model (4.4), we find

∫
S

(∑∞
j=k+1 θjhj(x)g(x)

)2

g(x)
dx =

∞∑
j=k+1

θ2
j . (4.7)

Hence, the θ parameters are the solutions to minimising the Pearson φ2 mea-
sure, and the minimised φ2 is the sum of the squared θ parameters not in-
cluded in the order k Barton model. Similarly, rk(x) = 1+

∑k
j=1 θjhj(x) is the

orthogonal projection of f/g onto the subspace Pk spanned by 1, h1, . . . , hk. It
is the comparison density in Pk that is closest to the true f/g. The orthogonal
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complement of Pk in L2(S;G), denoted by P⊥
k , is spanned by hk+1, . . . . The

squared length of this residual r(x)−rk(x), which lies in P⊥
k , is exactly (4.7).

Also the Neyman model is an example of a truncated expansion. Consider
the log comparison distribution

log
f(x)
g(x)

=
∞∑

j=1

θjhj(x), (4.8)

where again {hj} is a set of orthonormal function w.r.t. g. Truncating expan-
sion (4.8) at order k results in an approximation of f given by

exp

⎛⎝ ∞∑
j=1

θjhj(x)

⎞⎠ g(x), (4.9)

which is, however, not necessarily normalised. This explains the presence of
the normalisation constant C in the Neyman model. The θs are now given
by θj =< hj , log(f/g) >g which minimise∣∣∣∣∣∣

∣∣∣∣∣∣log
f

g
−

k∑
j=1

θjhj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

g

=
∫
S

(log f(x) − log g̃k(x))2 g(x)dx, (4.10)

where g̃k(x) = g(x) exp(
∑k

j=1 θjhj(x)), which is the nonnormalised Neyman
model as in Equation (4.9). This formulation is as expected when function
approximation is the only intention, but here we want to approximate f by
a true density function gk which is related to g̃k by gk(x) = C(θ)g̃k(x).
Equation (4.10) may be written as∣∣∣∣∣∣

∣∣∣∣∣∣log
f

g
−

k∑
j=1

θjhj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

g

=
∫
S

(
log f(x) − log

gk(x)
C(θ

)
)2

g(x)dx

=
∫
S

(log f(x) − log gk(x))2 g(x)dx

+ (log C(θ))2 . (4.11)

Replacing f(x) in (4.11) with the k = ∞ Neyman models we find∣∣∣∣∣∣
∣∣∣∣∣∣log

f

g
−

k∑
j=1

θjhj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

g

=
∞∑

j=k+1

θ2
j + (log C(θ))2 ,

which is, up to the (log C)2 term, equal to (4.7). The second term is here
to be interpreted as a penalty term to make gk a proper normalised density
function. Both terms are functions of θ1, . . . , θk.
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It is also worth noting that the Barton model is basically a first-order
approximation of the Neyman model obtained by a series expansion of the
exponential function.

4.2 Smooth Tests

4.2.1 Simple Null Hypotheses

4.2.1.1 Test Statistics and Null Distributions

In this section we restrict the problem to testing a simple null hypothesis;
i.e., we assume that the parameter β indexing the hypothesised distribution
g(x;β) is completely known. Examples include testing for a standard normal
distribution (βt = (μ, σ) = (0, 1)) and testing for the uniform distribution
over [0, 1]). In the next section, we extend the methodology to testing com-
posite null hypotheses where β has to be estimated from the sample data.

As explained in Section 4.1, Neyman (1937) started with embedding the
hypothesised density function in an order k smooth alternative. In doing so,
k embedding parameters θj (j = 1, . . . , k) are introduced, and the original
null hypothesis corresponds to θ = 0. Neyman argued that if the true density
is a member of this order k alternative, an optimal testing procedure is based
on the score test for testing θ = 0. Thus he reduced a genuine nonparametric
testing problem to a finite-dimensional parametric testing problem. The next
theorem is about this score test. Because the score test based on the Barton
model is exactly the same, we combine both into one theorem. This particular
score test is called the smooth test. The proof of the theorem is given in
Section A.3.

Theorem 4.1. Let X1, . . . , Xn denote a sample of i.i.d. observations which
have under the null hypothesis density function g, and let {hj} denote a set
of orthonormal functions w.r.t. g.

(1) The score test statistic for testing H0 : θ = 0 in the order k Neyman
smooth model is given by

Tk =
k∑

j=1

U2
j ,

where Uj = (1/
√

n)
∑n

i=1 hj(Xi). Let U t = (U1, . . . , Uk). Under the null
hypothesis, as n → ∞,

E0 {U} = 0 and Var0 {U} = I

and
U

d−→ MV N(0, I) and Tk
d−→ χ2

k.
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(2) The score test statistic for testing H0 : θ = 0 in the order k Barton
smooth model is exactly the same as presented in part (1) of this theorem.

We often write Tk = U tU , where U t = (U1, . . . , Uk). The individual Ui

(or U2
i ) are referred to as the components of the test statistic. A test based

on a single component is called a component test.

4.2.1.2 Interpretation of Components

In the previous section we have seen that the test statistic has the represen-
tation Tk =

∑k
j=1 U2

j , and the components Uj are asymptotically i.i.d. under
the null hypothesis. The decomposition is particularly interesting when the
behaviour of Tk is studied under alternatives. The null hypothesis is rejected
for large values of Tk, or, equivalently, for large values of the squared compo-
nents U2

j (j = 1, . . . , k), thus we may try to identify the distributions F �= G
for which one or more components are expected to be very distinct from zero.
The expected value of the jth order component is given by

Ef {Uj} =
√

n

∫
S

hj(x)f(x)dx =
√

n

〈
f

g
, hj

〉
g

, (4.12)

which is up to a factor
√

n equal to the length of the orthogonal projection
of the comparison density onto the jth order function hj in L2(S, G). When
the Barton model is adopted we saw in Section 4.1.1 that this expectation
equals θj . A deeper interpretation depends on the choice of the orthonormal
system {hj}. In the next section a detailed discussion is given for the cases
where the hj are polynomials. Polynomial-based smooth tests form the largest
class of smooth tests. There is, however, one very important nonpolynomial-
based smooth test, which appears often in the important situation of testing
for uniformity. Because all random variables can be transformed to have
a uniform distribution by the PIT (Section 2.4) the uniform distribution
plays a very important role. Therefore we spend the next paragraph on the
interpretation of the nonpolynomial Fourier basis.

For the uniform density g(x) = 1 for x ∈ [0, 1], we find, for instance,
the cosine basis, hj(x) =

√
2 cos(jπx). Suppose the data are not uniformly

distributed, but they have CDF F �= G instead; then the jth order component
has expectation

Ef {Uj} =
√

2n

∫ 1

0

cos(jπx)f(x)dx =
√

2n

〈
f(x)
g(x)

, cos(jπx)
〉

g

.

It is proportional to the length of the orthogonal projection of the comparison
density onto the basis function cos(jπx). A large expectation thus appears
when f(x)/g(x) shows some kind of oscillation with period equal to 2/j. Then
we may expect that slowly oscillating alternatives with period larger than 2/k
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can be detected with the order k smooth test, but fast oscillating alternatives
with period smaller than 2/k may be missed. A similar interpretation is also
common in lack-of-fit tests for regression functions. We specifically refer to
Hart (1997) because he often uses the same basis functions, and he also uses
the term oscillating for characterising alternatives.

4.2.1.3 Interpretation of Components when Orthonormal
Polynomials Are Used

One of the reasons that explain the popularity of smooth tests is the inter-
pretability of the components Uj when orthonormal polynomials are used
for their construction. As we illustrate later these components are often con-
sidered as diagnostic in terms of moment deviations. In particular, when the
component test based on Uj rejects the null hypothesis θj = 0, it is often con-
cluded that the true distribution deviates from the hypothesised distribution
in the jth moment. Later, however, we show that this reasoning is slightly
oversimplified, and that some more care is needed, but at this point we first
give some arguments supporting the moment interpretation of component
tests.

Lemma 4.1. Let μm denote the mth central moment of the hypothesised dis-
tribution, and let μ = E0 {X}. Suppose the order k Barton model holds. Then,
with m ≤ k,

θm = 0 ⇔ Ek {(X − μ)m} = μm.

The proof of this lemma is given in Appendix A.4. This result only shows
that θj is related to the jth moment, but it still does not relate the component
Uj to the jth moment. The next lemma sheds some light on Uj through the
polynomial hj . The proof can be found in Appendix A.5.

Lemma 4.2. Let {hj} denote a set of orthonormal polynomials w.r.t. the
hypothesised density g, and let h0(x) = 1. Then, for all j, there exists a set
of constants {cij} with cjj �= 0 so that

hj(x) =
j∑

i=1

cij

[
(x − μ)i − μi

]
. (4.13)

To get a deeper insight into the use of a component test based on Uj

for arriving at conclusions in terms of moment deviations, we need to say
something in more detail about the null hypothesis. Neyman started with
approximating the true density f with a smooth order k alternative gk. For
simplicity, we even assume that f belongs to this order k alternative. In
doing so, the null hypothesis H0 : f = g is reduced to H0 : θ1 = · · · = θk = 0.
In Theorem 4.1 it was shown that under this null hypothesis, all Uj have
asymptotically standard normal null distributions. Let us first focus on the
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the mean of Uj . Of course, under H0, we have E0 {Uj} = 0. Now suppose
that exactly one moment does not agree with g, say the m-th moment. Then
Lemma 4.2 shows that E {Um} �= 0, but also other Uj (j > m) do not have
necessarily mean zero. Thus, having a significant Um component test only
proves that at least one of the first m moments differs from what is expected
under H0. Later we refine this reasoning by taking also the variance of Um

into account.
From this argument we may deduce a practical rule: first test the overall

null hypothesis that all k θs are zero with the order k smooth test statistic
Tk. When this test rejects the null hypothesis at the α level of significance, it
is informative to look at the components U1, . . . , Uk and the corresponding
p-values, say p1, . . . , pk. Suppose p1, . . . , pm−1 ≥ α, and pm < α (the other
p-values do not matter at this point); then it may be concluded that the
distribution f follows g in its first m − 1 moments, but not in the mth
moment. Suppose now that also higher-order component tests (Uj , j > m)
are significant; then it is not necessarily true that the corresponding higher-
order moments deviate from what is hypothesised. However, if for a given
distribution g, one finds how the polynomials hj are turned into the form
presented in Lemma 4.2, and if many of the constants c in Equation (4.13)
are zero, then a clearer interpretation is possible. Table 4.1 shows these c
coefficients for the normal distribution.

Example 4.1 (Testing for a standard normal distribution). Suppose we have
to test the null hypothesis that f is a standard normal distribution. Table
4.1 gives for the normal distribution the c coefficients of the Hermite polyno-
mials. We conclude:
(1) For the second-order component: because c12 = 0, this component is in-
sensitive to the wrong specification of the mean.
(2) For the third-order component: because c23 = 0, this component is in-
sensitive to the wrong specification of the variance, but because c13 �= 0, it is
sensitive to the specification of the mean.
(3) And so on.
For the normal distribution it turns out that components of odd (even) degree
are only sensitive to deviations in odd (even) moments.

The discussion of the previous paragraphs was based on the assumption
that f belongs to a finite-order k family of smooth alternatives to g. We

Table 4.1 The coefficients cij as in Equation (4.13) for the normal distribution

Degree of Polynomial

1 2 3 4 5

c11 = 1 c12 = 0 c13 = −3 c14 = 0 c15 = 15
c22 = 1 c23 = 0 c24 = −6 c25 = 0

c33 = 1 c34 = 0 c35 = −10
c44 = 1 c45 = 0

c55 = 1
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now relax this assumption. Thus, now gk is only an approximation to the
true f . As in Klar (2000), we say that the original null hypothesis H0 :
f = g is the full parametric null hypothesis in the sense that it implies that
all moments of f and g are equal. When f is approximated by gk with a
finite-order k, the null hypothesis H0 : θ1 = · · · = θk = 0 is called the
semiparametric null hypothesis, because the smooth test Tk is only consistent
against alternatives having moments of order ≤ k in disagreement with the
density g (this is a direct consequence of Lemma 4.2). In this case we no longer
call g the hypothesised distribution. It only serves as a moment-generating
density and only the first k of these moments are part of the semiparametric
null hypothesis.

In a series of papers (Henze (1997), Henze and Klar (1996), Klar (2000)),
Henze and Klar went one step further in examining the diagnostic properties
of the component tests. Instead of only looking at the mean of Uj , as we have
done above, they also studied the relation between the variance of Uj and
moment deviations.

Under the parametric null hypothesis, Theorem 4.1 states Var0 {Uj} = 1.
To explain the arguments of Henze and Klar, we first take a closer look at
the variance. Some results are summarised in the following lemma, the proof
of which is given in Appendix A.6.

Lemma 4.3. (1) If f agrees with g in all first 2j moments, then Var {Uj}=1;
(2) if f disagrees with g in at least one moment of degree ≤ 2j, and let m
denote the smallest order of such moments, then

Var {Uj} =

⎧⎨⎩ 1 − (Ef {hj(X)})2 +
∑2j

l=m cl Ef {hl(X)} if m ≤ j

1 +
∑2j

l=m cl Ef {hl(X)} if j < m ≤ 2j
1 if 2j < m ,

(4.14)
where cm, . . . , c2j are constants which are not necessarily zero.

Henze and Klar went further by showing that for a wide class of alterna-
tives, say A,

sup
f∈A

Varf {Uj} = +∞ and inf
f∈A

Varf {Uj} = 0.

With this information we come to a quite drastic conclusion: within the classA,
the infimum of the power function is zero; i.e., inff∈A Prf

{|Uj | > z1−α/2

}
= 0.

Based on this extreme result, Henze and Klar concluded that Uj is never
guaranteed to have diagnostic properties w.r.t. moment differences. Their
solution to the problem consists in replacing the asymptotic variance of Uj ,
which is, as for all score tests, determined under the full parametric null
hypothesis, by the empirical variance estimator,

S2
j =

1
n

n∑
i=1

h2
j (Xi).
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The intuitive explanation is easy: S2
j is a consistent estimator of the variance,

both under the null and the alternative hypothesis, and its correctness does
not depend on any other moment restriction.

In doing so, they showed that the asymptotic null distribution of Uj is
not changed (it is basically the replacement of a variance by a consistent
estimator).

The use of the empirical variance estimator is particularly important when
the individual components are used in a diagnostic manner, but the idea may
also be applied to the order k smooth test,

Tk = U tΣ̂
−1

U ,

where Σ̂ = (1/n)
∑n

i=1 h(Xi)ht(Xi), and ht(x) = (h1(x), . . . , hk(x)). An-
other, but similar solution is proposed by Chervoneva and Iglewicz (2005).
They suggest to estimate Σ with a U-statistic based on a symmetric kernel
of degree two. This estimator is slightly more computationally intensive, but
they prove that under mild assumptions their estimator is optimal in the
sense that it is minimum variance unbiased and n1/2-consistent.

Replacing Σ with its empirical estimator Σ̂ results in a slowing down of
the convergence of Tk to its asymptotic null distribution. The parametric
bootstrap is not an option here, because it again implies that the full para-
metric null hypothesis is true. Bickel and Ren (2001) suggested a modification
of the nonparametric bootstrap that forces the simulated null distribution of
the test statistic to be centred as it would be expected if the semiparametric
null hypothesis holds. The method is explained in Appendix B.3. Finally, we
mention that, despite the correct criticism of Henze and Klar, we have the
experience that in most situations the traditionally standardised component
tests are quite good in detecting the right moment deviations, particularly
when the true distribution is not too distinct from the hypothesised.

In this section on the simple null hypothesis, we present only one example.
More examples are given later for the more interesting situation in which a
nuisance parameter is to be estimated. We also see that for composite hy-
potheses the problem of the diagnostic property becomes more complicated.

Example 4.2 (Pseudo-random generator data). In the cd package, the R func-
tion smooth.test may be used to perform smooth tests. Here we consider
k = 4. Because the null hypothesis of uniformity is to be tested, the smooth
test is based on the Legendre polynomials. For the PRG data the output is
given below.

> smooth.test(PRG,order=4,distr="unif",B=NULL)
Smooth goodness-of-fit test
Null hypothesis: unif against 4 th order alternative
Nuisance parameter estimation: NONE
Parameter estimates: no parameter estimation necessary
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Smooth test statistic S_k = 4.402007 p-value = 0.3543
1 th component V_k = -1.026668 p-value = 0.3046
2 th component V_k = -0.324184 p-value = 0.7458
3 th component V_k = -1.442003 p-value = 0.1493
4 th component V_k = -1.078652 p-value = 0.2807

All p-values are obtained by the asymptotic approximation

Clearly, the null hypothesis is accepted. Thus, it is not informative to examine
the individual components.

4.2.2 Composite Null Hypotheses

4.2.2.1 Maximum Likelihood and Method of Moments Estimators

In most realistic situations the null hypothesis only specifies a family of dis-
tributions, indexed by a p-dimensional parameter vector βt = (β1, . . . , βp)
which is referred to as the nuisance parameter. The null hypothesis now be-
comes H0 : F ∈ {G(.;β) : β ∈ B}, where B denotes the parameter space
which is an open subset of IRp. The null hypothesis is sometimes written as
H0 : F (x) = G(x;β) for all x ∈ S, and it is referred to as the composite
null hypothesis. Typical examples are the normal distribution indexed by
the mean μ and the variance σ2 (βt = (μ, σ2)), the exponential distribu-
tion indexed by the rate λ (β = λ), etc. An intuitively appealing solution
exists in adopting a two-step approach: (1) estimate the nuisance parame-
ters. Let β̂ denote the estimator. And, (2), proceed as in the simple null
hypothesis case, with β replaced by β̂. Up to a certain extent, this is indeed
a correct solution. In particular, using β̂ in the specification of the orthonor-
mal polynomials results in the correct orthonormality criterion of Equation
(2.19). Also the statistics Ûj = Uj(β̂) = (1/

√
n)
∑n

i=1 hj(Xi; β̂) are mean-

ingful in the sense that E
{

Uj(β̂)
}

= E {Uj(β)} under both the null and the
alternative hypotheses. However, an important consequence of imputing nui-
sance parameter estimators is that the variance–covariance matrix of U(β̂)
is no longer the identity matrix. More specifically, we now very often have
Var

{
U(β̂)

}
�= Var {U(β)}. The exact expression of the variance–covariance

matrix depends on the method of estimation. We restrict the discussion to
asymptotically linear estimators.

Althoughmuchofthetheorythatwepresenthereisvalidforallasymptotically
linear estimators, we focus on two particular types of Z-estimators: maximum
likelihood estimators (MLE) and method of moments estimators (MME). Both
are solutions of estimation equations of the form

∑n
i=1 b(Xi; β̂) = 0, where the

estimation function b satisfies some regularity conditions (see Section 2.7).
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For MLE, b is the score function, and for MME the estimation functions
express the equality of the moments of g to the sample moments; i.e., the jth
estimation function is of the form bj(x;β) = (x−μ)j −E0

{
(X − μ)j

}
, where

E0 {.} denotes the expectation w.r.t. the hypothesised distribution g(.;β).
The next lemma shows an important consequence of the use of MME in
smooth tests.

Lemma 4.4. Without loss of generality we set μ = 0. If the p-dimensional
nuisance parameter β is estimated by means of MME, i.e., β̂ is the solution
to the estimation equations

n∑
i=1

bj(Xi; β̂) =
n∑

i=1

Xj
i − nEg(.;β̂)

{
Xj
}

= 0 j = 1, . . . , p, (4.15)

then Uj(β̂) ≡ 0 (j = 1, . . . , p) with probability one.

This lemma is almost a direct consequence of Lemma 4.2 which shows that
Uj(β̂) =

∑n
i=1 hj(x; β̂) is a linear combination of contrasts between the first

j sample moments and the matching moments of g. All these contrasts are
exactly zero according to (4.15).

This lemma suggests that it makes no sense to include the first p com-
ponents Ûj in the construction of a goodness-of-fit test statistic. Or, put in
another way, the p first θ parameters in the smooth alternatives of (4.1) or
(4.2) can be omitted because their role is replaced by the nuisance parameters
β. It also has consequences for the interpretation of a MME-based smooth
test. First, no deviations in the first p moments can be detected because
the density g(.; β̂) fits exactly in terms of these moments. When one of the
higher-order component tests turns out significant, a higher-order moment
interpretation can be given, but always conditional on an exact fit of the
first p moments. Within a semiparametric framework for smooth tests, Klar
(2000) gives some further arguments that bring him to the conclusion that
MME is the only meaningful estimation method in goodness-of-fit testing.
More details follow in Section 4.5.

As illustrated in the examples to come, sometimes MME and MLE coin-
cide. Klar (2000) showed that this always occurs when g belongs to a subclass
of the exponential family for which the sufficient statistics are polynomial in
the observations (e.g., the normal and the exponential distributions, but not
the gamma distribution).

Example 4.3 (MLE and MME in the normal distribution). For the normal
distribution with nuisance parameters βt = (μ, σ2), the score functions are

uβ(x;β) =
∂ log g(x;β)

∂β
=

(
x−μ
σ2

(x−μ)2

σ4 − 1
σ2

)
=
(

uμ(x)
uσ(x)

)
.

So we have bμ = uμ and bσ = uσ, but usually the estimation equations are
simplified to bμ(x) = x − μ = 0 and bσ(x) = (x − μ)2 − σ2 = 0. Although
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strictly speaking these are no longer true score functions, we often do not
make a distinction in terminology when they are used in the context of esti-
mation equations.

Because E {X} = μ and Var {X} = σ2, the MME estimation equations
are directly given by

bμ(x) = x − μ = 0 and bσ(x) = (x − μ)2 − σ2 = 0.

Example 4.4 (MLE and MME in the logistic distribution). A logistic distri-
bution is a symmetric distribution with density function

g(x;β) =
exp(−(x − μ)/σ)

σ (1 + exp(−(x − μ)/σ))2
for −∞ < x < +∞,

where βt = (μ, σ) contains a location parameter μ and a scale parameter σ.
The MLE estimation functions are given by

bμ(x) =
1
2
− exp

(−x−μ
σ

)(
1 + exp

(−x−μ
σ

))2
bσ(x) = σ − (x − μ)

1 − exp
(−x−μ

σ

)
1 + exp

(−x−μ
σ

) .
The MLE estimation equations bμ = bσ = 0 need to be solved iteratively.

Because E {X} = μ and Var {X} = (π2σ2)/3, we find the MME estimation
functions

bμ(x) = x − μ and bσ(x) = (x − μ)2 − π2

3
σ2.

Now MME and MLE are clearly distinct. The MME have explicit solutions,

μ̃ = X̄ and σ̃ =
√

3
π

√√√√ 1
n

n∑
i=1

(Xi − μ̃)2.

4.2.2.2 The Efficient Score Test

When nuisance parameters are estimated by their MLE (i.e., b = uβ), score
tests are usually based on the efficient score function

v(x) = h(x;β) − ΣhβΣ−1
ββuβ(x;β), (4.16)

which in a Hilbert space is interpreted as the orthogonal projection of h on
the orthogonal complement space of uβ ; i.e.,

v = h − < h,uβ >g

< uβ ,uβ >g
uβ = h −

〈
h,

uβ

||uβ ||g

〉
g

uβ

||uβ ||g .
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In the Hilbert space h represents the direction of the alternative for which
the smooth test has power. This was explained in Section 4.1.1, where it was
shown that the comparison density has the representation

f(x;β)
g(x;β)

= 1 +
k∑

j=1

θjhj(x;β) (4.17)

in the k-dimensional subspace spanned by {h1, . . . , hk}. When β is held con-
stant at its true value, say β0, the density g(x;β0) corresponds to one point
in the Hilbert space, but when we let β vary in IRp, the set

Gβ =
{

f(x;β)
g(x;β)

: β ∈ IRp

}
represents a line or a (hyper)plane in L2(S, G(.;β0), indexed by β. The space
Gβ is typically not linear, but a Taylor series expansion may be used for ob-
taining a local (i.e., for β close to β0) approximation. In the next paragraph
we first illustrate this idea on the comparison density g(x;β)/g(x;β0), which
compares the members within the composite null hypothesis to the true den-
sity g(x;β0) under the null hypothesis.

A Taylor expansion gives

g(x;β) = g(x;β0) + (β − β0)
t ∂g

∂β
(x;β0) + O(

(
β − β0)

t(β − β0)
)

= g(x;β0) + (β − β0)
t ∂ log g

∂β
(x;β0)g(x;β0) + O(

(
β − β0)

t(β − β0)
)
.

Thus, locally (i.e., for β close to β0), we find approximately

g(x;β)
g(x;β0)

= 1 + (β − β0)
tuβ(x),

which is linear in β, and the score function uβ is now interpretable as the
vector that spans the subspace that is (locally) consistent with the composite
null hypothesis.

We now apply the Taylor expansion to (4.17), but now with β = β0 and
θ = 0. We eventually arrive at

f(x;β)
g(x;β)

=
f(x;β0)
g(x;β0)

+ (β − β0)
t
(
uf

β(x) − ug
β(x)

)
+ θth(x;β0),

where uf
β(x) and ug

β(x) denote the score functions of β w.r.t. f and g, respec-
tively. This approximation demonstrates that the comparison density lives in
a subspace which is spanned by the k-dimensional h, but also by the score
functions uβ = ug

β of the nuisance parameter β, and the latter actually spans
the p-dimensional subspace of comparison densities that are consistent with
the null hypothesis.
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Suppose that a k-dimensional h is not orthogonal to uβ ; then not all of the
spanned k-dimensional subspace is relevant for the alternative. It is therefore
more efficient to transform h so that it spans a k-dimensional subspace that
is exclusively relevant for the alternative, i.e., a subspace that has an empty
intersection with the linearised Gβ (note: the intersection actually only con-
tains the 1-element). To guarantee this, h is transformed to the orthogonal
complement after its orthogonal projection onto uβ .

Because for MLE b = uβ this means that the efficient score function is
orthogonal to the estimation equation, which translates to independence in
the world of statistics. Despite the independence, Theorem 4.2 (see later)
shows that the variance–covariance matrix of V̂ is generally not diagonal,

Σv̂ = Ik − ΣhβΣ−1
ββΣβh. (4.18)

To obtain a decomposition of Tk into asymptotically independent components
the last term in Equation (4.18) must be zero. This happens in the important
case where the score function uβ and the polynomials h are orthogonal (< uβ ,
h >g= Σβh = 0). The polynomials form by definition a set of orthogonal
functions, therefore a diagonal variance–covariance matrix is obtained when
the score functions uβ lie within the space spanned by the polynomials hj

not contained in h. This happens when uβ contains polynomials, i.e., for
distributions g for which MLE and MME coincide. Finally, note that with
the MLE β̂ and with the efficient score of Equation (4.16) the statistic Û j =
(1/

√
n)
∑n

i=1 v(x; β̂) = (1/
√

n)
∑n

i=1 h(x; β̂), which would also have been the
result if the ordinary score function v = h were considered. Thus, numerically
it makes no difference in this case. Moreover, with the choice v = h Theorem
4.2 gives exactly the same variance–covariance matrix of Equation (4.18).

Although the efficient score arises naturally when MLE is considered, it
has a much broader validity. For instance, Hall and Mathiason (1990) showed
that the asymptotic null distribution of the efficient score statistic V (β̂) is
the same for any n1/2-consistent estimator β̂.

4.2.2.3 The Generalised Score Test

The name “generalised score test” was used by Boos (1992) to name a quadratic
goodness-of-fit test which looks very similar to a score test, but which also
works with more general estimation equations. This class of tests also works in
a semiparametric framework in which the likelihood function is not specified.
When applied to smooth alternatives, they are referred to as “generalised
smooth tests” by Javitz (1975) and Rayner et al. (2009).

Theorem 4.2 that follows shortly states the asymptotic null distribution
of statistics of the form

V̂ = V (β̂) =
1√
n

n∑
i=1

v(Xi; β̂),
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where v is a k-dimensional vector-valued function which satisfies the same
regularity conditions as imposed on the influence functions (Section 5.1.3).
Because the exposition in the next few paragraphs is fairly general and
technical, it may be skipped by readers who are only interested in the
applications.

We need the following additional notation for any two vector-valued func-
tions r and s,

Σrs = Cov0 {r, s} =< r, s >g

Σrβ = Cov0 {r,uβ} =< b,uβ >g .

We also use the convention Σr = Σrr.

Theorem 4.2. Let X1, . . . , Xn denote a sample of i.i.d. observations which
have, under the null hypothesis, density function g(x;β). Suppose the
p-dimensional nuisance parameter is estimated by means of a locally asymp-
totic linear estimator β̂ which is determined by estimation function b. Let
V̂ = V (β̂) = (1/

√
n)
∑n

i=1 v(Xi; β̂), where v is a k-dimensional vector-
valued function with E0 {v(X;β)} = 0 and finite E0

{
v̇(X;β)v̇t(X;β)

}
un-

der the null hypothesis. Then, the asymptotic null distribution of V̂ is a
zero-mean multivariate normal distribution with variance-covariance matrix

Σv̂ = Σv + ΣvβΣ−1
bβ Σbb(Σ−1

bβ )tΣβv − Σvb(Σ−1
bβ )tΣβv − ΣvβΣ−1

bβ Σbv.
(4.19)

The proof of this theorem is a direct consequence of a more general theo-
rem which is stated and proved in Section A.8 of Appendix A, where the
asymptotic distribution of V̂ is studied under sequences of local alternatives.

The next theorem gives the generalised smooth test statistic and its asymp-
totic null distribution. The theorem is based on the Neyman model, but using
similar arguments as in the proof of Theorem 4.1, it can be shown that the
same result holds for the Barton model too.

Theorem 4.3. Let {hj(.;β)} denote a set of orthonormal functions w.r.t.
density g(.;β) and let ht = (h1, . . . , hk). Consider the statistic

V̂ k =
1√
n

n∑
i=1

h(Xi; β̂),

and assume that the regularity conditions of Theorem 4.2 apply to h and β̂.
The score (smooth) test statistic for testing H0 : θ = 0 in the order k Neyman
smooth model is then given by

Tk = V̂
t
Σ−

v̂ V̂ , (4.20)
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where Σ−
v̂ is the generalised inverse of the variance–covariance matrix Σv̂

as given in Equation (4.19) with v replaced by h. Under H0, as n → ∞,

Tk
d−→ χ2

r,

where r is the rank of Σv̂.

At first sight Theorems 4.2 and 4.3 may look quite complicated, but in
particular important cases, they give quite simple results. We have seen al-
ready the efficient score test, and in the next paragraphs we give another
interesting illustration of the generalised score test.

When MME is used for nuisance parameter estimation, the estimation
equations are b = hN = 0, where hN denotes the vector function which is
built from the first p polynomials hj (j = 1, . . . , p). Earlier in this section
we have argued that with these estimation functions, it makes no sense to
include the first p polynomials in the goodness-of-fit test, or, equivalently, the
first p θ parameters may be removed from the smooth alternative. Let hT

denote the vector function containing the polynomials hj , j = p + 1, . . . , k.
When working in a likelihood framework, as before hT is the score function
for the θ parameters. Hence, v = hT seems a natural choice. Theorem 4.2
now gives

Σv̂ = Ik−p + ΣhT βΣ−1
hN β(Σ−1

hN β)tΣβhT
.

Although a test based on the choice v = hT makes sense, it is a naive
construction. It has been shown that power may be gained if v is still taken
as the efficient score function of Equation (4.16) (with h limited to the (k−p)-
dimensional hT ). For this particular construction Theorem 4.2 gives

Σv̂ = Ik−p − ΣhT βΣ−1
ββΣβhT

. (4.21)

When MLE and MME coincide, the p score functions in uβ are polynomial.
When the polynomials are of orders 1, . . . , p, the covariance matrix Σv̂ re-
duces to the identity matrix.

Example 4.5 (Cultivars data). To demonstrate a smooth test for a compos-
ite null hypothesis we consider the cultivars data and we test the null hy-
pothesis that the data come from a normal distribution. We apply a k = 6
order smooth test and use MLE for the estimation of the mean and the vari-
ance, but for the normal distribution the results would have been same with
MME. It is known that the convergence to the asymptotic null distribution
is rather slow, and so it is recommended that the p-values are approximated
by means of simulation, e.g., by the bootstrap (see Appendix B.2). However,
because a normal distribution is location-scale invariant, the null distribu-
tion does not depend on the true mean and the variance, and therefore the
simulations should be performed only once. With the smooth.test function
comes a database of simulated null distributions for location-scale families,
and p-values are thus rapidly obtained.
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> smooth.test(cultivars,order=6,distr="norm",method="MLE")
Smooth goodness-of-fit test
Null hypothesis: norm against 6 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 2.067579 33.94631 ( MEAN VAR )

Smooth test statistic S_k = 3.247817 p-value = 0.18
3 th component V_k = 0.394757 p-value = 0.64
4 th component V_k = 1.055294 p-value = 0.08
5 th component V_k = 0.476652 p-value = 0.53
6 th component V_k = -1.323307 p-value = 0.02

All p-values are obtained by referring to a simulated null
distribution based on 10,000 runs

The first two components are exactly zero because MME and MLE coincide.
We read p = 0.18 for k = 6th-order smooth test, and conclude at the 5%
level of significance that there is no reason to suspect the data from not being
normally distributed. Despite this nonsignificance, the output also shows that
the 6th individual component test gives p = 0.02.

In the next section we see methods that may be used to select the order k
of the smooth test, and in Section 4.5 we show how the rescaling method of
Henze and Klar (see Section 4.2.1) can be applied in the presence of nuisance
parameters. All these methods to come will be illustrated in Section 4.6.

4.3 Adaptive Smooth Tests

4.3.1 Consistency, Dilution Effects and Order
Selection

A well known and important problem with the smooth tests is that the order
k must be fixed before looking at the data. This is essential for the distribu-
tion theory to hold. It is, however, easy to understand that a “bad” choice
of k may result in a smooth test with unfavourable power characteristics for
particular alternatives. To explain this problem we first consider the smooth
tests for a simple null hypothesis and we use the representation of a density
function in a Hilbert space. As before consider the linear expansion of Equa-
tion (4.4), resulting in the expansion f(x) = (1 +

∑∞
j=1 θjhj(x))g(x) of the

true density f . Any density f which satisfies some regularity conditions, has
a representation in an infinite-dimensional Hilbert space which is spanned by
the orthonormal basis functions hj . In Section 4.1.1 it was shown that the θ
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parameters are the solutions to minimising Pearson’s φ2 measure, resulting
in θj =<hj , (f/g) >g =< hj , f >. In a Hilbert space the θjhj are also recog-
nised as the orthogonal projections of the relative density f/g onto the basis
function hj . Hence, f̃k(x) = (1 +

∑k
j=1 θjhj(x))g(x) is the orthogonal pro-

jection of f/g onto the subspace Pk ⊂ L2(S) spanned by {h0, . . . , hk}, and
which in a geometric sense is interpretable as the relative density within Pk

that has the smallest distance to f/g. Furthermore, a statistical interpreta-
tion of θj may come from

θj =< hj , f/g >g =
∫
S

hj(x)f(x)dx = Ef {hj(X)} =
√

n Ef {Uj} ,

where Uj is the score statistic of Section 4.2.1. Using this result, and relying
on Theorem 4.1, the following lemma follows almost immediately (the proof
is omitted).

Lemma 4.5. Let X1, . . . , Xn denote i.i.d. random variables with density
function f , let S denote any finite nonempty subset of {1, 2, . . .} and let
U t

S = (Uj)j∈S. Then, as n → ∞,

US −√
nθS

d−→ MVN(0,ΣS),

where θt
S = (θj)j∈S and ΣS = Varf {US} of which the j, kth element is given

by σjk = Covf {hj(X), hk(X)}.
This lemma, together with the projection interpretation of the θ param-

eters is important for the understanding of the power characteristics of the
order k smooth test and its components. We immediately give some impor-
tant consequences, but first we make some additional assumptions about f .
We suppose that f belongs to {g ∈ L2(S) : 0 <

∑
j∈S Varg {Uj} < ∞}. This

restriction can sometimes be dropped if instead of US the empirically scaled
score statistics of Henze and Klar were used. However, in the light of our
current discussion this would only make things unnecessarily more complex.
Here are some important consequences.

1. Let PS denote the Hilbert subspace spanned by hj (j ∈ S). First we con-
sider a single-component test based on Vj = Uj/σj with σ2

j the asymptotic
variance of Uj under the null hypothesis(j ∈ S). When the orthogonal pro-
jection of f/g onto PS gives θj �= 0, Lemma 4.5 implies that Ef {Vj} grows
unboundedly in probability. Hence, if cα is the (asymptotic) critical point
of V 2

j at the α level, Prf

{
V 2

j > cα

} → 1 as n → ∞. This shows that Vj

gives a consistent test against the alternative f , and the necessary condi-
tion is that the jth component of the orthogonal projection of f/g on hj

should be nonzero.
2. Leaving the one degree-of-freedom situation and considering the partial

sum test statistic TS =
∑

j∈S V 2
j , Lemma 4.5 again shows that TS grows

unboundedly, even if there is only one j for which θj �= 0. Thus also TS
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gives a consistent test against the alternative f as long as at least one of
the components of the projection of f/g on PS is different from zero. Note
that this reasoning only holds if the size of S is kept finite.

3. In contrast to the two previous situations, it is clear that an order k smooth
test has no power (i.e., power equals significance level) if all θj = 0 (j ≤ k).

4. The two previous points were based on asymptotic arguments leading to a
trivial asymptotic power equal to one. This makes power comparison diffi-
cult. A classical theoretical framework used to compare nontrivial powers
is to consider sequences of local alternatives, which are indexed by the
sample size n and which converge to the hypothesised density g at a con-
venient rate so that the power is kept away from the significance level and
from one. Such arguments can be made formal if we rely on the results of
Appendix A.8, but instead we give a rather intuitive argumentation.
We suppose that Lemma 4.5 remains approximately valid for large but
finite sample sizes n. Imagine that exactly one θj �= 0 (j ∈ S), let S =
{1, . . . , k}, and let ck,α denote the α-level critical value of the asymptotic
χ2

k null distribution of TS = Tk. Thus, for large n we have approximately
Prg {Tk > ck,α} = α. Under the alternative f , Lemma 4.5 implies that Tk

has approximately a noncentral χ2 distribution with k degrees-of-freedom
and noncentrality parameter c = nθ2

j . Thus, for a given sample size n
and θj , the noncentrality parameter remains constant, but the degrees
of freedom increase with order k. To illustrate the effect of increasing
k when the order j for which θj �= 0 is rather small, say j = 2, the
approximate powers for nθ2

1 ranging from 1 to 10 are presented in Table 4.2.
These powers suggest that (1) the power increases with the noncentrality
parameter; (2) there is no power (power equals significance level) when
k < j = 2; (3) for each value of the noncentrality parameter the test
with order k = 2 has the largest power; and (4) for a given noncentrality
parameter, the power decreases when k > j = 2 increases. The latter
effect is called the dilution effect. It illustrates that k should be chosen
appropriately: not too small and not too large.

The discussion of the previous paragraph makes clear that it is very im-
portant to specify k appropriately so that a dilution effect is avoided. There

Table 4.2 The approximate powers of the partial sum test Tk (with k ranging from 1 to
6) under alternatives with noncentrality parameter nθ2

2 ranging from 1 to 10

Noncentrality Parameter

k 1 2 3 4 5 6 7 8 9 10

1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2 0.13 0.23 0.32 0.42 0.50 0.58 0.65 0.72 0.77 0.82
3 0.12 0.19 0.27 0.36 0.44 0.52 0.59 0.65 0.71 0.76
4 0.11 0.17 0.24 0.32 0.40 0.47 0.54 0.61 0.66 0.72
5 0.10 0.16 0.22 0.29 0.36 0.43 0.50 0.56 0.62 0.68
6 0.09 0.15 0.21 0.27 0.34 0.40 0.47 0.53 0.59 0.64
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are two important practical situations. In the first, the user is particularly
interested in rejecting the null hypothesis when the true distribution f be-
longs to a specific restricted class of alternatives. For instance, when testing
for normality as a pretest to a t-test for equality of means, the user is often
more interested in detecting skewness than in detecting any other type of
(lower order) deviation, for it is generally known that t-tests are quite sen-
sitive to skewed deviations from the normal distribution. This sensible argu-
mentation advocates the use of an order k = 3 partial sum test. On the other
hand, there are many situations in which the user wants to detect almost any
kind of deviation from the hypothesised distribution. In these situations, k
should be large, but, as illustrated above, when k is too large as compared to
the noncentrality parameter or when k is much larger than the largest order
j for which θj �= 0, the dilution effect kicks in and substantial power may be
lost. This order j defined here is sometimes called the effective order of the
alternative f (Rayner and Best (1989)). Unfortunately, in this last situation,
the user has a priori no idea about the effective order.

The solution consists of making the smooth test adaptive in the sense that
the order, or, more generally, the subset S, is “estimated” from the sam-
ple observations. This data-driven process makes, however, the order k or
the indices in S random variables, and therefore the distribution theory of
the resulting adaptive smooth tests is affected. In the next section we make a
distinction between “order selection” and “subset selection”. The latter con-
cerns selecting the subset S ⊆ {1, 2, . . . , m}, where m denotes the maximum
order that may be considered, whereas the former restricts the subsets to
be of the form S = {1, . . . , k} (k ≤ m). Another important distinction to be
made is the size of m. If m is finite, we say that subsets are within a finite
horizon. Sometimes m is allowed to grow with the sample size n, denoted as
mn. In this last situation, only the order selection has a sound asymptotic
theory.

4.3.2 Order Selection Within a Finite Horizon

Ledwina (1994) was the first to note that the order selection problem is basi-
cally a model selection problem. Indeed, smooth tests are actually parametric
score tests within the framework of a flexible and particularly constructed
family of smooth alternatives of order k. Thus, estimating the θ parame-
ters and selecting the order k in the Neyman density (Equation (4.1)) can
be considered as a type of nonparametric density estimation. Nonparametric
density estimation based on a Barton-type expansion was already proposed
in 1962 by Cencov (1962). Also the Neyman model has been studied well
before 1994 as a basis for nonparametric density estimation, but it has never
been as popular as the Barton representation. See Section 2.8 for a brief
introduction to nonparametric density estimation. Looking at the problem
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from the point of view of model selection, Ledwina (1994) suggested that
the order k could be selected based on a model selection criterion such as
the Bayesian information criterion (BIC) Schwarz (1978). Although different
model selection criteria exist, she argued that BIC should be chosen because
it is consistent in the sense that it asymptotically selects with probability one
the most parsimonious model among the models that are closest to the true
model in terms of the Kullback–Leibler divergence. In this 1994 paper, only
testing a simple null hypothesis was discussed. Later, Kallenberg and Led-
wina (1997) and Inglot et al. (1997) extended the data-driven smooth test
framework to testing composite hypotheses when the nuisance parameters
are estimated by a

√
n-consistent estimator (details follow). These two last

papers actually concern order selection within an infinite horizon, but here
we restrict the discussion to a finite m. In the next paragraphs we give the
main results from these papers.

First we suppose that β is completely known (simple null hypothesis).
Let l(θk;β) denote the log-likelihood function based on the Neyman model
including terms up to order k. When θ̂k denotes the MLE of θk, then l(θ̂k;β)
is the maximised log-likelihood. For a model of order k, the BIC is defined as

BICn(k;β) = l(θ̂k;β) − 1
2
k log(n), (4.22)

where the last term is interpreted as a penalty term which makes the BIC
favouring lower-dimensional models as the sample size increases. The order
selection rule specifies the selected order as

K = Kn(β) = min {k : 1 ≤ k ≤ m,BICn(k;β) ≥ BICn(j;β), j = 1, . . . , m} .
(4.23)

Because it can be quite tedious to find the MLE θ̂ (see, e.g., Buckland (1992)
and Efron and Tibshirani (1996)), a similar but simpler selection rule has
been proposed by Kallenberg and Ledwina (1997),

K2 = K2n(β) = min
{
k : 1 ≤ k ≤ m,U t

kUk − k log(n) ≥
U t

jU j − j log(n), j = 1, . . . , m
}

, (4.24)

where Uk = Uk(β) is the vector of score statistics (1/
√

n)
∑n

i=1 hj(Xi;β),
j = 1, . . . , k. This simplification results from the fact that the maximised
log-likelihood is equal to the log-likelihood ratio statistic for testing θ = 0
versus θ �= 0 which is locally equivalent to 1

2 times the score test statistic
U t

kUk. See, for example, Javitz (1975) for more details on this equivalence.
The data-driven smooth test statistic is now defined as the usual score test
statistic with k replaced by K or K2,

TK2 = U t
K2UK2 =

K2∑
j=1

(
1√
n

n∑
i=1

hj(Xi;β)

)2

.
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When the nuisance parameter β is estimated by a
√

n-consistent estimator,
say β̂, Kallenberg and Ledwina (1997) and Inglot et al. (1997) suggested
to replace β in the selection rules (4.23) and (4.24) with β̂, but to use the
efficient score test statistic of Equation (4.20) with Σv̂ given in Equation
(4.18); i.e.,

TK2 = Û
t

K2

(
IK2 − ΣhβΣ−1

ββΣβh

)−1

ÛK2, (4.25)

where the Σβh matrix refers to the first K2 components of h. Later, Janic-
Wróblewska (2004) noted that when nuisance parameters are estimated, it
would be better to replace the score statistics in the K2 selection rule (Equa-
tion (4.24)) by the efficient score statistic,

ÛK2 =
1√
n

n∑
i=1

{
hK2(Xi; β̂) − ΣhβΣ−1

ββuβ(Xi)
}

(see Section 4.2.2 for details on the notation). This slightly different selection
rule is denoted as K̃2. Note that K̃2 ≡ K2 when MLE is used. Note also that
the K2 and K̃2 selection rules are based on sum of squared statistics, and not
on the corresponding smooth test statistics that also involve the asymptotic
variance of U . While studying smooth tests for location-scale distributions,
Janic-Wróblewska and Ledwina (2009) suggested using the modified selec-
tion rule

K1 = K1n(β) = min {k : 1 ≤ k ≤ m : Tk − k log(n) ≥
Tj − j log(n), j = 1, . . . , m} ,

in which Tk is now the order k efficient score test statistic (4.20).
For all four order selection rules, the following lemma holds true (Led-

wina (1994), Kallenberg and Ledwina (1997), Inglot et al. (1997), Janic-
Wróblewska (2004) and Janic-Wróblewska and Ledwina (2009)). We refer
to these papers for some technical regularity conditions for the lemma and
following theorem to hold.

Lemma 4.6. Let β̂ be a
√

n consistent estimator of β. Under H0, as n → ∞,

Pr
{

On(β̂) = 1
}
→ 1,

where On denotes any of Kn, K2n, K̃2n and K1n.

This lemma says that asymptotically always the first-order model is selected
under the null hypothesis. This result, together with Theorem 4.3 immedi-
ately gives the following theorem.

Theorem 4.4. Assume the conditions of Lemma 4.6 and Theorem 4.3. Un-
der H0, as n → ∞,

TOn
(β̂) d−→ χ2

1,
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where On denotes any of Kn, K2n or K̃2n, and where T is the efficient score
statistic.

Note that Lemma 4.6 and Theorem 4.4 also apply when β is fixed in a
simple null hypothesis. Up to now we have worked within the Neyman model
(4.1) for which it was assumed that the normalisation constant C(θ,β) exists.
When S is a closed set, this will usually be the case, but when S is open, this
will often be problematic. For instance, when testing for a normal distribution
the natural set of orthonormal functions is the Hermite polynomials which
are unfortunately not bounded. To avoid such problems, many papers on
data-driven smooth tests work within a slightly different type of Neyman
model,

gk(x;θ,β) = C(θ,β) exp

⎛⎝ k∑
j=1

θjφj(G(x;β))

⎞⎠ g(x;β), (4.26)

where G denotes the CDF of g and {φj} is now a set of bounded orthonor-
mal functions in L2([0, 1]). Typical examples include the cosine basis or the
Legendre polynomials. This representation basically results from applying a
probability integral transformation (PIT) prior to the analysis (see Section
2.4 for PIT). We refer to Equation (4.26) as the Neyman–PIT model. The
consequences of using the Neyman–PIT rather than the usual Neyman model
are minor. The orthonormal basis functions satisfy

hj(x;β) = φj(G(x;β)). (4.27)

All definitions and theoretical results on the distribution theory of the smooth
tests remain valid, but the expression of the asymptotic variance–covariance
matrix of the score or efficient score statistic becomes more complicated,
because, as (4.27) shows, the nuisance parameter now enters in hj through
the CDF G. More important from a practical point of view some of the
nice moment interpretations of the components are lost because the φj may
refer to the j the moment of G(X), but it is not always straightforward to
translate this to a moment interpretation of X itself. When the Neyman–PIT
model is used, the Hilbert space should be redefined too. In particular, the
Hilbert space is spanned by the functions φj ◦ G (j = 0, . . .), which agrees
with Equation (4.27), and it is denoted by L2([0, 1] ◦ S). Furthermore, the
subspace P now denotes the the subspace spanned by the first k functions
φj ◦ G (j ≤ k).

Before we go to the next section, it is important to say something about
the consistency of the data-driven tests discussed so far. In Section 4.3.1 we
have seen that a smooth test of order k is consistent if the projected relative
density f̃k/g has at least one θj �= 0 (j ≤ k). The following theorem is a
consequence of Theorem 2.6 (and Remark 2.7) of Inglot et al. (1997) and
Theorem 3 of Janic-Wróblewska (2004).



102 4 Smooth Tests

Theorem 4.5. Assume the conditions of Lemma 4.6 and Theorem 4.3 apply.
Let Fm denote the set of density functions f for which the orthogonal projec-
tions of f/g onto Pm have at least one θj �= 0 (j ≤ m). Suppose that f ∈ Fm,
and let km denote the smallest j for which θj �= 0 occurs. Let On denote any

of Kn, K2n, K̃2n, or K1n. Then, (1) as n → ∞, Prf

{
On(β̂) ≥ km

}
→ 1,

and (2) the data-driven smooth test based on TOn(β̂) is consistent against f .
This theorem illustrates the limitation of the finite horizon restriction: the
data-driven smooth tests with fixed and finite m are only consistent against
alternatives f ∈ Fm. A natural extension is to allow m to become infinitely
large.

4.3.3 Order Selection Within an Infinite Horizon

The extension of data-driven smooth tests with finite m to the situation where
m is allowed to grow unboundedly with the sample size n was first proposed
by Kallenberg and Ledwina (1995a) and Kallenberg and Ledwina (1995b)
for the case of testing a simple null hypothesis, and later, among other,
by Kallenberg and Ledwina (1997), Inglot et al. (1997), Janic-Wróblewska
(2004), and Janic-Wróblewska and Ledwina (2009) for the composite case.
We denote m = mn to stress the dependence of m on the sample size n.
These papers study the asymptotic behaviour of the order selection rules
and the data-driven smooth test statistics when m is replaced with mn. To
get nice asymptotic results restrictions must be placed on the rate at which
mn grows with n. These restrictions depend on (1) the system of orthonor-
mal functions used, and (2) the method of nuisance parameter estimation.
To avoid too many technicalities, we only give some details on the conditions
for testing a simple null hypothesis. Later in this section we only summarise
some of the main results for testing a composite null hypothesis. We refer to
the papers mentioned above for more technical details.

Before we continue we mention that all theoretical results on this type of
data-driven test are derived for the Neyman–PIT model. This necessity may
be seen from an assumption that must be made on the convergence rate of
mn. Let

Vm = max
1≤j≤m

sup
z∈[0,1]

|φj(z)|. (4.28)

It is assumed that, as n → ∞,

mnVmn

√
log(n)

n
→ 0. (4.29)

Thus, when in Equation (4.28) orthonormal polynomials over an unbounded
support S would be considered, Vm would be infinite, and thus condition
(4.29) could not be met.
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The next theorem summarises some of the main results for testing the
simple null hypothesis (Theorems 3.2, 3.4, and 4.1 of Kallenberg and Ledwina
(1995a)).

Theorem 4.6. Let mn → ∞ as n → ∞, and assume that condition (4.29)
holds. Let On denote Kn or K2n. Let Fm be the set of density functions f
for which the orthogonal projections of f/g onto Pm have at least one θj �= 0
(j ≤ m). Let f ∈ Fm (m > 0) and let km denote the smallest m for which
f ∈ Fm. Then, as n → ∞, (1) Prg {On = 1} → 1; (2) TOn

d−→ χ2
1 (where

convergence is w.r.t. G); (3) Prf {On ≥ km} → 1 whenever f ∈ Fkm
.

This theorem states that the asymptotic null distribution of TOn
is again sim-

ply χ2
1, and the data-driven test is now omnibus consistent; i.e. it is consistent

against essentially all fixed alternatives f �= g.
Before leaving the simple null hypothesis case, we consider two impor-

tant examples: {φj} is the system of Legendre polynomials or the co-
sine basis. We find Vk =

√
2k + 1 and Vk =

√
2, respectively. This gives

mn = o((n/ log(n))1/3) and mn = o((n/ log(n))1/2), respectively.
For the composite case, the rates of convergence of mn depend not only on

the method of nuisance parameter estimation and on the the system of or-
thonormal functions, but also on the hypothesised distribution . A summary
of the some appropriate rates for mn is presented in Table 4.3 (Inglot et al.
(1997) and Janic-Wróblewska (2004)).

Despite the nice theoretical results of these data-driven tests, it is not
obvious how the convergence rates of mn should be translated to a realistic
situation in which the sample size n is always finite. It seems that the only
practical solution is to choose mn according to some empirical guidelines
which are typically derived from simulation studies. Most of these studies
suggest that there is no need to choose mn large; e.g., for sample sizes n ≤ 100,
5 ≤ mn ≤ 10 seems appropriate. These simulation studies also show that the
powers do not change dramatically with the choice of mn ≥ 5.

4.3.4 Subset Selection Within a Finite Horizon

Although the data-driven tests of the previous section have good theoretical
properties such as omnibus consistency, the last paragraph explained that in

Table 4.3 Some selected rates of convergence of mn for several hypothesised density
functions g. Let ε > 0 and c < 27/(2π2(6 + π2))

Legendre cosine

g MLE MME MLE MME

Normal o
(
(n/ log(n))1/9

)
o
(
(n/ log(n))1/9

)
o
(
n1/6−ε

)
o
(
n1/6−ε

)
Exponential o

(
(n/ log(n))1/4

)
o
(
(n/ log(n))1/4

)
Extreme value o

(
(n/ log(n))1/9

)
Logistic o (nc)
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practice the maximal order mn is always finite and that its dependence on
the sample size is something that empirically should be determined. In this
section we again focus on model selection within a finite horizon, but now
the selected models are not restricted to index sets of the form {1, . . . , k},
instead the index set S may be any nonempty subset of {1, . . . , m} where
m < ∞ is fixed. The methodology in this section may thus be considered
as an extension of order selection within a finite horizon. Besides BIC, we
also discuss AIC (Akaike’s Information Criterion) as a model selection rule.
The methods described in this and the next sections are mainly based on
Claeskens and Hjort (2004). They focused, however, on testing a simple null
hypothesis, and the composite case is only briefly addressed in their Section
6. Because composite hypothesis testing is of more practical importance, we
have extended some of their results to fit better in this chapter.

To make the exposition slightly more general we assume that (1) β̂ is
an asymptotically linear estimator; (2) T̂n,S denotes any of the smooth test
statistics based on hj , j ∈ S. Moreover, T̂n,S may even represent V̂

t
V̂ , which

is the squared norm of V̂ and does not take Σv = Var
{

V̂
}

into account.

The limit distribution of T̂n,S can be directly derived from Theorems 4.2 and
4.3 for a fixed subset S. The asymptotic null distribution of T̂n,Mn

where the
index set Mn is determined by a data-driven selection rule, is provided in
this section.

A general BIC-type selection rule can be formulated as

Mn =
{

R ⊆ S : R �= φ and T̂n,R − |R| log(n) ≥ T̂n,Q − |Q| log(n),∀Q ⊆ S
}

,

where |R| denotes the cardinality of the set R. In analogy with the notation
of the previous section, we call Mn one of S2n(β̂), S̃2n(β̂) or S1n(β̂) for T̂n,R

being Û t
RÛR, V̂ t

RV̂R, or V̂ t
RΣ−1

v̂ V̂R, respectively.
The next lemma shows that when the null hypothesis is true, the BIC-type

selection rules always asymptotically select a model with exactly one term.
This lemma is important for finding the asymptotic null distribution.

Lemma 4.7. Under H0, as n → ∞,

Prg {|Mn| > 1} → 0.

Proof. Let S �= φ, j ≤ m, and j /∈ S. We show that {j} always “wins”
from S ∪ {j} according to the Mn selection rule. This happens when T̂n,R −
|R| log(n) is the largest for R = {j}.(

T̂n,{j} − log(n)
)
−
(
T̂n,{j}∪S − (1 + |S|) log(n)

)
= |S| log(n) −

(
T̂n,{j}∪S − T̂n,{j}

)
.
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Clearly this difference goes to infinity with probability one. This completes
the proof. ��
The following theorem now follows immediately.

Theorem 4.7. Suppose that for all nonempty R ⊆ S, T̂n,R
d−→ TR, where

TR represents a random variable with a nondegenerate distribution. Under
H0, as n → ∞,

T̂n,Mn

d−→ max
j∈S

Tj .

Although the theorem gives the asymptotic null distribution, it is still not
always easy to apply this in practice.

Example 4.6 (BIC subset selection with MLE nuisance parameter estima-
tion). After the presentation of Theorems 4.2 and 4.3 in Section 4.2.2, we
have discussed three special cases. The most traditional case is where the
nuisance parameter β is estimated by means of MLE, say β̂. In this sit-
uation the score and the efficient score statistics coincide; i.e., V̂ = Û =
(1/

√
n)
∑n

i=1 h(Xi; β̂), which is under H0 asymptotically zero-mean multi-
variate normally distributed with covariance matrix Σv̂ = I −ΣhβΣ−1

ββΣβh.
To get an easy expression for Tj in Theorem 4.7, we define V = N −

ΣhβΣ−1
ββB, where N and B are jointly zero-mean multivariate normal with

variance–covariance matrix [
I Σhβ

Σβh Σββ

]
.

Thus, as n → ∞, V̂
d−→ V , and T̂n,Mn

d−→ maxj∈S Tj , where Tj = V tΣv̂V .
We now have an representation of Tj in terms of V , but it is still not possible
to simulate Tj because the true value of the nuisance parameter β is gener-
ally unknown. Fortunately, in two particular and important cases we have a
simplification.

1. When g belongs to the exponential family with polynomial sufficient statis-
tics, we know that MLE and MME coincide and that the corresponding
estimation functions can typically be formulated in terms of the first few
orthonormal polynomials h1, . . . , hp. Hence Σhβ = 0 and thus V = N ,
Σv̂ = I, Tj = N2

j , and the asymptotic null distribution of the data-driven
test statistic becomes maxj∈S N2

j , where the Nj are i.i.d. standard normal.
This is very easy to simulate.

2. When the hypothesised g is a location-scale invariant distribution all the
covariance matrices become independent of β and can therefore be spec-
ified without any further knowledge of β. Examples include the normal
and the logistic distribution. For example, for a two-parameter logistic
distribution we find



106 4 Smooth Tests

Σv̂ =

⎡⎢⎢⎢⎣
1 − 9

π2 0
√

21
2π2 0

0 1 − 45
12+4π2 0 3

√
5

6+2π2√
21

2π2 0 1 − 7
12π2 0

0 3
√

5
6+2π2 0 1 − 1

3+π2

⎤⎥⎥⎥⎦ .

See Thas and Rayner (2009) for more details on smooth tests for the
logistic distribution.

The AIC is defined as

AICn(S;β) = 2l(θ̂S ;β) − 2|S|,

but again it is more convenient to use an alternative definition that avoids
the use of the maximised likelihood. Without using a different notation, we
adopt

AICn(S;β) = Tn,S(β) − 2|S|.
The subset selection rule has general form

Mn(β) = {R ⊆ S : R �= φ and AICn(R;β) ≥ AICn(Q;β),∀Q ⊆ S} .

To study the asymptotic null distribution of the adaptive smooth test with
AIC-selected index set Mn, we first need to know the asymptotic behaviour
of the AIC criterion for a fixed nonempty set S. Because AICn(S;β) only de-
pends on the data through the statistic Tn,S(β) we conclude that AICn(S; β̂)
converges in distribution to AIC(S;β) = TS − 2|S|, where TS is a random
variable with the same distribution as the asymptotic distribution of Tn,S(β̂).

Theorem 4.8. Under H0, as n → ∞,

T̂n,Mn

d−→
∑
R⊆S

(I (R = M)TR) ,

where M = {R ⊆ S : R �= φ and AIC(R;β) ≥ AIC(Q;β),∀Q ⊆ S}.
Proof. The proof is straightforward. Write

T̂n,Mn
=

∑
R⊆S

T̂n,RI
(
AICn(R; β̂) larger than all other AICn(Q; β̂), Q ⊆ S

)
d−→
∑
R⊆S

TRI (AIC(R;β) larger than all other AIC(Q;β), Q ⊆ S)

=
∑
R⊆S

(I (R = M) TR) .

��
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The asymptotic null distribution can again be simulated, and, as before, the
complexity depends on the asymptotic representation of TR which simplifies
when g belongs to the exponential family or when g is location-scale invariant.
Finally, we refer to Inglot and Ledwina (2006) who went one step further.
Their data-driven selection rule not only selects the order, but it also makes
a data-driven choice of the order selection criterion (AIC or BIC).

