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Preface

Quantitative social science research has been expanding due to the avail-
ability of computers and data over the past few decades. Yet the textbooks
and supplements for researchers do not adequately highlight the revolution
created by the R software [2] and graphics system. R is fast becoming the lin-
gua franca of quantitative research with some 2000 free specialized packages,
where the latest versions can be downloaded in seconds. Many packages such
as “car” [1] developed by social scientists are popular among all scientists.

An early 2009 article [3] in the New York Times notes that statisticians,
engineers and scientists without computer programming skills find R “easy to
use.” A common language R can readily promote deeper mutual respect and
understanding of unique problems facing quantitative work in various social
sciences. Often the solutions developed in one field can be extended and used
in many fields. This book promotes just such exchange of ideas across many
social sciences. Since Springer has played a leadership role in promoting R,
we are fortunate to have Springer publish this book.

A Conference on Quantitative Social Science Research Using R was held
in New York City at the Lincoln Center campus of Fordham University, June
18-19, 2009. This book contains selected papers presented at the conference,
representing the “Proceedings” of the conference.

The conference offered an opportunity for enthusiastic users of R to discuss
their research ideas and some policy applications in social sciences, to learn,
meet and mingle. Speakers included authors of books and/or packages for
R, published researchers and editors of important journals in statistics and
social sciences. The keynote speaker was Roger Koenker, Professor of Eco-
nomics, University of Illinois and there was a distinguished panel of invited
speakers: Prof. Andrew Gelman, Director of the Applied Statistics Center at
Columbia University; Prof. Kosuke Imai, Department of Politics at Prince-
ton University; Prof. Keith A. Markus, Psychology Department at John Jay
College of Criminal Justice; Prof. B. D. McCullough, Department of Decision
Sciences, Drexel University and Prof. Achim Zeileis, Department of Statistics
and Mathematics, WU Wirtschaftsuniversitit Wien (Vienna).
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viii Preface

We had a truly interdisciplinary conference organizing committee of Ford-
ham professors. Co-chair: Frank Hsu (Computer and Information Sciences)
and H. D. Vinod (Economics). Jose Aleman, treasurer (Political Science). Re-
maining Members (alphabetical order) were: Elena Filatova (Computer and
Information Sciences), Se-Kang Kim (Psychology), Erick W. Rengifo (Eco-
nomics), Emily Rosenbaum (Sociology), Matthew Weinshenker (Sociology),
and Tiffany Yip (Psychology).

Fordham University was the main sponsor of the conference providing all
the facilities, guidance and staff help. It would not have been possible without
the active support from the deans of the Graduate School of Arts and Sciences
(GSAS, Dean: Dr. Nancy Busch) Fordham College at Rose Hill (FCRH, Dean:
Dr. Brennan O’Donnell) and College of Business Administration (CBA, Dean:
Dr. Donna Rapaccioli). Another active supporter, Dr. Robert Himmelberg,
Dean of Arts & Sciences Faculty, inaugurated the conference. Cosponsors were
the Society of Indian Academics in America (STAA) and Global Association
of Risk Professionals (GARP). The modest registration fee paid for the coffee
breaks and a cocktail reception with snacks on the evening of Thursday, June
18, 2009.

Although seating was limited and a registration fee was charged, seventy-
five people registered and attended the conference. A limited number of grad-
uate and undergraduate students from various disciplines attended the con-
ference. Fordham University faculty and deans encouraged their students to
take advantage of this opportunity to learn R. Students could learn some
innovative and practical research tools providing intellectual skills having
potentially lifelong benefits. The conference provided graduate students and
young faculty in all disciplines a great chance to see, talk to and seek ad-
vice from researchers using R. The conference program and details remain
available at the conference website: http://www.cis.fordham.edu/QR2009.

Most attendees thought that the conference was a great success. The re-
search work presented was of high quality covering a wide range of important
topics along with important examples and R implementations. This book of
“Proceedings” extends the benefits of attending the conference to the much
wider audience of academics and professionals in various sciences around the
world. For example, one of our cosponsors (GARP, mentioned above) encour-
aged risk professionals who model risk and uncertainty in financial markets
and who work in the metropolitan New York area to attend the conference.

A Brief Review of Each Chapter

Since all chapters come with their own abstracts, one may wonder why I
am including this section. Note that our conference was interdisciplinary and
individual authors have generally focused their abstracts to be appealing to
readers from their own specific disciplines. I am including this section here
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because I believe that chosen papers are of interest to a much wider range of
readers from other fields and also to those interested in the R software per
se. Consistent with an aim of the conference, the following summaries are
intended to promote greater cross fertilization of ideas among all scientists.

1] The chapter by McCullough shows the importance of numerically accu-
rate computing indicating the relevance of forward and backward errors and
condition numbers in all sciences. He shows that R software is accurate using
some classic examples. A general reader might be interested in McCullough’s
reasons for questioning the reliability of Donohue and Levitt’s controversial
paper. These authors speculated that a disproportionate number of aborted
(unwanted) children would have grown up to become criminals and claimed
to show that abortion reduces crime after a gap of 20 years.

2] Koenker’s chapter should be of interest to anyone seeking state-of-the-
art flexible functional forms for regression fitting. The “additive” models seek
a clever compromise between parametric and nonparametric components.
Some commonly made data “adjustments” are shown to be misleading and
avoidable. The R package “quantreg” implementation for modeling childhood
malnutrition in India also should be of interest to policymakers. For example,
mothers who are employed and wealthier are found to have taller children.

3] Gelman’s chapter is of practical interest to all of us who use R for
graphics and his example of U.S. voting participation rates is of interest to
all who care about democracy and responsible citizenry.

4] My chapter suggests new solutions to a rather old and common problem
of efficient estimation despite autocorrelation and heteroscedasticity among
regression errors. Since regression is a ubiquitous tool in all sciences, it should
be of much wider interest.

5] Markus and Gu’s chapter is of great interest in exploratory data analysis
in any scientific field. Given any data set, one often needs to develop initial
understanding of the nature of relationships between three-way continuous
variables. It is enhanced by comparing their new “bubble plots” conveniently
made available as an R script called “bp3way()” at the conference website
http://www.cis.fordham.edu/QR2009.

6] Vinod, Hsu and Tian’s chapter deals with the portfolio selection prob-
lem of interest to anyone with an investment portfolio. It is also of interest
to computer scientists and data-mining experts since combinatorial fusion
comes from those fields. The idea of mapping various related variables into a
comparable set ready for combining them has applications in many social sci-
ences. Social scientists doing exploratory data analysis where lots of variables
are potentially relevant should find these R tools useful.

7] Foster and Kecojevié’s chapter is of wide interest because they extend
analysis of covariance (ANCOVA), a very general statistical tool. After all,
many scientists want to know whether certain factors have an effect on a
continuous outcome variable, while removing the variance associated with
some covariates. Another common problem addressed here occurs when ob-
servations with the big residuals need to be down weighted. The wonderful
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(highly sophisticated) R graphics and growth charts for Saudi children are
also of interest in their own right.

8] Imai, Keele, Tingley and Yamamoto’s chapter addresses an age-old sci-
entific problem of assessing the direction and strength of causation among
variables. It is remarkably powerful, because of flexibility and variety in the
types of cause—effect relations admitted. The authors explain the use of their
R package called “mediation.” Their “job search” application has wider re-
search interest providing room for extensions, since the unemployment prob-
lem can be viewed from the distinct viewpoint of several social sciences.

9] Haupt, Schnurbus and Tschernig’s chapter focuses on the problem of
the choice of functional form for an unknown, potentially nonlinear relation-
ship. This discussion goes beyond [4], where I discuss the related problem
of choosing production functions. This chapter describes how to use flexible
nonparametric kernel regression models for model validation of parametric
specifications including misspecification testing and prediction simulations.
The “relax” package is shown to be useful for model visualization and valida-
tion.

10] Rindskopf’s chapter shows how to use R to fit a multinomial model that
is parallel to the usual multivariate analysis of variance (MANOVA). A wide
variety of categorical data models can be fit using this program, including
the usual test of independence, logit and loglinear models, logistic regression,
quasi-independence models, models with equality restrictions on parameters,
and a variety of nonstandard loglinear models. An advantage of this program
over some loglinear models is the clear separation of independent (predictor)
and dependent (outcome) variables. Examples are presented from psychology,
sociology, political science and medicine.

11] Neath’s chapter dealing with location of hazardous waste sites also
deals with a topic of wide general interest in policy circles. More important,
Bayesian analysis of posterior distributions used to be less graphical and less
intuitive before the recent availability of R packages. Neath shows how to
use “WinBUGS” and “R2WinBUGS” interfaces in the context of an example,
providing a template for applications in other fields.

12] Numatsi and Rengifo’s chapter dealing with financial market volatility
is of interest to anyone with an investment portfolio subject to financial crises.
It studies time series models using FTSE 100 daily returns. Many fields have
time series with persistent discrete jumps, misspecification and other issues
which are solved by the authors’ R software.

My short descriptions of twelve chapters explain why I am enthusiastic
about including them in this book. They are my possibly inadequate sales
pitches encouraging all readers to study the original chapters in detail. The
authors of papers presented at the conference were given a short deadline
of a couple of months for submission of their papers as a Latex document
suitable for Springer publications. We are including only the ones who met
the deadline and whose referees recommended their publication.
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The original developers of the S computer language at Bell Labs (on which
R is based) had insisted that the assignment operator must have two stroke
“<-”. When I worked at Bell Labs, I could not convince them to permit
the use of one stroke “=" used by Fortran and other languages as a more
convenient option for lazy typists. I am happy to see that unlike S, the R
team does indeed permit the “=" symbol for assignment. Similarly, R gives
me the option to start my R session with the command:

options (prompt = ";", continue = " ")

This has the advantage that lazy typists like me can directly copy and paste
selected lines of the output from R into my R input command stream. With-
out the ‘options’ command, the current prompt “>” is confused by R with
“greater than,” and the current continuation symbol “+” is confused with
addition.

We enthusiastic users of R are grateful to the R Foundation for Statisti-
cal Computing, Vienna, Austria, [2] for continually maintaining and improv-
ing R. The R Foundation has nurtured a wonderfully flexible research tool,
making it into a great intellectual resource for the benefit of humanity and
deserves our thanks and financial support. Please see the separate section on
‘Acknowledgments’ listing names of those whose help was crucial in writing
this book, including the referees.

Tenafly, New Jersey, October 2009 Hrishikesh Vinod
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Fig. 1 Standing left to right: Joachim Schnurbus, Rebecca Sela, Achim Zeileis,
Tatjana Kecojevié¢, David Rindskopf, Ronald Neath, Adjoa Numatsi and Rossen
Trendafilov. Sitting left to right: B. D. McCullough, D. Frank Hsu, Roger Koenker,
H. D. Vinod, Kosuke Imai and Keith Markus.
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Chapter 1
Econometric Computing with “R”

B. D. McCullough

Abstract We show that the econometrics profession is in dire need of practi-
tioners of econometric computing, and that “R” is the best choice for teaching
econometric/statistical computing to researchers who are not numerical an-
alysts. We give examples of econometric computing in R, and use “R” to
revisit the classic papers by Longley and by Beaton, Rubin and Barone. We
apply the methods of econometric computing to show that the empirical re-
sults of Donohue and Levitt’s abortion paper are numerically unsound. This
discussion should be of interest in other social sciences as well.

1.1 Introduction

Econometric computing is not simply statistical computing for econometrics;
there is much overlap between the two disciplines, yet there are separate
areas, too. Econometric computing is, to a large extent, the act of making
econometric theory operational. This stands in sharp contrast to statistical
computing, which is not at all defined by its users (e.g., biologist, physicist,
or any of scores of disciplines). Statistics has not much to say about whether
some particular empirical measurement might exhibit a unit root, while the
econometric literature has a cottage industry dedicated to unit roots. These
themes are explored in the recent book by Renfro [26].

Practitioners of statistical computing will not, in general, concern them-
selves with econometric issues such as cointegration or three-stage least
squares, yet economists have need of these procedures and the accuracy
and stability of these procedures should be addressed. This is the purview
of econometric computing. There is a tendency by some to use statistical
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Department of Economics, Drexel University, Philadelphia, PA 19104, USA
e-mail: bdmccullough@drexel.edu

H.D. Vinod (ed.), Advances in Social Science Research Using R, 1
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2 B. D. McCullough

(econometric) computing and computational statistics (econometrics) inter-
changeably, and this leads to confusion. To clarify, we quote from Zeileis [33,
p. 2988]:

[T]here is a broad spectrum of various possibilities of combining econometrics
and computing: two terms which are sometimes used to denote different ends
of this spectrum are (1) computational econometrics which is mainly about
methods that require substantial computations (e.g., bootstrap or Monte Carlo
methods), and (2) econometric computing which is about translating econo-
metric ideas into software. Of course, both approaches are closely related and
cannot be clearly separated|.]

Implicit in the above definition of econometric computing is that the software
created be correct. More conventionally, statistical computing is numerical
analysis for statistics, while computational statistics is the use of compu-
tationally intensive methods (e.g., simulation, bootstrap, MCMC, etc.) to
conduct inference. We make the same distinction for econometric computing
and computational econometrics.

Econometric computing has been even less prominent in econometrics than
has statistical computing in statistics, to the detriment of the practice of
economics. In general, economists know nothing of econometric computing.
Evidence suggests that some developers of econometric software know little of
the subject, too — witness how frequently two or more econometric software
packages give different answers to the same problem. The solution to the
problem is the development of a course in econometric computing to be taught
to graduate students in economics. It is the contention of this paper that “R”
is the only program capable of serving as a vehicle for teaching econometric
computing.

Of course, if “R” is to be the solution, it must first be demonstrated that
a problem exists. Hence, Section 1.2 contends that most users and some
developers of econometric software are generally unaware of the principles of
econometric computing. Continuing in this vein, Section 1.3 presents some
examples to show that accurate computing matters. Section 1.4 discusses
the reasons that “R” is the only viable language for teaching econometric
computing. Section 1.5 reexamines Longley’s [13] classic paper. Section 1.6
presents Beaton, Rubin and Barone’s [2] reanalysis of Longley. Section 1.7
applies the lessons of Beaton, Rubin and Barone to the abortion paper by
Donohue and Levitt [6] that was recently analyzed by Anderson and Wells [1]
from a numerical perspective. Our results support those of Anderson and
Wells: the Donohue and Levitt results are numerically unreliable.
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1.2 The Economics Profession Needs Econometric
Computing

There is substantial overlap between statistics and econometrics, yet there are
econometric methods of which most economists are aware and of which most
statisticians will never hear. Similarly for statistical computing and econo-
metric computing. Econometrics cannot free-ride on statistical computing,
because there are many econometric issues that practitioners of statistical
computing will never address.

Consider, for example, Generalized Autoregressive Conditional Heteroscedas-
ticity (GARCH), for which Rob Engle won the Nobel Memorial Prize in eco-
nomics. Hundreds, if not thousands of GARCH articles had been written and
published during a period when no two software packages gave the same an-
swer to the same GARCH problem. Fiorentini, Calzolari and Panattoni [9]
produced benchmark-quality code for solving the GARCH problem. McCul-
lough and Renfro [21] demonstrated that different packages gave different
answers to the same GARCH problem and used the Fiorentini et al. code
to produce a GARCH benchmark. Software developers converged on this
benchmark and subsequently many packages gave the same answer to the
same GARCH problem, as demonstrated by Brooks et al. [4]. Another such
econometric computing problem is cointegration, for which Clive Granger won
the Nobel Memorial Prize in economics, the same year as Engle, and which
is discussed in Sect. 1.3.

Experts in statistical computing will never address these econometric is-
sues; only economists will. But before economists can address these economet-
ric computing issues, they need to know the elements of statistical computing.
In general, they lack this knowledge.

1.2.1 Most Users Do Not Know Econometric
Computing

It stands to reason that researchers who write their own code are more
likely to be acquainted with the fundamentals of computing than researchers
who use canned procedures. Yet, when examining the code written by these
researchers, it is easy to find examples of computing illiteracy. There are
archives of code written by social science researchers in many languages:
MATLAB, GAUSS, and even “R”. Examining the code in these archives will
reveal numerous instances of computing illiteracy, here we mention only three:

1. solving for the least squares regression estimator as b = inv(X'X)*X’y (see
McCullough and Vinod [22, §2.5])

2. writing log(norm(x)) instead of lognorm(x) (see McCullough and Vinod [23,
p. 880])
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3. computing square roots as x**0.5 instead of sqrt(x) (see Monahan [24, p.
153))

Users have no idea that what they are doing is wrong with potentially
disastrous consequences for their estimation results.

1.2.2 Some Developers Do Not Know Econometric
Computing

Examining the track-record of software developers, it is hard to escape the
conclusion that more than a few of them are unacquainted with the funda-
mentals of statistical computing:

1. using the calculator formula to compute the sample variance (see McCul-
lough and Vinod, [22, §2.5])

2. not offering lognorm(x)

3. computing tails of distribution functions via complementation rather than
computing them directly (see McCullough and Vinod [22, §6])

4. using the Yule-Walker equations to solve for autocorrelation coefficients
(see McCullough [14] for an extended discussion)

5. solving maximum likelihood cointegration problems using the Cholesky
decomposition (see Sect. 1.3 of this paper)

Numerous other examples of poorly programmed commercial econometric
software are provided in McCullough [20]. As further evidence that one should
not be surprised to find software developers unable to program correctly even
trivial code (e.g., the “sample variance” and “correlation coefficient” exam-
ples noted above), we further note that the largest programming company
in the world (Microsoft) was unable to implement the dozen lines of code
that constitute the Wichmann—Hill random number generator — twice! See
McCullough [18] for details and discussion.

Both the above lists could be extended dramatically, but the point is clear:
economists typically know little about econometric computing, i.e., how to
make sure that the computer is delivering an accurate answer.

1.2.3 Some Textbook Authors Do Not Know
Econometric Computing

In the recently published fourth edition of FEssentials of Econometrics by
Gujarati and Porter [11], the authors use four software packages throughout
the text, often using all four packages to solve the same problem. In Chapter
1, for the very first regression problem, the students are shown the following
equation:



1 Econometric Computing with “R” 5

CLFPR = By+ BICUNR+ B,AHES2 + ¢

based on 28 observations, 1980-2007 from the Economic Report of the Pres-
ident, 2008, with the data presented in Table 1.1 of the book.

Also presented in the book are “results” from EViews, Excel, Minitab and
Stata, which are given below in Table 1.1, along with results from using R to
estimate the equation.

Table 1.1 Gujarati/Porter results

package Bo Bl 32

EViews/Excel 81.22673 0.638362 -1.444883
Minitab/Stata 81.286 0.63877 -1.4521

R (correct) 81.30500 0.63846 -1.45477

As far as the EViews/Excel and Minitab/Stata answers are concerned, if
one pair of packages is correct, then the other pair must be incorrect: which
pair is correct and which is incorrect? Gujarati/Porter do not say. There is
no doubt that “R” gives the correct answer. There is no doubt that EViews,
Excel, Minitab and Stata have accurate regression routines, at least accurate
enough to handle this simple problem. Clearly, Gujarati/Porter managed to
give the same incorrect input dataset to EViews and Excel, and managed to
give a different incorrect input dataset to Minitab and Stata.!

What is shocking is not that Gujarati and Porter made a mistake, but
that they make no remark in the text about the fact that four packages give
two answers to one problem! Their silence on this point has two striking
implications:

1. They calculated two different answers to the same simple linear regression
problem and found nothing unusual in this — they apparently are unaware
that statistical and econometric software has progressed in the forty-plus
years since Longley (1967 — to be discussed in Sect. 1.5) to the point that
a user can reasonably expect different packages to give the same answer to

1 Thanks to Houston Stokes, developer of the B34S software package, for
pointing out this problem, and for working with me to reverse engineer
the mistakes made by Gujarati/Porter. The data apparently were taken from
http://www.gpoaccess.gov/eop/tables08.htmlwhere the requisite .xls files are avail-
able, formatted to display 1 decimal for CLFPR and CUNR, 2 decimals for AHES82
— this is what Gujarati/Porter show in their text. The spreadsheet, however, con-
tains the data to several decimals in some cases, and using the actual data instead of
the displayed data reproduces the EViews/Excel results. Apparently Gujarati/Porter
loaded the spreadsheet into the software without checking to make sure that they
loaded the data they actually wanted. To obtain the Minitab/Stata results requires
yet another mistake. If the displayed data are used and the last observation for CUNR
is changed from 66.0 to 66.2, then the Minitab/Stata results can be obtained.
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the same linear regression problem. We have made abundantly clear that
this is not true for most other procedures, but it is true for OLS.

2. They think nothing of presenting two different sets of solutions to the
same problem from four different packages to students without remarking
on it! They do not warn the student that this is usual — they can expect
different packages to give different answers to the same problem; neither
do they warn that this is unusual (for linear regression, at least). They
simply present these disparate results and allow the student — if he notices
— to form his own conclusion about the accuracy (or lack thereof) of
econometric and statistical software.

It is not just Gujarati and Porter, but most econometrics text authors. For
example, when treating nonlinear estimation, they simply tell the reader to
use a software package to solve the problem, never warning the unsuspecting
reader that different packages give different answers to the same problem,
that some packages have horrible nonlinear solvers, etc. A notable exception
is the recent text by Vinod [30].

One would hope that the authors of an econometrics text would have at
least some passing familiarity with the accuracy (or lack thereof) of the soft-
ware they use, but such is not the case. (Or, if they do possess this knowledge,
they do not think it worth passing on to the student!) Crucially, they do not
inform the student that computing is not error free, and if the economics
student does not learn it from the authors of econometrics texts, from where
is he to learn it? Regrettably, nowhere.

Despite the stance of econometric textbook authors, accuracy is important
and it is not safe to assume that software is accurate (McCullough [16]).

1.3 Econometric Computing Is Important

In this section we present a few examples of computing gone bad; for more
examples and detailed discussion, see McCullough [19] and the references
therein.

e Different packages give different answers for the same ARMA problem [25],
while McCullough [19] eventually provided benchmarks for conditional and
unconditional least squares ARMA estimation — though maximum likeli-
hood ARMA estimation is still an open question.

e Different packages give different answers to the same vector autoregression
problem [20].

e Different packages give different answers to the same GARCH problem [21],
[4].

e Different packages give different answers to the same multivariate GARCH
problem [5].

e Different packages give different answers to the same FIML problem [27].
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e Different packages give different answers to the same 3SLS problem [34].
e Different packages give different answers to the same logistic regression
proble, and even find “solutions” when the solution does not exist [28].

o Packages calculate correlation coefficients greater than unity [17].

e Packages incorrectly calculate the sample variance [17], [15].

e Nonlinear solvers giving incorrect answers to nonlinear least squares prob-
lems [15], [29], [32].

Researchers can take note of these problems, but are unable to comprehend
the problems without some knowledge of econometric computing. Here is an
example.

Cointegration is an important concept in econometrics. For those unfa-
miliar with the idea, consider two random walk variables, x and y. Each is
“integrated of order one”, i.e., its first difference is a stationary sequence with
finite variance. Each random walk series has (theoretically) infinite variance
and wanders without bound as time increases. Suppose, however, that x and y
cannot wander too far apart — their difference remains stationary with finite
variance — then the variables are said to be “cointegrated”. As an example,
consider a spot price and a futures price for the same commodity. As finan-
cial variables in speculative markets, each is a random walk variable. Clearly,
however, if the spot and futures prices diverge too much, then traders seeking
profits will execute trades that bring the prices back together. A spot price
and a futures price are cointegrated.

In cointegration analysis, systems of correlated, trending variables (whose
design matrix will tend toward multicollinearity and hence ill-conditioning)
are examined for cointegration using a method that requires solving a gener-
alized eigenvalue problem:

IAS11 = S10Sp0 So1| =0

In the econometrics literature (and in most econometrics packages that offer
this procedure), the recommended way to solve this problem is to apply a
Cholesky decomposition to S;; and reduce the problem to a standard eigen-
value problem.

The problem with this approach is that S1; can be very ill-conditioned, and
the Cholesky decomposition will not then give a good answer; other methods
such as the QR and the SVD are to be preferred. This idea is explored in
detail in the excellent article by Doornik and O’Brien [7]. They generate a
simple cointegrated system by

Yt = V1, ¥2)3¥2e = y1e +u 107" 5u, ~ N(0, 1)

and then use various methods to solve the related generalized eigenvalue prob-
lem, with results given in Table 1.2 (inaccurate digits in bold). How can this
problem possibly be explored in the context of econometric computing using
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Table 1.2 Largest eigenvalue of system

Alg. m=3 m=>5 m=10
Cholesky-1 0.35091940555 0.05949553867 failed
Cholesky-2 0.35091940557 0.13273076746 failed

QR-1 0.35091938503 0.35091938542 0.01335798065
QR-2 0.35091938503 0.35091938540 failed

SVD 0.35091938503 0.35091938494 0.00487801748

a standard econometrics software package that offers only generic, unspecified
matrix inversion and eigenvalue calculation routines? It cannot!

1.4 “R” Is the Best Language for Teaching Econometric
Computing

Econometric computing requires software that provides the numerically lit-
erate user the ability to “code” econometric techniques using high-quality
components (subroutines); a generic matrix inversion routine does not sat-
isfy this requirement. To teach econometric computing similarly requires a
package that offers a wide range of relevant functionality. The traditional
econometrics packages simply do not offer the necessary commands. A stan-
dard econometric computing task is to consider the differences between vary-
ing methods of solving for linear least squares coefficients; another standard
task is to do the same for solving eigenvalue problems. Here is the complete
description of the command to invert a matrix from EViews version 5:

Syntax:

Argument:

Return:

@inverse (M)
square matrix or sym, m
matrix or sym

Returns the inverse of a square matrix object of sym.
The inverse has the property that the product of the
source matrix and its inverse is the identity matrix.
The inverse of a matrix returns a matrix, while the

inverse of a sym returns a sym. Note that inverting

a sym is

Examples:

matrix
sym s2
sym s3

much faster than inverting a matrix.

m2 = Q@inverse(ml)
= Q@inverse(sl)
= @inverse(Q@implode(m2))
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For purposes of econometric computing, this command is worthless. The
documentation provides no information as to the method used for invert-
ing the matrix. The EViews command for solving an eigensystem is equally
worthless for econometric computing. EViews is not unique in this regard;
other econometrics packages (e.g., SHAZAM and RATS) have similarly-
documented commands. One would hope that a software developer would
appreciate the importance of letting a user know whether matrix inversion is
performed by QR or Cholesky, but such is the state of the economics profes-
sion and econometric software.

The package MATLAB of course does not suffer from the above syndrome,
but has impediments of its own. First, MATLAB (or other commercial sys-
tems) are not free. Students already have to acquire a commercial economet-
rics package. The acquisition of a second package is onerous. Open-source
MATLAB clones such as Octave and SciLab are free, but this raises the sec-
ond (and more important) impediment: popularity. Neither MATLAB nor
its clones is sufficiently popular with statisticians that it is widely used for
statistical computing — “R” is, and econometric computing gets a free ride
from this. For example, the superb book by Monahan [24], Numerical Meth-
ods of Statistics; originally was released with FORTRAN files to illustrate
examples. Monahan later added files of “R” code to achieve the same ends as
the FORTRAN files. Indeed, Monahan’s book would be an excellent choice
for a first course in econometric (or statistical) computing, and “R” is much
easier to learn and to use for this purpose than FORTRAN.

A standard exercise in statistical computing is inverting the Hilbert matrix.
The Hilbert Matrix is a square matrix given by

Vi1

so for small cases, n =3 and n =4, it looks like this:

D [

[SS TS T

S == —
D= =0 =0 —
OV = [ =0 =
=N =N = —

QA == =

The inverse of the Hilbert matrix has
precisely:

_ i) s +i—1\ [n+j—1\ [(i+j—2)\*
H-' = (—1)it ("
g = DT )( n—j >( n—i >( i—1 )

Yet, traditional numerical matrix inversion routines quickly run into trouble
as n increases because the condition number of the Hilbert matrix grows
like exp(3.5n). Consequently, relatively small Hilbert matrices can be used to
demonstrate various aspects of ill-conditioned matrices, as follows.

closed form and so can be computed
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Recall that HH~! =1,. The standard statistical computing problem then is
to compute HH~! and examine its main diagonal for various values of n and
various methods of computing the inverse. For n = 12, and the two methods
“Cholesky” and “SVD?”, the results from “R” are presented in Table 1.3.

Table 1.3 Main diagonal of HH~! for Hilbert matrix of order 12

Cholesky SVD
1 1.0000002 1.0000000
2 0.9999807 1.0000012
3 1.0005020 0.9999702
4 0.9944312 1.0002072
5 1.0383301 0.9990234
6 0.8465960 0.9966422
7 1.3649726 0.9946361
8 0.3687544 0.9902124
9 1.6553078 1.0111723
10 0.5280704 1.0308642
11 1.1820953 1.0003664
12 0.9688452 1.0012815

How is this statistical computing exercise to be undertaken by an econo-
metrics package that offers only an unspecified, generic method of calculating
the inverse of a square matrix? The typical econometrics package is not up
to the task.

On a related note, a very important quantity in statistical computing is the
condition number of a matrix. One common way of computing this quantity
is to take the ratio of the largest to the smallest eigenvalues. Yet, this re-
quires an accurate eigenvalue routine. Is the unspecified, generic “eigenvalue”
command typically found in an econometrics package up to the task? We do
not know, because the developers typically present the routine as black box
— and black boxes are not to be trusted. Again, we find that typical econo-
metrics packages are unable to perform routine operations that are critical
to statistical computing.

1.5 The Longley Data and Econometric Computing

In 1967, Longley [13] computed by hand the solution to a regression problem.
Below are the data:
Longley’s Data

y x1 X2 x3 x4 x5 x6
60323 83.0 234289 2356 1590 107608 1947
61122 88.5 259426 2325 1456 108632 1948
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60171 88.2 258054 3682 1616 109773 1949
61187 89.5 284599 3351 1650 110929 1950
63221 96.2 328975 2099 3099 112075 1951
63639 98.1 346999 1932 3594 113270 1952
64989 99.0 365385 1870 3547 115094 1953
63761 100.0 363112 3578 3350 116219 1954
66019 101.2 397469 2904 3048 117388 1955
67857 104.6 419180 2822 2857 118734 1956
68169 108.4 442769 2936 2798 120445 1957
66513 110.8 444546 4681 2637 121950 1958
68655 112.6 482704 3813 2552 123366 1959
69564 114.2 502601 3931 2514 125368 1960
69331 115.7 518173 4806 2572 127852 1961
70551 116.9 554894 4007 2827 130081 1962

X1 = GNP deflator, X2 = GNP, X3 = unemployment, X4 = size of armed
forces, X5 = noninstitutional population aged 14 and over, X6 = time

The linear model considered by Longley was
Y=c+Bi X1+ X2+ X3+ PsX4+ BsX5+ PcX6+¢€

Longley gave the problem to several regression packages. Most of them
failed miserably: “With identical inputs, all except four programs produced
outputs which differed from each other in every digit” [13, p. 822]. In Table 1.4
are Longley’s hand-calculated coefficients and the output from a representa-
tive program that Longley tested, run in single-precision (Longley often gave
the problem to a package twice: once without the means subtracted, and
again with the means subtracted).

Table 1.4 Regression results by Longley and by a computer

coeff longley IBM 7074
uncentered centered
c -3482258.63 30 -269126.40 +0.00876
bl +15.061872271 -36.81780 +15.18095
b2 -0.035819179 +0.059053 -0.03588
b3 -2.02022980 3 -0.59308 -0.202104
b4 -1.033226867 -0.60657 -1.03339
b5 -0.05110410 5 -0.34354 -0.05072
b6 +1829.1514646 1 +183.73361 41829.6936

These results validate a pair of statistical computing folk theorems. First,
extremely ill-conditioned data can result in completely inaccurate results. The
“condition number” (k) of the Longley data is about 15000(= 10*), which indi-
cates severe ill-conditioning. It is of little surprise that the program returned
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completely inaccurate results for the uncentered data. The algorithm could
return somewhat accurate results for the centered data, and this validates
the second folk theorem: if the data in y and X are accurate to about s digits
and k(X) & 10', then the computed solution is accurate to about s —t digits.
In single precision with about 7 digits to work with, we can expect that the
coefficients can be calculated accurately to about 3 digits and that is what
we see.

The history of the Longley paper in statistical computing has emphasized
the effect of ill-conditioning on accurately computing coefficients. What has
been lost is the message that ill-conditioning has dramatic implications for
model adequacy even when the coefficients are accurately computed. This
theme was explored by Beaton, Rubin and Barone [2] ten years later, but the
paper did not received much attention in the literature. We attempt to make
up for this oversight in the next section.

1.6 Beaton, Rubin and Barone Revisit Longley

We know from statistical computing that the condition number has import for
the accuracy of calculations. It also has import whether the data are up to the
task of estimating the specified model. Consider the Longley regression and
the Longley data. Imagine perturbing the data within the limits to which the
data were rounded. As an example, change the first observation on X1 from
83.0 to 83.0 + u[-0.499,0.499] where ufa,b] is a random uniform draw from
[a,b]. Truthfully, the first observation on X1 is not known precisely to be 83.0,
and could have been any number from 82.501 to 83.499. Changing the data
beyond the limits to which they are reported should have no substantial effect
on the estimated coefficients, provided that the data are sufficiently accurate,
the algorithm is stable, and the model is approximately correct. Imagine
perturbing all the observations this way and re-estimating the model. Do this
1000 times, getting 1000 estimates of each coefficient and make histograms of
the estimates. Beaton, Rubin and Barone [2] did this, and their histograms
are remarkably similar to the ones displayed in Fig. 1.1, where the vertical
dashed line indicates the initial OLS coefficient. We call these “BRB plots”.

What has happened? Why do such seemingly small differences in the input
data have such large effects on the coefficients? The reason is that the model
is unstable — the data are not up to the task of estimating this model. It is
important to remember that the Longley data have only 16 observations —
if the sample size were larger, the effects of perturbing the data beyond the
last reported value would be much mitigated.

Due to finite precision (see McCullough and Vinod [22, §2]), the data in
the computer do not match the real-world data, e.g., 0.1 is actually stored
in a PC as 0.09999999403953. When such small differences are accumulated
over the millions of operations necessary to compute regression coefficients,
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large differences in the coefficients can result. More specifically, the computed
solution B is not a precise solution to the original problem y = X + ¢ but
instead is a precise solution to a nearby problem expressed in terms of y* and
X* where y* =y+e¢* and X* =X +E*.
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The question is whether this “nearby” problem is really close to the problem
of interest. In the present case, it is not. To see why not, it is useful to consider
two fundamental ideas from numerical analysis: the forward error and the
backward error. In forward error analysis, one attempts to find bounds for
the solution of the estimated coefficients. Let B* be the actual solution to
the original problem. Forward error analysis is concerned with determining
how close B is to B*. In backward error analysis, one attempts to find a
perturbed set of data so that the computed solution is the exact solution for
these perturbed data. These ideas are codified in what may well be the most
important equation in all of numerical analysis:

forward error < condition number - backward error

The graphs are evidence of a large backward error. Combined with the
large condition number, we conclude that the computed solution is not as-
sured to be close to the exact solution. See Hammarling [12] for a brief intro-
duction to the concept of a “computed solution”.

Gentle [10, p. 346] observes that ill-conditioning usually means that “either
the approach or the model is wrong.” With such a thought in mind, Beaton,
Rubin and Barone adopted a simpler model

Y=c+BiX1+B:X3+B4X4+¢

solely on the basis that X3 and X4 are relatively uncorrelated with each other
and the other explanatory variables, and X1 is highly correlated with X2, X5
and X6. The BRB plots for this model are given in Fig. 1.2, and show a
marked improvement. With the exception of the intercept term, the initial
OLS estimates are nearer the center of the histograms. This strongly suggests
that the reduced model is more consonant with the data than the full data.
Note, too, how the values of the coeflicients have changed dramatically when
the model was respecified. Thus, the initial BRB plots do not tell us anything
about the likely values of the coefficients — they only tell us that the exact
model is far from the estimated model. Vinod [31] advocates the use of a
“perturbation” index for a similar assessment of model quality.

1.7 An Example: Donohue/Levitt’s Abortion Paper

With the above in mind, we turn our attention to Donohue and Levitt’s
(DL, [6]) paper on abortion, which argued that increases in abortion lead to
a decrease in the crime rate 20 years later because a disproportionate percent-
age of the aborted children would have grown up to become criminals. The
data and associated Stata code can be found at Donohue’s website. Consider
DL’s Table IV, which shows results for three regressions with three depen-
dent variables: log of violent crime per capita, log property crime per capita,
and log of murder per capita. Each regression has one unique independent
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Fig. 1.2 BRB plots of the Longley coefficients, reduced model.

variable (effective abortion rate for violent crime, effective abortion rate for
property crime, and effective abortion rate for murder, respectively) and 71
common independent variables divided between seven continuous covariates,
one dummy variable, 50 state dummies (including Washington, DC), 12 year
dummies, and one constant. Each regression has a 663 x 72 design matrix
(the three design matrices differ only in one column). DL use Stata to run
their linear regressions with a serial correlation correction for panel data. In
attempting to replicate DL, Foote and Goetz (FG, [8]) discovered a coding
error whereby DL neglected to include state-year effects, and offered other
regressions to dispute DL’s conclusions.

Both DL and FG were reanalyzed by Anderson and Wells (AW, [1]) who
approached the problems from a numerical perspective. The first part of the
AW paper provides the necessary technical background in numerical analysis.
In the second part, among other things, AW show that

e The condition number of the 663 x 72 design matrix (when the observa-
tions are weighted by state population) is k¥ = 1,329,930, which is very
large. Based on this, they conclude, “There cannot be any accuracy in the
computed solution for a design matrix of less than six significant digits. In
other words, there is not enough information in the data to meaningfully

A

estimate the regression coefficients .
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e The bound on the relative error of the estimated coeflicents for DL’s re-
gression in their Table 5 is 530E+9. They conclude, “This bound is too
high to have confidence in the computed solution.”

e The bound on the relative error of the estimated coefficients for Table 1
of FG is 30E+46, which is very large. Again, AW conclude, “This upper
bound is too high to have confidence in the computed solution.”

In general, AW show that both DL and FG created models that were too
demanding for the data.

Our analysis here follows a related but different approach to show that
the DL model was too demanding for the data. For ease of exposition, our
analysis will be limited to simple linear regression. Additionally, DL weighted
the observations by population, to keep things simple we do not. AW adduce
much evidence to indicate that the exact model is far from the estimated
model e.g., condition number, variance inflation factors, etc.). We add a visual
diagnostic as additional evidence on this point: we employ BRB plots. Third,
because of the sample size there is no chance that perturbing beyond the last
digit will have any effect, so we perturb based on the accuracy of the data.
To this end, we first consider DL’s data.

DL has a “data appendix” that is not much use in locating the actual data
used by DL. For example, the entire entry for the Income variable is: “Per
capita state personal income, converted to 1997 dollars using the Consumer
Price Index, from Bureau of the Census, United States Statistical Abstract
[annual].” Since data are revised, it is important to know the year of publi-
cation of the United States Statistical Abstract; since it will sometimes have
different tables of per capita income under different definitions, it is impor-
tant to know the specific table from which the data were taken. Similarly for
the Consumer Price Index. DL made it hard for a replicator to locate the
sources of their data; we do not feel bound to waste resources tracking them
down. In general, we could not readily find data series that match DL’s data
precisely, but we did find similar tables for all the variables. Our primary
purpose is to determine the number of digits to which the data are given. We
focus only on the continuous covariates, which DL label with “xx” in their
dataset:

xxpolice  police per 1000 residents — FBI’s Crime in the United States [an-
nual] — could not find numbers matching DL’s, but one decimal is reported
for “per 1000” categories. DL’s dataset does not contain this variable but
the log thereof, which is given to six decimals. This is unreasonable. A
representative number of police per 1000 is 3.6. DL give the log of police
in Alabama in 1997 as 1.179529. Now exp(1.179529) = 3.252842 which
rounds to 3.3. But exp(1.18) = 3.254374 and, in fact, exp(1.2) = 3.320117,
both of which round to 3.3. So there is no harm in perturbing the log of
police per 1000 residents in the fourth significant digit.

xxprison prisoners per 1000 residents — Correctional Populations in the
United States, Bureau of Justice Statistics — gives number per 100,000,
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e.g., Alabama, 1998, 519 per 100,000 which translates to two decimals per
1000, e.g., 5.19. Curiously, DL Table III gives 2.83 as the overall average
number of prisoners per 1000 residents, but has weighted this value by
state population! Why a number per 1000 residents should be weighted
for state population is unknown. Nonetheless, DL give six decimals for the
log of this number, e.g., Alabama 1997 is 1.623693. Now, exp(1.623693)
= 5.072, which rounds to 5.07. Since exp(1.623)= 5.068 and exp(1.624) =
5.073, both of which round to 5.072, there should be no harm in perturbing
this variable in the fourth significant digit.

xxunemp  state unemployment rate (percent) — United States Statistical Ab-
stract — given to two digits, e.g., 4.1, while DL give this value equivalently
to three decimals, e.g., Alabama 1997 = 0.051. So there should be no harm
perturbing this variable in the fourth significant digit.

xxincome state personal income per capita ($1997) — United States Statis-
tical Abstract (deflated by the 1997 CPI) — The nominal value is given in
dollars not pennies, DL give the inflation-adjusted value to hundredths of
a penny, e.g., log income for Alabama 1997 = 9.93727. Now exp(9.93727)
= 20687.19. Since exp(9.93728) = 20687.4 and exp(9.93726)=20686.98,
both of which round to 20687, there should be no harm perturbing in the
seventh significant digit.

xxafdcl5 AFDC generosity per recipient family — United States Statistical
Abstract gives average monthly payment per family, which is multiplied by
12 and then deflated using the 1997 CPI. We could not find this variable,
but let us assume that it is given in dollars not pennies; DL give to hun-
dredths of a penny, e.g., Alabama 1997 = 2175.482. There should be no
harm perturbing in the sixth significant digit.

xxbeer beer consumption per capita (gallons) — Beer Institute’s Brewer’s
Almanac — given to one decimal, and DL do that. There should be no
harm in perturbing in the third significant digit. — One-tenth or one-one-
hundredth of a gallon should not matter.

xxpover poverty rate (percent below poverty level) — United States Statisti-
cal Abstract — given to one decimal, e.g., 5.3, and DL report this correctly.
There should be no harm perturbing in the third significant digit.

xxefamurd  this is the “effective abortion rate for murder” that DL com-
puted. Its min and max are 4.56e-05 6.219058. We will perturb it in the
fourth significant digit.

xxefaprop this is the “effective abortion rate for property crime” that DL
computed. Its min and max are 0.0026488 9.765327. We will perturb it in
the fourth significant digit.

xxefaviol  this is the “effective abortion rate for violent crime” that DL com-
puted. Its min and max are 0.000593 0.578164. We will perturb it in the
fourth significant digit.

