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Preface

What is so special about the area of quantification that motivates a book of this length?
Quantifiers are one of very few expressive devices of language for which it is known
how to break out of the circle of language and explain what a word means other than
essentially in terms of other words’ meanings. It is possible to explain the meaning of
quantifiers in mathematical and other non-linguistic terms. This foundation not only
provides a satisfyingly clear account of the meaning of quantifiers themselves, but also
lies behind the widespread use of quantifiers in analyzing the meaning of an extens-
ive range of non-logical expressions, including tenses and temporal adverbs, modal
verbs, conditionals, attitude verbs, and some noun phrases that may not be explicitly
quantified.

This book is intended for everyone with a scholarly interest in the exact treatment
of meaning. It presents a broad view of the semantics and logic of quantifier expres-
sions in natural languages and, to a slightly lesser extent, in logical languages. The
exposition starts from a fairly elementary level and progresses to considerable depth
over the course of sixteen chapters. It is meant to be accessible and valuable to read-
ers ranging from those with a rudimentary knowledge of linguistic semantics and of
‘predicate calculus’ (first-order logic), to ones with advanced knowledge of semantics,
logic, philosophy of language, and knowledge representation in artificial intelligence.

We introduce the subject with brief surveys of both the range of means by which
human languages express quantification and the ancient Greek discovery of the logic
of quantifiers. From this elementary beginning, the book recounts the develop-
ment of modern concepts of quantification, including so-called generalized quanti-
fiers—mainly a product of the past century and a quarter.

Precise ways of analyzing quantifier meanings by the use of model theory are then
introduced. Important distinctions are described and analyzed—concerning what is
quantified over, how to restrict quantification to specified domains, and what may be
thought of as the number of variables a quantifier binds. The presentation combines
intuitive discussion and numerous examples with precise formulation and demon-
stration of concepts, properties thereof, and proofs of precisely stated results. We aim
throughout to give the whole range of readers access to the rigor of logical analysis and
demonstration while revealing the rich variety of quantification in natural languages,
and to disclose the power of logical techniques to expose significant and sometimes
surprising features of quantification in both natural and logical languages.

Attention is paid to properties possessed by substantial subclasses of quantifiers,
as well as to properties all quantifiers share. Both kinds of property are related to
recognized facts of language. For example, we give an account in depth of various
monotonicity properties of quantifiers, and of linguistic facts related to monotonicity,
such as the distribution of so-called polarity items. Likewise, we discuss at length the
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quantifiers acceptable in existential-there sentences, and we study in detail possessive
quantifiers and quantifiers occurring in exception phrases. We also present different
means for combining quantifiers, exemplified both in natural and in logical languages.

The book furthermore provides a detailed—and as far as we know unpreceden-
ted—abstract account of concepts related to the expressive power of languages, nat-
ural as well as logical: synonymy, translation, and definition. This account is used
to transfer technical results for logical languages to natural languages. The closing
chapters present a rich panoply of logical tools and techniques for demonstrating non-
expressibility and undefinability in logical languages—a result that is much harder to
show than expressibility, for which it suffices to exhibit a defining expression.

The aim of the book is to give a comprehensive picture of the whole area of quan-
tification, without the reader having to retrace all the steps in the literature. But we
also present new material, analyses, and results. In the detailed table of contents, we
have marked with an asterisk * the chapters or sections that are particularly heavy with
new material. We have attempted to provide equal value to a broad range of read-
ers: linguists, philosophers, logicians, and others, both in presentation and in choice
of material. Our method is always to combine linguistic and logical aspects, rather
than focusing primarily on one or the other. A subsidiary aim has been to provide
non-logicians with access to some of the main tools that logicians have developed for
proving facts of semantic as well as logical properties of quantifiers. So, particularly in
the last three chapters, the reader will find a more pedagogic and detailed account of
various expressivity results than in corresponding mathematical-logical texts.

A reader primarily interested in a particular aspect of quantification—say, pos-
sessive quantifiers—doesn’t have to be familiar with all the material in the chapters
preceding the one on possessives, but notation, definitions, and results from some of
these will be used. Figure 1 indicates how each chapter depends on preceding ones.
(A dotted line indicates that the dependence is less strict.)

Numerous people provided invaluable help during our writing of this book, and
we are grateful to them all. We especially want to thank Wilfrid Hodges, as well as
two anonymous referees, who gave detailed and constructive comments on an early
version of the text. Others have read and commented on individual chapters; we are
particularly grateful to Johan van Benthem, William Ladusaw, and Barbara Partee.
A number of people provided inspiration, gave us references, or pointed out mis-
takes large and small—among them Robin Cooper, Sol Feferman, Dagfinn Føllesdal,
Ivan Garcia-Álvarez, Fritz Hamm, Lauri Hella, Martin Karlsson, Phokion Kolaitis,
Hannes Leitgeb, Iddo Lev, Roussanka Loukanova, Lisa Matthewson, Peter Pagin,
Jouko Väänänen, and Tim Williamson. We also thank the audiences of numerous
talks and seminars where we have presented parts of the material in the book: the
joint Stanford–Göteborg–Stockholm seminar (connected by video link) in the fall
of 1998, where some of this material was first presented; the Logic and Language
seminar in Göteborg; the seminar on Logic and Philosophy of Language in Stock-
holm; at Stanford: the Logical Methods in the Humanities seminar, the Cognitive
Science Lunch seminar at the Center for the Study of Language and Information, our
course at NASSLLI 2002, and the Semantics Fest 2000 and 2005; furthermore, the
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Figure 1 Dependency diagram for the chapters of the book

Content and Context Conference 2005 in Stockholm, the Philosophy Department at
the University of Bologna, the Dublin Computational Linguistics Research Seminar,
the Institut für Sprachwissenschaft at Tübingen University, the Linguistics Depart-
ment at UCLA, and probably others that we have forgotten. Finally, Stanley Peters
gratefully acknowledges the support of the Andrew W. Mellon Foundation, and Dag
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Westerståhl that of the Swedish Research Council, and both wish to thank the Center
for Advanced Study in the Behavioral Sciences for its hospitality and support.

We also wish to thank our wives Kathleen Much and Vanda Monaco Westerståhl
for support, forbearance, and professional advice.
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0
Quantification

This chapter gives a sketch of quantification, as the phenomenon is viewed by lin-
guists, to provide background for the book’s study of the meaning and the properties
of natural language expressions for quantification.

The logical study of quantification is as old as logic itself, beginning in the work of
Aristotle. The logical study focuses on the meaning and inferential characteristics of
quantifiers. An outline of how logicians and philosophers have viewed quantification
from Aristotle onwards is given in the next chapter. Linguistic study of quantifiers
began much later, and until recently focused mainly on the grammatical expression
of quantification rather than its meaning.

Linguists have borrowed heavily from logicians in semantically analyzing what
quantifiers mean. Logicians found it most natural to analyze the meaning of quan-
tification over discrete individuals rather than over pluralities of them or parcels of
non-discrete stuff. In linguistic terms, the logical focus has been on quantification
over domains denoted by individual count nouns such as person and table, rather
than domains denoted by collective count nouns such as crowd and suite1 or by
mass nouns such as protoplasm and furniture. For this reason, the semantics
of plural quantification and of mass quantification have only recently begun to be
developed formally (Pelletier 1979; Link 1983; Lønning 1997). This historical order
of development seems in fact to be the natural order of conceptual development, and
our exposition will follow it. This book treats quantifiers over discrete individuals
extensively. It does not, however, undertake to cover what is known about collections
and quantities of stuff, although we will briefly touch on them in this chapter.

The first section of this chapter (0.1) provides examples illustrating the wide range
of quantifiers that are expressed in natural languages, and to some extent also the
variety of means which natural languages employ to express them. Section 0.2 dis-
cusses ways in which quantifiers vary in their syntactic expression and their semantic
interpretation, and then turns to differences in the semantic quantifier type. In par-
ticular, some useful terminology for referring to the most important natural language
expressions that signify quantifiers is introduced. Section 0.3 distinguishes between
explicitly quantifying expressions and expressions whose meaning implicitly involves
quantification in various degrees. Section 0.4, finally, deals briefly with quantifier
scope.

1 As in dining room suite.



2 Quantification

0.1 SOME QUANTIFIER EXPRESSIONS OF NATURAL
LANGUAGES

Natural languages use quantifier expressions for talking about quantity of things or
amount of stuff, such as dozens of eggs or liters of milk. These quantifier expressions
include some of the ones Aristotle was concerned with, which are discussed further in
Chapter 1.

(1)

English Swedish

count mass count mass

no no ingen/inget/inga ingen/inget
some some någon/något/några någon/något
both båda/bägge
few little få lite
a few a little ett fåtal/några få lite
several flera
enough enough tillräckligt många tillräckligt mycket
many much många mycket
most most de flesta den/det mesta
each varje
every varje
all all alla all/allt

(2) a. Every dog barks.
b. Varje hund skäller.

(3) a. Susan likes most French films.
b. Susan tycker om de flesta franska filmer.

(4) a. Little water contains deuterium.
b. Lite vatten innehåller deuterium.

(5) a. Harry drank a little water.
b. Harry drack lite vatten.

For some of the English quantifier expressions (viz. each and every), the count
noun that follows must be singular in number; for others, it must be plural (e.g.
both, all). And for a few the count noun that follows may be either singular or
plural: some, no. In the Swedish examples above, on the other hand, the quan-
tifier expression always determines the grammatical number of the count noun.
But the semantic significance of grammatical number appears to be the same in
both languages. For example, a difference in meaning is generally felt to exist
between

(6) a. Some woman objected to John’s presentation.
b. Någon kvinna invände mot Johns presentation.
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and

(7) a. Some women objected to John’s presentation.
b. Några kvinnor invände mot Johns presentation.

Sentences (7) signify that more than one woman objected. One might take these
correlated differences in meaning and grammatical number to show that in (7) the
expression some (nºagra) quantifies over pluralities rather than individual women.
However, no such difference is evident in

(8) a. No woman objected to Bill’s presentation.
b. Ingen kvinna invände mot Bills presentation.

(9) a. No women objected to Bill’s presentation.
b. Inga kvinnor invände mot Bills presentation.

Moreover,

(10) a. Every/each woman objected to Peter’s presentation.
b. Varje kvinna invände mot Peters presentation.

ordinarily indicates that more than one woman is under discussion, as well as that
they all objected. So grammatical number of the count noun does not in fact cor-
relate in any simple way with the number of instances that the quantifier applies to.
This point is borne out by many more examples that could be given with the quanti-
fier expressions discussed below. Therefore, we do not take grammatical number to be
semantically significant in and of itself. Such meaning differences as appear between
(6) and (7), or between the woman (kvinnan) and the women (kvinnorna), need
more complicated explanations than just the difference between quantifying over
individuals and quantifying over pluralities. We place no explanatory burden on the
count noun’s grammatical number, and generally treat both singular and plural forms
of each count noun as denoting the same set of individuals (see Chapter 4.2.2 for fur-
ther discussion).

The English and Swedish expressions tabulated above and modified forms like
the English (in)finitely many, too many, too few, or surprisingly few
appear in noun phrases as determiners of nominal expressions, or as part of such
determiners.2 In some languages the morphemes or words expressing these quanti-
fiers do not occur as determiners of the nouns they quantify but rather as agreement
markers on verbs or with various other grammatical functions. American Sign Lan-
guage (ASL) has at least three other ways of expressing quantification besides using
determiners in noun phrases (see Petronio 1995). An explicit quantifier, e.g. TWO
in (11), occurs in the scope clause when the domain is denoted by a non-agreeing

2 We refer to the syntactic category of phrases like English every Greek as noun phrase (some-
times NP) throughout this book for convenience. We are not aware of anything significant to the
purposes of this book which hinges on whether these phrases are headed by nouns or by determiners
as hypothesized by linguists who call them determiner phrases.
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noun for which the two special cases in (12) and (13) don’t apply, in (11) the topic
noun HORSE:3

(11) S

T

N

HORSE

S

Q

TWO

NP

I

V

SEE FINISH

I saw two horses.

The general form just stated doesn’t apply to the agreeing argument. Quantific-
ation whose domain is denoted by the agreeing argument of an agreement verb is
indicated by the verb’s agreement affix, as in (12), or the theme argument of spatial
verbs.

(12) S

T

N

aSTUDENT

S

NP

PICTURE

NP

ANN

V

SHOWa -[Aexhaustive]

Ann showed each student the picture(s).

Here the exhaustive suffix Agr expresses universal quantification, and the agreeing
argument is the topic noun STUDENT, and restricts the quantification to students.

3 The following examples from ASL and Straits Salish illustrate various syntactic means that
these languages employ to express quantification. It is not necessary to understand the examples
in detail to appreciate the point they illustrate; so do not be discouraged if linguistic terminology
or phonetic symbols are unfamiliar. We use trees to display the structure, in order to make the
syntactic categories more evident.
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In (13), quantification is indicated by a classifier, /44/-, meaning many, for the
theme argument of a spatial verb of motion when that noun, MAN, denotes the
domain.

(13) S

T

N

aSTORE

S

N

MAN

V

C

/44/-

‘go to’a

The/many men went to the store.4

Another language, Straits Salish (a Salishan language spoken on the northwest coast
of North America) expresses claims like ‘‘You know that man’’, ‘‘We ate every fish’’,
‘‘We all ate the fish’’, ‘‘I saw many of them’’, and ‘‘There are fish’’ without benefit of
nouns, determiners, or noun phrases (see Jelinek 1995), instead using complement-
izers, predicate modifiers, and ordinary predicates in the following ways.

(14) S

S

P

nił
there

[A = ∅]
3ABS

S

C

c@
DEF

S

P

xči-t
know-TRAN

[A -@xw]
-2SBD Agent

That’s him, the one you know.5

In (14), the demonstrative-like complementizer c@ expresses quantification over
people you know.

4 The classifier /44/- indicates a large number of animate objects standing or moving upright
on two legs.

5 The symbols = and - denote different kinds of boundaries between morphemes within a word.
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(15) S

S

P

m@k’w

all
[A =ł]
1pNOM

L

’@w’
LINK

P

Na-t
eat-TRAN

[A -∅]
-3ABS

S

C

c@
DEF

S

P

sčeen@xw

fish

Ambiguously: We all ate the fish. We ate all the fish.

The adverb-like predicate modifier m@k’w expresses quantification over either fish
or us in (15). The syntax does not mark which is quantified over.

(16) S

S

P

N@n’
many

[A =∅]
3ABS

S

C

c@
DEF

S

P

leN-n
see-TRAN

[A -@n]
-1sSBD

They are many, the ones I saw.

In (16) and (17), quantification is expressed by ordinary predicates N@n- and ni-
in the main clause.
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(17) S

S

P

ni’
EXIST

[A =∅]
3ABS

S

C

c@
DEF

S

P

sčeen@xw

fish

There’s the fish.

In the next section, we address the importance of the syntactic differences that
these languages manifest. For the remainder of this section, our illustrative examples
are drawn from English and Swedish.

Discontinuous parts of determiners like the following also express quantifiers.

(18)

English Swedish

count mass count mass

more . . . than more . . . than fler(a) . . . än mer(a) . . . än
fewer . . . than less . . . than färre . . . än mindre . . . än
as many . . . as as much . . . as lika många . . . som lika mycket . . . som

(19) a. More doctors than dentists are millionaires.
b. Fler läkare än tandläkare är miljonärer.

(20) a. As much sand as glass is silicon.
b. Lika mycket sand som glas är silikon.

Possessive determiners express quantifiers too.

(21)

English Swedish

count mass count mass

my my min/mitt/mina min/mitt
your your din/ditt/dina din/ditt
Christer’s Christer’s Christers Christers
the chemistry the chemistry kemiprofessorns kemiprofessorns

professor’s professor’s
every student’s every student’s varje students varje students
my sister’s five min systers fem
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Numerals, which have syntactic properties different from each group of expressions
above, can also be used to express quantifiers.

(22)

English Swedish

count mass count mass

zero noll
one en/ett
two två
three tre

So can modified forms of numerals.

(23)

English Swedish

count mass count mass

about five omkring fem
at least one minst en/ett
at most six högst sex
exactly three exakt tre
more than two fler/mer än två
fewer than four färre/mindre än fyra
no more than five inte fler/mer än fem
no fewer than five inte färre/mindre än fem

Likewise complex combinations like between six and twelve. In addition, pro-
portional quantifiers exist for count and mass terms alike.6

(24)

English Swedish

count mass count mass

half of the half of the hälften av hälften av
at least a at least a minst en minst en

third of the third of the tredjedel av tredjedel av
at most two- at most two- högst två högst två

thirds of the thirds of the tredjedelar av tredjedelar av
more than more than mer än mer än hälften av

half of the half of the hälften av
less than three- less than three- mindre än tre mindre än tre

fifths of the fifths of the femtedelar av femtedelar av

Quantifiers are related to the indefinite and definite articles.

6 In Swedish as well as English, the nouns need to be definite; e.g.

(i) a. Hälften av mjölken återstår.
b. Half of the milk remains.
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(25)

English Swedish

count mass count mass

a(n) en/ett
the the -n/-t/-na -n/-t

In addition, some adjectives express quantifiers.

(26)

English Swedish

count mass count mass

numerous talrika
innumerable oräkneliga

Interestingly, some quantificational determiners also function as adjectives.

(27) a. (The reasons for doing it are) many/few/three/at most five.
b. (Skälen att göra det är) många/få/tre/högst fem.

Some adverbs can be used to express quantifiers.

(28)

English Swedish

count mass count mass

always always alltid alltid
mostly mostly oftast oftast
usually usually vanligen vanligen
mainly mainly huvudsakligen huvudsakligen
frequently (ofta)
often often ofta ofta
seldom seldom sällan sällan
rarely rarely sällan sällan
sometimes sometimes ibland ibland
never never aldrig aldrig

Quadratic equations usually have two distinct solutions.(29)

Men seldom make passes at girls who wear glasses.(30)

Oil always floats on water.(31)

Phrases like the following also express quantifiers.
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(32)

English Swedish

count mass count mass

a couple of några stycken
a lot of a lot of en hel del en hel del
a small number of a small amount of ett litet antal en liten mängd
a large number of a large amount of ett stort antal en stor mängd
a finite number of a finite amount of ett ändligt antal en ändlig mängd
an infinite number of an infinite amount of ett oändligt antal en oändlig mängd
a odd number of ett udda antal
an even number of ett jämnt antal

Moreover, quantification may be expressed by non-phrasal constructions.

(33)

English Swedish

count mass count mass

there is/are there is det finns/är det finns/är

(34) a. There are children living under the railway viaduct.
b. Det finns barn som bor under järnvägsviadukten.

(35) a. There is sand in the gears.
b. Det är sand i växlarna.

The foregoing examples demonstrate how much wider a range of quantifiers nat-
ural languages provide than the universal and existential quantifiers from first-order
logic.

0 .2 VARIETIES OF QUANTIFICATION

Quantifiers vary in several ways. A useful way to group their differences initially is
into syntactic variation versus semantic variation.

0.2.1 Syntactic variation in quantifier expressions

As we saw in the preceding section, some quantifier expressions are determiners. In
fact, most of the examples we presented were. However, other quantifier expressions
were adverbs. These are quite common among the world’s languages. And other
quantifier expressions are noun phrases; for example:

(36) a. Something (is behind that vase)
b. Everyone (likes Mary)
c. Nobody (is there now)
d. Most tigers (are Siberian)
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We will see in the next subsection that the quantifiers expressed by noun phrases dif-
fer semantically as well as syntactically from quantifiers expressed by determiners and
adverbs.

While all readers of this book have direct knowledge of the English quantifier
expressions we discuss, it is important to remember that some languages express quan-
tification by means very different from determiners or noun phrases, which con-
stitute our most frequent examples. We illustrated a few of these other expressions
in (11)–(17). In the past decade or thereabouts, these linguistic differences have
received considerable attention. Some languages—for instance, Straits Salish (Jelinek
1995)—are known not to express quantifiers with determiners. The next subsection
examines the significance of this fact in some detail. Let us here simply emphasize that
in the relatively brief time during which scholars have been investigating linguistic
variation in the expression of quantification, quite a number of languages have been
identified which do not use determiners and/or do not use noun phrases to anything
approaching the extent to which English and Swedish do for expressing quantifica-
tion. Straits Salish uses predicates, auxiliaries, and words adjoined to determiners to
express quantification, whereas it is controversial whether it does or doesn’t use noun
phrases (see Matthewson 1998).

Languages that do not use determiners for quantification are sometimes said
to employ A-quantification (see Bach et al. 1995: Introduction), as opposed
to D-quantification: the expression of quantification by determiners such as
every/varje, most/(de) flesta, and no/ingen(/inget/inga). The ‘‘A’’ in A-
quantification is mnemonic for adverbs, auxiliaries, affixes, and argument-structure
adjusters. As we have seen, English and Swedish employ such devices for quantifica-
tion, having adverbs of quantification like those in (28) in addition to quantificational
determiners. The rubric of A-quantification covers quite a broad range of quantifica-
tional devices, as the list of ‘A’s and the examples in (11)–(17) show.

0.2.2 Semantic types of NL quantification

In itself, the fact that certain languages scarcely use D-quantification does not
make them either more capable or less capable of expressing quantified proposi-
tions. The examples in (11)–(17) show ASL and Straits Salish doing fine at express-
ing with A-quantification the same sorts of proposition that English expresses with
D-quantification in (36). To appreciate what the significance of A- versus D-
quantification is, we need to focus more closely on the meanings of natural language
quantifiers.

These meanings can be classified according to semantic types, of which a number
are manifested in natural languages. The quantifiers exemplified in (1), (21)–(26),
(28), and (32), as well as those used in (11)–(17), are semantically of type 〈1, 1〉; that
is, they are binary relations between sets of things or stuff.7 Thus a quantified sentence
like

7 The type notation will be explained in Ch. 2.
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Every dog is barking.(37)

states that every (D, B) holds, where D is the set of dogs, B is the set of things that
are barking, and every is a relation between sets. The type 〈1, 1〉 quantifier every is a
particularly simple relation to describe: it is just the subset relation ⊆. By the same
token, (15) states, ambiguously, that the set of us is included in the set of eaters of the
fish, or that the set of fish is included in the set of things we ate. The next chapters
explain more precisely what this amounts to.

By contrast, the English noun phrases everything, something, nothing,
everyone, someone, no one, and others in (36) express type 〈1〉 quantifiers, as
do the Swedish noun phrases allting, nºagonting, ingenting, var/t och
en/ett, nºagon/t, ingen/t. These quantifiers are properties of sets of things (or
stuff), and many, though perhaps not all, languages have phrases that express such
quantifiers.

It is important to recognize that in natural languages type 〈1, 1〉 quantifiers are
more basic than type 〈1〉 quantifiers. So far as is known, all languages have expres-
sions for type 〈1, 1〉 quantifiers, though some languages have been claimed not to
have any expressions for type 〈1〉 quantifiers. A-quantification expressions and D-
quantification expressions alike denote type 〈1, 1〉 quantifiers. Many of these expres-
sions are lexical; that is, they are semantically basic within their language. The mean-
ings of phrases and sentences in which these lexical items occur are composed by
combining the type 〈1, 1〉 quantifier meaning with the meanings of other expressions,
regardless of whether the quantifier is expressed by an A-word or a D-word.

This is no less true for English, Swedish, and ASL, which have D-quantification
and noun phrases, than for Straits Salish and other languages that lack D-
quantification and might lack noun phrases. The meaning of a quantificational noun
phrase of English is a type 〈1〉 quantifier composed of the type 〈1, 1〉 quantifier that
the determiner expresses and the set that the nominal expression denotes. The inter-
mediate step of constructing a type 〈1〉 quantifier on the way to constructing the
meaning of the whole sentence is not really necessary to getting to the full sentence’s
meaning, and may well be ‘skipped’ when the basic type 〈1, 1〉 quantifier is expressed
by an A-word instead of a D-word. Skipping it is no less an option for A-quantifiers
in languages that possess D-quantification, e.g. English, Swedish, and ASL, than it is
in languages that lack D-quantification altogether.

While type 〈1〉quantifiers are theoretically important for a number of reasons, which
the following chapters discuss in detail, it appears to us that too exclusive a focus has
been placed on them as expressions of quantification in natural languages, making
the scarcity of quantificational noun phrases in some languages seem more mysterious
than it is. Even in languages that have D-quantification, the expression of quanti-
fication by means of A-words—without the intervention of quantificational noun
phrases—might seem unnecessarily mysterious. In actuality, both D-quantification
and A-quantification start with an expression for a type 〈1, 1〉 quantifier and compose
the quantifier with a restriction and a scope set. The issue of how the restriction set
is determined may be simpler in the case of D-quantification, where the nominal
expression following the D-word denotes it, than in the case of A-quantification; but
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the principal difference between the two means for expressing quantification is the
added complexity of determining the restrictor for A-quantification when semantically
interpreting sentences. However, for many varieties of A-quantification (e.g. agree-
ment affixes on verbs, classifiers of nouns, and topic-oriented quantifier morphemes),
it is no more difficult to determine what the restrictor is than for D-quantification.
So even the complexity of interpreting sentences containing A-quantification is no
greater when syntax clearly marks what the restrictor is.8

In summary, whether there is a phrase whose meaning is the type 〈1〉 quantifier
composed of the type 〈1, 1〉 A- or D-quantifier plus its restrictor is not really central
to understanding how natural languages express quantified propositions.9 This issue
may have assumed an exaggerated importance, partly because of the common phe-
nomenon of familiar things seeming obvious and unfamiliar ones seeming strange.
Quantifiers have mostly been studied by people who speak languages with rich sys-
tems of quantificational determiners and noun phrases (e.g. Greek, German, Eng-
lish), and the discovery of other grammatical means for expressing quantification may
have been surprising mainly because some easy and familiar assumptions were thus
found to be dispensable.

0.2.3 Quantirelations
The semantic distinction between type 〈1, 1〉 quantifiers and type 〈1〉 quantifiers
is very helpful, as we have seen, in illuminating the similarities and differences
between syntactically distinct D-quantification and A-quantification. It is a fact that
D-quantification forms and A-quantification forms both express type 〈1, 1〉 quanti-
fiers (and sometimes quantifiers of type 〈1, 1, 1〉 etc.), but not type 〈1〉. However,
we do not want to create a mistaken impression that all type 〈1, 1〉 quantifiers are
potential meanings for D-forms or A-forms of natural languages. Defining all possible
quantifiers of type 〈1, 1〉 is a logical exercise, which we carry out in Chapter 2.4. The
following are examples of type 〈1, 1〉 quantifiers—i.e. binary relations (on a given
domain) between sets of things—that are perfectly respectable from a logical point
of view, but are not potential meanings of D-forms or A-forms.

(38) a. MO(A, B) iff A has more elements than B
b. Div(A, B) iff the size of A ∩ B divides the size of A
c. Sqt(A, B) iff the size of A ∩ B is greater than the square root of the size of A

8 In some cases, an A-quantifier binds several variables simultaneously, for example, in

(i) Politicians are usually willing to help constituents.

In (i) the quantifier expression has one variable ranging over politicians, and another ranging over
constituents. We discuss in Ch. 10.2 the interpretation of such cases, which complicate somewhat
the determination of the A-quantifier’s domain restrictor.

It is sometimes asserted that A-quantifiers can, moreover, unselectively bind variables with little or
no constraint from the syntactic structure. If this is true, it adds further complexity to determining
the domain restriction for such quantifiers.

9 We certainly do not deprecate Montague’s accomplishment in showing that English noun
phrases are interpreted as type 〈1〉 quantifiers. This innovation was a major advance, as Cooper
(1977) , Barwise and Cooper (1981), and Keenan and Faltz (1985) pointed out.
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The relation MO fails to satisfy a condition that holds for all denotations of D-
forms and A-forms in natural languages (Chapter 4.5). As to Div and Sqt, it is simply
empirically implausible that natural language determiners or A-forms would denote
them.

What meanings natural languages allow D-forms and A-forms to express is of
course an empirical question. The answer must be determined by careful observa-
tion and analysis of facts. Much of the remainder of this book is devoted to various
sorts of efforts directed toward answering this empirical question. As we marshal facts
and arguments in our quest for an answer, it will be convenient to have a succinct
statement of the question. How can we conveniently refer to the relevant expressions
and their denotations? ‘‘D-expressions and A-expressions for quantification’’ is too
long-winded to be repeated as often as we’ll need to. So we introduce the term of art
quantirelation for expressions of natural languages that signify a type 〈1, 1〉 quantifier.
Here is the terminology we will use:

quantirelations etc.

• A quantirelation is an expression in some natural language that signifies a type
〈1, 1〉 quantifier.

• A quantifier expression is any expression in a natural language that can reason-
ably be taken to signify a quantifier (of any type).

• A natural language quantifier is a quantifier that is signified by some quantifier
expression.

Quantirelations are expressions, and we’ll use ‘‘quantirelation expression’’ and
‘‘quantirelation term’’ synonymously when it is important to emphasize their syn-
tactical character. Expressions of D-form and A-form are thus prime examples of
quantirelations. By contrast, for the binary relation between sets that is the semantic
entity signified by these expressions, the quantifier, we often use the term quantirela-
tion denotation. Analogously, ‘‘natural language quantifier’’ is synonymous with the
more cumbersome ‘‘quantifier expression denotation’’.

Thus, quantirelation denotations are natural language quantifiers, but the latter
class is wider. For example, the denotations of noun phrases, which are type 〈1〉 quan-
tifiers, belong there. And, as we will see below, there are many quantifiers of more
complex types involved in natural language quantification, and they all belong to the
somewhat vaguely specified class of natural language quantifiers.10

So every, most, at least a third of the, usually, m@k’w, etc. are
quantirelations (or quantirelation terms), and the quantifiers they signify are
quantirelation denotations. But the relations in (38) are not quantirelation denota-
tions: actually MO is still a natural language quantifier, because it is involved in

10 There is no established terminology here. Some authors, e.g. Westerståhl (1989), use ‘‘natural
language quantifier’’ for what we would here call ‘‘determiner denotation’’. We feel the present
terminology, although artificial, is more helpful.
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more . . . than constructions like There are more women than men, whereas
Div and Sqt are presumably not even natural language quantifiers. To repeat, the
quantirelation denotations are a restricted subclass of the class of all type 〈1, 1〉 quan-
tifiers. One of our main tasks will be to investigate the extent of this class and the
properties of its members.

0 .3 EXPLICIT AND IMPLICIT QUANTIFICATION

It is useful to distinguish natural language phrases like the quantirelations and
quantified noun phrases discussed so far, which express quantification over explicitly
mentioned things or stuff, from other expressions whose meaning may involve quan-
tification implicitly, but does not involve it explicitly. The latter expressions include
a wide range of items that are nowadays commonly analyzed in terms of quantific-
ation. For instance, the past tense may be analyzed as existential quantification over
times preceding the present. The deontic modal must may be analyzed as universal
quantification over possible worlds in which all obligations are complied with. The
conditional adverb ifmay be analyzed as universal quantification restricted to a set of
possible worlds in which the clause it subordinates (the antecedent) is true. The atti-
tude verb believemay be analyzed in terms of universal quantification over possible
worlds in which everything a subject believes is true. And so on.

These implicitly quantificational expressions have in common that sentences con-
taining them typically do not also contain an expression that explicitly denotes the
entities over which these expressions implicitly quantify. There need not be any time-
denoting expression in a past tense sentence.

Mary was at home.(39)

Modal, conditional, and belief statements do not contain expressions denoting pos-
sible worlds.

John must be on time.(40)

If life is discovered on Mars, it will revolutionize biology.(41)

I believe you are skeptical.(42)

In terming such quantification ‘‘implicit’’, we are not advocating an analysis in terms
of times or possible worlds.11 Rather, we mean simply to point out that one who
chooses to employ quantification in the semantic analysis of these expressions will
quantify over entities that are not mentioned explicitly. These cases contrast sharply
with the explicitly quantificational statements exemplified in section 0.1.

Between the above instances of clearly implicit quantification and the fully expli-
cit examples from section 0.1, there are cases which seem to have a certain degree of
implicitness.

The men slept.(43)

11 Nor in terms of such alternatives as events, situations, or sets thereof.



16 Quantification

is sometimes treated as explicitly referential, like

These men slept.(44)

and sometime as explicitly quantificational like

Each man slept.(45)

The truth conditions of sentence (43) are close if not identical to those of (45). How-
ever, this does not necessarily show that the definite article the in (43) is a quantifier.
The sentence might acquire its truth conditions by a very different route than (45)
does. The sentence

No man didn’t sleep.(46)

clearly acquires the same truth conditions as (45) by a different route. While (45)
and (46) are logically equivalent, they are not alike in all respects; (46) contains more
‘logical operators’ than (45) does, for example. By the same token, (43) might be ana-
lyzed as containing one plurality-denoting term (the plural noun phrase the men)
and distributing a collective predication over the members of that set. Thus (43)
would come to have the same truth conditions as (45) and (46) even if it did not
contain any item that explicitly expresses quantification. The distribution of predic-
ation could be analyzed in terms of universal quantification, analogous to what one
does with must, if, and believe; but the quantification would be implicit to some
degree, rather than explicit, in the meaning of sentence (43). We do not try to settle
the puzzle of whether thewith plural count nouns explicitly expresses quantification,
as this would take us to the topic of plural quantification, which we have no space
for here. And we take a liberal attitude in this book about interpreting expressions
as quantifiers if it makes sense to. However, we do wish to remind ourselves and the
reader that one should resist the temptation to call something a quantifier expression
simply on the grounds that its meaning can be analyzed in terms of quantification,
and should inquire further whether the things it would quantify over are mentioned
explicitly.

0 .4 MONADIC AND POLYADIC QUANTIFIERS

Natural language expressions for type 〈1〉 quantifiers such as everyone and most
French films need one additional ingredient to yield a statement. This ingredient
is commonly called the scope (some linguists call it the nuclear scope) of the quantifier
expression. In contrast with logical languages, natural language syntax does not always
indicate the scope of quantifiers unambiguously.

John said that he returned each book.(47)

(a) For each book, he said (perhaps at different times) that he returned it.

(b) He said (perhaps only once) that he returned each book.
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Ambiguities resulting from lack of explicitly demarcated scope may be one indicator
of explicit quantifiers.12

The following sentence also exhibits a typical scope ambiguity:

Every student solved at least one problem.(48)

This means either that there is at least one problem such that every student solved it
(‘narrow-scope reading’), or that each student solved at least one problem, but dif-
ferent students may have solved different problems (wide-scope reading). In this case
the first reading logically entails the second (but not vice versa): we have a scope dom-
inance. But there are many cases when the readings are logically independent: for
example,

John didn’t eat one cookie.(49)

On one reading, there is one cookie that John didn’t eat (but he may have eaten all
the others); on the other reading he ate no cookies at all. Neither of these readings
implies the other. We look further at scope dominance in Chapter 10.1.

The quantifier expressions discussed so far all ‘bind one variable’ in their scope; that
is, the quantifiers they express are properties of or relations between sets. The logical
notion of a generalized quantifier, however, allows for the possibility of quantifiers
that ‘bind two or more variables’ in their scope—that is, are relations between binary
or n-ary relations. Do such quantifiers occur in natural languages?

They do indeed seem to exist. One possible example was given in note 8. Another
is the reciprocal expression each other in English, as in this sentence:

Congressmen must refer to each other indirectly.(50)

Clearly quantification is called for in semantically analyzing (50), whose meaning is
something like: ‘Each congressman must refer to every other congressman indirectly’.
But does each other involve quantification only implicitly, like the past tense, the

12 Also, lack of ambiguity might indicate that something is not really a quantifier. For example,
the sentence (i),

(i) The novices chose a mentor.

which is similar in structure to (43), unambiguously entails that all novices have the same mentor.
Likewise, sentence (ii) is unambiguous and entails nothing about whether or not the mentors are
all different.

(ii) The novices chose mentors.

In striking contrast, sentence (iii), which contains both an explicit quantifier and the indefinite
article, exhibits quantifier scope ambiguity.

(iii) Every novice chose a mentor.

Just such facts constitute reasons for questioning the hypothesis that the definite plural noun
phrases in (43), (i), and (ii) express universal quantifiers, and suspecting that universal quanti-
fication instead figures in the analysis of these sentences’ meaning only in explaining how the
predication expressed by the verb is distributed over members of the collection that the noun phrase
denotes.
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modal must, and the verb believe? It seems not, as sentences with each other
explicitly mention the things being quantified over—congressmen in (50)—and fur-
thermore the scope of the polyadic quantifier each other is not uniquely determ-
ined by its position in syntactic structure. For example, the scope of the reciprocal in
sentence (51) can be the subordinate clause (i.e. the complement of think), giving
the silly interpretation (52a), and alternatively, the scope can be the entire sentence,
giving the interpretation which is the obviously sensible one in this case.

John and Bill think they are taller than each other,(51)

(52) a. Each thinks: We’re taller than each other.

(52) b. Each thinks: I’m taller than him.

We analyze the very interesting type 〈1, 2〉 quantifier expressed by reciprocal
phrases like each other in more detail in Chapter 10. For now, we note simply that
the following examples show that its meaning does not always decompose into two
universal quantifications.

(53) a. Five Boston pitchers sat alongside each other.
b. The pirates stared at each other in surprise.
c. They stacked tables on top of each other to reach a high window.

This is just one kind of polyadic quantifier that occurs in natural languages; other
kinds will be discussed in Chapter 10.

We hope that the examples of different kinds of natural language quantifiers indicated
in this chapter have at least made it clear that quantification is a subject vastly bigger
than the familiar ∀ and ∃ from elementary logic. To approach this subject, we will
avail ourselves of a wider logical notion: that of a generalized quantifier. But, though
the range of natural language quantifiers is very broad, it is easy to find examples
of generalized quantifiers that have nothing to do with natural languages. The exact
range of natural language quantifiers, within the class of generalized quantifiers, is
therefore a serious object of study, to which semantic and logical tools can be applied.
At the same time it calls for substantial empirical and theoretical investigations. This
book focuses on the general semantic and logical properties of natural language quan-
tifiers, but we pay close attention to several empirical issues as well. In Chapters 3 and
4 we present detailed analyses of many of the quantifiers listed in the present chapter,
after introducing in Chapters 1 and 2 the analytic concepts needed for such analyses.
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1
A Brief History of Quantification

We start approaching the concept of quantification through some glimpses of its his-
torical development, right from the Aristotelian beginnings. This is not just a soft
way to introduce a technical concept. To understand how people have tried to think
about quantification earlier, both their insights and their difficulties, is useful for us
who try to think about it today. In fact, the evolution of notions of quantification is
quite interesting, both from a historical and a systematic perspective. We hope this
will be evident in what follows. But our own perspective is mainly systematic. We
shall use these glimpses from the history of ideas as occasions to introduce a number
of semantic and methodological issues that will be recurring themes of this book.

Section 1.1 looks at the early history of quantification, beginning with Aristotle,
who initiated the logical study of the four quantifiers all, some, not, and not all,
that medieval philosophers arranged in the ‘square of opposition’. A closer look at
that square reveals interesting facts about how negation combines with quantifica-
tion, and also brings up the still debated issue of whether the truth of all As are
B requires that there are some As. In the rich medieval discussion of quantification,
we focus only on the distinction between categorematic and syncategorematic terms,
a distinction closely tied to the issue of the meaning or significance of the quanti-
fier expressions themselves (not just the sentences containing them), and interestingly
related to several modern themes. From the Middle Ages we jump to the emergence
of modern logic at the end of the nineteenth century (section 1.2). The tentative
accounts of quantification in Peirce, Peano, and Russell, and the clear and explicit
account in Frege, gradually turn, via Tarski’s formal treatment of truth, into the mod-
ern model-theoretic perspective, where the truth conditions of quantified sentences in
formal languages are relative to interpretations or models (section 1.3). In particular,
we discuss the role of the universe of quantification, and the subtle mechanisms by
which natural languages are able to restrict that universe.

Much of the discussion, and the confusion, around quantification since medieval
times concerns what quantifier expressions signify or denote, or make larger expres-
sions (like all men, some sailors, no cats) signify or denote. The most obvious
candidates are individuals or sets of individuals, but all attempts along these lines
seem to meet with insuperable difficulties. In a postscript to the chapter (section 1.4),
we give a formal proof that, indeed, no systematic account along these lines can suc-
ceed. One needs to go one level up in abstraction (to sets of sets of individuals), and
that is where the modern theory of quantification begins.
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1.1 EARLY HISTORY OF QUANTIFIERS

1.1.1 Aristotelian beginnings

When Aristotle invented the very idea of logic more than 2,300 years ago, he focused
precisely on the analysis of quantification. Operators like and and or were added later
(by Stoic philosophers). Aristotle’s syllogisms can be seen as a formal rendering of cer-
tain inferential properties, hence of aspects of the meaning, of the expressions all,
some, no, not all. These provide four prime examples of the kind of quantifiers
that this book is about.

A syllogism has the form:1

Q 1A B

Q 2B C

Q 3A C

where each of Q 1, Q 2, Q 3 is one of the four expressions above. Later on, these
expressions were often presented diagrammatically in the square of opposition; see
Fig. 1.1.2 Positions in the square indicate certain logical relations between the quan-
tifiers involved. Thus, there are really two kinds of logical ‘laws’ at work here: the
(valid) syllogistic inference schemes with their characteristic form, and the ‘opposi-
tions’ depicted in the square, which do not have that form when written as inference
schemes, but are nevertheless considered to be valid. As to the former, here are two
typical examples of syllogistic schemes:

(1.1) all A B

no B C

no A C

This scheme is clearly valid : no matter what the properties A, B, C are, it always holds
that if the two premises are true, then so is the conclusion.

(1.2) all A B

some B C

some A C

This too has the stipulated syllogistic form, but it is invalid : one may easily choose
A, B, C so as to make the premises true but the conclusion false.

1 This is the so-called first figure—three more figures are obtained by permuting AB or BC in
the premises. We are simplifying Aristotle’s mode of presenting the syllogisms, but not distorting
it. Observe in particular that Aristotle was the first to use variables in logic, and thus to introduce
the idea of an inference scheme.

2 Apparently it was Apuleios of Madaura (2nd century ) who first introduced this diagram-
matic representation.
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A syllogism is a particular instantiation of a syllogistic scheme:

All Greeks are sailors

No sailors are scared

No Greeks are scared

is a valid syllogism, instantiating the scheme in (1.1), and

All whales are mammals

Some mammals have fins

Some whales have fins

is an invalid one instantiating (1.2).
It was perfectly clear to Aristotle (though not always to his followers) that the actual

truth or falsity of its premises or conclusion is irrelevant to the (in)validity of a syl-
logism—except that no valid inference can have true premises and a false conclu-
sion. What matters is whether it is possible that the premises are true and the con-
clusion false: if it is possible, the syllogism is invalid; if not, it is valid. In particular,
a valid syllogism can have false premises. For example, in the first (valid) syllogism
above, all three statements involved are false, whereas in the second (invalid) one they
are all true.

As to the logical relations depicted in the square of opposition, there is a small but
crucial difference between the classical and the modern version of this square. Since
this point has often been misunderstood, and since it serves to illustrate an important
issue in the semantics of quantification, it is worthwhile to get clear about it.

The classical square of opposition, i.e. the square as it appears in the work of Aris-
totle (though he did not use the diagram) and in most subsequent work up to the
advent of modern logic in the late nineteenth century, is as in Fig. 1.1. The A and E

Aallei E no

Isome O not allei

contra-
dictory

contrary

subcontrary

subalternate subalternate

Figure 1.1 The classical square
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quantifiers are called universal, whereas the I and O quantifiers are particular. Also,
the A and I quantifiers are called affirmative, and the E and O quantifiers negative.
Now, the important point is that the quantifier in the A position is what we have here
called all ei, i.e. the quantifier all with existential import. So all ei(A, B) in effect means
that all As are B and there are some As. This is explicit with many medieval authors, but
also clearly implicit in Aristotle’s work: for example, in the fact that he (and almost
everyone else doing syllogistics before the age of modern logic) considered the fol-
lowing scheme as valid:

(1.3) all AB

all BC

some AC

The logical relations in the classical square are as follows: Diagonals connect contra-
dictory propositions, i.e. propositions that cannot have the same truth value. The A
and E propositions are contrary: they cannot both be true (note that this too pre-
supposes that the A quantifier has existential import). The I and O propositions are
subcontrary: they cannot both be false. Finally, the I proposition is subalternate to the
A proposition: it cannot be false if the A proposition is true, in other words, it is
implied by the A proposition (again presupposing the latter quantifier has existential
import). Similarly for the O and E propositions.

In addition, the convertibility—or as we shall say, the symmetry—of the I and E
positions, i.e. the fact that no A’s are B implies that no B’s are A, and similarly for some,
was also taken by Aristotle and his followers to belong to the basic logical facts about
the square of opposition. We discuss symmetry in Chapter 6.1.

Notice that it follows that the A and O propositions are negations of each other
(similarly for the I and E propositions). Thus, the quantifier at the O position means
that either something in A is not in B, or there is nothing in A. So the O proposi-
tion is true when A is empty; i.e. contrary to the modern usage, the quantifier not all
does not have existential import. (Q has existential import if Q(A, B) implies that A
is non-empty.)

It seems, however, that during the late nineteenth and twentieth centuries this fact
was often forgotten, and consequently it was thought that the logical laws described
by the classical square of opposition were actually inconsistent. For example, people
wondered how no(A, B) could imply not all (A, B). And of course it doesn’t—with the
modern understanding of not all(A, B). But it does imply not all ei(A, B)—either there
is nothing in A, in which case not all ei(A, B) holds, or there is something in A, which
then cannot be in B by assumption, so again not all ei(A, B) holds—and that is all the
classical square claims. Furthermore, it is often supposed that the problem arose from
insufficient clarity about empty terms, i.e. expressions denoting the empty set.3

3 For a recent statement of this view, see Spade 2002: 17. Another example is Kneale and Kneale
1962: 55–60. Consequently, it is also often assumed that the problems go away if one restricts
attention to non-empty terms. But actually one has to disallow their complements, i.e. universal
terms, as well, which seems less palatable. In any case, neither restriction is motivated; see n. 4.
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For a detailed argument that most of this later discussion simply rests on a mis-
taken interpretation of the classical square, we refer to Parsons 2004. The upshot is
that, apparently, neither Aristotle nor (with a few exceptions) medieval philosophers
disallowed empty terms, and some medieval philosophers explicitly endorsed them.4

And as long as one remembers that the O quantifier is the negation of the quantifier
all ei, nothing is wrong with the logic of the classical square of opposition.

A totally different issue, however, is which interpretation of words like all and
every is ‘correct’ or, rather, most adequate for linguistic and logical purposes.
Nowadays, all is used without existential import, and the modern square of oppos-
ition is as in Fig. 1.2.

all no

some not all

outer
negation

inner negation

inner negation

dual dual

Figure 1.2 The modern square

Parsons (2004) appears to think this square is impoverished and less interesting,
but we disagree on this point. The main virtue of the modern square is that it depicts
three important forms of negation that appear in natural (and logical) languages.

three forms of negation

As in the classical square, the diagonals indicate ‘contradictory’ negation, or as we
shall say, outer negation. When Q i and Q j are at the ends of a diagonal, the pro-
position Q i As are B is simply the negation of Q j As are B; i.e. it is equivalent
to It is not the case that Q j As are B. This propositional negation ‘lifts’
to the (outer) negation of a quantifier, and we can write Q i = ¬Q j (and hence
Q j = ¬¬Q j = ¬Q i).

4 In Paul of Venice’s Logica Magna (c. 1400), he gives

(i) Some man who is a donkey is not a donkey.

as an example of a sentence which is true since the subject term is empty; see Parsons 2004: sect. 5.
So he allows empty terms, and confirms the interpretation of the O quantifier given above.
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A horizontal line between Q i and Q j now stands for what we shall call inner
negation: here Q i As are B is equivalent to Q j As are not B, which can be
thought of as applying the inner negation Q j¬ to the denotations of A and B.

Finally, a vertical line in the square indicates that the respective quantifiers are
each other’s duals, where the dual of Q i is the outer negation of its inner negation
(or vice versa): Q d

i = ¬(Q i¬) = (¬Q i)¬ = ¬Q i¬

The modern square is closed under these forms of negation: applying any number of
these operations to a quantifier in the square will not lead outside it. For example,
(nod)¬ = ¬no¬¬ = ¬no = some. (It is not closed under other Boolean operations;
e.g. the quantifier some but not all, which is the conjunction of some and its inner neg-
ation, is not in the square.)

As we will see later on (Chapter 3.2.3), all three forms of negation have natural
manifestations in real languages. Moreover, this notion of a square of opposition
applies to quantifiers other than those in Aristotle’s square; indeed, any quantifier
generates a square. That is not true of the classical square: only outer negation is
present there, but not the other two forms.5

The issue at stake here is not whether empty terms should be allowed or not, but
whether all and every have existential import or not. Do they have existential
import? Everyone is familiar with the fact that it is usually odd to affirm that every
A is B when one knows there are no As. The dispute (and the confusion) between the
two squares of opposition nicely puts the finger on the meaning of every. In mod-
ern terms, the main question is whether the existential import that is often felt with
uses of every belongs to the meaning—the truth conditions—or rather is a presup-
position or a Gricean implicature. We return to this issue in Chapter 4.2.1. However,
we have already given here one kind of argument for choosing the modern interpreta-
tion without existential import: in this way the meaning of every fits nicely with the

5 Though the difference between the classical Aristotelian square and the modern version might
at first seem small—all instead of allei, and similarly for not all —the principled differences are
huge. First, whereas outer negation is presented in both squares, neither inner negation nor dual
is contained in the classical square. For example, the dual of the quantifier all ei is the quantifier
which holds of A and B iff either some A is B or A is empty. The latter is rather unnatural, and may
not even be a quantirelation in the sense of Ch. 0.2.3.

Second, the logical relations depicted in the two diagrams are quite different. For example, the
relation holding between two contrary propositions, that they cannot both be true (but can both
be false), amounts to one implying the outer negation of the other (but not being implied by that
negation). That relation neither entails nor is entailed by one of the propositions being the inner
negation of the other.

Third, the classical square is not generated by any of its members. To make this statement pre-
cise, let us define a classical square as consisting of four quantifiers arranged as in Fig. 1.1 and with
the same logical relations—contradictories, contraries, subcontraries, and subalternates—holding
between the respective positions. Then each position will determine the quantifier at the diagon-
ally opposed position, i.e. its outer negation, but not the quantifiers at the other two positions. For
example, the reader may easily verify that

(ii) For every k and every n ≥ k, [A: at least n; E: fewer than k; I: at least k; O: fewer than n] is a
classical square.



A Brief History of Quantification 27

other three quantifiers in the modern square of opposition, and thus with the three
kinds of negation that any semantics of natural languages has to account for anyway.
In short, logical coherence speaks in favor of the modern interpretation (see n. 5).

We have dwelt at some length on the logic of the square of opposition, but we
also noted that the inferences which were the main focus of Aristotle’s attention
were the syllogisms. There are 256 syllogistic schemes. Aristotle characterized which
ones of these are valid, not by enumeration but by an axiomatic method whereby all
valid ones—and no others—were deducible from just two syllogisms. Apart from
being the first example of a deductive system, and of a metalogical investigation of
such a system, it was an impressive contribution to the logico-semantic analysis of
quantification.

However, it must be emphasized that Aristotle’s analysis, even when facts about the
square of opposition are added, does not exhaust the meaning of these four quantifier
expressions,6 since there are many valid inference schemes involving them which do
not have these forms: for example,

John knows every professor
Mary is a professor

John knows Mary

No student knows every professor
Some student knows every assistant

Some professor is not an assistant

These inferences go beyond syllogistic form in at least the following ways: (i) names
of individuals play an essential role; (ii) there are not only names of properties (such
as adjectives, nouns, intransitive verbs) as in the syllogisms, but also names of binary
relations (such as transitive verbs); (iii) quantification can be iterated (occur in both
the subject and the object of a transitive verb, for example). While none of these fea-
tures may seem, at least in hindsight, like a formidable challenge, it is certainly much
harder than in the syllogistic case to describe the logical structures needed to account
for the validity of inferences of these kinds. At the same time, it is rather clear that a
logic which cannot handle such inferences will not be able to render, say, the struc-
ture of proofs in elementary geometry (like Euclid’s), or, for that matter, much of
everyday reasoning.

The failure to realize the limitations of the syllogistic form, together with the undis-
puted authority of Aristotle among medieval philosophers and onward, is part of the
explanation why logic led a rather stagnant and unproductive existence after Aristotle,
all the way up to the late nineteenth century. Only when the syllogistics is extended
to modern predicate logic do we in fact get a full set of inference schemes which, in a

6 Aristotle didn’t claim it did; in fact, he was well aware that there are other forms of logically
valid reasoning. It is not really known why he attached such importance to the syllogisms. Perhaps he
was (justly) amazed by the fact that he could apply the axiomatic method from geometry—deriving
valid syllogisms from others—to objects that were not mathematical but linguistic.
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precise sense, capture all valid inferences pertaining to the four quantifiers that Aris-
totle studied.7

1.1.1.1 Proof-theoretic and model-theoretic semantics

Approaching meaning via inference patterns is characteristic of a proof-theoretic per-
spective on semantics. The idea is that an expression’s meaning is contained in a spe-
cific set of inference rules involving that expression.8 In the case of our four quantifi-
ers, however, it seems that whenever a certain system of such rules is proposed—such
as the syllogisms—we can always ask if these schemes are correct, and if they are
exhaustive or complete. Since we understand these questions, and likewise what reas-
onable answers would be, one may wonder if there isn’t some other more primary
sense in which we know the meaning of these expressions. But, however this (thorny)
issue in the philosophy of language is resolved, it is clear that in the case of Aristotelian
quantifiers there is indeed a different and more direct way in which their meaning can
be given. Interestingly, that way is also clearly present, at least in retrospect, in the
syllogistics.

For, on reflection, it is clear that each of these four quantifier expressions stands for
a particular binary relation between properties, or, looking at the matter more exten-
sionally, a binary relation between sets of individuals. When A, B, C are arbitrary sets,
these relations can be given in standard set- theoretic notation as follows:9

all (A, B) ⇐⇒ A ⊆ B

some (A, B) ⇐⇒ A ∩ B �= ∅
no (A, B) ⇐⇒ A ∩ B = ∅
not all (A, B) ⇐⇒ A − B �= ∅10

7 That is, all valid inferences using only the machinery of predicate logic—this is Gödel’s com-
pleteness theorem for that logic.

8 In particular, in intuitionistic logic, the explanations of what is a proof of a proposition of
a certain form are taken to embody the meaning of those propositions. Thus the main semantic
concept is an epistemic one. Truth is seen as a derived concept, amounting to the existence of a
proof. See Ranta 1994 for an approach to semantics along these lines, within the framework of
constructive type theory, and Sundholm 1989 for a similar attempt to deal with generalized quan-
tifiers. Applying these ideas to natural languages, one obtains the verificationist semantics which
represents one strand in modern philosophy of language; see Dummett 1975; Prawitz 1987.

These approaches place proof prior to truth in the order of semantic explanation. By contrast,
many uses of proof theory are perfectly compatible with the reverse order. Proof systems for first-
order logic enrich our understanding of that logic, and can be seen to be adequate by Gödel’s
completeness theorem. For generalized quantifiers, a classic example is Keisler 1970, which deals
with an axiomatization of the quantifier there are uncountably many; again, the main objective is to
prove a completeness theorem.

9 We are here, as in most of this book, using a standard relational notation. Instead of all (A, B),
one could equally well write (A, B) ∈ all, or, using characteristic functions, all (A, B) = 1 (= True).

10 As we saw, the relations in effect considered by Aristotle were some, no, and

allei (A, B) ⇐⇒ ∅ �= A ⊆ B
not-allei (A, B) ⇐⇒ A − B �= ∅ or A = ∅
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So, for example,

(1.4) All Greeks are sailors.

simply means that the set of Greeks stands in the inclusion relation to the set of sailors.
Such a formulation is consonant with a model-theoretic perspective on meaning,

where truth and reference are basic concepts, rather than epistemic ones such as the
concept of proof. In this book we consistently apply a model-theoretic approach to
quantification. This is not to say that we think proof-theoretic considerations are irrel-
evant. For example, one case where such considerations are important concerns the
notion of a logical constant, as we will argue in Chapter 9.4. However, our approach to
the meaning of quantifier expressions is always in terms of the model-theoretic objects
that these expressions denote.

1.1.1.2 Quantifier expressions and their denotations

In this connection, let us note something that has been implicit in the above. Quan-
tifier expressions are syntactic objects, different in different languages. On the present
account, some such expressions ‘stand for’, or ‘denote’, or have as their ‘extensions’,
particular relations between sets. So, for example, the English no and the Swedish
ingen both denote the relation that holds between two sets if and only if they are
disjoint. There is nothing language-dependent about these relations. But, of course,
to talk about them, we need to use language: a meta-language containing some set-
theoretic terminology and, in the present book, English. In this meta-language, we
sometimes use the handy convention that an English quantifier expression, in ital-
ics, names the corresponding relation between sets. Thus, no as defined above is the
disjointness relation, and hence the relation denoted by both the Swedish expression
ingen and the English expression no.

We note that on the present (Aristotle-inspired) analysis, each of the main words in
a sentence like (1.4) has an extension; it denotes a set-theoretic object. Just as sailor
denotes the set of sailors and Greek the set of Greeks, so all denotes the inclusion
relation.

In this book we mainly use the term denote for the relation between a word and a
corresponding model-theoretic object (its extension or denotation), with the idea that
this is a modern and fairly neutral term. So we can maintain, for example, that prac-
tically everyone agrees that predicates like sailor and Greek have sets as denota-
tions, even though (a) sets are a modern invention; (b) medieval philosophers, who
thought a lot about the relations between words and the world, rarely talked about
denotation; (c) nominalists of various ilks—medieval or later—deny that reference
to anything other than individuals occurs, and sometimes also the existence of abstract
objects like sets. The point is that even if you claim, as a nominalist like Ockham did,
that sailor only refers to individual sailors, it does refer to all and only sailors, so
implicitly at least, the denotation, i.e. the set of sailors, plays a role in the semantics.11

11 Likewise, the criticism of so-called name theories of meaning—ridiculed by Ryle (the
‘Fido’–Fido theory) for resting on a category mistake (Ryle 1949)—does not have much force
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For quantifier expressions, on the other hand, one cannot say that anyone before
Frege (section 1.2.4 below) thought of them as denoting. Their status in this respect
is at best unclear, and some logicians explicitly held that it was incoherent to think
of them as denoting anything: for example, Russell (who did use the term ‘denote’).
One plausible reason for this is that there seemed to be no good candidates for the
denotation of these expressions, so they had to be dealt with in another way. How-
ever, we already saw that Aristotle’s account of the four quantifiers mentioned so far
does point to one such candidate:

Quantifier expressions denote relations between sets of individuals.

While it may be anachronistic to attribute that idea to Aristotle himself, it certainly
is consistent with his approach and his focus on the syllogistic schemes. And, as it
turns out, this simple idea resolves the problems encountered by earlier logicians, and
provides the foundation of a coherent and fruitful account of quantification.

1.1.2 The Middle Ages

Medieval logicians and philosophers devoted much effort to the semantics of quanti-
fied statements, essentially restricted to syllogistic form. For a modern light introduc-
tion to (late) medieval logic and semantics we refer the reader to Spade 2002. Here we
shall recall just one important distinction that was standard in those days—between
words that have an independent meaning and words that don’t. The former were
called categorematic, the latter syncategorematic.

1.1.2.1 Categorematic and syncategorematic terms

The following quote is illustrative:12

Categorematic terms have a definite and certain signification, e.g. this name ‘man’ signifies
all men, and this name ‘animal’ all animals, and this name ‘whiteness’ all whitenesses. But
syncategorematic terms, such as are ‘all’, ‘no’, ‘some’, ‘whole’, ‘besides’, ‘only’, ‘in so far as’
and such-like, do not have a definite and certain signification, nor do they signify anything
distinct from what is signified by the categoremata. . . . Hence this syncategoremata ‘all’ has
no definite significance, but when attached to ‘man’ makes it stand or suppose for all men . . . .
And the same is to be held proportionately for the others, . . . though distinct functions are
exercised by distinct syncatgoremata . . . . (William of Ockham, Summa Logicae, i, c. 1320;
quoted from Bocheński 1970: 157–8)

against our use of ‘‘denote’’. Model-theoretic semantics takes no serious metaphysical stand on
naming. And if one can associate extensions, such as sets, functions, or other abstract objects, with
linguistic expressions in a systematic way, the value of such an enterprise is to be measured by its
fruitfulness, its power of prediction and explanation, etc., rather than on a priori grounds.

12 We are grateful to Wilfrid Hodges for substantial advice on medieval semantics, and in par-
ticular on what Ockham is really saying in this passage.
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The word ‘‘signify’’ is a standard medieval term for the relation between signs and
the things they are signs of. That x signifies y means roughly that x establishes an
understanding of y in the mind of the speaker or hearer (Spade 2002: ch. 3, sect.
E). Signification is thus a kind of psychologico-causal relation. The other main term
was supposit, or ‘‘suppose’’ (for). The quote illustrates the interaction between the
two: a word supposits for something only in a given linguistic context (and may sup-
posit for another thing in another context), whereas signification is more absolute
and context-independent (Spade 2002: ch. 8, Sect. A).13 Now the first sentence of
the quote should not, given Ockham’s nominalist persuasion, be taken to mean that
nouns signify any universal or abstract objects, but rather that each man is signified
by man, etc. But the status of universals is not the issue here—the point is that quan-
tifier expressions and other syncategoremata do not establish the understanding of
anything ‘‘definite and certain’’ in our minds.

Ockham is not saying that a word like all doesn’t stand for anything, but that it
doesn’t have the signification relation to anything. However, when combined with
a noun, it makes the noun stand (supposit) for something. Syncategorematic words
never signify or supposit for anything; instead, they have a systematic effect on what
other words stand for.

This general contrast is fairly clear. Less clear is what it is that expressions like all,
some, no make their adjacent nouns—or, alternatively, the respective noun phrases14

—stand for. Taking ‘‘stand for’’ now in the weak sense of our ‘‘denote’’,15 it would
seem that all men again denotes the set of men (in Ockham’s case, it stands for each
man), and we might similarly assume that some man denotes a particular man. But
what, then, would no man denote? It could hardly be the empty set, for then there
would be no difference between no man and no dog. As we show in a postscript to
this chapter (section 1.4), trying to make quantified noun phrases stand for individu-
als or sets of individuals is in fact an impossible task.

13 Basic idea: In

(a) Every man is an animal.

man supposits for each man if you are a nominalist (and for something more abstract, like a set, if
you are a realist); this is usually called personal supposition. In

(b) Man is a species.

it supposits for a universal concept (which in Ockham’s case is a thing in the mind); simple sup-
position. And in

(c) Man has three letters

the word man supposits for itself; material supposition. The context may be a preceding quantifier
expression, or something else about the form of the sentence, or a restricted universe of quantifica-
tion (a context set in the sense to be explained in sect. 1.3.4 below).

14 It is not clear that Ockham took noun phrases to be meaningful linguistic units, and in gen-
eral medieval logicians did not have a notion of complex constituents of sentences (although they
did think of sentences as complex objects). But presumably it is no great distortion of the facts
to assume that what Ockham thinks the word man, when preceded by all, stands for is what he
would have thought the noun phrase all men—had he had that notion—stands for.

15 The closest medieval correspondent would seem to be the way realists took the relation of
personal supposition (see n. 13).
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The next quote too begins with an attempt to explain the semantic function of the
Aristotelian quantifier expressions.

The universal sign is that by which it is signified that the universal term to which it is adjoined
stands copulatively for its suppositum (per modum copulationis) . . . The particular sign is that
by which it is signified that a universal term stands disjunctively for all its supposita. . . . Hence
it is requisite and necessary for the truth of this: ‘some man runs’, that it be true of some
(definite) man to say that he runs, i.e. that one of the singular (propositions) is true which is a
part of the disjunctive (proposition): ‘Socrates (runs) or Plato runs, and so of each’, since it is
sufficient for the truth of a disjunctive that one of its parts be true. (Albert of Saxony, Logica
Albertucii Perutilis Logica, iii (Venice, 1522; quoted from Bocheński 1970: 234))

The latter part of the quote, on the other hand, is a way of stating the truth con-
ditions for quantified sentences, in terms of (long) disjunctions and conjunctions.
Whatever one may think of the proposed definition, it brings out the important point
that it is perfectly possible to state adequate truth conditions for quantified sentences
without assuming that the quantifier expressions themselves denote anything. Indeed,
this is how the Tarskian truth definition is usually formulated in current textbooks in
first-order logic. But although medieval logicians may have taken the position—and,
for example, Russell (see below) certainly did—that it is necessary to proceed in this
way, generalized quantifier theory shows that it is in fact possible to treat quantifier
expressions as denoting. Such an approach, which, as we have seen, is quite in line
with Aristotle’s syllogistics, has definite advantages: it identifies important syntactic
and semantic categories, and it conforms better to the Principle of Compositional-
ity, according to which the meaning of a complex expression is determined by the
meanings of its parts and the mode of composition. More about this later.

1.1.2.2 Modern variants

What is the modern counterpart of the medieval distinction between categorematic
and syncategorematic terms? It might be tempting to define logic as the study of the
syncategorematic terms. But such an identification should be resisted, we think. What
makes a term merit the attribute logical (or, for that matter, constant) is one thing,
having to do with particular features of its semantics; we return to the issue of logic-
ality in Chapter 9. However, the fact that a word or morpheme does not have inde-
pendent semantic status is quite another thing, which applies to many expressions
other than those traditionally seen as logical.16

A possibly related linguistic notion is that of a grammatical morpheme. Such a word
may not belong in a dictionary at all, or if it does, there could be a description of
its phonological and syntactic features (e.g. valence features: which other words it
combines with), but not directly of its meaning. The meaning arises, as it were, via a

16 When Spade suggests (2002: 116) that, from a modern point of view, categorematic terms are
those that get interpreted in models, whereas the syncategorematic ones get their semantic role from
the corresponding clauses in the truth definition, he comes close to identifying syncategorematicity
with logicality: the standard modern idea is that non-logical constants are interpreted in models,
but not logical ones.
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grammatical rule; hence the name. Typical English examples might be the progressive
verb ending -ing, the word it in sentences such as

(1.5) It is hard to know what Ockham meant.

and the infinitive particle to (the first occurrence below):

(1.6) To lie to your teacher is bad.

But, as these examples also indicate, the words that the medievals thought of as syn-
categorematic, such as every, no, besides, only, whole, and the copula is, are
in general not grammatical morphemes: you do find them in dictionaries, along with
attempts at explaining their meaning.17

It seems that there are really two basic aspects of syncategorematic terms in the
medieval sense, or two senses in which the meaning of such terms is ‘‘not independ-
ent’’. One is the lack of ability to produce clear ideas in our minds. The other is that
they are functions or operators: they need an argument to act on. Given the argument,
the combined phrase gets a definite meaning (or, as the medievals preferred to put it,
the argument itself gets a possibly new definite meaning).

These two aspects are partly orthogonal, it appears to us, and from a modern view-
point it is the latter one which is most interesting. What you think can be presented
clearly to the mind obviously depends crucially on your theory of the mind, and it is
not at all evident that only predicate expressions have this property. That something is
an operator requiring an argument, on the other hand, seems like a much more robust
notion, at least in most of the cases that the medievals looked at. Today we can easily
agree that their syncategoremata are indeed operators. But this does not entail that we
do not have clear ideas of how these operators work.

A further modern issue is how you present the workings of these operators. In par-
ticular, can you see the quantifier expressions as denoting, or even ‘‘signifying’’, given
operators? The conceptually simplest way to do this is to take the Aristotelian hint
that they denote relations between sets. These are (second-order) relations; as oper-
ators, they map sets of individuals (predicate denotations) to sets of sets of individu-
als (noun phrase denotations). So the denotations are fairly abstract, and have only
become standard with the modern application of generalized quantifier theory to nat-
ural language semantics. (It is worth recalling that irrational numbers and infinite
sets were once anything but clear ideas in people’s minds, however unproblematic the
concepts are to modern minds.)

The alternative is to describe the operators contextually: instead of saying what
a word like every denotes, you give uniform truth conditions for sentences begin-
ning with every. This is the standard procedure in logic. The net result is the same,
but now you need one clause for each quantifier expression, whereas with the other

17 An extensionally better match is the linguistic distinction between open and closed classes:
words belonging to closed classes often qualify as syncategorematic. But the idea behind
closed classes—that they contain a small number of words to which new ones are not easily
added—seems very different from the idea of not having signification.
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approach you have only one general clause for quantifiers. We will see later how all of
this works in detail.

Summing up, we would say that the medieval idea of syncategorematic terms as
operators was quite viable, but that with (generalized) quantifiers, truth functions,
etc., one also has the option of seeing such expressions as standing for ‘‘definite and
certain’’ ideas, contrary to what the medievals (understandably) thought.

1 .2 QUANTIFIERS IN EARLY PREDICATE LOGIC

Predicate logic was invented at the end of the nineteenth century. A number of philo-
sophers and mathematicians had similar ideas, partly independently of each other, at
about the same time, but pride of place goes without a doubt to Gottlob Frege. Nev-
ertheless, it is interesting to see the shape which these new ideas about quantification
took with some other logicians too, notably Peirce, Peano, and Russell.18

One crucial addition in the new logic was variable-binding: the idea of variables
that could be bound by certain operators, in this case the universal and existential
quantifiers. The idea came from mathematics—it is not something that can be dir-
ectly ‘copied’ from natural languages—and it took some time to crystallize.19

18 As to the history of the English word ‘‘quantifier’’, we can do no better than quote the fol-
lowing from Hodges’ comments (pers. comm.):

William Hamilton of Edinburgh claimed to have ‘minted’ the words ‘quantify’ and ‘quanti-
fication’, presumably in lectures in Edinburgh around 1840. De Morgan (1847), Appendix,
312, confirms Hamilton’s ‘minting’. However, Hamilton’s usage is that to quantify is to inter-
pret a phrase as saying something about quantity, whether or not it does on the surface. Thus
he talks of ‘quantification of the predicate’, meaning a particular theory that the predicate con-
tains its own quantification. The modern usage seems to begin with De Morgan himself, who
in De Morgan 1862 says a good deal about ‘quantifying words’, but then quietly shortens this
to ‘quantifiers’. Thus ‘We are to take in both all and some-not-all as quantifiers.’

19 In the notation for integrals, like

(a)
∫ b

a f (x)dx

which was introduced by Leibniz in the late seventeenth century, the variable x cannot be assigned
values; it is not free but bound. Likewise, algebraic equalities like

(b) x + (y + z) = (x + y) + z

have implicit universal quantifiers at the front. But here you seemingly can replace the variables by
constants—by universal instantiation. Seeing, as Frege did, that (a) and (b) use the same mechan-
ism, and describing that mechanism in a precise way, was no small feat.

As to natural languages, pronouns sometimes resemble bound variables, for example, in

(c) Every girl who meets him realizes that she will soon forget him.

Here she can be seen as a variable bound by every girl. Him, on the other hand, is deictic and
somewhat similar to a free variable. But this analogy between pronouns and individual variables in
logic was noted only well into the twentieth century, perhaps for the first time by Quine. (Quine
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In a way, variable-binding belongs to the syntax of predicate logic, though it of
course engenders the semantic task of explaining the truth conditions of sentences
with bound variables (an explanation which took even longer to become standard
among logicians). In this respect, too, Frege was unique. His explanation, though
perfectly correct and precise, did not take the form that was given fifty years later by
Tarski’s truth definition. Instead, he treated—no doubt because of his strong views
about compositionality—the quantifier symbols as categorematic, standing for cer-
tain second-order objects. This is closely related to the idea of quantifiers as relations
between sets that we have traced back to Aristotle, though in Frege’s case combined
with a much more expressive formal language than the syllogistics and containing the
mechanism of variable-binding. Nothing even remotely similar can be found with the
other early predicate logicians, so let us begin with them.

1.2.1 Peirce

Peirce in fact designed two systems of predicate logical notation. One was two-
dimensional and diagrammatic, employing so-called existential graphs. What the
other one looked like is indicated in the following quote:

[T]he whole expression of the proposition consist[s] of two parts, a pure Boolean expression
referring to an individual and a Quantifying part saying what individual this is. Thus, if k
means ‘he is king’ and h, ‘he is happy’, the Boolean

(k + h)

means that the individual spoken of is either not a king or is happy. Now, applying the quan-
tification, we may write

Any(k + h)

to mean that this is true of any individual in the (limited) universe. . . .

In order to render this notation as iconical as possible we may use � for some, suggesting a
sum, and � for all, suggesting a product. Thus �ixi means that x is true of some one of the
individuals denoted by i or

�ixi = xi + xj + xk + etc.

In the same way, �ixi means that x is true of all these individuals, or

�ixi = xixjxk, etc.

. . . It is to be remarked that �ixi and �ixi are only similar to a sum and a product; they are
not strictly of that nature, because the individuals of the universe may be innumerable. (Peirce
1885; quoted from Bocheński 1970: 349)

Thus k, h, x are formulas here. Note Peirce’s use of English pronouns as (bind-
able) variables in the informal explanation. Quantified sentences are divided into a
(Boolean) formula and a quantifier symbol, similarly to the modern notation. The

1950 employed pronouns to explain to logic students the use of variables in logic. Quine 1960 used
variables to explain how pronouns work in natural language.)
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quantifier symbols are chosen in a way to indicate their meaning (in terms of con-
junction and disjunction), but Peirce does not yet have quite the notation for bound
variables. In �ixi it would seem that i is a variable whose occurrences in the formula
x get bound by the quantification, but in xi + xj + xk + . . . the i, j, k look more like
names of individuals. One sees that a formally correct expression of these ideas is still
a non-trivial matter.

Note also that Peirce (in contrast with Frege; see below) seems to allow that the
(discourse?) universe may vary from occasion to occasion.

1.2.2 Peano

One feature of standard predicate logic is that the same variables that occur free in
formulas can get bound by quantification. It appears that the first to introduce this
idea was Peano:

If the propositions a, b, contain undetermined beings, such as x, y, . . . , i.e. if there are rela-
tionships among the beings themselves, then a ⊃x,y,... b signifies: whatever x, y, . . . , may be, b
is deduced from the proposition a. (Peano 1889; quoted from Bocheński 1970: 350)

Here we have a consistent use of variable-binding, albeit only for universally quanti-
fied conditionals.

1.2.3 Russell

Bertrand Russell devoted much thought to the notion of denotation. In his early philo-
sophy he subscribed to an almost Meinongian view:20 all expressions of a certain form
had to denote something, and it was the logician’s task to say what these denotations
were. Here is a quote from Russell (1903: 59):

In the case of a class a which has a finite number of terms [members]—say, a1, a2, a3, . . . an,
we can illustrate these various notions as follows:

(1) All a’s denotes a1 and a2 and . . . and an.

(2) Every a denotes a1 and denotes a2 and . . . and denotes an.

(3) Any a denotes a1 or a2 or . . . or an, where or has the meaning that it is irrelevant which
we take.

(4) An a denotes a1 or a2 or . . . or an, where or has the meaning that no one in particular
must be taken, just as in all a’s we must not take any one in particular.

(5) Some a denotes a1 or denotes a2 or . . . or denotes an, where it is not irrelevant which is
taken, but on the contrary some one particular a must be taken.

20 Alexius Meinong was an Austrian philosopher who took the theory of intentionality (direc-
tedness) of his teacher Franz Brentano to extreme consequences in his theory of objects (Gegen-
standstheorie). Every thought or judgment has an object, no matter if it is a thought about Mont
Blanc or a golden mountain or a round square; the only difference in the latter two cases is that
these objects don’t exist (the last one is even impossible), but they are objects no less, according
to Meinong. Russell later became one of Meinong’s most severe critics. In recent years Meinong’s
philosophy has had a certain revival; see e.g. Parsons 1980.
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This is a bold attempt to explain the denotation of (what we would now call) certain
quantified noun phrases; nevertheless, it is clear that the account is beset by problems
similar to those in the medieval tradition.21 It is a useful reminder of how hard this
problem really was.

Later on, Russell explained the quantifiers in terms of a propositional function’s
being ‘always true’, ‘sometimes true’, etc., with a syntax using the notion of ‘real’
(free) versus ‘apparent’ (bound) variables.

Russell’s modern view of denotation begins with his famous paper ‘On denoting’
(Russell 1905). In it, he still talks of ‘‘denoting phrases’’, but now emphatically denies
that they have any meaning ‘‘in isolation’’. Likewise, they are not assigned any denota-
tion.22 Instead, Russell uses the tools of modern logic to rewrite sentences that appear
to have a denoting phrase as, say, the subject—in the real logical form, according to
Russell, no such phrases are left.

The reasons for Russell’s change of view about denotation were chiefly logical: he
found that the earlier position was incoherent and could not be consistently upheld.
His main occupation was with definite descriptions and the problems arising when
the purported described object did not exist. But the translation into logical form dis-
posed of other quantified noun phrases as well (containing every, some, etc.), and
the problem of their denotation disappeared. The divergence between surface form
and logical form was a crucial discovery for Russell, with far-reaching consequences
for logic, epistemology, and philosophy of language.23 Though his arguments were
quite forceful, it would seem that later developments in formal semantics, and in
particular the theory of (generalized) quantifiers, have seriously undermined them.
Roughly, this theory provides a logical form which does treat the offending expres-
sions as denoting, and which thus brings out a closer structural similarity between
surface and logical structure. One may debate which logical form is the correct one
(to the extent that this question makes sense), but one can no longer claim that no

21 For example, what is the difference between (1) and (2)? It seems that all a’s denotes the set
{a1, . . . , an}, whereas every a denotes—ambiguously—each one of the ai . But if the latter were the
case, one ought to be able to have an utterance of ‘‘Every a is blue’’ mean that, say, a2 is blue, which
clearly is impossible. A charitable interpretation may note that Russell is on to a linguistic insight
that ‘‘every’’ is distributive in some way that ‘‘all ’’ is not, but clearly he has not managed to express
it adequately.

Similar comments can be made about the difference that Russell tries to establish between some
and the indefinite article a, but here his intuitions seem to run counter to the prevailing view: i.e.
that the indefinite article can be used to talk about a particular individual, whereas some usually
involves a mere existence claim.

22 Except that successful definite descriptions, i.e. descriptions that manage to single out a
unique object, are sometimes said to denote that object. But there is nothing similar for other
quantified noun phrases in Russell’s paper.

23 For example, Russell’s epistemology is built on it. The main problem for Russell was how we
can know anything, and talk, about objects that we are not acquainted with, given that he allowed
very few objects that we are acquainted with (sense data, ourselves, perhaps some universals, but not
physical objects or other people). On Russell’s new theory, it is not necessary to know these objects
directly. For the descriptions we use to be successful, it suffices to know that certain sentences about
objects are true; and these sentences ultimately need not contain reference to anything with which
we are not acquainted.
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precise logical form which treats quantifier expressions or noun phrases as denoting
is available. Indeed, the basic concepts needed for such a treatment were provided
already by Frege.

1.2.4 Frege

Already in Begriffsschrift (1879), Frege was clear about the syntax as well as the
semantics of quantifiers. But his two-dimensional logical notation did not survive,
so below we use a modernized variant.24

First-level (n-ary) functions take (n) objects as arguments and yield an object as
value. Second-level functions take first-level functions as arguments, and so on; val-
ues are always objects.25 Frege was the first to use the trick—now standard in type
theory26 —of reducing predicates (concepts) to functions: an n-ary first-level predic-
ate is a function from n objects to the truth values the True and the False (or 1 and 0),
and similarly for higher-level predicates.

For example, from the sentence

(1.7) John is the father of Mary.

we can obtain the two unary first-level predicates designated by the expressions

ξ is the father of Mary

and

John is the father of η

as well as the binary first-level predicate designated by

(1.8) ξ is the father of η

(In modern predicate logic we would write father-of (ξ ,Mary), father-of (John,η), and
father-of (ξ , η), instead.) Here we have abstracted away one or two of the proper
nouns in (1.7). We can also abstract away is the father of, obtaining the unary
second-level predicate denoted by

(1.9) �(John, Mary)

where � stands for any binary first-level predicate. (‘Mixed’ predicates, like
�(ξ , Mary), were not allowed by Frege.) For example, (1.8) denotes the function

24 Frege’s full-blown theory of quantification and higher-level functions and concepts was
presented in Grundgesetze (Frege 1893); see esp. §§22–3.

25 The dichotomy function/object is fundamental with Frege. Functions, as seen above, are
‘unsaturated’; they have holes or places, marked with variables in the notation, that can be filled.
The filler can be object or (in the case of e.g. second-level functions) again a function, but the res-
ult (value) is always an object. Objects have by definition no places to saturate. Ordinary physical
objects, numbers, extensions (sets), linguistic expressions, and the two truth values are examples of
Fregean objects.

26 A type theorist might not call this a trick at all, claiming instead that functions are more
fundamental mathematical objects than sets or relations.
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which sends a pair of objects to the True if the first object is the father of the second,
and all other pairs of objects to the False. Equivalently, we can say that (1.8) denotes
the relation father of.27 (1.9) can be interpreted as the set of all binary relations that
hold between the individuals John and Mary.28

Now suppose that

(1.10) A(ξ )

is a syntactic name of a unary first-level predicate. According to Frege, the (object)
variable ξ does not belong to the name; it just marks a place, and we could as well
write

A(·)
The sentence

(1.11) ∀xA(x)

is obtained, according to Frege, by ‘inserting’ the name (1.10) into the second-level
predicate name

(1.12) ∀x�(x)

(1.12) is a primitive name denoting the universal quantifier, i.e. the unary second-level
predicate which is true (gives the value the True) for precisely those first-level (unary)
predicates which are true of every object. (Again the (first-level) variable � in (1.12)
is just a place-holder.) So (1.11) denotes the value of the universal quantifier (1.12)
applied to the predicate (denoted by) (1.10), i.e. a truth value. The result is that

∀xA(x) is true iff A(ξ ) is true for any object ξ

Other quantifiers can be given as primitive, or defined in terms of the universal quan-
tifier and propositional operators. For example,

¬∀x¬�(x)

is the existential quantifier, and

∀x(�(x) → �(x))

27 Expressions like father of are not phrases or constituents in any linguistic sense. Rather,
father is usually thought to require a prepositional phrase (PP) complement (so father is a
lexical item, and father of Mary but not father of is a phrase). But Frege should not be taken
to make any syntactic claims here. His point is the semantic one that you can obtain a function by
abstracting any element out of any phrase.

28 These formulations slur over an important (Fregean) distinction. All the parametric expres-
sions above are unsaturated, and denote concepts (functions), not objects. Sets and relations, on
the other hand, are the extensions of concepts, and they are objects, according to Frege, who has
a special notation for the extension (he calls it Wertverlauf, ‘‘course-of-values’’) of a concept. One
may compare this to modern λ notation, where the parametric expressions are just formulas with
free variables, and λ abstracts like λξ,η father-of (ξ , η) denote the corresponding relations.
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is the binary quantifier (second-level predicate) all —one of the four Aristotelian
quantifiers. Summarizing, we note in particular

• Frege’s clear distinction between names (formulas, terms) and their denotations;
• the distinction between free and bound variables (Frege used different letters,

whereas nowadays we usually use the same), and that quantifier symbols are
variable-binding operators;

• the fact that quantifier symbols are not syncategorematic, but denote well-defined
entities, quantifiers, i.e. second-order (second-level) relations.29

1 .3 TRUTH AND MODELS

Tarski (1935) was the first to formulate a formal theory of truth, thus making the
notion acceptable to mathematicians, and, more importantly, enabling a clear distinc-
tion between simple truth and notions such as validity and provability. In this defin-
ition, logical symbols such as quantifiers and propositional connectives are explained
contextually (see Chapter 1.1.2.2); they are not assigned independent interpretations;
instead, truth conditions are given for each corresponding sentence form. Since the
number of logical symbols needed for the mathematical purposes for which the logic
was originally intended (such as formalizing set theory or arithmetic) is quite small,
and there is one clause in the truth definition for each symbol, the truth definition is
compact and easy to manage. This contextual or sentential format of the truth defin-
ition is still standard practice; see Chapter 2.2.

1.3.1 Absolute and relative truth

In one important respect Tarski’s original truth definition is half-way between Frege’s
conception and a modern one. Frege’s notion of truth is absolute: all symbols (except
variables and various punctuation symbols) have a given meaning, and the universe
of quantification is always the same: the class of all objects. The modern notion, on
the other hand, is that of truth in a structure or model. Tarski too, in 1935, considers
only symbols with a fixed interpretation, and although he mentions the possibility of
relativizing truth to an arbitrary domain,30 he does not really formulate the notion of
truth in a structure until his model-theoretic work in the 1950s. The switch from an

29 We should observe, however, that although Frege had the resources to deal with arbitrary
quantifiers, the only primitive one in his Begriffsschrift was the universal quantifier ∀. Indeed, with
Russell he strongly criticized traditional logic for its adherence to subject-predicate form, rightly
pointing out that such adherence had hampered the development of an adequate logical formalism.
He did not note that a formalization of natural language sentences which preserves this form is
possible via systematic employment of quantifiers. That insight came about 100 years later, with
the work of Richard Montague (1974).

30 In connection with ‘‘present day . . . work in the methodology of the deductive sciences (in
particular . . . the Göttingen school grouped around Hilbert)’’ Tarski 1935: 199 in Woodger’s
translation).
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absolute to a relative notion of truth is in itself quite interesting; see Hodges 1986 for
an illuminating discussion.

The model-theoretic notion of truth is relative to two things: an interpretation
of the non-logical symbols and a universe of quantification. Let us consider these
in turn.

1.3.2 Uninterpreted symbols

We are by now accustomed to thinking of logical languages as containing, in addition
to logical symbols, whose meaning is explained contextually, such as ¬, ∧, ∨, →, ∃,
∀, etc., also uninterpreted, or non-logical, symbols, which receive a meaning, or rather
an extension, by an interpretation.

The point to note in the present context is that the notion of an interpretation
applies nicely to quantification in natural languages, keeping in mind that an inter-
pretation (in this technical sense) assigns extensions to certain words. For it is charac-
teristic of most quantifier expressions that only the extensions of their ‘arguments’ are
relevant. That is, in contrast with many other kinds of phrases in natural languages,
most quantifier phrases are extensional. Furthermore, phrases that provide arguments
to quantifiers, like nouns or adjectives or verb phrases, do have sets as denotations,
and it is often natural to see these denotations as depending on what the facts are.
The extensions of dog and blue are certain sets; under different circumstances they
would have been other sets. It makes sense, then, to have a model or interpretation
assign the appropriate extensions to them. Quantifier phrases, on the other hand, do
not appear to depend on the facts in this way, so their interpretation is constant.

The above description is preliminary. It is a main theme of this book to emphas-
ize and make precise these characteristic features of quantifiers in natural languages:
constancy, extensionality (with a few notable exceptions), and the topic neutrality
which contrasts them with, say, verbs, adjectives, and nouns. And it is largely these
features that make model theory a suitable instrument for a general account of quan-
tification.

Methodological digression. We are claiming that a first-order framework allows us
to get at the meaning of quantifier expressions, but we are not making the same
claim for, say, nouns. Here the claim is only that it provides all the needed denota-
tions—but it may provide many more (e.g. various uncountable sets), and it says
nothing about how these denotations are constrained. For example, nothing in pre-
dicate logic prevents us from interpreting bachelor in such a way that it is disjoint
from the interpretation of man.

But this is not a problem; rather, it illustrates a general feature of all modeling.31

We are modeling a linguistic phenomenon—quantification. The model should

31 Where ‘‘model’’ is here used in the sense in which one can build a model of an aircraft to test
its aerodynamical properties, not in the logical sense which is otherwise used in this book: viz. that
of a mathematical structure or interpretation.
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reflect the relevant features of that phenomenon, but may disregard other features of
language. Abstracting away from certain features of the world, it allows us, if success-
ful, to get a clearer view of others, by means of systematizations, explanations, even
predictions that would otherwise not be available. By way of an analogy, to build
a model that allows you to find out if a certain ship will float—before putting it
to sea—you need to model certain of its aspects, like density, but not others, like
the material of its hull—provided, of course, that the material doesn’t have effects
on floatability which you didn’t foresee. That it doesn’t is part of the claim that the
model is successful. End of digression.