4.3.5 Improved Density Estimates

The methods for selecting terms as described in the previous sections clearly
rely on the close relation between smooth goodness-of-fit testing and nonpara-
metric density estimation using orthogonal series expansions. The order and
subset selection criteria are indeed all model section criteria that are applied
to the smooth alternatives, which are basically orthogonal series expansions.
From this point of view the adaptive tests may be considered as testing after
model selection. It also suggests that at the rejection of the null hypothe-
sis, the selected model may be considered as an appropriate nonparametric
density estimate of the true distribution.

When introducing the orthogonal series estimators in Section 2.8.2, we lim-
ited the discussion to estimators of the form (here we use the order selection
technique)

f̂(x) = g(x)

⎧⎨⎩1 +
∑
j∈S

θ̂jhj(x)

⎫⎬⎭ ,

where hj ∈ L2(S, G). In this chapter we actually went one step further by
using a composite carrier density g(.;β) that is indexed by the nuisance
parameter β. The nonparametric density estimator thus becomes

f̂Mn
(x) = g(x; β̂)

⎧⎨⎩1 +
∑

j∈Mn

θ̂jhj(x; β̂)

⎫⎬⎭ , (4.30)

where Mn is any of the subset selection criteria presented in the previous
section, and where (j ∈ Mn),

θ̂j =
1
n

n∑
i=1

hj(Xi; β̂).

In the present context we refer to (4.30) as the improved density estimator.
Because (4.30) is a Barton representation it is not necessarily a bona fide
density. This can be corrected using the methods described in Section 2.8.2.
Finally, we refer to Chapter 10 of Rayner et al. (2009) for a more detailed
exposition on improved density estimates.
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Finally note that the improved density estimate contains basically the
same information as comparison density estimated by the same orthogonal
series estimator,

f̂Mn
(x)

g(x; β̂)
= 1 +

∑
j∈Mn

θ̂jhj(x; β̂). (4.31)

4.4 Smooth Tests for Discrete Distributions

4.4.1 Introduction

The smooth testing framework as described in the previous sections was com-
pletely developed for continuous distributions. In this section we discuss how
smooth tests can be constructed for discrete distributions. Because most of
the theory is very parallel to what has been given in detail in Sections 4.1
and 4.2 of this chapter, and Section 1.3 on the Pearson χ2 test, we can keep
the discussion brief. For notational comfort we start again with the simple
null hypothesis case, and extend this later to the composite null hypothesis
situation. As in Section 1.3, we restrict our exposition to pure discrete distri-
butions; i.e., we do not explicitly consider categorised or grouped continuous
distributions. For more details on the latter we refer to Chapters 5 and 7 of
Rayner et al. (2009).

Using the notation of Section 1.3, the null hypothesis of interest is H0 :
π = π0.

4.4.2 The Simple Null Hypothesis Case

Rayner and Best (1989) showed how the smooth tests for discrete distribu-
tions arise naturally as a score test for testing H0 : θ = 0 in an order k
smooth family of alternatives, which is now given by

πki = C(θ) exp

⎛⎝ k∑
j=1

θjhij

⎞⎠π0i i = 1, . . . , m, (4.32)

where {hj}, with ht
j = (h1j , . . . , hmj), is a set of orthonormal vectors in

the m-dimensional vector space with inner product defined by < p, q >π0=∑m
i=1 piqiπ0i. Let V (π0) denote this vector space of vectors h for which <

h,h >π0 is finite. The orthonormality condition thus implies

m∑
i=1

hijhilπ0i = δjl. (4.33)
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It is convenient to write restriction (4.33) in matrix notation. Let Ht denote
the m × k matrix with (i, j)th element equal to hij ; i.e., Ht = (h1, . . . ,hk),
and let Dπ = diag(π0). Then (4.33) is equivalent to

HDπ0H
t = I,

with I the k × k identity matrix.
For a given distribution π0, the orthonormal vectors {hj : j = 0, . . . , k} are

usually easy to find. We always impose the restriction hi0 = 1 for i = 1, . . . , m.
The score test statistic and its asymptotic null distribution are presented

in the next theorem.

Theorem 4.9. Let Y1, . . . , Yn denote a sample of i.i.d. observations that take
values in {1, . . . , m} and which have under the null hypothesis distribution
function π0i = Pr0 {Y = i} (i = 1, . . . , m). Let N t = (N1, . . . , Nm) de-
note the vector of counts Ni of sample observations Y equal to i. Finally,
let {hj}, with ht

j = (h1j , . . . , hmj), be a set of orthonormal vectors in the
m-dimensional vector space V (π0).

(1) The score test statistic for testing H0 : θ = 0 in the order k smooth
model (4.32) is given by

Tk =
k∑

j=1

U2
j , (4.34)

where Uj = (1/
√

n)
∑m

i=1 Nihij (j = 1, . . . , k).
(2) Let U t = (U1, . . . , Uk) and let I denote the k × k identity matrix.

Under the null hypothesis, as n → ∞,

U
d−→ MV N(0, I) and Tk

d−→ χ2
k. (4.35)

The proof of the theorem is very similar to the proof of Theorem 4.1 and
we therefore omit it here.

The next theorem shows a nice relation between the smooth test statistic
and the Pearson χ2 statistic. In particular, it demonstrates that Pearson’s χ2

is basically a smooth test statistic, and it can therefore also be decomposed
into m − 1 components. Appendix A.7 contains the proof.

Theorem 4.10. Consider the notation of Theorem 4.9. If k = m − 1, then

Tk =
m−1∑
j=1

U2
j =

m∑
i=1

(Ni − nπ0i)2

nπ0i
. (4.36)

4.4.3 The Composite Null Hypothesis Case

When nuisance parameters are involved, both the hypothesised distribution
π0 and the orthonormal vectors in H(β) = H depend on the p-dimensional
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vector β. The smooth test statistics and their asymptotic null distributions
may again be found in a similar fashion as in Section 4.2.2. Also the results
on the Pearson χ2 test in the composite case are useful in proving the results
presented here. Particularly, the proof of Theorem 1.2 is very useful.

Theorem 4.11. Assume that the conditions of Theorem 4.9 hold, and write
the score vector U(β) = (1/

√
n)H(β)N =

√
nH(β) (p̂ − π0(β)).

(1) Suppose that β̂ is a BAN estimator of β. The order k (1 < k < m)
smooth test statistic is given by

Tk = U t(β̂)Σ̂
−1

U(β̂), (4.37)

where
Σ̂

−1
= D̂π0 − π̂0π̂

t
0 − D̂

1/2

π0
Â(Â

t
Â)−1Â

t
D̂

1/2

π0
, (4.38)

and the .̂ notation is used to indicate that the nuisance parameter is replaced
by β̂. Under H0, as n → ∞,

Tk
d−→ χ2

k−p−1. (4.39)

(2) Suppose that β̂ is a
√

n-consistent estimator of β. Let

uβji(β) =
1

π0i(β)
∂π0i(β)

∂βj

(i = 1, . . . , m; j = 1, . . . , p),

and ut
βj

= (uβj1, . . . , uβjm). Similarly, ut
βi = (uβ1i, . . . , uβpi). Let uβ denote

the p × m matrix with ith row equal to ut
βi (i = 1, . . . , p). Let Σhβ be a

k × p matrix with (i, j)th element equal to < hi,uβj
>π0 (i = 1, . . . , k,

j = 1, . . . , p), and the p × p matrix Σββ has (i, j)th element given by <
uβi

,uβj
>π0 (i, j = 1, . . . , p). The efficient score statistic is then given by

V (β) = (V1, . . . , Vk)t =
1√
n

(
H(β) − ΣhβΣ−1

ββU(β)
)

N . (4.40)

Using the notation V̂ = V (β̂) (with also all β in the covariance matrices
replaced by β̂), we find, under H0, as n → ∞,

Tk = V̂
t
Σ̂

−1
V̂

d−→ χ2
k−p, (4.41)

where Σ̂ is the matrix Σ = I − ΣhβΣ−1
ββΣβh with all β replaced by β̂.

Example 4.7 (Pulse rate). To illustrate the smooth test for a discrete distri-
bution, we test the null hypothesis that the pulse rate data of Section 1.2.3
comes from a Poisson distribution. Note that for the Poisson distribution the
MLE and MME coincide. The null hypothesis is tested by means of a smooth
test of order k = 6, and the first component is exactly zero by the estimation
process.
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The R-code and the resulting output is shown below. For the computation
of the p-values the asymptotic χ2 approximation is chosen.

> smooth.test(pulse,order=6,distr="pois",method="MLE",B=NULL)
Smooth goodness-of-fit test
Null hypothesis: pois against 6 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 82.3 ( lambda )

Smooth test statistic S_k = 20.9846 p-value = 0.0008155
2 th component V_k = -0.246051 p-value = 0.8056427
3 th component V_k = 3.041709 p-value = 0.0023524
4 th component V_k = 3.242072 p-value = 0.0011866
5 th component V_k = 0.662461 p-value = 0.5076757
6 th component V_k = -0.849816 p-value = 0.3954270

All p-values are obtained by the asymptotical chi-square
approximation

From the output we read that the p-value of the order k smooth test equals
p = 0.0008 < 0.05, and therefore we conclude at the 5% level of significance
that the observations do not come from a Poisson distribution. A closer look
at the individual components may shed some light on how the distribution
differs from the Poisson distribution. Here the third- and the fourth-order
components show very large values. This suggests that the pulse rate dis-
tribution has a different skewness and a different kurtosis from a Poisson
distribution with mean equal to 82.3.

It is interesting to compare this conclusion with the exploratory analysis
that we have presented in Section 3.3.3 by plotting the comparison distribu-
tion. This plot showed that there were too many counts observed around the
a pulse rate of 80, and too few counts to the immediate left and right of this
pulse rate. In other words, the plot suggested that the mode of the distri-
bution does not correspond to what was expected for a Poisson distribution.
Moving the mode of a distribution, but keeping the mean equal to 82.3 does
indeed have an immediate effect on the skewness and the kurtosis.

4.5 A Semiparametric Framework

4.5.1 The Semiparametric Hypotheses

It has become clear by now that smooth tests within a finite horizon are not
omnibus consistent, for they are not sensitive to deviations of the higher-
order moments of the hypothesised distribution g. By restricting the order
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k < ∞ it actually looks as if the statistician is only interested in the first
k moments of g. This may be formalised by adopting a semiparametric null
hypothesis.

We restrict the discussion to continuous densities f ∈ F = {f ∈ L2(S) :∫
S xjf(x)dx < ∞, j = 1, . . . , k}. The set of densities with the first k moments

equal to those of g(.;β) is defined as

F0 = {f ∈ F : Ef {hj(X;β)} = 0, j = 1, . . . , k},

where {hj} is the set of orthonormal polynomials w.r.t. density g. In this
context the distribution g only plays the role of a hypothesised-moment gen-
erating density. The semiparametric hypotheses may now be formulated as

H0 : f ∈ F0 and H1 : f ∈ F \ F0.

To get a deeper insight and a correct interpretation of the meaning of the
parameter β, we look at it from a Hilbert space perspective. In Section 4.1.1
we have shown that the Barton model corresponds to the representation of the
relative density f/g in a Hilbert space L2(S;G) spanned by the orthonormal
basis functions hj . The full parametric null hypothesis (θ = 0) corresponds
to < f/g, hj >g = 0 for all j = 1, . . .; i.e., the relative density is orthogonal
to all basis functions hj . Although

< f/g, hj >g=
∫
S

f(x)
g(x;β)

hj(x;β)g(x;β)dx = Ef {hj(X;β)}

is expressed in term of expectations as those in F0, the Hilbert space L2(S;G)
is not suited for the semiparametric hypothesis. The reason is that inner
product < ., . >g of L2(S;G) depends explicitly on the density g which is
only meaningful under the full parametric null hypothesis. Consider instead
the space L2(S;F ). In this space we have

Ef {hj(X;β)} = < hj , 1 >f ,

which does not depend on g. Hence, F0 is the set of functions f so that in the
space L2(S;F ) the identity function 1 is orthogonal to the linear subspace
spanned by h1, . . . , hk. This subspace is denoted by Pk = span(h1, . . . , hk), or
by Pk(β) to stress the dependence on the parameter β. Note that in L2(S;F ),
the functions hj do not necessarily form an orthogonal basis.

4.5.2 Semiparametric Tests

When the full parametric null hypothesis is replaced by a semiparametric
null hypothesis, do we need to construct different statistical tests, or can we
still work with, e.g., the smooth tests discussed in this chapter? We give an
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answer to this question in this section, but first we mention that there is a
vast literature on semiparametric inference, which is, however, predominantly
about efficient estimation. We refer to Bickel et al. (2006) for a good treatment
on semiparametric hypothesis testing, but we de not follow their method of
test construction here.

Consider a test statistic of the form Tn = θ̂
t
Σ̂

−1
θ̂ where θ̂ is a√

n-consistent estimator of θ and where Σ̂ is a
√

n-consistent estimator of
Var

{
θ̂
}

under certain conditions specified below. The statistic Tn has clearly
an appropriate form for the testing problem at hand. We want the test to be
asymptotically unbiased under the semiparametric null hypothesis, and con-
sistent against the alternatives to the semiparametric null hypothesis. Both
“unbiasedness” and “consistency” are defined w.r.t. the distributions of the
observations under the semiparametric null hypothesis and alternative hy-
pothesis, respectively. Thus, for each α ∈ (0, 1) there exists a cα so that the
test is

(1) Asymptotically unbiased:

lim
n→∞ sup

f∈F0

Prf {Tn > cα} ≤ α;

(2) Consistent:
lim

n→∞ inf
f∈F\F0

Prf {Tn > cα} = 1.

A sufficient condition for (1) to hold is that Tn has asymptotically the same
null distribution for all f ∈ F0. It usually holds that θ̂ has asymptotically a
zero mean multivariate normal distribution for all f under the semiparametric
null hypothesis, so that it remains to be assured that Σ̂ is

√
n-consistent for

all f ∈ F0. The consistency property (2) may often simplified to the condition
that

lim
n→∞ sup

f∈F\F0

|Σ̂| < ∞ (4.42)

with probability one.
In almost all of this chapter, except for Section 4.2.1.2, the estimator of

the variance of θ̂ = Û has been constructed so that it is consistent under
the full parametric null hypothesis. This is a consequence of the smooth test
being essentially a score test, which is always constructed by imposing the
(full parametric) null hypothesis. However, in Section 4.2.1.2, where the diag-
nostic property of the component tests in the simple null case was discussed,
we referred to the work of Henze and Klar (Henze (1997), Henze and Klar
(1996), Klar (2000)) who showed that the covariance matrix Var {U} should
be estimated by its empirical covariance matrix estimator, which in the sim-
ple null hypothesis case works well under quite mild regularity conditions. In
the following subsections we elaborate briefly on some rather recent devel-
opments in the area of semiparametric goodness-of-fit testing related to the
smooth tests.
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4.5.3 A Distance Function

Suppose first that β is known. As before, we construct a goodness-of-fit test
statistic on a distance function. However, in a semiparametric framework we
cannot use a distance function between the true f and the hypothesised g,
because the latter implies more restrictions than expressed by the semipara-
metric null hypothesis. Instead we use a distance function between f and
the set F0. Because the restrictions of F0 indicate that the identity function
1 is orthogonal to the subspace Pk, a meaningful distance function exists
in (1) projecting 1 orthogonally onto P0; (2) calculating the length of this
projection. Details follow.

1. Although the hj that span Pk are not orthogonal in L2(S, F ), they are
linearly independent. Using the notation ht

1 = (h1, . . . , hk) to denote a
vector-valued function, the orthogonal projection of 1 onto Pk is therefore
given by

< 1,h1 >f< h1,h1 >−1
f h1

(see Section 2.5 for details on orthogonal projections). Note that the jth
element in < 1,h1 >f equals < 1, hj >f= θj when the Barton model
representation is considered.

2. Next, we calculate the squared length of the projection. Simple algebra
results in the squared length

d2
k(β) = θt

kC−1θk, (4.43)

where C =< h1,h1 >f , which is a k×k matrix with (i, j)th element equal
to < hi, hj >f .

Clearly, when f ∈ F0, there exists a β so that d2
k(β) = 0.

4.5.4 Interpretation and Estimation of the Nuisance
Parameter

In the full parametric setting the parameter β has an unambiguous interpre-
tation as it simply appears as a parameter in a well-defined density function
g. Now, however, g only serves as a hypothesised moment generating density
function, and the nuisance parameter appears in the moment restrictions
Ef {hj(X;β)}. In the Hilbert space, β determines the position of the sub-
space Pk(β).

From the construction of the distance function d2
k, we could find a defini-

tion of β,
β = ArgMinbd

2
k(b).
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The parameter β is thus defined so that it makes the subspace P0 as orthog-
onal to 1 as possible. Or, in other words, β places the subspace P0(β) so
that in some sense the first k moments of f come as close as possible to the
hypothesised moments. If f ∈ F0, then d2

k(β) = 0, but even when f /∈ F0,
the parameter β is still well defined!

The above discussion includes a hint regarding nuisance parameter esti-
mation. First, because g has no meaning as a density function in the semi-
parametric setting, it is obvious that MLE does not exist here. The minimum
distance approach, however, suggests another simple estimation method: find
β̃ that minimizes some estimator of the squared distance function. Equation
(4.43) suggests that such an estimator is given by

θ̃
t
C̃

−1
θ̃, (4.44)

where the jth element of θ̃ equals θ̃j = (1/
√

n)Uj(β̃) and C̃ is a
√

n-consistent
estimator of C. Since C depends on the unknown f , we consider the empirical
estimator which as (i, j)th element equal to (1/n)

∑n
l=1 hi(Xl; β̃)hj(Xl; β̃).

Note that C has the interpretation of the variance–covariance matrix of θ̃
calculated under the semiparametric null hypotheses.

4.5.5 The Quadratic Inference Function

In the previous subsections we have described how a semiparametric null
hypothesis is expressed in terms of k moment restrictions. Within a Hilbert
space we have defined a quadratic distance function which measures how far
f is from F0 for a given nuisance parameter β. This parameter is well defined
in the semiparametric setting as the minimiser of the distance function. By
replacing the distance function by an estimator, we immediately arrived at
an estimation method for the nuisance parameter. This method was first
proposed by Qu et al. (2000) in a more general setting. They refer to the
statistic in (4.44) as the quadratic inference function (QIF), which we further
denote by QIFk(θ). The estimator of β which is defined as the minimiser of
(4.44) is therefore referred to as the minimum quadratic influence function
estimator (MQIFE).

We have used the QIF as an inference function to find an estimator of
the nuisance parameter β. Qu and coworkers showed that the MQIFE is
consistent, even when f /∈ F0. Because QIFk(β̃) is an estimator of the min-
imised squared distance function, they further proposed using this statistic as
a goodness-of-fit test statistic. In particular, under the semiparametric null
hypothesis, as n → ∞,

QIFk(β̃) = θ̃
t
C̃

−1
θ̃k

d−→ χ2
k−p. (4.45)

They also showed that the MQIFE β̃ is asymptotically normally distributed.
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We have performed an extensive simulation study in which we have studied
goodness-of-fit tests based on QIF. These results are not published, merely
because of the poor results. First, the convergence to the asymptotic χ2

approximations is very slow (n > 1000 is still not satisfactory). Second, on
using the semiparametric bootstrap method of Bickel and Ren (2001), which
is described in Appendix B.3, we still found biased test results. Moreover,
poor powers were found.

4.5.6 Relation with the Empirically Rescaled Smooth
Tests

Earlier in this chapter we already mentioned briefly that the smooth tests
of Henze and Klar were actually developed in a semiparametric setting (see
Section 4.2.1). Their test statistic is of the same form as the QIF statistic
(4.45), except that the nuisance parameter β is not estimated as the MQIFE,
but rather as the MME (in this section denoted by β̂). MME forces the first
p moments of g(x; β̂) to coincide with the corresponding sample moments,
implying the first p components of θ̂ = (1/

√
n)Uk(β̂) to be zero. These zero

elements are removed from θ̂, and their statistic becomes

Tk−p = θ̂
t
Ĉ

−1
θ̂, (4.46)

where θ̂ is a vector with k − p nonzero elements θ̂j = (1/
√

n)Uj(β̂), j =
p+1, . . . , k and Ĉ is the (k−p)×(k−p) empirical variance–covariance matrix
estimator, but now with the MME β̂. They considered the components scaled
by using the appropriate diagonal element of Ĉ as the basis of component
tests that have the diagnostic property.

The MME-based generalised smooth test statistic (4.46) measures thus
the distance between the p + 1 up to the kth sample moments and the corre-
sponding moments of g(x; β̂) which fits exactly the first p sample moments.
Or, similarly, given that the first p moments of g(x; β̂) agree with the sam-
ple observations, (4.46) measures how far the other k − p sample moments
deviate from the hypothesised.

When the MQIFE β̃ is used instead, the QIF test statistic QIFk(β̃) mea-
sures how close the first k moments of g can be brought to their sample
counterparts, and thus QIFk(β̃) avoids in some sense the conditioning on the
equality of the first p moments of g. The QIF approach treats all k moments
evenly.

The theory of Klar (2000) is quite general, but the empirical covariance
matrix Ĉ may only be used when MME and MLE coincide for the hypothe-
sised distribution g. When MLE and MME are different, this estimator does
not correctly account for the estimation of the nuisance parameters. In this
case Klar (2000) suggested to express Varf

{
θ̂
}

(f ∈ F0) in terms of the
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moments of f , and subsequently replace these moments by their empirical
counterparts, and use this estimator instead of Ĉ. Another solution, which
involves the nuisance estimation equations explicitly, was proposed by Thas
and Rayner (2009) and is also illustrated in Rayner et al. (2009).

4.6 Example

We illustrate now the methods of the previous sections on the PCB data.
The data have been used before in Section 2.1.1 to demonstrate the con-
struction and the interpretation of the comparison distribution. There it was
concluded that the density of PCB concentrations is slightly larger than ex-
pected for a normal distribution around concentrations of 200, and slightly
smaller than expected for concentrations of about 270. This conclusion was
of course formulated in terms of the relative density, but it is often more
informative to formulate the conclusion in other terms. For instance, this rel-
ative density interpretation, together with the accompanying nonparametric
density estimation shown in the top panel of Figure 3.15, suggests that the
PCB distribution may perhaps be bimodal.

In this section we test the composite null hypothesis that the PCB con-
centration data come from a normal distribution. We test this hypothesis
first with a traditional smooth test based on the efficient scores. Because
the normal distribution belongs to the exponential family, and MME and
MLE coincide, it does not matter which

√
n-consistent estimation scheme we

choose. The output below shows the R-code and the results of two smooth
tests with fixed orders k = 6 and k = 7. All p-values are obtained from the
asymptotic χ2 approximation, but the results based on the simulated null
distribution give the same conclusions.

> smooth.test(PCB,distr="norm",method="MLE",order=3,B=NULL)
Smooth goodness-of-fit test
Null hypothesis: norm against 3 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 210 72.26383 ( MEAN VAR )

Smooth test statistic S_k = 5.436919 p-value = 0.01971542
3 th component V_k = 2.331720 p-value = 0.01971542

All p-values are obtained by the asymptotical chi-square
approximation

> smooth.test(PCB,distr="norm",method="MLE",order=6,B=NULL)
Smooth goodness-of-fit test
Null hypothesis: norm against 6 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 210 72.26383 ( MEAN VAR )
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Smooth test statistic S_k = 10.18261 p-value = 0.03746153
3 th component V_k = 2.331720 p-value = 0.01971542
4 th component V_k = 2.030241 p-value = 0.042332
5 th component V_k = 0.434342 p-value = 0.6640404
6 th component V_k = -0.659661 p-value = 0.5094708

All p-values are obtained by the asymptotical chi-square
approximation

> smooth.test(PCB,distr="norm",method="MLE",order=7,B=NULL)
Smooth goodness-of-fit test
Null hypothesis: norm against 7 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 210 72.26383 ( MEAN VAR )

Smooth test statistic S_k = 10.59477 p-value = 0.06003358
3 th component V_k = 2.331720 p-value = 0.01971542
4 th component V_k = 2.030241 p-value = 0.042332
5 th component V_k = 0.434342 p-value = 0.6640404
6 th component V_k = -0.659661 p-value = 0.5094708
7 th component V_k = -0.641999 p-value = 0.5208738

All p-values are obtained by the asymptotical chi-square
approximation
$statistics

We present the tests with three different orders for demonstrating the dilution
effect as explained in Section 4.3.1. Our statistical analyses show that the
smooth tests with k = 3 and with k = 6 give p-values of 0.020 and 0.037,
respectively. Thus they both reject the null hypothesis of normality at the
5% level of significance. However, if k = 7 were chosen, then the smooth test
would have p-value equal to 0.060 which does not imply the rejection of the
null hypothesis. The reason may be found by looking at the p-values of the
individual component tests. The third- and the fourth-order component tests
have small p-values, but as the order increases, the p-values increase too. This
is a typical illustration of the dilution effect.

We previously used the p-values of the individual component tests, but in
Section 4.2.1 we argued extensively that the components should be rescaled
to recover their full diagnostic property. Later, in Section 4.5.6, we explained
the method of Henze and Klar in the presence of nuisance parameters. The
following R-code and output pe concern these rescaled component tests (using
the rescale=T option in the smooth.test function).
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> smooth.test(PCB,distr="norm",method="MLE",order=6,rescale=T,
+ B=1000)
Smooth goodness-of-fit test with Henze and Klar rescaling of
the components
Null hypothesis: norm against 6 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 210 72.26383 ( MEAN VAR )

Smooth test statistic S_k = 10.18261 p-value = 0.024
3 th rescaled component V_k = 1.493205 p-value = 0.135
4 th rescaled component V_k = 1.212814 p-value = 0.276
5 th rescaled component V_k = 0.350246 p-value = 0.779
6 th rescaled component V_k = -0.974392 p-value = 0.290

All p-values are obtained by the bootstrap with 1000 runs

This output first shows the simulated p-value of order k smooth test:
p = 0.024. The next lines show the empirically rescaled components and the
p-values. Whereas we previously concluded that the third- and the fourth-
order component tests gave significant results, we must now conclude that
they are not significant. This may look like a contradiction. There are two
possible explanations. The first is that the skewness and the kurtosis of the
PCB concentration distribution agree with those of the normal distribution,
and that it was falsely suggested by the nonrescaled component tests due to
an incorrect standardisation of the components. A second explanation might
be that the use of the empirical variance estimator in the rescaled compo-
nent test introduces additional variance, which further implies a loss in power.
Thus maybe the large p-values of the rescaled component tests are a conse-
quence of a smaller power. Which one of the two arguments is correct is still
not clear at this point.

There is also still another problem left unanswered. Which analysis should
we trust: the smooth test with k < 7 or with k = 7? To avoid the problem
of choosing the order k in an arbitrary way, as we have done here, we can
also apply one of the adaptive smooth tests of Section 4.3. In particular, we
apply the BIC-based data-driven test as described in Section 4.3.2. The BIC
criterion is given in (4.22), the order selection rule in (4.24), and the test
statistic in (4.25). The R-code and output follow.

> smooth.test(PCB,distr="norm",method="MLE",
+ adaptive=c("BIC","order"),max.order=7,plot=T,B=10000)
Adaptive Smooth goodness-of-fit test
Null hypothesis: norm against 7 th order alternative
Nuisance parameter estimation: MLE
Parameter estimates: 210 72.26383 ( MEAN VAR )
Order selection rule: BIC
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Adaptive smooth test statistic S_k = 5.436919
p-value = 0.0325
Selected order = 3

All p-values are obtained by the bootstrap with 10000 runs

The adaptive smooth tests are invoked by the smooth.test function with the
adaptive option specifying the selection rule (BIC). The specification ”order”
means that BIC is used to select the order of the test. If ”subset” were used in-
stead, then BIC would be used to select a subset model. The option max.order
specifies the maximal order of the model that can be chosen. Although the
theory says that this data-driven test statistic has asymptotically a χ2

1 null
distribution, empirical studies have indicated that the convergence is rather
slow. We have therefore computed the bootstrap p-values based on 10,000
simulation runs.

The p-value of this data-driven smooth test is 0.0325. Based on this adap-
tive test we decide to reject the null hypothesis of normality at the 5% level of
significance. The BIC criterion selected only the third-order term. Although
the test statistic that was used here is not properly scaled to guarantee the
diagnostic property, we may at least have trust in the overall conclusion: re-
jection of the null hypothesis of normality. With this argument in mind, the
large p-value of the rescaled test is likely to be a consequence of the smaller
powers of rescaled tests. When the diagnostic property of smooth tests is not
present, it is often instructive to plot the improved density estimate and use
this graphical representation as a basis for formulating conclusions. This im-
proved density estimate is plotted by the smooth.test function by setting the
argument plot=T. The graph is presented in the left panel of Figure 4.1. In
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Fig. 4.1 The left panel shows the histogram of the PCB data, the fitted normal density
(dashed line), and the improved density estimate (full line); the right panel shows the
comparison density
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this quite simple example, for which only the first nonzero term is selected,
the improved density estimate of course also shows the skewness of the PCB
distribution. In situations for which several terms are selected and for which
the diagnostic property does not work, it may be safer to use the improved
density estimate for formulating conclusions. Improved density estimates can
be plotted together with confidence intervals. The right panel of Figure 4.1
shows the comparison density, which contains the same information as the
improved density.

4.7 Some Practical Guidelines for Smooth Tests

In general smooth goodness-of-fit tests have many good properties. We name
here the most important.

• Smooth tests are easy to compute.
• Smooth tests are available for many distributions.
• Many simulation studies have indicated that (data-driven) smooth tests

have good power for detecting many important alternatives. For most prac-
tical applications, it is sufficient to chose k = 4 for small sample sizes
(n < 50), or k = 6 for larger datasets (n ≈ 100). For the data-driven tests,
there seems to be little need to take the maximal order larger than 7 for
small datasets, and 10 for larger datasets.

• Although the smooth test statistic has an asymptotic χ2 distribution, we
recommend using simulations to compute p-values (see Appendix B.2 for
details on the parametric bootstrap).

• For many distributions the smooth test statistic decomposes into com-
ponents (this happens, e.g., for the normal, exponential, Poisson, . . .).
These components possess limited diagnostic power, in the sense that if
the jth component is large, the statistic suggests that the data are in-
consistent with the hypothesised distribution in at least one moment of
order ≤ 2j. Such conclusions must however be taken with great care, par-
ticularly when there are large inconsistencies in more than one moment.
Rescaling the components by using an empirical variance estimator only
works in situations where (1) there are no nuisance parameters, or (2) the
hypothesised distribution belongs to a restricted, though important class
of distributions. Also for these rescaled components one should be careful
in the interpretation, because simulations studies have shown that large
samples are needed for the method to work well.

• The remark given in the previous paragraph suggest the following practical
guideline: when looking at the individual components, always start with
the lowest-order component, and stop interpreting them as soon as a large
component is encountered.

• Because the smooth tests can be interpreted as tests for testing that the
parameters in an orthogonal series estimator of the comparison density
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are all zero, the plot of the comparison density or the improved density
estimate may be helpful in seeking a deeper understanding of how the
true and the hypothesised distributions are different. This is particularly
helpful when the diagnostic property of the components is in doubt.

• For some distributions (e.g., the logistic and extreme value distributions)
the smooth test statistic does not naturally decompose into its compo-
nents. For these distributions the MLE and MME do not coincide, and we
suggest using MME here instead, and to use a generalised smooth test.
With this construction, it is still informative to look at the individual
components. The rescaling technique with the empirical covariance ma-
trix requires a different estimator of the covariance matrix; see Thas and
Rayner (2009).



Chapter 5

Methods Based on the Empirical
Distribution Function

In this chapter a very wide class of statistical tests based on the empirical
distribution function (EDF) is introduced. Among these tests we find some
old tests, as the Kolmogorov–Smirnov test, but also in recent years new tests
have still been added to this class. A discussion on the EDF and empirical
processes has been given in Sections 2.1 and 2.2. Sections 5.1 and 5.2 are
devoted to the Kolmogorov–Smirnov and the Cramér–von Mises type tests,
respectively. In Section 5.3 we generate the class of EDF tests so that also
more recent tests based on the empirical quantile function or the empirical
characteristic function fit into the framework. We show that many of these
tests are closely related to the class of smooth tests. Practical guidelines are
provided in Section 5.6.

5.1 The Kolmogorov–Smirnov Test

5.1.1 Definition

In Section 2.1.2 we have argued that a distance or divergence function be-
tween the hypothesised distribution function and the EDF is a natural quan-
tity to assess the quality of fit. In this section we discuss one of the traditional
goodness-of-fit tests, the Kolmogorov–Smirnov (KS) test, which originates
from the work of Kolmogorov (1933) and Smirnov (1939). For testing the
null hypothesis H0 : F = G versus H1 : F �= G, the KS test statistic is given
by

Dn =
√

n sup
x∈S

∣∣∣F̂n(x) − G(x)
∣∣∣ = sup

x∈S
|IBn(x)| . (5.1)

Note that Dn is of the form of (2.2) with d the supremum function. Thus,
Dn is the largest absolute deviation between the hypothesised distribution G
and the EDF. This difference may also be written as

O. Thas, Comparing Distributions, , 123
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Fig. 5.1 The EDF of a sample of 20 observations (left panel) and its PP plot w.r.t. a
standard exponential distribution (right panel). The two thick vertical lines in the right
panel show the D+

n (left line) and D−
n (right line) statistics

F̂n(x) − G(x) = F̂n(G−1(p)) − p where p = G(x).

The KS statistic may thus also be read from the sample PP plot. This is
illustrated in Figure 5.1. One way to look at this relation is to say that the
KS test is a formal test procedure which comes with the PP plot.

Closely related to the KS statistic, are the statistics studied by Smirnov
(1939),

D+
n =

√
n sup

x∈S

(
F̂n(x) − G(x)

)
= sup

x∈S
IBn(x)

D−
n =

√
n sup

x∈S

(
G(x) − F̂n(x)

)
= sup

x∈S
(−IBn(x)) .

They represent the largest positive (D+
n ) and the largest negative (D−

n ) de-
viations (see Figure 5.1). The KS statistic may also be defined as Dn =
max(D+

n , D−
n ). The D−

n and D+
n statistics are used in directional tests. Be-

cause D+
n is only large when F̂n(x) > G(x), it is used to test H0 : F = G

versus H1 : F > G. Similarly, D−
n is used when the alternative hypothesis

is H1 : F > G. The alternatives formulated in terms of F < G and F > G
reflect stochastic orderings of F and G.

To understand the meaning of stochastic orderings, suppose the random
variables X and Y have CDFs F and G, respectively. When F > G, then
we say that X is stochastically smaller than Y , which means that for any
z, Pr {X < z} > Pr {Y < z}. Thus X takes on smaller values with a larger
probability, or, equivalently, it is more likely that X takes on smaller values.
Stochastic ordering can also be easily detected in a PP plot. Suppose F (x) <
G(x) for all x ∈ S, and let u = G(x). Then, F (G−1(u)) < u, for all u ∈ [0, 1].
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Fig. 5.2 An example of stochastic ordining of the type F < G. In the left panel the two
CDFs are shown (F : full line; G dashed line), and in the right-hand panel the population
PP plot is shown

This latter expression relates directly to the population PP plot (3.5). This is
illustrated in Figure 5.2 in which in the left panel F (x) and G(x) are plotted,
and in the right panel the corresponding population PP plot is shown. The
PP plot is thus completely situated under the diagonal reference line.

The computation of a supremum of a nondifferentiable function typically
requires the evaluation of many points. However, because F̂n is a step func-
tion, and because G is a monotone increasing function, the statistic D+

n sim-
plifies to

D+
n = max

1≤i≤n

(
i

n
− G(X(i))

)
.

In a similar way we find

D−
n = max

1≤i≤n

(
G(X(i)) − i − 1

n

)
(the use of (i − 1)/n becomes clear from Figure 5.1). The calculation of Dn

requires thus only the evaluation of D+
n and D−

n in the n sample observations.

5.1.2 Null Distribution

The statistics Dn, D+
n and D−

n have the advantage of being distribution free;
i.e., for any hypothesised distribution G, the null distributions of these statis-
tics are the same, even for finite sample sizes. It is therefore most convenient
to present the results for the uniform distribution. Its exact null distribution
has been tabulated by Massey (1951) for sample sizes up to 35.
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Although the exact null distributions of the Kolmogorov and Smirnov
statistics exist, their asymptotic counterparts are more often used. Kolmogorov
(1933) gives the asymptotic null distribution of Dn. Nowadays, however, it
is preferred to obtain the limit distribution using empirical process theory.
Using the weak convergence IBn

w−→ IB and the continuous mapping theorem,
it is easy to show that, under H0, as n → ∞,

Dn
d−→ D = sup

x∈S
|IB(x)| . (5.2)

In general, α-level critical values may be found by simulating the right-hand
side of (5.2), but in this particular case an explicit expression of the distri-
bution function of D exists,

FD(d) = 1 − 2
∞∑

j=1

(−1)j+1 exp(−2j2d2).

Although the proof of this result is beyond the scope of this book, it is
quite simple by using properties of sample paths of a Brownian bridge. An
accessible proof may be found in, e.g., Shorack and Wellner (1986).

Example 5.1 (Pseudo-random generator data). The 100,000 numbers gener-
ated with the runif function in R are used to test the null hypothesis that
the pseudo-random generator in R samples from a uniform distribution over
[0, 1]. Because the unform distribution is completely specified, this is a simple
null hypothesis, and we may apply the KS test.

> ks.test(PRG,"punif",min=0,max=1)

One-sample Kolmogorov-Smirnov test

data: PRG
D = 0.0029, p-value = 0.349
alternative hypothesis: two.sided

In the output we see the calculated test statistic. The ks.test function in R,
however, computes supx∈S

∣∣∣F̂n(x) − G(x)
∣∣∣, and so we have to multiply 0.0029

by
√

n =
√

100000 to find Dn = 0.917. The output also gives the correspond-
ing p-value, p = 0.349. The ks.test function always uses the asymptotic null
distribution for the one-sample KS test, which is definitely allowed here on
our very large dataset. Because p = 0.349 > 0.05, we conclude at the 5%
level of significance to accept the null hypothesis. So, we may conclude that
the runif function gives uniformly distributed numbers.

Although we have not discussed the power properties of the KS test so far,
it is interesting to note here that we have applied the KS test to a very large
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dataset with 100,000 observations. With such a large sample size it is expected
that the test has a large power so that even a rather small deviation from
the uniform distribution should result in a rejection of the null hypothesis.
The fact that this has not happened here convinces us even more that the
pseudo-random generator produces good numbers.

In Appendix B.1 we show how the null distribution of the KS test can be
simulated by using simulations of approximations of the Brownian bridge.

5.1.3 Presence of Nuisance Parameters

We have started the section on the KS test by looking at the problem of the
one-sample simple null hypothesis in which the hypothesised distribution G
is completely specified. In most practical situations, however, the distribution
G is only specified up to some p-dimensional nuisance parameter vector βt =
(β1, . . . , βp). All test statistics for the simple null hypothesis are typically
also used for testing the composite null hypothesis. The only adaptation is
the replacement of G(x) by G(x; β̂n), where β̂n is an estimator of β (more
technical conditions are given later). An important consequence is that the
(asymptotic) null distribution of the test statistic changes and often becomes
more complicated. We show next how the distribution theory of the KS test
changes under nuisance parameter estimation. Because the KS test, as well
as all other EDF tests presented in this chapter, is based on the empirical
process, we first show how the the empirical process behaves.

To make the dependence on the parameter β more explicit the notations
of the empirical and Gaussian processes are slightly changed. Let IBn(x) =
IBn(x;β) =

√
n(F̂n(x) − G(x;β)), and IB(x) = IB(x;β) denote the limiting

zero-mean Gaussian process with covariance function

c(x, y) = c(x, y;β) = Cov {IB(x;β), IB(y;β)}
= G(x ∧ y;β) − G(x;β)G(y;β).

Note that this covariance function is exactly the covariance function given
in Equation (2.5), except that here the dependence on β is made ex-
plicit. When the nuisance parameters are estimated these estimators are
plugged into the empirical process, resulting in the estimated empirical pro-
cess ˆIBn(x) = IBn(x; β̂n). To find the asymptotic behaviour of ˆIBn(x) some
assumptions on the distribution G and on the estimation method are re-
quired. A complete proof can be found in, e.g., Theorem 4.1 in Babu and
Rao (2004) or Theorem 19.23 in van der Vaart (1998).

Before we can give the limit process of ˆIBn, we need some more notation.
Let h(x;β) = ∂G(x;β)/∂β, Ψ(x;β) =

∫ x

−∞ ψ(z;β)dG(z;β), and Σψ =
Var {ψ(X;β)}.
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A self-contained proof of the following theorem can be found in Babu and
Rao (2004) (Theorem 4.1).

Theorem 5.1. Given a locally asymptotically linear estimator β̂n, the esti-
mated empirical process ˆIBn converges weakly to a zero-mean Gaussian pro-
cess ÎB with covariance function

c(x, y) = Cov
{

ÎB(x), ÎB(y)
}

= G(x ∧ y;β) − G(x;β)G(y;β) (5.3)
− Ψ t(x;β)h(y;β) − Ψ t(y;β)h(x;β)
+ ht(x;β)Σψh(y;β).

There are two very important consequences of the weak convergence of
ˆIBn to ÎB. The first is that we now can find the asymptotic null distribution

of the KS test statistic. In particular, under H0, as n → ∞,

D̂n = Dn(β̂n) =
√

n sup
x∈S

|F̂n(x) − G(x; β̂n)| = sup
x∈S

| ˆIBn| d−→ sup
x∈S

|ÎB|.

The second implication, however, is that this limit distribution depends on
the unknown parameter β and on the hypothesised distribution G. So the KS
test for the composite null hypothesis is no longer distribution free, not even
in an asymptotic sense. Consequently, the asymptotic null distribution cannot
be used directly to perform the KS test. Fortunately, there exist solutions that
circumvent this problem.

For location-scale invariant distributions it has been shown that the
asymptotic null distribution of D̂n reduces to a form which still depends on
the distribution G, but not anymore on the unknown parameter βt = (μ, σ),
where μ and σ denote the location and scale parameter, respectively. A
location-scale invariant distribution is a distribution with a density that sat-
isfies g(x;μ, σ) = g((x − μ)/σ, 0, 1)/σ. This independence of the nuisance
parameters is a direct consequence of a simplification of the covariance func-
tion c(x, y) when G is a location-scale distribution.

A well-known family of location-scale invariant distributions is the nor-
mal distribution. For this distribution, it was already recognised by Lilliefors
(1967) that the asymptotic null distribution of D̂n does not depend on the
parameters. He was the first one to tabulate the distribution of D̂n for the nor-
mal distribution. The test is often named after Lilliefors . For small p-values
Dallal and Wilkinson (1986) give a method to approximate the asymptotic
distribution. For larger p-values, Stephens (1974) gave approximations.

Another solution to get an approximation of the asymptotic null distribu-
tion of D̂n is to apply the bootstrap. Babu and Rao (2004) showed that the
parametric bootstrap gives asymptotically the correct critical values. For the
nonparametric bootstrap, however, a bias correction is needed. In Appendix
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B.2 more details on the practical implementation of the parametric bootstrap
are given.

Example 5.2 (PCB concentration data). In the PCB concentration data it is
of interest to test for normality. The R-function ks.test may not be used for
this purpose, because the null distribution used in this function is only correct
for known mean and variance. The Lilliefors corrected KS test is available via
the lillie.test function in the nortest R package, which is also made available in
the cd package. It makes use of the approximations of Dallal and Wilkinson
(1986) and Stephens (1974).

> lillie.test(PCB)

Lilliefors (Kolmogorov-Smirnov) normality test

data: PCB
D = 0.1093, p-value = 0.0521

Because p = 0.0521 we cannot reject the null hypothesis of normality at the
5% level of significance. However, the p-value is only nearly larger than the
nominal 5% level. So the conclusion should be made with care. Maybe one or
more outliers are causing the small p-value, or maybe the true distribution is
not the normal distribution, but this was not detected due to a small sample
size.

We now test the same null hypothesis, but using the bootstrap approxi-
mation.

> ksboot.test(PCB,distr="pnorm",B=10000)

Bootstrap One-sample Kolomogorov Smirnov Test for the
normal distribution

data: PCB
D = 0.1093, number of bootstrap runs = 10000, p-value = 0.051

5.2 Tests as Integrals of Empirical Processes

5.2.1 The Anderson–Darling Statistics

The KS statistic is only one example of a statistic of the form Tn =
c(n)d(F̂n, G). Yet another important class of statistics was introduced by
Anderson and Darling (1952),
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Tn =
∫
S

w(G(x))IB2
n(x)dG(x), (5.4)

where w(.) is a weight function. When w(u) = 1 (for all 0 ≤ u ≤ 1),
the Anderson–Darling (AD) statistic reduces to the statistic which is today
known as the Cramér–von Mises (CvM) statistic, which has its origin in the
work of Cramér (1928), von Mises (1931), and von Mises (1947). Although
the AD statistic is basically a class of statistics indexed by a weight func-
tion, there is actually only one particular weight function w(u) �= 1 which is
very popular, w(u) = 1/(u(1−u)). The test with this choice of w is generally
known as the AD test in the literature, probably because it was this particular
weight function that was suggested by Anderson and Darling (1954). They
advocate this choice because w(u) = 1/(u(1 − u)) has a variance stabilising
effect; i.e.,

√
w(u)IBn(u) has constant variance equal to 1. To make a clear

distinction between the AD and CvM statistics, we use the notation An and
Wn, respectively.

Although at first sight it may seem difficult to calculate Tn for a given
dataset, fortunately for the two most popular weight functions there exist
simple formulae. Let Ui = G(Xi), and let U(i) denote the ith order statistic
of U1, . . . , Un. Then,

An = −n − 1
n

n∑
i=1

(2i − 1)
(
log U(i) + log(1 − U(n+1−i))

)
= −n − 1

n

n∑
i=1

(
(2i − 1) log U(i) + (2n + 1 − 2i) log(1 − U(i))

)
Wn =

n∑
i=1

(
U(i) − 2i − 1

n

)2

+
1

12n
.

When a composite null hypotheses H0 : F (x) = G(x;β) has to be tested,
we proceed as with the KS test. First, the nuisance parameter β has to be
estimated, and we assume that the estimator β̂n is asymptotically linear.
The AD and CvM statistics may now be calculated using G(.; β̂n) instead of
G(.), and they are denoted by Ân and Ŵn, respectively, or by T̂n in general.
As with the KS test, this has an effect on the asymptotic null distribution.
This is discussed in the Section 5.2.3.

5.2.2 Principal Components Decomposition of the Test
Statistic

In Section 2.2.3 we have introduced a decomposition of a Gaussian process.
Here we show a similar decomposition, but applied to the empirical process
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IBn, and we show that by substituting this decomposition into the definition
of the AD test statistic, we obtain a decomposition of the AD test statistic
into interpretable components that are related to the components of smooth
test statistics. The decomposition was proposed by Durbin and Knott (1972)
and Durbin et al. (1975).

The central idea is quite simple: consider the construction of the Kac–
Siegert principal components of a Gaussian process (see Equation (2.8)), and
replace the process with the empirical process. We illustrate this program
by applying it to the Anderson–Darling and the Cramér–von Mises statistics
for testing uniformity (simple null hypothesis). For the integral statistics
of the form (5.4), the process to be considered is IPn(x) =

√
w(x)IBn(x),

because the test statistic is then simply the integral of the squared process;
i.e., Tn =

∫ 1

0
IP2

n(x)dx. When nuisance parameters are to be estimated, β is
replaced by its estimator, and the process is denoted by ÎPn.

5.2.2.1 Principal Components Decomposition of the Cramér–von
Mises Statistic (Simple Null)

For the CvM statistic the weight function is w(x) = 1, and we thus have to
consider the empirical process IPn = IBn for which the covariance function is
c(x, y) = x∧y−xy when testing for uniformity. For this covariance function,
{λj} and {lj} are the eigenvalues and eigenfunctions. It can be shown that
(j = 1, 2 . . .)

λj =
1

j2π2
and lj(x) =

√
2 sin(jπx).

A Kac–Siegert type of decomposition of the empirical process now looks like
(cfr. Equation (2.7))

IPn(x) =
∞∑

j=1

√
λj lj(x)Znj ,

where

Zjn =
1√
λj

∫ 1

0

IPn(x)lj(x)dx. (5.5)

These components can be simplified

Zjn =
1√
λj

∫ 1

0

IPn(x)lj(x)dx

=
√

2jπ

∫ 1

0

(√
n(F̂n(x) − x)

)
sin(jπx)dx

=
√

2njπ

[∫ 1

0

F̂n(x) sin(jπx)dx −
∫ 1

0

x sin(jπx)dx

]
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=
√

2njπ

∫ 1

0

F̂n(x) sin(jπx)dx

=
√

2n

∫ 1

0

cos(jπx)dF̂n(x)

=
√

2n
1
n

n∑
i=1

cos(jπXi)

=

√
2
n

n∑
i=1

cos(jπXi).

It is easy to verify that under the null hypothesis these components are indeed
asymptotically standard normally distributed and that they are asymptoti-
cally independent.

The principal component decomposition of the CvM test statistic is ob-
tained as follows.

Tn = Wn =
∫ 1

0

IB2
n(x)dx

=
∫ 1

0

⎡⎣ ∞∑
j=1

√
λj lj(x)Znj

⎤⎦2

dx

=
∞∑

j=1

∞∑
m=1

√
λjλmZnjZnm

∫ 1

0

lj(x)lm(x)dx

=
∞∑

j=1

λjZ
2
nj

=
∞∑

j=1

1
j2π2

Z2
nj . (5.6)

Hence, Tn has a representation as an infinite weighted sum of asymptoti-
cally independent squared components. The component Znj is called the jth
order component. Note that this decomposition is similar to the decomposi-
tion of smooth test statistics when the eigenfunctions {lj} are used for the
construction. There are two important distinctions: (1) the integral statistic
has an infinite number of components, but (2) they have a decreasing weight
with the order j. To be more precise, the weights 1/(j2π2) → 0 as the order
j → ∞. This decreasing weight property is necessary to make Tn have a
proper limiting distribution.

Just as with smooth tests it is very informative to have a closer look at
the interpretation of the components. In particular they may give us some
more insight into the behaviour of the test under alternatives. The ques-
tion of under which alternatives the test statistic Tn becomes big now trans-
lates into the question of under which alternatives the components Znj are
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expected to be very different from zero. Moreover, because the weights of
components decrease rapidly with the order j, it is particularly important to
understand the lower-order components. For the CvM statistic we see that
Znj =

√
2/n

∑n
i=1 cos(jπXi), which is exactly the jth component Uj of the

smooth test statistic for uniformity introduced in Section 4.2.1. Based on the
discussion given there, we may conclude that the CvM test will have larger
power for slowly oscillating alternatives than for fast oscillating alternatives.
This is an important difference with the order k smooth test, because for the
latter the power drops to α when the alternative is oscillates so fast that it
has only nonzero expectations of components of order smaller than k. The
CvM test, on the other hand, is omnibus consistent.

5.2.2.2 Principal Components Decomposition of the
Anderson–Darling Statistic (Simple Null)

Because for the AD statistic the weight function is w(x) = 1/(x(1 − x)), we
need the covariance function of the process

IPn(x) =
IBn(x)√
x(1 − x)

,

which is
c(x, y) =

x ∧ y − xy√
x(1 − x)y(1 − y)

.

The components are again of the form (5.5), but now are the eigenvalues and
the eigenfunctions given by

λj =
1

j(j + 1)
and lj(x) = 2

√
1

j(j + 1)

√
x(1 − x)

d

dx
Lj(x), (5.7)

where the Lj denote the orthonormal Legendre polynomials. After similar
calculations as in the previous section we find

Tn = An =
∞∑

j=1

1
j(j + 1)

Z2
nj , (5.8)

where the components are

Znj = − 1√
n

n∑
i=1

Lj(Xi).

Thus, just as with the CvM test we see here that the AD test statistic is
a weighted sum of squared components, and these components are exactly
those of the traditional smooth test of Section 4.2.1 for testing for uniformity.
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The weights are equal to 1/(j(j + 1)), which suggests that the AD test will
have a particularly large power against alternatives with deviations in the
lower-order moments.

If we adopt the moment interpretation of the components, as we did in
Chapter 4, we may conclude that the AD test is particularly sensitive to
deviations in the lower-order moments, but asymptotically it also has power
against alternatives that have differences in the higher-order moments. It is
important to note, however, that the components of the AD statistic are
always in terms of the Legendre polynomials, whatever the hypothesised dis-
tribution G is. This may be explained by the relation

An = n

∫
S

(F̂n(x) − G(x))2

G(x)(1 − G(x))
dG(x) = n

∫ 1

0

(F̂n(G−1(u)) − u)2

u(1 − u)
du,

which shows that the AD test actually tests for uniformity after the PIT
is applied. This makes the interpretation of the components less clear as
compared to the case of the smooth tests for which the polynomials and the
hypothesised distribution go hand in hand.

5.2.2.3 Principal Components Decompositions for Composite Null
Hypotheses

Before moving onwards to the composite case we say a little word about
the relation between the eigenfunctions that appear in the Kac–Siegert ex-
pansion and the functions defining the components. We have used the no-
tation {lj} for the eigenfunctions. The components of the AD and CvM
statistics are, however, not of the form (1/

√
n)
∑n

i=1 lj(Xi), but of the form
(1/

√
n)
∑n

i=1 laj (Xi), where laj is associated with lj . For example, for the
CvM test the eigenfunctions are sine functions, but the components are in
terms of cosine functions. The exact association between the lj and laj comes
from (5.5) which involves the lj , and which can be turned into the form
Zjn = (1/

√
n)
∑n

i=1 laj (Xi) by integration by parts. In conclusion, we do not
expect the eigenfunctions to coincide with the orthogonal functions used for
the construction of smooth tests, but rather the laj should.

As with smooth test statistics that do not always decompose naturally
into asymptotically independent terms when estimated nuisance parameters
are plugged in, this is also the case for the integral test statistics. We start in
this section with the general form of the principal component decomposition
of statistics of the form T̂n =

∫ 1

0
ÎP

2

n(x)dx, which includes both the AD and
CvM statistics. The resulting asymptotically independent components are,
however, not necessarily nicely interpretable. We prefer the components to
be in terms of the orthonormal functions {laj } which appear in the tests
for the simple null hypothesis. We further show how the components can
be transformed so that they are expressed in terms of {laj }. At the end of
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the section we show how this decomposition relates to the smooth tests.
We restrict the discussion to MLE. We do not intend to prove all results
rigorously. Instead we rather give a sequence of heuristic arguments. For
example, because there are infinitely many eigenfunctions and eigenvalues,
we need to use infinite-dimensional matrices, but we do not focus on such
technical issues. It is sufficient to read these matrices as large-dimensional.
Similarly, when writing a sum with an index j going from 1 to ∞, we simply
write

∑
j so that this may just as well be read as, say,

∑M
j=1 with large M .

This approach was also used in the seminal paper of Durbin et al. (1975).
Suppose that c(x, y) is the covariance function of the process ÎPn, and

denote the corresponding eigenfunctions and eigenvalues by {kj} and {κj}.
We work in the Hilbert space L2(S, G). With this notation, the covariance
function can be written as

c(x, y) =
∑

j

κjkj(x)kj(y)

(cfr. (2.6)). The test statistic T̂n =
∫ 1

0
ÎP

2

n(x)dx can then be equivalently
represented by its principal components decomposition; i.e.,

T̂n =
∑

j

κjZ
2
nj , (5.9)

where the components are given by Znj = (1/√κj)
∫
S ÎPn(x)kj(x)dG(x),

which can be further simplified by means of partial integration as we did for
the AD and CvM tests in the two previous sections. This generally results in
components of the form Znj = (1/

√
n)
∑n

i=1 ka
j (Xi; β̂), where the function

set {ka
j } is associated with the eigenfunctions {kj}. The components Znj are

asymptotically i.i.d. standard normal, and their interpretation depends on
the ka

j functions. Durbin et al. (1975) showed that for a given process ÎPn,
it is always true that κj ≤ λj ; i.e., the eigenvalues of the estimated process
ÎPn are never larger than those of the process IPn used to test the simple null
hypothesis. This property is similar to the loss of degrees of freedom property
of χ2-type statistics.

In general it is hard to find the eigenvalues and the eigenfunctions of
c(x, y), and, moreover, it is not guaranteed that the form of the ka

j allows
simple interpretations. We therefore prefer components in terms of the laj
orthonormal functions that appear in the decomposition of the test statistic
when no nuisance parameters are estimated. Note that in the case of no
nuisance parameters, the functions ka

j and laj coincide. The most interesting
laj functions are those that also appear in the smooth tests of Chapter 4,
therefore we also often use hj instead of laj .

Before the main theorem is stated we introduce some notation. Let
ht(x)=(h1(x), . . .), kt

a(x) = (ka
1 (x), . . .), and let ΣhGβ =< h ◦ G,uβ >g de-

note the matrix with (i, j)th element equal to
∫
S hi(G(x;β))(∂ log g(x;β)/∂βj)
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dG(x;β). The difference between the latter and the matrix Σhβ that appears
in the efficient score is that here we have h◦G(x) = h(G(x)) instead of simply
h(x) because of the PIT. In analogy with the construction of the efficient score
(4.16), we now need

v(x;β) = hj(G(x;β)) − ΣhGβΣ−1
ββuβ(x).

On using Theorem 4.2, the variance–covariance matrix of h(G(X; β̂)) and
v(x; β̂) coincide and are equal to Σv̂ = I − ΣhGβΣ−1

ββΣβGh. We may also
write Σv̂ =< v,v >g. Finally, using the vector functions v and k we define
the statistics V̂ = (1/

√
n)
∑n

i=1 v(Xi; β̂) and K̂a = (1/
√

n)
∑n

i=1 ka(Xi; β̂).
Note that because of the of MLE, V̂ further reduces to (1/

√
n)
∑n

i=1 h

(G(Xi; β̂)). With this notation we may write Tn of (5.9) as Tn = K̂
t

aΓK̂a

with Γ a diagonal matrix with elements κ1, κ2, . . ..

Theorem 5.2. (1) The following equality holds,

T̂n = K̂
t

aΓK̂a =
(
Σ

−1/2
v̂ V̂

)t

Γ
(
Σ

−1/2
v̂ V̂

)
=
∑

j

κjQ̂
2
j , (5.10)

where the components are given by

Q̂j =
∑
m

Σ
−1/2
v̂j,m V̂m,

with Σ
−1/2
v̂j,m denoting the (j,m)th element of Σ−1

v̂ , which equals < v,ka >−1
g .

(2) The eigenvalues {κj} can be calculated as

κj = at
j

[∫
S

∫
S

c(x, y)v(x)vt(y)dG(x)dG(y)
]

aj , (5.11)

where aj is the jth column of the transformation matrix Σ
−1/2
v̂ .

The heuristic proof of the theorem is given in Appendix A.9.
From the theorem we learn the following.

• The difference between the test statistics in the simple and the composite
null hypotheses cases is very similar to the difference that we observed in
the order k smooth test statistics in the previous chapter. As before, the
Tn statistic in (5.10) is a weighted sum of squared components. To see
the link with the smooth test, write the order k smooth test statistic in
(4.20) as

Tk = V̂
t
Σ−1

v̂ V̂ =
(
Σ

−1/2
v̂ V̂

)t (
Σ

−1/2
v̂ V̂

)
,

which is indeed the unweighted and truncated version of the integral statis-
tic. There is, however, one further important difference: smooth tests are
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constructed starting from polynomials that are orthonormal w.r.t. the hy-
pothesised density, whereas the hj functions that appear in the integral
statistics are all orthonormal w.r.t. the uniform distribution. In Σv̂ used
in the smooth tests we find the matrix Σhβ , and in the integral tests this
matrix is replaced by ΣhGβ , which accounts for the PIT.

• The components Q̂j =
∑

m Σ
−1/2
v̂j,m V̂m are linear combinations of the com-

ponents V̂m which are in turn defined in terms of the hm orthonormal
functions. The interpretation of a single Q̂j is thus based on the interpre-
tation of several hm functions. The interpretation gets simpler the fewer
of these hm functions get a large weight.

• In view of the previous remark, we would like that the Q̂j component
depend only on a single hm function. This happens in the important case
that Σ

−1/2
v̂ is a diagonal matrix. This occurs if the elements of ΣhGβ =

< h ◦G,uβ >g are all zero. To our knowledge this does unfortunately not
happen in any practical relevant case. Later we show generalisations of the
EDF integral statistics that have neater forms (see Section 5.3).

• In the previous chapter we have argued that even when the smooth test
statistic in the presence of nuisance parameters does not decompose into
the V̂j components, it is still informative to look at these components, or
even apply the rescaled component tests (Sections 4.5.6 and 4.6). Because
the components V̂j are here expressed in terms of lj ◦G, the interpretation
is not very simple.

5.2.3 Null Distribution

For testing a simple null hypothesis the AD and CvM tests are nonparametric
tests in all of its meanings: the test statistics have, even for finite sample sizes,
a null distribution which is independent of the hypothesised distribution G.
However, this does not mean that the exact distribution is easy to obtain.
The exact distribution of the CvM statistic has received much attention in
the statistical literature already for more than 50 years, and still the exact
distribution is only tabulated for n = 1, ... , 7. Approximations to the exact
distribution of the CvM statistic have also been heavily investigated. The
best approximation up to now is given by Csörgö and Faraway (1996). It has
a firm theoretical ground, it is based on a one-term correction to the asymp-
totic distribution function, and it gives quite good approximations, even for
sample sizes as small as n = 7. Although their solution gives good results and
it is easier as compared to most other approximations, it still requires sub-
stantial computation effort. Another type of approximation was suggested
by Pearson and Stephens (1962), Tiku (1965), and Zhang and Wu (2001).
They proposed to consider a flexible parameterised family of distributions,
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and find the parameter values so that the distribution matches to the first
three or four moments of the exact distribution of the CvM statistic. The
rationale is that (1) the exact first few moments are known, and (2) it is
hoped that the mimicking distribution approximates the true exact distribu-
tion sufficiently closely, particularly in the tails. In this sense the methods
of Zhang and Wu (2001) seem to give very acceptable approximations. Yet
another approximation method was suggested by Stephens (1970). Based on
an extensive empirical simulation study, he suggested to use a modified test
statistic,

W �
n =

Wn − 0.4/n + 0.6/n2

1 + 1/n
, (5.12)

where the coefficients were estimated using simple regression techniques.
When W �

n is used the percentage points of the asymptotic null distribution
of Wn apply. Despite the simplicity of this approach, it works remarkably well.