We do not perturb the dependent variable (but perhaps we should). When
perturbing the data, we change the i-th digit by replacing it with a uniform
draw from the integers 0-9.
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We perform a BRB simulation where each continuous covariate is per-
turbed as specified above. While we should present BRB plots for each coef-
ficient for each regression, to conserve space we present the three BRB plots
(Fig. 1.3) for the parameter of interest in each regression, the coefficient on
the “effective abortion rate”.

BRB plot for Violent Crime
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Fig. 1.3 BRB plots for “effective abortion rate” coefficients.
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The conclusion is obvious and supports AW’s contention that, as far as
DL’s regressions are concerned, the data were not up to the task of estimating
the model.

1.8 Conclusions

We have shown that there is a definite need for econometric computing in-
struction in the economics profession: most users of econometric software,
some developers of econometric software, and some authors of econometrics
texts are unaware of the principles of accurate computing. We have shown
that the typical econometric software package is not capable of being used
for econometric computing: the programming languages contained in these
packages are too simple to meet the needs of econometric computing. “R”, by
contrast, can be used for econometric computing; we give a standard com-
puting exercise related to the Hilbert matrix as an example. We show how
R can very easily be used to reproduce Beaton, Rubin and Barone’s (1976)
approach for investigating the numerical stability of a regression equation,
and apply this method to the Donohue and Levitt (2000) abortion data. “R”
is uniquely suited for teaching and applying the principles of statistical com-
puting and econometric computing. Of special note in this regard is the fact
that Monahan first supplied FORTRAN code to supplement his statistical
computing text [24], and later added “R” code to do what the FORTRAN
code already did.

Acknowledgements For useful comments, thanks to participants at Fordham Uni-
versity’s 2009 “Conference on Quantitative Social Science Research Using R” and
thanks also to Will Anderson, Charles Renfro and Houston Stokes.
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Chapter 2

Additive Models for Quantile Regression:
An Analysis of Risk Factors for
Malnutrition in India

Roger Koenker

Abstract This brief report describes some recent developments of the R
quantreg package to incorporate methods for additive models. The methods
are illustrated with an application to modeling childhood malnutrition in
India.

Models with additive nonparametric effects offer a valuable dimension re-
duction device throughout applied statistics. In this paper we describe some
recent developments of additive models for quantile regression. These meth-
ods employ the total variation smoothing penalties introduced in [9] for uni-
variate components and [7] for bivariate components. We focus on selection
of smoothing parameters including lasso-type selection of parametric compo-
nents, and on post selection inference methods.

Additive models have received considerable attention since their intro-
duction by Hastie and Tibshirani (1986, 1990). They provide a pragmatic
approach to nonparametric regression modeling; by restricting nonparamet-
ric components to be composed of low-dimensional additive pieces we can
circumvent some of the worst aspects of the notorious curse of dimension-
ality. It should be emphasized that we use the word “circumvent” advisedly,
in full recognition that we have only swept difficulties under the rug by the
assumption of additivity. When conditions for additivity are violated there
will obviously be a price to pay.
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2.1 Additive Models for Quantile Regression

Our approach to additive models for quantile regression and especially our
implementation of methods in R is heavily influenced by Wood (2006, 2009) on
the package mgcv. In some fundamental respects the approaches are quite dis-
tinct: Gaussian likelihood is replaced by (Laplacian) quantile fidelity, squared
% norms as measures of the roughness of fitted functions are replaced by
corresponding .} norms measuring total variation, and truncated basis ex-
pansions are supplanted by sparse algebra as a computational expedient. But
in many respects the structure of the models is quite similar. We will consider
models for conditional quantiles of the general form

J
(1) Oy (Thxinzi) = XiB+ Y &(zi))-
=1

J

The nonparametric components g; will be assumed to be continuous func-
tions, either univariate, Z — %, or bivariate, #> — %. We will denote the
vector of these functions as g = (gi1,...,8s). Our task is to estimate these
functions together with the Euclidean parameter ff € 2%, by solving

(2) (rgigxpr(yi —xiB+Y ¢i(zi)+ A |l B Il + _Zjlllj V(Vg))

where || B [li1=Xi_; |Bx| and \/(Vg;) denotes the total variation of the deriva-
tive on gradient of the function g. Recall that for ¢ with absolutely continuous
derivative g’ we can express the total variation of g’ : Z — % as

V@) = [l @iz

while for g : %% — % with absolutely continuous gradient,

V() = [ 11V%(c) |1 dz

where V2g(z) denotes the Hessian of g, and || - || will denote the usual Hilbert—
Schmidt norm for this matrix. As it happens, solutions to (2) are piecewise
linear with knots at the observed z; in the univariate case, and piecewise lin-
ear on a triangulation of the observed z;’s in the bivariate case. This greatly
simplifies the computations required to solve (2), which can now be written
as a linear program with (typically) a very sparse constraint matrix consist-
ing mostly of zeros. This sparsity greatly facilitates efficient solution of the
resulting problem, as described in [8]. Such problems are efficiently solved
by modern interior point methods like those implemented in the quantreg
package.
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2.2 A Model of Childhood Malnutrition in India

An application motivated by a recent paper [1] illustrates the full range of
the models described above. As part of a larger investigation of malnutri-
tion we are interested in determinants of children’s heights in India. The
data come from Demographic and Health Surveys (DHS) conducted regu-
larly in more than 75 countries. We have 37,623 observations on children
between the ages of 0 and 6. We will consider six covariates entering as ad-
ditive nonparametric effects in addition to the response variable height: the
child’s age, gender, and months of breastfeeding, the mother’s body mass
index (bmi), age and years of education, and the father’s years of educa-
tion. Summary statistics for these variables appear in Table 2.1. There are
also a large number of discrete covariates that enter the model as paramet-
ric effects; these variables are also summarized in Table 2.1. In the termi-
nology of R categorical variables are entered as factors, so a variable like
mother’s religion that has five distinct levels accounts for four parameters.

Variable Counts Percent
wealth
Variable Counts Percent poorest 6625 17.6
csox poorer 6858 18.2
male 19574 520 middle 7806 207
female 18049 48.0 richer sate 224
richest 7888 21.0
“onglebirth 0 988 munemployed
ii:iie irt 453 1'2 unemployed 24002 63.8
: employed 13621 36.2
cbirthorder electricity
1 11486 30.5
no 10426 27.7
2 10702 28.4
3 6296 16.7 yes 27197 72.3
4 3760 10.0 radio
5 5379 14.3 no 25333 67.3
. . yes 12290 32.7
mreligion
christian 3805 10.1 television
hindu 26003 69.1 no 19414 516
muslim 6047  16.1 yes 18209 484
other 1071 2.8 refrigerator
sikh 697 1.9 no 31070 82.6
mresidence yes 6553 174
urban 13965 37.1 bicycle
rural 23658 62.9 no 19902 52.9
deadchildren yes 17721 47.1
0 31236 83.0 motorcycle
1 4640 12.3 no 30205 80.3
2 1196 32 yes 7418 19.7
3 551 1.5
car
no 36261 96.4
yes 1362 3.6
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Table 2.1 Summary statistics for the response and continuous covariates

Ctab Units Min Q1 Q2 Q3 Max

Chgt cm 45.00 73.60 84.10 93.20 120.00
Cage months 0.00 16.00 31.00 45.00 59.00
Bfed months 0.00 9.00 15.00 24.00 59.00
Mbmi kg/m? 12.13 17.97 19.71 22.02 39.97
Mage years 13.00 21.00 24.00 28.00 49.00
Medu years 0.00 0.00 5.00 9.00 21.00
Fedu years 0.00 2.00 8.00 10.00 22.00

Prior studies of malnutrition using data like the DHS have typically either
focused on mean height or transformed the response to binary form and
analyzed the probability that children fall below some conventional height
cutoff. Nevertheless, it seems more natural to try to estimate models for
some low conditional quantile of the height distribution. This is the approach
adopted by FKH and the one we will employ here. It is also conventional in
prior studies including FKH, to replace the child’s height as response variable
by a standardized Z-score. This variable is called “stunting” in the DHS data
and it is basically just an age-adjusted version of height with age-specific
location and scale adjustments. In our experience this preliminary adjustment
is highly detrimental to the estimation of the effects of interest so we have
reverted to using height itself as a response variable.

In R specification of the model to be estimated is given by the command

f <- rgss(Chgt ~ gss(Cage,lambda = 20) + gss(Mage, lambda = 80) +

gss(Bfed,lambda = 80) + gss(Mbmi, lambda = 80) +

gss(Medu, lambda = 80) + gss(Fedu, lambda = 80) +
munemployed + csex + ctwin + cbirthorder + mreligion +
mresidence + deadchildren + wealth + electricity + radio +

television + refrigerator + bicycle + motorcycle + car,
tau = .10, method = "lasso", lambda = 40, data = india)

The formula given as the first argument specifies each of the six non-
parametric “smooth” terms. In the present instance each of these is univariate,
and each requires specification of a A determining its degree of smoothness.
The remaining terms in the formula are specified as is conventional in other
R linear model fitting functions like lm( ) and rq( ). The argument tau
specifies the quantile of interest and data specifies the dataframe within which
all of the formula variables are defined.

2.2.1 A-Selection

A challenging task for any regularization problem like (2) is the choice of the
A parameters. Since we have seven of these the problem is especially daunting.
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Following the suggestion originally appearing in Koenker, Ng and Portnoy [9]
we relied on the Schwartz information criterion (SIC)-type criterion:

SIC(A) =nlog&(A) + 3p(A)log(n)

where 6(A) =n 'Y, pc(vi — £(x,2)), and p(1) is the effective dimension of
the fitting model

8(x,2) —x[3 Z

The quantity p(A) is usually defined for linear least-squares estimators as
the trace for pseudo projection matrix. The situation is somewhat similar for
quantile regression fitting since we can simply compute the number of zero
residuals for the fitted model. Recall that in unpenalized quantile regression
fitting a p-parameter model yields precisely p zero residuals provided that
the y;’s are in general position. This definition of p(A) can be viewed from a
more unified perspective as consistent with the definition proposed by [11],

n 94
p() = div(g) = ¥ 285,
i=1 i
see Koenker [5, p. 243]. A consequence of this approach to characterizing
model dimension is that it is necessary to avoid “tied” responses; we ensure
this by “dithering” the response variable. Heights measured to the nearest
millimeter are replaced by randomly perturbed values by adding uniformly
distributed “noise” U[—0.05,0.05].

Optimizing SIC(A) over A € R’ is still a difficult task made more chal-
lenging by the fact that the objective is discontinuous at points where new
constraints become binding and previously free parameters vanish. The pru-
dent strategy would seem to be to explore informally, trying to narrow the
region of optimization and then resort to some form of global optimizer to
narrow the selection. Initial exploration was conducted by considering all of
the continuous covariate effects excluding the child’s age as a group, and ex-
amining one-dimensional grids for A’s for this group, for the child’s age, and
the lasso A individually. This procedure produced rough starting values for
the following simulated annealing safari:

set.seed(1917)
malnu <- cbind(india, dChgt = dither(india$Chgt))

sic <- function(lam){

a <- AIC(rgss(dChgt~csex+gss(cage,lambda=lam[1])+
gss (mbmi,lambda=lam[2])+ gss(Bfed,lambda=lam[3])+
gss(Mage,lambda=lam[4])+ gss(Medu,lambda=lam[5])+
gss(Fedu,lambda=lam[6])+ csex + ctwin+cbirthorder+
munemployed+mreligion+mresidence + wealth+electricity+
radio+television+refrigerator+bicycle+motorcycle+car,
tau=0.1, method="lasso", lambda=lam[7], data=malnu), k=-1)
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print(c(lam,a))
a

}
g <- optim(c(20,80,80,80,80,80,20),sic,method="SANN",
control=list (maxit=1000,temp=5000, trace=10,REPORT=1))

Each function evaluation takes about 7 seconds, so 1000 steps of the sim-
ulated annealing algorithm required about 2 hours. The “solution” yielded

$par

[1] 16.34 67.92 78.49 85.05 77.81 82.51 17.63

$value
[1] 245034.0

Thus, the original starting values proved to be somewhat vindicated. We
would not claim that the “solutions” produced by this procedure are anything
but rough approximations. However, in our experience choosing A’s anywhere
in a moderately large neighborhood of this solution obtained this way yields
quite similar inferential results that we will now describe.

2.2.2 Confidence Bands and Post-Selection Inference

Confidence bands for nonparametric regression introduce some new chal-
lenges. As with any shrinkage type estimation method there are immediate
questions of bias. How do we ensure that the bands are centered properly?
Bayesian interpretation of the bands as pioneered by [15] and [12] provides
some shelter from these doubts. For our additive quantile regression mod-
els we have adopted a variant of the Nychka approach as implemented by
Wood [17] in the mgev package.

As in any quantile regression inference problem we need to account for
potential heterogeneity of the conditional density of the response. We do this
by adopting Powell’s [14] proposal to estimate local conditional densities with
a simple Gaussian kernel method.

The pseudo design matrix incorporating both the lasso and total variation
smoothing penalties can be written as

X G - Gy
MHyk O -+ 0
j?:: 0 llfﬂ - 0

0 0 - APy
Here X denotes the matrix representing the parametric covariate effects,
the G;’s represent the basis expansion of the g; functions, Hx = [0 : Ik] is

the penalty contributions from the lasso excluding any penalty on the inter-
cept and the P; terms represent the contribution from the penalty terms on
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Fig. 2.1 Smooth covariate effects on children’s heights with pointwise confidence
bands.

each of the smoothed components. The covariance matrix for the full set of
parameters, 8 = (B,y,...,] )T, is given by the sandwich formula,

V=t(1-7)X"¥X)"'X" X)X Twx)"!

where ¥ denotes a diagonal matrix with the first n elements given by the
local density estimates,

fi=9(ai/n)/h,
iI; is the ith residual from the fitted model, and & is a bandwidth determined
by one of the usual built-in rules. The remaining elements of the ¥ diagonal
corresponding to the penalty terms are set to one.

Pointwise confidence bands can be easily constructed given this matrix
V. A matrix D representing the prediction of g; at some specified plotting
points z;; :i=1,...,m is first made, then we extract the corresponding chunk
of the matrix V, and compute the estimated covariance matrix of the vector
D6. Finally, we extract the square root of the diagonal of this matrix. The
only slight complication of this strategy is to remember that the intercept
should be appended to each such prediction and properly accounted for in
the extraction of the covariance matrix of the predictions.
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To illustrate the use of these confidence bands, Fig. 2.1 shows the six
estimated smoothed covariate effects and the associated confidence bands.
This plot is produced by refitting the model with the selected A’s, calling the
fitted model object fit and then using the command

plot(fit, bands = TRUE, page = 1)

Clearly the effect of age and the associated growth curve is quite precisely
estimated, but the remaining effects show considerably more uncertainty.
Mother’s BMI has a positive effect up to about 30 and declines after that,
similarly breastfeeding is advantageous up until about 30 months, and then
declines somewhat. (Some breastfeeding after 36 months is apparently quite
common in India as revealed by the DHS survey.)

What about inference on the parametric components of the model? We
would certainly like to have some way to evaluate the “significance” of the
remaining parametric coefficients in the model. Again, bias effects due to
shrinkage create some serious doubts, and from a strict frequentist viewpoint
these doubts may be difficult to push aside. See for example the recent work of
[13]. However, a Bayesian viewpoint may again rescue the naive application
of the covariance matrix estimate discussed above. When we employ this
covariance matrix to evaluate the parametric component of the model, we
obtain the following table from R using the usual summary(fit) command.

Parametric coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 4.336e+01 5.753e-01  75.382 < 2e-16 **x*
csexfemale -1.405e+00 4.516e-02 -31.110 < 2e-16 **x*
ctwintwin -6.550e-01 2.504e-02 -26.157 < 2e-16 *x*x*
cbirthorder2 -6.492e-01 4.411e-02 -14.719 < 2e-16 *x**
cbirthorder3 -9.491e-01 4.246e-02 -22.355 < 2e-16 *x**
cbirthorder4 -1.437e+00 4.013e-02 -35.807 < 2e-16 *x**
cbirthorder5 -2.140e+00 3.975e-02 -53.837 < 2e-16 *x%x*
munemployedemployed 9.753e-02 4.453e-02 2.190 0.028532 *
mreligionhindu -2.111e-01 4.185e-02 -5.043 4.61e-07 *x%x*
mreligionmuslim -1.957e-01 3.991e-02 -4.904 9.42e-07 *x**
mreligionother -3.934e-01 3.005e-02 -13.090 < 2e-16 *x**
mreligionsikh -2.353e-13 2.766e-02 -8.5e-12 1.000000
mresidencerural 1.465e-01 4.357e-02 3.363 0.000773 *x*x*
wealthpoorer 2.126e-01 4.374e-02 4.861 1.17e-06 *x**
wealthmiddle 5.880e-01 4.230e-02 13.899 < 2e-16 **x
wealthricher 8.368e-01 3.999e-02 20.924 < 2e-16 **x
wealthrichest 1.358e+00 3.540e-02  38.367 < 2e-16 *x**
electricityyes 2.414e-01 4.345e-02 5.556 2.78e-08 x**x
radioyes 4.073e-02 4.530e-02 0.899 0.368547
televisionyes 1.793e-01 4.378e-02 4.096 4.21e-05 ***
refrigeratoryes 1.289e-01 3.969e-02 3.247 0.001168 *x*
bicycleyes 3.940e-01 4.489e-02 8.778 < 2e-16 **x
motorcycleyes 1.764e-01 4.193e-02 4.207 2.60e-05 *xx
caryes 3.633e-01 3.214e-02 11.303 < 2e-16 ***

There are a number of peculiar aspects to this table. Somewhat surpris-
ingly, our “optimal” choice of the lasso A of 17.63 only zeros out one coefficient
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— the effect of the relatively small minority of sikhs. For all the remaining
coefficients the effect of the lasso shrinkage is to push coefficients toward zero,
but also to reduce their standard errors. The implicit prior represented by the
lasso penalty acts as data augmentation that improves the apparent precision
of the estimates. Whether this is regarded as a Good Thing is really ques-
tionable. To contrast the conclusions drawn from this table with somewhat
more conventional methods, we have reestimated the model maintaining the
smoothing A’s at their “optimized” values, but setting the lasso A to zero.

Parametric coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 43.51139 0.64391 67.574 < 2e-16 **x
csexfemale -1.44232 0.08421 -17.128 < 2e-16 **x*
ctwintwin -0.86987 0.34680 -2.508 0.01214 =*
cbirthorder2 -0.76125 0.10883 -6.995 2.70e-12 *x**
cbirthorder3 -1.13288 0.14098 -8.036 8.88e-16 **x
cbirthorder4 -1.60645 0.18238 -8.808 < 2e-16 *x*x
cbirthorder5 -2.34391 0.20206 -11.600 < 2e-16 **x
munemployedemployed 0.09254 0.09348 0.990 0.32221
mreligionhindu -0.42625 0.15390 -2.770 0.00561 *x*
mreligionmuslim -0.50185 0.18902 -2.655 0.00793 *x
mreligionother -0.76162 0.25700 -2.963 0.00304 x*x*
mreligionsikh -0.39472 0.39786 -0.992 0.32114
mresidencerural 0.23299 0.10362 2.248 0.02456 *
wealthpoorer 0.45847 0.15372  2.982 0.00286 *x
wealthmiddle 0.89591 0.17073  5.248 1.55e-07 *x**
wealthricher 1.23945 0.20023 6.190 6.07e-10 *x**
wealthrichest 1.83644 0.25340  7.247 4.33e-13 **x
electricityyes 0.14807 0.13215 1.120 0.26253
radioyes 0.01751 0.09701 0.180 0.85679
televisionyes 0.16862 0.12103 1.393 0.16359
refrigeratoryes 0.15100 0.14808 1.020 0.30787
bicycleyes 0.42391 0.08897 4.764 1.90e-06 *x*x
motorcycleyes 0.20167 0.13193 1.529 0.12637
caryes 0.49681 0.23161 2.145 0.03196 =*

This table is obviously quite different: coefficients are somewhat larger
in absolute value and more importantly standard errors are also somewhat
larger. The net effect of removing the lasso “prior” is that many of the coef-
ficients that looked “significant” in the previous version of the table are now
of doubtful impact. Since we regard the lasso penalty more as an expedient
model selection device rather than an accurate reflection of informed prior
opinion, the latter table seems to offer a more prudent assessment of the ef-
fects of the parametric contribution to the model. A natural question would
be: does the refitted model produce different plots of the smooth covariate
effects? Fortunately, the answer is no, as replotting Fig. 2.1 with the un-
lasso’ed parametric fit yields a figure that is almost indistinguishable from
the original.
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Most of the estimated parametric effects are unsurprising: girls are shorter
than boys even at the 10th percentile of heights, children later in the birth
order tend to be shorter, mothers who are employed and wealthier have taller
children, religious differences are very small, and some household capital stock
variables have a weak positive effect on heights, even after the categorical
wealth variable is accounted for.

The summary (fit) command also produces F-tests of the joint significance
of the nonparametric components, but we will defer the details of these cal-
culations. A further issue regarding these nonparametric components would
be the transition from the pointwise confidence bands that we have described
above to uniform bands. This topic has received quite a lot of attention in
recent years, although the early work of [4] has been crucial. Recent work
by [10] has shown how to adapt the Hotelling approach for the same GAM
models in the Wood mgcv package. It appears that similar methods can be
adapted to rgss fitting; I hope to report on this in future work.
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Chapter 3

Toward Better R Defaults for Graphics:
Example of Voter Turnouts in U.S.
Elections

Andrew Gelman

R is great, and it is a pleasure to contribute to a volume on its practical
applications. As part of my goal to make R even better, I want to discuss
some of its flaws.

I will skip past computational issues (the difficulty of working with S4
objects, the awkwardness of the links to R and C, the accretion of ugly
exception-handling code in many R functions, and well-known problems with
speed and memory usage), and move to some issues I have had with graphics
in R.

My #1 problem with R graphics is that its defaults do not work well for
me. I always end up wrapping my code with extra instructions to have it do
what I want. The simple graph (Fig. 3.1) represents a recent example. And
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55%

50%

1960 1980 2000
Year

Fig. 3.1 Voter turnout in presidential elections, 1948-2008.
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here is the paragraph of ugly code needed to create the graph:

turnout.year <- seq (1948,2008,4)

turnout.VEP <- c(.522,.623,.602,.638,.628,.615,.562,.548,
.542,.552,.528,.581,.517,.542,.601, .617)

pdf ("c:/temp/turnout.pdf", height=4, width=5.5)

n <- length(turnout.year)

par (mar=c(3,4,2,0), tck=-.01, mgp=c(2,.5,0))

plot (turnout.year, turnout.VEP, type="1", xlab="Year",
ylab="Percentage of voting-eligible\npopulation who
turned out to vote", xaxt="n", yaxt="n", bty="1",
ylim=c(.50, .65))

points (turnout.year[1:(n-1)], turnout.VEP[1:(n-1)],
pch=20)

points (turnout.year[n], turnout.VEP[n], pch=21, cex=1.2)

axis (1, seq (1960,2000,20))

yticks <- seq (.50, .65,.05)

axis (2, yticks, paste (yticks*100,"}",sep=""))

mtext ("Voter turnout in presidential elections, 1948-2008",
line=1)

dev.off ()

The script to create this graph should be one line, right? What is all this
other stuff for? Two lines to set up the png close it when it is done; that is
fair. A line at the end to give the graph a title. The plotting call itself takes
up a couple of lines to specify the axis labels. An extra line of code to put a
circle to emphasize the last data point. OK, so far, so good.

But what about the rest—unreadable machine-language-like code with

tags such as “mar”, “mgp”, “cex”, “sep”, and the rest? This extra code is
mostly there to fix ugly defaults of R graphics, including the following:

- Tick marks that are too big. (They’re OK on the windows graphics device,
but when I make my graphs using postscript() or png() or pdf()—and it
is good practice to do this—then it is necessary to set them much smaller
so that they are not so big.)

- Axis numbers that are too closely spaced together.

- Axis labels too far from the axes.

- Character sizes that are way too small or way too big for the size of the
graph. (This really starts to become a problem if you want to resize a
plot.)

Just try making the above graph using the default settings and you will see
what I mean. I routinely set xaxt="“n", yaxt=“n”", and type=“n” so that I can
set everything manually. Some of these choices would be difficult to automate
(for example, “45%” rather than the ugly “0.45” on the y-axis), but others
(such as too-frequent tick marks, too-wide margins, and character sizes that

do not work with the graph size) just baffle me.
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Yes, I know I can write my own plotting functions and set my own defaults,
but how many people actually do this?

I will also take this opportunity to mention a few other defaults which
annoy me but do not happen to show up in the above example:

- Histogram bins that are too wide. (Whenever I make a histogram, I set
the bin locations manually to get more resolution.)

- Lines that are too fat. (I always use lwd=.5 and I wish there was an even
narrower setting.)

- Margins too big between plots. (In the default setting, you get tiny
squares surrounded by oceans of white space. I always have to set the
margins to be much smaller.)

- For all-positive variables, when the axis includes 0, it typically goes neg-
ative (unless you remember to set yaxs=“i"). And for variables such as
percentages that go from 0 to 1, the axis can go below 0 and above 1
(again, unless you alter the default settings). I know this choice can be
justified sometimes (see page 32 of The Elements of Graphing Data, by
William S. Cleveland [1, p. 32]), but in my experience these extended axes
are more of a hindrance than a help for variables with natural constraints.

I have heard there are better tools out there for R graphics (for example,
see Frank Harrell’s hmisc package [2], Hadley Wickham’s gg2plot [5], and the
recent book R Graphics by Paul Murrell [3]), and T would not be surprised
if the problems mentioned above get fixed soon. Nonetheless, the issues are
here right now, and I think they illustrate some deeper statistical ideas that
are not often studied.

Let me briefly discuss this last issue—axes that go beyond their logical
range—because it illustrates a connection to deeper statistical ideas. Again,
the R fix is easy enough (just set ylim=c(0,1),yaxs=“i"), but the more inter-
esting question is how to get better defaults. All these little fixes add up in
time and effort, and most users will not go beyond the default anyway, which
is why we see these little mistakes all over the place.

Axes that extend beyond the possible range of the data are not simply an
issue of software defaults but reflect something more important, and interest-
ing, which is the way in which graphics objects are stored on the computer.

R (and its predecessor, S) is designed to be an environment for data anal-
ysis, and its graphics functions are focused on plotting data points. If you are
just plotting a bunch of points, with no other information, then it makes sense
to extend the axes beyond the extremes of the data, so that all the points are
visible. But then, if you want, you can specify limits to the graphing range
(for example, in R, xlim=c(0,1),ylim=c(0,1)). The defaults for these limits
are the range of the data.

What R does not allow, though, are logical limits: the idea that the space of
the underlying distribution is constrained. Some variables have no constraints,
others are restricted to be nonnegative, others fall between 0 and 1, others
are integers, and so forth. R (and, as far as I know, other graphics packages)
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just treats data as lists of numbers. You also see this problem with discrete
variables; for example, when R is making a histogram of a variable that takes
on the values 1, 2, 3, 4, 5, it does not know to set up the bins at the correct
places, instead setting up bins from 0 to 1, 1 to 2, 2 to 3, etc., making it
nearly impossible to read sometimes.

What I think would be better is for every data object to have a “type”
attached: the type could be integer, nonnegative integer, positive integer,
continuous, nonnegative continuous, binary, discrete with bounded range,
discrete with specified labels, unordered discrete, continuous between 0 and 1,
ete. If the type is not specified (i.e., NULL), it could default to unconstrained
continuous (thus reproducing what is in R already). Graphics functions could
then be free to use the type; for example, if a variable is constrained, one of
the plotting options (perhaps the default, perhaps not) would be to have the
constraints specify the plotting range.

Lots of other benefits would flow from this, I think, and that is why we are
doing this in our ‘mi’ package for multiple imputation (in collaboration with
Jennifer Hill, Yu-Sung Su, and others [4]). But the basic idea is not limited to
any particular application; it is a larger point that data are not just a bunch
of numbers; they come with structure.

I know that the R development community recognizes both of my points—
the problems with many of the graphical defaults and the usefulness of vari-
able types. Much of the challenge is in the implementation. Nonetheless, it
may be helpful to lay out the connections between these practical and the-
oretical issues, which may help point a way toward more effective default
settings in statistical graphics.

Acknowledgements The data on turnout as a proportion of the voting-eligible
population were compiled by political scientist Michael McDonald at George Ma-
son University and appear at http://elections.gmu.edu/voter_turnout.htm. I thank
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Chapter 4

Superior Estimation and Inference
Avoiding Heteroscedasticity and Flawed
Pivots: R-example of Inflation
Unemployment Trade-Off

H. D. Vinod

Abstract We use a new solution to the heteroscedastic regression problem
while avoiding the so-called incidental parameters (inconsistency) problem
by using recently discovered maps from the time domain to numerical values
domain and back. This involves a parsimonious fit for sorted logs of squared
fitted residuals. Dufour [9] showed that inference based on Fisher’s pivot (di-
viding by standard errors) can be fundamentally flawed for deep parameters
of genuine interest to policymakers. Hence, we use Godambe’s [12] pivot,
which is always a sum of T items and asymptotically subject to the central
limit theory. We provide R functions to implement the ideas using the Phillips
curve trade-off between inflation and unemployment for illustration. The Ap-
pendix discusses numerical methods to correct for general ARMA errors with
an illustration of ARMA(4,3).

Key words: feasible generalized least squares; specification robust; smooth-
ness; simulation; consistency
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4.1 Introduction

Vinod’s [29, Sect. 9.3.1] recent textbook mentions two-way maps between
the values domain and time domain (denoted here by t-dom « v-dom) based
on [27, 28] and [30] developed in the context of maximum entropy boot-
strap (meboot) package in R software. This paper describes an application
of the t-dom <« v-dom maps to construct a parsimonious estimate of the
heteroscedastic variances of unknown form in the context of the usual model
for the generalized least squares (GLS) from textbooks [7, Chap. 7] and [29,
Chap. 10J:

y=XB+e, Ee|X =0, Eee'|X = o2Q, (4.1)

where X is T X p, Bis px 1,y and € are T x 1. The X’X matrix and the large
T x T matrix Q are both assumed to be positive definite and known with
T > p.

The feasible GLS (FGLS) problem under unknown form heteroscedastic-
ity was rigorously studied long ago by Eicker [10]. Besides Eg = 0, he as-
sumes that the individual errors satisfy 0 < E€? =, < oo, with distribution
functions (dfs) which are neither assumed to be known, nor identical for all
t€1,2,...,T. They are assumed, however, to be elements of a certain set
F of dfs. Eicker denotes by .#(F) the set of all sequences occurring in the
regressions and a parameter point as a sequence of % (F).

Result 4.1. If & are independent and identically distributed (iid), it is well
known that the law of large numbers implies that the empirical distribution
function based on the order statistics €;) gives a consistent estimate of the
distribution function of errors.

Result 4.2 (Weierstrass, 1885). Since unknown error variances €2 are
defined at each r € 1,2,...,T, we can write them as a real-valued function
f(#) of t defined over a finite interval. Then the Weierstrass approximation
theorem states that for every € > 0, there exists a polynomial function g()
over R such that the supremum norm satisfies: sup||f —g|| < €.

Since (4.1) relaxes the identical distribution part of the iid assumption,
it cannot achieve the consistency in Result 4.1 without further assumptions.
While Weierstrass Result 4.2 shows that a polynomial approximation exists,
this paper uses the t-dom < v-dom maps to suggest a new, simple and
practical method of finding g(¢) using a new set of assumptions Al to A3
on the set .Z(F). A general function g(X,t) to approximate f(¢) by using
nonparametric estimates, such as those in [24], can be used, but left for future
work.

The OLS estimator is b = (X’X)~'X’y. It has Eicker’s covariance matrix
Cov(b) = o*(X'X)~'[X'2X](X'X)~", where 62 is commonly estimated by s> =
(y—Xb) (y—Xb)/(T — p). It is convenient to simplify the expressions in the
sequel by merging the scalar 62 inside our Q.
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Ignoring the Q2 matrix makes OLS estimator b inefficient and standard
errors SE (b) potentially misleading. However, direct estimation of T diagonal
elements of Q from all T squared residuals s;;, using only T data points, faces
the well-known “incidental parameters” (inconsistency) problem. The basic
solution involves using Q = Q(¢), where the number of parameters in the ¢
vector are far less than 7. Carroll [2] assumes that the variance function
is a smooth function, in the sense that it has a continuous first derivative, in
a time domain neighborhood, which can also be justified by Result 4.2.

Assuming a consistent estimate Q is available, the feasible GLS (FGLS)
estimator of 8 is given by

brors = [X'Q7'X]71X'Q 7y, with Cov(brgrs) = [X'Q71X]7". (4.2)

This paper is concerned with correcting for heteroscedasticity of the un-
known form considered by many authors, such as those surveyed in [18]. Some
have attempted to solve the heteroscedasticity problem by going outside the
FGLS class by modifying the minimand. Professor C. R. Rao suggested a
variance components model on assuming fewer components than T and a
quadratic form y'Ay to estimate them. His minimand is the Euclidean norm
of the difference between the true quadratic form and its estimator lead-
ing to minimum norm quadratic estimation (MINQUE). The large literature
inspired by MINQUE is reviewed in [23].

The literature dealing with rank-based R-estimates of the regression model
minimizing (Jaeckel’s) dispersion function involving weighted ranks of errors
is also large. Dixon and McKean [8] analyze the heteroscedastic linear model
using the dispersion of residuals defined by Y  , w(t)R(%)(&), where w(t)
are weights and R(.) represents ranks. The design of Dixon and McKean’s
simulation using monkey data and 10% contaminated Normal density shows
a focus on solving a heteroscedasticity problem primarily caused by outliers
and influential observations. Our proposal retains the usual score function
leading to FGLS estimation: X’Q~!(y —XB).

Auxiliary variables needed for efficient estimation under heteroscedasticity
of the unknown form in the current literature are mostly constructed from the
matrix of regressors X wedded to the time domain. For example, White [31]
and Cragg [5] use squares and cross-products of columns of X, whereas when
Cragg constructs & = 67 — &2 based on the deviation of residual variances
from their average, he is implicitly recognizing that what matters for het-
eroscedasticity is their numerical magnitude.

We define the time domain (t-dom) as the place where our observable real
numbers in y, X, €,€ (e.g., time series) and functions using them are located.
The values domain (v-dom) contains order statistics of the same real numbers
(ordered from the smallest to the largest) and functions using them. After
showing in the next section that magnitudes are best studied in the values do-
main, this paper suggests a new nonstochastic auxiliary variable constructed
from a simple sequence of integers (1,2,...). Our method for correcting for
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heteroscedasticity is much easier to implement than what is currently avail-
able.

The outline of the remaining paper is as follows. Section 4.2 discusses
the new heteroscedasticity cum heterogeneity efficient (HE) estimation. Sec-
tion 4.3 reports a simulation. Section 4.4 contains an example. Section 4.6 has
a summary and our final remarks. If autocorrelation is suspected, Vinod [29,
Chap. 10] argues that one should make the autocorrelation correction before
any heteroscedasticity correction, using parsimonious expressions for the o)
matrix when the errors in (4.1) follow an ARMA process. The Appendix
illustrates new corrections for ARMA(4,3) errors by numerical methods.

We are assuming that on performing tests for heteroscedasticity the re-
searcher has already decided to correct for it by using FGLS estimation. All
methods discussed in this paper are readily implemented by using the R
software, similar to [29)].

4.2 Heteroscedasticity Efficient (HE) Estimation

Let V=072 and V = QY2 denote the square root matrix of the inverse
of Q and its estimated Q version, respectively. Now rewrite (4.1) and verify
that

Vy=VXB+Ve, EVe|X =0, E[Vee'V'|X] = c*Ir. (4.3)

Let H =X (X'X)~'X’ be the usual hat matrix and let its diagonals be denoted
by H;. It is well known that var(i,) = Ei? = Q;;(1 — H,, ). Efficient estimation
under heteroscedasticity tries to give a larger weight to observations hav-
ing a lower var(#,) than to those having a higher variance. Accordingly, the
following estimates of £, are found in the literature:

(HCO): sup =7 = [y —E(y|X),
(HCL): sy1 = Tﬁzz/(T p),
(HC2): sup = ﬁt /(1= Hy),
(HC3): sy3= u, 2/(1—H,)? and
(HC4): sy4 =2 /(1 —H,)%", where 8tt = min(4,H,, /mean(Hy)).

Note that HCO is a proxy for the conditional scale of y;, which is a non-
normal nonnegative random variable. Davidson and MacKinnon [7, p. 200]
define HC1 to HC3 and suggest a slight preference for HC3 based on the jack-
knife. Cribari-Neto [6] suggests HC4. Our discussion includes computation of
HCO to HC4 under the generic name s;;. Following Cook and Weisberg [4] we
can use scaled residuals, e = ii/s, in place of 4 although this change does not
seem to make a practical difference.

Since nonconstant diagonal wvalues of © become obvious on reordering
them, heteroscedasticity is easier to study and more meaningful in the val-
ues (numerical magnitudes) domain than in the time domain. For example,
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if max(4?) is a lot larger (>>) than min(4?), it stands out better in the v-
domain. One should use formal tests to make sure we have heteroscedasticity
before proceeding to correct for it. Our example uses Cook and Weisberg’s [4]
score test.

Before we proceed, note that we cannot rule out a locally perfect fit. Hence
some T’ (say) of the #? values may well be zero. This creates a practical
problem that their log(s;;) becomes —eo. McCullough and Vinod [17] argue
against the temptation to replace the T’ zeros with suitably small numbers
close to zero. Hence, we work with the remaining “good” observations, T, =
T —T', while excluding the troublesome T’ components from the following
heteroscedasticity correction algorithm.

4.2.0.1 Map t-domain to v-domain

We construct a T x 2 matrix W, having the first column containing the vec-
tor 7= (1,2,...,T), and the second column containing s,; (generic for 4?2, or
any one of HC1 to HC4). Next, we sort the W matrix on the second col-
umn, ordering its elements from the smallest to the largest, while carrying
the first column along during the sorting process. This finds the monotonic
order statistics s(;) belonging to the v-domain. In the second column, the T’
elements (associated with perfect fit or zero residuals) occupying initial po-
sitions will be zero due to the sorting process. Now, the remaining 7, (good)
elements will be nonzero, with well-defined logarithms.

Use a subscript “s” to denote the sorted version of the W matrix: Wy =
{W,i j}, where its elements for row i and column j bear the subscript (s,i,j).
Denote its columns 1 and 2 as 7, =W, 1 and Sy = Ws,.2, respectively, replac-
ing the “i” by a dot to represent the entire range of “i” values. The sorted
version 7; will be useful later for the reverse map of Sect. 4.2.0.2.

Assumption 4.1 (smoothness of heteroscedasticity). Recall Eicker’s
F(F) set of all sequences for distribution functions. We assume that the
ordered values behind the distribution functions satisfy Q) = f(t), where
f(t) is a piecewise smooth function in the (numerical values) v-domain. The
assumption implies that f(¢) has a positive and piecewise continuous deriva-
tive.

The Weierstrass approximation of Result 4.2 allows us to approximate €,
by a polynomial in the time domain. Our t-dom <« v-dom maps are (one-
one onto) bijections, and will be shown to be linear transforms, since they
boil down to premultiplication by a matrix similar to the matrix (4.9) or its
inverse. Hence the existence of a polynomial approximation holds in both do-
mains and the approximating polynomials can be mapped between the two
domains, as we wish. Our Assumption 4.1 imposes a smoothness requirement
on the ordered true values €, in the v-domain for a convenient polynomial
approximation. We do not claim that sorting is necessary in each and every
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example. However, our polynomial is in powers of {f} a monotonic subset of
integers (1,2,...). Hence monotonic values from the v-domain as the depen-
dent variable are expected to permit a lower order & of a good Weierstrass
approximating polynomial.