Incidentally, the treatment of individual constants in predicate logic fits well with the
use of proper names in natural languages. Here the reason is not that the denotation
of a name depends on what the world is like, but, first, that the main purpose of a
name is to denote an individual, and second, that although languages in general con-
tain a large number of names, most names denote many different individuals. Thus,
in these respects they resemble uninterpreted symbols in a formal language. Selecting
a denotation for a name is a way of fixing linguistic content for a certain occasion,
and it accords with important aspects of how names are actually used, though, again,
it does not constitute—and is not intended to constitute—anything like a full-scale
analysis of this use.

The application of model theory allows for three degrees of fixity or variation in
analyzing meanings. Certain meanings are completely fixed, given by the semantic
rules for truth in arbitrary models. Others are relatively fixed, given by a model’s
choice of universe and interpretation function. The remaining ones are hardly fixed
at all, given only by assignments to free variables. This machinery provides, we claim,
just the analytic tool for an account of quantification in general.

1.3.3 Universes

The second relativization of truth is to a universe. In contrast with Frege’s approach,
where the universe is always the totality of all objects, such relativization is now
a standard feature of formal mathematical languages. Also, as we shall see, it is
a fundamental characteristic of natural (as opposed to logical) languages. In most
common circumstances, one does not talk about (quantify over) everything (but see
section 1.3.5 below.) For example, one restricts attention to a universe of discourse.
This universe need not be referred to or marked in any way by syntactic features of
the sentences used. It can be wholly implicit, provided by the relevant context of the
discourse.

Suppose, for example, we want to talk about the structure of natural numbers with
addition, multiplication, etc. To say that adding 0 to a number does not increase it,
we write, in mathematics,

∀x(x + 0 = x)

Only the context can insure that this sentence is about natural numbers and not, say,
real numbers.
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Of course, if one wants, the universe can be made explicit. Suppose we are in some
bigger set-theoretic universe and want to express the same fact about natural numbers.
We introduce a one-place predicate N for the natural numbers, and write instead:

∀x(N (x) → (x + 0 = x))

Now quantification is over all sets (including numbers), but the form of the sentence
in fact restricts it to natural numbers.

The technical term for such restriction in logic is relativization. Any sentence ϕ

written in first-order logic has a relativized version ϕ(P), for any one-place predicate
P (not occurring in ϕ), obtained by restricting the quantifiers ∀ and ∃ to P.32 Then
ϕ(P) is true in a structure M if and only if ϕ is true in the structure M � P obtained
by ‘cutting down’ M to the subuniverse determined by P.

Now, it is a remarkable fact about most natural languages that relativization is,
as it were, built into them, by means of determiners and other quantirelations. An
indication of this is that the relativized versions are more easily expressed than the
unrelativized ones. Compare the rather awkward

(1.13) a. For every thing (in the universe), if it is a number then it . . .

b. There is some thing (in the universe) which is a number and it . . .

which use English renderings of the unrelativized ∀ and ∃, with the much simpler but
equivalent

(1.14) a. Every number . . .

b. Some number . . .

where the relativized versions are used, by means of the determiners every and
some. Indeed, determiners have the semantic effect of restricting quantification to
the subset denoted by the noun in the corresponding nominal phrase. (In addition,
they have the syntactic effect of accomplishing binding in a way which is often more
elegant than in formal languages, without the overt use—at least in simpler cases—of
pronouns or variables.)

Quantirelations’ function of restricting quantification is a fundamental fact about
natural language. It will be amply discussed in Chapter 4.5. For the moment, how-
ever, our point is another. One might think, at first blush, that the mechanism of
relativization would render unnecessary the use of universes in natural discourse. In
principle, at least for quantification by means of determiners, if these restrict quan-
tification to their noun arguments anyway, couldn’t one assume once and for all a
constant discourse universe consisting of absolutely everything? However, that is very
far from the way in which natural languages actually work. Limited discourse uni-
verses that depend on context are the rule rather than the exception.

Here is an obvious example. If one claims on a certain occasion that

(1.15) All professors came to the party.

32 Essentially, this means replacing occurrences of ∀x . . . and ∃y . . . by ∀x(P(x) → . . .) and
∃y(P(y) ∧ . . .), respectively.
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it is understood that one is not talking about all professors in the world, but per-
haps only those in, say, the department where the party took place. So the universe of
discourse might be the set of people either working or studying in that department.
Getting this universe right matters crucially to the truth or falsity of the sentence,
and thus to what is being claimed by that use of it. But none of the words in it, nor
its grammatical form, carries this information. The universe is provided from some-
where else.

In principle, it would be possible to obtain the correct interpretation of (1.15) by
making the denotation of professor, rather than the discourse universe, depend
on context, so that on this occasion it denoted the set of professors in that partic-
ular department. We note in the next subsection that mechanisms of this kind are
indeed operative in natural discourse. But although such mechanisms could take care
of (1.15), we shall also see that in general they do not eliminate the need for context-
dependent discourse universes.

We conclude that the notion of truth in a structure or model with a corresponding
universe is well suited to natural language semantics. Should we go further and simply
identify the discourse universe with the universe of the model? This is partly a meth-
odological question, but we feel there is no need for such a stipulation. Often enough
it makes sense to identify them, and a handy convention might be that if nothing else
is said, the two are identical. But sometimes the discourse universe might be taken to
be a subset of the universe of the model, or of some other set built from that universe.

Think of a model—a universe plus an interpretation—as representing what we
want to keep fixed at a certain point. Other semantically relevant things may be
allowed to vary. For example, in logic, assignments (of values to variables) do not
belong to the model. In language, various sorts of context may provide crucial inform-
ation, such as the universe of discourse or other means of restricting domains of
quantification (see the next subsection), or the reference of certain pronouns, or, to
take a different kind of example, the ‘thresholds’ of certain quantifier expressions like
most.33 A discourse universe is presumably something fairly constant —perhaps it
should stay the same during a whole piece of discourse—but nothing in principle
prevents one from accounting for several pieces of discourse within one model.

1.3.4 Context sets

At this point it is appropriate to mention that the mechanisms for restricting quan-
tification in natural languages are in fact more subtle than has been hinted at so far.
On an occasion of uttering (1.15), the restriction on all professors could be the
whole discourse universe. But in (1.16), most children is presumably restricted
to English children, whereas several pen pals is not so restricted. The discourse
universe must contain people from all over the world. It must also contain countries,
since they are quantified over as well here.

33 How many As must be B in order for Most As are B to be true? Sometimes any number
more than half seems enough, but other times a larger percentage is required.
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(1.16) The English love to write letters. Most children have several pen pals in many
countries.

Thus, we have contextually given restrictions on quantified phrases that cannot be
accounted for by means of discourse universes. Such ‘local universes’ were called con-
text sets in Westerståhl 1985a.

This phenomenon is by no means unusual. Consider

(1.17) The philosophy students this year are quite sociable. Almost all freshmen
already know several graduate students in other departments.

In (1.17) it would in principle be possible to cook up a discourse uni-
verse—consisting of philosophy freshmen, graduate students in other departments,
the departments themselves, but nothing else—so that restricting quantification to it
yields the right truth conditions. But in other cases such a strategy will not work, and
anyway it would be completely artificial. It is in fact quite natural to use contextually
given subuniverses limited to a particular occurrence of a noun phrase.34

While some version of context sets is undoubtedly used, there has been a recent
discussion of whether the phenomenon is semantic or pragmatic. A semantic account
presumably has to represent context sets by some sort of parameters or variables.35

This was proposed in Westerståhl 1985a and argued for at length by Stanley and
Szabo (2000), who gave additional support for the idea from binding phenomena,
as in

(1.18) Whenever John shows up, most people tend to leave.

Here most people has to be restricted in a way that depends on the occasions of
John showing up—a fixed context set will not do. This looks like an even stronger
case for context set variables than examples like (1.16). Still, while presumably every-
one agrees that binding occurs somewhere within an utterance of (1.18), pragmatic
accounts of this effect have also been proposed.

One such account, propounded by Kent Bach (1994, 2000) among others, denies
any contextual restriction at all in the semantics of (1.15) and (1.18), for example,
which are taken to express the implausible propositions that all professors in the uni-
verse came to the party, and that whenever John shows up, most people in the uni-
verse tend to leave. However, pragmatic factors are said to insure that these proposi-
tions are not the ones communicated by utterances of (1.15) and (1.18); so the contex-
tual restrictions show up only in the communicative situation. We cannot enter into
this discussion here or do justice to the various arguments that have been put for-
ward, but we do feel that an account like Bach’s fails to capture the intuitively clear

34 In the examples here, we have let a linguistic context provide the relevant context sets. This
is for expository purposes; one can easily imagine the linguistic context replaced by a non-linguistic
one.

35 There is also the alternative of thinking of sentences requiring contextual restriction as ellipt-
ical or (surface) incomplete, so that the sentence ‘really’ used in an utterance of (1.15) would be,
say, All professors in John’s department came to the party. This idea seems empirically
unmotivated to us; see Stanley and Szabo 2000 for discussion.
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difference between standard contextual restriction, on the one hand, as in the above
sentences, and sentences like

(1.19) Everyone was fighting.

on the other hand, uttered, say, during a description of a barroom brawl. Here the
speaker may be well aware that perhaps not everyone in the bar participated in the
fight—some bystanders might have been huddling under tables—and so she is well
aware that the sentence may be literally false. Nevertheless, she succeeds in commu-
nicating another content, perhaps that a lot of people were fighting. But this case of
using a literally false sentence to communicate something by hyperbole is quite differ-
ent, it seems, from (1.15) and (1.18), where the supposed literal content is not even
remotely entertained by the speaker.

The issue, however, is complex, and concerns syntactic and semantic form, as well
as where the line between semantics and pragmatics should be drawn. For a recent
overview of this debate, and a particular instance (very different from Bach’s) of the
pragmatic position in it, see Recanati 2004. As indicated, we ourselves tend to favor
semantic accounts whenever they are feasible.

Another question is whether context sets belong to the determiner or to the noun
in a quantified phrase. In Westerståhl 1985a the former view was taken, but Stan-
ley and Szabo (2000) and Stanley (2002) claim that context sets rather restrict the
head noun. Thus, on a given occasion, an utterance of a certain noun which normally
denotes a set A will actually denote A ∩ X instead, where X is a context set. It may also
be that both mechanisms occur. Linguists often argue that the definite article the has
a given slot for contextual restriction, for example, in

(1.20) Every toothpaste tube was missing the cap.

The idea is that the meaning of the leads one to look for a context set (whose inter-
section with the set denoted by the noun has just one element in the singular case),
a sort of ‘familiarity’ requirement. Other determiners may have a similar feature,
whereas yet others lack it.

We note, however, that even in the cases where the determiner might have a con-
text set parameter, that parameter has a different role from the other two arguments,
which we will call the restriction and the scope, i.e. the first and the second arguments
of the Aristotelian quantifiers in section 1.1.1. As we have already said and will make
even clearer later (Chapter 4 onwards), it is most natural to regard determiners as
denoting binary relations between sets. The possibility that some determiners may
have context set parameters does not alter this fact. We recognize that to account for
binding phenomena as in (1.18) and (1.20), some context mechanism must be made
explicit. But for describing the meanings and stating the properties of determiners in
the most natural and efficient way, these mechanisms can for most purposes be left
implicit. For this reason, we will usually ignore context sets in this book.36

36 A further issue is if a set parameter is always sufficient. One can argue that an intensional
property is sometimes required. Stanley and Szabo (2000) give examples; moreover, they argue
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1.3.5 Quantifying over everything?

A common idea nowadays is that Russell’s paradox has shown that there cannot be
a totality of everything—contrary to what Frege thought—and that quantification
over everything is for this reason an incoherent notion. But this conclusion is by no
means straightforward. Set theorists standardly grant that the paradox shows there
can be no set of all sets, but call that totality a (proper) class instead, and happily
quantify over it in the object language of set theory (at least those who think that
language has an intended interpretation). Model theorists, who usually require mod-
els to have sets as universes, happily talk about ‘‘all models’’, again quantifying over
the same totality. Is such quantifying over all sets, or over everything, just loose and
imprecise talk that must be abandoned?

Williamson (2003) makes a forceful case that quantification over everything is not
only possible but a necessary and fundamental feature of language. He argues that
the opposite position, ‘generality-relativism’, is self-defeating: it cannot be coherently
stated, he claims, and moreover cannot provide adequate accounts of natural laws,
universal kind statements, and, notably, truth and meaning. To avoid a threatening
Russell-like paradox in semantics, which he formulates in terms of interpretations
rather than sets, his solution is basically to give up the idea that interpretations are
things, and hence can be quantified over like other things, i.e. with first-order quanti-
fication. Instead, the semantics of an object language must be done in an irreducibly
second-order way.

Others are not convinced and continue to claim that quantification over everything
is incoherent. For example, Glanzberg (2004) uses the Russellian reasoning to argue
that for every large domain, in particular every domain purporting to contain
everything, there are in fact things falling outside the domain. This is a version of
what Dummett (1991, 1993) has called indefinite extensibility, again with the conclu-
sion that it is impossible to quantify over everything.

We shall not go into the philosophical dispute here. But the debate touches on lin-
guistic issues too, and we make some brief comments about these.

First, as we said above, it is a fact about natural languages—in contrast with stand-
ard logical languages—that they employ restricted quantification, in the sense that
they have a built-in slot for a noun that restricts the universe of quantification. Even
everything decomposes into the determiner every and the noun thing going
into the restriction slot. Williamson stresses that this does not entail that one can-
not quantify over everything: simply treat thing as a logical noun that denotes the
totality of everything. But it does indicate, we think, that restricted quantification is
primary in natural language: in other words, that quantification over a limited domain
is the rule rather than the exception.

that even in an extensional treatment, domain restriction parameters should instead have the form
f (i), where i is an individual and f a function from individuals to context sets, in order to handle
quantified contexts such as (1.18).
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Second, even if it were the case that one cannot quantify over everything, there is
nothing that cannot be quantified over with restricted quantification, since, trivially,
every thing is included in some (small) domain.

These points are small. The next point is more important, and one on which we
are in sympathy with Williamson: although restricted in the above sense, natural
language quantification is over everything in that the meaning of determiners like
every, at least five, most, etc. does not involve any particular domains. We
do not have to learn separately the meaning of at least five cows, at least
five colors, at least five integers, at least five electrons, etc. The
meaning of at least five and the respective nouns suffice. There are no restrictions
on the eligible domains (except that they contain things that can be counted). Simil-
arly, there are no restrictions on the implicit discourse universes or context sets that
can be attached to quantified sentences.

This is why we interpret determiners as operators that with each domain associate
a binary relation between arbitrary subsets of that domain.37 It cannot be emphas-
ized enough that determiners have global meanings in this sense. As we will see, this
has important consequences for the semantics of determiners and other quantifier-
denoting expressions, consequences that are sometimes obscured in the literature,
because linguists often argue within a local perspective, where a universe is fixed by
context. But certain features of quantifiers are simply not visible from such a local
perspective. This point will return again and again in later chapters; see Chapter 3.1.1
for further discussion.

In this book, we follow the standard model-theoretic tradition of treating universes
as sets. In one sense, this is less general than required; (proper) classes can be universes
too, and perhaps even the totality of everything. However, our purpose is an account
of the meaning of quantifier expressions. An essential part of that meaning is that
these expressions have built-in slots for domains and for subsets of those domains.
But, equally essentially, nothing is presupposed about the nature of the domains.
Therefore, the philosophical and logical problems about very large domains are in
a sense irrelevant to the meaning of quantifier expressions. You have to explain how
these expressions behave on any domain. What domains really exist is a question for
metaphysics, but not for the meaning of determiners and similar expressions.

To take an example, suppose you state, as we did above, that every thing is an ele-
ment of some small domain. As Williamson forcefully points out, if there is no total-
ity of everything, then the intended meaning of that claim simply doesn’t get through!
So, in that case, you are either not making any claim at all, or making a different

37 So instead of saying that every denotes the inclusion relation as in sect. 1.1.1.2 above, we
will say that on each universe M it denotes the inclusion relation over M . If there really were a
totality of everything, we could say instead that it denotes the inclusion relation over that totality;
but we don’t want to prejudge that issue, and in any case we have seen that the formulation in
terms of universes is congenial to both natural and mathematical language.

If one thinks of quantifiers instead as operators on noun arguments, as medieval philosophers
like Ockham can be interpreted as recommending (sect. 1.1.2), the present treatment means that
one more argument is added to those operators: viz. an argument for the universe.
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claim from the one you wished to make. But—and this is our main point—the even-
tual resolution of the issue of whether you do or not tells us nothing new about the
meaning of every. That meaning is already described in a fully adequate way by
saying that it denotes a quantifier that with any domain associates the inclusion rela-
tion over that domain. What domains there are is a separate matter, and this is why
we are content to use standard model-theoretic semantics for the purposes of
this book.

1 .4 POSTSCRIPT: WHY QUANTIFIERS CANNOT DENOTE
INDIVIDUALS OR SETS OF INDIVIDUALS

There is a simple argument, familiar from elementary courses in first-order logic, that
quantified noun phrases such as every woman and some man cannot denote indi-
viduals. It hinges on the observation that noun phrases that may denote individuals,
such as proper names, exhibit certain semantic behavior in sentences. Specifically,

(1.21) John is brave or John is not brave.

can’t be false, and

(1.22) John is brave and John is not brave.

can’t be true. This behavior is necessitated by the fact that the set of brave individuals
is the complement of the set of individuals who are not brave. In contrast to (1.21)
and (1.22), the sentence

(1.23) Every woman is brave or every woman is not brave.

clearly can be false, and

(1.24) Some man is brave and some man is not brave.

clearly can be true. So every woman and some man obviously do not behave
semantically or logically as they would have to if they denoted individuals.

To demonstrate that quantified noun phrases like every woman and some man
can’t denote sets of individuals requires a more sophisticated argument, which we
present below. As we will see, the argument shows a fortiori that in a compositional
semantics, quantified noun phrases can’t denote individuals. The demonstration is
based on ideas in Suppes 1976.

Let us consider how many distinct things are denoted by quantified noun phrases.
To make the argument, it suffices to consider only two type 〈1, 1〉 quantifiers. We’ll
take every and some, the relations denoted by every and some. The argument starts
from the straightforward observations that

(1.25) Every A is B is true iff A ⊆ B

(1.26) Some A is B is true iff A ∩ B �= ∅
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where A is the set denoted by A, and B the set denoted by B. These truth conditions
on the sentences impose a fundamental requirement on the semantic adequacy of
whatever every A and some A are taken to denote.

We introduce the notation [[every A]] for whatever every A does denote. Simil-
arly for [[some A]] and some A. The truth value of a sentence of the form every A is
B is produced by a rule that composes the denotation [[every A]] with B, the denota-
tion of is B, and similarly for some A is B, [[some A]] and B. So if the semantics
is compositional, there must be a relation R that holds in both cases between the
denotations of the quantified noun phrase and the predicate for the sentence to be
true. Then the truth conditions (1.25) and (1.26) translate into the following funda-
mental requirements on the semantic adequacy of the denotations [[every A]] and
[[some A]].

(1.27) R([[every A]], B) iff A ⊆ B

(1.28) R([[some A]], B) iff A ∩ B �= ∅
We will use these semantic adequacy requirements to determine how many distinct

denotations are required for all noun phrases of the forms every A and some A. As
will be seen when we have done this, more denotations are needed than there are sets
of individuals. Therefore, whatever the denotations of these quantified noun phrases
are, they cannot be sets of individuals. A fortiori, they cannot be individuals, of which
even fewer exist than sets of individuals.

To facilitate counting, let us define operators qevery and qsome such that

qevery(A) = [[every A]]

and

qsome(A) = [[some A]]

where A is the denotation of A. No assumption is made about the values of these oper-
ators, i.e. about what sort of things every A and some Amight denote. We first show
that the operators must be one-to-one.

Lemma 1
(1.27) implies that qevery is 1–1, and (1.28) implies that qsome is 1–1.

Proof. Suppose (1.27) holds, and qevery(A1) = qevery(A2). Then we have:

A1 ⊆ A1 �⇒ R(qevery(A1), A1)

�⇒ R(qevery(A2), A1)

�⇒ A2 ⊆ A1

Thus, A2 ⊆ A1. By an exactly symmetric argument, A2 ⊆ A2 implies A1 ⊆ A2. Thus
A1 = A2, and qevery is one-to-one.
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Suppose (1.28) holds and qsome(A1) = qsome(A2). Then:

A1 ⊆ A1 �⇒ A1 ∩ A1 = ∅
�⇒ not R(qsome(A1), A1)

�⇒ not R(qsome(A2), A1)

�⇒ A2 ∩ A1 = ∅
�⇒ A2 ⊆ A1

So again, A2 ⊆ A1, and by a symmetric argument, A1 ⊆ A2, i.e. A1 = A2, and qsome
is one-to-one. �

Next we show that the ranges of qevery and qsome intersect only in the images of
singleton sets; that is, if [[every A1]] = [[some A2]], then A1 and A2 denote the same
set of one individual.

Lemma 2
(1.27) and (1.28) jointly imply that if qevery(A1) = qsome(A2), then A1 = A2 = {a} for
some individual a.

Proof. Suppose (1.27) and (1.28) hold, and qevery(A1) = qsome(A2). Then, for every
set B,

A1 ⊆ B ⇐⇒ R(qevery(A1), B)

⇐⇒ R(qsome(A2), B)

⇐⇒ A2 ∩ B �= ∅
With B = A1, we obtain A2 ∩ A1 �= ∅, since A1 ⊆ A1. Let a be a member of A2 ∩ A1.
With B = {a}, we obtain A1 ⊆ {a}, since A2 ∩ {a} �= ∅. Thus A1 = {a}, since a ∈
A1. And since A1 �⊆ {a}, with B = {a}, we obtain A2 ∩ {a} = ∅. Thus A2 ⊆ {a} and
so A2 = {a}. �

What we set out to establish now follows from these two lemmas. Consider any
finite universe of discourse M with m individuals as its elements. Then exactly 2m

sets of individuals exist. qevery maps each of these sets to something, mapping dif-
ferent sets to different things. Thus 2m different values are needed for qevery(A) as
A ranges over all the subsets of M . Likewise, qsome maps each of the 2m subsets of
M to different things, requiring 2m distinct values for qsome(A) as A ranges over all
subsets of M . The key point of the argument is this: At most m of the values they
require can be shared by qevery and qsome. Only when A1 = A2 = {a} for some a ∈ M ,
can qevery(A1) be identical to qsome(A2). Thus qevery and qsome between them require
at least 2m + 2m − m = 2m+1 − m distinct values. However, there are only 2m sets
of individuals in the universe, and 2m < 2m+1 − m. Therefore the denotations of
every A and some A cannot be sets of individuals, as there are not enough such sets
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to meet the semantic adequacy requirements (1.27) and (1.28). A fortiori, the denota-
tions of every A and some A cannot be individuals, as even fewer individuals exist
than sets of individuals.38

Note that this argument does not depend on the language containing lots of
quantifier-denoting expressions. We chose two of the most simple and familiar
determiners, every and some, and, by calculating the number of denotations, of
whatever kind, needed jointly for every A and some A as A varies over arbitrary sub-
sets of the universe, showed that this number exceeds the number of such subsets, let
alone the number of individuals. The only assumptions required to reach this conclu-
sion are (a) that every subset of a finite universe can in principle be denoted by some
expression, and (b) that the semantics is compositional, so that the semantic values of
every A and some A, and of sentences containing them, are given by the same rule.

Recall that in section 1.1.2.1 above we said, in connection with Ockham’s account
of syncategorematic terms, that one might try to let every A denote the set A (the
denotation of A), and let some A denote some individual a in A (or perhaps {a}),
but that problems were bound to appear with the denotation of no A. We now see
that not even the seemingly simple suggestion for every and some works out, if the
semantics is to be compositional.

Indeed, treating every A and some A as denoting sets of sets of individuals—the
proposal discussed in the next chapter—is the simplest semantically adequate choice
among those available.

38 Even if some denotations were individuals, and other denotations sets of individuals, only
2m + m denotations would be available; and when m > 2, this number is less than the 2m+1 − m
distinct denotations that are needed.



2
The Emergence of Generalized Quantifiers

in Modern Logic

In this chapter we present our principal semantic tool, the concept of a (generalized)
quantifier introduced by logicians in the mid-twentieth century. As we indicated in
the previous chapter, it is in most respects a reintroduction—in a modern model-
theoretic setting—of a concept already discovered by Frege.

Logicians call these objects ‘‘generalized’’ quantifiers, since they were originally
generalizations of the universal and the existential quantifiers from first-order logic.
But once the naturalness and the ubiquity of the concept is appreciated, it becomes
natural to drop the qualification, and just call them quantifiers. This is what we
officially do. However, the original terminology, as well as abbreviations such as
‘‘GQ theory’’, have become quite entrenched, so we occasionally insert ‘‘generalized’’
within parentheses to remind the reader that we are talking about the general concept,
not just ∀ and ∃.

Thus, after a brief presentation of the syntax and semantics of first-order predicate
logic (FO), we present, first, Mostowski’s concept of a quantifier, as a very natural
generalization of ∀ and ∃, and then (following the historical development) Lind-
ström’s general concept, which is the official concept of a (generalized) quantifier in
this book. We also sketch another way to generalize the standard logical quantifiers,
originally due to Henkin, in terms of branching or partially ordered prefixes of these
quantifiers, and relate this generalization to our official concept.

We observe that all of these generalized quantifiers are still first-order, not in the
sense of being definable in FO, but simply by quantifying over individuals, not over
higher-type objects. This looks like a trivial point, but we shall insist on it several
times in this book, since we think it is actually an important characteristic of quan-
tification. Thus, we begin with an elaboration of the crucial difference between these
two senses of ‘‘first-order’’.

2 .1 FIRST-ORDER LOGIC VERSUS FIRST-ORDER
LANGUAGES

Predicate logic for Frege or Russell was not first-order; it was, rather, higher-order,
since one could (universally or existentially) quantify not just over individuals but
also over properties of individuals, properties of properties of individuals, etc. But the
first-order version, i.e. the restriction to quantification over individuals, is particularly
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well-behaved and well understood, and today it forms the basic logical system, which
we call first-order logic, or simply FO. This logic has

• atomic formulas, including identities;
• propositional operators;
• the usual universal and existential quantifiers over individuals.

But the attribute ‘‘first-order’’ need not be restricted to FO. New quantifiers can be
added to FO, and while expressivity may thereby increase greatly, the result is still
first-order, as long as these quantifiers too are taken to range over individuals. In this
sense, first-order languages extend far beyond FO.1

first-order languages

In this book, a first-order language is one whose constants name individuals, whose
predicate or function expressions denote relations between individuals or func-
tions from individuals to individuals, and whose quantifiers range over individuals.

By contrast, a second-order language has in addition quantifiers ranging over rela-
tions (or functions) on individuals, predicate symbols that may denote a set of sets of
individuals, etc.

Moreover, for quantification, we maintain, the first-order case is not just a spe-
cial instance of n’th order languages (or ω’th order languages, or type theory), that
we begin with for simplicity. On the contrary, there is a sense in which higher-order
languages are special cases of first-order languages. In this sense, the first-order case
is the paradigmatic case. Any non-empty collection of any objects—chairs, tables,
numbers, thoughts, electrons, sets, sets of sets, etc.—might be chosen as universe.2

And to explain the meaning of a quantifier expression, we (usually) need to make no
assumptions at all about that universe.

Linguistic and other circumstances sometimes impose various constraints on the
range of the quantifiers. In a mathematical case, we might restrict attention to uni-
verses with a built-in total order, or with some arithmetic structure. In the case of
natural languages, we find on occasion that quantification is over n-tuples of objects
rather than single ones (adverbial quantification). Or it might be over sets of objects,
or a Boolean algebra, or some sort of lattice structure (plurals and collective quan-
tification). Furthermore, the forms of implicit quantification we have mentioned

1 This terminology is not quite settled. Often ‘‘first-order language’’ is taken to mean a language
using only the resources of FO. The wider sense adopted here is, we believe, both natural and
illuminating.

2 These remarks presuppose a standard view of second- or higher-order logic. It is not consonant
with the view taken in Williamson 2003, where second-order quantification is different in kind
from first-order quantification, because one does not quantify over things but properties, and it is
crucial for him to maintain that properties are not things. That view of second-order logic is largely
unexplored, however. And regardless of the metaphysical issue, the linguistic point (below) that all
means the same even in a sentence like All properties are allowed in the definition still
stands.
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involve adding additional structure to the things (like times or possible worlds) quan-
tified over.

Such maneuvers can change the expressivity of the language: new things may be
expressible, others may get lost. But here is the bottom line: understanding what
quantifier expressions mean normally doesn’t appeal to any features of the domain
of quantification. Consider

(2.1) a. All cats like milk.
b. All electrons have negative charge.
c. All natural numbers have a successor.
d. All twins like each other.
e. All compact subsets of Hausdorff spaces are closed.

Obviously, the meaning of all has nothing to do with cats or electrons or numbers
or twins or Hausdorff spaces, nor with the discourse universes that may be associated
with the above examples. It simply stands for the inclusion relation, regardless of what we
happen to be talking about.

The distinction between languages of various orders, and the idea of a universe of
functions of various types built over a universe of individuals, make perfect sense. But
these concepts do not help explain the meaning of all. Suppose we are quantifying
over such a type-theoretic universe, or over objects in it of a fixed type. That universe
of quantification may again be taken as a new universe of ‘individuals’, with first-
order quantification. Whichever perspective we take, all still means the same. This is
the sense in which the first-order case is paradigmatic for quantification.

At the end of the previous chapter we noted that quantification in natural lan-
guages is restricted in various ways: (a) determiners have a restriction argument; (b)
there is always an implicit universe in the background (which can often be identified
with a discourse universe); (c) implicit context sets may be used. This means that a
standard model-theoretic apparatus can be applied directly. The universe is that of a
model, not signaled in the quantified sentence itself but crucial for its truth condi-
tions. The restriction argument is usually visible in the sentence, and interpreted in
the model as a subset of the universe. (Context sets could be handled by an additional
parameter; see Chapter 1.3.4.) The quantifiers that are taken to be the denotations of
determiners and similar expressions are model-theoretic objects, but not local to mod-
els and not interpreted in them. Their interpretations are global, associating with each
universe a suitable (second-order) relation over that universe. For example, all is
interpreted as the function that with each universe M associates the inclusion relation
between subsets of M . No structural or other constraints on M are assumed, since no
such constraints belong to the meaning of all.

Thus, from a meaning-theoretic as well as from a methodological point of view,
we claim that for the study of quantification, first-order languages are the right place to
start. But it cannot be stressed enough that this in no way means confining attention
to FO. Indeed, natural languages easily express many simple quantifiers that go far
beyond the expressive powers of FO. What claims like this mean exactly, and how
one proves them, are the subject of Chapters 11–15. For the moment, we need to be
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a bit more precise about the syntax and semantics of FO, as well as the logical notion
of a (generalized) quantifier that can be added to it.

2 .2 FIRST-ORDER LOGIC (FO)

To specify a logic, you basically need to fix three things: a language (syntax), a class of
models or interpretations, and a truth relation between sentences of the language and
models. In fact, the class of models will be the same for all the logics we consider.

As explained in the previous section, a model consists of two things: a universe and
an interpretation which assigns the right sort of objects to (non-logical) symbols of
various kinds. Let us be precise:

vocabularies and models

A (first-order) vocabulary is a set V of non-logical symbols: individual constants,
predicate symbols (of various arities), and function symbols (also of various arit-
ies). V is allowed to be empty. It is relational if it has only predicate symbols.
A model (for the vocabulary V ) has the form

M = (M , I )

where M is a (usually non-empty) set—the universe—and I is an interpretation
function, which assigns a suitable interpretation I (u) to each item u in V : I (c) ∈
M if c is an individual constant; I (P) ⊆ Mn if P is an n-ary predicate symbol, etc.

One sometimes writes uM for I (u), and

M = (M , cM1 , cM2 , . . . , PM
1 , PM

2 , . . .)

for a model for V = {c1, c2, . . . , P1, P2, . . .}. Or, if it is clear that, say, V =
{P1, P2, c}, where P1, P2 are 1-place, we may write simply

M = (M , A1, A2, a)

where A1, A2 ⊆ M , and a ∈ M . Other variants are also used. For example, we often
let

M = (M , A, B)

A, B ⊆ M , be a model for an unspecified vocabulary with two unary predicate sym-
bols, sometimes even using ‘‘A’’, ‘‘B’’ for these symbols as well.

We assume that the syntax and semantics of FO are familiar. For later reference
though, here is a quick account: logical symbols are ¬, ∧, ∨, →, ↔, =, ∀, ∃ (or a
subset of these from which the others can be defined); non-logical symbols are those
that can appear in vocabularies as above; in addition there are individual variables
v0, v1, v2, . . . , plus some punctuation marks such as commas and parentheses. The
notion of a formula in a given vocabulary is as follows:
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formulas and sentences

If V is a relational vocabulary, the V -formulas are defined inductively by the
following rules:

1. If P is an n-ary predicate symbol in V and x1, . . . , xn are variables, then
P(x1, . . . , xn) is a V -formula.

2. If x and y are variables, then (x = y) is a V -formula.

3. If ϕ and ψ are V -formulas, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ),
and (ϕ ↔ ψ).

4. If ϕ is a V -formula and x a variable, then ∀xϕ and ∃xϕ are V -formulas.

It is understood that nothing else is a V -formula. Parentheses can be deleted accord-
ing to standard conventions. Equally standard is the notion of free and bound variable
occurrences. A V -sentence is a V -formula without free variables.

These definitions are readily amended to cover arbitrary vocabularies. Often the
vocabulary is not mentioned explicitly. Note that if ϕ is a V -formula, and Vϕ is the
set of non-logical symbols occurring in ϕ, then Vϕ ⊆ V , and ϕ is a Vϕ-formula.

The crucial semantic relation is the satisfaction relation

M |= ϕ(a1, . . . , an)

whereM is a model for a vocabulary V , ϕ = ϕ(x1, . . . , xn) is a V -formula containing
at most the variables x1, . . . , xn free, and a1, . . . , an ∈ M are assigned to x1, . . . , xn,
respectively.3 If ϕ has no free variables, i.e. if ϕ is a sentence, then

M |= ϕ

says that ϕ is true in M.
Writing a for a sequence a1, . . . , an, and continuing to assume for simplicity that

the vocabulary is relational, the truth definition for FO—i.e. the definition of the sat-
isfaction relation—can then be expressed as follows, by an induction following the
inductive definition of formulas:

standard truth definition for FO

(2.2) M |= P(a1, . . . , an) ⇐⇒ (a1, . . . , an) ∈ I (P)
when P(x1, . . . , xn) is an atomic formula.

3 Alternatively, the satisfaction relation is written M |= ϕ[ f ] and holds between a model, a
formula, and an assignment f of values in M to the variables, such that in particular f (xi) = ai,
1 ≤ i ≤ n. Yet another notation, familiar from natural language semantics, is to assign to each
expression u a value [[u]]M,f relative to a model and an assignment. In particular, formulas are
assigned truth values (say 0 and 1), and M |= ϕ[f ] becomes [[ϕ]]M,f = 1.

Generalizing, we may (as Hodges reminded us) think of this as assigning to each expression u a
value [[u]], which is a mapping taking a model argument and an assignment argument.
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(2.3) M |= ai = aj ⇐⇒ ai is the same member of M as aj
for an atomic formula xi = xj .

(2.4) M |= ¬ϕ(a) ⇐⇒ M �|= ϕ(a)

(2.5) M |= (ϕ ∧ ψ)(a) ⇐⇒ M |= ϕ(a) and M |= ψ(a)
and similarly for the other connectives.

(2.6) M |= ∀xϕ(x, a) ⇐⇒ for all b ∈ M , M |= ϕ(b, a)

(2.7) M |= ∃xϕ(x, a) ⇐⇒ for some b ∈ M , M |= ϕ(b, a)

This fixes the relation |= for all arguments. In terms of it, the usual logical notions are
then defined in a uniform way. For example, a sentence ϕ is logically true if it is true
in all (Vϕ-)models; ϕ is a logical consequence of sentences ψ1, . . . , ψn in FO if there is
no model (for the union of the vocabularies involved) making ψ1, . . . , ψn true and ϕ

false, etc.
The last two clauses in the truth definition explain the meanings of the universal

and existential quantifiers, without assuming that they denote anything.4 Similarly
for (2.4) and (2.5), which only indirectly utilize the fact that ¬ and ∧ denote truth
functions. For the propositional connectives, it is easy to reformulate the relevant
clauses of the truth definition in a more immediately compositional way, where the
connectives denote truth functions. For example, using the second format mentioned
in note 3, one would write (2.5) as

[[ϕ ∧ ψ]]M,f = [[∧]]([[ϕ]]M,f , [[ψ]]M,f )

where [[∧]] is the familiar truth function of conjunction:

[[∧]](u, v) =
{

1 if u = v = 1
0 otherwise

4 To be sure, this explanation is only intelligible to someone who already understands what all
and some mean in English. The point is to explain the meaning of certain formal symbols. Is there
a non-circular explanation of these two quantifiers, i.e. one that does not rely on understanding
some corresponding natural language expressions?

If this asks for an explanation in terms of some even more fundamental concepts, we doubt
that such an explanation exists. (It might be possible to explain ∀ in terms of other equally basic
notions. For example, in the λ calculus ∀xϕ is equivalent to λxϕ = λx(x = x). The latter presup-
poses understanding of the notion of the extension of a λ term.) This being the case, it presumably
won’t be straightforward to explain how we ever come to learn such concepts.

What then is the value of a formal account of the quantifiers? One answer might go roughly as
follows. Given that people somehow do learn to use every and some, how can they know that
they attach the same meaning to these words? Answer: by agreeing on a ‘definition’ such as the
one above. One might dispute what such agreement amounts to, but notice how much easier it
seems to be to establish agreement for every and some than for, say, believe and suggest. In
the latter case one might have a hard time establishing that a speaker of a foreign language meant
‘believe’ by a certain word rather than ‘suggest’. And it might be even harder for words like dog or
lake. One reason for this could be precisely that there are no ‘definitions’, at least none as obvious
and straightforward as those for every and some.
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Or, with the last alternative mentioned in note 3, where [[ϕ]] is a function from mod-
els and assignments, we obtain the even more general compositionality claim

[[ϕ ∧ ψ]] = [[∧]]([[ϕ]], [[ψ]])

provided the truth function [[∧]] is ‘lifted’ to the appropriate functions too:

([[∧]](F , G))(M, f ) =
{

1 if F (M, f ) = G(M, f ) = 1
0 otherwise

Clearly, these differences in formulation are largely cosmetic. What about a corres-
ponding reformulation of (2.6) and (2.7)? We take that up next.

2 .3 MOSTOWSKI QUANTIFIERS

Even disregarding issues of compositionality or elegance of formulation, it is very nat-
ural to ask from a purely logical point of view: What do the expressions ∀ and ∃ have
in common? What category or type do they belong to? What kinds of things are their
meanings? What would other specimens of the same category be? The first logician to
look at these questions within a model-theoretic perspective was Mostowski in 1957.

We begin by rephrasing (2.6) and (2.7) in a way which prepares for the desired
generalizations.

A simple example of a quantifier distinct from ∀ and ∃ is, say, ∃≥5, where

M |= ∃≥5xϕ(x, a) ⇐⇒ there are at least five b in M s.t. M |= ϕ(b, a)

Once this example is appreciated, any number of others come to mind.5 To express
the general idea, we introduce the following notation.6

extension of a formula in a model

For a formula ψ = ψ(x, y1, . . . , yn) = ψ(x, y), and a sequence a of n objects in
M , let

ψ(x, a)M,x = {b ∈ M : M |= ψ(b, a)}
More generally, if ψ = ψ(x1, . . . , xk, y1, . . . , yn) = ψ(x, y),

(2.8) ψ(x, a)M,x = {b ∈ Mk : M |= ψ(b, a)}
Here k ≥ 1 and n ≥ 0; for k = 0 we may stipulate

(2.9) ψ(a)M =
{

1 = True, if M |= ψ(a)
0 = False, otherwise

5 Some such examples were in fact discussed early on in predicate logic. For example, Russell
and Whitehead (1910–13) use ∃! for the quantifier ‘there is exactly one thing such that’; this is still
standard.

6 The notation is a variant of the one in n. 3. We could write something like [[ψ]]M,f ,x .
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This notation will be used extensively in the rest of this book.7

Now (2.6) and (2.7) become

M |= ∀xϕ(x, a) ⇐⇒ ϕ(x, a)M,x = M
M |= ∃xϕ(x, a) ⇐⇒ ϕ(x, a)M,x �= ∅

Likewise, writing |X | for the cardinality of the set X ,

M |= ∃≥5xϕ(x, a) ⇐⇒ |ϕ(x, a)M,x | ≥ 5

We can go on ad lib. For example, the following two quantifiers have been studied in
model theory:

M |= Q 0xϕ(x, a) ⇐⇒ ϕ(x, a)M,x is infinite
M |= QC xϕ(x, a) ⇐⇒ |ϕ(x, a)M,x| = |M |

(On finite universes, QC is identical to ∀, but not on infinite ones.)
We have arrived at Mostowski’s notion of a (generalized) quantifier. Here is a gen-

eral formulation.

type 〈1〉 quantifiers

For each universe M , let Q M be any set of subsets of M , and use at the same
time (to simplify notation) ‘Q ’ as a new symbol for a corresponding variable-
binding operator. Then Q is a (generalized) quantifier of type 〈1〉, whose meaning
is given by

(2.10) M |= Qxϕ(x, a) ⇐⇒ ϕ(x, a)M,x ∈ Q M

Thus, a quantified sentence Qxϕ(x) is true in a model M iff the extension of ϕ(x) in
M belongs to Q M .

For the examples considered above we have:

∀M = {M}
∃M = {A ⊆ M : A �= ∅}
(∃≥5)M = {A ⊆ M : |A| ≥ 5}
(Q 0)M = {A ⊆ M : A is infinite}8

(QC )M = {A ⊆ M : |A| = |M |} (the Chang quantifier)

7 For linguists the notation λxψ(x, y) may be more familiar. This denotes a characteristic func-
tion, and ψ(x, a)M,x is the set for which λxψ(x, a)M is the characteristic function.

A minor detail is that (2.9) can be seen if one wants as a special case of (2.8): First, stipulate that
0 = ∅, 1 = {∅}, and that M0 = M∅ = the set of functions from ∅ to M (or the set of sequences
in M of length 0) = {∅} = 1. Then, if M �|= ψ(a), no sequence in M0 satisfies ψ(a) in M, so
ψ(a)M = ∅ = 0, but if M |= ψ(a), all sequences in M0 do, so ψ(a)M = M0 = 1.

8 This is an example of a cardinality quantifier; in general,

(Q α)M = {A ⊆ M : |A| ≥ ℵα}
(ℵ0, ℵ1, . . . , ℵα , . . . are the infinite cardinals in order of magnitude). This notation is somewhat
unfortunate, however, and will not be used in this book—we want to be able to use Q 1, Q 2, etc.
for arbitrary quantifiers. But for historical reasons we keep Q 0 for the (type 〈1〉) infinity quantifier.
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Two other examples, which will play a role in what follows, are

(Q even)M = {A ⊆ M : |A| is an even natural number}
(QR)M = {A ⊆ M : |A| > |M − A|} (the Rescher quantifier9)

On finite universes, QR is a typical example of a proportional quantifier: we have

(QR)M (A) ⇔ |A| > 1/2|M |.
Let us introduce the following notation.

(2.11) For natural numbers p, q such that 0 < p < q, the type 〈1〉 quantifier (p/q) is
defined by:10

( p/q)M (A) ⇐⇒ q · |A| > p · |M |
Similarly,
[ p/q]M (A) ⇐⇒ q · |A| ≥ p · |M |

So, on finite universes, QR = (1/2). These examples are from logic, but ∀ and ∃ are
naturally taken as the denotations of the English everything and something,
respectively (and ¬∃ is the denotation of nothing). The idea is that a noun phrase
(NP) denotes, on a given universe M , a set of subsets of M , and that a sentence of the
form [NP VP] (for verb phrase) is true iff the extension of the VP is in the denotation
of the NP. Thus,

(2.12) Something is blue.

says that the set of blue things (in M ) belongs to ∃M , i.e. that this set is non-empty.
Likewise,

(2.13) Everything is colored.

says that the set of colored things belongs to ∀M , i.e. that this set equals the whole
universe.

One could tell a similar story for at least five things, infinitely many
things, at least half of the things, etc., but here it becomes clear that
thing is used as a generic expression for ‘object in the universe’, and that what we
really want is a uniform interpretation of noun phrases like every girl, at least
five cats, infinitely many stars, more than half of the students, etc.
To this end, we need to extend the notion of a quantifier.

9 There is some terminological confusion in the literature about which quantifier is to be called
‘‘the Rescher quantifier’’. In this book, it is QR as defined above. That is also how Rescher (1962)
defines it (he calls it ‘‘M’’), so the name is quite apt. See also n. 11.

10 Formally, these definitions work for all sets, since multiplication is well-defined for finite as
well as infinite cardinals. But we only get the intended proportional readings with finite sets. If k
is a finite number and X an infinite set, k · |X | = |X |. It follows that if at least one of A and M is
infinite, (p/q)M (A) is always false (since |A| ≤ |M |). Likewise, if A is infinite, [p/q]M (A) is true iff
|A| = |M |. These consequences are purely stipulative; the reader might prefer other stipulations,
e.g. that (p/q)M (A) and [p/q]M (A) never hold for infinite M . In any case, when we in the sequel
discuss or use proportional quantifiers, we always make the tacit presupposition that only finite
universes are considered.
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We also note that Mostowski imposed, as part of the definition, a constraint on
the sets Q M , which is satisfied by the previous examples, but not by arbitrary sets
of subsets of M . The condition is roughly that the quantifier should be insensitive
to which particular individuals happen to make up the universe. For example, the
constraint does not hold for the quantifier Q defined by

Q M = {A ⊆ M : Pope Benedict XVI ∈ A and Queen Elizabeth II ∈ A}
This constraint is called isomorphism closure or I. While we do not make it part
of the general concept of quantifier, I turns out to play an important role also
for natural language quantification. We give definitions and examples in Chapter 3.3,
and discuss the role of I in Chapter 9.

2 .4 LINDSTRÖM QUANTIFIERS

Mostowskian quantifiers are, on each M , unary relations among subsets of M . We
can generalize immediately to binary or n-ary relations among subsets. This turns out
to increase expressivity considerably. For example, it was noted early by logicians that
whereas the Rescher quantifier QR says of a set A that most elements of the universe
belong to A, it cannot be used to say of two sets A and B that most elements of A
belong to B. In other words, it cannot be used to express the relation

mostM (A, B) ⇐⇒ |A ∩ B| > |A − B| 11

Notice by the way that, on finite universes, we get

(QR)M (A) ⇐⇒ |A| > 1/2 · |M |
mostM (A, B) ⇐⇒ |A ∩ B| > 1/2 · |A|

so there most means ‘more than half of’, and QR means ‘more than half of the ele-
ments of the universe’.12 Here are some more examples of quantifiers as relations
between subsets of M :

allM (A, B) ⇐⇒ A ⊆ B
noM (A, B) ⇐⇒ A ∩ B = ∅
someM (A, B) ⇐⇒ A ∩ B �= ∅
not allM (A, B) ⇐⇒ A − B �= ∅

11 Rescher distinguished QR from most and claimed (without proof) that ‘‘It is readily shown
that . . . ‘‘Most A’s are B’s’’ cannot be defined by means of the usual resources of [FO]; not even
when these are supplemented by [QR], or any other type of quantification, for that matter’’ (Res-
cher 1962: 374). We shall see precisely what this claim amounts to later on. The claim is true,
but the proof is not trivial. The only published proof, to our knowledge, of the full claim (if taken
to mean that most is not definable in terms of FO with any finite number of type 〈1〉 quantifiers
added) appeared in Kolaitis and Väänänen 1995; see Theorem 14 in Ch. 14.

12 As noted earlier, this relation most is one meaning of the English word most, although in
some contexts it could mean the same as, say, at least 75 percent of.



Generalized Quantifiers in Modern Logic 63

These are of course the four Aristotelian quantifiers from Chapter 1.1.1.

MOM (A, B) ⇐⇒ |A| > |B|
IM (A, B) ⇐⇒ |A| = |B| (the Härtig, or equicardinality quantifier)
more−thanM (A, B, C) ⇐⇒ |A ∩ C | > |B ∩ C |

All of these are of type 〈1, 1〉, except the last, which is of type 〈1, 1, 1〉.13

We also see that for sentences of the form [Det N] VP, since the extensions of both
the noun and the verb phrase are sets of individuals, what we need for the determiner
is precisely a type 〈1, 1〉 quantifier. For example,

(2.14) No sailors drink.

says that the set of sailors and the set of drinkers, in a universe of discourse M , stand
in the noM relation to each other; i.e. they are disjoint. And

(2.15) Most students speak Spanish.

says that the set of students and the set of Spanish speakers stand in the mostM rela-
tion to each other. But not all type 〈1, 1〉 quantifiers are eligible here. For example,
there are no determiners, in any language, corresponding to the quantifiers I and MO
above, although from a logical point of view they are perfectly natural. The reason is
that determiners denote relativized quantifiers (see Chapter 1.3.3); we come back to
this in Chapter 4.5.

Going back to artificial logical languages again, how should the corresponding
variable-binding operators work? A type 〈1, 1〉 quantifier symbol Q will now apply
to a pair of formulas (ϕ, ψ), and we may write

Qx, y(ϕ, ψ)

where all free occurrences of x in ϕ are bound in Qx, y(ϕ, ψ), and similarly for all free
occurrences of y in ψ . Actually, it is possible, and sometimes simpler, to use the same
variable, writing instead

Qx(ϕ, ψ)

where all free occurrences of x in ϕ or ψ are bound in Qx(ϕ, ψ). Thus we have, for
example,

M |= most x(ϕ(x, a), ψ(x, a)) ⇐⇒ mostM (ϕ(x, a)M,x , ψ(x, a)M,x)

and similarly for the other examples.14 Let us summarize:

13 MO was called more in Westerståhl 1989, but we now find that name misleading. Unlike the
Härtig quantifier, it has no established name in the literature. The word more occurs in various
comparative constructions, but not properly as an English determiner expression; more−than, on
the other hand, can be seen as a two-place determiner, as was noted in Ch. 0.2.2 and will be further
explained in Ch. 4.7.

14 When Q is the denotation of a determiner, the first formula, ϕ, in Qx(ϕ, ψ) is often called
the restriction, and the second, ψ , the scope, reflecting the syntactic form of a corresponding natural
language sentence. One sometimes chooses to mirror this in the logical formalism, by writing, for
example,

[Qx : ϕ]ψ
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type 〈1, 1〉 quantifiers

A (generalized) quantifier Q of type 〈1, 1〉 associates with each universe M a bin-
ary relation Q M between subsets of M . Using the same symbol as a variable-
binding operator, the meaning of a quantified formula Qx(ϕ, ψ), where ϕ =
ϕ(x, x1, . . . , xn) and ψ = ψ(x, x1, . . . , xn) have at most the free variables shown,
is given by

(2.16) M |= Qx(ϕ(x, a), ψ(x, a)) ⇐⇒ Q M (ϕ(x, a)M,x , ψ(x, a)M,x)

Similarly for type 〈1, 1, 1〉 quantifiers, etc. Observe that on the left-hand side of (2.16)
a syntactic expression—a formula in a formal language—is said to be true in a model
M (more precisely, satisfied in M by a sequence a of elements of M ). On the right-
hand side, by contrast, we are saying that two sets stand in a certain relation, namely
the relation Q M , to each other.

This generalization of Mostowski’s notion of quantifier is due to Lindström
(1966). Lindström further observed that there is no principled reason to restrict atten-
tion to relations between sets; the general concept is that of a relation between rela-
tions, or a second-order relation.15 Here are three examples. For A ⊆ M and R, S ⊆
M2, define

W rel
M (A, R) ⇐⇒ R is a well-ordering of A

RamM (A, R) ⇐⇒ ∃X ⊆ A [X is infinite and any two distinct elements of X
are related by R] (a Ramsey quantifier)
(Res2(MO))M (R, S) ⇐⇒ |R| > |S| (the resumption of MO to pairs)

The first two have type 〈1, 2〉, and the last 〈2, 2〉; the principle should be clear. The
well-ordering quantifier W rel is a typical mathematical quantifier; it is useful, and not
expressible in first-order logic, to be able to say of a relation that it is a well-ordering.
(The significance of the superscript rel will be explained in Chapter 4.4.) One would
not expect it to turn up in a natural language context. Ram and Res2(MO), on the
other hand, are useful mathematically and linguistically as well. Ram is of a kind that
shows up in the context of reciprocals (Chapter 10.4), and resumption is a typical fea-
ture of adverbial quantification (Chapter 10.2).

As to the syntax of the formal language corresponding to such quantifiers,
the variable-binding operator symbol now applies to a k-tuple of formulas if the
second-order relation is k-place, and in each formula it binds the number of variables

instead of Qx(ϕ, ψ). But here we want a logical notation suitable for all quantifiers, whether
denoted by determiners or not.

15 This is of course very similar to Frege’s treatment of quantifiers as second-level relations which
was sketched in Ch. 1.2.4. Indeed, Frege (1893) gives several examples of quantifiers other than ∀
and ∃, such as some, of type 〈1, 1〉, and the type 〈2〉 quantifier which says of a binary relation that
it is non-empty. In fact, the only real difference is the model-theoretic treatment, with the universe
entering as a parameter, whereas Frege had a fixed total universe and no uninterpreted symbols
in the language—see Ch. 1.3.1. However, neither Mostowski nor Lindström seems to have been
aware of Frege’s definition.
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corresponding to the arity of that relation argument. Here, then, is the official
concept of a (generalized) quantifier in logic:

arbitrary (generalized) quantifiers

A type is a finite sequence τ = 〈n1, . . . , nk〉 of natural numbers ≥ 1.
A (generalized) quantifier Q of type τ associates with each universe M a k-ary

second-order relation Q M over M , where the i’th argument of Q M is an ni-ary rela-
tion between individuals in M . Using the same symbol as a variable-binding oper-
ator, the meaning of a quantified formula Q y1, . . . , yk(ϕ1(y1, x), . . . , ϕk(yk, x)),
where each ϕi(yi, x) = ϕi(yi1 , . . . , yini

, x1, . . . , xn) has at most the free variables
indicated and a1, . . . , an ∈ M , is given by

(2.17) M |= Qy1, . . . , yk(ϕ1(y1, a), . . . , ϕk(yk, a)) ⇐⇒
Q M (ϕ1(y1, a)M,y1 , . . . , ϕk(yk, a)M,yk )

Here Q binds in each ϕi all free occurrences of yi1 , . . . , yini
.

We note that the variables in yi must be distinct. Normally, one chooses yi and
yj to be disjoint when i �= j, but that is not strictly necessary. For illustration, here
is the case of a type 〈2, 3, 1〉 quantifier, which thus associates with each universe M a
ternary relation Q M between a binary relation, a ternary relation, and a unary relation
(subset) over M . We have

M |= Qxy, zuv, w(ϕ(x, y, a), ψ(z, u, v, a), θ (w, a)) ⇐⇒(2.18)

Q M (ϕ(x, y, a)M,x,y, ψ(z, u, v, a)M,z,u,v, θ (w, a)M,w)

A simpler example, relevant to the English sentence

(2.19) The boys like each other.

would be

(2.20) each other x, y1y2(boy(x), like(y1, y2)) ⇐⇒
(each other)M (boy(x)M,x , like(y1, y2)M,y1,y2 ).

We discuss what the type 〈1, 2〉 quantifier each other could be in Chapter 10.4.
Already in Chapter 0 we distinguished between monadic and polyadic quantifiers.

Here is the formal definition:

monadic and polyadic quantifiers

A monadic quantifier is one of type 〈1, 1, . . . , 1〉. Semantically, and it is (on each
M ) a relation between subsets of M . Syntactically, it binds one variable in each of
the formulas to which it applies. One may choose one and the same variable for
each formula (as in (2.16)), or distinct variables (as in (2.17)); the difference is just
one of bookkeeping.
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A (properly) polyadic quantifier is of type 〈n1, . . . , nk〉, where ni > 1 for at least
one i. Semantically it is (on each M ) a relation between k relations over M , where
the i’th relation is ni-ary. Syntactically it binds ni variables in the i’th formula it
applies to.

Adding generalized quantifiers to FO is a minimal and well-behaved means to
increase its expressive power. There are other ways to strengthen FO, e.g. by going
to second-order logic. But with the generalized quantifier approach we can add an
expressive tool for a particular purpose that cannot be served in FO, while remaining
in a first-order language.

Here is an example. Suppose you want to be able to say, of an ordering relation
<, that each element has at most finitely many predecessors.16 In second-order logic,
you can say that a set A is infinite by a sentence of the following sort:

(2.21) There is an element a of A and a one–one function f from A to A − {a}.
But to use the machinery of second-order logic only to express infinity looks like a
case of overkill. Instead, add to FO the quantifier Q 0 from the previous section. Then
you can say directly that a set is infinite, and now the sentence

∀x¬Q 0y(y < x)

expresses the desired proposition. FO with Q 0 added is stronger than FO, and
therefore lacks some of its pleasant properties (such as a completeness theorem;
see section 2.6 below, and also Chapter 14.2), but it is much weaker than second-
order logic.

2 .5 BRANCHING QUANTIFIERS

The foregoing explains what we mean by ‘‘generalized quantifier’’ in this book. His-
torically, there is an even earlier idea about how to generalize ∀ and ∃, in terms of
branching or partially ordered quantifiers. We describe this idea in the present section,
and also explain how it relates to generalized quantifiers in our sense.

Consider formulas in prenex form, that is, formulas beginning with a quantifier
prefix consisting of a sequence of expressions of the form ∀x or ∃y, followed by a
quantifier-free formula. It is a well-known fact about FO that each formula is logically
equivalent to a formula in prenex form.

When a universal quantifier precedes an existential one, a dependency is created. In

(2.22) ∀x∃y∀z∃wϕ(x, y, z, w)

y depends on x, and w depends on both x and z. Another order in the quantifier prefix
may change the dependencies: in

(2.23) ∀x∀z∃y∃wϕ(x, y, z, w)

16 For example, given a Big Bang theory and a discrete time ordering, this would be true of that
ordering, even if each time point has infinitely many successors.
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both y and w depend on x and z. A convenient way of making the dependencies expli-
cit is by means of Skolem functions:17 (2.22) and (2.23) are equivalent, respectively, to
the following formulas in second-order logic:

(2.24) ∃f ∃g∀x∀zϕ(x, f (x), z, g(x, z))

(2.25) ∃f ∃g∀x∀zϕ(x, f (x, z), z, g(x, z))

Now another way to generalize ordinary quantification is to lift the restrictions that
are created by linear dependencies and allow, for example, a sentence with truth con-
ditions

(2.26) ∃f ∃g∀x∀zϕ(x, f (x), z, g(z))

This was proposed by Henkin (1961), who also introduced the following graphical
way of writing (2.26) as a first-order sentence:

∀x ∃y
ϕ(x, y, z, w)

∀z ∃w
(2.27)

The partial ordering of the quantifier prefix clearly shows that y depends only on x,
and w only on z. This syntax can be extended to all partially ordered prefixes of exist-
ential and universal quantifiers; the particular prefix in (2.27) is called the Henkin
prefix.

It is not obvious that the dependencies exhibited in (2.26) (or (2.27)) cannot be
expressed by an ordinary FO sentence. But this can be seen by the following simple
but ingenious argument, due to Ehrenfeucht. No FO-sentence in two one-place pre-
dicate symbols A and B expresses that |A| ≤ |B|.18 That is, no FO sentence can say
that there is a 1–1 function f from A to B. But this can be expressed with Skolem
functions as follows:

(2.28) ∃f ∀x∀z[(x = z ↔ f (x) = f (z)) & (A(x) → B( f (x)))]

Now observe that (2.28) is equivalent to

(2.29) ∃f ∃g∀x∀z[(x = z ↔ f (x) = g(z)) & (A(x) → B(f (x)))]

(the universally quantified first conjunct implies that f = g !), which in turn can be
written by means of the Henkin prefix:

∀x ∃y
[(x = z ↔ y = w) & (A(x) → B(y))]

∀z ∃w

17 Some form of the Axiom of Choice (AC) is needed to see that the two descriptions are equi-
valent. If one knows that for each x there exists y such that ϕ(x, y), AC entails that it is possible to
select exactly one such y for each x; i.e. that there is a function f such that, for all x, ϕ(x, f (x)).

18 This is equivalent to saying that the quantifier MO from sec. 2.4 is not FO-definable. In
Ch. 14 we will see how to prove such facts.
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So with the Henkin prefix we can say that |A| ≤ |B|. Similarly, we can also express
the sentence (2.21) from the previous section.

Second-order logic, or SO, is like FO except that in addition it has variables and
(universal and existential) quantification over sets, relations, or functions. Note
that the second-order sentences involving Skolem functions above, (2.24)–(2.26),
(2.28)–(2.29), all have the same simple form: a sequence of existential second-order
quantifiers followed by an FO-formula. The formulas of this form constitute the �1

1
fragment of SO.19

Above we indicated another set of formulas: those consisting of a quantifier-free
FO-formula preceded by a partially ordered quantifier prefix, i.e. a prefix consisting
of a finite number of expressions of the form ∀x and ∃y, all with distinct variables,
arranged in some partial order. Let PO be this set of formulas. We didn’t attempt
to give a truth definition for PO-formulas, except in the case of the Henkin prefix.
However, it was proved by Enderton (1970) and Walkoe (1970) that the set of PO-
formulas is expressively equivalent to the set of �1

1-formulas. In fact, each partially
ordered PO-prefix corresponds to a linear prefix consisting of a sequence of existential
function quantifiers followed by a sequence of universal quantifiers over individuals,
as in the examples above. Now the meaning of �1

1-formulas, or second-order for-
mulas in general, is in principle clear; these formulas have standard linear syntax and
universal and existential quantification over individuals as well as over relations and
functions. So we have de facto an indirect account of the meaning of all PO-formulas.

How do PO-formulas relate to generalized quantifiers? One can easily see, via the
correspondence established by Enderton and Walkoe, that each partially ordered pre-
fix, say with n variables, corresponds to a generalized quantifier of type 〈n〉. We illus-
trate with the Henkin prefix. Define a quantifier QH of type 〈4〉 by

(QH )M (R) ⇐⇒ there are functions f , g on M s.t. for all a, b ∈ M ,
R(a, f (a), b, g(b))

Note that the right-hand side is just the �1
1-prefix employed in (2.26). Clearly (2.26)

and (2.27) are both equivalent to the following sentence:

QH xyzw ϕ(x, y, z, w)

2.5.1 First-order sentences making second-order claims

In the sense introduced in section 2.1, the sentences in PO, like the sentences
obtained by adding generalized quantifiers to FO, are clearly first-order: they quantify
only over individuals. The sentences in �1

1 are clearly second-order. So we have a case
of first-order sentences making claims that are not expressible in FO. This is what

19 Classification of quantifier prefixes by means of the symbols � (standing for ∃) and 	 (stand-
ing for ∀) is standard in logic. Usually, �1 indicates a sequence of existential quantifiers, �2 a
sequence of existential quantifiers followed by a sequence of universal quantifiers (and thus two
alternations), etc., and similarly for 	1, 	2, etc. Superscripts stand for the type of these quanti-
fiers; thus �0

1 , �0
2 , etc. indicate the corresponding prefixes of first-order quantifiers, whereas �1

1 ,
�1

2 , etc. are used for second-order quantifiers.
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one would expect from generalized quantifiers; the language stays first-order, but the
expressive power may increase. As we have seen, some claims made with generalized
quantifiers can also be naturally expressed in SO.

The interesting fact about the branching PO-sentences is that they do not employ
new quantifier symbols, but instead enrich the syntactic means of arranging ∀ and ∃,
which turns out to result in a significant increase of expressive power. At least three
questions become relevant in this context.

First, is the non-linear arrangement of quantifiers really necessary? Most logical
languages, like those of FO and SO, employ a linear syntax, and so do natural
languages. Especially if you think of spoken language, a linear syntax seems much
preferable.

It turns out that a linear syntax is also possible. Jaakko Hintikka has introduced
a variant of the linear language of FO (see Hintikka 1996 and Hintikka and Sandu
1997), where independencies are marked explicitly, so that, for example, (2.27) is
written

(2.30) ∀x∃y∀z(∃w/∀x)ϕ(x, y, z, w)

This is called IF (independence-friendly) logic, and is expressively equivalent to the
logic with PO-formulas. Without going into details, we see that the (new) existen-
tial quantifier (∃w/∀x), although it comes after ∀x in the sentence, is marked to not
depend on that universal quantifier, creating the same independence as the non-linear
Henkin prefix did.

But a second question now is whether the IF language is compositional, in the sense
that the occurrences of a universal or (modified) existential quantifier can be dealt
with one by one, as is the case for FO, or for FO with added generalized quantifi-
ers.20 This is by no means obvious. Indeed, Hintikka gave the semantics for IF logic
in game-theoretic terms, where truth in a model becomes the existence of a winning
strategy in a certain game. On the face of it, that semantics is not compositional. How-
ever, Hodges (1997) shows that a Tarski-style truth definition is in fact possible for
IF logic; see also Väänänen 2002. So you can ‘peel off’ IF quantifiers one at a time,
but the price is that whereas the clauses in the truth definition for FO quantify over
assignments (of individuals to variables), the IF clauses need to quantify over sets of
assignments. This truth definition is accordingly more complex than the one for FO,
and we shall not try to reproduce it here.21

The third question concerns the closure properties of the language with branching
quantifiers. Normally one thinks of a language as closed under its logical operations,

20 For FO we saw how this is done in (2.6) and (2.7), sect. 2.2. When a generalized quantifier
Q is added, we need an additional clause of the form (2.17) in sect. 2.4. So if we treat each quan-
tifier prefix of an IF -formula, or the corresponding PO-prefix, as a unit, we get a compositional
truth definition, since each prefix corresponds to a generalized quantifier. But there are infinitely
many prefixes, so we would get a truth definition with infinitely many clauses, which is not very
satisfactory.

21 Indeed, Hintikka asserts that the intended game-theoretic semantics is, by contrast, simple
and intuitive. Moreover, he thinks the restrictions on permissible independencies that the FO syn-
tax enforces are just ad hoc, and that IF is the ‘real’ first-order logic. This claim is very controversial,
however, partly because of the limitations on the IF -language that the next question discusses.
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so that if ϕ and ψ are formulas, so are, for example, ¬ϕ, ϕ ∧ ψ , ∀xϕ, and Qx(ϕ, ψ)
(if Q is a type 〈1, 1〉 quantifier symbol in the language). However, the set of PO- or
IF -formulas are, characteristically, not closed under negation. This is most clear if we
recall that each such formula is equivalent to a �1

1-formula of second-order logic, but
the class of �1

1-formulas is certainly not closed under negation: if you negate such a
formula, you turn the existential second-order quantifiers into universal ones—the
formula becomes 	1

1 —and there are many things expressible with 	1
1-formulas that

are not expressible with �1
1-formulas (see note 19).

Of course you can ‘close’ the PO- or IF -formulas under negation, but the above
remarks show that you then get a much stronger language. This language fails to have
some of the nice properties that have been claimed for IF logic.22

Summing up, there is no mystery in the fact that you can make second-order claims
with a first-order language, as long as one remembers that the first-orderness of the
language just means that only quantification over individuals is allowed. Generalized
quantifiers, as we have defined them in this chapter, yield first-order formulas in this
sense, and the same holds for PO-formulas. A totally different issue is the expressive
power of such a language. What we have hinted at here, and will amply demonstrate
in Chapters 13 and following, is that these syntactic additions to FO may increase
expressive power, in fact to what is also expressible by means of the second-order
�1

1-sentences. There are various notions of first and second order in use, and it is
important to be clear about what the facts are.23

We also pointed out that branching quantification is in one sense already sub-
sumed under the notion of generalized quantifiers, since every branching prefix cor-
responds to a quantifier. But the syntax of branching quantification has a particular
elegance and simplicity that gets lost when translated in to the language of generalized
quantifiers.

2.5.2 Branching generalized quantifiers

One question about branching quantifiers that we have not yet taken up is their con-
nection to natural languages. A main tenet of this book is that (generalized) quantifi-
ers are omnipresent in natural languages as well as logic. Is branching quantification
also something that natural languages somehow employ?

22 See e.g. van Benthem and Doets 1983 for examples of things expressible with 	1
1- but not

with �1
1 -sentences.

23 To begin, there is the use of first-order logic to mean simply FO, and correspondingly for
second-order logic (SO). There is also the notion of a first-order theory, which is a theory formu-
lated with only the logical resources of FO, and similarly for second-order theory. Then, there is our
use of first-order language (and second-order language) in this book. Finally, there are more elusive
uses related to the claims expressible by a certain language. As we said, ‘‘second-order’’ can indic-
ate that these claims amount to what is expressible in (some significant fragment of) SO. But one
can instead attach importance to the fact that the metalanguage is second-order (in our sense), e.g.
that the clauses in an inductive Tarski-style truth definition essentially involve second-order quan-
tification. This is indeed true for the truth definition that Hodges gave for IF logic. Likewise, the
game-theoretic truth definition for both FO and IF involve quantification over winning strategies,
which again is second-order.
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Indeed, Hintikka (1973) famously claimed that the Henkin quantifier is needed
for the semantics of English. He gave several examples, the best-known of which is

(2.31) Some relative of each villager and some relative of each townsman hate each
other.

This claim engendered much controversy; see, for example, Gabbay and Moravcsik
1974; Guenthner and Hoepelman 1974; Fauconnier 1975; Stenius 1976. Barwise
(1978) gave a thorough analysis of this issue and concluded (convincingly, in our
opinion) that (2.31) does involve branching, though not the Henkin quantifier, but
another partially ordered prefix which is in fact definable in FO. He also gave other
English examples to illustrate essential branching of ∀ and ∃. We shall not go into
that discussion here. However, Barwise also argued that the branching of most as in
(2.32) below is a much clearer example of essential branching in English.

(2.32) Most boys in your class and most girls in my class have all dated each other.

This can be rendered with a branching structure of the form

most x A(x)
R(x, y)

most y B(y)

where the intended reading is that there is a subset X of A containing most of the ele-
ments of A, and a similarly large subset Y of B, such that each pair (a, b) where a ∈ X
and b ∈ Y belongs to the relation R. Quite plausibly, this is a reading of (2.32). But it
is not expressible by most alone (used linearly). In fact, as we will see in Chapter 15.3,
it is not expressible by any form of monadic quantification at all.

Again we see that the two quantified noun phrases here are in a sense independent
of each other, and this independence is nicely illustrated by the branching prefix. In
principle, since we know how to branch ∀x and ∃y, one may ask if arbitrary (gener-
alized) quantifiers can also be branched; and if so, whether this takes us outside the
domain of the usual languages with linearly ordered generalized quantifiers.
Most boys and most girls are both increasing (if most boys are B and B ⊆ B′

then most boys are B′), and simple branching of two increasing quantifiers makes
good sense. One can also make clear sense of the decreasing case, and a few others.
But Barwise argues that mixed cases (branching an increasing and a decreasing quan-
tifier) make no sense; see Barwise 1978 and Westerståhl 1987 for a discussion. Sher
(1997) proposes a definition that would work in general, but it is not obvious in what
sense such a definition would be correct or not; nor is it clear, in the few cases where
we do have some intuitions about the meaning, that her definition always agrees with
those intuitions. Thus, the questions of the preceding paragraph are not really well
defined in their full generality.

But if we focus on the increasing case, a clear and undisputed truth definition can
be given. In Chapter 10.3 we come back to this, and to the issue of whether natural
languages in fact employ branching of this kind. It will be seen that what is defined is
really a polyadic quantifier, in the above case of type 〈1, 1, 2〉. Indeed, branching (of
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increasing quantifiers) is naturally seen as a lift operation, from monadic to polyadic
quantifiers. We study various such polyadic lifts in Chapter 10. So these lifts do not
take us outside the domain of generalized quantifiers, although in many cases, such
as branching, they take us outside what is expressible by monadic quantifiers (see
Chapter 15.3).

In sum, in this section, which has been something of an excursion, we have seen
what branching (or independence-friendliness) of quantifiers amounts to, and also
that, although the syntax is different, it doesn’t produce any quantifiers falling outside
the concept of a (generalized) quantifier that is the basic theoretical tool of this book.

2 .6 DIGRESSION: WHY LOGICIANS LIKE FO

Given the immense variety of logical quantifiers that strengthen the expressive power
of FO, and the fact that many of these are employed by natural languages as well (all
of these facts will become clear later on), one might well wonder why logicians have
spent so much effort on FO, which has only ∀ and ∃. There are at least two kinds of
answers to this question.

First, although the logical resources of FO may seem poor, they are nevertheless
strong enough to permit formulations of in principle all of mathematics in the lan-
guage of FO. In particular, set theories (such as ZF ; Zermelo–Fraenkel set theory)
are usually formulated as first-order theories, by which is meant theories using only the
logical resources of FO. Therefore, in one sense, FO is already strong enough to do
‘everything’. For example, all our generalized quantifiers are definable in set theory, a
first-order theory.

This is a very significant property of FO. But it should not obscure the fact that
the definitions of the notion of infinity, or of various cardinality quantifiers, that can
be carried out in ZF are not logical —they depend on a mathematical theory. For the
purposes of this book, it is not very significant that the semantics of quantification in
natural languages can be done in set theory. The significant fact is, rather, that natural
languages use quantifier expressions ‘logically’; see Chapters 9 and 12 for discussion.
But, to repeat, from the viewpoint of the mathematical logician, the fact that FO can
in principle express all of classical mathematics is one of its most important traits.

The second answer is not in terms of expressivity, but in terms of properties of
FO. FO has a host of nice properties that many other logics lack. Here are just a few
examples:

• The Löwenheim property: If a sentence is true in some infinite model, it is also true
in some countable model.

• The Tarski property: If a sentence is true in some countably infinite model, it is also
true in some uncountable model.

• The compactness property: If no model makes every element of the set of sentences 


true, then there is a finite subset � of 
 such that no model makes every sentence
in � true.

• The completeness property: The set of valid sentences is recursively enumerable.
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It is largely because of properties like these that FO, and first-order theories, have
been amenable to the very rich study undertaken by model theorists in the last cen-
tury (see any modern textbook in model theory, e.g. Hodges 1993). For logics lacking
these properties, there just isn’t a comparable number of results, and what logicians
like most of all is to prove mathematically non-trivial results about logics or languages
or theories.

Moreover, FO is characterized by these properties. This is the content of Lind-
ström’s Theorem,24 of which we give some instances below. Most of the follow-
ing notions will be explained formally in Chapters 11.2.4 and 4.4, but an informal
account suffices for now. A logic L consists of a language and a truth relation, relat-
ing L-sentences to (first-order) models (and satisfying certain minimal conditions). L′
extends L if it is at least as expressive as L, i.e. if every L-sentence is equivalent to (true
in the same models as) an L′-sentence. L ≡ L′ if the converse holds too. L relativizes
if for every L-sentence ϕ and every unary predicate symbol P (not in ϕ), you can find
another L-sentence saying about the universe restricted to P what ϕ says about the
whole universe.25 Below, L is any logic extending FO.

Theorem (Lindström)
If L is compact and has the Löwenheim property, then L ≡ FO. Also, provided L relativ-
izes, if L is complete and has the Löwenheim property, or if L has both the Löwenheim and
the Tarski properties, then L ≡ FO.

Thus, if logicians want to study logics with these properties, they have no choice
but to study FO, or something equivalent in expressive power.

2 .7 SUMMARY

In this and the previous chapter we have sketched the history of the logical notion
of quantifiers, as second-order relations. The application of this notion to linguistic
issues begins in the next chapter, though several hints about how it might go have
already been given. Although the notion is discernible already in Aristotle’s syllogist-
ics, and although quantification has been a topic of discussion among philosophers
since the Middle Ages, the full-fledged concept appeared with Frege, in the context
of the invention of modern predicate logic. But since the general concept was not
really needed for predicate logic, it appears to have been forgotten, only to be redis-
covered by model theorists (Mostowski and Lindström) almost 100 years later. Since
then, however, it has been a standard logical tool.

We gave fairly precise definitions and many examples of the model-theoretic
concept of a (generalized) quantifier, and of how such quantifiers can be added, syn-
tactically and semantically, to first-order logic (FO). But we also took the opportunity

24 First proved in Lindström 1969. Accessible proofs can now be found in some logic textbooks:
e.g. Ebbinghaus et al. 1994.

25 In Ch. 1.3.3 we indicated that FO relativizes, and that most natural language quantifiers
are relativized (see Ch. 4.4), which entails that the logics you obtain by adding them to FO also
relativize.
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to introduce and discuss some important theoretical and methodological issues. Here
is a recapitulation of these.

• We contrasted a proof-theoretic with a model-theoretic perspective on semantics in
general, and quantification in particular. Although one can study proof-theoretic
aspects of various quantifiers, the general notion of a quantifier is model-theoretic
in nature, or so it seems to us. This model-theoretic notion is point of departure
for the present book.

• Another point of departure is that certain expressions, in particular determiners,
can be taken to denote (generalized) quantifiers. Historically, it has been a vexed
question whether these expressions have denotation at all—a question related to,
but not identical with, the question of whether they are categorematic or syncat-
egorematic. We emphasized that, given a small number of fixed quantifiers, this is
a methodological issue that can be resolved either way. It is perfectly possible to give
precise truth conditions for sentences with the given quantifiers without assum-
ing that they denote anything. Indeed, this is standard practice in predicate logic,
with its two quantifiers ∀ and ∃. However, the concept of a (generalized) quanti-
fier provides all the required denotations—and many more—for the expressions
in question. Moreover, in (most) natural languages there is an unlimited supply of
such expressions. Once these things are realized, a case by case treatment of quanti-
fication in natural languages becomes methodologically unsound. This may rightly
be called one of Frege’s great insights about quantification. As to modern logical
languages, a natural (in retrospect) extension of the variable-binding mechanisms
of predicate logic allows one to add symbols denoting arbitrary quantifiers to first-
order logic.

• We also mentioned the concept of logicality as a possible characteristic of quanti-
fier expressions, pointing out, however, that logicality should not be confused with
syncategorematicity. We return to the issue of logicality and logical constants in
Chapter 9.

• The basic notion of truth in model theory is truth in a structure. This means regi-
menting semantic interpretation in a certain way, which, as model theorists noted,
is often congenial for mathematics. But note that without a universe and an inter-
pretation of non-logical symbols, no proposition at all is expressed by a (quanti-
fied) sentence. So the model-theoretic notion is not relativistic but really a way
to formulate absolute truth. Moreover, this notion is congenial for natural lan-
guage as well. First, at least for a theory of quantification, it makes sense to treat
verbs, nouns, adjectives, etc. as symbols that receive an interpretation—an exten-
sion—in a model. Second, and more importantly, restriction to a discourse uni-
verse is ubiquitous in natural language communication, and such universes are sim-
ilar to (though not necessarily identical with) the universes of models. And in addi-
tion to restriction to a context-given discourse universe, languages employ other
significant means of quantifier domain restriction. In particular, determiners char-
acteristically restrict quantification by means of relativization to the noun argument
(Chapter 4.4).
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• Even if truth is relativized to models, the quantifiers themselves are absolute objects
in that they have, in each universe, a given extension. However, it seems that
determiner denotations—in contrast with arbitrary quantifiers—in some sense to
be determined have the ‘same’ extension in all universes; i.e. they are ‘independent’
of the universe. This somewhat elusive property of constancy will come into focus
several times later on (e.g. Chapters 3.4 and 9.3).

• We distinguished first-order from second-order languages in terms of what sort
of variables their sentences quantify over. We also claimed that the first-order
approach is the right one to take for a theory of quantification. This is because
the meanings of most quantifier expressions are completely independent of what
the universe is made up of, and any set can be the universe of a first-order model.
Therefore, all quantifiers dealt with in this book are first-order in the sense that they
quantify over individuals. But this does not prevent them from generating logics
that are much stronger than first-order logic (FO) in terms of expressive power.





PART II

QUANTIFIERS OF NATURAL
LANGUAGE





3
Type 〈1〉 Quantifiers of Natural and Logical

Languages

This chapter begins our exposé of quantifiers related to natural languages with the
logically simplest case: type 〈1〉. These quantifiers are, on each universe, sets of sub-
sets of that universe. Here we find, along with a few of the classical logical quantifi-
ers, the denotations of noun phrases, a fundamental syntactic category in many—if
not in all—languages. Among noun phrases are the proper names, which, although
they denote individuals, are sometimes conveniently treated as type 〈1〉 quantifiers
as well.

Of course, languages that do not have any other noun phrases than pronouns might
still have constituents that can be taken to denote type 〈1〉 quantifiers. But however a
natural language may use type 〈1〉 quantification, if it does at all, our claim is that the
linguistically important type is 〈1, 1〉. This is in stark contrast with standard logical
languages where the type 〈1〉 quantifiers ∀ and ∃ are ubiquitous. We start with type
〈1〉 because it is logically simpler, and because most type 〈1〉 quantification that you
find in natural languages is systematically related to the more fundamental type 〈1, 1〉
quantification, and vice versa, in ways that are worthwhile to spell out.

We begin (section 3.2) with various examples of phrases denoting type 〈1〉 quanti-
fiers. Next, we discuss in detail two fundamental properties of quantifiers: isomorph-
ism closure or I (section 3.3), and extension or E (section 3.4). It appears that
all quantifiers that one encounters in natural languages either are I themselves or
are systematically related to I quantifiers, and similarly for E. This will become
clear as we go on; a precise statement concerning I is given in Chapter 9.2. So
these properties are highly relevant from a linguistic perspective, but they are also
familiar from mathematical logic and computer science. They apply to quantifiers of
any type, and though we begin by stating them for the type 〈1〉 case, we also give the
general definitions here.

Before we start, however, some preliminary terminological and methodological
points, also pertaining to quantifiers of any type, will be raised in section 3.1. One
of these concerns the fact that whereas a claim made by a logical quantifier only
requires a universe to be fixed, the interpretation of natural language expressions like
the noun phrase three cats or the determiner John’s also needs input from a
(background) model. It is nevertheless both convenient and useful to interpret the lat-
ter quantifier expressions too as denoting unique quantifiers, i.e. as mappings from



80 Quantifiers of Natural Language

universes to second-order relations over those universes. This issue is usually not
raised in the literature, but at the end of the chapter (section 3.5) we show that such a
uniform treatment is in fact possible (relative to a background model), provided EXT
is assumed.

3 .1 PRELIMINARY CONCEPTS AND DISTINCTIONS

3.1.1 Global and local quantifiers

A quantifier Q is on each universe M a second-order relation Q M (a relation between
relations) over M . When it is necessary to make the distinction, we call such second-
order relations local quantifiers, since they are local to a particular universe. The quan-
tifier Q itself, on the other hand, i.e. the operator which associates with each M a local
quantifier Q M on M , can then be called a global quantifier.

A property P of local quantifiers extends automatically to the corresponding global
quantifier according to the following scheme.

(G) Q is P ⇐⇒def for each M , Q M is P

Many properties of quantifiers that we will discuss are like this—it is more natural to
define them locally, but the definition lifts immediately via (G) to a global one. For
example, we call a local type 〈1〉 quantifier Q M increasing (Chapter 5), if (Q M (A) &
A ⊆ A′ ⊆ M ) implies Q M (A′). Then, Q is increasing iff each Q M is increasing.

Some properties, however, are genuinely local, in that the corresponding global
property is uninteresting or even unintelligible. Here are a few examples.

3.1.1.1 Trivial quantifiers

Call any relation (over some universe) trivial if it is either the universal relation or
the empty relation. This gives us the following, for local quantifiers of any type τ =
〈n1, . . . , nk〉:

the two trivial quantifiers of type τ on M

1τ ,M is the universal relation of type τ over M . That is, whenever Ri is an ni-ary
relation on M , for 1 ≤ i ≤ k,

1τ ,M (R1, . . . , Rk)

holds. Likewise, 0τ ,M is the empty relation of type τ over M , so 0τ ,M (R1, . . . , Rk)
never holds. (When there is no risk of confusion, one or both of the subscripts τ

and M will be dropped.)

Now, one could lift this notion of triviality to Q itself via (G). Then there would be
just two trivial global quantifiers (of any given type), but that would be a rather unin-
teresting notion of triviality. More interestingly, Q might associate trivial quantifiers
with some universes (say, with all universes of size less than a fixed number), and
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non-trivial ones with other universes. More fine-grained notions of (non-)triviality
are called for in the global case, and would typically be adapted to a particular class of
quantifiers or a particular investigative purpose.1

3.1.1.2 The number of quantifiers

Suppose you ask how many quantifiers (of a certain type) with a certain property there
are. If you mean global quantifiers, this question risks being senseless. Such a quan-
tifier associates with each set M a second-order relation over M , so there would nor-
mally be at least as many such quantifiers as there are sets, but there is no such thing
as ‘the number of all sets’. The class of all sets is not itself a set—it is what logicians
call a proper class (see also Chapter 1.3.5)—and hence cannot be counted.2

If, on the other hand, you mean local quantifiers on a particular universe, the ques-
tion has an answer that one might be able to figure out using set theory in the infin-
ite case, or some piece of finite combinatorics in case the universe was finite. For
example, suppose your question was: How many distinct type 〈1, 1〉 quantifiers are
there in all on a given universe with just two elements? (The answer is: 216 (= 65,536)!
In general, there are 2(4n) type 〈1, 1〉 quantifiers on a universe with n elements.) How
many with property P? Now there are definite answers, though they may be easy or
hard to find.

3.1.1.3 Two perspectives on language and logic

The global/local contrast concerns not just different kinds of properties but different
perspectives on quantifiers, and more generally on language and on the use of logic for
linguistic purposes. Very roughly, one may say that the more linguistically oriented
literature on quantification has tended towards a local perspective, where discussion
takes places within a particular universe of discourse which is taken for granted or pre-
supposed, whereas the more logically oriented literature has used a global perspective.
But there is really no need to make a choice here. What is needed, rather, is always to
be clear about whether a particular claim or generalization or definition or result is to
be taken globally or locally.

We prefer global versions whenever possible, not because our orientation is more
logical than linguistic, but because natural language quantifiers are themselves global
objects, defined for every universe. An exclusively local study of them risks losing sight
of important properties.

1 Examples are the condition V from van Benthem 1984 for type 〈1, 1〉 quantifiers, and
what is called (m1, . . . , mk)-non-triviality in Westerståhl 1994 for certain quantifiers of type
〈1, 1, . . . , 1, k〉. The point of such global notions of non-triviality is to be able to formulate results
or generalizations in the most perspicuous and illuminating way, without having to make excep-
tions or add extra clauses for various less interesting cases.

2 What if you restrict attention to, say, finite universes? This is a step in the right direction, but
the class of finite sets is again not a set. To get a meaningful question, you also need to impose the
condition I (sect. 3.3). Then, if you fix a cardinal number κ and ask how many isomorphism
types there are of quantifiers (of the given type) on a universe of cardinality at most κ, you have an
(in principle) answerable question.
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Another reason is that global versions are more general: local versions follow by
instantiation. But in many cases, the relationship between global and local is more
complex. It may require work or non-trivial reformulation to extract a global state-
ment from a local fact. And sometimes there may be more than one global version,
or, as we have seen, none at all.

One area where this contrast is particularly acute is expressive power. To say that
a certain quantifier is expressible or definable by such and such means may be true
in a local sense but false globally. For example, existential quantification is definable
locally on a fixed finite universe as a long disjunction, as logicians through the ages
have realized (see Chapter 1), but it is certainly not definable globally from sentential
operators. So for a logician of today, FO is (much) more expressive than propositional
logic, though for a linguist working in a local finite universe the difference may not
matter much.

Thus, broad claims about expressive power can be seriously ambiguous if not care-
fully stated. And more than just resolving the ambiguity, one needs to reflect carefully
on which concept of expressivity is the correct one for the occasion at hand. We will
return to these questions in Chapter 11.3, but clarity about the global/local distinc-
tion is a theme that runs throughout this book.

3.1.1.4 A finer distinction

For some quantifier expressions, a finer-grained version of the global/local distinction
can be made. These are expressions like John’s, the three cats, no − except
John, more male than female, which contain individual or predicate expressions
that normally get interpreted in models, but which can still usefully be regarded as
denoting global quantifiers, relative to some background model which fixes the inter-
pretation of the individual and predicate expressions. This statement requires some
qualification and a small argument; the details will be given in section 3.5.