Less is known about the exact null distribution of the Anderson–Darling
statistic. Lewis (1961) gave the exact distribution when n = 1, but, to our
knowledge at least, there are no exact results for larger sample sizes. Even the
exact moments of An are not known, and, therefore, the moment based ap-
proximation methods cannot be applied here. Fortunately, simulation studies
have indicated that the distribution of the An statistic converges very rapidly
to its asymptotic distribution. For instance, D’Agostino and Stephens (1986)
(p. 104) said that for sample sizes as small as n = 3 the asymptotic ap-
proximation is quite good. Lewis (1961), who estimated percentage points
for sample sizes n ≤ 8, is more conservative and recommends the asymptotic
distribution only for n > 8.

The asymptotic null distributions of Tn and T̂n are again found by using
the weak convergence of the empirical process or the estimated empirical
process, for the simple and composite null hypothesis, respectively.

Theorem 5.3. If
∫ 1

0
t(1− t)w(t)dt < ∞, then, under the simple null hypoth-

esis with G the uniform distribution, as n → ∞,

Tn
d−→
∫ 1

0

w(t)IB2(t)dt.

Although this result gives a theoretically correct representation of the
asymptotic null distribution, it is not convenient to get percentage points
quickly. Expressions for the CDF of the CvM and AD statistics were ob-
tained by Anderson and Darling (1952). They first found the characteristic
functions, which, by inversion, results in the CDF. The CDF, however, con-
tain an infinite sum which makes the exact evaluation difficult. Fortunately,
using only the very first few terms already gives quite good approximations.
An immediate and interesting conclusion which emerges directly from the
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form of the characteristic functions, is that the CvM and AD statistics are
asymptotically equivalent in distribution to the random variables

W =
∞∑

j=1

1
j2π2

Z2
j (CvM)

A =
∞∑

j=1

1
j(j + 1)

Z2
j (AD),

where Z1, Z2, . . . are i.i.d. standard normal random variables. These represent
infinite weighted sums of independent chi-squared random variates, and the
weights decrease quadratically with the index j. The same representation
follows also immediately from (5.6) and (5.8).

Example 5.3 (Pseudo-random generator data). We analyse the PRG data
again with the CvM and AD tests which are available in the EDF.test func-
tion of the cd package. The CvM test is implemented as the approximation
of Stephens (1970) based on the modified statistic given in Equation (5.12).

> EDF.test(PRG,B=NA,distr="unif",type="AD",pars=c(0,1))

Anderson-Darling Test for the uniform distribution

data: PRG
T = 0.9829, number of bootstrap runs = NA, p-value =
0.25

Warning message:
The p-value is only a lower bound. in: EDF.test(PRG, B = NA,

distr = "unif", type = "AD", pars = c(0,

> EDF.test(PRG,B=NA,distr="unif",type="CvM",pars=c(0,1))

Cramer-von Mises Test for the uniform distribution

data: PRG
T = 0.1517, number of bootstrap runs = NA, p-value =
0.25

Warning message:
The p-value is only a lower bound. in: EDF.test(PRG, B = NA,

distr = "unif", type = "CvM", pars = c(0,

Both tests confirm that the 100,000 generated numbers may be considered
as a sample from a uniform distribution. Note that the output contains a
warning saying that the reported p-values are only an upper bound. The
reason is that no approximations for p-value calculation are implemented in
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the EDF.test function. If a p-value is needed, the AD and CvM tests can be
performed as bootstrap tests. This is illustrated with the AD test.

> EDF.test(PRG,B=100,distr="unif",type="AD",pars=c(0,1))
Anderson-Darling Test for the uniform distribution

data: PRG
T = 0.9829, number of bootstrap runs = 100, p-value = 0.35

When testing a composite null hypothesis, the nuisance parameter β must
be estimated.

Theorem 5.4. Assume that β̂n is locally asymptotically linear and
∫ 1

0
t(1−t)

w(t)dt < ∞. Then, under the composite null hypothesis, as n → ∞,

T̂n
d−→
∫ 1

0

w(t)ÎB
2
(t)dt.

As noted in Section 5.1.3, this distribution generally depends on the hypothe-
sised distribution G, as well as on the unknown nuisance parameters β. Con-
sequently, the distribution cannot be tabulated, and percentage points and
p-values must be approximated using the bootstrap (see Appendix B). How-
ever, when G is a location-scale invariant distribution, only the dependence
on G remains. For these distributions the percentage points may be obtained
by simulation. For many popular distributions (normal, exponential, etc.),
the asymptotic distributions of the AD and CvM tests have been tabulated.
As for the simple null hypothesis case, there is no simple analytic expression
for the asymptotic distribution function, and approximations are available.
For the normal distribution, we mention the work of Stephens (1971, 1974)
and Stephens (1976) (summarised in D’Agostino and Stephens (1986) (p.
122)), who suggested to use the modified statistics

W �
n = Wn(1 + 0.5/n) and A�

n = An(1 + 0.75/n + 2.25/n2). (5.13)

Example 5.4 (PCB concentration data). In Section 5.1 the PCB data were
analysed with the KS test, which resulted in a p-value only nearly larger
than α = 0.05. And the analysis of the PCB data in Section 4.6 revealed that
only the low-order components of the smooth test gave significant results.
Here we redo the analysis with the AD and CvM tests.

Many of the EDF tests are available in the cd package through the EDF.test
function. For testing composite normality, the AD and CvM tests make use of
the approximations of D’Agostino and Stephens (1986) based on the modified
statistics given in Equation (5.13).

> EDF.test(PCB,B=NA,distr="norm",type="AD")

Anderson-Darling Test for the normal distribution



5.2 Tests as Integrals of Empirical Processes 141

data: PCB
T = 0.7506, number of bootstrap runs = NA, p-value = 0.05076

Warning message:
The p-value is the D’Agostino-Stephens approximation

> EDF.test(PCB,B=NA,distr="norm",type="CvM")

Cramer-von Mises Test for the normal distribution

data: PCB
T = 0.134, number of bootstrap runs = NA, p-value = 0.03893

Warning message:
The p-value is the D’Agostino-Stephens approximation

This result of the AD test is very close to the analysis with the KS test, but
with the CvM test we have to reject the null hypothesis and conclude that the
data are not normally distributed. Both tests can also be performed by using
the bootstrap. The approximated p-values are rather close to the nominal
significance level, therefore we take a quite large number of bootstrap runs.

> EDF.test(PCB,B=20000,distr="norm",type="AD")

Anderson-Darling Test for the normal distribution

data: PCB
T = 0.7506, number of bootstrap runs = 1000, p-value = 0.051

> EDF.test(PCB,B=20000,distr="norm",type="CvM")

Cramer-von Mises Test for the normal distribution

data: PCB
T = 0.134, number of bootstrap runs = 1000, p-value = 0.04095

These results confirm the conclusions from the previous analyses. Finally, we
refer to the analysis of these data presented in Section 4.6, where we did the
analysis by means of order k smooth tests. There the significance depended
strongly on the choice of the order k. This problem does not play any role
here. The choice of the order is replaced by the weighting scheme that is
completely determined by the weight function w in the definition of Tn, and
by the score function uβ .
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5.2.4 The Watson Test

5.2.4.1 The Test Statistic

Watson (1961) proposed a test that can test goodness-of-fit of distributions
on a circle. An example of circular data is, e.g., the measurement of the wind
direction. When measuring on a circle, there is no natural origin. For the
wind direction data, one typically takes the north-direction as origin, but
one could just as well have chosen any other direction. A test for goodness-
of-fit for such data should of course be invariant to the choice of the origin.
The Watson test statistic is defined as

Un = n

∫
S

{
F̂n(x) − G(x) −

∫
S
(F̂n(y) − G(y))dG(y)

}2

dG(x) (5.14)

= n

∫
S

∫
S

{(
F̂n(x) − F̂n(y)

)
− (G(x) − G(y))

}2

dG(x)dG(y). (5.15)

Although the form in (5.14) is usually used to study the theoretical properties
of the test, it is (5.15) that clearly shows that Un is independent of the choice
of origin. It can be interpreted as an average of the differences of the empirical
probability that an observation is in the interval [x, y] and the corresponding
hypothesised probability.

Although the test was originally constructed for testing goodness-of-fit on
the circle, it can just as well be used to test goodness-of-fit on the real line.

When testing for uniformity, the computational form is given by

Un =
n∑

i=1

(
X(i) − 2i − 1

2n

)2

− n

(
X̄ − 1

2

)
+

1
12n

.

As the AD and CvM statistics, also the Watson (W) statistic has a repre-
sentation in terms of an empirical process. Let

IPn(x) = IBn(x) −
∫ 1

0

IBn(y)dy.

Then Un =
∫ 1

0
IP2

n(x)dx.
In the following subsections we provide some more details on the decom-

position and the asymptotic null distribution for simple null hypothesis. In
general the theory for circular distributions is more complicated, and there-
fore we omit a discussion on composite null hypotheses and on how the
decomposition in the latter case relates to components of smooth tests. For
more information we refer to Wouters et al., who established the link between
the Watson and smooth test statistics.
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5.2.4.2 Principal Components Decomposition of the Watson
Statistic (Simple Null)

The principal component decomposition was given by Shorack and Wellner
(1986). The covariance function of the process IPn is given by

c(x, y) = x ∧ y − (x + y)/2 + (x − y)/2 + 1/12.

It has eigenvalues λ2j−1 = λ2j = 1/(4π2j2), and eigenfunctions k2j−1(x) =√
2 sin 2jπx, and k2j(x) =

√
2 cos 2jπx, j = 1, 2, . . .. Every two consecutive

eigenvalues of odd and even order are equal, thus the principal component
decomposition may be written as

Un =
∞∑

j=1

1
4π2j2

(
Y 2

nj + Z2
nj

)
, (5.16)

where the components are

Ynj =

√
2
n

n∑
i=1

cos(2jπXi) and Znj =

√
2
n

n∑
i=1

sin(2jπXi). (5.17)

Note that due to the orthogonality of the sin and the cos terms in Ynj and Znj ,
the components have zero covariance. The term Y 2

nj +Z2
nj can be interpreted

as the resultant length of the jth empirical trigonometric moment of the
circular distribution. The first component (j = 1) can be recognised as the
Rayleigh test statistic (Rayleigh (1919)).

Another interesting interpretation of the components can be seen by ap-
plying some simple trigonometric calculus. Write

Y 2
nj + Z2

nj =

(√
2
n

n∑
i=1

cos(2jπXi)

)2

+

(√
2
n

n∑
i=1

sin(2jπXi)

)2

=
2
n

n∑
i=1

n∑
m=1

(cos(2jπXi) cos(2jπXm) + sin(2jπXi) sin(2jπXm))

=
2
n

n∑
i=1

n∑
m=1

cos (2jπ(Xi − Xm))

= 2 +
4
n

n∑
i<m

cos
(
2jπ(X(i) − X(m))

)
.

This last expression clearly shows that this component gets large when there
are relatively too many observations too close to one another, i.e., too many
small X(i) − X(m). This happens, for instance, when the distribution is too
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peaked, or when there are too many modi. Furthermore, the smaller the
differences X(i) − X(m) are, their contribution will be large for the more
orders j.

5.2.4.3 Null Distribution (Simple Null)

The first way to get at the asymptotic null distribution of the Watson test
statistic is based on its principal component decomposition. Because the com-
ponents Ynj and Znj in (5.17) converge to independent standard normal
variates, Equation (5.16) implies that Un converges to U , which has repre-
sentation

U =
∞∑

j=1

1
4π2j2

(
Z2

2j−1 + Z2
2j

)
,

where the Zj (j = 1, 2, . . .) are i.i.d. standard normal. Thus we could also
write

U =
∞∑

j=1

1
4π2j2

X2
j

with X2
j i.i.d. χ2

2.
The other solution is based on empirical process theory. Because the pro-

cess IPn is a function of the empirical process IBn, we find by the continuous
mapping theorem, under H0, as n → ∞,

IPn(x) = IBn(x) −
∫ 1

0

IBn(y)dy
w−→ IP = IB(x) −

∫ 1

0

IB(y)dy,

and, similarly,

Un =
∫ 1

0

IP2
n(x)dx

w−→ U =
∫ 1

0

IP2(x)dx.

5.3 Generalisations of EDF Tests

In Section 2.1.2 we have explained the rationale of EDF tests and we gave
the general form of an EDF test statistic, Tn = c(n)d(F̂n, G). The distance
or divergence functional d satisfies the property that d(F,G) = 0 if and
only if F (x) = G(x) for all x ∈ S, and d(F̂n, G) actually serves as a plug-
in estimator of d(F,G). Although this formulation is quite general, all tests
discussed so far have a d functional that depends on F and G through B(x) =
(F (x) − G(x))w(x), where w(x) is a weight function, and in terms of B(x)
we have
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B(x) = 0 for all x ∈ S ⇔ F (x) = G(x) for all x ∈ S. (5.18)

Thus the functional d could just as well be denoted by d(B). Some examples:

CvM w(x) =
√

g(x) d =
∫

B2(x)dx

AD w(x) =
√

g(x)
G(x)(1−G(x)) d =

∫
B2(x)dx

KS w(x) = 1 d = supx |B(x)|
Thus all B(x) are explicitly functionals of F and G. This led to the important
role of the empirical process which appears when F is replaced by the EDF.
There is, however, no necessity to have B explicitly depending on F and G.
The only necessity is condition (5.18). This opens the way to other definitions
of B. For instance, a distribution is not only uniquely characterised by its
CDF F (x). Other characterisations are based on the quantile function (QF)
F−1(x), or the characteristic function (CF) ΦF (x) = Ef {exp(ixY )} (Y with
CDF F ). This brings us to the following choices for B,

B(x) = F−1(x) − G−1(x)
B(x) = ΦF (x) − ΦG(x).

All these B functionals satisfy condition (5.18), and empirical versions, say
Bn, can be obtained by replacing F−1 or ΦF by their estimators. For each of
these types more details are given in the next few sections.

5.3.1 Tests Based on the Empirical Quantile Function
(EQF)

5.3.1.1 The Empirical Quantile Function

The choice B(x) = F−1(x) − G−1(x) involves the quantile function F−1(x)
which is the inverse of the CDF and which is defined as (0 < p < 1)

F−1(p) = inf {y ∈ S : p ≤ F (y)} . (5.19)

Its empirical plug-in estimator, say F̂−1
n (p), is obtained by replacing F in

Equation (5.19) by the EDF. Note that F̂−1
n always equals a sample obser-

vation. This can be stressed by adopting an alternative definition of F̂−1
n ,

F̂−1
n (u) = X(i) if

i − 1
n

≤ u <
i

n
for some 1 ≤ i ≤ n.

These definitions, as well as some basic theory were provided in Section 2.3.
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5.3.1.2 EQF Tests for the Simple Null Hypothesis

The study of the EQF tests is based on the empirical quantile process (EQP),

IQn(x) =
√

n
(
F−1

n (x) − F−1(x)
)
,

(0 ≤ x ≤ 1). It is indeed possible to express the test statistics in terms of
the EQP. Theorem 2.4 says that the EQP converges weakly to a weighted
Brownian bridge; i.e., IQn

w−→ −IB/f(F−1(x)) as n → ∞.
In analogy with the AD and CvM statistics, a natural distance measure

between two distributions may be defined as

d(F,G) =
∫ 1

0

B2(x)dx =
∫ 1

0

(
F−1(x) − G−1(x)

)2
dx,

which is known as the (squared) Wasserstein distance; i.e., d(F,G) =
W 2(F,G). del Barrio et al. (1999) and del Bario et al. (2000) gave some
asymptotic properties of the test based on

Wn = nW 2(F̂n, G) = n

∫ 1

0

(
F̂−1

n (x) − G−1(x)
)2

dx.

de Wet (2002) extended these tests by considering a weighted Wasserstein
distance; i.e.,

d(F,G) =
∫ 1

0

(
F−1(x) − G−1(x)

)2
w(x)dx,

where
∫ 1

0
w(x)dx = 1, and the resulting test statistic is denoted by Ww

n . In
the remainder of this section we discuss this weighted integral statistic. We
refer to the corresponding tests as EQF tests. Sometimes the integrals in
the definition of d may be hard to compute analytically. In these cases an
alternative statistic may be considered (Mason (1984)),

Mw
n =

n∑
i=1

w

(
i

n + 1

)(
X(i) − G−1

(
i

n + 1

))2

,

which is, under certain conditions, asymptotically equivalent to the integral
tests.

For the proofs of the convergence of the integral tests based on the EQP,
a stronger type of convergence is often required: strong approximations for
weighted versions of IQn. We, however, do not go into detail here, but we
refer the interested reader to, e.g., Csörgö (1983), Mason (1984), Csörgö et al.
(1986), Einmahl and Mason (1988), Csörgö and Horváth (1993), and Csörgö
et al. (1993). In these references conditions on the distributions and weight
functions are given, so that Mw

n and Ww
n have limiting distribution
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0

IB2(x)w2(x)
f2(F−1(x))

dx.

The relation between EQF statistics and Brownian bridges is similar to
what we have seen for the EDF statistics. It further suggests that these statis-
tics allow a principal component decomposition, but now the eigenfunctions
and eigenvalues are related to the covariance function

c(s, t) =
(s ∧ t − st)w(s)w(t)
f(F−1(s))f(F−1(t))

.

In the previous paragraphs we have restricted the discussion to a com-
pletely specified hypothesised distribution G (simple null case). Before going
to the composite null situation we mention briefly two specific tests for uni-
formity; i.e., G(x) = x for x ∈ [0, 1]. We consider the EQF versions of the
CvM and AD statistics. With w(u) = 1 the EQF–CvM statistic is found. We
give here the form proposed by Durbin and Knott (1972),

W q
n =

n + 1
n

n∑
i=1

(
X(i) − i

n + 1

)2

,

which has limiting null distribution
∫ 1

0
IB2(x)dx, which is the same as for the

EDF–CvM test. Kaigh (1992) discussed some of the characteristics of the
EQF–AD statistic,

Aq
n = (n + 1)(n + 2)

n∑
i=1

(
X(i) − i

n+1

)2

i(n − i + 1)
,

which has the same asymptotic null distribution as the EDF–AD statistic.
Kaigh (1992) noted, however, that the convergence is very slow and that the
EQF–AD test has quite poor powers for many interesting alternatives. He
further gave the principal component decomposition of the EQF–CvM and
AD statistics and he showed that they are both functions of the spacings
of the sample observations. Spacings are defined as Di = X(i) − X(i−1),
i = 1, . . . , n + 1, with the convention that X(0) ≡ 0 and X(n+1) ≡ 1. He
showed

W q
n =

∞∑
j=1

1
j2π2

Z2
nj ,

where

Znj = −√
n + 2

n+1∑
i=1

√
2 cos

(
2i − 1
2n + 2

jπ

)
Di.

The components Znj are asymptotically normally distributed, and, under the
null hypothesis, they are asymptotically independent and standard normally
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distributed. A similar decomposition holds for the EQF–AD statistic, but
instead of a cosine basis of orthonormal functions, it makes use of a ba-
sis of Hahn orthonormal polynomial vectors {π0,n, . . . ,πn,n}, with πt

j,n =
(πj,n(1), . . . , πj,n(n + 1)). With this notation, we get

W q
n =

∞∑
j=1

1
j(j + 1)

Z2
nj ,

where now

Znj = −
√

(n + 1)(n + 2)
n+1∑
i=1

πj,n(i)
(

Di − 1
n + 1

)
.

For both EQF statistics the components Znj are thus functions of the
spacings, whereas for their EDF counterparts the components depend directly
on the (unordered) observations. On the other hand, EDF and EQF have the
same eigenfunctions and the same asymptotic representation under the null
hypothesis. Finally, Kaigh (1992) showed that the correlation between the
components of the EDF and EQF statistics, say ZD

nj and ZQ
nk, is zero unless

j = k.

5.3.1.3 EQF Tests for Location-Scale Distributions

Recent literature on statistics based on the Wasserstein distance has fo-
cused on goodness-of-fit tests for location-scale families. In Section 5.1.3 we
have defined location-scale families as distributions with densities satisfy-
ing g(x;μ, σ) = g((x − μ)/σ, 0, 1)/σ. In terms of the quantile function this
becomes

G−1(u;μ, σ) = μ + σG−1(u; 0, 1). (5.20)

The linear representation of Equation (5.20) is particularly appropriate to
plug into the Wasserstein distance. del Barrio et al. (1999) were the first to
notice this. They investigated Wn statistics for testing normality.

In this location-scale setting, however, we encounter again two nuisance
parameters, μ and σ, which have to be estimated from the data. Instead of
considering MLE or MME, there seem to be advantages of using a minimum
distance estimator. In the present context, the most natural minimum dis-
tance estimator is the one which minimises the Wasserstein distance between
G−1 and the empirical F̂−1

n . Let S2 denote the sample variance.
The close connection between the test statistic and the method of param-

eter estimation allows the test statistic to be written as

Wn = nW 2(F̂n, Ĝ)

= n inf
μ,σ

{
W 2(F̂n, G(.;μ, σ)) : −∞ < μ < +∞, 0 < σ < +∞

}
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= n inf
μ,σ

{∫ 1

0

(
F̂−1

n (u) − μ − σG−1(u; 0, 1)
)2

du

}
= n

(
S2 −

(∫ 1

0

F̂−1
n (u)G−1(u; 0, 1)du

)2
)

,

where the last step is obtained by recognising that μ = μ̂ = X̄ and σ2 = σ̂2 =∫ 1

0
F̂−1

n (u)G−1(u; 0, 1)du determines the infimum. Hence, Wn = n(S2 − σ̂2)
is not affected by the location. del Barrio et al. (1999) suggested to consider
a scaled version of Wn,

Rn =
Wn

nS2
= 1 − σ̂2

S2
,

which is asymptotically also scale invariant. This test statistic can be in-
terpreted as a measure which compares S2, which is an unrestricted consis-
tent estimator of σ2, with a restricted estimator σ̂2 which is only a consistent
estimator of σ2 when F belongs to the hypothesised location-scale family.
It can be shown that Rn is asymptotically equivalent to the Shapiro–Wilk,
Shapiro–Francia and the de Wet–Venter statistics.

The statistic Rn may be conveniently expressed in terms of the estimated
empirical quantile process,

ˆIQn = IQn− < IQn, 1 > 1− < IQn, F−1 > F−1,

which is similar to the estimated empirical process of Section 5.1.3, but here
the location and scale parameters are estimated in a different way. Similarly,
ÎQ = IQ− < IQ, 1 > 1− < IQ, F−1 > F−1. With this notation, we find

Rn =
1
S2

∫ 1

0

ˆIQn

2
(u)du. (5.21)

It may be tempting to conclude that Rn converges in distribution to

1
σ2

∫ 1

0

ÎQ
2
(u)du,

but apparently there appear to be some technical caveats. In particular it is
not always true that∫ 1

0

IQ2
n(u)du

d−→
∫ 1

0

IB2(u)
g2(G−1(u))

du

as may be suspected from Theorem 2.4 and the continuous mapping theorem.
For some distributions g a slightly different convergence holds,
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0

IQ2
n(u)du − an

d−→
∫ 1

0

IB2(u) − Eg

{
IB2(u)

}
g2(G−1(u))

du, (5.22)

where

an =
∫ 1−1/n

1/n

u(1 − u)
g2(G−1(u))

du.

For a general discussion of statistics of the form (5.21), and generalisations
of it, we refer to Del Barrio et al. (2005). In the next paragraphs, however,
we treat only the case of the normal distribution.

We consider again the normal distribution as an example of a location-
scale invariant distribution. Using the conventional notation Φ and φ for the
CDF and density function, it can be shown that under H0, as n → ∞,

Rn − an
d−→
∫ 1

0

IQ2(u)du −
∫ 1

0

E
{
IQ2(u)

}
du

=
∫ 1

0

IB2(u) − Eφ

{
IB2(u)

}
φ2(Φ−1(u))

du −
[∫ 1

0

IB(u)
φ(Φ−1(u))

du

]2
−
[∫ 1

0

IB(u)Φ−1(u)
φ(Φ−1(u))

du

]2
,

where

an =
∫ 1−1/n

1/n

u(1 − u)
φ2(Φ−1(u))

du.

Further insight into the limiting distribution is given when an orthonormal
components decomposition of ÎQ

2
is performed. del Barrio et al. (1999) and

del Bario et al. (2000) showed that

Rn − an
d−→ −3

2
+

∞∑
j=3

1
j

(
Z2

j − 1
)
, (5.23)

where the Zj are i.i.d. standard normal. The asymptotic representation of
Rn − an now becomes

−3
2

+
∞∑

j=3

1
j

(
Z2

nj − 1
)
,

where
Znj =

√
j < ÎQn,Hj(Φ−1) >

Hj is the Hermite polynomial of degree j − 1. These Znj are asymptotically
i.i.d. standard normal under the null hypothesis.

The decomposition presented in (5.23) looks very similar to what we have
seen many times before, except that the summation only starts at the third
order term. The first two terms vanish due to the estimation of the two
nuisance parameters. Because this sum of (weighted) squared independent
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standard normal variates looks similar to a χ2 distributed random variable,
this loss of the first two terms is referred to the loss of degrees of freedom
property.

Because the EQF test for normality has a principal component decompo-
sition into the same components as the smooth test for normality based on
the Hermite polynomials, it is again very meaningful to augment a statistical
data analysis using this EQF test with a study of the first few components.

Instead of using the Wasserstein distance similar EQF tests may be con-
structed based on a weighted Wasserstein distance. This is studied in detail
by Csörgö (2002) and de Wet (2002). They give results for scale-invariant dis-
tributions, and de Wet also gives some further results on location-invariant
distributions. In particular, de Wet shows that for a given location- or scale-
invariant distribution, the weight function can be chosen in such a way that
the resulting minimum distance estimator is asymptotically efficient. More-
over, the same weight functions result in the loss of one degree of freedom
property. Finally, we note that the normal distribution is the only location-
scale invariant distribution which gives a two degrees of freedom loss.

5.3.2 Tests Based on the Empirical Characteristic
Function (ECF)

Another rather new type of goodness-of-fit test is based on the ECF. In gen-
eral a test statistic could be constructed starting from B(t) = ΦF (t)−ΦG(t)
and replacing ΦF by its empirical estimator, Φn(t) = (1/n)

∑n
l=1 exp(itXl),

which gives Bn(t). Because Φ and Φn are functions with values in the set of
complex numbers, we should take care in defining the distance measure d.
For instance, d could be defined on the real or the imaginary part only (see,
e.g., Heathcore (1972) and Feigin and Heathcore (1977)), but here we prefer
to define d in terms of the modulus of B which is denoted as |B|. Epps and
Pulley (1983) were the first to consider tests based on

Cn =
∫ +∞

−∞
|B(t)|2w(t)dt (5.24)

for testing normality. The idea of using the characteristic function, however,
dates from earlier, but most previous suggestions had the argument t of Bn(t)
fixed at a given value. More recent tests based on statistics like Cn are pro-
posed by Meintanis (2004a), Meintanis (2004b), and Matsui and Takemura
(2005) for the logistic, the Laplace, and the Cauchy distribution, respectively.
For the Cauchy, see also Gürtler and Henze (2000). Note that all four dis-
tributions mentioned here are location-scale families. Let δ and γ denote the
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Table 5.1 The characteristic functions of some distributions and appropriate weight func-
tions to use in the test statistics. All distributions are location-scale families with param-
eters δ and γ, except the symmetric stable distribution which has scale parameter γ and
shape parameter θ

Distribution CF Weight function

Cauchy φ(t) = exp(itδ − γ|t|) w(t) = exp(−a|t|)
Exponential φ(t) = iγ

t+iγ
w1(t) = exp(−a|t|)

or w2(t) = exp(−at2)

Laplace φ(t) =
exp(itδ)

1+γ2t2
w1(t) = exp(−a|t|)

or w2(t) = exp(−at2)
Logistic φ(t) = πt

sinh(πt)
w(t) = exp(−a|t|)

Normal φ(t) = exp(itδ − 1
2
t2γ2) w(t) = a√

2π
exp(− 1

2
a2t2)

Symmetric stable (γ, θ) φ(t) = exp(−γθ|t|θ) w(t) = |t| exp(−a|t|)

location and scale parameter, respectively. Table 5.1 presents the CFs of some
important distributions.

For location-scale invariant distributions it is natural to construct the test
statistic in terms of the standardised observations, say Yi = (Xi − δ̂)/γ̂ (i =
1, . . . , n), where the estimators δ̂ and σ̂ are locally asymptotically linear.
A desirable property of goodness-of-fit tests for location-scale families is to
be location-scale invariant. This can be guaranteed when the estimator δ̂ is
scale-invariant and σ̂ is location-invariant and scale-equivariant. The method
of moment estimators, among others, possess this property.

One could think of the simplest ECF test statistic of the form of Cn by
taking w(x) = 1. However, with this choice the resulting integral in (5.24) has
no analytic solution and thus the statistic Cn has no simple computational
form. The weight function is therefore to be determined so that Cn has an
analytic form, but at the same time one should take care that Cn has a
proper limiting distribution (see further down). Table 5.1 shows the weight
functions that have been proposed in the literature. They all have a tuning
parameter a > 0, and so the behavior of the test can be modified by changing
a. The effect of a on the behaviour of Cn is explained intuitively in the next
paragraph.

Suppose, for instance, that the weight function has the form w(t) =
exp(−a|t|), with a > 0. Thus, large values of a will make w(t) a fast de-
caying function so that Cn is dominated by B(t) with small t. When, on the
other hand, we consider a small value of a, then w(t) decreases slowly with
|t| so that Cn will also be influenced by large values of |t|. To get a deeper
understanding, consider the expansion

ΦG(t) =
∞∑

k=1

(it)k

k!
μ′

Gk,
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where μ′
Gk denotes the kth moment of distribution G about 0. Because Φ̂n(t)

is a consistent estimator of ΦF , we can consider Bn(t) as a consistent esti-
mator of

B(t) = ΦF (t) − ΦG(t) =
∞∑

k=1

(it)k

k!
(μ′

Fk − μ′
Gk) .

Thus, B(t) is a weighted sum of moment differences between F and G, and
the weights are determined by tk. When B(t) and w(t) are combined in the
construction of the test statistic Cn, this representation of B(t) shows that
large a will result in a test which is particularly sensitive to deviations in the
lower-order moments, whereas small a will make the test more sensitive to
deviations in the larger-order moments.

Just as for the EDF and EQF tests, the asymptotic distribution theory of
the ECF tests is based on empirical process theory. We do not give details
here. Instead we only summarise the major steps leading to the limiting null
distribution of Cn. We restrict the discussion to the case without nuisance
parameters. The extension to estimated nuisance parameters is similar to
what is presented in Section 5.1.3, which shows that the limiting distribution
depends on the method of estimation.

First, it is recognised that Zn = |Bn| takes random elements in an
appropriate Hilbert space L2. Sometimes it is not simple to express Zn

as (1/
√

n)
∑n

i=1 Wi(t), with Wi ∈ L2, in which case one should find a
Z�

n = (1/
√

n)
∑n

i=1 W �
i (t) which is a strong approximation of Zn. Next, the

central limit theorem in Hilbert spaces can be applied to obtain a weak con-
vergence of Zn to a Gaussian process Z of which the covariance function c is
determined by Wi or W �

i . The asymptotic distribution of Cn is found by using
strong approximation results to cope with the weight function, and by apply-
ing the CMT. Details can be found in the previously mentioned references,
particularly Gürtler and Henze (2000).

5.3.3 Miscellaneous Tests Based on Empirical
Functionals of F

In the very beginning of this section we argued that the idea behind EDF
tests can be used to construct other tests based on a function B(x) which
must satisfy the conditions in (5.18). The EQF and ECF tests are clear
classes of such tests, but sometimes statisticians have been more inventive
and constructed tests based on a B which is not directly expressed in terms
of the EDF, EQF, or ECF. In the next few paragraphs we give some examples.

Henze and Meintanis (2002) proposed a test for exponentiality which
is based on the ECF, but their test statistic is not of the form of Cn as
in (5.24). They only use the CF as a starting point. For the exponen-
tial distribution with rate parameter γ, Φ(t) = (iγ)/(t + iγ). As every
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complex-valued function, it may be written as Φ(t) ≡ u(t) + iv(t). Moreover,
using exp(iz) = cos(z) + i sin(z), we find u(t) = E {cos(tX)} and v(t) =
E {sin(tX)}. Henze and Meintanis (2002) proved that for all t, v(t)−γtu(t) =
0. The choice B(t) = v(t) − γtu(t) therefore makes also sense. Its empirical
counterpart is obtained by replacing u and v by their empirical versions,
un(t) = (1/n)

∑n
i=1 cos(tYi) and vn(t) = (1/n)

∑n
i=1 sin(tYi). Because the

exponential distribution is scale-invariant, the test is usually applied to the
standardised observations Yi = Xi/X̄ (i = 1, . . . , n). The test statistic
becomes

Tn = n

∫ ∞

0

(un(t) − tvn(t))2w(t)dt,

where w can take two forms (see Table 5.1).
Also Henze (1993) proposed a test for exponentiality. He started with

considering the Laplace transform, φ(t) = E {exp(−tX)} = γ/(γ + t).
Thus B(t) = φ(t) − γ/(γ + t) is an appropriate functional. Let φn(t) =
(1/n)

∑n
i=1 exp(−tYi) denote the empirical estimator of φ(t). Henze suggested

Tn,a = n

∫ ∞

0

B2
n(t)w(t)dt (5.25)

with w(t) = exp(−at). Another test for exponentiality was proposed by
Baringhaus and Henze (1991) who also started with the Laplace transform.
They used the property that φ is a solution of the differential equation

(γ + t)φ′(t) + φ(t) = 0 for all t.

Replacing φ and φ′ with their empirical estimators, and using the weight
function w(t) = exp(−at) gives their test statistic, say Dn,a. An interesting
study to the effect of a in extreme situations was done by Baringhaus et al.
(2000). In particular they showed that

lim
a→∞ a5Tn,a = 6n(Ȳ 2 − 2)2

lim
a→∞ a3Dn,a = 2n(Ȳ 2 − 2)2,

in which we recognise the squared second-order component of a smooth test
statistic based on the Laguerre polynomials; i.e., θ̂2

2 = n 1
4 (Ȳ 2 − 2)2.

Meintanis (2005) studied a similar approach based on differential equa-
tions for constructing a test for a symmetric stable distribution with shape
parameter θ and scale parameter γ. He first remarks that for a symmet-
ric stable distribution there is no w(t) to make the ECF statistic Cn have a
closed form. Therefore he finds a differential equation for which the CF Φ is a
solution.
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5.4 The Sample Space Partition Tests

5.4.1 Another Look at the Anderson–Darling Statistic

The method that is discussed in this section is basically an EDF integral
test that may be considered as an extension of the Anderson–Darling test,
but it may also be looked at as a method that solves one of the problems
related to the application of the Pearson χ2 test to test for goodness-of-fit for
continuous distributions. In Section 1.1 we mentioned that one of the oldest
methods for testing goodness-of-fit consists in grouping or categorising the
data into c groups, even when the data have a continuous distribution. Once
the data are categorised, Pearson’s χ2 test for the multinomial distribution
can be applied. Despite the practical simplicity of this method, there are some
difficult issues that need attention. We mention two: (1) how many groups,
and (2) where to place the cell boundaries. When testing a composite null
hypothesis there is the additional problem of how to estimate the nuisance
parameters, but to keep the exposition simple we ignore this problem here.

The Anderson–Darling test statistic for testing uniformity, which is
given by

Tn =
∫ 1

0

IB2
n(x)

x(1 − x)
dx = n

∫ 1

0

(
F̂n(x) − x

)2

x(1 − x)
dx,

may also be written as

Tn = n

∫ 1

0

⎡⎢⎣
(
F̂n(x) − x

)2

x
+

(
(1 − F̂n(x)) − (1 − x)

)2

1 − x

⎤⎥⎦ dx

=
∫ 1

0

X2(x)dx,

where X2(x) is Pearson’s χ2 statistic applied to the sample grouped into two
groups with cell boundary placed at x. The AD statistic is thus essentially
an average Pearson χ2 statistic, and by averaging the problem of the choice
of the cell boundary is solved. The sample space partition test of Thas and
Ottoy (2002, 2003) is an extension of the Anderson–Darling test to grouping
into more than two groups.

5.4.2 The Sample Space Partition Test

The categorisation is equivalent to partitioning the sample space [0, 1] into c
intervals; i.e.,
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[0, 1] = [0, d1] ∪ [d1, d2] ∪ · · · ∪ [dc−1, 1],

where 0 < d1 < d2 < · · · < dc−1 < 1. Let Dc = {d1, . . . , dc−1}. By count-
ing the number of observations in each interval, a c cell array is obtained.
The null hypothesis of uniformity now implies a null hypothesis in terms
of a multinomial distribution for which Pearson’s X2 test is appropriate. In
particular, for a given partition implied by Dc,

X2
c,n(Dc) = X2

c,n(d1, . . . , dc−1)

= n

c∑
i=1

(
Fn(d(i)) − Fn(d(i−1)) − (F0(d(i)) − F0(d(i−1)))

)2
F0(d(i)) − F0(d(i−1))

,

where d(0) ≡ 0 and d(c) ≡ 1, and where d(1), . . . , d(c−1) are the order statistics
of d1, . . . , dc−1.

An important issue is the choice of Dc and the number of cells (c) so that
the test has good power. There is a vast literature on how partitions can be
constructed. Some suggested that the cells should be equiprobable under the
null hypothesis (e.g., Mann and Wald (1942)), whereas others argue that for
the detection of, for instance, heavy-tailed alternatives unequal cells result in
a test with larger power (Kallenberg et al. (1985)). Also on the choice of c
many different guidelines have been proposed (see, e.g., Moore (1986) for an
overview).

The general form of the sample space partition (SSP) test statistic is given
by

Tc,n =
∫ 1

0

. . .

∫ 1

0

X2
c,n(d1, . . . , dc−1)dd1 . . . ddc−1.

For a given, but arbitrary SSP size c, the asymptotic null distribution of Tc,n

can be found using empirical process theory. Just as the integral EDF tests,
the SSP test is consistent against any alternative (omnibus consistent), for
whatever finite c > 1. The test based on Tc,n is known as the SSPc test.

For c = 2 (Anderson–Darling), c = 3, and c = 4, the computational
formulae are easily calculated. Let X(i) denote the ith order statistic (i =
1, . . . , n) of the sample observations X1, . . . , Xn.

• c = 2:

T2,n = An = −n − 1
n

n∑
i=1

(2i − 1)
(
log(X(i)) + log(1 − X(n+1−i))

)
• c = 3:

when c = 3, T3,n reduces to

T3,n = 2An − 4Wn + Kn,

where An and Wn represent the Anderson–Darling and the Cramér–von
Mises statistics, respectively, and
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Kn =
∫ 1

0

∫ 1

0

(
B2

n(x) − B2
n(y)

)2
|x − y| dxdy

= − 2
n

n∑
i=1

n∑
j=1

(
X(i∨j) log(X(i∨j)) + (1 − X(i∧j)) log(1 − X(i∧j))

−(X(j) − X(i)) log(X(j) − X(i)) + X(i)(1 − X(i)) + X(j)(1 − X(j))

−1
6

)
.

• c = 4:

T4,n = 3An − 10.5Wn + 3Kn + 1.5n

(
X̄ − 1

2

)2

.

This methodology avoids the choice of the break points di (1 < i < c),
but the SSP size c has still to be determined by the user. As a solution to
this problem, the authors proposed a data-driven version of the SSPc test by
estimating a proper value for c from the sample. This sample-based SSP size
is denoted by Cn. In particular, Cn is determined by means of a selection
rule which has the general form

Cn = ArgMaxc∈Γ {Tc,n − 2(c − 1) log an},

where Γ is a nonempty finite set containing all permissible SSP sizes (often
Γ = {2, 3, 4} or Γ = {2, 3, 4, 5} seem to be sufficiently rich), and an is a
penalty depending on the sample size n. Although the form of this selection
rule resembles the Bayesian Information Criterion (BIC) (an = n1/2) or the
AIC (Akaike’s Information Criterion of Akaike (1973, 1974); an = e), it has no
sound theoretical justification, for Tc,n is not a log-likelihood, as it is in AIC
and BIC, nor a score statistic as it is in the modified BIC of Kallenberg and
Ledwina (1997). Also a double logarithmic penalty term (LL), an = log log n,
has been considered. As with the data-driven smooth tests, it has been shown
that the selected SSP size Cn converges in probability to its smallest possible
value, which is min Γ . Furthermore, for every choice of Γ the data-driven
SSP test is omnibus consistent. Despite the analogy between the data-driven
SSP test and the data-driven smooth test there is an important conceptual
difference. For the latter it is the data-driven mechanism that makes the data-
driven smooth test omnibus consistent, at least when the maximal order is
allowed to grow with the sample size (see Section 4.3.3). The extension from
the fixed SSP size SPPc test to its data-driven version, on the other hand,
is not necessary to make the SSPc test omnibus consistent. It will only give
the test more power for alternatives that are not anticipated before sighting
the data.

In a simulation study, powers of the SSP tests, their data-driven versions,
and some traditional goodness-of-fit tests have been compared. From this
study it was concluded that the choice of the SSP size is very important
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and that under many alternatives a substantial power gain is observed when
c > 2, making the SSP tests often more powerful than the competitor tests.
The data-driven SSP tests did select the “right” SSP size very often, so that
that the powers of the data-driven SSP tests were among the highest under
all alternatives studied.

A test defined as an average of X2 statistics over many partitions is called
a SSP test by the authors, but according to the terminology used by Ein-
mahl and McKeague (2003), the test is based on a localised Pearson statis-
tic, X2

c,n(d1, . . . , dc−1), localised at (d1, . . . , dc−1). Einmahl and McKeague
(2003), and also Zhang (2002), considered tests that have the general form

Tn =
∫ 1

0

Pn(x)dw(x),

where w(x) is some weight function, and Pn(x) is the localised statistic
(localised at x). Zhang (2002) took Pn(x) to be the Cressie-Read family of di-
vergence statistics (Cressie and Read (1984)), which includes the Pearson X2

statistic as a special case. This was also proposed independently by Thas and
Ottoy (2003). Zhang also considered different choices of w(x). The AD and
CvM statistics are special cases. Einmahl and McKeague (2003) considered
the (empirical) log-likelihood ratio statistic for Pn(x). Thus, the methods of
Einmahl and McKeague (2003) and Zhang (2002) are also extensions of the
AD and CvM tests, but they are restricted to statistics Pn(x) localised at
one point x (partitions of size c = 2).

5.5 Some Further Bibliographic Notes

A very good overview of the history of the use of empirical process theory in
the context of goodness-of-fit tests is given by del Bario et al. (2000). Durbin
(1973) studied the weak convergence of the estimated empirical process in the
general case of locally asymptotically linear estimators. Many years before,
Kac et al. (1955) already studied the particular case of the normal distribu-
tion.

The general form (2.2) of a goodness-of-fit test statistic is discussed in
more detail in Romano (1988). A good and deep introduction to empirical
processes is Shorack and Wellner (1986).

In their original paper, Anderson and Darling (1952) needed other, more
stringent, conditions on the weight function w(.) to get the asymptotic null
distribution of the AD test. The conditions that we stated here are weaker
because nowadays we can rely on weak convergence results in Hilbert spaces.
This theory was not yet available in the 1950s.

In the literature there is no consistency in the names used for the AD and
CvM tests. Often tests of the type given in (5.4) are referred to as tests of
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the type of Cramér–von Mises, whereas it was only years later that Anderson
and Darling (1952) proposed this more general test.

The exact null distribution of the CvM statistic has been studied by many
authors. We mention only three who made important contributions: Knot
(1974) and Csörgö and Faraway (1996). The latter contain many corrections
to errors that were published earlier. Because it turns out to be a very hard
job to get the exact distribution, many approximations have been proposed.
Pearson and Stephens (1962) suggest to compute approximate percentage
points by fitting a Johnson’s SB curve by matching the first four exact mo-
ments. A similar solution was given by Tiku (1965) who proposed to find
constants a, b, and p so that the distribution of the random variable a + bX,
where X has a χ2

p distribution, matches the first three moments of the CvM
statistic.

Readers interested in more properties of the Wasserstein distance are re-
ferred to Vallender (1973) and Bickel and Freedman (1981).

5.6 Some Practical Guidelines for EDF Tests

• Many simulation studies have indicated that the Anderson–Darling and
Cramér–von Mises tests have overall very good power for detecting many
different alternatives. From a power point of view, they are preferred over
many other tests.

• The EDF integral statistics have simple computational forms. In the ab-
sence of nuisance parameters the critical points of the asymptotic null
distribution may be used even for very small sample sizes (say n ≥ 10).
When nuisance parameters have to be estimated, we recommend using the
bootstrap. When testing for composite normality, the null distributions of
the AD and CvM tests are tabulated.

• When the AD test is used for testing the simple null hypothesis of uni-
formity, there is a very clear link with the smooth test based on Legendre
polynomials, and thus all moment interpretations carry over to the AD
test. In this particular case, we suggest to complement the analysis based
on AD with an investigation of the individual components.

• When the AD or CvM tests are used to test for any distribution other
than the uniform, then the data first have to be transformed by the PIT.
Even if the test statistic decomposes in components, they are not easily
interpretable because of the transformation.

• When testing for (composite) normality, we recommend using the EQF test
based on the Wasserstein distance. This test statistic has a decomposition
into smooth components based on Hermite polynomials, even when the
nuisance parameters are estimated. The individual components may be
looked at to suggest moment differences.
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• When one is mainly interested in detecting “local” deviations from the
hypothesised distribution (“local” means here that the true and the
hypothesised densities are particularly different in some (small) interval),
then the Watson test and the SSP test are most appropriate.

• The Kolmogorov–Smirnov test should only be used when stochastic or-
derings are of interest. The PP plot is a good plot to help understand the
conclusion of the KS test.

• The overall good power properties of the EDF and EQF integral tests, and
the nice feature of the interpretability of the components of smooth tests
suggest that a statistic of the form

m∑
j=1

1
j
Û2

j or
m∑

j=1

1
j

(
Û2

j − 1
)

,

where m < n may be large, and Ûj is the smooth component statistic
based on the orthonormal polynomials corresponding to the hypothesised
distribution. The p-values should be computed by the bootstrap.
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Chapter 6

Introduction

In this second part of the book we discuss statistical methods for the
two-sample and the K-sample problems. Whereas in the one-sample prob-
lem the objective is to compare the distribution of the sample observations
with a hypothesised distribution, we are now concerned with comparing the
distributions of two or more populations from which we have observations at
our disposal. As both classes of problems are about comparing distributions,
many of the methods developed for the former can be easily adapted to
the latter. We indeed show that many names of tests come back (e.g., the
Kolmogorov–Smirnov and the Anderson–Darling tests). It also further im-
plies that many of the building blocks of Chapter 2 are useful again.

This part starts with an introductory chapter, followed in Chapter 7 by
some extra building blocks that were not needed in Part I. In Chapter 8
we briefly discuss some graphical tools that may be helpful in comparing
distributions. Chapters 10 and 11 extend the smooth and EDF tests of Part
I to tests for the two- and the K-sample problems. In the last chapter we
discuss two final methods, and we conclude with a brief discussion.

We start in Section 6.1 with defining the problem. It becomes clear that the
term “two-sample problem” has many meanings. Understanding the problem
in detail will help us later on to interpret so that an informative statistical
analysis can be performed. The datasets that are used to demonstrate the
statistical techniques are introduced in Section 6.2. The chapter is concluded
with a discussion of some important tests that are not true two-sample or
K-sample tests, but that are closely related. Some of these test statistics
reappear later as components of smooth and EDF statistics.

We continue in the line of the main objective of the book. That is, we focus
on classes of tests, we introduce the reader to the basic ideas and theory, and
we illustrate how the methods may be used for providing informative statis-
tical analysis. As a consequence not all tests are described. We particularly
focus on continuous distributions.

O. Thas, Comparing Distributions, 163
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6.1 The Problem Defined

6.1.1 The Null Hypothesis of the General Two-Sample
Problem

In defining the two-sample and the K-sample problems it is important to be
very precise about both the null and the alternative hypothesis. We start with
the two-sample problem. Suppose we have two independent samples from two
populations. Let X11, . . . X1n1 and X21, . . . X2n2 denote the n1 and n2 sample
observations with distribution functions F1 and F2, respectively. Without loss
of generality, we consider F1 and F2 to have the same support, say S. We
further assume that all observations are mutually independent. The notation
X1 and X2 is used to denote random variables with distribution function F1

and F2, respectively. The notation μs and σ2
s (s = 1, 2) is used to denote

the corresponding means and variances. We define the two-sample problem
as the problem concerned with testing the null hypothesis

H0 : F1(x) = F2(x) for all x ∈ S. (6.1)

Sometimes we write H0 : F1 = F2 for short. The most general alternative
hypothesis is H1 : not H0. Tests that are consistent for testing H0 versus
H1 are referred to as omnibus consistent tests. We refer to it as the general
two-sample problem. Sometimes less general alternative hypotheses are con-
sidered, leading to directional tests. Just as in the one-sample problem, most
smooth tests (Chapter 10) are examples of directional tests. It may be infor-
mative to give one well-known example at this point: the two-sample t-test
may be considered as a directional two-sample test. It is used to test the null
hypothesis (6.1) against the directional alternative H1 : μ1 �= μ2.

We like to stress that the null hypothesis (6.1) is very nonparametric in
the sense that the distributions F1 and F2 are not specified. Often some as-
sumptions on F1 and F2 are required for the test statistic to have a proper
distribution (e.g., finite first four moments), but we try to avoid these techni-
calities. Although (6.1) looks very similar to the one-sample null hypothesis,
its nonparametric character will make a difference in finding the null distri-
bution of a test statistic. In the one-sample problem, the distribution of the
observations is very well defined under the null hypothesis, because this is
exactly what is hypothesised in H0. Even with a composite null hypothesis,
the distribution is specified up to a very limited number of parameters. This
strong distributional restriction implied by H0 makes it possible, for exam-
ple, to find the exact null distribution of test statistics under a simple null
hypothesis, and to use the parametric bootstrap for p-value calculation for
composite null hypotheses. For most tests, however, the distribution theory
relies on the central limit theorem or the weak convergence of empirical pro-
cesses. These asymptotic theories will again play a central role in finding the
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asymptotic null distribution of the two-sample test statistics. A parametric
bootstrap procedure will not apply anymore as (6.1) does not specify any
distribution. Despite the very nonparametric nature of (6.1) we are now even
often in the position to obtain the exact null distribution of a test statistic,
whatever F = F1 = F2 may be and whatever the sample size. The reason
is that the null hypothesis (6.1) implies an invariance of the null distribu-
tion of the test statistic under permutations of the observations over the two
samples. This allows for exact p-value calculations, however small the sample
sizes are. More details of permutation tests are given in Section 7.1.

Many of the test statistics for the two-sample problem are very closely re-
lated to those discussed in Part I. This is very easy to understand. Consider
the simple null hypothesis F (x) = G(x), where F and G represent the true
and the hypothesised distributions, respectively. Whereas the latter is com-
pletely specified, the former is completely unknown, but can be estimated
consistently by the EDF F̂n. In Section 2.1.2 we gave a very generic form
of test statistics in (2.2): Tn = c(n)d(F̂n, G), where c(n) is a scaling factor,
and d(., .) is a distance or divergence functional. If we apply the same idea
here, we now replace the two unknown distribution functions F1 and F2 by
their respective EDFs, say F̂1n and F̂2n. As min(n1, n2) → ∞, both EDFs
converge to the true distribution functions (see Section 2.1.1 for more details
on the modes of convergence). A general form of a two-sample test statistic
may then be represented by

Tn = c(n)d(F̂1n, F̂2n),

where c(.) and d(., .) are as before, and thus resulting in test statistics of
the same form as for the one-sample problem. Later we come back to the
choice of the function d(., .), and how this relates to the specification of the
alternative hypothesis.

6.1.2 The Null Hypothesis of the General K-Sample
Problem

In the K-sample problem we are concerned with testing whether K (K ≥ 2)
independent samples come from the same population. It is thus a generalisa-
tion of the two-sample problem to K samples. Denoting the sth distribution
function by Fs (s = 1, . . . , K), and assuming that all Fs have the same sup-
port, we may write the general K-sample null hypothesis as

H0 : F1(x) = F2(x) = . . . = FK(x) for all x ∈ S.

Just as with the two-sample problem, we often consider the alternative hy-
pothesis as the negation of H0. Tests that are consistent against this general
alternative are omnibus tests, otherwise they are directional.
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One may ask why we treat the two- and the K-sample problem seperately.
We could just as well have introduced only the K-sample problem, leav-
ing K = 2 as a special case. There are several reasons for doing this. First
there is the history argument. Many of the tests were introduced for the two-
sample problem; extensions appeared only later in the statistical literature.
Second, there are some tests that are only available for the two-sample prob-
lem. Third, although many K-sample test statistics reduce to the two-sample
statistics, they apparently have a different form. The last argument is basi-
cally a didactic argument: we believe that many methods and concepts are
just easier introduced in the two-sample setting.

6.2 Example Datasets

6.2.1 Gene Expression in Colorectal Cancer Patients

In recent years there is an increasing interest in data analysis methods for
high-throughput data. A typical example of these huge datasets arises from
microarrays or DNA chips. Microarray experiments are used to measure the
expression levels of often more than 20,000 genes simultaneously. For each
gene, they essentially measure the concentration of gene-specific mRNA,
which is a transcription product of the gene that triggers the productions
of a specific protein. For more details on the statistical analyses of microar-
ray experiments, see, e.g., Speed (2003), Gentleman et al. (2005), or Allison
et al. (2006). These experiments are often performed for comparison purposes.
For example, gene expression levels in a control group of healthy people and
a group of cancer patients are measured with the aim of finding genes that
are differentially expressed in the cancer groups. These genes may play an
important role in the onset or the development of the cancer. The identi-
fication of such genes may be helpful in understanding the biology of the
disease, or it may be used as a biomarker in a diagnostic assay to detect the
cancer in an early stage. Because microarray experiments are quite costly,
they are typically performed on small groups of people. Having 20 subjects
in each of the two groups is considered to be a moderately large experiment.
The datasets are thus massive by the dimensionality, but not in terms of the
number of independent subjects in the sample. However, here we select only
a few genes for illustrating the two-sample tests, thus ignoring the problem
of multiplicity of tests completely.

Most textbooks on the statistical analysis of microarray experiments advise
using the traditional parametric t-test, or the nonparametric Wilcoxon rank
sum test. Some specifically designed tests have been suggested (e.g., the SAM
method of Tuscher et al. (2001)), but most of them are simple modifications
of the t-test.
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The data that we present here, was collected at the VU–University Medical
Center (VUmc), Amsterdam, The Netherlands. The objective of the study
was to find out which genes are involved in the progression from adenoma
to carcinoma in colorectal cancer. The microarray experiment was performed
on RNA isolated from 68 snap-frozen colorectal tumour samples: 37 nonpro-
gressed adenomas and 31 carcinomas. The microarray measured expression
levels of 28,830 unique genes. More details on the study and its conclusions
can be found in Carvalho et al. (2008). The paper also gives details on how
the expression data were preprocessed (background correction, normalisa-
tion, and summarisation). In the next paragraph we give some biological
background.

Not all adenomas progress to carcinomas; this happens in only a small
subset of tumours. Initiation of genomic instability is a crucial step in this
progression and occurs in two ways in colorectal cancer. First DNA mis-
match repair deficiency leading to microsatellite instability has been most
extensively studied, but it explains only about 15% of adenoma to carcinoma
progression. In the other 85% of the cases where colorectal adenomas progress
to carcinomas, genomic instability occurs at the chromosomal level giving rise
to aneuploidy. Although for a long time these chromosomal aberrations were
regarded as random noise, secondary to cancer development, it has now been
well established that these DNA copy number changes occur in specific pat-
terns and are associated with different clinical behaviour. Nevertheless, de-
spite extensive efforts, neither the cause of chromosomal instability in human
cancer progression nor its biological consequences have been fully established.

For illustrative purposes we have selected four genes. They have sequence
references NM 152299, AK021616, AK0550915, and NM 012469, but we sim-
ply refer to them as genes 1, 2, 3, and 4, respectively. Figure 6.1 shows the
kernel density estimates of the expression levels.

6.2.2 Travel Times

A taxi company often brings clients from the central railway station to the
airport. Because many of these passangers are in a hurry to catch their planes,
it is important to guarantee a short travel time. Although there is a highway
connection to the airport, there are frequently traffic jams. The owner of the
taxi company sets up an experiment to compare five routes from the railway
station to the airport:

1. Route 1: this is the route as suggested by the GPS installed in the car.
2. Route 2: this is the preferred route by a local taxi driver who has lived for

many years in the area.
3. Route 3: this route has a preference for small roads through a residential

area.
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Fig. 6.1 The kernel density estimates of the four genes. Each plot shows the density
estimates of the two patient groups: the full line and the dashed line represent the non-
progressed adenomas and the carcinomas, respectively

4. Route 4: this route has a preference for big roads (i.e. two lanes for each
direction), but not the highway.

5. Route 5: the taxi driver first listens to the latest traffic information on the
radio, and he decides to take the highway when no problems are reported;
otherwise Route 1 is selected.

As the taxi drivers usually take the routes as suggested by their GPS, route
1 is considered as the reference route. In a time period of one month, 250 taxi
rides from the railway station to the airport were randomly assigned to these
5 routes, resulting in a balanced design. The travel times were recorded in
seconds and coverted to minutes. Boxplots of the data are shown in Figure
6.2. The dataset is referred to as the traffic data.
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Fig. 6.2 Boxplots of the travel times from the central railway station to the airport, with
the five different routes



Chapter 7

Preliminaries (Building Blocks)

7.1 Permutation Tests

7.1.1 Introduction by Example

In Section 6.1.1 we argued that the p-values of two-sample tests cannot be
based anymore on the parametric bootstrap method, because this technique
presumes that the null hypothesis specifies some parameterised parametric
distribution. On the other hand, most two-sample tests can be based on an
asymptotic null distribution that can be derived from a central limit the-
orem, or from the application of the continuous mapping theorem and the
weak convergence of the empirical process. Although the general two-sample
null hypothesis is less parametric than the one-sample null hypothesis, we
show here that this null hypothesis even allows us to obtain an exact null
distribution. This means that the p-values computed from this null distribu-
tion are correct, even for very small sample sizes. Exact null distributions are
often enumerated using permutations of observations. In this case we use the
term permutation null distribution and tests based on it are referred to as
permutation tests.

Tests based on this permutation null distribution are generally known as
permutation tests. For a more detailed account on the principle of permuta-
tion tests we refer to the books of Good (2005) and Mielke and Berry (2001).

We first explain the concept of permutation tests in an example. After-
wards some theory is given.

Example 7.1 (Gene expression). Consider the gene expression data of gene
1 which was introduced in Section 6.2.1. To demonstrate the working of a
permutation test we use here only the first ten observations from each of
the two cancer groups. The data are presented in Table 7.1. The boxplots
are shown in the left panel of Figure 7.1. At this point we do not want to
go into the details on how the hypotheses and the test statistic are related.

O. Thas, Comparing Distributions, 171
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Table 7.1 The expression levels of gene 1 of the first ten patients in each disease group,
and some permuted group labels. On the last line the test statistics are shown

Patient ID Expression Original 1st permuted 2nd permuted 3rd permuted
level group labels group labels group labels group labels

1 0.285 1 2 2 1
2 1.245 1 1 1 1
3 1.525 1 1 1 1
4 0.319 1 1 1 2
5 -0.085 1 1 1 2
6 0.470 1 1 1 1
7 0.649 1 1 1 2
8 0.059 1 1 1 1
9 0.219 1 1 1 2

10 0.226 1 1 1 2

38 0.865 2 1 2 1
39 0.017 2 2 1 2
40 -0.782 2 2 2 2
41 0.217 2 2 2 2
42 -0.724 2 2 2 2
43 1.154 2 2 2 1
44 0.264 2 2 2 2
45 0.590 2 2 2 1
46 1.342 2 2 2 1
47 -0.691 2 2 2 1

t 0.901 1.326 0.713 2.512
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Fig. 7.1 The boxplots (left) of the expression levels of the reduced gene 1 data, and the
histogram of the permutation null distribution of the test statistic (right). The vertical
reference line corresponds to the observed test statistic calculated on the original dataset
(t = 0.901)
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This is the topic of Section 9.1. Suppose the null hypothesis is the general
two-sample null hypothesis,

H0 : F1(x) = F2(x) for all x ∈ S,

which has to be tested versus H1 : not H0, and suppose this is tested by
means of the two independent samples t-test statistic,

T =

∣∣∣∣∣∣ X̄1 − X̄2√
S2

1
n1

+ S2
2

n2

∣∣∣∣∣∣ , (7.1)

where X̄1 and X̄2 are the sample means in the two groups, and, similarly,
S2

1 and S2
2 are the sample variances. For the reduced gene 1 data we find

t = 0.901. The test statistic (7.1) is defined as an absolute value, because H1 :
not H0 is suggested with both X̄1 > X̄2 and X̄1 < X̄2. The natural question

in hypothesis testing is whether t = 0.901 is “exceptional” as compared to
what is expected under the null hypothesis. In the previous sentence, the word
“exceptional” only has a meaning when both the null and the alternative
hypotheses are formulated. Because we expect here large values of T under
the alternative we should thus investigate whether t = 0.901 is exceptionally
large. The p-value is used to measure this. Here

p = Pr0 {T ≥ t} , (7.2)

where the probability is computed under the assumption that H0 holds. In
a parametrical statistical setting, in which the distributional assumption of
normality in the two populations is made, the null distribution of T is used.
In particular, this null distribution is the sampling distribution of the test
statistic T under the assumption that H0 is true, and this sampling distribu-
tion gets in a frequentist statistical context an interpretation under repeated
sampling from the distributions F1 and F2, with F1 = F2, and assuming the
distributional assumption holds true. A permutation test differs from this
construction in the way the null distribution is defined. In the next para-
graph we illustrate the arguments that eventually result in a permutation
null distribution which forms the basis for p-value calculation in permutation
tests.