In financial economics, £;; values often represent price volatility values
which can bunch together in sets of low, medium or high volatility regimes,
representing distinct segments of f(f). Assumption 4.1 mentions “piecewise”
smooth functions so that distinct smooth functions for low, medium and high
volatility regimes are available, if needed.

Since variances f(t) = () > 0 must be positive, we approximate f(¢) by
using an exponential link function in the terminology of general linear models.
We define the approximating polynomial in the population as

h

g(t) =exp [Z (])ktk] for t = (T"+1),(T' +2),...,T. (4.4)
k=0

Defining {t} from the above range, a sample estimate of g(¢) > 0 is obtained

from the following population regression involving only observable variables

on the two sides:

h
log g(t) =1log s( = Y, out* + &, (4.5)
k=0

where the integers in {t} are obviously nonstochastic and exogenous to the
model. We expect to choose the order & of the polynomial in {¢} after some
trial and error, perhaps starting with a quintic (A =5) and using the multiple
R? of (4.5) adjusted for degrees of freedom as a guide. We also recommend
graphs to assess the suitability of fitted shapes and the need for segments, if
any, of our piecewise continuous function. Formally, the impact of sampling
variation in the estimation of g() by exp S is made asymptotically negligible
by letting & increase with T at a suitable rate, while invoking Result 4.2. Let
(4.5) represent a model after the suitable & is found.

Let X* denote the matrix of regressors in (4.5). The (h+ 1) normal equa-
tions to obtain the OLS estimates of ¢ must be solved simultaneously and rep-
resent the following “moment condition” (in the GMM literature terminology)
imposed in the values domain, which yields improved efficiency, Newey [18]:

E

h
xv (logs(n) -y ¢,-tf>] =0. (4.6)
j=0

This equation uses “normal equations” for (4.5) to write a corresponding
quasi score function as our estimating function. It may be possible to show
efficiency improvement with reference to the estimating function literature,
without mentioning the “moment conditions” terminology from econometrics.
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Assumption 4.2. The polynomial regression in (4.5) in the values domain
satisfies the usual assumptions: validity of (4.5), E(&,) =0, and satisfaction of
Grenander conditions [14, p. 354] for convergence, regressors are uncorrelated
with errors (exogenous), and Eg &), = 02,1.

Since all variables in (4.5) are monotonic, we expect a good fit. Other parts of
Assumption 4.2 ensure that the following well-known lemma holds. The proof
is omitted, since our exogenous regressors (based on a sequence of integers)
readily satisfy full column rank and Grenander’s conditions:

Lemma 4.1. Let ¢ denote the (h+ 1) x 1 vector of ordinary least squares
estimates of coefficients ¢ in (4.5). Let = denote convergence in probability
as T — oo. Assuming Assumption 4.2, we have (ﬁ = ¢ in the values domain,
provided the form of the parent density is known.

The unusual requirement that “the form of the parent density is known” is
explained in Kendall and Stuart [15, Sect. 19.21] and arises here because
we are working with ordered observations. Using the lemma we estimate the
smooth function f(t) by exp(3y)), where () is

§(tr) = Z qsktk~ (4.7)

Let us assume that the mean and variance of the parent density of errors
exist. Now use the usual quasi-Normality arguments to state that we can
assume that the density can be approximated by the Normal density. Then,
by properties of OLS, §;) obtained by a form of trend-fitting provides an
unbiased (consistent) estimator of g(), with §;) = s¢) + &. Even though
we are using up a count of only 2+ 1 << T parameters in estimating the
parsimonious regression (4.5), we cannot guarantee that our estimate of f(¢)
is consistent for an unknown parent density. Hence we use a device of deleting
additional T observations, familiar from the spectral window methods, [20,
p. 437] further explained in Sect. 4.2.0.2 below. These deletions will be a part
of our Assumption 4.3 below.

The residuals &, of regression (4.7) are both positive and negative, and
can be regarded as either inside or outside a “window” based on a tolerance
constant. Accordingly, all (s()) values associated with |&,| > M for some
tolerance constant M > 0 are regarded as “outliers,” from the true smooth
function of Assumption 4.1. Choosing appropriately small M we have some
T" > 0 outliers, permitting the deletion of additional 7" values of s¢,). The
next paragraph and the following subsection show that a practitioner is not
burdened with making the “appropriately small” choice of M.

The beauty of the v-domain is that we can omit T’ + T” elements, trun-
cating the left-hand side of (4.5) with impunity. We can simply use the en-
tire sequence ¢ = {1,2,...,T}, instead of a shorter sequence, t = {T'+1,T' +
2,...,T —T"} created by the deletions on the right-hand side of (4.7) to get
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the right number of estimates in the time domain. Of course, it needs the
reverse map from values to time domain, described next.

4.2.0.2 The Reverse Map: t-dom «— v-dom

The true unknown smooth function f(¢) is approximated by exp(8(y)) in the
v-domain. We still need to map this into the time domain to get the diagonals
Qy; of Q representing heteroscedasticity. Substituting the T x 1 vector ¢ on
the right side of (4.7) yields a T x 1 vector §;, as desired. Note that the
initial 7’ components of $(r) are possibly negative and large (but not —oo).
The T" outliers are possibly scattered anywhere in the sample. Still, we can
replace the second column of the Wy matrix by exp(f(n)), and sort on the first
column until it has elements 7 = (1,2,...,T)’, yielding a doubly sorted T x 2
matrix denoted as Wy, where the subscript “ss” suggests double sorting. Let
the individual elements in the second column of Wy be denoted by Wi,
which are time domain €, quantities. Finally, our proposed correction for
heteroscedasticity uses the transformation matrix:

V = diag(1/Wys.2)"/2. (4.8)

Lemma 4.2. The sorting map from the time domain to the values domain
and the reverse map from the values domain to the time domain are linear
(matriz) operations.

Proof. In the absence of ties, the usual sorting yielding the order statistics
x() from x; is a function SO : R — R. It can be verified to be one-one onto
(or bijection) implying that the reverse map must exist. Our maps t-dom <
v-dom carry along the time subscripts collected in the set I" = {1,2,...,} to
facilitate the practical recovery of time subscripts in the reverse map, even
if there are ties. To prove linearity, it suffices to show that these maps are
matrix multiplications. Our constructive proof uses an example which does
have two repeated values (ties). In this example, I" has {1,2,3,4,5} and x, =
(4,8,36,20,8). The joint sorting reorders I" as I{ = {1,2,5,4,3} while x) =
(4,8,8,20,36). Now we construct the mapping matrix for this example. Start
with I5 (identity matrix) and rearrange the diagonal ones to the positions
given by I7 to create our O" matrix. Verify that premultiplication of x; by

10000
01000

0'=100001 (4.9)
00010
00100

yields x(;y. Also verify that premultiplying the order statistics x by the
inverse matrix (O")~! gives back the original x,. Thus both maps in (t-dom
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— v-dom) are linear operations for this example, despite the presence of a
tie. Similar matrices can be constructed for any time series x;. a

4.2.0.3 Cook—Weisberg Heteroscedasticity Testing

Now we turn to the Cook—Weisberg test using z;; matrix of proxy data for
heteroscedasticity. The (j+ 1)-st column of z;; contains the j-th power of # for
Jj=0,1,...,h. The true slope coefficients ¢; for j=1,...,h of the polynomial of
order h are all zero, under the null of homoscedasticity. The Cook—Weisberg
model is

h
Qu =exp() 9jzi)), (4.10)

j=0
where z;; is a T x (h+ 1) known matrix of arbitrary known quantities, which
may or may not be related to one or more of the columns of X in their
framework. White [31] considers a similar z;; from “all second order prod-
ucts and cross products of original regressors.” However, Greene [14, p. 509]
criticizes that White’s test is “nonconstructive,” since on rejecting the null
of homoscedasticity it fails to suggest a remedy. The algorithm proposed in
this paper avoids such criticism. Conditional on our choice of the z;; matrix,
the Cook—Weisberg method tests the null of homoscedasticity. The validity
of our choice of z;; in (4.10) depends on our theorem proved in the sequel.

4.2.0.4 Analogy with Spectral Analysis

Our v-domain is somewhat analogous to the frequency domain of spectral
analysis. Just as the cyclical properties are easier to study in the frequency
domain, properties related to numerical magnitudes are easier to study in
the v-domain. There are additional similarities. Priestley [20, p. 432] states
that the variance of sample periodogram does not to tend to zero as T — oo,
because it has “too many” sample autocovariances. Our incidental parameters
problem is almost the same. Two Fourier integrals, [20, p. 201], allow two-
way maps between the time and frequency domains. Our double sorting is
simpler than Fourier integrals and allows similar two-way mappings between
the time and v-domains.

The spectral kernel smoothers omit (down-weight) sample periodogram
values outside a “window” to satisfy a technical assumption similar to our
Assumption 4.3 below. We omit 7" additional “outliers” failing to satisfy the
smoothness assumption. Similar to the following Theorem, Priestley [20, p.
464] proves consistency results in spectral analysis and notes the simplifying
value of linearity.
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Assumption 4.3 (truncation of s,). As sample size increases we omit a
certain number of s, values and keep only T%* with (0 < o < 1), so that
(T*/T) — 0, as both T and T%* — co.

Since we are keeping only T% =T — T’ — T” observations, we can satisfy As-
sumption 4.3 provided T’ +T” > 0. Since we want T” > 0, choosing a very
high polynomial order 4 will make the fit too good and force the outlier de-
tection constant M to be very small and threaten to make T” = 0. Hence, I
suggest a conservative choice of h.

Theorem 4.1. Under Assumptions 4.1 to 4.3, the Wy in (4.8) yields con-
sistent estimates of Qy in the time domain, implying that 2(9) = Q(¢).

Proof. Recall the structure where a parameter point is a sequence of % (F)
estimated by s;. Although the variance of each s;; is O(1/T), the variance of
the vector (sy), denoted by parentheses, is O(1). In the v-domain individual
sy become the order statistics s(;). There we omit T'+T" observations to
satisfy Assumption 4.3, so that var(s(,)) = 0 for the entire set. Substituting
Sy in (4.7) and using Slutsky’s theorem we have exp(§,)) = €. Note that
Wis 2 provides a t-domain image of exp(f(,,)), whereas €, is a t-domain image
of Q. Since the map from v-domain to time domain is linear (bijection) by
Lemma 4.2, the structure in the sequences of .%(F) remains intact and we
have W0 = Q4. |

Result 4.3 (Newey). Recall from (4.6) that we have in effect added a mo-
ment condition to estimate the ¢ vector in the values domain. By Lemma 4.2,
this can be readily mapped back into the time domain, finishing the round
trip through the v-domain promised in the introductory Sect.7.1. Following
Newey [18] we accomplish asymptotic efficiency gain by adding the moment
condition. Newey also notes the alternative condition Ee? # 0 for efficiency
gain.

So far we have established consistency and efficiency of our FGLS es-
timator. Next we turn to specification robustness by using two additional
assumptions following Carroll and Ruppert [3].

Assumption 4.4. The alternative to Q(¢) of (4.1) is contiguous satisfying:
Quy=1 +2BT'2£,(X,B, 0)]€9(1), where f; is an arbitrary unknown function
satisfying: T7'ET,f2 — pu, (0 < 4 < ), and B is an arbitrary scalar. The
FGLS uses preliminary OLS estimate b, satisfying T'/2(b— B) = 0,(1), to
compute the residuals and ¢ satisfies T'/2(¢ —¢) = 0,(1). Also suppose that
errors € in (4.1) are normally distributed and there is a positive definite
matrix Spg, such that we have 771X’ Q71X] = §,,.

Assumption 4.5. Note that plimy_ 7' [X'Q'X]
= plimy_ T '[X’Q'X], and plim;_ .7~ '/2[X'Q g
= plim,_ T~ '2[X'Q " ¢].
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Theorem 4.2. Assuming Assumption 4.1 to Assumption 4.5 the FGLS of

(4.2) is efficient and robust. The asymptotic distribution of T~/? [brgrs — B]

is normal, N(O,S;}), under either the original Q(@) or its contiguous alter-
P

native specifications.

Proof. The efficiency of FGLS has been established in the literature, [14, Sect.
11.4], provided Assumption 4.5 holds and provided Q(¢) = Q(¢), which is
proved in Theorem 4.1. Assumption 4.4 and a proof of robustness under
contiguous (nearby) specification alternatives are in Carroll and Ruppert [3].

O

This completes our discussion of estimation of the square root of the inverse
of £ matrix, denoted as V.

4.3 A Limited Monte Carlo Simulation
of Efficiency of HE

Long and Ervin [16], Godfrey [13], Davidson and MacKinnon [7] and others
have simulated the size and power of heteroscedasticity and autocorrelation
consistent (HAC) estimators of SE(b). Cook and Weisberg’s [4] simulation
used cloud seeding data having T = 24 observations. Let us inject objectivity
in our Monte Carlo design by combining the Monte Carlo designs used by
Long—FErvin with that of Cook—Weisberg. Of course, our focus is on efficient
estimation of coefficients themselves, not inference. We pick x; to x4 data from
cloud seeding experiment (suitability criterion “sne,” “cloudcover,” “prewet-
ness” and rainfall). These were among those chosen by Cook—Weisberg to
allow wide variety of heteroscedasticity possibilities.
Our dependent variable is constructed artificially (as in both designs) by
the relation
y=14x;+x+x3+x4+E€, (4.11)

where all true coefficients including the intercept are set at unity, as in Long
and Ervin (except that their coefficient of x4 is zero) and where “€” repre-
sents a vector of T random numbers chosen according to one of the following
methods, which are called scedasticity functions by Long and Ervin. They
have a far more extensive simulation and their focus is on HAC estimators.
As j=1,...,J (=999) let €475 ; denote a new vector of Student’s ¢ distributed
(fat tails) independent pseudo-random numbers with five degrees of freedom.

SC1): &= ¢g4y5,;. (no heteroscedasticity)

SC2): &= (x1)"eyys;. (disallows x; < 0)
SC3) €= ()C3 + ].6)]/28df57j.

SC4) €= ()C3)1/2(X4+2.5)1/28df5’j.

SC5): €= (xl)l/z(xz+2.5)1/2(x3)1/28df5,j.
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We use HE estimators from (4.8) b to b} (say) of the slopes in (4.11).
The theory claims that GLS estimators are more efficient and that feasible
GLS estimators are asymptotically more efficient than OLS under certain
conditions. It is of interest to compare the efficiencies of OLS and GLS in a
Monte Carlo simulation experiment with small T, to see if asymptotics holds
for that T.

Our simulation program creates a four-dimensional array with dimensions
(4, 6, 999, 5). The first dimension is for the estimates of p =4 slope coef-
ficients. The second dimension with six values is for the OLS, and five HE
estimators denoted by HCO to HC4 and described earlier in our discussion be-
fore Eq. (4.5). Of course, the “C” in HC refers to “correction” by our Eq. (4.8)
not to the usual “consistency” in the sense used by Long and Ervin. The last
dimension is for SC1 to SC5 in increasing order of heteroscedasticity severity.

After computing the standard deviations of 999 coefficient estimates we
construct a summary array of dimension (4, 6, 5). It is convenient to sup-
press the first dimension and average the standard deviations over the four
coefficients. Next, we divide the standard deviations for HCO to HC4 by the
standard deviation for OLS, reducing middle dimension to 5. The final re-
sults are reported in Fig. 4.1, where we look for numbers staying below the
OLS vertical value of 1. The numbers 1 to 5 on the horizontal axis refer
to HCO to HC4. In this experiment, the sophisticated HC3 and HC4 cor-
rections do not seem to offer great advantages in terms of efficiency. Since
several values are below 1, many of our procedures are indeed more efficient
than OLS. Not surprisingly, the efficiency improvement is generally higher
when heteroscedasticity ought to be intuitively more severe (by looking at
the complications of the formulas for SC1 to SC5 given above), although the
intuition can fail in specific examples. In Fig. 4.1 the efficiency gain is the
highest for the most severe SC5 (line marked “5”) and lowest for the SC1
(marked “1”) representing homoscedasticity, as might be expected. One can
easily guard against SC1 by formal heteroscedasticity testing. Figure 4.2 is
similar to Fig. 4.1, except that here we use by =0 in (4.11) as in Long and
Ervin. The efficiency gains over OLS continue to be achieved using correc-
tion formulas of HCO to HC4 where all lines are below unity. In another
experiment, we use (4.11) without the x4 variable and economic data with
nonmissing T = 46 observations from the “USfygt” data set of the “meboot”
package. The x| to x4 are: fygtl, infl, reallir, and usdef. Details are omitted to
save space. Again, efficiency gains are clear except for SC1. Our experiments
support the common practice of formally testing for heteroscedasticity before
considering any corrections.

It is surprising that Long and Ervin’s [16] large simulation finds that for
typical sample sizes in economics (T < 100) the commonly used HCO, HC1
and HC2 methods provide inferior inference (in size and power) versus the
simplest s?(X'X)~! of OLS. In other words, OLS is hard to beat with T <
100. Yet we have chosen T = 24,46 to raise the bar. Our HE method is
worthy of study, since it is able to reduce the variance of OLS (over J =999
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Comparison of Efficiencies, Clouds data with x4
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Fig. 4.1 SC1 to SC5 scedasticities built from Student’s ¢ (df=5) with lines marked
1 to 5: Results of 999 experiments.

experimental values) when heteroscedasticity is present in the model. Cook
and Weisberg emphasize a need to supplement simulations with graphics.
Figures 4.1 to 4.2 illustrate some interesting patterns of heteroscedasticity in
econometric applications.

So far we have considered efficient estimation of 8 in (4.1). It is known in
the literature that the model may be subject to endogeneity and identifica-
tion problems, which primarily affect statistical inference. These problems,
especially the latter are best described in the context of an example. Hence
let us postpone discussion of superior inference until after the next section.

4.4 An Example of Heteroscedasticity Correction

This section illustrates our heteroscedasticity correction (4.8) with a model
having three regressors. We use the augmented Phillips curve model by Al-
ogoskoufis and Smith [1] using annual time series from 1857 to 1987 from
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Comparison of Efficiencies, Clouds data without x4
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Fig. 4.2 SC1 to SC5 scedasticities built from Student’s ¢ (df=5) with lines marked
1 to 5: Results of 999 experiments.

the United Kingdom (U.K.) along with an expected inflation variable. The
Phillips curve empirically measures the following assertion: the lower the un-
employment in an economy, the higher the rate of increase in nominal wages.
Write a loglinear, expectations-augmented version of Phillips’ wage equation
as

Aw, =0+ alE(APc,tUt—l) + AU + o1 + &, (4.12)

where A is the difference operator, ¢ is the time subscript, w is the log of
nominal wages, p. is the log of consumer prices, u is the unemployment rate,
and € is a white noise error term. The a’s are parameters, E is the mathe-
matical expectations operator, and I,_; is the information set of wage-setters
at time r — 1.

If we ignore the expectation operator E, we face possible endogeneity of
the inflation variable, leading to possible inconsistency of OLS. Alogoskoufis
and Smith [1] show that the following AR(1) process for rational expectation
of price inflation can solve endogeneity leading to the model:
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E(Apeslli-1) = (1= p) +pApcs-1, (4.13)

where 7 is the steady-state inflation rate, and p is the autoregressive coeffi-
cient.
Substituting (4.13) in (4.12),

Aw; = 0+ 0 PApes—1 + 0 Au; + 03U + &, (4.14)

where o = o9+ oy t(1 —p). Thus these authors have a system of two equa-
tions (4.13) and (4.14). This paper focuses on estimation and inference
for (4.14). The estimation will correct for its statistically significant het-
eroscedasticity.

Note that the coefficient a; in (4.12) has now become a;p in (4.14). Thus
we have a new identification problem due to what Dufour [9] calls “locally
almost unidentifiable” parameters and hence we must contend with his “im-
possibility theorems” showing that Wald-type inference (7 test) is “fundamen-
tally flawed” due to unbounded confidence sets and zero coverage probability.
Instead of Fisher’s pivot used in Wald-type ¢ tests, we use Godambe’s pivot
in the next section.

Table 4.1 Phillips curve heteroscedasticity tests and efficient estimation

Transform Order of p-value Adjusted Coef. & t-stat for
of #2 Th Cook R? of Ay, (073
polynomial Weisberg after V
1 2 3 4 5 6
HCO & HC1* linear 9.031e-09 0.8539608  -2.7174027 -4.541935
HC2 linear 1.2427e-08 0.8483255  -2.9410992 -4.6847318
HC3 linear 2.074e-08 0.8428199  -3.1837852 -4.8397987
HC4 linear 3.3201e-08 0.8289122  -3.1257282 -4.2312002
HC0& HC1 quadratic  6.6322239e-05 0.9448547 -4.0058258 -6.5646845
HC2 quadratic ~ 5.3017918e-05 0.934911 -4.2014699 -6.4314288
HC3 quadratic  4.6128875e-05 0.9263111  -4.4148725 -6.3677521
HC4 quadratic ~ 4.6484793e-05 0.9106575 -4.5775178 -5.6541541
HC0& HC1 cubic 4.6975e-08 0.9896981  -4.7653311 -6.5022282
HC2 cubic 5.9871e-08 0.98676 -5.1609628 -6.1181163
HC3 cubic 1.10414e-07 0.9882737  -5.5840857 -5.9284502
HC4 cubic 2.85749e-07 0.9895367  -6.1668222 -5.6894456
HCO & HC1 quartic 3.31095e-07 0.9904292  -4.9242539 -6.3482746
HC2 quartic 4.62814e-07 0.9884053  -5.4626662 -5.9190534
HC3 quartic 6.92653e-07 0.9906989  -6.0132562 -5.7528265
HC4* quartic 1.051275e-06  0.9919242 -6.687974  -5.6190831

Our OLS estimation of (4.14) is reported in Table 4.2 where the coefficient
a of Au, is seen to be negative, but statistically insignificant with a low
t-value and high p-value. This suggests that the trade-off between wages
and unemployment claimed by Phillips is not statistically significant in these
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Table 4.2 Heteroscedasticity efficient (HE) feasible GLS estimates of coefficients of
Phillips curve, HC4 weights and quartic polynomial

Variable Estimate Std. Error t value Pr(>|t])
OLS Estimates
(Intercept) 0.0387 0.0096 4.02 (4.5) 0.0003
Pei—1 0.7848 0.1396 5.62 (4.5) 0.0000
Auy -0.8457 0.8465 -1.00 (-1.35) 0.3244
U 0.0147 0.1451 0.10 (0.16) 0.9197
GLS Estimates
(Intercept) 0.0057 0.0321 0.18 0.86
Pei—1 1.7894 0.1665 10.75 8.7e-13
Ay -6.6878 1.1902 -5.62 2.2e-06
U1 0.0110 0.1182 0.09 0.93
Confidence intervals are given below

limits — 2.5 % 97.5 %
(Intercept) 0.019191 0.058198
Pei—1 1.45177 2.12710
Ay, -9.10186 -4.27409
Ur—| -0.22876 0.25082

Notes: Residual standard error: 0.169 on 36 degrees of freedom, F(3, 36): 92.5,
p-value: < 2e—16. In the column for t-values under OLS we report in parentheses
the t-values based on heteroscedasticity corrected standard errors.

data. If we use the heteroscedasticity corrected (HC) standard errors the #-
values change somewhat (reported in parentheses in Table 4.2) but remain
insignificant.

Upon fitting (4.14) to data, none of the OLS residuals is zero (T’ = 0 here).
The residual autocorrelations are not statistically significant. The p-values
for the Breusch—Godfrey test for serial correlation of orders 1 through 4 are
respectively (0.06691, 0.07763, 0.1511, and 0.09808) suggesting nonrejection
of the null hypothesis of zero autocorrelation among regression errors at the
5% level. R software tools useful in correcting for autocorrelation from fairly
general ARMA (p,q) process are discussed in the Appendix.

We find that heteroscedasticity is a problem for this example. Studentized
Breusch—Pagan test yields the statistic = 12.69, df = 3, p-value = 0.005362,
implying rejection of the assumption of homoscedasticity.

Table 4.1 lists key results for 20 choices of HCj for j=0,...,4 and ©" for
h=1,...,4. The first two columns identify the HC; and 7”. Column 3 has p-
values for the Cook—Weisberg score test for the presence of heteroscedasticity,
based on our new choice for their artificial matrix of z;;. The (j+ 1)-st column
of z;; contains the j-th power of sorted (7;) for j=0,1,...,h. If there is no
heteroscedasticity, all the coefficients ¢ in (4.10) will be insignificant. Since
the p-values in column 3 are near zero, homoscedasticity is rejected for all
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20 choices. We expect researchers to use formal tests for heteroscedasticity
before deciding to correct for it.

log(sorted squared residuals)for the linear case

v—domain actual/fitted
2

Squared residuals & fit for linear polynomial

t—-domain actual/fitted

Fig. 4.3 Phillips curve HC1 & linear case. a log(sorted squared residuals) for the
linear case. b Squared residuals & fit for linear polynomial.

Column 4 of Table 4.1 has the adjusted R* for the regression of sorted logs
of (i1)? on powers of sets of integers {t} in (4.4). Column 5 has estimates &
from (4.14). Column 6 has the t-statistic for &, associated with the variable
Auw, after the premultiplication by V based on the particular choice of HCj
and polynomial power h. We choose two rows marked with an (k) for further
analysis: HC1 with linear polynomial with the lowest r-statistic on o and
HC4 with quartic (h = 4). The starred choices have adjusted R* =0.854 and
0.992, respectively.
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Figure 4.3 reports graphs for the linear HC1 case. The upper panel plots
the order statistics of logs of squared residuals s, as the solid line along
with a dashed line for the fitted values from a simple straight line in time,
representing our smooth intermediate function g. After computing exp(g) and
using the reverse map, we get the second column of doubly sorted Wy, matrix.
The lower panel plots them in the time domain as the dashed line along with
the solid line representing original squared residuals over time. It is clear from
both figures that with only two parameters of ¢ (intercept and coefficients of
T) we are able to get good estimates of heteroscedastic variances, thanks to
the double sort.

log(sorted squared residuals)for the quartic case

v—domain actual/fitted

Squared residuals & fit for quartic polynomial

t—-domain actual/fitted
0 2 4 6

Fig. 4.4 Phillips curve HC4 & quartic case. a log(sorted squared residuals) for the
quartic case. b Squared residuals & fit for quartic polynomial.
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Figure 4.4 is similar to Figure 4.3, except that we have the quartic case
with HC4 here, showing that the quartic fit is better. After all, HC4 with
the quartic has a high (=0.992) adjusted R?> in Table 4.1. The figures show
that rearranging observations in an increasing order of squared residuals can
reveal hidden heteroscedasticity with just a few additional parameters in ¢.
The original OLS, as well as all 20 cases of efficient estimation show signifi-
cantly negative o, implying support for the Phillps curve trade-off between
unemployment and wages.

Table 4.2 reports details for the row HC4* of Table 4.1. It has feasible
GLS estimates after heteroscedasticity correction by a quartic under HC4
transformation of squared residuals. The F(3, 36) statistic for the overall
fit is 92.5 with a near-zero p-value. The OLS coefficient of Au, which was
statistically insignificant for OLS before heteroscedasticity correction, has
now become significantly negative at the 5% level.

4.5 Superior Inference of Deep Parameters
Beyond Efficient Estimation

Now we are ready to consider improved inference for (4.14) upon recogniz-
ing that a deep parameter of interest from Phillips’ model (4.12) might be
“locally almost unidentifiable.” Following Vinod [29, Sect. 10.4] we now use
Godambe’s [12] pivot function (GPF) relying on his theory of estimating
functions discussed in Vinod [29, Sect. 10.3]. The GPF is defined as

T - 1/2
GPF=Y ¢ / |LE@&)| . (4.15)
=1 =1
where gf is the “scaled quasi-score function” from the underlying quasi-
likelihood function also known as the optimal estimating equation.
This pivot avoids the Wald-type pivotal statistic commonly used in the
usual 7-tests. Vinod [26] extends the GPF to the multivariate regression prob-

lems. In the simpler scalar case he rewrites the GPF as a sum of T scaled
quasi-scores:

1/2

T T
GPF=Y'5/S.=Y.5;, whereS.=|Y E(S)*| (4.16)
t=1 t=1

P~

where we denote scaled quasi-score functions as: S;. As a sum of T items,
the central limit theorem assures us that GPF ~ N(0,1) is asymptotically
unit normal. Thus, the probability distribution of GPF is independent of
unknown parameters and therefore it is a pivot.
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The asymptotic normality of GPF means that marginal densities for indi-
vidual elements of B in the notation of (4.1) are also Normal, allowing us to
construct 95% confidence intervals (CI95). Following Vinod [29, Sects. 10.4.1
and 10.4.2] we apply the R function called “gpf” provided in a snippet. It uses
a scalar version of GPF by using the Frisch-Waugh theorem, and constructs
CI95 for all regression coeflicients in a sequence.

Table 4.3 Confidence intervals for 3 slope coefficients after GPF

coef. obs.val Lower Upper
(o4 1.79 1.69 2.14
o -6.69 -11.44 -6.25
(%) 0.01 -0.06 0.06

Note that the confidence interval for ap does not contain the zero. Thus,
even though the OLS coefficient of Au, was statistically insignificant for OLS
before heteroscedasticity correction, it has now become significantly negative
at the 5% level after the correction and the inference based on the superior
pivot function (GPF) continues to support that it is significantly negative,
consistent with Phillips’ notion of a trade-off.

4.6 Summary and Final Remarks

This paper suggests some practical solutions to the problem of heteroscedas-
tic errors. If squared residuals (i) are nonconstant, we suggest making them
monotonic by sorting, and finding their fitted values by regressing log(i)? on
powers of a suitable subset from the set of integers (1,2,...,T). A (t-dom
— v-dom) map involving double sorting recovers the original time subscript
for (@)?, fitted with very few additional parameters in ¢ and results in a
new, practical and parsimonious correction for heteroscedasticity. Figures 4.3
and 4.4 illustrate this rather well for the example of Phillips curve using U.K.
data, where heteroscedasticity problem is present. We find that efficient esti-
mation converts an insignificant trade-off between wages and unemployment
into a significant one.

We have considered the possibility that parameters are “locally almost
unidentified” suggested by the impossibility theorems proved by Dufour [9].
Hence we abandon the problematic Fisher pivot of the usual (Wald-type)
t tests in favor of the Godambe pivot function (GPF) which is always a
sum of T quantities (scaled scores) and hence asymptotically normal by the
central limit theorem. We confirm a trade-off relation between wages and
unemployment (significantly negative slope coefficient) with the use of the
superior inference based on the GPF.
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We discuss how mappings between the time domain and the new (ordered
numerical values) v-domain are analogous to mappings in spectral analysis
between time and frequency domains (through Fourier integrals). Assuming
smoothness of heteroscedasticity in the v-domain, and two further assump-
tions, a theorem proves consistency of our HE estimator. A simulation exper-
iment uses a published design where OLS is found hard to beat in samples
with T < 100. We still use small samples (T = 24,46) and report efficiency
gains over OLS achieved by our new HE estimators. The simulation also sup-
ports the common practice of formally testing for heteroscedasticity before
considering any corrections.

Appendix: Efficient Estimation Under ARMA (p, q)
Errors

If regression errors are autocorrelated, the off-diagonal elements of Q are
nonzero. For example, if the vector of errors in equation (4.1) denoted by &€,
follows a first-order autoregressive process, AR(1): & = p&_1 + &, then the
error covariance matrix for € is

1 p p? pl-1
p I p p'
Cov(e) =Q=0c*(1-p*) " | .
prl pT72 pT73 1

(4.17)

This large matrix is completely known when estimates of p and 62 are avail-
able. A general way of thinking about this is proposed in Vinod [25, 29, Chap.
2] where it is argued that the order of dynamics of any ARMA (p,p—1) pro-
cess is dictated by the underlying stochastic difference equation of order p.
Here we consider the case of regression errors satisfying stationary and invert-
ible ARMA(p,q) models. When the errors are nonstationary, they are revealed
by unit root testing. Our corrections are not suitable for the nonstationary
case.

Our focus is on using some powerful numerical methods available in R with-
out attempting analytical expressions for Q or Q! which rely on theoretical
ingenuity and which are discussed in many textbooks including Vinod [29].
The key theoretical result is that the £ matrix is a Toeplitz matrix. Given
a vector of some numbers (e.g., 1 to 4) a typical Toeplitz matrix is given in
R by the function “toeplitz.” For example, the R command “toeplitz(1:4)”
produces the following;:
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1234
2123
3212
4321

(4.18)

In the realm of numerical methods if we have a suitable vector v of autocorre-
lation coefficients we can readily construct our £ matrix as a Toeplitz matrix
created by the R command “toeplitz(v).” This means that we simply need to
estimate the autocorrelation function (acf) for the suitable ARMA (p,q) model
representing the regression error process.

Thus we consider a two-step process, where the first step is computation of
OLS residuals r;. Next, we fit several ARMA (p,q) models, where p,q=1,2,3,4
with ¢ < p to the residuals, keeping track of the Akaike Information Criterion
(AIC). Next we sort the models according to the AIC, where the minimum
AIC model will be at the top. In the interest of pasimony we view the AIC
values and choose the most parsimonious model by minimizing the number
of parameters p+¢g. Upon choosing the ARMA(p,q) model, the R package
called “fArma” provides a function called “ARMAacf” to compute the vector
v and then uses it to construct the feasible and parsimonious Q matrix.

Once the diagonal matrix A of T eigenvalues and the large T x T matrix Z
of eigenvectors are known, the inverse of the £ matrix is readily written nu-
merically and substituted in the GLS estimator. As before, we can construct
V = Q12 the square root matrix of the inverse of Q by writing

Q12 =zA 127, (4.19)

Now we simply substitute this in (4.3) and obtain efficient estimates of
regression coefficients despite autocorrelation among regression errors of fairly
general type, ARMA(p, q). As a practical matter we simply have to regress Vy
on VX and use the “meboot” and GPF to obtain superior confidence intervals
on efficient estimates of regression coefficients.

As a numerical example we use an abridged version of the Phillips
model (4.14) such that it does have autocorrelated errors. We use

AW; = 6/+(%/Aut+£t. (420)
OLS estimation of the above model yields the following results:

Table 4.4 OLS Estimation Results
Estimate  Std. Error  t value  Pr(>t|)

oy 0.0817 0.0069 11.82 0.0000
alf 2.2051 0.8923 2.47 0.0181
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Table 4.5 Durbin-Watson statistics

Lag r=auto-correlation =~ DW statistic = p-value
1 0.61 0.61 0.00
2 0.45 0.45 0.00
3 0.35 0.35 0.04
4 0.47 0.47 0.00

The p-values for the Durbin—Watson test statistic for the first four lag
orders are smaller than the usual type I error of 0.05 implying that regression
errors for (4.20) are autocorrelated. The 95% OLS confidence interval for the
slope is (0.39882, 4.01144). We use the residuals of this first stage regression
to compute ARMA (p,q) estimates and their AIC values.

Table 4.6 ARMA(p,q) Summary Results

AIC

-158.60
-157.62
-157.23
-157.11
-156.83
-156.25
-155.11
-154.91
-154.78
-152.41

WA NN WR W AN
== N NRFEWNWR | O

The lowest AIC is for ARMA(4,4) at —158.6 and next is ARMA(4,3) at
—157.6. Perhaps the most parsimonious error specification, ARMA(1,1), has
the fifth lowest AIC of —156.8, which is not much larger than the lowest AIC.

The ARMA(4,3) has 6%=0.000665 and ARMA(1,1) has 2=0.0009859.
The coeflicients and respective standard errors are listed below:

ARMA(4,3) coefficients and standard errors.
The log likelihood equals 86.81 and AIC= -157.6
arl ar2 ar3 ar4d mal ma2 ma3
0.919 -0.519 -0.133 0.458 -0.622 0.603 0.391
s.e. 0.298 0.423 0.393 0.211 0.309 0.333 0.311

ARMA(1,1) coefficients and standard errors.
The log likelihood equals 81.42 and AIC= -156.83
arl mal
0.8119 -0.3534
s.e. 0.1507 0.2664
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We input these estimates into an R function to compute the square root of
the inverse of Q matrix as new V matrix and estimate the regression of appro-
priately defined Vy on VX. Finally, we use the GPF with maximum entropy
bootstrap having J = 999 replications and find 95% GPF confidence intervals.
Note that the OLS interval CI95=(0.39882, 4.01144) is 5.2 times wider than
CI95=(1.334, 2.028) using ARMA(4,3) error correction. OLS CI95 remains
4.49 times wider than CI95=(0.555, 1.359) using a parsimonious ARMA(1,1)
error correction, further confirming that we have achieved efficiency gains.
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Chapter 5

Bubble Plots as a Model-Free Graphical
Tool for Continuous Variables

Keith A. Markus and Wen Gu

Abstract Researchers often wish to understand the relationship between
two continuous predictors and a common continuous outcome. Many options
for graphing such relationships, including conditional regression lines or 3D
regression surfaces, depend on an underlying model of the data. The veridi-
cality of the graph depends upon the veridicality of the model, and poor
models can result in misleading graphs. An enhanced 2D scatter plot or bub-
ble plot that represents values of a variable using the size of the plotted
circles offers a model-free alternative. The R function bp3way() implements
the bubble plot with a variety of user specifiable parameters. An empirical
study demonstrates the comparability of bubble plots to other model-free
plots for exploring three-way continuous data.

5.1 Introduction

It is easy to overlook descriptive statistics as a means to better understand
data. Although usually inadequate as a complete analysis, descriptive graphs
such as histograms, box-and-whisker plots, stem-and-leaf plots, and scatter
plots can quickly and directly convey information about data distributions,
outliers, skewness, kurtosis, and floor and ceiling effects at a glance. They are
useful data screening tools that provide researchers a better understanding
of results expressed in numerical summaries [12, 23]. Moreover, as social sci-
ence research moves beyond looking only at main effects to explain complex
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behaviors, detection of interactions for finding moderators and conducting
meditational studies become increasingly important for drawing conclusions
about causal relationships [15, 2, 13]. Thus, graphs that depict interactions
may allow researchers a quick check of their data to determine the need
for further analyses. Well-designed graphs are more revealing and convinc-
ing, because they can clarify data and maintain an audience’s attention [21].
Methods for graphing interactions can also help researchers make better use
of statistical models and report their results more effectively.

This chapter considers options for graphing the joint distribution of three
continuous variables, typically one outcome and two predictors, that require
minimal assumptions about the relationship or the underlying generating
model. The initial portion of this chapter considers several alternatives for
plotting three continuous variables and reviews the relevant literature. The
middle portion describes an R function for plotting such relationships in
as a three-way bubble plot, essentially an enhanced two-way scatter plot
with the size of the bubbles proportional to the value of the third variable.
The remainder of the chapter reports an empirical study comparing three
promising plots using a variety of relationships between the outcome variable
and the two predictors, and offers tentative conclusions based on this research.

5.2 General Principles Bearing on Three-Way Graphs

Properly used, graphs can be powerful tools for depicting information. They
can convey complex ideas with clarity, precision, and efficiency [22]. However,
only well-designed graphs will serve this purpose [21] effectively. Effective use
of graphs is what Tufte [22] termed “graphical excellence” defined as “what
gives to the viewer the greatest number of ideas in the shortest amount of
time with the least ink in the smallest space” (p. 51). Through empirical stud-
ies and better understanding of the human visual system, statisticians and
researchers have developed explicit guidelines for achieving graphical excel-
lence. According to Cleveland [5] and Robbins [19], internal factors affecting
perceptual accuracy and detection include (in decreasing order of ease): posi-
tion along a common scale, position along identical scale, length, angle, area,
volume, and color. Many external factors affect effective graphing, such as
audience skills, the purpose of the graph, and the complexity of informa-
tion. Schmid [21] recommended that good graphs are accurate, simple, clear,
appealing, and well structured.

When graphs show more than two variables on two-dimensional surfaces,
as when printed on paper, graph designers must find ways to incorporate
additional variables without confusing the reader. Presenting multivariate
data is more difficult than presenting univariate or bivariate data because
the media on which graphs are drawn (paper, computer displays) are two-
dimensional [10]. Although graphs displayed on computer screens can be ro-
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tated to better conceptualize the third dimension for additional variables,
publication generally requires a static, two-dimensional image. When data
move to even three variables and three dimensions, observers must infer
the multidimensional structure from a two-dimensional medium [5]. Infer-
ring multiple dimensions, and consequently reading graphs, heavily depends
on the human visual system.

During the 1960s and 1970s, cartographers, psychophysicists, and psychol-
ogists sought to create better methods for displaying multivariate data. Some
new methods included: Chernoff faces, Anderson metroglyphs, Cleveland—
Kleiner weathervane plots, Diaconis—Friedman M and N plots, Tukey—Tukey
dodecahedral views, Kleiner-Hartigan trees, Andrews curves, Tufte rug plots,
and the scatter plot matrix [5]. Only the scatter plot matrix had any success
and is still commonly used. Cleveland [5] argued that not enough atten-
tion was paid to graphical perception, which involves a better understanding
of how the human visual system decodes and encodes data. Robbins [19]
concurred, stating that creating more effective graphs involves choosing a
graphical construction that is visually decoded easily on the ordered list of
elementary graphical tasks, while balancing this ordering with consideration
of distance and detection.