The point is that even though a model consists of a universe and an interpretation
function, it is often useful to fix the interpretation function but let the universe vary.
The (discourse) universe is more flexible, as it were, than the rest of the interpretation.
For example, fixing the interpretation of cat, we can think of the three cats as
denoting a global quantifier of type 〈1〉, which enables us to observe its behavior when
the universe, but not the interpretation of cat, varies. We will see that it has certain
interesting properties—properties that could not even be stated if we were to apply a
purely local perspective.

Similarly, thinking of John’s as a determiner, just like every or most, is quite
natural, and makes various semantic properties of determiners applicable. This is
standard practice, and we do it all the time in this book. Usually one doesn’t reflect on
the principled difference between John’s and, say, all but three: namely, that
the former but not the latter requires a background model fixing the interpretation
of an individual-denoting expression. They are both seen as determiners, denoting
type 〈1, 1〉 quantifiers (Chapter 4). But to see that such talk is indeed permissible,
one should check that there is a unique global quantifier that John’s denotes, given
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the background model. In section 3.5 we verify that, under a reasonable condition,
this is indeed the case.

3.1.2 Quantifier expressions versus predicate expressions

In Chapter 0.2.3 we introduced the term quantifier expression for any natural
language expression that can reasonably be taken to denote a quantifier. Typical
examples can be determiners, quantificational adverbs, noun phrases, reciprocals, etc.

We shall also sometimes use the term of art predicate expression for expressions that
can be taken to denote sets of or relations between individuals.

This terminology is natural for a logician, but somewhat artificial from a linguistic
point of view, since the term bundles together expressions of very different kinds. For
example, many lexical adjectives, nouns, and transitive as well as intransitive verbs
are predicate expressions, as well as many complex phrases headed by words of these
categories. We may also include various expressions in natural languages that aren’t
normally treated as (grammatical) phrases at all, such as brother of, is above, or
gave a rose to. (In logical languages, predicate symbols are lexical predicate expres-
sions, and formulas are complex predicate expressions.)

The important thing about what we call predicate expressions is that their exten-
sions contain individuals, or tuples of individuals. Thus, although expressions like
every and few denote (on each universe) binary relations, these relations are
between sets of individuals—they are second-order—so they are not predicate
expressions in our sense.

Similarly, though numerals can be treated as adjectives in predicate position, these
predicates apply, again, to sets of individuals, not to the individuals themselves:

(3.1) a. The boys were five.
b. The boys were happy.

Not each boy was five, but the set of boys. The set of boys wasn’t happy, but each
boy was.

Recall that by ‘‘individual’’ we do not mean a particular kind of object. Anything
could be an individual, i.e. an element of the universe of a model: people, middle-size
objects, electrons, thoughts, propositions, numbers, sets, . . . The point is instead that
the universe of a first-order model is not structured ; it does not besides its individuals
contain other objects, such as sets of or relations between individuals.

It is intuitively clear that there are basic semantic differences between quantifier
expressions and predicate expressions. These differences will be explicitly formulated
and demonstrated in the chapters to come, but the following is a brief summary:

• Quantifier expressions and predicate expressions have different categories or
types, and

(i) there are very few logical predicate expressions—where by ‘‘logical’’ we mean
subject-independent or topic-neutral, a requirement expressed formally by the
condition of isomorphism closure, or I—whereas

(ii) almost all natural language quantifiers do satisfy I.



84 Quantifiers of Natural Language

I is introduced in section 3.3 below. Many examples illustrating claims (i) and
(ii) will appear in this chapter and the next, whereas the final and precise statements
of these claims is given in Chapter 9.2.

• Quantifier expressions, but not predicate expressions, are constants, in the sense of
belonging to the form of intuitively sound inferences. This will be argued in detail
in Chapter 9.3, in connection with a discussion of the notion of a logical constant.

• Quantifier expressions are largely rigid, in contrast with predicate expressions. That
is, coextensive predicate expressions are not always substitutable in intensional or
modal contexts, whereas co-extensive quantifier expressions usually are. The lat-
ter claim requires some qualification with respect to which equivalence relation is
claimed to be preserved by such substitution; various such relations are discussed
in Chapter 11.3.

These differences motivate a very different model-theoretic treatment of quantifier
expressions from that of predicate expressions. Briefly, (lexical) predicate expressions
are interpreted in models, but quantifier expressions are not. This is a fundamental
methodological principle, usually adhered to in practice but not always understood
in theory, or so it seems to us; see Chapter 9.3.

3.1.3 Relational and functional views of quantifiers

We have defined quantifiers (locally) as second-order relations, but from a type-
theoretic perspective they would be viewed as functions instead. Recall that Frege
defined all relations, including quantifiers, in terms of their characteristic functions.
So for example, a (local) type 〈1〉 quantifier Q M would be a function from P(M ), the
powerset (set of subsets) of M , to the set of truth values 2 = {0, 1}, and instead of
Q M (A) one would write

Q M (A) = 1

(The global Q then associates with each universe M such a function.) The set of all
such functions is often written

[P(M ) −→ 2]

(or 2P(M )). Similarly, a type 〈1, 1〉 quantifier on M could be seen as a function from
P(M ) to [P(M ) −→ 2], i.e. as an object in [P(M ) −→ [P(M ) −→ 2]].3

Mostly, this choice is a practical matter, not a principled one. For quantifiers, there
is even a third choice: Lindström (1966) took them to be classes of models, so that, for
example, one would then write

(M , A) ∈ Q

rather than Q M (A). But there is no claim that quantifiers really are objects of one
of these three kinds; rather, these are three ways of modeling quantifiers. As long as

3 Equivalently, it could be seen as a function in [(P(M ) × P(M )) −→ 2].
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one can go back and forth between these representations, the choice is practical, or
sometimes merely a matter of taste.

There is a certain austere elegance to a type-theoretic framework, where everything
is a function. Also, linguists have often preferred a functional view, since it allows an
intuitively pleasing formulation of compositionality in terms of function application.
This too goes back to Frege, and in modern times is especially prominent in the tra-
dition from Montague. Moreover, the use of Boolean functions of various kinds, not
just quantifiers, makes possible an elegant and uniform treatment of large tracts of
semantics; see Keenan and Faltz 1985. (But compositionality itself in no way depends
on function application; see Chapter 12.2.)

One advantage of the functional approach to quantifiers would be if there were
cases where not just characteristic functions were involved. This has been suggested
for interrogatives, when, for example, which(A) is seen as a function whose value is (a
representation of) the answer to the question Which As are B?. The simplest solu-
tion would be to put

which(A)(B) = A ∩ B

but this runs into certain problems, and there are other alternatives.4 However, we
shall not discuss interrogatives in this book.

Another difference is that the functional view gives the opportunity to treat quan-
tifiers as partially defined. This adds to the distinctions available, since, for example,
Q M (A, B), seen as a function of A, can be either true, false, or undefined. More gener-
ally, this fits with using three-valued logic, rather than the classical two-valued one, for
natural language semantics. Among the reasons that have been suggested is that one
better captures presupposition in this way: when a presupposition of a statement is not
satisfied, the statement does not receive a truth value.

Barwise and Cooper (1981) make a limited use of partially defined quantifiers
(and three-valued logic), allowing type 〈1, 1〉 quantifiers, seen, as above, as func-
tions from sets to type 〈1〉 quantifiers, to be undefined for certain arguments. For
example, a definite determiner like the three denotes a function that is undefined
when there aren’t exactly three things in the restriction argument. Our treatment of
definites, on the other hand (which otherwise is the same as Barwise and Cooper’s; see
Chapter 4.6), instead gives the value false in this case. It seems to us that not much
is gained by allowing partiality here. In fact, the only instance where Barwise and
Cooper make a substantial use of partiality, we think, is in their notion of a positive
strong quantifier, in connection with the issue of which quantifiers are acceptable in
so-called existential-there sentences. We discuss this question in detail in Chapter 6.3.
The outcome, however, is that this particular use of partiality is dubious.

For these reasons, as well as for reasons of simplicity, we shall stick to the (total)
relational perspective on quantifiers in this book.

4 For example, the account above cannot distinguish between the questions Which men are
unmarried? and Which bachelors are unmarried?. For more about questions see e.g. Ham-
blin 1973; Ginzburg and Sag 2000; Groenendijk and Stokhof 1997.
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3.2 PHRASES DENOTING TYPE 〈1〉 QUANTIFIERS

Type 〈1〉 quantifiers are, on each universe, sets of subsets of that universe. The ter-
minology here varies somewhat in the literature; at times they are called ‘‘unary’’
quantifiers (then type 〈1, 1〉 quantifiers are ‘‘binary’’). But ‘‘unary’’ can refer to the
arity of the arguments instead of the second-order relation, and the word has been
used5 for the case when all of the arguments are one-place, i.e. for what we here call
monadic quantifiers. In that case type 〈1〉 has been called ‘‘simple unary’’. There is also
some diversity as regards the type notation.6 However, we shall stick to the original
notation and terminology from Lindström 1966 introduced in Chapter 2.4.

Among the phrases in natural languages that denote type 〈1〉 quantifiers, the cat-
egory of noun phrases (among which we include proper names) is by far the most
studied and best understood. Therefore our examples in this chapter are taken from
this category, even if in some languages there are expressions of other categories which
can be taken to denote type 〈1〉 quantifiers as well.

We are not claiming that all noun phrases denote type 〈1〉 quantifiers. Pronouns
usually do not denote quantifiers. Even for certain noun phrases formed with a
determiner (for example, this man, those dogs), an analysis by means of type
〈1〉 quantifiers may not be the best choice. Some words usually thought of as noun
phrases may not denote anything at all—for example, it in It is obvious that
she is hurt, or there in There are cats in the garden. And some noun
phrases denote quantifiers of other types, such as each other, which denotes a
quantifier of type 〈1, 2〉 (Chapter 10.4).

3.2.1 Examples of noun phrase denotations

Of the type 〈1〉 quantifiers that logicians care about, and that were defined in
Chapter 2.3, such as

(3.2) ∀, ∃, ∃≥5, ∃≤7, ∃=3, Q even, Q 0, QC , QR

only the following three appear to be denotations of simple noun phrases in natural
languages:

∀, ∃, and ¬∃
(where ¬∃M (A) ⇔ A = ∅). These can be taken to be denoted by

everything, something, nothing

respectively (or congeners such as everybody, someone, or nobody). To say
Everybody has been warned is to say that every individual in the (discourse)

5 E.g. in Väänänen 1997.
6 E.g. the notation 〈〈1, 1〉, 1〉 was used for certain type 〈1, 1, 1〉 quantifiers in Keenan and West-

erståhl 1997 (to emphasize the special role of the first two noun arguments for quantifiers like
more−than). Väänänen (1997) instead uses (1; 3) here.
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universe has been warned. That is, it is a claim of the form ∀M (A). Similarly, to say
Nothing has been forgotten is to make a claim of the form ¬∃M ′ (B). Notice
that thing here can be taken as a logical noun denoting the universe. And note fur-
ther that the phrases everybody, nothing, etc. are not tied to a particular universe:
they associate a (local) quantifier with each universe in a uniform way, i.e. they denote
global type 〈1〉 quantifiers.7

Alongside the small number of fixed noun phrases just listed, many languages,
including English and Swedish, have productive ways of forming a wide range of
other NPs by using any of the language’s nominal expressions rather than thing and
any of its determiners in place of every. This yields a rich class of (quantified) NPs,
such as

every cat, some birds, no dog, at least three students, exactly two senators, more than five
congressmen, most sailors, less than two-thirds of the voters, an odd number of guests, . . .

A proper analysis of these involves the interpretation of the corresponding determiner
expressions, for which type 〈1, 1〉 quantifiers are used. We come to this in Chapter 4,
but in fact it turns out that in a precise sense type 〈1〉 quantifiers are the right place
to start. We therefore make the following definition here, which begins to explore
the fact that in such noun phrases, quantification is restricted to the set provided by
the noun.

restricted type 〈1〉 quantifiers

Let Q be a type 〈1〉 quantifier and A a fixed set. The quantifier Q [A] is defined as
follows, for any M and any B ⊆ M :

(3.3) (Q [A])M (B) ⇐⇒ Q A(A ∩ B)

For example, let some background model fix [[cat]] to A = cat (the relevant set of
cats). Then, relative to any (discourse) universe M , (∃[cat]

=3 )M is the set of subsets B
of M such that (∃=3)cat (cat ∩ B), i.e. such that |cat ∩ B| = 3. This makes ∃[cat]

=3 a suit-
able interpretation of the noun phrase exactly three cats (given the background
model). If hungry is the set of hungry things in M (including, say, hungry cats, hungry
dogs, hungry people, etc.), (∃[cat]

=3 )M (hungry) holds if and only if sentence (3.4) is true.

(3.4) Exactly three cats are hungry.

In this way, restrictions of the quantifiers exemplified in (3.2) above provide a ple-
thora of type 〈1〉 quantifiers that turn up in linguistic contexts.

7 This is an oversimplification (though not an uncommon one). Everybody usually picks out
only the persons in the universe. And everything normally quantifies only over non-animate
things in the universe. It is, however, quite possible to use the phrase everything in the uni-
verse, which truly seems to denote ∀. Treating everything, nothing, etc. in the same way is
a regimentation of language, as Quine would have said, but not quite true to how these words are
ordinarily used.
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If one were only interested in the truth conditions of (3.4), the background model
and the model with the (discourse) universe M would presumably be the same. But
for a study of the semantics of quantifier expressions like the three cats per se, it
is useful to make the distinction. Then one needs to think of the three cats as
denoting a global quantifier (relative to the background model). This quantifier, we
claim, is ∃[cat]

=3 , defined as in (3.3).
Q [A] has the effect of switching (discourse) universes, from M to A. Only when

A ⊆ M is the universe literally restricted to A. But we did not make that part of
the definition. In principle, there are several different ways of defining restriction
to A, which are all equivalent when A ⊆ M —this is presumably why their differ-
ences are rarely if ever discussed in the literature. We discuss the options further in
Chapter 4.5.5. But the main reason for choosing (3.3) is that this is the only defini-
tion that, strictly speaking, allows one to treat the three cats as a global quantifier.
This will be shown in section 3.5.

Restricted type 〈1〉 quantifiers interpret an important class of noun phrases, but
not all NP interpretations have this form. In section 3.2.4 we will see that proper
names can be taken to denote type 〈1〉 quantifiers too. Another case is so-called bare
plurals, as in

(3.5) a. Freshmen need to apply for a library card.
b. John doesn’t like cats.
c. Firemen are public servants.

Here a noun in plural form serves as a noun phrase. The exact semantics of bare plur-
als is complicated,8 but an obvious first stab at an interpretation, which is literally
correct in many cases, is by means of the following quantifier:

the quantifier Cpl

For a given set C , let Cpl be the type 〈1〉 quantifier defined, for any M and any
B ⊆ M , by

(3.6) Cpl
M (B) ⇐⇒ ∅ �= C ⊆ B

In mathematical terms, Cpl
M is the principal filter over M generated by C . For example,

(3.5a) is interpreted as saying that the set of freshmen is included in the set of indi-
viduals that need to apply for a library card—a good enough interpretation for most
purposes.

8 For one thing, they often serve to make generic statements, as in

(i) Swedes are melancholic.

This is not truly universal, but roughly says that most Swedes are melancholic, or that the ‘typ-
ical’ Swede is. For another thing, bare plurals sometimes have an existential rather than a universal
interpretation; compare (3.5c) with

(ii) Firemen are available.



Type 〈1〉 Quantifiers 89

Note that, on our definition, if Cpl
M (B) holds for some B, then C ⊆ M (since

B ⊆ M ). It follows that Cpl
M is trivial (in fact equal to 0M ) if and only if C = ∅ or

C �⊆ M . We are defining a global quantifier, so we must stipulate something about
the case C �⊆ M , and one natural thing to say is that then Cpl

M (B) is always false.

An alternative definition could be: Cpl
M (B) ⇔ C ∩ M ⊆ B. But then Cpl

M (B) is true
when C is disjoint from M , which seems extremely unintuitive. In fact, we show in
section 3.5 that not only is definition (3.6) intuitively more natural; it is the only pos-
sible definition, given that we want to treat bare plural NPs like firemen as denoting
type 〈1〉 quantifiers.

Presumably, many linguists would add the condition |C | > 1 to the truth condi-
tion in (3.6). It is indeed true that when a noun is used as a bare plural, it needs to
be in plural form. But this need not automatically entail that the denotation has more
than one element. For example, you may say

(3.7) Swedish students in his department like meat balls.

without having any idea of how many Swedish students there actually are in his
department, and this statement would hardly be falsified if there turned out to be only
one. In any case, if one so wishes, it is easy to add a plural condition to (3.6).

3.2.2 Quantifiers living on sets

Barwise and Cooper (1981) used the following suggestive terminology (taken from
mathematics) for a characteristic trait of restricted quantifiers:

type 〈1〉 quantifiers living on a set

Suppose Q is a type 〈1〉 quantifier, M a universe, and A any set. Then Q M lives on
A iff, for all B ⊆ M ,

(3.8) Q M (B) ⇐⇒ Q M (A ∩ B)

Often one assumes A ⊆ M , but that is not needed for the definition. Observe that
living on a set is a property of a local quantifier. It is related to an important global
property, called conservativity, that will be introduced in the next chapter. If Q M lives
on A, then to know for any subset B of M whether or not the quantifier holds of it,
you need only look at the part of B which is also a part of A. The next lemma contains
useful information about type 〈1〉 quantifiers and the sets they live on.

Lemma 1
(a) Q M always lives on M, but need not live on any proper subset of M.

(b) Q M lives on ∅ if and only if it is trivial (= 0M or 1M ).

(c) If Q M lives on C1 and C2, it lives on C1 ∩ C2. Hence, if M is finite, there is always
a smallest set on which Q M lives. This fails, however, when M is infinite.
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(d) If Cpl
M is non-trivial, it lives on X if and only if X includes C. So C is the smallest set

that Cpl
M lives on.

(e) (Q [A])M lives on A and its supersets. When (Q [A])M is non-trivial, A is often, but not
always, the smallest set on which it lives.

Proof.
(a) The first claim is obvious from the definition. To see that the second claim is
true, consider any M �= φ and any A ⊂ M . Let B = M − A; so B �= φ. Then ∃M (B)
but A ∩ B = ∅, so ¬∃M (A ∩ B). Hence, ∃M does not live on any proper subset of
M .

(b) Q M lives on ∅ iff, for all B ⊆ M , Q M (B) ⇔ Q M (∅). This means that Q M is
trivial.

(c) Suppose Q M lives on C1 and C2. Then, for any B ⊆ M , Q M (B) iff Q M (C1 ∩ B)
iff Q M ((C1 ∩ B) ∩ C2) iff Q M ((C1 ∩ C2) ∩ B). Thus Q M lives on C1 ∩ C2. If M is
finite, it follows that Q M lives on

⋂
C⊆M {C : Q M lives on C}

But when M is infinite, it can happen that this intersection is empty, even if Q M is
not trivial; this will follow from the proof of (e) below.

(d) Assume Cpl
M is non-trivial, i.e. ∅ �= C ⊆ M . Cpl

M lives on X iff, for all B ⊆ M ,
C ⊆ B ⇔ C ⊆ X ∩ B. It is straightforward to see that, under the assumption, the
latter condition is equivalent to C ⊆ X .

(e) Suppose A ⊆ C , and B ⊆ M . Then, by definitions (3.3) and (3.8), (Q [A])M (B)
iff Q A(A ∩ B) iff Q A(A ∩ (B ∩ C)) iff (Q [A])M (B ∩ C), so (Q [A])M lives on C .

Next, consider the quantifier Q = ∃=3. We have, for B ⊆ M , (Q [A])M (B) iff |A ∩
B| = 3. Suppose (Q [A])M is non-trivial. Then |A ∩ M | ≥ 3. (Otherwise, if B ⊆ M ,
|A ∩ B| < 3, so (Q [A])M (B) is false.) Now suppose that C is a set that (Q [A])M lives
on, and suppose further that there is an element a in A − C . Take any set B ⊆ M
such that a ∈ B and |A ∩ B| = 3; this is possible by assumption. But then |(A ∩ B) ∩
C | < 3, which contradicts the assumption that (Q [A])M lives on C . Thus, we have
shown that if (Q [A])M is non-trivial and lives on C , then A ⊆ C . It follows that A is
the smallest set on which (Q [A])M lives.

By similar arguments, the same conclusion holds for Q = ∃=n, Q = ∃≥n, and
Q = ∃≤n, for example. However, consider Q = Q 0, so that (Q [A])M (B) iff A ∩ B
is infinite. Suppose A is infinite. Then it is clear that if (Q [A])M lives on C and
a ∈ C , (Q [A])M also lives on C − {a}. Thus, there is no smallest set on which (Q [A])M
lives. �

The fact that (Q [A])M lives on A is precisely why quantifiers of the form Q [A] are the
correct interpretations for noun phrases of the form [Det N], as we will see in the next
chapter. It is possible to be more specific about when A is the smallest set on which



Type 〈1〉 Quantifiers 91

(Q [A])M lives, but for that we need the properties I and E, defined later in this
chapter. Using them, we shall improve on Lemma 1(e) (in section 3.4.1.2, Proposi-
tion 13).

In general, the fact that Q M lives on a certain set tells us nothing about which
sets Q M ′ lives on for M �= M ′. But most quantifiers that turn up in logical or lin-
guistic contexts are constant over universes in ways that make the live-on behavior
more regular. Lemma 1 (d) and (e) provide examples. We return to this issue on sev-
eral occasions later on, e.g. in Chapters 3.4.1.2, 4.6, and 8.13.

3.2.3 Boolean operations on quantifiers

One way of forming complex noun phrases is by means of Boolean expressions (or
expressions that have a Boolean ‘effect’):

not all residents, some but not all primes, not more than four departments, more than three
but fewer than eight books, between one hundred and two hundred students, between one-
third and two-thirds of the applicants . . .

On the semantic side, we can define Boolean combinations of quantifiers in the obvi-
ous way. In fact, this works for quantifiers of any fixed type τ = 〈n1, . . . , nk〉:

(Q ∧ Q ′)M (R1, . . . , Rk) ⇐⇒ Q M (R1, . . . , Rk) and Q ′
M (R1, . . . , Rk)

(Q ∨ Q ′)M (R1, . . . , Rk) ⇐⇒ Q M (R1, . . . , Rk) or Q ′
M (R1, . . . , Rk)

(¬Q)M (R1, . . . , Rk) ⇐⇒ not Q M (R1, . . . , Rk)

Note that these definitions work globally as well as locally.
So, on the one hand, there are the syntactic Boolean operations on noun phrases,

and on the other, the semantic Boolean operations on their denotations, i.e. type 〈1〉
quantifiers. In both cases we can ask if the relevant class of objects is closed under these
operations. In the first case we ask if the noun phrases of a language allow arbitrary
combinations with and, or, and not. In the second case we ask if the class of noun
phrase denotations—of a given language, or of all languages—is such that if Q 1 and
Q 2 belong to it, so do Q 1 ∧ Q 2 and ¬Q 1. (Note that this question has a global and
a local version.)

These questions are different, although a positive answer to the first would imply
a positive answer to the second. But it is generally thought that the first question has
a negative answer. Some combinations, like not most students, are simply not
noun phrases. But this in no way prevents the second question from being answered
in the affirmative. For example, if most students denotes (QR)[student], which on
finite universes means ‘more than half of the students’, then although ¬(QR)[student]

is not denoted by not most students, it is denoted by the noun phrase at most
half of the students. Still more obviously, not not every professor is not
a phrase, even though the class of noun phrase denotations is trivially closed under
double negation. But even if these were not counterexamples, it is not clear that the
answer to the second question is really affirmative. It is an interesting issue, and we
will come back to it in Chapter 4.3.
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The negation operation above is called outer negation or complement. For type
〈1〉 quantifiers there is another important negation operation, inner negation or post-
complement. The inner negation of Q is written Q¬ and defined below. In terms of
these operations, we also get the dual of Q , written Qd.

negative operations on quantifiers

For Q of type 〈1〉, M a universe, and A ⊆ M , define

(¬Q)M (A) ⇐⇒ not Q M (A) (as before)
(Q¬)M (A) ⇐⇒ Q M (M − A)
(Qd)M (A) ⇐⇒ (¬(Q¬))M (A) ⇐⇒ ((¬Q)¬)M (A)

It does not matter where we put the parentheses in the definition of the dual, so we
can write simply Qd = ¬Q¬.

This definition works for Q of type 〈n〉 as well. For types with more than one argu-
ment, one must select the argument(s) to which the complement operation should
apply. A main example comes from the (modern version of the) Aristotelian square
of opposition, discussed in Chapter 1.1.1. We return to this in the next chapter.

For inner negation (and dual) there are again the issues of closure. These operations
are indeed present in natural languages. For example, the inner negation of every pro-
fessor is no professor, and the dual is some professor. The inner negation of all but at most
two deans is at most two deans, and the dual is more than two deans. And the inner neg-
ation of most students is fewer than half of the students, and the dual is at least half of the
students.

The following terminology will prove useful on several occasions later on:

co-properties

Let P be a property of quantifiers of a type τ for which the notion of inner negation
is well-defined. Then we say that

(3.9) Q is co-P iff Q¬ is P

For example, if Q of type 〈1〉 is increasing whenever Q M (A) and A ⊆ A′ ⊆ M
implies Q M (A′), then it is clear that Q is decreasing (in the obvious sense) if and only
if Q¬ is increasing, so decreasing = co-increasing. In this case the terms ‘‘increas-
ing’’ and ‘‘decreasing’’ are well established. Examples where there is no established
name for the co-property will follow later (a first example is the property co-E in
section 3.4 below).

Inner negation is a kind of Boolean operation too. Taking the complement of a
set (or a set of n-tuples) is the same kind of operation as negating a sentence—they
are both the complement operation in the corresponding Boolean algebra. So it is to
be expected that Boolean-type laws hold for inner negations and duals as well: for
example, the following ones.
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Fact 2

(a) ¬(Q 1 ∧ Q 2) = ¬Q 1 ∨ ¬Q 2; (Q 1 ∧ Q 2)¬ = Q 1¬ ∧ Q 2¬;
(Q 1 ∧ Q 2)d = Q d

1 ∨ Q d
2

(b) ¬(Q 1 ∨ Q 2) = ¬Q 1 ∧ ¬Q 2; (Q 1 ∨ Q 2)¬ = Q 1¬ ∨ Q 2¬;
(Q 1 ∨ Q 2)d = Q d

1 ∧ Q d
2

(c) Q = ¬¬Q = Q¬¬ = (Qd)d

Proof. The first claim of (a) is just propositional logic. The second can be directly veri-
fied using only the definitions of inner negation and conjunction of quantifiers. The
third follows from the definition of duals, using the first two claims. (b) and (c) are
similar. �

Also, one checks that the restriction operation commutes with the outer Boolean
operations:

Fact 3

(Q 1 ∧ Q 2)[A] = Q [A]
1 ∧ Q [A]

2 , (Q 1 ∨ Q 2)[A] = Q [A]
1 ∨ Q [A]

2 ,
and (¬Q)[A] = ¬(Q [A])

But not with inner negation: (Q¬)[A]
M (B) is equivalent to Q A(A − B), but

(Q [A]¬)M (B) amounts to Q A(A ∩ (M − B)), which is not the same thing, when A
is not a subset of M .

In general, there are inner and outer versions of all Boolean operations for quan-
tifiers. If we talk about Boolean operations without specification, we mean the
outer ones.

These operations of course work for any quantifiers of the relevant types, regardless
of the eventual connections to natural languages. Here are some more examples:

∀d = ∃
(∃=3¬)M (A) ⇔ |M − A| = 3
(∃≥2 ∧ ∃≤7)M (A) ⇔ 2 ≤ |A| ≤ 7

(QR)d
M (A) ⇔ |M −A| �> |A| ⇔ |A| ≥ 1/2·|M | (when M is finite);

In general,

(3.10) (p/q)d = [(q − p)/q] on finite universes (see Chapter 2.3 for definitions)

3.2.4 Montagovian individuals

Proper names constitute a particular kind of noun phrase. In the treatment of proper
names introduced in Montague 1970b, a noun phrase like John referring to an indi-
vidual j is interpreted as the set of subsets containing j. Thus, in a sense we have two
interpretations of proper names. To separate these, one may think of the lexical item
John as denoting the individual j (in a modelM0; i.e. [[John]]M0 = JohnM0 = j),
whereas the noun phrase John denotes in each universe M a set of subsets of M .
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Montagovian individuals

Define, for each individual j,

(3.11) (Ij)M = {A ⊆ M : j ∈ A}

The motive is to obtain a uniform treatment of all noun phrases as (locally) sets of
subsets of the universe. Since proper names can be conjoined with quantified noun
phrases into more complex noun phrases, as in John and most students, the uni-
formity resulting from a Montagovian treatment of names is substantial.

Ij is a global quantifier. With every universe M it associates a local quantifier, given
by (3.11). The definition does not presuppose that j ∈ M : if j �∈ M , it follows from
the definition that (Ij)M is the trivial quantifier 0M on M . What about the alternative
of defining instead (Ij)M (A) ⇔ {j} ∩ M ⊆ A ? Then (Ij)M (A) would be true when
j �∈ M , which seems much more unintuitive. And in fact, just as for bare plurals Cpl

and restricted quantifiers of the form Q [A], the chosen definition is the only one that
properly lets us treat the noun phrase John as denoting a global quantifier, given a
background model M0 that fixes j; see section 3.5.9

Quantifiers of the form Ij are independent of the universe in a strong sense. If
John is a professor is true (false), it remains so if the universe of discourse is
extended, provided the set of professors is the same. The same holds for Somebody
is a professor, but not, for example, for Everybody is a professor. Uni-
verse independence in this sense is a property of (some) global quantifiers. It will be
made precise and discussed in section 3.4.

In a context where it is clear that John denotes j, we may write Ij simply as John.
And we may go on:

(3.12) John and Mary = Ij ∧ Im
(3.13) John or Mary = Ij ∨ Im

Then a set A ⊆ M belongs to (John and Mary)M (to (John or Mary)M ) iff j ∈ A and
m ∈ A (j ∈ A or m ∈ A), so using these quantifiers will give correct truth conditions
for both

(3.14) John and Mary used to like pizza.

and

(3.15) John or Mary used to like pizza.10

9 Our truth conditions, however, should not be confused with those for sentences containing
fictional names, about which we say nothing in this book.

10 In contrast with or, there are other uses of and than the one illustrated here, which does not
work for

(i) John and Mary met at the party.

for example. Met at the party is a collective predicate, and and can be used to form expressions
denoting ‘collections’. These matters are not treated in this book.
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Finally, we note that it follows directly from our definitions that

(3.16) Ij ∧ Im ∧ . . . ∧ Ih = {j, m, . . . , h}pl

This seems all right. While it doesn’t make much sense to think of a proper name as a
bare plural (it is rather a technical fact about the denotations of names that Ij = {j}pl),
it could make some sense to treat the expression John and Mary and . . . and Henry
as a bare plural generated by those names: although grammatically different, they do
similar semantic work.

3 .3 ISOMORPHISM CLOSURE

Mostowski imposed a condition on type 〈1〉 quantifiers: namely, that they ‘‘should
not allow us to distinguish between elements [of M ]’’ (Mostowski 1957: 13). Lind-
ström used the same condition for the general case, and it is usually taken for gran-
ted by logicians. The condition, which we call isomorphism closure, or simply I,
expresses the idea that in logic only structure counts, not individual objects, sets, or
relations. This means that if a sentence in a logical language is true in one model, it is
true in all isomorphic models. Put differently, logic is topic-neutral. We discuss topic
neutrality further in Chapter 9.1.

What is interesting in the present context is that although natural languages are
anything but topic-neutral, their use of quantification is essentially based on I
quantifiers. This will become clear as we go on, but it motivates a proper presentation
of the notion of isomorphism closure at this point. We first give a definition for type
〈1〉 quantifiers and then present the general case. Notably, for type 〈1〉 quantifiers
(and more generally, for monadic quantifiers) there is no need to mention isomorphic
models; it is enough to talk about the sizes of certain sets.

3.3.1 Isom for type 〈1〉 quantifiers

If Q is of type 〈1〉, whether Q M (A) holds or not depends on only two sets: A and
M − A. I says that it depends only on the sizes of these sets:

Isom for type 〈1〉 quantifiers

A type 〈1〉 quantifier Q satisfies I iff for any universes M , M ′, and any A ⊆ M ,
A′ ⊆ M ′:

(3.17) If |A| = |A′| and |M − A| = |M ′ − A′|, then Q M (A) ⇔ Q M ′ (A′).

For example, ∃M (A) holds iff |A| > 0, ∀M (A) holds iff |M − A| = 0, (QR)M (A) holds
iff |A| > |M − A|; these are all I.

Clearly, an I quantifier Q can be identified with a binary relation between car-
dinal numbers: namely, those pairs (|M − A|, |A|) for which Q M (A) holds. For sim-
plicity, this relation is also called Q :
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Isom type 〈1〉 quantifiers as binary relations

If Q is an I type 〈1〉 quantifier, define, for any cardinal numbers k, m:

(3.18) Q(k, m) ⇐⇒ there are M and A ⊆ M such that |M − A| = k,
|A| = m, and Q M (A)

Note that k, m here can be natural numbers as well as infinite cardinal numbers.11

Conversely, given any binary relation between cardinal numbers, there is a unique
corresponding type 〈1〉 quantifier:

Fact 4
If R is any binary relation between cardinal numbers, and we define the type 〈1〉 quanti-
fier Q by

Q M (A) ⇐⇒ R(|M − A|, |A|)
then Q is I, and the binary relation corresponding to Q according to (3.18) is R. Thus
I type 〈1〉 quantifiers can simply be identified with binary relations between cardinal
numbers, and we have, for each such quantifier Q:

(3.19) Q M (A) ⇐⇒ Q(|M − A|, |A|)

Proof. If Q is defined from R in this way, it clearly satisfies (3.17), and so is I.
Now suppose Q is also the corresponding binary relation given by (3.18). Let k, m
be cardinal numbers. If Q(k, m), there are M and A ⊆ M such that |M − A| = k,
|A| = m, and Q M (A), and hence R(k, m) holds. Conversely, if R(k, m), choose M ′
and A′ ⊆ M ′ such that |M ′ − A′| = k and |A′| = m. Then Q M ′ (A′) holds, so, by
(3.18), Q(k, m). Thus, R = Q . �

Thus, I type 〈1〉 quantifiers only care about quantities, or sizes of sets, not the sets
themselves. The condition can be extended to all monadic quantifiers; it is sometimes
called Q in the literature.

All the quantifiers mentioned in (3.2) satisfy I, as we can see by identifying the
corresponding relations between numbers:

∀(k, m) ⇐⇒ k = 0
∃(k, m) ⇐⇒ m �= 0
∃≥5(k, m) ⇐⇒ m ≥ 5
Q even(k, m) ⇐⇒ m is an even natural number
Q 0(k, m) ⇐⇒ m is infinite
QC (k, m) ⇐⇒ m = k + m
QR(k, m) ⇐⇒ k < m
[p/q](k, m) ⇐⇒ qm ≥ p(m + k)

11 Why is |M − A| the first argument and |A| the second, and not the other way around? No
reason; we are just following a usage in the literature.
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The following fact is easily established.

Fact 5
The class of I type 〈1〉 quantifiers is closed under Boolean operations, including inner
negations and duals. In particular, using the terminology introduced in section 3.2.3, co-
I = I. Moreover, viewed as relations between numbers, the inner negation of a
quantifier is simply its converse, i.e.

Q¬(k, m) ⇐⇒ Q(m, k)

However, most type 〈1〉 quantifiers denoted by expressions in natural languages are
not I. As we will see, they are in a sense reducible to I quantifiers, but they are
not I themselves. For example, if a quantifier involves a particular individual or a
particular set, I usually fails. In particular, we have the following.

Fact 6
Quantifiers of the form Ia are never I. Similarly for quantifiers of the form Cpl when
C �= ∅.

Proof. The first statement is obvious, but let us check with the definition. Take
two distinct objects a, b, and a universe M0 which contains them both. Then
|{a}| = |{b}| = 1, and |M0 − {a}| = |M0 − {b}| = |M0| − 1. On the other hand,
(Ia)M0 ({a}) holds, since a ∈ {a}, but (Ia)M0 ({b}) fails, since a �∈ {b}. Thus, we have
a counter-instance to (3.17) (with M = M ′ = M0, A = {a}, and A′ = {b}), so I
fails. The second claim follows similarly; see (3.16). �

Likewise, restricted quantifiers of the form Q [A] are usually not I, even if Q is
I. Intuitively, this is again clear. Even if it is a fact that

At least four students smoke.

and also that the number of smokers (in a given finite universe of discourse) is the
same as the number of drinkers, it certainly does not follow that

At least four students drink.

But it would follow, if the quantifier ∃[student]
≥4 were I. The next proposition extracts

the idea of this argument.

Proposition 7
If A �= ∅ and Q A is not trivial, then Q [A] is not I.

Proof. Since Q A is not trivial, there are subsets C1, C2 of A such that Q A(C1) but not
Q A(C2). We now claim that by possibly adding some new elements to A, we can form
a universe M ′ and subsets B1, B2 of M ′ such that

|B1| = |B2| and |M ′ − B1| = |M ′ − B2|
A ∩ B1 = C1 and A ∩ B2 = C2

Thus, Q A(A ∩ B1) and ¬Q A(A ∩ B2), i.e. (Q [A])M ′ (B1) and ¬(Q [A])M ′ (B2), which
contradicts I for Q [A].
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To verify the claim, suppose |C1 − C2| = k1, |C2 − C1| = k2, |C1 ∩ C2| = n,
and |A − (C1 ∪ C2)| = m. Furthermore, suppose that k1 ≤ k2 (the case when k2 ≤
k1 is similar). We then add a set D of sufficiently many new elements to A, so that
B1 = C1 ∪ D has exactly k2 + n elements. (If k2 is a finite number, then |D| = k2 −
k1; otherwise |D| = k2.) Also, we let B2 = C2 and M ′ = A ∪ D. Now |B1| = k1 +
n + (k2 − k1) = k2 + n = |B2|, and |M ′ − B2| = k1 + m + (k2 − k1) = k2 + m =
|M ′ − B1|. (These calculations hold also when k2 is infinite and k2 − k1 is replaced
by k2.) The claim is proved. �

We may conclude that, with the exception of phrases like everything and noth-
ing, noun phrase denotations of the form Q [A] are usually not I. However, the
quantifiers Q , from which these noun phrase denotations are formed by restriction,
usually are I. In Chapter 4 we will see that a type 〈1, 1〉 quantifier Q rel, the rela-
tivization of Q , is the proper interpretation of the corresponding determiner phrase,
and Q rel is I if Q is.

3.3.2 Isom for arbitrary quantifiers

To formulate I for quantifiers of arbitrary type, one needs the notion of iso-
morphism between structures or models.

A structure in general consists of a universe M , some relations over M , some dis-
tinguished elements of M , and some operations on M . Thus it is essentially what
we in Chapter 2.2 called a model of a first-order language (with corresponding non-
logical predicate symbols, individual constants, and function symbols). Now consider
relational structures, i.e. structures which have only relations. They can be classified
(typed) in the same way as quantifiers.

isomorphic structures

A (relational) structure of type τ = 〈n1, . . . , nk〉 has the form M =
(M , R1, . . . , Rk), where each Ri is a ni-ary relation over M . Two such structures
M and M′ = (M ′, R′

1, . . . , R′
k) are isomorphic, in symbols,

M ∼= M′

iff there is a 1–1 function f from M onto M ′ (a bijection from M to M ′) such
that, for each i between 1 and k, and for all a1, . . . , ani ∈ M ,

(3.20) Ri(a1, . . . , ani ) ⇐⇒ R′
i(f (a1), . . . , f (ani ))

f is then called an isomorphism from M to M′.

The connection with our first version of I is the following.

Fact 8
If M = (M , A) and M′ = (M ′, A′) are type 〈1〉 structures, then

(3.21) M ∼= M′ ⇐⇒ |A| = |A′| and |M − A| = |M ′ − A′|
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Thus, I for a type 〈1〉 quantifier Q amounts to the condition that whenever M ∼=
M′, Q M (A) ⇔ Q M ′ (A′).

Proof. By definition, two sets have the same cardinality iff there is a bijection between
them. Now if M ∼= M′ via a bijection f , then f restricted to A is a bijection from
A to A′, and f restricted to M − A is a bijection from M − A to M ′ − A′. To see
this, note that we already know that f is 1–1, and that a ∈ A iff f (a) ∈ A′ by (3.20).
Also, if b ∈ A′ (b ∈ M ′ − A′), b = f (a) for some unique a, and, again by (3.20), a ∈
A (a ∈ M − A). So it follows that |A| = |A′| and |M − A| = |M ′ − A′|.

Conversely, if there is a bijection g from A to A′, and a bijection h from M − A
to M ′ − A′, then the union f = g ∪ h of the two (viewed as sets of ordered pairs) is a
bijection from M to M ′ such that for all a ∈ M , a ∈ A iff f (a) ∈ A′. Thus,
M ∼= M′. �

It is now clear what I should amount to for an arbitrary quantifier.

Isom for arbitrary quantifiers

A quantifier Q of type τ = 〈n1, . . . , nk〉 satisfies I iff whenever
(M , R1, . . . , Rk) and (M ′, R′

1, . . . , R′
k) are isomorphic structures of type τ ,

Q M (R1, . . . , Rk) ⇐⇒ Q M ′ (R′
1, . . . , R′

k)

Or, to put it slightly differently, Q is I iff for every structure (M , R1, . . . , Rk)
and every 1–1 function f with domain M ,

(3.22) Q M (R1, . . . , Rk) ⇐⇒ Q f (M )(f (R1), . . . , f (Rk))

where f (Ri) = {(f (a1), . . . , f (ani )) : (a1, . . . , ani ) ∈ Ri}.

In other words, I quantifiers cannot distinguish between isomorphic structures.
It should be clear that this is a precise way of expressing Mostowski’s idea that they
do not allow us to distinguish between elements of the universe, i.e. the idea of topic
neutrality. Furthermore, we may also observe that if one defines quantifiers as Lind-
ström (1966) did, i.e. as classes of structures of the same type, so that instead of
writing

Q M (R1, . . . , Rk)

one writes

(M , R1, . . . , Rk) ∈ Q

then I is literally closure under isomorphism: if M ∈ Q and M ∼= M′, then
M′ ∈ Q .

There is a slightly different way of making Mostowski’s idea precise. With I
one cannot even distinguish between elements of different universes, if the shared
structure is the same. Another version restricts attention to elements of one universe
at a time.
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• An automorphism on M, where M is of type τ , is an isomorphism from M to
itself. The corresponding condition on a type τ quantifier Q of being closed under
automorphisms is called P, or permutation closure,12 since a bijection from a
set M to itself is often called a permutation on M . I implies P, but not
vice versa.

• Note that on a given universe M , permutation closure can be stated as a condition
on Q M . If we call this local version PM , then P is the corresponding global
version (see (G) in section 3.1.1). I has no such local version.

To see that P is weaker than I, consider a type 〈1〉 quantifier Q such that
for all M and all A ⊆ M ,

Q M (A) ⇐⇒ 3 ∈ M

Clearly, Q satisfies P: if 3 ∈ M , Q M = 1M , and if 3 �∈ M , Q M = 0M . But Q is
not I: a bijection from a universe containing the number 3 to one which doesn’t
show this.

Finally, we note that I (and P) applies not only to quantifiers but also to
arbitrary operations on universes, i.e. operations O that associate an object OM of
some type (say, a higher-order object; quantifiers are just a special case) with each uni-
verse M . As often happens, the general formulation is simpler than its special cases: it
just says that if f is an arbitrary bijection with domain M , then

f (OM ) = Of (M )

(where f has been ‘lifted’ to higher-order objects over M ). This will be explained in
Chapter 9.1.

3 .4 EXTENSION

We now come to a second property characteristic of natural language quantifiers,
called extension (E) or, sometimes, domain independence. This is a strictly global
property, with no local counterpart. Roughly, it is the property that the behavior of
the quantifier doesn’t change when you extend the universe. We have already noted
(Chapter 2.1) that words like all, at least five, no, mean the same thing regard-
less of which universe you are quantifying over, and in fact E goes a long way
towards capturing this sort of constancy.

We will see in this chapter that most English noun phrase denotations satisfy E
(on our interpretation), and in the next that the same holds for all determiner denota-
tions. But a few familiar quantifiers fail to satisfy E. The logical quantifier ∀ is
not E, since ‘‘everything’’ means precisely ‘everything in the universe’. The quanti-
fier ∃, on the other hand, is E. It turns out (Chapter 4.5) that all type 〈1〉 quan-
tifiers correspond to E type 〈1, 1〉 quantifiers, where we find the denotations of
determiners, for example, and furthermore (Chapter 6.1) that the type 〈1〉 quantifiers

12 Or PI, or permutation invariance.
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that are themselves E correspond to an especially interesting subclass of type 〈1, 1〉
quantifiers.

Interestingly, the property E (under the label ‘‘domain independence’’) has also
been studied by computer scientists in connection with database languages, without
any connection to natural language. In that context it is a property of sentences or
formulas. In the next subsection we define E, first for the type 〈1〉 case, and then for
quantifiers of arbitrary type, and begin looking at its significance for natural language.
The following subsection deals with the connection to database languages.

3.4.1 Ext as a property of quantifiers

3.4.1.1 E for type 〈1〉 quantifiers

The name ‘‘extension’’ derives from the first version of the following definition.

Ext for type 〈1〉 quantifiers

A quantifier Q of type 〈1〉 satisfies E if and only if

(3.23) A ⊆ M ⊆ M ′ implies Q M (A) ⇔ Q M ′ (A)

That is, extending the universe has no effect. Equivalently,

(3.24) If A is a subset of both M and M ′, then Q M (A) ⇔ Q M ′ (A)

Clearly (3.24) implies (3.23). Conversely, if A ⊆ M , M ′, let M ′′ = M ∩ M ′.
Since A ⊆ M ′′ ⊆ M and A ⊆ M ′′ ⊆ M ′, we get, using (3.23) twice, Q M (A) ⇔
Q M ′′ (A) ⇔ Q M ′ (A).

For I type 〈1〉 quantifiers, which, as we saw, correspond to binary relations
between numbers, E says that only one of these numbers matters:

Fact 9
If Q is I, E is equivalent to the following condition:

(3.25) If Q(k, m), then for all cardinal numbers k′, Q(k′, m).

This means that Q can be seen as a class S of cardinal numbers,13 i.e. the cardinal num-
bers of those sets which satisfy the condition of the quantifier:

m ∈ S ⇐⇒ for some k, Q(k, m)(3.26)

⇐⇒ for some M , and some A ⊆ M s.t. |A| = m, Q M (A)

In other words, Q is E iff there is a class S such that (3.26) holds, or (equivalently), for
all M and all A ⊆ M,

Q M (A) ⇐⇒ |A| ∈ S

13 S can be a proper class; e.g. for Q = ∃, S is the class of all cardinal numbers except 0. If one
restricts attention to universes smaller than a certain size, e.g. to finite universes, then S is a set.
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Proof. Suppose E holds and that Q(k, m). So for some M and some A ⊆ M such
that |A| = m and |M − A| = k, Q M (A). Now if k′ is any number, take a universe
M ′ such that A ⊆ M ′ and |M ′ − A| = k′. This is always possible, and it follows by
(3.24) that Q M ′ (A), i.e. that Q(k′, m). Thus, (3.25) holds.

Conversely, given (3.25), suppose that A ⊆ M ⊆ M ′. Then Q M (A) ⇔ Q(|M −
A|, |A|), and Q M ′ (A) ⇔ Q(|M ′ − A|, |A|). But then (3.25) implies that Q M ′ (A) ⇔
Q M (A).

We have shown that when Q is seen as a relation between cardinal numbers, E
means that the first argument of this relation is immaterial. Thus, Q can be identified
with the class of numbers that occur as the second argument (i.e. with the range of
the relation). �

The following are examples of I and E quantifiers:

∃, ∃≥5, ∃≤7, ∃=3, Q even, Q 0

Thus, by Fact 9, ∃ can be identified with the class of cardinal numbers > 0, ∃≥5 with
those ≥ 5, ∃≤7 with {0, 1, . . . , 7}, ∃=3 with {3}, Q even with {0, 2, 4, . . .}, Q 0 with
{ℵ0, ℵ1, ℵ2, . . .}, etc.

For type 〈1〉 natural language quantifiers, which, as we saw, are usually not I,
we note the following fact.

Fact 10

(a) All quantifiers of the form Ia or of the form Cpl are E.

(b) Restricted quantifiers of the form Q [A] are E.

(c) The class of E type 〈1〉 quantifiers is closed under conjunction, disjunction, and
outer negation.

Proof. (a) follows, since a ∈ B (C ⊆ B) or not regardless of the surrounding universe.
(b) follows from the definition (3.3) of Q [A] in section 3.2.1: If B ⊆ M ⊆ M ′, then
(Q [A])M (B) iff Q A(A ∩ B) iff (Q [A])M ′ (B). (c) is completely straightforward. �

This gives us a host of E quantifiers, including some quite odd ones, such as ∃=3 ∨
Ia, which holds of a set A iff A either has exactly three elements or contains a. In par-
ticular, it goes to show that most English NP denotations are E, since proper names
(or conjunctions of proper names), bare plurals, and quantified NPs of the form [Det
N] cover a large part of English NPs (see section 3.5 below for a precise version of this
claim).

In connection with Fact 10 (b) you might ask: Can every thing really be E
when everything is not E? Well, it depends. If you think of thing as denoting
a fixed set A (say, the set of non-animate objects in the universe), then every thing
means ∀[A] and is indeed E: for B ⊆ M ,
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(∀[A])M (B) ⇐⇒ ∀A(A ∩ B)

⇐⇒ A ∩ B = A

⇐⇒ A ⊆ B

⇐⇒ everyM (A, B)

that is, ∀[A] is simply the quantifier every with the first argument frozen to A. But
if you think of thing as a logical constant that always denotes the universe, then
every thing and everything both denote ∀. In general,

(Q [M ])M (B) ⇐⇒ Q M (B)

Next, observe that if Q M (B) depends only on B, then Q¬M (B) and Qd
M (B) depend

only on M − B. In other words, they are co-E ((3.9) in section 3.2.3). So, taking
inner negations and duals of the previous examples, we get co-E type 〈1〉 quantifi-
ers, where the earlier condition on B is replaced by the corresponding condition, or
its negation, on M − B. The foremost example is

∀
As in Fact 9, co-E and I type 〈1〉 quantifiers can also be identified with classes
of cardinal numbers: this time the sizes of the sets M − B satisfying the condition of
the quantifier.

Proportional type 〈1〉 quantifiers are typically neither E nor co-E, since both
|A| and |M − A| are essential. As one might expect, we will see that such quantifiers
are more complex in various senses than the E or co-E ones. We can also get
examples from Boolean combinations of E and co-E quantifiers, such as

∃ ∧ ¬∀
which we can read as something but not everything. Then (∃ ∧ ¬∀)M (M )
is false, but if M is a non-empty proper subset of M ′, (∃ ∧ ¬∀)M ′ (M ) is true. This
shows that E fails, and by a similar argument co-E fails too.

3.4.1.2 E and sets that quantifiers live on

As pointed out at the end of section 3.2.2, the live-on behavior of Q on M can be
totally unrelated to its live-on behavior on M ′. With E, this behavior becomes less
chaotic. These issues are hardly ever discussed in the literature, presumably because
the perspective is usually local, with a fixed universe. But as soon as one takes a global
perspective on quantification, they require attention. Of particular interest is the
smallest set that a (local) quantifier lives on, if there is one. We shall need access to
this set later on, and therefore introduce the following notation:14

14 ‘‘W’’ is for ‘‘witness’’, since WQ M is, roughly, what Barwise and Cooper (1981) would call
the smallest witness set for Q M .



104 Quantifiers of Natural Language

the set WQ M

For Q of type 〈1〉 and any universe M , let

(3.27) WQ M =
{

the smallest set Q M lives on, if there is such a set
undefined, otherwise

From Lemma 1 in section 3.2.2 we see that: (a) when M is finite, WQ M is always

defined; (b) WQ M = ∅ if and only if Q M is trivial; and (c) W
C

pl
M

= C , when Cpl
M is

non-trivial. Likewise, in many cases we have W(Q[A])M
= A (but not always).

The effect of E here is the following:

Lemma 11
If Q is E, M ⊆ M ′, and Q M ′ lives on X , then Q M lives on X .

Proof. For B ⊆ M we have:

B ∈ Q M ⇐⇒ B ∈ Q M ′ [E]

⇐⇒ B ∩ X ∈ Q M ′ [Q M ′ lives on X ]

⇐⇒ B ∩ X ∈ Q M [E] �

Corollary 12
If Q is E, M ⊆ M ′, and WQ M and WQ M ′ are both defined, WQ M ⊆ WQ M ′ .

Proof. By the lemma,

WQ M = ∩ {X : Q M lives on X } ⊆ ∩ {X : Q M ′ lives on X } = WQ M ′ �
To see that WQ M may sometimes be a proper subset of WQ M ′ , consider the quantifier

Q = Ij ∨ Im

which is E by Fact 10. Here WQ M is always defined; in fact, one easily verifies that

if j, m ∈ M , WQ M = {j, m}
if j ∈ M and m �∈ M , WQ M = {j}

So if M ⊆ M ′, j ∈ M , and m ∈ M ′ − M , WQ M is a proper subset of WQ M ′ . By
contrast, W(Ij∧Im)M is always equal to {j, m} whenever (Ij ∧ Im)M is non-trivial—this
follows from Lemma 1 and the fact that Ij ∧ Im = {j, m}pl.

We can now improve Lemma 1(e) concerning the circumstances when A is the
smallest set that a quantifier Q [A]

M lives on. Suppose Q of type 〈1〉 is I and E.
By Fact 9, there is a class S of cardinal numbers such that for all M and all A ⊆ M ,

Q M (A) ⇔ |A| ∈ S

Let us say that Q has finite action if some finite number is in S and some finite num-
ber is not in S. In other words, Q is not trivial (always true or always false) on finite
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arguments. For example, ∃=n, ∃≥n, ∃≤n, and Q even all have finite action when n is a
natural number, but Q 0 does not.

Proposition 13
Suppose Q is I, E, and has finite action. Then, if Q [A]

M is not trivial,
W(Q[A])M

= A.

Proof. With S as above, there must exist a smallest natural number k such that k �∈ S
and k + 1 ∈ S, or else a smallest natural number k such that k ∈ S and k + 1 �∈ S.
Suppose the first case holds (in the second case the argument is similar). This means
that 0, 1, . . . , k �∈ S. So if Q [A]

M is non-trivial, |A ∩ M | ≥ k + 1. But then we can
apply exactly the argument in the proof of Lemma 1(e) to show that if Q [A]

M lives on
C then A ⊆ C . Since Q [A]

M always lives on A, A is the smallest set that the quantifier
lives on. �

Lemma 1(e) can be improved a lot more, but we content ourselves with the following
illustrative example. Note that the Rescher quantifier QR is not E, but that in the
obvious sense it has finite action.

(3.28) If A is finite and (QR)[A]
M is not trivial, A is the smallest set on which the quan-

tifier lives.

Proof. Let |A| = k. Since (QR)[A]
M is not trivial, A ∩ M �= ∅. We have, for any B ⊆ M ,

(QR)[A]
M (B) ⇐⇒ |A ∩ B| > 1/2 · k

Suppose (QR)[A]
M lives on C ; it is enough to show that A ⊆ C . Suppose a ∈ A −

C . Choose B ⊆ M such that a ∈ B and |A ∩ B| − 1 ≤ 1/2 · k < |A ∩ B|. This is
possible by our assumptions. But then (QR)[A]

M (B) and not (QR)[A]
M (C ∩ B), a

contradiction. �

3.4.1.3 E for arbitrary quantifiers

E expresses a notion of universe independence. This notion is not in any way tied
to type 〈1〉 quantifiers, and it is immediate how to formulate E for arbitrary types.
Here is the version corresponding to (3.23).

Ext for arbitrary quantifiers

A quantifier Q of type 〈n1, . . . , nk〉 satisfies E iff the following holds:

(3.29) If Ri ⊆ Mni for 1 ≤ i ≤ k, and M ⊆ M ′, then Q M (R1, . . . , Rk) ⇔
Q M ′ (R1, . . . , Rk).

E is a strong constraint: naively one could say that, by far, most quantifiers do
not satisfy it. A quantifier associates a second-order relation (of a certain type) with
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each universe. In principle, it can associate wildly different relations with different
universes. With universes containing John and at least three dogs it could associate
the universal quantifier, with those containing John but fewer than three dogs it could
associate Ij , and with other universes it could associate ∃[cat]

≥7 . Nothing in the general
definition of a quantifier prevents this. Even if I is imposed, Q M could still be
completely different for different sizes of M . But in practice such examples do not
seem to occur ‘naturally’, and in particular they do not occur in natural languages.

As we have said, E entails an idea of constancy; of a quantifier being ‘the same
on each universe’. This is of course an imprecise way of speaking: if M �= M ′, Q M
and Q M ′ are usually different collections of sets.15

What, then, does constancy of a quantifier Q mean? Intuitively, it means that Q
‘means the same’, or is given by the same rule, on every universe. But the identity con-
ditions for meanings, or for rules, are notoriously difficult to lay down. Indeed, it is
not clear that the concept of constancy can be explained fully in an extensional frame-
work like ours. But some things can be said.

A special case is when the rule does not mention the universe M at all. This seems
to be what E amounts to. It would follow that E is a sufficient condition for con-
stancy. But we have seen that it is not necessary. Quantifiers like ∀ or QR are also
given by the same rule on each universe, but these rules do mention M , and E fails.
We shall argue in Chapter 9.3 that constancy is reflected by a more palpable notion of
constancy in inferences. ∀ and QR —or rather, the type 〈1, 1〉 determiner denotations
every and most that they give rise to—are constant in this sense.

We note further that being given by the same rule on each universe entails not being
candidates for interpretations in models. The point of model-theoretic semantics is to
interpret just symbols whose denotation is not fixed in models; the other expressions
use a fixed interpretation rule.

Summing up, E is a powerful notion of constancy. Even if it is too strong to
capture exactly the somewhat elusive idea of being given by the same rule in every uni-
verse, it is a condition that appears to be satisfied by most quantifiers related to natural
languages. We discuss its status further in section 3.5 below, and in Chapters 4.5.3
and 9.3.

Before we end this section, three final remarks about E are in order. The first is a
notational one. Since E says precisely that the universe is irrelevant, one may drop
the subscript indicating the universe for such quantifiers, and write simply

Q(R1, . . . , Rk)

rather than

Q M (R1, . . . , Rk)

More formally, we can define

Q(R1, . . . , Rk) iff for some M s.t. Ri ⊆ Mni for 1 ≤ i ≤ k, Q M (R1, . . . , Rk)

15 E.g. if M and M ′ are disjoint, then Q M and Q M ′ are always different except in the one case
when both are the empty set.
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It then follows that this is well-defined (independent of the choice of M ) if Q satisfies
E.

Second, at the end of the last section we saw that P is a weaker constraint than
I. In the presence of E, however, they are equivalent. The verification of the
following fact is left as an exercise.16

Fact 14
Let Q be a quantifier (of any type) satisfying E. If P holds for Q, then so does
I.

Third, just like I, E is not restricted to quantifiers, but has an obvious gen-
eralization to arbitrary operators on universes (see Chapter 9.1.1). The above fact
extends to the general case.

3.4.2 Ext and database languages

This subsection is a digression from our present theme of quantification in natural
languages, and will not be used in what follows. Still, it provides interesting informa-
tion about the condition E.

As we said, this condition is familiar from a completely different context: viz. that
of languages for describing and querying databases.17 A relational structure M =
(M , R1, . . . , Rk), where Ri is a finite ni-ary relation (i.e. one containing finitely many
ni-tuples), can be seen as a database where the complete (extensional) information
about these relations is stored.18 Consequently, the language of first-order logic, FO
(Chapter 2.2), or even of FO with added generalized quantifiers (we began to discuss
this in Chapter 2.3 and will describe it in more detail in Chapter 13.1), is a suitable
language for talking about databases. An FO sentence ϕ, say,

(3.30) ∀x∀y∀z(R(x, y) ∧ R(y, z) → R(x, z))

makes a claim about a databaseM = (M , R), in this case that the relation R is transit-
ive. Or we can think of ϕ as a query to M, which has answer YES if M |= ϕ, i.e., if R
is transitive, and NO otherwise. More generally, a formula ϕ(x1, . . . , xn) = ϕ(x) with
n free variables can be seen as a query—Which n-tuples of elements in the database

16 Hint: first show that under E, P implies that whenever (M , R1, . . . , Rk) and
(M ′, R′

1, . . . , R′
k) are isomorphic structures such that M and M ′ are disjoint,

Q M (R1, . . . , Rk) ⇐⇒ Q M ′ (R′
1, . . . , R′

k)

Then show that the general case follows from this.
17 Thanks to Phokion Kolaitis for drawing our attention to this.
18 Often the database also has a set of attributes or one-place predicates, so that to the ni argu-

ment places of Ri correspond attributes Ai1, . . . , Aini , respectively, and if Ri(a1, . . . , ani ) holds, then
aj ∈ Aij , 1 ≤ j ≤ ni. Also, the language may contain individual constants, as well as additional pre-
dicates with fixed interpretations. We can ignore these extra features here, since they are irrelevant
for the points we wish to make. For surveys of the theory of relational databases, see Ullman 1988
or Kanellakis 1990.
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satisfy ϕ(x)?—whose answer in M is the n-ary relation (set of n-tuples)

ϕ(x)M,x = {b ∈ Mn : M |= ϕ(b)}
in the notation introduced in Chapter 2.3 (definition (2.8)).

When M is seen as a database and emphasis is put on how a user may query it,
there is a marked informational asymmetry between the tuples which are in a rela-
tion R and those which are outside it. Tuples in R can in principle be inspected, since
R is finite, whereas a search through tuples outside R may be infinite. And even if
we require that the universe M be finite, there is something amiss with a query that
requires us to search through Mn − R, since the answer may change if new elements
are added to M even if R itself is not touched. Such a query is ‘unsafe’ in an obvi-
ous sense. Adding new elements to a database (M , R1, . . . , Rk) without changing the
given relations R1, . . . , Rk is a very natural operation, for example, if we want to store
information about other relations in our database. The ‘safe’ queries about R1, . . . , Rk
are those which are not disturbed by such extensions.

It should be clear by now that the property E is precisely about such extensions,
and indeed it says that certain facts about the given relations do not change. To bring
this out, we generalize E to arbitrary formulas, as follows:

Ext for formulas

Let ϕ = ϕ(x1, . . . , xn) be a formula with exactly the free variables displayed, in a
language with non-logical relation symbols P1, . . . , Pk, where Pi is ni-ary. ϕ can
be a formula in FO, or in a language FO(Q 1, . . . , Q m) with added generalized
quantifiers (see Chapter 13.1 for precise definitions). We say that ϕ satisfies E iff
for every model M = (M , R1, . . . , Rk), and every M ′ such that M ⊆ M ′, letting
M′ = (M ′, R1, . . . , Rk) it holds that

(3.31) ϕM,x = ϕM′ ,x

That is, when the universe M is extended, but the relations R1, . . . , Rk remain the
same, the answer to the query ϕ(x1, . . . , xn) does not change. We note in particular
that if ϕ is E and M,M′ are as above, then

(3.32) if b ∈ (M ′)n and M′ |= ϕ(b), then b ∈ Mn

For example, an atomic formula

P(x1, . . . , xm)

is E, but not its negation. However, formulas involving negation can be E,
such as

(3.33) ¬P1(x) ∧ P2(x, y)
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Here only the elements of the complement of P1 which belong (as first elements) to
some pair in P2 matter, so E holds.

The sentence (3.30) expressing transitivity is E: to determine whether a binary
relation R is transitive, you have only to look at the pairs in R, not at the ones outside
R. The sentence

∃xP(x)

is E, but not the sentence

∃x¬P(x)

If ϕ and ψ are both E formulas, then it is easy to see that so is their conjunction
ϕ ∧ ψ . But this fails for disjunction in general. For example,

P1(x) ∨ P2(y)

is not E, even though both disjuncts are. For take a model M = (M , R1, R2)
and b ∈ R2. Now add any a �∈ M , i.e. let M ′ = M ∪ {a}, and consider M′ =
(M ′, R1, R2). Then (a, b) satisfies P1(x) ∨ P2(y) in M′ (since R2(b) holds) but not in
M (since (a, b) is not a tuple of elements of M ). That is,

(P1(x) ∨ P2(y))M,x,y �= (P1(x) ∨ P2(y))M
′,x,y

On the other hand, it is easy to see that

(3.34) if ϕ and ψ are E and have the same free variables, then ϕ ∨ ψ is E.

We may also note that logical truth does not guarantee E, since, for example,

(P(x) ∨ ¬P(x))M,x = M , but (P(x) ∨ ¬P(x))M
′,x = M ′

But logical falsity trivially implies E: if ϕ is unsatisfiable, then

ϕM,x = ϕM′ ,x = ∅
To relate E for formulas to our previous notion of E for quantifiers, note that

to a (Lindström) quantifier Q (Chapter 2.4) corresponds a defining sentence ϕQ ; for
example, if Q is of type 〈1〉, ϕQ is of the form

QxP(x)

If it is of type 〈2, 3, 1〉, ϕQ is

Qxy, zuv, w(P1(x, y), P2(z, u, v), P3(w))

The idea should be clear, and it is straightforward to verify the following directly from
the definitions:

Fact 15
Q satisfies E if and only if the sentence ϕQ is E.



110 Quantifiers of Natural Language

We can also show things like the next proposition, which generalizes the observa-
tion that if ϕ is an E formula, so is ∃xϕ. Here it is stated for type 〈1〉 quantifiers,
but similar facts hold for other types. Call a type 〈1〉 quantifier Q positive if for all M ,
∅ �∈ Q M .

Proposition 16
If Q is a positive and E type 〈1〉 quantifier and ϕ = ϕ(x, y) is an E formula, then
Qxϕ(x, y) is also an E formula.

Proof. Let M and M′ be as in definition (3.31) above, and let b ∈ Mn. Then

b ∈ Qxϕ(x, y)M,y ⇔ M |= Qxϕ(x, b)

⇐⇒ ϕ(x, b)M,x ∈ Q M(3.35)

⇐⇒ ϕ(x, b)M
′ ,x ∈ Q M [since ϕ is E](3.36)

⇐⇒ ϕ(x, b)M
′ ,x ∈ Q M ′ [since Q is E]

⇐⇒ b ∈ Qxϕ(x, y)M
′ ,y

The equivalence of (3.35) with (3.36) uses the fact that ϕ(x, b)M,x = ϕ(x, b)M
′ ,x .

This fact is a consequence of our assumption that ϕ is E, which by definition means
that

ϕ(x, y)M,x,y = ϕ(x, y)M
′,x,y

Fixing the assignment b to y, we get, for all a ∈ M ′,

M |= ϕ(a, b) ⇔ M′ |= ϕ(a, b)

which is what is needed.
We have thus shown that Qxϕ(x, y)M,y and Qxϕ(x, y)M

′ ,y coincide on tuples in
Mn. To see that they in fact coincide on all tuples, it is enough to demonstrate that

(3.37) if b ∈ (M ′)n and b ∈ Qxϕ(x, y)M
′ ,y, then b ∈ Mn

This is where the positivity of Q is needed. For if M′ |= Qxϕ(x, b), then
ϕ(x, b)M

′ ,x ∈ Q M ′ , and hence ϕ(x, b)M
′,x �= ∅. So there is some a ∈ M ′ such that

M′ |= ϕ(a, b), and then it follows from (3.32) that (a, b) is a tuple in Mn+1. �

The assumption of positivity is necessary here, as witnessed by the example

ψ(y) = ¬∃x(P(x, y) ∧ ¬P(x, y))

For ¬∃ is a quantifier which is E but not positive, and P(x, y) ∧ ¬P(x, y) is an E
formula (since it is a contradiction). But ψ(y) is satisfied by any b in M ′ − M , so it is
not an E formula.

Thus, the concept of E for formulas generalizes the one we already had for quan-
tifiers. In the literature on relational databases, E formulas have been called ‘‘def-
inite’’, or, more commonly (and more aptly), domain-independent. It is clear that
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domain independence expresses the notion of safety mentioned above. However,
there is a problem: it can be very hard to see if a formula is domain-independent by
mere inspection of its form. The examples given above were easy, but not all cases are
like that. In fact, there is the following result:

Theorem (Di Paola 1969)
The problem of determining whether a formula is E (domain-independent) or not is
undecidable.

The reason for this is precisely that to decide whether a formula is E involves decid-
ing whether it is logically false (unsatisfiable), and that is a known undecidable prob-
lem.19

This makes the notion of domain independence less interesting from a practical
computational point of view. Therefore, database theorists have tried to identify eas-
ily recognizable (hence decidable) subclasses of the domain-independent formulas
that still cover the cases one runs into in practice. The above examples give a pretty
good idea of which constructions are allowed and which are not, though there is
much room for fine-tuning.20 The class of safe FO-formulas from Ullman 1988 is
a case in point. (Here ‘‘safe’’ is a precise technical term.) They are defined induct-
ively by allowing, essentially, atomic formulas, arbitrary conjunctions, disjunctions
of formulas with the same free variables, existential but not universal quantification,
and only a ‘stratified’ form of negation (exemplified by (3.33) above). These are all
domain-independent (E), and one can show that such syntactically defined classes

19 This is seen by the following proof. (Di Paola proves something slightly stronger.) We use the
undecidability of validity in FO, which entails that satisfiability in FO is also undecidable (since ϕ
is satisfiable iff ¬ϕ is not valid). If ϕ is any FO-sentence, let P be a one-place predicate symbol not
in ϕ, and let ψ(x) be the formula

ϕ ∧ (P(x) ∨ ¬P(x))

We claim that

ϕ is satisfiable iff ψ(x) is not E

Hence, if the class of E formulas in FO were decidable, the same would hold for FO-satisfiability
(since ψ(x) is found effectively from ϕ), a contradiction. To prove the claim, suppose first that ϕ is
not satisfiable. Then for all models M with the vocabulary of ψ(x), ψ(x)M,x = ∅, so ψ(x) is E.
In the other direction, suppose ϕ is satisfiable and let M be a model with the vocabulary of ϕ such
that M |= ϕ. Expand M to MR = (M, R), where R ⊆ M interprets P. Let a be any object not in
M , and let M′ and M′

R be the result of adding a to M , without touching the relations of M and
MR , respectively. Now MR |= ϕ, since M |= ϕ and P does not occur in ϕ, so ψ(x)MR ,x = M . If
M′

R |= ϕ, then ψ(x)M
′
R ,x = M ∪ {a} �= M . And if M′

R �|= ϕ, then ψ(x)M
′
R ,x = ∅ �= M . In both

cases, the extension of ψ(x) changes between MR and M′
R , so ψ(x) is not E. �

If attention is restricted to finite models (as is usually done in database theory), one uses instead a
classical result by Trakhtenbrot, according to which FO-validity restricted to finite models is unde-
cidable (in fact, not recursively enumerable).

20 An investigation of how far one can go while ‘staying safe’ can be found in van Gelder and
Topor 1987.
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of formulas capture classes of domain-independent ones up to logical equivalence.
We quote a recent such result by Wilfrid Hodges.21

Call an FO-formula protected if all occurrences of ∀ and ∃ are restricted by atomic
formulas (i.e. of the form ∀x(P(x) → ϕ) or ∃x(P(x) ∧ ϕ)). Next, a protective hat for
a variable y has the form

∃x1 . . . xj−1xj+1 . . . xkP(x1, . . . , xj−1, y, xj+1, . . . , xk)

for some predicate symbol P. Finally, let a covered formula consist of a protected
formula ψ conjoined with a disjunction of protective hats, one for each of the free
variables in ψ .

Theorem (Hodges)
A relational FO-formula is E iff it is logically equivalent to a covered formula.

That each covered formula is E is clear from our previous discussion. Hodges
proves the converse by an argument using tools characteristic of first-order model the-
ory (compactness, elementary chains, Löwenheim–Skolem theorem). Note that this
result does not contradict Di Paola’s theorem, since the relation of logical equivalence
in FO is not decidable. Thus, the fact that for each E formula there exists an equi-
valent covered formula doesn’t mean that we have an effective method of finding one
(indeed, Di Paola’s theorem shows that there is no such method).

From Proposition 16 we see that one can extend notions such as that of being safe
or covered to certain formulas in languages with generalized quantifiers, and still be
sure that all such formulas are E. We do not know, however, if (or under what
circumstances) it is still true that every E formula in this language is logically equi-
valent to a formula of that form.

3 .5 HOW NATURAL LANGUAGE QUANTIFIER
EXPRESSIONS ALWAYS DENOTE GLOBAL QUANTIFIERS

In this book we have been speaking somewhat loosely of quantifier expressions
(quantirelations, NPs, etc.) denoting quantifiers; we also used ‘‘signifying’’, ‘‘express-
ing’’, and ‘‘meaning’’ similarly. This is unproblematic for expressions like every,
most, between three and five, but it can seem confusing for expressions like
John, three cats, every student’swhich involve names or predicate expres-
sions that get interpreted in models. In this section we introduce a more precise ter-
minology, and explain how our usage of ‘‘denote’’ relates to it.

3.5.1 Sense and local denotation

The notation below was introduced in Chapter 2.2 for the special case of FO-
expressions.

21 Hodges, personal communication.



Type 〈1〉 Quantifiers 113

senses and local denotations of expressions

Let u be a simple or complex expression in a language L. The sense of u is a map-
ping [[u]] from modelsM = (M , I ) to suitable semantic values over M . The value
of [[u]] at M is written [[u]]M and is called the denotation of u in M.

For example,

[[cat]]M = I (cat) ⊆ M
[[three]]M = {(A, B) : A, B ⊆ M and |A ∩ B| = 3}
[[three cats]]M = {B ⊆ M : |I (cat) ∩ B| = 3}

This is perfectly clear except for one thing: the class of relevant models for u should
be specified. More precisely, one must decide (a) which primitive expressions of L get
interpreted in models, and (b) which models are relevant for u.22

As to (a), we have been arguing for models in which only predicate expressions and
individual-denoting expressions get interpreted, viz. first-order models,23 The implic-
ation for quantifier expressions like three cats, for example, is that only the prim-
itive expression cats, and not three, gets interpreted in models. The further ques-
tion of what three cats denotes in first-order models is answered in section 3.5.2.

So we continue to look at first-order models, and we use the standard term ‘‘non-
logical’’ for the expressions that get interpreted in such models.24

As to (b), there are two options. Either you take the models for the whole (non-
logical) vocabulary of L, or you take only those for the (non-logical) primitive expres-
sions that occur in u. The former is simpler in the sense that the class of models is
always the same irrespective of u, but it is cumbersome in bringing in a lot of unne-
cessary interpretation. The choice is insignificant, but if one wants to be able to speak
about the sense of u, one has to make it. And for that purpose, the latter option seems
preferable, so we choose it here.25

22 Actually, [[u]] should probably be a mapping from models and assignments (see Ch. 2.2), but
we disregard this complication here.

23 In principle, you could also think of the interpretation function I as assigning values to words
like every, three, most. But we have pointed out that these interpretations are not free: there
is a rule saying that I (every) has to be the inclusion relation over M , etc. So there is no point in
letting I apply to them. This is uncontroversial for every and three, but it has been disputed
for, say, most. We will argue at length in Chapter 9 that most and similar quantifier expressions
should all be treated as constants, and hence not be interpreted in models. But that is not the main
issue at the moment.

24 Even though that terminology is a bit misleading. We shall also argue in Ch. 9 that it is the
constancy rather than the logicality of expressions that decides whether they should be interpreted
in models or not.

Also, we emphasize here once more that the restriction to first-order models in no way means
restricting attention to things expressible in FO. In fact, as we will elaborate in Chs. 11 and 12,
English can be treated as a first-order language: this means that one is disregarding or trivializ-
ing things like non-quantificational adverbs (since these are higher-order functions), which can be
acceptable if one is focusing on quantification, but it does not mean restricting attention to English
sentences that are formalizable in FO.

25 The function [[u]] still has to be defined for models for more inclusive vocabularies, since
one wants to compositionally interpret larger expressions or sentences in which u occurs. But this
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The following terminology is convenient.

pure quantifier expressions

A pure quantifier expression is one not containing any non-logical expressions.

So pure expressions have empty (non-logical) vocabulary, which means that for them,
M = M . Now we can make two observations:

(3.38) The sense of a pure quantifier expression u is exactly what we have called its
denotation, i.e. a (global) quantifier. In other words, there is a quantifier Q of
the appropriate type such that [[u]] = Q .

(3.39) Every quantifier expression u, whether pure or not, denotes, in a model M, a
(local) quantifier on M . That is, for each suitable model M, there is a (global)
quantifier Q of the appropriate type such that [[u]]M = Q M .

Thus, our terminology is already adequate for pure quantifier expressions, and for
the others, local quantifiers are precisely what they denote in models. The question
now is if there is a sense in which they can also be said to denote global quantifiers.

3.5.2 Using global quantifiers

Given (3.39), one might think that local quantifiers are enough for the semantics of
natural language quantification. But this far from true. First, it would be completely
misleading to think of pure quantifier expressions as local, since, as we have been at
pains to underscore, they mean the same on each universe, and that meaning is given
by a general rule. This is an empirical fact about quantifier expressions in natural
languages; there is no problem artificially construing quantifiers that mean different
things on different universes.

Second, non-pure quantifier expressions are of the same (syntactic and semantic)
categories as the pure ones. It would be misleading to treat them as members of a
totally different species. Similarly, and third, several important properties of quanti-
fier expressions, notably E and I, make sense only in a global setting. If one
were to treat non-pure quantifier expressions as only local, those properties could not
be applied. But there are in fact several situations where one wants to consider how
the same quantifier expression, whether pure or not, behaves on different universes.
Of course, this presupposes that the non-logical parts of the quantifier expression
remain fixed. The most natural way of fixing these is to assume that a background
model is given, whose interpretation of these non-logical expressions fixes them while
the universe is varied.

The question, then, is if one can select in a principled way a suitable global quanti-
fier for a non-pure quantifier expression u, given that its sense is known, and that its
non-logical parts are fixed by means of some background model M0. We show that
this can indeed be done, under one assumption.

is trivial given that, if Vu is the vocabulary of u, [[u]](M ,I ) = [[u]](M ,I�Vu) whenever the domain of
I includes Vu.
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To begin, observe that if we ‘abstract’ u so as to regard also its non-logical parts as
arguments of the second-order relation that u expresses on each universe, we obtain
a pure quantifier expression whose sense is again completely determined. Let uG be
a symbol for that relation.26 For example, suppose u is of type 〈1, 1〉, and suppose
a one-place predicate expression P and an individual-denoting expression c are the
non-logical parts of u. Then uG is, on each M , a four-place relation, with three set
arguments and one individual argument, such that, for all A, B, C ⊆ M and a ∈ M ,

[[uG ]]M (C , a, A, B) ⇐⇒ [[u]](M ,C ,a)(A, B) 27

Clearly, since [[u]]M is supposed to be determined for all suitable M, [[uG ]]M is also
determined for all universes M .

An unproblematic extra condition would be to require that uG is constant in
the sense of being given by the same rule on each universe as we discussed in
section 3.4.1.3 above. This holds for all quantifier expressions in natural languages
that we are aware of. It is convenient to use something slightly stronger. Recall that
E is a sufficient condition for constancy, even though there are a few type 〈1〉
quantifiers (e.g. ∀ and QR) that seem constant but fail to satisfy E. But in natural
languages, with the exception of quantifier expressions involving a logical expression
(like thing) that can be taken to stand for the universe, it seems that E always
holds. In Chapter 4.5.3 we formulate this as a linguistic universal. For now, it motiv-
ates taking E as the extra assumption.

Let M0 = (M0, I0) be a fixed model for the non-logical vocabulary, Vu, of u. The
field of u in M0 is the set of all individuals in M0 ‘affected’ by I0, i.e. all those of the
form I0(c) or belonging to a tuple in some relation I0(P), for c, P ∈ Vu.

using global quantifiers

Let Q be a (global) quantifier of the same type as u. We say that u uses Q relative
to M0 if

(3.40) for every M containing the field of u in M0, [[u]](M ,I0) = Q M

Proposition 17
Let u be a quantifier expression whose sense is given, and such that uG is E. Let M0 be
a fixed model for Vu, as above. Then there is a unique quantifier Q satisfying E, such
that u uses Q relative to M0.

26 uG is a symbol introduced here; it need not be an expression in the language to which u
belongs. In type theory one uses λ-abstraction to form uG ; e.g. in the example below, if u = u(j, C )
was an expression containing the primitive non-logical symbols j and C , one would have uG =
λxλY u(x, Y ).

27 We are using the notation (M , A, c) for the model M = (M , I ), where I (P) = C and
I (c) = a (see Ch. 2.2).

Note that uG is not strictly a quantifier expression in our sense, since we have not been using
quantifiers that take individuals as arguments. But this is a straightforward extension of the notion
of a (generalized) quantifier, which we employ in this section only.
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Proof. Suppose Vu = {P, c} where P is one-place, and suppose u is of type 〈1, 1〉; other
cases are similar. Let I0(P) = C and I0(c) = j, so the field of u in M0 is C ∪ {j}.
Define Q of type 〈1, 1〉, for any M , as follows:

(3.41) Q M (A, B) ⇐⇒ [[u]](M∪C∪{j},C ,j)(A, B)

Clearly, u uses Q relative to M0. To see that Q is E, suppose A, B ⊆ M ⊆ M ′.
We have Q M (A, B) ⇔ [[u]](M∪C∪{j},C ,j)(A, B) ⇔ [[uG ]]M∪C∪{j}(C , j, A, B) ⇔
[[uG ]]M ′∪C∪{j}(C , j, A, B) (since uG is E) ⇔ [[u]](M ′∪C∪{j},C ,j)(A, B) ⇔
Q M ′ (A, B).

Now suppose Q ′ is E and used by u relative to M0. Take any M , and any A, B ⊆
M . Q M (A, B) ⇔ [[u]](M∪C∪{j},C ,j)(A, B) ⇔ Q ′

M∪C∪{j}(A, B) (since u uses Q ′) ⇔
Q ′

M (A, B) (since Q ′ is E). Thus, Q ′ = Q . �

Note that if u is pure, M0 and the assumption about E are not needed: (3.41) just
gives us the global quantifier that we already know that u expresses, i.e. its sense. But
when u is not pure, we see that there is, relative to a fixed interpretation of the non-
logical primitive expressions in u, a unique global quantifier Q used by u, provided
E is assumed. So when in this book we say, somewhat sloppily, that u denotes Q ,
what we really mean is that u uses Q , relative to an assumed background model.

Furthermore, the practice in this book (and elsewhere) of writing cat, student, etc.
for the interpretation of cat, student, etc. can be seen as another aspect of the same
convention: relative to some background model M0, catM0 = cat, studentM0 =
student, etc.

3.5.3 Examples

Consider John, and suppose that JohnM0 = I0(John) = j ∈ M0. Recall that the
interpretation function of a model takes proper names to individuals, but that we
interpret the noun phrase John, using [[·]], as a type 〈1〉 quantifier. The sense of this
noun phrase is well known: for all M and all a ∈ M ,

[[John]](M ,a) = {B ⊆ M : a ∈ B}
Moreover, the pure relation JohnG (given by [[JohnG ]]M (a, B) ⇔ a ∈ B) is clearly
E. So Proposition 17 tells us that given M0, John uses a unique E type 〈1〉
quantifier Q . Indeed, this quantifier is precisely the Montagovian individual Ij :

Q M (B) ⇔ [[John]](M∪{j},j)(B) ⇔ j ∈ B ⇔ (Ij)M (B)

So this is what justifies our earlier claim that the NP John denotes Ij. In section 3.2.4
we considered another candidate, with the truth condition M ∩ {j} ⊆ B instead, but
ruled it out because (a) this becomes true when j �∈ M , and (b) it is not E. Now we
see that the E requirement in fact uniquely selects Ij as the only possible candidate.

Does one ever have occasion to consider the denotation of John on different uni-
verses but where the same individual j bears the name? Of course one does! We saw
a technical circumstance in section 3.4.2 where this is so. But also in ordinary situ-
ations of speech or linguistic communication, the discourse universe can be much
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more variable than the reference of names, say. We want to say, for example, that
nothing depending on John changes when the discourse universe is extended. That
is, we want to say that John is E. Likewise, we want to say that, in contrast with
three, John is not I. But we cannot say these things unless a global quantifier is
associated with John. And that quantifier is Ij , given M0.

Similarly, consider a bare plural like firemen. Let a background model M0

be given such that firemanM0 = C . By reasoning parallel to that for John,
one sees that the unique E quantifier used by firemen relative to M0 is Cpl

(section 3.2.1), given that the sense of firemen is

[[firemen]](M ,A) = {B ⊆ M : ∅ �= A ⊆ B}
Someone might want to question whether this is really the sense of firemen. For
example, one would remove the requirement A �= ∅ if one regarded Unicorns are
fierce as true simply because there are no unicorns. This would be a dispute about
the sense of firemen. But given that sense, there is no dispute about which type 〈1〉
quantifier firemen denotes (uses), relative to a background model.

Next, consider the example we started with, three cats. With quantified NPs, it
is perhaps harder to see why one would want to say that they denote (i.e. use) global
quantifiers. The obvious analysis of three cats employs the pure quantifier expres-
sion (quantirelation) three, which takes two arguments, a restriction and a scope.
We devote the next chapter to quantirelation denotations. But in languages like Eng-
lish, a determiner and a restriction argument form a constituent (an NP) most natur-
ally interpreted as a type 〈1〉 quantifier. So the question arises which global quantifier
is the most reasonable choice, given that in a background model M0, cat denotes a
set C . This quantifier can be described either as the freezing of the type 〈1, 1〉 quanti-
fier three to C , or, as in section 3.2.1 above, as the restriction of the type 〈1〉 quantifier
∃=3 to C . Clearly one wants these descriptions to amount to the same thing. Now
there are different definitions of these notions that achieve this; we discuss the options
in Chapter 4.5.5. But we can already see that our definition of global restricted type
〈1〉 quantifiers of the form Q [A] in section 3.2.1 is forced by the requirement of E.

First, it is perfectly clear what the sense of three cats is: viz.

(3.42) [[three cats]](M ,A) = {B ⊆ M : |A ∩ B| = 3}
Second, the pure relation (three cats)G is E; in fact, this relation is nothing
but the type 〈1, 1〉 quantifier three (notice that cats here just functions as a place-
holder for a one-place predicate expression28). So, third, it follows by Proposition 17,
given that catM0 = C , that there is a unique E global type 〈1〉 quantifier Q which
three cats uses. More exactly, by (3.41),

28 This becomes clearer if we write (3.42) instead as

[[three cats]]M = {B ⊆ M : |catM ∩ B| = 3}
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Q M (B) ⇐⇒ [[three cats]](M∪C ,C )(B)

⇐⇒ |C ∩ B| = 3

⇐⇒ (∃[C ]
=3 )M (B)

That is, Q is precisely ∃[C ]
=3 , or, with the notational convention we have been using,

∃[cat]
=3 . In particular, for Q M (B) to hold, it is not required that C ⊆ M . To always

require this might seem natural, but it is not compatible with E.
The clearest examples where one wants a non-pure quantifier expression to denote

(use) a global quantifier are quantirelations, in particular determiners (to be discussed
in the next chapter). Treating John’s or some student’s, or, for that matter,
every − except John, or more male than female, as denoting, on every uni-
verse, binary relations between sets simply is an obvious thing to do.

Consider John’s. Again the sense is fairly clear (provided certain parameters are
set; see Chapter 7), and the corresponding pure relation is

(3.43) [[John’sG]]M (a, A, B) ⇐⇒ ∅ �= A ∩ Ra ⊆ B

where R is some ‘possessor relation’ and Ra is the set of things R’d by a. Interest-
ingly, it is natural to think of the relation defined in (3.43) as the denotation of the
possessive morpheme ’s (note again that in (3.43), John just functions as an arbit-
rary individual-denoting expression). Indeed, the analysis we give of possessives in
Chapter 7 is even more general than this. But the fact that such an analysis is possible
is fully compatible with the fact that John’s is a determiner, and that its behavior
can be fruitfully compared with that of other determiners. For example, it is E, but
not I. Also it has the property of definiteness. But these properties only apply if you
fix a in (3.43). Doing that, we know (since John’sG is E) that there is a unique
E type 〈1, 1〉 quantifier that John’s uses.