Suppose the null hypothesis is true; i.e., the distributions of the gene
expression levels are the same for the nonprogressed adenomas and the car-
cinomas. If this is true, the group labels of the 20 observations in Table
7.1 are not informative, and the grouping used to compute the test statistic
(7.1) is just one of the many grouping schemes that all make just as much
(non)sense as the original grouping scheme; i.e., any grouping scheme would
have resulted in the same responses. Consider the grouping labels in the col-
umn named “1st permuted group labels” in Table 7.1. These group labels
differ from the original labels only in the first observation of group 1 and the
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first observation of group 2; i.e., they assign patient 1 to group 2, and patient
38 to group 1. If H0 were true, the expression levels of 0.285 and 0.865 of pa-
tients 1 and 38 do not depend on their disease status, and thus it would have
been just as likely to have observed these expression levels if patient 1 had a
carcinoma, and patient 38 a nonprogressed adenoma. Consequently, the test
statistic (7.1) calculated on the permuted dataset, which equals t� = 1.326, is
just as likely as the test statistic calculated on the original data, t = 0.901,
at least when H0 holds. This reasoning holds for all permutations of the
group labels over the two groups. Table 7.1 shows two more examples of
permuted group labels, and the resulting values of the test statistic. There
are m =

(
n
n1

)
=
(

n
n2

)
such permutations. In the present example this gives(

20
10

)
= 184,756 permutations. We denote the value of the test statistic com-

puted on the ith permutation as t(i) (i = 1, . . . , m). All values of the test
statistic computed for these permuted datasets are all equally likely under
H0. In this sense, each of the t(i) in the set {t(1), . . . , t(m)} gets the same
probability mass (1/m) assigned, resulting in the exact permutation null dis-
tribution of T . Note that this construction is conditional on the observed
expression levels. The theory presented in Section 7.1.2 shows that the per-
mutation test will also have an unconditional interpretation. A histogram of
the permutation null distribution of this example is shown in the right-hand
panel of Figure 7.1. The vertical line represents the observed test statistic on
the original data, i.e., using the original grouping: t = 0.901. The p-value, as
defined in (7.2), can now be computed based on the exact permutation null
distribution as

p = Pr0 {T ≥ t} =
number of t(i) ≥ t

total number of t(i)
=

1
m

number of t(i) ≥ t.

In this example, p = 0.376. We may thus conclude that t = 0.901 is not
sufficiently exceptional under the null hypothesis that the two distributions
are the same.

Next we provide the R code for this exact test. The following R code
requires the coin package, which contains many routines for exact tests. See
Hothorn et al. (2006) for a good introduction to the efficient algorithmic
approach taken in the coint package. The oneway test function is the exact
analogue of parametric one-way ANOVA.

> gene1.20<-gene1[c(1:10,38:47),]
> oneway_test(expression~group,data=gene1.20,
+ distribution="exact")

Exact 2-Sample Permutation Test

data: expression by group (1, 2)
Z = 0.9053, p-value = 0.3764
alternative hypothesis: true mu is not equal to 0
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7.1.2 Some Permutation and Randomisation Test
Theory

7.1.2.1 Definitions

Although we usually use the term “permutation test”, it would be more
correct to refer to them as “randomisation tests”. The term “permutation”
refers to the property that under the null hypothesis the joint distribution of
the sample observations does not change when the subscripts of the obser-
vations are permuted. This property is known as the exchangeability of the
observations. A more precise definition is given next.

Definition 7.1 (exchangebilaty). Let f = f1...n denote the joint distri-
bution of Z1, . . . , Zn, and let π denote any permutation of the subscripts
{1, . . . , n}. The random variables Z1, . . . , Zn are said to be exchangeable if

Prf

{
(Zπ(1), . . . , Zπ(n)) ∈ B

}
= Prf {(Z1, . . . , Zn) ∈ B} ,

for every Borell set B of the sample space of f .

For the two-sample problem the observations (Z1, . . . , Zn) that are used
in the definition, are the observations of the pooled sample. In particular we
adopt the convention Z1 = X11, Z2 = X12, . . ., Zn1 = X1n1 , Zn1+1 = X21,
. . ., Zn = X2n2 ; i.e., the first n1 Z observations are the observations from the
first sample, and the last n2 Z observations are those from the second sample.
As demonstrated in Example 7.1, the general two-sample null hypothesis
implies the exchangeability of the pooled sample observations. More generally,
for some other statistical applications the null hypothesis implies that the
joint distribution of the n Z observations is invariant under a particular
finite group of transformations of the sample space onto itself. Tests that are
based on this invariance property are called “randomisation tests”. Despite
this minor distinction, we further use the term “permutation test”.

Let S again denote the sample space of Z. Then, the sample space of the
n sample observations zt = (z1, . . . , zn) equals Sn. Let Tn(Z) denote the test
statistic. Let G denote a finite group of transformations of Sn onto itself; i.e.,
for every g ∈ G and every zt = (z1, . . . , zn) ∈ Sn, gz = g(z) ∈ Sn. With this
notation we define the randomisation hypothesis.

Definition 7.2 (Randomisation hypothesis). Under the null hypothesis
the distribution of Z is invariant under the transformations in G; i.e., for
every g ∈ G, Z and gZ have the same distribution.

For the general two-sample null hypothesis, the randomisation hypothesis
applies to the group of transformations that exchanges one or more of the first
n1 elements of Z with elements of the last n2 elements of Z. The null hypoth-
esis indeed says that all Zi in the pooled sample have the same distribution,
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and thus the order of the elements in Z does not affect the joint distribution
of the sample observations. The group G of all these transformations has
m =

(
n1
n

)
=
(
n2
n

)
elements.

Before the construction of the permutation test can be described, we need
a general framework in which a statistical test can be described. We start with
defining a test function φ which maps the sample space (Sn) of the sample
onto [0, 1]. For a given sample, it gives the probability with which the null
hypothesis should be rejected at the α level of significance. Most test func-
tions work via the test statistic, which is usually real-valued. In particular,
φ(Z) first maps Sn onto IR, and then further onto [0, 1]. For most samples,
the test function results in 0 or 1, leaving one no doubt about rejecting or
accepting the null hypothesis. However, conditional on the observed sample,
if the test function returns γ ∈ (0, 1), then one should reject the null hypoth-
esis with probability γ. Fortunately, this situation does not happen often.
The only reason for allowing for this is that by choosing an appropriate γ
the size of the test can be made exactly equal to the nominal size α, which is
generally not possible when using the discrete permutation null distribution.
The permutation test described in the next section clarifies this concept.

7.1.2.2 Construction of the Permutation Test

For a given sample, denote by

T (1)
n (z) ≤ T (2)

n (z) ≤ · · · ≤ T (m)
n (z) (7.3)

the m ordered values of Tn(gz) as g varies in G (and #G = m). For a fixed
nominal level α ∈ (0, 1), define

k = m − �mα�,

where �mα� denotes the largest integer less than or equal to mα. Fur-
thermore, let m+(z) and m0(z) denote the number of values T

(j)
n (z) (j =

1, . . . , m) greater than T
(k)
n (z) and equal to T

(k)
n (z), respectively. Let

a(z) =
mα − m+(z)

m0(z)
.

Define the test function φ as

φ(z) =

⎧⎪⎨⎪⎩
0 if Tn(z) > T

(k)
n (z)

a(z) if Tn(z) = T
(k)
n (z)

1 if Tn(z) < T
(k)
n (z)

. (7.4)

Note that this test function is indeed a formalisation of the permutation test
that was introduced in a more intuitive fashion in Section 7.1.1, except that
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now the case Tn(z) = T
(k)
n (z) is explicitly included and results in a random

decision of rejecting the null hypothesis with probability a(z). The permu-
tation null distribution enters via the ordering (7.3) of the values of the test
statistic over all transformations g ∈ G. Note that this distribution is con-
ditional on the observed sample z, implying that the resulting permutation
test is a conditional test.

With this construction of the test function, we find, for every z ∈ Sn,∑
g∈G

φ(gz) = m+(z) + a(x)m0(z) = mα.

This equality immediately gives the validity of permutation tests in the
sense that they actually attain the nominal size α. Although it may be seen
easily that this property holds conditionally on the observed sample z, the
next theorem presents the unconditional property.

Theorem 7.1. Let Z denote the pooled sample of size n, and let φ denote the
test function (7.4) defined in terms of the test statistic Tn(Z). Suppose the
null hypothesis implies the randomisation hypothesis so that the distribution
of Z is invariant under the finite group of transformations G under this null
hypothesis. Then,

Pr0 {reject H0} = E0 {φ(Z)} = α.

Proof. Because mα is constant for fixed sample sizes n1 and n2, we have
mα = E0 {mα}. Hence,

mα = E0 {mα} = E0

⎧⎨⎩∑
g∈G

φ(gZ)

⎫⎬⎭
=
∑
g∈G

E0 {φ(gZ)}

=
∑
g∈G

E0 {φ(Z)}

= mE0 {φ(Z)} ,

where the last step is a consequence of the randomisation hypothesis. It
follows now that mα = mE0 {φ(Z)}, or α = E0 {φ(Z)}. ��

7.1.2.3 Monte Carlo Approximation to the Exact Permutation
Null Distribution

In the previous section we have seen that the number of permutations in-
creases rapidly with the number of observations. To illustrate this we give a
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Table 7.2 The number of permutations (m) required for the exact permutation null
distribution of two-sample tests with sample sizes n1 = n2

n1 = n1 m =
(n1

n

)
5 252

10 184756
15 155117520
20 137846528820
25 1.264106 × 1014

few examples of balanced two-sample designs in Table 7.2. The computation
time thus also increases rapidly with the sample size. Fortunately the ex-
act permutation null distribution can be very well approximated by means
of Monte Carlo simulations. Instead of enumerating all m permutations, a
Monte Carlo approximation consists in sampling at random a large number
of permutations from G, with each permutation having the same chance of be-
ing selected. Say we perform B such permutations. This procedure is repeated
B times, and for each repetition the test statistic is computed. Similarly as for
the construction of the exact null distribution, let T

(1)
n ≤ T

(2)
n ≤ · · · ≤ T

(B)
n

denote the ordered test statistics. From here on, the computations are as
before, but now with m replaced by B, which is usually much smaller
than m.

The Monte Carlo approach is to be considered as an approximation to
the exact permutation testing procedure. For p-value calculations based on
B random permutations, the asymptotic normal approximation to the bino-
mial distribution may be applied for the calculation of standard deviations
on the estimated p-value. This gives a standard deviation of

√
p(1 − p)/B.

As the p-value is unknown prior to the experiment, the size (B) of the Monte
Carlo procedure can be designed by considering the most pessimistic sit-
uation of p = 0.5. For B = 1000, B = 10,000 and B = 100,000, this
gives 0.0158, 0.005, and 0.0016, respectively. Thus with 100,000 simulation
runs, the most pessimistic 95% confidence interval on the p-value has width
0.0031 = 0.31%.

Example 7.2 (Gene expression). In Example 7.1 we have seen the results of
the exact two-sample t-test. Here we provide the R code of a Monte Carlo
approximation. First we illustrate the concept by showing an R program that
implements the algorithm explicitly.

> N<-10000
> t.obs<-t.test(expression~group,data=gene1.20,
+ var.equal=T)$stat
> t.star<-rep(NA,N)
> group.labels<-gene1.20$group
> permuted.data<-gene1.20
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> for(i in 1:N) {
+ permuted.labels<-sample(group.labels,replace=F)
+ permuted.data[,2]<-permuted.labels
+ t.star[i]<-t.test(expression~group,data=permuted.data,
+ var.equal=T)$stat
+ }
> mean(abs(t.star)>abs(t.obs))
[1] 0.3768

This simple algorithm gives an approximated p-value of 0.3768. We now do
the same analysis, but with the efficient algorithms in the coin package, which
also gives a 99% confidence interval on the p-value.

> gene1.extest<-oneway_test(expression~group,data=gene1.20,
+ distribution=approximate(B=10000))
> pvalue(gene1.extest)
[1] 0.3727
99 percent confidence interval:
0.3602585 0.3852633

7.2 Linear Rank Tests

Most of the content of this section is based on the book of Hájek et al. (1999)
which gives an excellent and detailed self-contained exposition of the theory
of rank statistics. Just as in the introduction to permutation tests in Section
7.1 we start defining rank tests for a single sample of i.i.d. observations, and
later show how this setting includes, e.g., the two-sample situation.

In Section 7.2.1 the class of linear rank statistics is defined, and it is shown
how these statistics can be constructed starting from a score generating func-
tion. This section also contains some asymptotic distribution theory, but still
outside the context of hypothesis testing. Hypothesis testing and optimality
properties of rank tests are discussed in Section 7.2.2.

7.2.1 Simple Linear Rank Statistics

7.2.1.1 Ranks and Order Statistics

Let X1, . . . , Xn denote a sample of i.i.d. random variates with distribution
function F . At this point we assume that the probability of having two
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exactly equal X observations is zero, so that the ranks of the observations
are uniquely defined as

Ri = R(Xi) = number of observations in the sample ≤ Xi

=
n∑

j=1

I (Xj ≤ Xi)

= nF̂n(Xi),

i = 1, . . . , n. Thus, the smallest observation gets rank 1 assigned, the second
smallest gets rank 2, ... , and the largest observation gets rank n assigned.
Closely related to the ranks are the order statistics of the sample observations.
These are basically the ordered sample observations, denoted as

X(1) < X(2) < · · · < X(n).

Later we extend the definition so that ties are allowed, i.e., coinciding sample
observations.

We next state some distributional properties of ranks and order statistics
that may turn out useful later.

Lemma 7.1. Let X1, . . . , Xn i.i.d. F , and let Rt = (R1, . . . , Rn) and Xt
(.) =

(X(1), . . . , X(n)) denote the vector of ranks and order statistics of the sample,
respectively. Then R is independent of X(.), and the distribution of the rank
vector is given by

Prf {R = r} =
1
n!

for all r that consist of the integers 1, . . . , n in any order. And the distribution
function of X(i) is given by

Prf

{
X(i) ≤ x

}
=

n∑
k=1

(
n

k

)
(F (x))k (1 − F (x))n−k

.

The next corollary is a consequence of the previous lemma for order statis-
tics of a random sample of n i.i.d. uniform [0, 1] variates.

Corollary 7.1. Let U(1) < . . . < U(n) denote the n-order statistics of a sam-
ple of n i.i.d. uniform [0, 1] variates. Then

E
{
U(i)

}
=

i

n + 1
and Var

{
U(i)

}
=

i(n − i + 1)
(n + 1)2(n + 2)

,

i = 1, . . . , n.
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The next lemma is similar to Lemma 7.1, but gives the distribution of the
ranks when the Xi are not identically distributed (see Theorem 3.1.2.1. in
Hájek et al. (1999) or Problem 6.42 in Lehmann and Romano (2005)).

Lemma 7.2. Let Xi be independent with density function fi (i = 1, . . . , n),
and let Rt = (R1, . . . , Rn) and Xt

(.) = (X(1), . . . , X(n)) denote the vector of
ranks and order statistics of the sample, respectively. For any r that consists
of the integers 1, . . . , n in any order, the distribution of the rank vector is
then given by

Prf1...fn
{R = r} =

1
n!

E

{
n∏

i=1

fi(Z(ri))
f(Z(ri))

}
,

where Z(1) < · · · < Z(n) are order statistics of the random variates Z1, . . . , Zn

that are i.i.d. with density function f , provided f is positive whenever at least
one of the fi is positive.

The n-dimensional vector R has a multivariate distribution. For later pur-
poses it is important to know its variance–covariance matrix. This is stated
in the following lemma.

Lemma 7.3. Consider the vector of ranks R as defined in Lemma 7.2, and
assume that the ranks are computed from a sample of n i.i.d. observations.
Then,

Var {R} =
n + 1
12

(
nI − JJ t

)
,

where I is the n×n identity matrix and J is a vector with all n entries equal
to 1.

We now come back to the more general case where ties are allowed. Ties
are coinciding sample observations. As a consequence the unique ordering
X(1) < · · · < X(n) no longer exists. First note that theoretically ties do not
happen with probability one when the observations come from a continuous
distribution. In practice, however, observations are only observed up to a
finite precision, so that ties happen very frequently in real data situations.
Although there are many ways of defining ranks in the presence of ties, we
focus here on midranks. We adopt the formulation of Akritas and Brunner
(1997).

First a slightly more general definition of the distribution function (CDF)
is given. Let F+(x) = Pr {X ≤ x} denote the traditional right continuous
CDF, and F−(x) = Pr {X < x} the left continuous version. The CDF is
then defined as

F (x) =
1
2
F+(x) +

1
2
F−(x),



182 7 Preliminaries (Building Blocks)

which coincides with the conventional definition when X = x happens with
probability zero. In a similar fashion the empirical versions of F+ and F−

may be constructed. In particular,

F̂+
n (x) =

1
n

n∑
i=1

I (Xi ≤ x)

F̂−
n (x) =

1
n

n∑
i=1

I (Xi < x) .

Finally,

F̂±
n (x) =

1
2
F̂+(x) +

1
2
F̂−(x).

It may also be written as

nF̂±
n (x) = number of observations in sample < x

+
1
2
number of observations in sample = x.

Whereas in the no-ties case, ranks were defined as R(Xi) = nF̂n(Xi), ranks
in the presence of ties are given by R(Xi) = 1

2 + nF̂±
n (Xi) (i = 1, . . . , n).

The two definitions coincide when there are no ties. The construction of the
ranks as presented here, result in midranks.

The linear rank statistics (see next section) are defined in terms of ranks,
but when in the case of ties the ranks may often be simply replaced by the
midranks.

7.2.1.2 Simple Linear Rank Statistics

Before defining rank statistics, we need to introduce scores and a set of real
valued regression constants. We start with the latter. Let c1, . . . , cn denote
these regression constants, and let c̄ = (1/n)

∑n
i=1 ci. We consider then the

sets

Cn =

{
{c1, . . . , cn} : ci ∈ IR, i = 1, . . . , n;

n∑
i=1

(ci − c̄)2 > 0

}
,

and

C∞ =
{
{c1, . . .} : ci ∈ IR, i = 1, . . . ; lim

n→∞

∑n
i=1(ci − c̄)2

max1≤i≤n(ci − c̄)2
= +∞

}
.

The restriction of the ci implied in C∞ is that the sum
∑n

i=1(ci− c̄)2 may not
be dominated by one single regression constant. Although it is sufficient to
have considered Cn for studying rank statistics based on finite sample sizes,
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throughout we require C∞, because we also study the asymptotic distribu-
tional properties of the rank statistics.

Scores are defined as real-valued functions that work on i = 1, . . . , n. We
write an(i), i = 1, . . . , n, for a collection of scores. When studying asymp-
totic properties, we further impose the existence of a nonconstant square
integrable real-valued function ϕ, defined over [0, 1]. Let Ψ denote the set of
such functions. This ϕ function and the scores an must satisfy

lim
n→∞

∫ 1

0

(an(1 + �un�) − ϕ(u))2 du = 0, (7.5)

where �un� denotes the integer part (floor) of un. In Section 7.2.1.3 we give
more details on how scores an(i) may be generally constructed so that (7.5)
is satisfied.

Definition 7.3 (simple linear rank statistic). A simple linear rank statis-
tic is defined as

Tn =
n∑

i=1

cian(Ri), (7.6)

in which {ci} ∈ C∞ is a set of regression constants, and the scores an(i)
satisfy (7.5).

A simple linear rank statistic thus only depends on the data through their
ranks, a function an that determines the scores through the ranks, and a set
of regression constants that are independent of the observations. The mean
and the variance of Tn may be easily expressed in terms of the scores and
the regression constants. We assume that all n observations are i.i.d., and on
applying Lemma 7.1 find

μn = E {Tn} = ā

n∑
i=1

ci, (7.7)

where ā = (1/n)
∑n

i=1 an(i) is the average score. Also

σ2
n = Var {Tn} = s2

a

n∑
i=1

(ci − c̄)2, (7.8)

where s2
a = 1

n−1

∑n
i=1(an(i) − ā)2. When not all observations arise from

the same distribution, the expressions of μn and σ2
n may be found using

Lemma 7.2.
The next theorem gives the asymptotic distribution of Tn.

Theorem 7.2. Let X1, . . . , Xn i.i.d. F , and let Tn denote a simple linear
rank statistic as defined in Definition 7.3. Then, as n → ∞,

Tn − μn

σn

d−→ N(0, 1).
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In the previous theorem the finite mean and variance of Tn were used.
It is often more convenient to use the limiting mean and variance, and to
reformulate the theorem in terms of the linear rank statistic defined as an
average rather than a sum. We write Sn = Tn/n. We further define

μc = lim
n→∞

1
n

n∑
i=1

ci and σ2
c = lim

n→∞
1
n

n∑
i=1

(ci − μc)2,

and

μϕ =
∫ 1

0

ϕ(u)du and σ2
ϕ =

∫ 1

0

(ϕ(u) − μϕ)2du.

With this notation Theorem 7.2 may be restated.

Theorem 7.3. Let X1, . . . , Xn i.i.d. F , and let Sn = Tn/n with Tn a simple
linear rank statistic as defined in Definition 7.3. Then, as n → ∞,

√
n

Sn − μS

σS

d−→ N(0, 1),

where μS = μcμϕ and σ2
S = σ2

cσ2
ϕ.

The proofs of these theorems may be found in Chapter 6 of Hájek et al.
(1999).

7.2.1.3 Score Generating Functions

At first sight it may be hard to find a ϕ and an an function that satisfy
condition (7.5), but usually we construct the scores an(i) starting from some
ϕ ∈ Ψ . We give two particular constructions. The scores (i = 1, . . . , n)

an(i) = ϕ

(
i

n + 1

)
and an(i) = n

∫ i/n

(i−1)/n

ϕ(u)du (7.9)

both satisfy (7.5). The importance of the ϕ function becomes clear in Section
7.2.2 where we show that for particular testing problems the function ϕ may
be chosen so as to give the resulting rank test an optimality property. The
scores are there naturally defined in terms of expectations. For example,

an(i) = Ef

{
ϕ(F (X(i)))

}
, (7.10)

where F is the CDF of the Xi, and X(i) is the ith order statistic. It is
easy to demonstrate that the scores in (7.9) may be considered as approx-
imations of (7.10). To see this for the first score in (7.9), write (7.10) as
an(i) = E

{
ϕ(U(i))

}
, where U(i) = F (X(i)), or, equivalently, U(i) is the ith

order statistic of a sample of n i.i.d. uniform random variates. Then, if ϕ is a
sufficiently smooth function, we have approximately an(i) ≈ ϕ(E

{
U(i)

}
).
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Fig. 7.2 An example of a rank generating function, with n = 10, and i = 4

Finally, because E
{
U(i)

}
= i/(n + 1) (see Corollary 7.1), we get that

Ef

{
ϕ(F (X(i)))

}
equals approximately ϕ (i/(n + 1)).

There are many other similar ways of defining the scores an(i) as an ex-
pectation of order statistics, but we do not need them any further in this
book.

The scores may also be constructed starting from the rank generating
function which is given by

rn(i, t) =

⎧⎨⎩0 if i ≤ tn
i − tn if tn ≤ i ≤ tn + 1
1 if tn + 1 ≤ i .

(7.11)

Figure 7.2 shows an example of a rank generating function. It also illustrates
that this function can be seen as a continuous version of the indicator function
I (tn < i). Scores may be now defined as

an(i) =
∫ 1

0

rn(i, t)dϕ(t)

or

an(i) = −
∫ i/n

(i−1)/n

ϕ(t)drn(i, t) = n

∫ i/n

(i−1)/n

ϕ(t)dt.

Note that the last expression is exactly the second approximate score of (7.9).

7.2.1.4 The Rank Score Process

In this subsection we show that the rank generating function (7.11) is the core
of a stochastic process, and that the linear rank statistics can be expressed
in terms of this process. This provides us with another technique for finding
the asymptotic distributions of rank statistics, but also of other two- and
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K-sample goodness-of-fit rank statistics that do not belong to the class of
linear rank statistics.

Suppose that the regression constants c1, . . . belong to C∞, and define

dni =

⎛⎝ 1
n

n∑
j=1

(cj − c̄)2

⎞⎠−1/2

(ci − c̄).

We now introduce the rank score process based on a sample X1, . . . , Xn,

SSn(t) =
√

n

n∑
i=1

dni (rn(Ri, t) − (1 − t)) , t ∈ [0, 1].

The centering term (1 − t) comes from (large n)

E {rn(Ri, t)} = 0 × Pr {Ri ≤ tn}
+ E {Ri − tn|tn ≤ Ri ≤ tn + 1}Pr {tn ≤ Ri ≤ tn + 1}
+1 × Pr {tn + 1 ≤ Ri}

≈ E {Ri − tn|tn ≤ Ri ≤ tn + 1} × 0 + (1 − t)
≈ 1 − t. (7.12)

The weak convergence of SSn is established in the next theorem.

Theorem 7.4. Let X1, . . . , Xn be i.i.d. F , and assume the regression con-
stants c1, . . . belong to C∞; then, as n → ∞,

SSn
w−→ IB,

where IB is the Brownian bridge.

Theorem 7.4, in cooperation with the continuous mapping theorem (The-
orem 2.1), may be very helpful in finding the asymptotic distributions of test
statistics that may be expressed as functionals of the rank score process SSn.
We illustrate this principle here on linear rank statistics. Write∫ 1

0

SSn(t)dϕ(t) =
n∑

i=1

dni

∫ 1

0

(rn(Ri, t) − (1 − t)) dϕ(t)

=
n∑

i=1

dni

(
an(Ri) −

∫ 1

0

(1 − t)dϕ(t)
)

.

Using (7.12), we further see that∫ 1

0

(1 − t)dϕ(t) =
∫ 1

0

E {rn(Ri, t)} dϕ(t) = E
{∫ 1

0

rn(Ri, t)dϕ(t)
}

= E {an(Ri)} .
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We find thus that
∫ 1

0
SSn(t)dϕ(t) coincides with a centered simple linear rank

statistic. Using the continuous mapping theorem and Theorem 2.3, we find
again that the limit distribution of the linear rank statistic is a zero mean
normal distribution. The variance of this normal distribution may be found
using (2.10), and equals σ2

ϕ, which agrees with Theorem 7.3, except that the
factor σ2

c does not appear here, because the dni have σc in the denominator.

7.2.2 Locally Most Powerful Linear Rank Tests

7.2.2.1 Locally Most Powerful Linear Rank Tests for General
Alternatives

We demonstrate the concept of a locally most powerful linear rank test
(LMPRT) here on a general one-parameter alternative to the general K-sample
null hypothesis: H0 : f1 = · · · = fK , here expressed in terms of the K density
functions. Let f denote the common density under H0. Suppose that the true
densities fs (s = 1, . . . , K) can be indexed by K parameters, say θs, so that
f(.; θ1) = · · · = f(.; θK) = f(.) if and only if all θs = 0.

More generally, as an alternative we now consider for observation xsi (s =
1, . . . , K; i = 1, . . . , ns) the density function

f(xi;Δcsi) (7.13)

for some 0 < Δ < ε, ε > 0, and constants csi. By ordering the constants we
c1 = c11, c2 = c12, . . . , cn1 = c1n1 , cn1+1 = c21, . . . , cn = cKnK

. To reduce the
notational burden, we use the notations ci and csi interchangeably. For sim-
ilar reasons, the notation fi with i = 1, . . . , n is used to denote the density
function of observation i = 1, . . . , n in the pooled sample. The θ parame-
ters are thus replaced by one parameter Δ and a set of constants c1, . . . , cn,
reducing to θs = Δcsi (s = 1, . . . , K; i = 1, . . . , n) for the one-parameter al-
ternative to the general K-sample null hypothesis. This setting includes the
location shift model, among others. Let F1,Δ denote this class of densities,
and write f(.; 0) for the common density f under the null hypothesis.

A level-α locally most powerful linear rank test is a linear rank test that
is uniformly most powerful (UMP) for this testing problem for some ε > 0
(see Section 2.9.2.2). The next theorem gives the regression constants and
the scores for this LMPRT. Because of the importance of this result, we also
give a taste of the proof.

Theorem 7.5. Let Xsi (i = 1, . . . , ns; s = 1, . . . , K) denote a sample of n =∑K
s=1 ns independent observations. Let Z(1) < . . . < Z(n) denote the order

statistics of the pooled sample observations, and let Rsi denote the rank of
observation Xsi in the pooled sample. The LMPRT for testing the general K-
sample null hypothesis, H0 : f1 = · · · = fK , against the general one-parameter
alternative F1Δ is then specified as follows. Let f(.; θi) ∈ F1,Δ, with θi = Δci,
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denote the one-parameter alternative density function of observation i, and
write f(.) = f(.; 0) for the common density function of Xsi under the null
hypothesis, which is supposed to be completely specified. Write X for the n-
vector of sample observations and write the linear rank test statistic (7.6)
as

Tn = Tn(X) =
K∑

s=1

ns∑
i=1

csian(Rsi), (7.14)

where the scores are defined as

an(i) = Ef

{
∂
∂θ f(Z(i); θ)

∣∣
θ=0

f(Z(i))

}
.

The test function of the level α LMPRT is given by

φ(X) =

⎧⎨⎩0 if Tn(X) < cα

γ if Tn(X) = cα

1 if Tn(X) > cα

,

where γ and cα are chosen so that the test has size α.

Proof. We only give a sketch of the proof here, stressing the relation with
the fundamental Neyman–Pearson lemma (Lemma 2.1).

For a given Δ > 0, the alternative represented by F1,Δ is basically a simple
alternative. Because f is assumed known, the null hypothesis is also simple. In
this setting, we may apply the Neyman–Pearson lemma which says that the
test statistic should be the likelihood ratio statistic, or, equivalently, the log-
likelihood ratio statistic. Because the test function of a rank test is in terms
of the ranks of the observations, the joint densities used in the test function
of the Neyman–Pearson should be replaced by the joint probabilities of the
ranks. In particular, the joint densities under the null and the alternative
hypothesis now become Pr0 {R = r} and PrΔ {R = r}, respectively. See, for
example, Theorem 3.2.3.1 in Hájek et al. (1999) for a formal reformulation
of the Neyman–Pearson lemma for rank tests. The log-likelihood ratio in the
rank test function thus has general form

LLR(Δ)= log PrΔ {R=r}− log Pr0 {R = r} = log PrΔ {R = r}+
n∑

i=1

log(i),

upon using Pr0 {R = r} = 1/(n!) (Lemma 7.1). The last term only depends
on the sample size, therefore we may further ignore it.

For ε > 0 small we now approximate LLR(Δ) using a Taylor series expan-
sion about Δ = 0,

LLR(Δ) = LLR(0) + Δ
∂

∂Δ
LLR(Δ)

∣∣∣∣
Δ=0

+ o(Δ). (7.15)
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The partial derivative becomes

∂

∂Δ
LLR(Δ)

∣∣∣∣
Δ=0

=
∂

∂ΔPrΔ {R = r}
PrΔ {R = r}

∣∣∣∣∣
Δ=0

= n!
∂

∂Δ
PrΔ {R = r}

∣∣∣∣
Δ=0

,

in which, using Lemma 7.2,

∂

∂Δ
PrΔ {R = r} =

1
n!

∂

∂Δ
E

{
n∏

i=1

f(Z(ri); θi)
f(Z(ri))

}

=
1
n!

E

⎧⎨⎩
n∑

j=1

∂

∂θj

∂θj

∂Δ

n∏
i=1

f(Z(ri); θi)
f(Z(ri))

⎫⎬⎭
=

1
n!

E

{
n∑

i=1

ci

∂
∂θi

f(Z(ri); θi)
f(Z(ri))

}
.

Hence,

∂

∂Δ
LLR(Δ)

∣∣∣∣
Δ=0

=
n∑

i=1

ci E

⎧⎪⎨⎪⎩
∂

∂θi
f(Z(ri); θi)

∣∣∣
θi=0

f(Z(ri))

⎫⎪⎬⎪⎭
=

n∑
i=1

cian(Ri).

Equation (7.15) now becomes

LLR(Δ) = Δ
n∑

i=1

cian(Ri) + o(Δ),

and thus, for every Δ < ε the MPRT according to Neyman–Pearson is the
one proposed in the theorem statement. ��

It is important to realise here that it has been assumed in Theorem 7.5 that
the common density f(.) = f(.; 0) is known. If this is not the case, the scores
cannot be calculated. The theory presented here is thus a parametric theory
for rank tests; i.e., optimality can only be guaranteed for an a priori known
family of alternatives. Later in Chapter 9 we show how some well-known rank
tests are LMPRT under certain parametric assumptions.
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7.2.3 Adaptive Linear Rank Tests

In the previous sections we have discussed the construction of rank tests
that possess an optimality criterion. In particular, the LMPRT was defined.
Although rank tests are often considered to be nonparametric tests, the con-
struction of the LMPRT demonstrated that this type of test is actually con-
structed for a very parametric testing setting. Theorem 7.5 shows how the
optimal scores can be obtained, but it requires knowledge of the density
function f of the observations, and the null hypothesis must be formulated
in terms of parameters indexing these density functions. An adaptive linear
rank test is a linear rank test based on scores that are chosen by a data-
based selection rule, so that the resulting scores are in some sense optimal
for the testing problem. An important consequence of choosing the scores in a
data-driven manner is that it affects the null distribution of the test statistic.
Later, in Chapters 9 and 10 some more details are given.

7.3 The Pooled Empirical Distribution Function

Under the K-sample null hypothesis all K distribution functions coincide and
can be represented by one CDF, say H(x). This pooled CDF is defined as

H(x) =
K∑

s=1

ns

n
Fs(x). (7.16)

Note that under the K-sample null hypothesis, the CDF H(x) is equal to
all K individual CDFs. More generally, when the fractions ns/n are fixed
by design, or if they are replaced by the probabilities that an observation is
sampled from population s, H(x) is simply the marginal distribution of X.

A natural estimator of H(x) arises from substituting all Fs by their
EDFs; i.e.,

Ĥn(x) =
K∑

s=1

ns

n
F̂sns

(x), (7.17)

and thus Ĥn can be seen as a weighted average of the K EDFs. By substi-
tuting each F̂sns

(x) by (1/ns)
∑ns

i=1 I (Xsi ≤ x), we get

Ĥn(x) =
1
n

K∑
s=1

ns∑
i=1

I (Xsi ≤ x) .

Using the notation of Section 7.1.2 of the pooled sample observations Zi, the
last expression immediately reduces to
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Ĥn(x) =
1
n

n∑
i=1

I (Zi ≤ x) . (7.18)

Thus Ĥn(x) is simply the EDF using the n pooled sample observations. This
indeed makes sense under the K-sample null hypothesis, which says that all
K distributions or populations are equal, and thus no distinction should be
made between them, nor between the observations from the K samples.

Finally we rewrite (7.18) in terms of ranks. In particular, when Ri denotes
the rank of Zi in the pooled sample, then Ĥn evaluated in some Zi becomes

Ĥn(Zi) =
Ri

n
or Ĥn(Zi) =

Ri − 0.5
n

, (7.19)

where a continuity correction is applied in the latter.

7.4 The Comparison Distribution

Just as for the one-sample problem we can also define here a comparison
distribution. Recall that in Section 2.4 the comparison distribution function
was defined as the CDF of the random variable U = G(X) with X having
CDF F . The random variable U is said to possess information about the
relative rank of X ∼ F compared to X0 ∼ G. When F = G, U has a uniform
distribution. The interpretation is best seen from the density function of U =
F (X), given by r(u) = f(G−1(u))/g(G−1(u)); an extensive discussion was
presented in Section 3.3. In the one-sample problem only two distributions
are involved, therefore it is obvious that the hypothesised G plays the role
of a reference distribution. In the K-sample problem, however, many more
distributions are involved so that it is not always obvious which distribution
has to serve as a reference distribution.

When k = 2, then again only two distributions are involved, and U =
F1(X) with X ∼ F2, or U = F2(X) with X ∼ F1 can be chosen. In the
more general setting of k ≥ 2, many more such constructions may be chosen,
each resulting in a different interpretation, and none containing all infor-
mation against H0. Instead of choosing one of the K CDFs as a reference
distribution, it is often preferred to use the pooled CDF (7.16) so that all
K comparison distributions are computed relative to this common reference
distribution. Moreover, under the null hypothesis the common CDF coicides
with all individual Fs. In particular, let Us = H(Xs) with Xs ∼ Fs. The
CDF and df of Us are then given by (i = s, . . . , K)

Rs(u) = Fs(H−1(u)) and rs(u) =
fs(H−1(u))
h(H−1(u))

. (7.20)
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In contrast to the one-sample problem, where only the distribution F of
the observations was unknown, now none of the potential reference distribu-
tions is known. Thus the reference CDF will also have to be replaced by an
estimator. Later, in Section 7.5.2 we give more details on the distributional
properties of R̂nij = F̂ini

(F̂−1
jnj

(u)) and R̂sn = F̂sns
(Ĥ−1

n (u)), and in Section
8.2 we illustrate how the comparison densities rs(u) can be estimated directly
and used as a graphical diagnostic tool for comparing the K distributions.

7.5 The Quantile Process

In Part I of the book we argued that all the information in the n sample
observations against the (simple) null hypothesis H0 : F = G is contained in
the empirical process IBn(x) =

√
n(F̂n(x)−G(x)). The core of the argument

is that F̂n is a very good estimator of the true CDF F , in the sense of the
Glivenko–Cantelli theorem (Section 2.1.1). In the K-sample case we have K
independent samples, and within each sample the estimator F̂sns

is such a
consistent estimator of Fs (s = 1, . . . , K). Under the K-sample null hypoth-
esis, all K EDFs are estimators of the common CDF H = F1 = · · · = FK . In
the simplest case of K = 2 the previous reasoning brings us to considering a
process that is proportional to

F̂1n1 − F̂2n2 , (7.21)

but when K > 2, there are many more informative processes that can be
built. In Section 7.5.1 we give a brief discussion on how informative processes
can be built; we call them contrast processes. Finally, in Section 7.5.2 we
construct slightly more complicated processes, which form the basis of many
goodness-of-fit tests.

7.5.1 Contrast Processes

When K = 2 we argued that all the information against the null hypothesis
is contained in (7.21), which we call a contrast process as it contrasts the two
sample distributions. To study its asymptotic behavior it is more convenient
to consider a properly scaled process. In particular, we define the contrast
processes as (i �= j = 1, . . . , K)

ICnij(x) =
√

ninj

n

(
F̂ini

(x) − F̂jnj
(x)
)

. (7.22)

For arbitrary K, many systems of contrast processes may be constructed. For
example, suppose j is fixed by the user, say j = 1 (e.g., referring to a control
group), then the contrast empirical processes {ICni1, i = 2, . . . , K} possess
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information on the difference between Fi and F1, where the latter now serves
as a reference distribution. Another set of contrast empirical processes can
be constructed as {ICnii+1, i = 1, . . . , K − 1}, and many other constructions
are possible. These contrasts can best be compared with the contrasts used
in ANOVA in terms of means. When K > 2, it may also be interesting to
compare each group with the “overall mean”, or the pooled CDF H, i.e., a
process based on F̂ni(x) − Ĥn(x).

Although we later work more often with other, though related processes, it
is still educative to look for their limiting behaviour under the null hypothesis.
Consider √

n1n2

n

(
F̂1n1(x) − F̂2n2(x)

)
=
√

n1n2

n

{
F̂1n1(x) − H(x) −

(
F̂2n2(x) − H(x)

)}
(7.23)

=
√

n2

n
IB1n1(x) −

√
n1

n
IB2n2(x),

where IB1n1 and IB2n2 are the empirical processes of samples 1 and 2, re-
spectively. Under the null hypothesis these processes converge weakly to two
independent H-Brownian bridges, say IB1 and IB2 (see Section 2.2.2 for details
on the weak convergence). These convergences hold for min(n1, n2) → ∞. We
further assume that limn→∞ n1/n = λ1 exists, and that 0 < λ1 < 1. Hence,
under H0,√

n1n2

n

(
F̂1n1(x) − F̂2n2(x)

)
w−→
√

1 − λ1IB1(x) −
√

λ1IB2(x). (7.24)

Note that if we would have used F1 or F2 instead of H in (7.23), the limiting
processes IB1 and IB2 would be F1- or F2-Brownian bridges, but they coincide
of course under H0.

Consider now a process based on F̂ini
(x) − Ĥn(x). Although this looks

similar to the contrast process (7.21), it is slightly more complicated because
the two EDFs are not independent as they have the ni observations of the
ith sample in common. To circumvent this problem we write (s = 1, . . . , K)

Ĥn(x) =

⎛⎝∑
j �=s

nj

n
F̂jnj

(x)

⎞⎠+
ns

n
F̂sns

(x), (7.25)

and introduce the estimator Ĥ−sn(x) =
∑

j �=s(nj/(n− ns))F̂jnj
(x), which is

the EDF of the pooled sample excluding all observations in the sth sample.
Equation (7.25) now becomes

Ĥn(x) =
n − ns

n
Ĥ−sn(x) +

ns

n
F̂sns

(x).
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With this in mind, it is straightforward to arrive at the following weak
convergence, √

ns(n − ns)
n

(
F̂sns

(x) − Ĥn(x)
)

w−→ (1 − λs)
(√

1 − λsIB1(x) −
√

λsIB2(x)
)

,

where IB1 and IB2 are again two independent H-Brownian bridges.

7.5.2 Comparison Distribution Processes

7.5.2.1 Construction

Despite the rather simple theory presented in the previous section, these con-
trast processes are usually not often used directly in practice. Many goodness-
of-fit test statistics can though be written as a functional of a closely related
process, of which the asymptotic theory is slightly more complex, but of
which the limiting process has an important advantage over those of the
previous section. In particular, the limiting processes IB1 and IB2 in Sec-
tion 7.5.1 are H-Brownian bridges, and the pooled CDF H is generally un-
known! This is similar to the one-sample problem, where we have seen that√

n(F̂n(x)−G(x)) converges to a G-Brownian bridge under the null hypoth-
esis, but in the simple one-sample context the CDF G was completely spefi-
cified in H0. However, for practical reasons the data were often transformed
by the PIT, i.e., p = G(x), so that transformed process

√
n(F̂n(G−1(p))− p)

has a limiting uniform Brownian bridge, independent of the distribution G.
If H were known, a similar transformation would also result in a “contrast”
process

√
ns

(
F̂sns

(H−1(p)) − H(H−1(p))
)

=
√

ns

(
F̂sns

(H−1(p)) − p
)

that

converges to a uniform Brownian bridge under H0 (note that now Ĥn is re-
placed by H, which was assumed known). Under H0, the CDF H can just as
well be replaced by any other Fj (j �= s) if they are assumed known. However,
because H is never known, it seems natural to replace it with its estimator
Ĥn, resulting in the process (properly rescaled)

ICns(p) =
√

n
(
F̂sns

(Ĥ−1
n (p)) − p

)
, (7.26)

or, when K = 2, it may be more convenient to avoid the pooled CDF as ref-
erence distribution, and use one of the two CDFs as a reference. For example,

ICn12(p) =
√

n1

(
F̂1n1(F̂

−1
2n2

(p)) − p
)

. (7.27)
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Note that we recycled the IC notation for notational simplicity. It should be
clear from the context. In later chapters we encounter many goodness-of-fit
test statistics that can be expressed as functionals of these two processes.
The asymptotic null distributions of these test statistics can usually be easily
found by applying a continous mapping theorem when the limit processes of
ICns and ICn12 are known. In the next section we give these limit processes.

7.5.2.2 Weak Convergence

The following theorem gives the limiting process of (7.26) and (7.27). Further
details, related and stronger properties (e.g., strong approximations) of these
convergence statements can be found in Pyke and Shorack (1968), Csörgö and
Révész (1978), Hsieh and Turnbull (1992), Hsieh (1995), Hsieh and Turnbull
(1996), and Parzen (1997).

Theorem 7.6. Assume that all Fs have positive continuous derivatives fs,
and limn→∞(ns/n) = λs > 0 for all s = 1, . . . , K. Let IB1 and IB2 denote
two independent uniform Brownian bridges.
(1) Suppose further that fs(F−1

j (p))/fj(F−1
j (p)) is bounded on any (a, b) ⊂

(0, 1). Then,as n → ∞,

√
ns

(
F̂sns

(F̂−1
jnj

(p)) − Fs(F−1
j (p))

)
w−→ IB1(Fs(F−1

j (p))) +

√
λs

λj

fs(F−1
j (p))

fj(F−1
j (p))

IB2(p).

(2) Suppose K = 2, and let λ = λ1. Let h denote the density function
corresponding to CDF H(x) = λF1(x) + (1 − λ)F2(x). Suppose that

f1(H−1(p))
h(H−1(p))

and
f2(H−1(p))
h(H−1(p))

are bounded on any (a, b) ⊂ (0, 1). Then, as n → ∞,

√
n
(
F̂1n1(Ĥ

−1
n (p)) − F1(H−1(p))

)
w−→ (1 − λ)

{
1√
λ

f2(H−1(p))
h(H−1(p))

IB1(F1(H−1(p)))

− 1√
1 − λ

f1(H−1(p))
h(H−1(p))

IB2(F2(H−1(p)))
}

.

The limiting process of ICns and ICn12 that are stated in Theorem 7.6 are
denoted by ICs and IC12, respectively.
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7.6 Stochastic Ordering and Related Properties

In the next chapters differences between distributions are not always ex-
pressed in terms of moments as we did in Part I. Sometimes stochastic or-
derings or related orderings are more relevant. Let X1 ∼ F1 and X2 ∼ F2.
Further assume that X1 and X2 are independent.

Definition 7.4 (stochastic ordering). X1 (or F1) is stochastically smaller
than X2 (or F2) iff

F1(x) ≥ F2(x) for all x ∈ S,

with strict inequality for at least one x ∈ S.
X1 (or F1) is stochastically larger than X2 (or F2) iff

F1(x) ≤ F2(x) for all x ∈ S,

with strict inequality for at least one x ∈ S.

These concepts are illustrated in the left panel of Figure 7.3: distribution
F1 (dashed line) is stochastically smaller than distribution F2 (full line). The
following lemma is important later.

Lemma 7.4. If X1 is stochastically smaller than X2, then

Pr {X1 ≤ X2} >
1
2
.

If X1 is stochastically larger than X2, then

Pr {X1 ≤ X2} <
1
2
.

When F1 = F2, then Pr {X1 ≤ X2} = 1
2 .
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Fig. 7.3 Distributions F1 (dashed line) and distribution F2 (full line). The left panel
shows a situation where F1 is stochastically smaller than F2
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An important consequence of Lemma 7.4 is that the implications hold
generally only in one direction. For example, when Pr {X1 ≤ X2} > 1

2 it is
not necessarily true that X1 is stochastically smaller than X2. An example
is presented in the right panel of Figure 7.3, where now the two CDFs cross
so that no stochastic ordering holds. For this situation, however, we find
Pr {X1 ≤ X2} = 0.71.

For the opposite implication to hold, distributional restrictions on F1 and
F2 must be imposed. In Section 8.1.1.2 location-shift models are introduced.
Under such a model, the opposite implication holds too.

We later work frequently with Pr {X1 ≤ X2} for comparing distributions.
To our knowledge there is no unambiguous terminology used in the literature
for expressing the relation or ordering of X1 relative to X2 based on this
probability. It is related to X1 −X2 being stochastically positive or stochasti-
cally negative (see Lehmann (1998), p. 195), but we have the feeling that this
terminology does not cover its meaning. Acion et al. (2006), who advocate
the use of this probability as a relevant and informative effect size, refer to
it as the probabilistic index, and other have called it the relative effect. The
term stochastic improvement was coined by Lehmann (1998), but this may
be linguistically confusing when a small X is contextually better than a large
X. We suggest the following definition.

Definition 7.5 (likely ordering (first-order)). (1) X1 (or F1) is likely
larger than X2 (or F2) iff

Pr {X1 ≤ X2} <
1
2

or, equivalently, Pr {X1 ≥ X2} >
1
2
.

(2) X1 (or F1) and X2 (or F2) are unlikely ordered when

Pr {X1 ≤ X2} =
1
2
.

Lumley (2009) demonstrated that likely ordering is not transitive. We
illustrate this by means of a simple example taken from Gillen and Emerson
(2007).

Example 7.3 (Nontransitivity of likely ordering). Let X1, X2, and X3 be three
mutually independent random variables with multinomial distributions. In
particular, Xi has a discrete distribution with outcome space {1, 2, . . . , 13}
and corresponding probabilities as shown in Figure 7.4. With these distribu-
tions we obtain

Pr {X3 ≥ X2} = 0.55 Pr {X2 ≥ X1} = 0.5625 and Pr {X1 ≥ X3} = 0.57.
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Fig. 7.4 The distributions of X1 (upper panel), X2 (middle panel) and X3 (lower panel)

Thus, using the terminology of Definition 7.5, we could say: X3 is likely larger
than X2, which is likely larger than X1. If the likely ordering were transitive,
then we should now conclude that X3 is likely larger than X1. However, from
Pr {X1 ≥ X3} = 0.57 > 0.5 we must conclude that X1 is likely larger than
X3. This demonstrates the nontransitivity.

Higher-order likely orderings are also defined. We first illustrate the inter-
pretation of a second-order likely ordering.

Let X11 and X12 be two independent observations from F1, and X2 ∼ F2.
For example, F1 corresponds to the yield of maize grown with fertilizer A,
and F2 is the yield when fertilizer B is used. Suppose that

Pr {max{X11, X12} ≤ X2} = Pr {X11 ≤ X2 and X12 ≤ X2} = 0.80.

This means that it is very likely that the yield of maize grown with fertilizer
B is even larger than the highest yield of maize that is obtained from two
fields on which fertilizer A is used. We say that the yield with fertilizer B is
a double likely larger than the yield with fertilizer A. This brings us to the
following more general definition.
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Definition 7.6 (likely ordering (higher-order)). Let k be an integer not
smaller than two. Let X11, X12, . . . , X1k i.i.d. F1, and X2 ∼ F2. X2 (or F2)
is k-tuple likely larger than X1 (or F1) if

Pr {max{X11, X12, . . . , X1k} ≤ X2} >
1
2
.

Similarly, a k-tuple unlikely ordering of X1 and X2 is defined as

Pr {max{X11, X12, . . . , X1k} ≤ X2} =
1
2
.



Chapter 8

Graphical Tools

Most of the graphical tools that have been discussed in Chapter 3 for the
one-sample problem can be adapted to the two- and the K-sample problems
in a very straightforward way. We focus in this chapter on the QQ and PP
plots and on the comparison distribution plots. Just as in Part I we start with
defining the population versions of these plots, as these are easier vehicles
for explaining how differences between distributions can be interpreted and
understood. These graphs are again closely related to the tests discussed in
the next chapters.

8.1 PP and QQ Plots

8.1.1 Population Plots

8.1.1.1 Population QQ Plot

QQ and PP plots have been described in detail in Section 3.2.2 for the one-
sample goodness-of-fit problem. The functional forms of the population QQ
and PP plots were there defined as (G−1(p), F−1(p)) and (p, F (G−1(p))) for
p ∈ [0, 1], respectively (see (3.4) and (3.5)). In the present setting, particularly
in the K > 2 case, several other constructions are possible. In general we now
define the QQ plot of distribution s as

Qs : [0, 1] �→ S2 : p → (G−1
r (p), F−1

s (p)), (8.1)

where Fs is the CDF of population s (s = 1, . . . , K), and where Gr serves as
a reference distribution. In particular, Gr can be chosen as the CDF of one of
the other populations; i.e., Gr = Fj (j �= s). This may be a good choice when
any one of the groups is a control or placebo group, for example. Similarly,
Gr may be set to the pooled CDF H as defined in (7.16).

O. Thas, Comparing Distributions, 201
DOI 10.1007/978-0-387-92710-7 8, c© Springer Science+Business Media, LLC 2010
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In Section 3.2.2 we argued that QQ plots may be particularly useful when
the true and the hypothesised distributions F and G belong to the same
location-scale family, so that F−1(p) = μ + σG−1(p) and the QQ plot there-
fore shows a straight line. The same advantage pertains here too, but now
with G replaced by a reference distribution Gr. In many studies it is partic-
ularly the mean shift μ which is of importance. For example, when F1 and
F2 represent the CDFs of the response in a treatment and a placebo group,
respectively, then μ is the shift in mean response which is here interpretable
as the treatment effect. We further ignore the scale parameter σ (i.e., we set
σ = 1) and focus on the shift parameter μ which we further denote as Δ.
The location-shift model for the two-sample case may be now be written as

F−1
1 (p) = Δ + F−1

2 (p) or F2(x) = F1(x + Δ), (8.2)

which is equivalent to saying that X1 has the same distribution as X2 + Δ.
This is illustrated in Figure 8.1. Yet another way of formulating is that the
distributions of X1 and X2 have the same shape except that F1 is translated
over a distance Δ. Later, in Chapter 9, we show that some well-known two-
sample tests (e.g., the Wilcoxon rank sum test) may be used for testing the
null hypothesis Δ = 0, but only when the assumption of equal shapes holds
true. The latter assumption is quite restrictive, and, particularly in small
samples, hard to assess. Because Δ is basically a difference between two
location parameters of distributions of the same shape, it may be estimated
as the difference between the two sample means or the two sample medians.
It is, however, good statistical practice to use an estimator that is directly
related to the statistical test used. In particular, when the Wilcoxon rank
sum test is employed, one usually estimates Δ with the Hodges–Lehmann
estimator. See Section 9.2.7 for more details.
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Fig. 8.1 CDFs F1 and F2 representing the location-shift model (8.2)
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Doksum (1974) extended the location shift model to

F−1
1 (p) = Δp(p) + F−1

2 (p) or F2(x) = F1(x + Δx(x)),

which expresses that X1 has the same distribution as X2 + Δx(X2), where
Δx(x) = Δp(F2(x)) are now shift functions,

Δx(x) = F−1
1 (F2(x))−x or Δx(F−1

2 (p)) = Δp(p) = F−1
1 (p)−F−1

2 (p). (8.3)

The plot of Δp(p) versus F−1
2 (p) (or Δx(x) versus x) thus contains the same

information as the QQ plot, and may be interpreted directly in terms of
the shift function or the treatment function, as it was referred to by Switzer
(1976). Because Δp and Δx may be used interchangeably, the subscript is
often omitted.

8.1.1.2 Population PP Plot

The population PP plot of the sth distribution is now defined as

Ps : [0, 1] �→ [0, 1]2 : p → (p, Fs(G−1
r (p))), (8.4)

where Gr is a reference CDF as before. Just as in the one-sample situation,
the PP plot may also be recognised as a plot of the comparison distribution
(7.20). This immediately gives a way of interpreting the plot: it is the CDF of
Xs on a scale in which the reference distribution is the uniform distribution.
The PP plot of Xs has thus to be compared to the CDF of a uniform, which
is the 45 degree line. We briefly discuss two important classes of shapes of
PP plots.

• The left-hand panel of Figure 8.2 shows four PP plots of distributions Fs

(s = 1, . . . , 4) that are stochastically smaller than the reference distribu-
tion. By stochastically smaller we mean that Fs(x) ≥ Gr(x) for all x ∈ S
with strict inequality for at least one x ∈ S. The plots show clearly that
the probability mass of Fs is shifted to the smaller percentiles of the ref-
erence distribution; i.e., it is much more likely observing a small outcome
from Fs than from Gr. When Xs is stochastically smaller than Y ∼ Gr,
Pr {Xs ≤ Y } > 1

2 (note that 1
2 is the probability that we expect when

Fs = Gr) and Y is thus likely larger than Xs.
• The opposite behavior is observed in the right-hand panel of Figure 8.2.

Here the probability mass of Fs is shifted to the larger percentiles of the
reference distribution. Because the the PP plots do not cross the 45 degree
line, we have Fs(x) ≤ Gr(x) for all x ∈ S with strict inequality for at least
one x ∈ S, and we say that Fs (or Xs) is stochastically larger than the
reference distribution. It is thus more likely that a realisation of Fs is larger
than a realisation of Gr. This implies that Pr {Xs ≥ Y } > 1

2 ; i.e., Xs is
likely larger than Y ∼ Gr.



204 8 Graphical Tools

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F2

F
1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F2

F
1

Fig. 8.2 PP plots of stochastically smaller (left panel) and stochastically larger (right
panel) distributions F1 as compared to the reference distribution F2

See Section 7.6 for an introduction to stochastic ordering and likely or-
dering. These two examples show extreme situations in the sense that
none of the PP plots crosses the 45 degree line (i.e., Fs(x) > Gr(x) or
Fs(x) < Gr(x) for all x ∈ S). Consequently, the probability statements
Pr {Xs ≤ Y } > 1

2 or Pr {Xs ≥ Y } > 1
2 also hold in any interval [l, u] con-

tained in S. More formally, Fs(x) > Gr(x), or Fs(x) < Gr(x) for all x ∈ S
implies Pr {Xs ≤ Y |(Xs, Y ) ∈ [l, u]} > 1

2 or Pr {Xs ≥ Y |(Xs, Y ) ∈ [l, u]} > 1
2

for all [l, u] ⊆ S. On the other hand, when a PP plot crosses the 45 degree line,
we do not have the strict order relations Fs(x) > Gr(x) or Fs(x) < Gr(x)
anymore, but we may still have Pr {Xs ≤ Y } > 1

2 or Pr {Xs ≥ Y } > 1
2 . How-

ever, these probability statements do not not hold anymore in all intervals
[l, u]. This is illustrated in Figure 8.3. Suppose that F1 and F2 are the distri-
butions of the length of two plant species, say S1 and S2. The PP plot now
says that among the smaller plants, the S1 plants are generally smaller than
the S2 plants, but among the larger plants it is just the other way around:
the largest plants are more likely to belong to the S2 species. If we do not
want to make this distinction between the “larger” and the “smaller” plants,
we can still calculate the probability Pr {X1 ≤ X2}:

Pr {X1 ≤ X2} =
∫
S

Pr {X1 ≤ X2|X2 = x} f2(x)dx

=
∫
S

F1(x)dF2(x)

=
∫ 1

0

F1(F−1
2 (p))dp, (8.5)

which summarises the likely ordering information over the whole support S,
and which contains highly relevant information on the difference between
F1 and F2 in terms of likely orderings. Hollander and Wolfe (1999), among
others, also advocated the use of Pr {X1 ≤ X2} over a mean difference.
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Fig. 8.3 An example of a PP plot that crosses the 45 degree line. The horizontal and
vertical reference lines correspond to the 79th percentiles

The expression (8.5) is the area under the PP plot. For the example of
Figure 8.3, we find that X2 is likely larger than X1, with Pr {X1 ≤ X2} =
0.55 > 1

2 .

8.1.2 Empirical PP and QQ Plots

8.1.2.1 Construction

In practice all unknown CDFs have to be replaced by estimators. Whereas in
the one-sample case the hypothesised CDF G is completely specified (or at
least up to a small number of nuisance parameters), so that only the CDF of
the sampled distribution has to be replaced by its EDF, we replace all CDFs
Fs by their estimators F̂s. The QQ plot thus becomes a graph of

(Ĝ−1
rm(pi), F̂−1

sns
(pi)) (8.6)

for the plotting positions pi, i = 1, . . . , N , where N is user defined, and m
denotes the number of observations used in the estimator of Gr. More details
on N are given in the next paragraph. Similarly, the PP plot is the graph of

(pi, F̂sns
(Ĝ−1

rm(pi))), (8.7)

i = 1, . . . , N . The PP and QQ plots for the one-sample problem have been
discussed in detail in Section 3.2.2. Much attention went there to the choice of
the plotting positions, because they have an important effect on the statistical



206 8 Graphical Tools

properties of the empirical PP and QQ plots as estimators of their popula-
tion versions. The effect of the plotting positions on the plots goes for both
plots through G−1(pi). When G is continuous, small differences in the pi will
have an effect on the plots. In the present setting, however, the reference
distribution is an EDF, which is a step function. The particular choice of
the plotting positions is thus much less important, and it has apparently not
been discussed in detail in the statistical literature. In many papers it is even
left unspecified. The two most popular systems are

pi =
i

N + 1
and pi =

i − 0.5
N

.

In the one-sample problem it is obvious that n plotting positions have
to be considered, because the step functions F̂n and F̂−1

n have at most n
jumps. Here, however, the abcissa and the ordinate of the QQ plot can take
at most m and ns different values, but because each dot in the plot needs the
specification of both coordinates, it seems natural to choose N = max(ns,m)
for the construction of the plotting positions. If the difference between nj

and m is large, the plot may look quite discontinuous, so that some prefer to
interpolate between quantiles so as to get a smoother looking graph.