As psychologists understood human perception better, they realized that
spatial perception, especially depth perception, is heavily influenced by learn-
ing and past experience. To maintain perceptual constancies of color, size,
and shape, the visual system is susceptible to various systemic distortions
in spatial perception, commonly known as optical illusions [20]. One such
illusion occurs when humans perceive depth in a two-dimensional surface. A
frequently used method to create the illusion of depth is tilting or rotating the
already established horizontal and vertical axes, thereby creating an appear-
ance of the third dimension that can be used for the third variable. This is
problematic during graph interpretation, however, because the perception of
the additional dimension is achieved by tricking the perceptual system. Cubes
drawn on paper often produce a Necker illusion, in which one can see two
cubes interchangeably from the same drawing by focusing on different parts of
the cube as the foreground. The Necker illusion occurs as a result of the Moiré
effect, in which graph design interacts with the physiological tremor of the
eye to produce the distracting appearance of vibration or movement [22], and
the Miiller—Lyer illusion, in which two physically equal lines can be viewed
as having different lengths depending on the directions of arrows added to
the lines [20]. The Moiré effect gives the observer the appearance of seeing
two cubes while the Miiller—Lyer illusion aids this misperception by using
ambiguous cube corners as distance cues [20]. Thus, the instability of human
perception to anchor lines for distance cues makes cube-like graphs difficult
to perceive and interpret, and three-dimensional graphs are typically difficult
to interpret on two-dimensional surfaces.

Perceiving depth on two-dimensional surfaces involves simulated perspec-
tive projection, which often distorts perception [21], thus statisticians and
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graph designers generally warn against using three-dimensional plots. For ex-
ample, bar graphs with receding depth give the appearance that bar heights
are higher than their actual heights. Graphs designers are opposed to using
more dimensions than the number of information-carrying variables when
graphing two or fewer variables [19, 22]. Three-dimensional graphs of two-
dimensional data are confusing and ought to be avoided.

The extra dimension is necessary, however, when presenting trivariate
data. Wainer [24] stated that the third dimensions can cause ambiguity in
graph interpretation and cautioned against using varying areas or volumes
to depict additional variables. Stevens’ Power Law predicts that lengths are
unbiased, area judgments are biased, and volume judgments are even more
biased [5]. Empirical studies have found that perceived area of a circle grows
somewhat more slowly than the actual area: the reported perceived area =
(actual area)®, where x is around 0.8 [22]. Robbins [19] echoed this misper-
ception of area and stated that the illusion is still more pronounced with
volume. One recommendation for depicting more than two variables is using
multiple display panels, with each panel showing bivariate relationships at
discrete values of the third variable [19]. The multipanel trellis plot has been
proposed as a viable candidate, but multipanel approaches can interject new
problems when graphing three continuous variables (discussed below).

A number of options exist for plotting three-way relationships between
variables, some more common in research practice than others. For purposes
of exploratory or descriptive data analysis, the degree to which graphical
methods provide a model-free representation of the data serves as a key
desideratum for optimally useful graphs. We do not mean to suggest that
a representation can exist entirely without conventions, assumptions, or un-
derlying inferences. The important distinction is the extent to which the
graph remains close to the raw data rather than relying on estimated numer-
ical summaries to simplify and structure the graphical representation. The
operating assumption is that during the exploratory stage of data analysis,
a researcher does not yet understand the data well enough to decide on a
model that adequately represents the data. As a result, optimally model-free
graphs provide better choices for exploratory analysis early in the research
process.

5.3 Graphical Options Ruled Out a Priori

This section briefly considers scatter plot matrices, line plots of conditional
regression lines, and factorial-design style line plots. Each provides an excel-
lent plot for some purposes, but not for model-free exploratory graphing of
three continuous variables aimed at displaying the full three-way distribution.

Scatter Plot Matrixz. The scatter plot matrix does a terrific job of showing
bivariate relationships within a multidimensional set of data [5, 19]. A scatter



5 Bubble Plots as a Model-Free Graphical Tool 69

plot matrix presents a matrix of bivariate scatter plots with individual vari-
ables defining the rows and columns. One can quickly scan a row or column
and see how one variable relates to each of the other variables. Unfortunately,
it cannot represent three-way distributions. The scatter plot matrix is akin
to calculating a bivariate correlation matrix. Just as one needs to use another
test to show two-way interactions when comparing more than two variables,
one needs a different graph when ploting third variables. Figure 5.1 illus-
trates a scatter plot matrix using a simulated sample of 100 cases with three
variables. The same data are plotted in Figures 5.2 to 5.6 for comparison.
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Scatter Plot Matrix

Fig. 5.1 Scatter plot matrix can only show bivariate relations within multivariate
data.

Estimated Conditional Regression Lines. The multiple regression approach
to showing interactions compares whether the slopes of estimated regression
lines of the criterion variable on one predictor variable differ significantly
when plotted at various critical values of the other predictor variable [1, 9]
(see Figure 5.2). We did not use this approach, because the method is model
dependent. The estimated regression lines plot the model, not the data, and
thus do not indicate where along the regression lines the data fall. Moreover,
the data must fit the model adequately or the conditional regression lines can
present a misleading picture of the data.

One could lessen the model dependence by substituting nonparametric
Lowess lines [4, 11] (also known as Loess lines), often used to provide a
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10

Fig. 5.2 Estimated conditional regression line approach to detecting interaction.

smoothed nonparametric regression to data showing a nonlinear relationship.
Although Lowess lines do not assume the fit of a linear regression model,
they still plot a nonparametric regression model rather than the data itself.
Moreover, the result depends on the choice of smoothing parameters. For this
reason, we ruled out this approach for present purposes.

Factorial Design Line Plots. A commonly used approach in studies with
a factorial design graphs group means in a line plot (see Figure 5.3). Al-
though frequently used to illustrate interactions, this approach would not be
ideal, because it requires categorical data in the independent variable. Al-
though one could divide continuous variables into groups or bins (commonly
dichotomizing by the mean or median), thereby turning continuous variables
into categorical variables, dichotomizing continuous variables is generally not
recommended due to the resulting loss of information [8, 14, 1, 16]. ) Catego-
rizing continuous variables results in less information loss than dichotomizing
continuous variables but is also not recommended because it often makes the
ANOVA model more complicated without having better fit [25]. The weak-
ness of these model-based approaches to plotting is that they all require
assumptions related to the model underlying the regression line or regression
surface. If data do not satisfy the assumptions of the model, then the graphs
resulting from the model can be misleading. In addition, they do not display
variability around the line or surface without further modification.
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Fig. 5.3 Factorial design line plots approach to detecting interactions.

5.4 Plausible Graphical Alternatives

This section considers three-dimensional scatter plots, conditioning plots
(coplots), and three-way bubble plots as relatively model-free means of graph-
ing three continuous variables. A later section presents an empirical study
evaluating these three methods.

3D Scatter Plot. Based on the aforementioned literature on plotting three-
dimensional graphs on two-dimensional surfaces, one would expect users to
have difficulty interpreting 3D scatter plots. Although the Moiré effect is ide-
ally not present, the user is still being asked to make distinct judgments about
distance and depth based on the illusion of an additional dimension. The 3D
scatter plot shows main effects as increasing or decreasing plot heights across
the axes and interaction as a different rate of height increase or decrease.
Lines from the points to the graph floor help reduce ambiguity regarding the
location of the points within the three-dimensional box.

Coplot. Cleveland introduced the coplot as a way to implement statistical
control graphically without a statistical model, with the panels of a coplot
presenting overlapping subsets of the data. This procedure works well for
large data sets that can be subdivided without producing sparse subsets [10]
(see Figure 5.5). The weakness associated with these graphs is similar to
that of the line plot approach: The continuous variable represented by the
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10

Fig. 5.4 3D scatter plot.

multiple panels is divided into overlapping categorical segments. One might
need a large number of panels to adequately present the subdivided variable.
Nonetheless, the literature describes the coplot as one of the better plots
for presenting information with three variables [19, 10, 4]. The coplot shows
main effects as positive or negative bivariate scatter plots across the panels
and interaction as inconsistent bivariate relationships across the panels.
Three-Way Bubble Plot. Our motivation for creating the bubble plot ex-
tends from the need for a graph that can portray three continuous variables
without resorting to inferring depth or relying on optical illusions. The con-
cept of using a bubble plot this way is not new; examples can be found on web
pages and in email list archives (including the R homepage). Nonetheless, we
have been unable to locate any academic literature on this type of graph. In
creating the bubble plot, we closely adhered to the guidelines proposed by
Cleveland and Robbins. The resulting bubble plot is essentially an enhanced
scatter plot, which, by itself, already conveys bivariate data clearly. Instead
of rotating or tilting the axes to create the additional dimension, the size of
the data points varies with the third variable. It is difficult to gauge point
size differences unless they are lined up against an edge; “human beings are
good at making comparisons with a straight line. Graphic comparisons are
thus always easier when the quantities being compared start from a common
base” [24, p. 33]. For this reason, the plot superimposes a muted grid to pro-
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Fig. 5.5 Conditioning plot (coplot).

vide more reference lines for easier comparison. The bubble plot shows main
effects as increasing or decreasing bubble sizes across the axes. Interactions
effects appear as different rates of bubble size change for different values of
one variable scanning across values of the other variable.

The bubble plot still contains some ambiguities. Using varying point size
differences as the third variable bears a resemblance to using area compar-
isons, which humans do not perceive very accurately. In the bubble plot, the
third variable may be perceived better because it is proportional to radius
(and thus diameter) but not area. The problem of underestimating circle size
differences is well documented. Although we added the grid to provide more
references lines for easier comparisons of point sizes, the possibility that there
is no valid comparison point along the same axis remains, which can make
interactions hard to find. Data points that are close to one another often
cluster or overlap, making the graph difficult to read. We used a conventional
method of making the circles transparent to solve the problem of overlap.
While using two-dimensional representations of three-dimensional spheres as
graduated symbols is recommended in cartography, this method is impracti-
cal here due to the amount of overlap [21]. A further limitation is that while
three-way bubble plots provide a useful display of the relative values of the
third variable across the range of values for the other two variables, they are
ineffective at conveying the absolute values on the third variable. While this
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Fig. 5.6 Bubble plot.

is a limitation of the plot, it is also a reason that the usual cautions against
relying on area perception do not directly apply to the three-way bubble plot.
Judgments of absolute circle size do not play a role in reading the graph.

5.5 The bp3way() Function

“If you are thinking about doing ‘bubble plots’ by symbols(*, circles=x%),
you should really consider using sunflowerplot instead.” (R core Development
Team, symbols() function help file version 2.9.0)

The bpSway() function is not currently available as a contributed R pack-
age but rather as an R script. Running the script once makes the pbSway()
function available for use. Saving a workspace after the function has been
created makes it available for future use without rerunning the script. Help
is currently included as documentation at the end of the script, but external
to the function itself. An accompanying function, bp.data(), simulates data
for use with the plot function. At this writing, the bp3way() function remains
under development with version 3.2 as the current version.

As defined in the previous section, the bpSway() function plots graphs such
that the values of two continuous variables are given by positions on the hor-
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izontal and vertical axes, and the value of a third variable is proportional to
the radius of the plotted points. The function takes as an argument a ma-
trix of data containing at least the variables to be plotted. Several additional
parameters, discussed below, control various plot functions. As output, the
function draws the plot in a graphics window and generates a list of plot-
related values that can be used for further plotting or analysis. Optionally,
plot parameters can also be output to the R console for review during an in-
teractive R session. At the core of the function is the precise procedure warned
against in the slightly too general advice quoted from an R help file at the
head of this section. The last subsection of the previous section described the
basic design and rationale for the three-way bubble plot. The remainder of
this section describes the bpSway() function, outlines various options avail-
able within the bpSway() function, and briefly describes the accompanying
bp.data() function.

5.5.1 Use and Options of bp3way() Function

The basic use of the bp3way() function closely parallels other graphical func-
tions available as part of R. One must first place the variables one wants to
plot into a data frame. The current version of bpSway() does not accept miss-
ing data. Cases with missing data cannot be plotted and should be removed
from the data frame before using bpSway(). Simply calling the function will
produce the graph. For example, the following line graphs the trees data set
available in R — but it does not graph it very well.

>bp3way (trees)

However, the list output of the function can also be saved for further use
through assignment to an R object.

>MyPlot <- bp3way(trees)
>MyPlot$rad.min
[1] 0.3075

5.5.2 Six Key Parameters for Controlling the Graph

The following six parameters are most central for obtaining the desired graph:
z, xc, be, yc, names, and main. The x parameter names the data frame, as
in the above example where x = trees. The next three parameters make it
convenient to permute the three variables one wishes to plot without changing
the data frame: zc, bc, and yc give the column of the data frame containing
the variable plotted on the horizontal axis, bubble radius, and vertical axis,
respectively. The names parameter should contain the names of the variables
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in the order that they appear in the data frame and as they should appear
in the graph. The graph resulting from the following call presents the data
much better than did the default.

> bp3way(trees, xc = 1, bc = 3, yc = 2,
names=c ('Girth', 'Height', 'Volume'))

Finally, the main parameter allows for the addition of a title over the graph.

> bp3way(trees, xc = 1, bc = 3, yc = 2,
names=c ('Girth', 'Height', 'Volume'),
main='Tree Volume by Girth and Height')

5.5.3 Additional Parameters Controlling the Data
Plotted

In some cases, the plot may be easier to read if the x and y variables are
standardized as standard normal scores. Setting std = TRUE will accomplish
this. For large data sets, it may also work better to plot only a proportion of
the data. This can be done by selecting cases at random, or by selecting from
the beginning of the data set. For example, the following plots the first half
of the trees data set, using a z-score scale. Note that standardization uses
the entire data set and thus a sorted data set may produce all negative or all
positive scores when only half are plotted.

> bp3way(trees, 1, 3, 2, names=c('Girth', 'Height',
'Volume') , main='Tree Volume by Girth and Height',
proportion = .5, random=FALSE, std=TRUE)

5.5.4 Parameters Controlling the Plotted Bubbles

A number of additional parameters allow further control of the precise ap-
pearance of the bubbles in the plot. The z.margin and y.margin control the
space between the plot area and the edges of the horizontal and vertical axes,
respectively. The rad.ex and rad.min parameters respectively control the size
of the bubble radii proportional to the third variable and the minimum ra-
dius. Larger values of rad.ex make differences more pronounced, whereas a
judiciously large value for rad.min prevents points with small values from dis-
appearing from view due to their small size. Finally, the fg and bg parameters
respectively control the color of the bubble edge and bubble fill.
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5.5.5 Parameters Controlling the Grid

Nine parameters control the grid. The logical grid parameter turns the grid on
(TRUE) or off (FALSE). The parameters hlen and vlen control the number of
horizontal and vertical grid lines. The parameters hlwd, viwd, hity, vity, hcol,
and wvcol control the line width, line type, and line color for the horizontal
and vertical lines using values described in the help file for the par() function
in R.

5.5.6 The tacit Parameter

The tacit parameter controls output to the R console. If set to FALSE, a call
of the bpSway() function provides a list of key plot parameters to the console.

> bp3way(trees, 1,3,2, tacit=FALSE)
[1] Bubble Plot Parameters

[1] Radius Expansion Factor: 1
[1]  Minimum Radius: 0.3075

[1] X Margin: 0.1

[1] Y Margin: 0.1

[1] Plotted Proportion: 1

[1] Standardized: FALSE

These six parameters are data sensitive if left to their default values. As such,
the tacit parameter makes it more convenient to monitor these when graphing
data. The values can also be used to choose user-specified values to override
the default values. This is purely a convenience feature intended for tweaking
unsatisfactory plots and defaults to TRUE.

5.5.7 The bp.data() Function

The bp.data() function is a very simple function that generates a data frame
containing three variables that can be used with bpSway(). The underlying
model regresses the third variable on the first two. User-specified parameters
control the sample size (N), mean and standard deviation of the first predictor
(MX and SDX), mean and standard deviation of the second predictor (MY
and SDY), error variance added to the outcome variable (Berror), regression
weights for the intercept, X, Y, and the interaction term (a, b, ¢, d), and the
amount of shared variance between X and Y (SV). The following call illustrates
both the use of the function and the default values.

MyData <- bp.data(N=5000, MX=10, SDX=2, MY=10, SDY=2,
Berror=6, a=10, b=1, c=.5, d=.5, SV=1)
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The present section has outlined the use of the bp3way() function to construct
three-way bubble plots in R. The next section describes an empirical study
exploring the relative success of three-way bubble plots, 3D scatter plots, and
coplots as a means of representing relationships between three continuous
variables.

5.6 An Empirical Study of Three Graphical Methods

The design features and default values of the pbSway() function described
above reflect an exploratory trial-and-error process of plotting data as three-
way bubble plots with the researchers’ judgments supplying the main source
of feedback and evaluation. The empirical study was designed with two goals:
(1) to gather empirical data to assess the approach for communicating three-
way relationships between continuous variables and (2) to gather empirical
data to evaluate this approach in comparison to existing alternatives. Based
on the literature, we hypothesized that both three-way bubble plots and
coplots would outperform 3D scatter plots.

5.6.1 Method

This section describes the participants, design, materials, and procedure.

Participants. One hundred and eight undergraduate students taking Psy-
chology 101 at John Jay College of Criminal Justice participated in the study
during the Fall 2008 semester. Most of the students had not taken statistics
courses, so their experiences in interpreting graphs were probably similar to
those of an average person.

Design. The study compared three graph types (three-way bubble plot, 3D
scatter plot, and coplot) across six data sets. The study used a mixed within-
and between-subject design, with each participant seeing only one of three
graph types (between) but seeing each of six data conditions with various
degrees of main effects and interactions (within). Students were randomly
assigned to the three graph conditions. The six data conditions had variations
of positive and negative main effects and interactions (Appendix A).

Materials. We created all three types of plots using R software and printed
them on 8.5-by-11-inch paper (see Appendixes B to D). Because most par-
ticipants had little experience with statistics and little experience reading
the graphs in question, we labeled the axes with concrete and readily un-
derstood variable names. We renamed the dependent variable sales and the
independent variables as staff size and number of stores, respectively. The
selected concrete variables did not relate to each other in obvious meaningful
relationships, such as sales and price or sales and location.
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The questions assessed how staff size and sales related to one another
(main effect), whether one main effect was stronger than another (relation-
ship between staff size and sales versus relationship between store numbers
and sales), whether the relationship between staff size depends on store num-
bers (interaction), the confidence ratings of each answer, the clarity rating
of the graph, and the graph’s ease-of-use rating. The first question asked “Is
the relationship between staff size and sales positive or negative? Circle cor-
responding option below” (Positive, Negative, Unsure). A follow-up question
asked “How confident are you of the answer?” (5-point Likert scale from Not
Confident to Very Confident). The second question asked “Is the relationship
between staff size and sales stronger or weaker than the relationship between
number of stores and sales? Circle corresponding option below” (Stronger,
Weaker, Unsure) and was followed by an identical confidence question. Ques-
tion three asked “Does the relationship between staff size and sales depend
upon number of stores? Circle corresponding option below” ( Yes, No), with
the same confidence question. The fourth and fifth questions asked “Rate
the clarity, by which the graph conveyed the information” (from Not Clear
to Very Clear) and “Rate the graph’s ease of use” (from Very Difficult to
Very Easy) each using a 5-point Likert scale. There was no restriction on
the amount of time participants had for reading the plots and answering the
questions but all participants completed the study within 60 minutes.

Procedure. Participants completed the study in small groups in an on-
campus psychology laboratory. Each participant signed an informed consent
form first, then interpreted a packet of six plots and answered several ques-
tions regarding each graph, and finally received an educational debriefing
form.

We examined the effects of plot type and data type on four dependent
variables: accuracy, confidence, clarity ratings, and ease-of-use ratings. Ac-
curacy represented the proportion of questions answered correctly for each
graph. Omitted answers were marked as incorrect, but these accounted for
less than 2 percent of the data, with no more than 2 missing responses for any
one question (N = 108). For the multivariate analysis, this was rescaled to
range from 0 to 3 as the number of correct answers rather than a proportion.
Confidence corresponded to the mean of each participant’s confidence rating
of his or her answers averaged across the questions and thus ranged from 1 to
5. Clarity and ease simply reflect the 1 to 5 Likert scale responses. The study
included the latter two measures based on the rationale that clarity consti-
tutes a necessary but insufficient condition for ease of use, and thus the two
constructs differ conceptually however much they may correlate empirically.
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5.6.2 Results

Although we used R software to create the graphs and data conditions, we
used Mplus v.5.21 for the multilevel linear mixed-effects analysis because
there is no straightforward way to run the analysis with ordinal level outcomes
in R. Descriptive statistics provided a check for assumptions of univariate
normality, kurtosis, and the minimum observations requirement for each cell.
Box’s Test of Equality of Covariance Matrices provided an assessment of the
homogeneity of variance across the cells. Mahalanobis Distance provided a
check for multivariate outliers. Pearson correlation matrices provided a check
for multicollinearity.

The multilevel mixed-effects models analyzed the data in two stages. The
overall multivariate analysis compared performances between the three graph
types (bubble plot, 3D scatter plot, coplot) and within the six data condi-
tions (positive main effects with positive interaction, positive and negative
main effects with no interaction, no main effect with positive interaction, no
main effect with no interaction, positive main effects with negative interac-
tion, no main effect with negative interaction) using the Robust Maximum-
Likelihood estimator [17]. The six data conditions were nested within the 108
participants for a total of 648 observations. Graph type and data conditions
were recoded using effects coding for conducting the multilevel mixed-effects
analysis, using the first plot type (bubble plot) and study condition (main ef-
fects with positive interaction) as the reference groups. Since the multivariate
analysis showed statistical significance, protected follow-up univariate Exact
Wilcoxon Mann—Whitney rank sum tests checked for simple effects between
graph conditions within each data condition for the three ordinal variables
and protected t-tests checked for simple effects between graphs for the con-
tinuous variable.

Descriptive statistics of the outcome variables (accuracy, confidence, clar-
ity, and ease-of-use) revealed 4 missing cases in the accuracy condition for
the 108 participants, but the number of missing data points was less than
5% of the total data and the omitted answers were treated as incorrect for
that variable. The three levels of the independent variable yielded 36 observa-
tions in each cell across the dependent variables, which satisfied the minimum
requirements of 20 observations for each cell. Most of the cell distributions
had minimal skew (within two SEs of zero; see Figure 5.7). The 3D scatter
plot condition had accuracy and ease-of-use outcomes with skewness near
2.50 SEs from zero. Kurtosis was within two SEs of zero and not problem-
atic for any of the cell distributions. Evaluation of Mahalanobis Distances
for each case against y>(1,N = 108) = 10.828 found no multivariate outliers
(all p>.001). Averaged across the six data conditions, the participants in-
terpreted the coplot (M = .53, Mdn = .53, SD = .15) most accurately and
the 3D scatter plot (M = .43, Mdn = .44, SD = .11) least accurately (see
Table 5.1). Participants’ confidences in their answers for coplot (M = 3.56,
Mdn = 3.64, SD = .59) were the highest and 3D scatter plot (M = 3.49,
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Fig. 5.7 Clustered boxplots of plot conditions within each outcome.

Mdn = 3.44, SD = .53) the lowest, but they rated all graph types as between
neither-confident-nor-unconfident and confident (see Table 5.2). Coplot (M
= 2.84, Mdn = 3.00, SD = .81) appeared the clearest and bubble plot (M =
2.64, Mdn = 2.67, SD = .94) the least clear, but all three graphs were rated
between not clear to neither-clear-nor-unclear on average (see Table 5.3). The
participants also found coplot (M = 2.62, Mdn = 2.50, SD = .77) easiest to
use and bubble plot (M = .2.39, Mdn = 2.41, SD = .98) most difficult to
use, but all three graphs were between difficult and neither-easy-nor-hard to
use (see Table 5.4). There were no floor or ceiling effects, as the outcome
variables appeared to contain ample variability. Pearson correlation matrices
at the individual and group level indicated that the outcome variables were
not sufficiently correlated to suggest multicollinearity (see Table 5.5).

Of the four outcome variables, accuracy, clarity, and ease-of-use were
treated as ordinal variables, whereas confidence was treated as a continuous
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Table 5.1 Mean, median, and standard deviation of accuracy by graph type and
data set

Overall Data Set

Condition n M Mdn SD Skew 1 2 3 4 5 6

Bubble 33 0.46 0.44 0.12 -0.14 0.68% 0.43 0.41 0.49° 0.33¢ 0.428
3D Scatter 35 0.43 044 0.11 -2.38 0.58 0.40° 0.39 0407 0.56° 0.28¢
Coplot 36 0.53 053 0.15 -0.64 055 0.51> 0.48 0.71¢ 0.55/ 0.40

Exact Wilcoxon Mann—Whitney rank sum tests: a: z=2.08, p=.038; b: z=—1.99,
p=.046; c: z=-2.53, p=.011; d: z=-337, p<.001; e: z=-324 p=.001; f:
z=-2.79, p=.004; g: z=2.05, p=.042

Skew = skewness z-score

Table 5.2 Mean, median, and standard deviation of confidence by graph type and
data set

Overall Data Set

Condition n M Mdn SD Skew 1 2 3 4 5 6

Bubble 36 349 3.56 0.65 -1.24 3.71 337 3.58 3.36 3.37 3.57
3D Scatter 36 349 344 053 035 3.73 356 3.54 334 339 341
Coplot 36 3.56 3.64 059 -031 3.59 3.72¢ 344 348 3.59 3.56

Two-tailed ¢ tests with equal variance assumed: a: #(70) = —2.07, p = .042. In two
instances where equal variances were questionable, a Welch ¢ test was performed,
neither rejected the null hypothesis.

Skew = skewness z-score

Table 5.3 Mean, median, and standard deviation of clarity by graph type and data
set

Overall Data Set

Condition n M Mdn SD Skew 1 2 3 4 5 6

Bubble 36 2.64 2.67 094 -0.03 256 278 278 242 261 272
3D Scatter 36 2.68 258 0.78 1.62 2.58 253 275 269 269 283
Coplot 36 2.84 3.00 081 0.09 253 325 261 258 3.17 292

Exact Wilcoxon Mann-Whitney rank sum tests: a: z=—2.68, p =.007
Skew = skewness z-score

Table 5.4 Mean, median, and standard deviation of ease-of-use by graph type and
data set

Overall Data Set

Condition n M Mdn SD Skew 1 2 3 4 5 6

Bubble 36 239 242 098 049 208 233 250 222 261 261
3D Scatter 36 252 250 074 249 236 236 2.61 250 2.64 2.67
Coplot 36 2.62 250 077 068 231 286 250 236 3.11 2.58

Exact Wilcoxon Mann—-Whitney rank sum tests: a: z=-2.11, p=.035
Skew = skewness z-score
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Table 5.5 Intercorrelation between outcome measures

Variables 1 2 3 4
1. Accuracy 1 .061 -.058 —.102**
[-.016, .137] [-.134, .019] [-.177, -.025]
2. Confidence .106 1 497 4717
[-.089, .292] [.418, .536] [.408, .529]
3. Clarity -.118 .586** 1 784**
[-.304, .076] [.446, .698] [.752, .812]
4. Ease-of-use -.115 562+ .866** 1

[-.301, .080] [.417, .679] [.810, .907]

Note. Pearson correlations at the observation level (N = 648) above the
diagonal; Pearson correlations of the mean across data set for individual
participants (N = 108) below the diagonal. 95 percent confidence interval
included in the brackets below the correlation.

** Correlation is significant at the 0.01 level (2-tailed).

variable. Accuracy was the proportion of questions participants interpreted
correctly. Because there were three questions per graph, the participants could
only have four possible accuracy outcomes: 0, .33, .66, 1.00, so accuracy was
considered ordinal for the analyses. Clarity and ease-of-use were 1 to 5 Likert
ratings. Although researchers often consider summative response scales, like
the Likert scale, as between ordinal and interval scales, we treated both vari-
ables as ordinal because each scale only had five options, and each variable
consisted of only one scale. Confidence was treated as a continuous variable
because it averaged across three 5-point Likert scales, producing 13 possible
values ranging between 1 and 5.

Each outcome was analyzed separately. The mixed-level models included
random intercept but no random slopes. The models included both main
effects and interactions.

Level 1: O* = (X()—I-OCl/D—I- a’zDG+u1
Level 2: a9 = B+ B1G+uy
Threshold Model:0 = {0if O* <71, 1if 11 <O* < 1p,... kif ,_; <O" < 7.}

O is the observed ordered-categorical outcome score, O* is a vector of latent
continuous outcome scores for each observation, D is a matrix of effect-coded
dichotomous variables representing the data set condition, G is a matrix of
dummy-coded dichotomous variables representing the graph condition, DG
is a matrix of data-by-graph interaction terms, a and f represent vectors
of linear weights, the u variables represents vectors of residuals, and the 7
represent fixed thresholds.

There was a statistically significant main effect of coplot being more ac-
curate than the overall mean for accuracy (see Table 5.6). The statistically
significant main effect for condition 5 suggested that participants on average
interpreted data condition for positive main effects with negative interaction
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less accurately than overall mean accuracy. There were a few statistically sig-
nificant graph-by-data interactions. Participants interpreted 3D scatter plots
showing positive main effects with negative interaction (condition 5) more
accurately than overall mean accuracy and no main effect with negative in-
teraction (condition 6) less accurately. The participants interpreted coplots
showing no main effects with interactions (condition 4) more accurately than
overall mean accuracy, and positive main effects with negative interaction
(condition 5) more accurately.

Table 5.6 Multilevel mixed-effects model for accuracy

MODEL Two-Tailed
RESULTS Estimate S.E. p-Value
Within Level
D2 -0.134 0.295 0.651
D3 -0.275 0.161 0.087
D4 0.156 0.363 0.666
D5 -0.850 0.295 0.004*
D6 -0.247 0.268 0.356
D2G2 -0.029 0.399 0.941
D2G3 -0.001 0.379 0.997
D3G2 -0.039 0.320 0.904
D3G3 -0.077 0.306 0.802
D4G2 -0.498 0.541 0.358
D4G3 1.164 0.519 0.025*
D5G2 1.744 0.426 0.000*
D5G3 0.923 0.437 0.035*
D6G2 -0.767 0.388 0.048*
D6G3 -0.649 0.405 0.109
Between Level
G2 -0.196 0.184 0.286
G3 0.520 0.209 0.013*
Thresholds
accuracy$1 -1.715 0.159 0.000
accuracy$2 0.359 0.131 0.006
accuracy$3 2.057 0.177 0.000

Residual Variance
accuracy 0.100 0.115 0.388

Note: D = effect-coded dichotomous variables representing the data set condition;
G = dummy-coded dichotomous variables representing the graph condition;
DG = data-by-graph interaction terms.

Because the multivariate analysis for accuracy was statistically significant,
univariate Exact Wilcoxon Mann—Whitney rank sum tests were performed
to check for mean differences between graph types in each data condition.
The participants interpreted the bubble plot more accurately than coplot for
positive main effects with positive interaction (z =2.08, p =.038); 3D scatter
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plot less accurately than coplot for positive and negative main effects with
no interactions (z = —1.98, p = .046); both bubble plot and 3D scatter plot
less accurately than coplot for no main effect with no interaction (z = —2.53,
p=.011; z=—-3.37, p <.001); bubble plot less accurately than 3D scatter
plot (z=-3.24, p=.001) and coplot (z=—2.79, p = .004) for positive main
effects with negative interaction; bubble plot more accurately than 3D scatter
plot (z=2.05, p = .042; see Figure 5.8).
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Fig. 5.8 Mean accuracy and standard error by graph type and data set.

The confidence outcome, measuring participants’ confidence in their in-
terpretations, also showed no statistically significant difference between the
graphing conditions. There was no statistically significant main effect, but
the coplot by condition 3 interaction was statistically significant, suggesting
participants were more confident than the overall mean confidence in inter-
preting coplot for no main effects with positive interaction and less confident
in interpreting coplot for no main effect with positive interaction (see Ta-
ble 5.7). The residual variance of 0.34 was low compared to the standard
deviations, suggesting the model accounted for a good portion of the varia-
tion in effects across participants. The correlations between the effects were
generally low, suggesting no strong dependencies between parameters. There
were good correspondences between the parameters and the p-values, sug-
gesting there were no serious problems with lack of power for certain effects.
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Fig. 5.9 Mean confidence and standard error by graph type and data set.

Confidence was scored on a Likert scale of 1 to 5 (higher rating indicat-
ing higher confidence), thus the intercept of 3.49 suggested the grand mean
for confidence was between neither-confident-nor-not-confident and confident.
The standard errors were between .07 and .14, which made sense in relation
to the size of the effects. Because the confidence variable was treated as a
continuous variable, univariate t-tests were performed to check for mean dif-
ferences between graph types in each data condition. Participants were less
confident in their interpretations of bubble plot than coplot (¢(70) = —2.07,
p =.042) for positive and negative main effects with no interaction (condition
2, see Figure 5.9). In two instances where equal variances were questionable,
Welch t-tests were performed, but neither rejected the null hypothesis.

The clarity outcome also did not have statistically significant differences
between the graphing conditions and overall mean clarity. Participants found
data condition showing no main effect with no interaction clearer than mean
clarity across conditions (see Table 5.8). Several interactions showed statis-
tical significance. Participants found 3D scatter plots depicting positive and
negative main effects with no interaction (condition 2) less clear. They read
coplots showing no main effects with positive interaction (condition 3) more
accurately and positive main effects with negative interactions (condition 5)
more accurately. Univariate Exact Wilcoxon Mann—Whitney rank sum tests
were performed to check for mean differences between graph types in each
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Table 5.7 Multilevel mixed-effects model for confidence

MODEL Two-Tailed
RESULTS Estimate S.E. p-Value
Within Level
D2 -0.123 0.085 0.148
D3 0.090 0.086 0.300
D4 -0.133 0.073 0.070
D5 -0.128 0.071 0.073
D6 0.080 0.091 0.378
D2G2 0.186 0.137 0.175
D2G3 0.283 0.127 0.026*
D3G2 -0.046 0.134 0.733
D3G3 -0.217 0.113 0.054*
D4G2 -0.022 0.115 0.846
D4G3 0.052 0.120 0.666
D5G2 0.024 0.127 0.850
D5G3 0.158 0.097 0.103
D6G2 -0.166 0.133 0.212
D6G3 -0.087 0.134 0.515
Residual Variance
confidence 0.342 0.030 0.000
Between Level
G2 -0.001 0.138 0.996
G3 0.069 0.144 0.634
Intercepts
confidence 3.494 0.107 0.000

Residual Variance
confidence 0.284 0.045 0.000

Note: D = effect-coded dichotomous variables representing the data set condition;
G = dummy-coded dichotomous variables representing the graph condition;
DG = data-by-graph interaction terms.

data condition. Participants found 3D scatter plots less clear than coplots in
condition 2 (z = —2.68, p = .007; see Figure 5.10).

The ease-of-use outcome did not show statistically significant differences
between the graphing conditions and the overall mean ease-of-use. There was
a statistically significant main effect at condition 6, meaning participants
found no mean effect and negative interaction easier to use than overall mean
ease-of-use (see Table 5.9). There was no statistically significant graph type
by data interaction. Univariate Exact Wilcoxon Mann-Whitney rank sum
tests were performed to check for mean differences between graph types in
each data condition. In condition 2, participants found coplots easier to use
than bubble plots (z = —2.11, p = .035) and 3D scatter plots (z = —2.11,
p = .036; see Figure 5.11).
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Table 5.8 Multilevel mixed-effects model for clarity

MODEL Two-Tailed
RESULTS Estimate S.E. p-Value
Within Level
D2 0.401 0.287 0.162
D3 0.447 0.266 0.094
D4 -0.622 0.303 0.040*
D5 -0.099 0.310 0.749
D6 0.241 0.329 0.464
D2G2 -0.751 0.366 0.040*
D2G3 0.631 0.435 0.147
D3G2 -0.263 0.351 0.453
D3G3 -0.928 0.392 0.018*
D4G2 0.669 0.408 0.101
D4G3 -0.193 0.531 0.717
D5G2 0.150 0.400 0.708
D5G3 0.897 0.430 0.037*
D6G2 0.102 0.407 0.803
D6G3 -0.028 0.427 0.948
Between Level
G2 0.166 0.535 0.756
G3 0.489 0.559 0.382
Thresholds
clarity$1 -2.533 0.479 0.000
clarity$2 -0.156 0.441 0.724
clarity$3 1.991 0.467 0.000
clarity$4 4.430 0.532 0.000

Residual Variance
clarity 4.154 0.969 0.000

Note: D = effect-coded dichotomous variables representing the data set condition;
G = dummy-coded dichotomous variables representing the graph condition;
DG = data-by-graph interaction terms.

5.7 Discussion

Other than accuracy, for which graph type had a statistically significant main
effect with coplots being more accurately interpreted than the other plots,
most of the differences occurred in various graph-by-data interactions for
the other outcomes. Although preliminary, this finding hints that the opti-
mal plot is data dependent. Depending on whether researchers want to show
data with main effects or interactions, one type of graph may be better than
another. Data conditions 1, 3, 5, and 6 had graphs containing interactions,
and the bubble plot performed comparably to the coplot in each of these
conditions with two exceptions. For accuracy of positive main effects with
a negative interaction, the bubble plot performed worse than the other two
plots. When all three effects were positive, the bubble plot was read more
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Table 5.9 Multilevel mixed-effects model for ease-of-use

MODEL Two-Tailed
RESULTS Estimate S.E. p-Value
Within Level
D2 -0.161 0.337 0.633
D3 0.359 0.284 0.206
D4 -0.542 0.353 0.125
D5 0.571 0.358 0.110
D6 0.646 0.299 0.031*
D2G2 -0.251 0.448 0.575
D2G3 0.778 0.415 0.060
D3G2 -0.128 0.407 0.753
D3G3 -0.669 0.378 0.077
D4G2 0.537 0.423 0.205
D4G3 -0.314 0.531 0.555
D5G2 -0.268 0.457 0.557
D5G3 0.669 0.480 0.164
D6G2 -0.271 0.399 0.498
D6G3 -0.635 0.380 0.094
Between Level
G2 0.613 0.591 0.300
G3 0.804 0.602 0.182
Thresholds
easeuse$l -1.835 0.532 0.001
easeuse$2 0.647 0.504 0.199
easeuse$3 3.087 0.537 0.000
easeuse$4 5.212 0.577 0.000

Residual Variance
easeuse 4.744 1.061 0.000

Note: D = effect-coded dichotomous variables representing the data set condition;
G = dummy-coded dichotomous variables representing the graph condition;
DG = data-by-graph interaction terms.

accurately than the coplot. The research sought to evaluate the bubble plot
against other model-free plots for showing interactions and the usefulness of
the bubble plot appears to fall between the 3D scatter plot and the coplot.
Of the three alternatives, the coplot emerged as the slight favorite. Partici-
pants interpreted coplots more accurately than the other two plots, despite
not feeling more confident in their answers, finding it clearer or easier to use.
In addition, the coplot was found to be the best or next to best alternative
in almost all of the univariate comparisons of graph types within conditions.

Based on the results of this study, our recommendation is to use at least
two types of graphs for exploratory analysis, especially because one cannot
predict ahead of time which graph would work best. It appears useful to view
data in different ways, even if one graph works consistently better than the
others. If a model fits the data, one should report results using model-based
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graphs. At present, model-free graphs probably have the most use during the
exploratory stage of analysis.

The bubble plot certainly was not inferior to other model-free plots for
showing interactions. It appears to show positive interactions somewhat more
accurately than negative interactions. Future bubble plot studies should ex-
amine other variations of main effects and interactions to see whether these
findings generalize. Aside from accuracy, the other three dependent variables
showed little variability. Thus, future studies should seek to improve the sen-
sitivity of the outcome measures relevant to graphing. Much remains to be
learned about the cognition and perception of these three graph types. More
detailed perceptual theory is needed to optimize graph design. Perhaps it
is time to redirect focus back to understanding how the human visual sys-
tem can better perceive contemporary three-dimensional graphs, especially
because computers and software packages can now create three-dimensional
graphs much more easily than before. Identifying additional factors that af-
fect graph design would allow us to modify the design of current model-free
graphs to maximize the effectiveness for all three graph types.

Acknowledgements We would like to thank Frances Figueroa for assistance in
collecting the data reported in this chapter.

Appendix A

Study Conditions

Graph 1: bubble plot

Graph 2: 3D scatter plot

Graph 3: coplot

Data 1: positive main effects, positive interaction Y = 10+4X +2Z+2XZ+ error
Data 2: positive and negative main effects, no interaction Y =10—4X +2Z+ error
Data 3: no main effect, positive interaction Y =10+ 2XY +error

Data 4: no main effect, no interaction Y = 10+error

Data 5: positive main effects, negative interaction Y =10+4X +2Z—2XZ -+ error

Data 6: no main effect, negative interaction Y =10—-2XY +error
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Appendixes B and C

Bubble plot conditions 1 to 6
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Appendix D
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Chapter 6

Combinatorial Fusion for Improving
Portfolio Performance

H. D. Vinod, D. F. Hsu and Y. Tian

Abstract A central issue for managers or investors in portfolio management
of assets is to select the assets to be included and to predict the value of the
portfolio, given a variety of historical and concurrent information regarding
each asset in the portfolio. There exist several criteria or “models” to predict
asset returns whose success depends on unknown form (parameters) of under-
lying probability distributions of assets, and whether one encounters a bull,
bear or flat market. Different models focus on different aspects of historical
market data. We use the recently developed Combinatorial Fusion Analysis
(CFA) in computer science to enhance portfolio performance and demon-
strate with an example using U.S. stock market data that fusion methods
can indeed improve the portfolio performance. The R software is found to
offer powerful tools for application of CFA in Finance.
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6.1 Introduction

In managing a portfolio system, investors (or managers) aim to assemble
a portfolio which can achieve the highest possible (optimal) risk-adjusted
return. However, perfect optimality is an elusive goal in the uncertain world
of asset markets based on past data, since the past data cannot reveal what
the future might hold. Based on information such as historical performance
of each of the assets, the investor uses different criteria or models to select
assets to be included in the portfolio. A large number N of criteria have been
used such as: price to earning ratio (PE), earnings per share (EPS), price to
book value ratio (PBV), net margin (NM), net income to net revenue ratio
(NINR), cash flow per share (CFS) and many others, often listed at financial
websites. There are strong supporters and critics for each criterion, and none
of them work under all market sentiments and economic conditions.