Definiteness is interesting from the present perspective. In Chapter 4.6 we present
Barwise and Cooper’s definition of that notion, according to which definite determ-
iners are such that as soon as you freeze the restriction argument, the resulting NP
denotes a principal filter (unless it is trivial); that is, there is a generating set A such
that, over a universe M , the NP denotes exactly the set of subsets of M that include
A. For example, the ten boys is generated by the set of boys (provided there are ten
of them), and John’s books is generated by the set of books that John R’s (provided
he R’s at least one of them). Now an obvious question is whether the generating set
depends on the universe. The definition allows this, but there is a theorem saying
that under reasonable circumstances, the generating set does not vary with the uni-
verse (Proposition 10 in Chapter 4.6). These facts about definites seem at least mildly
interesting, but note that they couldn’t even be stated unless we allowed John’s as
well as the ten to denote global type 〈1, 1〉 quantifiers, and John’s books as well
as the ten boys to denote global type 〈1〉 quantifiers. That is, they presuppose that
it makes sense to treat non-pure quantifier expressions as denoting (using) quantifi-
ers. And the way this makes sense, we suggest, is by assuming that some model in the
background fixes the denotations of the non-logical parts of these quantifier expres-
sions, but not the universe.
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We now come to the most important quantifiers for natural language semantics: the
class of type 〈1, 1〉 quantifiers. The term ‘‘quantirelation’’ was introduced for expres-
sions in natural languages that denote in this class. Prime examples of quantirela-
tions are determiners, quantificational adverbs, and in some languages classifiers of
nouns, quantificational agreement affixes on verbs, etc. (see Chapter 0.1). Although
syntactically varied, their common mode of operation is the following: they identify
in the sentence a restriction, providing a subset of the (discourse) universe as the
domain of quantification, and a scope, supplying another subset. These two sets are
the arguments of the (local) quantifier that the quantirelation signifies.

By far the richest and most studied class of quantirelations are the determiners,
and our examples are mainly taken from these. Determiners have the special fea-
ture of forming a syntactic constituent together with the restriction: a noun phrase,
which, as we have seen, can be taken to denote a type 〈1〉 quantifier. However,
the particular semantic behavior of quantirelation denotations depends not on this
syntactic feature, but rather on the fact that the restriction gives, in a sense that
we shall make precise, the domain of quantification. This seems to be common
to all quantirelations, so the fact that our examples are determiners is actually not
a limitation. Neither is it a limitation of expressivity, since it seems plausible that
all type 〈1, 1〉 quantifiers denoted by some quantirelation are in fact denoted by
some determiner.

That the restriction restricts the domain of quantification to the set it denotes—and
hence deserves its name—has as a consequence that all quantirelation denotations are
of a particular form: they are so-called relativizations of type 〈1〉 quantifiers. An equi-
valent characterization, as it turns out, is that they satisfy two basic properties: E,
introduced in the previous chapter, and conservativity, C. This is a funda-
mental observation. The notion of conservativity and the mechanism of relativization
are presented in detail in sections 4.4 and 4.5. We establish the fundamental fact just
alluded to and its ramifications, as well as the precise connection between relativiza-
tion and the restricted type 〈1〉 quantifiers defined in Chapter 3.2.1.

Section 4.6 presents a linguistically important class of determiners (and corres-
ponding quantifiers)—the definite ones. We use a semantic definition of definiteness
(due to Barwise and Cooper). Later on, in connection with partitive constructions
(Chapter 7.11), we come back to the issue of the adequacy of that definition. In
section 4.7 we briefly look at determiners which take more than one restriction
argument, and the quantifiers they denote.
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The final section, 4.8, discusses the effect of I. The relativization of an I
type 〈1〉 quantifier Q may be seen as a binary relation between numbers—indeed, the
very same relation as the one corresponding to Q . Over finite universes, these quanti-
fiers can be perspicuously represented in the so-called number triangle. The represent-
ation significantly facilitates stating, as well as proving, various facts about quantifiers.
We present and illustrate the number-theoretic representation here; several applica-
tions will follow later.

The chapter begins, however, with numerous examples of quantirela-
tions—indeed, determiners—and some discussion of the quantifiers they can
be taken to denote, in section 4.1. We also reexamine in greater detail (section
4.2) the issue about the existential import of all and every which was raised in
Chapter 1.1.1 in connection with the Aristotelian square of opposition, as well as
the relation, or lack of relation, between syntactic and semantic number indicated
in Chapter 0.1. Again with reference to the Aristotelian square (or rather its modern
version), we look in section 4.3 at negations and other Boolean operations on type
〈1, 1〉 quantifiers.

4 .1 EXAMPLES OF DETERMINERS

Here are some examples of English determiner expressions, of increasing complexity.

(4.1) a. some, a, all, every, no, several, most, neither, the, both, this, these, my,
John’s, many, few, enough, a few, a dozen, ten

b. at least/more than/fewer than/at most/exactly ten, all but ten, all but at
most five, infinitely many, uncountably many, at most finitely many, all
but finitely many, about two hundred, nearly a hundred, almost all, an
even number of, an infinite number of, the ten, John’s ten, each professor’s,
most students’, no child’s, at least two-thirds of the, less than 10 percent
of the, exactly three-quarters of the, half of the, half of John’s, most of
Henry’s, two-thirds of Mary’s several, all. . . except John, no. . . but Mary,
all conservative, John’s liberal, exactly two green, more male than female

c. not all, not every, not many, no fewer than ten, between five and ten, not
more than half of the, some/most but not all, at least two and no more
than ten, either fewer than five or else more than a hundred, neither John’s
nor Mary’s, John’s but not Mary’s, not one of John’s, more of John’s than
of Mary’s, fewer of the male than of the female, fewer than five of the ten
or more, more than half of the twenty, several of each professor’s, at least
one of most students’, none of several teachers’, most male and all female,
neither the red nor the green

The list is intended to show the richness of English determiner expressions that can
be interpreted as type 〈1, 1〉 quantifiers.1 In various cases one might argue for another

1 Some but not all of these examples were given in Ch. 0.1. For a more exhaustive list, illustrat-
ing numerous constructions of complex determiners, see Keenan and Stavi 1986: sect. 1.1. Some
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treatment. For example, it has been claimed that the indefinite a or the definite the
(see Chapter 0.3), or numerals like ten, should not be treated as quantifiers. But our
point here is just that they can be so treated, and that it is then often obvious which
quantifiers they denote:

theM (A, B) ⇐⇒ A ⊆ B and |A| = 1

(this is the singular the, also called thesg; for the plural case, thepl, the second conjunct
is |A| > 1, but see section 4.2.2 below for further discussion);

tenM (A, B) ⇐⇒ |A ∩ B| = 10

Another reading that might be possible here is at least ten:

at least tenM (A, B) ⇐⇒ |A ∩ B| ≥ 10
all but tenM (A, B) ⇐⇒ |A − B| = 10
all but at most tenM (A, B) ⇐⇒ |A − B| ≤ 10
more than ten but no more than twentyM (A, B) ⇐⇒ 10 < |A ∩ B| ≤ 20
the tenM (A, B) ⇐⇒ |A| = 10 and A ⊆ B
John’s tenM (A, B) ⇐⇒ |A ∩ {a : R( j, a)}| = 10 and A ∩ {a : R( j, a)} ⊆ B

(where R is a contextually given relation, cf. John’s ten bikes, John’s ten
exams, John’s ten friends, John’s ten toes).

Note that for quantifiers with an explicit number condition we have included that
condition in the truth conditions. The alternative is to allow partial quantifiers, so
that e.g. John’s tenM (A, B) would be undefined when |A ∩ {a : R(j, a)}| 	= 10. The
advantage would be that one might want a sentence of that form to lack truth value
under those circumstances, rather than being false. The disadvantage would be that
partial quantifiers are somewhat more unwieldy to deal with.2

The determiners listed in (4.1c) all have one restriction argument. There are also
determiners with two or more restrictions, like those italicized here:

(4.2) a. More students than teachers attended the meeting.
b. Twice as many men as women came to the party.
c. Proportionately more students than professors smoke.

Discussion of these is deferred to section 4.7 below.
As we said, in most cases it is clear what the denotations of the determiners in (4.1c)

are. But sometimes the interpretation needs further discussion and analysis. We men-
tion a few cases here.

cases, such as quantifier and adjective combinations, are not uncontroversially agreed to be determ-
iners by all syntacticians.

2 Barwise and Cooper (1981) use partial quantifiers, whereas Keenan and Stavi (1986), van Ben-
them (1986), and Keenan and Westerståhl (1997) follow the route taken here. For some discussion,
see Keenan and Stavi 1986: 298–9 and Westerståhl 1989: sect. 3.7.
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Going back first to possessive determiners, we take John’s to be John’s one or more:3

(4.3) John’sM (A, B) ⇐⇒ ∅ 	= A ∩ {a : R(j, a)} ⊆ B

Also, here is our interpretation of a typical complex possessive determiner. We use the
notation Rc = {a : R(c, a)} for any binary relation R.

(4.4) most graduates’M (A, B) ⇐⇒
most ({c ∈ graduate : A ∩ Rc 	= ∅}, {c : A ∩ Rc ⊆ B})

That is, the truth conditions are such that only graduates ‘possessing’ something in A
matter. This means, for example, that the truth of Most graduates’ job offers
were acceptable is unaffected by those graduates that didn’t get any offers. Oth-
erwise, any such graduates would trivially satisfy the condition that all their job offers
were acceptable, so the sentence would be true if most graduates didn’t get any offers,
which is clearly wrong. This and other aspects of possessives are discussed in detail in
Chapter 7.

The interpretation of basic exceptive determiners is fairly clear.

no−but JohnM (A, B) ⇐⇒ A ∩ B = {j}
every−except JohnM (A, B) ⇐⇒ A − B = {j}

More debatable, perhaps, is the meaning of, say, no−except C, as in No students
except freshmen were invited to the party. The interpretation of except-
ives has been much discussed in the literature; we give an overview, and a partly new
account, in Chapter 8.

In some of the above examples, like about two hundred, vagueness may be an
obstacle to giving an interpretation. But this is the problem of finding an adequate
semantics for vague expressions in general, and is not specific to determiners.

Some of the determiners above require input from the context for their interpret-
ation. As already noted, most sometimes means more than half of the—this is the
default interpretation we use here—but sometimes the ‘threshold’ is higher. There is
no problem in thinking of context as providing this. In other cases, context depend-
ence is so strong that one may doubt if extensional (generalized) quantifiers are
adequate as interpretations. Consider

(4.5) a. Too many doctors attended the reception.
b. Too many lawyers attended the reception.

Even in a situation where the set of lawyers at the reception was identical to the set of
doctors at the reception, these two sentences could have different truth values. One
may thus decide to treat too many as intensional and exclude it from the present
treatment. Similarly for expressions like surprisingly many or not enough. But

3 We give here the universal reading of possessives; there are also existential and other readings.
Even John’s sometimes has an existential reading: John’s fingers are dirty. In Ch. 7 we
present an analysis of possessives which covers all of these readings.

One might also distinguish the singular John’s = John’s one from the plural John’s = John’s two
or more; see sect. 4.2.2.
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one may also maintain that the nouns of the respective sentences, and perhaps other
relevant material, form part of the context, so that different standards for being too
many are generated. In the literature, this question has been discussed especially for
many and few; some authors exclude them on the ground of intensionality whereas
others attempt a context-dependent extensional interpretation.4 Again, the issue is
part of the more general one of how to deal with context dependence and intension-
ality. We do not need to take a stand on it here, but will return to the interpretation
of many and few in Chapter 6.1.

Although our examples so far were all determiners, there are other quantirelation
expressions with similar interpretations. For example,

(4.6) a. Dogs never laugh.
b. Graduate students usually do some teaching.

mean roughly that no dogs laugh, and that most graduate students do some teach-
ing; so never and usually can here be taken to denote the quantifiers no and most,
respectively. However, these adverbs of quantification have a wider use, as exempli-
fied in

(4.7) Cats usually dislike dogs.

where, in one reading, most is still the quantifier, but it now quantifies over pairs of
cats and dogs, saying that most such pairs are such that the first element dislikes the
second. This quantifier is no longer of type 〈1, 1〉, but rather of the polyadic type
〈2, 2〉, and we save the discussion of these until Chapter 10.2.

4 .2 ON EXISTENTIAL IMPORT AND RELATED MATTERS

Before pursuing our presentation of the properties of type 〈1, 1〉 quantifiers, we will
make a few comments concerning requirements that certain quantirelations appear
to impose on the number of elements in the restriction argument. The first issue
was raised already by Aristotle’s version of the square of opposition (Chapter 1.1.1)
and concerns the meaning of every, all, no, and not all: namely, whether these
determiners, and in particular all and every, have existential import, i.e. if they sat-
isfy this condition:

Q M (A, B) ⇒ A 	= ∅
One should carefully distinguish existential import from a notion we call positivity,

which says that

Q M (A, B) ⇒ A ∩ B 	= ∅

4 Attempts at such interpretations can be found in Barwise and Cooper 1981; Westerståhl
1985b; Cohen 2001; among others, whereas Keenan and Stavi (1986) exclude many and few from
the class of (extensional) determiners. Fernando and Kamp (1996) give an intensional analysis in
terms of possible worlds.
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For example, some, at least five, exactly three, most denote positive
quantifiers, whereas no, at most four, few do not. Also, not all has existential
import (since A − B 	= ∅ implies A 	= ∅) but is not positive, whereas not all ei has
neither property. But the point here is that positivity is not a problematic or contro-
versial property in the way that existential import has been.

4.2.1 Existential import

‘Naive’ speakers of English, who are not trained in logic or linguistics, typically
feel that:

1. Statements with every or all imply that they have instances; i.e. the restricted
domain is non-empty, and the generalization holds non-vacuously.

2. In not every and not all, not is ordinary negation (termed outer negation in
this book and elsewhere).

3. Statements with not every or not all imply that there are witnesses to the fail-
ure of the negated universal generalization.

4. When pressed, they concede that it is impossible to support with a counterexample
the notion that a vacuous generalization with every or all is false. Usually, they
then reluctantly agree that it is less problematic to regard such a statement as true
than to regard it as false.

Many readers will remember such intuitions from the time when they began to study
logic or linguistic semantics.

A tension exists between these intuitions, as the first is in conflict with the
last three. Holding onto the first and second requires giving up the third and
fourth—and, moreover, accepting something that seems highly counterintuitive to
naive speakers today:

5. Statements with not every or not all are true if the restricted domain
is empty.

As we saw, Aristotle and many medievals seemed ready to accept this price for holding
onto the first and second intuitions. Nowadays it is clear that alternative means exist
for reconciling all these intuitive judgments, by providing an explanation for the first
one that does not depend on the sentence uttered being false.

One available alternative involves distinguishing clearly between what a state-
ment communicates and the truth conditions of the sentence used in making it.
Most statements communicate everything required for truth of the sentence that is
uttered; many statements communicate more. Grice (1967) famously proposed a
theory of how this is possible—indeed inevitable—considering the fact that state-
ments are meant to communicate pertinent information, not simply to recite facts.
The difference between mere record keeping (whether in a natural language or an
artificial database language) and communication has as a consequence that state-
ments made in communicating with another person are selected not simply to
be true but also to be informative, relevant, and even cooperatively phrased. The
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point of stating something in communication is to influence one’s interlocutor in
accord with a purpose that is (usually) mutually accepted. And achieving this end
requires a more stringent selection of statements than merely choosing an arbitrary
true one.

Because a statement’s normality involves not only its truth (or falsehood, in the
case of denial), but, moreover, that the statement is informative, relevant, and cooper-
atively worded, it will be odd in a wide range of circumstances to assert a universally
quantified sentence for which it is known that the restricted domain is empty. The
oddness is adequately explained by the statement’s lack of informativeness, its truth
being guaranteed by the already known emptiness of the quantifier’s domain. Thus
the naive intuition (1) that universal statements imply non-emptiness of the domain
is explained by the fact that such statements are meant to communicate new inform-
ation, not by their being false when the domain is empty.

Indeed, statements with all and every seem fully acceptable when it is unknown
whether or not the domain is empty—provided they are true, relevant, etc.

(4.8) All solutions to this system of equations are integers.

Clearly this sentence could be acceptable (for example, provable in a certain theory)
regardless of whether there were any solutions at all to the system of equations in
question, or at least regardless of whether one has any knowledge about the existence
of such solutions. Moreover, this sentence quite clearly would be true—rather than
false—should the domain turn out to be empty.

Similarly for statements of laws or rules:

(4.9) All trespassers will be prosecuted.

There don’t have to be any actual trespassers for this to hold.
Another strategy for assessing intuitions like the first one above is to consider

whether the implication of non-emptiness can be explicitly canceled. This strategy
gives some definite results. First, a test case:

(4.10) # It is true that at least two graduate students at the party were drunk, because
there were in fact no graduate students at the party.

Speakers would not accept this: they would claim that the second part of the sentence
contradicts the first. This is in agreement with our strong intuition that at least
two does have existential import, which is obvious from the fact that it entails at
least one.

Next, a fairly clear negative case:

(4.11) It is true that no graduate students at the party were drunk, because there were
in fact no graduate students at the party.

The first part of the sentence, if uttered without the second part, would normally lead
one to assume that there were graduate students at the party. In this respect, the neg-
ative universal quantifier no is just like the positive ones every and all. The second
part of the sentence contradicts this implication, but in doing so does not render the
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first part false. Instead, the implication is merely canceled. The first part of the sen-
tence remains true (if requiring special circumstances to assert). These observations
lead us to conclude that apparent existential import with no is an implicature (or
something like that) arising from communication with the word, and not part of the
quantifier expression’s meaning.

Finally consider

(4.12) It is true that all graduate students at the party were drunk, because there were
in fact no graduate students at the party.

Again, it seems that the implication that there were graduate students at the party is
cancelable, though perhaps with slightly more difficulty than in the previous case.5

At least, that is a common verdict, although the issue is somewhat subtle. To appre-
ciate the force of this verdict, compare the following:

(4.13) a. # It is true that the graduate students at the party were drunk, because
there were in fact no graduate students at the party.

b. # It is true that Henry’s graduate students were drunk, because Henry
doesn’t have any graduate students.

Most English speakers find these incoherent enough to warrant concluding that the
and Henry’s do have existential import, in contrast with every and all.

Perhaps one can sum up the situation as follows. Assertions of universal statements
have varying degrees of existential import. Every assertion needs some sort of war-
rant. Sometimes the warrant has no information about the emptiness or not of the
first argument of the determiner (the restriction term), as in (4.9), or may even be
explicitly neutral about its emptiness, as in (4.8). But these cases are a bit special. Usu-
ally, the warrant is some observation or inference, and then the assertion can imply
rather strongly that the restriction argument is non-empty. But note that all of these
remarks apply to assertions. If one thinks of the linguistic meaning of an expression
as, roughly, what is common to all assertions involving that expression, it makes sense
not to endow all with existential import. The existential import of assertions of uni-
versal statements is a matter for pragmatics, not semantics.

A related point concerns the fact that statements with every, all, and no ordin-
arily carry stronger implications about the restricted domain of quantification than

5 Imagine the following dialogue:
—All graduate students at the party were drunk.
—I’m glad I didn’t go!
—But nobody was drunk at that party.
—But you just said there were drunk people there!
—No I didn’t say that; I only said that all graduate students at the party were drunk, which happens
to be true because there were no graduate students at the party!
Clearly the first speaker is seriously misleading the second. But the reason he can do this, and thus
be judged uncooperative or even devious while still not being incoherent, is precisely that implying
something is not the same as saying it and, in particular, conversationally implicating something
does not commit the speaker to it even though the hearer is invited to impute it as a belief of the
speaker’s.
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that it is non-empty. An ordinarily informed person would think it odd to assert
(4.14a) and (4.14b) instead of (4.14c), and to assert (4.14d).

(4.14) a. Every natural satellite of the Earth has been visited by humans.
b. Some natural satellite of the Earth has been visited by humans.
c. The natural satellite of the Earth has been visited by humans.
d. No natural satellite of the Earth has been colonized by humans.

Every and no are normally used to generalize over a substantial number of instances,
and some is normally used when referencing a specific instance would be awkward.
Although (4.14a), (4.14b), and (4.14d) are all true, they are odd things to say because
one instance is not ordinarily enough to generalize over, and referencing this instance
is not at all difficult. So these three sentences are not cooperatively worded, in the
sense used here; they falsely suggest the existence of more than one natural satellite of
the Earth.

In fact, two instances are not ordinarily enough to justify use of every, all, or
no—since both and neither cover this situation handily. Although many readers
will not find an assertion of (4.15a), (4.15b), or (4.15c) odd,

(4.15) a. Every natural satellite of Mars has been photographed.
b. Some natural satellite of Mars has been visited by a robotic spacecraft.
c. No natural satellite of Mars has been visited by humans.

astronomers would, knowing as they do that Mars has but two moons: Phobos and
Deimos.

The first naive intuition about universal claims—that their domain is non-
empty—is thus really just part of a broader intuition: that the domain contains a
significant number of entities, certainly more than two. The broader intuition can
be explained by, for instance, Grice’s theory of conversational implicature—in a
closely related way to its explanation of the narrower case (non-emptiness of the
domain). We need not treat either intuition as a reason for taking statements with
every, all, or no to be false if their domain is empty, or has just one member, or
just two.6

These observations demonstrate how cautious one should be in drawing conclu-
sions about what quantifiers require by way of the cardinality of their domain. In
particular, care must be taken to distinguish the fact that if one knows that the noun
A has empty denotation, it would often be odd to utter a sentence of the form Q As
are B, from facts about the perceived falsity (or truth) of the sentence in
this case.

6 The intuition with no has apparently never been regarded as justifying such treatment, even
by Aristotle or his followers. The broader intuitions with every and all likewise have apparently
never been regarded as justifying such treatment, although the implication that the domain con-
tains more than one (or even two) members seems just as hard to cancel (or easy to cancel) as
the implication that it contains at least one member. In this light, it may seem odd that the latter
intuition about every and all is the only one ever codified into truth conditions.
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4.2.2 Syntactic and semantic number

A related question concerns the relation, if any, between the syntactic or grammatical
number of a noun and the quantificational claim made by a determiner preceding
that noun. Already in Chapter 0.1 we said that we take the singular and the plural
form of count nouns to denote the same set of individuals, and that grammatical
number is not considered to be significant in and of itself; in particular, it does not
in any simple way indicate whether one is quantifying over individuals or over plur-
alities. However, even when one restricts attention to quantification over individu-
als—as we do in this book—there is sometimes an issue of whether the claim made
by a quantified statement about the number of individuals in the set denoted by the
restriction noun is related to the grammatical number of that noun. It is instructive
to look at some examples.

Let us say that the number condition of Q is the strongest claim about |A| that
logically follows from Q(A, B).7 For example, the number condition of at least seven
is |A| ≥ 7, the number condition of exactly two is |A| ≥ 2 (unless A has at least two
elements, the statement exactly two (A, B), i.e. |A ∩ B| = 2, cannot be true), and the
number condition of at most five is the trivial condition |A| ≥ 0. In the latter case we
simply say that there is no number condition.

Note that the number condition of the denotation of a quantirelation expression is
part of the meaning of that expression, and does not concern implicatures, etc. (even
if, as we saw above, the border is not always crystal clear). Consider first the following
examples, where we also indicate the syntactic number of the noun:

quantified expression number condition

zero As are B —

at most one A is B —

more than one A is B |A| > 1

exactly one A is B |A| ≥ 1

no A is B —

no As are B —

all As are B —

every A is B —

(4.16)

Zero and all require plural form but have no number condition. The determiners
ending with one above require singular form, as does every, but nothing follows
from this about the number condition. No can take both forms, but in neither case
is there a number condition. In all of these examples, the grammatical number is
semantically irrelevant.

7 We can omit reference to the universe M here, as will be explained in sect. 4.5 below. It is gen-
erally obvious what Q(A, B) implies about |A − B| and |A ∩ B|, so we discuss only the sometimes
disputed question of what Q(A, B) implies about |A − B| + |A ∩ B|.
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A more interesting case is the definite article. In many languages, the choice of art-
icle is correlated with the grammatical number of the noun, and one often assumes
that the singular and the plural article have different meanings, and correspondingly
that the English the is ambiguous, or at least that its meaning depends on the gram-
matical number of the noun:

quantified expression number condition

thesg A is B |A| = 1

thepl As are B |A| > 1

allei As are B |A| ≥ 1

the ten As are B |A| = 10

(4.17)

It is common to claim both that the means either thesg or thepl, and that the syn-
tactic number of the noun determines which one is meant. Note that this requires
that context sets (Chapter 1.3.4) or some notion of salience are used: one can clearly
say The table has been cleaned even when there are many tables in the discourse
universe. But combined with context sets or salience, the two claims may seem quite
tenable.

However, we shall have occasion to question both claims in connection with one
interesting class of determiners: the possessives, discussed in Chapter 7. We argue
there (Chapter 7.8) that if the popular account of possessives, which takes these to
essentially involve the definite article, is to be correct, it needs to interpret the as our
old Aristotelian friend all ei, and not as thesg or thepl.8

The possessive determiners themselves have a characteristic behavior with respect
to syntactic number, in that they allow both forms:

quantified expression number condition

John’s A is B |A| ≥ 1

John’s As are B |A| ≥ 1

each girl’s A is B —

each girl’s As are B —

(4.18)

There is no number condition on each girl’s, since the empty set stands in the
relation each (the subset relation) to any set. The condition on John’s comes from
the requirement that John ‘possess’ at least one thing in A, i.e. that A ∩ Rj 	= ∅ ((4.3)
in section 4.1). But the singular case does not in general require |A ∩ Rj| = 1, and the
plural case not always |A ∩ Rj| > 1 (see Chapter 7.2). Consider:

(4.19) Each girl’s brother feels protective of her.

This sentence does not make a claim only about girls with a single brother; nor does
it entail that each girl has only one brother. Likewise, there is no way in which a

8 All this presupposes that the should be treated as denoting a quantifier. See Ch. 0.3 for some
hints about a different approach.
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particular brother for each girl, when there is more than one, would be salient. Rather,
the truth conditions appear to be the same as for

(4.20) Each girl’s brothers feel protective of her.

By the same token, the claim that sentence (4.20) makes is not limited to girls with
more than one brother. So in general we shall take possessive determiners not to have
conditions tied to the syntactic number of the noun (although all of them will involve
conditions of the form |A ∩ Ra| ≥ 1). This is not to deny that additional require-
ments on A ∩ Ra may sometimes be conversationally implicated, nor that grammat-
ical number plays a role. But such extra requirements are not part of the truth condi-
tions for possessive determiners (Chapter 7).9

Let us look at one more example:

quantified expression number condition

some A is B |A| ≥ 1

some As are B |A| > 1 (?)

(4.21)

Some takes both forms, and the number condition in the singular case is clear. But
what about the plural case? Logicians standardly take some to denote at least one, thus
making no distinction between the singular and the plural case. In this book too, some
= at least one. But we should at least ask if the use of, for example, some women entails
or merely implicates that more than one woman is involved. In the previous subsec-
tion we saw, mostly for the case of all and every, some issues that such a query
will require one to investigate. We shall not repeat these for some, only note that in
this case we are unsure of the result. In fact, it seems to us that it might very well be
that ‘plural’ some has the number condition |A| > 1.10 In that case one should, when
interpreting the English some, distinguish between somesg = some = at least one and
somepl = more than one.

4 .3 BOOLEAN OPERATIONS

The list of examples in section 4.1 above shows that in many cases complex determ-
iners are Boolean combinations of simpler determiners. This raises natural questions

9 Likewise, the possessed noun’s number may interact with semantic constraints on which
objects are ‘possessed’. For example, John and Mary’s sister can only stand for a sister of both
John and Mary, whereas John and Mary’s sisters can be either sisters of both or, when John
and Mary are not siblings, sisters of either of them.

10 One has to make a judgment about issues like these: (1) Is the following a contradiction or
does the second sentence merely cancel an implicature?

(i) Some women are at the door. Only one woman is there.

(2) If I promise to give you colored pencils and give you just one, have I then broken my promise?
(3) It is, of course pedantic to assert

(ii) Bush didn’t invade some countries. He invaded only one.

But is Bush invaded some countries false, or merely misleading?
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about closure under Boolean operations. As we pointed out in Chapter 3.2.3, where
the same questions were raised for NPs, there is, on the one hand, the syntactic issue
of whether a certain kind of expression allows arbitrary combinations with and, or,
not, and the like, and on the other hand, the distinct semantic issue whether the class
of denotations of these expressions is such that if Q and Q ′ belong to it, then so do
Q ∧ Q ′, ¬Q , and possibly Q¬.

Here we are mostly interested in the semantic question. For determiners, it is often
practical to make the following

idealizing assumption:

(BClDet) The class of determiner denotations in a given language, as a subclass of the
class of type 〈1, 1〉 quantifiers, is closed under Boolean operations.11

In reality, this may not be strictly true. Note, however, that the issue is not which
expressions of the form Det and Det or not Det (in the case of English) are
clumsy or long-winded and therefore hardly ever used, but which ones are mean-
ingful. And then the question is whether, if such an expression is judged not mean-
ingful, there is another determiner expression that denotes the quantifier. After all,
this is all that is required. For example, not some and not most may be judged
ill-formed and hence meaningless, but the negation of some is expressed by no, and
the negation of most is expressed by at most half of the, so both are determiner
denotations.

Barwise and Cooper (1981: 194–200) discuss Boolean operations on NPs and
determiners, but mostly seem to focus on the syntactic issue. The corresponding
semantic assumption for NPs is

(BClNP) The class of NP denotations in a given language, as a subclass of the class of
type 〈1〉 quantifiers, is closed under Boolean operations.

So we have two semantic claims, and two parallel syntactic claims. As we indic-
ated in Chapter 3.2.3, the syntactic claims are almost certainly not literally correct,
although they too might sometimes serve as useful idealizations. The semantic claims
are empirically much harder to assess, since there are so many phrases that in principle
could serve as determiners. For example, Barwise and Cooper cite some data con-
cerning conjoining an increasing and a decreasing NP, indicating that this might not
always be possible. But as they themselves admit, the data are not clear. For example,
when the NPs involve complex determiners, conjunction seems fine, as in

(4.22) At most three women and a least five men came.

The line between clumsiness or long-windedness and ungrammaticality is not always
sharp. Note also that the putative difficulties concern NPs; for determiner denota-
tions, there seems to be no corresponding problem: more than five and at most twelve,
between three and six.

11 If our assumption that every quantirelation denotation is also a determiner denotation is
holds within every language, then (BClDet) can equally well be named (BClQuantirel).
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It may be thought that inner and outer negation provide clearer cases of opera-
tions that transcend the class of determiner or NP denotations. These operations were
defined for type 〈1〉 quantifiers in Chapter 3.2.3, and are very natural for determiner
denotations (or quantirelation denotations) too:

negations and duals of type 〈1, 1〉 quantifiers

For Q of type 〈1, 1〉, define:

(¬Q )M (A, B) ⇐⇒ not Q M (A, B) (as usual)

(Q¬)M (A, B) ⇐⇒ Q M (A, M − B)

Qd = ¬(Q¬) = (¬Q )¬ (as usual)

A sentence of the form [ [Det N]NP VP]S can be syntactically negated by putting
it is not the case that in front, or by negating the VP. Sometimes these neg-
ations can be effected by choosing another Det. For example, applying the first kind
of negation to Most students passed, we get It is not the case that most
students passed, but this can also be expressed by At most half of the stu-
dents passed (outer negation). In the second case we obtain Most students did
not pass, and this could instead be put Fewer than half of the students
passed (inner negation, or, in Keenan’s term, post-complement).

Thus, the inner and outer negation, as well as the dual of a determiner denotation,
is sometimes also a determiner denotation.

¬some = no; some¬ = not all ; somed = all

¬more than half of the = at most half of the; more than half of the¬ = fewer than
half of the; more than half of thed = at least half of the

(on finite universes, as usual). Other cases have seemed more doubtful. Consider at
least three.

¬at least three = fewer than three; at least threed = all but at most two; at least
three¬ = ?

Westerståhl (1989) attempted a principled argument that at least three¬, i.e. the
quantifier Q defined by

(4.23) Q M (A, B) ⇐⇒ |A − B| ≥ 3

along with similar quantifiers, was not a determiner denotation—the reason being
that phrases of the form all but Q As are B, where Q is three, at most five,
at least two, etc., should imply some As are B. But that may only be a pragmatic
implication; alternatively, it might instead concern the syntactic question of which
determiner expressions are well-formed. In any case, observe that if one allows the
(single) phrase not all, not all but one, and not all but two as a determ-
iner, it denotes precisely the Q in (4.23).
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Likewise, consider exception determiners, like no−but John. We have

(no−but John)¬ = every−except John

but what about the outer negation? Here one needs to express the condition

A ∩ B 	= {j}
Does any determiner express that? The following suggestion is at least logically pos-
sible: if John then some other. The idea is that If John then some other A
is B says that either John is not an A that is B, or someone else too is an A that is B,
which seems to be the desired truth condition.

On the other hand, for a possessive determiner like John’s, the outer negation,
given our definition in section 4.1, expresses the condition

A ∩ Rj = ∅ or (A ∩ Rj) − B 	= ∅
This time it may be harder to cook up a corresponding determiner.

Finally, consider proper names and the claim (BClNP). It might seem that no NP
denotes ¬Ij , since not John is certainly not an NP. But take instead only things
other than John. This is an English NP, and it does have the desired denotation.

These examples illustrate the difficulty of empirically deciding (BClDet) and
(BClNP), and also that their chances of being true are greater than it might seem at
first sight. But regardless of whether they are strictly true or not, they are sometimes
useful and harmless idealizations.12

As to the logical relations between (BClNP) and (BClDet), it seems plausible that
the former implies the latter. In section 4.5.5 below we show that this is indeed true,
given some reasonable assumptions.

A quantifier, together with its inner and outer negation and its dual, forms a nat-
ural unit, a square of opposition. Let us make this official:

squares of opposition

For Q of type 〈1, 1〉 (or type 〈1〉), the square of opposition for Q , square(Q), is

square(Q ) = {Q , ¬Q , Q¬, Qd}

As we saw in Chapter 1.1.1, the Aristotelian square of opposition, which is ‘almost’
identical to square(some) = {some, no, not all, all}, was the start of the theory of
quantifiers. But every quantifier spans a square of opposition. Here are some simple
facts about squares:

12 In Keenan’s work, e.g. Keenan and Stavi 1986, it is a crucial feature that NP denotations
are closed under Boolean operations. But this is claimed only from a local perspective. In a given
(finite) universe whose individuals are John, Mary, Bill, . . ., Harriet, it is true that ¬John can be
expressed as Mary ∨ Bill ∨ · · · ∨ Harriet ∨ nobody. But this definition doesn’t work in a larger
universe. You have to use a different definition in each universe, which is precisely why Keenan’s
local claim does not concern the global claim (BClNP).
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Fact 1
(a) square(0) = square(1) = {0, 1}.
(b) If Q is non-trivial, so are the other quantifiers in its square.

(c) Each quantifier in a square spans that same square. That is, if Q ′ ∈ square(Q ), then
square(Q) = square(Q ′).

(d) square(Q ) has either two or four members.

Proof. (a) is obvious. For (b), non-triviality of Q means that there are M and A, B ⊆
M such that Q M (A, B), and there are M ′ and A′, B′ ⊆ M ′ such that not Q M ′ (A′, B′).
It is easy to see that this extends to the other quantifiers in the square. For example,
let B1 = M − B and B2 = M ′ − B′. Then Q M (A, M − B1) and not Q M ′ (A′, M ′ −
B2). That is, (Q¬)M (A, B1) and not (Q¬)M ′ (A′, B2), so Q¬ is non-trivial too.

(c) is a simple calculation, using the usual laws for negations and duals
(Chapter 3.2.3), by which, for example, (Q¬)d = ¬Q and (Q¬)¬ = Q .

As to (d), note that any quantifier is distinct from its (outer) negation, so there
are at least two elements in a square. And if (say) Q = Qd, then (by the above laws)
¬Q = Q¬, so there are either exactly two or exactly four elements.13 �

4.4 RELATIVIZATION

Every statement involving a generalized quantifier Q takes place within some universe
M . Sometimes it is useful to be able to mirror this relativization to a universe inside
M . This means defining a new quantifier with one extra set argument which says that
Q behaves on the universe restricted to that argument exactly as it behaves on M .
The relativized quantifier, Q rel, explicitly restricts the domain of quantification of Q
to that argument. Here is the definition.

definition of Q rel

If Q is of type 〈n1, . . . , nk〉, Q rel has the type 〈1, n1, . . . , nk〉 and is defined, for
A ⊆ M and Ri ⊆ Mni , 1 ≤ i ≤ k, as follows:

(4.24) (Q rel)M (A, R1, . . . , Rk) ⇐⇒ Q A(R1 ∩ An1 , . . . , Rk ∩ Ank )

13 Normally a square is not degenerate, i.e. there are four members. But consider, as an
example, a type 〈1〉 quantifier Q that on each M consists of the subsets of M containing a
certain element a of M (the principal filter over M generated by a). Then, for each M and each
A ⊆ M , Q M (A) ⇔ a ∈ A ⇔ a 	∈ M − A ⇔ Qd

M (A). So Q M = Qd
M , and hence Q = Qd. Our

Montagovian individuals Ia are not quite like this, since we defined them globally, i.e. for a fixed
a, regardless of whether a ∈ M or not. Indeed, if a 	∈ M and A ⊆ M , then a 	∈ A and a 	∈ M − A,
i.e. not (Ia)M (A), but (Ia)d

M (A), so Ia 	= (Ia)d.
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In particular, for Q of type 〈1〉
(4.25) (Q rel)M (A, B) ⇐⇒ Q A(A ∩ B)

Here we shall mainly be interested in the type 〈1〉 case, so if we write Q rel, it is
assumed unless otherwise stated that Q is of type 〈1〉.

4.4.1 Examples

The following examples show that the relativization operation is in fact already
familiar.

∀rel = every
∃rel = some
∃rel

≥4 = at least four
∃rel

=5 = exactly five
(∃=5¬)rel = all but five
Q rel

0 = infinitely many
(QR)rel = most
(p/q)rel = more than p q’ths of the
[p/q]rel = at least p q’ths of the
(Q even)rel = an even number of

These are all I quantifiers, but relativization applies also to the non-I case:
If NBj and EBj are the type 〈1〉 quantifiers nobody but John and everybody but John,
taken as, for B ⊆ M ,

NBj)M (B) ⇐⇒ B = {j}
(EBj)M (B) ⇐⇒ B = M − {j}

then

(NBj)rel = no−but John
(EBj)rel = every−except John

If JT is the type 〈1〉 quantifier John’s things, defined by

JTM (B) ⇐⇒ ∅ 	= {a ∈ M : R(j, a)} ⊆ B

(where R is a contextually given ‘possession’ relation), then

(JT )rel = John’s
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Similarly, if JT=10 is John’s ten things, then

(JT=10)rel = John’s ten

So it seems that all the interpretations of familiar determiners are in fact relativiza-
tions of type 〈1〉 quantifiers; we elaborate on this in section 4.5 below. But although
all type 〈1〉 quantifiers can be relativized, not all such relativizations are possible inter-
pretations of natural language determiners. Besides relativizations of purely mathem-
atical type 〈1〉 quantifiers, such as

DM (A) ⇐⇒ |A| divides |M |
whose relativization is the quantifier Div from Chapter 0.2.3, we have the case of
Montagovian individuals Ij (Chapter 3.2.4):

(I rel
j )M (A, B) ⇐⇒ j ∈ A ∩ B

But there appears to be no English determiner, say, John-d, such that

John-d students smoke.

means that John is a student who smokes, i.e. such that John-d students means
‘the students who are identical with John’.

We may also relativize restricted type 〈1〉 quantifiers of the form Q [A] ((3.3) in
Chapter 3.2.1), obtaining

(Q [A])rel
M (B, C) ⇐⇒ (Q [A])B(B ∩ C)

⇐⇒ ((Q [A])[B])M (C)

So this is roughly the same as restricting the quantifier once more. That restriction is
indeed a form of relativization will be clear in section 4.5.5 below.

Next, we calculate

(Q rel)rel
M (A, B, C) ⇐⇒ Q rel

A (A ∩ B, A ∩ C)

⇐⇒ Q A∩B(A ∩ B ∩ C)

⇐⇒ Q rel
M (A ∩ B, C)

Relativizing first to A and then to B is the same as relativizing to A ∩ B.
Another observation is that the relativization of Q is always stronger than Q , in the

sense that Q is definable from it:

(4.26) Q M (B) ⇐⇒ Q rel
M (M , B), and similarly for Q of any other type.

In Chapter 14 we will see that the converse of this may fail: Q rel may be strictly
stronger than Q . (Note that in (4.24), the universes are different.)

Let us finally note that the right-hand side of definition (4.25) (or the definition
for arbitrary types) does not mention the universe at all, so it is clear that the
following holds.

Fact 2
Relativized quantifiers, of any type, satisfy E.
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4.4.2 Empty universes

For definition (4.25) to work properly, one needs to observe the following
stipulation:

• Quantifiers are also defined on the empty universe.

For most familiar quantifiers, the truth conditions in that case are obvious: they are
obtained by simply applying the usual defining condition to ∅. For example,

• ∃∅(∅) is false, since ∅ 	= ∅ is false.
• ∀∅(∅) is true, since ∅ = ∅ is true.
• (QR)∅(∅) is false, since it is false that 0 = |∅| > |∅ − ∅| = 0. But (QR)d

∅(∅)
is true.

• etc.

These stipulations may seem gratuitous in the type 〈1〉 case, but they are indispens-
able—or rather, they avoid totally unnecessary complications—for relativized quan-
tifiers, since even if one often assumes that the universe of discourse is non-empty,
the restriction argument (as well as the scope) of a determiner must be allowed to
be empty.

Still, one might feel that these stipulations, even if practical, are rather consequen-
tial, and one may also wonder if they are the ‘right’ ones. But it should be noted that
in the case of relativized quantifiers it is just a matter of choosing between one of two
possibilities (unless one admits the third possibility of a truth value gap). In general,
the truth of

Q M (∅, B)

may vary with B. But when the quantifier is of the form Q rel, there are only two cases;
it follows immediately from (4.25) that:

• Either Q rel
M (∅, B) holds for all B ⊆ M (viz. when Q ∅(∅) is true), or it holds for no

such B (when Q ∅(∅) is false).

Thus, the stipulations are in fact not so momentous. Are they ‘correct’? This is
essentially just the question of whether certain quantifiers have existential import or
not, a question that has to be answered empirically from case to case. In section
4.2.1 above we discussed what sort of empirical factors are relevant here, with par-
ticular emphasis on the distinction between the truth conditions of sentences and the
implicatures that they often carry when used in communication.

4 .5 CONSERVATIVITY, EXTENSION, AND RELATIVIZATION

We now come to the most basic characteristic of quantirelation denotations, which
ties together relativization with the properties E and C.
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4.5.1 Conservativity

That determiner denotations satisfy E was (we believe) first noted by van Benthem
(1986: ch. 1). Earlier on it had been observed14 that they also satisfy another condi-
tion:

conservativity for type 〈1, 1〉 quantifiers

A type 〈1, 1〉 quantifier Q is called conservative (C) iff, for all M and all
A, B ⊆ M ,

(4.27) Q M (A, B) ⇐⇒ Q M (A, A ∩ B)

Barwise and Cooper expressed this property in terms of the live-on property
(Chapter 3.2.1). Seeing a determiner D as denoting (on each M ) a function [[D]]M
associating with noun denotations (sets) A ⊆ M a type 〈1〉 quantifier, their claim was
that [[D]]M (A) always lives on A. If we define the type 〈1, 1〉 Q by

Q M (A, B) ⇐⇒ B ∈ [[D]]M (A)

this is precisely the claim that Q is conservative. The term ‘‘conservativity’’ is from
Keenan 1981.

4.5.2 A quantirelation universal

Putting together the above observations, we obtain the following important quantire-
lation universal :

(QU) Type 〈1, 1〉 quantifiers that interpret quantirelations in natural languages
satisfy C and E.

A few remarks about this claim are in order.
First, observe that (QU) places real constraints on the eligible type 〈1, 1〉 quanti-

fiers. A priori, nothing would seem to prevent some quantirelation in some language
from denoting a quantifier meaning some on universes with fewer than ten elements,
and at least ten on larger universes. That quantifier is C, but not E. It
seems, in fact, that no language has such quantirelations. Likewise, many math-
ematically natural type 〈1, 1〉 quantifiers are (E but) not C, for example,
MOM (A, B) ⇔ |A| > |B|, or the Härtig quantifier IM (A, B) ⇔ |A| = |B|. At first
sight at least, nothing in principle would seem to exclude these as quantirelation
denotations. But in fact they are excluded.

Second, a host of empirical data supports C. Speakers generally find the
following sentence pairs (logically) equivalent—indeed, the second sentence is just a
clumsily redundant way of expressing the first.

14 Barwise and Cooper 1981; Keenan 1981; Higginbotham and May 1981.
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(4.28) a. At least four students smoke.
b. At least four students are students who smoke.

(4.29) a. More than half of the balls are red.
b. More than half of the balls are red balls.

(4.30) a. All but five teams made it to the finals.
b. All but five teams are teams that made it to the finals.

(4.31) a. John’s two bikes were stolen.
b. John’s two bikes are bikes that were stolen.

(4.32) a. Cats never bark.
b. Cats never are cats and bark.

Not just English determiners, but quantirelations of other languages all appear to be
limited to expressing quantifiers that satisfy C and E. For instance, native
speakers of the Salish language St’át’imcets (also known as Lillooet) report that the
sentence

(4.33) [ta !k	cm ÷i ◦qayq	c !qy	cx�-a] ·ix� ma !∼t	cq
[allpl.det man(redup)-exis] go walk(redup)
‘All the men went walking’

is true just in case all the men in the domain went walking, regardless of who else
did or did not go walking (Matthewson 1998). This fact shows that ta !

k	cm really
does mean all, and a fortiori satisfies C, even though St’áti’imcets is so dif-
ferent syntactically from English as to preclude constructing a sentence with an NP
predicate containing a relative clause (like the English All the men are men who
went walking).

Third, systematic sampling supports (QU);15 moreover, various operations for
forming complex determiners from simpler ones can be seen to preserve C
and E (see Keenan and Westerståhl 1997: 854–5).

15 Two possible exceptions to (QU) that have been discussed in the literature are (a) certain uses
of many and few, and (b) treatment of only, just, and mostly as determiners, in e.g.

(i) Only liberals voted for Smith.

where the interpretation would be onlyM (A, B) ⇔ B ⊆ A, which is not conservative.
We return to many and few in Ch. 6. As to only, there seems to be a general consensus that

it is not really a determiner, but an expression with a much wider and more varied use. A general
account would have to cover cases like:

(ii) a. I only read two papers today.
b. Only John came to the opening.

which seem to indicate that the argument of only is not a noun but an NP, and this works for
(i) too if liberals is treated as a bare plural (as in Liberals do not vote for Jones). But
only also modifies other types of phrases, such as verbs, as in I only TOUCHED him (with stress on
touched), and, as noted in Keenan and Stavi 1986, determiners: only appears in perfectly good
complex determiners which are C and E, like only John’s, only two, only SOME, etc.
The overwhelming weight of evidence is that only does not express a type 〈1, 1〉 quantifier, but
rather expresses a polymorphic operation on type 〈1〉 quantifiers, type 〈1, 1〉 quantifiers, properties
of and relations between individuals, etc. Similar remarks apply to just and mostly.
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But, fourth, it would be somewhat unsatisfactory to see (QU) merely as an empir-
ical generalization based on examples such as the above. Rather, (QU) should itself be
explained. The most obvious idea is that one function of quantirelations is to restrict
the domain of quantification to the denotation of the corresponding noun, i.e. to the
restriction argument. Indeed, this was the idea behind C and E all along.
We will see below how that idea can be made precise with the help of the concept of
relativization.

4.5.3 An extension universal

E in itself has nothing to do with quantirelations, but applies to quantifier expres-
sions of any type. It is a strong form of constancy (Chapter 3.4.1.3), where constancy
in general means being given by the same rule on each universe. A universal stating
that all quantifier expressions in natural languages are constant in this sense seems
undoubtedly correct. Even though constancy has not been precisely defined, such a
universal would still make a substantial claim, since it is easy to artificially construe
quantifiers that behave very differently on different universes: for example, the one
exemplified in the previous section, meaning some on universes with fewer than ten
elements and at least ten on other universes. This quantifier presumably seems so far-
fetched that no one would even raise the issue of whether some quantifier expression
denotes it. But there is nothing logically wrong with it, and no notion of constancy
is built into the concept of a (generalized) quantifier. So the far-fetchedness of the
question is precisely an indication that a constancy universal is indeed true.

Can we replace constancy by E in such a universal? The answer seems to be Yes,
with one caveat.

To begin, we observed that all relativized quantifiers are E (Fact 2). Not only
quantirelation denotations, but many other natural language quantifiers taking more
than one argument are relativized: their ‘action’ is limited to an explicitly given sub-
set of the universe. We will see this in Chapter 10; for example, the various polyadic
quantifiers involved in reciprocal constructions are like that. More generally, all the
polyadic quantifiers presented in that chapter are E. Likewise, the monadic quan-
tifiers with more than two arguments that interpret certain determiners (section 4.7
below) turn out to be E (even though they are not relativized).

Likewise, a vast majority of the type 〈1〉 noun phrase interpretations are E:
proper names, bare plurals, quantified NPs (Chapter 3.2). At least, that is how
we defined them; and we saw in Chapter 3.5 that this definition is the only one
that guarantees that one may think of these expressions as denoting (using) global
quantifiers, even though they contain expressions that get interpreted in mod-
els. Without the constancy insured by E, these global quantifiers would not be
well-defined.

In fact, the only non-E quantifier expressions in natural languages that we have
found are some involving a logical predicate expression, such as thing, that can
(sometimes) be taken to stand for the universe. English examples are everything,
all but two things, most things. In logic, the main example is ∀, which cer-
tainly is a fundamental quantifier (it was Frege’s only primitive quantifier). In one
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sense, however, these are all avoidable, if one so wishes. ∀ can be defined in terms
of the E quantifier ∃ and negation, which is also an E operation.16 Similarly,
everything and all but two things can be defined in terms of Boolean opera-
tions and something, which, although it contains thing, is E. Most things
(which denotes QR), on the other hand, does not seem to be definable from E
type 〈1〉 quantifiers. However, all type 〈1〉 quantifiers are definable from their rela-
tivizations ((4.26) in section 4.4.1 above), which are E type 〈1, 1〉 quantifiers. To
the extent that the supply of quantifiers is a matter of methodological choice, such a
choice can always be made from E quantifiers.

These observations motivate the following tentative universal:

(EU) Quantifiers interpreting natural language expressions are E if the expressions
contain no part that always denotes the universe of discourse (such as English
thing).

(EU) fits the idea of constancy as being given by the same rule in every universe. Such
a rule may or may not mention the universe. When it doesn’t, E holds. When it
does, as with the rules for all but two things and most things, E may fail. And it may
be that in this case the corresponding quantifier expressions in natural languages must
use a predicate that denotes the universe.

4.5.4 The relativization characterization

We now return to quantirelations, and to the claim that the precise role of C
and E here is to restrict the domain of quantification to the restriction argu-
ment. The relevant observation is contained in the next proposition. The first part
of the proposition contains the essential fact. The second part gives a technically
more informative statement that will be used in later chapters. In general, although
this chapter is mostly expository, it contains a few technical results, in particular in
sections 4.5.5 and 4.6, that will be used later on.

Proposition 3

(a) Quantifiers of the form Q rel satisfy C and E. Conversely, each C
and E type 〈1, 1〉 quantifier is equal to Q rel for some type 〈1〉 quantifier Q.

(b) In more detail: The operation ·rel is a bijection between the class of type 〈1〉 quantifiers
and the class of C and E type 〈1, 1〉 quantifiers, a bijection which in fact
is an isomorphism in that it preserves a number of features of these quantifiers, among
them I, monotonicity, and Boolean combinations (including inner negations and
duals).

16 E is a property applicable to all kinds of operations, not just quantifiers; see Ch. 9.2. In
particular, sentential operations like the usual Boolean connectives are trivially E, since they do
not mention the universe at all.
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Proof. The verifications of these claims are all straightforward, but in view of the
importance of the result, we go through them in some detail. We already observed
(Fact 2) that Q rel satisfies E. It also satisfies C, since

(Q rel)M (A, B) ⇐⇒ Q A(A ∩ B) [by definition (4.25)]

⇐⇒ (Q rel)M (A, A ∩ B) [again by (4.25),

since A ∩ (A ∩ B) = A ∩ B]

Conversely, suppose Q 1 is a type 〈1, 1〉 quantifier which is C and E. Define
a type 〈1〉 quantifier Q by

Q M (B) ⇐⇒ (Q 1)M (M , B)

for all M and all B ⊆ M . It follows that

(Q rel)M (A, B) ⇐⇒ Q A(A ∩ B)

⇐⇒ (Q 1)A(A, A ∩ B) [by definition of Q]

⇐⇒ (Q 1)M (A, A ∩ B) [since Q 1 is E]

⇐⇒ (Q 1)M (A, B) [since Q 1 is C]

This means that Q 1 = Q rel, and we have proved part (a) of the proposition.
For part (b), we have just seen that the operation ·rel is onto (surjective), so to prove

that it is a bijection, we need only establish:

Q rel
1 = Q rel

2 �⇒ Q 1 = Q 2

But if Q rel
1 = Q rel

2 and M and B ⊆ M are arbitrary, then

(Q 1)M (B) ⇐⇒ (Q rel
1 )M (M , B) [by definition (4.25)]

⇐⇒ (Q rel
2 )M (M , B) [by assumption]

⇐⇒ (Q 2)M (B)

Thus, Q 1 = Q 2.
Next, that ·rel preserves I means that

Q is I ⇐⇒ Q rel is I

This too is straightforward, but we come back to a fuller discussion of the role of
I in section 4.8 below. Likewise, the preservation of monotonicity, or more pre-
cisely that

Q is increasing ⇐⇒ Q rel is increasing in the second argument

(and similarly for decreasing) is straightforwardly verified once the relevant notions
are in place (Chapter 5).
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Finally, preservation of Boolean operations means that the following hold:

(a) (Q 1 ∧ Q 2)rel = Q rel
1 ∧ Q rel

2
(b) (Q 1 ∨ Q 2)rel = Q rel

1 ∨ Q rel
2

(c) (¬Q )rel = ¬Q rel

(d) (Q¬)rel = Q rel¬, and hence, (Qd)rel = (Q rel)d

We check (d); the others are similar. For any M and any A, B ⊆ M we get, using
(4.25) and the definition of inner negation (Chapter 3.2.3),

(Q¬)rel
M (A, B) ⇐⇒ (Q¬)A(A ∩ B)

⇐⇒ Q A(A − B) [since A − (A ∩ B) = A − B]

⇐⇒ Q rel
M (A, M − B) [since A ∩ (M − B) = A − B]

⇐⇒ (Q rel¬)M (A, B)

The second claim in (d) now follows from the first claim and (c), via the definition
of duals. �

This proposition, then, clarifies the import of the properties of conservativity and
extension as aspects of domain restriction, since the C and E type 〈1, 1〉
quantifiers are precisely the relativizations of the type 〈1〉 quantifiers. It gives sub-
stance to the universal (QU). The syntactic asymmetry between the restriction and
the scope which is characteristic of most natural languages—but not most logical lan-
guages!—is shown to have a precise semantic counterpart in the domain-restricting
(relativizing) function of the restriction.17

Thus, although quantirelation denotations are irrevocably binary relations between
sets, the class of type 〈1〉 quantifiers is still fundamental for their interpretations. Pro-
position 3 shows how the whole class of type 〈1〉 quantifiers is mirrored in a sub-
class of the type 〈1, 1〉 quantifiers, and we shall explore this correspondence on several
occasions in the sequel.

One property which is not preserved by ·rel is E. That Q rel is E does not imply
that Q is E; indeed, Q rel is always E. So it is natural to ask which property among
C and E type 〈1, 1〉 quantifiers corresponds to E for type 〈1〉 quanti-
fiers. That question too has a simple but interesting answer, which we present in
Chapter 6.1.

4.5.5 Restricted quantifiers once again

4.5.5.1 Restriction and freezing

We have seen that for quantirelations there is a significant difference between the first
argument, or restriction, which restricts the domain of quantification, and the second

17 This account of domain restriction is by now standard. Fernando (2001) offers a different
and more elaborate (but as far as we can see not incompatible) explanation of C, set in a
constructive type theory framework. A discussion of his idea falls outside the scope of the present
book.
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argument, i.e. the scope, which comes from the rest of the sentence. Furthermore, if
the quantirelation is a determiner and we freeze the restriction to the set denoted by
the associated noun, we obtain a type 〈1〉 quantifier which serves as the interpretation
of the noun phrase. Such freezing is a mechanism for reducing type 〈1, 1〉 quantifiers
to type 〈1〉 quantifiers. Formally we define it as follows.

freezing the restriction argument

If Q is any type 〈1, 1〉 quantifier, and A is any set, the type 〈1〉 quantifier Q A is
defined, for all M and all B ⊆ M , by

(4.34) (Q A)M (B) ⇐⇒ Q A∪M (A, B)

Thus, we do not assume that A is a subset of M , but expand the universe (if necessary)
so that Q(A, B) becomes meaningful.

Now, as the reader will recall, we already defined, in Chapter 3.2.1, definition
(3.3), a notion of the restriction Q [A] of a type 〈1〉 quantifier Q , and argued that such
restricted quantifiers were appropriate interpretations of noun phrases. So now we
have proposed two ways of interpreting noun phrases. In fact, they amount to exactly
the same thing:

Fact 4
Let Q be any type 〈1〉 quantifier, and A any set. Then

(Q rel)A = Q [A]

Proof. Take any M and any B ⊆ M . Then

((Q rel)A)M (B) ⇐⇒ (Q rel)A∪M (A, B) [by definition (4.34)]

⇐⇒ Q A(A ∩ B) [by definition (4.25)]

⇐⇒ (Q [A])M (B) [by definition (3.3)] �

Recall the (slightly idealizing) assumptions (BClNP) and (BClDet) of closure under
Boolean operations of the classes of NP denotations and determiner denotations,
respectively, discussed in section 4.3. Is there any relation between these two? In
fact there is, provided the following (presumably also slightly idealizing) assumption
is made:

(NPD) For any language, if Q [A] is an NP denotation (in a given language), then Q rel

is a determiner denotation.

Proposition 5
Under (QU) and (NPD), (BClNP) implies (BClDet), but not vice versa.
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Proof. Suppose (BClNP) holds, i.e. that the class of NP denotations (in a given lan-
guage L) is closed under Boolean operations. Take any two type 〈1, 1〉 determiner
denotations; by (QU) and Proposition 3, they are of the form Q rel

1 and Q rel
2 for

some type 〈1〉 quantifiers Q 1 and Q 2. Let A be any set (denoted by some predicate
expression in L). Then (Q rel

i )A = Q [A]
i are NP denotations, i = 1, 2; so Q [A]

1 ∧ Q [A]
2

is an NP denotation by (BClNP). But Q [A]
1 ∧ Q [A]

2 = (Q 1 ∧ Q 2)[A] (Fact 3 in
Chapter 3.2.3), so, by (NPD), (Q 1 ∧ Q 2)rel = Q rel

1 ∧ Q rel
2 is a determiner denota-

tion. Similarly for Q rel
1 ∨ Q rel

2 . But note that we cannot go in the other direction:
If Q [A]

1 and Q [B]
2 are NP denotations and A 	= B, there is no guarantee that we can

obtain Q [A]
1 ∧ Q [B]

2 as the freezing of a determiner denotation.
This shows that the class of determiner denotations in L is closed under con-

junction and disjunction. The case of outer negation is similar, using the fact that
¬Q [A] = (¬Q )[A] and that (¬Q )rel = ¬Q rel. �

4.5.5.2 Ways of freezing

Fact 4 shows that the operations of restriction and freezing correspond in a natural
way. Looking closely, in fact, there are actually at least three possible ways of defin-
ing these operations. Each way preserves Fact 4, but they diverge on other properties,
in particular E. These distinctions are not heeded in the literature, as far as we
know. There is a plausible reason for this, as we will see shortly, and it might seem
that the differences between the various notions are technical and rather inconsequen-
tial. We shall see in the next section, however, and in Chapter 8, that for a proper
account of definite determiners and exceptive determiners, it appears to be essential to
get the notions of freezing and restriction right. Furthermore, we already showed in
Chapter 3.5 that if one wants to treat quantified NPs as denoting global quantifiers,
the only possible definition of restriction and freezing is the one chosen here, i.e. the
first of the following three.

three notions of restriction

If Q is of type 〈1〉, A is any set, and B ⊆ M , define

(a1) Q [A]
M (B) ⇐⇒ Q A(A ∩ B) (as before)

(a2) Q [A]
M (B) ⇐⇒ Q A∩M (A ∩ B)

(a3) Q
[A]
M (B) ⇐⇒ Q A(A ∩ B) and A ⊆ M

(a1) is our official notion of restriction. We have not found clear uses of the other two
notions, although they have been suggested in the literature.
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three notions of freezing

If Q is of type 〈1, 1〉, A is any set, and B ⊆ M , define

(b1) Q A
M (B) ⇐⇒ Q A∪M (A, B) (as before)

(b2) Q A
M (B) ⇐⇒ Q M (A ∩ M , B)

(b3) Q
A
M (B) ⇐⇒ Q M (A, B) and A ⊆ M

Again, when we just talk about freezing, we mean the notion in (b1). Now, one easily
verifies:

(4.35) For each pair ((ai),(bi)), Fact 4 holds. That is, (Q rel)A = Q [A], (Q rel)A =
Q [A], and (Q rel)A = Q [A].

So the respective notions correspond in the right way, but they implement different
ideas. Ordinary freezing expands the universe to include A.18 The (b2) version instead
cuts down the universe, i.e. (given C and E) the restriction argument, to
A ∩ M . The (b3) version does nothing to the universe but makes the corresponding
statement false whenever A 	⊆ M .

Next, observe:

(4.36) When A ⊆ M , all three notions of restriction are equivalent, and likewise all
three notions of freezing.

This presumably explains why the difference between them is not noticed. Often,
freezing or restriction is defined a bit sloppily by considering only the case when the
universe M is given and A is a subset of M . That is, one defines, say, freezing as a local
quantifier Q A on M by

Q A(B) ⇐⇒ Q M (A, B) for all B ⊆ M

and ignores how this could be turned into a global definition.19 For many applica-
tions, the sloppy version is sufficient, since only the case when A ⊆ M is used. But
not always, as indicated above. Besides, global definitions are preferable whenever
possible.

The choice between the different definitions may not matter much when one is
simply interpreting noun phrases in some language. But the differences show up in
the properties of the quantifiers used. One example is repeated freezing: What happens
if you freeze, or restrict, twice? Here the various notions give rather different answers,
as follows (the verifications are straightforward):

18 This is clear for freezing, but perhaps less so for restriction. In restriction we switch to A and
don’t need to care about M , since even though B is a subset of M , the argument A ∩ B is a subset
of A. In any case, Fact 4 shows that (a1) is the correct definition in this case.

19 This is the overwhelmingly standard procedure. An exception is Westerståhl 1994, where the
(b3) version was chosen. (But for the application to iterated quantifiers there, this had no effect;
see Ch. 10.1.)
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(4.37) a. (Q [A])[C] = Q [A∩C]

b. For B ⊆ M , ((Q [A])[C ])M (B) ⇔ Q A(A ∩ C ∩ B)

Roughly, restricting first to A and then to C amounts to restricting both the universe
and the argument to A ∩ C in the (a2) case, whereas only the argument is thus restric-
ted in the (a1) case. Exactly analogous facts hold for freezing.

The most conspicuous way in which these notions differ is with regard to E.

Fact 6
Let Q be any type 〈1〉 quantifier and A any set.

(i) Q [A] is always E.
(ii) Q [A] is E whenever Q is, but usually not otherwise.

(iii) Q [A] is usually not E.

Let Q be a type 〈1, 1〉 quantifier and A any set.

(iv) Q A is E whenever Q is E.
(v) QA and QA need not be E.

Proof. (i) is Fact 10 in Chapter 3.4.1.1. For (ii), if Q is E, and B ⊆ M ⊆
M ′, then (Q [A])M (B) ⇔ Q A∩M (A ∩ B) ⇔ Q A∩M ′ (A ∩ B) (by E) ⇔ (Q [A])M ′ (B).
But, for example, (∀[A])M (B) ⇔ A ∩ M ⊆ B, so ∀[A] is not E (in contrast with ∀A:
(∀A)M (B) ⇔ A ⊆ B). As to (iii), the requirement that A ⊆ M will usually prevent
E, since one can find M ⊆ M ′ such that A 	⊆ M but A ⊆ M ′.

Now suppose Q is of type 〈1, 1〉 and E, and B ⊆ M ⊆ M ′. Then (Q A)M (B) ⇔
Q A∪M (A, B) ⇔ Q A∪M ′ (A, B) ⇔ (Q A)M ′ (B). This proves (iv). For (v), see the
examples below. �

Examples

1. Q rel is always E, so the same holds by (iv) for (Q rel)A = Q [A] (Fact 4). That is,
(i) follows from (iv).

2. three A is E; in fact, three A = three A, since both express the condition |A ∩ B| =
3. One the other hand, (three A)M ⇔ |A ∩ B| = 3 & A ⊆ M , so three A is not
E.

3. (all but three)A, (all but three)A, and (all but three)A express the conditions |A −
B| = 3, |(A ∩ M ) − B| = 3, and |A − B| = 3 & A ⊆ M , respectively. These are
all different, and only the first is E.

4. (the three)A is E by (iv); moreover (the three)A = (the three)A, since both express
the condition |A| = 3 & A ⊆ B (adding A ⊆ M here has no effect since, by
assumption, B ⊆ M ). But (the three)A expresses that |A ∩ M | = 3 & A ∩ M ⊆
B, which is not E.

4.5.5.3 Type 〈1〉 quantifiers as frozen type 〈1, 1〉 quantifiers

Another advantage of our chosen way of defining restriction and freezing is that
many common type 〈1〉 quantifiers that interpret non-quantified noun phrases can
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nevertheless be construed as frozen type 〈1, 1〉 quantifiers. This is just a technical
trick, but we shall have use for it in Chapters 7 and 8. The cases we will be interested
in are the following (see Chapter 3.2.1 and 3.2.4):

Fact 7
(a) Ij = all {j}

ei

(b) Ij ∧ Im = all {j,m}
ei

(c) Cpl = all C
ei

(d) Ij ∨ Im = some{j,m}

Proof. (a) and (b) are special cases of (c). For (c), take any M and any B ⊆ M :

(Cpl)M (B) ⇐⇒ ∅ 	= C ⊆ B

⇐⇒ (all ei)M∪C (C , B)

⇐⇒ (all C
ei )M (B)

(d) is similar. �

So proper names, conjunctions and disjunctions of proper names, and bare plurals,
can be seen as frozen type 〈1, 1〉 quantifiers.20 But we observe that this in no way
extends to all type 〈1〉 quantifiers, or even all NP denotations. Here are some simple
counterexamples:

Proposition 8
There is no C, E, and I type 〈1, 1〉 quantifier Q 1 such that, for some set C,
Ij ∧ (Im ∨ Is) = Q C

1 . Likewise for the quantifier Oj defined by (Oj)M (B) ⇔ B = {j},
or more generally the quantifier OD defined by (OD)M (B) ⇔ B = D.

Proof. We prove the first claim; the other two are similar. Suppose, for contradic-
tion, that Ij ∧ (Im ∨ Is) = Q C

1 . A set X is in Ij ∧ (Im ∨ Is) if and only if j ∈ X and
either m ∈ X or s ∈ X (or both). So none of the following sets are in Ij ∧ (Im ∨ Is):
∅, {j}, {m}, {s}. It follows that when X is any of these four sets, ¬Q 1(C , X ). However,
{j, m} ∈ Ij ∧ (Im ∨ Is), so Q 1(C , {j, m}), and thus by C, Q 1(C , C ∩ {j, m}).
Since C ∩ {j, m} is distinct from the above four sets, it has to be equal to {j, m}, and so
j ∈ C and m ∈ C . By an analogous argument, since {j, s} ∈ Ij ∧ (Im ∨ Is), it follows
that also s ∈ C .

However, Q 1 is I. Let f be a permutation of the underlying universe M (by
E, we may assume C ⊆ M ) which leaves everything as it is except that it permutes
j and s. By the above results, f (C) = C and f ({j, m}) = {s, m}. Since Q 1(C , {j, m})

20 all C
ei expresses the condition ∅ 	= C ∩ M ⊆ B, so it is distinct from Cpl. But all

C
ei =

all C
ei . On the other hand, some{j,m} = some {j,m}, whereas some

{j,m}
expresses that (j ∈ B ∨

m ∈ B) & (j, m ∈ M ), which is distinct from Ij ∨ Im. Only our chosen notion of freezing handles
both examples.
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holds, Q 1(C , {s, m}) holds too, by I. But this contradicts the fact that {s, m} 	∈
Ij ∧ (Im ∨ Is). �

Thus, the noun phrase John, and Mary or Sue cannot be construed as an I
determiner denotation with a frozen restriction argument. Similarly for the noun
phrases only John and only cats.

4 .6 DEFINITENESS

We are now ready to address a property that has received much attention in the lin-
guistic literature: definiteness. The basic intuitions behind definiteness are fairly clear,
at least in languages with both a definite and an indefinite article.21 NPs with the
definite article behave differently in characteristic ways from NPs with the indefinite
article, syntactically as well as semantically. In these cases we are dealing with NPs that
can be taken to refer —to objects or sets of objects. But it has also seemed that other
NPs have similar properties, even quantified NPs. For example, linguists agree that
John is definite, and similarly John’s boats, whereas three boats is indefinite.
What exactly does this mean?

For a recent overview of how linguists have approached this question, we refer to
Abbott 2004. Essentially, two characteristics have been used to identify definiteness.
One is in terms of familiarity: the object or objects referred to by a definite must
already have been ‘introduced’ in the discourse. Indefinites, on the other hand, don’t
refer back to already introduced objects, but themselves serve as such introductions.
The other idea focuses on uniqueness instead. Note, however, that these ideas make
sense only for NPs that can be taken to refer to individual objects in the first place. A
more ambitious enterprise is to try to find a semantic property that singles out, among
all quantified NPs, or among all determiners, the definite ones.

One such attempt, from Barwise and Cooper 1981, has won some acceptance. We
will use (essentially) that definition here, partly because we think it is rather success-
ful, and partly because it is the only attempt at a precise definition of (in)definiteness
for arbitrary determiners that we are aware of. It is not undisputed, but those who
dispute it are not, as far as we know, opposing it to another precise notion, but rather
to certain intuitions, or paradigmatic cases, or tests that it conflicts with. We shall
have occasion to come back to the issue of what the right concept of definiteness
is in Chapter 7, in connection with possessive NPs in partitive constructions. But

21 The articles can be determiners, as in English (the boat, a boat), or one of them can be
a suffix, as in Swedish (bºaten, en bºat). Swedish, by contrast with English, also marks adjectives
for definiteness, but then a determiner is needed as well as the suffix: den stora bºaten, en stor
bºat (the big boat, a big boat). The facts are similar for plural definites: bºatarna, de stora
bºatarna (the boats, the big boats), although in the Swedish case the adjectival marking coincides
with the plural marking: tre stora bºatar (three big boats).

It is well known that native speakers of languages that do not mark for definiteness usually find
it quite hard to choose the correct form (definite or indefinite) when they learn to speak a language
that does.
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in this section, we simply present Barwise and Cooper’s notion, and some of its
properties:22

definite quantifiers

(a) A type 〈1, 1〉 quantifier Q is definite iff for every set A, and every universe M ,
(Q A)M is either empty or a non-trivial principal filter on M , i.e. such that
for some non-empty subset XM of M , (Q A)M = {B ⊆ M : XM ⊆ B}.

(b) A quantirelation is definite iff it denotes a definite quantifier. An NP is defin-
ite if it is formed with a definite determiner.

Typical definite determiners that we have already encountered are the ten
and John’s; using the interpretations given earlier and our definition of freezing
we calculate:

(the tenA)M =
{ {B ⊆ M : A ⊆ B} if |A| = 10

∅ otherwise

(John’sA)M =
{ {B ⊆ M : A ∩ Rj ⊆ B} if A ∩ Rj 	= ∅

∅ otherwise

It is important to note that a definite quantifier can be the trivial 0M on some (or
even all) universes M , but never 1M , since the generating set is required to be non-
empty. It follows that every is not definite on this definition, since although it is a
principal filter on every universe M , that filter may sometimes be the trivial P(M ).
This reflects a difference in existential commitment between, say, The unicorns
were restless and Every unicorn was restless.

On the other hand, the three alternative interpretations of the definite article the
discussed in section 4.2.2 above, i.e. thesg, thepl, and all ei, are all definite.23

This raises a small issue about the definition above. Usually, definiteness applies
to both determiners and NPs, but Barwise and Cooper define definiteness only for
determiners and quantified NPs. Thus, the definiteness of John, or John and Mary,
about which presumably everyone agrees, is not captured by their definition. It does
not help to use the fact, noted in the preceding section, that Ij = all {j}ei , for even
though all ei is definite, the definition as stated doesn’t extend the notion of definite-
ness to NPs that are not formed with a determiner. However, if one agrees that John
and John and Mary are definite, they are presumably definite in the same sense as

22 Barwise and Cooper (1981) allow partial quantifiers, and they say that (Q A)M is undefined
when we say it is empty. That difference is not important here.

Also, Barwise and Cooper do not raise the issue of the uniqueness of the generating set over
different universes that we address here (Proposition 10 below), presumably because their account
is not clearly a global one.

23 According to Abbott (2004), the universal determiners every, each, all are often classified
as definite. Presumably, this is when they are interpreted with existential import, i.e. as all ei.
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above, i.e. by the fact that (on a given universe) they denote a non-trivial principal
filter.

We therefore extend Barwise and Cooper’s definition slightly (but surely in their
spirit) so that the definiteness of an NP means that it denotes a type 〈1〉 quantifier
which on each universe is either empty or a non-trivial principal filter. This coincides
with the given definition for quantified NPs, but adds some unquantified definite
NPs. It also makes it more reasonable to say that a quantifier, or quantirelation, or
NP, is indefinite iff it is not definite.

Bare plurals are usually regarded as definite in their universal or generic read-
ing (Firemen are brave), and indefinite in their existential reading (Firemen
are available today). The universal interpretation that we represented with the
quantifiers Cpl (Chapter 3.2.1) is indeed definite in the above sense.24

The idea behind Barwise and Cooper’s definition is simple and clear. In particular,
one should note that just as definiteness and indefiniteness were originally applied to
referring NPs, so Barwise and Cooper’s definition in a sense singles out among the
general class of NP denotations those that can be seen as referring, although it is actu-
ally plural reference to a set of individuals. Definite NPs can be taken to refer to the
generator set XM of the principal filter (or, equivalently, to the intersection of all sets
belonging to Q M ). In this sense, John refers to John (technically, to {j}), John and
Mary refers to the set of John and Mary, John’s books refers to the set of books
that John owns (say), the ten boys refers to the set of boys in the discourse universe,
provided there are exactly ten of them, etc.

Observe next that the definition in principle allows the generating sets XM to be
different for different M . That is just a consequence of adopting a global view of
semantics. But this might appear to make the above idea about reference problematic.
If the reference of the ten boys could change when a set of girls was added to the
universe, for example, it would be a very shaky notion of reference. But of course this
does not happen. And in fact we can now show that in the linguistically interesting
cases, it cannot happen.

Lemma 9
If Q is definite and E, (Q A)M is generated by XM , and (Q A)M ′ is generated by XM ′ ,
then XM = XM ′ .

Proof. We first show that under these circumstances,

(4.38) if M ⊆ M ′, then XM = XM ′

To see this, note that XM ∈ (Q A)M , and so XM ∈ (Q A)M ′ , since Q A is E, by
Fact 6 (iv) in the preceding section. This means that XM ′ ⊆ XM . Therefore, XM ′ ⊆
M . But XM ′ ∈ (Q A)M ′ , so it follows by E that XM ′ ∈ (Q A)M , i.e. XM ⊆ XM ′ . This
proves (4.38).

24 Bare plurals are sometimes analyzed as having a null determiner. That determiner would
denote all ei in the universal case and some in the existential case.
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For the general case, note that since XM is defined, so is XM∪M ′ . This also follows
from E: since M ∈ (Q A)M , M ∈ (Q A)M∪M ′ by E, so (Q A)M∪M ′ is non-empty.
Hence, using (4.38) twice, we obtain XM = XM∪M ′ = XM ′ . �

Clearly, the fact that Q is E is crucial in this proof.

Proposition 10
If Q is C, E, and definite, then Q A is generated by the same set on each uni-
verse where it is non-trivial. On such a universe M, this is the smallest set on which (Q A)M
lives. Extending the notation from Chapter 3.4.1.2, we may write the set WQ A (rather
than W(Q A)M

, since M is immaterial ). Also, WQ A is a subset of A.

Proof. From the above lemma it follows that Q A is generated by the same set—call it
X —on universes where it is non-trivial.

Next, note that

(a) if (Q A)M is non-trivial, then X ⊆ M

Now suppose (Q A)M lives on Z . This means that for all B ⊆ M , X ⊆ B if and only
if X ⊆ B ∩ Z . Taking B = X it follows that X ⊆ Z . Since clearly (Q A)M lives on X ,
X is the smallest set that the quantifier lives on, i.e. X = WQ A .

For the final claim, if Q A is trivial on every universe, WQ A = ∅ ⊆ A (Lemma 1(b)
in Chapter 3.2.2). So we may assume that Q A is non-trivial on at least one universe.
By (a), it suffices to show that (Q A)A is non-trivial. But (Q A)M is non-trivial for some
M , so there is B ⊆ M such that (Q A)M (B), i.e. Q M∪A(A, B). By C and E,
Q A(A, A ∩ B), so (Q A)A is non-empty, and hence non-trivial. �

Since quantirelation denotations are C and E, we always get a unique gen-
erating subset of A for definite quantirelations (on universes where they are non-
trivial). That set can be A itself, as in the ten boys, but it can also be a proper subset,
as in John’s books. It is always the smallest set that Q A lives on.

Roughly, Proposition 10 shows that definite determiners behave as they are sup-
posed to. It is not a completely straightforward observation, however, and it requires
that frozen relativized quantifiers are E, which in turn depends on choosing the
right notion of freezing. With the (b2) version of freezing in the previous section,
for example, QA is normally not E in the relevant cases. For example, we saw in
Example 4 after Fact 6 that (the three)A is not E.

The uniqueness of the generating set for definites is not an issue that has been much
discussed in the literature. The reason for this is not that for quantifiers of the form
(Q A)M one always assumes that A ⊆ M . Rather, it is that one assumes a local per-
spective, and thus does not notice the role of the universe (of discourse). But as soon
as one takes seriously the fact that it is a standard feature of natural languages to use
the same expressions with different universes, it becomes clear that adequate accounts
of many linguistic phenomena have to factor in the universe as a parameter. That is,
they have to be global accounts. In the particular case of definite determiners, the
most obvious question from a global perspective is how the generating set depends
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on the universe. The appeal of Proposition 10 is that it shows that this set does not
depend on the universe. So the local analysis turns not to distort the facts in this case,
after all. But this is an insight that needs proof, not just assumption.

One feature of definite NPs is that they are good in exception phrases: except
the two girls or except Deirdre’s friends. Given that definites refer to sets,
this fits easily into a common form of analysis of exception phrases. However, many
non-definite NPs are also good in such phrases, so in fact a more general analysis is
required. We discuss these matters further in Chapter 8.

Two properties often thought to characterize definite NPs uniquely are (1) that
they can occur in partitive constructions, most of the boys, some of these cats,
several of Mary’s cars, and (2) that they cannot occur in existential-there sen-
tences: *There are John’s/the three bikes in the garden. In Chapter 7.11
we shall take issue with these claims, however, or more precisely with the claim that
only definites have these properties. Chapter 6.3 discusses existential-there sentences
in some detail.

4 .7 TYPE 〈1, 1, 1〉 QUANTIFIERS AND BEYOND

We have now seen a number of examples of quantirelations—mostly determ-
iners—denoting type 〈1, 1〉 quantifiers, and some fundamental properties they all
share. In this section we briefly mention a few English expressions that also appear to
behave like determiners but take two or more restriction arguments, which means that
their type is 〈1, 1, 1〉 or beyond. The main syntactic reason for thinking of them as
determiners is that when you fix both restriction arguments, you get what seems to be
an ordinary noun phrase, denoting a type 〈1〉 quantifier. And the main semantic reason
is that these determiners also have the basic properties—C, E, I—that
quantirelations have. An extended study of such expressions is Keenan and Moss
1984, to which we refer the reader for many more examples and details.25

Roughly, these expressions either involve comparatives or Boolean operations (or
both). Here are some examples, with the putative determiner phrase italicized.

(4.39) a. More students than teachers went to the ball game.
b. As many doctors as lawyers were at the cocktail party.
c. Twice as many women as men voted for Smith.
d. Proportionately more Danes than Swedes smoke.

(4.40) a. Every student and teacher was there.
b. The eighty-six men and women started singing.
c. Some student’s cats and dogs were locked in the apartment.

25 But that paper takes a local perspective on quantifiers, as does most of Keenan’s work. This
means that the results about expressive power, which constitute a substantial part of Keenan and
Moss 1984, and similarly for Keenan and Stavi 1986, are largely unrelated to the global expressivity
results in the final part of this book, and more generally to the global view of quantification that
we take. See Ch. 11.3.1 for further comments on this issue.
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(4.41) a. Between three and six teachers and more than twice as many students saw
the accident.

b. More lawyers than either doctors or businessmen came.

If treated as determiners, these expressions are syntactically discontinuous, which
might seem problematic. However, especially in the comparative cases, arguments
for a determiner analysis are quite strong. As we saw: (a) syntactically, when com-
bined with their restriction arguments, the results are typical NPs; (b) semantically,
they have the usual properties of determiners, C and E (see below); (c) other
analyses are ad hoc or less uniform. But we shall not dwell too much on these argu-
ments here, noting only that such an analysis is indeed possible. A few interpretations
and some comments are given below.26

(4.42) a. more−thanM (A, B, C) ⇐⇒ |A ∩ C | > |B ∩ C |
b. as many−asM (A, B, C) ⇐⇒ |A ∩ C | = |B ∩ C |
c. propmore−thanM (A, B, C) ⇐⇒ |B| · |A ∩ C | > |A| · |B ∩ C |
d. every−andM (A, B, C) ⇐⇒ A ∪ B ⊆ C

e. some student’s−andM (A, B, C) ⇐⇒ ∃a ∈ student[A ∩ Ra 	= ∅ &
B ∩ Ra 	= ∅ & (A ∪ B) ∩ Ra ⊆ C]

f. between three and six−and more than twice as manyM (A, B, C) ⇐⇒
3 ≤ |A ∩ C | ≤ 6 & |B ∩ C | > 2 · |A ∩ C |

Beginning with comparatives, a first question is if other analyses are possible, and how
in particular more−than relates to the comparative quantifiers we have encountered
earlier. Recall that the type 〈1, 1〉 quantifier MO from Chapter 2.4 expresses the
basic comparison relation: MOM (A, B) ⇔ |A| > |B|. Clearly more−than is definable
in terms of MO:

more−thanM (A, B, C) ⇐⇒ MOM (A ∩ C , B ∩ C)

But also, conversely,

MOM (A, B) ⇐⇒ more−thanM (A, B, M )

So these two are interdefinable and thus have the same strength. Incidentally,
although MO is not a determiner denotation, since it is not C, it is easily
expressible in English with an existential-there construction: the following are equi-
valent:

(4.43) a. |A| > |B|
b. More As than Bs exist.
c. There are more As than Bs.

26 These examples are all of type 〈1, 1, 1〉, but other monadic types can also be exemplified.
Sometimes one writes these types so as to indicate that the first (two) arguments are the restrictions
and the last is the scope (see Keenan and Westerståhl 1997: 866–7), but we use the standard type
notation here.
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So sentences of the form There are more−than− are naturally expressed with the
quantifier more−than.27 Could we also define more−than in terms of most? We will see
in Chapter 14 that if infinite sets are allowed, most is strictly weaker than more−than,
and that on finite universes, although they have the same logical expressive power,
there is no simple way in English of rendering more−than in terms of most.28

Continuing our exploration of alternative analyses, is it not possible to analyze
(4.39a) in another way, using type 〈1, 1〉 quantifiers, along one of the following lines?

(4.44) a. More students than teachers went to the ball game.
b. More students than teachers went to the ball game.

But this seems ad hoc. Roughly, there are three slots to fill in these sentences, two
of which clearly have the character of restrictions, whereas the remaining one is the
scope. Freezing just one of the restrictions produces rather awkward results. But if
you freeze both simultaneously, you get a well-behaved noun phrase. Moreover, it is
not hard to see that the type 〈1, 1〉 quantifiers that would result if the first option were
chosen, namely:

more students than(A, B) ⇐⇒ |student ∩ B| > |A ∩ B|
more−than teachers(A, B) ⇐⇒ |A ∩ B| > |teacher ∩ B|

are not C, in contrast with more−than (see below).
Keenan and Moss (1984) give further arguments for the viability of this analysis,

as well as counter-arguments against other proposals. Further, expressions other than
nouns can be arguments of the expression more−than: for example, adjectives, as in

(4.45) More male than female students went to the ball game.

(where more male than female looks like an ordinary determiner taking one
restriction argument), and verb phrases, as in

(4.46) a. More students came early than left late.
b. More students came early than teachers left late.

27 As a determiner word, more seems to be related to the comparative form of adjectives,
roughly via expressions like more numerous than: MO(A, B) means exactly that A is more numer-
ous than B. (However, the determiner most does not mean most numerous.)

28 Keenan and Moss (1984) prove that more−than is what they call inherently two-place by
means of the following (local) result. Think of a type 〈1, 1〉 quantifier on M as a function from
subsets of M to type 〈1〉 quantifiers on M (see Ch. 3.1.3), and a type 〈1, 1, 1〉 quantifier on M as
a function from pairs of subsets of M to type 〈1〉 quantifiers on M . Then, on a given finite uni-
verse M with at least three elements, the range of the two-place function more−thanM cannot be
identical to the range of any one-place function, simply because, as Keenan and Moss show (their
Theorem 5), the former range contains more type 〈1〉 quantifiers on M than one-place functions
can supply.

This, however, does not show that more−than is not definable (locally or globally) from (as
opposed to identical with) one-place functions using Boolean or other first-order notions. Indeed,
we will see in Ch. 14 that more−than is logically (and globally) definable in terms of the two
determiner denotations most and infinitely many. But it is doubtful what, if anything, such a fact
says about expressivity in natural languages (see Ch. 12.5).
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Beghelli (1994) makes a general study of such comparatives, extending the approach
of Keenan and Moss. Here we merely conclude that we do need the lexical item
more−than and its cognates as type 〈1, 1, 1〉 quantifiers in the analysis of the sen-
tences (4.39).

A final comment about comparatives is that the quantifier propmore−than is some-
times used even when no word like proportionally appears. For example, (4.39d)
could equally well be expressed as

(4.47) More Danes than Swedes smoke.

since someone familiar with the fact that the Swedish population is about twice the
size of the Danish would be unlikely to take it in any other than the proportional
reading.

As to the Boolean combinations in (4.40), we shall only note here that even though
an analysis in terms of type 〈1, 1, 1〉 quantifiers is certainly possible for some readings,
these sentences are often ambiguous in systematic ways which an adequate account
should somehow make clear. Take the simple (4.40a), but replace every by three,
which allows the different readings to become clearer:

(4.48) Three students and teachers were there.