A PP plot, where F̂sns
(Ĝ−1

rm(pi)) is plotted versus the plotting position
pi, can thus have at most min(ns,m) points at which the plot shows a jump
in the abcissa of a multiple of 1/ns. Also here N = max(ns,m) seems an
appropriate choice. Again, when the difference in sample sizes is large, the
plot may look discontinuous. Remember, though, that a PP plot can be
interpreted as an EDF of the comparison distribution, and in this sense we
expect it to look like a step function. Some statisticians prefer to avoid this
discrete nature, and suggested to plot smoothed versions instead (see, e.g.,
Handcock and Morris (1999)).

8.1.2.2 Sample Size Issues

Although the replacement of Gr by its EDF is basically the only adapta-
tion, it has some consequences. Maybe the most immediate consequence is
the introduction of additional sampling variability. Moreover, because two
estimators are involved, this variability now depends on two sample sizes. To
keep the exposition simple, we discuss the variance issue for two-sample PP
and QQ plots in which F1 is compared with F2 as a reference distribution.
As before, let λ1 = limn→∞(n1/n) be bounded away from 0 and 1.

We start the discussion with the QQ plot (8.6). First note that both the
abcissas and the ordinates are random variables, whereas in the case of a sim-
ple one-sample problem the absissa was determined by the constants G−1(pi).
We must thus now look at the horizontal and vertical variances of the plotted
dots. Because a QQ plot is basically a plot of the quantile function F̂−1

2n2
(pi)
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versus F̂−1
1n1

(pi), its stochastic properties may be derived from the Bahadur–
Kiefer theorem or Theorem 2.4, which have been discussed in Section 2.3.2.
They give, for a fixed pi and for large sample sizes,

Var
{

F̂−1
sns

(pi)
}
≈ pi(1 − pi)

nsf2
s (F−1

s (pi))
.

Thus the horizontal and vertical variance of the ith plotted dot depend on the
sample sizes n1 and n2, respectively. The numerator of the variance is the
same as in the one-sample case, indicating that for many distributions the
variance is larger in the tails of the distribution (often small density in the
tails).

For the PP plot (8.7) the abcissas are fixed by the plotting positions,
and the ordinates are determined by the empirical comparison distribution.
Its stochastic properties have been studied in Section 7.5.2. In particular,
Theorem 7.6 implies that for large sample sizes,

Var
{

F̂1n1(F̂
−1
2n2

(pi))
}
≈ qi(1 − qi)

n1
+

λ1

1 − λ1

pi(1 − pi)
n1

r2(pi)

≈ 1
n

{
qi(1 − qi)

λ1
+

pi(1 − pi)
1 − λ1

r2(pi)
}

, (8.8)

where

qi = F1(F−1
2 (pi)) and r(pi) =

f1(F−1
2 (pi))

f2(F−1
2 (pi))

are the comparison distribution and density function, respectively. The de-
pendence on r(.) makes the interpretation of this variance function slightly
more complex than before. First note that the variance now has two terms,
one which is proportional with pi(1 − pi) and the other term proportional
with qi(1 − qi). The variance will generally again be larger near the middle
of the horizontal axis. The influence of the sample sizes n1 and n2 through
the (asymptotic) ratio λ1 is illustrated in Figure 8.4. When the comparison
density equals one, which happens under the two-sample null hypothesis, the
graph of the variance function shows that the smallest variance is obtained
with λ1 = 0.5; i.e., n1 = n2. When, for a plotting position pi, r(pi) = 1/10
(small comparison density), which occurs at subsets of the sample space S
where f1 has low density as compared to f2, the variance can be minimised
with n1>>>n2. This sample size condition basically assures that there is
still a fair chance to observe at least a few observations in the first sample
at places where the theoretical density is low. Finally, for the other extreme
when r(pi) = 10, Figure 8.4 shows that n1<<<n2 will result in the small-
est variance. It is further important to note that the variance functions for
r(pi) = 1/10 and r(pi) = 10 are not symmetric in terms of the sample sizes.
In the latter situation, which happens at intervals of S where we expect far
less observations in the sample from the reference distribution, the variance
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Fig. 8.4 Variance function (8.8) (up to proportionality factor) for r(pi) = 1 (top left),
r(pi) = 1/10 (top right), and r(pi) = 10 (bottom)

is generally larger. This stresses the importance of deciding which distribu-
tion to consider as the reference. More particularly, it shows that the PP plot
does not give much information in intervals of the sample space where the
observations from the reference distribution are sparse. This was also demon-
strated at the end of the previous section, where we argued that the choice
of the number of plotting position depends on both n1 and n2.

Concluding this section on the consequences of the sample sizes on the
quality of the plot, it seems important to have at least as many observations
in the reference sample as in the other sample. Although we simplified the
discussion to the situation where F2 serves as the reference, our arguments
suggest that it may be appropriate to work with the pooled EDF (7.17),
Ĥn, which uses all n observations (the theory would only be slightly more
complicated, and can be based on part (b) of Theorem 7.6).
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8.1.2.3 When to Use Which Plot

Before giving some specific arguments as to when to use which plot, we want
to stress that it is probably the best strategy to make both plots in an ex-
ploratory phase of the statistical analysis! Most important is to know how to
interpret both graphs correctly. In the next paragraph we list a few advan-
tages and disadvantages of PP and QQ plots. Although there are not many
papers with practical guidelines for two-sample PP and QQ plots, Holmgren
(1995) gives a nice overview of how PP plots may be used in this setting.

A major difference between PP and QQ plots is the scale of the horizontal
and vertical axes. In a QQ plot the points are shown on the same measure-
ment scale of the observations. This is particularly informative when the two-
sample problem is further analysed in a traditional parametric way in which
the focus is on differences in means and/or variances. In Section 8.1.1 we have
seen that pure location-scale differences between F1 and Gr can be expressed
as F−1

1 (p) = μ + σG−1
r (p), which suggests that the empirical QQ plot will

show points that are randomly scattered around a straight line. The slope of
this line and the vertical shift from the 45 degree line provide information on
the parameters μ and σ in the location-scale model. Hsieh (1995) and Hsieh
and Turnbull (1996) give more details on how an empirical QQ plot can be
used to estimate these parameters. More generally, a QQ plot may be used to
get an impression of the shift or treatment function Δ(x). The plot may also
be used to estimate Δ(x); the asymptotic theory can be found in Doksum
(1974). A disadvantage of a plot on the original measurement scales of F1

and Gr is that it makes the plot very sensitive to outliers. With the default
settings of most QQ plots in statistical software, all observations are plotted,
including outliers. The presence of an outlier will therefore move the vast
majority of data points to a corner of the plotting area. The same argument,
however, makes the QQ plot a good tool for detecting outliers. Both axes
of a PP plot, on the other hand, represent probabilities. This makes a PP
plot invariant to monotone increasing transformations of the measurement
scales. Although this makes the PP plot not well suited for extracting infor-
mation on mean differences, a PP plot still contains all information about
the stochastic ordering of F1 and Gr, as well as about the summarising prob-
ability Pr {X1 ≤ Y } (see Section 8.1.1 for more details on the interpretation
in terms of the population PP plot). Because of the importance of the latter
probability, we conclude this section with some more details on how the PP
plot may be used to estimate it.

For simplicity we take Gr = F2. As before, let X1 ∼ F1 and X2 ∼ F2. In
terms of the population PP plot, we found (see (8.5))

Pr {X1 ≤ X2} =
∫ 1

0

F1(F−1
2 (p))dp =

∫
S

F1(x)dF2(x).



210 8 Graphical Tools

A plug-in estimator is obtained by replacing F1 and F2 by their respective
EDFs, ∫

S
F̂1(x)dF̂2(x)

=
∫
S

(
1
n1

n1∑
i=1

I (X1i ≤ x)

)
d

⎛⎝ 1
n2

n2∑
j=1

I (X2j ≤ x)

⎞⎠
=

1
n1n2

n1∑
i=1

n2∑
j=1

∫
S

I (X1i ≤ x) dI (X2j ≤ x)

=
1

n1n2

n1∑
i=1

n2∑
j=1

I (X1i ≤ X2i),

where in the last step we have made use of the property that the function
dI (X2j ≤ x) is zero for all x ∈ S \ X2i, and it is one for x = X2i.

Example 8.1 (The traffic data). Figures 8.5 and 8.6 show the PP and QQ
plots of the traffic dataset. For each of routes 2, 3, 4, and 5 a PP and a QQ
plot are presented. The sample of travel times of route 1 is used as reference
distribution. The R-code is provided below.

PPplot(time~route, data=traffic, groups=c(1,2),
+ xlab="route 1",ylab="route 2",main="PP plot")
QQplot(time~route, data=traffic, groups=c(1,2),
+ xlab="route 1",ylab="route 2",main="QQ plot")
PPplot(time~route, data=traffic, groups=c(1,3),
+ xlab="route 1",ylab="route 3",main="PP plot")
QQplot(time~route, data=traffic, groups=c(1,3),
+ xlab="route 1",ylab="route 3",main="QQ plot")

PPplot(time~route, data=traffic, groups=c(1,4),
+ xlab="route 1",ylab="route 4",main="PP plot")
QQplot(time~route, data=traffic, groups=c(1,4),
+ xlab="route 1",ylab="route 4",main="QQ plot")
PPplot(time~route, data=traffic, groups=c(1,5),
+ xlab="route 1",ylab="route 5",main="PP plot")
QQplot(time~route, data=traffic, groups=c(1,5),
+ xlab="route 1",ylab="route 5",main="QQ plot")

We discuss each of the route comparisons separately.

• Route 2 compared with route 1 (Figure 8.5).
The QQ plot shows points that seem to be scattered quite closely around a
straight line. This indicates that the distributions of the travel times with



8.1 PP and QQ Plots 211

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PP plot

route 1

ro
ut

e 
2

19 20 21 22 23

18
20

22

QQ plot

route 1 route 1

ro
ut

e 
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PP plot

route 1

ro
ut

e 
3

19 20 21 22 23

20
22

24
26

QQ plot

ro
ut

e 
3

Fig. 8.5 PP and QQ plots of the traffic dataset (routes 2 and 3 are compared with the
reference route 1)

routes 2 and 1 probably only differ in terms of means and variances. This
line is almost parallel to the 45 degree line, therefore we do not expect
much difference in scale. The mean travel time with route 2 thus seems to
be about 1 minute smaller than with route 1.
All points in the PP plot are located above the diagonal, indicating that the
distributions of the travel times with route 2 are stochastically smaller than
with route 1. The area under the empirical PP plot is thus larger than 1

2 ,
implying that Pr {X2 ≤ X1} > 1

2 , which says that it is more likely to have
a smaller travel time with route 2 than with route 1.

• Route 3 compared with route 1 (Figure 8.5).
These PP and QQ plots give almost exactly the same expression as the
plots for route 2, except that now the QQ plot clearly shows points that
are scattered around a line that is not parallel to the 45 degree line. This
indicates that the variance of the travel times with group 3 is the largest.
As the points now all lie above the 45 degree line, the mean of the travel
times of route 3 seems to be larger than that of route 1.
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Fig. 8.6 PP and QQ plots of the traffic dataset (routes 4 and 5 are compared with the
reference route 1)

Also the PP plot is similar to the plot of route 2, except that now all points
lie below the diagonal. We thus conclude that the travel times with route
3 are likely to be stochastically larger than with route 1. We may estimate
that Pr {X3 ≤ X1} < 1

2 . We therefore say that it is more likely that route
1 is faster than route 3.

• Route 4 compared with route 1 (Figure 8.6).
The points in the QQ plot do not show a linear relationship, so that F1

and F2 are probably not within the same location-scale family. The curve
crosses the 45 degree line at about 22 minutes. The plot thus suggests that,
given that the travel time is smaller than 22 minutes, route 4 is faster on
average. For travel times larger than 22 minutes, the opposite is observed.
A similar conclusion can be deduced from the PP plot, except that now
the crossing of the diagonal is expressed in terms of percentiles. Here, the
crossing is at the 70th percentile. Furthermore, because there is clearly
a crossing, no (overall) stochastic ordering conclusion is suggested, but
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conclusions in terms of likely orderings are still possible. The estimated
area under the PP plot curve is now slightly larger than 0.5, which provides
only weak evidence that driving along route 4 is more likely to be faster
than route 1. One could, for example, summarise the conclusion as follows.
When in the whole city the traffic is flowing, route 4 will probably be faster
than route 1, but when dense traffic is expected throughout the whole city,
route 1 may be the best option.

• Route 5 compared with route 1 (Figure 8.6).
The PP and QQ plots are similar to those of route 4. The PP plot is now
quite flat and the area under the observed curve is now close to 0.5, so
that in terms of probability there seems to be no preference among routes 1
and 5. Because the crossing with the 45 degree line is now earlier than the
50th percentile, and the QQ plot shows a steep ascent before the crossing,
a left-skewed distributional shape (relative to route 1) is suggested.

8.2 Comparisons Distributions

8.2.1 The Population Comparison Distribution

Just as with the probability plots, a good way of gaining insight into the
interpretation of comparison distributions is first to study the population
version. The population comparison density function has been introduced in
Section 7.4, and can here be written as

rs(u) =
fs(G−1

r (u))
gr(G−1

r (u))
,

where Gr can represent any reference distribution function, and gr is the
corresponding density. Usually the reference distribution is one of the dis-
tributions under study or it is the marginal distribution (7.16). Because the
interpretation of this comparison density is completely similar to the one-
sample case, which has been discussed in detail in Section 3.3.1, we continue
immediately with the estimation of the comparison density.

8.2.2 The Empirical Comparison Distribution

Because the comparison density is basically the density function of Gr(Xs)
with Xs ∼ Fs, it can be estimated using nonparametric density estimation
techniques applied to the transformed data Gr(Xsi) (i = 1, . . . , ns). For the
simple one-sample problem the reference CDF is completely specified under
the null hypothesis, and the transformed data are referred to as the relative
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data. Here, however, the reference distribution is unknown too and has in
turn to be replaced by its EDF, resulting in the quasi relative data,

Ĝrm(Xsi)

(i = 1, . . . , ns), where m is the size of the sample used to estimate Gr.
The properties of quasi-relative data have been studied by Lehmann (1953)
and Lin and Sukhatme (1993). Although basically all nonparametric density
estimation methods can now be applied to the transformed dataset, the the-
oretical properties will be different because of the additional estimation of
Gr. Appropriate theory for the histogram estimator, a kernel density esti-
mator, and an orthogonal series density estimator were provided by Parzen
(1983), Eubank et al. (1987), Alexander (1989), Cwik and Mielniczuk (1993),
Mielniczuk (1992), Li et al. (1996), and Parzen (1999), but for the regression-
based estimators the theory has still to be developed. We do not give the-
oretical details, but the interested reader may find a extensive summary in
Handcock and Morris (1999).

Density estimators based on Poisson local-quadratic regression (see Section
2.8.4) are implemented in the reldist R package. We next illustrate the use of
the comparison density plots on two examples.

Example 8.2 (Traffic data: Route 2 versus route 1). We consider the data
of routes 1 and 2, and we use route 1 as the reference. In Section 8.1.2
we concluded from the QQ plot in Figure 8.5 that the distributions of the
travel times with routes 1 and 2 only show a shift in means. To check this
statement we now plot a comparison density, as well as the components in a
decomposition of the comparison density (see Section 3.3.1 for a discussion
on the decomposition in the one-sample setting). In particular, we consider

r(u) =
f2(F−1

1 (u))
f1(F−1

1 (u))
=

f1L(F−1
1 (u))

f1(F−1
1 (u))

× f2(F−1
1 (u))

f1L(F−1
1 (u))

, (8.9)

where f1L is the density of the reference distribution shifted to have the same
mean as the distribution F2 under study. It is thus the density of X1−μ1+μ2,
where μ1 and μ2 are the means of F1 and F2, respectively. Whereas r(u)
contain the full information on all differences between F1 and F2, the first
factor in (8.9) contains only information about a difference in the means, and
the second factor contains the residual information. Only a mean correction
has been applied, thus the residual comparison density contains information
about all types of shape differences between the distributions F1 and F2 (all
aspects of shape, except the mean).

Figure 8.7 shows the three plots. We first discuss the (overall) comparison
density, shown in the top panel of Figure 8.7. The graph shows clearly a large
comparison density before the 20th percentile of the reference distribution.
This indicates that there are relatively more smaller travel times with route
2 as there are with route 1. At the larger percentiles (>80%) the density of
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Fig. 8.7 Comparison density (top), location effect (middle), and residual shape effect
(bottom) of the route 2 traffic data, with route 1 as reference distribution. The dashed
lines represent the 95% confidence intervals. In the top panel, the histogram of the quasi-
relative data is also shown

travel times with route 2 is smaller than with route 1. These observations
are indeed consistent with the mean-shift conclusion based on the QQ plot.
We now look at the middle panel of Figure 8.7, which shows the compari-
son density of the mean-corrected reference distribution versus the original
reference distribution. This plot thus only contains information about a po-
tential difference in means. If the plot showed a constant density at 1, we
would conclude that there is no mean shift. However, the graph clearly shows
an increased comparison density at small percentiles. Note that the shape
looks closely like the shape of the comparison density in Figure 3.9, which is
a population comparison density of a pure location shift situation. Finally,
we explore the residual comparison density in the lower panel of Figure 8.7.
This plot suggests that no residual shape difference exists between F1 and
F2, after elimination of the mean effect (note that the range of the vertical
axis is much smaller than for the other two graphs).
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Based on this discussion we can conclude that the distributions of the
travel times with routes 1 and 2 probably only differ in means. Results of a
more formal analysis, using statistical tests for the two-sample problem, are
presented later.

Finally, we give the R code we have used to construct the graphs. We did
not specify any smoothing parameters. The default is bandwidth selection by
means of generalised cross-validation. The location effect is contained in the
rdLoc object, which is generated with the reldist function with the arguments
show=“effect”, and decomp=“locadd”. The latter specifies that the reference
distribution has to be corrected additively for the mean, and the former says
that the effect, i.e.

f1L(F−1
1 (u))

f1(F−1
1 (u))

,

should be plotted. For constructing the third graph (rdRes object), we have
used the arguments show=“residual” and decomp=“locadd”, saying that now
the residual effect after additive location correction, i.e.

f2(F−1
1 (u))

f1L(F−1
1 (u))

,

must be plotted. The argument location=“mean” specifies that the locations
are estimated as sample means.

> par(mfrow=c(3,1))
> rd0<-reldist(y=traffic[traffic$route==2,2],
+ yo=traffic[traffic$route==1,2],ci=T,main="overall",
+ bar="yes")
> lines(rd0$x,rd0$ci$l,lty=2)
> lines(rd0$x,rd0$ci$u,lty=2)
> rdLoc<-reldist(y=traffic[traffic$route==2,2],
+ yo=traffic[traffic$route==1,2],main="location",
+ show="effect",decomp="locadd",ci=T,location="mean")
> lines(rdLoc$x,rdLoc$ci$l,lty=2)
> lines(rdLoc$x,rdLoc$ci$u,lty=2)
> rdRes<-reldist(y=traffic[traffic$route==2,2],
+ yo=traffic[traffic$route==1,2],main="residual",
+ show="residual",
+ decomp="locadd",ci=T,location="mean")
> lines(rdRes$x,rdRes$ci$l,lty=2)
> lines(rdRes$x,rdRes$ci$u,lty=2)

Example 8.3 (Traffic data: Route 3 versus route 1). We now do a similar
exploratory analysis, but now we compare route 3 with the reference route
1. In Section 8.1.2 we have presented the QQ plot in Figure 8.5, from which
we concluded that both distributions may differ in mean and in scale. To
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study mean and scale differences, we estimate here the comparison density
and decompose it into three factors. In particular,

r(u) =
f2(F−1

1 (u))
f1(F−1

1 (u))
=

f1L(F−1
1 (u))

f1(F−1
1 (u))

×f1LS(F−1
1 (u))

f1L(F−1
1 (u))

× f2(F−1
1 (u))

f1LS(F−1
1 (u))

, (8.10)

where now the first and the second factor correspond to the location and the
scale effect, respectively, and the last factor again contains the information
on the residual shape differences between F1 and F2, where now the shape
refers to all distributional characteristics, expect location and scale. In this
example, the locations and scales are estimated by the sample means and the
sample standard deviations.

The comparison densities are shown in Figure 8.8. The overall comparison
density indicates a larger density of long travel times with route 3 as com-
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Fig. 8.8 Comparison density (top left), location effect (top right), scale effect (bottom
left), and residual shape effect (bottom right) of the route 3 traffic data, with route 1 as
reference distribution. The dashed lines represent the 95% confidence intervals. In the top
left panel, the histogram of the quasi-relative data is also shown
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pared to route 1, and the opposite is observed for the 80% smallest travel
times. There seems to be a local increase in comparison density around the
65th percentile of the reference distribution, but the confidence intervals sug-
gest this is not significant. In the top right panel the pure location effect is
visualised. Again this looks similar to the prototype shown in Figure 3.9, so
that we may conclude that there is evidence that route 3 has longer travel
times on average. The scale differences between the two routes can be read
from the bottom left panel of Figure 8.8. This plot looks very much like the
population comparison density in Figure 3.10, which results from a pure scale
effect. We may thus conclude that the variance of the travel times with route
3 is the largest. After correcting for mean and scale differences, the compar-
ison density in the bottom-right panel shows the residual shape differences.
There seems to be almost no residual difference left (note the scale on the
vertical axis), so that we may conclude from this exploratory analysis that
the distribution of the travel times with route 3 has a larger mean and a
larger variance as compared to group 1, but no other characteristics of the
distributions appear to be distinct.

The R code is given below. We list the code in two parts. First we give
the code for producing the location effect graph, which is exactly as in the
previous example.

> par(mfrow=c(2,2))
> rd0<-reldist(y=traffic[traffic$route==3,2],
+ yo=traffic[traffic$route==1,2],ci=T,main="overall",
+ bar="yes")
> lines(rd0$x,rd0$ci$l,lty=2)
> lines(rd0$x,rd0$ci$u,lty=2)
> rdLoc<-reldist(y=traffic[traffic$route==3,2],
+ yo=traffic[traffic$route==1,2],main="location",
+ show="effect",
+ decomp="locadd",ci=T,location="mean")
> lines(rdLoc$x,rdLoc$ci$l,lty=2)
> lines(rdLoc$x,rdLoc$ci$u,lty=2)

Before the plot of the scale effect can be calculated we need to transform
the reference data manually. The scale effect plot is basically a compari-
son density of the location- and scale-corrected reference data versus the
location-corrected reference data. The reldist function can, however, only
plot location- and scale-corrected reference data versus the untransformed
reference data. Therefore we need to perform the location correction trans-
formation manually.

> r1<-traffic[traffic$route==1,2]
> r3<-traffic[traffic$route==3,2]
> yoL<-r1-mean(r1)+mean(r3)



8.2 Comparisons Distributions 219

With these transformed data we produce the scale effect graph. The arguments
decomp=“lsadd” and show=“effect” say that the reference data have to
be corrected for both location and scale, and this corrected dataset has
to be compared with the reference data, which are now the manually lo-
cation corrected data in yoL. In the R code for the last graph we read
show=“residual”,decomp=“lsadd” to construct the residual comparison den-
sity after location and scale correction.

> rdScale<-reldist(y=traffic[traffic$route==3,2],yo=yoL,
+ main="scale",show="effect",decomp="lsadd",ci=T,
+ location="mean",scale="standev")
> lines(rdScale$x,rdScale$ci$l,lty=2)
> lines(rdScale$x,rdScale$ci$u,lty=2)
> rd<-reldist(y=traffic[traffic$route==3,2],
+ yo=traffic[traffic$route==1,2],main="residual",
+ show="residual",decomp="lsadd",ci=T,
+ location="mean",scale="standev")
> lines(rdRes$x,rdRes$ci$l,lty=2)
> lines(rdRes$x,rdRes$ci$u,lty=2)



Chapter 9

Some Important Two-Sample Tests

We start this chapter with some general guidelines for setting null and
alternative hypotheses, while stressing their relation with the choice of a
test statistic and the interplay between the null hypothesis and the distribu-
tional assumptions one is willing to make. In Section 9.2 this is illustrated for
the two-sample problem in the discussion of the well-known Wilcoxon rank
sum test. We study the Wilcoxon test from several points of view. From this
discussion it becomes clear that its interpretation is not always as clear-cut as
one would hope. For example, we demonstrate that the test may not always
be used for detecting differences in means. This brings us back to the diag-
nostic property that was also important in Part I. We further elaborate on
this in Section 9.3, in which we again consider the Wilcoxon test as an exam-
ple. The same reasoning is applied in Section 9.5, where we discuss some of
the nonparametric tests for detecting differences in scale. Section 9.6 focusses
on the Kruskal–Wallis test for the K-sample problem, and we conclude this
chapter with an introduction to adaptive tests.

The objective of this chapter is twofold. First, some of the popular and
important rank tests are described. These rank tests appear again in the
next chapters as components of smooth and EDF tests. The second objective
is to show that the interpretation of many tests depends on the interplay
between the distributional assumptions and the hypotheses. This is important
for understanding how correct and informative conclusions may be obtained
when using hypotheses tests in a statistical analysis.

O. Thas, Comparing Distributions, 221
DOI 10.1007/978-0-387-92710-7 9, c© Springer Science+Business Media, LLC 2010



222 9 Some Important Two-Sample Tests

9.1 The Relation Between Statistical Tests
and Hypotheses

9.1.1 Introduction

In the ideal situation the following procedure towards hypothesis testing could
be considered scientifically optimal. First the research question should be
translated into a null hypothesis and an alternative hypothesis, and only
then should we look for an appropriate test. With “appropriate” we mean
that the test must be consistent for testing specifically for the selected null
and alternative hypotheses, and the test must be unbiased under a set of
assumptions that may be reasonably expected to hold in practice, or the
assumptions should be at least verifiable. As “consistency” is an asymptotic
property, it may in practice be replaced by “powerful”. In general a test
consists of three components: the test statistic, say Tn, a null distribution, and
a descision rule. We do not provide more details on the latter as we assume
that the decision rule is implicitely included in the procedure for p-value
calculation which relies on the null distribution, together with a specification
of a significance level, say α. We illustrate this general outline by means of
the traditional two-sample t-test.

Example 9.1 (The two-sample t-test). Among marine biologists it is well
known that PCBs easily accumulate in the fat tissue of shrimp. In this ex-
periment two groups of 18 shrimp (actually 18 samples of shrimp, because
the PCB concentration is measured by extracting the fat of 100 g shrimp)
were grown under different conditions: the “classical” method, and a more
expensive new method. The shrimp were randomised over the two groups.
The research question is to assess whether the mean PCB concentration is
affected by the growing conditions. It is very relevant here to phrase the
question in terms of means, because this mean can be used to estimate the
total intake of PCBs for a person that eats, for example, 1 kg of shrimp each
year. It is particularly this accumulated amount of PCB that is likely to be
associated with health risks.

From the description of the problem we may deduce that the null and
alternative hypotheses have to be formulated in terms of means. Let μ1 and
μ2 denote the means of PCB concentrations in shrimp grown with the classical
and the new method, respectively. The null hypothesis is thus H0 : μ1 = μ2.
Because the new growing technique is more expensive than the old one, we
are not interested in detecting μ1 < μ2, as this would only result in the
conclusion to stick with the old method. Therefore the alternative hypothesis
is set to H1 : μ1 > μ2.

Now that the hypotheses are specified we start searching for an appropriate
test. In this phase we may take into account what distributional assumptions
we are prepared to assume. Suppose that we know from previous experiments
that the PCB concentrations are quite well normally distributed. In this case
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we may opt for the two-sample Student’s t-test or the Welch test. The former
may only be used when the two population variances are equal. The test
statistic is given by

Tn =
X̄1 − X̄2√

S2
p

(
1

n1
+ 1

n2

) , (9.1)

where S2
p is the pooled variance estimator, and X̄1 and X̄2 are the two sam-

ple means. Under the normality condition the null distribution of Tn is a
t-distribution with n1 + n2 − 2 degrees of freedom, which can be used for
the calculation of the one-sided p-value. This is an exact result under the
assumed conditions.

We conclude this example with one more comment. Suppose we were not
in the position to make the distributional assumption of normality. Conse-
quently, the null distribution of Tn is no longer a t-distribution. However, if
the test were to be used on large samples, the central limit theorem guaran-
tees that Tn has asymptotically a standard normal null distribution, and thus
Tn can still be used as a test statistic. The assumption of equality of variance
can still not be discarded when the pooled variance estimator is used.

This example illustrates that the test statistic measures the information in
the sample against the null hypothesis in favor of the alternative hypothesis.
Also note that the t-test statistic in (9.1) is basically a scaled estimator of
μ1−μ2, and that the hypotheses are also formulated in terms of μ1−μ2. The
example also suggests that good statistical practice should keep the following
sequence in mind.

1. Formulate the null and alternative hypotheses.
2. What distributional assumptions can be made (they should be verifiable).
3. Select an appropriate test statistic for which

(a) the null distribution is known, or can be enumerated or approximated
(taking 1 and 2 into account)

(b) the test is consistent (or powerful) for testing H0 against H1.

4. Compute the p-value.

Usually steps 2 and 3(a) are difficult, and they go hand in hand. This is
illustrated next for the two-sample t-test.

Example 9.2 (The two-sample t-test). In Example 9.1 the null hypothesis was
set at H0 : μ1 = μ2, and normality of F1 and F2 was assumed. Suppose now
that the researcher knows that this assumption is unlikely to hold, whereas
he or she has reason to believe that equality of variances is to be expected.
A solution may exists then in extending the null hypothesis to the general
two-sample null hypothesis, H0 : F1 = F2, which implies the randomisation
hypothesis (see Definition 7.2 in Section 7.1.2). This allows the formulation of
the test as a permutation test. When the same test statistic (9.1) is used the
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test is still consistent for detecting differences in means, as specified in H1.
This consistency property is a consequence of the form of the t-test statistic,
which is a scaled estimator of μ1 − μ2.

In the remainder of this section we give some more examples of tests.
We state the test statistics, null and alternative hypotheses, distributional
assumptions, and null distributions. In particular, we look for the least re-
strictive null hypotheses and the most general alternative hypothesis. With
the least restrictive null hypothesis, we mean that the null distribution of
the test statistic is valid under this null hypothesis, and assuming that the
distributional assumptions hold true; the null hypothesis combined with the
assumptions should imply as few restrictions as possible. The most general
alternative hypothesis consists of the largest set of conditions for which the
test is consistent. We make this exercise for some well known tests that are
closely related to the general two- and K-sample problems. Among others,
we include the two-sample t-test, the Wilcoxon rank sum test (equivalent to
the Mann–Whitney test), the Mood test, the F -test in a one-way ANOVA,
and the Kruskal-Wallis rank test. All these test statistics reappear in later
chapters. With this discussion we hope to provide a deeper understanding of
how these tests work, and how statistical analyses based on them should be
interpreted.

It is very often difficult to distinguish between the null hypothesis and the
distributional assumption. To conclude this introduction we illustrate this for
the two-sample t-test.

Example 9.3 (The two-sample t-test). Consider again the parametric two-
sample Student t-test. This test is usually presented as the parametric test for
testing the null hypothesis H0 : μ1 = μ2 against, e.g., H1 : μ1 > μ2, because it
relies on the distributional assumption that the observations of both samples
are normally distributed with equal variances. It is thus assumed that F1 and
F2 are normal distributions with equal variances. The only parameters that
are left unspecified are the common variances and the means, but the latter
are the subject of the null hypothesis. Combining the null hypothesis with
these distributional assumptions brings us back to the general two-sample
null hypothesis (6.1), but then with the additional normality assumption.
We can even go one step further: if we have large samples, the central limit
theorem replaces the normality requirement, and, we could thus just as well
have specified the null hypothesis as (6.1), i.e., H0 : F1 = F2, with only the
“mild” distributional assumption that the variances of F1 and F2 are the
same. Or, we could still set H0 : μ1 = μ2, again assuming equal variances.
The latter is less restrictive, and using H0 : μ1 = μ2 instead of H0 : F1 = F2

does not affect the asymptotic null distribution. The null hypothesis in terms
of the means is therefore the least restrictive null hypothesis in this example.
The alternative hypothesis, however, remains μ1 > μ2, as the t-test statistic
is based on an estimator of the difference between the two sample means and
the test is thus only consistent for this alternative (under the assumptions).
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Table 9.1 Summary of the modes of useage of the two-sample t-test statistic

H0 Assumptions Null distribution H1

μ1 = μ2 F1 and F2 normal tn1+n2−2 μ1 �= (or < or >) μ2

σ2
1 = σ2

2

μ1 = μ2 σ2
1 = σ2

2 N(0, 1) μ1 �= (or < or >) μ2

n1 and n2 large
F1 = F2 permutation μ1 �= (or < or >) μ2

The general two-sample null hypothesis H0 : F1 = F2 still makes sense
here if we agree to combine the two-sample t-test statistic with its exact
permutation null distribution. This is approximately what we have done in
Example 7.1. It is, however, only the least restrictive null hypothesis when
the sample sizes are small without the normality assumption. The alterna-
tive hypothesis, however, again remains unchanged: μ1 > μ2. The reason is
again that the test statistic (9.1) only measures deviations from H0 in terms
of differences between the means. The discussion given in this example is
summarised in Table 9.1.

9.2 The Wilcoxon Rank Sum and the Mann–Whitney
Tests

9.2.1 Introduction

The Wilcoxon rank sum test and the Mann–Whitney test are among the most
popular nonparametric tests. They were proposed by Wilcoxon (1945) and
Mann and Whitney (1947). These tests are included in most basic statistics
courses, in which they are often presented as the nonparametric analogues of
the two-sample t-test. More specifically, it is frequently suggested that these
nonparametric tests should be used when the normality assumption underly-
ing the t-test does not hold. In this section we demonstrate that the Wilcoxon
and the Mann–Whitney tests are actually tests for testing hypotheses that
are not necessarily expressed in terms of means, so that they may not just be
used as surrogates for the t-test. The hypotheses that they test for, however,
are of interest in their own right, so that it is statistically more correct to
first think about which hypotheses have to be tested, and only then select the
appropriate test. The Wilcoxon and the Mann–Whitney statistics are equal
up to a monotonic transformation, but from a didactical point of view we
like to start with the latter.

It is only when some additional distributional assumptions on F1 and F2

are imposed, that the Wilcoxon or Mann–Whitney test statistic can be used
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for testing hypotheses about means. Under some of these assumptions, the
optimality theory of Section 7.2.2 applies. This is the topic of Section 9.2.5.

9.2.2 The Hypotheses

The easiest way to introduce the Mann–Whitney test is by considering it as
a test for testing the general two-sample null hypothesis

H0 : F1(x) = F2(x) for all x ∈ S

against the alternative

H1 : Pr {X1 ≤ X2} �= 1
2
,

where X1 and X2 have distribution functions F1 and F2, respectively. The
probability used in the formulation of the alternative hypothesis is calcu-
lated as

π = Pr {X1 ≤ X2} =
∫
S

Pr {X1 ≤ X2|X2 = x} f2(x)dx =
∫
S

F1(x)dF2(x),

which is the area under the PP plot and which allows formulating conclusions
in terms of likely orderings. See Sections 7.6 and 8.1.1.2 for more details. Thus,
if F1 = F2, we find

π = Pr {X1 ≤ X2} =
∫
S

F1(x)dF2(x) =
∫ 1

0

udu =
1
2
,

which explains the alternative hypothesis. Although H1 is not directly inter-
pretable in terms of means, it is very informative and it has a simple inter-
pretation. For example, suppose Pr {X1 ≤ X2} = 0.9, in which the indices 1
and 2 refer to a placebo and a treatment group in a randomised trial, and
further suppose that a large response is an indication of an improvement of
the illness. This statement says that it is much more likely that the response
of a treated patient is larger than the response of a nontreated patient (inde-
pendently sampled patients). If this conclusion is statistically significant, it is
very relevant evidence to a physician that most of his patients will be better
off with the treatment. This interpretation is further illustrated in the exam-
ple of Section 9.2.8. Note, however, that this is not a causal interpretation, as
X1 and X2 refer to two independent (and different) patients. In this context,
π may be considered as an effect size parameter. In Section 7.6 it was related
to likely ordering. In particular, when π > (<) 1

2 we say that X2 (X1) is
likely larger than X1 (X2). Stochastic ordering was also discussed in Section
8.1.1.2, where it was used to indicate inequality of distribution functions.
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Note that F1(x) > F2(x) for all x ∈ S implies that Pr {X1 ≤ X2} > 1
2 .

Stochastic ordering implies likely ordering, but not necessarily the other way
around.

9.2.3 The Test Statistics

We start with the Mann–Whitney test statistic, which is based on an estima-
tor of π = Pr {X1 ≤ X2}. For later purposes it is important to remember that
Pr {X1 ≤ X2} = Pr {X1 < X2} when X1 and X2 are continuous random vari-
ables. A naive estimator of Pr {X1 ≤ X2} is given by the empirical estimator
of this probability, obtained by counting the number of events X1i ≤ X2j

(i = 1, . . . , n1; , j = 1, . . . , n2) in the sample, and dividing it by the total
number of pairs (X1i, X2j). As the total number of pairs equals n1n2, the
estimator may be written as

π̂ =
1

n1n2

n1∑
i=1

n2∑
j=1

I (X1i ≤ X2j) . (9.2)

Later, in Section 9.2.6, we focus on π̂ as an estimator, but here we consider π̂
as a test statistic. The Mann–Whitney statistic is usually defined as MW =∑n1

i=1

∑n2
j=1 I (X1i ≤ X2j), so that π̂ = MW/(n1n2). It is more conventional

to write MW as a rank statistic based on the ranks of the observations in
the pooled sample. Let Zi (i = 1, . . . , n) denote an observation of the pooled
sample {X11, X12, . . . , X1n1 , X21, . . . , X2n2}. First, we assume that there are
no ties; i.e., there occur no two equal Zi observations. Note that this happens
theoretically with probability one if the observations arise from a continuous
random variable. In practice, however, rounding and measuring with a finite
accuracy often introduce ties in the data. As before, the rank of Zi in the
pooled sample is defined as

Ri=R(Zi)= (number of observations in the sample ≤ Zi) =
n∑

j=1

I (Zj ≤ Zi).

With this definition the MW statistic becomes

MW =
n1∑
i=1

n2∑
j=1

I (X1i ≤ X2j)

=
n2∑

j=1

(number of X1i ≤ X2j)
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=
n2∑

j=1

((number of X1i and X2i ≤ X2j) − (number of X2i ≤ X2j))

=
n2∑

j=1

(R(X2j) − number of X2i ≤ X2j)

=
n2∑

j=1

R(X2j) −
n2∑

j=1

j

=
n2∑

j=1

R(X2j) − n2(n2 + 1)
2

.

Set U =
∑n2

j=1 R(X2j), which is known as the Wilcoxon rank sum statistic.
It is the sum of the ranks of the observations in the second sample, for which
the ranking is relative to the pooled sample, and it is thus related to the
Mann–Whitney statistic by

MW = U − n2(n2 + 1)
2

.

This equality implies that the tests based on MW and U will be completely
equivalent. We therefore prefer to rename both tests the Wilcoxon–Mann–
Whitney test (WMW test). The U statistic can be easily recognised as a
simple linear rank statistic of the form Tn =

∑n
i=1 cian(Ri), which was intro-

duced in Definition 7.3. We adopt the convention to order the pooled sample
observations Z1, . . . , Zn so that the first n1 Zis are the original first sample
observations. Let ci = 0 for observation i in the first sample and ci = 1 when
observation i is in the second sample, and an(Ri) = R(Zi).

9.2.4 The Null Distribution

In this section we discuss the null distributions of the WMW statistic under
the general two-sample null hypothesis H0 : F1 = F2. Many rank tests have
the advantage that their null distributions only depend on the sample sizes
(n1 and n2), and not on the distribution F1 = F2 of the observations under the
null hypothesis. Such tests are said to be distribution free. We next give some
more details on the exact null distribution of the U statistic. For finite sample
sizes, a rank statistic typically has a discrete distribution. Its probability
function can be written as

Pr {U = u|H0} =
1(
n
n2

)h(n2, u) =
n1!n2!

n!
h(n2, u), (9.3)
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where h(n2, u) is the number of size n2 subsets {i1, . . . , in2} of {1, . . . , n} so
that

∑n2
j=1 ij = u. In general there are two ways for computing this proba-

bility function:

1. The exact null distribution can be enumerated as a permutation distribu-
tion as outlined in Section 7.1. This requires m =

(
n
n2

)
permutations, but

because the test statistic only depends on the data through the sample
sizes n1 and n2, the enumeration of the permutation distribution must
be performed only once for each set of sample size. From the test statis-
tics U (i) (i = 1, . . . , m) calculated under the group of m permutations, the
count function h(n2, u) in (9.3) is simply the number of U (i) that equals u.
When n1 and n2 are large, the exact permutation distribution may be ap-
proximated by Monte Carlo simulations, as explained in Section 7.1.2.3.

2. The major problem in the calculation of (9.3) is the computation of
h(n2, u). Instead of computing them based on m =

(
n
n2

)
permutations

(or Monte Carlo approximations), more intelligent algorithms have been
proposed. These numerical techniques are beyond the scope of this book;
we refer the interested reader to Cheung and Klotz (1997) and van de Wiel
(2001) and the references therein.

In the examples of Section 9.2.8 we give more details on how these methods
are implemented in the R software.

When both sample sizes n1 and n2 are large, Theorem 7.2 may be applied
directly to find the limiting null distribution of the U and the MW statistics.
In particular, under H0, as min(n1, n2) → ∞,

U − n2(n+1)
2√

n1n2(n + 1)/12
d−→ N(0, 1). (9.4)

By the equivalence of the U and the MW statistics, a similar asymptotic
result also holds for the Mann–Whitney statistic MW. Thus both the exact
permutation and the asymptotic version of the WMW test are tests for the
same null and alternative hypotheses. In particular, for the MW statistic,
under H0, as min(n1, n2) −→ ∞,

MW − n1n2
2√

n1n2(n + 1)/12
d−→ N(0, 1). (9.5)

Finally we like to stress that the mean μn = E {MW} = (n1n2)/2 and
the variance σ2

n = Var {MW} = n1n2(n + 1)/12 which appear in (9.5) are
computed under the null hypothesis H0 : F1 = F2, using the formulae (7.7)
and (7.8).

In view of later discussions it is important to have expressions for E {MW}
and Var {MW} under arbitrary F1 and F2. Although the mean and variance
may be calculated by means of a very general result of Chernoff and Savage
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(1958), we prefer to give more direct calculations, for didactical reasons. From
the definition of MW we immediately find

E {MW} = E

⎧⎨⎩
n1∑
i=1

n2∑
j=1

I (X1i ≤ X2j)

⎫⎬⎭
=

n1∑
i=1

n2∑
j=1

E {I (X1i ≤ X2j)}

=
n1∑
i=1

n2∑
j=1

Pr {X1i ≤ X2j}

= n1n2Pr {X1 ≤ X2} = n1n2π, (9.6)

which reduces to (n1n2)/2 under H0 : F1 = F2. For the calculation of the
variance the algebra is slightly more complicated as it also involves covari-
ances. For details we refer to Lehmann (1951) or Birnbaum and Klose (1957),
who arrive at the expression

Var {MW} = n1n2

{
(n1 − 1)φ2

1 + (n2 − 1)φ2
2 + π(1 − π)

}
, (9.7)

where

φ2
1 = Varf2 {F1(X2)} =

∫
S

F 2
1 (x)dF2(x) − π2

φ2
2 = Varf1 {F2(X1)} =

∫
S

F 2
2 (x)dF1(x) − (1 − π)2 .

In Section 9.2.6 we express φ2
1 and φ2

2 in terms of covariances, but for now it
sufficient to recognise that the first terms in φ2

1 and φ2
2 are again probabilities.

In particular, let X1, X11 and X12 denote i.i.d. random variables from F1,
and let X2, X21 and X22 denote i.i.d. random variables from F2. The the first
term in φ2

1 equals Pr {max(X11, X12) ≤ X2}, and, similarly, the first term
in φ2

2 equals Pr {max(X21, X22) ≤ X1}. Both probabilities reduce to 1
3 under

H0 : F1 = F2, so that (9.7) becomes n1n2(n+1)/12 under the null hypothesis.

9.2.5 The WMW Test as a LMPRT

The WMW test statistic is also the LMPRT (Section 7.2.2) under the
location-shift model with the additional distributional assumption that F1

and F2 are logistic distributions. The one-parameter logistic distribution with
location parameter μ has density and cumulative distribution function

f(x;μ) =
exp(−(x − μ))

(1 + exp(−(x − μ)))2
and F (x;μ) =

1
1 + exp(−(x − μ))

.
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Using the notation of Section 7.2.2, the location-shift alternative

f1(x) = f2(x − Δ)

corresponds to (7.13) with f1(x) = f(x; 0) and f2(x−Δ) = f(x;Δ) (f being
the standard logistic density), and with cji = 0 for j = 1 and i = 1, . . . , n1,
and cji = 1 for j = 2 and i = 1, . . . , n2.

The optimal scores, as given in Theorem 7.5, are defined in terms of the
expectations of

∂
∂μf(X;μ)

∣∣∣
μ=0

f(X; 0)
=

1 − exp(−X)
1 + exp(−X)

= 2F (X) − 1.

Thus, with X(i) the order statistics of a sample of n i.i.d. logistic variates,

an(i) = Ef

{
2F (X(i)) − 1

}
= 2

i

n + 1
− 1,

incorporating a continuity correction. The LMPRT statistic (7.14) becomes

Tn =
2∑

j=1

nj∑
i=1

cjian(Rji) =
n2∑
i=1

(
2
R(X2i)
n + 1

− 1
)

=
2

n + 1

⎛⎝ n2∑
j=1

R(X2j) − n2(n + 1)
2

⎞⎠,

in which Corollary 7.1 is used. Hence, the test statistic is, up to a scaling fac-
tor, equal to the Wilcoxon rank sum test statistic. In Section 9.4 several more
optimal rank tests are discussed for other parametric location-shift models.

Finally we examine the asymptotic efficiency (see Section 2.9.2.2) of the
Wilcoxon test under sequences of local alternatives and under several distri-
butional assumptions on F1 and F2. In particular we consider the sequence
Δn = δ/

√
n, with δ > 0. The WMW test is compared to the two-sample

t-test, because this is the most powerful test under the traditional normality
assumption. Pitman (1948) showed that in the present context the asymp-
totic relative efficiency (ARE) may be calculated as

AREW,t = 12σ2
f

(∫
S

f2(x)dx

)2

,

where f is the density function of the location-shift model, and σ2
f is the

variance of this distribution. Table 9.2 shows some AREs. From this table we
learn that using the WMW test for detecting a location shift is often much
better than using the two-sample t-test. Even in the situation of normality,
for which the two-sample t-test is known to be the most powerful test, the
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Table 9.2 Some AREs of the Wilcoxon versus the two-sample t-test for several
distributions f

f Normal Uniform Logistic Double exponential Cauchy Exponential
ARE 0.955 1.000 1.097 1.500 ∞ 3.000

WMW test does only slightly worse: an ARE of 0.955! The WMW test is
particularly powerful for distributions with heavy tails. Hodges and Lehmann
(1956) showed that the ARE of the WMW test versus the two-sample t-test
can never be smaller than 0.864. This property, together with the observation
that the ARE is often much larger than one, suggests that it is generally
better to choose the WMW test, particularly in situations where the data
analyst does not know a priori how the observations will be distributed. Note,
however, that the recommendation still relies on the conditions to make the
WMW test informative for detecting a shift in means.

9.2.6 The MW Statistic as an Estimator of π

Because the WMW test is basically useful for inference on the probability
π = Pr {X1 ≤ X2}, it is informative to also report an estimate of this pa-
rameter. In Section 9.2.2 we have illustrated that π may be a very usefull
and good interpretable effect size parameter. We have also already argued
that π may be estimated by π̂ = MW/(n1n2) = (1/(n1n2))

∑n1
i=1

∑n2
j=1 Iij

(Equation (9.2)), with Iij = I (X1i ≤ X2j). Lehmann (1951) showed that π̂
is the uniform minimum variance unbiased estimator within a large class of
continuous distributions. From this expression the variance of π̂ may be found
immediately,

Var {π̂} =
1

n1n2
π(1 − π) [1 + (n1 − 1)ρ1 + (n2 − 1)ρ2] , (9.8)

with ρ1 = corr(Iij , Ikj) (i �= k) and ρ2 = corr(Iij , Iik) (j �= k). These
correlations may be rewritten as ρi = (pi − π2)/(π − π2) (i = 1, 2) with
p1 = Pr {IijIkj = 1} = Pr {max(X1i, X1k) ≤ X2j} (i �= k) and p2 =
Pr {IijIik = 1} = Pr {X1i ≤ min(X2j , X2k)} (j �= k). Note the relation with
(9.7) when discussing the WMW test. When we write

ν =
n1n2

1 + (n1 − 1)ρ1 + (n2 − 1)ρ2
, (9.9)

the variance of π̂ becomes

Var {π̂} =
π(1 − π)

ν
. (9.10)

In the next paragraph we describe a method for confidence interval estimation.
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Many authors proposed confidence intervals for π. Newcombe (2006a,b)
gives a good overview of the confidence intervals that have been proposed in
the statistical literature. He evaluated ten confidence intervals in a simula-
tion study (Newcombe (2006b)). Some of the confidence intervals are actually
based on parametric assumptions on F1 and F2, so that the variance of the es-
timator of π = Pr {X1 ≤ X2} =

∫ 1

0
F1(F−1

2 (p))dp depends on the parameters
of F1 and F2 and has a rather simple expression. Replacing these parame-
ters by their consistent estimators results in a confidence interval. From his
simulation study he concluded that these confidence intervals usually have
coverages close to the nominal level, even when the parametric assumptions
are not satisfied. Here, however, we prefer using a method that does not ex-
plicitly rely on such parametric assumptions. Many of the confidence intervals
that have been described in the literature differ with respect as to how ν is
estimated in the denominator of (9.10). We give the confidence interval of
Halperin et al. (1987) with the modification of Mee (1990). We first define
some statistics. Unbiased estimators of p1 and p2 are given by

p̂1 =
1

n1n2(n1 − 1)

n1∑
h�=i=1

n2∑
j=1

IijIhj and p̂2 =
1

n1n2(n2 − 1)

n1∑
i=1

n2∑
k �=j=1

IijIik.

(9.11)

With these estimators ρi may be estimated as ρ̂i = (p̂i − π̂2)/(π̂ − π̂2),
i = 1, 2. These estimators are now combined with an expression of the jacknife
estimator of ν of Sen (1967), resulting in

ν̂ =
n1n2

1+(n1−1)ρ̂1
1−1/n2

+ 1+(n2−1)ρ̂2
1−1/n1

.

The 1 − α confidence interval of π is then{
π :

|π − π̂|√
π(1 − π)

≤ zα/2√
ν̂

}
,

which is an interval with lower and upper bounds given by

1
1 + C

[
π̂ +

1
2
C ±

√
C

(
π̂(1 − π̂) +

1
4
C

)]
,

with C = zα/2/
√

ν̂.
Finally, Mee (1990) further suggested an improvement of the interval in

the case where π̂ is very close to one of the extreme probabilities 0 or 1, π̂ or
1 − π̂ < 1/(2

√
n1n2). He suggested estimating ν after adding a constant to

the second sample observations X2j (j = 1, . . . , n2). The constant has to be
chosen so that π̂ or 1 − π̂ = 1/(2

√
n1n2).
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9.2.7 The Hodges–Lehmann Estimator

In Section 8.1.1 we have introduced the location-shift model in which the
parameter Δ quantifies the shift. Although under the location-shift model
assumptions the shift parameter may be well estimated as the difference
in sample means or sample medians, it is good statistical practice to use
an estimator which is closely related to the test statistic used for testing
hypotheses about that parameter. If the WMW test is used, the Hodges–
Lehmann estimator is the most natural choice. The rationale of this estimator
is to find a shift, say Δ̂, so that when this Δ̂ is added to the observations in
the second sample, the Wilcoxon rank sum statistic U equals its mean under
the null hypothesis, n2(n + 1)/2. Thus the p-value of the WMW test applied
to this aligned dataset would be maximal. This Hodges–Lehmann estimator
Δ̂ is usually calculated as

Δ̂ = median ({X1i − X2j : i = 1, . . . , n1; j = 1, . . . , n2}) ;

i.e., it is the median of all n1n2 differences between an observation from the
first and an observation from the second sample. See Hodges and Lehmann
(1983) for an overview of the applicability of their estimator.

The 1−α confidence interval of Δ is also based on the Wilcoxon rank sum
test (Bauer (1972)). Let uα/2 denote the 1− α/2 percentile of the exact null
distribution of the Wilcoxon rank sum statistic U . Define

cα =
n2(n + 1)

2
+ 1 − uα/2, (9.12)

and let D(1), . . . , D(n1n2) denote the n1n2 order statistics of the pairwise
differences X1i − X2j (i = 1, . . . , n1; j = 1, . . . , n2). The lower and upper
limits are then given by D(cα) and D(n1n2+1−cα), respectively.

For large n1 and n2 a large sample approximation of the confidence interval
may be considered. It is based on the normal approximation of the WMW
test statistic. This only requires replacing (9.12) by

cα =

⌊
n1n2

2
− zα/2

√
n1n2(n + 1)

12

⌋
,

where zα/2 is the 1−α/2 percentile of the standard normal distribution, and
�x� denotes the largest integer not larger than x.

9.2.8 Examples

In this section we give three examples. In the first two examples the travel
times of routes 2 and 3 are compared to the travel times with the reference
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route 1. These could be considered as didactical examples, as everything is
very clear-cut. The final example in which the data of gene 3 are analysed,
is a bit more elaborate. In all three examples we start off with presenting
the results of the WMW tests (exact and asymptotic approximation), and
by examining several distributional assumptions we formulate conclusions.
Sometimes we also present results of the t-test. These examples are primarily
meant as a didactical aid; in reality we usually do not start with present-
ing results of a test, but rather we first think about the problem, formulate
hypotheses and assumptions, verify assumptions, and finally perform the ap-
propriate test.

Example 9.4 (The traffic data: Routes 1 and 2). The next R code gives the
exact and asymptotic WMW test results. For the first two WMW tests we
have used the coin R package of Hothorn et al. (2006), as their methods allow
for exact (or approximated exact) p-values for larger sample sizes. We also
use the wilcox.test function in the standard R stats library.

> wilcox_test(time~route,data=traffic12,
+ distribution=approximate(B=10000),conf.int=T)

Approximative Wilcoxon Mann-Whitney Rank Sum Test

data: time by route (1, 2)
Z = 3.5919, p-value = 4e-04
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
0.38 1.15
sample estimates:
difference in location

0.81

> wilcox_test(time~route,data=traffic12,
+ distribution="asymptotic",conf.int=T)

Asymptotic Wilcoxon Mann-Whitney Rank Sum Test

data: time by route (1, 2)
Z = 3.5919, p-value = 0.0003283
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
0.3799401 1.1399433
sample estimates:
difference in location

0.8099407
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> wilcox.test(time~route,data=traffic12,conf.int=T)

Wilcoxon rank sum test with continuity correction

data: time by route
W = 1771, p-value = 0.0003327
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
0.3799494 1.1399467
sample estimates:
difference in location

0.8099852

At this point we still have not assessed any of the assumptions that may
help fine-tuning the conclusions based on the WMW test, but according to
Table 9.3 we may always interpret the p-value obtained from the exact (or
Monte Carlo approximation) permutation WMW test, as this test does not
require any assumption. Provided that the variance used in the normalisation
of the WMW test statistic is appropriate, the conclusion from this test can
be in terms of the probability Pr {X1 ≤ X2}, in which X1 and X2 denote
random variables of the distributions of travel times with routes 1 and 2,
respectively. From the first wilcox test call, we read p = 4 × 10−4, by which
we very convincingly reject the null hypothesis H0 : F1 = F2 at the 5%
level of significance. For assessing the correctness of the variance used in
the traditional WMW statistic, we look at the output of the wmw.diagnose
function.

Table 9.3 Summary of the modes of useage of the WMW statistic. The first column
(Asymp.) indicates whether the null distribution (Null distr.) is based on asymptotic the-
ory. Details on the columns FNI and FND are postponed to Section 9.3

Asymp. H0 FNI FND σ̂2 Null distr. H1

no F1 = F2 σ2
MW permutation Pr {X1 ≤ X2} �= 1

2

yes F1 = F2 σ2
MW N(0, 1) Pr {X1 ≤ X2} �= 1

2

no μ1 = μ2(b) FLS
NI σ2

MW permutation μ1 �= μ2

yes μ1 = μ2(b) FLS
NI σ2

MW N(0, 1) μ1 �= μ2

yes μ1 = μ2(b) FS
NI FSH

ND σ2
MW N(0, 1) μ1 �= μ2

yes μ1 = μ2(b) FS
NI σ̂2

FP N(0, 1) μ1 �= μ2

yes μ1 = μ2 FLSM
ND (a) bootstrap μ1 �= μ2

(a) the modified statistic of Babu and Padmanabhan (2002) has to be used.
(b) the hypotheses may also be formulated in terms of Pr {X1 ≤ X2}.
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> wmw.diagnose(time~route,data=traffic12)

Estimation of p112=Pr(max(X21,X22)<=X1) and
p112=Pr(max(X11,X12)<=X2), and Var(MW)

p112 = 0.1467
p221 = 0.5765
Estimated Var(MW) = 0.002733231
Null Var(MW) = 0.003366667
Ratio Estimated / Null = 0.81

WMW test may be too conservative

In the output we read the estimated variance of π̂ = MW/(n1n2) using
the estimator in (9.19). The WMW statistic uses the variance (n+1)/12n1n2,
which is true under the general two-sample null hypothesis, or, more gener-
ally, when Pr {max(X11, X12) ≤ X2} = Pr {max(X21, X22) ≤ X1} = 1

3 and
Pr {X1 ≤ X2} = 1

2 . The estimated variance is smaller than the null variance,
thus the WMW test may be slightly conservative. However, when the null
hypothesis is rejected, as it the case here, the conservativeness is not an issue
anymore.

Because the WMW p-value is two-sided, we must still decide upon which of
the two travel times is stochastically the best. This may be most conveniently
done by estimating the probability Pr {X1 ≤ X2}. As the wilcox test function
gives the standardised Wilcoxon statistic, and the wilcox.test function gives
the Mann–Whitney statistic, we use the latter to obtain the estimate

P̂r (X1 ≤ X2) = 1 − P̂r (X1 ≥ X2) = 1 − 1771
50 × 50

= 0.2916.

Note that the wilcox.test function gives the Mann–Whitney statistic in terms
of the count of the events X1i ≥ X2j . This estimate, as well as an approximate
95% confidence interval may be computed using the following R code.

> pr12(time~route,data=traffic12)
Estimation of Pr(X1<=X2), and the Halperin-Mee confidence

interval
Estimate = 0.2916
The 0.95 confidence interval:
0.2056955 0.3955165

From these results we may strongly conclude that it is much more likely to
have a shorter travel time with route 2 than with route 1. As the p-value is
based on the exact permutation distribution, and because the conclusion is
formulated in terms of Pr {X1 ≤ X2}, of which the test statistic is a direct
estimator, the formal correctness of the conclusion does not further depend
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on any assumptions. In the next paragraph we assess some of the assumptions
of Table 9.3, so that perhaps we may also get to conclusions formulated in
terms of other characteristics of the distributions F1 and F2.

From the QQ plots and the comparison distributions discussed in Examples
8.1 and 8.2, respectively, we have concluded that the distributions of the
travel times with routes 1 and 2 differ only in location. F1 and F2 are thus
of equal shape. Using this characteristic we may now also conclude that the
mean travel time with route 2 is smaller than with route 1; the conclusion
may also be formulated in terms of medians, or in terms of the location shift
parameter Δ. In the R output of the wilcox test function we read the Hodges–
Lehmann point estimate Δ̂ = 0.81. The asymptotic 95% confidence interval
is [0.38, 1.14], and the exact (approximated using 10,000 Monte Carlo simu-
lations) interval is [0.38, 1.15]. We may thus conclude that the mean driving
time with route 2 is about 0.81 minutes (≈49 seconds) faster than with route
1. More precisely, with a confidence of 95% we conclude that route 2 is about
0.38 to 1.15 minutes (23 to 69 seconds) faster than route 1.

Although Table 9.3 mentions that we may use both the exact permutation
and the asymptotic null distribution, we still prefer the exact distribution,
but in this example this would not have changed the conclusions.

Finally we note that the conclusion could also have been formulated in
terms of a stochastic ordering. On the PP plot in Figure 8.1 we see that all
points lie above the 45 degree line. At the rejection of the general two-sample
null hypothesis we could thus also have concluded that F2(x) > F1(x) for all
x; i.e., X1 is stochastically larger than X2.

Example 9.5 (The traffic data: Routes 1 and 3). We start again by giving the
results of the WMW test.