The two most popular models for portfolio management are the Capital
Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT). Both
rely on the mean—variance interrelationship among the assets in the portfo-
lio. It is possible to incorporate utility theory into risk management; some
nonlinear structures such as neural networks have also been used to forecast
returns (Vinod and Reagle [10]). If the market uncertainty could be char-
acterized by the bell-shaped normal distribution, mean—variance models do
indeed yield optimal portfolios.

If not bell-shaped, the Pearson family of distributions can yield a very large
variety of shapes based on a handful of parameters. More generally, there are
lognormal, inverse-Gaussian, Azzalini skew-normal, Pareto-Levy-type stable
distributions. Again, if one knew the correct parameters of the correct proba-
bility distribution describing the future market, the optimal portfolio can be
obtained (Vinod and Reagle [10]). Unfortunately, there remains uncertainty
regarding the choice of the correct distribution. Asset market professionals
often distinguish between bull, bear and flat market sentiment for various as-
sets at various times, noting that different kinds of uncertainty (probability
distributions) apply for bull versus bear markets, while they obsess about the
switch from a bull to bear market and vice versa.

Even if we know the market sentiment and the right probability distri-
bution, one needs to contend with estimation uncertainty (see Vinod and
Reagle [10], Vinod and Morey [8, 9]) about the parameters of the probability
distribution based on limited historical data subject to measurement errors.

Thus, the “information” contained in historical market data is difficult to
use as the number of model choices and underlying uncertainty increases. Let
us view the stock market data as huge and diverse, ready to be exploratory
“mined.” This paper abandons the search for optimality and views portfolio
choice as the one revealed by mining the data by using the Combinatorial
Fusion Algorithm (CFA; Hsu, Chung and Kristal [3]).

The CFA begins with a set of multiple criteria, each of which implies a per-
formance score. First, one reduces N, the total number of extant criteria, into
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a manageable size n. Then the systems are combined using a mathematical
combinatorial algorithm, where 2" — 1 —n “rank combinations” and 2" —1—n
“score combinations” are considered. Our method differs from other combina-
tion methods, e.g., those stated in Hazarika and Taylor [2], in many aspects
including: our use of 2(2" —n — 1) possible combinations, and our use of the
concepts: rank-score function and “diversity.” Section 6.2 describes CFA in
the context of portfolio management following [11]. Section 6.3 describes our
numerical experiment including the data set, the criteria used. The numerical
result details and a discussion of possible future work are omitted for brevity.
They are available in an electronic version with R software.

6.2 Combinatorial Fusion Analysis
for Portfolios

A stock portfolio selects assets from thousands of stocks from the set A = {a;}
of assets aj,as, . ... Each such asset has a name, a ticker symbol, data on prices
and performance based on its risk-adjusted returns. In this paper, the risk-
adjusted return is measured by the ratio of return on equity (ROE) to the
standard deviation (sd) of returns, or (ROE/sd).

We also have a large number of criteria or models M = {M;}, having in-
dividual elements M, M>,.... The models here have abbreviations PE, EPS,
PBV, NM, NINR, CFS, etc. We assume that we have data on these criteria
score values for each asset. For example, stock ticker “XYZ” has some score for
price earnings ratio, earnings per share, etc. In general, the numerical score
of the i-th asset under j-th model is available for all assets and all models.

Since none of the individual stock picking criteria from PE, EPS, PBV,
NM, NINR, CFS, etc. have been found to dominate others at all times, combi-
natorial fusion analysis combines them to define new fused criteria. However,
there are two practical problems associated with combining these diverse cri-
teria in their original form.

(i) The units of measurement for the scores are not comparable.

(ii) The original scores lack monotonic similarity in the sense that a stock
with a lower PE ratio is more desirable, whereas a stock with a higher earnings
per share is more desirable to be included in our portfolio.

We solve the first problem by mapping all original scores x to the unit
interval [0,1]. That is, we use normalized (rescaled) values of x defined by

LO = min(x),UP = max(x),y = (x— LO)/(UP — LO). (6.1)

We solve the second monotonic dissimilarity problem by simply changing
the signs of all scores where less is desirable (e.g., PE ratio) to negative values.
Let these normalized sign-corrected scores be denoted by {s; j}. We can
fix our focus on the j-th model M;, sort these scores from the largest to the
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smallest and assign ranks starting with 1 for the most desirable, rank 2 for
the next one, and so on. Thus, it is a simple matter to assign a numerical
rank to the i-th asset under j-th model. Let all such ranks be denoted by
{rij}.

Now these normalized sign-corrected scores and ranks are ready to be com-
bined (fused) by pairs, triplets, etc. It is convenient to begin with a discussion
of combination by pairs. For illustration, let us combine the first two models
M, and M, (PE and EPS, say) with the i-th asset scoring s;; and s; 2, respec-
tively. Their score combination (SC) is defined for each i-th asset as the simple
average of the two scores: SC; 142 = 0.5(s;1 +5;2), where the subscript 1+2
denotes the combination of M; and M, by averaging (not adding). A similar
rank combination is also defined for the i-th asset as: RCj 112 = 0.5(ri1 +ri2).
A finance professional will have serious qualms about combining PE and
EPS into one criterion. A computer scientist can abstract from the underly-
ing names, willy-nilly combine them into one criterion and proceed to sort all
assets by SC; 142 values. One wants to identify assets with the highest score.
This paper shows that such abstraction is potentially profitable.

First assume that we focus on an abridged set of p models M1,M,, ..., M,,.
Hsu and coauthors [3] and [1] describe several ways of combination. In this
paper, we use only the average combination, because our emphasis here is
more on comparing rank and score combinations as in Hsu and Taksa [4]. For
the set of p models Mi,M>,...,M,, we define the score function of the score
combined model SC as

p
SCijyy..p= (Z Si,j) /p- (6.2)
j=1

Sorting the array SC;i4.. .1, into decreasing order would give rise to the
rank function of the score combined model SC, written as rgc. Similarly, we

define the score function of the rank combined model RC as

RCi1y.4p= <f ri,j) /. (6.3)

j=1

Sorting this array SC;i..y, into increasing order gives rise to the rank
functions of the rank combined model RC, written as rgc.

For each criterion M; let P(M;) be the performance of M;. We are most
interested in the combination subset CU) where CU) C {M;,Ma,...M,} so
that P(CU)) > max;P(M;). We will call these positive cases. If P(C/)) >
max ;P(M;), we will call these strictly positive cases. If P(CU)) < max,;P(M;),
we will call these strictly negative cases. Obviously, our approach will sug-
gest right stocks to buy if we find portfolio combinations leading to definitive
performance improvements as revealed by strictly positive cases. Note that
strictly negative combinations indicate stocks worth selling and do remain of
interest.
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Combinatorial fusion analysis has been used in information retrieval and
virtual screening (see Hsu and Taska [4], Ng and Kantor [5] and Yang et
al. [12]) with several applications in natural sciences. The framework of CFA
and a survey is given in Hsu, Chung and Kristal [3]. Certain experience-
based observations in the field of CFA are that combinations improve the
performance only if: (a) individual systems have relatively good performance
and (b) individual systems are diverse.

A rank-score function is defined by fyr : N ={1,2,...]A|} — [0, 1], where A
is a set of all stocks and |A| is the cardinality of the set A. Thus, we write

(i) = sm(ryy (i) = (s 0 ry ) (D), (6.4)

where i denotes the rank.
The graph of the rank-score function fys is the graph f); with rank as the
x-coordinate and score as the y-coordinate. See Fig. 6.1.
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Fig. 6.1 Plot of rank-score functions (A,B,C,E,F).

The diversity between systems M| and My, d(My,M>) either:

(1) d(My,M>) = d(sm1,sm2) = product moment correlation between sy
and sy,

(2) d(M,M>) = d(ry1,rm2) = rank correlation, [Spearman’s p (rho) or
Kendall’s 7 (tau)] between ry; and ryp, or
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(3) d(My,Mp) =d(fm1, fu2), where fy is the rank-score function, and d is
a measure of distance.

Yang et al. [12] used the Euclidean distance for their d:

1/2
n
d(fun, fuz) = | Y. (1/n) [fanr (i) 0 . (6.5)
i=1
Let P(A) denote the performance of criterion A. The pairwise performance
ratio of low to high is defined as

min{P(A),P(B)}

PR(A,B) = Pl/Ph = max (P(3) PB)]

(6.6)

A graphical insight is gained in this literature by a diversity—performance
graph, which plots the performance ratio PI/Ph on the horizontal axis and
suitably defined pairwise diversity on the vertical axis. The strictly positive
cases where fusions lead to strictly superior performance are indicated by
circles (o) on the graph and negative cases indicated by (x) graphic symbols.
Past experience and experiments suggest that circles are usually toward the
northeast area of the diversity—performance graph and x’s are found in the
southwest area. See Fig. 6.2.

6.3 An Illustrative Example as an Experiment

Admittedly, we do not expect universal agreement on the choice of ROE/sd
as the performance criterion used here. In all, we have nine models or criteria
of interest, but plan to combine only p =5 out of n =9 at a time. This means
we must compare the performance of 126 groups of (9 choose 5) possible
choices of 5 out of 9. The notion of groups is new in this paper.

Our algorithm tries to focus on criteria making sure that they are all
individually high performers. We have 25 — 1 —5 = 26 rank combinations and
26 score combinations of up to five models. We explain the insights from rank—
score function and diversity-performance graphs. The details of the algorithm
using the open source R package for this purpose are given in Sect. 6.3.2. It
was implemented almost immediately on a PC with a 2-GHz processor.

6.3.1 Description of the Data Set

Our data are from Prof. Aswath Damodaran’s website at the Stern Business
School of New York University: http://pages.stern.nyu.edu/~adamodar/
New_Home_Page/data.html The original data source is Value Line Inc. The
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Fig. 6.2 Diversity—performance graph.

site reports data for 7113 stocks (identified by ticker symbols and row num-
bers) along 7113 rows of an EXCEL workbook having 72 columns. The work-
book columns are potential stock selection criteria involving the usual fi-
nancial statistics including the PE ratio obtained by dividing the company’s
share price by its earnings per share (EPS), or price to book value (PBV)
ratio as the ratio of market value of equity to book value of equity. The PBV
is a measure of shareholders’ equity in the balance sheet of a company. For
our illustration we select data from the following nine criteria with following
names and associated symbolic abbreviations used in our discussion below:

[A]=Trailing PE, [B]=Forward EPS, [C]=Forward PE, [D]=PBV Ratio,
[E]=Ratio of Enterprise Value (EV) to Invested Capital, [F]=Value to B.V. of
Capital, [G]=Growth in EPS during the last 5 years, [H|=Growth in Revenue
last year, and finally, [K]=Net Margin.

First we construct an abridged data matrix, placing the nine criteria along
nine columns and the risk-adjusted performance (ROE/sd) as the tenth col-
umn. We clean out all those rows (remove stocks) from the workbook which
have missing data ending up with only 1129 rows in the abridged workbook
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(of original 7113). Each of the 1129 stocks is a candidate for inclusion in our
proposed portfolio.

In order to ensure that each of the multiple systems satisfies “monotonic
similarity,” that is, they satisfy the same increasing or decreasing norm, i.e.,
the bigger the better, we multiply values in these nine columns (A,... HK)
by the vector c¢(-1,1,-1,-1,1,1,1,1,1), where (-1) means it is desirable to have
smaller values. For example, since it is desirable to have a small price earnings
ratio, we multiply the column for A=Trailing PE by -1, as indicated. Similarly
we change the sign of all values in columns for C=Forward PE and D=PBV
Ratio. In the end, we make sure that all columns have numbers so that bigger
values are preferred by investors.

6.3.2 Description of the Steps in Our R Algorithm

(1) Defining scores and computing their ranks. The 1129 normal-
ized to [0,1] range and sign-corrected values in the nine columns entitled
(A,... HK) are vectors of “scores” achieved by that stock under that cri-
terion. Next, we rank these values from the smallest to the largest. The
largest numbered rank (1129) means the highest score is different from the
computer science literature where rank 1 is the best score.

(2) Choosing the best 113 stocks implicitly recommended by each
criterion. The best stocks for each criterion reside along the bottom 113
(=10%) rows for each criterion in terms of scores as well as ranks.

(3) Union of all potentially desirable stocks. Next step is to consider
a union of the 113 stocks recommended by each of the nine criteria with
possibly 113 x 9 = 1017 stocks. Of course, even if the criteria (A,... ,HK)
are distinct, the same stocks are implicitly recommended (i.e., among the
top 113) by more than one criteria. In our example the union contains
n = 584 stocks and 433 repetitions.

(4) Procedure for the one-criterion-at-a-time case. We propose to
buy the best-performing subset of these 584 stocks. Next, we construct a
three-column matrix denoted for brevity as C3 with three columns Cy,C;
and C3. C; has numbers 1 to 584, C, has either the score values or the
ranks and C3 has ROE/sd. We sort this entire C3 matrix on the second
column, so that the best stocks will again be at the bottom of the matrix.
Now we assume that chosen portfolio contains the best 10% stocks by each
criterion and compute the performance of the portfolio from the “average
ROE/sd.” A check on our programming is that the average ROE/sd should
be exactly the same whether we use scores or ranks in C, of the matrix
here, as long as we have only one criterion at a time, that is, before we
combine them by a fusion algorithm.

In the traditional method of portfolio selection the computation can end
here. It is, however, only the beginning under our proposal. Instead of



6 Combinatorial Fusion for Improving Portfolio Performance 103

being satisfied with choosing only one criterion at a time, we consider
combinations of two or more criteria. For simplicity the combinations con-
sidered in this paper are simple averages, but weighted averages can be
considered without loss of generality.

(5) Procedure for the two-criteria-at-a-time case. ~We combine
two criteria at a time and compute performance for each pair. There are
(9 choose 2) or 36 possible pairs of criteria from (A, B, C, D, E, F, G, H,
K); for example, AB, AC, AD, AE, etc. For each such pair we create a
matrix C3 with three columns similar to Step 4. We sort entire matrix C3
on the second column (best at the bottom). Now we select the portfolio
of the best 10% stocks for each paired criterion and compute the average
ROE/sd for these chosen stocks. It is perhaps not obvious that, unlike
the one-at-a-time case above, the ROE/sd numbers (hence recommended
stocks) are different when the second column of C3 contains average scores
instead of ranks.

Compared to the traditional method of choosing one criterion at a time,
the fusion algorithm is ahead of the game if we have the strictly higher
ROE/sd for any combination of two criteria at a time. For our example,
the combination of criteria A and E is often found to be superior to A or
E alone.

(6) Procedure for the general k-criteria-at-a-time case. If we have
k=3,4,5 criteria at a time we must enumerate all (9 choose k)=(84, 126,
126) choices similar to ABC, ACD, ADE, etc. For each k-at-a-time fusion
set we again create and sort the entire matrix C3 with three columns as
before on the second column (having ranks or scores yielding the best at
the bottom) and make a portfolio of the best 10% stocks for each k-at-
a-time fusion set and compute the performance of the portfolio by the
average ROE/sd.

After finishing this for k=1 to 5 we will have 2 x 381 = 762 performance
numbers for each stock associated with the nine criteria (A to H and K) and
their fusions involving k at a time, where the doubling is needed because
we have score-based numbers as well as rank-based numbers. Of the 762,
we can ignore the k=1 case leading to 744 relevant ROE/sd numbers to
be compared.

(7) The total of 126 groups. Even if we have 9 criteria we have de-
termined that it is impractical to use a criterion for the choice of stocks
based on a fusion of more than five stock-picking criteria at a time in our
context. This means we are not allowing a grand fusion of all 9 criteria
(ABCDEFGHK). We are also disallowing fusions containing 6, 7, or 8 cri-
teria at a time. However, we must consider a complete listing of choices for
all possible sets of 5 out of 9 leading to (9 choose 5) or 126 distinct choices
to be considered separately. We refer to these as groups for the purpose of
discussion. Since the portfolio of best stocks recommended for one group
will not, in general, coincide with the best portfolio for another group, we
need to study all of them.
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(8) Final ranking of all stock choices for all 126 groups. Compared
to the traditional method of choosing one criterion at a time, the fusion
method is much ahead of the game, since we have noticed that a great many
cases exist, where combined criteria using averages of scaled scores have
strictly higher ROE/sd performance than the ROE/sd of their individual
components taken one at a time. Now we will consider 2 x (2° —1—5) =52
ROE/sd numbers for each of the 126 groups. However, we fully expect to
have many duplicate fusions among these groups. It turns out that we need
not be concerned with explicitly separating the duplicates, because we can
simply rank order with respect to 52 x 126 = 6552 ROE/sd numbers from
the lowest ROE/sd to the largest ROE/sd, and eventually pick the best
rows based on the highest ROE/sd. If there are duplicates they will simply
become identical rows, easily omitted by a computer algorithm. Identical
rows do not affect the value of ROE/sd or the ranking.

For our example, the best fusion is the rank combination of criteria A, B,
E, and F. The electronic version having R software lists ticker symbols for the
top 50 stocks recommended by this ABEF combination and the algorithm in
far greater detail. All plots produced by R are not included here for brevity.
We note that R is particularly powerful in our context of combinatorial fusion
to construct portfolios to buy.

By way of extension, it is also quite possible to construct stock portfo-
lios to sell, use time series data for each stock and myriad other choices of
performance and stock-picking criteria. For example, Vinod [6] discusses four
orders of stochastic dominance based on different empirical probability dis-
tributions suggested by the past data for each stock. With the use of the
fusion algorithm we are not restricted to focus on only one stochastic order
of dominance at a time. Vinod [7] discusses the statistical theory behind CFA.
We hope we have convinced the reader that the CFA approach can have a
significant potential and an attractive future in practical processes, as well
as the art and science of portfolio selection.
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Chapter 7

Reference Growth Charts for Saudi
Arabian Children and Adolescents

P. J. Foster and T. Kecojevié¢

Abstract The purpose of this study is to provide Saudi Arabian population
reference growth standards for height, weight, body mass index (BMI), head
circumference and weight for length /stature. The estimated distribution cen-
tiles are obtained by splitting the population into two separate age groups:
infants, birth to 36 months and children and adolescents, age 2 to 19 years.
The reference values were derived from cross-sectional data applying the LMS
method of Cole and Green (Statistics in Medicine 1992; 11:1305-1319) using
the lmsqreg package in R (public domain language for data analysis, 2009).
The report provides an overview of how the method has been applied, more
specifically how the relevant issues concerning the construction of the growth
charts have been addressed, and is illustrated by just using the girls’ weight
data (birth to 3 years old). These issues include identifying the outliers, di-
agnosing the appropriate amounts of smoothing and averaging the reference
standards for the overlapping 2- to 3-year age range. The use of ANCOVA
has been introduced and illustrated as a tool for making growth standard
comparisons between different geographical regions and between genders.
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7.1 Introduction

The growth standards are derived from a cross-sectional sample of healthy
children and adolescents aged from birth to 19 years. The sample was ran-
domly selected by a stratified multistage probability sampling procedure from
each of the 13 administrative regions of the Kingdom of Saudi Arabia, ensur-
ing both national and urban/rural representation. The anthropometric data
comprises 51,485 observations of which 25,987 are made on boys and 25,498
on girls. Those measurements include: length, for the children 2 years of age
and below, height, for children above 2 years of age, weight and head cir-
cumference. All possible efforts have been made to ensure reliability and the
accuracy of the measurements.

The reference growth charts we have constructed describe the dependence
of height, weight, body mass index (BMI) and head circumference on age,
and weight on length/stature for two age ranges, birth to 36 months and 2 to
19 years. They were constructed using the LMS (Lamda-Mu-Sigma) method
of Cole and Green [8] in R, a public domain language for data analysis (R
Development Core Team (2009)). The LMS method provides a way of obtain-
ing growth standards for healthy individuals and is based on normalizing the
conditional distribution of a measure using the power transformation of Box
and Cox [1]. The package 1lmsqreg developed by Carey [2] implements the
LMS method in R. Use of the LMS method was a requirement of the study.

In this paper we discuss various issues involved in using the LMS method-
ology, all of which are specifically illustrated using the Saudi girls’ weight
data for those from birth to 3 years old. Section 7.2 focuses on identifying
and removing extreme outliers prior to estimating the centile curves. In Sec-
tion 7.3 we describe the model and how it is fitted to the data. Goodness-of-fit
is considered in Sect. 7.4 while in Sect. 7.5 we describe a simple solution to
obtaining a common set of centiles in the overlapping 2- to 3-year age range.
In Section 7.6 we propose using ANCOVA to investigate differences in growth
patterns in different geographical regions and also between the sexes. This
proves to be a much more informative approach than that described in the lit-
erature which does not take age into account. Finally, we add some discussion
and further suggestions.

7.2 Outliers

An outlier is a sample value that lies outside the main pattern or distribution
of the data and in the context of quantile regression, which was first intro-
duced by Koenker and Bassett [14], it will be one which has a much larger or
smaller response value at a given age when compared with other responses at
a similar age. Quantile regression measures the effect of covariates not only
in the center of the distribution but also in the upper and lower tails. Ex-
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tremely low and extremely upper quantiles are of interest regarding growth
charts and therefore it is important to deal with the issue of removing the
potential outliers with cautiousness. An outlier should not be regarded as
a pejorative term; outliers may be correct, but they should be checked for
transcription error [18]. The quantile regression model is a natural extension
of the linear regression model. If an outlier is included in the data which is
used to estimate the quantiles, then it may be highly influential on the fitted
regression line in that the line may be pulled in a disproportionate manner
towards the outlying value or it may cause a failure in the algorithm used
to estimate the quantiles [14]. This latter point is particularly true with re-
spect to the LMS procedure, as according to Carroll [4] the choice of the
transformation L(x) is highly sensitive to outliers in the data. We have also
found that if the outliers are not removed, it can result in the numerical
failure of the model fitting algorithm in the function 1msqreg. The lack of
a methodology to assess the direct effect of an individual observation on the
LMS methodology has prompted us to approximate the LMS model using a
cubic regression line to model the relationship between a response and co-
variate (such as weight and age). Approximating the LMS model in this way
enables us to identify the outliers in that space with respect to this mode,
that hopefully are also the outliers with respect to the LMS model. To fit this
cubic regression line we have used a robust regression procedure. Robust re-
gression deals with cases that have very high leverage, and cases that are
outliers. Robust regression represents a compromise between the efficiency of
the ordinary least squares (OLS) estimators and the resistance of the least
absolute value (LAV) estimators, both of which can be seen as special cases
of M-estimation [13]. It is a form of weighted least squares regression, which
is similar to least squares in that it uses the same minimization of the sum of
the squared residuals, but it is done iteratively. Based on the residuals a new
set of weights are determined at each step. In general, the larger the residuals
are, the smaller the weights. So the weights depend on the residuals. At the
same time, the residuals depend on the model and the model depends on the
weights. This generates an iterative process and it goes on until the change
in the parameter estimates is below a preset threshold. At the end, instead of
all points being weighted equally, the weights vary and those with the largest
weights contribute more to the fit.

There are a few types of weighting schemes, M-estimators, that can be
implemented [18]. In Huber’s [13] weighting, observations with small resid-
uals get a weight of 1; the larger the residual, the smaller the weight. M-
estimation, introduced by Huber [12] can be regarded as a generalisation of
maximum-likelihood estimation (MLE), hence the term ‘M’-estimation [10].

Consider the linear model

yi:x;ﬁ—i—&‘i i=1,....n (7.1)
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where the V(&) = 0% and Cov(g;,€;) = 0,i # j. If & has density f, we can define
p = —log f, where the function p gives the contribution of each residual to
the objective function. Then the MLE f = b solves

rrgnZ—logf(yi—ui) = mﬁinZP(yi*Mi) (7.2)

where ; :x;ﬁ and so [l :x;b.

Let w=p' be the derivative of p. Then we will have ¥ v (yi— ﬁi)x;- =0or
Yiwi (vi — ) x; = 0 where the weight w; = w (y; — ;) / (v — f;). This suggests
an iterative method of solution, updating the weights at each iteration [18].

If p (x) = x?, the solution is the conditional mean and the median is p (x) =
|x|. The function

—cx<—c
y(x)= xlx <e (7.3)
cx>c

is known as Winsorizing and brings in extreme observations to p +c. The
corresponding function p = —log f is

— x2 1f|x| <c
plx)= { ¢ (2]x| = ¢) otherwise (7.4)

and equivalent to a density with a Gaussian centre and double-exponential
tails. This estimator is due to Huber. Note that its limit as ¢ — 0 is the
median, and as ¢ — o the limit is the mean. The value ¢ =1.345 gives 95%
efficiency at the normal [18].

Venables and Ripley’s MASS package [17] introduces the rlm function for
fitting a linear model by iterated re-weighted least squares (IWLS) regres-
sion using Huber’s M-estimator with tuning parameter ¢ =1.345 and also
incorporating a robust estimate of the scale parameter o, where 6 =s. If we
assume a scaled pdf f(e/o) /o for € and set p = —log f, in this case the MLE

minimizes
n;sin lzl:p <y,;,u,> —&—nlogG] (7.5)

Assuming that ¢ is known and if y = p’, then the MLE b of f solves

. Yi— Hi
rngn?x,-l//((;) =0 (7.6)

A common way to solve the above equation is by IWLS, with weights

Wi:W<Yi;.ai>/<)’i;ﬂi> (7.7)
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Of course, in practice the scale ¢ is not known. However, as mentioned above
o is estimated by a robust MLE-type estimate denoted by s.

A cubic polynomial using the rlm function in R has been fitted to the
log-transformed data (in a bid to stabilize the variance over age) using MM -
estimation that combines the resistance and robustness, while gaining the
efficiency of M-estimation.

> library(MASS)
> mp<-rlm(log(weight) “1+agey+I(agey~2)+I(agey~3), method="MM")
> summary (mp)

Call: rlm(formula = log(weight) ~ 1 + agey + I(agey~2) +
I(agey~3), method = "MM")
Residuals:
Min 1Q Median 3Q Max
-0.784423 -0.098632 -0.001707 0.096245 0.708137

Coefficients:

Value Std. Error t value
(Intercept) 1.1731 0.0034 342.0763
agey 2.0866 0.0148 140.8422
I(agey~2) -1.1875 0.0145 -81.6688
I(agey~3) 0.2223 0.0036 61.0781

Residual standard error: 0.144 on 6123 degrees of freedom

After fitting this cubic line we have used the weights produced in a robust
regression procedure to identify the most extreme values. The observations
with the big residuals are down weighted, which reflects that they are atypical
from the rest of the observations when it comes to fitting such a model.
Observations with 0 weight (w; = 0) are deemed to be extreme and so are
then removed from the data before running the LMS model fitting algorithm
(Figs. 7.1 and 7.2). Note that weight referred to in Fig. 7.1 corresponds to
girls’ actual body weight.
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Fig. 7.1 Identifying the outliers, girls’ weight, age birth to 36 months.
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Fig. 7.2 Identified outliers, girls’ weight, age birth to 36 months.
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The World Health Organisation (WHO) has defined limits for acceptable
data based on 1977TNCHS/WHO growth charts and recommends that the
exclusion range for weight-for-age should be |z] > 5 [5]. After the final LMS
model for girls’ weight (age birth to 3) was fitted, we used the zscores
function from the lmsqreg package in R to calculate z-scores for the four
identified outliers and these are given in Table 7.1. Each omitted case has an
|z] greater than 5 tying in with the WHO guideline.

Table 7.1 z-scores of the four identified outliers for girls’ weight, age birth to 36
months

z-scores {lmsqreg}

row.names weight age z-score

811 15.7 0.6 5.22488
1235 2.5 0.2617 -6.70038
2240 4.8 1.21 -5.29738
5963 30.2  2.96 6.49793

7.3 LMS

Under the assumption of normality, growth curves can be constructed by es-
timating the age-specific mean and standard deviation, say u(¢) and o(z), so
that chosen quantile curve for o € [0,1] can then be obtained as

O(a|n) = (1) +6() (@) (7.8)

where @~ ! (&) denotes the inverse of the standard normal distribution func-
tion. Providing that the assumption of normality holds at each age, such a
curve should split the population into two parts with the proportion a lying
below the curve, and the proportion 1 — a lying above the obtained curve
[19].

Although adult heights in a reasonably homogeneous population are known
to be quite close to normal, in general anthropometric data are known to be
not normally distributed [19]. Anthropometry tends to be right skew rather
than left skew, which is why a log transformation which treats the two tails
of the distribution differently is often suggested as a means of obtaining a
symmetric distribution [7]. A log transformation can be viewed as a partic-
ular power transformation of the data but there is a whole family of such
powers. Cole [6] suggested that in principle, there is no reason why a gen-
eral power transformation should not be applied to the data. The maximum
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likelihood estimate (MLE) for the power, which both minimises the skewness
and optimises the fit to normality, is ideally suited to the problem of skew
data. However, it only operates on individual groups and does not allow for
the skewness to change in a smooth manner over the range of the covariate.

The LMS, or Auo, approach of Cole [6] provides a way of obtaining nor-
malised growth centiles that deals quite generally with skewness as well as
nonconstant variance. The method enables us to fit the growth standards to
all forms of anthropometry by making the simple assumption that the data
can be normalised by using a smoothly varying Box—Cox transformation, so
that after the transformation of the measurements Y (¢) to their standardised
values Z(¢) they will be normally distributed:

Y (0)/@)*0 1
At)o(t)

Z(t) = (7.9)

With these normalised measurements, the desired quantile curve for a € [0, 1]
can then be obtained using the following model:

Qo |t) = u(O)[1+A(1)0(t)e~" (a)] /40 (7.10)

which summarises the construction of the centiles by three smooth curves,
i.e., functions, representing the skewness, the median and the coefficient of
variation. The LMS method works with power transformed measurements,
but converts the mean back to original units and uses coefficient of variation
(CV) rather than standard deviation of the data. In this way the results for
different power transformations can be compared, and the best (Box—Cox)
power can be identified as the one which gives the smallest CV [7]. This
method provides a coherent set of smoothed centiles and the shape of the
power curves provide information about the changing skewness, median and
coefficient of variation of the distribution.

The three parameters A, 4 and o were assumed to change smoothly with
age. Green [11] has proposed to estimate the three curves by maximizing the
penalised likelihood,

(i, 0)— vy / (A" (1))2dt — v, / (W (1) 2dt - vo / (")t (7.11)

where ¢(A,u,0) is the Box—Cox log-likelihood function derived from (7.9),

(G 1.0) = TAG) lox 1

and Z(#;) are the SD scores corresponding to Y (). In this way, the three
curves are constrained to change smoothly as the covariate changes and, like
the centiles, they can be plotted against the covariate (Figs. 7.3 and 7.4 ). The

“logo(i)~ 52w (712)
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curves are fitted using cubic splines to give a nonlinear regression, and the
extent of the smoothing required can be expressed in the terms of smoothing
parameters (V;,Vy,Vs). These quantities are defined to be the traces of the
relevant smoothing matrices and are referred to as the “equivalent degrees
of freedom” (edf) [19]. Cole and Green [8] argued that the distributions of
(Vs Vu, Vo) in the LMS model are largely independent of each other, implying
that one edf can be optimised while fixing the other two.

> mw3<-1lmsqreg.fit(weight, age, edf=c(7,13,9),

pvec = c(0.03, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.97))
> plot (mw3)
> points(age, weight, pch=".",col="red")
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Fig. 7.3 Centile curves for girls’ weight birth to 36 months of age.

Carey [2] has developed the 1lmsqreg package that implements the LMS
method in R. Smoothed centile curves have been fitted to the reference data
using the lmsqreg.fit function with suggested starting edf values setting of
3,5 and 3 for A, u and o, respectively [3]. The strategy is then to optimise
the u curve edf, by increasing/decreasing the edf by 1 until the change in
penalised likelihood is small, i.e., less than 2. Once the u curve is fitted, the
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process is repeated or the ¢ curve avoiding the value for edf of 2 which would
force a linear trend on the p curve. Finally, the A curve was fitted similarly
to the o curve (Fig. 7.3). However, in cases of fitting the centile curves for
weight measurement age 2 to 19 years for both sexes A had to be set to a
value of zero, which constrains the entire curve to be a constant value and
forces a log transformation (Fig. 7.4). The same had to be applied for the
fitting of male head circumference age 2 to 19 years.

026
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05 00
[
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o018

1 20 3 4 S0 60
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LMS fit with edf = (0,14,8), PL=12923.572

100

weight

Fig. 7.4 Centile curves for boys’ weight 2 to 19 years of age.

> mwl9<-lmsqreg.fit(weight, age, edf=c(0,14,8), pvec = c(0.03,
0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.97), lam.fixed=0)

> plot (mw19)

> points(age, weight, pch=".", col="cyan")

Following the suggested strategy, the data were overfitted and the curves
were clearly undersmoothed. As Cole [8] implies, the case for making the cen-
tile curves smooth is to some extent cosmetic — the centiles are more pleasing
to the eye when smoothed appropriately but it is also in the belief that the
true population centiles will themselves change smoothly. Any nonparametric
curve estimation method requires some means of controlling the smoothness
of the fitted functions. For the LMS method this control is provided by the
edf parameters (vy, vy, Vo).
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As indicated by Carey [2] the value by which to increase/decrease edf
and the change in penalised likelihood depends on the sample size. For large
samples the change of less than 2 units is not significant; therefore, the large
change is needed and the final decision should depend on the appearance of
the curve. In order to overcome the overfitting of the curves the edf values
had to be relaxed.

7.4 Smoothing and Evaluation

The number of effective degrees of freedom is a convenient parameter that
expresses the amount of adjustment necessary for smoothing a set of data.
Adjustment of edf values was done following Carey’s [2] algorithm, this time
decreasing the value for v, by 1 until the curve appeared to be smooth. The
same procedure was followed for vy and lastly for v, (Fig. 7.5). Finally, the
adequacy of the chosen model is evaluated using the original data.

As discussed by Green [11], the distribution theory for model evaluation
statistics formed on the bases of changes in penalised likelihood is currently
still undeveloped. We have adopted a local-test based approach to formal
model evaluation. Carey’s Imsqreg package [2] provides as a part of the output
for a fitted model a collection of model-based z-scores derived from the given
quantile regression model. They are stratified based on the covariate ¢, and
within this strata, z-scores are tested for marginal Gaussianity (Kolmogorov—
Smirnov test), zero mean (Student’s z-test) and unit variance (x2 test) [3].

> mw3

Dependent variable: gdata$weight , independent variable: gdata$agey
The fit converged with EDF=( 4,6,3 ), PL= 9198.316

KS tests: (intervals in gdata$agey //p-values)
(-0.001,0] (0,0.348] (0.348,0.802] (0.802,1.54] (1.54,3] Overall
0.000 0.000 0.271 0.324 0.676 0.001

t tests: (intervals in gdata$agey //p-values)
(-0.001,0] (0,0.348] (0.348,0.802] (0.802,1.54] (1.54,3] Overall
0.006 0.000 0.562 0.369 0.568 0.810

X2 tests (unit variance): (intervals in gdata$agey //p-values)
(-0.001,0] (0,0.348] (0.348,0.802] (0.802,1.54] (1.54,3] Overall
0.000 0.000 0.717 0.050 0.462 0.979

The above output from the final fitted model shows that the hypotheses of
a zero mean, unit variance normal distribution in the intervals close to birth
are rejected. The original data are strongly skewed and the edf parameters
finally selected are not able to transform the data sufficiently well, with the
final empirical distribution being slightly skewed. If the smoothing parameters
are increased, in particular v;, the normality of the transformed data can be
successfully achieved. However, as discussed earlier in Sect. 7.3, we reduced
the values of the optimal smoothing parameters in order to obtain smoother
estimated centile curves.
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Table 7.2 reports on the accuracy of the quantile regression fit in terms
of the discrepency between the nominal and empirical proportions of data
lying beneath selected quantile function for age group birth to 3 years. By
and large these results show that the quantiles of the fitted models do fit the
data well.

Table 7.2 Table entries are quantile coverage probability estimates. Measurement:
Age: birth to 36 months

14
sex variable N  0.03 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.97

female weight 6,123 0.025 0.052 0.090 0.240 0.506 0.755 0.905 0.950 0.972

7.5 Averaging

We were required to produce reference standards for two age groups: birth
to 36 months of age and 2 to 19 years of age. The overlap for the two sets
of charts occurs for ages between 2 and 3 years. The values for both sets of
standards in the overlapping age range are a product of the model fitted to
the whole data set for each specific age group. This means that the centile
curves for a particular measurement in this overlapping period will not be
the same for the two sets of charts as they are based on using different data
outside the range 2 to 3 years (Fig. 7.6).

One of the arguments of the 1lmsqreg.fit function is targlen which de-
fines the number of points at which smooth estimates of A, u, and ¢ should
be extracted for quantile plotting. For both sets of charts we have adopted
the default value of 50 for the targlen argument. For the overlapping period
2 to 3 years this produces 17 points in the birth to 36 month chart and 3
points in the chart for ages 2 to 19 years (Fig. 7.7).
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Fig. 7.5 Final smooth centile curves for girls’ weight birth to 36 months of age.

In order to make the centile curves for a particular measurement for this
overlapping period the same for the two sets of charts we have re-estimated
the curves using the following cubic polynomial:

$i = Bo + Pix; + Box? + Bax} (7.13)

To estimate this cubic polynomial for each of the centiles at the lower
and upper boundaries of the overlapping period we have used three adjacent
points from each of the charts (Figs. 7.7 and 7.8), using the least squares
estimator given by
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Fig. 7.7 Centile curves for girls’ weight birth to 36 months of age.
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(7.14)

For the overlapping period new estimates were calculated using the newly
found polynomial resulting in a smooth overlap (Fig. 7.9). This means that
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the centiles for a particular measurement will be the same in the birth to 36

month chart as in the 2 to 19 year age chart.
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Fig. 7.8 Centile curves for girls’ weight age 2 to 19 years.
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Fig. 7.9 Final smooth centile curves for girls’ weight birth to 36 months of age.
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7.6 Comparisons Using ANCOVA

7.6.1 Comparing Geographical Regions

In the following analysis the aim is, for a particular measurement, sex and
age group, to compare the growth trends over age in different geographical
regions. These are:

i North
ii Southwest
iii Central

This means that we are looking at a large proportion of the original data used
to fit the LMS models but not all of it as some individuals live in regions other
than those listed above.

One approach, for a particular measurement and sex, would be to fit a
different LMS model to the data in each region and then to compare the
fitted models. However, we are not aware of any existing methodology to
make such direct LMS model comparisons. In our proposed approach, we
have taken the final LMS model fitted to all the data and used it to transform
all the individual measurements into standard deviation scores.

Then, in step 1, a separate cubic regression curve was fitted, where the
response (“y-variable”) is the SDS score and the covariate (“x-variable”) is
age, to the data in each of the three regional groups. These regression lines
describe how the mean SDS score of a given measurement changes with age in
each region. The fit of the three cubic regression curves were then compared
with the fit of three quadratic regression curves. If the difference in fits was
not statistically significant, then the quadratic models were accepted and
they were then compared with three linear regression curves and so on until
the simplest model that might be fitted is three different constant horizontal
lines. The three final regression lines can be plotted to provide a graphical
description of the differences (Fig. 7.10).

If there are no differences in the three regions in how a particular measure-
ment for a given age group and sex changes with age, then a single common
regression line would be an appropriate model for all the data in the three
regions. Therefore, in step 2, such a model was fitted to the data. It would be
expected that it would be fairly close to the zero line but not identically zero
because we have not used all the original data in this analysis as explained
above. The degree of this line (cubic, quadratic, etc.) was chosen to be the
same as that of the best fitting three separate ones.

The next stage is to statistically test the fit of the model involving three
separate regression lines with the fit of the model based on a single common
regression line. We would expect the total residual sum of the squares for the
model involving three regression lines to be less than that which just involves
one but we need to test whether the difference is statistically significant.
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Fig. 7.10 SDS score regression models in the three geographical regions for weight
vs. age; age: birth to 36 months; sex: female.

The method we have used is a standard “F-test” in this context, which is
appropriate because the standardised data are Normally distributed. If the
p-value of this test is small (less than 0.05), the conclusion would be that
the single regression line is inadequate and there are significant differences
between the regions in how mean SDS score of a given measurement of a
given age group of a given sex changes with age (Table 7.3).

Table 7.3 Resulting p-values when testing a common regression model vs. different
regression models for the three regions

age: birth to 36 months
sex variable p

female weight < 107¢

Finally, after finding a significant result we can then go on to use the same
methodology as above but just use pairs of regions in turn to see which are
significantly different from each other.