First, there is the reading that the three who were there are both students and teachers
(the intersection reading). This is less plausible for (4.48), but quite plausible for, say,
Three mothers and doctors were there. Second, there is the union reading
similar to the one in (4.42d), except that it may further be required in this case that
each of the two sets in the union is non-empty. These two readings apply to (4.40a) as
well, as Keenan and Moss note. But (4.48) also has the third reading that six people,
three students and three teachers, were there. We come back to the distribution of
readings for these sentences in Chapter 5.8.

The mixed cases (4.41), finally, are even more complex. However, a good case can
be made that while an analysis in terms of type 〈1, 1, 1〉 quantifiers goes relatively
smoothly, alternative analyses risk running into various problems.

Having now surveyed some candidates for determiners with more than one restric-
tion argument, let us now look at the properties of the quantifiers they would denote.
Clearly, each of the above examples satisfies E and I. Further, observe that
C for a type 〈1, 1〉 quantifier Q means that if two scope arguments B and B′
coincide on the restriction A, i.e. if A ∩ B = A ∩ B′, then Q M (A, B) ⇔ Q M (A, B′).
This generalizes directly to quantifiers with more than one restriction argument, for
example, in the type 〈1, 1, 1〉 case.

C For A, B, C , C ′ ⊆ M , if A ∩ C = A ∩ C ′ and B ∩ C = B ∩ C ′, then
Q M (A, B, C) ⇔ Q M (A, B, C ′).

It is easily verified that this amounts to restricting to the union of the restriction argu-
ments, i.e. to the condition
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For A, B, C ⊆ M , Q M (A, B, C) ⇔ Q M (A, B, (A ∪ B) ∩ C).29

Also, it is clear that all of our examples so far are C.30

Certain other properties of type 〈1, 1〉 quantifiers generalize too. Anticipating
Chapter 6, we say that a type 〈1, 1〉 Q is intersective if only the intersection of
the restriction and the scope matters, i.e. if A ∩ B = A′ ∩ B′ implies Q M (A, B) ⇔
Q M (A′, B′). Similarly for a type 〈1, 1, 1〉 Q .

I For A, B, C , A′, B′, D ⊆ M , if A ∩ C = A′ ∩ D and B ∩ C = B′ ∩ D, then
Q M (A, B, C) ⇔ Q M (A′, B′, D).

For example, more−than and as many−as are intersective, but not propmore−than.
Another group of properties that immediately apply to type 〈1, 1, 1〉 quantifi-

ers are monotonicity properties (Chapter 5). These are related to the distribution of
polarity items in sentences using comparative or other type 〈1, 1, 1〉 quantifiers (see
Chapter 5.9).

This ends the present chapter’s survey of quantirelations and closely related expres-
sions that denote C, E, and (sometimes) I quantifiers. In the following
two chapters we shall go more deeply into certain significant properties that some
but not all of these quantifiers have. After that, we shall make a detailed study of two
special kinds of determiner expressions that are richly productive in many languages:
possessive and exceptive determiners. But we end this chapter with the presentation
of an extremely useful technical device for studying C, E, and I type
〈1, 1〉 quantifiers, or equivalently, as will follow from Proposition 3 in Section 4.5, of
I type 〈1〉 quantifiers.

4 .8 I AND THE NUMBER TRIANGLE

The definition of I for type 〈1〉 quantifiers ((3.17) in Chapter 3.3) can be directly
generalized to type 〈1, 1〉 quantifiers. This time, given a universe M and A, B ⊆ M ,
there are four sets to consider (Fig. 4.1). As before, I says that only the size of these
sets matter for whether Q M (A, B) holds or not.

29 Unlike the type 〈1, 1〉 case, C plus E for type 〈1, 1, 1〉 quantifiers does not mean
that they are relativizations in any straightforward sense. We could define a new relativization oper-
ation that took two set arguments and relativized to their union: Q 2rel

M (A, B, C ) ⇔ Q A∪B((A ∪
B) ∩ C ). Then Q2rel is always C and E, but it would not follow that any C and
E type 〈1, 1, 1〉 quantifier is equal to such a relativized quantifier.

30 Keenan and Moss (1984) prove general results showing that only C quantifiers are
generated in the ways they consider.
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A∩BA−B
B−A

M−(A∪B)

M

Figure 4.1 The four sets relevant to a type 〈1, 1〉 quantifier on M

Isom for type 〈1, 1〉 quantifiers

A type 〈1, 1〉 quantifier Q satisfies I iff for any universes M , M ′ and any A, B ⊆
M , A′, B′ ⊆ M ′:

(4.49) if |A − B| = |A′ − B′|, |A ∩ B| = |A′ ∩ B′|, |B − A| = |B′ − A′|, and
|M − (A ∪ B)| = |M ′ − (A′ ∪ B′)|, then Q M (A, B) ⇔ Q M ′ (A′, B′).

Now, C says precisely that the set B − A does not matter, and E that M −
(A ∪ B) does not matter. In other words, together they say that only A − B and A ∩ B
matter:

Fact 11
(a) A type 〈1, 1〉 quantifier Q is C and E iff the following condition holds:

Whenever A, B ⊆ M and A′, B′ ⊆ M ′ are such that A − B = A′ − B′ and A ∩
B = A′ ∩ B′, Q M (A, B) ⇔ Q M ′ (A′, B′).

(b) Thus, Q is C, E, and I iff the following condition holds: Whenever
A, B ⊆ M and A′, B′ ⊆ M ′ are such that |A − B| = |A′ − B′| and |A ∩ B| =
|A′ ∩ B′|, Q M (A, B) ⇔ Q M ′ (A′, B′).

Proof. (b) follows from (a) and (4.49). For (a), suppose first that Q satisfies the stated
condition. To show that Q is C, take A, B ⊆ M , and let A′ = A, B′ = A ∩ B,
and M ′ = M . Then A − B = A′ − B′ and A ∩ B = B′ = A′ ∩ B′, so Q M (A, B) ⇔
Q M ′ (A′, B′) ⇔ Q M (A, A ∩ B). For E, take A, B ⊆ M ⊆ M ′, and let A′ = A and
B′ = B. By the condition, Q M (A, B) ⇔ Q M ′ (A′, B′) ⇔ Q M ′ (A, B).

Conversely, suppose Q is both C and E, and let A, B ⊆ M and A′, B′ ⊆
M ′ be as in the antecedent of the condition. Note that this implies that A = A′. Then
Q M (A, B) ⇔ Q M (A, A ∩ B) [by C] ⇔ Q M (A′, A′ ∩ B′) [by assumption] ⇔
Q M ′ (A′, A′ ∩ B′) [by E] ⇔ Q M ′ (A′, B′) [by C]. �

As an application, let us verify that relativization (the operation ·rel) does indeed pre-
serve I, as was stated in Proposition 3. Let Q be any type 〈1〉 quantifier:

(4.50) Q is I iff Q rel is I.
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Proof. Suppose first Q is I. To verify that the condition in Fact 11 (b) holds, take
A, B ⊆ M and A′, B′ ⊆ M ′ such that |A − B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|.
Then Q rel

M (A, B) ⇔ Q A(A ∩ B) ⇔ Q(|A − B|, |A ∩ B|) [by Fact 4 in Ch. 3.3, since
Q is I and A − (A ∩ B) = A − B] ⇔ Q(|A′ − B′|, |A′ ∩ B′|) [by assumption] ⇔
Q A′ (A′ ∩ B′) ⇔ Q rel

M ′ (A′, B′).
Now suppose Q rel is I. Take A ⊆ M and A′ ⊆ M ′ such that |M − A| =

|M ′ − A′| and |A| = |A′|. Then Q M (A) ⇔ Q rel
M (M , A) [by the definition of relativ-

ization] ⇔ Q rel
M ′ (M ′, A′) [by assumption, since Q rel is I] ⇔ Q M ′ (A′). Thus, Q

is I. �

The proof used the fact, pointed out in Chapter 3.3, that an I type 〈1〉 quantifier
Q can be identified with a binary relation between (cardinal) numbers, also named
Q , such that

(4.51) Q M (A) ⇐⇒ Q(|M − A|, |A|)
From Fact 11 (b) we see that I type 〈1, 1〉 quantifiers that are C and E
can also be identified with binary relations between numbers. But these quantifiers
are (Proposition 3) exactly those of the form Q rel, for some I type 〈1〉 Q . Indeed,
Q and Q rel correspond to the same binary relation between numbers. Let us state this
fact explicitly.

Conserv, Ext, and Isom type 〈1, 1〉 quantifiers as binary relations

If Q is a C, E, and I type 〈1, 1〉 quantifier, define a binary relation
between cardinal numbers, also called Q , by

(4.52) Q(k, m) ⇐⇒ there are M and A, B ⊆ M such that |A − B| = k,
|A ∩ B| = m, and Q M (A, B)

Fact 12
If R is any binary relation between cardinal numbers and the type 〈1, 1〉 quantifier Q ′ is
defined by

Q ′
M (A, B) ⇐⇒ R(|A − B|, |A ∩ B|)

then Q ′ is C, E, and I, and the numerical relation corresponding to Q ′ by
(4.52) is R. Thus, if Q is any I type 〈1〉 quantifier, we have

(4.53) Q rel
M (A, B) ⇐⇒ Q rel(|A − B|, |A ∩ B|)

for all M and all A, B ⊆ M. Furthermore, for any (cardinal ) numbers k, m,

(4.54) Q(k, m) ⇐⇒ Q rel(k, m)

Proof. That Q ′ is C, E, and I follows immediately from Fact 11 (b).
Then Q ′(k, m) ⇔ there are M and A, B ⊆ M such that |A − B| = k, |A ∩ B| = m,
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and Q ′
M (A, B) [by (4.52)] ⇔ R(k, m) [by definition of Q ′]. So if Q is I and of

type 〈1〉, Q rel has these properties (using (4.50)), and we get (4.53).
Furthermore, (4.54) follows from (4.53): Take k, m, and M and A, B ⊆ M

such that |A − B| = k, |A ∩ B| = m. Then Q rel(|A − B|, |A ∩ B|) ⇔ Q rel
M (A, B) [by

(4.53)] ⇔ Q A(A ∩ B) ⇔ Q(|A − B|, |A ∩ B|) [by (4.51)]. �

Thus, the correspondence between I type 〈1〉 quantifiers and C, E, and
I type 〈1, 1〉 quantifiers is indeed close; when seen as numerical relations, there is
no difference at all.

Now, let us restrict attention to the case of finite universes—a restriction one can
often make in natural language contexts. We let F be the assumption that all uni-
verses are finite. Then these quantifiers can be seen as binary relations between natural
numbers, i.e. as subsets of N × N. Using this, we can obtain a graphical representa-
tion which is very useful for stating, illustrating, and proving properties of I type
〈1〉 quantifiers (or C, E, and I type 〈1, 1〉 quantifiers). Think of N × N

as a number triangle with (0, 0) on top, as in Fig. 4.2. Then represent Q by putting
a ‘‘+’’ at those (k, m) which belong to Q , and a ‘‘−’’ elsewhere. Familiar quantifiers
can now be seen as patterns in the number triangle, as in Fig. 4.3.

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

. . . . . . . . . . .

Figure 4.2 The number triangle

We call the lines (0, 0), (1, 0), (2, 0), (3, 0), . . . and (0, 0), (0, 1), (0, 2), (0, 3), . . .
the edges of the number triangle, and the horizontal line (n, 0), (n − 1, 1), . . . , (n −
m, m), . . . , (1, n − 1), (0, n) the n’th level ; see Fig. 4.4. In the case of I type 〈1〉
quantifiers Q , the nth level corresponds to universes of size n. For quantifiers of the
form Q rel, n is instead the size of the first argument.

The usefulness of representing quantifiers in the number triangle was first poin-
ted out by van Benthem (1984). It sometimes enables one to perspicuously visualize
various properties of quantifiers, to discover patterns that would otherwise be harder
to discern, and to give simple proofs of quantificational facts. We will see several
examples of this later on. For now, we just note the following:

• Boolean operations on quantifiers are easily visualizable in the number triangle:
conjunction is intersection (of +s), disjunction is union, and outer negation is com-
plement, i.e. sign switch. Further, the inner negation of Q is obtained by rotating
the Q triangle 180 degrees around the vertical axis; see Fact 5 in Chapter 3.3. To
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−− +− + +− + + +− + + + +− + + + + +− + + + + + +− + + + + + + +− + + + + + + + +− + + + + + + + + +. . . . . . . . . . . . . . . . . . . . .
some (or ∃)

+− +− − +− − − +− − − − +− − − − − +− − − − − − +− − − − − − − +− − − − − − − − +− − − − − − − − − +. . . . . . . . . . . . . . . . . . . . .
all (or ∀)

−− +− − +− − + +− − − + +− − − + + +− − − − + + +− − − − + + + +− − − − − + + + +− − − − − + + + + +. . . . . . . . . . . . . . . . . . . . .
most (or QR)

++ −+ − ++ − + −+ − + − ++ − + − + −+ − + − + − ++ − + − + − + −+ − + − + − + − ++ − + − + − + − + −. . . . . . . . . . . . . . . . . . . . .
an-even-number-of (or Q even)

Figure 4.3 Some quantifiers in the number triangle

n

n − m

(n − m, m)

m

Figure 4.4 A point at level n

get the dual of Q , one switches sign after the rotation; an example is afforded by
the first two triangles in Fig. 4.3.

• The quantifier 0 has only −s, and 1 has only +s. Thus, a quantifier (of the kind rep-
resentable in the number triangle) is non-trivial iff its representation has at least one
+ and at least one −. Stronger non-triviality requirements are easily formulated.
Call Q trivial at level n if that level consists of only +s or only −s. The condition
V (from van Benthem 1984) says that each level (except level 0) is non-trivial.
This rules out many common quantifiers, such as at least five, which is trivial on
levels up to 4. But at least five is eventually V, in the sense that from a certain
level on, it is non-trivial. In general, if P is a property of quantifiers which makes
sense when restricted to levels, the weaker property of being eventually P is some-
times useful.

• Similarly, we can say that two quantifiers are eventually equal if their patterns in
the triangle coincide from a certain level on. This notion is significant in connec-
tion with logical definability, which we come to in Chapter 13. If a quantifier is
definable in some logical language, then so is each quantifier eventually equal to it.
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This is because the logical languages we consider all contain FO, and any pattern
of +s and −s up to some finite level is describable in FO.

• To see that the last claim is true, note that the type 〈1〉 quantifier ∃!k,m defined by

(∃!k,m)M (A) ⇐⇒ |A| = m and |M − A| = k

(or its relativization exactly m and all but k) has a + at the point (k, m) and −s at
all other points. It is clearly definable in FO, and any pattern below a given level is
describable as the finite disjunction of the ∃!k,m, for all the + points (k, m) below
that level, and so is definable in FO too.



5
Monotone Quantifiers

Monotonicity is a phenomenon that turns up in many different contexts, linguistic
as well as mathematical. Abstractly, it says of some function F that it is increasing:
relative to an ordering ≤1 of the arguments and an ordering ≤2 (which may be the
same as ≤1) of the values:

if x ≤1 y, then F (x) ≤2 F ( y)

Such functions are well-behaved in ways that make them have interesting properties.
For quantifiers, being second-order relations, the relevant order for arguments is

inclusion, and for values implication, and the general concept of monotonicity applies
straightforwardly to quantifiers. However, we shall see that for the quantifiers that
show up as denotations of NPs or determiners in natural languages, there are more
fine-grained notions of monotonicity which play significant roles.

In a way, Aristotle discovered logic by studying monotonicity. Each of the four
Aristotelian quantifiers has strong monotonicity properties, and, moreover, many
valid syllogisms can be seen as statements of these properties. For example, the syl-
logism (called Barbara by medieval philosophers1)

(5.1) all B C

all A B

all A C

states that the quantifier all is (what we will call) monotone increasing in the right
argument (and also that it is decreasing in the left argument), and

(5.2) no B C

all A B

no A C

can be read as stating that the quantifier no is monotone decreasing in the left argu-
ment.

After defining and exemplifying standard monotonicity for quantifiers of various
types (section 5.1), we focus in section 5.2 on the type 〈1, 1〉 case, emphasizing that

1 This was a mnemonic for AAA, meaning that the two premises as well as the conclusion use
the A form in the square of opposition (Ch. 1.1.1): the quantifier all. Similarly, the syllogism (5.2)
below was called Celarent: EAE (see Spade 2002: 21–4 for further explanation of these mnemon-
ics).
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for C and E quantifiers, and hence for denotations of determiners and
other quantirelations, there is a significant difference between monotonicity in the
left argument—often called persistence in the increasing case—and monotonicity in
the right one, a difference which manifests itself in various ways. Section 5.3 briefly
summarizes some facts about the distribution of monotonicity in natural languages in
the form of monotonicity universals, three from Barwise and Cooper 1981 and one
which is new here.

If I is assumed, monotonicity properties become even more perspicuous, espe-
cially when depicted in the number triangle. This is presented in section 5.4. Inspired
by that representation, but in fact not dependent on it (i.e. not dependent on the
assumption of I and F), we deepen the analysis of monotonicity in section 5.5,
isolating six basic forms of monotonicity: apart from upward and downward mono-
tonicity in the right argument, also four left monotonicities. Standard left monoton-
icity combines these, but there are further interesting combinations. In particular,
section 5.6 deals with smooth quantifiers, which combine two of the basic left prop-
erties. Smooth quantifiers are significant in several ways. In particular, smoothness
implies right upward monotonicity, and it turns out that many right upward mono-
tone determiner denotations are in fact smooth, e.g. all the proportional quantifiers.
These are not left monotone, but a complete description of their monotonicity beha-
vior involves smoothness rather than right monotonicity, a fact usually missed in the
literature, perhaps because ordinary monotonicity is easier to test empirically. Never-
theless, smoothness can also be tested, and we show what is involved.

With the six basic properties a richer picture of monotonicity in natural languages
emerges, compared to the one usually finds in the literature. We also see that almost
every determiner denotation has at least one of these properties, and that other seem-
ingly unrelated properties, notably symmetry, also are combinations of two of the basic
monotonicities.

The final three sections apply facts about monotonicity directly to linguistic issues.
Section 5.7 answers a question by Keenan concerning a particular inference scheme
involving proportional natural language quantifiers. Section 5.8 proves a result that
sheds light on the semantics of quantified NPs with conjoined nouns, as in Three
men and women are sitting over there, discussed in Chapter 4.7. Section 5.9,
finally, overviews ongoing research into what monotonicity and other related proper-
ties have to do with the occurrence of (positive and negative) polarity items in natural
languages. Using techniques and results from this chapter, we are able to give a more
precise assessment of how certain hypotheses about the distribution of polarity items
could be tested.

5 .1 STANDARD MONOTONICITY

Let us begin with the type 〈1〉 case.

monotonicity for type 〈1〉 quantifiers

Q M of type 〈1〉 is (monotone) increasing iff the following holds:
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(5.3) if A ⊆ A′ ⊆ M , then Q M (A) implies Q M (A′)

Q M is (monotone) decreasing iff

(5.4) if A′ ⊆ A ⊆ M , then Q M (A) implies Q M (A′)

These local notions extend immediately to the global case: Q is monotone increas-
ing (decreasing) if each Q M is.

Monotone increasing quantifiers are often called just monotone in the literature.2

Most of the type 〈1〉 quantifiers we have seen so far are increasing or decreasing; here
are some relevant observations. Of the quantifiers exemplified in Chapter 2.3,

• ∀, ∃, ∃≥n, Q 0, QC , QR, (p/q), [p/q], (p/q)d are monotone increasing,
• ∃≤n is monotone decreasing,
• ∃=n, ∃=n¬, ∃≥n ∧ ∃≤m (n ≤ m), Q even are neither increasing nor decreasing.

There might seem to be fewer decreasing than increasing ones, but that is just an
impression created by the vocabulary of natural languages, which influences which
quantifiers people find natural to take as primitive, as the following observations illus-
trate:

(5.5) Q is increasing iff ¬Q is decreasing.

[Since if Q M (A) implies Q M (A′), then ¬Q M (A′) implies ¬Q M (A).]

(5.6) Q is increasing iff Q¬ is decreasing.

[Since if A ⊆ A′, then M − A′ ⊆ M − A. Hence:]

(5.7) Q is increasing (decreasing) iff Qd is increasing (decreasing).

The trivial quantifiers 1M and 0M are both increasing and decreasing. But on a
given universe M they are the only quantifiers with this property. [For, if Q M 
= 0M ,
there is some A ⊆ M such that Q M (A). Take any B ⊆ M . Then Q M (A ∩ B) since
Q M is decreasing, hence Q M (B) since Q M is increasing. So Q M (B) holds for any B,
i.e. Q M = 1M .]

Montagovian individuals Ia and bare plurals Cpl are monotone increasing. Finally,

(5.8) Q is monotone increasing (decreasing) if and only if every quantifier of the
form Q [A] is monotone increasing (decreasing).

2 Thus, these quantifiers can be called ‘‘monotone increasing’’, or just ‘‘increasing’’, or just
‘‘monotone’’. It is also common to let ‘‘monotone’’ stand for ‘‘either increasing or decreasing’’,
so that monotonicity is what increasing and decreasing quantifiers have in common, whereas non-
monotone quantifiers are neither increasing nor decreasing. Further, the terms upward and down-
ward monotone are also used. These slight differences in terminology should not cause confusion.

Note also that with the functional view of (local) type 〈1〉 quantifiers (Ch. 3.1.3) as functions
in [P(M ) −→ 2], monotonicity is precisely that A ≤ 1A′ implies Q M (A) ≤ 2Q M (A′), where the
(partial) ordering on subsets of M is the inclusion order, and 0 < 1.
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[If Q is increasing, A is any set, B ⊆ B′ ⊆ M , and Q [A]
M (B), then Q A(A ∩ B),

so Q A(A ∩ B′) since A ∩ B ⊆ A ∩ B′ and Q A is increasing, and thus Q [A]
M (B′).

Hence, Q [A] is increasing. On the other hand, if Q is not increasing, some Q M

is not increasing, and we can take A = M : Q [M ]
M = Q M is not increasing, so

Q [M ] is not increasing. Similarly in the decreasing case.]

Notice that (5.8)—in contrast with the other claims above—is an essentially global
claim: that Q is increasing means that every local Q M is increasing, and this is crucial
for the argument to work. For example, to conclude that Q [A]

M is increasing, it is not
enough to know that Q M is increasing; we need that Q A is increasing.

(5.8) explains why many noun phrase denotations are increasing or decreasing. For
example, at most four students is decreasing, which is illustrated by facts such
that if

(5.9) At most four students came to the opening.

is true, then

(5.10) At most four students came to the opening wearing a tie.

must also be true. Likewise, if

(5.11) Most professors came to the funeral.

is true, then

(5.12) Most professors came to the funeral or attended the service

is also true, witnessing the fact that most professors is monotone increasing.
By means of such examples one can devise tests for monotonicity: for example, that

sentences of the form At least five A are B should imply At least five A are
B or C. Of course, this is not a test that the quantifier ∃[A]

≥5 is increasing—we already
know that it is. Rather, it is a test that we have interpreted noun phrases of the form
at least five A correctly, or at least in a way that does not violate linguistic intu-
itions. Naturally, such tests are not in themselves conclusive. The hypothesis tested
concerns meaning, which is about all possible cases, whereas we can test only a finite
number of them. And even if we should find a counterexample, the blame may be
put elsewhere than on the meaning of the noun phrase. For example, if we should
find that English speakers easily envisage situations where they would judge John is
at school to be true, but John is at school or at home to be false, then we
ought to conclude that something is seriously amiss with our semantics; but it need
not be Montague’s treatment of proper names—it could be something to do with or
instead. Happily, we do not find such intuitions prevalent among English speakers,3

3 Again, we must take care to distinguish pragmatic facts, such that if one knows that John is
at school, it may feel odd to say that he is at school or at home, from judgments about truth and
falsity.
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and this then is a test of (among other things) that treatment of names, which does
interpret them by means of an increasing quantifier.

As regards non-monotone quantifiers (in the sense of being neither increasing
nor decreasing) a great many of the ‘natural’ examples are Boolean combinations of
monotone ones. In Chapter 4.3 we discussed the claim that NP denotations (and
determiner denotations) are closed under Boolean operations, and the related—but
distinct—claim that (say) English NPs can always be conjoined with and, or, etc.
Barwise and Cooper (1981) use monotonicity to refute the latter claim, arguing that
at least sometimes one cannot conjoin an increasing and a decreasing NP. But (as Bar-
wise and Cooper admit) the data are not so clear, and at least as an approximation, the
claim about denotations (called (BClNP) in Chapter 4.3) seems plausible, as does the
corresponding claim (BClDet) about determiner denotations.

In any case, there are many obvious cases of Boolean combinations of NP denota-
tions in natural languages. Thus, between three and six dogs is the conjunction of at
least three dogs and at most six dogs, and all but five is the inner negation of the con-
junction of at least five and at most five. But a notable exception to this pattern is
the quantifier Q even, and its cognates like an odd number of cards, or all but an even
number of balls. These are not increasing or decreasing, nor are they Boolean combin-
ations of such quantifiers. There is no reason for the parity of a set to be preserved
when one adds to or deletes from it an arbitrary number of elements. Of course this
claim about Q even —that it is not expressible as a Boolean combination of monotone
quantifiers—is so far very preliminary: though seemingly plausible when one thinks
about it, it needs to be (a) made precise, and (b) verified (or disproved). Indeed, a
clear statement (in fact, a much stronger one) can be proved for a suitable formal lan-
guage, as we will see in Chapter 14.4. And in Chapter 12 we show how such a result
transfers to natural languages.

To extend the idea of monotonicity to arbitrary quantifiers is an easy matter. Nat-
urally, if a quantifier as a second-order relation has more than one argument, we must
specify which argument we are talking about. This leads to the following definition.

monotonicity for arbitrary quantifiers

A quantifier Q M of type 〈n1, . . . , nk〉 is (monotone) increasing in the i ’th argument
iff the following holds:

(5.13) If Q M (R1, . . . , Rk), and if it holds that Ri ⊆ R′
i ⊆ Mni , then

Q M (R1, . . . , Ri−1, R′
i , Ri+1, . . . , Rk)

Similarly for the (monotone) decreasing case.

Of course, a quantifier can be increasing in one argument and decreasing in
another. For example, the type 〈1, 1〉 quantifier MOM (A, B) ⇔ |A| > |B| is increas-
ing in the first argument and decreasing in the second; mostM (A, B) ⇔ |A ∩ B| >

|A − B| is increasing in the second argument, but neither increasing nor decreasing in
the first; and the Härtig quantifier IM (A, B) ⇔ |A| = |B|, and the quantifier exactly
two, are not monotone in either argument.
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The behavior of a conjunction of an increasing and a decreasing quantifier, such as
the type 〈1, 1〉 between three and six, is sometimes given a name, as a weaker form of
monotonicity:

continuous quantifiers

A type 〈1〉 quantifier Q M is continuous (C) iff

Q M (A′), Q M (A′′), and A′ ⊆ A ⊆ A′′ implies Q M (A)

Similarly for arbitrary quantifiers (continuity in the i’th argument).

An increasing or decreasing quantifier is continuous, but not necessarily vice versa.
In fact, C turns out to characterize exactly conjunctions of an increasing and a
decreasing quantifier (a fact first noted in Thijsse 1983):

Proposition 1
A quantifier is C (in the i’th argument) if and only if it is the conjunction of an
increasing and a decreasing quantifier (in the i’th argument).

Proof. Consider the local type 〈1〉 case. Obviously, such a conjunction is C. In
the other direction, suppose Q M is C. Define (Q 1)M and (Q 2)M as follows.

(Q 1)M (A) ⇔ ∃A′[A′ ⊆ A and Q M (A′)]

(Q 2)M (A) ⇔ ∃A′′[A ⊆ A′′ ⊆ M and Q M (A′′)]

It is straightforward to see that (Q 1)M is increasing, (Q 2)M is decreasing, and Q M =
(Q 1)M ∧ (Q 2)M . �

For monotonicity of quantifiers, we adopt ‘‘monotone’’ as the cover term, specifying
when needed the direction and argument concerned. A few terms for special cases
will also be used. One is persistence (from Barwise and Cooper 1981), which stands
for (upward) monotonicity in the left argument of a type 〈1, 1〉 quantifier; we discuss
it in the next subsection. Another one that we also like is smoothness, introduced in
section 5.6.

5 .2 MONOTONICITY IN TYPE 〈1, 1〉

A type 〈1, 1〉 quantifier can be increasing or decreasing in no argument, in just one
of them, or in both. For the monotone cases, the notation M↑, ↓M, ↑M↓,
etc., is often used. Also, we speak of right and left monotonicity of a type 〈1, 1〉 quan-
tifier.

Proposition 3 in Chapter 4.5 claimed that the monotonicity (up or down) of a type
〈1〉 quantifier Q carries over to the right argument of its relativization Q rel:

(5.14) Q is increasing (decreasing) iff Q rel is M↑ (M↓).
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The proof is immediate; for example, if Q is increasing, Q rel
M (A,B) holds, and B ⊆ B′ ⊆

M , then Q A(A ∩ B), so Q A(A ∩ B′), i.e. Q rel
M (A,B′).

A consequence is that linguistic observations about monotonicity behavior can
often be stated for either NP denotations or determiner denotations as one wishes.
For NPs formed with a determiner, it is indeed more natural to state the monoton-
icity behavior for the determiner, and we have seen that the behavior of the right
argument is reflected exactly in that of the NP. Let us be precise about this, for the
record. For any type 〈1〉 quantifier Q :

Q rel is M↑ ⇐⇒ Q is increasing [by (5.14)]

⇐⇒ for every AQ [A] = (Q rel)A is increasing [by (5.8)],

and similarly for the M↓ case.
It is mostly unproblematic to determine the monotonicity behavior of determiners

and other quantirelations in natural languages. Here are some English examples, with
respect to right monotonicity:

• M↑: all, every, a, some, several, the, both, at least four, more than ten, all but at
most five, infinitely many, all but finitely many, most (and indeed all the propor-
tional determiners), many, John’s, Mary’s ten, most children’s, some teachers’,4 the
eight, at least four of the seven5

• M↓: no, not all, at most three, fewer than eleven, finitely many, few, at most
half of the, neither John’s nor Mary’s, no students’, at most three of the eight

• Neither M↑ nor M↓: exactly five, all but nine, some but not all, at least two
and no more than ten, either fewer than five or else more than a hundred, an odd
number of, between 20 and 40 percent of the, exactly two students’, exactly five of
the ten, no−but John, every−except Mary

Left monotonicity of determiner and other quantirelation denotations is often
called persistence in the upward case, and anti-persistence in the downward case, and
we will also use these terms. Right monotonicity concerns the scope: it concerns what
happens if we add or remove some elements from the extension of the scope. But
left monotonicity concerns the restriction, which, as we know, acts as the universe
of quantification. It is natural, for quantifiers denoted by determiners, that these are
quite different properties, and we do find that left monotonicity is less frequent in

4 Possessive determiners are sometimes ambiguous between various readings, as we will see in
Ch. 7. The monotonicity claims for the possessives in the present list apply to their usually preferred
readings.

5 Barwise and Cooper (1981) list a few as right increasing, but this seems to be a mistake. We
think a few means ‘some but only a few’, or ‘some but not many’, which is why not a few means
‘many’. If a few meant ‘at least several’, as Barwise and Cooper seem to think, not a few should
mean ‘not even several’ or ‘at most a couple’, but it doesn’t. The misconception may be connected
with the fact that American quite a few and British a good few mean ‘more than a few’, unlike
quite few, which means ‘very few’ (just as quite many means ‘very many’). We therefore believe
that a few is not right monotone, although it is almost decreasing, in the sense that if ∅ 
= B′ ⊆ B
and a fewM (A, B), then a fewM (A, B′).
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natural languages—in fact, is limited to a few typical cases. For example, propor-
tional quantifiers are always right but never left monotone: if

q · |A ∩ B| ≥ p · |A|
holds, it continues to do so if |B| is increased, but no conclusion can be drawn about
what happens if |A| is increased or decreased.

Here are some English examples:6

• Persistent (↑M): a, some, several, not all, at least four, more than ten, infinitely
many, some of John’s

• Anti-persistent (↓M): all, every, no, at most three, fewer than eleven, finitely
many, all but at most five, all but finitely many, no students’

• Neither persistent nor anti-persistent: the, both, exactly five, all but nine, some but
not all, at least two and no more than ten, either fewer than five or else more than
a hundred, an odd number of, between 20 and 40 percent of the, most, more than
two-thirds of the, at most half of the, many(?), few(?), the eight, John’s, exactly two
students’, Mary’s ten, at least four of the seven, no−but John, every−except Mary

To further describe the (anti-)persistent quantirelation denotations, we use the
notion of a square of opposition from Chapter 4.3, and the fact that the monoton-
icity behavior (right and left) of a type 〈1, 1〉 quantifier completely determines the
monotonicity behavior of the other quantifiers in its square of opposition, namely, as
follows.

Fact 2
Let Q be any type 〈1, 1〉 quantifier:

Q is M↑ iff ¬Q is M↓
iff Q¬ is M↓
iff Qd is M↑

Q is ↑M iff ¬Q is ↓M

iff Q¬ is ↑M

iff Qd is ↓M

Similarly (with reversed arrows) for the downward monotone case. In particular, if Q is
doubly monotone, its square of opposition exhibits all of the four possible doubly monotone
patterns.

Proof. Clearly, outer negation reverses monotonicity, in any argument. Inner nega-
tion reverses monotonicity in the second argument, since there we are looking at com-
plements, but not in the first argument. Dual is the outer negation of inner negation,

6 About the possessives in this list, see n. 4. Ch. 7.13 deals in detail with the monotonicity
behavior of possessives. About the question marks for many and few, see Ch. 6.2.
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and so reverses its monotonicity. For example, if Q is ↑M↑, ¬Q , Q¬, and Qd will
be ↓M↓, ↑M↓, and ↓M↑, respectively. �

Thus, since at least three is ↑M↑, we find the other three doubly monotone pat-
terns in its square. Likewise, since most is M↑ but not left monotone, it follows
from Fact 2 that ¬most and most¬ (on finite universes: at most half of the and fewer
than half of the) are M↓, that mostd (at least half of the) is M↑, and also that no
quantifier in this square is left monotone.

In particular, in describing which quantirelation denotations are left monotone,
we can restrict attention to, say, the persistent (↑M) case, at least if we make the
idealizing assumption (BClDet) that determiner denotations are closed under Boolean
operations. However, in reality there seem to be just a few I and persistent ones,
though it is easy to construct artificially lots of other persistent type 〈1, 1〉 quantifiers
that are also C, E, and I. So there are severe restrictions on which left
monotone quantifiers quantirelations can denote.

We come back to this in the next section, but first, there is one question we have
left hanging: Whereas right monotonicity of Q rel corresponds to monotonicity of Q ,
what property of Q does left monotonicity of Q rel correspond to?

Consider the following property of a type 〈1〉 quantifier Q :

(p) If Q M (A) and A ⊆ M ⊆ M ′, then Q M ′ (A).

Here are a few observations.

• (p) is half of the E condition for Q ; indeed, Q is E iff both Q and ¬Q sat-
isfy (p).

• If Q rel is persistent, then Q satisfies (p).

[Suppose A ⊆ M ⊆ M ′. Q M (A) implies Q rel
M (M ,A), and hence Q rel

M ′ (M , A) (since
all relativized quantifiers are E), which implies Q rel

M ′ (M ′, A) (by persistence), that
is, Q M ′ (A).]

• The converse of this fails, but we do have the following: If Q satisfies (p) and is
increasing, then Q rel is persistent.

[Suppose A ⊆ A′ ⊆ M and B ⊆ M . Q rel
M (A, B) implies Q A(A ∩ B), and so Q A′

(A ∩ B) by (p), whence Q A′ (A′ ∩ B) (since Q is increasing), that is, Q rel
M (A′, B).]

But these are scattered remarks. There ought to be a systematic connection between
the monotonicity behavior of Q and the right and left monotonicity behavior of Q rel.
At least, that should be so if our claim that the operation of relativization exactly mir-
rors type 〈1〉 quantifiers into C and E type 〈1, 1〉 quantifiers is correct. And
indeed there is, though to state the connection, we need a more fine-grained analysis
of monotonicity. This analysis is best presented with the aid of the number triangle
(even though it actually presupposes neither F nor I), so we postpone it until
section 5.5 below (where we also give the property (p) a more appropriate name).
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To give final emphasis to the strength of left—by contrast with right—monotoni-
city, we state the following two results. Recall (Chapter 4.8) that F stands for the
assumption that only finite universes are considered.

Proposition 3 (van Benthem)
Under F, the only left monotone quantifiers satisfying C, E, I, and the
non-triviality condition V, are the four quantifiers in square (all), i.e. all, some, no,
and not all.

By contrast, there are infinitely many right monotone quantifiers with these prop-
erties. The proof of this rather striking proposition is by simple examination of the
number triangle, as we will see below in section 5.4.

Proposition 4
Under F, left monotone quantifiers satisfying C, E, and I, are first-order
definable, i.e. definable in the logic FO.

A proof, again using the number triangle, can be found in Westerståhl 1989. Right
monotone quantifiers (for example, the proportional quantifiers) are usually not at all
FO-definable over finite models, as we will see in Chapter 14.

The stark contrast we have observed between left and right monotonicity for
natural language quantifiers has no counterpart for quantifiers in logic. This again
illustrates the characteristic feature of quantirelations, that their left (restriction)
argument serves to restrict the universe of quantification.

5 .3 MONOTONICITY UNIVERSALS

It is a significant fact that almost every denotation of a determiner or other quantire-
lation in a natural language, as well as every NP denotation, has some sort of mono-
tonicity property.7 One way to appreciate this is to realize how many non-monotone
quantifiers (of these types) there are. As we will see below, the number triangle is
excellent for boosting one’s intuitions here. But we can also try to formulate empirical
generalizations about monotonicity, based on the actual distribution of monotone
quantifiers in natural languages. Such generalizations are a kind of hypothesized lin-
guistic universal. Barwise and Cooper (1981) give a number of possible monotonicity
universals, for example:

(MU1) Syntactically simple determiners denote right monotone quantifiers, or conjunc-
tions of such quantifiers.8 That is (Proposition 1 in section 5.1), they denote con-
tinuous quantifiers.

7 At the moment, this claim might seem dubious, given that we have already encountered many
determiner and NP denotations that are neither increasing nor decreasing. But we will introduce
more specialized notions of monotonicity below (sect. 5.5), and our intended (albeit somewhat
imprecise) claim is that almost all determiner and NP denotations have at least one of these prop-
erties.

8 Actually, Barwise and Cooper (1981) formulate this for NP denotations, but the formulation
in terms of determiner denotations is equivalent. Indeed, we think the universals here apply to
quantirelations in general and not only to determiners, as is clear from the claim (Ch. 0.2.3) that
every quantirelation denotation is also a determiner denotation.
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This rules out that a natural language could have a simple determiner denoting, say,
exactly three or more than seven or an even number of. A numerical quantifier like ten is
simple, but it denotes (in one reading) the conjunction of at least ten and at most ten.

(MU1) has the character of a straightforward generalization from observed facts.
Another example from Barwise and Cooper (1981) is

(MU2) Positive (negative) strong determiner denotations are increasing (decreasing) in
the right argument.9

As to left monotonicity, Barwise and Cooper have (essentially) the claim:

(MU3) Left monotone determiner denotations—whether the determiner is simple or
complex—are also right monotone.

This seems correct also for possessives (not considered by Barwise and Cooper);
we will see in Chapter 7 that the left monotone possessive determiners all appear to
be right monotone as well. (MU3) is a significant and strong constraint, since it is
easy to construct counterexamples for invented languages.

But which are the left monotone determiner denotations? Restricting attention to
the I and persistent ones, we venture the following hypothesis:

(MU4) Every non-trivial, persistent, and I determiner denotation is one of the quan-
tifiers at least m of the k or more and their inner negations, for 0 ≤ m ≤ k.

In connection with (MU4), note the following: (a) With m = k we obtain the quanti-
fiers at least m. (b) m = k = 0 gives the trivial quantifier 1, which could have been set
aside explicitly. But we want to allow 0 = m < k, since these are (perhaps) denota-
tions of any number of the k or more. (c) As to the inner negations, with m = 1
we get the quantifier not all (k = 1), and more generally not all of the k or more. (d)
We are mostly thinking of finite m and k here. But m = k = ℵ0 gives the quantifier
infinitely many, and similarly for uncountably many.

Universals like these describe the distribution of monotonicity in natural languages.
Surely, one would think, there must be some reason for this state of affairs. What is
it that explains the ubiquity of monotonicity? Intuitively, monotone quantifiers are
simple, easily described, and generally well-behaved. But simplicity is a notoriously
hard concept to capture. One might try to do it in terms of learnability: that it is
quicker or in some other way more feasible to learn determiners denoting mono-
tone quantifiers than others. A related attempt originates with Barwise and Cooper
(1981), who started exploring the idea that monotone quantifiers are easier to process
than non-monotone ones. This was developed (a lot) further by van Benthem (1986:
chs. 8 and 10).

9 These notions are defined for partial quantifiers: Q is positive (negative) strong iff, for all A
such that Q(A, ·) is defined, Q(A, A) (¬Q(A, A)) holds. This is one (the only useful?) instance where
partiality offers a distinction that cannot be captured within the total (relational) view on quantifiers
taken in this book. However, there is some doubt about (a) what Barwise and Cooper’s definition
really is, and (b) whether the extra freedom it allows is really warranted. We discuss all of this
in detail in Ch. 6.3, in the context of which quantifiers are allowed in existential-there sentences,
which is what the notion of a strong determiner was intended to explain; see esp. Ch. 6.3.4.



174 Quantifiers of Natural Language

We will not go into this interesting area in this book, instead referring the reader
to the texts mentioned. However, we will exemplify the use of monotonicity, and
of facts about monotone quantifiers, to explain various linguistic phenomena. This
happens in the final three sections of this chapter. Before that, however, we need to
dig deeper into the analysis of monotonicity, as it relates to quantification in natural
languages.

5 .4 MONOTONICITY UNDER I

When I is assumed, and even more so over finite universes (F), monotonicity
properties become especially simple and perspicuous. We can then represent them
in the number triangle, and this very representation leads to insights and results that
would have been very hard to discover without it. In fact, it sometimes leads to
insights that turn out not to depend on I or F at all, but hold without extra
assumptions (except that C is usually needed). This is the case with the finer
grained monotonicity properties that we introduce in section 5.5. But let us begin
with the number-theoretic versions of monotonicity.

5.4.1 A format for monotone quantifiers over finite universes

Consider first the type 〈1〉 case. A monotone increasing quantifier Q associates with
a universe M an idea of relative size: ‘big enough’ subsets of M are in Q M in the
sense that if A is in Q M , so are all bigger sets. Of course, quite small sets may be ‘big
enough’ in this sense; the minimum size requested by Q can be chosen freely, and in
the extreme case when ∅ ∈ Q M , all subsets of M are ‘big enough’ (so Q M = 1M ).

In general there need be no smallest set among the ‘big enough’ ones—smallest
in the sense that no proper subset of it is ‘big enough’. For example, consider Q 0,
i.e. infinitely many things. Removing one element from an infinite set always leaves an
infinite set, so there can be no smallest set among the ones in (Q 0)M (if M is infinite).
Likewise, (Q d

0)M , i.e. all but finitely many things, contains no smallest set, but both of
these quantifiers are monotone increasing.

But there is always a smallest size of set that is ‘big enough’. This is because any class
of cardinal numbers has a smallest element, so indeed for any quantifier Q M there is a
smallest size of the sets it contains, regardless of whether it is monotone or not. When
Q is monotone increasing and I, this intuitive idea takes a definite and concrete
shape. Then the criterion of being ‘big enough’ for Q depends only on |M |, and is a
cardinal number κ ≤ |M |, such that Q M (A) holds iff |A| ≥ κ . There is a very useful
notation for this in the special case of finite universes.

So assume Q is monotone increasing and satisfies I. There is then a corres-
ponding function f which with each finite universe of size n associates a natural num-
ber f (n), the smallest size of sets in Q M , when |M | = n. Thus, 0 ≤ f (n) ≤ n. This
covers all cases except one: namely, when no sets at all are in Q M (so Q M = 0M ). But
if we stipulate that in this case f (n) = n + 1, it holds in general that if A ⊆ M , then

Q M (A) ⇐⇒ |A| ≥ f (|M |)
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(In particular, if f (|M |) = |M | + 1, |A| ≥ f (|M |) is always false.) We summarize
this in the following definition and observation.

the quantifiers Q f

If f is any function from natural numbers to natural numbers such that for all
n, 0 ≤ f (n) ≤ n + 1, the type 〈1〉 quantifier Q f is defined as follows (on finite
universes): For any finite M and any A ⊆ M ,

(5.15) (Q f )M (A) ⇐⇒ |A| ≥ f (|M |)
Then Q f is I and monotone increasing. Moreover, any I and monotone
increasing quantifier Q is equal to Q f (on finite universes) for some f , which we
may call the monotonicity function for Q .

Here are some of our previous examples (on finite universes) written in this format:

• If f1(n) = 1 for all n, then Q f1 = ∃. More generally, if g(n) = a constant k for all
n, then Q g = ∃≥k.

• If f2(n) = n for all n, then Q f2 = ∀. If h(n) = n − k for a fixed k, then Q h is all
but at most k things.

• If f3(n) = the smallest natural number > n/2, then Q f3 = QR.

We noted earlier that Q is increasing iff its dual Qd is increasing. Now observe that,
with |M | = n,

(Q d
f )M (A) ⇐⇒ |M − A| < f (|M |)

⇐⇒ n − |A| < f (n)

⇐⇒ |A| > n − f (n)

⇐⇒ |A| ≥ n − f (n) + 1

Thus, we have the following

Fact 5
Define, for any monotonicity function f ,

f d(n) = n − f (n) + 1

for all n. Then f d is the monotonicity function for the dual of Q f , that is, Q f d = (Q f )d.

Now consider relativizations of type 〈1〉 quantifiers. We have

(Q rel
f )M (A, B) ⇐⇒ (Q f )A(A ∩ B)

⇐⇒ |A ∩ B| ≥ f (|A|)
As we see (and as we already know), Q rel

f is M↑. Furthermore, we know (Propos-
ition 3 in Chapter 4.5) that any type 〈1, 1〉 quantifier which is C, E, I,
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and M↑, is of the form Q rel for some I and monotone increasing type 〈1〉
quantifier Q . That is, over finite universes it is the relativization of some quantifier
Q f . Let us summarize this:

the quantifiers Q rel
f

For any finite M and any A, B ⊆ M ,

(5.16) (Q rel
f )M (A, B) ⇐⇒ |A ∩ B| ≥ f (|A|)

Q rel
f is M↑. Conversely, any C, E, and I type 〈1, 1〉 quantifier

which is M↑ is of the form Q rel
f (over finite universes) for some monotonicity

function f .

For example,

some(A, B) ⇐⇒ |A ∩ B| ≥ f1(|A|) = 1

all (A, B) ⇐⇒ A ⊆ B ⇐⇒ |A ∩ B| ≥ f2(|A|) = |A|
In the last case, note that since the sets are finite, |A ∩ B| = |A| means that A ∩ B =
A; i.e. that A ⊆ B.

All (right) monotone increasing quantifiers we are dealing with here are of the
form Q f or Q rel

f (under I and F). But then, we can further isolate various
kinds of monotonicity by laying down additional requirements on f . For example, we
can demand that f itself is increasing: n ≤ m ⇒ f (n) ≤ f (m). This requirement is
related to the property of smoothness (see Proposition 10 in section 5.6), a property
that turns out to be very significant for natural languages.

This is one aspect of the fine-grained analysis of monotonicity that we have been
promising. To introduce another basic idea, we need to see how monotonicity mani-
fests itself in the number triangle.

5.4.2 Monotonicity and the number triangle

If Q M (A) and you enlarge A but stay in the same universe, |A| increases and |M − A|
decreases, but their sum (|M |) is the same. So in the number triangle, you are moving
to the right at level |M |. Similarly if Q is of type 〈1, 1〉, Q M (A, B), and B ⊆ B′ ⊆ M :
|A ∩ B| ≤ |A ∩ B′|, |A − B| ≥ |A − B′|, but |A − B′| + |A ∩ B′| = |A|. Thus, the
number-theoretic property of being (right) monotone increasing can be expressed as
follows:

Q(k, m) & k 
= 0 ⇒ Q(k − 1, m + 1)

This says that the next point to the right of (k, m) at the same level belongs to Q if
(k, m) does; by induction, all points to the right of (k, m) at the same level do. We
indicate this by the following simple diagram:



Monotone Quantifiers 177

�

Now consider persistence (↑M). We claim that its number-theoretic version is

(5.17) Q(k, m) ⇒ Q(k + 1, m) and Q(k, m + 1)

or, by induction,

(5.18) Q(k, m) & k ≤ k′ & m ≤ m′ ⇒ Q(k′, m′)

which we picture as follows:

� �

This should be taken as the conjunction of the conditions associated with each arrow:
if (k, m) is in Q , so is every point encountered by moving downward, parallel to the
right edge (keeping k fixed), as well as every point reached by moving downward,
parallel to the left edge (keeping m fixed). But since this applies to all points in Q ,
the condition simply means that every point in the downward triangle spanned by
(k, m)—that is, every point (k′, m′) with k ≤ k′ and m ≤ m′ —is in Q .

The number triangle presupposes I and F,10 so our claim is that, under these
conditions, a C and E type 〈1, 1〉 quantifier (the relativization of a type 〈1〉
quantifier) is persistent if and only if (5.17) or, equivalently, (5.18) holds. This is
practically immediate, but here is the verification. Suppose, first, that (5.18) holds,
that Q M (A, B), and that A ⊆ A′ ⊆ M . Then Q(|A − B|, |A ∩ B|), |A − B| ≤ |A′ −
B|, and |A ∩ B| ≤ |A′ ∩ B|, so Q(|A′ − B|, |A′ ∩ B|); i.e. Q M (A′, B). In the other
direction, suppose Q is persistent, that Q(k, m) holds, and that k ≤ k′ and m ≤ m′.
Choose M and A, B ⊆ M such that |A − B| = k and |A ∩ B| = m. Thus, Q M (A, B)
holds. Also, choose A′ with A ⊆ A′ ⊆ M such that |A′ − B| = k′ and |A′ ∩ B| = m′.
Clearly, this can always be done (provided M is big enough; if it isn’t, E insures that
M can be enlarged to a big enough M ′). By persistence, Q M (A′, B), so Q(k′, m′).

It is now also clear how to represent anti-persistence (↓M) in the number tri-
angle:

10 Why F? Can’t we extend the number triangle by adding infinite cardinals? The problem
is that then it is no longer a ‘triangle’ in any useful sense. Consider the point (ℵ0, 3). Its ‘level’ is
ℵ0 + 3 = ℵ0, but so is its coordinate on the left ‘edge’. So the geometric visualization in terms of
rows, columns, and levels disappears, and thereby most of the practical use of the number triangle,
in particular for representing monotonicity.
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��

As a first application of number triangle techniques, we are now ready for the fol-
lowing simple proof.

Proof of Proposition 3, section 5.2: Since Q is I, C, and E, and we only
consider finite universes, it is representable in the number triangle. Consider level 1.
By V, this must be either + − or − +. In the first case, if Q is ↓M, the point
(0, 0) must have a + too. Also by ↓M, no point outside the left edge can have a +
(since that would give (0, 1) a +). But some point at each level must have a +, by V.
This means that Q consists of exactly the left edge, i.e. it is no. If, on the other hand,
Q is ↑M, it follows that the whole downward triangle with (1, 0) at the top consists
of +s. And, using ↑M and V again, we see that Q must be precisely this triangle,
i.e. not all. The second case, when level 1 looks like − +, is treated analogously, and
allows only all in the ↓M case and some in the ↑M case. �
Let us note too that continuity (end of section 5.1) is readily representable in the num-
ber triangle. We saw that being (right or left) continuous is the same as being the
conjunction of a (right or left) increasing and a decreasing quantifier. In the number
triangle, right continuity means that if two points at the same level are in Q , so are all
points in between:

Left continuity, on the other hand, means that for any two points in Q , all the points
in the rectangle spanned by those two points are also in Q :

5 .5 SIX BASIC FORMS OF MONOTONICITY

Consider again the diagrammatic picture of (5.18). We see that this is really the con-
junction of two more specific monotonicity conditions, one for each arrow. In fact,
there are six directions in the number triangle relevant to monotonicity: two for right
monotonicity and four for left monotonicity.
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The right monotone directions are along the levels. Thinking of the number tri-
angle as a map with (0, 0) as its northernmost point, these directions are east (increas-
ing) and West (decreasing). Of the left monotone directions, two are parallel to the
right edge (the rows)— southeast (SE) and northwest (NW); and two parallel to the
left edge (the columns)— southwest (SW) and northeast (NW). Each of these direc-
tions corresponds to a specific monotonicity property. And we have just seen that the
combination of SW and SE amounts to persistence, and that anti-persistence (↓M)
combines NE and NW. But other combinations are possible as well. For example,
we can now see directly in the number triangle that the doubly monotone property
↑M↑ combines three directions. But this clearly is more simply representable as
follows (the SE arrow is superfluous):

�
�

Similarly for the other three double monotonicities.11

Of the six basic monotonicities, the two right ones are familiar, but not the four left
ones. Let us formulate these four properties explicitly. Below, we first give the name
of the property, then its diagrammatic representation, and finally its formulation for
arbitrary quantifiers, first in the type 〈1, 1〉 case and then in the type 〈1〉 case; the
latter formulations do not assume I or F. We shall assume, however, that all
quantifiers mentioned here satisfy C.12

↑seMon

�
Q M (A, B) & A ⊆ A′ ⊆ M & A − B = A′ − B ⇒ Q M (A′, B)
or
Q M (A) & M ⊆ M ′ & A′ ⊆ M ′ & M − A = M ′ − A′ ⇒ Q M ′ (A′)

The chosen name has an up-arrow to the left, since it is a form of upward mono-
tonicity in the left argument; the subscript indicates the direction in the number

11 Why haven’t we defined north and south monotonicity properties? The north property would
say that, e.g., if (3,2) is in Q , then so are (2,1) and (1,0). This concerns what happens if we decrease
each of |A − B| and |A ∩ B| by one, and hence take away two elements from A. The property is
entailed by ↓M (this is clear from the number triangle), but it doesn’t seem to have any intrinsic
interest.

12 The four left properties were noted in van Benthem 1986 and formulated, under slightly
different names than here, in Westerståhl 1989. This book is the first place, to our knowledge,
where they are put forward as fundamental components of all kinds of monotonicity related to
natural language quantification. About the C assumption, see n. 13.
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triangle. So this property concerns—in the type 〈1, 1〉 case—what happens when
one increases the left argument while keeping the difference between the left and the
right argument intact. Similarly for the next property, except that there the intersec-
tion between the two arguments is constant:

↑swMon

�
Q M (A, B) & A ⊆ A′ ⊆ M & A ∩ B = A′ ∩ B ⇒ Q M (A′, B)
or
Q M (A) & M ⊆ M ′ ⇒ Q M ′ (A)

It may require some thought to see that the type 〈1〉 versions do correspond to the
type 〈1, 1〉 versions, in the sense that Q satisfies the type 〈1〉 version iff Q rel satisfies
the type 〈1, 1〉 version.13 But, when I and F hold, it should be clear that both
properties are the same as the property depicted in the diagram.

Here are the corresponding two downward properties:

↓nwMon

�

Q M (A, B) & A′ ⊆ A & A − B = A′ − B ⇒ Q M (A′, B)
or
Q M (A) & A′ ⊆ M ′ ⊆ M & M − A = M ′ − A′ ⇒ Q M ′ (A′)

↓neMon

�

13 Why isn’t the general formulation of, say, ↑M, in the type 〈1, 1〉 case rather

Q M (A, B) & A ⊆ A′ ⊆ M & B ⊆ B′ ⊆ M & A − B = A′ − B′ ⇒ Q M (A′, B′) ?

That formulation is more general, and independent of C. Here we do presuppose that
C holds, and then, if B is as above, it follows that A′ ∩ B = A′ ∩ B′, whence the conclusion
Q M (A′, B′) is implied by our simpler condition. The issue of the formulation of basic monotonicity
properties in the absence of C is left open here.



Monotone Quantifiers 181

Q M (A, B) & A′ ⊆ A & A ∩ B = A′ ∩ B ⇒ Q M (A′, B)
or
Q M (A) & A ⊆ M ′ ⊆ M ⇒ Q M ′ (A)

Note that ↑M for the type 〈1〉 case is the property we called (p) in section 5.2
above; as we noted, it is one half of the E property. We can now answer the ques-
tion left open there, and also see exactly what was behind the observations we made in
connection with (p). We showed that if Q rel is persistent, then Q satisfies (p)—and
indeed, it is immediate from the number triangle that ↑M implies ↑M. Fur-
ther, we proved that if Q is (p) and monotone increasing, then Q rel is persistent—this
too follows directly from examination of the number triangle; indeed, we see that
↑M combined with M↑ amounts to ↑M↑, which is strictly stronger than
persistence.

Thus, in the number triangle, it is immediate that upward left monotonicity of Q rel

corresponds exactly to the combination of ↑M and ↑M, as these are for-
mulated for the type 〈1〉 Q . This answers our question, given that I or F hold.
However, the answer is valid even without these assumptions, as we now show. This
actually requires a small argument:

Proposition 6
Let Q be any type 〈1〉 quantifier. The following are equivalent:

(a) Q rel is persistent: Q rel(A, B) & A ⊆ A′ ⇒ Q rel(A′, B)
(b) Q satisfies ↑M and ↑M, i.e. it has the following two properties:

(i) Q M (A) & M ⊆ M ′ ⇒ Q M ′ (A)
(ii) Q M (A) & M ⊆ M ′ & A′ ⊆ M ′ & M − A = M ′ − A′ ⇒ Q M ′ (A′)

Analogously for the anti-persistent case.

Proof. (a) ⇒ (b): We already showed in section 5.2 that if Q rel is persistent, then (p),
i.e. ↑M, holds of Q . For ↑M, suppose M ⊆ M ′, A′ ⊆ M ′, and M − A =
M ′ − A′. Then

Q M (A) �⇒ Q rel
M (M , A)

�⇒ (Q rel)¬M (M , M − A)

�⇒ (Q rel)¬M (M , M ′ − A′) [assumption]

�⇒ (Q rel)¬M ′ (M , M ′ − A′) [since (Q rel)¬ = (Q¬)rel is E]

�⇒ Q rel
M ′ (M , A′)

�⇒ Q rel
M ′ (M ′, A′) [by persistence]

�⇒ Q M ′ (A′)

Thus, Q is ↑M.
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(b) ⇒ (a): Suppose Q is ↑M and ↑M, and that A, B ⊆ M and A ⊆
A′ ⊆ M . We extend A to A′ in two steps. Let A′′ = A ∪ (A′ − B). Clearly, we have

(i) A ⊆ A′′ ⊆ A′
(ii) A ∩ B = A′′ ∩ B

(iii) A′ − B = A′′ − B

Then

Q rel
M (A, B) �⇒ Q A(A ∩ B)

�⇒ Q A′′ (A ∩ B) [by ↑M and (i)]

�⇒ Q A′′ (A′′ ∩ B) [by (ii)]

�⇒ Q A′ (A′ ∩ B) [by ↑M, (iii), and (i)]

�⇒ Q rel
M (A′, B)

This shows that Q rel is persistent. �

We have here a nice illustration of how a result about monotonicity is inspired by
the representation in the number triangle—indeed, it would have been hard to even
come up with the properties ↑M and ↑M without using that representa-
tion—although it actually holds without assuming I or F (in fact, without any
assumptions at all).

There are many similar cases. Let us first look at what happens if we combine a
basic monotonicity property with its opposite along the same axis:

Q is ↑M and ↓M iff it is symmetric.

�
�

Q is ↑M and ↓M iff it is co-symmetric (i.e., Q¬ is symmetric).

It is easy to see (Chapter 6.4) that symmetry in the number triangle amounts
exactly to the property that if a point is in Q , so are all points on the axis (column)
through that point parallel to the left edge. So the above observations are again imme-
diate from the number triangle, But, again, they hold without F or I; only
C is needed.

Proposition 7
A C type 〈1, 1〉 quantifier is symmetric if and only if it satisfies ↑M and
↓M. Similarly, it is co-symmetric iff it satisfies ↑M and ↓M.

Proof. One easily verifies (Chapter 6.1) that under C, symmetry is equivalent
to the property that for all M and all A, B ⊆ M , Q M (A, B) ⇔ Q M (A ∩ B, A ∩ B). It
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is clear that this property implies both ↑M and ↓M. Conversely, assume
that these two left monotonicity conditions hold, and that Q M (A, B). Then Q M (A ∩
B, B) by ↓M, so Q M (A ∩ B, A ∩ B) by C. Similarly, Q M (A ∩ B, A ∩ B)
implies Q M (A, B) by ↑M and C. The case of co-symmetry is similar. �

It is slightly surprising that symmetry can be seen as a combination of basic mono-
tonicity properties (under C; note, for example, that the Härtig quantifier is
symmetric, but fails to satisfy ↑M or ↓M).

Now suppose we combine the two directions of right monotonicity. Consider
quantifiers such that each level consists of either only +s or only −s. In other words,
they are trivial on each universe. Such quantifiers can still say something about the uni-
verse, so let us call them universe quantifiers. Under I, they depend only on the size
of the universe; thus:

(5.19) An I type 〈1〉 quantifier Q is a universe quantifier iff Q M (A) ⇔ |M | ∈
S for some class S of numbers. Similarly for its relativization: Q rel(A, B) ⇔
|A| ∈ S.

Many of these do not seem to be quantirelation denotations. However, consider the
English expression any number of the five. In the sense of ‘zero or more of the
five’ this denotes Q M (A, B) ⇔ |A| = 5. Likewise, any number of the five or
more denotes Q M (A, B) ⇔ |A| ≥ 5. So at least universe quantifiers of this form may
be seen as determiner denotations.

In the number triangle, it is immediate that

Q is M↑ and M↓ iff it is a universe quantifier.

��

Next, we note that for each of the six basic monotonicities, the behavior of
Q determines that of the other quantifiers in square(Q). We already know this
for right monotonicity, so let us state the relevant facts for the four basic left
monotonicities.

Proposition 8

(a) Outer negation reverses direction. That is, it rotates the arrow around the axis perpen-
dicular to it. So if Q is ↑M, then ¬Q is ↓M, and similarly in the other
cases.

(b) Inner negation amounts to rotation around the vertical axis in the number tri-
angle. Thus, it switches between ↓M and ↓M, and between ↑M and
↑M.
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(c) Hence, dual rotates around the horizontal axis (combining the two rotations above),
so it switches between ↓M and ↑M, and between ↓M and ↑M.

These descriptions use the number triangle, but in fact no extra assumptions are needed,
except C in the type 〈1, 1〉 case.

Proof. (a) is immediate. For (b), suppose Q is ↓M, that Q¬M (A, B), A′ ⊆
A, and A − B = A′ − B. Then (by C) Q M (A, A − B). Since A ∩ (A −
B) = A′ ∩ (A′ − B) = A′ ∩ (A − B), it follows by ↓M that Q M (A′, A − B), i.e.
Q M (A′, A′ − B). Thus Q¬M (A′, B), which shows that Q¬ is ↓M. The other
cases are similar, and (c) follows from (a) and (b). �

The second part of Fact 2 (section 2) is a corollary of this. For example, if Q is
persistent (↑M + ↑M), both ¬Q and Qd are ↓M + ↓M (anti-
persistent), and Q¬ is ↑M + ↑M (persistent).

Finally, let us consider the issue of testing empirically for these more specialized
monotonicities, say, ↓M. In principle, one could test when inferences of the
form (roughly)

(5.20) a. Q A are B
b. Every A′ is an A
c. Every A which is B, is an A′
d. Hence: Q A′ are B

are considered valid, where the premises would guarantee that A′ ⊆ A and A ∩ B =
A′ ∩ B. But these inferences are somewhat artificial, and results may be clearer when
the required facts are taken for granted by evident empirical circumstances. For
example, presumably speakers would normally not regard the inference

(5.21) a. At least one-third of the students smoke.
b. Hence: At least one-third of the male students smoke.

as valid, for obvious reasons, but they would grant the validity of

(5.22) a. At least one-third of the students have joined the men’s choir.
b. Hence: At least one-third of the male students have joined the men’s choir.

at least if they take for granted that only men can join the men’s choir. If this is
granted, then one need only realize that the percentage of chorists among the male
students must be at least as high as the percentage of chorists among all the students.
That is, one needs to realize this in order to judge the inference valid, and presumably
most speakers do realize this.

We would probably get clearer results with a determiner like at most five
instead. But that would not help, since then we would rather be testing for
the stronger property of anti-persistence; note that in this case both (5.21) and
(5.22)—with at least one-third of the replaced by at most five—would
be judged valid. Thus, the test should use a determiner which (we think) is ↓M
but not ↓M.
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Now consider also

(5.23) a. Most female students didn’t join the heptathlon team.
b. Hence: Most students didn’t join the heptathlon team.

With A and A′ as before (students and female students, respectively), but with C as
the extension of the property of not having joined the heptathlon team—given that
this is a women’s sport, so only women can join this team—we have A′ ⊆ A and
A − C = A′ − C , so this inference should be a good test of ↑M. Prima facie,
it might seem to take a bit more calculation to see that, under the circumstances, the
conclusion does indeed follow.

Again, we would get clearer results with, say, at least eight, but then we would
be testing the stronger property ↑M (persistence), not ↑M. In conclusion,
testing for the more specialized monotonicities, by contrast with testing for ordinary
right or left monotonicity, requires some care.14

5 .6 SMOOTH QUANTIFIERS

The choice of monotonicity properties in the last examples, ↓M and ↑M,
was no accident.

�

�

In fact, at least one-third of the and most have both of these properties, though neither
is left monotone. Moreover, this combination of properties turns out to be
ubiquitous.

smoothness

A type 〈1, 1〉 quantifier Q is smooth iff it is ↓M and ↑M; i.e. if the fol-
lowing two conditions hold:

(5.24) Q M (A, B) & A′ ⊆ A & A ∩ B = A′ ∩ B ⇒ Q M (A′, B)
(5.25) Q M (A, B) & A ⊆ A′ ⊆ M & A − B = A′ − B ⇒ Q M (A′, B)

Similarly for the type 〈1〉 case.

Accordingly, a quantifier is co-smooth if its inner negation—or equivalently, in this
case, its outer negation—is smooth:

14 In a preliminary test conducted with 26 first-year philosophy students in Göteborg, around
80 percent claimed that the conclusion does follow (for the corresponding Swedish sentences), with
no clear difference between (5.22) and (5.23).
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�

�

From the number triangle we see directly that all smooth quantifiers are (right)
monotone increasing. But again this holds without assuming F or I:

Proposition 9
Any C quantifier satisfying ( 5.24 ) and ( 5.25 ) is M↑.

Proof. Suppose Q M (A, B) and B ⊆ B′ ⊆ M . Let A′ = A − (B′ − B). Then we have
A′ ⊆ A and A′ ∩ B = A ∩ B = A′ ∩ B′ (draw a picture). By (5.24), Q M (A′, B); so,
by C, Q M (A′, B′). But also A′ ⊆ A and A′ − B′ = A − B′. Thus, by (5.25),
Q M (A, B′). �

When F and I are satisfied, however, it follows that smooth quantifiers are of
the form Q f (or Q rel

f ). And we can then see that smoothness amounts to a condition
that the monotonicity function f is extra well-behaved. A function f from natural
numbers to natural numbers is called increasing if n ≤ m ⇒ f (n) ≤ f (m).

Proposition 10
(F) If Q is a C, E, and I type 〈1, 1〉 quantifier, the following are equi-
valent:

(a) Q is smooth.

(b) Q is of the form Q rel
f , for some monotonicity function f with the property that for

all n,

f (n) ≤ f (n + 1) ≤ f (n) + 1

In this case, f too is called smooth.

(c) Q is of the form Q rel
f , for some monotonicity function f such that both f and f d are

increasing.

(b) says that when the universe size is increased by 1, the standard for being ‘big
enough’ given by f doesn’t change much: it is either the same or increases by 1. That
is, if at level n the + signs start at (n − f (n), f (n)), at the next level they start at one
of the two immediate successors: (n + 1 − f (n), f (n)) or (n − f (n), f (n) + 1). In the
number triangle, it is easy to see that this requirement is equivalent to ↓M +
↑M. (c) describes the same requirement in a different way. The details of the
proof are left to the reader.

From the above description we also see that the smooth quantifiers are exactly those
determined by a ‘branch’ in the number triangle, i.e. a path of + signs starting at some
point on one of the edges and going down by always choosing one of the immediate
successors of the previous point; the quantifier consists of the ‘branch’ and everything
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to the right of it. (We use scare quotes here since the number triangle is not a tree
in the mathematical sense: paths like this can separate at some point and join at later
points.) This has consequences for the number of smooth quantifiers.

First, it is clear that

(5.26) Even under F, there are uncountably many (in fact 2ℵ0 ) C, E, and
I type 〈1, 1〉 quantifiers.

This is because all such quantifiers are representable as subsets of the number tri-
angle, and there are 2ℵ0 such subsets. Clearly, at most countably many of these can be
quantirelation denotations (since there are at most countably many quantirelations in
the world’s languages).

Further, it is clear that there are as many smooth quantifiers as there are ‘branches’
of the kind described above: namely, again uncountably many:15

(5.27) Under F, there are 2ℵ0 C, E, I, and smooth type 〈1, 1〉 quan-
tifiers.

In contrast, there are only ℵ0 left monotone quantifiers, since (Proposition 4 in
section 5.2) these are all definable by sentences in FO (with two unary predicate sym-
bols), and there are only countably many such FO-sentences.

The last observation emphasizes that there is a huge difference between smooth-
ness and persistence, even though both are characterized in the number triangle by
closure under triangle-like areas. For smoothness these triangles extend towards the
right edge, whereas for persistence they extend downwards. We remarked earlier that
persistence, or left monotonicity, is relatively rare in natural languages, whereas right
monotonicity is ubiquitous. In fact, it seems that smoothness is almost as
ubiquitous.

The property of smoothness was first isolated—under a different name—by van
Benthem, who proved that the quantifiers which in a certain sense are minim-
ally complex to process are exactly the smooth ones and their negations.16 This is
quite interesting, also since it seems that most right monotone increasing determiner
denotations are in fact smooth. For example:

(5.28) The proportional quantifiers are smooth.

15 Let T be the full binary tree, i.e. the (upside-down) tree structure such that every node has
exactly two immediate successors, and every node except the top node has exactly one immediate
predecessor. So there is one node at level 0, two at level 1, four at level 2, etc., i.e. 2n at level n. The
infinite branches of T correspond exactly to infinite sequences of 0s and 1s (at each node write 0
if we take the left successor and 1 if we take the right one), which in turn correspond exactly to
the sets of (positive) natural numbers (where n ∈ X iff there is a 1 at level n + 1), and there are
uncountably many of these. But T can be embedded in the number triangle, letting level n in T
correspond to what we called level 2n in the number triangle. It follows that the infinite branches
in T can be mapped in a one–one fashion to ‘branches’ in the number triangle, whence there are
at least as many of the latter as there are of the former.

16 van Benthem 1986 called the property continuity. Westerståhl 1989 surveys various uses of
this term, and uses the name S C for the property in question here. The term ‘‘smooth’’,
which we prefer, was introduced in Väänänen and Westerståhl 2002.
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Proof. Suppose Q(A, B) ⇔ |A ∩ B| ≥ p/q · |A|, where 0 < p/q < 1 (and the uni-
verse is finite). As we remarked above (for at least one-third of the), ↓M is obvi-
ous, but let us check anyway. Suppose Q(A, B), A′ ⊆ A, and A ∩ B = A′ ∩ B. It fol-
lows that |A′ − B| ≤ |A − B|. Then,

|A′ ∩ B| = |A ∩ B| ≥ p/q · |A|
= p/q · (|A ∩ B| + |A − B|)
≥ p/q · (|A′ ∩ B| + |A′ − B|)
= p/q · |A′|

so Q(A′, B) holds.
↑M is only slightly less obvious. Suppose Q(A, B), A ⊆ A′, and A − B = A′ −

B. So the elements in A′ − A —say there are n of them—must all be in B. Then

|A′ ∩ B| = |A ∩ B| + n ≥ p/q · |A| + n

≥ p/q · (|A| + n) [since p/q < 1]

= p/q · |A′| �
One can verify that many other common right monotone increasing determiner
denotations are in fact smooth. Väänänen and Westerståhl 2002 conjectured that all
of them are. That guess was a little too hasty. Some M↑ determiners make a spe-
cific claim about the cardinality of the restriction, and these are not smooth. Typical
examples are at least m of the k (in particular, for m = k : the k) and at least
m of the k or more when m ≤ k.

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − − − − −− − − − − − − − −− − − − − − − − − −. . . . . . . . . . . . . . . . . . . . .

at least four of the six

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − + + + +− − − − + + + + +− − − − + + + + + +. . . . . . . . . . . . . . . . . . . . .

at least four of the six or more

From the number triangle we see that at least m of the k is M↑, but neither
↓M nor ↑M, and that at least m of the k or more is ↑M↑, but not
↓M.17

Another relevant case is possessive determiners, which have interesting monoton-
icity behavior. We will find in Chapter 7.13 that the most common right monotone

17 Characteristic of these quantifiers is that they impose a constraint on the size of the restric-
tion argument. One might consider a modified form of the universal suggested in Väänänen and
Westerståhl 2002, saying that all right increasing determiner denotations that do not impose such
a constraint are smooth. However, in Ch. 7 we will find another kind of counterexample: viz. pos-
sessive quantifiers like at least two of most students’ ; see Proposition 8 in Ch. 7.13. But note that
these quantifiers are not I, so the revised conjecture might still be true in the number triangle.
That is, one could propose the following universal:



Monotone Quantifiers 189

readings of possessive determiners, such as John’s, at least three students’,
and most of Mary’s are usually smooth, or ‘almost’ smooth.

An important lesson from this is that mere right monotonicity does not adequately
characterize the inference behavior of lots of quantifiers denoted by natural language
determiners that are monotone increasing. Each variety of monotonicity amounts to
the soundness of certain inferences, but the right monotone quantirelation denota-
tions often support additional stronger, left monotone schemes.

As we saw with most, for example, the true description of its monotonicity behavior
is that it supports schemes corresponding to smoothness, such as (5.22) and (5.23),
discussed in the previous section. These two imply right monotonicity, which may
be easier to test, but is strictly weaker. And similarly for many other M↑ determ-
iners.18

Note next that smoothness combined with left monotonicity is a very strong
requirement:

Fact 11
(F) Under C, E, and I, the only smooth and left monotone quantifiers
are at least k and its dual, k ≥ 0.

Proof. This is obvious from the number triangle. For example, smoothness plus
↑M amounts to

�
�

�

Thus, if k is the smallest second coordinate of a point in Q , Q has to be at least k.
Similarly in the smooth and ↓M case. �

Observe that I is crucial for this result. For example, possessive determiners can
be C, E, left monotone, and smooth (e.g., every student’s; see Chap-
ter 7.13), but not I, which is why they do not constitute counterexamples to the
above fact.

(*) I and M↑ determiner denotations that do not put a cardinality constraint on the restric-
tion argument are smooth.

This might be empirically true, and constitute a formulation of the observation, which is still rather
striking, that most of the M↑ natural language quantifiers that one comes across indeed have the
stronger property of smoothness.

18 We may note that smoothness among M↑ quantifiers is not limited to natural language

quantifiers. For example, the quantifier

SqrtM (A, B) ⇐⇒ |A ∩ B| >
√|A|

is presumably not a quantirelation denotation, but it is C, E, I, and, by an argument
similar to the one for (5.28), smooth.
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In conclusion, smoothness is quite a significant property of natural language quan-
tifiers. It was discovered while thinking about quantifiers in the number triangle, but
it applies across the board, not just when I and F are assumed. Once again,
the number triangle functions as an intuition pump, leading to insights also about
quantifiers not representable there.

We have now looked at almost all possible combinations of the six basic mono-
tonicity properties, and we have seen how they build up various more familiar mono-
tonicity properties and explain certain connections between them, For example, it is
immediate from the representations in the number triangle that

smoothness �⇒ M↑
M↑ + ↑M = ↑M↑

Furthermore, these connections hold in general, without assuming F, I, etc.
The only combinations we did not mention so far are those where right monotonicity
combines with one of its ‘closest’ weak left properties, such as:

��

We have not found these particular combinations to have a special interest. Quan-
tifiers that have them usually have stronger monotonicity properties as well. It is
of course possible to define quantifiers that have exactly the monotonicity prop-
erty depicted above and no stronger one; consider Q(A, B) ⇔ |A| ≤ n & |A ∩ B| ≤
k for k < n (? at least k of the n or fewer), but these seem somewhat
unnatural.

The picture of how natural language relates to monotonicity that has emerged in this
chapter is somewhat different from the one that first comes to mind, and that has been
predominant in the literature. The basic monotonicity properties we have isolated
for quantifiers are richer than ordinary monotonicity for functions in the mathem-
atical sense (see the introduction to this chapter). More precisely, they coincide for
right monotonicity, but the right monotonicities, although primitive, are not strong
enough to describe the behavior of M↑ or M↓ determiner denotations. At least
smoothness is also needed, and this is a combination of specialized left monotonicity
properties.

In a sense, therefore, it is the six basic monotonicity properties that constitute
the heart of the monotonicity behavior of quantifiers in natural languages. Ordinary
increasing and decreasing monotonicity in the left argument, persistence and anti-
persistence, are combinations of the basic left monotonicities, but so is smoothness.
Moreover, apparently unrelated but important properties such as symmetry turn out
also to be combinations of these four basic monotonicities.

Recall that Aristotle discovered logic partly by studying monotonicity. He dealt
with the ordinary left and right properties (for his four quantifiers). The four basic left
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monotonicity properties correspond to slightly more complicated inference schemes,
not exactly syllogisms (e.g. you need three premises, not two), but almost. So, the
picture presented here is readily seen as an elaboration of Aristotle’s classical account.

In the remaining sections of this chapter, we will see examples of how monoton-
icity and related concepts, and the tools and results developed around them, can be
applied to the study of some concrete linguistic phenomena.

5 .7 LINGUISTIC APPLICATION 1: A PECULIAR INFERENCE
SCHEME

Keenan 2005 studies four valid inference patterns involving natural language quanti-
fiers, among them the following:

(5.29) a. More than two-thirds of the students passed the exam.
b. At least one-third of the students are athletes.
c. Hence: At least one student who is an athlete passed the exam.

The pattern is an instance of

(5.30) a. More than p/q of the As are Bs.
b. At least 1 − p/q of the As are Cs.
c. Hence: Some A is both a B and a C.

This pattern is quite interesting, since it features the less studied proportional quanti-
fiers in the premises but a familiar Aristotelian quantifier in the conclusion. It there-
fore exemplifies a form of ‘natural logic’ that Keenan suggests merits further study
(though he does not undertake a further study of this particular scheme in the paper).

Let us see if we can apply our logical tools. First, observe that the pattern amounts
to an instance of an even more general scheme:

(5.31) Q(A, B) & Qd(A, C) ⇒ some(A, B ∩ C)

For it is readily seen that more than p/q of the is the dual of at least 1 − p/q of the (on
finite universes). So for which quantifiers is (5.31) valid? Interestingly, we can show
that it holds exactly for the M↑ quantifiers. In fact, the left-to-right direction of the
next proposition was proved already in Barwise and Cooper 1981 (Proposition C10
in Appendix C). The argument in the other direction is quite easy as well.

Proposition 12
A C type 〈1, 1〉 quantifier is M↑ if and only if it satisfies (5.31).

Proof. Suppose first that Q satisfies (5.31), and that Q M (A, B) and B ⊆ B′ ⊆ M . We
must show Q M (A, B′). Suppose instead ¬Q M (A, B′). Then, Q d

M (A, M − B′). By
(5.31), A ∩ B ∩ (M − B′) 
= ∅. In particular, B − B′ 
= ∅, but this contradicts the
assumption that B ⊆ B′. Thus, Q M (A, B′) holds.

In the other direction, suppose Q is M↑, that Q M (A, B) and Q d
M (A, C)

hold, but that B ∩ C = ∅. Then B ⊆ M − C , so by M↑, Q M (A, M − C). Thus,
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Q¬M (A, C), but this contradicts Q d
M (A, C). Hence, B ∩ C 
= ∅. And by C,

we may assume that B, C ⊆ A, so in fact A ∩ B ∩ C 
= ∅. �

Thus, it turns out that the scheme really has nothing to do with proportionality, but
instead characterizes right upward monotonicity. Note that no properties except con-
servativity are assumed to hold. In other words, under C the scheme is equi-
valent to

(5.32) Q(A, B) & every(B, C) ⇒ Q(A, C)

This is perhaps surprising, and surely not evident, even though the proof turned out
to be short. It is a nice illustration of how logical tools and results sometimes provide
answers to linguistically motivated questions.

5 .8 LINGUISTIC APPLICATION 2: LAA QUANTIFIERS

Recall from Chapter 4.7 Keenan and Moss’s discussion of quantifiers like those
in (5.33).

(5.33) a. Every student and teacher was there.
b. The eighty-six men and women started singing.
c. Some student’s cats and dogs were locked in the apartment.

We address here a question connected with a couple of the ways they provided for
interpreting noun phrases of the form [Det N and N] (or Q A and B).

First note that and can be interpreted as intersection in such cases unless the nouns
are incompatible (i.e. A ∩ B is necessarily empty). For instance,

(5.34) This was the time for each wife and mother to bring her finest and greatest
delicacies. (www.rusty1.com/rsbc.history1.htm)

speaks of some collection of women, each of whom is a wife and mother. The inter-
sective interpretation seems to be available also for sentence (5.33a), if slightly forced
in this case. The corresponding interpretations of (5.33b, c) are necessarily false, and
thus unavailable.

Keenan and Moss (1984) assign a distributive interpretation (5.36) to sentence
(5.33a) by ‘lifting’ the type 〈1, 1〉 quantifier Q expressed by the initial determiner to
a type 〈1, 1, 1〉 quantifier Q ∧,and,2 which they define via the following schema.

(5.35) (Q ∧,and,k)M (A1, . . . , Ak, B) ⇔ Q M (A1, B) & . . . & Q M (Ak, B)

(5.36) student ∪ teacher ⊆ was there

The direct semantic interpretation of sentence (5.33a) via (5.35) is (5.37), which is
equivalent to (5.36).

(5.37) every(student , was there) ∧ every(teacher , was there)
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The clearly intended interpretation of (5.38) is given by this lift.

(5.38) Employee Teresa Irwin informed the officer that while she was stocking the
cooler, she heard someone enter the store. As she came out of the cooler, she
spotted two men and women standing at the counter. The two males attemp-
ted to make a purchase and while the clerk was distracted, the two female
suspects stole fifteen packs of cigarettes. (www.bcstandard.com/News/2000/
0830/Sheriff.html)

Keenan and Moss (1984) offer a different interpretation for (5.33b): approxim-
ately, (5.40), via the following lift.

(5.39)

(Q ∨,and,k)M (A1, . . . , Ak, B) ⇔ Q M (A1 ∪ . . . ∪ Ak, B)

& A1 
= ∅ . . . & Ak 
= ∅
(5.40) |man ∪ woman| = 86 & man ∪ woman ⊆ start singing

As we have explained several times, we believe the requirement of non-emptiness on
the sets man and woman (i.e. A1 and A2) is pragmatic and does not really belong in
the truth conditions of this union interpretation. Removing the requirement yields a
slightly simpler lift:

(5.41) (Q ∨,and,k)M (A1, . . . , Ak, B) ⇔ Q M (A1 ∪ . . . ∪ Ak, B)

The clearly intended interpretation of (5.42) is given by this lift.

(5.42) Five men and women from four states have been elected to serve on the Uni-
versity of Iowa Foundation Board of Directors. At its October meeting, the
Foundation’s Board of Directors elected . . . [list of five names]. (www.ui-
foundation.org/news/1999/dec05.shtml)

Although the lifts (5.35) and (5.41) assign the same meaning to (5.33a) as well
as to (5.34), Dalrymple and Peters (personal communication) noted that both the
union and the distributive interpretations are needed, in addition to the intersect-
ive interpretation, because sentences can actually be three-ways ambiguous. For
instance,

(5.43) Three linguists and logicians were invited to speak

can mean any of the following non-equivalent propositions:

(5.44) a. three(linguist ∩ logician , invited to speak)
b. three(linguist, invited to speak) & three(logician, invited to speak)
c. three(linguist ∪ logician, invited to speak)

Of course, only two distinct meanings are available for

(5.45) No linguists and logicians were invited to speak.

because the quantifier no makes the distributive and union interpretations equivalent,
as the quantifier every does for (5.33a) and (5.34). Note that no prefers or to and,
underlining that we are talking about the union:
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(5.46) a. No linguists or logicians were invited to speak.
b. No linguists were invited to speak and no logicians were invited to speak.

An obvious question is under what circumstances does the equivalence

(LAA) Q M (A, C) & Q M (B, C) ⇐⇒ Q M (A ∪ B, C)

hold. This property is sometimes called left anti-additivity, and was introduced in the
linguistic literature in another context, which we will discuss in the next section. For
the moment, we simply ask: Which quantifiers are LAA?

One readily checks that every and no qualify, as was illustrated above. Why do we
find these examples but, it appears, no others? Are there any others? With the help of
number triangle techniques, we can show that the answer is (essentially): No.

Indeed, LAA is a very strong property, and closely related to left monotonicity.
First, it is practically immediate that

(5.47) The right-to-left direction of LAA is equivalent to ↓M.

Furthermore, the left-to-right direction almost amounts to ↑M, but not quite. We
have the following facts:

(5.48) (F) If Q satisfies C, E, I, and the left-to-right direction of
LAA, then, for all M and all A, A′, B ⊆ M :

(5.49) Q M (A, B) & A ⊆ A′ & A ∩ B = A′ ∩ B & A − B 
= ∅ ⇒ Q M (A′, B)

or, with the numerical representation,

Q(k, m) & k 
= 0 ⇒ Q(k + 1, m)

(Thus, this is ↑M, with the extra condition that k 
= 0.)

(5.50) Q M (A, B) & A ⊆ A′ & A − B = A′ − B & A ∩ B 
= ∅ ⇒ Q M (A′, B)

or, with the numerical representation,

Q(k, m) & m 
= 0 ⇒ Q(k, m + 1)

(↑M, with the condition m 
= 0.)

(5.51) Q M (A, B) & A ⊆ A′ & A − B 
= ∅ & A ∩ B 
= ∅ ⇒ Q M (A′, B)

or, with the numerical representation,

Q(k, m) & k 
= 0 & m 
= 0 ⇒ Q(k, m + 1) & Q(k + 1, m)

(↑M, with the condition k, m 
= 0.)

Proof. Let us focus on the numerical versions. Suppose Q(k, m) and k 
= 0. Let
a1, . . . , ak, b1, . . . , bm, c be distinct objects. By our assumptions, it follows that

Q({a1, . . . , ak, b1, . . . , bm}, {b1, . . . , bm})
and (since k > 0)

Q({a1, . . . , ak−1, c, b1, . . . , bm}, {b1, . . . , bm})
By the left-to-right direction of LAA,

Q({a1, . . . , ak, c, b1, . . . , bm}, {b1, . . . , bm})
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which means that Q(k + 1, m). This proves (5.49). The proof of (5.51) is similar, and
(5.51) follows from (5.49) and (5.51). �

Using these facts, we can now prove the desired result.

Proposition 13
(F) The only non-trivial C, E, and I quantifiers satisfying the condition
LAA are every, no, and the quantifier Q M (A, B) ⇔ A = ∅ (‘every and no’ ).

Proof. Consider the number triangle. By non-triviality, there is a + somewhere, so by
↓M, (0,0) has a +. If this is the only +, we have the quantifier mentioned above.
If not, the following holds.

• One of (1,0) and (0,1) must have a +.
[Follows by ↓M and the existence of a + besides the one on (0,0).]

• No point off the edges can have a +.
[If it did, the whole downward triangle spanned by that point would have +s, by
(5.51), and then the whole number triangle would have +s, by ↓M.]

• (1,0) and (0,1) cannot both have a +.
[Otherwise, we would have Q({a}, {b}) and Q({b}, {b}) with a 
= b, and so by the
left-to-right direction of LAA, Q({a, b}, {b}). But this means that (1,1) has a +,
which is forbidden by the previous claim.]