> traffic13<-traffic[traffic$route==1|traffic$route==3,]
> traffic13$route<-as.factor(as.numeric(traffic13$route))
> wilcox_test(time~route,data=traffic13,
+ distribution=approximate(B=10000),conf.int=T)

Approximative Wilcoxon Mann-Whitney Rank Sum Test

data: time by route (1, 3)
Z = -5.8254, p-value < 2.2e-16
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-2.15 -1.19
sample estimates:
difference in location

-1.69

> wilcox_test(time~route,data=traffic13,
+ distribution="asymptotic",conf.int=T)
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Asymptotic Wilcoxon Mann-Whitney Rank Sum Test

data: time by route (1, 3)
Z = -5.8254, p-value = 5.697e-09
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-2.169944 -1.170050
sample estimates:
difference in location

-1.690062

> wilcox.test(time~route,data=traffic13,conf.int=T)

Wilcoxon rank sum test with continuity correction

data: time by route
W = 405, p-value = 5.816e-09
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.169942 -1.170048
sample estimates:
difference in location

-1.690067

> pr12(time~route,data=traffic13,alpha=0.05)
Estimation of Pr(X1<=X2), and the Halperin-Mee confidence

interval
Estimate = 0.838
The 0.95 confindence interval:
0.7509696 0.8987173

From the (approximate) exact test we again conclude a strong significant
rejection of the general two-sample null hypothesis at the 5% level of sig-
nificance, with an extremely small p-value. At this point we may only con-
clude that F1 �= F2 at the 5% level of significance. We use the R function
wmw.diagnose again to assess the appropriateness of the variance used in the
WMW test statistic.

> wmw.diagnose(time~route,data=traffic13)

Estimation of p112=Pr(max(X21,X22)<=X1) and
p112=Pr(max(X11,X12)<=X2), and Var(MW)

p112 = 0.743
p221 = 0.0572
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Estimated Var(MW) = 0.001574478
Null Var(MW) = 0.003366667
Ratio Estimated / Null = 0.47

WMW test may be too conservative

The estimated variance is again smaller than the null variance so that
the WMW test is likely to be conservative, which, however, is no problem
here because the null hypothesis is rejected. We may thus conclude that
Pr {X1 ≤ X3} �= 1

2 . The probability is now estimated as 1− 405/(50× 50) =
0.838 with an approximate 95% confidence interval of [0.75, 0.90]. This clearly
says that it is much more likely to have a longer taxi ride with route 3 as
compared to route 1. No assumptions were needed to state this conclusion
formally.

From the discussions of QQ plots and comparison distributions in Figures
8.1 and 8.3, we have concluded that F1 and F3 differ probably only in loca-
tion and scale. This means, using the terminology of Table 9.3 that the two
distributions do not have the same shape, and that σ2

1 �= σ2
3 . At first sight,

these characteristics do not correspond to any of the assumptions listed in
Table 9.3. However, from the boxplots in Figure 6.2 we see that the distribu-
tions of the travel times with routes 1 and 3 are quite symmetric. According
to Table 9.3, we might formulate a conclusion in terms of means if we would
have used the modified test statistic in combination with its asymptotic null
distribution. This is a nice example of the nonparametric Behrens–Fisher
problem; see Section 9.3.3. From the output of the wmw.diagnose function,
however, we have concluded that the use of the null variance is safe here.
Although this argument is correct, it is not really the best statistical approach
to the problem: a conservative test is safe, but the test consequently has less
power than when the correct variance was used in the construction of the test
statistic.

In this example we can arrive at a conclusion in terms of means quite
directly by using the concept of stochastic ordening. The PP plot in Figure
8.1 shows that all points are at one side of the 45 degree line. In particular
it suggests F3(x) < F1(x) for all x. The WMW test thus also resulted in a
rejection in favour of this alternative, which immediately also implies that
μ1 < μ3. Note, however, that the WMW test does not formally test against
stochastic ordering, but as the PP plot is very extreme (not one point at the
other side), we are confident in this decision. Formal tests against stochastic
ordering are usually based on test statistics closely related to the WMW test;
see, e.g., Carolan and Tebbs (2005) for a discussion.

To conclude this example, we mention that it would also have been possible
to apply an ordinary Welch t-test, because the data do not deviate strongly
from normality.

Example 9.6 (The gene expression data: Gene 3). We first explore the data.
Figure 9.1 shows the normal QQ plots of the expression values in the two
groups, a two-sample QQ plot and the two boxplots. These exploratory
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Fig. 9.1 The normal QQ plots (top panels), two-sample QQ plot (bottom left), and the
boxplots (bottom right) of the expression values in the two groups for gene 3

graphs demonstrate that the expression values in group 1 are not normally
distributed, and that there is an outlier in group 2. At this point, however,
there is no reason to remove the outlier from the dataset.

We now present the results of the statistical analysis, but this time we
also have included the analysis with the parametric t-test and an exact
permutation-based Welch t-test. The latter is also known as a Studentised
permutation test. This test is not distribution free under the equal means
null hypothesis, but Janssen and Pauls (2005), who studied the behavior of
this test in a simulation study, concluded that in many situations its level is
close to the nominal level. This test is implemented in the perm.t.test function
in the cd package. We first look at the output of the t-tests.

> t.test(expression~group,data=gene3)

Welch Two Sample t-test

data: expression by group
t = -1.8327, df = 42.9, p-value = 0.07379
alternative hypothesis: true difference in means is not

equal to 0



242 9 Some Important Two-Sample Tests

95 percent confidence interval:
-1.19375868 0.05708701
sample estimates:
mean in group 1 mean in group 2

-0.1930790 0.3752569

> perm.t.test(expression~group,data=gene3,var.equal=F,
+ B=10000)

Permutation Welch Two Sample t-test

data: expression by group
number of permutations: 100000
t = -1.8327, approximate p-value = 0.05703
95% confidence interval of p-value:
0.05846 0.05559

alternative hypothesis: true difference in means is not
equal to 0

sample estimates:
mean in group 1 mean in group 2

-0.1930790 0.3752569

From the output of the parametric Welch t-test, we read a p-value of
0.0738. As the data are not normally distributed we cannot thrust this value,
particularly because it is close to the nominal significance level of 5%. The
p-value of the permutation test version of the Welch test equals 0.057 and
on using 100,000 random permutations, its 95% confidence interval does not
include 5% so that we may be quite sure that the p-value is not smaller
than the significance level. Thus, despite the rather small p-value, we may
not formally reject the null hypothesis and conclude a difference in means.
Because Figure 9.1 demonstrated the presence of an outlier, we have a strong
belief that the p-value is influenced by this outlier. Indeed, when the outlier
is removed the p-value becomes very much smaller (results not shown), but
as there seems to be no good reason for believing that the outlier is a faulty
observation, it may not be removed from the data and we have to stick to
the larger p-values.

Next we present the results of the analysis with the WMW test. Because
the WMW test is based on ranks, it is insensitive to outliers.

> wilcox_test(expression~group,data=gene3,
+ distribution=approximate(B=10000))

Approximative Wilcoxon Mann-Whitney Rank Sum Test

data: expression by group (1, 2)
Z = -4.082, p-value < 2.2e-16
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alternative hypothesis: true mu is not equal to 0

> wmw.diagnose(expression~group,data=gene3)

Estimation of p112=Pr(max(X21,X22)<=X1) and
p112=Pr(max(X11,X12)<=X2), and Var(MW)

p112 = 0.6629
p221 = 0.1194
Estimated Var(MW) = 0.003322051
Null Var(MW) = 0.005013078
Ratio Estimated / Null = 0.66

WMW test may be too conservative

> pr12(expression~group,data=gene3,alpha=0.05)
Estimation of Pr(X1<=X2), and the Halperin-Mee confidence

interval
Estimate = 0.7890148
The 0.95 confindence interval:
0.6618551 0.8772263

The WMW p-value is now much smaller than 5% so that we may strongly
reject the general two-sample null hypothesis. Moreover, because the esti-
mated variance of the statistic is smaller than the null variance, we may again
formulate the conclusion in terms of the probability Pr {X1 ≤ X2}, which is
estimated as 0.789. Recalling that group 1 and group 2 correspond to the
nonprogressed adenomas and the carcinomas, respectively, we conclude that
it is much more likely that the carcinomas have a larger expression value for
gene 3 as compared to the nonprogressed adenomas. Because the two-sample
QQ plot in Figure 9.1 has all points except the outlier above the 45 degree
line, it seems also quite safe to formulate the conclusion in terms of means.

9.3 The Diagnostic Property of Two-Sample Tests

In Part I of the book we introduced the diagnostic property in Section 4.2.1.3
for the simple null hypothesis, and later, in Section 4.5.6 for the composite
null hypothesis. In this section we illustrate that much of the discussion we
had about the interpretability of the WMW test in terms of the null and
alternative hypotheses, can be clarified when the WMW test is looked at from
a semiparametric perspective, similar to the approach taken in Section 4.5.

Many arguments given before lead to the conclusion that the hypothe-
ses and the test statistic are often related so that the test statistic is a
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standardised estimator of the parameter involved in the hypotheses. Such pa-
rameters are often low-dimensional, and they usually summarise a few charac-
teristics of the distributions of the observations, leaving infinitely many other
parameters unspecified under the null hypothesis. The semiparametric null
hypothesis is thus less restrictive than the general two-sample null hypothe-
sis. In Section 4.5 we contrasted the semiparametric null hypothesis with the
full parametric null hypothesis, which in the one-sample problem is indeed
completely parametric, at most up to a p-dimensional nuisance parameter. In
the two-sample problem, on the other hand, even the general two-sample null
hypothesis, H0 : F1 = F2, does not specify the distribution of the observa-
tions completely. It only restricts the two distribution functions to coincide.
Of course, this is also a very stringent restriction on F1 and F2, involving
infinitely many one-dimensional summarising parameters on F1 and F2. We
demonstrate the semiparametric formulation in the next paragraphs. First
we give a general formulation and next it is applied to the WMW setting.

9.3.1 The Semiparametric Framework

Let Xt
1 = (X11, . . . , X1n1) and Xt

2 = (X21, . . . , X2n1) denote two samples of
i.i.d. observations with density functions f1 and f2, respectively. We also use
the notation X1 and X2 to denote two independent random variables with
density functions f1 and f2, respectively. Let {bj} (j = 1, . . . , k < ∞) repre-
sent a set of functions mapping S ×S on IR. We further assume that (f1, f2)
is within a family F ⊂ L2(S,H) × L2(S,H) so that the expectations and
squared expectations of bj(X1, X2) exist and are finite (detailed conditions
are omitted here). More important, the set F may also impose further re-
strictions on f1 and f2 (e.g., equal variances, or belonging to a location-shift
model).

A semiparametric null hypothesis may be formulated in terms of the set

F0 = {(f1, f2) ∈ F : Ef1f2 {bj(X1, X2)} = θ0j , j = 1, . . . , k} , (9.13)

where θ01, . . . , θ0k are constants. In particular,

H0 : (f1, f2) ∈ F0 versus H1 : (f1, f2) ∈ F \ F0.

Thus F0 expresses both the assumptions on f1 and f2 and the null hypothesis.
The latter is expressed here in terms of the k functions in {bj} It is important
to see that usually F0 is not uniquely characterised by a combination of F
and {bj}; i.e., F0 can have resulted from several combinations of sets of
assumptions and null hypotheses.

Equation (9.13) suggests that the null hypothesis is naturally expressed
as H0 : E {bj(X1, X2)} = θ0j (j = 1, . . . , k). This expectation often
has an interpretation and can be represented by a parameter, say θj =
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Ef1f2 {bj(X1, X2)}, which typically has an interpretation in terms of how
f1 and f2 compare to each other. However, when the null hypothesis is com-
bined with the restrictions on X1 and X2 as specified in F , the null hypothesis
may sometimes be reformulated. For example, for the WMW test it is nat-
ural to take b1(x1, x2) = I (x1 ≤ x2) − 1

2 so that E {b1(X1, X2)} = 0 gives
Pr {X1 ≤ X2} = 1

2 . However, when F restricts f1 and f2 to belong to a
location-shift family, Pr {X1 ≤ X2} = 1

2 and Pr {X1 ≤ X2} �= 1
2 are equiv-

alent to μ1 = μ2 and μ1 �= μ2, so that often the hypothesis is formulated
using the means. We turn again to the more natural formulation of H0 in
terms of the θj parameters. Along the lines of Henze and Klar we say now
that a test is diagnostic for testing H0 : θ = 0 versus H1 : θ �= 0 when the
test possesses the properties of asymptotically unbiasedness and consistency
w.r.t. the semiparametric null and alternative hypotheses. Such tests may
again be constructed as in Section 4.5.2. In particular, when the test statistic
is constructed from an estimator of θt = (θ1, . . . , θk), it often takes the form

Tn = n
(
θ̂ − θ0

)t

Σ̂
−1
(
θ̂ − θ0

)
, (9.14)

where Σ̂ is an estimator of Σ = Var
{√

nθ̂
}

. Its distribution theory uses the

(asymptotic) multivariate normality of θ̂. For many test statistics of this form
the conditions for (asymptotic) unbiasedness and consistency often reduce to
the following requirements.

1. For all (f1, f2) ∈ F0,

lim
n→∞

(
Ef1f2

{
θ̂ − θ0

})
= 0

and
Σ̂ is a

√
n consistent estimator of Σ (9.15)

(convergence in Pf1f2 probablility).
2. For all (f1, f2) ∈ F \ F0,

lim
n→∞ inf

(f1,f2)∈F\F0

Prf1f2 {Tn > cα} = 1,

where cα denotes the asymptotic α level critical value of the test statistic
Tn. For the class of tests that we consider here, this reduces to

lim
n→∞

(
Ef1f2

{
θ̂
}
− θ
)
�= 0. (9.16)

Moreover, still for all (f1, f2) ∈ F \ F0,

Σ̂ is bounded in Prf1f2-probability. (9.17)
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In the one-sample problem the functions bj (in Chapter 4 we used the
notation hj) depended only on one random observation variable, whereas here
they are functions of X1 and X2. This makes the search for an appropriate
variance estimator slightly more complicated.

9.3.2 Natural and Implied Null Hypotheses

Several times before we drew attention to the interplay among distributional
assumptions, hypotheses, and null distributions. We make the discussion
slightly more formal here. It is most natural to have a null hypothesis F0

as in (9.13) and a test statistic as in (9.14) that are both expressed in terms
of the same parameter θ. When this happens for a given F0 and Tn combi-
nation we say that F0 is the natural null hypothesis.

It often occurs, however, that F0 together with some of the restrictions
imposed by F allows for a reformulation of F0 so that it expresses restrictions
on f1 and f2 in terms of different parameters. For example, Potthof (1963)
showed that Pr {X1 ≤ X2} = 1

2 is equivalent to μ1 = μ2 when f1 and f2 are
symmetric. See also Hilgers (2007) for a more recent account. Thus, when
these additional distributional assumptions are part of F , the null hypothesis
in F0 may just as well be reformulated in terms of the means μ1 and μ2, say

FImp
0 = {(f1, f2) ∈ F : Ef1f2 {X1 − X2} = 0} .

Such null hypotheses are referred to as implied null hypotheses, and the re-
strictions in F that allowed the step from the natural to the implied null
hypothesis are collected in FNI ⊆ F . The remaining restrictions in F (i.e.,
FND = F\FNI) are the distributional assumptions required for a certain null
distribution to be valid. For the WMW test, for example, FND may further
specify that the variances of f1 and f2 coincide, so that asymptotically the
WMW test statistic has a standard normal distribution. Instead of keeping
the presentation general, we illustrate the semiparametric setting in the next
section on the WMW test.

9.3.3 The WMW Test in the Semiparametric
Framework

For a more systematic study of the applicability of the WMW test we proceed
in two steps:

1. Which implied null hypothesis may be tested?
2. Which null distributions are appropriate?

These two steps go hand in hand with the distributional assumptions in FNI

and FND.
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9.3.3.1 Implied Null Hypothesis

The Mann–Whitney form of the WMW test statistic is directly related to
an estimator of θ = π = Pr {X1 ≤ X2}; see Section 9.2.3. It is thus natural
to think of the WMW test as a test for testing π = 1/2(= θ0) versus π �=
1/2. Because π =

∫
S F1(x)dF2(x) =

∫
S
∫
S I (x1 ≤ x2) dF1(x1)dF2(x2) the

null hypothesis of the semiparametric testing problem can be formulated as
in (9.13) with b1(x1, x2) = I (x1 ≤ x2) and θ0 = 0.5. This is the natural null
hypothesis, say FNat

0 , or HNat
0 : π = 1

2 . Inasmuch this is a one-dimensional
testing problem (k = 1 in F0) we consider a (not squared) test statistic of
the form

Tn =
π̂ − 1

2

σ̂
(9.18)

in which π̂ = MW/(n1n2). The traditional WMW test uses an estimator σ̂2

that is a consistent estimator of Var {π̂} under the general two-sample null
hypothesis, in which case it reduces to (n + 1)/12n1n2. Thus the question
may arise whether σ̂2

n is consistent under a set of weaker assumptions. This
is demonstrated in the next section.

The WMW test is still often introduced as the nonparametric test for
testing H0 : μ1 = μ2 versus H1 : μ1 �= μ2 when the normality assumption is
violated. These hypotheses may be implied when the natural null hypothesis
is combined with some distributional assumptions in FNI

• The distributions f1 and f2 belong to a location-shift model; i.e.,

FLS
NI = {(f1, f2) : f1(x) = f2(x − Δ) for all x ∈ S and Δ ∈ IR} .

• The distributions f1 and f2 are symmetric. Let m1 and m2 denote the
medians of f1 and f2, respectively. Then

FS
NI = {(f1, f2) : f1(m1 − x) = f1(m1 + x) and

f2(m2 − x) = f2(m2 + x) for all x ∈ S} .

Note that in the restrictions of the set FS
NI the means can be replaced by the

medians.
The general two-sample null hypothesis may also be implied. This happens,

for example, with FLS
NI .

9.3.3.2 Null Distributions

The simplest situation arises when the general two-sample null hypothesis is
implied. Then Section 9.2.4 may be consulted. Both the exact permutation
null distributions and the standard normal distribution (for large sample
sizes) are valid with (9.18) with σ̂2 = (n + 1)/12n1n2. Obviously the ex-
act permutation null distribution may also be used in conjunction with the
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general two-sample null hypothesis. The standard normal distribution, how-
ever, is also valid for the natural and the implied null hypotheses, provided
the variance estimator in (9.18) is consistent under the null hypothesis. This
may ask for some additional assumptions, specified in FND.

It is instructive to start the discussion with the general expression of
Var {π̂}, which has been given in (9.7). This expression shows that the vari-
ance σ̂2 = (n(n + 1))/12n1n2, which is also used in (9.4) and (9.5), is also
appropriate when

φ2
1 = φ2

2 =
1
12

,

under the null hypothesis. This happens when Pr {max (X11, X12) ≤ X2} =
Pr {max(X21, X22) ≤ X1} = 1

3 . For the standardised WMW statistic to have
a proper distribution it must further be avoided that φ2

1 = φ2
2 = 0, but

because this only occurs when Varf2 {F1(X2)} = Varf1 {F2(X1)} = 0, we
further ignore this situation.

A sufficient condition for using this variance estimator is therefore

FND =
{

(f1, f2) : Pr {max(X11, X12) ≤ X2}

= Pr {max(X21, X22) ≤ X1} =
1
3

}
.

However, it is often more convenient to describe other characteristics of f1

and f2 in FND that combined with the restrictions in F0 (or FImp
0 ) guarantee

that φ2
1 = φ2

2 = 1
12 . We give two examples:

• The distributions f1 and f2 belong to a location-shift model; i.e., FLS
ND =

FLS
NI .

• The distributions f1 and f2 are symmetric with equal variances; i.e.,

FSH
ND =

{
(f1, f2) ∈ FS

NI : Varf1 {X1} = Varf2 {X2}
}

.

These two examples demonstrate clearly that the restrictions in FNI and
FND are not always mutually exclusive.

When we are not willing to assume the location-shift model, or symmetric
distributions F1 and F2 with equal variances, the traditional MW test statistic
of (9.4) is not appropriate. Some authors have referred to this less restrictive
setting as the nonparametric Behrens–Fisher problem. The WMW test is
in this situation, however, not valid anymore, but a Welch-type correction
can be made by replacing the variance of MW in the denominator of the
standardised test statistic (9.5) by an estimator that is consistent under less
restrictive assumptions.

Fligner and Policello (1981) proposed an estimator of Var {MW} that is
consistent under mild assumptions. This estimator is basically a plug-in es-
timator based on expression (9.7), obtained by replacing the unknown CDFs
F1 and F2 by their empirical counterparts F̂1n1 and F̂2n2 . Their variance
estimator can be most conveniently expressed in terms of placements. The
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placements of the observations X1i are defined as P1i = n2F̂2n2(X1(i)), and
those of X2i are defined as P2i = n1F̂1n1(X2(i)); i.e., P1i is the number of ob-
servations in the second sample that are not larger than X1(i), and, similarly,
P2i is the number of observations in the first sample that are not larger than
X2(i). Their variance estimator is

1
n1n2

(
n1 − 1

n1

n2∑
i=1

(
P2i − P̄2

)2 +
n2 − 1

n1

n1∑
i=1

(
P1i − P̄1

)2 +
P̄1P̄2

n1

)
, (9.19)

where P̄1 and P̄2 are the averages of the first and the second set of placements.
Fligner and Policello (1981) proved that with this estimator the standardised
MW statistic has asymptotically a standard normal distribution under the
natural null hypothesis, assuming that F1 and F2 are both symmetric, i.e.,
when (f1, f2) ∈ FS

ND = FS
NI . When the symmetry assumption is dropped,

its limiting distribution holds under H0 : Pr {X1 ≤ X2} = 1
2 . The test based

on this appropriately standardised statistic is again consistent.
Suppose the variance estimator of Fligner and Policello (1981) is used

and that the symmetry assumption does not hold, but we still want to test
H0 : μ1 = μ2. Then μ1 = μ2 does not imply Pr {X1 ≤ X2} = 1

2 , and θn = 1
2

should be replaced by an estimator of Pr {X1 ≤ X2}, say θ̂n, that is consistent
under the null hypothesis μ1 = μ2. This is clearly not an obvious problem,
because the null hypothesis only imposes a very mild restriction on the den-
sities f1 and f2 which makes the relation to the probability Pr {X1 ≤ X2}
not straightforward. Babu and Padmanabhan (2002) proposed a bootstrap
procedure, which, on the one hand, works indeed without the symmetry as-
sumption, but requires the location-scale assumption; i.e.,

FLSM
ND =

{
(f1, f2) : f1(x) = f

(
x − μ1

σ1

)
and

f2(x) = f

(
x − μ2

σ2

)
for all x ∈ S

}
,

with f some arbitrary continuous zero-mean density function. The test of
Babu and Padmanabhan (2002), however, does not really fit nicely within
the framework presented here, because its test statistic is not of the form
(9.14) anymore, so that the relation between the natural and the imposed
hypotheses is disrupted.

The discussions on how the WMW test can be used and/or adopted to test
for other null hypotheses illustrates the interplay among the hypotheses, the
assumptions, and the null distribution that has to be used for p-value calcula-
tions. In the examples in Section 9.2.8 we also demonstrate how assumptions,
such as symmetry and equal shape, can be assessed.

As a side remark we mention that the variance estimator of Fligner and
Policello [1981] is not the only possibility. For example, Zaremba (1962)
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suggested estimating the variance by replacing the probabilities Pr {max(X11,
X12) ≤ X2} and Pr {max(X21, X22) ≤ X1} by their direct estimators; as in
(9.11). In the next section we come back to variance estimation in a more
general setting. From a small sample simulation study, however, Fligner
and Policello [1981] concluded that their estimator results in a better-
behaving test.

Finally, we conclude the discussion on the WMW with a summary of
the different situations in which the test can be used. This is presented in
Table 9.3.

In this section the variance estimator of Fligner and Policello (1981) was
used as the least restrictive estimator. This expression of the variance was
derived directly from the simple form of π̂ or MW (Equation (9.2)). It is,
however, at this point of interest to know a method that is more generally
applicable so that we may use it for other linear rank tests as well. Details
are given in the next section.

9.3.4 Empirical Variance Estimators of Simple Linear
Rank Statistics

We present here two general methods for obtaining consistent estimators of
the variance of simple linear rank statistics. Simple linear rank statistics were
introduced in Section 7.2.1 and they have the form

Tn =
n∑

i=1

cian(Ri),

where the regression constants {ci} and the score function an are as given in
Definition 7.3.

The estimators that we consider here are consistent under many semipara-
metric null hypotheses. The first method is based on comparison distribution
processes, and the second approach uses the jackknife principle. The for-
mer method results in the expression of the asymptotic variance in which all
unknown population parameters are subsequently replaced by their sample
estimators so as to find a computational form of a consistent variance esti-
mator. The latter approach avoids the calculation of an explicit expression
of a variance estimator.

9.3.4.1 The Asymptotic Variance of a Simple Linear
Rank Statistic

Many of the simple linear rank statistics for the two sample problem have
regression constants defined as ci = 1/n1 when observation i comes from the
first sample, and ci = 0 or ci = −1/n2 when observation i comes from
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the second sample (or visa versa). The test statistic Tn decomposes thus into
two terms, say (1/n1)

∑n1
i=1 a(Ri) and (1/n2)

∑n
i=n1+1 a(Ri) in which the

index i refers to the pooled sample observations Z1, . . . , Zn. In this section
we focus first on one such term.

On using the comparison distribution process of Section 7.5.2 we may write

1
n1

n1∑
i=1

a(Ri) =
∫
S

a(nĤ(z))dF̂1(z).

We rewrite this expression so that the comparison distribution process ICn1 of
(7.26) can be recognised. We use the notation a∗(p) = a(np). In the following
calculations we have used twice integration by parts.

1
n1

n1∑
i=1

a(Ri) =
∫
S

a∗(Ĥ(z))dF̂1(z)

=
∫ 1

0

a∗(p)dF̂1(Ĥ−1(p))

= a∗(1) −
∫ 1

0

F̂1(Ĥ−1(p))da∗(p)

= a∗(1) −
∫ 1

0

F̂1(Ĥ−1(p))a′(p)dp

= a∗(1) −
∫ 1

0

(
F̂1(Ĥ−1(p)) − F1(H−1(p))

)
a′(p)dp

−
∫ 1

0

F1(H−1(p))a′(p)dp

=
∫ 1

0

a∗(H(F−1
1 (p))dp − 1√

n

∫ 1

0

ICn1(p)a′(p)dp,

where a′(p) = da∗(p)/dp. From this last expression, the weak convergence
of ICn1 according to Theorem 7.6, and the continuous mapping theorem, the
variance may be found immediately. We state the result in the following
lemma.

Lemma 9.1. Consider a simple linear rank statistic of the form Sn =
(1/n1)

∑n1
i=1 a(Ri). Then, for all (f1, f2) ∈ F ,

lim
n→∞Varf1f2

{√
nSn

}
=
∫ 1

0

∫ 1

0

a′(s)a′(t)Covf1f2 {IC1(s), IC1(t)} dsdt

= 2(1 − λ)
{

1 − λ

λ

∫ ∫
x<y

a′(H(x))a′(H(y))F1(x)(1 − F1(y))dF2(x)dF2(y)

+
∫ ∫

x<y

a′(H(x))a′(H(y))F2(x)(1 − F2(y))dF1(x)dF1(y)
}

.
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Back to the simple linear rank statistic Tn. Because H(z) = λF1(z)+(1−λ)
F2(z), we have the equality (integration by parts)∫

S
a∗(Ĥ(z))dF̂2(z) = − λ

1 − λ

∫
S

a∗(Ĥ(z))dF̂1(z).

Thus when ci = 1/n1 and ci = −1/n2 for observation i coming from the first
or the second sample, respectively, the simple linear rank statistic may be
written as

Tn =
1

1 − λ

∫
S

a∗(Ĥ(z))dF̂1(z), (9.20)

and the asymptotic variance of
√

nTn follows again from Lemma 9.1.
A consistent estimator of the asymptotic variance may be obtained by

replacing the double integration by an average, and using the EDFs for the
unknown distribution functions. The result is summarised in the following
lemma for the Sn statistic.

Lemma 9.2. Consider a simple linear rank statistic of the form Sn =
(1/n1)

∑n1
i=1 a(Ri). Let Xi(1) < Xi(2) < · · · < Xi(ni) denote the order statis-

tics of the i the sample observations (i = 1, 2). Then, for all (f1, f2) ∈ F ,
the asymptotic variance of

√
nSn is consistently estimated by σ̂2

cd which is
given by

2
n2

n

{
n2

n1

1
1
2n2(n2 − 1)

n2−1∑
i=1

n2∑
j=i+1

a′(Ĥ(X2(i)))a′(Ĥ(X2(j)))

×F̂1(X2(i))(1 − F̂1(X2(j))) +
1

1
2n1(n1 − 1)

×
n1−1∑
i=1

n1∑
j=i+1

a′(Ĥ(X1(i)))a′(Ĥ(X1(j)))F̂2(X1(i))(1 − F̂2(X1(j)))
}

.

9.3.4.2 The Jackknife Estimator of the Asymptotic Variance

Shao (1988) and Shao (1993) studied jackknife variance estimators of linear
rank statistics, and they showed that under mild regularity conditions on the
score function this variance estimator is consistent. The estimator is com-
puted as follows. Let Tn(i) denote the simple linear rank statistic Tn based
on all pooled sample observations except Zi (i = 1, . . . , n). The jackknife
variance estimator is given by

σ̂2
j = (n − 1)

n∑
i=1

{
Tn(i) − 1

n

n∑
i=1

Tn(i)

}2

.
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This estimator has the advantage that it is generally easily computable,
because it basically only requires the formula of the test statistic. Note that
although the formula of σ̂2

j above shows only one summation, it also contains
summations in the expression of Tn(i). The computational burden is therefore
of the same complexity as for the estimator of the previous section (σ̂2

cd).

9.4 Optimal Linear Rank Tests for Normal
Location-Shift Models

In Section 9.2.5 we have demonstrated that the WMW test is the LMPRT
for detecting a location shift when the distributions F1 and F2 are logistic
distributions. In this section we give some other LMPRT for other location-
shift models. In general the two-sample location-shift alternative, f1(x) =
f2(x−Δ), corresponds to (7.13) with f the assumed distribution so that we
can write f1(x) = f(x) and f2(x − Δ) = f(x − Δ), and thus cji = 0 for
j = 1 and i = 1, . . . , n1, and cji = 1 for j = 2 and i = 1, . . . , n2. The optimal
scores, as given in Theorem 7.5, are defined as the expectations of

∂
∂Δf(X(i) − Δ)

∣∣
Δ=0

f(X(i))
=

∂
∂z f(z) ∂z

∂Δ

∣∣
Δ=0,z=X(i)

f(X(i))
= −

∂
∂xf(x)

∣∣
x=X(i)

f(X(i))
,

with X(i) the order statistics of a sample of n i.i.d. random variates with
density function f . Using f ′(x) = ∂f(x)/∂x, we get

an(i) = Ef

{
−f ′(X(i))

f(X(i))

}
.

When f is the standard normal density, −f ′(x)/f(x) = x, and thus

an(i) = Ef

{
X(i)

}
= E

{
Φ−1(U(i))

}
,

with U(i) the order statistics of n i.i.d. uniform variates, and Φ−1 the quantile
function of a standard normal distribution. The resulting linear rank test is
known as the Fisher–Yates–Terry–Hoeffding or normal scores test. The ex-
pectations, however, do not have a simple expression, but they are tabulated
in, e.g., Pearson and Hartley (1972). Instead of using the exact optimal scores,
defined as expectations, van der Waerden (1952, 1953) suggested using the
approximate scores (see Section 7.2.1.3),

an(i) = Φ−1

(
i

n + 1

)
,
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Table 9.4 Some AREs of the van der Waerden test versus the WMW for several distri-
butions f

f Normal Uniform Logistic Double exponential Cauchy Exponential
ARE 1.047 ∞ 0.955 0.847 0.708 ∞

which are directly available in almost all software packages. The linear rank
statistic is thus

Tn =
n2∑
i=1

Φ−1

(
R(X2i)
n + 1

)
with mean zero and variance

Var {Tn} =
n1n2

n(n − 1)

2∑
j=1

nj∑
i=1

(
Φ−1

(
i

n + 1

))2

.

The test based on these approximate scores is known as the van der Waerden
test. Note that just as with the WMW test, this variance estimator is a
consistent estimator of the true variance under the general two-sample null
hypothesis.

It is interesting to investigate how the van der Waerden test compares
to the more popular WMW test. Table 9.4 shows the AREs of the van der
Waerden test relative to the Wilcoxon test for several location-shift models.
As expected, the van der Waerden test is more powerful under a normal
model, but only marginally (ARE = 1.047). These AREs further suggest
that the van der Waerden scores result in more powerful tests for location
shifts in distributions with a finite upper or lower bound in their support.
For example, the uniform has support [0, 1], and the exponential [0,+∞].
Chernoff and Savage (1958) compared the van der Wearden test with the
two-sample t-test and they concluded that the ARE is never smaller than 1,
and it equals 1 for the normal shift model. This heavily supports the use of
the van der Waerden rank test over the two-sample t-test!

9.5 Rank Tests for Scale Differences

The discussions on the Wilcoxon rank sum test of Sections 9.2 and 9.3
tried to stress that the WMW test may be used for testing several hy-
potheses. Most important, we have demonstrated that in its most nonpara-
metrical nature, it tests the general two-sample null hypothesis versus the
alternative that Pr {X1 ≤ X2} �= 1

2 , and in its most natural usage it tests
H0 : Pr {X1 ≤ X2} = 1

2 . On the other hand, most contributions to the the-
ory of the WMW test concern the use of the WMW test for testing against
location-shift alternatives. In particular, the WMW test is the LMPRT for
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a location shift under the parametric assumption of logistic distributions.
Similarly, the van der Waerden test (Section 9.4) is the LMPRT for the
normal shift model. Despite the optimality properties of these rank tests in
location-shift models, we prefer to present rank tests in their most nonpara-
metrical nature, or in a semiparametric setting and look for null hypotheses
and asumptions for which the test is (at least asymptotically) diagnostic.
In the semiparametric setting of Section 9.3, which is particularly useful for
studying the diagnostic property we have seen that several combinations of
null hypothesis formulations and sets of distributional assumptions may lead
to the same testing situation. It is therefore interesting to investigate these
combinations more closely. We keep this kind of presentation in this section
too. In this sense the title of this section may not be the most accurate;
the tests presented here are often optimal for testing for scale differences,
however, only if additional assumptions are imposed.

As rank tests for scale differences usually do not work very well unless very
stringent hard-to-assess assumptions are made on F1 and F2, we do not give
too many details. We restrict our atttention to methods and test statistics
that are useful for understanding the methods presented in the next chapters.
In Section 9.5.1 we first briefly introduce the scale difference model, and in
Section 9.5.2 some related LMPRT tests. The more non- or semiparametric
discussion follows in Section 9.5.3.

9.5.1 The Scale-Difference Model

The two-sample scale-difference model may be formulated using the notation
introduced in Section 7.2.2 for a general one-parameter alternative to the
general two-sample null hypothesis. Consider

f1(x) = exp(−Δ)f2(x exp(−Δ)) or F1(x) = F2(x exp(−Δ)), (9.21)

where f1 = f is some known density function, and Δ > 0. Note that the
factor exp(−Δ) in front of f2 is required to make the right-hand side of the
equation integrate properly to one. The parameter Δ is introduced through
exp(−Δ) so that Δ = 0 corresponds to the null hypothesis. This corresponds
to a linear rank statistic with c1i = 0 for i = 1, . . . , n1, and c2i = 1 for
i = 1, . . . , n2. According to Theorem 7.5, the optimal scores are given by

an(i) = Ef

{
∂
∂θ f(X(i); θ)

∣∣
θ=0

f(X(i))

}
= Ef

{
−1 − X(i)

f ′(X(i))
f(X(i))

}
, (9.22)

where f ′(x) = df(x)/dx. With these scores the LMTRT statistic for the scale
difference model with f1 = f has the form
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Tn =
n2∑
i=1

an(R(X2i)).

Note that it is assumed in (9.21) that the medians of the two populations
are equal. The scale difference model (9.21) is very unambiguous concerning
the interpretation of what is exactly meant by a scale difference. Moreover,
the scale-difference is explicitly measured by Δ. However, when this model
does not hold, i.e., when F1 and F2 do not only differ by the factor exp(−Δ)
in their argument, we might need a more general understanding of scale dif-
ferences. In Section 9.5.3 we approach this testing problem from a completely
different viewpoint by defining scale differences in terms of probabilities in-
volving stochastic orderings.

van Eeden (1964) gave two conditions that must be satisfied by a measure
for scale difference.

C1 The difference in scale is invariant under the substitution of Xi with −Xi

(i = 1, 2).
C2 If X1 has a larger (equal or smaller) dispersion than X2, then −X1 has

a larger (equal or smaller) dispersion than −X2.

Finally we mention that the location-shift and the scale-difference models
can be combined into a location-scale-difference model,

F1

(
x − μ1

σ1

)
= F2

(
x − μ2

σ2

)
, (9.23)

for all x, and with obvious notation.

9.5.2 The Capon and Klotz Tests

The Capon test is the scale-test version of the normal scores test for a location
shift under a normality assumption. It is a straightforward application of the
optimal scores in (9.22), resulting in

an(i) = E
{
X(i)

}2 = E
{
Φ−1(U(i))

}2
,

where the X(i) and the U(i) are the order statistics of n i.i.d. observations
from a normal and uniform distribution, respectively. The Klotz test replaces
these scores with the approximate scores

an(i) =
[
Φ−1

(
i

n + 1

)]2
.

More details may be found in Section 4.2 of Hájek et al. (1999). This test is
the LMPRT in this very parametric setting.
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9.5.3 Some Other Important Tests

9.5.3.1 Measures for Differences in Scale

There exists a vast literature on statistical tests for the two-sample scale
problem, though not as extended as for the location-shift problem. Most of
these tests are motivated from an optimality viewpoint, as, e.g., the Capon
test, or they are based on a test statistic that has an intuitively appealing form
for detecting differences in scale. The popular Ansari–Bradley, Siegel–Tukey,
and Mood tests, among others, belong to this last group. In this section we
present some of these tests in an unconventional manner. Instead of building
up arguments for proving that the test statistics are appropriate for testing
Δ = 0 in the scale-difference model (9.21), we start with considering the
test statistic as an estimator of a population parameter of which we further
investigate its interpretability as a scale-difference measure. As before, we
consider test statistics of the form

Tn =
√

n
θ̂ − θ0

σ̂

so that the natural null hypothesis is formulated as H0 : θ = θ0, where
θ = E

{
θ̂
}

(or at least in the limit as n → ∞). The natural alternative
hypothesis is then H1 : θ �= θ0 (or one-sided). When Tn can be used for
detecting differences in scales of f1 and f2, we would expect that θ − θ0, or
at least

δ = lim
n→∞

{
Ef1f2

{
θ̂
}
− θ0

}
(9.24)

is related to an appropriate measure for difference in scale. When σ̂2 satisfies
the conditions (9.15) and (9.17), then the test based on Tn is consistent for
δ �= 0.

As some of the important two-sample tests for scale differences are related
to the same measure for scale differences, we discuss the interpretation of
these measures first.

1. Suppose the medians of X1 and X2 are known and equal to m1 and m2,
respectively. Consider

π(1) = Pr {|X1 − m1| < |X2 − m2|} .

Under the two-sample null hypothesis this probability equals 1
2 . When the

location-scale model (9.23) holds π(1) = 1
2 , < 1

2 or > 1
2 is equivalent to

σ1 = σ2, σ1 > σ2, and σ1 < σ2. But even when the location-scale model
does not hold, the probability π(1) has a straightforward interpretation as a
dispersion difference measure. It basically describes a difference in disper-
sion as the stochastic ordening of the absolute deviations of an observation
from its median. van Eeden (1964) showed that it satisfies conditions C1
and C2.
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2. The following probability does not involve the medians. Let X11 and X12

i.i.d. F1, and X21 and X22 i.i.d. F2. Define

π(2) = Pr {|X11 − X12| < |X21 − X22|} .

This again measures a dispersion difference as a likely ordering, but now
related to the absolute deviations between two observations from the same
distribution. When F1 = F1, π(2) = 1

2 . A large π(2) indicates that the
observations from F2 are more “dispersed” among each other than those
from F1. Another way to phrase this is to say that it is more likely to find
two F1 observations close to each other, than if the observations came
from F2. Conditions C1 and C2 are satisfied for π(2).

3. Suppose the medians m1 and m2 coincide, and let m = m1 = m2. Consider

π(3) = Pr {X2 ≤ X1 ≤ m} + Pr {m ≤ X1 ≤ X2} , (9.25)

which equals 1
4 under the two-sample null hypothesis. When π(3) is larger,

it indicates that the X1 observations tend to be clustered closer around
the median than the X2 observations. This again quantifies an aspect
of dispersion differences between F1 and F2. However, van Eeden (1964)
showed that π(3) does not satisfy C2 when both F1 and F2 are asymmetric
distributions. He also showed that π(3) − 1

4 = π(1) − 1
2 when F1 or F2 is

symmetric.
4. Let X1, X11 and X12 i.i.d. F1, and X2, X21 and X22 i.i.d. F2. Suppose

that m1 = m2, and define

π(4) = Pr {X11 ≤ X2 ≤ X12} − Pr {X21 ≤ X1 ≤ X22} .

When F1 = F2, π(4) = 0. When π(4) > 0 we may say that the probability
mass of F2 is more concentrated than the probability mass of F1, again re-
flecting an aspect of a dispersion difference. The assumption that m1 = m2

is very important here. If, for example, the median of X2 is much larger
than the median of X1, so that the two distributions are completely sepa-
rated, both probabilities Pr {X11 ≤ X2 ≤ X12} and Pr {X21 ≤ X1 ≤ X22}
are zero, resulting in π(4) = 0 whatever the variances of X1 and X2. van
Eeden (1964) again showed that condition C2 is generally not satisfied
unless F1 or F2 is symmetric.

5. The next measure is closely related to π(4). First write π(4) as

π(4) =
∫
S

F1(x)(1 − F1(x))dF2(x) −
∫
S

F2(x)(1 − F2(x))dF1(x)

=
∫
S

F1(x)dF2(x) −
∫
S

F 2
1 (x)dF2(x)

−
∫
S

F2(x)dF1(x) +
∫
S

F 2
2 (x)dF1(x)
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= Pr {X1 ≤ X2} − Pr {max(X11, X12) ≤ X2}
− Pr {X2 ≤ X1} + Pr {max(X21, X22) ≤ X1}

= (2Pr {X1 ≤ X2} − 1) + (Pr {max(X21, X22) ≤ X1}
− Pr {max(X11, X12) ≤ X2}) ,

in which we did not assume that m1 = m2. The last equation shows a
decomposition of π(4) into two terms, each representing a different order of
likelyorderingofX1 andX2. Inparticular, thefirstterm,2Pr {X1 ≤ X2} − 1,
measures the likely ordering of X1 and X2 as we have discussed in Section
9.2.2 in the context of the WMW test. The second term in the decompostion,

Pr {max(X21, X22) ≤ X1} − Pr {max(X11, X12) ≤ X2}

is related to what we call double likely ordering, and we let π(5) denote
this component. To get a better understanding of π(5) we first focus on
Pr {max(X21, X22) ≤ X1}. Under the null hypothesis,

Pr {max(X21, X22) ≤ X1} =
∫
S

F 2
2 (x)dF1(x) =

∫ 1

0

u2du =
1
3
.

An easy interpretation is to read it as a stronger form of the likely ordering
used before. Whereas a large Pr {X2 ≤ X1} says that it is likely to have an
observation from F2 that is smaller than an observation from F1, a large
Pr {max(X21, X22) ≤ X1} says that even the largest of two observations
from F2 is still very likely to be smaller than an observation from X1.

9.5.3.2 The Ansari–Bradley Test

The Ansari–Bradley (AB) test statistic is usually given by (Ansari and
Bradley (1960))

TABn =
∑n1

i=1

∣∣R(X1i) − n+1
2

∣∣− 1
2n1(n + 1) + μn

σn
,

where

μn =

{
1
4n1(n + 2) when n is even
1
4n1

(n+1)2

n when n is odd

and where

σ2
n =

{
n1n2(n

2−4)
48(n−1) when n is even

n1n2(n+1)(n2+3)
48n2 when n is odd.

For simplicity, however, we consider here a test statistic that is asymptotically
equivalent. Let
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Tn =
√

n
ABn − 1

4

σAB
(9.26)

with
σAB =

1
48

n1

n2
,

and

ABn =
1

n1n

n1∑
i=1

∣∣∣∣R(X1i) − n + 1
2

∣∣∣∣ . (9.27)

To understand the intuition behind this statistic it is instructive to assume
that the medians of the two distributions coincide. In terms of the ranks the
median equals approximately (n+1)/2. Thus the terms |R(X1i) − (n + 1)/2|
assign small scores to observations close to the median and large scores to
observations farther away from the median. Under the null hypothesis of
equal scale, and assuming that the medians are equal, we expect these terms,
which only correspond to the contributions of the observations of the first
sample, to be uniform between approximately 0 and n/2. A small value of
ABn suggests a concentration of the ranks of the first sample observations
near the median, indicating a smaller variance in the first sample.

Under the general null hypothesis H0 : F1 = F2, the theory of linear rank
tests gives that Tn is asymptotically standard normal distributed. Ansari and
Bradley (1960) showed that their test is consistent for testing Δ = 0 in the
scale-difference model (9.21). It has been shown that the AB test is equivalent
to the Siegel–Tukey (Siegel and Tukey (1960)) test.

van Eeden (1964) showed that for the AB test the parameter δ of Equation
(9.24) equals

δAB =
1
4
−
∫
S

∣∣∣∣λF1(x) + (1 − λ)F2(x) − 1
2

∣∣∣∣ dF1(x), (9.28)

where λ = limn→∞(n1/n) is assumed to be bounded away from 0 and 1. This
parameter can be related to scale under additional assumptions. In particuar,
when X1 and X2 have common median m, this reduces to

δAB = (1 − λ)
[
Pr {X2 ≥ X1 ≥ m} + Pr {X2 ≤ X1 ≤ m} − 1

4

]
= (1 − λ)

(
π(3) − 1

4

)
, (9.29)

with π(3) as in (9.25). Using the notation of Section 9.3,

FM
NI = (f1, f2) : m1 = m2}

with mi the median of fi (i = 1, 2). Thus, when (f1, f2) ∈ FM
NI the AB

test may perhaps be appropriate for testing the implied null hypothesis H0 :
π(3) = 1

4 . However, a further requirement is that the variance estimator used
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in (9.26) must be consistent under the implied null hypothesis. The variance

σ2
AB =

1
48

n1

n2
,

however, is only valid under very restrictive assumptions in f1 and f2, which
are moreover very hard to interpret. We therefore do not give further details
on these conditions here; the interested reader is referred to van Eeden (1964)
who gave an explicit formula for Var {ABn}. The only simple case for which
σ2

AB is a valid variance is when the general two-sample null hypothesis H0 :
F1 = F2 holds true. Therefore, when σ2

AB is used, the AB test is testing the
general two-sample null hypothesis, and it is consistent for π(3) �= 1

4 when
(f1, f2) ∈ FM

NI . Hence, these arguments suggest that

FLSM
ND =

{
(f1, f2) : f1

(
x − m

σ1

)
= f2

(
x − m

σ2

)}
is a safe set of restrictions.

When AB is to be used for testing the implied null hypothesis H0 : π(3) =
1
4 , a consistent estimator of Var {ABn} under this less restrictive null hy-
pothesis is required. See also the next section and Section 9.3.4) for such
estimators.

When F1 and F2 have different medians, the interpretation of (9.28) is not
straightforward. Moses (1963) studied the asymptotic behaviour of ABn un-
der alternatives with unequal medians, and he showed that the AB test may
sometimes be even consistent for detecting location shifts; i.e., F1(x) = F2

(x−γ) with F1 and F2 thus having equal variances. This example clearly sug-
gests that one should be very careful with interpreting the p-values resulting
from the AB test.

9.5.3.3 The Shukatme Test

Sukhatme’s test (Sukhatme (1957)) is very closely related to the AB test.
The test statistic is an immediate estimator of the sum of probabilities π(3) =
Pr {X2 ≥ X1 ≥ m} + Pr {X2 ≤ X1 ≤ m}, where m is taken as the common
median of the two populations. The test statistic is

TSn =
√

n
Sn − 1

4

σS
(9.30)

with

σ2
S =

(n + 7)n
48n1n2

and
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Sn =
1

n1n2

n1∑
i=1

n2∑
j=1

ψ(X1i, X2j),

where

ψ(x, y) = 1 if y ≥ x ≥ m or y ≤ x ≤ m, and ψ(x, y) = 0 otherwise.

Obviously δS = π(3) − 1
4 , demonstrating that the natural null hypothesis is

H0 : π(3) = 1
4 , but the test only makes sense when the medians of f1 and f2

coincide; i.e., (f1, f2) ∈ FM
NI . The variance used in (9.30) is again computed

under the general two-sample null hypothesis. Conditions for

σ2
S =

(n + 7)n
48n1n2

being also valid for less restrictive null hypotheses may be derived from a
general expression for Var {Sn}, but again no simple conditions arrise. Thus
when (9.30) is used as a test statistic, it is again best to assume (f1, f2) ∈
FLSM

ND .
Note, however, that Sn is a V -statistic. The variance of Sn can therefore be

consistently estimated using standard theory of V -statistics. See, for example,
Lee (1990). With such a variance estimator, provided the two medians are
equal, the Shukatme test may be used for testing H0 : π(3) = 1

4 .

9.5.3.4 The Mood Test

Mood’s test (Mood (1954)) is based on the test statistic

TMn =
√

n
Mn − 1

12
n2−1

n2

σM
(9.31)

with

σ2
M =

n2(n + 1)(n2 − 4)
180n1n3

and

Mn =
1

n1n2

n1∑
i=1

(
R(X1i) − n + 1

2

)2

.

The factor (n2 − 1)/n2 in the numerator of (9.31) may (asymptotically) be
dropped. This statistic is similar to the AB test statistic (9.27) and may be
considered as the L2-norm version of the AB test statistic. The δ parameter
equals

δM =
∫
S

(
λF1(x) + (1 − λ)F2(x) − 1

2

)2

dF1(x) − 1
12

. (9.32)
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In a balanced design, i.e., when λ = 1
2 , this reduces to

δM =
1
4

{∫
S

F1(x)(1 − F1(x))dF2(x) −
∫
S

F2(x)(1 − F2(x))dF1(x)
}

=
1
4
{Pr {X11 ≤ X2 ≤ X12} − Pr {X21 ≤ X1 ≤ X22}}

=
1
4
π(4).

Although λ = 1
2 is a design restriction rather than a distribution assumption,

we consider a null hypothesis in terms of π(4) an implied null hypothesis for
the Mood test. The natural null hypothesis in terms of δM has no simple inter-
pretation. Thus, in a balanced design the Mood test may be used for testing
the null hypothesis H0 : π(4) = 0, provided the variance σ2

M is asymptoti-
cally equivalent to Var {√nMn} under this semiparametric null hypothesis.
As before, no easily interpretable restrictions on f1 and f2 make this hap-
pen. Hence, the Mood test is again best considered as a test for the general
two-sample null hypothesis which is consistent for H1 : π(4) �= 0 as long as
the variance of

√
nMn is bounded in probability, and provided the data come

from a balanced design.
Because the Mood test reappears several times in subsequent chapters, an

alternative interpretation is provided in the next paragraphs.
It was quite inconvenient to restrict the applicability of the test to balanced

designs. The reason was that λ appears in (9.32). On the other hand, λ
appears in (9.32) in the expression λF1(x)+(1−λ)F2(x), which is recognised
as the pooled distribution function H(x). Now write∫

S

(
λF1(x) + (1 − λ)F2(x) − 1

2

)2

dF1(x)

=
∫
S

H2(x)dF1(x) +
1
4
−
∫
S

H(x)dF1(x).

When Z, Z1, and Z2 are independent random variables with distribution
function H, then we can write∫

S
H2(x)dF1(x) +

1
4
−
∫
S

H(x)dF1(x)

= Pr {max(Z1, Z2) ≤ X1} − Pr {Z ≤ X1} +
1
4

=
(

Pr {max(Z1, Z2) ≤ X1} − 1
3

)
−
(

Pr {Z ≤ X1} − 1
2

)
+

1
12

.

Hence,

δM =
(

Pr {max(Z1, Z2) ≤ X1} − 1
3

)
−
(

Pr {Z ≤ X1} − 1
2

)
,
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which equals zero when Pr {max(Z1, Z2) ≤ X1} = 1
3 and Pr {Z ≤ X1} = 1

2 .
This happens under the general two-sample null hypothesis. For later pur-
poses it is also important to see that Pr {Z ≤ X1} = 1

2 is equivalent
to the natural null hypothesis of the WMW test. The other part (i.e.,
Pr {max(Z1, Z2) ≤ X1} = 1

3 ) expresses a double likely equivalence of X1 and
the marginal Z. From this representation, the Mood test may be seen as a
test for the combined null hypothesis of the WMW natural null hypothesis
and a double likely equivalence null hypothesis.

The discussion given in the previous paragraph suggests that the Mood test
has a natural null hypothesis in terms of likely equivalences, without making
any restrictive assumptions on f1 and f2. However, the validity of the Mood
test statistic also depends on the variance used in the denominator of the test
statistic. Under the general two-sample null hypothesis σ2

M is clearly correct,
but under the natural null hypothesis a more general consistent variance
estimator is required. Because Mn is a simple linear rank statistic we refer
to Section 9.3.4 for such estimators.

9.5.3.5 The Lehmann Test

Lehmann (1951) suggested using the U statistic

Ln =
1(

n1
2

)(
n2
2

) n1−1∑
i=1

n1∑
j=i+1

n2−1∑
k=1

n2∑
l=k+1

φ (|X1i − X1j |, |X2k − X2l|) ,

with kernel φ(x, y) = 1 if x ≤ y and φ(x, y) = 0 otherwise. The test statistic
Ln is obviously an unbiased estimator of π(2). Despite the fact that π(2) satis-
fies the conditions C1 and C2, the simple interpretation of π(2) as a measure
for scale differences, and the nice property that Ln can be used in circum-
stances with arbitrary and unknown medians m1 and m2, the test is not
distribution free (Sukhatme (1957)), even not asymptotically. In particular,
the asymptotic variance depends on the unknown distribution F1 = F2 under
the null hypothesis. Finally, also note that the Lehmann test statistic is not
a rank statistic.

9.5.3.6 The Fligner–Killeen Test

From the previous subsections we have learned that the AB and Shukatme
tests are only consistent for scale differences when F1 and F2 have a common
median, and when at least one of the two distributions is symmetric. Fligner
and Killeen (1976) proposed tests that are also distribution free under the
null hypothesis, but that are also consistent for scale differences without the
assumption of common medians. In the development of their theory, however,
they adopt the rather stringent location-scale model. Moreover, they assume
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that F is symmetric. Despite this restrictive framework, their test statistics
are of interest in their own right. The theory that we present here is slightly
different from the original paper of Fligner and Killeen (1976).

First suppose that the medians m1 and m2 are known. Then define

FKn =
1

n1n2

n1∑
i=1

n2∑
j=1

φ (|X1i − m1|, |X2j − m2|) ,

where φ is as for the Lehmann test. The statistic FKn is a V statistic and
is clearly an unbiased estimator of π(1). It is actually exactly the WMW test
statistic (9.2) but with the observations replaced by their absolute deviations
from the respective median. The test based on FKn is thus distribution free;
the test statistic has the same null distribution as the WMW test statistic.

9.5.4 Conclusion

Although the discussion presented in this section is far from complete, we
hope that we have demonstrated that the rank tests for scale differences are
very restrictive in their usefulness. Most of these tests have been proposed
in the statistical literature as rank tests for testing scale differences, but
all required very heavy distributional assumptions. Wasserstein and Boyer
(1991) gave another important argument against the use of linear rank tests
for testing for scale differences. They showed that the power of the linear rank
tests do not approach one when the ratio of the two scale parameters goes
to infinity. Note that this is a finite sample size property. Tests that show
this defect are referred to as nonresolving. We think that many of these rank
tests can still be usefully, but not necessarily for testing scale differences, but
rather for testing informative hypothesis expressed in terms of probabilities.
For testing such hypotheses no strong distributional assumptions are needed.

9.6 The Kruskal–Wallis Test and the ANOVA F -Test

In this section we present two tests for the K-sample problem. We start with
the nonparametric Kruskal–Wallis (KW) rank test, which may be seen as an
extension of the WMW test or as the rank statistic version of the F -test in
an analysis of variance (ANOVA). The latter test is the parametric test for
comparing equality of K means. Just as with the WMW test the KW test can
be treated in a semiparametric framework. However, because the arguments
and methods are basically the same as for the two-sample setting, we do not
elaborate on this. At the end of the section we only briefly comment on it.
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9.6.1 The Hypotheses and the Test Statistic

Consider the general K-sample null hypothesis

H0 : F1(x) = F2(x) = · · · = FK(x) of all x.

We again use the notation H(x) = (1/K)
∑K

s=1 Fs(x) for the pooled distri-
bution function, and we use Z to denote a random variable with distribution
function H. As an alternative we consider the generalisation of the alternative
of the WMW test; i.e.,

H1 : Pr {Z ≤ Xs} �= 1
2

for at least one s = 1, . . . , K. (9.33)

A natural test statistic for this testing problem can be constructed by
starting from estimators of the probabilities in H1. The probability πs =
Pr {Z ≤ Xs} is unbiasedly estimated by

π̂s =
1

nns

n∑
i=1

ns∑
j=1

I (Zi ≤ Xsj)

=
1
n

1
ns

ns∑
j=1

(
n∑

i=1

I (Zi ≤ Xsj)

)

=
1
n

1
ns

ns∑
j=1

R(Xsj)

=
1
n

R̄s,

where R(Xsj) is the rank of observation Xsj in the pooled sample, and R̄s

is the average of the ranks of the observations in the sth sample. For each
sample s the statistic Ws = π̂s − 1

2 is appropriate for measuring information
against the null hypothesis in favor of the alternative. Combining all Ws

(s = 1, . . . , K) into one test statistic, and weighting the individual Ws by the
corresponding sample sizes ns, results in

K∑
s=1

ns

(
π̂ − 1

2

)2

=
1
n2

K∑
s=1

ns

(
R̄s − n

2

)2

.

The latter statistic comes very close to the original KW test statistic, which
is usually defined as

KW =
12

n(n + 1)

K∑
s=1

ns

(
R̄s − n + 1

2

)2

. (9.34)
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The difference between the two statistics is a factor 12 and an asymptotically
vanishing factor (n + 1)/n. The factor 12 is basically a scaling factor so that
the KW test statistic has a convenient limiting null distribution; see the next
section.

9.6.2 The Null Distribution

Because the general K-sample null hypothesis implies the randomisation hy-
pothesis, the exact permutation null distribution may be enumerated or ap-
proximated using the methods of Section 7.1. Just as the WMW test the KW
test is distribution free.

The asymptotic distribution under the general K-sample null hypothesis
is stated in the next theorem. A sketch of the proof is given in Appendix
A.10.

Theorem 9.1. Suppose that all λs = ns/n are bounded away from 0 and 1
when n → ∞. Then, under the general K-sample null hypothesis, as n → ∞,

KW
d−→ χ2

K−1.

9.6.3 The Diagnostic Property

Because the KW test is a very direct extension of the WMW test, the dis-
cussion of Section 9.3 applies here too. We limit the discussion here to two
remarks.

1. When it can be assumed that all K distributions belong to the same
location-scale model, i.e.,

f1(x − Δ1) = f2(x − Δ2) = . . . = fK(x − ΔK) for all x ∈ S

for some constants Δs (s = 1, . . . , K), the null hypothesis may also be
expressed in terms of the means or the medians, without any changes to
the form of the test statistic or its null distribution.

2. Suppose we can assume that all K distributions are symmetric and have
equal variances. Then again the null hypothesis may be formulated using
means or medians. Evidently the exact permutation null distribution does
not hold anymore, and for the asymptotic null distribution to hold, the
test statistic must be rescaled first.

This brief discussion illustrates that the same type of assumptions as for the
WMW has to be imposed for the KW test for making it a test for testing
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equality of means. The assumptions must now hold for all K distributions
simultaneously.

9.6.4 The F -Test in ANOVA

The analysis of variance is a very popular method for comparing means when
normality can be assumed. We show in this section that the KW test is ba-
sically an F -test statistic, but applied to the rank-transformed observations.

Let Xsi denote the ith observation from the sth sample, and assume that
Xsi i.i.d. N(μs, σ

2) (s = 1, . . . , K; i = 1, . . . , ns). It is thus assumed that the
K variances are equal. The null and alternative hypotheses are

H0 : μ1 = · · · = μK and H1 : not H0.

Just as with the t-test, the null hypothesis together with the distributional
assumptions imply the general K-sample null hypothesis. The F -test is de-
fined in terms of the between sum of squares and the total sum of squares,
denoted by SSB and SSTot:

SSB =
K∑

s=1

ns

(
X̄s − X̄

)2
SSTot =

K∑
s=1

ns∑
i=1

(
Xsi − X̄

)2
,

where X̄ is the sample mean of all n observations, and X̄s is the sample mean
of the ns observations in the sth sample. The F -test statistic is given by

F =
SSB/(K − 1)

(SSTot − SSB)/(n − K)
.

Under the null hypothesis F has an FK−1,n−K distribution.
We now demonstrate that the KW test statistic (9.34) is related to the

F -statistic. First we compute SSTot for the rank transformed data; i.e., we
replace Xsi with its rank Rsi in the pooled sample. Note that

R̄ =
1
n

K∑
s=1

ns∑
i=1

Rsi =
n + 1

2
and R̄s =

1
ns

ns∑
i=1

Rsi.