This procedure can be summarized for a given sex and measurement by
the following steps:

[i] Step 1: Find the best fitting polynomials having the lowest possible common degree
for each of the three regions.
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[ii] Step 2: We want to answer the question “Is a common polynomial of the same

[iii]

degree as found in Step 1 appropriate for all three regions or do the polynomials
vary with region?”

That is, for a particular measurement, sex and age group we want to test:
Hy:E[z|agel =Po+...+Pgage?  for each region, where g <3 is the degree of the
common best fitting polynomial and E [z|age] denotes the mean value of z at the
given age.

vs. H; : The polynomial for at least two regions differ.

Step 3: After finding a significant result in Step 2 carry out pairwise comparisons
between the regions.

The results of the analyses carried out in Step 2 for age birth to 3 years are

given in Table 7.4. The coefficients of the polynomials in the three separate
regions, as well as for all three regions together, are in Table 7.4. Those poly-
nomials for girls’ weight age birth to 3 years are plotted in Fig. 7.10. Table 7.5
details the p-values for all the pairwise comparisons between regions.

Table 7.4 Estimates of the model parameters for individual regions and all three
regions together for female weight, age range birth to 36 months

sex: female

variable region Bo B B Bs

weight central 0.04201 0.38775 -0.34224 0.09184
north 0.4412 -1.2076 0.91695 -0.18133
southwest -0.36297 -0.20639 0.10564 -0.02648
all 0.039995 -0.005139 -0.020645 0.007602

Table 7.5 p-values for the pairwise comparisons between the different regions using

ANCOVA
sex: female, age birth to 36 months
weight
14
north-central <10°°
southwest-central <10°°
southwest-north <10°°

There are clearly significant differences between the regions for each of the

measurements for both sexes in each of the age ranges.
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7.6.2 Comparing Males and Females

Standard deviation scores were used to compare the growth patterns between
boys and girls using very similar methodology to that described above when
comparing the geographical regions. In order to make comparisons for a given
measure between genders, we have used the relevant fitted girls” LMS model
to standardise both girls and boys measures using the zscores function from
Carey’s [2] 1msqreg package.

Weight 0 to 3

Boys
= =Glrls

0 4 8 12 16 20 24 28 32 36
age (months)

Fig. 7.11 Comparisons of the growth charts for weight measurement between males
and females birth to 3 years of age.

We can then plot these standardised measures against age and construct
separate regression lines for boys and girls. Considering that the data were
standardised by the girls model, it is evident that the appropriate regression
model for girls would be zero. However, the z scores of the boys could be
explained by an appropriate polynomial regression model (up to cubic poly-
nomial), describing the existing differences between boys and girls. If there
are differences, then this will be indicated by a nonzero regression line and
we can test whether the two lines are significantly different from each other
using ANCOVA. We have also superimposed girls and boys centiles for a
given measure on the same plot to give another graphical impression of any
differences (Fig. 7.11). For children aged 0 to 3 we found significant differ-
ences for each measure and the fitted regression lines (Table 7.6) describe how
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the differences (measured in girls standard deviation scores) change with age

(Fig. 7.12).

Table 7.6 Estimates of the model’s parameters
Age birth to 36 months

variable Bo Bi B Bs
length 0.21719 0.12799 -0.06722 -
head circumference 0.22312 0.75785 -0.56355 0.12686
weight 0.16774 0.70106 -0.65468 0.14854
body mass index - 0.52468 -0.50530 0.12154

Z Scores Boys vs Girls

————

/
— WL
0.5 1 i

—_—ht

z score
o
=

——hc

-0.9

age

Fig. 7.12 Comparisons of growth patterns between boys and girls birth to 3 years
of age.

7.7 Discussion

This study was set up by the Saudi medical authorities who required growth
charts based entirely on data collected from Saudi children and adolescents
rather than using a more general alternative, such as those provided by the
WHO. We have seen that for girls’ weight (birth to 36 months) the age-
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specific conditional quantile estimates we have constructed using the LMS
method by and large successfully capture the main features of the data and
this also proved to be true for the other growth parameters. In further work
we have compared the new Saudi charts with the 2006 WHO standards and
found that there are marked differences in corresponding centiles. Use of the
WHO standards in Saudi Arabia would, for example, increase the prevalence
of undernutrition, stunting and wasting [9].

An essential part of our procedure was to try to identify outliers to be
removed from the data prior to estimating the LMS model. We used the
robust regression rlm function to do this, basing our assessment on the weight
attached to each observation by the procedure. We should stress that we were
not using this model to make any formal inferences about the form of the
conditional mean function. As seen in Sect. 7.2, this worked well with four
cases being removed. If these cases were included, then there is a numerical
failure in the LMS model estimation algorithm. All four deleted cases had
z-scores greater than 5 in absolute value. The only other case which had an
absolute z-score bigger than 5 is case 4131 with a z-score of -5.078, who can
be seen listed in Fig. 7.1. This corresponds to a girl aged 0.259 year (3.11
months) who had a weight of only 3.0 kg which is a little higher than case
1235 whose weight was only 2.5 kg at a similar age and who was deleted from
the data.

The evaluation of the fitted model in Sect. 7.4 indicates that the three-
parameter LMS model is not always able to adequately achieve conditional
normality at all ages. Under-smoothing of the parameter curves helps to rem-
edy this problem, but at the expense of more noisy centiles. Stasinopoulos
and Rigby [15] have developed the more flexible Box—Cox power exponen-
tial model, referred to as LMSP, to try to overcome this where they add an
extra parameter to model kurtosis. This is implemented in the GAMLESS R
package [16]. Wei et al. [19] advocate the use of nonparametric quantile re-
gression methods which offer a greater degree of flexibility in their ability to
model features in the conditional distribution. These are implemented in the
quantreg R package. However, as mentioned earlier we were required to use
the LMS method in this study, one of the reasons being to facilitate com-
parisons with existing international standards which have themselves been
determined using the LMS methodology [9].
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Chapter 8
Causal Mediation Analysis Using R

K. Imai, L. Keele, D. Tingley, and T. Yamamoto

Abstract Causal mediation analysis is widely used across many disciplines to
investigate possible causal mechanisms. Such an analysis allows researchers
to explore various causal pathways, going beyond the estimation of simple
causal effects. Recently, Imai et al. (2008) [3] and Imai et al. (2009) [2] devel-
oped general algorithms to estimate causal mediation effects with the variety
of data types that are often encountered in practice. The new algorithms can
estimate causal mediation effects for linear and nonlinear relationships, with
parametric and nonparametric models, with continuous and discrete medi-
ators, and with various types of outcome variables. In this paper, we show
how to implement these algorithms in the statistical computing language R.
Our easy-to-use software, mediation, takes advantage of the object-oriented
programming nature of the R language and allows researchers to estimate
causal mediation effects in a straightforward manner. Finally, mediation
also implements sensitivity analyses which can be used to formally assess the
robustness of findings to the potential violations of the key identifying as-
sumption. After describing the basic structure of the software, we illustrate
its use with several empirical examples.
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8.1 Introduction

Causal mediation analysis is important for quantitative social science research
because it allows researchers to identify possible causal mechanisms, thereby
going beyond the simple estimation of causal effects. As social scientists,
we are often interested in empirically testing a theoretical explanation of a
particular causal phenomenon. This is the primary goal of causal mediation
analysis. Thus, causal mediation analysis has a potential to overcome the
common criticism of quantitative social science research that it only provides
a black-box view of causality.

Recently, Imai et al. (2008) [3] and Tmai et al. (2009) [2] developed general
algorithms for the estimation of causal mediation effects with a wide variety
of data that are often encountered in practice. The new algorithms can es-
timate causal mediation effects for linear and nonlinear relationships, with
parametric and nonparametric models, with continuous and discrete media-
tors, and with various types of outcome variables. These papers [3, 2] also
develop sensitivity analyses which can be used to formally assess the robust-
ness of findings to the potential violations of the key identifying assumption.
In this paper, we describe the easy-to-use software, mediation, which allows
researchers to conduct causal mediation analysis within the statistical com-
puting language R [8]. We illustrate the use of the software with some of the
empirical examples presented in Imai et al. [2].

8.1.1 Installation and Updating

Before we begin, we explain how to install and update the software. First,
researchers need to install R which is available freely at the Comprehensive
R Archive Network (http://cran.r-project.org). Next, open R and then
type the following at the prompt:

R> install.packages("mediation")
Once mediation is installed, the following command will load the package:
R> library("mediation")

Finally, to update mediation to its latest version, try the following com-
mand:

R> update.packages("mediation")
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8.2 The Software

In this section, we give an overview of the software by describing its de-
sign and architecture. To avoid duplication, we do not provide the details of
the methods that are implemented by mediation and the assumptions that
underline them. Readers are encouraged to read Imai et al. [3, 2] for more
information about the methodology implemented in mediation.

8.2.1 Overview

The methods implemented via mediation rely on the following identification
result obtained under the sequential ignorability assumption of Imai et al. [3]:

S(z)://E(Yi | My =m,T; =1,X; =x)

(415 AP )} ), )
S = [ [ M=m 1= 1.% =)
—-E(Y; |Mi=m,T;=0,X;=x)} dFMi\Y}:[.Xi:x(m) dFy; (), (8.2)

where §(t) and C(r) are the average causal mediation and average (natural)
direct effects, respectively, and (Y;,M;, T;, X;) represents the observed outcome,
mediator, treatment, and pretreatment covariates. The sequential ignorabil-
ity assumption states that the observed mediator status is as if randomly
assigned conditional on the randomized treatment variable and the pretreat-
ment covariates. Causal mediation analysis under this assumption requires
two statistical models: one for the mediator f(M; | T;,X;) and the other for
the outcome variable f(Y; | T;,M;,X;). (Note that we use the empirical distri-
bution of X; to approximate Fx,.) Once these models are chosen and fitted by
researchers, then mediation will compute the estimated causal mediation
and other relevant estimates using the algorithms proposed in Imai et al. [2].
The algorithms also produce confidence intervals based on either a nonpara-
metric bootstrap procedure (for parametric or nonparametric models) or a
quasi-Bayesian Monte Carlo approximation (for parametric models).

Figure 8.1 graphically illustrates the three steps required for a mediation
analysis. The first step is to fit the mediator and outcome models using, for
example, regression models with the usual Im() or glm() functions. In the
second step, the analyst takes the output objects from these models, which
in Figure 8.1 we call model.m and model.y, and use them as inputs for the
main function, mediate (). This function then estimates the causal mediation
effects, direct effects, and total effect along with their uncertainty estimates.
Finally, sensitivity analysis can be conducted via the function medsens()
which takes the output of mediate() as an input. For the output of the
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Fig. 8.1 Diagram illustrating the use of the software mediation. Users first fit
the mediator and outcome models. Then, the function mediate() conducts causal
mediation analysis while medsens() implements sensitivity analysis. The functions
summary () and plot() help users interpret the results of these analyses.

mediate() function, a summary() method reports its key results in tabular
form. For the output of the medsens() function, there are both summary ()
and plot () functions to display numerical and graphical summaries of the
sensitivity analysis, respectively.

8.2.2 Estimation of the Causal Mediation Effects

Estimation of the causal mediation effects is based on Algorithms 1 and 2 of
Imai et al. [2]. These are general algorithms in that they can be applied to any
parametric (Algorithm 1 or 2) or semi/nonparametric models (Algorithm 2)
for the mediator and outcome variables. Here, we briefly describe how these
algorithms have been implemented in mediation by taking advantage of the
object-oriented nature of the R programming language.

Algorithm 1 for Parametric Models

We begin by explaining how to implement Algorithm 1 of Imai et al. [2]
for standard parametric models. First, analysts fit parametric models for
the mediator and outcome variables. That is, we model the observed medi-
ator M; given the treatment 7; and pretreatment covariates X;. Similarly, we
model the observed outcome Y; given the treatment, mediator, and pretreat-
ment covariates. For example, to implement the Baron-Kenny procedure [1]
in mediation, linear models are fitted for both the mediator and outcome
models using the 1m() command.
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The model objects from these two parametric models form the inputs
for the mediate() function. The user must also supply the names for the
mediator and outcome variables along with how many simulations should
be used for inference, and whether the mediator variable interacts with the
treatment variable in the outcome model. Given these model objects, the
estimation proceeds by simulating the model parameters based on their ap-
proximate asymptotic distribution (i.e., the multivariate normal distribution
with the mean equal to the parameter estimates and the variance equal to
the asymptotic variance estimate), and then computing causal mediation ef-
fects of interest for each parameter draw (e.g., using equations (8.1) and (8.2)
for average causal mediation and (natural) direct effects, respectively). This
method of inference can be viewed as an approximation to the Bayesian pos-
terior distribution due to the Bernstein—von Mises Theorem [6]. The advan-
tage of this procedure is that it is relatively computationally efficient (when
compared to Algorithm 2).

We take advantage of the object-oriented nature of the R programming
language at several steps in the function mediate (). For example, functions
like coef () and vcov () are useful for extracting the point and uncertainty es-
timates from the model objects to form the multivariate normal distribution
from which the parameter draws are sampled. In addition, the computation
of the estimated causal mediation effects of interest requires the prediction
of the mediator values under different treatment regimes as well as the pre-
diction of the outcome values under different treatment and mediator values.
This can be done by using model.frame() to set the treatment and/or me-
diator values to specific levels while keeping the values of the other variables
unchanged. We then use the model .matrix () and matrix multiplication with
the distribution of simulated parameters to compute the mediation and di-
rect effects. The main advantage of this approach is that it is applicable to a
wide range of parametric models and allows us to avoid coding a completely
separate function for different models.

Algorithm 2 for Non/Semiparametric Inference

The disadvantage of Algorithm 1 is that it cannot be easily applied to non
and semiparametric models. For such models, Algorithm 2, which is based on
nonparametric bootstrap, can be used although it is more computationally
intensive. Algorithm 2 may also be used for the usual parametric models.
Specifically, in Algorithm 2, we resample the observed data with replace-
ment. Then, for each of the bootstrapped samples, we fit both the outcome
and mediator models and compute the quantities of interest. As before, the
computation requires the prediction of the mediator values under different
treatment regimes as well as the prediction of the outcome values under differ-
ent treatment and mediator values. To take advantage of the object-oriented
nature of the R language, Algorithm 2 relies on the predict () function to
compute these predictions, while we again manipulate the treatment and me-
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diator status using the model.frame() function. This process is repeated a
large number of times and returns a bootstrap distribution of the mediation,
direct, and total effects. We use the percentiles of the bootstrap distribution
for confidence intervals. Thus, Algorithm 2 allows analysts to estimate medi-
ation effects with more flexible model specifications or to estimate mediation
effects for quantiles of the distribution.

8.2.3 Sensitivity Analysis

Causal mediation analysis relies on the sequential ignorability assumption
that cannot be directly verified with the observed data. The assumption im-
plies that the treatment is ignorable given the observed pretreatment con-
founders and that the mediator is ignorable given the observed treatment
and the observed pretreatment covariates. In order to probe the plausibility
of such a key identification assumption, analysts must perform a sensitiv-
ity analysis [9]. Unfortunately, it is difficult to construct a sensitivity analysis
that is generally applicable to any parametric or nonparametric model. Thus,
Imai et al. [3, 2] develop sensitivity analyses for commonly used parametric
models, which we implement in mediation.

The Baron—Kenny Procedure

Imai et al. [3] develop a sensitivity analysis for the Baron—-Kenny procedure
and Imai et al. [2] generalize it to the linear structural equation model (LSEM)
with an interaction term. This general model is given by

M; = o+ BoTi + & X + €, (8.3)
Y = o3 + BsT; 4+ yM; + kTiM; + & X; + €33, (8.4)

where the sensitivity parameter is the correlation between €, and €3, which
we denote by p. Under sequential ignorability, p is equal to zero and thus
the magnitude of this correlation coefficient represents the departure from
the ignorability assumption (about the mediator). Note that the treatment is
assumed to be ignorable as it would be the case in randomized experiments
where the treatment is randomized but the mediator is not. Theorem 2 of [2]
shows how the average causal mediation effects change as a function of p.
To obtain the confidence intervals for the sensitivity analysis, we apply
the following iterative algorithm to equations (8.3) and (8.4) for a fixed value
of p. At the tth iteration, given the current values of the coefficients, i.e.,
81 = (Océt),ﬁz(t),éz(t),...), and a given error correlation p, we compute the
variance covariance matrix of (&,€3), which is denoted by (). The matrix

2
is computed by setting Gj@ = \|§j(.t)||2/(n—Lj) and Gz(g) = pGZ(I)Gét), where éj(.t)
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is the residual vector and L; is the number of coefficients for the mediator
model (j=2) and the outcome model (j = 3) at the zth iteration. We then
update the parameters via generalized least squares, i.e.,
ot — (vT (0 g1 vT (0 @)W
17TX000 0 O M

where V = 0001 TMTMX}, W= {Y} T=(Ty,....T,)",

M= (My,....M,)" and Y = (Y},...,Y,)" are column vectors of length n, and
X = (X1,...,X,) " are the (n x K) matrix of observed pretreatment covari-
ates, and ® represents the Kronecker product. We typically use equation-
by-equation least squares estimates as the starting values of 6 and iterate
these two steps until convergence. This is essentially an application of the
iterative feasible generalized least square algorithm of the seemingly unre-
lated regression [12], and thus the asymptotic variance of @ is given by
Var(6) = {V'(Z~'@1,)V}~!. Then, for a given value of p, the asymptotic
variance of the estimated average causal mediation effects is found, for ex-
ample, by the Delta method and the confidence intervals can be constructed.

The Binary Outcome Case

The sensitivity analysis for binary outcomes parallels the case when both
the mediator and outcome are continuous. Here, we assume that the model
for the outcome is a probit regression. Using a probit regression for the out-
come allows us to assume the error terms are jointly normal with a possibly
nonzero correlation p. Imai et al. [2] derive the average causal mediation ef-
fects as a function of p and a set of parameters that are identifiable due to
randomization of the treatment. This lets us use p as a sensitivity parameter
in the same way as in the Baron—Kenny procedure. For the calculation of
confidence intervals, we rely on the quasi-Bayesian approach of Algorithm 1
by approximating the posterior distribution with the sampling distribution
of the maximum likelihood estimates.

The Binary Mediator Case

Finally, a similar sensitivity analysis can also be conducted in a situation
where the mediator variable is dichotomous and the outcome is continuous.
In this case, we assume that the mediator can be modeled as a probit re-
gression where the error term is independently and identically distributed as
standard normal distribution. A linear normal regression with error variance
equal to 632 is used to model the continuous outcome variable. We further
assume that the two error terms jointly follow a bivariate normal distribution
with mean zero and covariance po3. Then, as in the other two cases, we use
the correlation between the two error terms p as the sensitivity parameter.
Imai et al. [2] show that under this setup, the causal mediation effects can
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be expressed as a function of the model parameters that can be consistently
estimated given a fixed value of p. Uncertainty estimates are computed based
on the quasi-Bayesian approach, as in the binary outcome case. The results
can be graphically summarized via the plot() function in a manner similar
to the other two cases.

Alternative Interpretations Based on R?

The main advantage of using p as a sensitivity parameter is its simplicity.
However, applied researchers may find it difficult to interpret the magnitude
of this correlation coefficient. To overcome this limitation, Imai et al. [3]
proposed alternative interpretations of p based on the coefficients of deter-
mination or R* and Imai et al. [2] extended them to the binary mediator and
binary outcome cases. In that formulation, it is assumed that there exists a
common unobserved pretreatment confounder in both mediator and outcome
models. Applied researchers are then required to specify whether the coeffi-
cients of this unobserved confounder in the two models have the same sign or
not; i.e., sgn(A,A3) =1 or —1 where A, and A3 are the coefficients in the me-
diator and outcome models, respectively. Once this information is provided,
the average causal mediation effect can be expressed as the function of “the
proportions of original variances explained by the unobserved confounder”
where the original variances refer to the variances of the mediator and the
outcome (or the variance of latent variable in the case of binary dependent
variable). Alternatively, the average causal mediation effect can also be ex-
pressed in terms of “the proportions of the previously unexplained variances
explained by the unobserved confounder” (see [1] for details). These alterna-
tive interpretations allow researchers to quantify how large the unobserved
confounder must be (relative to the observed pretreatment covariates in the
model) in order for the original conclusions to be reversed.

8.2.4 Current Limaitations

Our software, mediation, is quite flexible and can handle many of the model
types that researchers are likely to use in practice. Table 8.1 categorizes the
types of the mediator and outcome variables and lists whether mediation
can produce the point and uncertainty estimates of causal mediation effects.
For example, while mediation can estimate average causal mediation ef-
fects when the mediator is ordered and the outcome is continuous, it has
not yet been extended to other cases involving ordered variables. In each
situation handled by mediation, it is possible to have an interaction term
between treatment status and the mediator variable, in which case the esti-
mated quantities of interest will be reported separately for the treatment and
control groups.
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Table 8.1 The types of data that can be currently handled by mediation for the
estimation of causal mediation effects

Outcome Variable Types

Mediator Types Continuous Ordered Binary

Continuous Yes No Yes
Ordered Yes No No
Binary Yes No Yes

Table 8.2 The types of data that can be currently handled by mediation for sensi-
tivity analysis. For continuous variables, the linear regression model is assumed. For
binary variables, the probit regression model is assumed

Outcome Variable Types

Mediator Types Continuous Ordered Binary

Continuous Yes No Yes
Ordered No No No
Binary Yes No No

Our software provides a convenient way to probe the sensitivity of results
to potential violations of the ignorability assumption for certain model types.
The sensitivity analysis requires the specific derivations for each combination
of models, making it difficult to develop a general sensitivity analysis method.
As summarized in Table 8.2, mediation can handle several cases that are
likely to be encountered by applied researchers. When the mediator is contin-
uous, then sensitivity analysis can be conducted with continuous and binary
outcome variables. In addition, when the mediator is binary, sensitivity anal-
ysis is available for continuous outcome variables. For sensitivity analyses
that combine binary or continuous mediators and outcomes, analysts must
use a probit regression model with a linear regression model. This allows for
jointly normal errors in the analysis. Unlike the estimation of causal medi-
ation effects, sensitivity analysis with treatment/mediator interactions can
only be done for the continuous outcome/continuous mediator and contin-
uous outcome/binary mediator cases. In the future, we hope to expand the
range of models that are available for sensitivity analysis.
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8.3 Examples

Next, we provide several examples to illustrate the use of mediation for the
estimation of causal mediation effects and sensitivity analysis. The data used
are available as part of the package so that readers can replicate the results
reported below. We demonstrate the variety of models that can be used for
the outcome and mediating variables.

Before presenting our examples, we load the mediation library and the
example data set included with the library.

R> library("mediation")

mediation: R Package for Causal Mediation Analysis
Version: 2.0

R> data("jobs")

This dataset is from the Job Search Intervention Study (JOBS II) [10]. In the
JOBS II field experiment, 1,801 unemployed workers received a pre-screening
questionnaire and were then randomly assigned to treatment and control
groups. Those in the treatment group participated in job-skills workshops.
Those in the control condition received a booklet describing job-search tips. In
follow-up interviews, two key outcome variables were measured: a continuous
measure of depressive symptoms based on the Hopkins Symptom Checklist
(depress2), and a binary variable representing whether the respondent had
become employed (work1). In the JOBS II data, a continuous measure of
job-search self-efficacy represents a key mediating variable (job_seek). In
addition to the outcome and mediators, the JOBS II data also include the
following list of baseline covariates that were measured prior to the admin-
istration of the treatment: pretreatment level of depression (depressil), edu-
cation (educ), income, race (nonwhite), marital status (marital), age, sex,
previous occupation (occp), and the level of economic hardship (econ_hard).

8.3.1 Estimation of Causal Mediation Effects

The Baron—Kenny Procedure

We start with an example when both the mediator and the outcome are
continuous. In this instance, the results from either algorithm will return
point estimates essentially identical to the usual Baron and Kenny proce-
dure though the quasi-Bayesian or nonparametric bootstrap approximation
is used. Using the JOBS II data, we first estimate two linear regressions for
both the mediator and the outcome using the 1m() function.

R> model.m <- 1lm(job_seek ~ treat + depressl + econ_hard
+ sex + age + occp + marital + nonwhite + educ + income,
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data = jobs)

R> model.y <- 1lm(depress2 ~ treat + job_seek + depressl
+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, data = jobs)

These two model objects, model.m and model.y, become the arguments
for the mediate () function. The analyst must take some care with missing
values before estimating the models above. While model functions in R handle
missing values in the data using the usual listwise deletion procedures, the
functions in mediation assume that missing values have been removed from
the data before the estimation of these two models. Thus the data for the
two models must have identical observations sorted in the same order with all
missing values removed. The R function na.omit() can be used to remove
missing values from the data frame.

In the first call to mediate() below, we specify boot = TRUE to call the
nonparametric bootstrap with 1000 resamples (sims = 1000). When this op-
tion is set to FALSE in the second call, inference proceeds via the quasi-
Bayesian Monte Carlo approximation using Algorithm 1 rather than Algo-
rithm 2. We must also specify the variable names for the treatment indicator
and the mediator variable using treat and mediator, respectively.

R> out.l <- mediate(model.m, model.y, sims = 1000,
boot = TRUE, treat = "treat", mediator = "job_seek")
R> out.2 <- mediate(model.m, model.y, sims = 1000,
treat = "treat", mediator = "job_seek")

The objects from a call to mediate(), i.e., out.1 and out.2 above, are lists
which contain several different quantities from the analysis. For example,
out.1$d0 returns the point estimate for the average causal mediation effect
based on Algorithm 1. The help file contains a full list of values that are con-
tained in mediate() objects. The summary () function prints out the results
of the analysis in tabular form:

R> summary(out.1)

Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap
Mediation Effect: -0.01593 95 CI -0.031140 -0.002341
Direct Effect: -0.03125 95% CI -0.1045 0.0408
Total Effect: -0.04718 95, CI -0.11996 0.02453
Proportion of Total Effect via Mediation:

0.2882 95} CI -2.412 3.419

R> summary (out.2)
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Output Omitted

The output from the summary () function displays the estimates for the aver-
age causal mediation effect, direct effect, total effect, and proportion of total
effect mediated. The first column displays the quantity of interest, the second
column displays the point estimate, and the other columns present the 95%
confidence intervals. Researchers can then easily report these point estimates
and corresponding uncertainty estimates in their work. In this case, we find
that job search self-efficacy mediated the effect of the treatment on depres-
sion in the negative direction. This effect, however, was small with a point
estimate of —.016 but the 95% confidence intervals (—.031,—.002) still do not
contain 0.

The Baron—Kenny Procedure with the Interaction Term

Analysts can also allow the causal mediation effect to vary with treatment
status. Here, the model for the outcome must be altered by including an
interaction term between the treatment indicator, treat, and the mediator
variable, job_seek:

R> model.y <- lm(depress2 ~ treat + job_seek
+ treat:job_seek + depressl + econ_hard + sex
+ age + occp + marital + nonwhite + educ

+ income, data = jobs)

Users should note that under our current implementation, the interac-
tion term must be specified in the form of treat.name:med.name where
treat.name and med.name are the names of the treatment variable and me-
diator in the model, respectively. Then, a call is again made to mediate(),
but now the option INT = TRUE must be specified:

R> out.3 <- mediate(model.m, model.y, sims = 1000,
boot = TRUE, INT = TRUE, treat = "treat", mediator =
"job_seek")

R> out.4 <- mediate(model.m, model.y, sims=1000,

INT = TRUE, treat = "treat", mediator =

"job_seek")

R> summary (out.3)

Causal Mediation Analysis
Confidence Intervals Based on Nonparametric Bootstrap
Mediation Effect_0: -0.02056 95} CI -0.0425 -0.0038

Mediation Effect_1: -0.01350 95%, CI -0.0281 -0.0023
Direct Effect_0: -0.03318 95), CI -0.10496 0.03592
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Direct Effect_1: -0.02611 95}, CI -0.09612 0.04454
Total Effect: -0.04668 95, CI -0.11594 0.02135
Proportion of Total Effect via Mediation:

0.3053 95} CI -3.578 3.593

R> summary (out.4)

Output Omitted

Again using the summary () function provides a table of the results. Now esti-
mates for the mediation and direct effects correspond to the levels of the treat-
ment and are printed as such in the tabular summary. In this case, the medi-
ation effect under the treatment condition, listed as Mediation Effect_1, is
estimated to be —.014 while the mediation effect under the control condition,
Mediation Effect_0, is —.021.

Use of Non/Semiparametric Regression

The flexibility of mediation becomes readily apparent when we move
beyond standard linear regression models. For example, we might suspect
that the mediator has a nonlinear effect on the outcome. Generalized Additive
Models (GAMs) allow analysts to use splines for flexible nonlinear fits. This
presents no difficulties for the mediate() function. We model the mediator
as before, but we alter the outcome model using the gam() function from the
mgcv library.

R> library(mgcv)

This is mgcv 1.4-1

R> model.m <- 1lm(job_seek ~ treat + depressil

+ econ_hard + sex + age + occp + marital

+ nonwhite + educ + income, data = jobs)

R> model.y <- gam(depress2 ~ treat + s(job_seek,

bs = "cr") + depressl + econ_hard + sex + age
+ occp + marital + nonwhite + educ + income,
data = jobs)

In this case we fit a Generalized Additive Model for the outcome variable, and
allow the effect of the job_seek variable to be nonlinear and determined by
the data. This is done by using the s() notation which allows the fit between
the mediator and the outcome to be modeled with a spline. Using the spline
for the fit allows the estimate for the mediator on the outcome to be a series
of piecewise polynomial regression fits. This semiparametric regression model
is a more general version of nonparametric regression models such as lowess.
The model above allows the estimate to vary across the range of the predictor
variable. Here, we specify the model with a cubic basis function (bs = "cr")
for the smoothing spline and leave the smoothing selection to be done at the
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program defaults which is generalized cross-validation. Fully understanding
how to fit such models is beyond the scope here. Interested readers should
consult Wood 2006 [11] for full technical details and Keele 2008 [5] provides
coverage of these models from a social science perspective.

The call to mediate() with a gam() fit remains unchanged except that
when the outcome model is a semiparametric regression only the nonpara-
metric bootstrap is valid for calculating uncertainty estimates, i.e., boot =
TRUE.

R> out.5 <- mediate(model.m, model.y, sims = 1000,
boot = TRUE, treat = "treat", mediator = "job_seek")

R> summary (out.5)

Output Omitted

The model for the mediator can also be modeled with the gam() function
as well. The gam() function also allows analysts to include interactions; thus
analysts can still allow the mediation effects to vary with treatment status.
This simply requires altering the model specification by using the by option in
the gam() function and using two separate indicator variables for treatment
status. To fit this model we need one variable that indicates whether the
observation was in the treatment group and a second variable that indicates
whether the observation was in the control group. To allow the mediation
effect to vary with treatment status, the call to gam() takes the following
form:

R> model.y <- gam(depress2 ~ treat + s(job_seek, by = treat)
+ s(job_seek, by = control) + depressl + econ_hard + sex

+ age + occp + marital + nonwhite + educ + income,

data = jobs)

In this case, we must also alter the options in the mediate() function by
specifying INT = TRUE and provide the variable name for the control group
indicator using the control option.

R> out.6 <- mediate(model.m, model.y, sims = 1000,
boot = TRUE, INT = TRUE, treat = "treat",
mediator = "job_seek", control = "control")

R> summary (out.6)

Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect_0: -0.02328 95} CI -0.059138 0.006138
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Mediation Effect_1: -0.01622 95} CI -0.041565 0.004363
Direct Effect_0: -0.01408 95% CI -0.09369 0.05672
Direct Effect_1: -0.007025 95% CI -0.08481 0.06114
Total Effect: -0.0303 95% CI -0.13065 0.04744
Proportion of Total Effect via Mediation:

0.3395% CI -8.514 4.391

As the reader can see, despite the fact that the mediator was specified as
a nonparametric function, one still receives point estimates and confidence
intervals for the mediation effect across each treatment level. In the table,
Mediation Effect_0 and Direct Effect_0 are the mediation and direct
effects respectively under the control condition, while Mediation Effect_1
and Direct Effect_1 are the mediation and direct effects under treatment.

Quantile Causal Mediation Effects

Researchers might also be interested in modeling mediation effects for
quantiles of the outcome. Quantile regression allows for a convenient way to
model the quantiles of the outcome distribution while adjusting for a variety
of covariates [7]. For example, a researcher might be interested in the 0.5
quantile (i.e., median) of the distribution. This also presents no difficulties
for the mediate () function. Again for these models, uncertainty estimates
are calculated using the nonparametric bootstrap. To use quantile regression,
we load the quantreg library and model the median of the outcome, though
other quantiles are also permissible. Analysts can also relax the no-interaction
assumption for the quantile regression models as well. Below we estimate the
mediator with a standard linear regression, while for the outcome we use
rq() to model the median.

R> library(quantreg)

Loading required package: SparseM
Package SparseM (0.78) loaded.

To cite, see citation("SparseM")
Package quantreg (4.26) loaded.
To cite, see citation("quantreg")

R> model.m <- 1lm(job_seek ~ treat + depressl + econ_hard
+ sex + age + occp + marital + nonwhite + educ + income,
data = jobs)

R> model.y <- rq(depress2 ~ treat + job_seek + depressl
+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, tau= 0.5, data = jobs)

R> out.7 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", M = "job_seek")

R> summary (out.7)
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Causal Mediation Analysis
Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect: -0.01470 95% CI -0.027235 -0.001534
Direct Effect: -0.02489 95} CI -0.09637 0.04309
Total Effect: -0.03959 95 CI -0.11523 0.02857
Proportion of Total Effect via Mediation:

0.3337 95% CI -3.069 1.902

where the summary () command gives the estimated median causal mediation
effect along with the estimates for the other quantities of interest.

It is also possible to estimate mediation effects for quantiles of the outcome
other than the median. This is done simply by specifying a different outcome
quantile in the quantile regression model. For example, if the 10th percentile
of the outcome were of interest, then the user can change the tau option,

R> model.y <- rq(depress2 ~ treat + job_seek + depressl
+ econ_hard + sex + age + occp + marital + nonwhite
+ educ + income, tau = 0.1, data = jobs)

Furthermore, it is straightforward to loop over a set of quantiles and graph
the mediation effects for a range of quantiles, as done in [2].

Discrete Mediator and Outcome Data

Often analysts use measures for the mediator and outcome that are dis-
crete. For standard methods, this has presented a number of complications
requiring individually tailored techniques. The mediation software, however,
can handle a number of different discrete data types using the general algo-
rithms developed in Imai et al. [2]. For example, one outcome of interest in the
JOBS 1I study is a binary indicator (work1) for whether the subject became
employed after the training sessions. To estimate the mediation effect, we
simply use a probit regression instead of a linear regression for the outcome
and then call mediate() as before:

R> model.m <- 1lm(job_seek ~ treat + depressl + econ_hard
+ sex + age + occp + marital + nonwhite + educ + income,
data = jobs)

R> model.y <- glm(workl ~ treat + job_seek + depressl

+ econ_hard + sex + age + occp + marital + nonwhite + educ
+ income, family = binomial(link = "probit"), data = jobs)
R> out.8 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", mediator = "job_seek")

R> out.9 <- mediate(model.m, model.y, sims = 1000,

treat = "treat", mediator = "job_seek")
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R> summary (out.8)

C.]utput Omitted

R> summary (out.9)

Causal Mediation Analysis
Quasi-Bayesian Confidence Intervals

Mediation Effect: 0.003780 95% CI -0.0005248 0.0109583
Direct Effect: 0.05573 95, CI -0.007416 0.119900
Total Effect: 0.05951 95% CI -0.004037 0.123071
Proportion of Total Effect via Mediation:

0.05804 95% CI -0.2405 0.4498

In the table printed by the summary() function, the estimated average
causal mediation effect along with the quasi-Bayesian confidence interval are
printed on the first line followed by the direct and total effects, and the
proportion of the total effect due to mediation. It is also possible to use a logit
model for the outcome instead of a probit model. However, we recommend the
use of a probit model because our implementation of the sensitivity analysis
below requires a probit model for analytical tractability.

The mediator can also be binary or an ordered measure as well. This simply
requires modeling the mediator with either a probit or ordered probit model.
For demonstration purposes, the jobs data contains two variables, job_dich
and job_disc, which are recoded versions of job_seek. The first measure
is simply the continuous scale divided at the median into a binary variable.
The second measure, job_disc, recodes the continuous scale into a discrete
four-point scale. We emphasize that this is for demonstration purposes only,
and analysts in general should not recode continuous measures into discrete
measures. Estimating mediation effects with a binary mediator is quite similar
to the case above with a binary outcome. We simply now use a probit model
for the mediator and a linear regression for the outcome:

R> model.m <- glm(job_dich ~ treat + depressl + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,

data = job, family = binomial(link = "probit"))

R> model.y <- lm(depress2 ~ treat + job_dich + treat:job_dich
+ depressl + econ_hard + sex + age + occp + marital

+ nonwhite + educ + income, data = jobs)

In this example we allow the effect of the mediator to vary with treatment
status. The user now calls mediate () and can use either the quasi-Bayesian
approximation or nonparametric bootstrap.
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R> out.10 <- mediate(model.m, model.y, sims = 1000,
boot=TRUE, treat="treat", mediator="job_dich", INT=TRUE)
R> out.11 <- mediate(model.m, model.y, sims = 1000,
treat = "treat", mediator = "job_dich", INT = TRUE)

R> summary (out.10)

Output Omitted
R> summary (out.11)
Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Mediation Effect_0: -0.01809 95% CI -0.035290 -0.005589
Mediation Effect_1: -0.01968 95} CI -0.034518 -0.007263
Direct Effect_0: -0.02849 95% CI -0.1008 0.0393

Direct Effect_1: -0.03009 95% CI -0.10111 0.03791
Total Effect: -0.04817 95% CI -0.11962 0.01729
Proportion of Total Effect via Mediation:

0.3431 95% CI -3.330 3.756

In the table, we see that Mediation Effect_O0 is the mediation effect under
the control condition, while Mediation Effect_1 is the mediation effect un-
der the treatment condition. The same notation applies to the direct effects.
As the reader can see, the output also indicates which algorithm is used for
the 95% confidence intervals.

When the mediator is an ordered variable, we switch to an ordered probit
model for the mediator. In R, the polr () function in the MASS library provides
this functionality. The MASS library is automatically loaded with mediation
so the polr () function is readily available to users. Thus, we fit the outcome
and mediator models below:

R> model.m <- polr(job_disc ~ treat + depressl + econ_hard
+ sex + age + occp + marital + nonwhite + educ + income,
data = jobs, method = "probit", Hess = TRUE)

R> model.y <- 1lm(depress2 ~ treat + job_disc + depressl

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, data = jobs)

The reader should note that in the call to polr() the Hess = TRUE needs
to be specified to use the quasi-Bayesian approximation in the mediate()
function. Once we have estimated these two models, analysis proceeds as
before:

R> out.12 <- mediate(model.m, model.y, sims = 1000,
boot = TRUE, treat = "treat", mediator = "job_disc")
R> out.13 <- mediate(model.m, model.y, sims = 1000,
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treat = "treat", mediator = "job_disc")

R> summary (out.12)

Output Omitted
R> summary(out.13)

Output Omitted

Again, for any of these data types, analysts can relax the no-interaction
assumption as before by including the interaction between treatment and the
mediator variable in the outcome model and using the INT = TRUE option.

8.3.2 Sensitivity Analysis

Once analysts have estimated mediation effects, they should always explore
how robust their finding is to the ignorability assumption. The medsens ()
function allows analysts to conduct sensitivity analyses for mediation ef-
fects. Next, we provide a demonstration of the functionality for the sensitiv-
ity analysis. Currently, mediation can conduct sensitivity analyses for the
continuous—continuous case, the binary—continuous case, and the continuous—
binary case.

The Baron—Kenny Procedure

As before, one must first fit models for the mediator and outcome and
then pass these model objects through the mediate function:

R> model.m <- lm(job_seek ~ treat + depressl + econ_hard
+ sex + age + occp + marital + nonwhite + educ + income,
data = jobs)

R> model.y <- 1lm(depress2 ~ treat + job_seek + depressl
+ econ_hard + sex + age + occp

+ marital + nonwhite + educ + income, data = jobs)

R> med.cont <- mediate(model.m, model.y, sims=1000,
treat = "treat", mediator = "job_seek")

Once the analyst estimates the mediation effects, the output from the
mediate() function becomes the argument for medsens(), which is the
workhorse function. The medsens () function recognizes the options specified
in the mediate() function and thus there is no need to specify the treat,
mediator, or INT options.
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R> sens.cont <- medsens(med.cont, rho.by = 0.05)

The rho.by option specifies how finely incremented the parameter p is for the
sensitivity analysis. Using a coarser grid for p speeds up estimation consid-
erably, but this comes at the cost of estimating the robustness of the original
conclusion only imprecisely.

After running the sensitivity analysis via medsens (), the summary () func-
tion can be used to produce a table with the values of p for which the confi-
dence interval contains zero. This allows the analyst to immediately see the
approximate range of p where the sign of the causal mediation effect is inde-
terminate. The second section of the table contains the value of p for which
the mediation effect is exactly zero, which in this application is —0.19. The
table also presents coefficients of determination that correspond to the criti-
cal value of p where the mediation effect is zero. First, R*3,R*% is the product
of coefficients of determination which represents the proportion of the pre-
viously unexplained variance in the mediator and outcome variables that is
explained by an unobservable pretreatment unconfounder. An alternative for-
mulation is in terms of the proportion of the original variance explained by
an unobserved confounder, which we denote as R3,R3 .