Now if (1,0) has a +, so does the whole left edge, by our assumption and (5.49). No
point other than (0,0) on the right edge can have a +, since otherwise (0,1) would
have a + by ↓M. Since no point off the edges can have a +, it follows that Q is no.
Similarly, if (0,1) has a +, Q is every. �

It seems safe to predict that the only I determiner denotations that we will ever
encounter satisfying LAA are every and no. Thus we expect to see three-way ambigu-
ities (or two-way, if the intersective interpretation is excluded by incompatibility of
the conjoined nouns) for most other determiners.19 That is indeed pretty much what
we find, though the ambiguity is subtler and less noticeable for determiners that do
not involve precise counts, such as in (5.52).

(5.52) Many banks and lagoons are at very similar depths.

19 It seems unlikely that the third quantifier mentioned in the proposition is a determiner
denotation. Note, however, that this is another indication that the principle (BClDet) (Ch. 4.1)
that determiner denotations are closed under Boolean operations is a bit too strong, since that
quantifier is simply the conjunction of every and no. Another example is the disjunction of every
and no, which consists of the two edges of the number triangle. This quantifier is ↓M and satis-
fies (5.49)–(5.51) but not the left-to-right direction of LAA, as can be seen with sets A, B, C such
that B ∩ C = ∅ and ∅ 
= A ⊆ C .
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5.9 LINGUISTIC APPLICATION 3: POLARITY-SENSITIVE
ITEMS IN NATURAL LANGUAGES

Now consider another natural language phenomenon, polarity sensitivity, which some
linguists argue involves monotonicity in a central way.20 Natural languages contain
expressions that only occur in a negative context, or only have a particular sense in
negative contexts, for example, ever, any, yet, and numerous idioms such as lift
a finger, budge an inch, give a damn.

(5.53) a. Mary hasn’t ever been to Disneyland.
b. *Mary has ever been to Disneyland.

(5.54) a. John doesn’t own any hats.
b. *John owns any hats.

(5.55) a. John will drink any wine.
b. John won’t drink any wine. (ambiguous: John is discriminating (the neg-

ation of (5.55a)), or John is a teetotaler)

(5.56) a. John hasn’t left yet.
b. *John has left yet.

(5.57) a. Bill didn’t lift a finger to help.
b. *Bill lifted a finger to help. (doesn’t have the idiomatic sense)

(5.58) a. Sue won’t budge an inch on that question.
b. *Sue will budge an inch on that question.

(5.59) a. Tom didn’t give a damn.
b. *Tom gave a damn.

A word like ever, any, yet, and an idiom like lift a finger, budge an
inch, in years, or give a damn, is called a negative polarity item (NPI). Each
of these NPIs has a meaning that makes the negative sentence containing it maxim-
ally strong—compare ever with frequently, any with many, yet with often,
lift a finger with do a lot, budge an inch with yield significantly,
give a damn with care much in the sentences above.

Languages also have positive polarity items (PPIs), which occur only in positive
contexts, or have a particular interpretation only in positive contexts. For example,
the following facts show that the phrases would rather, already, someone, and
something are PPIs.

(5.60) a. W. C. Fields would rather be in Philadelphia.
b. *W. C. Fields wouldn’t rather be in Philadelphia.21

20 This section has benefited greatly from the survey in Ladusaw 1996.
21 Of course,

(i) W. C. Fields would rather not be in Philadelphia.
is a perfectly acceptable sentence. It is not, however, the negation of (5.60a); and in (i) would
rather is outside the scope of not.
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(5.61) a. John has already taken out the trash.
b. *John hasn’t already taken out the trash.22

(5.62) a. Mary noticed someone/something out of the ordinary.
b. Mary didn’t notice someone/something out of the ordinary. (cannot have

the sense of (5.63))

Although (5.62b) is a well-formed English sentence, it can’t have the indicated mean-
ing. The difference between (5.62b) and (5.63)

(5.63) Mary didn’t notice anyone/anything out of the ordinary.

can be apprehended by imagining that a hearer asks

(5.64) Who/What didn’t Mary notice?

immediately afterward. This question would be perfectly in order as a follow-up to
assertion (5.62b), but the question would be distinctly strange after (5.63).

For linguists, a primary concern is to characterize exactly the range of contexts in
which NPIs and PPIs may occur with the particular sense at issue, and to explain if
possible why just these contexts support the polarity-sensitive items.

The standard view about polarity-sensitive items among linguists goes roughly as
follows. There are such things as NPIs and PPIs. There are also such things as neg-
ative positions (positions that are in a negative context). NPIs occur only in negative
positions; if an NPI is in a negative position, no other aspect of its context can make
its occurrence there unacceptable. A PPI does not occur in negative positions except
if certain other aspects of its context ‘rescue’ it.23 It is clear from this sketch that an
analysis of polarity-sensitive items needs to spell out four things clearly:

• what items are NPIs,
• what items are PPIs,
• what positions are negative, and
• what can ‘rescue’ a PPI in a negative position, allowing the PPI to occur there as it

otherwise could not.

5.9.1 What are NPIs and PPIs sensitive to?

The reason why negative and positive polarity items are so called is that negation is
considered the prototypical conditioning factor controlling the distribution of NPIs

22 Actually this clause, as well as (5.60b), can occur as part of well-formed sentences such as the
following:

(i) At most three people thought that W. C. Fields wouldn’t rather be in Philadelphia.

(ii) It is surprising that John hasn’t already taken out the trash.

Sentences (5.60b) and (5.61b) are also acceptable as direct denials of the corresponding positive
assertions, as is (5.62b).

23 We saw examples of such ‘rescue’ in n. 22.
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and PPIs in sentences. It has long been recognized, however, that other factors can
also condition the distribution of polarity-sensitive items, including interrogatives
(questions), comparatives, and ‘expressive’ contexts such as the complement clause
of adjectives like surprising.

(5.65) a. Has Mary ever been to Disneyland?
b. Does John own any hats?
c. Has John left yet?
d. Did Bill lift a finger to help?
e. Will Sue budge an inch on that question?
f. Does Tom give a damn?

(5.66) a. John is fatter than Bill ever was.
b. Yao Ming is taller than any player on the other basketball team.

These contexts do not, however, all have the full power of negation to ‘license’ NPIs.

(5.67) a. It is surprising that Mary has ever been to Disneyland.
b. ?It is surprising that John owns any hats.
c. ?It is surprising that John has left yet.
d. It is surprising that Bill lifted a finger to help.
e. ?It is surprising that Sue has visited in years.
f. It is surprising that Tom gives a damn.

We return below to distinctions within the class of NPIs that are pertinent to the dif-
ference observed between ever, any, yet, and the other NPIs in these examples.
The distinctions are also pertinent to which PPIs are allowed in the following cases
and why.

(5.68) a. Would W. C. Fields rather be in Philadelphia?
b. Has John already taken out the trash?
c. Did Mary notice someone/something out of the ordinary? (cannot have

the sense: Did Mary notice anyone/anything out of the ordinary?)

(5.69) a. It is easier to believe that the Cubs will win the World Series than that W.
C. Fields would rather be in Philadelphia.

b. *John is slower than to have already taken out the trash.
c. Yao Ming is taller than some player on the other basketball team. (cannot

have the sense of (5.66b))

(5.70) a. It is surprising that W. C. Fields would rather be in Philadelphia.
b. It is surprising that John has already taken out the trash.
c. It is surprising that Mary noticed someone/something out of the ordinary.

(cannot have the sense: It is surprising that Mary noticed anyone/anything
out of the ordinary)

We do not here discuss what these other conditioners of polarity items might have
in common with negation. For some discussion, see e.g. Hoeksema 1983.
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5.9.2 What is negative about negation?

Besides the negation morpheme not, other expressions with negative-like meanings
serve to condition the occurrence of polarity items. For example, NPIs are found in
the following monotone decreasing contexts as well as in the scope of the paradig-
matic conditioner, negation.

(5.71) a. No one has ever returned from Disneyland satisfied.
b. No child who has ever been to Disneyland dislikes Mickey Mouse.
c. Every child who has ever been to Disneyland likes Mickey Mouse.
d. At most one hundred people have ever climbed Mt Everest.
e. Few people who have ever seen Mt Fuji at sunrise are unimpressed.
f. Seldom has anyone ever merited so little sympathy.

It is perhaps not surprising that downward monotone contexts would condition
polarity items like negation does. One must nevertheless ask in what specific way or
ways the operators in (5.71) are like negation.

Several different properties of negation are candidates for relevance to conditioning
the occurrence of polarity-sensitive items. For one, negation is monotone decreasing.
Recall that any function F is decreasing, relative to an ordering ≤1 of the arguments
and an ordering ≤2 (which can be the same as ≤1) of the values, just in case

if x ≤1 y, then F (y) ≤2 F (x)

The relevant ordering of propositions is implication (that is, both ≤1 and ≤2 are ⇒).
For quantifiers, the ordering of arguments is set inclusion (≤1 is ⊆), but the ordering
of values is still implication.

Another property of negation is anti-additivity. We met this property in the previ-
ous section in connection with the restriction argument of type 〈1, 1〉 quantifiers. It
can be present when least upper bounds exist for the ordering ≤1 and greatest lower
bounds exist for ≤2. An element z is the least upper bound of elements x and y with
respect to an ordering ≤ iff

x ≤ z, y ≤ z, and for all elements z′, if x ≤ z′ and y ≤ z′ then z ≤ z′

Similarly, z is the greatest lower bound of x and y iff

z ≤ x, z ≤ y, and for all z′, if z′ ≤ x and z′ ≤ y, then z′ ≤ z

Denoting the least upper bound of x and y by x ∨ y and the greatest lower bound by
x ∧ y, we have that a function F is anti-additive just in case

F (x ∨1 y) = F (x) ∧2 F (y)

For negation, ∨1 is disjunction, ∧2 is conjunction, and anti-additivity is one of De
Morgan’s laws. For quantifiers, ∨1 is set union, while ∧2 is still conjunction.

Repeating here the definition of left anti-additivity for type 〈1, 1〉 quantifiers, from
section 5.8, we also give the corresponding definition for the scope argument of a type
〈1, 1〉 and a type 〈1〉 quantifier.
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(LAA) Q M (A, C) & Q M (B, C) ⇐⇒ Q M (A ∪ B, C)
(RAA) Q M (A, B) & Q M (A, C) ⇐⇒ Q M (A, B ∪ C)

(AA) Q M (A) & Q M (B) ⇐⇒ Q M (A ∪ B)

We note that

(5.72) A type 〈1〉 quantifier Q satisfies AA if and only if Q rel satisfies RAA.

Examples: The type 〈1, 1〉 quantifier no satisfies RAA. The type 〈1, 1〉 quantifier at
most n does not satisfy RAA (when n > 0). This can be seen in the equivalence of the
a and b sentences in (5.73) and their non-equivalence in (5.74).

(5.73) a. No students danced or sang.
b. No students danced and no students sang.

(5.74) a. At most three students sang or danced.
b. At most three students sang and at most three students danced.

Just as we saw in the case of quantifiers satisfying LAA, those satisfying RAA or
AA are downward (right) monotone. This follows immediately from the definitions’
right-to-left direction.

Anti-additivity is thus a stronger form of negativity than downward monotonicity,
one that is shared with negation by some downward monotone quantifiers but not by
others.

Now (Zwarts 1981, 1998) and van der Wouden (1997) observed that polarity-
sensitive expressions, negative and positive, seem to differ according to ‘how negative’
the context must be, for NPIs, or is allowed to be, for PPIs. Zwarts argued that for
some polarity items downward monotonicity is the operative characteristic. Other
polarity items are not sensitive to mere downward monotonicity, he proposed, but
instead are sensitive only to the stronger property of anti-additivity.

The NPI yet can occur in anti-additive contexts but not in all downward mono-
tone contexts.

(5.75) a. No one has left the party yet.
b. *At most three people have left the party yet.
c. No medicine yet discovered will cure diabetes.
d. *At most three medicines yet discovered will cure diabetes.

By contrast, the NPIs ever and any occur more freely in monotone decreasing con-
texts.

(5.76) a. No one has ever returned from Disneyland satisfied.
b. At most three children have ever returned from Disneyland satisfied.
c. No one played with anything in here.
d. At most three children played with anything in here.

(5.77) a. No child who has ever been to Disneyland dislikes Mickey Mouse.
b. At most three children who have ever been to Disneyland dislike Mickey

Mouse.
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c. No child who rode any rollercoaster likes dolls.
d. At most three children who rode any rollercoaster like dolls.

A third property of negation is anti-multiplicativity. A function F is anti-multi-
plicative just in case

F (x ∧1 y) = F (x) ∨2 F (y)

For negation, ∧1 is conjunction, ∨2 is disjunction, and anti-multiplicativity is the
other one of De Morgan’s laws. For quantifiers, ∧1 is set intersection, while ∨2 is still
disjunction. Thus the definitions of anti-multiplicativity for quantifiers are:

(LAM) Q M (A, C) ∨ Q M (B, C) ⇐⇒ Q M (A ∩ B, C)
(RAM) Q M (A, B) ∨ Q M (A, C) ⇐⇒ Q M (A, B ∩ C)

(AM) Q M (A) ∨ Q M (B) ⇐⇒ Q M (A ∩ B)

Again we note that quantifiers satisfying LAM are downward left monotone, and
quantifiers satisfying RAM or AM are downward (right) monotone. This follows
immediately from the definitions’ left-to-right direction.

Note that no, though anti-additive, is not anti-multiplicative; (5.78a) does not en-
tail (5.78b), as the former is consistent with some students dancing and other students
singing.

(5.78) a. No students danced and sang.
b. No students danced or no students sang.

The combination of anti-additivity and anti-multiplicativity is called anti-
morphicity. Negation is anti-morphic. Certain polarity items of Dutch are said by
Zwarts (1981) and van der Wouden (1997) to be sensitive to this very strongly neg-
ative property.24

5.9.3 A hypothesis about licensing of NPIs and PPIs

Returning to linguists’ concern with characterizing exactly the range of contexts in
which polarity items are acceptable and have the applicable sense, we note that some
have proposed that yet is licensed only in anti-additive contexts, whereas ever and

24 We note that Linebarger (1987) has pointed out that the logical properties of licensers of
NPIs may derive partly from pragmatic factors. For example, although neither exactly four nor
after has the negative properties discussed here, both

(i) a. Exactly four people in the whole room budged an inch when I asked for help.
b. He kept writing novels long after he had any reason to believe that they would sell.

are acceptable. This seems to be related to the fact that (ia) implicates (iia) and (ib) implicates (iib)
in some way.

(ii) a. Few people budged an inch when I asked for help.
b. He kept writing novels when he no longer had any reason to believe that they would

sell.
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any are licensed in any downward monotone context. This hypothesis is consistent
with the data presented above.25

Additionally, the PPI would rather and already occur pretty freely in contexts
that are merely downward monotone, and someone/something can be interpreted
as existential quantifiers with scope inside these contexts; but none of these is allowed
in the anti-additive contexts considered so far.

(5.79) a. At most three comedians would rather be in Philadelphia.
b. At most three comedians have already performed.
c. At most three comedians made someone laugh. (can have the sense: At

most three comedians made anyone laugh)

(5.80) a. *No comedians would rather be in Philadelphia.
b. *No comedians have already performed.
c. No comedians made someone laugh. (cannot have the sense: No comedi-

ans made anyone laugh)

Besides negation and no, the preposition without is anti-additive. The latter fact
is illustrated in the equivalence of the following sentences.26

25 Note, incidentally, that these operators condition polarity items in only so much of their
scope. For example, compare (5.75c) with the following sentence:

(i) *No medicine that has been discovered yet will cure diabetes.

Here yet is not acceptable in the restriction on no because of intervening operators in the relative
clause. The same sort of limitation is illustrated by the unambiguity of

(ii) He didn’t budge an inch because he was scared.

as contrasted with

(iii) He didn’t move because he was scared.

The latter can mean that the reason he moved was not that he was scared, but the former does
not have this interpretation, on which the because operator intervenes between negation and the
NPI. Similarly one interpretation of

(iv) Sam didn’t read every child a story.

is that not every child was read a story by Sam, but

(v) Sam didn’t read every child any story.

can only have the other interpretation of sentence (iv): that every child was not read any story by
Sam. Formulating this restriction correctly is far from simple, however. Both any and ever are
licensed by the single monotone decreasing adverb seldom in (5.71e), as well as in the restriction
argument of the LAA determiner every.

(vi) Every customer who had ever purchased anything in the store was contacted.

26 In fact, without is also anti-multiplicative and therefore anti-morphic. The following are
equivalent.

(i) a. She has given parties without food and beverages.
b. She has given parties without food or she has given parties without beverages.
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(5.81) a. Bill smokes without inhaling or enjoying it.
b. Bill smokes without inhaling and Bill smokes without enjoying it.

As might be expected, the PPI someone/something cannot scope inside of
without, nor is already acceptable there.27

(5.82) a. *Fred left without paying already.28

b. John won without help from someone (cannot have the sense: John won
without help from anyone)

We thus see that the PPIs would rather and someone/something appear to
be prohibited in contexts where the NPI yet is allowed;29 yet is fine in the scope of
without as well as of not and no.

(5.83) Mary has been to New York three times without visiting the Statue of Liberty
yet.

Moreover, the PPIs would rather and someone/something are permitted in
contexts where the NPI yet cannot occur: i.e. merely monotone decreasing contexts
and positive contexts that are not even monotone decreasing. All of these polarity
items, both negative and positive, are sensitive only to pretty strongly negative condi-
tioners; i.e. they occur only in contexts that are at least anti-additive.

In contrast, the NPIs ever and any are sensitive to mere downward monoton-
icity, occurring even in the scope of at most three and other monotone decreasing
quantifiers that are not anti-additive. Thus the conditioning factor for this group of
NPIs is different from that of the class containing the NPI yet (and the correspond-
ing class of PPIs, which contains would rather and someone/something). The
two groups of NPIs differ in their sensitivity to negativity. Similarly, for groups of
PPIs.30

These generalizations amount to an analysis, classifying NPIs into two or more
classes and specifying what sort of element suffices to license the occurrence of that
class of NPIs in the context of that element. For example, ever and other NPIs in its
class are licensed in any monotone decreasing context (as well as in questions, com-
paratives, and ‘expressive’ contexts); yet and other NPIs in its class are licensed in
any anti-additive context (as well as in questions). No NPI can occur except where
it is licensed by these statements. Where some element allows NPIs to occur in its
context, no wider context surrounding both the element and the NPI can revoke that
license.

Similarly, the implicit analysis of PPIs places them in classes and specifies what sort
of element excludes each class of PPI from its context. For example, someone and

27 English syntax precludes a test of whether would rather is acceptable in the scope of
without, because this preposition cannot be followed by a finite clause.

28 Compare Fred had already paid when he left.
29 The only difference we have seen in licensing conditions of the PPIs would rather and

someone/something is in sentences (5.69a, c).
30 Recall that Zwarts (1998) and van der Wouden (1997) claim that Dutch has a class of

polarity-sensitive items that are not sensitive even to (mere) anti-additivity, but only to anti-
morphicity.
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other PPIs of its class are prohibited from occurring in the scope of an anti-additive
operator unless (a) a clause boundary or another operator’s scope intervenes or (b) the
anti-additive operator in whose immediate scope the PPI occurs is itself in a down-
ward monotone or ‘expressive’ context, or in a question. Exception (b) is motivated
by facts that Jespersen (1943) noticed and Baker (1970) and Szabolcsi (2004) among
other have since followed up: namely, that (5.62) and (5.80) are ‘rescued’ in sentences
like the following.

(5.84) a. At most three people complained that Mary didn’t notice someone/some-
thing out of the ordinary. (with the sense: At most three people
complained that Mary didn’t notice anyone/anything out of the ordinary)

b. It is surprising that no comedians made someone laugh. (with the sense:
It is surprising that no comedians made anyone laugh)31

A PPI can occur where its syntactic properties allow except if it is prohibited by these
statements.

5.9.4 Testing the hypothesis

Proposed analyses, such as this one, are of course intended to predict facts beyond
the ones used to justify the analysis. This makes them empirically testable against
new examples. An obvious question about this hypothesis or any other is what sort of
examples should be examined to test it. For example, what are the anti-additive quan-
tifiers of English? And what downward monotone quantifiers are not anti-additive?
The latter question can be answered with the tools developed in this chapter, allowing
one to put the hypothesis to a sharper test than would otherwise be possible.

We saw in Proposition 13 in the preceding section that no and every are the only
non-trivial LAA quantifiers. Something similar is true about RAA quantifiers, though
this requirement is slightly less restrictive. Let us make these remarks precise, then
return to the issue of testing the hypotheses embodied in the analysis sketched here.

Proposition 14
(F) Let Q be any type 〈1〉 quantifier satisfying I. Then Q satisfies AA if and only
if for each M, one of the following three conditions holds:

(i) Q M (A) for no A ⊆ M
(ii) Q M (A) holds iff A = ∅

(iii) Q M (A) holds for all A ⊆ M

Consequently, by (5.72), if Q is a C, E, and I type 〈1, 1〉 quantifier, Q
satisfies RAA if and only if for each M and each A ⊆ M, one of the following conditions
holds:

(i) Q M (A, B) holds for no B ⊆ M

31 As we saw in n. 22, the strings (5.60b) and (5.61b) are well-formed clauses of English. They
simply are unacceptable as complete sentences or embedded anywhere except in the scope of a
suitable negative conditioner.
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(ii) Q M (A, B) holds for B ⊆ M iff A ∩ B = ∅
(iii) Q M (A, B) holds for all B ⊆ M

Remark: We find some familiar determiner denotations here:

• none of the k or more; in particular (k = 0), no
• none of the k
• any number of the k 32

• disjunctions of the above (indeed, every RAA quantifier is (under the assumed con-
ditions) a countable disjunction of quantifiers of the last two kinds)

−− −+ + +− − − −+ − − − −+ − − − − −+ + + + + + ++ + + + + + + ++ − − − − − − − −− − − − − − − − − −. . . . . . . . . . . . . . . . . . . . .

an RAA quantifier

Proof of Proposition 14. The proof is a slight variation on the proof of Proposition 13.
Let Q be any type 〈1〉 quantifier satisfying I.
(⇒) Assume Q satisfies AA, and recall that Q must therefore be M↓. Consider
any finite domain M and set A ⊆ M . It suffices to show that if Q M (A) and A 
= ∅,
then Q M (M ); so suppose A 
= ∅ and Q M (A). If A = M we are done with this dir-
ection; so assume M − A 
= ∅ and choose a′ ∈ M − A and a ∈ A. Put A′ = (A −
{a}) ∪ {a′}, and note that |A′| = |A| and |A ∪ A′| = |A| + 1. Then Q M (A′), because
Q is I, and Q M (A ∪ A′), because Q is AA. Since M is finite, Q M (M ) follows by
induction, completing the proof of this direction.
(⇐) Assume that for each finite domain M , one of (i), (ii), and (iii) holds. We need
to show that Q M (A) & Q M (B) ⇐⇒ Q M (A ∪ B) for all A, B ⊆ M . The right-to-left
direction, which is equivalent to M↓, follows immediately from the disjunction of
(i), (ii), and (iii). So assume Q M (A) and Q M (B) hold for A, B ⊆ M . If A = B = ∅,
then A ∪ B = ∅, so Q M (A ∪ B). And if either A or B is not ∅, then Q M (A ∪ B) holds
by (iii); so we are done. �

We need one more linguistic observation about where the hypothesis predicts that
NPIs and PPIs can occur. Recall (note 25) that the acceptability of an NPI or PPI is
conditioned by an operator in whose immediate scope that polarity item must or can-
not occur. Thus for the disjunctions of the basic RAA quantifiers mentioned above,
acceptability is determined disjunct by disjunct. Therefore, we can in fact set aside
disjunctions and concentrate on the basic RAA quantifiers when testing for polarity
sensitivity.

32 Any number of the k should be read as ‘zero, one, or more of the k’, not as ‘a substantial
number of the k’.
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Now we know where to look for quantifiers to test the hypothesis that anti-additive
contexts license NPIs like yet and the same contexts preclude PPIs like narrow
scope someone/something (unless ‘rescued’), while monotone decreasing contexts
that are not anti-additive do not accomplish either of these. We already saw some
instances of anti-additive contexts and downward monotone contexts that are not
anti-additive: the ones that were used above to motivate the hypothesis. We now
examine further examples, to determine whether or not they behave as the hypothesis
predicts.

Since every is LAA, yet is predicted to be acceptable in this quantifier’s restriction
argument. The facts, however, seem contrary to the prediction.

(5.85) *Every drug yet tried has failed to cure diabetes.

On the other hand, the PPIs some{one/thing/N} are barred from scoping (imme-
diately) inside the domain of every.

(5.86) Every linguist trained in some Turkic language received a fellowship. (can-
not have the sense: Every linguist trained in any Turkic language received a
fellowship)

So the hypothesis about this class of PPI is supported. Of course, we should also com-
pare

(5.87) Some friend of every movie star should introduce me to all of them.

to determine that (5.86) is not excluded simply because the syntactic construc-
tion itself cannot be interpreted with the scoping in question. We do indeed see that
(5.87) allows some friend to scope over every movie star; so the impossibil-
ity is instead connected with the attempt to scope some Turkic language in the
domain of every. Thus these PPIs may be sensitive to anti-additivity, even if the
distribution of the NPI yet is not exactly described in terms of anti-additivity.

We also note that the non-I possessive quantifier every student’s, defined by

every student’sM (A, B) ⇐⇒ ∀a ∈ student A ∩ Ra ⊆ B

(where R is any ‘possessor’ relation and Ra is the set of things R’d by a), is LAA, since

∀a∈C A1 ∩ Ra ⊆ B & ∀a∈C A2 ∩ Ra ⊆ B ⇔ ∀a∈C (A1 ∪ A2) ∩ Ra ⊆B

This generates the same kind of counterexamples to the prediction as (5.85):

(5.88) *Every doctor’s drug yet tried has failed to cure diabetes.

Turning to the RAA cases, we verify the following predictions:

(5.89) None of the five (or more) guests has arrived yet.

(5.90) None of the five (or more) guests brought someone/something unwelcome.
(cannot have the sense: None of the five (or more) guests brought anyone/
anything unwelcome)

On the other hand, the following fact is contrary to prediction:

(5.91) *Any number of the six guests have arrived yet.
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However, the hypothesis about PPIs like someone/something fares better.

(5.92) Any number of the six guests brought someone/something unwelcome. (can-
not have the sense: Any number of the six guests brought anyone/anything
unwelcome)

Finally, we check whether yet is acceptable in the scope of a non-I (right) anti-
additive quantifier.33

(5.93) Neither of each student’s parents has visited yet.

In this case, the prediction is successful, although there seem to be very few non-I
(right) anti-additive quantifiers available to test.

Overall, the hypothesis that yet occurs precisely in anti-additive contexts has a
mixed record of success. By contrast, the hypothesis that the PPIs we discussed are
excluded from such contexts is more successful. If the hypotheses had no empirical
implications beyond a few anti-additive quantifiers, it is unclear how seriously they
would deserve to be taken. There are, however, other anti-additive operators besides
quantifiers; so more systematic evaluation is possible—although we do not pursue it
here as our principal interest is in quantifiers. Our aim in this discussion has been to
show how hypotheses like the ones discussed in this section can be tested empirically
with respect to quantifiers. Whether or not one rejects any of these particular hypo-
theses, alternative hypotheses can benefit from similar analysis of their predictions,
and systematic testing of predictions against empirical facts.

Many linguists believe that there is some number k of degrees of negativity, and
there are classes NPIj and PPIj of polarity items corresponding to the degrees j ≤
k of negativity, such that items in NPIj occur only in contexts that are negative to
degree j or greater, and items in PPIj occur in contexts that are negative to degree j
or less—more precisely, items in PPIj are excluded from contexts that are negative
to degree greater than j —unless ‘rescued’. Such hypotheses differ in their choice of
degrees of negativity and their assignment of polarity items to the classes NPIj and
PPIj . Each such hypothesis deserves systematic testing, as we showed how to do for
the specific hypothesis discussed in this section. Tools like the ones we used here can
be developed for testing other hypotheses.

33 We have the truth conditions

neither of each student’sM (A, B) ⇐⇒
∀a ∈ student(∃b ∈ A s.t. R(a, b) �⇒ |A∩Ra| = 2 & A∩Ra∩B = ∅)

from which it is readily seen that this quantifier is (right) anti-additive.



6
Symmetry and Other Relational Properties

of Type 〈1, 1〉 Quantifiers

Type 〈1, 1〉 quantifiers are (on each universe) binary relations between sets, and it is
natural to inquire how quantirelation denotations behave in terms of ordinary rela-
tional properties. This chapter focuses primarily on one such property, symmetry. It
turns out that symmetric determiners are very common in natural languages, and
such determiners are particularly well-behaved. For example, a symmetric determ-
iner can be seen to denote a property of the intersection of the restriction and the
scope, which in turn explains why such expressions often go well in predicate posi-
tion too.

Moreover, symmetry has been advanced as the major factor in explaining which
determiners are acceptable in existential-there sentences. The bulk of this chapter
attempts a thorough analysis of the semantics of such sentences, including a compar-
ative study of various attempts at explaining acceptability that have been proposed in
the literature. In the end, we find that the explanation in terms of symmetry is the
most successful one so far, although many linguistic facts still remain to be accoun-
ted for.

Section 6.1 introduces the concept of symmetry, and gives a number of different
characterizations of symmetric quantifiers. In particular, we show that E for a type
〈1〉 quantifier amounts to the symmetry of its relativization. In section 6.2 we touch
briefly on the issue of the symmetry of many and few; this is just one aspect of the
(exasperating) question of how, if at all, to account for these determiners in the frame-
work of generalized quantifiers. Section 6.3 about existential-there sentences is the
main linguistic contribution of the chapter and by far its longest section. The final
section (6.4) surveys a few other relational properties of quantifiers, using the number
triangle to state and prove various results.

6 .1 SYMMETRY

Already Aristotle noted that some determiners in natural languages (and their corres-
ponding denotations) are symmetric, and others are not. The (a) and (b) sentences in
the following examples imply each other, but the (c) and (d) sentences do not.

(6.1) a. Some lawyers are crooks.
b. Some crooks are lawyers.
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c. All lawyers are crooks.
d. All crooks are lawyers.

(6.2) a. No lawyers are crooks.
b. No crooks are lawyers.
c. Most lawyers are crooks.
d. Most crooks are lawyers.

(6.3) a. Three lawyers are crooks.
b. Three crooks are lawyers.
c. All but two lawyers are crooks.
d. All but two crooks are lawyers.

(6.4) a. A woman was a witness.
b. A witness was a woman.
c. The lawyers were crooks.
d. The crooks were lawyers.

Thus, no, some, three, as well as modified numerals like more than six, at
most four, and the indefinite article are symmetric, but all, every, all but two,
and most, and other proportionals, as well as the definite article, are not.

There are some initially puzzling challenges to symmetry, like the intuitive contrast
between (6.5a) and (6.5b) below:

(6.5) a. Some men are bachelors.

b. Some bachelors are men.

(6.5a) seems informative, whereas (6.5b) is trivial. But this puzzle can be satisfactorily
resolved with a pragmatic theory about the point of utterances, such as Grice’s (1967)
theory of conversational implicature, (6.5a) normally carries the implicature (6.6a),
and (6.5a) would carry (6.6b).

(6.6) a. Not all men are bachelors.

b. Not all bachelors are men.

The self-contradictory nature of (6.6b) explains the oddness of (6.5b). Conversational
implicature is also pertinent to the feeling that symmetry pairs like those above are not
fully synonymous. For example, (6.1a) has the implicature (6.7a), and (6.1b) has the
non-equivalent implicature (6.7b).

(6.7) a. Not all lawyers are crooks.
b. Not all crooks are lawyers.

A similar observation is the following. Determiners have, as we have noted, the
property of restricting the domain of quantification to what is accordingly called the
restriction argument. This is a semantic property, codified in C and E. But
it is natural to assume that there are also pragmatic aspects of domain restriction, such
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as making the extension of the corresponding noun the topic at that point of an utter-
ance. If so, the respective sentences in a symmetry pair have different topics, and are
already for this reason not fully synonymous.

In any case, aside from these pragmatic aspects, there is an obvious semantic prop-
erty of generalized quantifiers denoted by symmetric determiners: namely, the sym-
metry, in the usual sense, of the corresponding second-order relations.

symmetry

A type 〈1, 1〉 quantifier Q is symmetric (S) iff, for all M and all A, B ⊆ M ,

(6.8) Q M (A, B) �⇒ Q M (B, A)

Clearly, the quantifiers corresponding to the symmetry pairs above are all symmet-
ric in this sense, whereas those in the other pairs are not symmetric. But looking at
these examples, we can see that there is another way of expressing the characteristic
semantic properties of the quantifiers in the symmetry pairs. This is the property that
only the intersection of the restriction and the scope matters for whether the sentence
is true or not. For example, the only thing that matters for whether Three lawyers
are crooks is true or not is the number of lawyers who are crooks. The number of
honest lawyers, say, has no influence at all. This property (in this case of the quantifier
three) has been called intersectivity.

intersectivity

A type 〈1, 1〉 quantifier Q is intersective (I) iff the truth value of Q M (A, B)
depends only on A ∩ B. More precisely, for all M and all A, B, A′, B′ ⊆ M ,

(6.9) if A ∩ B = A′ ∩ B′, then Q M (A, B) ⇔ Q M (A′, B′)

A different way of expressing the same property is the following:

(6.10) Q M (A, B) ⇐⇒ Q M (A ∩ B, A ∩ B)

(6.9) implies (6.10), since if we take A′ = B′ = A ∩ B in (6.9), A ∩ B = A′ ∩ B′, and
so (6.10) follows. Conversely, if A ∩ B = A′ ∩ B′ and (6.10) holds, two applications
of this property give the conclusion of (6.9). One advantage of expressing intersectiv-
ity as in (6.9) is that it generalizes to determiner denotations of types other than 〈1, 1〉
(we saw this in Chapter 4.7).

It is also clear that intersectivity implies symmetry: in order to conclude Q M (B, A)
from Q M (A, B), we let A′ = B and B′ = A in (6.9). The converse implication does
not hold in general, but it does hold if Q is conservative:

Fact 1
Under C, S and I are equivalent.
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Proof. It remains to verify that symmetry implies intersectivity under C. Sup-
pose A, B ⊆ M . Then

Q M (A, B) ⇐⇒ Q M (A, A ∩ B) [by C]

⇐⇒ Q M (A ∩ B, A) [by S]

⇐⇒ Q M (A ∩ B, A ∩ B) [by C]

Thus, (6.10) holds. �

Since determiner denotations are both C and E, the intuition that the quan-
tifiers in symmetry pairs are both symmetric and intersective is justified. Note that
under E, (6.10) can be written

(6.11) Q M (A, B) ⇐⇒ Q A∩B(A ∩ B, A ∩ B)

Thus, symmetric quantirelations actually express a property of the intersection of
their restriction and scope, independent of the universe of discourse.

The fact that determiner denotations are C and E is explained by their
being relativizations of type 〈1〉 quantifiers (Proposition 3 in Chapter 4.5). So what
is the property of type 〈1〉 quantifiers that corresponds to symmetry of their relativiz-
ations? The simple answer is as follows.

Proposition 2
Q rel is symmetric if and only if Q satisfies E (Q of type 〈1〉).
Proof. Suppose first that Q rel is symmetric. If A is a subset of both M and M ′, then

Q M (A) ⇐⇒ Q rel
M (M , A) [by (4.25)]

⇐⇒ Q rel
A (A, A) [by (6.11)]

⇐⇒ Q rel
M ′ (M ′, A) [by (6.11)]

⇐⇒ Q M ′ (A) [by (4.25)]

Thus, Q satisfies E. Conversely, suppose that Q satisfies E, and that A, B ⊆ M .
Then

Q rel
M (A, B) ⇐⇒ Q A(A ∩ B) [by (4.25)]

⇐⇒ Q A∩B(A ∩ B) [by E]

⇐⇒ Q rel
M (A ∩ B, A ∩ B) [by (4.25)]

So (6.10) holds for Q rel, and hence it is symmetric. �

So there is a substantial difference between E for type 〈1〉 quantifiers and E for
type 〈1, 1〉 quantifiers, in a natural language context—see the discussion in Chapter
3.4.1.3. The latter property holds of all determiner denotations. But the E type 〈1〉
quantifiers single out a particular class of determiner denotations: namely, the sym-
metric ones.
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All, most, all but five, the ten are thus relativizations of non-E type 〈1〉 quantifiers.
Recall the universal (EU) (Chapter 4.5.3) which entails that most NPs denote E
quantifiers. But there is no conflict here, since in fact most determiner denotations
are relativizations not of NP denotations, but rather of other type 〈1〉 quantifiers.

If I holds, we can further characterize symmetry. Keenan and Stavi (1986)
call a type 〈1, 1〉 quantifier Q cardinal (C) if the following holds, for all M and
all A, B ⊆ M :

(6.12) If |A ∩ B| = |A′ ∩ B′|, then Q M (A, B) ⇔ Q M (A′, B′).

C implies I (since the antecedent of (6.9) implies the antecedent of (6.12) ).
The precise relation between the two notions is given in the following proposition.

Proposition 3
For any type 〈1, 1〉 quantifier Q, C is equivalent to I + I, on finite universes.
Hence, under C, it is equivalent to I + S on finite universes. Under
C and E, it is equivalent to I + S on arbitrary universes.

Proof. Suppose Q satisfies C. We already saw that I follows. Also, it is clear that
C entails I for type 〈1, 1〉 quantifiers (in the form of (4.49) in Chapter 4.8).
This implication is true whether the universe is finite or not.

Now suppose, conversely, that Q satisfies I and I, that A, B, A′, B′ ⊆ M ,
where M is finite, and that |A ∩ B| = |A′ ∩ B′|. It follows that |M − (A ∩ B)| =
|M − (A′ ∩ B′)| (though this is not necessarily true if M is infinite). Then

Q M (A, B) ⇐⇒ Q M (A ∩ B, A ∩ B) [by (6.10)]

⇐⇒ Q M (A′ ∩ B′, A′ ∩ B′) [by I]

⇐⇒ Q M (A′, B′) [by (6.10)].

Thus C holds.
The claim about what happens under C follows immediately from this and

Fact 1. And if E also holds, the cardinalities of M − (A ∩ B) and M − (A′ ∩ B′)
are just irrelevant, so the above argument to infer C goes through using only the
assumption that |A ∩ B| = |A′ ∩ B′|. �

We observed in Chapter 3.4, Fact 9, that under I, a type 〈1〉 quantifier satisfying
E is characterized simply by a class of cardinal numbers. Combining this with the
fact that C and E quantifiers are relativizations of type 〈1〉 quantifiers, and
with Proposition 2, we obtain a final characterization of symmetric quantifiers:

Corollary 4
Under I, a C and E type 〈1, 1〉 quantifier Q is symmetric iff there is a
class S of cardinal numbers such that for all M and all A, B ⊆ M,

Q M (A, B) ⇐⇒ |A ∩ B| ∈ S
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That symmetric quantifiers can be seen as expressing a property of the intersection
of the restriction and the scope explains why expressions denoting such quantifiers
usually are fine in predicate position too:

(6.13) a. The reasons are several / *every.
b. The winning students were three / *two-thirds.

6 .2 ON THE SYMMETRY OF MANY AND FEW

The interpretation of the determiners many and few has been widely discussed in the
literature. It is easy to find instances of what appears to be non-symmetric behavior:
(6.14a) intuitively seems not to entail (6.14b), and (6.15a) not to entail (6.15b).

(6.14) a. Many plutocrats are Americans.
b. Many Americans are plutocrats.

(6.15) a. Few scoundrels are Nobel Laureates.
b. Few Nobel Laureates are scoundrels.

This time it is not a matter of total synonymy or pragmatic considerations, since
the very truth conditions appear to differ. The above examples seem to admit a
proportional reading, though in contrast with at least two-thirds of the or
even most, it is hard to say how the intended proportions are arrived at. Moreover,
whereas in (6.14) and (6.15) it is the proportion of B in A that matters, in (6.16) and
(6.17) it appears to be the other way around.

(6.16) Many Scandinavians have won the Nobel Prize.

(6.17) Few cooks applied.

For example, (6.17) could say on a given occasion that the number of cooks that
applied is smaller than one-fifth of the total number of applicants, but hardly that
it is smaller than one-fifth of the total number of cooks.

In view of facts such as these, some authors conclude that the extensional
machinery of generalized quantifiers cannot be applied to many and few. For
example, Keenan and Stavi (1986) claim that they are intensional, and therefore
exclude them from discussion, and Fernando and Kamp (1996) present an analysis
of these determiners in terms of possible worlds. However, it is not clear that even
the intensions of words and phrases in a sentence where many or few occurs suf-
fice to fix its interpretation. Perhaps other factors in the context of utterance play
a role. Thus, one may also surmise that these determiners are just extremely context-
dependent, which in principle need not preclude that they are extensional.

The following seems to be a universal fact about the meaning of many and few:
a claim many(A, B) sets a lower bound on the size of A ∩ B, and few(A, B) sets an
upper bound. One indication of this is that an exception to the former claim clearly is
something in A − B, whereas an exception to the latter clearly is something in A ∩ B
(we discuss exceptions and exceptive determiners at length in Chapter 8).
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If context determines each use of many, a possible view would be that many As
are B simply means

|A ∩ B| ≥ n

for some context-dependent n, and similarly for few. This is of course extensional,
C, E, I, ↑M↑, S, etc. The fact that many and few are fine in
predicate position supports this view:

(6.18) The contestants were many, but the lucky ones were few.

In that position, they clearly denote a property of sets, and hence are symmetric.
However, on this view one could not draw any conclusion about symmetry from

examples like (6.14a) and (6.14b), since the context of the two uses of many are dif-
ferent. Of course, that might be just how things are. The fact that it appears to be
very hard to find any examples where a sentence of the form Q As are B is logically
equivalent to Q Bs are A does not necessarily show that Q is non-symmetric, since it
involves two uses of the determiner in quite different (linguistic) contexts.

Should one nevertheless want to try to capture the uniformities of interpretation
that at least appear to hold in cases like (6.14)–(6.17), an alternative might be to
think of many as ambiguous between, say, a proportional reading

|A ∩ B| ≥ k · |A|
and an ‘anti-proportional’ reading

|A ∩ B| ≥ k · |B|
where, however, the number k still has to be provided by context. Note that whereas
the proportional reading is conservative but not symmetric, the ‘anti-proportional’
one loses conservativity too, thus threatening our quantirelation universal (QU)
(Chapter 4.5). This might be considered a higher methodological price than one is
willing to pay.

Finding an adequate treatment of many and few is a complex and interesting task,
both empirically and methodologically, but we shall have to leave the matter here
with the above brief comments.

6 .3 EXISTENTIAL-THERE SENTENCES

We now turn our attention to examining how symmetry and other properties of
quantifiers shed light on a linguistic puzzle that has exercised minds for several gener-
ations (for example, Jespersen 1943).

6.3.1 Natural language talk about existence

Many natural languages have a specialized construction more or less dedicated to talk-
ing about the existence or non-existence of things. In English, such talk typically
employs sentences with the word there as subject and an inflected form of be as
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verb followed by a noun phrase, the pivot noun phrase;1 there may optionally be a
further phrase as the sentence’s coda. Examples include:

(6.19) a. There is a man here.
b. There is a weasel chasing that rabbit.
c. There are two kinds of people.
d. There are only two ways to live your life. (Albert Einstein)
e. There are few natural opiates.
f. There are people coming.
g. There are no GIF files on these URL pages.
h. There are several solutions to every problem.
i. There are many animals in the zoo.
j. There are more sheep than people in New Zealand.

Sentences (6.19c, d, e, h) contain just a pivot noun phrase after the copula. Sentences
(6.19a, f) additionally contain a coda—here and coming, respectively—following
their pivot noun phrase, and the coda must constitute a separate phrase, because
neither a man here nor people coming is a noun phrase, as the ungrammatical-
ity of *A man here is about to leave and *People coming will arrive
soon demonstrates. Seeing that a coda may appear in existential sentences, one comes
to realize that sentences (6.19b, g, i, j) might either have a coda or just have a pivot
noun phrase that contains a reduced relative clause as postnominal modifier. Schol-
ars have searched for reliable tests to determine which cases are codas and which ones
postnominal modifiers within the pivot. The reason why this is so hard to determ-
ine appears to be that it makes no difference to the sentence’s meaning, and is only
definitively determinable when the difference matters for grammaticality.

Some dialects of English employ it instead of there as the subject of existen-
tial sentences, and many other, Germanic languages standardly employ cognates of
it—for example, German es gibt . . . and Swedish det finns . . . . Although
the grammatical construction varies across languages, quite widely in fact, many lan-
guages—perhaps most—use specialized syntax for sentences about the existence of
things.

The English syntactic construction is not totally dedicated to talk about existence.
The following strings sound unacceptable as statements that something exists, or does
not exist.

(6.20) a. #There is the problem of the cockroaches escaping.
b. #There is every book under the bed.
c. #There is neither parent in the room.
d. #There is John.

1 Some authors call it the ‘‘focus noun phrase’’, others simply the ‘‘post-verbal noun phrase’’.
We adopt the ‘‘pivot’’ terminology to avoid confusion about the question whether this noun phrase
is included in the informational focus of the sentence.
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e. #There are both opinions regarding this. (cf. There are both reform and
orthodox services over shabbat.)

f. #There are most angels in heaven.
g. #There are the three or more voting members present.
h. #There are all students’ coats hanging in the closet.

Some of these strings are nevertheless good English sentences. For instance, (6.20a, d)
present instances of something whose existence has already been asserted or implied.
Consider the following:

(6.21) a. (i) Housing cockroaches in captivity poses two main problems.
(ii) There is the problem of the cockroaches escaping. (www.ex.ac.uk/
bugclub/roach.html)

b. (i) Who is available to walk the dog?
(ii) There is John.

Sentences like (6.19) are commonly called existential-there sentences, to contrast
them with presentational there sentences (6.21a(ii), b(ii)) as well as with superfi-
cially similar sentences whose subject is the place adverb there: e.g. There goes
a weasel chasing a rabbit.

Seen in this light, it seems that at least some of the examples in (6.20) actually are
grammatical sentences; they just cannot be interpreted as existential-there sentences.
Presenting these examples after setting out a long list of existential-there sentences can
bias readers toward looking just for an existential interpretation, which is not available
for any sentence in (6.20), even well-formed ones. Existential sentences also differ in
meaning from sentences beginning with a place adverb. Sentence (6.19b) does not
answer the question ‘‘Where is a weasel chasing that rabbit?’’, while ‘‘There goes a
weasel chasing that rabbit’’ does answer the question. The latter statement does not,
however, answer the question ‘‘Is there a weasel chasing that rabbit?’’.2

As Jespersen (1943) characterized the existential-there sentences (ch. III, sect. 3.1,
p. 107):

The empty, or, as I have called it elsewhere, the existential there differs from the local adv there

(1) by having weak stress and consequently having the vowel . . . reduced . . . ,

(2) by losing its local meaning; hence the possibility of combining it with local advs and other
tertiaries, . . . [But there is no one there. There’s some magazines here.]

(3) by being a quasi-subject, thus e.g. in an infinitival nexus and with an ing, . . . [let there be
light. account for there being something rather odd ]

(4) by the tendency to have the vb in sg form with a pl subject, . . .

(5) by the word-order: there is nothing wrong, but there nothing is wrong . . . .

Thus it is not quite correct to say with NED (there 4) [Oxford: A New English Dictionary,
sense 4 of there] that ‘‘Grammatically there is no difference between There comes the train and
There comes a time when, etc.; but while in the former there is demonstrative and stressed, in

2 Although it does entail a positive answer to the latter question.
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the latter it has been reduced to a mere anticipative element occupying the place of the subject
which comes later.’’

6.3.2 Restrictions on the pivot noun phrase of existential-there sentences

Existential-there sentences are distinguished not only by their meaning but also by
limitations on the range of their grammatical formation—in ways that have puzzled
and challenged grammarians for a considerable time. The contrast between the exist-
entially interpretable examples (6.19a–j) and examples (6.20a–h), which cannot be
interpreted existentially illustrates the grammatical puzzle. The main factor determ-
ining whether or not a there sentence is existentially interpretable—examples (6.19)
versus (6.20)—appears to be located in the pivot noun phrase. Replacing the noun
phrases in existential examples (6.19a–j) by ones from non-existential examples
(6.20a–h) yields additional non-existential examples, even if one respects singu-
lar/plural number agreement while substituting. This substitution is interesting if the
sentence contains a coda in addition to the noun phrase after the copula, so that the
result is distinct from already available examples. Replacing the pivot noun phrase in
(6.19a) by John from (6.20d) yields (6.22a), and similar operations on (6.19f ) and
(6.20f) produce (6.22b).

(6.22) a. #There is John here.
b. #There are most angels coming.

Conversely, replacing the noun phrases in non-existential examples by pivot noun
phrases from existential sentences yields further existential sentences if one respects
number agreement. Compare (6.23a, b) with (6.20c, e).

(6.23) a. There is a man in the room.
b. There are a lot of books regarding this.

For this reason, linguists have directed attention to the issue of what noun phrases
can follow the copula in an acceptable existential-there sentence. Jespersen (1943)
said that these noun phrases were ‘‘indefinite’’, or at least usually ‘‘more indefinite
than ordinary subjects’’. For brevity, we will call noun phrases that can occur as the
pivot of an existential-there sentence existentially acceptable, and noun phrases
that cannot occur as the pivot of an existential-there sentence existentially unaccept-
able.3 An important question, then, is which noun phrases are existentially
acceptable.

As Jespersen’s remark indicates, scholars have felt that the crucial feature distin-
guishing existentially acceptable noun phrases from existentially unacceptable ones is
somehow related to what the phrases mean. While differences of meaning apparently

3 Milsark (1977) introduced the even briefer terms weak for what we are calling ‘‘existentially
acceptable’’ and strong for what we call ‘‘existentially unacceptable’’. The formal definitions that
Barwise and Cooper (1981) subsequently gave for these useful terms seem to have superseded
Milsark’s original purely descriptive meaning. Thus we employ new descriptive terminology.
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provide a basis for separating existentially acceptable from existentially unaccept-
able noun phrases, a syntactic superstructure seems to be overlaid on this semantic
foundation. Keenan (1987) observed that Boolean combinations of existentially
acceptable noun phrases are existentially acceptable (e.g. (6.24a)), but if a Boolean
combination of noun phrases includes one that is existentially unacceptable, then the
combined noun phrase as a whole is existentially unacceptable (e.g. (6.24b)).

(6.24) a. There are a man and a lot of books here.
b. #There are two kinds of people and most angels.

Thus attention has focused on identifying the semantic characteristics of basic
noun phrases that are existentially acceptable, setting them apart from existentially
unacceptable basic noun phrases. While proper nouns and pronouns belong to the
latter group, attention has focused mainly on determiners as crucial in discriminating
between existentially acceptable and existentially unacceptable basic noun phrases.

Here are some English determiners that produce existentially acceptable noun
phrases, and some others that produce existentially unacceptable noun phrases:

Exist acc dets Exist unacc dets

no neither
a the
two both
some every
several the three
few John’s
a few each
many most
a lot of all

(6.25)

Much longer lists can be found in Keenan 1987. The determiner any and the null
determiner ∅ that precedes bare plural nouns4 are interesting in that they appear in
both columns according to their semantic interpretation. Negative polarity any, dis-
cussed in Chapter 5.9, and the existentially interpreted null determiner ∅ produce
existentially acceptable noun phrases. By contrast, free choice any, found in John
will drink any wine, and the universally interpreted null determiner ∅ produce
existentially unacceptable noun phrases.

In section 6.3.4 we compare four accounts of what the crucial semantic difference
between these two groups of type 〈1, 1〉 quantifiers may be. Note here, however, that
certain noun phrases that lack a determiner should perhaps nevertheless be seen as
falling into one or other of the semantic categories to which the determiners just
tabulated belong. This seems particularly appropriate for basic noun phrases such as
proper nouns and pronouns, which are existentially unacceptable and perhaps ought
to be characterized as relevantly similar in meaning to noun phrases formed from the

4 If such a determiner exists. Some linguists analyze bare plural noun phrases as containing a
null determiner; others analyze such noun phrases as lacking any determiner.
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definite article the.5 Accomplishing this is not easy, however. The type 〈1〉 quantifi-
ers Ij and the{j} are indeed identical; but both are identical to some{j}. Each of these
quantifiers holds of a subset A of a universe M if and only if j is a member of A.
Thus, when one encounters a claim to have explained the existential unacceptability
of proper nouns and pronouns, it merits especially close scrutiny.6

Other noun phrases that might also be appropriate to categorize directly for exist-
ential acceptability include those in (6.26), which illustrate the observation of Johnsen
(1987) that noun phrases with only or mostly preceding a bare plural are existen-
tially acceptable.

(6.26) a. There are only gray boxes in the photo.
b. There are only graves here. (Shujaat Bukhari, http://www.hindu.com/

2005/02/25/stories/2005022505200300.htm)
c. In East Harlem, there are mostly Puerto Ricans.
d. There are mostly mosses and ferns on the forest floor.

As we pointed out in Chapter 4.5, n. 15, only seems not to be a determiner but
instead a modifier that operates fairly generally on noun phrases—including proper
nouns and pronouns (only John and you) as well as most other definite noun
phrases (only the Pope), and existentially quantified noun phrases (only an
apple), bare plurals, and certain other noun phrases.7 Therefore, adding only to
the left-hand column of (6.25) does not seem an adequate way to account for the fact
that sentences like (6.26a, b) have an existential interpretation. In fact, whether the
operator only and its synonym just should be treated as producing existentially
acceptable noun phrases or, instead, like not and other Boolean operators, as simply
preserving the existential acceptability of the noun phrases they operate on depends
on whether only John and only the Pope are existentially acceptable, like only
freshmen and only a fly are. We are inclined to the view that only preserves
existential acceptability, but the question deserves more extensive investigation than
it has received, with due attention to the status of examples such as (6.27).

(6.27) Now she has left and there is only me to take care of you.
(http://www.circlemagazine.com/issuethirtythree/monster.html)

The word mostly is more plausibly a determiner, syntactically speaking, as it can-
not precede any noun phrase other than a bare plural. If it is a determiner, though, it
is a semantically troublesome one, for it is the exact inverse of conservative. That is,

5 Furthermore, if bare plural noun phrases lack a determiner, they might be characterized as rel-
evantly similar in meaning to noun phrases formed from the determiners some or every, accord-
ing as their interpretation is existential or universal.

6 E.g. the explanation attempted in Barwise and Cooper (1981) is simply that John, say, can be
interpreted by the{j} and that the is positive strong (see sect. 6.3.4.2 below) and hence unacceptable.
This explanation doesn’t work, as we saw, since one could equally well use some{j}, and some is weak
and hence acceptable.

7 In fact, only operates much more widely than just on noun phrases—also on verb phrases,
adjectives, and some determiners (e.g. only a few).
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the type 〈1, 1〉 quantifier Q that mostly might be thought to express satisfies the
condition

(6.28) Q M (A, B) ⇐⇒ Q M (A ∩ B, B)

which Keenan (2003) calls C2, but it does not satisfy C. An alternative
analysis, however, deserves serious investigation: that mostly is a quantificational
adverb (see Chapters 0.1 and 10.2), not a determiner, and though it can attach to
a noun phrase in sentences like

(6.29) The workforce now is mostly immigrants.

and (6.26c, d), the semantic interpretation remains as if the adverb were positioned
with auxiliary verbs. Compare

(6.30) a. In East Harlem, there mostly are Puerto Ricans.

b. There mostly are mosses and ferns on the forest floor.

c. The workforce now mostly is immigrants.8

Thus we are not inclined to put mostly or only or just in the left-hand column
of (6.25).

6.3.3 What do existential-there sentences mean?

Before turning to an examination of proposals about what semantic property dis-
tinguishes determiners that produce existentially acceptable basic noun phrases from
determiners that produce existentially unacceptable ones, we consider what the exist-
ential interpretation of there sentences is.

Existential-there statements intuitively differ in meaning from presentational there
statements. The former assert or deny something’s existence; the latter point out
things whose existence has already been asserted. Instead of asserting or denying exist-
ence, existential-there sentences can also ask about it.

(6.31) Are there cockroaches in his house?

Presentational there sentences do not comfortably take the form of questions.

(6.32) Housing cockroaches in captivity poses two main problems.
*Is there the problem of the cockroaches escaping?

Nor can presentational there sentences ordinarily be negated; (6.33) cannot even fol-
low (6.21a(i)).

(6.33) *There is not the problem of cockroaches escaping.

8 Another determiner-like use of mostly that requires accounting for appears in

(i) At its peak the railroad yard employed several thousand workers, mostly immigrants.

where the appositive means ‘‘(they) mostly (were) immigrants’’; i.e. most of the workers were
immigrants.
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First-order logic was nicely regimented by Frege and his successors to enable the
expression of existence claims in the form ∃x P(x), or more generally ∃x ϕ(x), which
states that ∃M (ϕ(x)M, x) holds. Natural languages are more baroque in syntax, and
possibly also in semantics. The English existential-there sentences (6.19), for example,
do not simply state the non-emptiness of the set of things having a property. They
appear instead to say something about a collection of sets of things: the extension of
the type 〈1〉 quantifier expressed by the pivot noun phrase. Let us approach the exist-
ential interpretation of there sentences in two steps, first considering existential-there
sentences with just a pivot noun phrase, and then ones with a coda as well.

The existential interpretation of a coda-less there sentence [There be NP] with
a simple pivot noun phrase α is Q M (M ), where [[α]]M = Q . When α = [Det
Nom], this interpretation is equivalent to (Q 1)M (A, M ), where [[Det]]M = Q 1
and [[Nom]]M = A. The existential interpretation is, in effect, that NP exists. This
straightforward rule of semantic interpretation, which Barwise and Cooper (1981)
proposed, is motivated by the fact that the universe M comprises precisely the things
that exist so far as the discourse is concerned. Thus

(6.34) a. There are two kinds of people.
b. There are only two ways to live your life.
c. There are few natural opiates.

are true in a model M of English just in case (Q A)M (M ) holds, where Q A is
respectively

(6.35) a. twokind of people

b. only twoway to live your life 9

c. fewnatural opiate

and similarly for any other sentence like the ones in (6.19) that contain only a pivot
and no coda. As these type 〈1〉 quantifiers each derive from a type 〈1, 1〉 quantifier
by fixing its restriction set, an equivalent semantic analysis of these existential-there
sentences is as stating that Q M (A, M ) holds, Q and A being as immediately above.
For sentences with only a pivot NP and no coda, this simple idea works well.

What, then, do existential-there sentences containing a coda mean? As Keenan
(1987) pointed out, the existential interpretation of a sentence [There be NP Coda]
with pivot noun phrase α = [Det Nom] and coda β is Q M (A ∩ B, M ), where
[[Det]]M = Q , [[Nom]]M = A and [[β]]M = B. Thus

(6.36) a. There is a man here.
b. There are people coming.

mean respectively that a man who is here exists and that people who are coming
exist. This idea works quite generally for existential-there sentences containing a coda,
regardless of what existentially acceptable noun phrase occurs as the pivot. The coda

9 For present purposes, it suffices to regard only two as exactly two.
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joins the pivot’s nominal phrase in restricting the quantifier’s domain. Note that the
meaning is not affected by whether β is a post-nominal modifier in the pivot noun
phrase or instead is a separate coda.

These existential interpretations of sentences (6.19) are very different from the
presentational interpretations that sentences such as (6.20a, d) can be given. For
instance, (6.21a(ii)) can be paraphrased by (6.37a), but not by (6.37b).

(6.37) a. The problem of the cockroaches escaping is one of the two main problems
posed by housing cockroaches in captivity.

b. The problem of the cockroaches escaping exists.

Similarly, (6.21b(ii)) means roughly (6.38a), and not (6.38b).

(6.38) a. John is available to walk the dog.
b. John exists.

An immediate question about the existential interpretation of there sentences con-
taining a coda is how the coda comes to restrict the quantifier in the pivot noun phr-
ase, which is obviously difficult to accomplish with a compositional rule of semantic
interpretation. Barwise and Cooper did not address this question, but Keenan pro-
posed an ingenious solution. His semantic rule compositionally interprets existen-
tial sentences with a coda by taking the coda to be the scope of the quantification
expressed by the pivot noun phrase, i.e. as (Q A)M (B) or Q M (A, B).10 Then Keenan
notes that this compositionally derived proposition is equivalent to the one discussed
two paragraphs above, i.e. that Q M (A, B) ⇔ Q M (A ∩ B, M ), when the pivot noun
phrase’s determiner is one that produces existentially acceptable noun phrases. Thus
sentences (6.36) compositionally receive the existential interpretation as meaning that

(6.39) a. someM (man ∩ here, M )
b. someM (person ∩ coming, M )

precisely because these propositions are in fact equivalent to the following ones:

(6.40) a. someM (man, here)
b. someM (person, coming)11

Keenan (1987) termed type 〈1, 1〉 quantifiers Q existential just in case they satisfy
the equivalence

(6.41) Q M (A, B) ⇔ Q M (A ∩ B, M )

10 In the case of coda-less there sentences, the existential interpretation is (Q A)M (M ) or
Q M (A, M ) as Barwise and Cooper had it.

11 As Milsark (1977) argued should follow from an adequate semantic analysis of existential-
there sentences, an additional consequence of the fact that existential-there sentences select for
the existential interpretation of bare plurals, in contrast to bare plurals’ universal interpretation,
is that predicates that force bare plurals to be interpreted in terms of universal quantification can-
not occur as the coda of existential-there sentences: #There are people generous—cf. People
are generous versus People are coming.
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for all A, B ⊆ M , and hypothesized that the determiners that express existential quan-
tifiers, in this sense, produce existentially acceptable basic noun phrases. For reference
in the next section we remark that, as Keenan (2003) showed, the existential quanti-
fiers are exactly the intersective quantifiers, which are in turn exactly the quantifiers
that satisfy both C and C2.

Fact 5
Let Q be any type 〈1, 1〉 quantifier. The following conditions are equivalent:

(a) Q is existential (as defined in (6.41)).
(b) Q satisfies I.
(c) Q satisfies both C and C2 (as defined in (6.28)).

Proof. Proving the required equivalences is straightforward, and resembles similar cal-
culations in section 6.1 (e.g., in the proof of Fact 1). As an example, let us verify
that C and C2 together imply I. If A, B ⊆ M we have: Q M (A, B) ⇔
Q M (A, A ∩ B) (by C) ⇔ Q M (A ∩ (A ∩ B), A ∩ B) (by C2) ⇔ Q M (A ∩
B, A ∩ B), and this condition is equivalent to I. �

In fact, as Keenan (2003) also observed, this fact holds of all monadic quantifiers Q
under the natural generalization of (6.41) as

(6.42) A monadic quantifier Q is existential iff
Q M (A1, . . . , Ak, B) ⇔ Q M (A1 ∩ B, . . . , Ak ∩ B, M )
holds for all M and A1, . . . Ak, B ⊆ M

of I as

If A1 ∩ B = A′
1 ∩ B′ & . . . & Ak ∩ B = A′

k ∩ B′, then
Q M (A1, . . . , Ak, B) ⇔ Q M (A′

1, . . . , A′
k, B′)

(repeated from Chapter 4.7) and of C2 as

If A1 ∩ B = A′
1 ∩ B & . . . & Ak ∩ B = A′

k ∩ B, then
Q M (A1, . . . , Ak, B) ⇔ Q M (A′

1, . . . , A′
k, B)

In the next section, we assess the empirical success of Keenan’s hypothesis. Here,
though, we mention that one should not confuse the semantic equivalence that
Keenan takes as his definition of existential quantifiers with the subtly different
claim that existential-there sentences and corresponding subject–predicate sentences
are fully synonymous. Syntactic differences can affect how the meanings of the
pivot/subject noun phrase and other parts of the sentences are allowed to com-
pose semantically. For example, the negation in (6.43a) is ambiguous as to scope,12

whereas negation can only take wide scope (i.e. outer negation of the quantification)
in (6.43b).

12 For many speakers, although some speakers strongly prefer narrow scope, i.e. inner negation
of the quantifier.
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(6.43) a. A lot of horses weren’t loose.
b. There weren’t a lot of horses loose.13

So interpreting existential-there sentences as predicating the coda of the pivot NP
does not amount to the claim that these sentences have exactly the same interpret-
ations as the corresponding subject–predicate sentences.

In closing this section, we observe that it has also been proposed to assign meaning
to existential-there sentences by interpreting there as the quantifier ∃ and interpret-
ing the copula be in a way that Quine suggested, and Montague adopted: as predic-
ating a type 〈1〉 quantifier of an individual, i.e. as mapping the quantifier Q to the set
{a : Q({a})}. This approach interprets a codaless sentence [There is/are Det A] as
∃M ({a ∈ M : (Q A)M ({a})}), where the interpretation of Det is the type 〈1, 1〉 quanti-
fier Q . One might wonder wherein the appeal of this approach lies; English appears to
have settled on there and be for talking about existence by an accident of history,
but the closely related languages German and Swedish use cognates of it and the
verbs for ‘give’ and ‘exist’ instead. Other languages depart even further from the Eng-
lish mold. That worry aside, we note that this semantic interpretation is correct only
for pivot noun phrases with the determiners a, one, and singular some. Almost every
determiner that is allowed in the pivot noun phrase of an English existential-there
sentence expresses a type 〈1, 1〉 quantifier Q for which ∃M ({a ∈ M : (Q A)M ({a})})
is true under different conditions than the existential sentence is. For the determ-
iner few, for instance, ∃M ({a ∈ M : fewM (A, {a})}) is always true, though most Eng-
lish existential sentences There are few As are not tautologous. In the case of the
determiner no, the sentence There is no A is assigned truth conditions that should
be assigned to Not everything is an A. When the determiner is two, three,
and other numbers, several, many, and other permitted determiners, the assigned
truth conditions never hold, though English existential sentences with these determ-
iners are not generally self-contradictory. For this reason, advocates of this approach
usually abandon first-order quantification and resort to quantifying over sets of indi-
viduals. It is then possible at least to state the correct interpretation Q M (A ∩ B, M )
for a sentence of the form [there is/are Det A B], for instance by interpreting
it as:

for some X ⊆ M , (X = A ∩ B & Q M (X , M ))

In the process, the Quine/Montague idea of be forming a predicate from a type
〈1〉 quantifier must, however, be completely abandoned. We will not discuss these
approaches in detail.

13 Other semantic differences also correlate with the difference in syntactic structure. For
example, the adverb usually can be interpreted as a resumptive quantifier or a temporal adverb
in (i)a, but it can be only a temporal adverb in (i)b.

(i) a. A visitor is usually twittering in a basket.
b. There is usually a visitor twittering in a basket.

These and other differences are clearly discussed in Kim 1997.
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6.3.4 Four approaches to distinguishing between existentially acceptable
determiners and existentially unacceptable ones

Having addressed the question of what the existential interpretation of there sentences
is, we now assess four proposals for characterizing the existentially acceptable noun
phrases, and explaining why just these noun phrases are existentially acceptable.

6.3.4.1 Milsark 1977

Milsark (1977) pointed out that the traditional characterization of existentially
acceptable noun phrases as those that are not definite fails to capture the facts
adequately. For instance, most people is not definite, but is nevertheless existen-
tially unacceptable. In examining which determiners form existentially acceptable
noun phrases, Milsark came to the conclusion that these determiners do not express
quantifiers; instead, he proposed, they are what he termed cardinality words, which
‘‘do nothing more than express the size of the set of entities denoted by the nominal
with which they are construed’’ (Milsark 1977: 23). This hypothesis plays a crucial
role in his account of why only they are capable of forming existentially acceptable
noun phrases. He supposes that there be expresses existential quantification, and
semantic rules cannot combine this quantifier with the meaning of any pivot noun
phrase whose determiner expresses a quantifier; otherwise the result would be ‘‘double
quantification of the set denoted by the NP’’, which ‘‘should certainly be expected to
be anomalous under any semantics which makes use of the notion quantification at
all’’ (pp. 24–5). Accordingly, violations ‘‘are ruled out of the language by reason of
their uninterpretability’’ (p. 24).

Milsark’s approach to existential-there sentences is an important advance over pre-
vious approaches, which typically treated the strings in (6.20) as syntactically ill-
formed. Milsark’s proposal that these strings are instead syntactically well-formed
sentences that are semantically incapable of receiving an existential interpretation fits
better with the fact that many of them clearly do have other interpretations. His
explanation of existential acceptability in terms of filtering at the syntax/semantics
interface appears non-standard from our perspective, both in treating there be as
expressing quantification and in denying that determiners in the left-hand column of
(6.25) express quantifiers. In actuality, he did not present a detailed account of the
truth conditions of existential-there sentences.14 Nevertheless, Milsark was the first
not only to address systematically the inadequacies of the traditional ‘definiteness’
hypothesis about existentially acceptable noun phrases, but also to essay an explana-
tion of why certain predicates cannot occur as the coda of existential-there sentences.
And his idea that existentially acceptable determiners are cardinality words strongly

14 His approach to doing so would apparently have employed existential quantification over
sets, asserting that some subset of the coda’s denotation has as its intersection with the set denoted
by the pivot NP’s nominal a set whose size is expressed by the pivot NP’s determiner. He asserted
that There are some people in the bedroom ‘‘says nothing more than that the bedroom con-
tains an unspecified number of objects meeting the description ‘people’ ’’ (pp. 19–20). This is yet
another second-order formulation that is equivalent to Q M (A ∩ B, M ).
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influenced Keenan, who observed that these very determiners actually do denote
quantifiers that are cardinal (see definition (6.12) in section 6.1).

6.3.4.2 Barwise and Cooper 1981

Barwise and Cooper (1981) offered a different account of existential acceptability, the
first attempt we know of to explain the range of determiners occurring in existentially
acceptable noun phrases by means of pragmatic considerations in combination with
semantic properties of the determiners. They placed no restriction on the semantic
rule of existential interpretation for there sentences, in contrast to Milsark’s essen-
tially structural approach. Instead, Barwise and Cooper assign all there sentences an
existential meaning, but they noted that this meaning is not communicatively useful
when the pivot noun phrase is the sort we have called existentially unacceptable.

The pragmatic idea underlying Barwise and Cooper’s proposal relies on a very gen-
eral principle about the use of language to communicate which Grice (1967) encap-
sulated in the maxim Be informative. That is, make your statement one that adds
information to what was already agreed by the speaker and hearer.15

Barwise and Cooper simply pointed out that an existential-there statement could
not be informative if the determiner of the pivot noun phrase meant something that
in itself guaranteed that the statement would be true—or if the determiner’s meaning
guaranteed that the statement would be false. They called the former kind of determ-
iners positive strong; the latter kind they called negative strong. Their hypothesis was
that all determiners are existentially acceptable, except the strong ones (positive or
negative), and they termed the remaining determiners weak.16 Thus, the existentially
acceptable determiners are those for which an existential-there statement could be
true or could be false, insofar as the determiner itself contributes to determining the
there sentence’s meaning; to this extent, the statement has the possibility of being
informative.

Barwise and Cooper’s precise definition of positive strong depends crucially on a
possibility that the relational treatment of quantifiers does not allow for: leaving a
quantifier undefined when restricted to certain subsets of the universe of discourse.17

They defined a type 〈1, 1〉 quantifier Q as positive strong if and only if Q M (A, A)
is true for all universes M and all subsets A of M such that Q M (A, ·) is defined.
This enabled Barwise and Cooper to discriminate between existentially unacceptable
determiners such as the one or more and existentially acceptable some. Both the
one or moreM (A, A) and someM (A, A) are true for every non-empty subset A of M ; but
Barwise and Cooper say that the one or moreM (∅, ∅) is undefined, and someM (∅, ∅) is
false. The relational view of quantifiers cannot distinguish the two quantifiers in this

15 Grice’s maxim, and its motivation, extend naturally to the asking of questions: Ask a question
only if the answer is not entailed by what is already agreed.

16 On p. 183 they explicitly claim to explain why all strong determiners, positive and negative,
are unacceptable in pivot NPs of existential-there sentences. Their brief two-page discussion does
not actually state that all weak determiners are acceptable, though no reason to doubt that they
thought this appears in their discussion.

17 For I quantifiers, on finite sets this amounts to allowing some levels of the number tri-
angle to be entirely blank, while other levels have either a + or a − at each position.
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manner, as it treats the one or moreM (∅, ∅) as false. They similarly defined a type 〈1, 1〉
quantifier Q as negative strong if and only if Q M (A, A) is false for all universes M
and all subsets A of M .18 Exploiting partial definedness of quantifiers in the way Bar-
wise and Cooper do seems somewhat in tension with the pragmatic underpinnings
of their explanatory strategy; a statement such as The one or more solutions of
this equation are complex numbers might be informative precisely in telling
the listener that the equation has one or more solutions.

Although they interpreted all existential-there sentences as if coda-less, their ap-
proach could be extended to existential-there sentences with codas at the cost of stip-
ulating that There is/are Det A B has the truth conditions Q M (A ∩ B, M ), when
Det expresses Q , as discussed in the preceding section. The reason why each there
sentence containing a conservative positive strong determiner would be necessarily
true if interpreted existentially, and thus could not constitute an informative state-
ment, is that Q M (A, A) ⇔ Q M (A, M ) for all A ⊆ M when Q is conservative. There
sentences containing a conservative negative strong determiner could not constitute
informative statements if interpreted existentially because they would be necessarily
false, and thus could not convey information (as contrasted with misinformation).

This proposal indeed predicts that sentences like There is the problem of the
cockroaches escaping, There is every book under the bed, and There
is neither parent in the room are not existentially informative. Modulo
acceptance of the use of partially defined quantifiers to discriminate positive strong
both from weak exactly two, positive strong the five from weak (exactly)
five, etc., it also accounts for the fact that quantifiers like those in the pivot noun
phrase of sentences (6.20) are not existentially informative and, accordingly, are exist-
entially unacceptable in there sentences. Finally, it accounts for the fact that weak
quantifiers—i.e. quantifiers that are neither positive nor negative strong, such as
those in (6.19)—are existentially informative and thus acceptable in there sentences.
We return below to the question of whether resorting to partiality of quantifiers as
this approach does is really necessary in order to distinguish existentially acceptable
from unacceptable determiners.

A problem which Keenan (1987) pointed out is that the determiners at least
zero and fewer than zero are existentially acceptable. These degenerate cases viol-
ate the hypothesis of Barwise and Cooper’s analysis, as determiners that always pro-
duce a trivial quantifier 1M or 0M can never be informative.

Despite its limitations, Barwise and Cooper’s analysis sparked a surge of interest
in explaining precisely which noun phrases are existentially acceptable with the aid of
model-theoretic semantics and some kind of general principles.

18 Barwise and Cooper treated some negative strong quantifiers as partial; however, negative
strong quantifiers present no difficulties for the relational approach. Such determiners do not actu-
ally require partial definedness, because on any view, Q M (A, A) is defined whenever it is false. Thus
the relational stratagem of replacing undefined by false does not affect the set of quantifiers picked
out by the definition of negative strong. Consider e.g. the negative strong determiner neither.
When neitherM (A, B) is relationally defined as |A| = 2 & A ∩ B = ∅, then neitherM (A, A) is false
whether or not |A| = 2. This contrasts, as it should, with noM (A, A), which is true when A = ∅
and false for non-empty subsets A of M .



228 Quantifiers of Natural Language

6.3.4.3 Keenan 1987

Keenan’s approach differs from Barwise and Cooper’s in interesting ways. Although
Keenan (1987) always assigns there sentences a meaning—often, though not always,
the same one they assigned—his account of existential acceptability rests not on the
pragmatics of communication but rather on the requirement that semantic interpret-
ation be compositional. Producing the existential interpretation compositionally is
not trivial when a there sentence contains a coda. In fact, only for certain quantifiers is
the interpretation that Keenan compositionally assigns to a there sentence with a coda
equivalent to the sentence’s existential interpretation. Which quantifiers these are is
an immediate consequence of Fact 5 in its general version: A there sentence whose
pivot noun phrase’s determiner denotes an intersective quantifier quite simply has
the existential interpretation; no resort is needed to non-compositional shenanigans
in order to construct this meaning. If, however, the quantifier is not intersective, the
sentence’s interpretation differs from the existential interpretation, which cannot be
assigned by compositional means. This is the essence of Keenan’s idea.

The element of non-compositionality, which presumably lies behind Keenan’s ana-
lysis of existential-there sentences with codas, as well as Barwise and Cooper’s neglect
of codas, is in fact a consequence of the following proposition.

Proposition 6
The relation {(Q A, B, Q A∩B) : Q a type 〈1, 1〉 quantifier, A, B sets} is not single-valued,
i.e. Q A∩B is not a function of the first two arguments.

Proof. Let, for example, Q be at least two of the three, and suppose further that |A| = 4,
|A′| = 5, |A ∩ B| = 3, and |A′ ∩ B| = 4. Then Q A = Q A′ = the trivially false quan-
tifier. Q A′∩B is also trivially false, but Q A∩B is not, so Q A∩B �= Q A′∩B. This proves
the result. �

Keenan’s approach places great weight on there sentences containing a coda; in
coda-less there sentences, no pivot noun phrase poses any difficulty for composi-
tionally assigning the existential interpretation. Only in the presence of a coda does
the semantic difference between quantifiers satisfying Keenan’s definition (6.42) and
other quantifiers manifest its importance for the ability to obtain the existential inter-
pretation compositionally. Keenan ‘grammaticalizes’ this difference, treating quanti-
fiers that do not satisfy (6.42) as existentially unacceptable in coda-less there sentences
as well as in ones with a coda. Grammaticalization of a semantically motivated dis-
tinction seems both necessary and appropriate in dealing with well-formedness of
strings of a given form, or the availability of a particular semantic interpretation for
such strings.19

19 Barwise and Cooper, e.g., would presumably say that the pivot noun phrase in

(i) There is no square table that is not square.

is existentially acceptable, although sentence (i) is necessarily true.
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Having identified a semantic characteristic that separates basic determiners that
yield existentially acceptable noun phrase from those that produce existentially unac-
ceptable noun phrases, Keenan proposed that the existentially acceptable noun
phrases are exactly the Boolean combinations of noun phrases built up from Boolean
combinations of existential determiners, in the sense of (6.42).20 Note that all the car-
dinal quantifiers, the ones expressed by Milsark’s ‘‘cardinality words’’, are intersective,
and thus are predicted to yield existentially acceptable noun phrases.

All type 〈1, 1〉 quantifiers that are existential must be intersective, as shown in
Fact 5, and hence symmetric (Fact 1). Thus Keenan’s analysis predicts straightfor-
wardly that non-symmetric determiners like each/every/all, the and the k,
both and neither, most, and more than/fewer than p q’ths of the are not
allowed in existentially acceptable noun phrases. No recourse is taken to partially
defined quantifiers in excluding any of these determiners.

On the other hand, the always trivial positive and negative strong determiners
at least zero and fewer than zero are intersective, and thus Keenan’s ana-
lysis allows them in existentially acceptable noun phrases. It is natural to ask whether
Keenan’s analysis admits any non-trivial quantifiers into existentially acceptable noun
phrases which Barwise and Cooper’s does not, or vice versa.

The answer to this simple question seems not to be understood in the literature,
and part of the confusion rests on Barwise and Cooper’s use of partially defined quan-
tifiers. In fact, they themselves state, in Appendix C (Theorem C6), that non-trivial
symmetric quantifiers cannot be positive or negative strong. But in that appendix they
do not use partiality; instead, they define Q to be positive strong iff for all A, Q(A, A).
Let us use positive strongt for this notion, and positive strongp for the notion defined
above (their official definition in section 4.6 of Barwise and Cooper 1981).21 As we
noted, the official version is their only means of preventing quantifiers like the ten
from being weak, and hence wrongly predicted to be acceptable in existential-there
sentences. Nevertheless, the part of Barwise and Cooper’s claim which concerns pos-
itive strong quantifiers relies on using the simplified notion in the appendix. Let us
state this explicitly.

Fact 7
Assuming C: If Q is non-trivial and symmetric, it cannot be positive strongt or
negative strong.

Proof. By non-triviality, there are A, B ⊆ M and A′, B′ ⊆ M ′ such that Q M (A, B)
and not Q M ′ (A′, B′). By symmetry and C, we have Q M (A ∩ B, A ∩ B) and
not Q M ′ (A′ ∩ B′, A′ ∩ B′). It follows directly that Q is neither negative strong nor
positive strongt . �

20 Thus, Keenan claims, proper nouns are not existentially acceptable, because they do not have
a determiner. In actual fact, he allowed not only Boolean combinations of existential determiners,
but also combinations of them with adjective phrases or with exception phrases.

21 As we saw (n. 18), there is no need for a similar distinction in the negative strong case.
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So if ‘‘weak’’ meant ‘neither negative strong nor positive strongt ’, then every non-
trivial quantifier deemed acceptable by Keenan would also be acceptable according to
Barwise and Cooper. But the converse would fail dramatically, since non-symmetric
quantifiers like the ten are also weak in this sense.

On the other hand, if ‘‘weak’’ means ‘neither negative strong nor positive strongp’,
as in Barwise and Cooper’s official version, the facts change, as we now show.

Proposition 8 (C, E, I, F)
The non-trivial and symmetric quantifiers which are positive strongp are exactly those of
the form at least k of the k or more, for some k ≥ 1.

Proof. Because of the assumptions, we can argue in the number triangle. As noted, a
partially defined quantifier is represented just as a total one, except that some levels
may be (completely) undefined. Now it is easy to show (see section 6.4 below) that
symmetry means that (0, k) ∈ Q iff (n, k) ∈ Q , for all k, n (this is clear from the fact
that symmetry is equivalent to the condition Q(A, B) ⇔ Q(A ∩ B, A ∩ B)). Thus, if
we call lines (0, k), (1, k), (2, k), . . . columns, a symmetric quantifier consists simply of
a bunch of columns. Note that for such a quantifier, if (0, k) is in Q (and hence so is
the corresponding column), Q must be defined at all levels n ≥ k.

The quantifier mentioned in the proposition is

Q(A,B) ⇔
{ |A ∩ B| ≥ k, if |A| ≥ k

undefined, if |A| < k

So with k = 4 it looks as follows (where u stands for undefined).

uu uu u uu u u u− − − − +− − − − + +− − − − + + +− − − − + + + +− − − − + + + + +− − − − + + + + + +. . . . . . . . . . . . . . . . . . . . .

at least four of the four or more

We see directly that quantifiers of this form are symmetric and positive strongp.
Conversely, if Q is non-trivial, symmetric, and positive strongp, let k be the smallest
number such that (0, k) ∈ Q . By non-triviality, k exists and is > 0. Since Q is posit-
ive strongp, (0, n) ∈ Q for n ≥ k, whereas the levels below k must be undefined. By
symmetry, it follows that Q has the form indicated in the diagram. �

Thus, whichever version of positive strong one uses, Barwise and Cooper’s account
of acceptability in existential-there sentences diverges from Keenan’s (1987) account.
With the total version, the ten, etc. become weak and hence (wrongly) predicted to be
acceptable, but they are not symmetric, so Keenan (correctly) rules them out.

The case of most and other strict proportional quantifiers like more than two-thirds
of the deserves a special comment. Barwise and Cooper in fact treat most as total, and
declare that most(∅, B) is always true. In this way, most becomes positive strong, even
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if total. No further motivation is given for this decision, and it is not stated whether
the same stipulation applies to, for example, more than two-thirds of the. To us, it
seems more natural to say that if one allows partial quantifiers, then most, more than
two-thirds of the, etc. are undefined when the restriction is empty (and hence still pos-
itive strongp), but if not, they are false on the empty set (in which case, however, they
become weak). Indeed, that is how we have defined the strict proportional quantifi-
ers in this book.22 On this view, the only way to prevent most from being existentially
acceptable by Barwise and Cooper’s criterion is to make it partial.

The partial version thus gets these empirical facts right, but weakness still differs
from symmetry, and we isolated in Proposition 8 exactly the quantifiers for which this
happens. But now we must ask: Do the corresponding determiners exist in English,
and what is their actual behavior in existential-there sentences? Actually, although
things like at least two of the two or more etc. are somewhat clumsy, they can
certainly be used, e.g.:

(6.44) . . . wherein at least two of the two or more conductivity type layers with low
electrical resistance include scattered sources of impurity of a first conductivity
type . . . (http://patents.nimblewisdom.com/patent/6551909-Semiconduc-
tor-device-with-alternating-conductivity-type-layer-and-method)

As to their acceptability in existential-there sentences, note first that, plausibly,
there ought to be no empirical difference in this respect between determiners of the
form at least k of the k or more and those of the form at least m of the
k or more (0 < m < k). But whereas both of these are positive strongp, only the
former (where m = k) are symmetric. So if any of these determiners are acceptable
in existential-there sentences, Barwise and Cooper’s account is going to have major
problems. And if any of the latter are existentially acceptable, Keenan’s account will
have equally major problems. If none were acceptable, Barwise and Cooper would
have the upper hand. But it seems in fact that determiners of these and similar forms
are sometimes acceptable, giving trouble to both accounts.

(6.45) a. Just from my point of view of the proceedings last Tuesday, I believe that
there are at least two of the five supervisors that favor the DRMP
proposal. . . (www.vmsc.org/forum/post.asp?method=TopicQuote&
TOPIC−ID=233&FORUM−ID=4)

b. There are no more than five of the 120 seats in the legislature and perhaps
only three of the 53 seats in Congress where the outcome of an election

22 Robin Cooper (personal communication) indicates that another motivation was the desire to
preserve the intuition that every(A, B) implies most(A, B). On the other hand, another intuition is
that most(A, B) and most(A, C ) jointly imply some(A, B ∩ C ); this is lost on Barwise and Cooper’s
construal of most. Besides, it took logicians 2,000 years to eventually realize that the intuition that
all(A, B) entails some(A, B) is in fact best explained in terms of pragmatic rather than semantic
considerations. As we saw in Ch. 4.2, intuitions about what determiners mean when the restriction
is empty are notoriously unreliable.

Yet another countervailing intuition—at least as strong as that every entails most —is that most
and most of the have the same truth conditions and differ only in that the latter requires an ‘ante-
cedent’ like all definite determiners containing the (see sect. 7.11.3, esp. Fact 3).
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seems uncertain. (www.economist.com/surveys/displayStory.cfm?Story−
id=2609383)

c. There were at least two of the remaining four that still had me squirm-
ing when I had to make the choice. . . (www.millarworld.biz/lofiversion/
index.php/t37752-50.html)

These examples thus point to a family of complex determiners that appear to create
serious difficulties for Barwise and Cooper’s and Keenan’s accounts. In fact, other
complex determiners are problematic as well; we come back to this in section 6.3.5
below.

Keenan (1987) points to another possible divergence between the two accounts:
namely, for the type 〈1, 1, 1〉 quantifiers more than and fewer than, which meet his
definition of existential determiner, and do in fact produce existentially acceptable
noun phrases.

(6.46) a. There are more freshmen than sophomores in that class.
b. There are fewer joggers than runners on the track today.

He suggests that when Barwise and Cooper’s definition of negative strong is extended
to this type of quantifier, these quantifiers would fall under it, which would be quite
bad for their analysis. Similarly, as many as meets Keenan’s definition of existential,
but would, he suggests, count as positive strong under an extension of Barwise and
Cooper’s definition to type 〈1, 1, 1〉. Yet it too yields existentially acceptable noun
phrases.

However, Keenan’s critique seems to us mistaken, as his suggested extension of
positive and negative strong is incorrect. Actually, Barwise and Cooper mean by pos-
itive strong ‘always true (when defined)’, and for conservative type 〈1, 1, 1〉 quanti-
fiers, like these, this means that Q M (A, B, A ∪ B) holds for all A, B ⊆ M . Similarly,
negative strong means Q M (A, B, A ∪ B) fails for all A, B ⊆ M . It is not sufficient to
check merely that Q M (A, A, A) always holds or never holds, as Keenan suggested. In
fact, all three of these existentially acceptable type 〈1, 1, 1〉 quantifiers count as weak
in Barwise and Cooper’s sense.23

Returning to the type 〈1, 1〉 case, we have seen that whereas Keenan makes sym-
metry the sole requirement for existential acceptability,24 Barwise and Cooper do not
impose this condition. In order to stop the asymmetric proportional quantifiers from
being weak, they had to say either that these quantifiers are undefined or that they
hold vacuously when restricted to the empty set. This is a serious commitment on
their part, as behavior on the empty set is the only thing that makes no, a, some, and
at least one weak. So nothing fundamental requires weak type 〈1, 1〉 quantifiers to be
symmetric. For instance, if many and few are ambiguous between intersective and
proportional readings, Keenan’s analysis predicts that only their intersective reading

23 For example, since more−than(A, B, C ) ⇔ |A ∩ C | > |B ∩ C |, we have more−than(A, B, A ∪
B) ⇔ |A| > |B|, which may be true or false, and similarly for the other examples.