Hence,

SSTot =
K∑

s=1

ns∑
i=1

(
Rsi − R̄

)2
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=
K∑

s=1

ns∑
i=1

R2
si − 2R̄

K∑
s=1

ns∑
i=1

Rsi + nR̄2

=
1
6
n(n + 1)(2n + 1) − 2

n + 1
2

n(n + 1)
2

+ n
(n + 1)2

4

=
n(n + 1)2

12
,

which is a constant that only depends on the total sample size. All relevant
information in the rank-based F statistic comes thus from

SSB =
K∑

s=1

ns

(
R̄s − R̄

)2 =
K∑

s=1

ns

(
R̄s − n + 1

2

)2

,

which is indeed up to a factor the KW statistic of (9.34).

9.7 Some Final Remarks

9.7.1 Adaptive Tests

In Section 7.2.3 we have introduced the concept of adaptive linear rank tests.
These are linear rank tests of which the scores are selected by a data-based
selection rule so that the resulting rank test has good power. For example,
earlier in this chapter we have shown that the WMW test is the LMPRT for
testing the two-sample location shift hypotheses when the observations have
a logistic distribution. When the observations have a normal distribution, the
van der Waerden test is the LMPRT for location-shift alternatives. The two
tests differ only in the scores defining the test statistics.

One of the first adaptive two-sample tests is due to Randles and Hogg
(1973). They start from the observation that the power of rank tests is
strongly influenced by the tail behavior of the distributions. They consider
three types of tail behavior: light tails (e.g., uniform distribution), median
tails (e.g., logistic), and heavy tails (e.g., double exponential). For each of
these classes they propose a set of scores that have good power characteris-
tics for distributions within that class. The data-based selection rule makes
use of two statistics that only depend on the sample order statistics. Because
order statistics and ranks are independently distributed, the score selection
procedure has no effect on the distribution of the rank statistic. It is par-
ticularly this last property that makes this type of adaptive test attractive.
Whether a good set of scores for a dataset at hand is selected by the statis-
tician prior to looking at the data (i.e., the traditional way), or whether this
set of scores is selected based on the order statistics-based selection rule,
has no effect on the power. The adaptive tests thus increase the chance of
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testing with a good set of scores, and therefore the power of this adaptive
testing procedure is expected to be better on average when applied to many
different datasets. Many adaptive tests based on this general scheme have
been proposed over the years, and even up to today new contributions to the
statistical literature are added. Despite their simplicity, these tests appear
not to have been implemented in the popular statistical software packages.

Finally we mention a shortcoming of this type of adaptive tests. It is
only adaptive within the restrictive location-shift setting. The same idea can
of course be translated to scale-difference models, but then again it is a
very focused testing situation. In Chapter 10 we describe a more flexible
adaptive test.

9.7.2 The Lepage Test

Lepage (1971) proposed a two-sample rank test based on a simple combina-
tion of the WMW and the AB statistics,

L = U2
1 + U2

2 ,

where U1 and U2 denote the standardised WMW and AB statistics. He
showed that U1 and U2 are independent and that the asymptotic null distri-
bution of L is thus χ2

2. In the context of the next chapter, L is closely related
to an order 2 smooth test statistic.



Chapter 10

Smooth Tests

This chapter is devoted to smooth tests for the two- and the K-sample
problems. The literature on such tests may not be as vast as for the one-
sample problem, though its applicability is very broad and often informative.
Because many of the techniques and ideas used in this chapter rely heavily on
what has been discussed in the previous chapters, this chapter is quite con-
cise. The construction of the test is very similar to the one-sample smooth
test of Chapter 4.

In Section 10.1 the construction of the smooth models and the test statistic
is explained for the two-sample problem. Its null distribution is derived and
a detailed discussion on the components is provided. The extension to com-
paring K distributions is the topic of Section 10.3. The data-driven choice
of the order of the smooth test is discussed in Section 10.4. We conclude the
chapter with some practical recommendations in Section 10.7.

10.1 Smooth Tests for the 2-Sample Problem

10.1.1 Smooth Models and the Smooth Test

10.1.1.1 Smooth Models

Smooth tests for the two-sample problem, as we present them here, were
first introduced by Janic-Wróblewska and Ledwina (2000), who immediately
presented the smooth test in its data-driven order selection form. In this
section, however, we assume that the order of the test is specified prior to
looking at the data. The data-driven versions are discussed in Section 10.4.

As for the one-sample case, the test statistic arises as a score test statistic in
an order k smooth family of alternatives, which may also be referred to as the
smooth model. We use again the notation F1 and F2 (f1 and f2) to denote the

O. Thas, Comparing Distributions, 271
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distribution functions (density functions) of the first and the second sample,
respectively, and the notation H (and h) for the pooled distribution function
(density function). The latter is defined as

H(x) =
n1

n
F1(x) +

n2

n
F2(x) or h(x) =

n1

n
f1(x) +

n2

n
f2(x). (10.1)

The factor n1/n may also be replaced with λ which is defined as the limit
of n1/n as n → ∞ and which is assumed to be bounded away from 0 and 1.
Similarly, the factor n2/n may be replaced by 1 − λ. Both definitions of H
and h will asymptotically not make a difference. We therefore sometimes
interchange the roles of λ and n1/n. Sometimes we write λ1 for λ, and λ2 for
1 − λ.

The order k family of alternatives that were considered by Janic-Wróblewska
and Ledwina (2000) were first proposed by Neuhaus (1987). It is given by

f1k(x) = C1(θ) exp

⎛⎝n2

n

k∑
j=1

θjhj(H(x))

⎞⎠h(x) (10.2)

f2k(x) = C2(θ) exp

⎛⎝−n1

n

k∑
j=1

θjhj(H(x))

⎞⎠h(x), (10.3)

where θt = (θ1, . . . , θk), {hj} is a set of orthonormal functions on the uniform
distribution over [0, 1], and C1 and C2 are two normalisation constants. (Note:
our definition is slightly different from what has been used in the literature
by considering different factors prior to the summation operator, but this
will have no effect on further results as the factors may be resolved in the
θ parameters.) The general two-sample null hypothesis reduces thus to H0 :
θ = 0. Because the models (10.2) and (10.3) use the exponential function,
they are referred to as the Neyman smooth models. Just as in Chapter 4 the
smooth tests based on these models appear to coincide with those constructed
from the Barton smooth models, given by

f1k(x) =

⎛⎝1 +
n2

n

k∑
j=1

θjhj(H(x))

⎞⎠h(x) (10.4)

f2k(x) =

⎛⎝1 − n1

n

k∑
j=1

θjhj(H(x))

⎞⎠h(x). (10.5)

Note that in both formulations of the smooth models the densities f1k and f2k

contain the same set of θ parameters, but with different factors preceeding
them. The factors, that depend on the sample sizes are a consequence of
(10.1), which must also hold when f1 and f2 are replaced with f1k and f2k.
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The Barton model can be related to the comparison distributions of
Section 7.4. Model (10.4) immediately gives

f1k(H−1(u)
h(H−1(u)

= 1 +
n2

n

k∑
j=1

θjhj(u), (10.6)

which is exactly the comparison density function r1(u) of (7.20), and which
basically shows that the Barton smooth model may be interpreted as an order
k orthogonal series expansion of r1(u). The comparison density function r2(u)
becomes according to (10.5)

f2k(H−1(u)
h(H−1(u)

= 1 − n1

n

k∑
j=1

θjhj(u). (10.7)

Thus, when the θ parameters in the expansion of the comparison densities
can be estimated, yet another estimation method of the comparison density
arises. See Section 8.2.2 for more details on the estimation and use of the
comparison density.

When we consider the Hilbert space L2(S;H) the θ parameters have sim-
ilar interpretations as in Section 4.1 for the one-sample smooth models. In
particular,

θj =
n

n2

〈
hj ,

f1

h

〉
h

=
n

n2
〈hj , r1〉h = − n

n1
〈hj , r2〉h ,

in which f1 and f2 are represented by f1k and f2k with k → ∞. The pa-
rameters may also be related to Pearson’s φ2 measure, which was studied by
Lancaster (1969), and particularly for the K-sample problem by Eubank and
LaRiccia (1990). For k = 2, it becomes

φ2 =
2∑

s=1

λs

∫ 1

0

(
fs(H−1(u)) − h(H−1(u))

)2
h(H−1(u))

du =
2∑

s=1

λs

∫ 1

0

(rs(u) − 1)2 du.

(10.8)
Similar calculations as in Section 4.1 give

φ2 =
n1n2

n2

∞∑
j=1

θ2
j . (10.9)

Before continuing, note that the factor n1n2/n in (10.9) is not informative,
and can be eliminated by redefining the densities f1k and f2k so that this
factor gets resolved in the θs. Thus φ2 measures how far f1 and f2 are apart
in terms of a squared norm in an appropriate Hilbert space. Because each
θj is involved in the expansions of both f1 and f2, it must be interpreted
in a slightly different way. It suggests that the distance interpretation goes
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over the pooled density h. However, by using the λs and ns/n notation inter-
changeably, simple algebra immediately gives the equivalence between (10.8)
and

φ2 =
n1n2

n2

∫ 1

0

(r1(u) − r2(u))2 du.

10.1.1.2 Smooth Test Statistic and the Null Distribution

The first step in obtaining the order k smooth test statistic is constructing the
score test statistic for testing H0 : θ = 0 in the Neyman or the Barton smooth
models of the previous section. Both models give rise to the same score test
statistic for the same reasons as made clear in the proof of Theorem 4.1. The
following lemma is therefore restricted to the Neyman model.

Lemma 10.1. Let Xs1, . . . , Xsns
denote a sample of i.i.d. observations from

fs (s = 1, 2). Consider the order k smooth family of alternatives (Neyman or
Barton). The score test statistic for testing H0 : θ1 = · · · = θk is given by

Sk =
k∑

j=1

{
n2

n

n1∑
i=1

hj(H(X1i) − n1

n

n2∑
i=1

hj(H(X2i))

}2

.

The score statistic Sk can, however, not be used directly, because it de-
pends on the unknown pooled distribution function H. It is replaced by its
empirical version: the pooled empirical distribution function Ĥn of Equation
(7.19): Ĥn(Zi) = (Ri−0.5)/n, in which the conventional continuity correction
is applied, and where Z1, . . . , Zn represent the pooled sample observations so
that the first n1 pooled sample observations correspond to X11, . . . , X1n1 ,
and the last n2 observations to X21, . . . , X2n2 .

The order k smooth test statistic and its asymptotic null distribution is
presented in the following theorem.

Theorem 10.1. Let Xs1, . . . , Xsns
denote a sample of i.i.d. observations

from fs (s = 1, 2). Assume λ = limn→∞(n1/n) is bounded away from 0 and
1. Consider the order k smooth family of alternatives (Neyman or Barton).
The order k smooth test statistic for testing H0 : θ1 = . . . = θk is given by

Tk =
n1n2

n

k∑
j=1

{
1
n2

n1∑
i=1

hj

(
Ri − 0.5

n

)
− 1

n2

n2∑
i=1

hj

(
Ri − 0.5

n

)}2

= U tU ,

where U is a k vector with jth element equal to

Uj =
n∑

i=1

cnihj

(
Ri − 0.5

n

)
,
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where

cni =
√

n1n2

n

{ 1
n1

if 1 ≤ i ≤ n1

− 1
n2

if n1 + 1 ≤ i ≤ n.

Under the null hypothesis H0 : F1 = F2, as n → ∞,

U
d−→ MV N(0, I) and Tk

d−→ χ2
k.

First note that the factor n/(n1n2) which appears in Tk, and which was
not yet part of the definition of Sk, is introduced here so that Tk has a proper
limiting null distribution. This factor is incorporated in the factor cni.

Under the general two-sample null hypothesis it is also possible to enu-
merate the exact permutation null distribution of the order k smooth test
statistic Tk. Moreover, Tk is clearly a rank statistic, so that the exact null
distribution is distribution free.

Before we move on to a more detailed discussion of the components we
show that the components are again proportional to the estimators of the θj

parameters in the order k smooth models (10.6) and (10.7). Write

Ek

{√
n

n1n2
Uj

}
= Ek

{
n1∑
i=1

1
n1

hj

(
Ri − 0.5

n

)
−

n∑
i=n1+1

1
n2

hj

(
Ri − 0.5

n

)}
≈ Ek {hj (H(X1))} − Ek {hj (H(X2))}
=

n2

n
θj +

n1

n
θj

= θj .

Thus

θ̂j =
√

n

n1n2
Uj (10.10)

may be used as an estimator of θj .

10.1.2 Components

Theorem 10.1 immediately shows that the test statistic Tk is decomposed
into k components U2

j that are asymptotically mutually independent under
the null hypothesis. In this section we further investigate the distributional
properties of the components, as well as their interpretation and relation to
other rank statistics.

The jth component equals

Uj =
n∑

i=1

cnihj

(
Ri − 0.5

n

)
, (10.11)
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which has exactly the form of a simple linear rank statistic (see Definition 7.3)
with regression constants ci = cni (subscript n is used to stress the depen-
dence on the sample size) and scores an(Ri) = hj ((Ri − 0.5)/n) determined
by the system of orthonormal functions {hj}. This important characterisation
of the components implies that the properties of such linear rank statistics,
as discussed in Section 7.2, directly apply to the components. For example,
Theorem 7.2 shows that the jth component has asymptotically a standard
normal distribution (this asymptotic property also follows from Theorem
10.1). The zero mean and unit variance follow for these particular statistics
from the orthonormality of the hj functions.

At this point it is of interest to have a closer look at some of the lower-order
components for a particular system of orthonormal functions. We consider
here the Legendre polynomials.

10.1.2.1 The First Component: WMW Statistic

With the first Legendre polynomial, h1(x) =
√

12(x − 0.5), the first compo-
nent becomes (for notational simplicity we use Ri instead of Ri − 0.5)

U1 =
n∑

i=1

cnih1

(
Ri

n

)

=
√

n2

n1n

n1∑
i=1

√
12
(

Ri

n
− 0.5

)
−
√

n1

n2n

n∑
i=n1+1

√
12
(

Ri

n
− 0.5

)

=
√

12
n1n2n

(
n2(n + 1)

2
−

n∑
i=n1+1

Ri

)
,

where we have made use of the equality
∑n

i=1 Ri =
∑n

i=1 i = n(n + 1)/2,
and in which we recognise the standardised Wilcoxon rank sum test statistic
of Section 9.2 up to an asymptotically neglectable factor

√
(n + 1)/n. Using∑n

i=1 Ri = n(n + 1)/2 in the other direction gives

U1 =
√

12
n1n2n

(
n∑

i=n1+1

Ri − n1(n + 1)
2

)
.

This expression could also be obtained from (9.20), after appropriate rescaling
with

√
(n1n2)/n.

10.1.2.2 The Second Component: Mood Statistic

The second Legendre polynomial is

h2(x) =
√

5(6x2 − 6x + 1) = 6
√

5
[
(x − 0.5)2 − 1

12

]
.
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Surely using h2 in Equation (10.11) gives again a linear rank statistic. Here,
however, we relate U2 with a well known linear rank statistic. We therefore
need to express U2 in terms of ranks of only one of the two samples. This could
again be obtained by using (9.20), but here we use the equality

∑n
i=1 R2

i =∑n
i=1 i2 = (n + 1)(2n + 1)/(6n) to arrive at the identity

n∑
i=1

(
Ri

n
− 1

2

)2

=
n2 + 2
12n

.

On the application of this equality we find

U2 =
n∑

i=1

cnih2

(
Ri

n

)

=
√

n2

n1n

n1∑
i=1

6
√

5

[(
Ri

n
− 0.5

)2

− 1
12

]

−
√

n1

n2n

n∑
i=n1+1

6
√

5

[(
Ri

n
− 0.5

)2

− 1
12

]

= 6
√

5
n1n2n3

n1∑
i=1

[(
Ri − n

2

)2

− n2 + 2
12

]

=

∑n1
i=1

[(
Ri − n

2

)2 − n2+2
12

]
√

1
180n1n2n3

,

which is asymptotically equivalent to the standardised Mood statistic of
(9.31).

10.1.2.3 The Third Component: the SKEW Statistic

The third-order Legendre polynomial is

h3(x) =
√

7(20x3 − 30x2 + 12x − 1) =
√

7
[
20(x − 0.5)3 − 3(x − 0.5)

]
.

The third component, U3, is again related to a rank statistic that has been
published in the statistical literature. Boos (1986) proposed a linear rank
statistic, which he called SKEW, and which is exactly equal to U3. He sug-
gested that SKEW could be used to detect differences between F1 and F2 in
their skewness. We give a more detailed discussion on the diagnostic proper-
ties of the Uj components in Section 10.2.
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10.1.2.4 The Fourth Component: the KURT Statistic

The fourth-order Legendre polynomial is

h3(x) =
√

7(20x3 − 30x2 + 12x − 1) =
√

7
[
20(x − 0.5)3 − 3(x − 0.5)

]
.

The fourth component, U4, coincides with the KURT statistic of Boos (1986).
He suggested that KURT could be used to detect differences between F1 and
F2 in their kurtosis. We give a more detailed discussion on the diagnostic
properties of the Uj components in Section 10.2 following.

10.2 The Diagnostic Property

In the previous sections we have demonstrated that the (lower-order) compo-
nents are related to well-known rank tests. Some of them have been described
in more detail in Chapter 9. For example, the null and alternative hypothesis
of the WMW test have been listed. A very important conclusion was that one
should be very cautious when using the WMW test when conclusions about
location shifts are wanted. A more correct view on the rank tests is to first
find out for which population parameter the test statistic is an estimator,
and use this population parameter in the formulation of the null and alterna-
tive hypotheses. The null hypothesis formulated in this way is less restrictive
than the general two-sample null hypothesis. For the WMW test we argued
that it actually tests hypotheses formulated in terms of π = Pr {X1 ≤ X2}.
When the WMW test may be used for such hypotheses, we say that the test
has the diagnostic property. In Section 9.3 we further argued that many of
the rank tests are not diagnostic, unless the rank statistics are first scaled
appropriately by using an estimator of the asymptotic variance that is con-
sistent under the less restrictive null hypothesis. Two generic estimators were
presented in Section 9.3.4.

Obviously the order k smooth test can inherit the diagnostic property from
its components. For the one-sample problem we showed in Section 4.5.6 briefly
that the order k smooth test can be rescaled too by replacing the covariance
matrix Σ of the component vector V by an empirical estimator, say Ĉ that is
consistent under a weaker null hypothesis than the full parametric one-sample
goodness-of-fit null hypothesis. A similar approach could be thought of here;
thus instead of using the statistic Tk = U tU for the two-sample problem, the
modified statistic Tk = U t−1ĈU could be used instead. Because no empirical
results are available, at this moment we cannot advise positively or negatively
on its use.

Instead of standardising by using an estimator of the covariance ma-
trix of the k-dimensional vector U , the components could be standardised
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individually and used in the data analysis after the general two-sample null
hypothesis has been rejected. More precisely, the procedure could work as
follows.

1. Test the general two-sample null hypothesis with an order k smooth test
(or one of its adaptive versions).

2. When the null hypothesis is not rejected, the procedure stops.
3. When the null hypothesis is rejected, it may of course be concluded that the

two distributions are different. In a next phase, the individual components
can be examined after, but now the components are standardised before
being looked at.

10.2.1 Examples

In this section we apply the smooth tests to the gene expression data of the
colorectal cancer study that was introduced in Section 6.2.1. At this point
we only analyse the data of gene 1 with an order k = 4 smooth test, and we
look at the individual component tests. Later, in Section 10.5 we redo the
analysis by means of an adaptive version of the smooth test.

Example 10.1 (The gene expression data: Gene 1). We test the general two-
sample null hypothesis with an order k = 4 smooth test, using the smooth.test
function of the cd R package. It is the same function as for the one-sample
problem; it recognises a two-sample problem by means of the formula argu-
ment.

> gene1.st<-smooth.test(expression~group,order=4,rescale=F,
+ B=NULL,probs=T,data=gene1)
> gene1.st
K-sample smooth goodness-of-fit test (K=2)

Smooth test statistic T_k = 21.6155 p-value = 0.0002
1 st component = 2.4622 p-value = 0.0138
2 nd component = -3.8114 p-value = 0.0001
3 rd component = -0.4855 p-value = 0.6273
4 th component = 0.8893 p-value = 0.3738

All p-values are obtained by the asymptotic approximation

Estimation of likely orderings
Pr(X1<= X2) = 0.3269
Pr(max(X11,X12)<= X2) = 0.2536
Pr(max(X11,X12)<= X2) = 0.4587
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The specification B=NULL implies that the asymptotic approximations
are used, and the rescale=F argument specifies that the components are not
rescaled with empirical variance estimators. From the output we read that
the order k = 4 test statistic equals 21.6155 with a p-value of 0.0002. Thus
at the 5% level of significance we reject the general two-sample null hypoth-
esis. We now try to get a better understanding of how the two distributions
differ by looking at the individual components. The output lists the first four
components (not squared!) with their respective p-values. The latter seem to
suggest that only the first two components are important.

Before interpreting the components, we explore the data. Normal QQ
plots, a two-sample QQ plot, and boxplots are shown in Figure 10.1. Par-
ticularly the data from group 1 deviate from normality; this is confirmed by
a one-sample Anderson–Darling test (results not shown). Moreover, the de-
viation is asymmetric. We therefore conclude that (1) a two-sample t-test for
comparing means is not most appropriate, and (2) the WMW hypotheses in
terms of Pr {X1 ≤ X2} do not imply conclusions in terms of the means. The
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Fig. 10.1 The normal QQ plots, two-sample QQ plot, and the boxplots of the expression
values in the two groups for gene 1
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two-sample QQ plot has points at the two sides of the 45 degree line. It is
therefore not possible to use the concept of stochastic ordering in conjunction
with the components.

The first component test, which is exactly the WMW test, thus cannot be
used for testing equality of means. It may be used for the detection of likely
ordering, provided that the null variance used in the WMW statistic is a
good approximation of the true variance under the alternative. We therefore
apply the wmw.diagnose function first.

> wmw.diagnose(expression~group,data=gene1)

Estimation of p112=Pr(max(X21,X22)<=X1)
and p112=Pr(max(X11,X12)<=X2), and Var(MW)

p112 = 0.2536
p221 = 0.4587
Estimated Var(MW) = 0.005368552
Null Var(MW) = 0.005013078
Ratio Estimated / Null = 1.07

WMW test may be too liberal

Although the ratio of the two variances is larger than one, which could
make the test liberal, the ratio is only slightly larger than 1. We therefore
decide that the first-order component test may be used for testing likely
ordering. The output shows the estimate of Pr {X1 ≤ X2}: 0.3269. It is thus
likely that gene 1 is more expressed in a nonprogressed adenoma patient as
compared to a carcinoma patient.

The interpretation of the second component, which is the Mood statistic,
is much more difficult. As we clearly do not have a scale-shift model, it is
not obvious to interpret a significant second-order component test in terms
of scale differences. In Section 9.5.3.4 we first showed that it is only related
to a measure for scale differences in balanced designs, but this is not the case
here (37 and 31 observations). We further argued that the test statistic can
be related to double likely ordering (see Section 7.6). In particular we have
shown that the test may reject the null hypothesis in favour of

δM =
(

Pr {max(Z1, Z2) ≤ X1} − 1
3

)
−
(

Pr {Z ≤ X1} − 1
2

)
�= 0, (10.12)

but, as we have already concluded that there is a significant first-order order-
ing, the last term of δM is not zero. This further complicates the interpretation
of the second component. It is a similar problem as that we encountered in
the diagnostic interpretation of the components in the one-sample smooth
test. Taking this caveat into account, we try to proceed, but we first check
the appropriateness of the null variance used in this second-order compo-
nent test. The smooth.diagnose function does the job (this is a more general
function than wmw.diagnose).
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> smooth.diagnose(gene1.st)

Ratio’s of estimated / null variances:
1 st component: 1.07 (liberal)
2 nd component: 0.71 (conservative)
3 rd component: 1.16 (liberal)
4 th component: 0.94 (conservative)

Thus from a scaling point of view, there is not much to worry about. In
conclusion, although the second order-component test is not formally diag-
nostic, the smooth test results seem to suggest that a likely ordering and a
double likely ordering are present. It is even likely (i.e., a chance of more
than 50%) that even the largest gene 1 expression of two carcinoma patients
is still smaller than the gene 1 expression of a nonprogressed adenoma pa-
tient. It is, however, not straightforward to link this conclusion formally with
a difference in scale, at least not with this rank-based smooth test.

Just for demonstration purposes, we also present the results of a two-
sample Welch t-test.

> t.test(expression~group, data=gene1)

Welch Two Sample t-test

data: expression by group
t = 2.025, df = 46.276, p-value = 0.04865
alternative hypothesis: true difference in means is not

equal to 0
95 percent confidence interval:
0.001676391 0.542509120
sample estimates:
mean in group 1 mean in group 2

0.4620662 0.1899734

This gives p = 0.04865, which is very close to the nominal significance
level of 5%. Considering that Figure 10.1 showed that normality cannot be
assumed, this t-test analysis is inconclusive.

10.3 Smooth Tests for the K-Sample Problem

10.3.1 Smooth Models and the Smooth Test

The extension from the two-sample to the K-sample setting is quite direct,
though this K-sample smooth test has not been published yet. We use the
notation introduced in Chapter 7. Thus Xs1, . . . , Xsns

denotes a sample of
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ns i.i.d. observations from fs (s = 1, . . . , K), and Z1, . . . , Zn represent the n
observations from the pooled sample, with the convention that the first n1

Z observations are the observations from sample 1, the next n2 observations
are those from sample 2, etc., and the last nK observations are those from
sample K. The pooled density becomes now h(x) =

∑K
s=1(ns/n)fs(x) (and

so H(x) is defined too). The asymptotically equivalent definition is h(x) =∑K
s=1 λsfs(x) with λs the limit of ns/n as the total sample size n → ∞. As

before it is assumed that all λs stay away from 0 or 1.
Consider the following families of order k alternatives in Neyman format

(s = 1, . . . , K)

fsk(x) = Cs(θ) exp

⎛⎝ k∑
j=1

(
θsj − θ̄j

)
hj(H(x))

⎞⎠h(x),

where Cs(θ) is a normalisation constant and

θ̄j =
1
K

K∑
s=1

ns

n
θsj

are the average jth order effects. As a Barton smooth model we write (s =
1, . . . , K),

fsk(x) =

⎛⎝1 +
k∑

j=1

(
θsj − θ̄j

)
hj(H(x))

⎞⎠h(x).

The construction of the families of alternatives guarantees that (10.1) holds
for all fs replaced with their order k Barton expansions (s = 1, . . . , K),
so that the pooled density h maintains its interpretation. Note that these
densities have a more complicated system of θ parameters: it does not suffice
anymore to have only one such parameter for each order j. There are now K
θsj parameters for each order j. It may be more convenient to reparameterise
the alternatives in terms of parameters θ∗sj = θsj − θ̄j . This parameterisation
shows

∑K
s=1 θ∗sj ≡ 0, implying that only K − 1 of the K θ∗sj parameters are

linearly independent.
Before we give the order k smooth test, we first focus on one θ parameter,

say θsj . The next lemma gives the score test statistic for testing θsj = 0,
assuming that the pooled distribution function H is known.

Lemma 10.2. Let Xs1, . . . , Xsns
denote a sample of i.i.d. observations from

fs (s = 1, . . . , K), and let Z1, . . . , Zn denote the pooled sample observations,
and assume that H is known. Assume λs = limn→∞(ns/n) is bounded away
from 0 and 1 (s = 1, . . . , K). Consider the order k smooth family of al-
ternatives (Neyman or Barton). The score test statistic for testing the null
hypothesis θsj = 0 is given by
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Ssj(H) =

√
n − ns

n

n∑
i=1

cnsihj(H(Zi)),

where

cnsi =

√
ns(n − ns)

n

{ 1
ns

if observation i is in sample s

− 1
n−ns

if observation i is not in sample s. (10.13)

Under the general two-sample null hypothesis, as n → ∞,

Ssj(H) d−→ N(0, 1 − λs).

Surely in practice the pooled distribution function is again replaced by its
EDF, giving, after continuity correction,

Usj = Ssj(Ĥ) =

√
n − ns

n

n∑
i=1

cnsihj

(
Ri − 0.5

n

)
. (10.14)

The interpretation of Usj is related to the comparison density. Straightfor-
ward calculations show that, as n → ∞,

1√
ns

Usj
p−→
∫ 1

0

hj(u) (rs(u) − 1) du (10.15)

=
∫
S

hj(H(x)) (rs(H(x)) − 1) dH(x) = θsj .

This demonstrates that Usj measures how far away the sth distribution is
from the pooled distribution H in the hj direction.

Testing for equality of the K distributions in the hj direction may be
formulated by θ1j = · · · = θsj = 0. This requires the joint limiting null distri-
bution of the score statistics Usj (s = 1, . . . , K). The asymptotic joint multi-
variate normality may be demonstrated using the Cramér–Wald device and
the covariances may, for example, be found by expressing the simple linear
rank statistics Usj in terms of comparison distribution processes, similarly
as in Section 9.3.4.1 for finding the asymptotic variance of such statistics.
This very general procedure demands, however, many algebraic calculation
steps. Instead we now just refer to Theorem 4 in Section 3.3.1 of Hájek et al.
(1999) that gives the covariance between two simple linear rank statistics with
different regression scores (here {cnpi} and {cnqi} for Upj and Uqj , respec-
tively (p, q = 1, . . . , K)). For testing the general K-sample null hypothesis,
we need to test H0 : θsj = 0 for all s = 1, . . . , K and all j = 1, . . . , k. The
score test statistic for this testing problem now requires the asymptotic joint
multivariate normality of all Usj statistics. Again the Cramér–Wald device
does the trick, and the additional asymptotic covariance between Upi and
Uqj (p, q = 1, . . . , K) with i �= j is zero because of the orthogonality of the
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polynomials. We summarise the most important properties in the following
theorem.

Theorem 10.2. Let Xs1, . . . , Xsns
denote a sample of i.i.d. observations

from fs (s = 1, . . . , K). Assume λs = limn→∞(ns/n) is bounded away
from 0 and 1 (s = 1, . . . , K). Consider the order k smooth family of al-
ternatives (Neyman or Barton). Let U t

j = (U1j , . . . , UKj), j = 1, . . . , k, and
U t = (U t

1, . . . ,U
t
k).

Under H0, as n → ∞, the following convergences hold.
(1) Let Σj a K × K matrix with at the sth diagonal position the element
1 − λs, and at the (p, q) off-diagonal position the element −√λpλq. Then,

U j
d−→ MV N(0,Σj).

(2)

Tnj = U t
jU j =

K∑
s=1

U2
sj

d−→ χ2
K−1.

(3) Let Σ be a (kK)×(kK) matrix with Σj (j = 1, . . . , k) as diagonal blocks,
and zeroes elsewhere. Then,

U
d−→ MV N(0,Σ).

(4)

Tn = U tU =
k∑

j=1

K∑
s=1

U2
sj

d−→ χ2
k(K−1). (10.16)

A technical note:
Although no formal proof of Theorem 10.2 is given here, we still want to
clarify the perhaps less logical formulation of Usj in (10.14). The factor√

(n − ns)/n may look strange, particularly because part (1) of Theorem
10.2 states that the asymptotic variance of Usj equals 1 − λs. Hence, when
the factor would have been dropped the asymptotic variance would be 1, as
we usually want. However, the reason for not changing the definition of Usj is
twofold. First, this factor appears naturally in the score statistic, and second,
by recognising this variance and the covariances −√λpλq, Theorem 1 in Sec-
tion 2.4.1 of Hájek et al. (1999) may be immediately applied to arrive at the
asymptotic χ2

K−1 distribution. Finally, we also mention that the multivariate
normal distributions have actually covariance matrices that are not of full
rank.

There is again a connection between the Tn statistic and Pearson’s φ2

divergence. Extending (10.8) is obvious, and gives

φ2 =
K∑

s=1

λs

∫ 1

0

(rs(u) − 1)2 du =
K∑

s=1

λs

k∑
j=1

(
θsj − θ̄j

)2
.
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On using (10.15), and writing (10.16) as

Tn = n

K∑
s=1

ns

n

k∑
j=1

(
1√
ns

Usj

)2

,

it follows that, as n → ∞,
1
n

Tn
p−→ φ2.

10.3.2 Components

Just as with the two-sample order k smooth test here also the test statistic
Tn has components that are related to well-known rank statistics. Equation
(10.16) shows that Tn decomposes into k×K Usj components, but we rather
refer to a component as a summary statistic for the jth order deviations from
the null hypothesis. Write Tn =

∑k
j=1 Tnj , and call Tnj the jth component

of Tn. Theorem 10.2 says that each component has asymptotically a χ2
K−1

distribution, and that the components are asymptotically mutually indepen-
dent under the general K-sample null hypothesis. We briefly give some more
details on the first few components.

When j = 1, the statistic Tn1 is asymptotically equivalent to the Kruskal–
Wallis test statistic, and under suitable assumptions of the shapes of the
K distributions, it may be diagnostic for detecting location shifts. This is
definitely true in location-shift models. The asymptotic equivalence between
both statistics may be seen by rewriting Tn1 in a different form. We illus-
trate it more generally, i.e., for any j, because it is also useful for the other
components. For notational comfort we use hj(s, i) for hj ((Rsi − 0.5)/n),
Sj =

∑K
s=1

∑ns

i=1 hj(s, i), and let ds =
√

ns/n. Write Usj in (10.14) first as

Usj =
√

ns
n − ns

n

⎧⎨⎩ 1
ns

ns∑
i=1

hj(s, i) − 1
n − ns

⎛⎝∑
t�=s

nt∑
i=1

hj(t, i) +
n2∑
i=1

hj(s, i)

⎞⎠
+

1
n − ns

ns∑
i=1

hj(s, i)

}

= ds

{
n

ns

ns∑
i=1

hj(s, i) − Sj

}
. (10.17)

Note that the Sj term is not informative. Moreover, due to the characteristic∫ 1

0
hj(u)du = 0, Sj vanishes asymptotically, and sometimes it is even exactly

zero. For example, for j = 1,
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S1 =
K∑

s=1

ns∑
i=1

(
Rsi − 1

2

n
− 1

2

)
=

1
n

(
n(n + 1)

2
− n

2
− n2

2

)
= 0.

The jth component then becomes

Tj =
K∑

s=1

U2
sj

=
K∑

s=1

d2
s

n2

n2
s

(
ns∑
i=1

hj(s, i)

)2

−2Sj

K∑
s=1

d2
s

n

ns

ns∑
i=1

hj(s, i) + S2
j

K∑
s=1

d2
s

=
K∑

s=1

(
1√
ns

ns∑
i=1

hj(s, i)

)2

−
(

1√
n

Sj

)2

. (10.18)

This shows that a test based on our jth component is equivalent to a test
based on the first term of this last equation. This term is exactly of the form
of, for example, the Kruskal–Wallis statistic with h1(u) =

√
12(u − 1

2 ) the
first-order Legendre polynomial:

K∑
s=1

(
1√
ns

ns∑
i=1

[√
12
(

Rsi − 1
2

n
− 1

2

)])2

=
12
n2

K∑
s=1

ns

(
1
ns

ns∑
i=1

(
Rsi − n + 1

2

))2

=
12
n2

K∑
s=1

ns

(
R̄s − n + 1

2

)2

,

which is up to a factor (n + 1)/n equal to the KW statistic of (9.34).
The second component, Tn2, is related to the K-sample Mood statistic,

which is often considered as a nonparametric test for dispersion. The relation
is again established using (10.18). However, the discussion given in Section
9.5.3.4 also applies here, and caution is thus in place here. The third- and
fourth-order components, Tn3 and Tn4, are basically the SKEW and KURT
test statistics of Boos (1986). Although the names SKEW and KURT suggest
their relation to the skewness and the kurtosis, we do not have to repeat the
arguments that these diagnostic conclusions in terms of the moments of the
K distributions are not always guaranteed. It is already quite complicated
for relating the Mood test with dispersion, and with higher-order moments
it becomes increasingly more depending on restrictive assumptions on the
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shapes of the distributions. We finish this brief overview of the components
with remarking that the components described here are also related with
those of Eubank and LaRiccia (1990).

10.4 Adaptive Smooth Tests

Adaptive data-driven smooth tests were discussed in detail in Section 4.3 for
the one-sample goodness-of-fit tests. The general idea is here again to let the
data decide which components to include in the test statistic. This will often
result in a power improvement, or at least most frequently avoids the dilution
effect. Just as in Section 4.3 several types of selection procedures are possi-
ble: order selection (with finite and infinite horizons) and subset selection.
From a theoretical perspective we distinguish two different frameworks. First,
when only finite horizons are allowed the methodology of Claeskens and Hjort
(2004) is again applicable. No very restrictive conditions are imposed for this
theory to hold. Second, with a horizon that grows with the sample size the
data-driven smooth test is consistent. The theory of the data-driven test for
the two-sample case has been presented by Janic-Wróblewska and Ledwina
(2000). Other, but related adaptive tests exist, but as they are also related to
the EDF tests of the next chapter, we postpone their description to Section
11.3.

Most of the arguments and methods are applicable here too, therefore we
can limit the discussion here.

10.4.1 Order Selection and Subset Selection
with a Finite Horizon

In Section 4.3 the choice of the selection rule depended on how the nuisance
parameter estimation was accounted for. This issue is not present here. From
the selection rules presented before, we may consider here the analogues of
the BIC-based K2 and S2 rules, or the AIC-based M selection rule.

We use again the notation S to denote the finite nonempty index set from
which a subset is selected. For order selection, order m < ∞ is the largest
order that may be selected by the selection rule. Furthermore, with R ⊆ S,

TR =
∑
j∈R

U2
j or TR =

∑
j∈R

K∑
s=1

U2
sj

for the two- or K-sample smooth test statistics, respectively.
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The selection rules become

K2n = min {k : 1 ≤ k ≤ m : Tk − k log(n) ≥ Tj − j log(n), j = 1, . . . , m}
S2n = {R ⊆ S : R �= φ and TR − |R| log(n) ≥ TQ − |Q| log(n),∀Q ⊆ S}
Mn = {R ⊆ S : R �= φ and TR − 2|R| ≥ TQ − 2|Q|,∀Q ⊆ S} .

When On is used to represent any of these three criteria, then TOn
is used

to denote the corresponding adaptive test statistic. The appropriate lemmas
and theorems of Section 4.3 remain essentially valid, after some minor obvious
notational adaptations.

10.4.2 Order Selection with an Infinite Horizon

For the two-sample problem Janic-Wróblewska and Ledwina (2000) work with
the S2 selection rule, but with the maximal order m replaced by d(n1) which
is an increasing function of n1, and thus also of n under the usual assumption
that n1/n is kept away from 0 or 1. The next theorem combines Theorems 1
and 2 of Janic-Wróblewska and Ledwina (2000).

Theorem 10.3. Suppose d(n1) = o
(
(n1/ log(n1))1/9

)
, and n1/n is asymp-

totically in (0, 1). Then, under the general two-sample null hypothesis, as
n → ∞, Pr0 {S2n = 1} → 1 and TS2n

d−→ χ2
1. When the general two-sample

null hypothesis is not true, TS2n
is no longer bounded in probability, and thus

the data-driven test based on TS2n
is consistent.

From a simulation study with n1 = n2 = 50 Janic-Wróblewska and Led-
wina (2000) came to the following conclusions.

• The asymptotic χ2
1 approximation is not accurate. Note, however, that

the data-driven smooth test is still a rank test and its exact permutation
distribution can thus be enumerated, at least it can be well approximated
using simulations.

• The null distribution depends on the maximal order d (from d(n1)) con-
sidered, but for d ≥ 3 the α = 0.05 critical values based on the null
distribution do not change much anymore with further increasing d.

• The powers of the data-driven tests do not depend much on the choice of
the maximal order d for d ≥ 4. Therefore any choice of 4 ≤ k ≤ 10 seems
appropriate for n1 = n2 = 50.

• For many alternatives studied, the data-driven two-sample smooth test has
good power. Its power hardly breaks down. This has only been observed
for alternatives with “high-order” deviations from the pooled distribution
H. When the data analyst suspects this feature, another system of or-
thornormal functions may be used for constructing the test statistic.
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10.5 Examples

Example 10.2 (The gene expression data: Gene 1). In Section 10.2.1 we
analysed this dataset with an order four smooth test. Now we do the analy-
sis over, but with a data-driven version of the smooth test. We have chosen
here an order selection test with the BIC as an order selection criterion. The
maximal order was set to 10. The output follows.

> smooth.test(expression~group,max.order=10,
+ adaptive=c("BIC","order"),rescale=F,B=10000,
+ probs=F,graph=T,data=gene1)

Adaptive K-sample smooth goodness-of-fit test (K=2)

Horizon: order selection (max. order = 10)
Order selection rule: BIC

Adaptive smooth test statistic T_k = 20.5884
p-value < 0.0001

Selected order = 2

Components
1 st component = 2.4622
2 nd component = -3.8114

All p-values are obtained by means of simulations

The test gives a p-value smaller than 0.0001, so that at the 5% level of
significance we reject the general two-sample null hypothesis. The test has
selected the first two components. See Example 10.1 for a detailed discussion
on the interpretation of the components.

We go one step further now. Because the smooth tests are related to an
orthogonal series expansion of the densities (the Barton representation), and
because the order selection is basically a model selection criterion, orthog-
onal series density estimates can be plotted. To be more precise, it is more
direct to plot the comparison densities of the two distributions. Consider the
comparison densities r1 and r2 in (10.6) and (10.7) truncated at the order se-
lected by the BIC selection criterion, and with the θj parameters replaced by
their estimates. More precisely, when o represents the order selected by BIC,

r̂1(u) = 1 +
n2

n

o∑
j=1

θ̂jhj(u) and r̂2(u) = 1 − n1

n

o∑
j=1

θ̂jhj(u).

As shown in Section 10.1.1.2 the parameters θj can be estimated by√
n/(n1n2)Uj . Figure 10.2 shows the two estimated comparison densities;
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Fig. 10.2 The estimated comparison densities of gene 1 based on the BIC selected orthog-
onal series expansion. The full and dashed lines correspond to the nonprogressed adenoma
and carcinoma patients, respectively

this is obtained by specifying graph=T in the smooth.test function. The fig-
ure shows quite some symmetry at first sight. This is of course a consequence
of the symmetry that is built in the two order k smooth alternatives, par-
ticularly the use of the same set of θj parameters in the two densities. The
plot demonstrates that the probability mass of the expression values of the
carcinoma patients is relatively shifted to the smaller values.

In Chapter 4 we also used the relation between smooth tests and orthog-
onal series density estimates, and there it also allowed us to plot improved
density estimates. In theory this is also possible here. It relies on (10.4) and
(10.5), but, as these Barton models show, it requires an estimate of the pooled
density h. Any nonparametric density estimate could be considered here, and
an advantage could be that it may be calculated using all observations in the
pooled sample. However, we do not proceed along these lines.

Example 10.3 (The gene expression data: Gene 3). In Example 9.6 we anal-
ysed this dataset with the WMW test. Now we do the analysis over, but with
a data-driven smooth test. We have chosen here an order selection test with
the BIC as an order selection criterion. The maximal order was set to 10.
The output follows.

> smooth.test(expression~group,max.order=10,
+ adaptive=c("BIC","order"),rescale=F,B=10000,
+ probs=F,data=gene3)
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Adaptive K-sample smooth goodness-of-fit test (K=2)

Horizon: order selection (max. order = 10)
Order selection rule: BIC

Adaptive smooth test statistic T_k = 21.4568
p-value < 0.0001

Selected order = 1

Components
1 st component = -4.1186

All p-values are obtained by means of simulations

The test gives a p-value smaller than 0.0001, so that at the 5% level of
significance we reject the general two-sample null hypothesis. The test has
selected only the first component. See Example 9.6 for a detailed discussion
on the interpretation of the WMW test.

Example 10.4 (The traffic data). We have analysed parts of the traffic data
before in two-sample settings, but now we analyse the complete study by
testing the general K-sample null hypothesis using an adaptive smooth test.
The maximal order is set at k = 5 and the BIC model selection criterion is
used for order selection.

> traffic.st<-smooth.test(time~route,max.order=5,
+ adaptive=c("BIC","order"),rescale=F,B=10000,
+ probs=F,data=traffic)

Adaptive K-sample smooth goodness-of-fit test (K=5)

Horizon: order selection (max. order = 5)
Order selection rule: BIC

Adaptive smooth test statistic T_k = 192.6919
p-value < 0.0001

Selected order = 4

Components
1 st component = 53.5905
2 nd component = 89.7120
3 rd component = 25.4791
4 th component = 23.9104

All p-values are obtained by means of simulations
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From the very small p-value of the adaptive test we definitely reject the
general K-sample null hypothesis strongly. It is, however, not immediately
obvious from this analysis how the five samples differ among one another. We
may shed some more light on it by looking at the very individual components,
i.e., at the k × K individual Usj (s = 1, . . . ,K, j = 1, . . . , ns) statistics. This
is shown in the following output. The last column (behind the *) is the row
sum of squares.

> components(traffic.st)

sample 1: -0.3782 -4.9015 0.2353 0.8876 * 6.2528
sample 2: -3.7203 -3.2362 3.3675 -0.4618 * 8.9667
sample 3: 5.4124 -0.8462 -3.6967 -2.0848 * 12.0055
sample 4: -2.8306 1.8308 -0.4076 -2.1036 * 3.9889
sample 5: 1.5167 7.1516 0.5022 3.7600 * 16.9591

comp: : 53.5905 89.7120 25.4791 23.9104

Equations (10.17) and (10.15) show that the individual components Usj

may be interpreted as the jth-order effect of the sth sample relative to the
pooled (or marginal) distribution. Pairwise differences of the Usj between
samples but within the same order j are informative about jth-order differ-
ences between the samples. Note that we deliberately used the terminology
jth-order effects/differences to avoid the difficult issues regarding their inter-
pretation. The output also shows the row sums of squares,

R2
s =

o∑
j=1

U2
sj ,

with o = 4 the selected order. This allows us to write the order 4 test
statistic as

T4 =
K∑

s=1

R2
s.

Each R2
s measures how far the sth sample distribution is away from the

pooled distribution. A similar type of decomposition was also proposed by
Boos (1986). The analysis thus suggests that particularly the distributions of
the travel times with routes 3 and 5 deviate from the marginal distribution of
travel times, and the distribution of travel times with route 4 comes closest
to the marginal distribution. The marginal distribution is to be interpreted
as the distribution that would arise when each taxi driver chose each route
with a relative frequency of 1

5 .
Because route 1 (i.e., sample 1 in the output) is considered as the reference

route, we compare it with the other routes. We only look at the first two order
components.
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> components(traffic.st,contrast=c("control",1),order=2)

sample 1: 0 0
sample 2: -3.3421 1.6653
sample 3: 5.7906 4.0554
sample 4: -2.4524 6.7323
sample 5: 1.8949 1.2053

These results suggest that in terms of likely ordering, and compared to
the reference route 1, it is more likely to have a faster taxi ride with routes 2
and 4. With route 3, on the other hand, it is more likely to spend more time
in the taxi. These conclusions are consistent with what we have concluded
before and with the boxplots of Figure 6.2. Note that we should actually first
assess the diagnostic property of the components by calculating the empirical
variances.

The second-order components should be interpreted with even more care.
As δM in (10.12) demonstrates, these second-order components measure a
combined effect of single and double likely ordering. It is also here not possible
to use these components for formulating conclusions in terms of the scale
difference measure π(4), because we have no reason to believe that the median
travel times coincide (see Section 9.5.3.4). We believe, however, that it is
more informative at this point to use the estimated double likely ordering
probabilities. From the output we see that all estimates are positive. They are,
however, slightly more difficult to interpret because they quantify a combined
effect of first-order and second-order (or double) likely ordering, as can be
seen from the form of the second-order Legendre polynomial (Section 2.6.2).
The sign of the effects does thus not necessarily say something about the
direction of the double likely ordering effect. At this point it would thus be
more informative to estimate the double likely ordering probabilities so that
the direction of the effect can be observed. However, we do not pursue this
further here.

10.6 Smooth Tests That Are Not Based on Ranks

All smooth tests discussed in this chapter up to now are basically rank tests.
The reason for this is they were defined starting from a smooth alternative to
the pooled distribution h. This procedure required at some point the estima-
tion of the pooled distribution function H by the EDF Ĥ, which introduced
the ranks into the smooth test statistics.

In this section we describe a test for the K-sample problem that is not
based on ranks. The method is due to Chervoneva and Iglewicz (2005) and
it starts from orthogonal series expansions of the densities f1, . . . , fK (see
Section 2.8.2). In particular, consider the order k expansions (s = 1, . . . , K)
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fsk(x) =
k∑

j=0

θsjhj(x), (10.19)

where {hj} is a set of orthonormal functions on the uniform [0, 1] distribution,
and where θs0 = 1 (s = 1, . . . , K) so that the order k densities integrate
to one. The K models (10.19) are smooth alternatives to one another, and
when it is assumed that the true K densities are embedded in these order
k expansions, equality of the K densities may be formulated by the null
hypothesis

H0 : θ1j = θ2j = · · · = θKj for all j = 1, . . . , k.

Chervoneva and Iglewicz (2005) proposed to test this null hypothesis by
means of a Wald test. This requires asymptotically normally distributed es-
timators of the θsj parameters, and a consistent estimator of their variance–
covariance matrix.

Many times before we have seen that θ̂sj = (1/n)
∑ns

i=1 hj(Xsi) is an unbi-

ased estimator of θsj . Let θt
s = (θs1, . . . , θsk) and θ̂

t

s = (θ̂s1, . . . , θ̂sk). Based
on the ns sample observations of sample s, it is quite straightforward to show
that, as ns → ∞, √

n(θ̂s − θs)
d−→ MV N(0,Σs),

where the (i, j)th element of Σs is given by∫
S

hi(x)hj(x)fs(x)dx − θsiθsj .

This variance–covariance matrix may be estimated by a U -statistic, say Σ̂s.
In particular, the (i, j)th element of Σs may be unbiasedly estimated by

1
n

ns∑
l=1

hi(Xsl)hj(Xsl) − 1
ns(ns − 1)

ns∑
l=1

ns∑
m=1;m�=l

hi(Xsl)hj(Xsm).

Because in the K-sample problem the K samples consist of independently
distributed observations, the K vectors θ̂s are also independently distributed.
With this information, a Wald test statistic can be constructed.

10.7 Some Practical Guidelines for Smooth Tests

We list some of the most important features of smooth tests for the two- and
the K-sample problem, as well as some practical guidelines.

• The smooth test statistics are basically rank statistics and easy to compute
(only the tests described in Section 10.6 are not rank tests).
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• The smooth tests have generally good power for detecting differences
between distributions. This is illustrated in simulation studies. These stud-
ies suggest that an order of k = 4 for small sample sizes (e.g., n = 50 for
K = 2, 3) and an order of up to K = 6 for larger datasets is sufficient for
detecting many important deviations from the null hypothesis.

• For testing the general two- or K-sample null hypothesis, the exact null
distribution may be enumerated (or approximated using Monte Carlo sim-
ulations). The convergence to the asymptotic χ2 null distribution is fairly
slow when k > 2.

• The smooth test statistic decomposes into components that are again rank
statistics. For the two-sample problem the first two components are basi-
cally the Wilcoxon rank sum statistic and the Mood statistics, respectively,
and the for K-sample problem we find the Kruskal–Wallis and the gener-
alised Mood statistics. Higher-order components (k > 2) may be consid-
ered as further generalisations of the Kruskal–Wallis and Mood statistics.

• The interpretation of the components should be done with great care. The
components can only be related to differences in moments under some
particular distributional assumptions. More generally they are related to
likely orderings. From a theoretical point of view the components can be
properly rescaled so that they possess a diagnostic property under less
stringent conditions, but from simulation studies we have learnt that very
large sample sizes are required before this rescaling does the job. We there-
fore actually do not recommend this procedure in general. See Chapter 9
for a detailed discussion.

• The smooth tests are related to the comparison distribution. This may
be seen from the order k smooth alternatives on which the construction
of the smooth test statistic relies. This relation allows us to estimate the
comparison densities using the components of the smooth test. A graphical
display of the estimated comparison distribution may be very helpful in
formulating the conclusions from the statistical analysis. Moreover, inas-
much as the graph and the test have such a close connection, the risk of
finding contradictory conclusions is small.

• For choosing the order k of the smooth test, data-driven selection rules
can be used.

• The test of Chervoneva and Iglewicz (2005) may be considered as a smooth
test which is not based on ranks. From a simulation study we have learned
that it has good power when the densities are well approximated by a low-
order linear series expansion. However, the basis functions must actually
be chosen prior to looking at the data, so that there is a fair risk of ending
up with a small power. Moreover, the test requires an empirical covariance
estimate, which has a negative effect on the power.



Chapter 11

Methods Based on the Empirical
Distribution Function

This chapter is devoted to tests for the two- and K-sample problems that
are based on the empirical distribution functions (EDF) of the distributions
to be compared. Such tests are generally known as EDF tests. The types of
tests that are treated in this chapter are often of the same form of the EDF
tests for the one-sample problem (Chapter 5). The Kolmogorov–Smirnov test
is discussed in Section 11.1, and Section 11.2 concerns tests of the Anderson–
Darling type. We conclude the chapter with some practical guidelines in Sec-
tion 11.4. As in Chapter 5 we again prefer the use of empirical processes for
studying the asymptotic properties of the tests.

11.1 The Two-Sample and K-Sample
Kolmogorov–Smirnov Test

11.1.1 The Kolmogorov–Smirnov Test
for the Two-Sample Problem

11.1.1.1 The Test Statistic

The Kolmogorov–Smirnov (KS) test for testing the general two-sample null
hypothesis H0 : F1 = F2 versus H1 : F1 �= F2 uses the test statistic

Dn =
√

n1n2

n
sup
x∈S

∣∣∣F̂1n1(x) − F̂2n2(x)
∣∣∣ = sup

x∈S
|ICn12(x)| , (11.1)

where ICn12(x) =
√

n1n2/n(F̂1n1(x)− F̂2n2(x)) is the contrast process (7.22).
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The rationale for the construction of Dn is obvious. Just as for the
one-sample KS test, the test statistic is related to the largest difference be-
tween the distribution functions F1 and F2. The statistic is rewritten as

Dn =
√

n1n2

n
sup

0<p<1

∣∣∣F̂1n1(F̂
−1
2n2

(p)) − p
∣∣∣ =√n2

n
sup

0<p<1
|ICn12(p)| ,

where ICn12(p) =
√

n1(F̂1n1(F̂
−1
2n2

(p)) − p) is now defined as the comparison
distribution process (7.27). This representation shows that Dn is the scaled
maximal deviation of the PP plot from the 45 degree line. See Section 8.1 for
more details on PP plots.

Similar as for the one-sample KS test, the test statistic Dn may be for-
mulated as Dn =

√
n2/n max(D+

n , D−
n ), where D+

n = sup0<p<1 ICn12(p) and
D−

n = sup0<p<1(−ICn12(p)). The statistics D+
n and D−

n are often suggested
for testing the general two-sample null hypothesis versus the alternative of
stochastic ordering, F1(x) > F2(x) or F1(x) < F2(x) for all x ∈ S, but we do
not recommend that usage here, unless some additional restrictions on the
shapes of F1 and F2 are imposed (e.g., location-shift model).

11.1.1.2 The Null Distribution

Because Dn is basically a rank statistic, its exact permutation null distribu-
tion may be enumerated using the methods of Section 7.1.

The asymptotic null distribution follows directly from the weak conver-
gence of the ICn12 process (as a contrast process, or as comparison distri-
bution process) and the continuous mapping theorem. It is, however, more
convenient to use the comparison distribution process representation. Thus,
on using (7.24) or Theorem 7.6, we find the following result. Under H0, as
n → ∞,

Dn
d−→ sup

p∈(0,1)

∣∣∣√1 − λIB1(p) −
√

λIB2(p)
∣∣∣ ,

where IB1 and IB2 are two independent uniform Brownian bridges.
The asymptotic null distribution of Dn was first studied by Smirnov

(1939). He found an explicit form of the CDF of asymptotic null distribution
of Dn. When D denotes the random variable that possesses the asymptotic
null distribution of Dn, then D has distribution function

FD(x) =
∞∑

i=−∞
(−1)i exp

(−2i2x2
)

for x > 0.

The test based on Dn is consistent against any fixed alternative F1 �= F2.
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11.1.2 The Kolmogorov–Smirnov Test
for the K-Sample Problem

The extension from two to K ≥ 2 samples is quite straightforward, but there
are several possibilities. A first solution exists in constructing all contrast or
comparison distribution processes ICnij , i, j = 1, . . . , K with i �= j, and define
the K-sample KS statistic as

DKn = max
i�=j

sup
p∈(0,1)

|ICnij(p)| .

Another solution exists in the use of the process that contrasts each individual
EDF F̂ini

(i = 1, . . . , K) with the pooled EDF Ĥn. This involves thus the
comparison distribution processes ICni of (7.26). A K-sample KS statistic may
then be defined as

DKpn = max
j=1,...,K

sup
p∈(0,1)

√
nj

∣∣∣F̂jnj
(Ĥ−1

n (p)) − p
∣∣∣ = max

j=1,...,K
sup

p∈(0,1)

|ICnj(p)| .

A related test uses the statistic

DK2pn = sup
p∈(0,1)

K∑
s=1

ns

(
F̂sns

(Ĥ−1(p)) − p
)2

.

As for the two-sample case, the exact distributions of these statistics under
the general two-sample null hypothesis can be enumerated and the asymptotic
approximations follow along the same lines. To our knowledge, however, these
tests have actually never been used in real data analyses. We refer to Dwass
(1960) and Fisz (1960) for some more details on these tests.

11.2 Tests of the Anderson–Darling Type

11.2.1 The Test Statistic

The Anderson–Darling (AD) test of Section 5.2.1 can be readily extended to
the two- and the K-sample problem. Pettitt (1976) studied the two-sample
AD statistic,

An =
n1n2

n

∫
S

(
F̂1n1(x) − F̂2n2(x)

)2

Ĥn(x)(1 − Ĥn(x))
dĤn(x). (11.2)
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As the integrand does not exist for x equal to or larger than the largest
observation in the pooled sample, it is defined as zero for those x. An equiv-
alent formulation is

An =
n

n2

∫
S

(
F̂1n1(x) − Ĥn(x)

)2

Ĥn(x)(1 − Ĥn(x))
dĤn(x). (11.3)

The equivalent computational form of An is then given by

An =
1

n1n2

n−1∑
i=1

(nMi − n1i)
2

i(n − i)
,

where Mi = n1F̂1n1(Ĥ
−1
n (i/n)) is the number of observations in the first

sample that is not larger than the ith smallest in the pooled sample.
In passing we like to stress once more that we limit our presentation

here to continuous distributions F1, . . . , FK . This is necessary for the differ-
ent forms of the Anderson–Darling statistics to be (at least asymptotically)
equivalent. This is, for example, important when applying the transformation
x = Ĥ−1

n (p) so that the continuous version of the test statistic can be studied
as well. Define the process

IPn(p) =
ICn1(p)√
p(1 − p)

.

The continuous version is given by

An =
n1

n2

∫ 1

0

IP2
n(p)dp, (11.4)

where again the domain of integration should be restricted, or where the pro-
cess IPn should be modified for the statistic to be well defined. For example,
Pettitt (1976) modified the process to IPn(p) =

√
n{F̂1n1(Ĥ

−1
n (((n+1)/n)p)−

p)} when p ≤ n/(n + 1) and IPn(p) =
√

n(1 − t)/t when p > n/(n + 1).
For the one-sample AD test the transformation was less an issue, because

there the variable of integration was dG(x), in which G was a specified dis-
tribution. Here, in (11.4), the variable of integration is dĤn(x) which is zero
except when x coincides with a sample observation.

For comparing K distributions Scholz and Stephens (1987) proposed the
statistic (both the original and the continuous version are given)

AKn =
K∑

s=1

nj

∫
S

(
F̂sns

(x) − Ĥn(x)
)2

Ĥn(x)(1 − Ĥn(x))
dĤn(x)

=
K∑

s=1

ns

n

∫ 1

0

IC2
ns(p)

p(1 − p)
dp,



11.2 Tests of the Anderson–Darling Type 301

where the integrand is again defined as zero for x for which the integrand
does not exist (an equivalent way of circumventing this problem is to restrict
the integration domain). The computational formula now becomes

AKn =
1
n

K∑
s=1

1
ns

n−1∑
i=1

(nMsi − nsi)
2

i(n − i)
, (11.5)

where Msi = nsF̂sns
(Ĥ−1

n (i/n)) is the number of observations in the sth
sample that is not larger than the ith smallest observation in the pooled
sample.

11.2.2 The Components

Just as in the one-sample case also here the AD test statistics decompose
into components by applying a Kac–Siegert expansion. In Section 5.2.2 we
have worked out those expansions in some detail for the one-sample AD
test. For the AD tests of this chapter, basically the same machinery may be
applied. There are actually two issues that arise only here, and were thus not
discussed in previous chapters. We comment briefly on them, because they
are important for arguing that the same principal component methodology
of Section 5.2.2 may be applied.

1. The integrand of the AD statistic is not defined for all p ∈ [0, 1]. This
can be solved by restricting the domain of integration or by redefining
the process IPn as Pettitt (1976) did. For the statistics that we study,
these modifications do not have any effect, at least not asymptotically. We
therefore choose not to make these modifications explicit throughout this
chapter.

2. The process on which the Kac–Siegert expansion has to be applied must
be sufficiently similar to those considered in the one-sample case. This is
the case for the IPn process which is defined in terms of the comparison
distribution function F̂1n1(Ĥ

−1
n (p)), but this does not hold for the contrast

process F̂1n1(x) − Ĥn(x), because of the discrete nature of Ĥn. This is
resolved in the former process.

Now that the similarity, and particularly the differences, with the one-
sample AD test statistic have been clarified, we are ready to decompose the
test statistic. We start with deriving the (asymptotic) covariance function of
the IPn process. For notational comfort we first ignore the factor 1/

√
p(1 − p).