R> summary(sens.cont)
Mediation Sensitivity Analysis

Sensitivity Region
Rho Med. Eff. 95} CI 95% CI R"2_M#R"2_Y* R"2_M"R"2_Y

Lower Upper
[1,] -0.256 0.0056 -0.0008 0.0120 0.0625 0.0403
[2,] -0.20 0.0012 -0.0035 0.0058 0.0400 0.0258
[3,] -0.15 -0.0032 -0.0084 0.0020 0.0225 0.0145
[4,] -0.10 -0.0074 -0.0150 0.0001 0.0100 0.0064

Rho at which ACME = 0: -0.1867

R™2_M*R"2_Y* at which ACME = 0: 0.0349

R"2_M"R"2_Y" at which ACME

0: 0.0225

The table above presents the estimated mediation effect along with its confi-
dence interval for each value of p. The reader can verify that when p is equal
to zero, the reported mediation effect matches the estimate produced by the
mediate() function. For other values of p, the mediation effect is calculated
under different levels of unobserved confounding.

The information from the sensitivity analysis can also be summarized
graphically using the plot() function. First, passing the medsens object to
plot () and specifying the sens.par option to "rho", i.e.,
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R> plot(sens.cont, sens.par = "rho")

produces the left-hand side of Figure 8.2. In the plot, the dashed horizontal
line represents the estimated mediation effect under the sequential ignora-
bility assumption, and the solid line represents the mediation effect under
various values of p. The gray region represents the 95% confidence bands.

Similarly, we can also plot the sensitivity analysis in terms of the coeffi-
cients of determination as discussed above. Here we specify sens.par option
to "R2". We also need to specify two additional pieces of information. First,
r.type option tells the plot function whether to plot R*2,R* or ﬁ%,,ﬁ% To
plot the former r.type is set to 1 and to plot the latter r.type is set to 2.
Finally, the sign.prod option specifies the sign of the product of the coef-
ficients of the unobserved confounder in the mediator and outcome models.
This product indicates whether the unobserved confounder affects both me-
diator and outcome variables in the same direction (1) or different directions
(-1), thereby reflecting the analyst’s expectation about the nature of con-
founding.

For example, the following command produces the plot representing the
sensitivity of estimates with respect to the proportion of the original variances
explained by the unobserved confounder when the confounder is hypothesized
to affect the mediator and outcome variables in opposite directions.

R> plot(sens.cont, sens.par = "R2", r.type = 2,
sign.prod = -1)

The resulting plot is shown on the right-hand side of Figure 8.2. Each contour
line represents the mediation effect for the corresponding values of R3, and Rz
For example, the 0 contour line corresponds to values of the product §2M§)2/
such that the average causal mediation effect is 0. As reported in the table,
even a small proportion of original variance unexplained by the confounder,
.02%, produces mediation effects of 0. Accordingly, the right-hand side of
Figure 8.2 shows how increases in R3,RZ (moving from the lower left to upper
right) produce positive mediation effects.

For both types of sensitivity plots, the user can specify additional options
available in the plot function such as alternative title (main) and axis labels
(x1ab, ylab) or manipulate common graphical options (e.g., x1im).

Binary Outcome

The medsens () function also extends to analyses where the mediator is
binary and the outcome is continuous, as well as when the mediator is con-
tinuous and the outcome is binary. If either variable is binary, medsens()
takes an additional argument. For example, recall the binary outcome model
estimated earlier:

R> model.y <- glm(workl ~ treat + job_seek + depressl
+ econ_hard + sex + age + occp + marital + nonwhite
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Fig. 8.2 Sensitivity analysis with continuous outcome and mediator.

+ educ + income, family = binomial(link = "probit"),
data = jobs)

R> med.bout <- mediate(model.m, model.y, sims = 1000,
treat = "treat", mediator = "job_seek")

The call to medsens () works as before, with the output from the mediate ()
function passed through medsens().

R> sens.bout <- medsens(med.bout, rho.by = 0.05,
sims = 1000)

The sims option provides control over the number of draws in the parametric
bootstrap procedure which is used to compute confidence bands. When either
the mediator or outcome is binary, the exact values of sensitivity parameters
where the mediation effects are zero cannot be analytically obtained as in the
fully continuous case (see [3] Section 4). Thus, this information is reported
based on the signs of the estimated mediation effects under various values of p
and corresponding coefficients of determination. The usage of the summary ()
function, however, remains identical to the fully continuous case in that the
output table contains the estimated mediation effects and the corresponding
values of p for which the confidence region contains zero.

As in the case with continuous mediator and outcome variables, we can plot
the results of the sensitivity analysis. The following code produces Figure 8.3.

R> plot(sens.bout, sens.par = "rho")
R> plot(sens.bout, sens.par = "R2", r.type = 2,
sign.prod = 1)

On the left-hand side we plot the average causal mediation effects in terms of
p, while we use R,zw and R%, on the right-hand side. In the p plot, the dashed
line represents the estimated mediation effect under sequential ignorability,
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Fig. 8.3 Sensitivity analysis with continuous outcome and binary mediator.

and the solid line represents the mediation effect under various values of p.
The gray region represents the 95% confidence bands. In the R? plot the
average causal mediation effect is plotted against various values of Rjzu and
ﬁlz, and is interpreted in the same way as above.

When the outcome is binary, the proportion of the total effect due to
mediation can also be calculated as a function of the sensitivity parameter p.
The pr.plot option in the plot command (in conjunction with the sens.par
= "rho" option) allows users to plot a summary of the sensitivity analysis
for the proportion mediated. For example, the following call would provide a
plot of this quantity:

R> plot(sens.bout, sens.par = "rho", pr.plot = TRUE)
Binary Mediator

The final form of sensitivity analysis deals with the case where the out-
come variable is continuous but the mediator is binary. For the purpose of
illustration, we simply dichotomize the job_seek variable to produce a bi-
nary measure job_dich. We fit a probit model for the mediator and linear
regression for the outcome variable.

R> model.m <- glm(job_dich ~ treat + depressl

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, data = jobs,

family = binomial(link = "probit"))

R> model.y <- lm(depress2 ~ treat + job_dich+ depressl
+ econ_hard + sex + age + occp

+ marital + nonwhite + educ + income, data = jobs)

R> med.bmed <- mediate(model.m, model.y, sims = 1000,
treat = "treat", mediator = "job_dich")
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Fig. 8.4 Sensitivity analysis with continuous outcome and binary mediator.

R> sens.bmed <- medsens(med.bmed, rho.by = 0.05,
sims = 1000)

Again we can pass the output of the medsens () function through the plot ()
function:

R> plot(sens.bmed, sens.par = "rho")

producing Figure 8.4. The plot is interpreted in the same way as the above
cases. The user also has the option to plot sensitivity results in terms of the
coefficients of determination just as in the case with continuous outcome and
mediator variables.

When the mediator variable is binary, the plotted values of the mediation
effect and their confidence bands may not be perfectly smooth curves due to
simulation errors. This is especially likely when the number of simulations
(sims) is set to a small value. In such situations, the user can choose to set
the smooth.effect and smooth.ci options to TRUE in the plot() function
so that the corresponding values become smoothed out via a lowess smoother
before being plotted. Although this option often makes the produced graph
look nicer, the user should be cautious as the adjustment could affect one’s
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substantive conclusions in a significant way. A recommended alternative is to
increase the number of simulations.

8.4 Concluding Remarks

Causal mediation analysis is a key tool for social scientific research. In this
paper, we describe our easy-to-use software for causal mediation analysis,
mediation, that implements the new methods and algorithms introduced
by Imai et al. 2008 [3] and Imai et al. 2009 [2]. The software provides a
flexible, unified approach to causal mediation analysis in various situations
encountered by applied researchers. The object-oriented nature of the R pro-
gramming made it possible for us to implement these algorithms in a fairly
general way. In addition to the estimation of causal mediation effects, me-
diation implements formal sensitivity analyses so that researchers can as-
sess the robustness of their findings to the potential violations of the key
identifying assumption. This is an important contribution for at least two
reasons. First, even in experiments with randomize treatments, causal medi-
ation analysis requires an additional assumption that is not directly testable
from the observed data. Thus, researchers must evaluate the consequences of
potential violations of the assumption via sensitivity analysis. Alternatively,
researchers might use other experimental designs though this entails making
other assumptions [4]. Second, the accumulation of such sensitivity analyses
is essential for interpreting the relative degree of robustness across different
studies. Thus, the development of easy-to-use software, such as mediation,
facilitates causal mediation analysis in applied social science research in sev-
eral critical directions.

8.5 Notes and Acknowledgment

The most recent version (along with all previous versions) of the R package,
mediation, is available for download at the Comprehensive R Archive Net-
work (http://cran.r-project.org/web/packages/mediation). This arti-
cle is based on version 2.1 of mediation. Financial support from the National
Science Foundation (SES-0849715 and SES-0918968) is acknowledged.
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Chapter 9

Statistical Validation of Functional Form
in Multiple Regression Using R

Harry Haupt, Joachim Schnurbus, and Rolf Tschernig

Abstract In applied statistical research the practitioner frequently faces the
problem that there is neither clear guidance from grounds of theoretical rea-
soning nor empirical (meta) evidence on the choice of functional form of a
tentative regression model. Thus, parametric modeling resulting in a para-
metric benchmark model may easily miss important features of the data.
Using recently advanced nonparametric regression methods we illustrate two
powerful techniques to validate a parametric benchmark model. We discuss an
empirical example using a well-known data set and provide R code snippets
for the implementation of simulations and examples.

9.1 Model Validation

Consider a typical situation in applied multiple regression analysis where
we wish to explain a continuous scalar response variable y by a set of say
K potential explanatory variables collected in the vector x, where x may
contain both continuous and (ordered and unordered) categorical variables,
for a given data sample of size n. Let us assume in addition that there are
no restrictions from economic, ecologic, psychologic, etc. theory about the
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functional relationship between y and x, and—if there are—any unknown
model parameters, say .

It is common practice to consider a class of parametric models such as
classical multiple linear regression models (or other members of the Box—Cox
family of transformations) and, following some model selection procedure(s),
to choose and estimate a specific parsimonious parametric model. In the se-
quel we refer to this model as the parametric benchmark model. Before using
the benchmark model it should be validated or, more precisely, subjected to
diagnostic tests, among them misspecification tests. Such tests should allow
for a wide range of models under the alternative. This can be accomplished,
for example, by considering nonparametric tests. Of course, this requires that
the estimation of nonparametric models is appropriate and that the resulting
statistical inference is informative. This implies that given the number of con-
tinuous covariates the number of observations is sufficiently large. Recently,
Hsiao, Li, and Racine (see [3]) suggested a test for parametric misspecifi-
cation that is implemented in the np package for R of Hayfield and Racine
(see [2]). In comparison to other nonparametric misspecification tests it uses
information from discrete covariates more efficiently.

As an alternative to misspecification tests one may compare competing
models with respect to their predictive ability. A common quantity for mea-
suring predictive quality is the mean (weighted) integrated squared error of
prediction (compare e.g. Sect. 2.2.1 in [8]). Since this quantity is unobserv-
able, it has to be estimated. In a cross-sectional context this can be done by
repeatedly (B times) drawing shuffled random subsamples from the data set.
For each replication, one part of the data is used for estimation, the other part
for prediction. From the latter data we compute the average squared error of
prediction (ASEP) defined below in (9.4). The ASEP provides an estimate
of the (weighted) integrated squared error or prediction. By averaging over
all replications one obtains an estimate of the mean (weighted) integrated
squared error or prediction. This procedure is applied to both the benchmark
and the alternative model and one may then test for the equality of the pre-
diction measures. Further, one may compare the ASEP of both models for
each replication and compute the percentage in which the benchmark para-
metric model outperforms the alternative model with respect to ASEP. That
is, the ASEP of the benchmark model is smaller than that of the alternative
model in ¥ - 100 percent of the B replications. Some computational details
can be found in Sect. 9.2.

In many cases one may also compare some model selection criteria. All
three approaches mentioned for validation contain some feature to punish
overfitting that would result by choosing models on the basis of simple
goodness-of-fit measures such as R? or some Pseudo-R? such as (9.3) below. It
is worth noting that the choice of relevant criteria to choose between models,
say a parametric benchmark model M, and a semi- or nonparametric model,
say My, naturally depends on the objective of the empirical analysis. For ex-
ample, the objective may be the analysis of marginal effects or prediction or
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both. However, it is widespread practice to use model selection procedures
and diagnostics independently of the specific modeling goal. Although this is
clearly not optimal, we do not discuss this issue further.

In this paper we illustrate the benefits and drawbacks of validation tech-
niques based on misspecification tests and prediction simulations drawing
heavily on modern nonparametric regression techniques implemented in R
(version 2.9.1). We use the np package (version 0.30-3) of Hayfield and Racine
(see [2]) for computing flexible nonparametric kernel regression models and
conducting the nonparametric misspecification test of [3]. In addition, we
show how the relax package (version 1.2.1) of Wolf (see [11]) can be used
for interactive graphical analysis in R. Clever graphical analysis can help
to identify data points that cause a rejection of the benchmark parametric
model and to specify an alternative parametric model. We also indicate how
the presented code-snippets can be generalized. The empirical illustration
follows the seminal work of Hamermesh and Biddle (see [1]) on the impact
of looks on earning.

The remainder of the paper is organized as follows. In Sect. 9.2 we briefly
describe a general approach for the validation of models with continuous and
discrete covariates. Sect. 9.3 considers relax and its use for different steps of
the validation process. The empirical illustration is contained in Sect. 9.4.

9.2 Nonparametric Methods for Model Validation

In this section we briefly introduce nonparametric regression and misspecifi-
cation testing. We are interested in modeling the conditional mean

E[y|X’Z] = f(X,Z), (91)

where we explicitly allow for discrete and continuous covariates, collected in
vectors z and X, respectively. The conditional mean (9.1) may be modeled
parametrically

Elylx,z] = f(x,z,B) (9-2)

or nonparametrically. In the latter case, we use the mixed kernel regression
approach of Li and Racine (see [7], [8], and [9]) where discrete and continuous
covariates are smoothed simultaneously using specific weighting functions
(kernels) for ordered and unordered discrete as well as continuous variables.
The minimization calculus for a local linear regression at position (xo,2g) is
given by

n B N 2
_ min Y (yz'—bo(xo,lo)—bl(Xo,Zo)T'(Xz’—Xo)) -W(xo,Xi,Z0,2;,h),

bo(x0,20),b1(X0:20) =1
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where Zo(xo,zo) estimates the conditional mean (9.1) at position (xo,2o),
while Bl (x0,2z0) captures the partial effects of all continuous covariates.
The observations in the neighborhood of (x¢,zo) are used to calculate val-
ues Eo(xo,zo) and Bl (x0,20), where the neighborhood is determined by the
weighting function W(.). The latter is denoted as generalized product ker-
nel, as it depends on Xy, X;,Zg,Z;, and the vector of smoothing parameters h
via W (xo,X;,20,2;,h) = HE:] We(X0c,Xic, hie) ~Hgig+l Wi(z0a,2id,ha)- In the latter
equation, W,(.) is the weighting function for continuous regressors, W, (.) is the
weighting function for discrete regressors, xo¢,X;c denote values of continuous
regressors, zo4,Ziq denote values of discrete regressors, and h.,h; are smooth-
ing parameters for continuous/discrete variables. As weighting function for
continuous regressors, we use a second-order Gaussian kernel, the discrete
regressors are weighted by the corresponding kernels of Li and Racine, de-
scribed in [3].

As this nonparametric approach is based on locally approximating the true
function with a linear function, it is called local linear estimation. The dis-
crete regressors enter the minimization calculus only through the generalized
product kernel but not through the quadratic term. Thus, the discrete covari-
ates are included in a local constant fashion and, in contrast to the estimated
partial effects by (xo,2g) for continuous variables, their partial effects are not
estimated.

It is a nice feature of the local constant estimator that it delivers informa-
tion on the relevance of regressors. If the bandwidth approaches infinity (its
upper bound), the corresponding continuous (discrete) covariate has negligi-
ble or even no impact on the estimation. In case of local linear estimation, a
bandwidth that is huge in relation to the range of the corresponding regressor
indicates ceteris paribus a linear relationship between the regressors consid-
ered and the explanatory variable. Hence, local linear estimation provides in-
formation about the functional form without the need to plot the conditional
mean function. This information can also be used to explore suitable para-
metric specifications. For discrete covariates an estimated bandwidth close to
zero (the lower bound) indicates that the nonparametric regression is done
almost separately for each level of the corresponding discrete covariate, in
analogy to the classical frequency-approach, e.g., [8, Chap. 3].

For comparing the in-sample fit of the parametric and nonparametric spec-
ifications we consider the Pseudo-R?

PR? = (c’o?r (y,y))z. (9.3)

Hence, for each specification we analyze the (linear) relationship between
observed and fitted values that are contained in the n-dimensional vectors y
and y.

As our first step of validating the parametric benchmark model we conduct
the nonparametric misspecification test of Hsiao et al. (see [3]). Its pair of
hypotheses is given by
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Hy : P(Elyilx;,z] = f(xi,z;,B)) =1 for some 3,
Hy : P(Elyi|xi,zi] = f(xi,2;,B8)) <1 for all B.

Let the u;’s denote the errors of the parametric benchmark model. The test
statistic T is based on estimating E[u;E[u;|x;,2i]g(.)] and is consistent and
asymptotically normal under quite general conditions. The test checks for
remaining systematic information in the residuals of the parametric specifi-
cation by running a nonparametric regression of these residuals on the co-
variates. Since the asymptotic distribution is known to kick in in rather large
samples, np provides different bootstrapped versions of the test statistic.

As our second step of validation, the parametric benchmark specification
is compared to a fully nonparametric model with respect to prediction perfor-
mance. Bandwidths are chosen either by cross-validation or by the corrected
Akaike criterion of Hurvich et al. (see [4]). We construct hold-out data for this
comparison of the prediction performance by randomly splitting the sample in
two parts. The first n; observations are used for estimating all specifications
while the remaining n, = n —n; hold-out observations serve as validation-
subsample used to compare the predicted values to the observed values. In
the following, we replicate this step in a repeated random sampling Monte
Carlo approach B = 10,000 times and compute for each replication the aver-
age squared error of prediction (ASEP) for measuring prediction performance

n

1 ~
ASEP = . Y Gi—y) (9.4)
i=1

using the ny hold-out observations.

As described in Sect. 9.1 we then compute the percentage of the num-
ber of times when the parametric benchmark specification exhibits a lower
ASEP than the alternative nonparametric specification (and thus has the bet-
ter prediction performance). Second, we compare the empirical distribution
function of the ASEPs to see whether one specification dominates the other.
This can be done by testing whether the difference in the mean of the ASEPs
is significant or by comparing the distributions of the ASEPs for both model
specifications.

9.3 Model Visualization and Validation Using relax

relax is an acronym for “R Editor for Literate Analysis and lateX” and is in-
tended for combining report writing and statistical analysis. In the following,
we especially use the slider function that allows interactive graphs by using
the definition of sliders that can be dragged by left-clicking and holding the
mouse button down. Changing the slider position immediately changes the
results on the screen. For example, consider conditional scatter plots of two
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variables, where the slider position determines the value of the third variable.
This is especially helpful in a regression setting of discrete and continuous
covariates as one can plot the response variable against continuous covariates
for the observations for different categories of discrete covariates determined
by a slider. The relax package can be used for the exploration of the data
structures, to detect relationships in the data that are not obviously visible.
For example, these graphs can help to explore the inclusion of interactions in
a parametric framework.

The slider function also allows the definition of buttons that are not
moved, but just pressed, as is shown in the following example for a quick
analysis of outliers.

(01) dataset <-

(02) axis.horizontal.column <- 1

(03) axis.vertical.column <- 2

(04) axis.horizontal <- dataset[, axis.horizontal.column]
(05) axis.vertical <- dataset[, axis.vertical.column]
(06) relax.plot <- function(...){

(07) plot(axis.horizontal, axis.vertical, pch = 20)

(08) if(slider(obj.name = "pick.obs") == 1){

(09) screen.click <- locator(1)

(10) temp <- (screen.click$x - axis.horizontal) 2 +
1D (screen.click$y - axis.vertical)~2

(12) observation <- dataset[temp == min(temp),]
(13) print(observation)

(14) slider(obj.name = "pick.obs", obj.value = 0)
(15) 3}

(16) slider(relax.plot, but.functions = function(...){

(17) slider(obj.name = "pick.obs", obj.value = 1); relax.plot()}
(18) , but.names = c("select observation"))

(19) slider(obj.name = "pick.obs", obj.value = 0)

(20) relax.plot()

Code lines (01) to (03) are the only lines that need input from the user.
The only prerequisite for the analysis is that the variables are contained in
the same data set, saved as a matrix or a data frame where each row (column)
corresponds to one observation (variable). In line (01), one has to include the
name of the data set right after the arrow, while in line (02) one has to specify
the column number of the variable that is intended to be on the horizontal
axis of the scatter plot. Line (03) is equivalent to line (02) for the vertical
axis. Lines (04) and (05) are convenient to simplify some of the following
queries.

Lines (06) to (15) contain the information for plotting and printing the
configuration of the selected observation, while lines (16) to (19) contain the
configuration of the slider function. The last line (20) is simply a call to the
plotting function defined in line (06) to start the graphical analysis. Line (07)
contains the command for the scatter plot (we omit the additional code snip-
pets necessary for improved graphs). Line (08) starts the if-query, whether the
button “pick.obs” is pressed. Line (17) defines that if this button is clicked, it
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gets a value of 1 assigned, thus at the end of the if-query at line (14), the but-
ton is set to 0 again. Line (09) uses the locator function of the automatically
loaded graphics package, where the coordinates of the point that is clicked
in the scatter plot are saved as “screen.click$x” and “screen.click$y”. These
coordinates are used to determine the Euclidean distance in lines (10) and
(11) between the clicked point and each observation of the data set. Thus,
the configuration (i.e., the row of the data set) of the observation with the
minimal Euclidean distance — see line (12) — is printed out in line (13).
Line (15) closes the if-query for whether the button is pressed as well as the
“relax.plot” function that generates the graphical setup.

Lines (16) to (18) contain the definition of the button “select observation”
that is denoted as “pick.obs” for calling it within a function as in line (08).
Hence, after pushing the button “select observation”, the object “pick.obs” is
set to 1. Line (19) is simply included for clean programming, as the button
shall have the value 0 assigned before it is pressed. A second example that
demonstrates the use of sliders is contained in the R appendix.

9.4 Beauty and the Labor Market Revisited

Referring to the seminal work of Hamermesh and Biddle (see [1], hereafter
HB) on the impact of looks on earning, we use the data available on Hamer-
mesh’s homepage (http://www.eco.utexas.edu/faculty/Hamermesh/) to
examine the validity of a parametric specification and corresponding infer-
ences. We have n = 1,260 observations on the following variables (see HB):
wage: hourly wage in US-$, educ: education in years, fem: dummy variable=1
if the observation is from a female, look: the sample values of this ordered
categorical variable range from “1” (strikingly handsome), “2” (above aver-
age), “3” (average), “4” (below average), to “5” (homely). As suggested by
HB, we assign the extreme categories to the nearest category, respectively.
From this we also calculate the dummy variables below (above), which is
equal to 1 if the respective looks are below (above) average.

In Table 9.1 and Figure 9.1 we provide numerical and graphical descrip-
tions of the variables wage, log(wage), educ, look, and fem and their respec-
tive relationships. Following HB we will use log(wage) as response variable
in the regression analysis.

From our graphical and descriptive diagnostics we are careful to note that
there is one quite extreme observation of a female with 13 years of educa-
tion and below-average looks who has the maximum hourly wage of approx-
imately $78. This observation, which is also highlighted in all of the residual
diagnostics contained in the plot () command for all of the following linear
regressions, is a “good” leverage point as trimming it does not alter the re-
gression results reported below. To investigate potential leverage points we
can also use the code of the relax example in Sect. 9.3. If we link the data
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Table 9.1 Descriptive statistics generated with function basicStats() from package
fBasics

wage log(wage) educ
Minimum 1.02 0.02 5
Maximum T7.72 4.35 17
1. Quartile 3.71 1.31 12
3. Quartile 7.69 2.04 13
Mean 6.31 1.66 12.56
Median 5.30 1.67 12
Variance 21.7216 0.3534 6.8879
Stdev 4.6606 0.5945 2.6245
Skewness 4.8077 0.0831 -0.3713
Kurtosis 50.9277 0.4196 0.8735

set of HB in line (01) and enter the column number of educ in line (02) and
that of wage in line (03), we get a scatter plot of wage on educ and clearly
see that potential outlier. Clicking “select observation” and afterwards on the
observation with an hourly wage of more than 70 US-$, produces the values
of all variables for the corresponding row in the data set printed in the R
console, without sorting and scrolling through the data set of 1,260 observa-
tions. This tool is especially useful to check whether extreme observations for
one or more variables have certain similarities concerning the other variables
in the data set.

In Table 9.2 we report the ordinary least squares (OLS) regression results
and some diagnostics based on the wage equation (and nested smaller models)

log(wage) =P + Brabove + Bzbelow + Psfem + fseduc + Pyeduc’ +
Brabove - fem + PBgbelow - fem+ foeduc - fem + Bipeduc? - fem+u. (9.5)

As the null of homoskedasticity cannot be rejected at any reasonable sig-
nificance level, we report OLS standard errors. The regression results suggest
that the most parsimonious (with respect to SC) specification M;; works rea-
sonably and explains roughly 28% of the variation in log(wage). We apply
the test of [3], using their original configuration. The null model My; produces
the following p-values: 0.718 (asymptotic), 0.125 (iid bootstrap), and 0.138
(wild bootstrap). It is worth noting that by redoing the test with specifi-
cation My (favored by AIC), one obtains larger p-values throughout: 0.922
(asymptotic), 0.602 (iid bootstrap), and 0.654 (wild bootstrap).

A local linear estimator for mixed data is used to estimate the alterna-
tive nonparametric model where we apply the Li—Racine kernels for mixed
data and a second-order Gaussian kernel for the continuous variables. The
bandwidth choices reported in Table 9.3 are based on the corrected AIC of
Hurvich et al. (see [4]). Note that the Pseudo-R? PR = 0.2805 is only slightly
larger than that of the parametric benchmark model. The bandwidth of fem
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Fig. 9.1 Histogram and density estimate of log(wage), plot of log(wage) against
educ, and boxplots of log(wage) against look and fem.

is quite close to zero, hence the relationship between wage and look and educ
is estimated for males and females separately.

In comparison to the nonparametric specification, the parametric model
My, (Mjy) has a smaller ASEP for 6,156 (6,993) out of 10,000 replications
given a splitting proportion of 90:10. The mean of the ASEPs for the para-
metric benchmark specification is significantly lower than the corresponding
mean for the nonparametric specification, as a p-value below 0.0001 for the
paired t-test reveals. In sum, the parametric benchmark specification Mj; is
successfully validated by both, the misspecification test and the prediction
simulation.

To further investigate the prediction simulation results the use of relax is
based on the example in Sect. 9.3. Here, we first generate a scatterplot for the
10,000 ASEPs of one specification against the other. An additional bisecting
line helps to see whether for one or more of the 10,000 replications one speci-
fication predicts remarkably good/bad. Thus, this replication can be selected
by clicking on it and can be further analyzed. For example, we can check
whether for this replication only a few observations in the corresponding pre-
diction sample are responsible for the high ASEPs or whether the prediction
performance is poor for all observations for one of the specifications. For the
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Table 9.2 OLS regression outputs for equation (9.5). OLS standard errors in paren-
theses

M My My My My

(const) 1.8734 1.6819 1.7053 1.6394 1.6500
(0.0223) ( 0.1886) ( 0.1891) (0.2271) (0.2276)
above —0.1774 —0.1562 —0.1671 —0.1584 —0.1703
( 0.0471) ( 0.0450) ( 0.0567) ( 0.0450) ( 0.0567)
below —0.0165 —0.0577 —0.0962 —0.0544 —0.0887
( 0.0337) (0.0323) ( 0.0402) (0.0323) ( 0.0403)
fem —0.5427 —0.5420 —0.5803 —0.4451 —0.4453
( 0.0316) ( 0.0301) ( 0.0403) ( 0.4026) ( 0.4059)
educ —0.0371 —0.0393 —0.0196 —0.0204
( 0.0308) ( 0.0309) (0.0374) ( 0.0374)

educ? 0.0041 0.0042 0.0030 0.0030
(' 0.0013) ( 0.0013) ( 0.0015) ( 0.0015)

above - fem 0.0344 0.0364
( 0.0930) ( 0.0932)

below - fem 0.1076 0.0956
( 0.0670) ( 0.0673)
educ - fem —0.0472 —0.0512
( 0.0657) ( 0.0661)

educ? - fem 0.0030 0.0031
(0.0027) (0.0027)

PR? 0.2006 0.2772 0.2787 0.2808 0.2820

R? 0.1987 0.2744 0.2747 0.2768 0.2768
AIC 1992.12 1869.18 1870.58 1866.91 1868.88
SC 2017.82 1905.15 1916.83 1913.16 1925.41

Table 9.3 Estimated and maximal bandwidth for mixed nonparametric regression
using np.

Variable Estimated bandwidth Maximum bandwidth
fem 0.004250 1
look 0.152078 1
educ 4.917089 o

data set of HB, we find no extreme replications such that the ASEP of one
specification is several times as large as that of the other specification. The
analysis of the prediction performance shows that both specifications deliver
predictions of a quite similar quality with a slight advantage for the para-
metric specification. Hence, the parametric specification seems to capture the
nonlinearity for the conditional expectation of the wages quite well.

Going beyond analyzing the conditional mean, further investigations on
model validity may be directed to (i) whether OLS is the most accurate
estimator for the central tendency of the conditional distribution and (ii)
whether this relationship is stable across the conditional distribution. Both
issues can be addressed by using quantile regression methods (e.g., [5]). This
method is implemented in package quantreg by Koenker (see [6]). Some
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preliminary ¥-quantile regression (0 < ¥ < 1) results generated with function
rq() are displayed in Table 9.4 and Fig. 9.2 (using model Mj; selected by
SC).

From these results we observe that the curvature of the impact of educ
changes across the conditional distribution of log(wage). Clearly, in the lower
part the relationship is almost linear, whereas in the middle and upper part
we find the previously observed quadratic relationship.

Table 9.4 Coefficient estimates for ¥-regression quantiles applied to beauty data.
Standard errors in parentheses generated from iid bootstrap

Covariates 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(const) 0.937 1.234 1.161 1.481 1.785 1.956 2.324 2.381 2.457
(0382) ( 0262) ( 0283) ( 0250) ( 0.268) ( 0222) ( 0.169) ( 0229) ( 0.295)

above —-0.079 —-0.110 —0.165 —0.180 —0.185 —0.184 —0.211 —0.180 —0.159
( 0.091) ( 0.063) ( 0068) ( 0.060) ( 0.064) ( 0.053) ( 0.040) ( 0055 ( 0.070)
below —0.061 —0.042 —0.050 —0.111 —0.082 —0.019 —0.053 —0.036 —0.081
(0065 ( 0.045) ( 0.048) ( 0.043) ( 0.046) ( 0.038) ( 0.029) ( 0.039) ( 0.050)
fem —0.533 —-0.574 —-0.531 —-0.506 —0.510 —0.563 —0.550 —0.572 —0.536
( 0.061) ( 0.042) ( 0.045) ( 0.040) ( 0.043) ( 0035 ( 0.027) ( 0.037) ( 0.047)
educ 0.000 —-0.019 0.011 —0.022 —0.057 —0.064 —0.105 —0.103 —0.073

(10062) ( 0043) ( 0.046) ( 0.041) ( 0.044) ( 0.036) ( 0.028) ( 0038) ( 0.048)

educ? 0.002 0.003 0.002 0.003 0.005 0.005 0.007 0.007 0.006
( 0.003) ( 0.002) ( 0002) ( 0002) ( 0.002) ( 0001) ( 0001) ( 0.002) ( 0.002)

In addition, Figure 9.2 reveals that based on specification My; the esti-
mated median wage of average-looking males almost coincides with the es-
timated ¥ = .9-quantile wage of average-looking females. It is worth noting
that the parameter estimates for fem are quite stable across quantiles. The
pure location shift null hypothesis cannot be rejected at any reasonable sig-
nificance level.
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Fig. 9.2 Conditional plot of log(wage) against educ with fitted values for -
regression quantiles (9 =.1,.5,.9) for average-looking females (dashed red) and males
(solid blue).
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Chapter 10

Fitting Multinomial Models in R:
A Program Based on Bock’s
Multinomial Response Relation Model

David Rindskopf

Abstract Bock’s model for multinomial responses considered contingency
tables as consisting of two kinds of variables, sampling variables (that de-
fined groups) and response variables. Contrasts among response variables
were specified, and these were modeled as functions of contrasts among cat-
egories defined by the sampling variables. This neat separation into indepen-
dent and dependent variables was not captured by general log-linear model
programs, but fits well within the framework that most social scientists are
familiar with. The model is framed to parallel the usual multivariate analysis
of variance (MANOVA) model, so those familiar with MANOVA will find the
multinomial model very natural. This chapter describes an R function to fit
this model, and provides several examples.

10.1 Model

Bock [2, 3] developed a model for the analysis of categorical data that has
two advantages over other common formulations. First, it directly mimics the
structure of multivariate analysis of variance, so that researchers who are used
to that way of specifying models will find it natural to move from the analysis
of continuous variables to the analysis of categorical variables. Second, the
model assumes the data are in the form of a contingency table where rows
represent groups (possibly based on combinations of variables) and columns
represent responses (possibly based on more than one response variable).
This is a natural way of conceptualizing the data and model structure for
many social scientists, who commonly think in terms of independent and
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dependent variables. An example (analyzed later) uses the following data
from Agresti [1]:

Sample Response
Gender Race Democrat Republican Independent
male white 132 176 127
male  black 42 6 12
female white 172 129 130
female black 56 4 15

The combinations of gender and race (in a 2 x 2 design) make up the sample
groups, and the levels of party affiliation represent the response categories.
As with logistic regression (and its extension to outcomes with more than two
categories), each row of the table is first transformed to proportions, and then
to the (natural) logarithm of the odds of being in each response category; the
resulting table consists of multinomial logits.

The statistical model for the multinomial logits is Z = KI'T, where Z is a
matrix of expected values of the multinomial logits, K is the model matrix
for the sample, I" contains the parameters, and T is the model matrix for the
response variables. Each row of Z contains a vector of logits, which are related
to probabilities through the natural extension of logits in the binomial case:

7 = exp(zi)/ ) exp(z))
J

The single subscript i is used to represent the column of Z; the column may,
in practice, represent a combination of levels of dependent variables. The
model for the multivariate logits is parallel to the usual model for multivariate
analysis of variance, in which columns of K would represent contrasts among
the between-subject factors, and rows of T would represent contrasts among
within-subject factors.

For the data set on political party affiliation, the matrix F of observed
frequencies would be
[132 176 127
42 6 12
172 129 130
56 4 15

The K matrix for a saturated model, using effects coding, could be

1 1 1 1

1 1-1-1
1-1 1-1
1-1-1 1

And the T matrix for a saturated model, using coding to represent two
possible contrasts among response categories, might be
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1 1-2
1-1 0
To interpret the parameter estimates, it is easiest to conceptualize the
matrix I" of parameters as the effect of a column of K on a row of T. This

can be visualized in the following table (modeled after Bock [3, Table 8.1-10,
p. 537]), which is based on the coding above:

Party vs. Dem vs.
indep Repub

constant 1 Y12
gender Y21 Y22
race Y31 Y32
gXxXr Va1 Ya2

10.2 Program Code

The program code (on the website for this book) creates a function called
mqual that implements in a straightforward manner the equations in Bock [2,
3]. T have omitted some features, such as the ability to include structural zeros.
These do not occur frequently in common practice, so I chose instead to keep
the program simpler. If one has structural zeros, it is easiest to reframe the
problem so that all variables are response variables, set K = [1], and omit cells
with structural zeros from the data (see Rindskopf [5], for more information
on this and other issues in fitting nonstandard models). Two versions of
the function are given. The first version does not print labels for either the
frequency table, the parameter matrix, or the contrast matrices; the second
version does all of these if labels are put on the data and contrast matrices
(this is illustrated in some of the examples below).

10.3 How to Use the mqual Function

To use the mqual function, one must first define three matrices: F, K, and T.
(They need not have these names, but must be provided in that order to the
mqual function.) F contains the observed frequencies in the form of a rect-
angular table. K contains the model for the samples (independent variables),
and T contains the model for the responses. Note that K usually contains
a column of 1s, while T never contains a row of 1s. F, K, and T must be
matrices, not data frames. Once these are defined, the program is invoked by
the command mqual(F, K, T).
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Output is automatically displayed on the R console. It consists of the ob-
served frequencies, observed and expected (under the model) row proportions,
sample and response design matrices, Pearson and likelihood-ratio chi-square
tests (with df and p values), and parameter estimates with their standard
errors and standardized values (parameter estimates divided by standard er-
rors). In this chapter, only selected output is presented for most examples.

10.4 Example 1: Test of Independence

The 2 x 2 table analyzed was the actual result of the first test of penicillin,
which was done using eight mice that were infected with a deadly bacterium.
The four treated with penicillin all survived, while all those not given peni-
cillin died.

10.4.1 Input

ex.f <- matrix(c(4,0,0,4),nrow=2,byrow=T)
ex.k <- matrix(c(1,1),nrow=2)

ex.t <- matrix(c(1,0),nrow=1)

mqual(ex.f, ex.k, ex.t)

10.4.2 Output

Degrees of Freedom 1

Pearson Fit Statistic 8
Probability(Prsn) = 0.004677735
Likelihood Ratio Fit Statistic 11.09035
Probability(LR) 0.0008677788
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10.5 Example 2: Effect of Aspirin on Myocardial
Infarction (MI)

This data set comes from the first large randomized trial to determine whether
aspirin reduced the likelihood of MI (heart attack). The outcomes were fatal
MI, nonfatal MI, or no MI. The contrasts in the T matrix were constructed to
determine whether aspirin (i) reduced the probability of MI, and/or (ii) re-
duced the fatality rate among those that had an MI. The latter looks promis-
ing from the descriptive statistics, but is not significant due to lack of power.

Treatment  Fatal MI  Nonfatal MI  No MI

Aspirin 5 99 10933
Placebo 18 171 10845

10.5.1 Input

ex.f <- matrix(c(5, 99, 10933, 18, 171, 10845),nrow=2,byrow=T)
ex.k <- matrix(c(1,1),nrow=2)

ex.t <- matrix(c(-1, -1, 2, 1, -1, 0),nrow=2, byrow=T)
mqual(ex.f, ex.k, ex.t)

ex.k2 <- matrix(c(1,1,1,-1),nrow=2,byrow=T)
mqual (ex.f, ex.k2, ex.t)

10.5.2 Output from Saturated Model

Observed Frequencies
5 99 10933
18 171 10845

Observed Row Proportions
0.0004530217 0.008969829 0.9905771
0.0016313214 0.015497553 0.9828711

Parameter Estimates
1.9121173 -1.3092434
0.1536367 -0.1835975
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Standard Errors
0.04348046 0.1302652
0.04348046 0.1302652

Parameters/SE

43.976477 -10.050597
3.533466 -1.409413

10.6 Example 3: Race x Gender x Party Affiliation

This data set was discussed in the first section of this article. The obvious con-
trasts are constructed in the K matrix: Intercept, main effect of gender, main
effect of race, and gender x race interaction. In T, the rows are constructed
to see whether race or gender is related to (i) the probability of belonging
to a major party rather than being independent, and (ii) the probability of
being a Democrat (rather than a Republican), among those in a major party.

10.6.1 Input

# data from Agresti (2002, p. 303) (also p. 339 in 1st Ed)
# number of people in each party, by group

dem <- c(132, 42, 172, 56)
rep <- c(176, 6, 129, 4)
ind <- c(127, 12, 130, 15)

# create labels to print table

gender <- c('m', 'm', 'f', 'f')
1.1 1351 [ BN
race <- c(w', ', W', 'p")

# put into data frame, print

party.id <- data.frame(gender, race, dem, rep, ind)
party.id

# create matrices of frequencies, sample design, response design
party.f <- cbind(dem,rep,ind)

const <- ¢(1,1,1,1) # intercept
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ge <- c¢(-1,-1,1,1) # gender
ra <- c¢(1,-1,1,-1) # race
ge.ra <- ge * ra # gender x race

party.k <- as.matrix(cbind(const,ge,ra,ge.ra))

d.r <- ¢(1,-1,0) # Dem vs Rep for party members
dr.i <- ¢(-1,-1,2) # Party member vs independent

party.t <- rbind(d.r,dr.i)

rownames (party.f) <- c("male white ",
"male black ",
"female white",
"female black")

colnames (party.f) <- c("Dem", "Rep", "ind")
rownames (party.t) <- c("DR v I", "D v R")

colnames (party.k) <-
c("intcpt", "male", "white", "m.w")

mqual (party.f, party.k, party.t)

10.6.2 Output

Observed Row Proportions

Dem Rep ind
male white  0.3034483 0.40459770 0.2919540
male black  0.7000000 0.10000000 0.2000000
female white 0.3990719 0.29930394 0.3016241
female black 0.7466667 0.05333333 0.2000000

Parameters/SE

DR v I DvR
intcpt 1.11308417 6.5825656
male 0.61310442 -1.8211817
white  0.07654031 -6.5825656
m.w -0.44007291 0.1690993
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10.7 Nonstandard Loglinear Models

Consider the following data, showing a child’s preference for presidential can-
didate conditional on his or her mother’s and father’s preference:

Mother’s  Father’s Child’s preference
preference preference  Johnson  Goldwater
Johnson Johnson 256 18
Goldwater 14 7
Goldwater Johnson 20 5
Goldwater 45 93

One natural model is the main effects model that includes the effect of
both father’s and mother’s preference on the child’s preference for Johnson
or Goldwater. The sample model matrix K for this model is

111
110
101
100

The response model matrix T is

[10]

Although this model fits well (LR =.041, df =1, p=.839), there is another
hypothesis of interest: Is the influence of mother’s choice on the child’s choice
the same as that of the father? In order to test this, we fit a model with
columns 2 and 3 of K added together; this produces a nonstandard loglinear
model (Rindskopf [5]).