24 Symmetry implies intersectivity for any type 〈1, 1〉 Q that satisfies either C or C2,
and symmetry is always implied by intersectivity.
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can occur in existential-there sentences, while Barwise and Cooper’s analysis makes
such a prediction only if proportional many and few are strong. Proportional few is
weak just in case few(∅, ∅) is deemed to hold, because 100 percent is too large a pro-
portion of a non-empty set to constitute few of its members (proportionally speak-
ing). Proportional many is weak just in case it enforces an ‘absolute’ lower bound on
|A ∩ B| (i.e. one that is not a percentage of |A|), which would render many(A, A) false
when |A| is too small to reach this bound—because otherwise 100 percent is a big
enough proportion to constitute many. Thus, whether Barwise and Cooper’s analysis
predicts existential acceptability of the proportional interpretations of many and few
is open to stipulation in accord with one’s intuitions about whether many(A, A) and
few(A, A) are true or not when A = ∅.25

What are the empirical facts? Many linguists say many and few must be inter-
preted intersectively in the pivot noun phrase of existential-there sentences. If this is
correct, Keenan’s analysis succeeds in predicting correctly that English forgoes every
single one of the many possible opportunities for one or another non-symmetric
quantifier to appear in existential-there sentences (except the complex determiners in
(6.45)). By contrast, Barwise and Cooper’s analysis hardly makes such a prediction,
though it is fully consistent with the facts about existential unacceptability of non-
symmetric quantifiers (apart from the exceptional determiners in (6.45)), because
it allows one to stipulate individually for each non-symmetric quantifier that it is
undefined on the sets that would otherwise make it weak. There is, in fact, an embar-
rassingly large number of quantifiers for which such a stipulation would be needed.
But are the facts about existential acceptability of many and few as is commonly said?

In section 6.2, we saw that there are cases where many and few appear to have a
proportional interpretation.

(6.47) a. Many plutocrats are Americans.
b. Few scoundrels are Nobel Laureates.
c. Many American Presidents are millionaires.

(6.48) a. Many Americans are plutocrats.
b. Few Nobel Laureates are scoundrels.
c. Many millionaires are American Presidents.

We may accordingly ask whether each of these sentences is equivalent to the corres-
ponding sentence in (6.49) and (6.50).

(6.49) a. There are many plutocrats who are Americans.
b. There are few scoundrels who are Nobel Laureates.
c. There are many American Presidents who are millionaires.

25 Barwise and Cooper are somewhat ambivalent concerning many and few, and do not dis-
tinguish proportional from intersective readings, but what they say is consistent with the view that
these determiners have both readings, and that the proportional reading too is weak.
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(6.50) a. There are many Americans who are plutocrats.
b. There are few Nobel Laureates who are scoundrels.
c. There are many millionaires who are American Presidents.

To us this seems in fact to be the case, suggesting that Keenan’s characterization of
existentially acceptable determiners as intersective is actually too narrow. However,
Barwise and Cooper’s analysis is consistent with these facts. We return to a compar-
ison of the two analyses in the final part of this section.

6.3.4.4 Keenan (2003)

Keenan was seriously concerned about the fact, which Johnsen (1987) pointed out,
that sentences like

(6.51) a. There are only tradeoffs.
b. There are mostly bad options.

have existential interpretations—because his 1987 analysis firmly committed him to
existentially acceptable type 〈1, 1〉 quantifiers being symmetric, and he assumed that
only and mostly are determiners in (6.51). In the face of such examples, Keenan
changed his mind about what existential-there sentences mean. Inspired by a pro-
posal of Zucchi (1995), Keenan (2003) decided that the existential interpretation
is Q M (A ∩ B, B) instead of Q M (A ∩ B, M ). That is, he took the coda’s denotation
not only to restrict the quantifier, but also to be the universe about which the exist-
ential claim is made. The rest of his 1987 theory remained the same: what makes
a quantifier existentially acceptable is equivalence of the compositional proposition
Q M (A, B) to the existential proposition, but now the compositional interpretation
should be equivalent to Q M (A ∩ B, B) in existential-there sentences.

Note that this condition on existentially acceptable quantifiers is simply C2!
Thus Keenan’s new analysis predicts that an existentially acceptable quantifier satisfies
C if and only if it is intersective. Empirically, he abandoned his earlier ana-
lysis in favor of this one because of three apparent determiners—only, just, and
mostly—which are not conservative if they actually are determiners; the new ana-
lysis’s predictions are identical to the earlier one’s except with regard to such putative
non-conservative determiners.

In section 6.3.2, we explained our skepticism about the view that only, just,
and mostly are determiners and, correspondingly, also about the implications of
the existential acceptability of noun phrases like only tradeoffs, just dia-
monds, and mostly bad options. Further investigation will in due course dis-
close just what their existential acceptability entails, if anything, for the question of
which determiners produce existentially acceptable noun phrases. Regardless of how
that turns out, note that Keenan’s new Zucchi-inspired hypothesis does nothing to
mitigate the problems mentioned at the end of the preceding section about existen-
tially acceptable noun phrases deriving from undisputed determiners that are non-
symmetric, because these determiners are conservative. In summary, the new analysis
adds few successes, if any, to the considerable number which Keenan’s old analysis
enjoyed.
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6.3.5 Some additional data and conclusions

We noted that the proportional readings of many and few do seem to be allowed
in at least some existential-there sentences. Are explicitly proportional determiners
like at least two-thirds of the also existentially acceptable? It appears that
they are.

(6.52) a. The abbot cannot validly open the assembly unless there are at least two-
thirds of the members of the assembly present.

b. The chair can be removed from office at any time between the annual elec-
tions but only if the governing body pass resolutions to remove him or her
at two separate meetings and there are at least two-thirds of the governors
at both meetings.

Non-symmetric existentially acceptable determiners like this satisfy C, but
not C2; on their face, they are quite problematic for Keenan’s analyses. They are
equally problematic for Barwise and Cooper’s analysis (note that at least two-
thirds of the is positive strong whether or not you think it is undefined on the
empty set).

Recall also the earlier examples in (6.45), which, though not symmetric, also
caused trouble for Keenan’s analyses and Barwise and Cooper’s alike.

One other collection of existentially acceptable determiners deserves discussion
here: possessives such as no child’s, a neighbor’s, etc. The first thing to note
about possessive determiners is that some are existentially acceptable and others
are not.

(6.53) a. There is no child’s pet here.
b. There is a neighbor’s dogs that bark incessantly.
c. There is one man’s name that is heard everywhere.
d. There are no competitors’ applications on file.
e. There are two men’s voices that are very deep.
f. There are several people’s ideas involved.
g. There are few cities’ mayors who support the bill.
h. There are some people’s faces that I can’t stand.
i. There are many employees’ livelihoods at stake.

(6.54) a. #There is the teacher’s car in the parking lot.
b. #There is every competitor’s application on file.
c. #There is John’s voice that is very deep.
d. #There are most employees’ livelihoods at stake.

In Chapter 7 we discuss in detail the interpretation of possessive determiners.
Among other things, we will see that there is a distinction between universal and
existential readings (and others), but that there is a general format into which most
of these determiners fit. Applied to (6.53a, b), for example, we get the default inter-
pretations below. Here, when R is a binary relation, Ra = {b : R(a, b)}, and, for a set
A, domA(R) is the set of things that R something in A: {a : ∃b ∈ A R(a, b)}.
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(6.55) a. no(child ∩ domA(owns), {a : A ∩ ownsa ∩ B �= ∅})
where A = pet and B = here

b. some(neighbor ∩ domA(owns), {a : A ∩ ownsa ⊆ B})
where A = dog and B = bark incessantly

So (6.53a) says that no pet-owning child is such that even one of her pets are here;
this is the existential reading. The universal reading would claim that no such child
has all of her pets here; i.e. it would erroneously make (6.53a) true if there were chil-
dren who owned several pets only some of which are not here—a much less plausible
reading. The universal reading, on the other hand, is more plausible for (6.53b): if
the neighbor in question owns several dogs, the sentence may claim that all of them
are barking incessantly.

It is clear from the data in (6.53) and (6.54) that the possessor noun phrase is
decisive for whether or not the possessive determiner, and the noun phrase of which
it is the determiner, are existentially acceptable. However, semantic tests applied to
the possessive determiner’s meaning (in terms of strong/weak, symmetry, or C2)
hardly depend at all for their results on the meaning Q of the possessor noun
phrase. This fact throws doubt on whether any attempt like Barwise and Cooper’s
or Keenan’s to explain which determiners are existentially acceptable could succeed
for complex determiners such as these.

What all these problematic cases—(6.45) and (6.52) as well as (6.53) and
(6.54)—have in common is that they involve complex determiners which seem to
incorporate two quantifiers, one taking scope over the other. The data suggest to
us that the existential acceptability of many such determiners depends primarily, or
even exclusively, on whether the semantically widest scope quantifier is existentially
acceptable. Thus we are disposed to assess such a complex determiner for existential
acceptability not taken as a whole, but rather just in terms of the outermost operator.
This line of investigation seems promising enough to warrant further research.

We note that there have also been attempts to explain which noun phrases are
existentially acceptable in terms of presuppositions triggered by constituents of noun
phrases; see, for example, De Jong and Verkuyl 1985; Zucchi 1995; and Moltmann
2005.

Finally, and in summary, if one gives some such special treatment to complex
determiners and to noun phrases introduced by non-determiners like only, just,
and mostly, then both the Barwise and Cooper and the Keenan 1987 analyses do
a reasonably good job empirically of accounting for which determiners are existen-
tially acceptable. One empirical difference, which Keenan (1987) pointed out, is that
his analysis admits the trivial determiners at least zero and fewer than zero,
but Barwise and Cooper’s does not. The other is that Barwise and Cooper’s analysis is
compatible with the existential acceptability of proportional many and few, whereas
Keenan’s is not.

The theoretical differences between the analyses seem greater than the empirical
ones. Both have strengths and each has liabilities. Barwise and Cooper’s use of parti-
ality to prevent some existentially unacceptable determiners from being weak, mak-
ing them positive strong instead, diminishes the predictive power of their theory
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significantly. Moreover, their lack of a compositional rule to provide semantic
interpretations for existential-there sentences containing a coda is a notable lacuna.
While Keenan’s approach has neither of these faults, it suffers from a different the-
oretical blemish. In compositionally assigning an interpretation to every there sen-
tence with a coda, his rule assigns many sentences with existentially unacceptable
pivot noun phrases an interpretation that these sentences cannot actually have. For
instance, the sentences (6.56) do not mean (6.57).

(6.56) a. There is every student missing.
b. There are most firemen outside.

(6.57) a. Every student is missing.
b. Most firemen are outside.

This problem is built into Keenan’s reliance on semantic equivalence for certain quan-
tifiers of the meaning he assigns compositionally to the existential meaning.

6 .4 OTHER RELATIONAL PROPERTIES OF C AND E

TYPE 〈1, 1〉 QUANTIFIERS

Once one realizes that type 〈1, 1〉 quantifiers are (locally) binary relations between
sets, it is natural to inquire if other familiar relational properties besides symmetry,
such as reflexivity, transitivity, linearity, etc., provide interesting classifications of
quantifiers. There are a number of results here, sometimes inspired by empirical
observations that some property does not seem to be instantiated among determiner
denotations, or that it is instantiated by just a few particular determiners, or that all
determiner denotations that have a certain relational property also seem to have a cer-
tain other relational property. Such observations can often be explained, it turns out,
by the fact that determiner denotations are C, E, and (usually) I.

We give below a sample of results and techniques in this area, referring the reader
to van Benthem 1984 and Westerståhl 1984, Westerståhl 1989 for a fuller treatment.
C, E, and I are standardly assumed, though some of the results require
less. Furthermore, representation in the number triangle (Chapter 4.8) is often effi-
cient, as we will illustrate. But recall that this representation deals only with finite
universes, i.e. it assumes F.

Let us start with symmetry properties. Symmetry was characterized and applied in
the previous section, but what about, say, asymmetry or anti-symmetry?

(a1) In the proof of Proposition 8 in the preceding section we noted that

(6.58) Q is symmetric iff for all (cardinal) numbers k, m, Q(k, m) ⇔ Q(0, m).

This follows directly from I and the fact (see (6.10) in section 6.1) that sym-
metry is the property: Q(A, B) ⇔ Q(A ∩ B, A ∩ B).26 In the number triangle, lines

26 Since E is assumed throughout, we can omit the subscript in Q M (A, B).
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(0, m), (1, m), (2, m), . . . , parallel to the left edge of the triangle are called columns (as
they would be if the triangle were tilted 45 degrees to a ‘number square’). Similarly,
lines parallel to the right edge are rows. Then Q is symmetric if, whenever a point
(k, m) is in Q , so is the whole column through (k, m). So a symmetric quantifier con-
sists of (the union of a) set of columns in the triangle.

Recall that the number triangle represents both type 〈1〉 quantifiers and C
and E type 〈1, 1〉 quantifiers. Now consider the property E for type 〈1〉 quan-
tifiers. It says that with fixed A, M can be varied arbitrarily (as long as it contains A)
without affecting Q M (A). Clearly, in the number triangle this is the property that if a
point belongs to Q , so does the whole column through that point. So it is immediate
that E for type 〈1〉 quantifiers in the number triangle is the same as symmetry for
their relativizations. But the more general statement in Proposition 2 above, which
does not assume I or F, needs proof.

(a2) Asymmetry is the property Q(A, B) ⇒ ¬Q(B, A). Here is a perhaps surprising
fact:

(6.59) (van Benthem) There are no asymmetric quantifiers (satisfying C,
E, and I), except the trivial 0.

To see this, recall that only |A − B| and |A ∩ B| matter for whether Q(A, B) holds
or not. So as long as A − B and A ∩ B are not touched, we can change B − A in
any way we want without effect. Now suppose Q(A, B) holds, and take B′ such that
A − B = A − B′, A ∩ B = A ∩ B′, and |B′ − A| = |A − B|. Then Q(A, B′), but also
Q(B′, A), since the relevant cardinalities are the same. So Q cannot be asymmetric, if
it is different from 0.

(a3) Anti-symmetry is: Q(A, B) & Q(B, A) ⇒ A = B

(6.60) Q is anti-symmetric iff for all (cardinal) numbers k, m, Q(k, m) ⇒ k = 0.
Thus, it is equivalent to the property: Q(A, B) ⇒ A ⊆ B.

For a proof, note first that a direct translation of anti-symmetry to a number-theoretic
property gives:

(6.61) Q(k, m) & Q(k′, m) ⇒ k = k′ = 0

For, suppose Q(k, m) and Q(k′, m) hold. Choose A, B such that |A − B| = k, |B −
A| = k′, and |A ∩ B| = m. Then Q(A, B) and Q(B, A), so A = B by anti-symmetry,
and hence k = k′ = 0. Conversely, (6.61) straightforwardly implies anti-symmetry.
Now, (6.61) is clearly equivalent to the simpler property Q(k, m) ⇒ k = 0, which in
turn is equivalent to Q(A, B) ⇒ A ⊆ B.

Thus, anti-symmetric quantifiers are all subrelations of the quantifier all. In the
number triangle, their +s all lie on the right edge. Recall the condition V saying
that there is a + and a − on each level except level 0. Examining the triangle, we
see that

(6.62) The only anti-symmetric quantifiers satisfying V are all and all ei.

Next, a quick look at reflexivity properties:
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(b1) Q is reflexive if, for all sets A, Q(A, A); irreflexive if ¬Q(A, A) for all A. As we saw
in section 6.3.4.2, modulo the admittance of partially defined quantifiers, being
either reflexive or irreflexive is what Barwise and Cooper (1981) called (positive
or negative) strong.

Numerically, (ir)reflexivity means that for all k, (not) Q(0, k), i.e. in the number tri-
angle, the whole right edge of the triangle is (not) in Q .

(b2) A slightly weaker property than reflexivity is quasi-reflexivity: Q(A, B) ⇒
Q(A, A) for all A, B. Numerically: Q(k, m) ⇒ Q(0, k + m); i.e. if there is a + at
level n (= k + m), then (0, n) has a + too. For example, most is quasi-reflexive
but not reflexive, as is at least n (n ≥ 1).

We can also look at combinations of properties.

(6.63) No non-trivial quantifier is both symmetric and (ir)reflexive.

(6.64) (van Benthem) The non-trivial, symmetric and quasi-reflexive quantifiers are
exactly the quantifiers at least k, where k is any cardinal number > 0.

(6.65) The only reflexive and anti-symmetric quantifier is all.

Proof. For (6.63), suppose Q is reflexive, and take any A, B. Since Q(A ∩ B, A ∩ B)
holds, so does Q(A, B) by symmetry, so Q is the trivial quantifier 1. Similarly, if Q is
irreflexive, it must be 0.

For (6.64), let us argue under F, i.e. in the number triangle, even though the res-
ult without F is also true. Let m be the smallest number such that some pair (k, m) is
in Q (there is one, by non-triviality). By symmetry, the whole column through (k, m)
is in Q . But then, by quasi-reflexivity, each of (0, m), (0, m + 1), (0, m + 2), . . . is in
Q , and thus, by symmetry, so are the corresponding columns. This means all the
points to the right of the column through (0, m) also have a +, i.e. Q is at least m.

For (6.65), we have Q(A, B) ⇒ A ⊆ B by (6.60). And if A ⊆ B, Q(A, A) implies
Q(A, B) by C. Thus Q = all.

What about transitivity, i.e. the property: Q(A, B) & Q(B, C) ⇒ Q(A, C)? It too
has a version in the number triangle, though it is slightly complex.27 But we can look
at some examples:

(c1) Examples of transitive quantifiers are:

• all, all ei, and all but finitely many.
• alln, defined as alln(A, B) ⇔ A ⊆ B or |A| < n (n > 0). (Note that all1 = all.)
• Universe quantifiers (see Chapter 5.5) of the form Q(A, B) ⇔ |A| = n, or,

more generally Q(A, B) ⇔ |A| ∈ S, for some class S of (cardinal) numbers.
• Q(A, B) ⇔ (A ⊆ B & |A| ≥ 5) or |A| = 3

27 Westerståhl (1984) shows how to translate any universal property of Q to the number tri-
angle, under F.
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Let us check the last case: Suppose Q(A, B) and Q(B, C). If |A| = 3, Q(A, C) follows,
so assume A ⊆ B & |A| ≥ 5. But then |B| �= 3, so it must be that B ⊆ C & |B| ≥ 5.
Thus, A ⊆ C & |A| ≥ 5, so Q(A, C).

(c2) This last case turns out to be characteristic of transitivity; we quote without
proof (the proof uses number triangle techniques) the following result from
Westerståhl 1984:

(6.66) (F) Q is transitive iff there are sets X , Y of natural numbers such that X <

Y (meaning that every number in X is smaller than every number in Y ) and
Q(A, B) ⇔ (A ⊆ B & |A| ∈ Y ) or |A| ∈ X .

The example all but finitely many shows that F is a necessary requirement here.
Next, it is clear that the right-hand-side condition can never hold for both Q(A, B)
and Q(B, A). Thus:

(6.67) There are no non-trivial symmetric and transitive quantifiers.

But this can also be seen in a simpler way, and without using F. Any symmetric
and transitive relation must be quasi-reflexive (if Q(A, B), then Q(B, A) by symmetry,
so Q(A, A) by transitivity), and therefore, by (6.64), Q must be at least k, for some
k > 0. But it is easy to see that none of these quantifiers are transitive.

Here is another corollary of (6.66), first proved in van Benthem 1984:

(6.68) (F) The only reflexive and transitive quantifiers are alln, for n > 0.

For it is not hard to see that reflexivity implies that on the right-hand side of the con-
dition in (6.66), we must have X = {0, 1, . . . , n − 1} and Y = {n, n + 1, . . .}, for
some n > 0.

There are a number of similar results, for example:

(6.69) (van Benthem) There are no (non-trivial) circular quantifiers, in the sense of
satisfying the condition Q(A, B) & Q(B, C) ⇒ Q(C , A).

Again, facts like these bear witness to the power of the basic characterist-
ics—C, E, and I—of determiner denotations. For type 〈1, 1〉 quan-
tifiers in general, there are no constraints on the combinations of relational properties
that they might exhibit (except those given by the logic of binary relations).

We end this section by noting that there are several connections between mono-
tonicity properties and the relational properties of C and E type 〈1, 1〉
quantifiers discussed here. For example, a symmetric quantifier is clearly right mono-
tone if and only if it is left monotone. Here is a final example, from Zwarts 1981.

Proposition 9
Let Q be a C type 〈1, 1〉 quantifier.

(a) If Q is reflexive and transitive, then it is ↓M↑.
(b) If Q is symmetric, then it is quasi-reflexive iff it is M↑.

Proof. Under E, F, and I, this follows from (6.68) and (6.64), respectively.
But the result holds without these assumptions. For (a), suppose Q is reflexive and
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transitive, and that Q M (A, B) holds. Let A′ ⊆ A and B ⊆ B′ ⊆ M . By reflexivity
and C, we get Q M (A′, A′), and hence Q M (A′, A). Thus, by transitivity,
Q M (A′, B). Similarly, it follows that Q M (B, B′), and hence Q M (A, B′).

For (b), if Q is M↑ and Q M (A, B) holds, then Q M (A, A ∩ B) by C, so
Q M (A, A) by M↑. Thus, Q is quasi-reflexive—this does not use the symmetry
of Q . But in the other direction, suppose Q is symmetric and quasi-reflexive, that
Q M (A, B) holds, and that B ⊆ B′ ⊆ M . We must show Q M (A, B′). By Fact 1 in
section 6.1 (which uses only C), Q M (A ∩ B′, A ∩ B) holds, since A ∩ B =
(A ∩ B′) ∩ (A ∩ B). By quasi-reflexivity, it follows that Q M (A ∩ B′, A ∩ B′). Again
by Fact 1, Q M (A, B′). �



7
Possessive Quantifiers

This chapter and the next one deal with two groups of quantifiers that have received
much attention in the linguistics literature: those involved in the interpretation of
possessive expressions and those related to exceptive constructions. Possessive and
exceptive constructions occur in great variety in the world’s languages. Our ambi-
tion is not to survey such constructions, but rather to focus on those possessive and
exceptive expressions that can be seen as determiners. Possessive determiners consti-
tute a major form of possessive expressions in English and Swedish, whereas they
do not occur in, for example, Italian or French, which instead predominantly use a
postnominal (prepositional) form. Still, we hope and expect that an account of the
semantics of possessive determiners will shed some light on other possessive forms
as well.

We look in some detail at the quantifiers denoted by such expressions: at their
properties, and at the mechanisms by which they become the interpretations of simple
or complex possessive and exceptive determiners. The members of these important
classes of natural language quantifiers are C and E, but usually not I,
since they involve a fixed noun phrase, and we know that NP denotations are in gen-
eral not I.1 Nevertheless, they have logical properties, such as monotonicity, that
are worth studying in some detail.

As to possessives, we have not seen a treatment with the scope and general-
ity attempted here, although there are several recent detailed studies of particular
instances of possessive constructions.2

Section 7.1 presents the forms of possessive determiners that are the focus of this
chapter. In section 7.2 we discuss to what extent the grammatical number of the noun
following a possessive determiner influences interpretation. This is especially relevant,
since possessives are often taken to be definite, or at least to contain a definite determ-
iner. When the noun is singular, as in John’s book, the whole NP looks like a
definite description. Nevertheless, we argue that the systematic connections between
syntactic and semantic number are very weak.

Section 7.3 introduces another important, and in our opinion neglected, theme:
even if the universal reading of possessives is often the default, so that John’s
chairs are antique means that all his chairs are antique, sometimes existential

1 However, they will be seen to result from applying higher-order operations to quantifiers, and
those operations are I—a general phenomenon we come back to in Ch. 9.2.

2 In terms of coverage, perhaps the treatment of possessives in Keenan and Stavi 1986 is closest
to ours.
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and other readings are used as well. We use a parameter for the mode of
quantification; this also fits well with partitive constructions like three of John’s
books, where a semantic rule allows that same parameter to be set by the first determ-
iner.

After mentioning in section 7.4 certain compound noun-like possessive construc-
tions—only to exclude them from the present discussion—section 7.5 presents
another phenomenon that our account takes to be crucial: narrowing. This means
that a quantified possessive, such as the one in most people’s grandchildren,
in effect quantifies not over all people but only over those with grandchildren. This
was observed in Barker 1995 and, in our opinion, needs to be incorporated in any
successful account of possessives.

Section 7.6 introduces a much discussed characteristic of possessives: the freedom
in how the ‘possessor’ relation is fixed. Although there are various soft constraints
here, these can always be overruled, and we therefore choose to have a parameter for
this relation too. We are then ready to present in section 7.7 the semantics proposed
here for (a large part of the) possessive determiners, in terms of a higher-order oper-
ator Poss, that we take to be the denotation of the possessive morpheme ’s. In the
next section, 7.8, we discuss a popular alternative idea about the meaning of possess-
ives: namely, the definiteness account alluded to above, and compare it to ours. That
is, we try to formulate such an account and isolate the role which definiteness plays in
it. Differences show up with respect to narrowing, to existential readings of possess-
ives, and to the alleged influence of syntactic number. Still, we show that it is possible
to recast our account as a—suitably modified—definiteness account (and vice versa),
and this enables a sharp comparison between the two.

Sections 7.9–7.12 discuss extensively how possessives are built syntactically, and
what the corresponding semantic rules look like. This has been debated in fine detail
for particular cases; instead, we suggest a format aimed at (almost) full generality. The
issue of definiteness comes to the fore again at this point, since it is often claimed that
possessives are definite, and that this is what makes partitive constructions like at
least one of most student’s parents well-formed. Using the notion of def-
initeness from Chapter 4.6, we show that in fact very few possessive determiners are
definite, and conclude, after a methodological discussion of the criteria for definite-
ness, that it is more reasonable to say that both definites and possessives are allowed
after [Det of]. Moreover, we suggest two different semantic rules for the two cases,
and show how these rules generate the desired readings of certain sentences with iter-
ated possessive constructions, but (apparently) no other readings.

Section 7.13 describes the monotonicity behavior, including smoothness
(Chapter 5.6), of possessives in some detail. In particular, we show how the mono-
tonicity properties of a possessive quantifier depend on those of its two constituent
quantifiers (for example, for two of each student’s teachers, the quantifiers
every and two). This has not been investigated before, as far as we know. The results
are rather intricate, but not entirely without interest.

Finally, section 7.14 lists some questions and issues for further study.
Obviously, our own proposals in this chapter build on the work of others, and we

certainly don’t pretend to provide the last word. We do hope to add some fuel to the
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debate. But our main concern is not the linguistic debate, but rather a sufficiently
general account of the semantics of possessive determiners.3

7 .1 POSSESSIVE DETERMINERS AND NPs

The morphosyntax of possessive and genitive constructions varies across the world’s
languages. They usually take a noun to some genitive phrase, but the genitive itself
can be prenominal as in the English John’s book, the Swedish Evas cyklar (Eva’s
bikes), the Russian Mas̆in uc̆itel (Mas̆a’s teacher), or postnominal as in the English
car of Harry’s, the Russian drug Mas̆i (Mas̆a’s friend), or the Italian cani di
Gianni (Gianni’s dogs). Sometimes the genitive can occur as (what at least seems to
be) a predicate, as in These books are John’s or Questi cani sono di Gianni
(These dogs are Gianni’s). But it is not always clear that similar-looking construc-
tions in different languages really are the same, and in any case linguists often disagree
about the preferred analysis of possessives even in a particular language. For example,
English has all of the following forms:

(7.1) a. John’s portrait
b. a portrait of John’s
c. a portrait of John
d. That portrait is John’s.

Linguists working in a transformational framework tend to regard (7.1b) or (7.1c)
as basic (minimizing the difference between the two) and (7.1a) derived by move-
ment; see Storto 2003: chs. 3.1 and 6.1, for a recent overview. Stockwell, Schachter,
and Partee (1973) and Partee (1983/97) also find (7.1b) (and also (7.1d)) more basic.
But note that some languages only have the third and fourth form of possessives (e.g.
Italian), whereas others only have the first and fourth form (e.g. Swedish4). It is cer-
tainly possible to hold that the forms above have distinct analyses. Analyses taking
the prenominal genitive as basic can be found in Barker 1995 and in a series of recent
papers by Jensen and Vikner (e.g. Vikner and Jensen 2002).

Any general account will presumably find much similarity, but also some signific-
ant differences, between the various genitive forms. This book is about quantifiers,
so we focus on the ‘Saxon genitive’ of the prenominal kind, since these forms can
most easily be seen as quantirelations (determiners), denoting type 〈1, 1〉 quantifiers.
Sometimes they are not called determiners in the literature, but genitive phrases (GP)
or possessive phrases (PossP). But Keenan and Stavi (1986) and Partee (1983/97),

3 We thank Barbara Partee for extensive and very helpful comments on an early draft of this
chapter. In particular, she helped us realize that a main contender to our approach to possessives is
the above-mentioned definiteness account.

4 With some nouns, such as porträtt (portrait) and syster (sister), but not e.g. lag (team),
Swedish has the postnominal forms porträtt av John, syster till John, but it is not clear
that these should be construed as possessives. The form (7.1b) does not exist for any noun.
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for example, observe that in most respects they behave exactly like determiners. We
follow this usage here, and call them possessive determiners, and NPs formed by com-
bining them with a noun possessive NPs. A possessive quantifier is one that interprets
a possessive determiner (this terminology will be made more precise in section 7.12).
We begin with the simplest forms of possessive determiners, exemplified in English by

(7.2) John’s, no doctors’, at least five teachers’, exactly three students’, most
children’s

Here, a possessive determiner consists of what we may call a possessor NP and the pos-
sessive morpheme ’s. The possessor NP can be unquantified—for example, a proper
name or a bare plural—or it can be quantified, consisting of a possessor determiner
and a possessor noun. But we will see that it is profitable to think of simple possessive
determiners, as in (7.2), as special cases of the more general forms:

(7.3) few of John’s, all but five of Mary’s, each of most students’

Another variant of possessive NPs has a numerical expression following ’s:

(7.4) Henry’s three, most professors’ few, some of Linda’s several

Syntactic fine structure will not matter crucially, but let us lay down the syntax in
(7.5) for possessive NPs formed by determiners as in (7.2).5

(7.5) NP

Det

NP

Q

’s

N′

N

A

This seems compatible with most of the literature. Given this (rudimentary) syntax,
there are still various options for how to derive compositionally the meaning of a
possessive NP from the meanings of its parts. It is a remarkable fact, however, that
there appear to be few limitations on Q here. Most English NPs can combine with
’s to form a possessive determiner, or so it seems. Quantified NPs, proper names,
conjoined names like John and Mary, bare plurals like firemen, pronouns—all
allow the possessive morpheme. This suggests that an adequate account of the truth
conditions of possessive sentences should be uniform in Q . We discuss the possibil-
ity of such an account in sections 7.7 and 7.8. There are certain NPs, however, that
do not combine with ’s, and we return to the restrictions on the lower NP of (7.5),

5 As to the forms (7.3), one may dispute whether they are really constituents (determiners) or
not. We will treat them as such in sect. 7.9, but in fact very little in our account hinges on them
being determiners rather than, say, split into a determiner and a prepositional phrase.



246 Quantifiers of Natural Language

and to the adequacy of the account we actually give (which is not quite uniform), in
section 7.12.4. But first we shall note a few important facts about what possessive NPs
can mean.

7 .2 NUMBER AND UNIQUENESS

Possessive determiners characteristically combine with both singular and plural
nouns—John’s bike, Mary’s cars, most students’ final exam, some
doctors’ patients—but there appears to be no straightforward correlation
between this and the number of ‘possessed’ objects. John’s bike was stolen
might in some context indicate that he had only one bike, but in other contexts not.
And Mary’s brother came home, or Henry’s finger was hurt, normally does
not presuppose that Mary has only one brother or Henry only one finger.

This is related to an assumption usually made by people writing about possessives
(though not Keenan and Stavi (1986)): a uniqueness assumption. Since possessives are
thought of as essentially involving definiteness, it is assumed that every use of a possess-
ive NP presupposes that a unique object, or in the plural case a unique set of objects,
is somehow salient in the utterance situation.

There are several issues involved. One concerns the size of the domain of ‘pos-
sessed’ objects. Another has to do with the type of quantification over that domain.
A third issue is whether syntactic number gives any information about either of the
first two issues. And a fourth question, bearing on all the others, is precisely what, if
anything, definiteness has to do with possessives.

We come back to the first and second issues in the next section. As to the inform-
ation we get from syntactic number, the only way to get around apparent examples
like the ones cited at the beginning of this section is to maintain that in those situ-
ations, some contextual restriction or some notion of salience is operative, selecting
a unique brother or a unique finger. But that often seems gratuitous. One can per-
fectly well say Henry’s finger was hurt without thinking of a particular fin-
ger, or even knowing which it was, and without implying that only one of his fin-
gers was hurt (although that would sometimes be conversationally implicated). So
his hurt finger or fingers need not be salient in any other sense than that they were
hurt.

As we observed in Chapter 4.2.2, this is even clearer with examples like

(7.6) Each girl’s brother feels protective of her.

This sentence makes a claim about girls with one or more brothers, and it makes no
sense to single out one brother for each girl as most salient.

This is not to deny that contextual restriction of the domain of possessed objects
often occurs. If I say

(7.7) My friend met your friends.

I am not implying that I have only one friend, or that my friend met absolutely all of
your friends—some selection of friends is made in the context of utterance. But from
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this it does not follow that the meaning of the possessive phrase requires such a restric-
tion. Contextual restriction, by salience or other means, is a general phenomenon in
linguistic communication. It can be handled semantically with some form of context
sets (see Chapter 1.3.4). In our account of possessives here, contextual restrictions do
not play a role different from the one they play in general for quantified sentences.
In particular, we do not take the singular form of the noun to indicate that a unique
object is salient.6

There are, however, accounts of possessives for which it is an essential feature that
a uniqueness assumption is always made. Let us call these, somewhat loosely, definite-
ness accounts. For example, Vikner and Jensen (2002) explicitly take the meaning of
each girl’s teacher to be such that, say,

(7.8) Each girl’s teacher is nice.

entails that every girl has exactly one teacher. This seems counter-intuitive (as pro-
ponents of similar accounts sometimes note, e.g. Partee 1983/97: 467), for the reas-
ons already given. In fact, (7.8) is compatible with some girls having several teachers,
and some girls having no teacher at all. From our perspective, a uniqueness assump-
tion is neither desirable nor necessary in general. After we have presented our own
account (section 7.7), we come back to the definiteness accounts (section 7.8), and
discuss how the seemingly counter-intuitive consequences of the treatment of (7.8)
suggested above could be avoided.

For now, we merely note that any analysis of possessives needs to be wary of putting
too much weight on simple cases like his brother or John’s car—which are by
themselves definite and do seem to involve uniquely singled-out objects—because
other examples, like no student’s books or a few of most girls’ teachers
denote type 〈1〉 quantifiers that are neither definite themselves nor obviously built
from definite quantifiers.7

7 .3 UNIVERSAL READINGS AND OTHERS

A common interpretation of possessives in the literature is the following: the pos-
sessive NP singles out some set (perhaps a unit set), or, when a quantified possessive
determiner is involved, a family of such sets, and then claims something about all the
members of those sets. Let us call this the universal reading. Thus,

(7.9) John’s bikes were stolen.

6 Likewise, we do not take plural form to indicate the presence of more than one possessed
object; see Ch. 4.2.2. For example, No students’ cars are parked outside doesn’t entail
that there is more than one car owned by students—in fact it doesn’t entail that there are any such
cars.

7 Definiteness accounts do take them to involve definites. But we don’t think this is obvious,
and other treatments are in fact possible. As to the tendency of focusing on definite possessives,
Lyons (1986) e.g. simply claims: ‘‘The [possessive] NP is, in fact, understood as definite’’ (p. 124).
And Vikner and Jensen (2002), who are well aware that a possessive determiner need not itself be
definite, nevertheless say things like: ‘‘A genitive construction, that is a [possessive] NP, is typically
used to refer to some item’’ (p. 194).
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(7.10) At least three students’ parents were present.

say that each of John’s bikes was stolen, and that at least three students were such that
all of their parents were present, respectively.

Definiteness accounts employ a seemingly slight (but in fact significant) variant of
this. Roughly, the definite quantifier all ei is used instead, so that all the relevant sets
are in addition required to be non-empty.8

However, other modes of quantification are also used. Consider

(7.11) At most two cars’ tires were slashed.

The most reasonable reading of this sentence, we claim, uses existential quantification
over the ‘possessed’ objects.

Suppose there are n cars, each with four tires. (7.11) clearly allows no more than
two cars to have any slashed tires, and thus no more than eight slashed tires in all.
This is the existential reading: at most two cars had at least one of their tires slashed.
The universal reading (which in this case coincides with the all ei or the thepl reading),
on the other hand, would allow all n cars to have some tires slashed and up to 2 + 3n
tires to be slashed. With seven cars, it allows twenty-three slashed tires, but that is
clearly not (normally) allowed by (7.11).9

In other cases, there may be an ambiguity between a universal and an existential
reading:

(7.12) Some cars’ tires were slashed.

(7.13) No students’ books were returned in time.

It seems that both (7.12) and (7.13) have straightforward existential readings. Then
(7.13) entails that no books at all (borrowed by students) were returned in time. But
one can think of situations where a universal reading would apply.10 Suppose return-
ing late means having to pay a fine, and the statement was made by a librarian inter-
ested in who must pay fines: on the universal reading no student returned all
borrowed books in time, which implies that every student had to pay a fine.

We don’t think these interpretational differences have to do with vagueness. There
might be some vagueness as to how universal the universal (or definite) reading really
is: i.e. if all, or only ‘almost all’ elements of the relevant set need to satisfy the con-
dition given by the scope. But the existential reading is not vague at all. Sometimes
it is the only reasonable reading, sometimes there is an ambiguity. These facts make
it natural to think that there is an implicit parameter for the quantificational force of
the possessive.

8 In fact, the quantifier thesg is used with nouns in singular form, and thepl with plural form.
In sect. 7.8.3 we shall argue that this doesn’t give the desired results, and that all ei should be used
instead.

9 Couldn’t (7.11) be read so as to allow at most two slashed tires? We come back to this reading
in the next section.

10 The following scenario was suggested by Barbara Partee.
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This idea gets strong additional support from the fact that slightly more complex
possessive NPs specify the quantificational force explicitly:

(7.14) Several of John’s CDs were stolen.

(7.15) Each of most people’s children expects to inherit.

(7.16) Three of each country’s athletes carried a banner.

Here again the possessive NP provides a set or a family of sets (the set of CDs belong-
ing to John, for each country the set of its athletes present at the ceremony, etc.), but
now an explicit determiner tells us how to quantify over these sets: universally, exist-
entially, or with other quantifiers. When that determiner is not overtly expressed, the
nature of the quantification still has to be specified.

Definiteness accounts of possessives stipulate that the implicit parameter is always
all ei (see note 8). They will then have problems with existential readings like the ones
exhibited above. We come back to this in section 7.8.5.

7 .4 SCOPE AMBIGUITIES?

Consider again (7.11). The existential reading is compatible with a situation where,
for example, five tires in all were slashed. There may also seem to be a reading which
excludes the possibility that the total number of slashed tires exceeds two. Such a read-
ing is obtained if cars’ tires is read like a compound noun (i.e. is interpreted as
car tires), denoting the set of tires belonging to (or used for) cars, and the determ-
iner at most two simply has that set as its restriction.

That may be a less plausible reading for (7.11), but other cases are clearer:

(7.17) I’m looking for a children’s book for my niece.

(7.18) Many child’s toys have been recalled by their manufacturers because they were
dangerous.

Here the syntactic number of children and child shows that the structure is not
that of (7.5).11

11 But with other uses of these same phrases, a compound noun analysis is not intended or even
available:

(i) Those children’s book was stolen.
(ii) This child’s toys were neatly put away.

(iii) Adults buy most children’s books for them.

Note that in (7.17) and (7.18), but not in (i) or (ii), both child’s toys and children’s book
have so-called compound stress (i.e. are accented on the first word rather than the second). The
following are some naturally occurring examples:

(iv) The London library houses a copy of most children’s books published within the previous 24
months. (www.roehampton.ac.uk/subject/childlit.asp)



250 Quantifiers of Natural Language

Apparently everyone agrees that these are not true possessives (in spite of the pos-
sessive morpheme). In particular, they do not involve possessive determiners, and we
therefore exclude them from the present discussion.

Thus, the ambiguity of simple possessives, if there is one, derives from the choice
of an implicit quantifier; it is not a scope ambiguity—although iterated possessives
can have genuine scope ambiguities, as will become clear in section 7.10 below.

7 .5 NARROWING

An important feature of possessive determiners, in our opinion, is what Barker (1995)
calls narrowing: in a quantified possessor NP, that quantifier’s restriction is narrowed
to the ones that ‘possess’ objects of the kind named. We can make this clear with an
example:

(7.19) a. Most people’s grandchildren hate them.
b. Most people’s grandchildren love them.

Presumably, (7.19a) is false, and (7.19b) is true. Now, it is also the case that most
people in the world don’t have grandchildren (they are too young for that). But it
is obvious that the grandchild-less people are simply irrelevant to the truth or falsity
of (7.19a, b). Only people in the domain of the grandparent relation (i.e. the rela-
tion R(x, y) iff y is a grandchild of x) matter, and the issue is whether more than
half of these are such that all their grandchildren hate them or love them, as the case
may be.

Here we are assuming a universal reading. On that reading, if we don’t narrow,
(7.19a) becomes true, since most people x are such that the set of x’s grandchildren
is a subset of the set of people that hate x, simply because in most cases, the set of
x’s grandchildren is empty. Without narrowing, we just get the wrong truth condi-
tions.

Recall that definiteness accounts use (something like) all ei instead of all. Then
people without grandchildren don’t count, since the empty set is not in the domain
of that quantifier. However, without narrowing, we get another, equally undesirable
effect: (7.19a) and (7.19b) each logically imply that most people have grandchildren!
But this is false, whereas (7.19b) should be true, and in any case it definitely is some-
thing that should not follow from either (7.19a) or (7.19b). Thus, independently of
whether you favor a definiteness account or not, narrowing is needed.

Consider another example.

(7.20) Every professor’s children attend the university where he teaches.

(v) The library catalogue will be where most students’ books will be lent. (www.zipworld.com.au/
rms/virtual/library/lending.html)

(vi) Most students’ books included highlighting or underlining. (education.ucsc.edu/faculty/
gwells/network/journal/Vol2(2).1999oct/article3.html)

Presumably, a compound noun reading was intended for the first two, but not the third, of these.
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Whatever the truth value of this sentence, it should not entail that every professor has
children. But that is precisely what it does on the definite reading, unless you narrow
professor to professor with children.

On the universal reading, it doesn’t actually matter if you narrow or not in (7.20).
That is just because the childless professors are trivially such that all their children go
to the university where they teach, so the claim with every remains true if you add
the professors without children. But consider instead

(7.21) Some professor’s children attend the university where he teaches.

In the non-narrowed universal reading, (7.21) is true if at least one professor has no
children—again obviously incorrect truth conditions. This time, the definite reading
is equivalent to the narrowed (universal) reading; in fact, this holds in general when
the main determiner is some (see Fact 1, section 7.8).

Examples like these can be multiplied ad libitum: i.e. cases where the narrowed
truth conditions appear correct but not the non-narrowed ones. Moreover, it can
be done for all kinds of possessive determiners, and all kinds of (implicit or expli-
cit) quantificational force over the possessed objects. We believe that narrowing is a
characteristic feature of possessive determiners, and we build it into our official truth
definition in section 7.7. But we recognize that there are some cases where it seems
doubtful whether narrowing is wanted. Barbara Partee (personal communication) has
suggested counterexamples, the most convincing of which, to our minds, is the fol-
lowing. Suppose that at a party half of the guests came by bike, leaving their bikes
in the driveway, and the other half by car, parking on the street. With narrowing in
force, one should be able to say

(7.22) Everyone’s bike was parked in our driveway, and everyone’s car was parked on
the street.

But we agree that (7.22) rather seems to entail that every guest at the party had a bike
and a car. We do not at present know how to deal with this sort of example, except by
saying that narrowing is usually, but not always, in force. In any case, once you have
a truth definition for possessive determiners with narrowing, it is easy to see what a
non-narrowed version looks like; we discuss this in section 7.8.

Before we get to truth definitions, however, we need to say a few words about
another and better-known characteristic of possessives: namely, the freedom of choice
that appears to exist for the relation of ‘possession’.

7 .6 THE POSSESSOR RELATION

For a long time people have been impressed by the variety of different relations that
can figure in possessive NPs. For example, John’s books can be the books that
John owns, that he has on his shelf, that he has written, or borrowed, or read, or is
now standing on, etc. Let us call it the possessor relation. It seems that with enough
contextual background, almost any relation can be a possessor relation. Even if in the
case of true relational nouns, such as sister or husband, we can get the possessor
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relation immediately from linguistic material in the possessive NP, many times we
cannot. Therefore, a common view has been that, apart from inherent relations of
this kind, the choice of possessor relation is free, depending on context, and hence
an issue for pragmatics rather than semantics. This, then, is another major source of
ambiguity—or context dependence—of possessive NPs.

A lot of recent work, however, questions this view. Starting from observations of
Chomsky (1970) that many possessive NPs normally exclude certain relations, various
attempts to describe the semantics of that relation have been made. For example, the
table’s leg normally involves a part–whole relation, but the leg’s table can
hardly ever use that relation. Likewise, John’s gift can be the gift he bought or
the gift he received (of course, many other relations are possible too), but John’s
purchase is at least by default about something John bought.12

Consider also the contrast between the possible interpretations of the forms (7.1)
with different nouns:

(7.23) a. John’s picture
b. a picture of John’s
c. a picture of John
d. That picture is John’s.

(7.24) a. John’s team
b. a team of John’s
c. *a team of John
d. That team is John’s.

(7.25) a. John’s sister
b. a sister of John’s
c. a sister of John
d. That sister is John’s.

While a full analysis of this sort of data is far from easy, certain things are fairly system-
atic.13 For example, whereas almost any kind of possessor relation, including inherent
ones when they exist, is possible in the (a) forms, inherent relations are not possible
in the (d) forms, and often not in the (b) forms either.14 Thus, except in a heavily
elliptical context, (7.25d) can never mean that the sister in question is John’s sister
(but she could be, among the sisters in a certain family, the one that John is dating,

12 But in a strong enough context, it could be about something I bought for John. Suppose, as
Partee (personal communication) suggested, that I made lots of purchases and am trying to figure
out which ones to have the store gift-wrap and send. Lexical rules can specify defaults for possessor
relations, but it seems that these defaults can always be overridden.

13 The following observations originate in Stockwell, Schachter, and Partee 1973, and have been
developed on many occasions since, e.g. in Partee and Borschev 2003.

14 E.g. one cannot use the (b) form for a picture of which John is the motive (and not the
(d) form either); the (c) form (or the (a) form) is required here. The distribution between (b) and
(c) forms is somewhat messy. For the inherent sister, both (b) and (c) forms are possible; the
(c) form seems to be preferred for long nouns. See also Lyons 1986.
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for example). The (c) forms, on the other hand, seem only to allow inherent relations,
so that when there is none, as in (7.24c), the phrase is even ungrammatical.

Jensen and Vikner (2002) use rich information from the lexicon (organized with
the lexical semantics of Pustejovsky 1995) to derive various possessor relations
in a compositional manner. Besides pragmatic or free interpretations, they isolate
four semantic interpretations: the above inherent one, plus control, producer, and
part–whole. For Ann’s picture, for example, we have in addition to free readings a
three-way semantic ambiguity: (i) control reading: ‘the picture that Ann controls’ (e.g.
owns); (ii) inherent reading: ‘the picture of Ann’; (iii) producer reading: ‘the picture
that Ann painted’; the part–whole reading is ruled out in this case by lexical inform-
ation, since pictures cannot be parts of persons. A similar view is defended in Storto
2003, where the basic ambiguity is between a(n underspecified) control relation gen-
erated independently of context and a free interpretation, whose existence, however,
is constrained in significant ways.15

Do these insights and proposals show that the classical view was false? First, note
that if this view was that

(Free1) Any possessive NP can use any binary relation as its possessor relation,

it seems doubtful that anyone has held it (even though some slightly sloppy formula-
tions might suggest that). A more charitable formulation could be that

(Free2) Any binary relation can be used as the possessor relation of some possessive
NP in some context.

This is not contradicted by the above examples, even should they really show that
certain possessive NPs exclude certain relations. However, we think that the most sig-
nificant formulation of the freedom of the possessor relation is rather the following:

(Free3) For any possessive NP, however predictable and semantically describable its
usual possessor relation is, circumstances can always be found where that
same possessive NP is used with another possessor relation, not derivable
from grammatical or lexical information, but provided only by the context
of utterance.

As far as we know, everyone agrees to (Free3) for prenominal possessives.16 Even
John’s sister can, as we just saw, under the right circumstances be used with a
possessor relation completely different from that of sisterhood.

To us, this has an important consequence. If we want an account which is general
enough to cover all possible cases, there is no choice but to simply use a relation para-
meter in the semantics of possession and possessive NPs. That is what we do in the
account below.

15 Jensen and Vikner (2002) also present an empirical study according to which the pragmatic
readings of possessive NPs (in their sense), at least in written corpora, are very rare compared to the
others.

16 One might consider strengthening (Free3) by combining it with (Free2), so that all relations,
or almost all, are possible possessor relations. But (Free3) suffices for our purposes here.
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The idea is that such an account is compatible with the empirical facts about pos-
sessor relations alluded to above, although it does not attempt to explain all of these
facts. In particular, it is compatible with the case of inherent possessor relations. And
in that case, the mechanism deriving the inherent reading can in fact be explained,
as we will see, by means of an addition to the general account. Similar mechanisms
could be added for other ‘standardized’ ways of determining (or ruling out) possessor
relations. But quite possibly, some empirical facts would remain unexplained. This
is not necessarily a shortcoming of the account. In fact, given the strong pragmatic
influence on the interpretation of possessives, it is what one would expect.

7 .7 THE MEANING OF POSSESSIVE DETERMINERS

Not everyone draws the same conclusion as we do from (Free3)—even if they agree
that there are limits to what one should expect semantics to explain. The question
is to a large extent methodological. It concerns one’s views on fundamental concepts
such as ambiguity, structure, and compositionality. We come back to a discussion of the
issue in section 7.9. For now, we present our general account of the truth conditions
of possessive determiners, which uses a free parameter for the possessor relation, and
by itself says nothing about how the value of that parameter gets fixed.

We assume that possessive determiners—like other determiners—take two argu-
ments (the restriction and the scope), whose extensions are sets of individuals, and
that in addition a binary possessor relation is (somehow) available. The case when the
restriction is a relational noun, which actually delivers (the converse of !) the possessor
relation, can be obtained with a simple additional mechanism.

It has sometimes been proposed that (at least in the free case) the possessor rela-
tion is in fact the denotation of the possessive morpheme ’s, which then acts like an
indexical. But this seems hard to fit in with relational nouns, and also with the fact
that the possessor relation often comes somehow from the restriction noun, and not
just from the possessive determiner.

Instead, we think of the possessive morpheme ’s as denoting—in line with the
most obvious compositional rule corresponding to the form (7.5)—an operation Poss
from the relevant arguments to type 〈1, 1〉 quantifiers.

The following notation (introduced in Chapter 4.1) is handy. If R is any binary
relation and a any individual, then

(7.26) Ra = {b : R(a, b)}
is the set of R-successors of a. Further, if A is any set, let

(7.27) domA(R) = {a : A ∩ Ra �= ∅}
be the set of objects having R-successors in A. Thus, for example, domcar(own) is the
set of individuals who own at least one car. This set is used to obtain narrowing.

Narrowing is in fact the only crux in the definition of Poss. We will see in the
next section that things become simpler without narrowing, but narrowing is usually
needed to get the right truth conditions. Now it would be nice if we could say that
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narrowing is simply restriction to domA(R). That is certainly the general idea, but the
formal details are slightly more complex.

The possessive morpheme ’s is always attached to an NP, denoting a type 〈1〉
quantifier Q . The simplest general definition would be one that applied to any such
Q . But in many cases we need access to the restriction set and, as we have seen (for
example, Proposition 6 in Chapter 6.3.4), this set cannot be extracted from Q . We
shall therefore proceed as follows. We take the case when Q is of the form (Q 1)C ,
i.e. when we have a quantified NP, as basic. This means that both Q 1 and C will be
arguments of Poss. This handles straightforwardly the case where the NP has the form
[Det N]. But what if the NP isn’t quantified? In Chapter 4.5.5.3 it was pointed out
that it is possible to construe proper names, conjunctions and disjunctions of proper
names, bare plurals, and many other type 〈1〉 quantifiers as having the form (Q 1)C ,
and we will see that our definition of Poss covers these cases as well, giving the desired
truth conditions. In this way the definition handles a large number of actually used
possessive determiners. We think it covers far more cases than any comparable defin-
ition in the literature, and probably all possessive determiners of the form considered
here. This statement will be made more precise in section 7.12, where we also discuss
briefly some cases that are not dealt with.

The other two arguments of Poss are the possessor relation R and the type 〈1, 1〉
quantifier Q 2, sometimes implicit and sometimes explicit in the syntax, saying what
sort of quantification over the possessed objects is operative. The universal reading of
the possessive determiner is obtained simply by letting Q 2 = every. The definiteness
approach to possessives fixes Q 2 = all ei.

The formal definition of the operation Poss is as follows: Let Q 1, Q 2 be type
〈1, 1〉 quantifiers, C a set, and R a binary relation. Put C0 = C ∩ dom(R).
Poss(Q 1, C , Q 2, R) is the type 〈1, 1〉 quantifier defined, for each M and each A, B ⊆
M , by

(7.28) Poss(Q 1, C , Q 2, R)M (A, B) ⇐⇒
(Q 1)M∪C0 (C ∩ domA(R), {a ∈ M ∪ C0 : (Q 2)M (A ∩ Ra, B)})

C and R are fixed, but M is any universe, so we need to consider Q 1 on M ∪ C0
in order that the two arguments are always subsets of the universe of quantification.
(The universe for Q 2 doesn’t have to be extended, since A ∩ Ra ⊆ A ⊆ M .) How-
ever, in practice, we can disregard this complication, due to the following readily
verified observation:

(7.29) If Q 1 and Q 2 are C and E, so is Poss(Q 1, C , Q 2, R).

Henceforth we always assume that Q 1 and Q 2 are C and E. Then we don’t
need to mention universes, and can formulate the definition more simply:

the operation Poss

(7.30) Poss(Q 1, C , Q 2, R)(A, B) ⇐⇒ Q 1(C ∩ domA(R), {a : Q 2(A ∩ Ra, B)})
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We also note that, due to the presence of the fixed set C and relation R, Poss(Q 1, C ,
Q 2, R) is almost never I. However, Poss itself (or more exactly, an operation
closely related to Poss) is I, as we will see in Chapter 9.2.

The first argument of Q 1 is ‘narrowed’ to domA(R). To see how this happens, we
work through a few examples.

(7.31) a. Most students’ tennis rackets are cheap. (universal reading)
b. Poss(most, student, every, own)(tennis racket, cheap)
c. most(student ∩ domtennis racket(own), {a : tennis racket ∩ owna ⊆ cheap})

Quantification is in effect restricted to students owning at least one tennis racket. This
guarantees, as it should, that the sentence might well be true, even though many stu-
dents don’t own any tennis rackets at all. It just says that a majority of those students
who do own tennis rackets in fact own only cheap ones.

(7.32) a. Some cars’ tires were slashed. (existential reading; see section 7.3)

b. Poss(some, car, some, (part of −1)(tire, slashed)

c. car ∩ domtire(part of )−1 ∩ {a : tire ∩ (part of )−1
a ∩ slashed �= ∅} �= ∅

Here narrowing has no effect, because only existential quantifiers are used. Actually,
this is an instance of a more general fact that will be stated in the next section (Fact 1).

Now consider a bare plural like policemen. In the reading of bare plurals that we
deal with here, policemenpl = all policeman

ei (Chapter 4.5.5.3). So we use the following
interpretation:

(7.33) a. Policemen’s cars are dented. (universal reading)

b. Poss(allei, policeman, every, own)(car, dented)

c. allei(policeman ∩ domcar(own), {a : car ∩ owna ⊆ dented})
d. policeman ∩ domcar(own) �= ∅ &⋃{car ∩ owna : a ∈ policeman} ⊆ dented

The last line is a simple calculation from the line before. Notice that (7.33a) does not
say that all policemen own cars, but we are taking it to imply that some policemen
do. The sentence further says that all cars belonging to policemen are dented. These
seem to be reasonable truth conditions.

Next, take a proper name like John. We have Ij = all { j}
ei , and proceeding as above

we obtain, for example,

(7.34) a. At most two of John’s dogs are fierce.
b. Poss(allei, {j}, at most two, own)(dog, fierce)
c. ∅ �= dog ∩ ownj & |dog ∩ ownj ∩ fierce| ≤ 2

That is, John owns at least one dog, and at most two of his dogs are fierce. In
Chapter 4.1 we gave the truth conditions for John’s A are B as ∅ �= A ∩ Rj ⊆ B,
so they imply that John ‘possesses’ at least one thing in A. Reasonably, the same
implication should hold for (7.34a): it cannot be true unless John owns at least
one dog.
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Here is an example with a conjunction of names. Since all { j}
ei ∧ all { m}

ei = all { j,m}
ei =

Ij ∧ Im, the analysis is clear:

(7.35) a. John and Mary’s reports look fine. (universal reading)
b. Poss(allei, {j, m}, every, write)(report, look fine)
c. ∅ �= report ∩ (writej ∪ writem) ⊆ look fine

So all reports written by either John or Mary looked fine (to the teacher), and at
least one report was written by one of them. This is a reasonable reading; suppose
the reports were anonymous, the teacher didn’t know who wrote which report, only
that it was either John or Mary, and that it turned out that in fact Mary wrote all the
reports. That would not make (7.35a) false—in fact, not even odd to utter under the
circumstances.

Under other circumstances there would be a tendency to assume that each wrote
a report, but this seems like a pragmatic effect. Consider Peter’s children’s
reports look fine. Here there is no requirement that all of his children wrote
reports. Suppose the children are John, Mary, Ellen, and Sue. Replacing Peter’s
children by John, Mary, Ellen, and Sue may not preserve implicatures, but
it should preserve truth value. Going to the trouble of enumerating all the children
may conversationally implicate that each wrote a report (except in special circum-
stances).

But we can also get the stronger reading where each wrote a report: either one of
the following two sentences works (see also section 7.12.2).

(7.36) a. John’s reports look fine and Mary’s reports look fine.
b. John’s and Mary’s reports look fine

As to John or Mary’s, since Ij ∨ Im = some{j,m}, we obtain

(7.37) a. One of John or Mary’s reports was rejected.
b. Poss(some, {j, m}, one, write)(report, rejected)
c. |report ∩ writej ∩ rejected| = 1 or |report ∩ writem ∩ rejected| = 1

The sentence is equivalent to

(7.38) One of John’s reports was rejected or one of Mary’s reports was rejected.

Here is a final example: again, one where the existential reading seems natural.

(7.39) a. More male than female students’ reports were rejected.

b. Poss(more male than female, student, some, write)(report, rejected)

c. |male ∩ student ∩ {a : report ∩ writea ∩ rejected �= ∅}| >

|female ∩ student ∩ {a : report ∩ writea ∩ rejected �= ∅}|
These examples illustrate the range of cases where Poss can be applied. A more precise
statement of how wide that range is will be given in section 7.12.3.

Let us see next how relational nouns can be dealt with on our account. We assume
that in, say, John’s sisters, sister is a noun denoting the domain of the ‘(is a)
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sister of ’ relation:

sisterN = {a : ∃x sister of (a, x)} = dom(sister of )

i.e. the set of people who are sisters (to someone). This seems entirely reasonable, and
has nothing to do with possessives per se. If you say Susan is about to become a
mother, you mean exactly that she is about to belong to the domain of the ‘mother
of ’ relation. Now we obtain the correct truth conditions for

(7.40) Two of John’s sisters are graduate students.

using sister of −1 as the possessor relation,17 since, clearly,

domsisterN (sister of −1) = dom(sister of −1) = the set of people who have at
least one sister

That is, we analyze (7.40) as

Poss(allei, {j}, two, sister of −1)(sisterN, gradstudent) 18

The operation Poss handles possessives of the forms (7.2) and (7.3) in section 7.1.
In the form (7.4) a further condition, coming from numericals such as several,
few, three, etc., is added. The definition of Poss is easily adapted to this case, as fol-
lows. (If [[Num]] is thought of as a type 〈1, 1〉 quantifier, then instead of [[Num]](X ),
write [[Num]](X , X ).)

First, define

(7.41) dom[[Num]]
A (R) = {a : [[Num]](A ∩ Ra)}

That is, dom[[Num]]
A (R) is the set of individuals such that the set of objects in A that

they ‘possess’ satisfies the given numerical condition. For example, dom[[three]]
luxcar (own)

is the set of individuals owning exactly three luxury cars.
Next, refine Poss by simply narrowing to dom[[Num]]

A (R) rather than to domA(R).
Since for the numericals usually allowed here, [[Num]](X ) implies X �= ∅ (so zero,
for example, is not allowed), this strengthens the narrowing effect, in the sense that

dom[[Num]]
A (R) ⊆ domA(R) = dom

∃≥1
A (R)

Thus, we define a generalized operation Poss′ as follows (in the simplified case when
Q 1, Q 2 satisfy C and E):

17 Note that taking the inverse of the relation provided by the relational noun corresponds to a
transformation that moves the object of a prepositional phrase following the possessed noun to a
determiner position (e.g. transforming sister of John to John’s sister).

18 Thus, in the default case, the restriction of a possessive determiner is a noun, and the pos-
sessor relation R is ‘free’. When the noun is relational, based on a relation R−1, the mechanism
described here kicks in. Vikner and Jensen (2002) instead take the relational case as the default.
They then need to describe how non-relational nouns like car are ‘coerced’ into relational nouns
in possessive contexts.
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the operation Poss′

With Q 1, Q 2, C , R, M , A, B as before,

(7.42) Poss′(Q 1, C , Q 2, R, [[Num]])(A, B) ⇐⇒
Q 1(C ∩ dom[[Num]]

A (R), {a : Q 2(A ∩ Ra, B})

The effect is that, say,

(7.43) Most professors’ three courses are given in the spring.

is taken (on the universal reading) to mean that more than half of the professors who
give exactly three courses (per year), give all of those courses in the spring. This seems
to be the preferred reading.19

Poss′ is here seen as the most general operation that the possessive morpheme ’s
can be taken to denote. It has five arguments, to be set in various ways in an utterance
of a possessive sentence. The numerical parameter is either set directly to the denota-
tion of a numerical expression following ’s, or, when such an expression is lacking,
set by default to ∃≥1: Poss(Q 1, C , Q 2, R) = Poss′(Q 1, C , Q 2, R, ∃≥1). In what fol-
lows, we restrict attention for simplicity to the case without explicit numerical condi-
tions, i.e. to the operation Poss.

7 .8 ALTERNATIVE ACCOUNTS

7.8.1 Poss without narrowing

Instead of saying that narrowing is always in place, one might, in order to cover all the
facts (see the end of section 7.5), have to say that it is usually in place but sometimes
is turned off. What is Poss without narrowing? A first idea might be simply to drop
the intersection with domA(R) on the right-hand side of (7.30). But note that this
right-hand side, since we are assuming C,20 is equivalent to

Q 1(C ∩ domA(R), domA(R) ∩ {a : Q 2(A ∩ Ra, B)})
That is, in reality both the restriction and the scope of Q 1 are narrowed. For reasons
that will appear just below, the appropriate interpretation of Poss without narrowing
seems to be dropping narrowing in the restriction but keeping it in the scope. This

19 Suppose each professor gives either two or three courses per year, and only teaches one
semester. In this situation, one can unproblematically say

(i) Most professors’ three courses are given in the spring, and most professors’ two courses are given
in the fall.

using narrowing as described here. Thus, (i) and (7.43) neither entail nor presuppose that most
professors teach three courses.

20 By C (twice): Q 1(X ∩ Y , Z ) ⇔ Q 1(X ∩ Y , X ∩ Y ∩ Z ) ⇔ Q 1(X ∩ Y , Y ∩ Z ).
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means that the right-hand side can be written

Q C
1 (domA(R) ∩ {a : Q 2(A ∩ Ra, B)})

But then we can define an operation Possw taking an arbitrary type 〈1〉 quantifier Q
as argument, in addition to Q 2 and R. Again, the formal definition has to extend the
universe (this time to M ∪ domA(R)) in order to be fully general:

(7.44) Possw(Q , Q 2, R)M (A, B) ⇐⇒
Q M∪domA(R)(domA(R) ∩ {a : (Q 2)M (A ∩ Ra, B)})

We shall assume here, however, that Q is E and that Q 2 is C and E,21

from which it follows that Possw(Q , Q 2, R) is C and E. Then, more simply,

the operation Possw

(7.45) Possw(Q , Q 2, R)(A, B) ⇐⇒ Q(domA(R) ∩ {a : Q 2(A ∩ Ra, B)})

This can be applied to all possessive determiners of the forms we are considering,
with the (apparent) advantage that one no longer needs to construe proper names,
bare plurals, etc. as restricted quantifiers.

A first observation is that when the possessor determiner is symmetric, narrowing
has no effect.

Fact 1
If Q 1 is symmetric, then Poss(Q 1, C , Q 2, R) = Possw((Q 1)C , Q 2, R).

Proof. Recall that symmetry (under C) means that Q 1(A, B) ⇔ Q 1(A ∩
B, A ∩ B). But then it is clear from (7.45) and (7.30) that, for any A, B, both oper-
ations result in the condition

Q 1(C ∩ domA(R) ∩ {a : Q 2(A ∩ Ra, B)}, C ∩ domA(R) ∩ {a : Q 2(A ∩ Ra, B)})
�

To further see the effect of using Possw, consider, first, proper names. In this par-
ticular case, there is no difference. We calculate:

(7.46) Possw(Ij , Q 2, R) = Poss(allei, {j}, Q 2, R}
So Possw gives the correct truth conditions for proper names, i.e. sentences like
(7.34a), repeated here,

(7.34a) At most two of John’s dogs are fierce.

21 Assuming that Q 2 is C and E is unproblematic, since it will always be a quantire-
lation denotation. But can we assume that the type 〈1〉 Q is E? Note that (Chs. 3.4 and 4.5.5)
proper names, bare plurals, and all frozen relativized quantifiers are E, as well as Boolean com-
binations of these. So we can feel rather safe that the examples we will run into are in fact E.
Note that this hinges on our having identified the notion of freezing correctly.
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even though we dropped narrowing in the first argument. But notice that if we had
dropped narrowing in the second argument too, the truth conditions for (7.34a)
would have become

|dog ∩ ownj ∩ fierce| ≤ 2

which is not what we want, since it omits the requirement that John owns at least one
dog. It seems reasonable that narrowing should not matter for proper names, and the
chosen definition of Possw gives the correct result.

However, for NPs other than proper names, it often gives incorrect results. For
example, with a conjunction of proper names as in (7.35a), we don’t get the same
result as with Poss, but rather the reading, expressed in (7.36a), where both John and
Mary wrote at least one report. That might seem tolerable, but consider a bare plural,
as in

(7.47) Firemen’s wives worry about their husbands.

With Possw, using the type 〈1〉 quantifier firemenpl for Q , we get an interpretation
with the undesirable consequence that all firemen are married (and that all of them
are men). That is not what (7.47) means, or even presupposes. Notice that it also
seems unproblematic to say

(7.48) Firemen’s wives worry about their husbands, and firemen’s husbands worry
about their wives.

without any implication that all firemen are both male and female, as the non-
narrowed account would have it.

Although formally satisfactory, and uniformly applicable to arbitrary type 〈1〉
quantifiers, Possw is designed not to handle narrowing, and thus gives the wrong truth
conditions in many cases. Moreover, there doesn’t seem to exist any straightforward
way of obtaining narrowing with a definition of the form (7.45), precisely because
you cannot always retrieve C when Q = (Q 1)C .

7.8.2 A definiteness account

We take what have here been called definiteness accounts of possessives to have the fol-
lowing characteristics:22

1. Every possessive determiner contains a definite (though it may not appear expli-
citly in surface form).

2. When there is no explicit indication of how to quantify over the ‘possessed’
objects, the quantifier is always thesg or thepl.

3. Narrowing is not used in the restriction argument of the possessor determiner.

22 This is our version of a definiteness account, mostly based on comments from Barbara Partee
(personal communication). Published versions such as the one in Jensen and Vikner 2002 mention
neither narrowing nor accommodation. Partee’s comments sketch the general idea, but do not go
into details, so we emphasize that we alone are responsible for this reconstruction.
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Re 3: We have just seen how to define Possw without narrowing. Re 2: We will show
presently that there is a good reason to use allei instead of thesg or thepl. Re 1: Con-
sider the case when quantification over the ‘possessed’ objects is given by an expli-
cit determiner. The following example illustrates how (we think) the definiteness
account applies to this case.

(7.49) a. At least two of most students’ books are stained.
b. For most students x, at least two of the books of x are stained.
c. for Q x, Q 2 of the As R’d by x are B
d. Q({a : Q 2 of the (A ∩ Ra, B)})

In the last line the quantifier Q 2 of the is used, which contains the definite the (inter-
preted here by allei). This is a partitive construction, here taken to be the interpreta-
tion of a determiner of the form [Det of Det], where the second Det is definite. In
section 7.11 below we discuss such constructions, and give a general interpretation
rule for them by means of an operation Def.23

Thus we set

Q 2 of the = Def (Q 2, allei)

which, by Fact 3 below, gives the following result:

(7.50) Q 2 of the (X , Y ) ⇐⇒ X �= ∅ & Q 2(X , Y )

In other words, Q 2 of the is Q 2 with existential import.
Now observe that the following equivalences hold:

Possw(Q , Q 2, R)(A, B) ⇔ Q(domA(R) ∩ {a : Q 2(A ∩ Ra, B)}) [def. (7.45)]

⇔ Q({a : A ∩ Ra �= ∅ & Q 2(A ∩ Ra, B)})
⇔ Q({a : Q 2 of the (A ∩ Ra, B)}) [definiteness account]

Thus, we see that, when no narrowing of the restriction is required, Poss can indeed
be construed as ‘containing’ a definite quantifier. Truth-conditionally, at least, there
is no difference between these two accounts.

7.8.3 A problem with thesg and thepl

Note, however, that the last result depends on our using all ei instead of thesg and thepl.
We can now see that this is in fact the right choice. Consider

(7.51) Most students’ tennis rackets are cheap.

The definiteness account takes this as: for most students x, the tennis rackets of x are
cheap. But if this ‘‘the’’ means thepl, (7.51) entails that most students own at least two

23 And in sect. 7.9 we point out that the construal of [Det of Det] as a determiner is for most
purposes inessential to the analysis; one could equally well have used the more common syntax with
an NP of the form [Det of NP].
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tennis rackets, and it surely doesn’t entail that. That may well be false, while (7.51)
is true.

Notice, further, that narrowing will not help. If we narrow the restriction argu-
ment but still use thepl, we get the entailment that most students who own at least
one tennis racket in fact own at least two. Again, this may well be false, while (7.51)
is true. It is not a claim that (7.51) makes.

We can make the same observation with respect to the earlier example (7.47). With
narrowing in force (as we argued that it must be in this case), using thepl we would get
the entailment that firemen are bigamists! Now, here one might argue that wives in
(7.47) is a so-called dependent plural,24 and that in fact one should use thesg instead.
This may work for (7.47), given a society where people have at most one wife (at a
time). But it doesn’t work for (7.51). Students can own any number of tennis rack-
ets (including zero). With thesg, (7.51) entails that most students who own a tennis
racket own exactly one. That may happen to be true, but surely it isn’t something
that should follow from (7.51). This is even clearer with the already considered sen-
tence (7.6):

(7.6) Each girl’s brother feels protective of her.

It is obviously wrong to analyze this sentence as claiming that every girl has at most
one brother.

The conclusion is that we should use all ei. Only then do we obtain the correct truth
conditions in all of these cases—provided narrowing is also in place—for example,
in the case of (7.51), that most students who own tennis rackets own only cheap ones.

We see that the quantifier all ei, although presumably not the denotation of words
like all and every (see Chapters 1.1.1 and 4.2.1), is nevertheless a very useful tool
in the analysis of quantification.25 It is a kind of neutral version of the definite art-
icle, and sometimes works better than the singular and plural versions. Not only is
the correspondence between syntactic and semantic number in natural languages not
fully systematic, but sometimes both choices of semantic number are wrong.

7.8.4 Narrowing versus accommodation

Consider again a case where something like narrowing really seems to be required.
Using the definiteness account (and the treatment of relational nouns suggested
earlier):

24 I.e. a plural form that is syntactically motivated by another plural form in the sentence, but
has no semantic impact. Thus, the plural form of wheel is required in

(i) Unicycles have wheels.

but the sentence does not claim that each unicycle has more than one wheel.
25 Neale (1990) calls it whe, in order to display its similarity to thesg and thepl, and the fact

that it can be used in the interpretation of what he calls numberless descriptions: whatever I say,
whoever shot John F. Kennedy (p. 46). He further thinks it should be used when his D-type
pronouns are anaphoric to phrases like every A, all As, each A (p. 235).
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(7.52) a. Most professors’ wives were there.
b. For most professors x, the wife of x was there.
c. most professor({a : ∅ �= husband of a ⊆ was there})

(7.52c) entails that most professors are married, and we presume that no one really
claims that (7.52a) entails that. However, while we have treated the existential import
of the (or all ei) as part of the truth conditions, another view is that it is a presup-
position. Say that a presupposition is accommodated in virtue of a fact that makes it
satisfied. The presupposition in (7.52b) can be accommodated by assuming that all
professors are married. That is what (7.52c) does. But one idea is that presupposi-
tions can also be accommodated locally,26 in this case in the restriction of most, i.e.
by assuming that all professors in the restriction are married. This means, in effect, that
most quantifies only over married (male) professors, which is precisely the effect of
narrowing. Thus, without going into further details, we get the rough suggestion that

narrowing ≈ local presupposition accommodation in the possessor’s restriction
argument

In other words, the suggestion is that a definiteness account equipped with a theory of
local accommodation provides a way to handle narrowing, if desired. We note, how-
ever, that the problems with thesg and thepl referred to in the previous section would
remain even if narrowing were accomplished by accommodation.

7.8.5 Summing up

We have seen that the definiteness account is less different from the account proposed
in section 7.7 than one might have guessed. In particular, when narrowing has no
impact, and when the mode of quantification (our parameter Q 2) over the possessed
objects is explicitly given by a determiner, the two accounts seem extensionally equi-
valent. Also, it is conceivable that local presupposition accommodation could give the
same effect as narrowing.

But certain differences remain. First, narrowing is a clearer and simpler idea than
local accommodation of presuppositions, we think. We implemented narrowing as
the normal case; so our proposal accounts for all the sentences where narrowing is
necessary, as well as the sentences where it makes no truth-conditional difference.
We think narrowing is the normal case. The local accommodation account needs a
trigger for cases where narrowing is necessary, and it is not entirely clear what trig-
gers local accommodation. On the other hand, the definiteness account deals with the
cases where narrowing is unwanted (assuming local accommodation is not triggered
then), whereas our account needs to block narrowing, i.e. to use Possw instead.

A second, more important difference is that the definiteness accounts we know of
use either thesg or thepl to interpret the definite article. That doesn’t always work, at
least not on our reconstruction of such accounts. You have to use all ei.

26 See Beaver 1997 for a useful survey of all matters related to presupposition, in particular
accommodation (his sect. 4.4).
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Third, and even more crucially, the definiteness account cannot handle the case
when Q 2 is implicit but not universal, in particular the existential readings exempli-
fied in section 7.3 and later. In these cases, with or without narrowing/local accom-
modation, it simply gives the wrong truth conditions.

However, the account in (7.49d) remedies the second and third of these deficien-
cies, by modifying the definiteness account to (a) use all ei, and (b) incorporate a
parameter for the quantification over the ‘possessed’ objects, which is always present,
whether that quantification is explicit or not. Even when it is implicit, this parameter
can be set to every or some, as the definite article is already present in the partitive.

Then, not only when Q 2 is explicit, as in at least three of most students’
books, is there a built-in partitive construction, but—according to the modified def-
initeness account—also when it is implicit, as in at most two cars’ tires. For
example, on the existential reading, the implicit partitive in the latter example would
be, according to (7.49d), at least one of the tires (belonging to car x).27

In light of all this, we tentatively conclude that if the definiteness account admits
that an implicit quantifier parameter is always present, and if it replaces thesg as well
as thepl by all ei, it can cover roughly the same data as our account here. There is
a (perhaps big) difference regarding how frequently narrowing is judged to occur,
and how it is handled, but neither account at present has a mechanism for deciding
when it applies and when it doesn’t. We do think that the account presented here is
simpler. But what is right about the (modified) definiteness account, from our per-
spective, is that there is indeed a trace of the definite article in possessives: namely,
in the condition A ∩ Ra �= ∅ found in both Possw and (7.49d). When narrowing is
operative, that condition is still present, though it becomes less visible in Poss, since,
because of C, it is taken care of by the narrowing of the restriction argument
(of Q 1).

We should add, however, that it is rather existence than definiteness that is present
in possessives. Indeed, the usual idea of definiteness, in terms of either uniqueness
or familiarity, is not one that we have found to do much work for possessives. Fur-
thermore, we emphasize again, because it sometimes seems to be forgotten, that the
question is not at all whether possessive determiners themselves are definite. That is
a simpler question. In fact, some of them are, but most of them aren’t; we will see
which ones in section 7.11.

In short, definiteness has interesting connections to possessive quantifiers, but it is
not a characteristic feature of all of them. The possessives should be seen as a rich and
significant class of quantifiers in themselves, with their own characteristic properties.
For the rest of this chapter, we use exclusively the analysis of possessives in terms of
Poss, i.e. with built-in narrowing.

27 Note that at least one of the is roughly the same as some (perhaps with the extra condition that
the restriction has at least two elements). This seems to us to be a better way to look at what are
sometimes called weak (or even indefinite) definites in the literature; e.g. Barker 2004. Moreover,
Barker predicts such readings only for possessives with relational nouns, whereas we have seen that
at most two cars’ tires has a straightforward existential reading.
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7.9 SEMANTIC RULES FOR POSSESSIVES

How do rules of semantic interpretation combine the meaning Poss of ’s with the
meaning of other parts of a sentence containing ’s? A determiner Det with ’s as an
immediate constituent always has an NP preceding ’s, as in the structure (7.5) in
section 7.1. That structure is essentially built with the two rules

(npdet) NP −→ Det N
(poss) Det −→ NP ’s

The rule (npdet) is completely general, and the semantic rule corresponding to it is
the usual one: the set denoted by N is the restriction argument of the type 〈1, 1〉 quan-
tifier expressed by the Det, so the NP’s interpretation, as a type 〈1〉 quantifier results
from freezing that argument.

The rule (poss) is also very general, although there are certain restrictions; we will
come back to them in section 7.12 below. As for semantics, in the cases we consider
the possessor NP will have been interpreted as a restricted type 〈1〉 quantifier (Q 1)C ,
and the rule determining the meaning of the possessive Det fills in Q 1 and C as the
first two arguments of Poss.28 The third and fourth arguments that Poss wants are
filled with a parameter Q 2 for type 〈1, 1〉 quantifiers and a parameter R for binary
relations on individuals. What does the semantics say about these last two arguments?
Here approaches to possessives split into different camps.

The approach we have adopted here has the semantic rules do nothing to them:
they remain as parameters of the NP’s meaning. Although pragmatic principles of
utterance interpretation, and possibly even semantic rules for interpretation of other
parts of the sentence may operate on these parameters, they are left untouched by this
particular semantic rule.

Other approaches hold that a genuine semantic ambiguity exists in expressions like
John’s child, and postulate two different semantic rules (perhaps triggered by two
slightly different syntactic structures), the one leaving the relation parameter free (to
be set in utterance context by pragmatic principles), and the other fixing the para-
meter’s value as the inverse of the child-of relation. The ‘free’ approach readily allows
the addition of an extra mechanism to fix this parameter, as we saw in section 7.7.

The issue is largely a methodological one. Everyone agrees that the multiple
possibilities for the choice of possessor relation can make a possessive NP highly
ambiguous. The main question is how this affects a compositional—or ‘quasi-
compositional’—semantics for such phrases.

Standardly, compositionality is thought to presuppose disambiguation—other-
wise talk of the meaning of complex expressions and their parts threatens to become

28 We recognize that this rule is not strictly (locally) compositional: to apply it, one has to look
one step further down the tree; i.e. not only the interpretation of the immediate constituents of
the possessive Det but also that of their immediate constituents must be used. If all of these are
available in the syntax, there is no problem in using the rule to figure out the meaning of the
possessive determiner. The rule for Possw, by contrast, is fully compositional, but we have seen that
Possw doesn’t always provide correct interpretations.
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empty.29 However, the almost unlimited range of choices in the case when the pos-
sessor relation is free is not seen as a threat to compositionality. This freedom does not
qualify as ambiguity, but rather as indexicality or, more generally, context dependence.
An indexical pronoun like you or he can certainly be handled in a compositional
semantics, either at the level of denotation or at the level of ‘character’, i.e. before par-
ticular individuals have been assigned to them. At that stage, they too are represented
by free parameters.

The question, rather, is how to separate the free cases from the non-free ones,
sometimes referred to as inherent (e.g. Partee 1983/97), sometimes further divided
into inherent and a few other categories, as in the account of Jensen and Vikner
(2002) mentioned earlier. Are there structural and/or lexical ambiguities involved?
Which case is most basic: the free or the non-free case? Somewhat (but not com-
pletely) analogously: Are relational nouns like sister or non-relational ones like
car the default case in possessive NP’s?30

In a series of papers, Partee and Borschev, on the one hand, and Jensen and
Vikner, on the other, have debated these issues. Partee and Borschev (2003) clas-
sify the approaches as either split —with distinct analyses for the two (or more)
main cases—or uniform—reducing all possessives to one default case. There are two
main uniform candidates: one where relational nouns are the default case and non-
relational nouns are coerced to denote relations, and one where the opposite holds
(as in our suggested treatment of relational nouns in the preceding subsection). In
that paper (and recently also Jensen and Vikner 2002), Partee and Borschev tend
towards a split approach, at least for English. But they also present (their section 6)
a uniform alternative which takes the case of a free relation variable as basic, much as
in our account here: theirs is less general, in that quantified possessives are not dealt
with at all, but more detailed in describing the mechanisms by means of which the
parameter R is set. In the end, though, they are doubtful that this alternative can
succeed.31

29 In principle, compositionality doesn’t necessarily rule out ambiguity. One possibility is to
take the set of meanings of an ambiguous expression to be the input to the function that composes
(sets of) meanings. So-called Cooper storage (Cooper 1983) is an example of this.

30 There is also the issue, not discussed here, of which of the possessive forms—prenominal,
postnominal, or predicative—is most basic.

31 One hurdle is how to account for the contrast in

(i) a. The former mansion was damaged by fire
b. Mary’s former mansion was damaged by fire.

where the second sentence has an ambiguity lacking in the first, depending on whether former
modifies mansion or the possessor relation (which then becomes ‘formerly own’ in this case). A
more serious problem for a uniform ‘free’ analysis, according to Partee and Borschev (2003), is the
following contrast:

(ii) a. Sanderson’s portraits are mostly better than his wife’s.
b. If Kandinsky’s portraits had all been Gabriele Münter’s, then I suppose they would all be in

Munich by now.
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These questions are—as these authors admit—highly theoretical, and the empir-
ical evidence is often hard to evaluate. So far, it has not convinced us of the need to
posit a semantic ambiguity, or even to have one or more semantic rules that fix the
relation parameter’s value when a possessive determiner combines with an N′. So we
present only the semantic rule that (Free3) shows is needed in any case. In fact, this
is nothing more than the normal semantic rule for combining the meaning of a Det
with that of an N′.

What about the strong, though not inviolable, tendency of relational nouns to
favor interpreting the relation parameter R as the inverse of the relation R1 that gives
the noun’s meaning (i.e. the noun denotes dom(R1) and R = (R1)−1)? One possibility
seems to be to treat this simply as a pragmatic tendency to assign the parameter R the
value (R1)−1 when the possessed noun was semantically interpreted as dom(R1). Not
only can this pragmatic tendency be overcome in the context of some utterances, but
it must also compete with other strong tendencies. Again, Mary’s picture may
involve the relations of ownership, artist, or motive, but sometimes none of these
tendencies prevails, and Mary’s picture denotes a picture to which she bears an
ad hoc relation, e.g. the picture she was told to discuss. There are undoubtedly many
regularities involved in the description of the distribution of the various readings, but
it does not necessarily follow from this that these regularities manifest themselves as
semantic composition rules.32

All this is why we are content for now to accept that the speaker-hearer pragmatic
toolkit provides a small array of ‘usual and customary’ ways to fix the possessor rela-
tion’s parameter R, which the speaker-hearer draws upon to place a specific interpret-
ation on an utterance of the possessive NP.

Now what about the parameter Q 2, which still remains? Here we can only say what
we would do, since other approaches do not recognize the need for this parameter.
We believe that Q 2 too is frequently fixed by pragmatic principles. For John’s
fingers it seems to be fixed as some in the statement John’s fingers are dirty
but as every in John’s fingers are clean. These choices conform to very gen-
eral tendencies, such as to read the windows as ‘some windows’ in The windows
were open (when it began to rain) but as ‘all windows’ in The windows were
closed (when it began to rain). There is little doubt that general principles
are at work here. What may be doubted is that the principles find their expression as
semantic rules.

That said, however, there is one way of fixing Q 2 that clearly is governed by
semantic rule: namely, when the possessive NP occurs as part of the larger construc-
tion given by (7.53).

(ia) allows at least three possessor relations—owner, artist, motive—but requires the same rela-
tion in the elliptical phrase. (iib), on the other hand, allows Münter’s to express owner-
ship even when Kandinsky’s does not, but if Kandinsky’s uses either artist or subject,
then Münter’s can be the same relation but not the other one. According to Partee and
Borschev, a split approach can explain these facts, but a uniform approach will have serious
problems.

32 E.g. the regularities exemplified in n. 31 may have more to do with the meaning of por-
trait than with the semantics of possessives.
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(7.53) NP

Det

Det

D2

of Det

NP
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1

’s

N′

N

A

Here we will take this structure to be built by an additional rule

(plex) Det −→ Det of Det

that forms complex determiners.33

The rule (plex) may seem to wildly (over)generate recursive structures. But we take
it to be equipped with severe restrictions, which in fact prevent all but a few kinds of
iteration. To state these, we shall use the following terms of art:

33 We are following Keenan and Stavi 1986 in using a Det-forming rule, rather than the more
common NP-forming rule

(part) NP −→ Det of NP

Keenan and Stavi argue at length in favor of (plex), one of their arguments being that one then
easily generates directly, say,

(i) Each of John’s but not one of Mary’s articles was accepted.

which seems harder with (part) and perhaps requires some sort of reduction rule. The rule (plex)
goes nicely with the operation Poss. The two kinds of possessive determiners mentioned in sect. 7.1
will all denote (perhaps parametric) values of Poss. Also, the compositional semantics using (P-rule)
below becomes somewhat simpler. A drawback, however, is that we cannot account in this way for
unquantified NPs after [Det of], like two of them or each of John, Mary and Sue.

For most of what we say here, this issue is not really important; e.g. our remarks about the
structure and meaning of iterated possessives in the next section are translatable, preserving the
points we make, to structures based on (part).