Let c(p, q) = p ∧ q − pq denote the covariance function of a Brownian bridge
and let IB1 and IB2 be two independent Brownian Bridges. The covariance
function

c∗(p, q) = Cov0 {ICn1(p), ICn1(q)}
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becomes for large sample sizes, on using Theorem 7.6,

c∗(p, q) = Cov0

{
(1 − λ)

(
1√
λ

IB1(p) +
1√

1 − λ
IB2(p)

)
,

(1 − λ)
(

1√
λ

IB1(q) +
1√

1 − λ
IB2(q)

)}
= (1 − λ)2

(
1
λ

c(p, q) +
1

1 − λ
c(p, q)

)
= λ(1 − λ)c(p, q).

Thus the process (1/
√

λ(1 − λ))IPn(p) or (n/
√

n1n2)IPn(p) has the same
covariance function as the process studied in Section 5.2.2.2 for the one-
sample AD statistic. Thus the same eigenvalues and eigenfunctions as in
(5.7) can be used here, and we do not repeat all details here. We only lift out
the part of the calculations in which ranks will enter the components, using
eigenvalues λj = 1/(j(j + 1)) and eigenfunctions

lj(p) = 2

√
1

j(j + 1)

√
p(1 − p)

d

dp
Lj(p).

Thus,

An =
n1n2

n2

n1

n2

∫ 1

0

(
nICn1(p)√

n1n2

√
p(1 − p)

)2

dp

=
n1n2

n2

n1

n2

∞∑
j=1

1
j(j + 1)

Z2
nj ,

where

Znj =
1√
λj

∫ 1

0

(
nICn1(p)√

n1n2

√
p(1 − p)

)
lj(p)dp

= 2
n√
n1n2

∫ 1

0

ICn1(p)dLj(p)

= −2
n√
n1n2

∫ 1

0

Lj(p)d ICn1(p),

where the last equation results from integration by parts. This becomes

Znj = −2
n
√

n√
n1n2

∫ 1

0

Lj(p)dF̂1n1(Ĥ
−1
n (p)) + 2

n
√

n√
n1n2

∫ 1

0

Lj(p)dp,

in which the last term is zero because of the orthogonality of the Legen-
dre polynomials Lj . For the first term we know that Ĥ−1

n (p) is a piecewise
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constant function with jumps in i/n (i = 1, . . . , n), and dF̂1n1(x) is zero
except when x equals an observation from the first sample. Define xi as an
indicator so that xi is 1 when observation i comes from the first sample, and
xi = 0 otherwise. Then we may write

Znj = −2
n
√

n√
n1n2

n∑
i=1

Lj

(
i

n

)
xi

n1

= −2
n
√

n√
n1n2

1
n1

n1∑
i=1

Lj

(
Ri

n

)
,

where Ri is the rank of observation X1i in the pooled sample. With this
expression for Znj we find for the AD test statistic

An = 4
n

n1n2

∞∑
j=1

1
j(j + 1)

(
n1∑
i=1

Lj

(
Ri

n

))2

. (11.6)

From this representation we see that An decomposes into a series of weighted
components,

∑n1
i=1 Lj (Ri/n) that are simple linear rank statistics. The func-

tions Lj are jth-order Legendre polynomials, so that these components equal
the components of the smooth test statistics of Section 10.1.2, where we used
the notation hj instead of Lj for the jth-order polynomial. The weight of
the jth component equals 1/(j(j +1)) (j = 1, . . .), just as for the one-sample
AD statistic. Consequently, the first component is proportional to the WMW
statistic, the second to the Mood statistic, etc. We can thus simply refer to
Section 10.1.2 for a discussion of the interpretation of the components.

In the calculations resulting in (11.6) we have chosen not to adopt any
particular continuity correction, but surely it allows for any correction of
choice.

11.2.3 The Null Distribution

Apart from the exact permutation null distribution for testing the general
two- or K-sample null hypothesis, also the asymptotic null distributions may
be used. Although the convergence is not very good, there are some minor
modifications to An and AKn suggested to highly improve the approximation.
When An is replaced by

A∗
n = (An − 1)

(
1 +

1.55
n

)
+ 1

the asymptotic null distribution may be used to get quite accurate results
in the upper tail of the distribution (Pettitt (1976)). The rationale for this
transformation is that it makes the first two moments of A∗

n and the asymp-
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totic null distribution fit better. A similar modification has been suggested for
the K-sample AKn statistic. The standardising transformation is, however,
more complicated. We refer to Scholz and Stephens (1987) for details.

The asymptotic null distributions of An and AKn result again from the
weak convergence of the ICn processes (Theorem 7.6) and from the continu-
ous mapping theorem, but there are some complications that are caused by
the typical Anderson–Darling weight function 1/(p(1 − p)) that causes the
integrand to not exist for p too close to 1. The trick exists in proving that
the statistics defined as

∫ 1−δ

δ
, with small δ > 0, has a limiting distribution

and that the remainder is asymptotically neglectable.
The asymptotic null distributions of the two statistics are provided in the

following theorem.

Theorem 11.1. Under H0, as n → ∞,

An
d−→
∫ 1

0

IB2
1(p)

p(1 − p)
dp,

and

AKn
d−→
∫ 1

0

∑K
j=2 IB2

j (p)
p(1 − p)

, (11.7)

where IB1, . . . , IBK are K mutually independent uniform Brownian bridges.

It is worthwhile to focus for a moment on the limit distribution of AKn

in (11.7). Note that it involves only K − 1 mutually independent Brownian
bridges. The arguments that result in the loss of one term are similar to those
that we used in Section 10.3.2 for the K-sample Kruskal–Wallis test statistic.

11.2.4 Examples

We illustrate the use of the Anderson–Darling test on the gene expression
data. In Example 11.2 following we also provide a general discussion on the
practical use of EDF tests, and on the relevance of the conclusions for the
gene expression data in the colorectal cancer study.

Example 11.1 (The gene expression data: Gene 1). Thetwo-sampleAnderson–
Darling test is also available through the EDF.test function in the cd R
package.

> gene1.AD<-EDF.test(expression~group,type="AD",B=10000,
+ data=gene1)

K-sample Anderson-Darling Test
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data: gene1
T = 5.61, number simulations = 10000, p-value = 0.0013

Based on the permutation null distribution, which is here approximated by
10,000 simulation runs, the Anderson–Darling test gives a p-value of 0.0013.
Hence, at the 5% level of significance the general two-sample null hypothe-
sis is rejected. Because the AD test allows a decomposition in terms of the
same components as the two-sample smooth test, we advise looking at those
components, or to use the components for calculating the estimates of the θj

parameters of the orthogonal series expansion of the comparison densities.
The components may again be obtained with the components function (see
below). We refer to Example 10.2 for the interpretation of the components
and the estimated comparison densities.

> components(gene1.AD,order=2)

Components
1 st component = 2.4622
2 nd component = -3.8114

Example 11.2 (The gene expression data: All genes). In the previous chap-
ters we have done several analyses on the gene expression data. We first give
the results of the two-sample Anderson–Darling tests for all four genes, and
next we summarise our conclusions. Without presenting the R code and out-
put, we report the p-values of the AD tests for genes 1 to 4: 0.0013, 0.0002,
< 0.0001, and 0.0085. Thus for all genes the general two-sample null hypoth-
esis is rejected at the 5% level of significance. At the rejection of the null
hypothesis our general recommendation is

1. To look at the individual components and try to interpret them. For the
first-order component, which is the WMW statistic, the interpretation is
usually not too hard, but interpretation of higher-order components may
become complicated, particularly when they have to be related to differ-
ences in scale, skewness, etc. In Chapter 10 we have illustrated several
times the difficulties that may arise. The components may be interpreted
in terms of likely orderings, but for the higher-order components the in-
terpretation is not always very clear.

2. To use the components for the calculation of the estimates of the θj param-
eters in the orthogonal expansion of the comparison densities, and to plot
the estimated comparison densities. Conclusions may then be formulated
based on these graphs. Because the graphs and the AD test (or smooth
tests) are based on the same components, they both contain the same
information.

For illustrative purposes we have also performed Welch t-tests for the four
genes. The p-values are: 0.04865, 0.05482, 0.07379, and 0.051. They are all
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very close to the nominal significance level of 5%. Moreover, because most
of the gene expression distributions appear to be nonnormal, the p-values
from the Welch t-tests may not be trusted. This leaves us inconclusive in
terms of potential differences in mean expression values. On the other hand,
however, for all four genes the first-order component (WMW statistic) turns
out to be important. After careful assessment of the validity of the WMW
test (i.e., empirical variance ratio close to one), conclusions may thus be
formulated in terms of likely orderings. Likely orderings are also biologically
very informative in the context of the present colorectal cancer study. For
example, the probability Pr {X1 ≤ X2} > 0.5 indicates that among many
pairs of patients, one of which is a nonprogressed adenoma patient and the
other one is a carcinoma patient, there are relatively more pairs for which the
carcinoma patient has a higher gene expression value than the nonprogressed
adenoma patient. Thus even when the means of the two gene expression
distributions are not very different, this stochastic difference may have a
biological explanation, and such a gene can thus play an important role in a
biological pathway that is related to colorectal cancer.

11.3 Adaptive Tests of Neuhaus

We describe here an apparently different framework for the construction of
adaptive tests, but eventually we show that both the smooth tests and the
EDF tests fit into it. It is based on a series of papers by Behnen and Neuhaus
(1983), Behnen et al. (1983), Behnen and Husková (1984), and Neuhaus
(1987). We refer to it as the adaptive tests of Neuhaus, because it is par-
ticularly the 1987 paper that comes to the general form that is introduced
here. Although Neuhaus constructed the tests very formally, we have chosen
to give here merely an intuitive construction of his method.

11.3.1 The General Idea

In Section 7.2.2 we have given a taste of the proof Theorem 7.5, which gives
the optimal scores for the LMPRT. This result is based on the fundamental
Neyman–Pearson lemma, but it was applied to a parameterised local alter-
native, so that a first-order Taylor approximation was appropriate. Here we
actually start with an even simpler situation. Suppose we want to test the
general two-sample null hypothesis versus the alternative

H1 : f1 = f∗
1 �= f∗

2 = f2,

where f∗
1 and f∗

2 are two different fixed densities. This is basically a simple
alternative, and not a composite hypothesis as we always have considered
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before. The fundamental Neyman–Pearson lemma gives the most powerful
test, which is the log-likelihood ratio (LRR) statistic

LLR ∝
n1∑
i=1

log
f∗
1 (Zi)

f∗
2 (Zi)

−
n∑

i=n1+1

log
f∗
1 (Zi)

f∗
2 (Zi)

,

where Z1, . . . , Zn denotes again the order sample observations so that the
first n1 observations come from the first sample. For later convenience we
rewrite LLR using the regression constants ci = cni as defined in Theorem
10.1. These constants appear typically in two-sample rank statistics. With
this notation we may write

LLR ∝
n∑

i=1

ci log
f∗
1 (Zi)

f∗
2 (Zi)

.

When h denotes the pooled density

h =
n1

n
f∗
1 +

n2

n
f∗
2 ,

and using the definition of the comparison density of (7.20), we may write

f∗
1 (H−1(u)) = r∗1(u)h(H−1(u)) and f∗

2 (H−1(u)) = r∗2(u)h(H−1(u)),

where r∗1 and r∗2 denote the fixed comparison densities. At this point we still
assume that h and H are known. The LLR now becomes

LLR ∝
n∑

i=1

ci log
r∗1(H(Zi))
r∗2(H(Zi))

.

Up to now we have considered f∗
1 and f∗

2 (or r∗1 and r∗2) as fixed. Now we
assume that they are very close to each other so that the LLR statistic may
be approximated to first order by

LLR ≈
n∑

i=1

ci {r∗1(H(Zi)) − r∗2(H(Zi))} ,

and we further use the notation b(u) = r∗1(u)−r∗2(u), which is basically a score
function. Furthermore, the null hypothesis may actually also be expressed as
b(u) = 0. Thus LLR ≈ ∑n

i=1 cib(H(Zi)). The first important conclusion
is that an optimal test can be constructed if the function b were known.
Unfortunately this function depends on fixed alternatives whereas in reality
we are actually interested in testing the general two-sample null hypothesis
against all such fixed alternatives. The problem could be solved if we were in
the position to estimate the function b. In the next two sections we discuss
two types of solutions.



308 11 Methods Based on the Empirical Distribution Function

11.3.2 Smooth Tests

Consider the order k Barton type expansions of the densities f∗
1 and f∗

2 in
(10.4) and (10.5). The LLR statistic then becomes

LLR ≈
n∑

i=1

ci

k∑
j=1

θjhj(H(Zi)).

This statistic can still not be directly used because the θj and H are unknown.
We now replace them by their estimators (see (10.10) for the estimator θ̂j of
θj). This results in the test statistic

Nk =
n∑

i=1

ci

k∑
j=1

[√
n

n1n2

n∑
l=1

clhj(Ĥ(Zi))

]
hj(Ĥ(Zi)).

On using the convention that Ĥ(Zi) is replaced by Ri−0.5
n we find

Nk =
√

n

n1n2

k∑
j=1

n∑
i=1

n∑
l=1

ciclhj

(
Ri − 0.5

n

)
hj

(
Rl − 0.5

n

)

=
√

n

n1n2

k∑
j=1

{
n∑

i=1

cihj

(
Ri − 0.5

n

)}2

=
√

n

n1n2

k∑
j=1

U2
j ,

with Uj the jth component of the two-sample smooth test statistic as in
Theorem 10.1. Hence, the test based on Nk is equivalent to the order k two-
sample smooth test.

11.3.3 EDF tests

The general approach of Neuhaus (1987) consists in replacing b(u) in the
LLR statistic by a nonparametric estimator. A very rough estimate may be
obtained by first recognising that (dropping the ∗ notation)

b(u) = rr(u) − r2(u) =
d

du

{
F1(H−1(u)) − F2(H−1(u))

}
(see Section 2.4). When we define B(u) = F1(H−1(u))−F2(H−1(u)), we have
b(u) = dB(u)/du. The function B has a nonparametric estimator by simply
replacing the CDFs with their empirical counterparts. This gives
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B̂(u) = F̂1(Ĥ−1(u)) − F̂2(Ĥ−1(u)).

On using this empirical estimator, the function b may be roughly estimated
by

b̄(u) = n

{
B̂

(
i

n

)
− B̂

(
i − 1

n

)}
for

i − 1
n

≤ u <
i

n

(i = 1, . . . , n).
Neuhaus (1987) continues by smoothing b̄(u) using kernel functions. In

particular, when K(u, v) ((u, v) ∈ [0, 1]2) is a proper square integrable con-
volution kernel, the smoothed score function becomes

b̃(u) =
∫ 1

0

b̄(v)K(u, v)dv.

A test statistic for testing H0 : b(u) = 0 may be constructed as the squared
norm in the Hilbert space, or, as Neuhaus (1987) proposed,

Tn =< b̃, b̄ > .

Without going into further detail here, it is interesting to note that Tn is a
rank statistic and that it has a principal component decomposition of the
form

Tn =
∞∑

j=1

λj < ψj , b̄ >2,

where the λj and the ψj are eigenvalues and eigenfunctions related to the ker-
nel function K. For a particular choice of K, Neuhaus (1987) showed that Tn

becomes the two-sample CvM statistic. This illustrates that the construction
of Neuhaus is quite general.

11.4 Some Practical Guidelines for EDF Tests

We list some of the most important features of the EDF tests for the two-
and the K-sample problem, as well as some practical guidelines.

• The EDF tests of the Kolmogorov–Smirnov type are related to PP plots,
but they generally have not very good powers. They may, however, be
useful for detecting stochastic ordering, though better and more specialised
tests are available.

• The EDF tests of the Anderson–Darling type have overall good power
properties.

• The EDF tests are rank tests.
• Under the general two- and K-sample null hypothesis, the exact null distri-

butions may be enumerated (or at least approximated by means of Monte
Carlo simulations).
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• The Anderson–Darling statistic decomposes into components that coincide
with those of the smooth test statistics. Thus they possess the same prop-
erties as discussed in the two previous chapters. We therefore recommend
to first apply an Anderson–Darling test and when the general two-sample
or K-sample null hypothesis is rejected, we recommend using the individ-
ual components in exactly the same manner as with the smooth tests of the
previous chapter (e.g., interpretability and estimation of the comparison
density).

• An advantage of the Anderson–Darling test over the smooth test is that
the former does not require a data-driven order selection rule. It weights
the components of order j with weights of the order 1/j2 so that particu-
larly the lower-order components determine the power of the test. Because
in many real situations the most interesting and relevant differences be-
tween the distributions can be described by lower-order basis functions,
experience has snown that the Anderson–Darling test has overall good
powers.



Chapter 12

Two Final Methods and Some Final
Thoughts

A seemingly completely different approach to arrive at two- or K-sample
EDF test statistics is described in Section 12.1. This method is known as
the contingency table approach, as proposed by Rayner and Best (2001). The
sample space partition tests of Section 12.2 can be looked at as a combination
of the contingency table approach and the tests of the EDF type. Although
both type of tests are basically EDF tests, we have chosen to present them
in a separate chapter, because the manner in which they are constructed
deviates from what is seen in the previous chapters. This chapter, and the
book, is concluded with Section 12.3 with some final thoughts.

12.1 A Contigency Table Approach

Rayner and Best (2001) proposed a quite general method of constructing
nonparametric rank tests. Their method consists in constructing an appro-
priate contingency table which is filled up with counts related to the sample
observations, and once this table is set up, they calculate the statistic of Pear-
son’s chi-squared test for indepedence. The components that result from a
decomposition of the Pearson statistic turn out to be well-known rank statis-
tics and generalisations of them. In this section we give an outline of their
method for the K-sample problem.

As before, we use the notation Zi for denoting an observation from the
pooled sample, and the Z(i) are the corresponding order statistics. Consider
a K × n table with (s, i)th element Nsi defined as

Nsi =
{

1 if observation Z(i) is in sample s
0 otherwise.

O. Thas, Comparing Distributions, 311
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This table has row sums equal to ns (s = 1, . . . , K) and all column totals are
equal to 1/n. The Pearson chi-squared test statistic may then be written as

X2 =
K∑

s=1

n∑
i=1

(
Nsi − n 1

n
ns

n

)2
n 1

n
ns

n

=
K∑

s=1

Y tY

where Y is a vector with ith element equal to i = 1, . . . , n

Nsi − ns

n√
ns

n

=
√

n√
ns

(
Nsi − ns

n

)
.

Let D = diag(1/n) be an n×n diagonal matrix and let H be a k×n (k < n)
orthonormal matrix, with (j, i)th element hji (j = 1, . . . , k, i = 1, . . . , n) so
that HtDH = I and so that each column vector is orthogonal to (1, . . . , 1).
The columns of H are thus orthonormal vectors on the discrete uniform
distribution on n support points. With this notation the Pearson statistic
may be written as

X2 =
K∑

s=1

Y t
sY s =

K∑
s=1

Y t
sH

tDHY s =
(
D1/2HY s

)t (
D1/2HY s

)
,

in which the vectors D1/2HY s have the jth element equal to (j = 1, . . . , k),

n∑
i=1

hji
1√
ns

(
Nsi − ns

n

)
=

1√
ns

n∑
i=1

hjiNsi,

where we made use of the property
∑n

i=1 hji =
∑n

i=1 hji × 1 = 0. Let Wsj

denote this element. Hence,

X2 =
K∑

s=1

k∑
j=1

W 2
sj . (12.1)

In Chapter 10 we have seen a similar decomposition of the order k smooth
K-sample test statistic (Equation (10.16)). There the components had the
expression (see (10.14))

Usj =

√
n − ns

n

n∑
i=1

cnsihj

(
Ri − 0.5

n

)
,

with Ri the rank of observation i in the pooled sample, and the constants
cnsi as defined in (10.13). We next show that the components Wsj and Usj

are equivalent. Write
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Usj =
n − ns

n

√
ns

×
n∑

i=1

{
1
ns

hj

(
Ri − 0.5

n

)
Nsi − 1

n − ns
hj

(
Ri − 0.5

n

)
(1 − Nsi)

}
=

n − ns

n

√
ns

×
n∑

i=1

{
hj

(
Ri − 0.5

n

)
Nsi

(
1
ns

+
1

n − ns

)
− hj

(
Ri − 0.5

n

)
1

n − ns

}

≈ 1√
ns

n∑
i=1

hjiNsi,

where in the final step we used two properties of the orthonormal poly-
nomials. First, because the hj are orthonormal on the continuous uni-
form [0, 1] distribution and because they are evaluated in the scaled ranks
(Ri − 0.5)/n, they can be very well approximated by the orthonormal poly-
nomial vectors (hj1, . . . , hjn), which form a set of orthonormal vectors on
the discrete uniform distribution. The second property we used is again∑n

i=1 hji =
∑n

i=1 hji×1 = 0. These calculations demonstrate that Usj = Wsj

for all s = 1, . . . , K and j = 1, . . . , k, and we therefore may conclude that
X2 statistic from the contingency table approach of Rayner and Best (2001)
coincides with an order k = n smooth K-sample statistic, and both statis-
tics have the same decomposition. Finally note that for each sample size n,
the statistic X2 ≡ n(K − 1), so that it has no proper distribution, but its
components of course have.

12.2 The Sample Space Partition Tests

In Section 5.4 we have generalised the Anderson–Darling test to the sample
space partition test SSP, or, more specifically the SSPc test, in which the
letter c stands for the number of intervals on which the localised Pearson
statistics are calculated. In this section we describe a similar type of extension
of the K-sample Anderson–Darling statistic of Section 11.2 to a sample space
partition test. This class of tests was first introduced by Thas and Ottoy
(2004).

First we write the AKn statistic (11.5) as

AKn =
1
n

K∑
s=1

1
ns

n−1∑
i=1

(nMsi − nsi)
2

i(n − i)

=
K∑

s=1

1
n

n−1∑
i=1

{(
Msi − ns

i
n

)2
ns

i
n

+

(
(ns − Msi) − ns(1 − i

n )
)2

ns
n−i
n

}
,
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in which

X2
s (i) =

(
Msi − ns

i
n

)2
ns

i
n

+

(
(ns − Msi) − ns(1 − i

n )
)2

ns
n−i
n

= ns

⎧⎪⎨⎪⎩
(
F̂s(Ĥ−1(i/n)) − i

n

)2

i
n

+

(
1 − F̂s(Ĥ−1(i/n)) − (1 − i

n

))2

1 − i
n

⎫⎪⎬⎪⎭
may be recognised as the Pearson chi-squared statistic for testing the null
hypothesis

H0 : Fs

(
H−1

(
i

n

))
= H

(
H−1

(
i

n

))
=

i

n
.

This null hypothesis is basically a hypothesis about the probability param-
eter of a binomial distribution. The probability Fs(H−1(i/n)) is implied by
categorising the data into two groups or cells, and the cell boundary is de-
termined by the observation Z(i). We say that the Pearson statistic X2

s (i) is
localised at Z(i). This is completely analogous to how the one-sample AD test
statistic has been interpreted in Section 5.4. The K-sample AD statistic is
thus basically an average of such localised Pearson statistics, averaged over
the first n − 1 order statistics Z(i). The largest order statistic may not be
used, as explained in Section 11.2.

The SSPKc test statistic is obtained by extending the localised Pearson
statistic X2

s (i) to Pearson statistics that are localised at more than one ob-
servation, say at c − 1 (c > 1) distinct observations Z(i1), . . . , Z(ic−1), and
subsequently averaging these localised Pearson statistics. The observations
Z(i1), . . . , Z(ic−1) serve as cell boundaries, implying c cells and c probabilities
of a multinomial distribution. The constant c is referred to as the SSP size.
Each localised Pearson statistic is thus the Pearson chi-squared statistic for
testing the multinomial null hypothesis

H0 : Fs(H−1(i1/n)) =
i1
n

and Fs(H−1(i2/n)) − Fs(H−1(i1/n)) =
i2 − i1

n

and · · · and 1 − Fs(H−1(ic−1/n)) = 1 − ic−1

n
.

More specifically, let Dc = {i1, . . . , ic−1}, with the convention that 1 ≤ i1 <
i2 < · · · < ic−1 < n. The localised Pearson statistic is then given by

X2
s (Dc) = n

c∑
j=1

(
F̂s(Ĥ−1(ij/n)) − F̂s(Ĥ−1(ij−1/n)) − ij−ij−1

n

)2

ij−ij−1
n

, (12.2)

where i0 ≡ 0 and ic ≡ n. The SSPKc test statistic then becomes

TK,c =
1

mc

K∑
s=1

∑
Dc

X2
s (Dc),
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where
∑

Dc
is over all c− 1 tuples of ordered distinct integers 1, 2, . . . , n− 1,

and where mc is the number of such sets.
The asymptotic null distribution of the SSPKc test statistic may be found

using empirical processes, similarly as in Theorem 11.1. However, because
the SSPKc test statistic is a rank test, its exact null distribution under the
general K-sample null hypothesis may also be enumerated.

Just as for the SSPc test in Section 5.4 for the one-sample problem, the
SSPKc test can be made adaptive by applying a data-based SSP size selection
rule which is of the form

Cn = ArgMaxc∈Γ {TK,c − 2(c − 1)(K − 1) log an} ,

where Γ and an are as in Section 5.4. Simulation studies in Thas (2001)
demonstrated that the data-driven SSPKc test has overall very good pow-
ers under various alternatives. The powers observed for this test are often
larger than for the K-sample AD test, which is equivalent to the SSPk2
(i.e., c = 2) test. As in the one-sample problem, the adaptiveness is not re-
quired for making the test omnibus consistent, but it generally improves the
power of the test.

Finally, we have a look at a limiting case of the SSPKc test: suppose c = n.
In this case i1 = 1, i2 = 2, . . . , ic−1 = n − 1 and the estimated probabilities
in (12.2) reduce to (multiplied by n)

nF̂s(Ĥ−1(i/n)) − nF̂s(Ĥ−1((i − 1)/n)) = Nsi,

where Nsi is as in the contingency table approach as in Section 12.1. The
SSPKn (i.e., c = n) statistic is thus equivalent to the X2 statistic (12.1), and
so are the components. This interesting observation brings us to the conclu-
sion that the class of SSPKc tests may be considered as a bridge between the
AD test, which is traditionally classified as an EDF test, and the K-sample
smooth test.

12.3 Some Final Thoughts and Conclusions

• I hope that I have succeeded in demonstrating throughout the book that
the one-sample problem and the two-sample problem are basically two
settings belonging to the same archetype, an archetype that I essentially
consider as “comparing distributions”.

• In both parts of the book we came across the same types of tests. I have
mainly focussed on smooth and EDF tests, but many other types of tests
are very closely related to those two classes. Although the smooth and
EDF tests have a completely different origin, it turns out that they both
are related to the same components. Also tests of different types (e.g.,
ECF tests) are often related to these components.
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• The components are defined in terms of functions that form a basis in
an appropriate Hilbert space. The Hilbert space view of the comparing-
distributions problem is very valuable for studying the properties of the
tests. Many methods for comparing distributions reduce to finding an effi-
cient way of representing the density functions in a low-dimensional sub-
space of the infinite dimensional Hilbert space, i.e., a subspace spanned by
as few as possible basis functions.

• Many of the tests described in this book have components that are related
to moment deviations between the distributions as specified under the
null hypothesis and the true distributions, particularly for the one-sample
problem. However, the components should be interpreted with care. It
is not only the expectation of a component that determines its interpre-
tation, but because its (asymptotically normal) distribution is what is
used in the construction of the hypothesis test, it is just as important
to know how the variance of the component behaves under the hypothe-
ses. This has led to the concept of the diagnostic property and the use of
variance estimators of the components, that are also consistent under the
alternative hypothesis, for standardising so that the diagnostic property is
regained. Despite the theoretical correctness of this approach, simulation
studies have demonstrated that the theoretical properties only kick in for
very large sample sizes (often >10,000). Many components are well-known
test statistics that were well known long before the decompositions of the
smooth or EDF statistics were studied, and because these tests are very
popular among many data analysts, I believe that this deserves more at-
tention by statisticians so that perhaps better solutions will be proposed
to circumvent the caveats that exist nowadays.

• As a side remark related to the previous point, I want to add that many
simulation studies have suggested that the components frequently are di-
agnostic in realistic settings with moderately large sample sizes (n ≈ 50).
This happens particularly in the one-sample problem for testing goodness-
of-fit for distributions that belong to the exponential family.

• When components are used in an informative statistical analysis, it may
be wise to first verify the distributional assumptions that allow them to
be used as diagnostic components. For example, when the WMW statistic
is used for detecting shifts in location, the location-shift model should
be verified first. Or, when the WMW statistic is used for testing likely
orderings, it should be assessed first whether the variance of WMW under
the null hypothesis and a consistent estimator of the variance do not differ
too much. This procedure resembles the way the two-sample t-test is used
in daily practice: apart from the assessment of normality, one will often
use boxplots for assessing the equality of variance assumption. When no
large differences are observed the two-sample t-test is used with the pooled
variance estimator, and otherwise the Welch modified t-test is used.

• Closely related to the previous point is the interplay among the distri-
butional assumption, the formulation of the hypotheses, and the null
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distribution. This is particularly important for the two- and K-sample
problems. I stressed several times that one should think very carefully
about how the hypotheses should be formulated: they should reflect the
substantial research question. One should always be aware of the distribu-
tional assumptions that sometimes have to be made. Assumptions must
always at least be verifiable. I have introduced the terms natural null hy-
pothesis and implied null hypothesis to simplify the process.

• When the components are rescaled using a more generally valid consistent
variance estimator, the test is in fact no longer a score test. Its construction
resembles more that of a Wald test, with the only difference that the
numerator of the test statistic is not a maximum likelihood estimator.

• Throughout the book power comparisons have often only been mentioned
in terms of simulation experiments. On the other hand, much research has
focussed on the theoretical (asymptotical) power properties of goodness-
of-fit tests. See, for example, Janssen (1995, 2000) and Janic-Wróblewska
(2004).

• Particularly the construction of the smooth tests shows that there is a
very close relationship between goodness-of-fit hypothesis testing and non-
parametric density estimation (orthogonal series expansions). Of course
this link exists for many statistical applications, but it has often been ig-
nored in the context of goodness-of-fit testing. This observation is one of
the reasons why I prefer the term “comparing distributions” rather than
goodness-of-fit testing. In both parts of the book it has been illustrated
that informative conclusions may be derived based on a plot of the im-
proved density, which is the (truncated) orthogonal series expansion with
the parameters replaced by their estimates, and these estimates are basi-
cally the components of the smooth and EDF tests. Because these graphs
use the same statistics and thus also the same sample information as the
accompanying goodness-of-fit test, the conclusions from both are expected
to be consistent. Thus when the diagnostic property of the components is
in doubt I recommend using the improved density estimate when the null
hypothesis is rejected.

• The density functions mentioned in the previous point also include the
comparison density. Throughout the book the importance of the compar-
ison density has been stressed. It appears that many techniques for com-
paring distributions have a close connection to it. A comparison density
is a very convenient and informative way of summarising the difference
between two distributions.

• The importance of the comparison density also follows from Neuhaus
(1987). He showed basically that the comparison density summarises the
differences between two distributions in the most efficient way. It is re-
lated to the optimal score function for detecting differences between the
two distributions. From this point of view both the (data-driven) smooth
tests and the EDF tests may be considered as adaptive score tests; adap-
tive in the sense that they try to approximate the optimal score function
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based on the sample data at hand. This is again related to the Hilbert
space representation, in which this score function is essentially the most
informative dimension.

• Not only smooth and EDF tests have components and are related to a
Hilbert space representation. Other goodness-of-fit tests also appear to be
related to it.

• The contingency table approach presented earlier in this chapter is a seem-
ingly unrelated way of constructing hypothesis tests, but eventually it
gives exactly the same components as the K-sample smooth test and the
K-sample Anderson–Darling test. The method demonstrates that rank
tests may be obtained by first applying the most extreme categorisation
of the data and subsequently applying Pearson’s chi-squared test, which is
arguably the oldest hypothesis test in statistical history. Thus it looks like
proceeding along very old statistical practice methodology, but avoiding
the arbitrary choices of the cell boundaries in the categorisation step by
putting each observation into exactly one cell. It has also been shown that
the Anderson–Darling test may be related to a Pearson test applied to a
categorised sample, but now the sample space is only partitioned into two
cells. There are n such possible categorisations. To avoid the arbitrariness
of choosing one cell boundary, the Anderson–Darling statistic averages
the Pearson chi-squared statistics over all n choices for the cell boundary.
Again the same components arise, but now with a particular weighting
scheme. The SSP tests fill the gap between the two previous methods.
Instead of considering all partitionings with 2 cells, it considers all parti-
tionings with c cells, and the SSP test statistic is defined as the average
of Pearson chi-squared statistics computed for all these categorisations. In
the extreme cases of c = 2 and c = n the SSP statistic reduced to the
Anderson–Darling and the order n smooth test statistic, respectively. The
choice of c is not important from an omnibus consistency point of view,
but a data-driven choice of c improves the small sample powers.

• Most of the (nonparametric) tests that were presented for the two- and
the K-sample problems are rank tests. Apart from the parametric t-test
I only presented the test of Chervoneva and Iglewicz (2005) as a test not
based on ranks. Again it is an example of a test that is constructed from
Hilbert space arguments.

• Most of the methods described in the book are available in the cd R pack-
age. The package also contains diagnostic methods that help in assessing
the assumptions underlying some of the tests. This is particularly helpful
for arriving at informative conclusions.

• One of the major emphases throughout the book is that a hypothesis
test for comparing distributions should be informative. This means that
when the null hypothesis is rejected, the statistical method should suggest
what the reason was for rejection. In the context of the comparison of
distributions this means that the method should indicate in what sense
the distributions are different. For example, when a t-test is used and the
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null hypothesis is rejected, the statistician concludes that the means are
different. However, only focussing on the means does not tell the whole
story. Differences between populations may occur in different character-
istics of the distributions, for example, differences in variance, skewness,
or kurtosis. This is an example in which moments are used for express-
ing differences. When rank tests are used, informative conclusions may
also be obtained by looking at likely orderings, depending on which addi-
tional distributional assumptions can be made. Particularly the first-order
likely ordering is very informative, and in many settings it is even more
interpretable than the difference between two means. Many of the tests
described in this book allow such informative analyses, and many of the
methods can be made adaptive so that the data analyst does not have to
specify a priori what aspect of the distribution he or she wants to investi-
gate. To some extent the adaptive methods will point the data analyst to
the characteristics of the distribution that are most important for under-
standing the differences between the distributions.

• Although most of the methods for comparing distributions that are in-
cluded in this book are described as hypothesis tests, they are often related
to parameterised densities or comparison density functions (orthogonal se-
ries expansions). Parameterised statistical models can usually be extended
easily to cope with more complicated study designs, therefore I think it
should be possible to extent some of the existing methods for comparing
distributions to more complicated study designs as well. For example, the
smooth tests for the K-sample problem can perhaps be extended so that
blocked experiments can be analysed. These methods shall then basically
be an extension of the Friedman rank test. Rayner and Best (2001) suc-
ceeded in such an extension by using their contingency table approach,
which was, however, not developed starting from a parameterised model.
Similar solutions, and thus also more extensions, should surely be possible
using appropriately parameterised orthogonal series expansions and using
some of the methodology treated in this book. This would result in sta-
tistical analysis methods that are more informative than methods which
only focus on means.
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Proofs

A.1 Proof of Theorem 1.1

We first provide a lemma (see, e.g., Lemma 17.1 in van der Vaart (1998)).

Lemma A.1. Assume Z ∼ MV N(0,Σ), where the p×p matrix Σ has eigen-
values λ1, . . . , λp. Let X1, . . . , Xp denote i.i.d. standard normal variates. The
quadratic form ZtΣ−1Z is then equivalent in distribution with the random
variable

p∑
i=1

λiX
2
i .

Throughout the proof, we assume that H0 holds true.
First, write

X2
n = n

k∑
j=1

(p̂j − π0j)
2

π0j
,

where p̂j = Nj/n is an unbiased and consistent estimator of π0j , and let
p̂t

n = (p̂1, . . . , p̂k). Let Dπ0 = diag(π0). With this new notation, we may
write X2

n = n(p̂n − π0)tD−1
π0

(p̂n − π0), which is a quadratic form in Zn =√
n(p̂n − π0). By the multivariate central limit theorem (see, e.g., Theorem

5.4.4 in Lehmann (1999)), as n → ∞,

Zn
d−→ MVN(0,Σ),

where Σ = Dπ0 −π0π
t
0. Because X2

n is a quadratic form in Zn, Lemma A.1
gives, as n → ∞,

X2
n

d−→
k∑

j=1

λjZ
2
j ,

where Z1, . . . , Zk are i.i.d. N(0, 1), and λ1 ≤ · · · ≤ λk are the eigenvalues of

L = D−1/2
π0

ΣD−1/2
π0

= Ik −√
π0

√
πt

0
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with
√

πt
0 = (

√
π01, . . . ,

√
π0k). It can be shown that λ1 = 0 and λ2 = · · · =

λk = 1. This completes the proof. ��

A.2 Proof of Theorem 1.2

Because β̂ is BAN, we obtain

β̂ = β + (p̂n − π0(β))D−1/2
π0

A(AtA)−1 + op(n−1/2),

where the matrix A has (i, j)th element (i = 1, . . . , k; j = 1, . . . , p),

1√
π0i

∂π0i

∂βj
(β).

By Birch’s regularity conditions, we find

π0(β̂) − π0(β) = (β̂ − β)
∂π0

∂β
(β) + op(n−1/2).

Hence,
π0(β̂) − π0(β) = (p̂n − π0(β))L + op(n−1/2),

where L = D−1/2
π0

A(AtA)−1AtD1/2
π0

. Write

Mn =
[

p̂n − π0

π0(β̂) − π0

]
= (p̂n − π0(β))

[
Ik

L

]
+ op(n−1/2).

Because
√

n(p̂n−π0) is asymptotically multivariate normal, we may conclude
that Mn is also asymptotically multivariate normal with zero mean and
variance–covariance matrix equal to[

Dπ0 − π0π
t
0 (Dπ0 − π0π

t
0)L

Lt(Dπ0 − π0π
t
0) Lt(Dπ0 − π0π

t
0)L

]
.

Hence,
√

n(p̂n −π0(β̂)) =
√

n(p̂n −π0)−
√

n(π0(β̂)−π0) is also asymptot-
ically zero mean multivariate normal with variance–covariance matrix (after
some simple algebra)

Σ = Dπ0 − π0π
t
0 − D1/2

π0
A(AtA)−1AtD1/2

π0
. (A.1)

The asymptotic null distribution of X̂2
n is now again obtained by applying

Lemma A.1. This time we need the eigenvalues of

D−1/2
π0

ΣD−1/2
π0

= I −√
π0

√
πt

0 − A(AtA)−1At.
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It can be shown that this matrix has k − p − 1 eigenvalues equal to 1, and
the remaining p + 1 eigenvalues equal to 0. ��

A.3 Proof of Theorem 4.1

(1) To obtain the score statistic, we first need to specify the log-likelihood
function. From Equation (4.1), we find

l(θ) = log

(
n∏

i=1

gk(Xi;θ)

)

= n log C(θ) +
n∑

i=1

log g(Xi) +
k∑

j=1

θj

n∑
i=1

hj(Xi).

The score function for parameter θj is given by

uj(θ) =
∂l(θ)
∂θj

= n
∂ log C(θ)

∂θj
+

n∑
i=1

hj(Xi).

For the construction of the score test statistics, we need to evaluate the score
function under the null hypothesis. This gives uj(θ)|θ=0 =

∑n
i=1 hj(Xi),

where we have used
∂ log C(θ)

∂θ
|θ=0 = 0.

As for all score functions, E0 {uj} = 0. This could also be directly seen
from the orthogonality property of the hj ; i.e., E0 {uj} = n

∫
S hj(x)g(x)

dx = n < h1, 1 >g= 0.
The variance–covariance matrix of the vector U t = (1/

√
n) (u1, . . . , uk)θ=0

involves the covariances

Cov0 {hi(X), hj(X)} =
∫
S

hi(x)hj(x)g(x)dx

= < hi, hj >g

= δij ,

where δij is Kronecker delta. Hence, Var0 {U} = I, the k×k identity matrix.
The multivariate central limit theorem gives that

U
d−→ MV N(0, I),
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and we therefore have also the convergence of the quadratic form (Lemma
17.1 in van der Vaart (1998))

Tk = U tU
d−→ χ2

k.

(2) To prove the second part of the theorem, we only have to show that the
score function based on the Barton model is the same as uj when restricted
under the null hypothesis θ = 0.

The log-likelihood function becomes

l(θ) =
n∑

i=1

log gk(Xi;θ) =
n∑

i=1

log g(Xi) +
n∑

i=1

log

⎛⎝1 +
k∑

j=1

θjhj(Xi)

⎞⎠ ,

and the score function for θj

uj(θ) =
∂l

∂θj
=

n∑
i=1

hj(Xi)

1 +
∑k

j=1 θjhj(Xi)
.

Hence,

uj |θ=0 =
n∑

i=1

hj(Xi),

which is exactly the same as what we found in part (1) of the proof. ��

A.4 Proof of Lemma 4.1

Straightforward calculations give

Ek {(X − μ)m} =
∫
S
(x − μ)m

⎛⎝1 +
k∑

j=1

θjhj(x)

⎞⎠ g(x)dx

= μm +
k∑

j=1

θj < (x − μ)m, hj(x) >g

= μm +
k∑

j=1

θj < (x − μ)m − μm, hj(x) >g, (A.2)

where the last step makes use of < μm1, hj(x) >g= μm < 1, hj(x) >g= 0.
Because E0 {(X − μ)m − μm} =< (x − μ)m − μm, 1 >g= 0, we may write
the degree m polynomial (x − μ)m − μm in terms of the m base functions
h1, . . . , hm,

(x − μ)m − μm =
m∑

j=1

cjhj(x), (A.3)
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where c1, . . . , cm are constants. After substituting (A.3) into (A.2), we get

Ek {(X − μ)m} = μm +
k∑

j=1

θj <

m∑
i=1

cihi, hj >g

= μm + θjcj .

Hence, if θj = 0 then Ek {(X − μ)m} = μm. The ⇐ part of the proof is also
true because (x − μ)m − μm is a polynomial of exactly degree m, and thus
cm �= 0, and, therefore, Ek {(X − μ)m} = μm if and only if θj = 0. ��

A.5 Proof of Lemma 4.2

Because h0(x) = 1, we get E0 {hj(X)} =< hj , 1 >g= 0 for all j. To stress that
the lemma imposes a restriction on the polynomials, we use the notation h�

j

whenever they are of the form of Equation (4.13). Under the null hypothesis,
μj = E0

{
(X − μ)j

}
. Hence, also E0

{
h�

j (X)
}

=< h�
j , 1 >g= 0.

It is always possible to write

hj(x) = h�
j (x) + z(x),

where z is a polynomial of degree ≤ j. The lemma is proven if we can show
that z(x) ≡ 0.

We know that < hi, hj >g= 0 for all i �= j, thus we get

0 = < hi, hj >g

= < hi, h
�
j + z >g

= < hi, h
�
j >g + < hi, z >g .

Hence, < hi, z >g= − < hi, h
�
j >g. This holds for all i �= j, and since the

hi form a base in a Hibert space, therefore we may conclude that z = −h�
j

or z = 0. However, the former implies hj(x) = 0 which is a contradiction.
Therefore, z = 0. ��

A.6 Proof of Lemma 4.3

(1) Because all first j moments agree with g, Lemma 4.2 implies that
E {hj(X)} = 0. Hence,

Var {Uj} = Var {hj(X)}
= E

{
(hj(X) − E {hj(X)})2

}
(A.4)

= E
{
h2

j (X)
}

,
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where h2
j is a polynomial of degree 2j which may be written as h2

j (x) =∑2j
l=0 clhl(x). Note that this is a sum of polynomials of degrees corresponding

to moments which all agree with g, and, again according to Lemma 4.2, these
polynomials have expectation equal to zero. Hence, E

{
h2

j (X)
}

= c0. Because
the same result would have been found under the null hypothesis, we find
c0 = Var0 {Uj} = 1.

(2) We start from (A.4), in which now E {hj(X)} is not necessarily zero.
Write

Var {Uj} = E
{
h2

j (X)
}− (E {hj(X)})2

= E

{
1 +

2j∑
l=1

clhl(X)

}
− (E {hj(X)})2

= 1 +
2j∑

l=m

cl E {hl(X)} − (E {hj(X)})2 . (A.5)

Lemma 4.2 tells again when the last or the two last terms in (A.5) are zero.
This gives the statement in (4.14). ��

A.7 Proof of Theorem 4.10

First we introduce some matrix notation. Let Ht the m × k matrix with
the (i, j)th element equal to hij ; i.e., the jth column corresponds to the
jth orthonormal vector. We may now write U = (1/

√
n)HN , and the or-

thonormality condition becomes HDπ0H
t = I, where Dπ0 = diag(π0). The

restriction
∑m

i=1 hijNi = 0 for all j = 1, . . . , k now becomes Hπ0 = 0. This
latter restriction allows us to write the equality

U =
1√
n

HN =
1√
n

H (N − nπ0) =
√

nH (p̂ − π0) . (A.6)

With this notation the order k smooth test statistic becomes

Tk = U tU = n (p̂ − π0)
t
HtH (p̂ − π0) .

Because k = m − 1 and because HDπ0H
t = I, we find HtH = D−1

π0
.

Substituting this equality in Equation (A.6) completes the proof. ��

A.8 Proof of Theorem 4.2

In this section we acually give the proof of a more general theorem which
states the asymptotic distribution of V̂ under a sequence of local alternatives.
First some notation is introduced.
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As a sequence of local alternatives to g, we consider model (4.1) with

θ = θn = n−1/2δ, (A.7)

where δ is a vector of k positive nonzero constants and δ2 = δtδ < ∞. The
null hypothesis corresponds to δ = 0. The density or model of the local
alternatives is now denoted as

gnk(x) = gnk(x;θn,β) = C(θn,β) exp

⎛⎝ k∑
j=1

θnjhj(x;β)

⎞⎠ g(x;β). (A.8)

The next two lemmas are needed.

Lemma A.2 (Local Asymptotic Normality (LAN)). Consider the se-
quence of alternatives given in (A.7) and model (A.8). Then, the log-likelihood
ratio admits the following asymptotic expansion

log
(

gnk(x;θn;β)
g(x;β)

)
=

1√
n

δth(x;β) − 1
2

1
n

δtδ + o(δ2/n), (A.9)

and, as n → ∞,

log
n∏

i=1

(
gnk(X;θn;β)

g(X;β)

)
d−→ N

(
−1

2
δtδ, δtδ

)
(A.10)

Proof. To prove Equation (A.9) we start with substituting gnk and g into the
log-likelihood ratio

log
gnk(x;θn;β)

g(x;β)
= log C(θn) − log(C(0)) +

1√
n

δth(x)

= log C(θn) +
1√
n

δth(x).

This can be further simplified by applying a Taylor series expansion on
log C(θn),

log C(θn) = log C(0) +
1√
n

δt ∂ log C(θ)

∂θ

∣∣∣∣
θ=0

+
1

2

1

n
δt ∂2 log C(θ)

∂θθt

∣∣∣∣
θ=0

δ + o(δ2/n)

=
1

2

1

n
δt E0

{−h(X)ht(X)
}

δ + o(δ2/n)

= −1

2

1

n
δtIδ + o(δ2/n)

= −1

2

1

n
δtδ + o(δ2/n).



328 A Proofs

The convergence in Equation (A.10) follows from

log
n∏

i=1

gnk(X;θn;β)
g(X;β)

=
1√
n

n∑
i=1

δth(Xi;β) − 1
2
δtδ + oP (1), (A.11)

where (1/
√

n)
∑n

i=1 h(Xi;β) converges according to the multivariate central
limit theorem to a multivariate normal distribution with mean

E0 {h(X)} = 0,

and variance–covariance matrix

Var0 {h(X)} = E0

{
h(X)ht(X)

}
= I.

Using this result and applying Slutsky’s lemma completes the proof.

Lemma A.3. Let w(x;β) be a vector-valued function that satisfies the regu-
larity conditions, and for which E0 {w(X;β)} = 0. Then

E0

{
∂w

∂β
(X;β)

}
= −Cov0 {w(X;β),uβ(X;β)} =< w,uβ > .

Proof. It is assumed that

E0 {w(X;β)} = 0 =
∫ +∞

−∞
w(x;β)g(x;β)dx.

Differentiating both sides of this equation yields∫ +∞

−∞

∂w

∂β
(x;β)f(x;β)dx +

∫ +∞

−∞
w(x;β)

∂g

∂β
(x;β)dx = 0

E0

{
∂w

∂β
(X;β)

}
+
∫ +∞

−∞
w(x;β)

∂ log g

∂β
(x;β)g(x;β)dx = 0

E0

{
∂w

∂β
(X;β)

}
+ E0

{
w(X;β)

∂ log g

∂β
(X;β)

}
= 0.

Because

E0 {w(X;β)} = E0

{
∂ log g

∂β
(X;β)

}
= 0,

we obtain

E0

{
∂w

∂β
(X;β)

}
= −Cov0

{
w(X;β),

∂ log g

∂β
(X;β)

}
,

which completes the proof. ��
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Theorem A.1. Under the sequence of local alternatives given in (A.7), the
vector V (β̂) converges, as n → ∞, in distribution to a multivariate normal
distribution with variance–covariance matrix

Σv̂ = Σv + ΣvβΣ−1
bβ ΣbbΣ

−1
βb Σβv − ΣvbΣ

−1
βb Σβv − ΣvβΣ−1

bβ Σbv, (A.12)

and mean
μv̂ =

(
Σvh − ΣvβΣ−1

bβ Σbh

)
δ.

Proof. The proof consists of two parts. First the asymptotic null distribution
of V (β̂) is found. Then the joint null distribution of V (β̂) and the log-
likelihood ratio statistic is proven, from which by means of Le Cam’s third
lemma the theorem immediately follows.

1. A first-order Taylor expansion of v(β̂) gives

v(x; β̂) = v(x;β) +
∂v

∂β
(x;β)(β̂ − β) + oP (n−1/2).

Substituting this into V (β̂) and recognising that β is an asymptotic linear
estimator it becomes

V (β̂) =
1√
n

n∑
i=1

v(Xi;β) +

(
1
n

n∑
i=1

∂v

∂β
(Xi;β)

)(
1√
n

n∑
i=1

Ψ (Xi;β)

)
+oP (1).

This is further simplified by applying the law of large numbers on

1
n

n∑
i=1

∂v

∂β
(Xi;β),

resulting in

V (β̂) =
1√
n

n∑
i=1

v(Xi;β) + E0

{
∂v

∂β
(X;β)

}(
1√
n

n∑
i=1

Ψ(Xi;β)

)
+oP (1). (A.13)

Under the null hypothesis, the multivariate central limit theorem gives

1√
n

n∑
i=1

v(Xi;β) d−→ N(0,Σv),

and
1√
n

n∑
i=1

Ψ(Xi;β) d−→ N(0,ΣΨ ),
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where
ΣΨ = Σ−1

bβ ΣbΣ
−1
βb .

The joint distribution of these two random vectors is obtained by applying
the Cramér–Wald device. In particular it is a multivariate normal distri-
bution with mean 0 and variance–covariance matrix[

Σv ΣvΨ

ΣΨv ΣΨ

]
,

where ΣvΨ = Cov0 {v(X;β),Ψ (X;β)}. Using Lemma A.3 we find

E0

{
∂v

∂β
(X;β)

}
= −Cov0 {v(X),uβ} = −Σvβ ,

and using Slutsky’s lemma, we find that the limiting null disitribution of
V (β̂) is a multivariate normal distribution with mean 0 and variance–
covariance matrix Σv̂ as stated in Equation (A.12).

2. The proof of the joint null distribution of V (β̂) and the log-likelihood ratio
statistic is along the same lines as van der Vaart (1998), p. 219. We only
need to calculate the covariance between the two random vectors,

Cov0

{
V (β̂), log

n∏
i=1

gnk(Xi;θn;β)
g(Xi;β)

}
.

The solution is obtained by substituting V (β̂) and the log-likelihood ratio
statistic by their respective asymptotic expansions (Equations (A.13) and
(A.11)):

Cov0

{
V (β̂), log

n∏
i=1

gnk(Xi;θn;β)
g(Xi;β)

}

= Cov0

{
1√
n

n∑
i=1

v(Xi;β) + E0

{
∂v

∂β
(X;β)

}(
1√
n

n∑
i=1

Ψ(Xi;β)

)

+oP (1),
1√
n

n∑
i=1

δth(Xi;β) − 1
2
δ2 + oP (1)

}
= Cov0

{
v(X;β) + E0

{
∂v

∂β
(X;β)

}
Ψ (X;β), δth(X;β)

}
+ o(1)

= Cov0 {v(X;β),h(X;β)} δ

+ E0

{
∂v

∂β
(X;β)

}
Cov0 {Ψ (X;β),h(X;β)} δ + o(1)

= Σvhδ + E0

{
∂v

∂β
(X;β)

}
ΣΨhδ + o(1)

= Σvhδ + E0

{
∂v

∂β
(X;β)

}
E0

{
−ḃ(X)

}−1

Σbhδ + o(1).
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Applying Lemma A.3 to the last equation gives

Cov0

{
V (β̂), log

n∏
i=1

gnk(Xi;θn;β)
g(Xi;β)

}
= Σvhδ − ΣvβΣ−1

bβ Σbhδ + o(1).

Now that the joint distribution of V (β̂) and the log-likelihood ratio statis-
tic are known, we can directly apply Le Cam’s third lemma which imme-
diately completes the proof.

��

A.9 Heuristic Proof of Theorem 5.2

(1) Because both {hj ◦G} and {ka
j } are systems of orthonormal functions in

L2(S, G), there exists a set of constants {aij} so that for all x ∈ S,∑
i

aijvi(x) = ka
j (x). (A.14)

Let A denote the matrix with (i, j)th element equal to aij , and assume that A
has an inverse A−1. Equation (A.14) may now be written as Atv(x) = ka(x).
We now project both sides of the equation onto v, resulting in AtΣv̂ =<
ka,v >g, from which we find

A = Σ−1
v̂ < v,ka >g . (A.15)

We now simplify this expression for A by looking for an alternative repre-
sentation of Σv̂.

Denote the (i, j)th element of A−1 as aij . From Atv(x) = ka(x) we find
v(x) = A−tka(x), or vi(x) =

∑
j ajika

j (x).
The (i, j)th element of Σv̂ =< v,v >g is given by

< vi, vj >g=
∑
m

∑
n

amianj

∫
S

ka
m(x)ka

n(x)dG(x) =
∑
m

amiamj ,

which is the (i, j)th element of A−tA−1. Hence,

Σv̂ = A−tA−1

=
(
< v, l >−1

g Σv̂

)t (
< v,ka >−1

g Σv̂

)
= Σv̂ < v,ka >−t

g < v,ka >g Σv̂.

Solving this equation for Σv̂ gives Σv̂ =< v,ka >g< ka,v >g. We now
substitute this expression into (A.15),

A = Σ−1
v̂ < v,ka >g=< v,ka >−1

g = Σ
−1/2
v̂ .
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(2) By the definition of the {lj} and the {γj}, we have∫
S

c(x, y)lj(x)dG(x) = γj lj(y).

We now project both sides of the equation onto lj ,∫
S

lj(y)
∫
S

c(x, y)lj(x)dG(x)dG(y) = γj .

Equation (5.11) is found by substituting lj(x) = at
jv(x).

A.10 Proof of Theorem 9.1

We provide only a sketch of the proof.
Write

Rt = (R11, R12, . . . , R1n2 , R21, . . . , RKnK
),

which is the vector of ranks, ordered according the usual convention. From
Lemma 7.3 we know that

Var {R} = ΣR =
n + 1
12

(
nI − JJ t

)
with I and J the n × n identity matrix and the n-unit vector, respectively.
Define the n-dimensional vectors cs as vectors with all entries equal to zero,
except the entries at the positions corresponding to the elements of the sth
sample in R; these entries are equal to

√
12√

nsn(n + 1)

(s = 1, . . . , K). Let C denote an n × K matrix with sth column equal to ct
s.

Note that the columns of this matrix are orthogonal. In a similar fashion we
also construct a matrix D which only differs from C by the absence of the
factor

√
12/
√

n(n + 1). The columns of this matrix are orthonormal.
Let Ws = ct

s(R − ((n + 1)/2)J). With this notation the KW statistic
becomes

KW =
K∑

s=1

W 2
s =

(
R − n + 1

2
J

)t

CCt

(
R − n + 1

2
J

)
.
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Asymptotic multivariate normality of W = Ct
(
R − n+1

2 J
)

can be shown
easily. It has mean zero and its covariance matrix equals

Var {W } = CtΣRC

= Dt
(
I − (J/

√
n)(J/

√
n)t
)
D

= DtEΓEtD,

where E has rows equal to the eigenvectors of I − (J/
√

n)(J/
√

n)t, and Γ
is the diagonal matrix with the eigenvalues. Note that this particular matrix
has exactly one zero eigenvalue and n − 1 eigenvalues equal to one (see also
Appendix A.1). For convenience we set this zero at the first diagonal position
of Γ . We now write

Var {W } = Dt(EΓ 1/2)(EΓ 1/2)tD.

The zero eigenvalue implies that all entries in the first column of EΓ 1/2 are
zero. Moreover, by the orthonormality of D and the n − 1 eigenvalues 1 in
Γ , we may conclude that Var {W } has also one eigenvalue equal to zero, and
K − 1 eigenvalues equal to one. On using Lemma A.1 we may conclude that
KW has asymptotically a χ2

K−1 distribution under the general K-sample null
hypothesis. ��



Appendix B

The Bootstrap and Other Simulation
Techniques

B.1 Simulation of EDF Statistics Under the Simple Null
Hypothesis

In traditional univariate statistics, many test statistics have a limiting stan-
dard normal null distribution. For instance, let Tn denote such a test statistic;
then the asymptotic results may be denoted by Tn

d−→ N(0, 1), or Tn
d−→ Z,

where Z ∼ N(0, 1). A one-sided α-level test may be performed by comparing
the observed test statistic with the 1 − α quantile of the standard normal
distribution, which can be found in tables in many textbooks. When work-
ing with empirical processes, however, we will often encounter test statistics
which have a limiting distribution that has no explicit distribution function.
The limiting distribution is often expressed as a function of a Gaussion pro-
cess. In this case, the criticial values will often have to be esimated by means
of simulations of the empirical process. The next R-code generates a realiza-
tion of a Brownian bridge at frequency=1000 equally spaced points between
0 and 1. The larger the frequency, the better the realization approximates a
true continuous process.

> B<-rbridge(frequency=1000)

The asymptotic null distribution of the KS test can now be simulated by the
following lines.

> ks<-rep(NA,10000)
> for(i in 1:10000) {
+ ks[i]<-max(abs(rbridge(frequency=1000)))
+ }

We can use ks for instance to compute the p-value of the PRG example.

> length(ks[ks>sqrt(100000)*0.0029])/10000
[1] 0.3394
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A better approximation can be obtained by increasing the frequency and the
number of Monte Carlo simulation runs.

B.2 The Parametric Bootstrap for Composite Null
Hypotheses

The parametric bootstrap may be used for testing a full parametric null
hypothesis, whether simple or composite. Here we describe the method for
testing for a composite null hypothesis, but it can be applied to simple null
hypotheses too by simply fixing the β nuisance parameter throughout the
algorithm.

Consider the null hypothesis

H0 : F ∈ {G(.;β) : β ∈ B}

(see Section 4.2.2 for more details on this type of composite null hypothesis).
Let Xt = (X1, . . . , Xn) denote the sample of n i.i.d. observations, and β̂ is a√

n-consistent estimator of β under H0. Suppose the test statistic is denoted
by T = T (X, β̂).

The parametric bootstrap procedure consists in sampling B times n i.i.d.
observations from the distribution G(.; β̂). The jth sample is denoted by X∗

j ,
and the estimator of β by β̂

∗
j . For each bootstrap sample the test statistic is

recalculated, which is denoted by T ∗
j = T (X∗

j , β̂
∗
j ). The empirical distribution

of the B bootstrapped test statistics, T ∗
1 , . . . , T ∗

B , serves as an approximation
of the asymptotic null distribution of T .

B.3 A Modified Nonparametric Bootstrap for Testing
Semiparametric Null Hypotheses

The method described here was proposed by Bickel and Ren (2001). See also
Bickel et al. (2006).

Let F denote a class of density functions for which the distribution of
the test statistic behaves well, and let Xt = (X1, . . . , Xn) denote the vector
of the n i.i.d. sample observations. Let U = U(X) denote a k-dimensional
statistic. Consider test statistics of the form

T = U t(X)Σ̂
−1

(X)U(X),

where Σ̂(X) is an estimator of Var {U} that is
√

n-consistent for all f ∈ F .
Consider a semiparametric null hypothesis formulated as
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H0 : f ∈ F0,

where
F0 = {f ∈ F : Ef {U} = 0} .

Consider now a nonparametric bootstrap procedure in which X∗
j denotes

the jth bootstrap sample. For each bootstrap sample the test statistic is
calculated as

T ∗
j =

(
U(X∗

j ) − U(X)
)t

Σ̂
−1

(X∗
j )
(
U(X∗

j ) − U(X)
)
.

When B bootstrap simulations are performed, the empirical distribution of
T ∗

1 , T ∗
2 , . . . , T ∗

B is used as an approximation of the null distribution of T .
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M. Csörgö. Quantile Processes with Statistical Applications. SIAM, Philadelphia, USA,
1983.
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