The sample model matrix is now

12
11
11
10

The fit of this model is excellent: LR =1.095, df =2, p =0.578. The data
are consistent with the theory that the parents have an equal effect on the
child’s preference.

10.8 Technical Details of Estimation Procedure

(This section may be skipped without loss of continuity.)
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The section is a highly condensed summary of the estimation procedure
described in more detail in Bock [3, pp. 520-528]. It is based on the full-rank
form of the model for the multinomial logits,

Z=KI'T (10.1)
For sample group j, let the observed response frequencies be in a vector

l‘j = [rjl rj2... rjm]/

and the corresponding observed response probabilities be in a vector

P =[Py Pp...Pin)
Then define the matrix

Pj] (1—Pj1) —lesz —PjIij
—PimPji —PimPp oo Pjm (1= Pjn)
The first derivatives are
g(I')= Y T(rj—N;P)) ®K; (10.3)
j=1
The matrix of second derivatives is
—H() ==Y N,TW,T' ® K;K] (10.4)
i=1

J

From current values of parameters I; on iteration i (often all zeros for initial

values), calculate trial logits {ZEQ} =Z7; = KI;T and then trial (estimated)

N (i)
probabilities P; = D! {ezﬂf } where Dj is a diagonal matrix, each element of

5(i)

which is a sum of the elements in the rows of |e“

Then calculate the following adjustments, which are added to the current
estimate of the parameter matrix I":

&=H '(I)s(l) (10.5)

The iterations continue until the corrections are small; normally 10 or
fewer iterations are sufficient, and because computations are very fast I have
fixed the number of iterations rather than test for convergence.

The variance—covariance matrix of the parameter estimates is the inverse
of the negative of the matrix of second derivatives of the likelihood function:
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V(I =H () (10.6)

The estimated standard errors of the parameter estimates are the square
roots of the diagonal elements of V(I').

10.9 Troubleshooting and Usage Suggestions

The mqual function has no error trapping, so if you do something wrong the
program (but not R) will fail without much information to help you diagnose
the problem. The following tips are provided to help prevent such errors, and
help diagnose them when they occur.

e Even though one cannot test a saturated model, it is often useful to fit
this model. Examining the parameters divided by their standard errors
(the last section of output) gives a good picture of which effects are and
are not needed in the model. (As with regression, collinearity can create
problems of interpretation, so some caution is needed.)

e The matrix K should have as many rows as the matrix F, and no more
columns than rows.

e [t is often useful to test the null logit model; that is, a model in which
the matrix K consists only of a column of 1s. This provides a baseline for
comparison with other models. If K is only a column of 1s, be sure it is a
matrix and not a vector. This problem is likely to occur if you start with
a fuller K matrix, and only select the first column as a new K matrix.
Depending on how this is done, R may “think” that with just one column,
you mean for K to be a vector. You may have to have an explicit “matrix”
statement to prevent this.

e The K matrix should not have redundant columns. For typical designs
this problem is simple to avoid: Enter a constant, and as many columns
for each effect as there are degrees of freedom for that effect. For a grouping
variable with two categories, such as gender, there is one degree of freedom;
for a variable with five categories, four degrees of freedom. For interactions,
take products of all main effect columns for each variable included in the
interaction, just as in using regression.

e The T matrix should have as many columns as F, and one fewer row than
columns.

e The T matrix should not have a row with 1s. T specifies contrasts among
response categories, and because it models logits of probabilities, there is
one less row in T than there are categories in the responses (because the
probabilities add to 1).

e Observed zero frequencies can sometimes cause numerical problems, de-
pending on the model that is fit. The mqual program will seldom crash
due to zero frequencies, because it stops after 10 iterations. However, a
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telltale sign of numerical problems is very large standard errors for one or
more parameters.
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Chapter 11

A Bayesian Analysis of Leukemia
Incidence Surrounding an Inactive
Hazardous Waste Site

Ronald C. Neath

Abstract In this chapter we consider a subset of the data analyzed by Waller,
Turnbull, Clark, and Nasca (Case Studies in Biometry 1994), concerning in-
cidence of leukemia cases in an area surrounding the GE Auburn hazardous
waste site in Cayuga County in upstate New York. The data consist of ex-
posed population and leukemia cases by census block for the five-year period
from 1978 to 1982, and the goal of our analysis is to quantify the extent to
which close proximity to the hazardous waste site increases risk of contract-
ing leukemia. We follow roughly the methodology of Wakefield and Morris
(JASA 2001), who utilized a location-risk model embedded in a standard
disease-mapping framework to analyze incidence of stomach cancer in rela-
tion to a municipal solid waste incinerator on the northeast coast of England.
We describe in detail the three-stage Bayesian hierarchical model, and the
selection of prior distributions for the model parameters. A major emphasis
of this chapter will be on the use of R and WinBUGS, and the R2ZWinBUGS
interface between them, in conducting the data analysis.

11.1 Introduction

In this chapter we undertake an analysis of a subset of the data originally
considered by [11], concerning incidence of leukemia cases in an area sur-
rounding the GE Auburn hazardous waste site in Cayuga County in upstate
New York. The data consist of exposed population and leukemia cases by
census block for the five-year period 1978-1982, and the goal of our analysis
is to quantify the extent to which close proximity to the hazardous waste site
increases risk of contracting leukemia. We follow roughly the methodology
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of [10], who utilized a location-risk model embedded in a standard disease-
mapping framework to analyze incidence of stomach cancer in relation to a
municipal solid waste incinerator on the northeast coast of England.

Confidentiality requirements restrict the available data to regional sum-
maries only; precise locations of cases and controls are unavailable. The loca-
tion of each census block is taken to be its geographic centroid; we effectively
allocate every case and every control in a census block to a single address at
the regions geographic centroid.

We will refer to the hazardous waste site as the “putative point source”
or just “point source,” and the census blocks will be referred to as “areas” or
“regions.”

The remainder of this chapter is organized as follows. In Section 11.2, be-
fore any discussion of statistical modeling, we present numerical and graphical
summaries of the data. In Section 11.3 we propose a model, essentially adapt-
ing the model of [10] to the present situation. Section 11.4 is concerned with
the selection of prior distributions in our Bayesian hierarchical model, and
Sect. 11.5 summarizes the data analysis itself, culminating in numerical and
graphical summaries of the estimated posterior distributions. We make a few
concluding remarks in Sect. 11.6.

11.2 Data Summaries

The data consist of location, population from 1980 census, and number of
leukemia cases in the 5-year period 1978-1982 for the 30 census blocks whose
geographic centroid lies within 10 km of the GE Auburn hazardous waste
site. Distances from the site range from 0.33 km to 9.38 km, with an average
distance of 2.58 km. Population counts range from 77 to 2422, with an average
population of 1303. Disease counts range from 0.01 to 4.52. Disease counts
take noninteger values because it was necessary to allocate cases for which
the precise census block was unknown. The average number of leukemia cases
per region is 1.11.

Figure 11.1 plots disease count per 1000 of population versus distance from
putative point source. We see that there is at least a suggestion that disease
rates might be higher close to the waste site. Three regions stand out from
the others, one of which stands out from those, and all three are at distances
well under the average.

11.3 The Model

Let i=1,...,n index the census block for the n = 30 regions. For each i let
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Fig. 11.1 Disease rate versus distance from point source.

Y; = observed disease count in area i

E; = expected disease count in area i

X; = log(population) in area i

d; = distance from point source to centroid of area i,

and for each i and j let
d;;j = distance between centroids of areas i and j .

We consider the following model, similar to that suggested for a similar prob-
lem by [10]. Assume, conditionally on the random effects U; and V;, whose
distributions are specified below, that

Y; ~ indep Poisson (E;f(d;;ct,B)exp{no+mX;+U;+V;}) ,

or equivalently, that the ¥; are independently Poisson distributed with means
given by E;A; where

logA; =log f(di;a,B) +no+mXi + Ui +V;, (11.1)
and

f(d;(x,ﬁ)zl—i—aexp{—(d/ﬁ)z} (11.2)

is called the location-risk function. This completes the specification of the first
stage of our three-stage hierarchical model. The second stage is specified by
the distributions of the random effects U= (Uy,...,U,)T and V= (Vy,...,V,)T.
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We assume that U and V are independent multivariate normally distributed,
specifically,

U~N,(0,62I) and  V~N,(0,6°H(¢))

where H(@);; = exp{ —@d;; }. Thus U; +V; represents the region-specific effect
associated with area i, which consists of independent (the U;) and spatially
correlated (the V;) components. We complete the model specification with
the third stage in Sect. 11.4, by attaching prior distributions to the unknown
parameters o, 8,M0,M1,02,02, and @.

We call this a location-risk model embedded in a disease-mapping frame-
work because, but for the location-risk function f, this is the standard Poisson
disease-mapping model with spatial and nonspatial extra-Poisson variability,
as in Sect. 5.4 of [1]. Note that the location-risk model specified here might
better be called a distance-risk model, since we assume that additional risk
due to proximity to point source depends on distance only and not direc-
tion. More general anisotropic models, which do not make this assumption,
are available but not appropriate for the present problem given the limited
data at our disposal. The specific parametric form we chose is precisely that
of [10], and is similar to that suggested by [2] in the context of a spatial point
process model.

We can attach physical interpretations to the distance-risk function pa-
rameters o and . Plugging d =0 into (11.2) we find that the disease risk at
the point source is equal to 1+ a. Thus & can be thought of as the additional
risk of leukemia faced by someone living with the waste site in his or her
backyard. The additional risk at a distance d, as a proportion of that at the
point source, is e~ (@/ B’ Thus the distance at which the additional risk is re-
duced to 5% of its level at the point source itself is equal to B (flog(.OS))l/z,
or roughly Bv/3.

The covariate X; = log(population) of region i is included in the model based
on the argument that, if census blocks are roughly the same geographic size,
a high block population would indicate crowding, which seems a reasonable
surrogate for deprivation in an area like upstate New York. Of course, some
measure of the socioeconomic status of a region would be a preferable co-
variate (in the study of [10] they used the Carstairs index), but no such data
were available for the present study. It is noted in [11] that the census blocks
were originally constructed to have roughly equal populations. The 30 blocks
in the study clearly do not (block populations range from 77 to 2422, with
X=1303 and s = 674). Thus block population must indicate something about
what has happened to an area in the years since the census block boundaries
were established, though perhaps it is not entirely clear what.

The expected disease counts E; are determined based on internal standard-
ization, according to
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(Population in region i) x (Total disease cases)

E;= .
Total population

A preferable approach would be to adjust for age and sex composition of the
regions, but these data are not available.

The random effects U; and V; represent, respectively, the nonspatial and
spatial extra-Poisson variability. We caution that, as noted by [10], the inclu-
sion of random effects may dilute the effect of interest, namely, the distance-
risk model f. We will revisit this issue in Sect. 11.4 in our discussion of the
prior distributions for 62 and o?.

11.4 Prior Distributions

In this section we discuss the selection of prior distributions for the parame-
ters «,8,M0,M1 and hyperparameters 62,62, and @. In [10], the priors were
informed by a preliminary mapping study. In the present study we have
no such access to preliminary data, and thus our prior distributions must
be based entirely on subjective judgment. We will assign informative priors
where appropriate, and vague priors otherwise.

For the Poisson regression coefficients we adopt vague priors: take 1y and
M1 to be independent and identically distributed as N(0, 1000).

Note that « is bounded from below by —1, and that zero is a “critical value”
in the sense that @ =0 corresponds to there being zero excess risk associated
with the point source. A translated lognormal distribution seems a reasonable
candidate for the prior on a. Recall that a lognormal random variable, say T,
with g = 0 has equal probability of being less than 1 as of being greater than
1, and further has the property that Pr(r < T <s) =Pr(l/s < T < 1/r) for
any 1 <r <s (this follows from the distribution’s symmetry about 0 on the
log scale). Let us choose a prior distribution for a that enjoys this symmetry
property. A sensible prior for o is defined by

Let a ~N(0,1), andlet o =¢"—1.

Of course, 62 =1 is no more or less arbitrary than any other hyperparam-
eter value. This particular choice yields a prior probability of 0.95 that the
excess risk at the point source falls between —86% and +610%, which seems
reasonable to us.

Recall the physical interpretation we attached to § in Sect. 11.3: The excess
disease risk associated with the point source dips to 5% of its highest level at
a distance of Bv/3 km. Let us suppose we are 95% certain that this value is
smaller than 10, and also 95% certain that this value is larger than 1. Then
the 5th and 95th percentiles of our prior distribution on f8 are equal to 1/v/3
and 10/+/3, respectively. A member of the gamma family of distributions that
approximately matches these quantiles has a shape parameter of 2.5 and rate
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parameter of 1, that is, prior density satisfying 7(B) o B3/2¢~B. We will adopt
this prior for our analysis.

For the variance components, [10] caution against the use of a vague prior
that does not assign enough prior probability to very small values of 62 and
o2, noting that the inclusion of random effects might dampen the effect in
which our primary interest lies, namely, the distance-risk function parameters
a and B. We will adopt these authors’ recommendation and take as priors
on the precisions o, 2 and o, 2 independent gamma distributions with shape
parameter 0.5 and rate parameter .0005.

We will assign the spatial correlation parameter ¢ a prior distribution
from the gamma family. Since it seems inappropriate for this prior to have a
mode at 0, we wish to assign a shape parameter greater than 1. After some
trial and error we settled on a gamma prior with shape parameter 3 and
rate parameter 1. The 1st percentile of this distribution is 0.44, and ¢ = 0.44
corresponds to a spatial correlation of .01 at 10 km. For ¢ > 0.44, the spatial
correlation is weaker.

11.5 Analysis

Let 6 = (a,B,n0,M1,0u4,0,,¢) denote the vector of model parameters. A
Bayesian data analysis is based on the posterior distribution with density
m(6y) which, according to Bayes’ rule, satisfies m(0]y) =< g(y|0)n(0), where
7(-) denotes the prior density on 6 and g(-|6) denotes the density of the
observable data. In the present problem, the probability model for the ob-
servable data Y = (V1,...,Y,) is specified conditionally on the unobservable
random effects U and V. Let g(y|u,v, 81) denote this conditional density, with
01 =(a,B,no,n1), and let h(u,v|6;2) denote the joint density of the random
effects (U, V), which depends on the parameters 6, = (o, 0y, ¢). We can then
write

g(y|6)://g(y|u,v,91)h(u,v|92) du dv . (11.3)

Recall that g(y|u,v,0;) is a product of Poisson probabilities, and that
h(u,v|6;) is the product of two multivariate normal densities. In any case,
the integral in (11.3) cannot be solved analytically, and thus no closed form
expression exists for the posterior density w(0]y). In fact, even if g(y|6) could
be evaluated, the posterior would still be analytically intractable in the sense
that posterior moments and quantiles could not be solved for explicitly.
The usual remedy for this situation is to approximate the posterior by
Monte Carlo simulation. In a Markov chain Monte Carlo (MCMC) Bayesian
analysis, one simulates an ergodic Markov chain whose unique stationary dis-
tribution is given by the posterior density 7(6|y). The Metropolis—Hastings
algorithm permits the simulation of such a chain for (in principle) any prob-
ability density whose form is known possibly up to an unknown normalizing
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constant. In a three-stage hierarchical model like that we are working with
in the present problem, we might employ the following trick in our MCMC
analysis. Define the joint “posterior” of the parameters and the random effects
by

7(6,u,v]y) o< g(y|u,v,01)h(u,v|62)7(61,6) . (11.4)

Explicit expressions are available for each term on the right-hand side. Thus
the density for this target distribution is known up to a normalizing constant,
and thus Metropolis—Hastings can be used to simulate an ergodic Markov
chain with stationary density given by (11.4). Let (6®),u®) v®) forr=1,2,...
denote the resulting chain. If the u® and v terms are discarded, then o)
for t =1,2,... represents a Markov chain with stationary density @(8|y).

The construction of such a Markov chain from first principles requires
a considerable amount of programming expertise. Fortunately an alternative
exists, in the WinBUGS software of [7], that has made Bayesian data analysis
methods available to researchers without such expertise. The WinBUGS user
specifies a Bayesian hierarchical model, and the software simulates the desired
Markov chain, returning MCMC approximations to the marginal posteriors
of the individual model parameters.

Using WinBUGS we ran the Markov chain for 1000 updates, and discarded
the realizations up to that point — this is sometimes called the burn-in
method of selecting starting values. We then ran the chain for an additional
10% updates, but saved only every 10th draw to reduce the autocorrelation in
our sample. Thus we have a total MCMC sample size of 10°. The estimated
posterior distributions of @, 8,19, N1, 04, Oy, @ are summarized in Sect. 11.5.1.

11.5.1 FEstimated Posteriors

Estimated posterior densities for ng, N, @, B, 0y, 0, are given in Figure 11.2.
Numerical summaries of the estimated posterior distributions are given in
Table 11.1. The Monte Carlo standard error (MCSE) in the second column
of Table 11.1 is an estimate of the expected error in the Monte Carlo ap-
proximation to the posterior mean. Note that the MCSE is not equal to the
estimated standard deviation divided by the square root of the Monte Carlo
sample size, as that naive rule would, in its failure to account for the auto-
correlation in the MCMC sample, understate the true error. Instead we use
the method of nonoverlapping batch means — the reader should refer to [5]
or [6] for more details on MCMC standard error estimation.

The posterior mean of the 17, the coefficient of the log-population in the
Poisson regression component of our model, is positive, suggesting that area
population may indeed be a reasonable surrogate for deprivation. However,
a 90% credible region (the range from the 5th to the 95th percentiles of the
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estimated posterior) does cover zero, and thus it is by no means clear that
population is an informative predictor of disease prevalence.

Table 11.1 Numerical summary of estimated marginal posteriors

Mean MCSE Std Dev 5%ile Median 95%ile
Mo —1.10 .005 0.58 —2.16 —1.03 —0.28
m 0.57 .003 0.58 —-0.32 0.54 1.57
o 1.21 .016 1.89 —0.46 0.72 4.48
B 2.58 .008 1.52 0.59 2.34 5.40
oy 0.10 .003 0.16 0.02 0.05 0.41
o, 0.11 .003 0.18 0.02 0.05 0.48
[0} 3.00 .006 1.73 0.82 2.68 6.29

Note the severe right-skewness in the estimated posterior density of a. If we
were to take the posterior mean of this distribution as an estimate & = 1.21,
we would believe that the risk of leukemia more than doubles (221%) at close
proximity to the hazardous waste site, relative to a location far away from
the source (the posterior median leads to a considerably more conservative
conclusion). Further, if we take the posterior mean of B as an estimate of
that parameter, [§ =2.58, we would conclude that the excess risk of leukemia
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falls below one percent of the level at close proximity at a distance of 5.54
km from the point source.

Finally, we note that the data contain very little information about the
variance parameters oy, 0, ®. The posterior distributions of ¢, and o, are
very similar, and both are extremely close to their common prior. The esti-
mated posterior of the spatial correlation parameter ¢ is essentially identical
to its gamma(3,1) prior.

11.5.2 The Location-Risk Function

Figure 11.3 shows the posterior median value and individual 90% credi-
ble regions for the distance-risk function f(d;e,f), defined by (11.2), at
d=0,1,...,9 km. A solid line connects the median values, and dashed lines
connect the 5th and 95th percentile values. Consistent with our earlier obser-
vation, we see that the estimated risk at close proximity to the point source
(corresponding to d = 0) is approximately double the baseline value, and
reduces to no excess risk to speak of at a distance of about 5.5 km. Unfortu-
nately, this graph further demonstrates the weakness of the inference that can
be drawn from our limited data set. Just as the 90% credible interval for the
excess risk parameter o included negative values, the 90% credible region for
f(d;a, B) fails to preclude the possibility that disease risk is actually lessened
by close proximity to a hazardous waste site.

— Median
--- b5th & 95th %iles

Disease risk
3
1

Distance (km)

Fig. 11.3 Posterior of distance-risk function.



188 Ronald C. Neath

11.5.3 A Simplified Model

The inclusion of the random effects U; +V; in the excess risk function (11.1),
particularly the spatial component V;, is controversial, and there are com-
pelling theoretical and pragmatic arguments for removing those terms from
the model. Note that in Poisson regression, unlike a Gaussian linear model,
a random error term is not strictly necessary, as the Poisson parameter E;A;
represents both the mean and variance in the number of cases in region i.
Random effects can be included if the analyst wishes to accommodate the
possibility of extra-Poisson variability in observed counts. Absent compelling
evidence of extra-Poisson variability in the data, one could argue on the prin-
ciple of parsimony that the region-specific random effects U; +V; should not be
included in our model. More pragmatically, there is concern that the inclusion
of random effects might dilute the effect in which our primary interest lies,
namely, that of the location-risk parameters o and 8. We saw in Sect. 11.5.1
that the data contained very little information about the variance compo-
nents o, and ©,, which might be interpreted as an absence of compelling
evidence that they are not identically zero. With the objective of sharpen-
ing our inference about o and B, we propose to refit the above model with
the random effects U; 4+ V; excluded from the excess-risk function (11.1). Of
course, this is precisely the model of Sects. 11.3 and 11.4, with o, = 6, =0.

Here we will make use of the R2ZWinBUGS package of [9], which provides
an interface for running WinBUGS from R. Once the R2ZWinBUGS library is
loaded, the user must specify the Bayesian hierarchical model (in WinBUGS
syntax) in an external file, load the data, and define a rule for generating
starting values for the MCMC. The R function bugs () then calls up Win-
BUGS, runs the simulations, and saves relevant summaries of MCMC output
to the R session. In addition to numerical summaries of the estimated pos-
terior distributions, which we will illustrate below, R2WinBUGS computes
the MCMC convergence diagnostics of [4] and the Deviance Information Cri-
terion (DIC) of [8]. A detailed summary of the latter objects is beyond the
scope of this chapter. We note here that DIC is a popular Bayesian model
selection criterion, and refer the interested reader to [8] for further informa-
tion. For an interesting empirical study of the Gelman—Rubin Diagnostic and
other MCMC convergence criteria, the reader is referred to [3].

The following display shows partial output of the bugs() function in the
simplified (no random effects) model.

Inference for Bugs model at "C:/DOC~1/RNeath/...
5 chains, each with 1e+05 iterations
(first 50000 discarded),
n.thin = 250
1000 iterations saved

n.sims

mean sd 2.5% 25% 50% 75% 97.5%



11 Analysis of Leukemia Incidence 189

etal -1.10.5-2.2-1.4-1.0 -0.7 -0.2
etal 0.6 0.6 -0.4 0.2 0.6 0.9 1.7
alpha 1.21.6 -0.6 0.1 0.7 1.8 5.6
beta 2.61.5 0.4 1.5 2.5 3.4 6.0

The estimated posterior means, medians, and standard deviations for the
regression parameters 1o and 7y, as well as the location-risk parameters a and
B, are essentially identical to those of the full (random effects) model, reported
in Table 11.1. Thus our inference about the excess risk parameters appears
not to depend on the inclusion or exclusion of extra-Poisson variability in the
model for disease frequency.

11.6 Discussion

In this chapter we used a location-risk model embedded in a standard disease-
mapping framework to analyze leukemia incidence data in a 10-km-radius
area surrounding a hazardous waste site in upstate New York. From poste-
rior inference in our three-stage hierarchical Bayesian model we found some
indication, though far from overwhelming evidence, of increased disease risk
at close proximity to the site. Monte Carlo approximations to the posterior
distributions were computed by the WinBUGS software, and graphical and
numerical summaries of the estimated posteriors were computed using R. Fi-
nally, we demonstrated the use of the R library R2WinBUGS, as an interface
between those two software packages.

While it is somewhat disappointing that stronger conclusions could not be
reached from the analysis, it is not surprising given the limited data. Leukemia
is too rare a disease for statistically interesting patterns to emerge from five
years of data on a population at risk of less than 40,000, in which only 33 cases
were counted. Other limitations in the data include: (1) only areal summary
data were available — with precise locations of cases and controls it is possible
that more meaningful conclusions might have been reached; (2) the internal
standardization used to calculate expected disease counts did not reflect the
age and sex composition of the regions, possibly important information that
was missing from available data; and (3) socioeconomic status might have
been a useful covariate to include in the model, as a known confounder of
disease prevalence, but was also unavailable.

Finally, we note that while we focused on Bayesian inference about the
unknown parameters, from a public policy standpoint, there may be just as
much interest in the prediction of unobserved random effects U; +V;, as this
might indicate to which areas greater education and prevention efforts should
be directed. Prediction of random effects in a Bayesian analysis is extremely
straightforward. Recall from Sect. 11.5 that Monte Carlo simulation from the
posterior 7(y) is actually accomplished by extracting the 8 terms out
of simulated draws from the “joint posterior” m(0,U,V]y), given by (11.4).
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But it is also the case that the (u”),v()) terms define a Markov chain whose

stationary distribution is the conditional distribution of the random effects

given the data. Thus the ergodic average of the ul@ +vft) provides a Monte

Carlo approximation to the mean of the predictive distribution of U; +V;.
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Chapter 12

Stochastic Volatility Model with Jumps in
Returns and Volatility:
An R-Package Implementation

Adjoa Numatsi and Erick W. Rengifo

Abstract In this chapter we estimate the stochastic volatility model with
jumps in return and volatility introduced by [7]. In this model the condi-
tional volatility of returns can not only increase rapidly but also persistently.
Moreover, as shown by [8], this new model performs better than previous
models presenting almost no misspecification in the volatility process. We
implement the model coding the algorithm using R language. We estimate
the model parameters and latent variables using FTSE 100 daily returns.
The values of some of our estimated parameters are close to values found in
previous studies. Also, as expected, our estimated state variable paths show
high probabilities of jumps in the periods of financial crisis.

12.1 Introduction

Modeling equity returns remains an important topic in current financial liter-
ature. Even though the Black—Scholes model remains as one of the most used
benchmarks in the industry, it has been shown that the results obtained from
its main formula are biased. This is mostly due to two of its more important
assumptions [14]: first, that stock prices follow a continuous path through
time and that their distribution is lognormal, and second, that the variance
of stock returns is constant [4]. In many empirical studies it has been found
that asset returns’ unconditional distributions feature a greater degree of kur-
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tosis than implied by the normality assumption, and that volatility clustering
is present in the data suggesting random changes in returns’ volatility [5].

In an attempt to improve on the Black—Scholes model, both assumptions
have been relaxed. There are models that can capture large movements in
stock prices allowing for discontinuities in the form of jump diffusion mod-
els [12, 6], and models that allow for stochastic volatility [10, 16, 9]. Bates [2]
and Scott [15] combined these two approaches and introduced the stochastic
volatility models with jumps in returns. However, while it is clear that both
stochastic volatility and jumps in returns are important components of the
dynamics of stock prices, Eraker, Johannes and Polson [8] showed that the
volatility process is misspecified. Similar results were found by [1], [3], and
[13].

Empirical studies have shown that conditional volatility of returns in-
creases rapidly, a feature that stochastic volatility with jumps in returns
are not able to capture. Jumps in returns can generate large movement such
as the crash of 1987, but the impact of a jump is temporary and dies out
quickly. On the other hand, diffusive stochastic volatility models produce
persistent volatility movements but since its dynamics are driven by a Brow-
nian motion, volatility only increases gradually by small normally distributed
increments. Given these findings there was a need to make a model that can
create quick and persistent movements of the conditional volatility of returns.
Duffie, Pan and Singleton [7] were the first to introduce models with jumps
in both returns and volatility, and Eraker, Johannes and Polson [8] the ones
who implemented it. As mentioned by [8], the estimation results showed that
the new model with jumps in returns and jumps in stochastic volatility per-
formed better than previous models presenting almost no misspecification in
the volatility process.

The objective of this chapter is to implement the stochastic volatility model
with jumps in returns and volatility using R. R is a free software heavily used
in mathematics and statistics. For example, a recent econometrics text [17]
emphasizes R and includes finance applications. R is a very robust program-
ming language that has already many built-in packages that make it straight-
forward to use in many other disciplines like finance. However, to the best of
our knowledge, there is no R package that deals with these type of models
where jumps appear not only in returns but also in volatility. We expect to
contribute with this program to the existing library of programs that can be
used either by academics or practitioners alike.

The remaining chapter is organized as follows: Section 12.2 follows [8] to
describe the stochastic volatility model with jumps in returns and volatility.
Section 12.3 introduces the data set, the methodology followed to estimate
the model parameters, and the structure of the R program. Finally in this
section, we present the results of the model computed using the R program.
Section 12.4 concludes and presents venues for future research.
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12.2 The Stochastic Volatility Model with Jumps in
Returns and Volatility

This section follows [8]. For additional information we refer the reader to this
paper. The stochastic volatility model is a jump diffusion process with double
jumps: a jump in returns and in volatility. These jumps arrive simultaneously
with the jump sizes being correlated. According to the model, the logarithm
of asset’s price ¥; =log(S;), solves

avi\ _ u 1 0 EYAN?
(d%) B ( k(6 - m) V¥ (pav Va=pa,) M\ Eany
(12.1)
where V,- = li%nVs, W, is a standard Brownian motion in R?. The jump arrivals
st

N} and N} are Poisson processes with constant intensities A, and A,. This
model assumes that the jump arrivals are contemporaneous (N; = N} = N;).
The variables £ and &Y are the jump sizes in returns and volatility, re-
spectively. The jump size in volatility follows an exponential distribution
&Y ~exp(Uy) and the jump sizes in returns and volatility are correlated with

/&Y ~ N(uy+pj&¥,o}).

Equation (12.1) presents the model in its continuous form. In order to
estimate the model, Equation (12.1) is discretized obtaining

Yirna —Yia =pHA+vy VfAAe(yth +éé+1)AJ(yz+1)A (12.2)
Vierna —Via = k(0 = Via)A + 0,V Via A€l 1y + & ad i (12.3)

k
where J(z+l)

random variables with constant intensities, A,A and A,A. The distributions
of the jump sizes remain the same. S(yt )4 and s(vt +1)a are standard normal
random variables with correlation p. The time-discretization interval A is
assumed to be one day. As usual, it is possible that the time-discretization
procedure introduces a discretization bias. However, for this particular case,
[8] provide simulation results to support the fact that the bias is minimized

at the daily frequency.

4 = 1(k=y,v) indicates a jump arrival. Jump times are Bernoulli
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12.3 Empirical Implementation

12.3.1 The Data

The model is estimated using FTSE 100 returns from July 3, 1984 to Decem-
ber 29, 2006. Excluding weekends and holidays, we have 5686 daily observa-
tions. Summary statistics of the continuously compounded daily returns, in
percentage terms, is provided in Table 12.1. Moreover, the time series graph
of the return series is provided in Fig. 12.3.1. Table 12.1 shows that the
unconditional distribution of the returns are negatively skewed and present
excess kurtosis. The Jarque-Bera test rejects the null of normality at the 5%
significance level. Moreover, the Ljung-Box test shows that the data exhibit
autocorrelation.

Table 12.1 Summary statistics of FTSE returns

Statistic FTSE 100

Mean 0.031
Volatility 1.035
Skewness -0.557
Kurtosis 8.269
Min -13.029
Max 7.597
Jarque-Bera 0.000
AR1 0.130
AR2 0.300
Num.Obs 5686

This table presents the descriptive statistics of FTSE 100 returns from July 3, 1984 to
December 29, 2006. The Jarque-Bera test presents the p-value of the null hypothesis of
normality. AR1 and AR2 show the p-values of the Ljung-Box test for autocorrelation
of first and second order, respectively.

12.3.2 The Estimation Method

For the estimation method we use the Markov Chain Monte Carlo (MCMC).
The MCMC is a numerical integration method that is able to deal with
multidimensionality and nonlinearity, and can be used to estimate latent
variables in complex models.

Let Y be the vector of observed stock returns, H the vector of state vari-
ables, and O the vector of parameters. The MCMC algorithm, based on the
Clifford—-Hammersley theorem, states that the joint distribution p(®,H|Y)
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Fig. 12.1 FTSE returns.

can be characterized by its full conditional distributions p(®|H,Y) and
p(H|©,Y). The algorithm therefore samples from p(®,H|Y) by sampling from
the conditional distributions p(®|H,Y) and p(H|®,Y) . Then, the Bayes rule
factors the joint distribution into its components:

p(®,H[Y) = p(Y|H,0)p(H|O)p(O) (12.4)

where p(Y|H,®) is the likelihood function, p(H|@®) is the distribution of the
state variables, and p(@®) is the distribution of the parameters, also called
the prior [11]. The conditional posterior of a parameter is derived from Equa-
tion (12.4) by ignoring all the terms that are constant with respect to that
parameter.

The bivariate density function that we use is

exp[fl(B —E(B))Z Y (B—E(B))] (12.5)

Y E 2

thus, the likelihood function is simply given by [T, f(B), with
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where y, 11 =Y 1 =Y, vig1 = Vi1 — V5.

As explained previously, our joint distribution is given by the product of the
likelihood times the distributions of the state variables times the priors of the
parameters, more specifically:

T

Joint Density = [Hf ] [H ‘St+1 *f é;ﬂ) *f( ;+1)*f( t+1))

 [f () £ (k)% £(0)xf(p)*f(07)*f () f(ps)*f(o7)]
* [f () = f () * £ (A)]

(12.6)

The distributions of the state variables are given by: &', | ~exp(i,); &, ~

N(uy+ps&'y, 67): | ~ Bern(y) and J}', ~ Bern(A,). Following [8] we im-
pose little informatlon through our prlors They are as follows: u ~ N(0,1),
K ~N(0,1), K8 ~N(0,1), p ~u(—1,1),62 ~1G(2.5,0.1), 1y, ~N(0,100), p; ~
N(0,4), 6} ~1G(5,20), u, ~ G(20,10) Ay ~ B(2,40) and A, ~ B(2,40).

After the derivation of the conditional posteriors of the parameters and
state variables, we implement MCMC by sampling directly from the condi-
tional distributions when they are known in closed form. This case is called
a Gibbs sampler. When the distributions are not known in closed form, a
general approach called Metropolis—Hasting is used. The latter consists in
sampling a candidate draw from a proposal density and then accepting or re-
jecting the candidate draw based on an acceptance criterion. We implement
our MCMC by sampling iteratively from

Parameters : p(0;|0_;,J,E7 EVV)Y), i=1,....k
Jump times : p(J;|®,J_;,E EVVY), t=1,...,T
Jump sizes : p(&'1©,J,E7,,E".V)Y), t=1,....T
p(EO,J,E EVY), t1=1,..T

Volatility : p(V;|0,V,11,V,_1,J,E>,,EVY), t=1,...,T
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12.3.3 The R Program

Our MCMC algorithm is implemented in R language. To the best of our
knowledge, it is not yet possible to find in R a package dealing with Stochas-
tic Volatility models with double jumps. In order to implement our MCMC
procedure we wrote an algorithm that partially used functions in packages
such as Rlab, MCMCpack, and msm.

The first thing that the algorithm requires is starting values that we first
generate. The volatility vector was created using a three-month rolling win-
dow. We considered as jumps, differences in returns and in volatility that
were above three standard deviations from the mean (after accounting for
outliers). In a second step, we call a function that we programmed to imple-
ment either the Gibbs sampler or Metropolis-Hasting depending on whether
or not we know the closed form of the parameters’ distributions. For the jump
sizes we have two cases: we sample from the conditional posteriors that we
have derived when there are jumps, and from the prior distributions in the
other case (no jumps) since the data does not provide further information in
those cases.

The outputs of our function are the sampled parameters per iteration and
the vectors of state variables. The mean of each parameter over the number of
iterations gives us the parameter estimate. Then, we evaluate the convergence
using trace plots which show the history of the chain for each parameter and
are useful for diagnosing chains that get stuck in a region of the state space,
and the ACF plots which are used to analyze the correlation structure of
draws [11]. Finally, we check the performance by analyzing the residuals using
the normal QQ plot and the Mean Squared Errors. We refer the reader to the
CD accompanying this book for further specific details about the program.

12.3.4 The Results

We run the algorithm using 50,000 iterations with 5,000 burn-in iterations.
Table 12.2 provides parameter posterior means and their computed standard
errors. The return mean (i) is close to the daily return mean from the data
(0.0314). Note that due to the jump components, the long-term mean of
volatility is given by 6 -+ (i, * A,)/k! which in our case equals 0.1795. We
would expect this value to be close to the variance of returns 1.0353 but this
is not the case. Numerically, we can explain this finding by analyzing 6, u,,
and k. As can be seen for Table 12.2, this smaller variance is due to the fact
that the values of 6 (0.1795) and u, (0.0008) are very small compared to
what Eraker, Johannes and Polson [8] have found for the S&P500.?2 More-

1 See [8].
2 These authors found that 8 and u, are equal to 0.5376 and 1.4832, respectively.
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over, the values of x in our case is rather big (0.9727) compared to 0.026 for
the S&P500. These results may suggest that there should be other possible
correlation structures between some of the parameters that need to be ac-
counted for in the implementation of the MCMC algorithm. We have left this
issue for further research.

Table 12.2 Estimation results

Parameter Value
u 0.0323 (0.0086)
Hy -0.0226 (0.1068)

1y 0.0008 (0.0004)
) 0.1795 (0.0148)
K 0.9727 (.03467)
p -0.0506 (0.2594)
o -0.0097 (2.0034)
Ay 0.0477 (0.0652)
A 0.0477 (0.0652)
o, 1.2164 (0.5327)
o, 0.3414 (4.0018)

This table presents the model’s parameter estimates. Standard errors are in paren-
theses. u represents the mean of returns, oy is the standard deviation of returns jump
size. lL, is part of the mean jump size in returns, and so is py as §¥[§" ~ N(u, +p;&", G)?).
U, represents the mean jump size in volatility, and 6 is part of the long-term mean
of volatility. o, is part of volatility of volatility, k represents the speed of volatility
mean reversion, p is the correlation coefficient between the error terms, and A, and
A, are the jump intensity in returns and volatility, respectively.

On other hand, o, and o, are 1.2164 and 0.3414, respectively. These values
are quite close to the values obtained by [8] for their Nasdaq case. Finally, the
intensity of the jumps is higher than what we would expect. We got 0.0477
while from the data we would expect an intensity of around 0.02. However,
this empirical intensity was computed considering that differences in returns
above three standard deviations from the mean could be considered as jumps.
Some caution must be taken since this empirical intensity is very sensitive
to the number of standard deviations used as cutting point in defining the
jumps.

One nice feature of the MCMC method is the possibility of estimating the
latent variables. In our case the results of the estimated jump times, jump
sizes in return and volatility, and the volatility paths are shown in Fig. 12.2.
In the top-right panel the jump times are represented by jump probabilities
meaning that a high probability can be associated with a high possibility of
jump. We notice that the biggest probabilities of jumps are around 1987 and
2003 coherent with the financial crashes during those years. This is confirmed
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by the highest values of volatility that can be seen in the top-left panel, as
well as the biggest jump sizes in returns and volatility in the lower panels.
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Fig. 12.2 In the top-left panel we represent the volatility path, in the top-right panel
we have the estimated jump times. In the lower panels we represent the estimated
jump sizes in returns on the left and the estimated jump size in volatility on the right.

The ability of the model to suit the data is accessed through the Mean
Squared Errors and the normal QQ plot. The standardized error is

Yoyna —Ya —pA - é(yzﬂ)AJf;H)A
VViaA
Our Root Mean Squared Error value is 2.360819 which compared to the

return mean is quite high. The QQ plot showed that the errors do not quite
follow the normal distribution signaling some model misspecification.?

=& 4 (12.7)

3 Due to space limitation, additional information is available on request.
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12.4 Conclusion and Future Venues of Research

In this chapter we present the implementation of the stochastic volatility
model with jumps in return and volatility of [8] using an algorithm written
in R language. Using Markov Chain Monte Carlo as the estimation method,
our algorithm produces parameter estimates and state variable paths. The
program is also able to conduct convergence and performance analysis on the
output using trace plots, ACF plots, and analyzing the error terms.

For the empirical part of the chapter we use FTSE 100 daily returns from
July 3, 1984 to December 29, 2006. Our results confirm that it is possible to
estimate stochastic volatility models with double jumps in R using MCMC.
However, more work needs to be done on the sampling of some of the param-
eters which were different from what we would expect, specifically 68 which
is part of the long-term mean of volatility, ¥ the speed of mean reversion,
and u, the mean jump size in volatility. We suspect that there are possible
correlation structures between some of these parameters that need to be ac-
counted for in the implementation of the MCMC algorithm. We expect to
contribute with this program to the existing library of programs that can be
used either by academics or practitioners alike.
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