Looking ahead to section 7.11.3, it is however, true that the compositional semantics using
(D-rule) becomes somewhat simpler if (part) is adopted. Then the definition appropriate for the
operation Def changes to the following: When Q 2 is of type 〈1, 1〉, Q is of type 〈1〉, Q is definite,
and B ⊆ M , define

Def ′(Q 2, Q)M (B) ⇐⇒ Q M �= ∅ & (Q 2)M (WQ , B)

It is easily seen that, when Q = Q A
3 , Def ′(Q 2, Q)M (B) ⇔ Def (Q 2, Q 3)M (A, B), for all M and

all B ⊆ M .
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basic and complex possessives; partitives

(a) Determiners resulting from applying the rule (poss) are called basic possessives.

(b) Determiners resulting from applying the rule (plex), where the second Det is
a basic possessive, are called complex possessives.

(c) Determiners of the form [Det of Det] are called partitive.

Thus, John’s, most professors’, some student’s brothers’ are basic pos-
sessive determiners, whereas most of John’s, two of every student’s, at
least one of Mary’s brothers’ are complex possessives. No determiner can
be both a basic and a complex possessive, but a complex possessive always contains
a basic one. Complex possessives are partitive, but so are, for example, two of the
and at least five of the ten, and there may be other rules resulting in structures
of the form [Det of Det].

We emphasize that these are terms of art, used here to enable us to express cer-
tain things more precisely. In section 7.1 ‘‘possessive determiner’’ was used in a more
intuitive sense, without giving a definition, and we may continue to use it thus, not-
ing that the examples listed in (7.2) in that section are in fact basic possessives, and
the ones in (7.3) complex possessives. (We could easily include the ones in (7.4) too,
by a slight modification of the above definitions.) In addition, we noted that there
are other possessive determiners, such as more of John’s than of Mary’s, which
don’t fall under the above categories, and which we don’t treat systematically here
(but see section 7.12.3).

Likewise, the term ‘‘partitive’’ is used here only to classify expressions of a certain
form, but (so far) without any connotations about the right semantic analysis of these
expressions.

Now we can express the restrictions on (plex) as follows:

(plex-restr) (i) The left Det must not be: basic possessive, or definite, or partitive.
(ii) The right Det must be either basic possessive or definite, but it cannot be
partitive.

This is corroborated by examples like:

(7.54) a. few of the boys
b. each of the three girls
c. two of every student’s books
d. at most one of Susan’s mother’s parents
e. *Mary’s of the three boys
f. *the of the three boys
g. *the two of the three boys
h. *two of Mary’s of the three boys
i. ?two of most girls
j. *two of three of Mary’s girls
k. *two of each of the ten girls
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(7.54e–h) illustrate the restrictions of the left Det. It is not enough to say that it
cannot be partitive (in the above sense); clearly one must also exclude basic possessives
and non-partitive definites.34 Since the right Det cannot be partitive either, left and
right branching with (plex) is excluded.

We are not saying that (part-restr) gets the constraints on (plex) exactly right. For
example, a few more Dets must also be excluded on the left, such as every and a35

(though each, all, and some are fine). But we think it gets things roughly right. We
also note that it is possible to analyze explicitly proportional determiners, like more
than two-thirds of the by means of (plex). So far we simply treated these—in
accordance with much of the literature—as complex determiners, partly because one
can plug in a restriction noun directly after such expressions, but not after more than
two-thirds. However, if one delegates that problem to syntax, and thinks of more
than two-thirds as denoting the quantifier

Q M (A,B) ⇐⇒ |A ∩ B| > 2/3 · |A|
and thus more than two-thirds of the as obtained with (plex), the natural cor-
responding semantic rule will give this partitive (in our sense) determiner the same
denotation; this will be shown in section 7.11.3. Thus, a more satisfactory account of
these proportional determiners is obtained.

The question mark in (7.54i) illustrates that there seem to be certain quantifiers
other than basic possessives and definites that are sometimes permitted after [Det of].
We here take the position, however, that these should not be generated by the same
rule; see section 7.11.2.

Thus, in the right position, two kinds of Det are permitted: basic possessives and
definites (but a complex possessive like three of John’s, or a partitive definite
like each of the ten is excluded36). This contrasts with the standard accounts in
the literature, which permit only definite determiners.37 Recall that many standard
accounts construe possessives as definite, or at least as essentially containing a definite.
However, most possessives are in fact not themselves definite (we will see presently
which ones are), and to somehow bring the definite that might be ‘contained’ in a
possessive to the surface just in order to use a more traditional formulation of (plex)
seems awkward at best. We find it more revealing to allow both basic possessives and
definites.

Since we allow two kinds of determiners, with rather different semantics, we have
two semantic rules corresponding to (plex). Here we describe the rule for the possessive
case (P-rule); the second rule (D-rule) is introduced in section 7.11. Having two

34 There is a slight problem with the definite both, whose interpretation on our analysis coin-
cides with that of the two, but which, in contrast with the two, can occur to the left—both of
some student’s parents, both of the problems. Inversely, the two is fine in the right Det
position, but both is not. We shall not address that problem here.

35 This may be related to the fact that they cannot occur with a null noun.
36 We observe in sect. 7.11 that, in contrast with most partitives, each of the ten is itself

definite.
37 Note that the ungrammaticality of *each of boysmilitates against a putative null determiner

in bare plural noun phrases, because that Det would be definite when interpreted as allei (see
sect. 7.11).
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semantic rules may seem odd, and it would be simple to distinguish the two cases
syntactically by splitting (plex) into two rules. This is not an important issue from a
semantic point of view; the main linguistic point is that basic possessives are perfectly
fine after [Det of], even when they are not definite.

Here is the rule for the possessive case.

(P-rule) A determiner of the form [D2 of D1], where D1 is a basic possessive with
[[D1]] = Poss(Q 1, C , Q 2, R), is interpreted as Poss(Q 1, C , [[D2]], R).

So (P-rule) just formalizes what we have been arguing all along: namely, that when
there is an explicit determiner, it sets the value of the Q 2 parameter in Poss. When
this determiner comes via the rule (plex), no pragmatic considerations can overturn
this assignment of Q 2.

To see how these rules work, we take a brief look at iterated possessives.

7 .10 ITERATED POSSESSIVES

The semantics of iterated possessive determiners is perfectly clear from our analysis:
the type 〈1, 1〉 quantifier Q ′

1 in Poss(Q ′
1, C ′, Q ′

2, R′) can itself be the denotation
Poss(Q 1, C , Q 2, R) of a possessive determiner. Thus, the general truth conditions of
such a sentence are

(7.55) Poss(Poss(Q 1, C , Q 2, R), C ′, Q ′
2, R′)(A, B)

For the syntax, we suggested the three rules (npdet), (poss), and (plex). We now
show that these rules, with their corresponding semantic rules, give an adequate first
pass at explaining certain empirical facts concerning iterated possessives. The case
when the second Det is definite is taken up in the next section.

Rules (npdet) and (poss) allow iterated possessives as in the following sentences:

(7.56) John’s books’ pages are stained.

(7.57) Mary’s sisters’ friends’ children were there.

(7.58) Most students’ bikes’ tires are worn out.

We note first that with iterated possessives we usually have at least two possessor
relations. Freedom as described by (Free3) seems just as great as before (the two rela-
tions need not constrain each other). In (7.56), for example, there is an ownership
relation and a part–whole relation in the default case, but as usual, other relations
can be made salient by context. In the general case, both relations need to be treated
as parameters.

Second, the ambiguity between universal, existential, and other readings already
seen in basic possessives multiplies when the construction is iterated. For example,
(7.56) could be used to say that each of John’s books has every page stained, or, per-
haps more naturally, that each book has some pages stained, but other readings may
be possible as well. Since readings are fixed by setting the parameters Q 2 and Q ′

2 in
(7.55), we can unproblematically represent them.
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Now consider complex iterations, where rule (plex) is involved. The main NP in
the next sentence has two analyses, as follows:

(7.59) a. Several of John’s books’ pages are stained.

b. NP

Det

NP

Det

Det

several

of Det

NP

John

’s

N′

N

books

’s

N′

N

pages

c. NP

Det

Det

several

of Det

NP

Det

NP

John

’s

N′

N

books

’s

N′

N

pages
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In (7.59b), (P-rule) requires the parameter Q 2 from the interpretation of John’s to
be set to several, leaving free the parameter Q ′

2 coming from the possessive ’s applied
to the NP several of John’s books. The universal reading would then say that
several of John’s books are such that all of their pages are stained. In (7.59c), on the
other hand, it is Q ′

2 that must be set to several by (P-rule), so the universal reading
(for Q 2) would say that each of John’s books has several of its pages stained. This
seems to capture the ambiguity of (7.59a) correctly.

In the following variant, morphosyntax suggests that only one book is involved, i.e.
that only the structure of the form b is present.

(7.60) Several of John’s book’s pages are stained.

The next example has the same structure, but here number agreement distinguishes
between the two readings.

(7.61) a. One of John’s ex-wives’ previous husbands were millionaires.
b. One of John’s ex-wives’ previous husbands was a millionaire.

(7.61a) can only mean that of John’s ex-wives, one of them is such that her previous
husbands are millionaires. (Presumably all of her husbands were millionaires, and we
have a universal reading.) For (7.61b), the only reading is: among the husbands of
John’s ex-wives, one was a millionaire. That is, one quantifies over husbands here, by
(P-rule).

Thus, on the present account, the scope ambiguities arising from the interaction of
partitives with iterated possessive determiners are reflected in a difference of syntactic
structure, as between (7.59b) and (7.59c), in contrast with the ambiguities that arise
from quantifier parameters that are not set by explicit determiners.

Next, we observe that certain iterations of possessives do not make sense. Let us see
how we can account for these facts. Consider first

(7.62) #Many of some of John’s books are stained.

There is no way to derive this sentence by our rules. Many of some cannot be derived,
since some is not a basic possessive or definite Det. Some of John’s books can be
derived, but it can never be the right Det in an application of (plex), since it is partit-
ive. And indeed, even if (7.62) were somehow syntactically derivable, it would make
no sense, as the idea behind (P-rule) shows. The Q 2 parameter from John’s books
would have to be set to some, and the form also requires that many set some such
parameter, but there is none left.

By contrast, take

(7.63) Many of some of John’s books’ pages are stained.

The string some of John’s is derivable, but, being partitive, it cannot be appended
to many of by (plex). But some of John’s books’ is derivable by (poss), as a basic
possessive, so there is one (and only one) way of deriving (7.63) that complies with the
requirements in (plex-restr):
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(7.64) NP

Det

Det

many

of Det

NP

Det

Det

some

of Det

NP

John

’s

N′

N

books

’s

N′

N

pages

The Det some of John’s is derivable, and the Q 2 parameter is set to some. So some
of John’s books’ is derivable with (npdet) and (poss); it is a basic possessive, with
parameter Q ′

2, say. Therefore (plex) applies again, and Q ′
2 is set to many. We get the

interpretation that some of John’s books are such that many of their pages are stained.
And this seems indeed to be the only possible reading of (7.64).

Here is a slightly more natural example:

(7.65) Both of many of my friends’ parents work.38

38 An editor would want to change this to Both parents of many of my friends work,
but clumsiness is not meaninglessness. However, it is interesting to note in this connection that
while not all possessive NPs may have a postnominal as well as a determiner form (e.g. John’s
friends are hard to find does not seem synonymous with Friends of John(’s) are hard
to find), many do; cf. Most of John’s books are pristine and Most books of John(’s)
are pristine. In the latter form, the ordinary determiner position of the NP containing the
postnominal possessive expresses the Q 2 parameter, an effect that (P-rule) achieves in the former
case.
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7.11 DEFINITES AND POSSESSIVES

In section 7.8 we tried to clarify the way in which possessive determiners can be con-
sidered to contain a definite. Now let us ask which possessive determiners are them-
selves definite. Although it is not uncommon to claim that possessive determiners are
definite,39 this is in fact usually not true. We begin by showing this, and then move
on to the question of what to make of the fact that basic possessives nevertheless occur
freely after [Det of], and finally to the semantic rule (D-rule) that interprets (plex)
when the right Det is definite.

7.11.1 Which possessives are definite?

We gave a semantic definition of definite quantifiers and determiners in Chapter 4.6,
and showed there that when Q 1 is definite, the principal filter (Q 1)A

M is generated by
the same subset of A on each M where it is non-trivial—indeed, by the set W(Q 1)A ,
which is also the smallest set that (Q 1)A lives on. With a precise semantics for pos-
sessives we can now check which of the possessive determiners are definite.

Proposition 2
(C, E) If Q 1 is definite, so is Poss(Q 1, C , every, R).

Proof. By definition (7.30) we have

Poss(Q 1, C , every, R)(A, B) ⇐⇒ (Q 1)C∩domA(R)({a :A∩Ra ⊆ B})
Now fix A, a subset of a universe M that (we may assume) includes also C ∩ domA(R).
If (Q 1)C∩domA(R)

M is empty, so is Poss(Q 1, C , every, R)A. Otherwise, there is (Prop. 10
in Ch. 4.6) a (unique) generating set X ⊆ C ∩ domA(R) such that

(Q 1)C∩domA(R)
M = {B ⊆ M : X ⊆ B}

We calculate

B ∈ Poss(Q 1, C , every, R)A ⇐⇒ X ⊆ {a : A ∩ Ra ⊆ B})
⇐⇒ ∀a ∈ X (A ∩ Ra ⊆ B)

⇐⇒
⋃

{A ∩ Ra : a ∈ X } ⊆ B

That is, the generating set for Poss(Q 1, C , every, R)A is Y = ⋃{A ∩ Ra : a ∈ X }. Also,
since X is a non-empty subset of domA(R), A ∩ Ra �= ∅ for a ∈ X ; so it follows that
Y is non-empty. This completes the proof. �

For example, the universal reading of John’s and the ten students’ is definite,
and each of John’s and each of the ten students’ are always definite. For

39 ‘‘Possessive determiners . . . are almost universally considered to be definite’’ (Abbott 2004:
123).
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(each of) the ten students’ cars, the filter is generated by the set of student-
owned cars (provided there are exactly ten car-owning students).

But note that the above result depends crucially on the fact that (i) the universal
reading is used, i.e. Q 2 = every, and (ii) Q 1 is itself definite. It is clear from the proof
that when one of these two conditions is not satisfied, the possessive determiner will
in general not be definite.

In particular, the result fails for Q 2 = thepl. For that case we get (with X as above)

B ∈ Poss(Q 1, C , thepl, R)A ⇔ X ⊆ {a : |A∩Ra| ≥ 2 & A∩Ra ⊆ B}
but this does not imply that Poss(Q 1, C , thepl, R)A is a principal filter, since there may
be individuals a such that |A ∩ Ra| = 1 and A ∩ Ra �⊆ B, and then it may happen that⋃{A∩Ra : a ∈ X & |A∩Ra| ≥ 2} is a subset of B, even though X is not a subset of
{a : |A∩Ra| ≥ 2 & A∩Ra ⊆ B}.

On the other hand, the result holds for Q 2 = all ei. This is because, as should be
clear from the discussion in section 7.8.1,

(7.66) Poss(Q 1, C , every, R) = Poss(Q 1, C , allei, R)

(for all Q 1, C , R). Again, we have a context where the quantifier thepl doesn’t quite
give the expected results (cf. section 7.8.3).

But thesg, thepl, and all ei are all definite, so the possessive determiners thesg
boy’s, thepl boys’, and allei boys’, in their universal reading, are also definite.
For example,

(7.67) Thesg boy’s tennis rackets were stolen.

on this reading says that there is a unique boy who owns tennis rackets, and all of his
rackets were stolen.

Likewise, we noted in Chapter 4.6 that since Cpl = all C
ei , (universal interpretations

of) bare plurals are definite. Hence, universal readings of possessives built from bare
plurals, like policemen’s, also become definite.

7.11.2 What makes an expression definite?

What conclusion should be drawn from the fact that both definites and (non-definite
basic) possessives occur freely after [Det of]? If one were desperate to uphold the
entrenched view that only definites go there, one might try to argue that either this
fact by definition makes basic possessives definite, or that possessives do not ‘really’
appear in that position. To us it seems more natural to abandon the standard
view.

As noted in Chapter 4.6, the main attempts to characterize definiteness, apart from
Barwise and Cooper’s more general (since applicable to all determiners) and purely
semantic definition, are in terms of either uniqueness or familiarity. Based on these
ideas, various tests for definiteness have been proposed. One looks at linguistic con-
texts where definites are barred and indefinites permitted, or vice versa. We consider
just two examples. The first is the already mentioned partitive construction: it is
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claimed that only (plural) definites are allowed after [Det of]. Let us call this dia-
gnostic the partitive test. The second test concerns acceptability in existential-there
sentences, the claim being that indefinites go well there, but not definites. Call this
the existential test. In Chapter 6.3 we compared various attempts to characterize the
existentially acceptable quantifiers. Though these disagree slightly, they all agree that
definite determiners are not acceptable.40

Suppose for the moment that the results of these two tests agreed (they don’t).
Would one then be justified in concluding that each determiner or NP fitting after
[Det of], and not fitting in existential contexts, was definite?

It seems that this conclusion would follow only under one of two conditions: either
one claims to know for independent reasons that these tests are indeed tests for defin-
iteness and nothing else, or one takes the tests themselves to define definiteness. But
neither of these options seems attractive.

First, whereas all basic possessives are fine after [Det of], as we have seen, the out-
come of the existential test is mixed. Unquantified possessives, as well as many quan-
tified possessives, don’t fit:

(7.68) a. *There are John’s books on the table.
b. *There were most/all/the three students’ scarves hanging in the closet.

But other quantified possessives are fine:41

(7.69) a. There were two students’ scarves hanging in the closet.
b. There is a woman’s car reported stolen.

Thus the two tests don’t give exactly the same results, which already throws doubt
on the position that they are simply tests for definiteness. Since [Det of] is our main
concern here, we focus on the partitive test.42

Second, linguists’ stance on the definiteness of basic possessives is less than clear,
but those who explicitly address the issue, such as Vikner and Jensen (2002: 201 n. 5),

40 Non-trivial definite quantifiers are positive strong, and not symmetric. Note that indefinite-
ness is not given as the criterion for acceptability by Barwise and Cooper (1981), but rather the
property of being weak. For example, every is indefinite but positive strong by their definitions,
and it is not existentially acceptable.

41 Naturally occurring examples of the same kind are:

(i) In reading the NY Times this morning I noted that there were two men’s deaths
last week that left many of us poorer for their passing. (http://www.reynardfox.com/
content/REF−billandal1.htm)

(ii) The view is great, the food was good, but the service was poor and there were two chil-
dren’s birthday parties within a couple tables of ours. (www.digitalcity.com/stlouis/dining/
venue.adp?sbid=111716011&type=userreviews)

(iii) I did that, explaining that there was a woman’s car broken down on my road, and he should
call right away about it. (www.asstr.org/∼jeffzephyr/stories/PickingBerries-Part1−JZ.html)

42 Woisetschlaeger (1983) gives an early discussion of definiteness in connection with possess-
ives, focusing on the existential test. Since he only looks at possessive determiners headed by the
indefinite article, such as

(i) an old man’s book
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usually take care to distinguish the claim that such possessives contain a definite from
the claim that they are definite. We know of no one who seriously defines definite-
ness by the partitive test. It is taken as a test for a property that is already known. For
example, Keenan and Stavi (1986), who are among the few who discuss possessive
determiners in partitive constructions, explicitly choose Barwise and Cooper’s notion
of definiteness, according to which, as we saw in the previous subsection, many basic
possessives occurring after [Det of] are indefinite.

But there may be one option left for those who still wish to defend the partitive test:
argue that, when a possessive comes after [Det of], the structure isn’t really partitive
any more, even though it seems to be on the surface.

Keenan and Stavi attempt this route. They note the conflict with Barwise and
Cooper’s definition in the case of possessives, as in

(7.70) They called the police because seven of some professor’s manuscripts were
missing.

but suggest (p. 298) that the construction seven of some A’s could be eliminated in
favor of a form where only definites occur after [Det of]. Although the particular
rewriting they suggest isn’t, to our minds, very convincing,43 it could perhaps be
seen as a version of the definiteness approach to possessives, which (at least on our
version of that approach) systematically rewrites sentences of this form. Recall from
section 7.8.2 that (7.70) would be recast as

(7.71) For some professors x, seven of the manuscripts R’d by x were missing.

Here, the manuscripts R’d by x is definite. And we saw in that section that, as
long as narrowing is ignored, this rewriting always works.

However, as we have been at pains to argue, one shouldn’t ignore narrowing. The
simplest conclusion therefore, in our opinion, is that the partitive test does not in
fact test for definiteness. It tests for definiteness or possessiveness. As a consequence,
one cannot use the fact that basic possessives satisfy this test to discredit Barwise and

the partitive test does not apply. His main claims are that the existential test is not reliable for defin-
iteness, and that (i) is definite, in spite of arguments to the contrary by, among others, Jackendoff
(1974). Jackendoff had used the fact that two tests gave conflicting results to conclude that (i),
although seemingly indefinite, was in fact ambiguous between a definite and an indefinite reading.
Woisetschlaeger casts doubt on one of these tests—indeed, the existential test—but also makes
clear that the whole discussion is meaningful only if one has access to an independently given
notion of definiteness; here he opts for a definition in terms of familiarity.

While we appreciate Woisetschlaeger’s presentation of the methodological situation, we disagree
with his particular conclusion about (i). It seems to us that phrases of this form sometimes do
introduce objects in the discourse: for example,

(ii) A graduate student’s scarf was left hanging in the closet.

This scarf doesn’t have to be mentioned in previous discourse for (ii) to make sense.
43 Their proposal is to use

seven of some A’s = ∨
a∈A seven of a’s

But it is hard to see that this could work in general, say, for seven of most A’s.
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Cooper’s definition of definiteness, and we will thus continue to use their definition
here.

The issue of the correct analysis of [Det of] constructions is a complex one, theor-
etically and empirically. We do not claim to have given conclusive arguments for our
account here, but we hope to have drawn attention to some pertinent facts, and to
have suggested one way of looking at things. To end, we briefly mention some further
relevant facts.

It may appear that some indefinite determiners are also admitted after [Det of]. A
first set of cases is exemplified by

(7.72) a. Two of ten interviewed persons have not answered the question. (www.
pts.se/Archive/Documents/EN/112-Misdialling%20of%20Alarm%20
Number%20112.pdf)

b. The newspaper is the moviegoer’s PRIMARY source of information—five
of ten rely most on the newspaper for show times and six of ten depend
on their newspaper to find out where a movie is playing. (www.belden
associates.com/articleshowtime.htm)

But these are not really partitives, but determiners for frequencies or proportions.
(Note that two out of ten and two in ten can replace two of ten.) More
interesting examples are as follows.

(7.73) a. A reputed Haitian druglord charged with coordinating the movement of
33 tons of Colombian drug shipments through Haiti on their way to the
United States pleaded guilty Thursday to two of five counts against him.
(http://www.haiti-info.com/article.php3?id−article=492)

b. Prior to launch, all but two of five tie-downs were removed, and the mid-
get was given positive buoyancy. (http://www.usni.org/navalhistory/
Articles99/Nhrodgaard.htm)

c. At least three of the six for the B.S. degree (two of five for the B.A. degree)
must be at the 300-level or higher. (http://www.roanoke.edu/biology/
degree.htm)

Here the final numeral seems to give the exact cardinality of the restriction. So these
determiners actually express definite quantifiers, but the construction is perhaps an
appositive (numeral) rather than a partitive. Note the alternation in (7.73c) between
three of the six and two of five, indicating that these are interchangeable.

Tentatively, at least, it appears that (plex-restr) can be upheld.

7.11.3 A semantic rule for the definite case

In section 7.9 we proposed that (P-rule) should be used with (plex) when the
right Det is possessive; this was merely a matter of setting the Q 2 parameter in
Poss(Q 1, C , Q 2, R) to the interpretation of the left Det. To formulate an interpreta-
tion rule for the definite case, we define the following operation:



Possessive Quantifiers 281

the operation Def

When Q 2, Q 3 are of type 〈1, 1〉, Q 3 is definite, and A, B ⊆ M , define

(7.74) Def (Q 2, Q 3)M (A, B) ⇐⇒ (Q 3)A
M �= ∅ & (Q 2)M (WQ A

3
, B)

That (Q 3)A
M �= ∅ is the non-triviality requirement; if it is satisfied, the generat-

ing set WQ A
3

(the smallest set on which (Q 3)A
M lives) exists and is independent of

M (provided Q 3 is also C and E; Proposition 10 in Chapter 4.6). For
example, if |A| = 10, [[the ten]](A, B) ⇔ A ⊆ B (generating set: A). And if John
owns at least one thing in A, [[John’s]](A, B) ⇔ A ∩ Rj ⊆ B (generating set: A ∩
Rj).

It readily follows from Proposition 10 in Chapter 4.6 that

(7.75) If Q 3 is definite and Q 2, Q 3 are C and E, then Def (Q 2, Q 3) is
C and E.

Now the required rule is simply

(D-rule) When D3 is definite, [[D2 of D3]] = Def ([[D2]], [[D3]]).

Thus Two of the ten boys were home is correctly interpreted as two (boy, home),
provided there are exactly ten boys in the discourse universe.

Note that John’s, in its universal reading, is both definite and possessive. So a
determiner like two of John’s can be interpreted both by (P-rule) and (D-rule). In
this case the result is the same; we have

(7.76) Poss(allei, {j}, Q 2, R) = Def (Q 2, Poss(allei, {j}, every, R))

But this is not typical. In other cases, the choice between the two rules can create
an ambiguity. This too is correct, since many such sentences are indeed ambiguous.
Consider

(7.77) Two of the ten boys’ books are missing.

This sentence is three-ways ambiguous. First, there is the question of whether two
quantifies over boys or books. In the preceding section we saw how this can be cashed
out as a structural ambiguity, and the semantic rules in our possession now provide
the respective readings. (a) Of the ten boys, two are such that all of their books (uni-
versal reading) are missing:

Poss(Def (two, the ten), boys, every, R)(book, missing)

(b) Each of the ten boys is missing two books:

Poss(the ten, boys, two, R)(book, missing)

But there is yet another reading for the second structure, where two again quantifies
over books: (c) Of the books owned by any of the ten boys, two are missing. In (b),
twenty books are missing in all, whereas only two books are missing in (c), so the
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truth conditions are quite different. The (c) reading, which seems entirely plausible,
is accounted for by noting that the ten boys’ is definite, by Proposition 2, provided
the universal reading is used. So if the Q 2 parameter in [[the ten boys’]] is set to
every, (P-rule) can no longer be applied; (D-rule), however, can be applied, giving the
truth conditions of (c):

Def (two, Poss(the ten, boys, every, R))(book, missing)

Note also that all three readings entail that there are exactly ten boys standing in the
relation R to books.

So on this account, a single partitive structure can be semantically ambiguous in
that there is a choice between using (P-rule) and (D-rule). (To repeat, this is one way
of accounting for the facts. It would also be possible to enrich the syntax in order to
have all the ambiguities come out as structural, and maintain strict compositionality.)
It would be interesting to pursue these interpretation strategies in more detail, but we
shall leave the matter here.

Finally, let us verify that (D-rule) allows an adequate treatment of determiners of
the form D of the, provided the is interpreted as all ei. The following is practically
immediate from the definitions.

Fact 3
Def (Q 2, all ei)(A, B) ⇐⇒ A �= ∅ & Q 2(A, B)

It follows that if D has existential import, D of themeans the same as D. For example,
most and most of the have the same truth conditions, and so do some and some
of the, more than two-thirds and more than two-thirds of the, etc. In
particular, note that in Chapter 4 and elsewhere we have treated more than p qths
of the, at least p q’ths of the, etc. as unanalyzed determiners, simply because
in English these phrases can be followed by a noun. But it seems equally possible to
let the determiners be simply more than p q’ths, at least p q’ths, and add of
thewith the rule (plex). In the strict case, the truth conditions are the same as before.
In the non-strict case (at least p q’ths of the), they are the same except when
A = ∅. So these quantifiers, while not themselves definite, can be seen to contain a
definite element, just as the corresponding surface forms indicate.

7 .12 CLOSURE PROPERTIES OF Poss

Recall that a determiner is a basic possessive if it is formed by the rule (poss), and a
complex possessive if formed by the rule (plex) where the right Det is a basic possess-
ive. There are also other possessive determiners, such as more of John’s than of
Mary’s.

On the semantic side, it is natural to use the following terminology:

• A quantifier Q is possessive if it belongs to the range of the operation Poss; i.e. if
Q = Poss(Q 1, C , Q 2, R), for some Q 1, C , Q 2, R.



Possessive Quantifiers 283

It is then clear from our semantic rules that every basic or complex possessive determ-
iner denotes a possessive quantifier, provided every basic possessive can be interpreted
using Poss. We will attempt a justification of that assumption below.

In this section we take a quick look at closure properties related to possessives. For
example, are the possessive quantifiers closed under Boolean operations? It turns out
that they are closed under negation, but not, it seems, under conjunction. On the
other hand, the class of denotations of basic possessives appears not to be closed under
negation. These questions concern the output of Poss. There are similar questions
about its input, and there are analogous issues concerning the syntactic range of pos-
sessive determiners. We shall only scratch the surface here, but we end up with a pos-
sible formulation of the syntactic restrictions on the rule (poss), which in turn leads to
an assessment as to how adequate Poss is for the semantics of possessive determiners.

7.12.1 Negations

Pleasantly, the class of possessive quantifiers is closed under both inner and outer neg-
ations, and hence duals. This follows from the next fact, which is straightforward
from the definition (7.30) of Poss.

Fact 4
(a) ¬Poss(Q 1, C , Q 2, R) = Poss(¬Q 1, C , Q 2, R)
(b) Poss(Q 1, C , Q 2, R)¬ = Poss(Q 1, C , Q 2¬, R)

Thus, the square of opposition of a possessive quantifier consists of possessive quanti-
fiers. But we note, first, that applying a syntactic negation does not necessarily amount
to moving around inside one square of opposition, and, second, that it does not follow
from Fact 4 that the square of opposition spanned by the denotation of a possess-
ive determiner consists entirely of denotations of possessive determiners. In fact, it
seems that the class of possessive determiner denotations is not closed under outer
negation.

Consider first

(7.78) Two students’ books are not missing.

If the unnegated sentence is taken in its universal reading—Poss(two, student,
every, R)—then (7.78) can mean that two students are such that none of their books
are missing, that is, is inner negation: Poss(two, student, every ¬, R). Less plausibly,
(7.78) could instead mean that it is not the case that two students’ books are miss-
ing, i.e. that the number of students all of whose books are missing is distinct
from two: Poss(¬two, student, every, R). In addition, however, it seems that it could
mean that two students are such that some of their books are not missing. This is
Poss(two, student, ¬every, R), but rather than thinking of this as an outer negation
moving inside the possessive, it could be the existential reading of (7.78) that has
received an inner negation: Poss(two, student, some ¬, R). The point here is just that
this quantifier does not belong to the square of opposition of the original one, but to
another square, generated by the existential reading.
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For an example that possibly leads outside the class of denotations of complex and
basic possessives, consider

(7.79) Mary’s friends are nice.

Applying outer negation yields the truth conditions that either Mary has no friends
or at least one of her friends is not nice. It is doubtful that even It is not the case
that Mary’s friends are nice expresses this, and it is even more doubtful that
some complex or basic possessive determiner would do the job.

The following possessive square of opposition, on the other hand, stays in the class
of denotations of complex and basic possessive determiners:

Q =most students’ (universal reading)
¬Q = at most half of the students’ (universal reading)
Q¬ = none of most students’
Qd = none of at most half of the students’

7.12.2 Conjunctions and disjunctions

Consider the sentence

(7.80) John and Mary’s brothers came to the wedding.

In principle, this has four (universal) readings, but we shall immediately set two
of these aside. First, the main NP can be the conjunction of two NPs, John and
Mary’s brothers, in which case (7.80) says that John came to the wedding and
Mary’s brothers too. This reading has nothing to do with conjoined possessives, so
we disregard it and similar readings in what follows.

Second, there is the ‘joint’ reading which talks about brothers of both John and
Mary. That may not be readily available here, but sometimes such a reading is forced
by other factors, as in

(7.81) John and Mary’s mother came on Graduation Day.

This can only mean that the mother of both John and Mary came. By contrast,

(7.82) John and Mary’s mothers came on Graduation Day.

suggests that they have different mothers. The ‘joint’ reading appears to be related to
the collective use of John and Mary, which is not something we deal with in this
book; so we set it aside too.

The third reading of (7.80) is the one discussed in section 7.7: the possessive
morpheme is attached to the NP John and Mary, producing a possessive determiner
denoting Poss(allei, {j, m}, every, R). As we noted, there is also a fourth reading, only
slightly different, corresponding to Poss(allei, {j}, every, R) ∧ Poss(allei, {m}, every, R).
The only difference is that the latter requires John and Mary to have at least one
brother each, whereas the former requires only the existence of a brother to either
John or Mary. The fourth reading is expressed by either of the two sentences
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(7.83) a. John’s and Mary’s brothers came to the wedding.

b. John’s brothers came to the wedding and Mary’s brothers came to the
wedding.

A natural suggestion is that the determiner in (7.83a) is obtained with a simple Det-
forming rule,

(detconj) Det −→ Det and Det

(to which in general various restrictions might apply), with the obvious correspond-
ing semantic rule

[[D1 and D2]] = [[D1]] ∧ [[D2]]

(7.83a) uses a determiner involving possessives that is not itself a basic or complex
possessive (by our definition). So it seems that the class of denotations of basic and
complex possessives is not closed under conjunction. The class of possessive quantifi-
ers, however, is closed under this particular conjunction, since, as one easily verifies,

(7.84) Poss(allei, {j}, every, R) ∧ Poss(allei, {m}, every, R) =
Poss(the two, {j, m}, every, R)

(From this we can also conclude, by the way, that this quantifier, just like Poss(allei,
{j, m}, every, R), is definite: use Proposition 2.) In general, though, we conjecture that
the class of possessive quantifiers is not closed under conjunction; perhaps even the
denotation of John’s, and Mary’s or Sue’s is outside this class.

Analogous observations can be made for disjunction, except that there is no ‘joint’
reading in this case, and that Poss(some, {j, m}, every, R) is logically equivalent to
Poss(allei, {j}, every, R) ∨ Poss(allei, {m}, every, R).

Turning now to the ‘input’ side, we discussed in section 7.9 the constraints on
the rule (plex). As to the rule (poss), we said at the end of section 7.1 that there are
remarkably few restrictions on the NP, but that some do exist. One such restriction
concerns the case where the NP is conjoined from other NPs. Consider:

(7.85) a. John and Mary’s bikes were stolen.
b. John or Mary’s bikes were stolen.
c. #John and some students’ bikes were stolen.
d. #Two teachers or some students’ bikes were stolen.
e. #?John, and Mary or Sue’s bikes were stolen.
f. #Policemen but not lawyers’ cars are dented.

It is clear that the form (7.85a) occurs. (7.85b) is perhaps less frequent, but sampling
shows that it occurs as well.44 For (7.85c–f), we disregard as before the case where the
NP is a non-possessive NP conjoined with a possessive one; the # sign concerns other

44 For example:

(i) If no gift tax returns are filed, the IRS could question the valuation and assess estate or gift
tax when reviewing John or Mary’s estates after their deaths. (http://sanjose.bizjournals.com/
sanjose/stories/1999/01/18/focus5.html)
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readings. In all these cases we would get a perfectly good sentence if the possessive
morpheme were attached to the first NP(s) too. But this gives a syntactic structure
different from the intended one.

Indeed, conjoined NPs in general do not provide suitable inputs to Poss: this hap-
pens only when Q ∧ Q ′ or Q ∨ Q ′ can be written in the form Q C

1 , which we have
seen not to be possible in general (Proposition 8 in Chapter 4.5.5.3). The situation
is different if we forget about narrowing and use Possw instead (section 7.8.1). One
easily verifies that

Possw(Q , Q 2, R) ∧ Possw(Q ′, Q 2, R) = Possw(Q ∧ Q ′, Q 2, R)
Possw(Q , Q 2, R) ∨ Possw(Q ′, Q 2, R) = Possw(Q ∨ Q ′, Q 2, R)
¬Possw(Q , Q 2, R) = Possw(¬Q , Q 2, R)

Mathematically, Poss is less well-behaved than Possw. But apparently the restric-
tions on Poss correspond to limitations in natural language on possessor NPs. We
just saw that conjoined NPs are not accepted inputs to (poss), except in the case of
proper names. That is, their denotations cannot be arguments to Poss, the denotation
of the possessive morpheme ’s. In the next subsection we point to another example
of disallowed inputs to Poss. Now, in theory there would be no obstacles to input-
ting these type 〈1〉 quantifiers to Possw. The difference between Poss and Possw is pre-
cisely narrowing. So it appears that what would otherwise be an unexplained gap in
the possibilities for NPs to be possessors is explained by reference to the ubiquity of
narrowing.

7.12.3 Some other determiners involving possessives

As Keenan especially has pointed out, there are more complex forms of determiners
involving possessives than the ones we have looked at so far. One kind of example is
related to the comparative type 〈1, 1, 1〉 quantifiers discussed in Chapter 4.7:

(7.86) a. More students’ than teachers’ books were returned late.
b. At least as many professors’ as lawyers’ children go to this school.
c. More of John’s than of Mary’s reports were rejected.

These are not formed by the rule (poss); indeed, attaching the possessive morpheme
to only the last of the restriction arguments of a two-place determiner is ungram-
matical.45

(ii) Contact John Allan if you have info on John or Mary’s first spouse. (http://www.ogs.on.ca/
ogspi/190/m190k002.htm)

(The context of (ii) makes it clear that John and Mary are married to each other and that both had
other spouses before.)

45 One could formulate a rule attaching ’s to each restriction argument and thus generating
the first two sentences in (7.86). But, first, that rule would not generate the third sentence, and,
second, it is not obvious that the operation Poss could be generalized accordingly.
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The sentences in (7.86) can be analyzed using the following scheme:

(7.87) Poss2(Q 1, C , D, R)M (A, B) ⇐⇒ (Q 1)M (
⋃

a∈C Ra,
⋃

a∈D Ra, A ∩ B)

where Q 1 is of type 〈1, 1, 1〉. For example, in (7.86c), Q 1 = more−than, C = {j},
and D = {m}. Note that there is no implicit quantifier in this construction. Indeed,
attempts to spell out explicitly what that quantifier would be aren’t even grammatical:

(7.88) *Two/*all/*none/*most of more students’ than teachers’ books were returned
late.

So two-place determiners cannot occur after [Det of], presumably because there
would be no quantifier parameter for the determiner to set. Nor can NPs formed with
two-place determiners be inputs to (poss), perhaps because, as indicated at the end of
the previous subsection, that would conflict with the narrowing requirement.

7.12.4 Restrictions on the (poss) rule

If the observations earlier in this section are correct, the following general restriction
on the rule (poss) suggests itself:

(poss) Det −→ NP ’s

(poss-restr) The NP in (poss) cannot be a conjunction or a disjunction of other
NPs (except when these are proper names), nor can it be formed with
a determiner taking two or more arguments.

No doubt this needs to be refined. But if it is roughly correct, it follows that our
interpretation of determiners formed with either (poss) or (plex) using the operator
Poss—even though not as uniform as one might have wished—actually covers the
examples we have encountered. It covers all quantified NPs (in view of the second
part of (poss-restr)), and we handled (conjunctions and disjunctions of) proper names
and bare plurals by interpreting them with frozen type 〈1, 1〉 quantifiers. Proposition
8 in Chapter 4.5 showed that such a treatment of type 〈1〉 quantifiers is not always
possible, but, by the first part of (poss-restr), it is possible in the very cases we know
to be needed for the interpretation of possessive determiners.46

46 Proposition 8 in Ch. 4.5 also showed that only John cannot be treated in this way; but isn’t

(i) Only John’s books are stained.

a perfectly good sentence? It is, but its determiner isn’t formed by attaching ’s to the NP only
John. Rather, only modifies the possessive determiner John’s (see n. 15 in Ch. 4.5), so that (i)
is interpreted using the scheme

(ii) A ∩ B ⊆ Rj

Only John’s is then another determiner involving possessives not covered by Poss, but likewise
not generated with (poss) or (plex). But since only John is a perfectly good NP, we also see that
the restrictions in (poss-restr) are necessary for the application of the rule (poss), but not quite suf-
ficient.
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7.13 POSSESSIVES AND MONOTONICITY

Finally, we shall discuss the monotonicity behavior of Poss(Q 1, C , Q 2, R), which is
quite regular, but in more interesting ways than one might think. Right monotonicity
is determined completely by the (right) monotonicity of Q 1 and Q 2. Left monoton-
icity, on the other hand, depends in more complex ways on that of Q 1 and Q 2. We
give an overview, beginning with the right monotone case.

Proposition 5
If Q 1 and Q 2 are right monotone in the same direction (i.e. both are M↑ or both are
M↓), then Poss(Q 1, C , Q 2, R) is M↑. If they are monotone in opposite directions,
Poss(Q 1, C , Q 2, R) is M↓.47

Proof. Let us look at one of the four cases (the others are similar): Q 1 is M↑,
and Q 2 is M↓. Suppose that Poss(Q 1, C , Q 2, R)(A, B) holds, i.e. that Q 1(C ∩
domA(R), {a : Q 2(A∩Ra, B)}), and B′ ⊆ B. Since Q 2 is M↓,

{a : Q 2(A∩Ra, B)} ⊆ {a : Q 2(A∩Ra, B′)}
Since Q 1 is increasing, Q 1(C ∩ domA(R), {a : Q 2(A∩Ra, B′)}) holds; that is,
Poss(Q 1,
C , Q 2, R)(A, B′). �

These facts are illustrated by the soundness of inferences like the following (taking
Mary’s in the universal reading (‘all of Mary’s’), and no professors’ in the exist-
ential reading):

(7.89) a. Mary’s bikes are expensive. [Q 1: M↑, Q 2: M↑]
b. Hence: Mary’s bikes are either expensive or new.

(7.90) a. No professors’ cars are rusty. [M↓ + M↑]
b. Hence: No professors’ cars are gray and rusty.

(7.91) a. None of John’s pets is a dog. [M↑ + M↓]
b. Hence: None of John’s pets is a black dog.

Turning to left monotonicity, here are some first observations. If (all of) John’s
dogs bark, does it follow that his black dogs bark? Only if he has any black dogs! So
John’s is not ↓M, but almost. It satisfies the scheme

(7.92) a. John’s(A, B)
b. A′ ⊆ A and John ‘possesses’ some A′
c. Hence: John’s(A′, B)

Similarly for some cases when Q 2 is explicit, like all of John’s, or none of
John’s:

47 This proposition generalizes Proposition 8 in Keenan and Stavi 1986, which deals only with
universal readings, i.e. when Q 2 = every.
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(7.93) a. None of John’s cars is a convertible.
b. John owns a black car.
c. Hence: None of John’s black cars is a convertible.

Thus, when Q 1 has existential import (as is the case with John’s), we must avoid
A shrinking so much that all ‘possessed’ objects are excluded. For the upward case, on
the other hand, no weak variants are needed. For example, some of John’s, or at
least k of John’s, is simply persistent (indeed ↑M↑):

(7.94) a. At least one of John’s black cars is an old convertible.
b. Hence: At least one of John’s cars is a convertible.

Here is a definition of the weak version of left downward monotonicity:

weak downward left monotonicity for possessives

Poss(Q 1, C , Q 2, R) is called weakly anti-persistent, or weakly ↓M, iff Poss(Q 1, C ,
Q 2, R)(A, B), A′ ⊆ A, and C ∩ domA(R) = C ∩ domA′ (R) jointly imply Poss(Q 1,
C , Q 2, R)(A′, B). Similarly for weakly ↓NEM, weakly ↓NWM, and weakly
(co-)smooth.

The extra condition is that every C possessing something in A also possesses some-
thing in A′. When C = {j}, we have A ∩ Rj �= ∅ ⇔ A′ ∩ Rj �= ∅.

The above examples all involve possessives with proper nouns. Such possessives
have characteristic monotonicity behavior, which the next proposition tries to cap-
ture. In Chapter 5.6 we pointed out that right monotone increasing quantifiers very
often are smooth, and that an adequate account of the monotonicity behavior of a
quantifier should include smoothness whenever applicable. We therefore add some
facts about smoothness of possessives with proper nouns.

Recall the notion of symmetry of type 〈1, 1〉 quantifiers (Chapter 6.1), and the fact
that, under C (which we assume here), symmetry is equivalent to intersectiv-
ity (I), i.e. that only the intersection A ∩ B matters for whether Q M (A,B) holds or
not. Also, the following terminology was introduced at the beginning of Chapter 4.2.

(7.95) Q is positive if Q M (A,B) implies A ∩ B �= ∅.

For example, some, at least five, most are positive, but no, at most five, every are not.

Proposition 6
Let Q ′ = Poss(allei, {j}, Q 2, R).

(a) If Q 2 is persistent, so is Q ′. If in addition Q 2 is intersective and positive, then Q ′ is
also smooth. Example: at least k of John’s is persistent and smooth.

(b) If Q 2 is smooth, Q ′ is weakly smooth. Example: most of John’s is weakly smooth. (It
is not left monotone.)

(c) If Q 2 is anti-persistent, Q ′ is weakly anti-persistent. If in addition Q 2 is co-
intersective, then Q ′ is also weakly smooth. Example: all but at most k of John’s,
and hence all of John’s, are weakly anti-persistent and weakly smooth.
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(d) If Q 2 is co-smooth, Q ′ is weakly co-smooth. Example: at most half of John’s is weakly
co-smooth.

Proof. (a) Suppose that Q ′(A, B), i.e. that A ∩ Rj �= ∅ and Q 2(A ∩ Rj , B). If A ⊆ A′,
it follows that A′ ∩ Rj �= ∅ and Q 2(A′ ∩ Rj , B), since Q 2 is persistent, i.e. Q ′(A′, B).
So Q ′ is persistent. Now suppose the extra conditions hold too. Since we have
persistence, we need only check ↓NEM to verify smoothness. So suppose A′ ⊆
A and A ∩ B = A′ ∩ B. Then A ∩ Rj ∩ B = A′ ∩ Rj ∩ B. Hence, by intersectivity,
Q 2(A ∩ Rj , B) ⇔ Q 2(A′ ∩ Rj , B). So Q 2(A′ ∩ Rj , B) holds, and hence by positivity,
A′ ∩ Rj �= ∅. We conclude that Q ′(A′, B) holds, so Q ′ is ↓NEM.

(b) Suppose again A ∩ Rj �= ∅ and Q 2(A ∩ Rj , B). If A ⊆ A′ and A − B = A′ −
B, then ∅ �= A ∩ Rj ⊆ A′ ∩ Rj , and (A ∩ Rj) − B = (A′ ∩ Rj) − B, so by ↑SEM,
Q 2(A′ ∩ Rj , B). This shows that Q ′ is ↑SEM. If instead A′ ⊆ A, A ∩ B = A′ ∩ B,
and {j} ∩ domA(R) = {j} ∩ domA′ (R), then ∅ �= A′ ∩ Rj ⊆ A ∩ Rj , and (A ∩ Rj) ∩ B
= (A′ ∩ Rj) ∩ B, so by ↓NEM, Q 2(A′ ∩ Rj , B). That is, Q ′ is weakly ↓NEM.

(c) Similar to the proof of (a).

(d) Use (b) and Fact 4 from the previous section. �

Clause (a) of the proposition shows the existence of persistent and smooth natural
language quantifiers that are not of the form at least k. As we remarked after Fact 11
in Chapter 5.6, this is possible because possessives are not I.

Now let us consider arbitrary possessive quantifiers Poss(Q 1, C , Q 2, R). Given
the monotonicity behavior of Q 1 and Q 2 (remember that Q 2 may be implicit),
what can be concluded? Sometimes, the left and right pattern of Q 1 transfers to
Poss(Q 1, C , Q 2, R). For example, the following is a sound inference:

(7.96) a. Some of at least five students’ sports cars are black convertibles.
b. Hence: Some of at least five students’ cars are convertibles.

Here the possessive determiner is ↑M↑, just as Q 1 = at least five is. This holds
because Q 2 = some is persistent. If we replace some by the anti-persistent none, we
see that none of at least five students’ is instead weakly anti-persistent. Also, it is M↓,
by Proposition 5. In fact, we will see that it has the stronger property of being weakly
co-smooth.

Similarly, consider Q 2 = every, and look at the universal reading—which is the
preferred one—of the following two sentences:

(7.97) a. Some students’ black dogs are (all) fierce.
b. Some students’ dogs are (all) fierce.

Neither one implies the other. Even if some students are such that all of their black
dogs are fierce, it obviously does not follow that all of their dogs are fierce (these stu-
dents may have brown dogs too, who are real wimps, and there may be no other
students with only fierce dogs).

Conversely, even if some students are such that all of their dogs are fierce, these
students need have no black dogs at all. But if each student having a dog also has a
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black dog, then it does follow from (b) that all of the relevant black dogs are fierce. So
the universal reading of some students’ is weakly anti-persistent. In addition, we
will see that it is weakly smooth.

Let us look at three more examples.

(7.98) a. Every professor’s cars are black convertibles. (universal reading)
b. Hence: Every professor’s sports cars are convertibles.

Here we actually get full anti-persistence, indeed ↓M↑. This is because Q 1 = every,
and every has no existential import. The premise says that all car-owning profess-
ors are such that all of their cars are black convertibles. This is trivially true—by
our standard reading of every—if there are no professors, or no car-owning ones.
Thus, while Mary’s, some students’, and most cats’ do make existential com-
mitments, every professor’s, and similarly no professors’ and at most
three professors’, do not, and this affects monotonicity behavior in the way
indicated. Moreover, the point does not depend on the choice of a universal reading.

(7.99) a. Some of at most three professors’ cars are convertibles.

b. Hence: Some of at most three professors’ sports cars are black convertibles.

Again we get full anti-persistence. The premise says that at most three car-owning
professors are such that at least one of their cars is a convertible. If there are no car-
owning professors at all, or if none own a convertible, this is true. The conclusion
follows, since sports car-owning professors are necessarily car-owning professors, so
there cannot be more than three of them who own a convertible, let alone a black
convertible. Some of at most three professors’ is ↓M↓, just as Q 1 = at most three is.

Thus, it is the anti-persistence of Q 1 that makes the possessive quantifier fully anti-
persistent in these cases. To appreciate this, compare with:

(7.100) a. Some of less than half of the professors’ cars are convertibles.

b. Hence: Some of less than half of the professors’ sports cars are black con-
vertibles—provided all car-owning professors own sports cars.

Less than half of the is not left monotone. The inference is sound, but now the proviso
is necessary. Provided the set of car-owning professors is the same as the set of sports
car-owning professors, the proportion of those owning a black convertible sports car
cannot be bigger than that of those owning a convertible car of any color, so this pos-
sessive quantifier is weakly ↓M↓.

Poss(Q 1, C , Q 2, R) always inherits some monotonicity behavior from Q 1 and
Q 2. Cataloguing all cases would be a somewhat tedious exercise, but we shall try
the reader’s patience with the following proposition, which covers several common
instances, including the examples mentioned above.

Proposition 7
Let Q ′ = Poss(Q 1, C , Q 2, R). Suppose first that Q 2 is anti-persistent, i.e. ↓M.

(a) If Q 1 is M↑, Q ′ is weakly ↓M.
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More in detail, consider ‘universal-like’ readings of Q 2, i.e. when Q 2 is ↓M↑,
co-intersective, and non-trivial. (Under I and F, it follows that Q 2 =
all but at most k, for some k ≥ 0; see Chapter 6.4.)

(b1) If Q 1 is smooth and positive, Q ′ is weakly ↓M↑ and weakly smooth. Example:
most professors’ (universal reading).

(b2) If Q 1 is ↑M↑, Q ′ is again weakly ↓M↑ and weakly smooth. Example: at
least k students’ (universal reading).

(b3) If Q 1 is ↓M↑, Q ′ is ↓M↑. Example: every teacher’s (universal reading).

Similarly, consider ‘negative’ readings, i.e. Q 2 is ↓M↓, intersective, and non-
trivial. (With I and F, Q 2 = at most k, for some k ≥ 0.)

(c1) If Q 1 is smooth and positive, Q ′ is weakly ↓M↓ and weakly co-smooth.
Example: none of most professors’.

(c2) If Q 1 is ↑M↑, Q ′ is again weakly ↓M↓ and weakly co-smooth. Example:
none of at least k students’.

(c3) If Q 1 is ↓M↑, Q ′ is ↓M↓. Example: none of each teacher’s.

Suppose instead that Q 2 is persistent, i.e. ↑M.

(d) If Q 1 is M↓, Q ′ is weakly ↓M. Example: some of less than half of the pro-
fessors’.

Consider ‘existental-like’ readings, i.e. Q 2 is ↑M↑, intersective, and non-trivial.
(Under I and F, Q 2 = at least k, for some k > 0.)

(e1) If Q 1 is ↑M↑, Q ′ is ↑M↑ and weakly smooth. Example: some of at least
three students’.

(e2) If Q 1 is ↓M↓, Q ′ is ↓M↓. If in addition Q 1 is intersective, Q ′ is co-smooth.
Example: some of at most three teachers’.

Proof. For each case below, we start by assuming that Q ′(A, B) holds, i.e.

(7.101) Q 1(C ∩ domA(R), {a : Q 2(A ∩ Ra, B)})
The task is to show that if A′ has certain properties, Q ′(A′, B) holds as well.
(a) Suppose A′ ⊆ A and C ∩ domA′ (R) = C ∩ domA(R). Then {a : Q 2(A ∩
Ra, B)} ⊆ {a : Q 2(A′ ∩ Ra, B)}, since for each a, A′ ∩ Ra ⊆ A ∩ Ra and Q 2 is
↓M. Thus, Q ′(A′, B) holds, since Q 1 is M↑.

(b1) Since Q 1 is smooth, it is M↑, so it follows from Proposition 5 and the
assumption that Q 2 is M↑ that Q ′ is also M↑. By (a), all that remains to prove
for weak smoothness is the property ↑SEM. So assume that A ⊆ A′, A − B =
A′ − B, and (7.101) holds. We make the following claims:

(i) Q 2(∅, B)

This is because, by the positivity of Q 1, there is some a such that Q 2(A ∩ Ra, B), and
hence Q 2(∅, B) since Q 2 is ↓M. Next, it follows by definition that domA′ (R) −
domA(R) ⊆ {a : A ∩ Ra = ∅}, and hence by (i),
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(ii) domA′ (R) − domA(R) ⊆ {a : Q 2(A ∩ Ra, B)}
Now we clearly have

(iii) C ∩ domA(R) ⊆ C ∩ domA′ (R)

and also, by (ii),

(iv) (C ∩ domA(R)) − {a : Q 2(A ∩ Ra, B)} =
(C ∩ domA′ (R)) − {a : Q 2(A ∩ Ra, B)}

Also, since by assumption (A ∩ Ra) − B = (A′ ∩ Ra) − B and Q 2 is co-intersective,

(v) {a : Q 2(A ∩ Ra, B)} = {a : Q 2(A′ ∩ Ra, B)}
Finally, since Q 1 is smooth, and hence ↑SEM, it follows from (iii), (iv), and (v)
that

Q 1(C ∩ domA′ (R), {a : Q 2(A′ ∩ Ra, B)})
i.e. Q ′(A′, B).

(b2) The conclusion is as in (b1), but the argument is simpler. Again, we only need
to prove that Q ′ is ↑SEM. This time, given that A ⊆ A′, A − B = A′ − B, and
(7.101) holds, we get (iii) and (v) above, as before, and then, since Q 1 is ↑M,
Q ′(A′, B) follows.

(b3) By (a) and Proposition 5, Q ′ is weakly ↓M↑. But we actually have full
↓M. Suppose (7.101) holds and A′ ⊆ A. We have C ∩ domA′ (R) ⊆ C ∩ domA(R),
and (v) holds as before, so, since Q 1 is ↓M, Q ′(A′, B) follows.

(c1)–(c3) If Q 2 is ↓M↓, intersective, and non-trivial, then (Q 2)¬ is ↓M↑,
co-intersective, and non-trivial. The desired results now follow from (b1)–(b3) using
Fact 4.

(d) Similar to the proof of (a).

(e1) That Q ′ is ↑M↑ follows by reasoning of the kind already given. Moreover,
it is trivially weakly ↓NEM (and hence weakly smooth), since if A′ ⊆ A, A ∩
B = A′ ∩ B, and C ∩ domA′ (R) = C ∩ domA(R), neither of the arguments of Q 1 in
(7.101) changes when we replace A by A′.

(e2) Again, now familiar reasoning gives ↓M↓. We need to prove that Q ′ is
↑SWM when Q 1 is also intersective. So suppose (7.101) holds, A ⊆ A′, and A ∩
B = A′ ∩ B. As before, (v) holds. But also,

(vi) C ∩ domA(R) ∩ {a : Q 2(A ∩ Ra, B)} = C ∩ domA′ (R) ∩ {a : Q 2(A′ ∩ Ra, B)}
For suppose a ∈ C ∩ domA′ (R) and Q 2(A′ ∩ Ra, B), i.e. Q 2(A ∩ Ra, B). Since Q 2
is non-trivial and ↑M↑, we have A ∩ Ra ∩ B �= ∅, and hence a ∈ C ∩ domA(R).
This proves (vi), and since Q 1 is intersective, it follows that Q ′(A′, B) holds. �

Note that when Q 2 is persistent, our conclusions are slightly weaker than for the anti-
persistent case. In particular, there is no analogue of (b1) or (c1). To see this, recall
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the discussion in Chapter 5.6 of possible amendments to the (false) empirical con-
jecture in Väänänen and Westerståhl 2002 that all M↑ determiner denotations
are smooth. In particular (n. 17 in that chapter), one might guess that the conjec-
ture was true for quantifiers that do not put a cardinality constraint on the restric-
tion argument, i.e. if one excepts quantifiers like at least k of the n (or more), which
are M↑ but not smooth. We now show that, somewhat surprisingly, certain pos-
sessives provide a different sort of counterexample. In fact, quantifiers like at least k
of most students’, when k ≥ 2, are M↑ but not smooth determiner denotations,
although the purely existential version is (weakly) smooth. This follows from the next
proposition.

Proposition 8
Let Q 1 be any proportional type 〈1, 1〉 quantifier; hence Q 1 is smooth but not left
monotone.

(a) (F) some of Q 1 students’ is weakly smooth—and thus M↑—but not left
monotone.

(b) at least k of Q 1 students’ is M↑ for k ≥ 2, but not weakly smooth or left
monotone.

Proof. That these quantifiers are M↑ follows from Proposition 5, and it is easy to
see that they are not left monotone. For example, suppose some of more than half of
the students’ red bikes were stolen, and suppose further that each student owning a
red bike owns a red racing bike. It does not follow that more than half of the students
are such that some of their red racing bikes were stolen —the premises are consistent
with no racing bikes at all being stolen. So some of most students’ is not even weakly
↓M. But neither does it follow that more than half of the students had some bikes
stolen—perhaps only a small proportion of the bike-owning students own red bikes,
and perhaps only red bikes were stolen; i.e. some of most students’ is not ↑M either.

Next, the quantifiers in (a) and (b) are trivially weakly ↓NEM, by (one part of)
the argument used for (e1) in the proof of the previous proposition.

Thus, for (a) we must show that Poss(Q 1, C , some, R) is ↑SEM, where Q 1(X , Y )
⇔ |X ∩ Y | > r · |X | for some constant r such that 0 < r < 1. So suppose

|C ∩ domA(R) ∩ {a : A ∩ Ra ∩ B �= ∅}| > r · |C ∩ domA(R)|
and that A ⊆ A′ and A − B = A′ − B. Suppose the size of C ∩ domA(R) increases by
1 (if it doesn’t increase at all, there is nothing to prove); i.e. that C ∩ domA′ (R) =
(C ∩ domA(R)) ∪ {a0} for some a0 which has an R-successor b0 in A′ but none in
A. But then b0 ∈ B, since A − B = A′ − B and b0 is not in A, so A′ ∩ Ra0 ∩ B �= ∅.
Thus,

|C ∩ domA′ (R) ∩ {a : A′ ∩ Ra ∩ B �= ∅}|
= |C ∩ domA(R) ∩ {a : A ∩ Ra ∩ B �= ∅}| + 1
> r · |C ∩ domA(R)| + 1
> r · (|C ∩ domA(R)| + 1)
= r · |C ∩ domA′ (R)|
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Since we have assumed F, the result now follows by induction.
Finally, for (b), here is an example showing that the above reasoning cannot be

carried through when some is replaced by at least two. Let the following hold (C can
be set to the universe M ):

domA(R) = {a1, . . . , a5}, domA′ (R) = domA(R) ∪ {a6}
A = {b1, b2}, A′ = A ∪ {b3} = B
R(ai, bj) for i = 1, 2, 3, j = 1, 2
R(ai, b2) for i = 4, 5
R(a6, b3)

(no other individuals are R-related). Then A ⊆ A′ and A − B = A′ − B (= ∅). Also,
{a : |A ∩ Ra ∩ B| ≥ 2} = {a1, a2, a3}, so

most(domA(R), {a : |A ∩ Ra ∩ B| ≥ 2})
But {a : |A′ ∩ Ra ∩ B| ≥ 2} = {a1, a2, a3}, since a6 has only one R-successor, so

¬most(domA′ (R), {a : |A′ ∩ Ra ∩ B| ≥ 2})
This shows that Poss(most, C , at least two, R) is not weakly smooth. The general case
in (b) can be dealt with similarly. �

In conclusion, possessive determiners provide a rich variety of quantifiers with vari-
ous combinations of monotonicity properties. They can be used to test hypotheses
about how monotonicity relates to other linguistic phenomena, in particular to the
distribution of polarity-sensitive items in natural languages (Chapter 5.9).

7 .14 SOME REMAINING ISSUES

One major remaining issue is of course to extend the treatment of possessives sugges-
ted here to postnominal and perhaps predicate possessives (see section 7.1). Below we
list a few questions about determiners involving possessives which were left open or
insufficiently treated.

• Is it possible to define a more uniform version of Poss that still handles narrow-
ing? Although we argued in section 7.12.4 that Poss actually covers most possess-
ive determiners, whereas the more uniform Possw fails because of the phenomenon
of narrowing, there might be better solutions still. In their absence, one should
be open to the possibility that narrowing actually prevents a uniform (and strictly
compositional) treatment.

• A technical question where we only hinted at some answers concerns the exact
range and the closure properties of Poss (section 7.12).

• Narrowing usually applies, or so we have claimed. But there may be cases when one
needs to turn it off (see the end of section 7.5). Is there a principled characterization
of those cases?
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• The issue of the syntax and semantics of partitive phrases is intimately connected to
possessives. In sections 7.9–7.11 we sketched one proposal, in terms of the simple
context free rule (plex), with its characteristic restrictions, and the semantic rules
(P-rule) and (D-rule), but we also noted some possible problems. Although the
issue may be partly methodological, we are certainly not claiming to have found
the optimal solution. Presumably much more needs to be done here, but we hope
that our focus on the (somewhat neglected) role of possessives after [Det of] has at
least made some of the relevant questions stand out more clearly.

• We treated the possessor relation R as a free parameter, since this covers all uses,
and some uses do require such a treatment. The idea was that in more constrained
cases like relational nouns, special mechanisms can be added. But relegating all
such additions to pragmatics could be seen as taking an easy way out of a real prob-
lem, and although we hinted at the vast and intricate literature on this issue, we
didn’t make a serious attempt to integrate such mechanisms with our semantics.



8
Exceptive Quantifiers

Given man’s fondness for generalizations—and the circumstance that exception
appears to be the rule—it is not surprising that natural languages have a rich supply
of handy means of expressing exceptions. Exception phrases, like the English except
(for) John, but Mary, except my enemies, other than students, apart
from two philosophy professors, besides sailors, but not Deirdre’s
friends, often consist of an exceptive marker and an NP. Though these markers all
have to do with making exceptions, they differ somewhat in their semantic proper-
ties. In this chapter we focus on English, and on its presumably most typical exceptive
marker: except.
Except can be inserted in sentences in several different positions. It was noted by

Keenan and Stavi (1986) that exception sentences like those in (8.1a–c) can be seen
as involving NPs formed by applying an exceptive determiner to a noun.

(8.1) a. Every professor except Susan approved.
b. No teaching assistant except John helped grade the papers.
c. I haven’t met anyone except Susan and John.
d. No Bostonians except Deirdre’s friends were at the party.
e. No students except freshmen were invited.

(8.1d, e) are similar, but here a set is excepted rather than just one or two individuals.
We have already mentioned the determiners in (8.1a, b), with the truth conditions

from Keenan and Stavi 1986:

No A except j is B ⇐⇒ A ∩ B = { j}
Every A except j is B ⇐⇒ A − B = { j}

The other examples are perhaps somewhat less obvious, but all the ones above can be
fitted into the scheme

(8.2) Q 1 A except C B

where A, B, C are sets (C can be a singleton like { j}). Thus, it is natural to look for
an operator Exc that takes a type 〈1, 1〉 quantifier Q 1 and a set C , and forms a type
〈1, 1〉 quantifier Exc(Q 1, C). How is this operator defined?

Ultimately, what we want is an operator Except that takes a type 〈1, 1〉 quantifier
Q 1 and a type 〈1〉 quantifier Q , and produces a type 〈1, 1〉 quantifier

Except(Q 1, Q)
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This will be needed for more general forms of exception sentences, such as

(8.3) All beach-goers except a few enthusiastic swimmers were fully clothed.

Here Q interprets the NP a few enthusiastic swimmers. And in the earlier
examples too, we see that except is most reasonably taken to attach to an NP: e.g. a
proper name (Susan), a definite NP (Deirdre’s friendswith the universal read-
ing), or a bare plural (freshmen).

It makes sense to start with the simpler operator Exc, however, and it is these
simpler examples that have been discussed most extensively in the literature: e.g.
Hoeksema 1996; von Fintel 1993, 1994; Moltmann 1995, 1996; Lappin 1996a,
1996b. This chapter begins by surveying the basic questions involved, and some
standard views concerning them. More precisely, section 8.1 introduces the dis-
tinction between free and connected exception phrases; here we deal mainly with
the latter. Sections 8.2–8.6 review certain claims often taken to be entailed by
exception sentences. We cast some doubt on the so-called Inclusion Condition and
the Negative Condition (in its various versions), arguing that these are often too
strong. But we also suggest a principle of exception conservativity that seems to hold
generally.

Section 8.7 presents some empirical findings by Garcia-Álvarez (2003) that led
him to question another received view, the so-called Quantifier Constraint, which
says that only the quantifiers every and no admit exceptions. In sections 8.9 and 8.10
we present and analyze the influential accounts of exceptives in von Fintel 1993 and
Moltmann 1995, respectively. Our conclusion is that neither of these gives a con-
vincing argument for the Quantifier Constraint; moreover, they are not quite right
for exceptions with every and no either, since they entail too strong versions of the
Inclusion and Negative Conditions.

All of this leads us to look for an alternative. Our proposal for Exc is given in
section 8.12; it is based on a simple idea about what an exception is (section 8.8).
It handles Garcia-Álvarez’s examples, and delivers exception conservativity as well as
what we think are suitable versions of the above-mentioned conditions. In fact, Exc
comes in both a strong and a weak version; the strong version, which is sometimes
but not always used, is closer to the previous accounts.

Exc is tentatively extended to Except —also in a strong and a weak version—in
section 8.13. The definition we give develops an idea from Moltmann, and we
examine how various sentences with quantified exceptions are interpreted by means
of it (such sentences have not been given much attention in the literature), and sug-
gest a principle for choosing between the strong and the weak version. We also note,
however, that this operator is not fully general, and in section 8.14 we list various
remaining issues for further study.1

1 Many of our remarks in this chapter are inspired by an unpublished draft about exceptives
by Iván Garcia-Álvarez (as well as on the published Garcia-Álvarez 2003): e.g. the criticism of the
Negative Condition in the form we call (NC3) in sect. 8.5 below is essentially his. While our con-
clusions sometimes differ, they are in the same spirit as his remarks, which we gratefully acknow-
ledge as a source in this chapter.
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8.1 CONNECTED AND FREE EXCEPTION PHRASES

In the above examples, the exception phrase is in a clear sense connected to an NP.
But such phrases can occur in other positions. Hoeksema introduced the terminology
of ‘‘free’’ and ‘‘connected’’ exception phrases, which we follow here. Clear examples
of free exception phrases with except2 occur in:

(8.4) a. Most of Mary’s relatives were there. Except (for) her father, of course.
b. Except for John, no one has arrived yet.
c. No one has arrived yet, except (for) John.
d. No one, except (for) John, has arrived yet.

In writing, commas (or hyphens or parentheses) are often used to ‘disconnect’ the
exception phrase.

It is plausible that the syntax of free exception phrases is different from that of con-
nected ones, even when the free exception phrase is adjacent to the relevant NP. Of
course it does not automatically follow that the semantics is also different, or that it
cannot be reduced to that of connected ones.

Here we focus on connected uses of except. We are not interested in arguing
that the analysis in terms of exceptive determiners is the correct one. Treating the
exception phrase as an NP modifier (as in most of the literature after Keenan and
Stavi 1986) is another alternative. Semantically, the difference is between rendering
(8.2) as

except(Q 1, C)(A, B)

and rendering it as

except′(Q A
1 , C)(B).3

For much of what we have to say, it will not matter a lot which alternative one uses.
The main issue is a uniform account of the truth conditions of sentences of this form.

Now, the sentences in (8.1) obviously make universal claims with exceptions. To
begin, one may in each case isolate the following three claims. First, there is what we
here dub the Generality Claim that, excepting the Cs, the quantifier Q 1 does relate A
and B. Second, there is what Moltmann (1995) calls the Negative Condition, which
says something about what happens if the exceptions are not made. Finally, what she
calls the Inclusion Condition says, for example, in (8.1a) that Susan is a professor. We
start by discussing each of these three conditions.

2 These free uses appear to have a slight preference for except for rather than just except.
However, it is just a tendency, and except is used as well.

3 But notice that for the latter option to be an alternative, one must verify that this operation

is well-defined, i.e. that when Q A
1 = Q ′A′

1 , one has Q 1 A except C B iff Q ′
1 A′ except C B. In fact,

the definition given in Moltmann 1995, to be discussed in sect. 8.10, does have this property, but
this is less clear with some other definitions. From this point of view, it is safer to have Q 1 and A
as separate arguments, as we automatically get with the exceptive determiner analysis.
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8.2 THE GENERALITY CLAIM

An apparently uncontroversial ingredient in the truth conditions for (8.2)—although
there seems to be no accepted name for it4 —is what we called the Generality Claim:
i.e.

(GC) Q 1(A − C , B)

For example, (8.1a) entails that if we remove Susan from the (relevant) set of profess-
ors, all in the remaining set approved, and (8.1d) entails that if we consider the set of
Bostonians minus Deirdre’s friends, no one in that set was at the party.

8 .3 THE INCLUSION CONDITION

In the literature, the Inclusion Condition is usually taken to be

(IC1) C ⊆ A

(hence the name). This works fine for (8.1a) and (8.1b). But in general it does not
seem quite right. Consider again (8.1d). Surely this sentence makes no general claim
that all of Deirdre’s friends are from Boston. There is nothing odd about the follow-
ing discourse:

(8.5) No Bostonians except Deirdre’s friends were at the party. Some of her friends
from New York were there too.

The second sentence does not contradict the first; it only adds further information.
Or consider the following even more obvious case:

(8.6) No students except foreigners need apply in advance for admission to the
course.

There is certainly no assumption here that all foreigners (in the discourse universe)
are students, so (IC1) is simply too strong.

On the other hand, (IC1) could be said to be too weak also, in that it allows A ∩
C = ∅. But in fact no account of exceptives in the literature allows this to hold while
(8.2) is true. For this reason, we suggest the following simple alternative:

(IC2) A ∩ C 	= ∅
As we will see, this is usually taken to hold when (8.2) is true, although it is not stated
explicitly. Note that when C is a singleton, the two versions are indistinguishable.

Of course we are not saying that (IC1) never holds when C is not a singleton. One
case where there is a strong tendency for it to hold is when the elements of C are
enumerated. Consider

4 Garcia-Álvarez calls it the Circumscribed Quantified Condition. We have chosen a name that is
clearly distinct from what is called the Quantifier Constraint in the literature; see sect. 8.8 below.
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(8.7) Every student except Fred, George, and Harry was admitted to the tennis
course.

Here, it seems clear that all the enumerated exceptions are students. In other cases
the nature of the predicates involved can make (IC1) true; (8.1e) is a clear example
of that. But our point is that, as other examples clearly show, (IC1) is not in general
entailed by sentences of the form (8.2). Therefore it is not really part of the semantics
of exception sentences, and we propose to replace it by (IC2).

8 .4 EXCEPTION CONSERVATIVITY

It might be objected that our account of the standard adherence to (IC1) is unfair,
since in a sentence like (8.6), foreigner would be somehow contextually restricted
to foreign students. That would indeed make (IC1) trivially true. There is something to
this objection, we think, but it has nothing to do with contextual restrictions. Rather,
it points to a general property of exceptives that we will call (for obvious reasons)
exception conservativity: namely, that of the individuals in C , only those that are also
in A count. That is:

exception conservativity

The exceptive determiner (i.e. Q 1 − except C) in a sentence of the form (8.2) is
exception conservative iff

Q 1 A except C B ⇐⇒ Q 1 A except A ∩ C B

or, more formally, in terms of the Exc operator discussed at the beginning of this
chapter,

(8.8) Exc(Q 1, C)M (A, B) ⇐⇒ Exc(Q 1, A ∩ C)M (A, B)

It seems trivial that something can only be an exception to a claim of this form if
it belongs to A. Indeed, just like ordinary conservativity for quantirelations, excep-
tion conservativity is illustrated by trivial equivalences as in the following pairs. The
redundancy felt in the second sentence in these pairs indicates that exception conser-
vativity is really taken for granted.

(8.9) a. No students except foreigners need visas.
b. No students except foreign students need visas.

(8.10) a. Every professor except Susan Jones approved.
b. Every professor except Professor Susan Jones approved.

(8.11) a. All logicians except Swedes know this.
b. All logicians except Swedish logicians know this.
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Exception conservativity follows from the semantics for exceptives that we give
in section 8.12, but it is not a property of the standard accounts, which, as we have
said, instead assume (IC1), with the resulting need for some ad hoc maneuver in cases
like (8.6).

8 .5 THE NEGATIVE CONDITION

In Moltmann 1995, the Negative Condition is informally spelled out as follows:
‘‘Applying the predicate [denoted B in (8.2)] to the exceptions yields the opposite
truth value from applying the predicate to non-exceptions’’ (p. 226). No doubt this
has been a basic intuition, but it can be made precise in different ways. Cashing out
‘‘opposite truth value’’ as a negation, that negation can apply either to the whole sen-
tence (outer negation) or to the VP (inner negation). The first alternative could be
rendered as follows:

(NC1) ¬Q 1(A ∩ C , B)

Recall that we know exactly what the truth conditions are of exception sentences
like (8.1a, b). These are hard facts that any proposed semantics must accommodate.
And in these cases, given the Inclusion Condition, ¬every(A ∩ {s}, B) is equivalent
to s 	∈ B (Susan didn’t approve), and ¬no(A ∩ { j}, B) is equivalent to j ∈ B (John
helped grade the papers). Indeed, it is clear that in this simplest case, and as long as
Q 1 is every or no, the conjunction of (GC), (IC2) (or (IC1)), and (NC1) amounts
exactly to the desired truth conditions.

But there is another rather plausible version of the first alternative mentioned
above:

(NC2) ¬Q 1(A, B)

This expresses the idea, explicitly endorsed in e.g. von Fintel 1993, that the exception
sentence should be false if modified so that no exceptions are made. And one can easily
check that

(8.12) Under (GC), and provided Q 1 is every or no, (NC1) and (NC2) are equival-
ent.

Finally, the second alternative, with inner negation instead, is presumably the fol-
lowing:

(NC3) Q 1(A ∩ C , A − B)

This is often stronger than (NC1). For example, for (8.1d), (NC3) says that all of
Deirdre’s Boston friends were at the party, whereas (NC1) says only that some of
them were.

When C is a singleton set such that (IC2) holds, and Q 1 is every or no, (NC1) and
(NC3) are easily seen to be equivalent.5 Then it makes no difference which one we
choose. But in general, and in particular for cases like (8.1d), it makes a big difference.

5 More generally, they are then equivalent for any C, E, and I Q 1 such that, in
the number triangle, exactly one of (1,0) and (0,1) is in Q 1.
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The status of the Negative Condition in the literature is somewhat unclear. This is
partly because it is not formulated with sufficient clarity. But another reason is that
most of the literature maintains, first, that the only allowed values for Q 1 are every
and no, and, second, that the truth conditions for those two cases are essentially the
following:

(8.13) a. every A except C B ⇐⇒ ∅ 	= C = A − B
b. no A except C B ⇐⇒ ∅ 	= C = A ∩ B

We shall see below that this follows from the accounts in von Fintel 1993 and Molt-
mann 1995. And under these assumptions, the truth of every (or no) A except C
is B logically implies, as one easily verifies, each of (IC1), (IC2), (NC1), (NC2), and
(NC3). So under these assumptions, it is not surprising that the distinctions between
the various versions of the Inclusion Condition and the Negative Condition have not
seemed very important.

But above we pointed to cases where (IC1) was too strong. The counterexamples
seem indubitable, and already this shows that there is something wrong with the truth
conditions (8.13).

Similarly, we find (NC3) dubious when C is not a singleton. Although there are
cases where this stronger version of the Negative Condition seems to fit, as in the case
of (IC1), there are cases where it doesn’t fit. This becomes clear if we look at a greater
variety of examples, such as the following:6

(8.14) a. All dishwashers except very low-end models have a water-saving feature.
In fact, a few of the very low-end models have this feature as well.

b. Harry has a strain of something feminine that no men except creative geni-
uses possess. Which is not to say, by the way, that all men who are creative
geniuses possess it.

The second sentence in each pair does not contradict the first; it gives additional
information. So the first sentence in (8.14a) should not be taken to entail that no
low-end models have a water-saving feature. But that is precisely what (NC3) says
it does. (NC1), on the other hand, says only that some low-end models lack a water-
saving feature. Perhaps it would be pragmatically odd to utter the first sentence unless
a large percentage of the low-end models lacked the feature in question. But it seems
unlikely, we think, that semantics would tell us how large that percentage had to be.
In the case of (8.14b), it is even more obvious that (NC3) is too strong.

This discredits (NC3) as a plausible general version of the Negative Condition, and
a fortiori it discredits the truth conditions in (8.13) which, as we saw, entail (NC3).
(NC3) is often not stated explicitly, but it follows from the standard analyses given of
exception sentences. As to explicit formulations, (NC1) and (NC2) are common, and
the above examples are indeed consistent with these. For example, in (8.14b), (NC1)
says that some male creative geniuses possess that particular strain of something fem-
inine that Harry has, and (NC2) is just the weaker claim that some men possess it.

6 The first sentences in these examples are variants of actual examples reported in Garcia-Álvarez
2003, to be presented in sect. 8.7 below.
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(NC3), on the other hand, states that all male creative geniuses possess that strain,
and that is just what the second sentence in (8.14b) reminds us need not be true.7

However, we shall find reasons to doubt (NC1) and (NC2) as well (section 8.11).
Before we get there, we need to examine critically another cornerstone of the received
view of exception sentences. This is the view mentioned above—often referred to
as the Quantifier Constraint —that the only allowed values for the quantifier Q 1 are
every and no. But first, a brief digression.

8 .6 ENTAILED OR IMPLICATED?

As is clear from the above, we follow here the common practice of treating the various
conditions and claims involved in exceptive sentences as part of the truth conditions
of these sentences. It is sometimes suggested, however, that the Negative Condition
(and, less often, the Inclusion Condition) is implicated rather than entailed. The fol-
lowing example from Hoeksema 1996 is often cited.

(8.15) Well, except for Dr. Samuels, everybody has an alibi, inspector. Let’s go see
Dr. Samuels to find out if he’s got one too.

But note that although the first sentence may not rule out that Dr. Samuels has an
alibi after all, it does rule out that one has been established for him at the time of utter-
ance. That indicates that the literal interpretation may not be very plausible in this
case. A reasonable alternative is that has an alibi is not taken literally but rather as
‘is known to have an alibi’.

This point about (8.15) is made by von Fintel (1994: 102–3), who also offers addi-
tional evidence that in this case, where there is exactly one exception, no violation or
canceling of the Negative Condition occurs. Of course much more can be said about
the general issue of whether the Negative Condition is entailed or presupposed or
implicated. We shall not discuss this further here, but we make a brief remark on the
status of the various claims involved in exception statements at the end of section 8.12
below.

8 .7 OTHER QUANTIFIERS IN EXCEPTION SENTENCES

Garcia-Álvarez (2003) challenges the Quantifier Constraint: i.e. the claim that the
only eligible quantifiers in exception constructions are every and no. He lists a num-
ber of actually occurring sentences where exceptions are made to quantified claims
expressed with most, many, and few, for example:

(8.16) a. Johnston noted that most dishwashers except very low-end models have a
water-saving feature.

7 Also, (8.14b) is another clear refutation of (IC1), since it certainly does not follow from the
first sentence that all creative geniuses are men.
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b. . . . redeemed by a strain of something feminine that most men except cre-
ative geniuses lack.

c. . . . he should eventually be able to walk long distances and do most things
except vigorous exercise.

d. Kate is an actress who played many roles except that of a real woman.
e. Few people except director Frank Capra expected the 1946 film ‘It’s a

Wonderful Life’ to become a classic piece of Americana.
f. Few except visitors will know that Czechoslovakia produces wine. It has

been one of the country’s better-guarded secrets.

It seems clear that these sentences are not odd or marginal. But they all at least appear
to violate the Quantifier Constraint. A defender of that constraint then has one of
the following two options: either insist that these sentences are nevertheless ungram-
matical or meaningless, or argue that they are not really exception sentences in the
sense discussed here: for example, that the exception phrases in them are free, or that
except means something else on these occasions. Each of these positions has been
taken. We can dismiss the first strategy, but what about the second?

Before trying to say something about that, we stop to note that there is nothing
mysterious or strange about the fact that the Quantifier Constraint has seemed so
obvious to many theorists. It simply codifies a straightforward idea about the nature
of universal claims, and about exceptions to such claims.

8 .8 THE CLASSICAL IDEA OF UNIVERSAL CLAIMS WITH
EXCEPTIONS

The following is standard since Aristotle. A universal proposition has the logical form

(U) Every A is B

As we saw in Chapter 1.1.1, Aristotle divided universal propositions into affirmative
ones, as in (U), and negative ones,

No A is B′

Note further that (if one uses the modern square of opposition; see Chapter 1.1.1)
this is just the special case of (U) when B = B′. So one can say that there really is only
one (logical) form of universal proposition: (U).

Given this, it is obvious what an exception to (U) is: an A that is not B. So in the
negative case, it is an A that is not B′, i.e. an A that is B′.

And given this, it seems perfectly obvious what the logical form of exception sen-
tences is, at least when one individual j is excepted:

(8.17) every(A − { j}, B), and j is an exception

That is, it is the conjunction of the Generality Claim (GC) and an Exception Claim.
Note that here the latter amounts to the conjunction of either version of the Inclusion
Condition we have discussed with any of the three versions of the Negative Condi-
tion. And note again that this covers both positive and negative universal claims.
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This is crystal clear. Problems appear when { j} is replaced by an arbitrary set C ;
we saw that there is an issue as to whether all the elements of C should be exceptions
or only some of them. But let us stick to the singleton case for the moment, where
intuitions are sharp.

The foregoing, then, is an attractive philosophical theory about universal claims
with exceptions. The question, however, is whether this theory is linguistically sound;
i.e. whether it adequately accounts for how we speak about exceptions.

The received view is that it does. The Quantifier Constraint is treated as a given
fact that the semantics of exception sentences should somehow explain. The prob-
lem, to our minds, is that the standard semantic accounts either simply reiterate that
idea—the idea that the only universal claims, and hence the only exception sentences,
are those of the logical forms shown above—or else derive it from largely ad hoc
requirements. These accounts are more like stipulations than explanations. But then
one has to ask if the stipulations are adequate, and in particular if the fact that they
leave sentences like those in (8.16) unaccounted for isn’t a sign that the received view
needs to be revised, rather than an indication that these sentences aren’t really excep-
tion sentences.

To substantiate our concern about the received view, we take a brief look at two of
the most prominent standard accounts of exception sentences.

8 .9 THE ACCOUNT IN VON FINTEL 1993

As to connected exception phrases, von Fintel (1993) considers phrases with but
rather than except. There are some differences, but for many purposes they can be
ignored. Applied to sentences of the form (8.2), repeated below,

(8.2) Q 1 A except C B

von Fintel’s truth conditions are then essentially:

(vFint) C 	= ∅ and Q 1(A − C , B) and ∀X (Q 1(A − X , B) ⇒ C ⊆ X )

That is, C is the (unique) smallest set satisfying the Generality Claim, and it is non-
empty.

Actually, von Fintel does not explicitly include the requirement that C 	= ∅. But
it is required for his explicit claims that the truth conditions entail (NC2) (since
if Q 1(A, B) holds, ∅ is trivially the smallest set Y such that if Q 1(A − X , B) then
Y ⊆ X ), and that consequently a ↑M Q 1 would make (8.2) automatically false
(since then Q 1(A − C , B) entails Q 1(A, B)). Presumably, von Fintel (like many oth-
ers) simply takes for granted that the set C talked about is non-empty. In any case,
for clarity we add it to the truth conditions here.8

8 (vFint) would in a sense be more elegant without it, since then Q 1 A except ∅ B is equivalent
to Q(A, B), i.e. to the quantified claim without (with the empty set of) exceptions. But that is not
how (8.2) is usually taken, and not how von Fintel intends it, it seems.
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(vFint) is an elegant proposal. Let us see how it relates to our previous discussion.

(8.18) (vFint) implies (GC), (IC1), (IC2), (NC1), and (NC2).

Proof. (GC) is immediate. Hence, Q 1(A − (A ∩ C), B), which, by minimality,
implies C ⊆ A ∩ C , and thus C ⊆ A, i.e. (IC1). Since C 	= ∅, (IC2) holds as well.
We have already seen that (NC2) follows. (NC1) follows similarly: if Q 1(A ∩ C , B),
then Q 1(A − C , B), so C ⊆ C , i.e. C = ∅. �

Also, as we saw above,

(8.19) (vFint) implies that if Q 1 is persistent, (8.2) is always false.

Next, as von Fintel shows,

(8.20) (vFint) implies that in the special case where Q 1 is every or no, we get the truth
conditions (8.13), i.e.

every A except C B is true iff ∅ 	= C = A − B
no A except C B is true iff ∅ 	= C = A ∩ B

Proof. We check every; the case of no is similar. Suppose first that every
A except C B is true, i.e. that (vFint) holds with Q 1 = every. First, C 	= ∅.
Second, since A − C ⊆ B, it follows that A − B ⊆ C . Third, since A ∩ B = A −
(A − B) ⊆ B, it follows from the minimality part of (vFint) that C ⊆ A − B. Hence,
C = A − B.

Now suppose that ∅ 	= C = A − B. Clearly, A − C ⊆ B. Also, if A − X ⊆ B,
then (A − B) − X = ∅, i.e. C = A − B ⊆ X . This means that (vFint) (with Q 1 =
every) holds. �

Thus, when Q 1 is every or no, (NC3) also follows. As we have seen, von Fintel’s truth
conditions are correct for the clear cases every A except John B and no A except
John B, but not so when C is not a singleton, since they imply (IC1) and (NC3).
They also violate exception conservativity (section 8.4), since ∅ 	= C = A − B does
not follow from ∅ 	= A ∩ C = A − B, nor φ 	= C = A ∩ B from φ 	= A ∩ C = A ∩
B. But let us focus for the moment on the Quantifier Constraint.

Von Fintel claims that, among simple determiners, all but every, no, and their
paraphrases are ruled out, i.e. that his truth definition enforces the Quantifier Con-
straint. Two arguments for this are given. The first is the observation (8.19) above.
The second is that for determiners like most there aren’t always unique exception
sets, which is shown by means of an example. These arguments are presumably not
intended to prove the claim but instead to make it plausible. Consider the second
one. As Moltmann (1995) observed, it amounts in fact to a general requirement on
the quantifier Q 1 occurring in (8.2): namely, that there always is a unique exception
set. Let us call it the Uniqueness Condition (UC) and formulate it explicitly:

(UC) there is a set Y such that Q 1(A − Y , B) and ∀X (Q 1(A − X , B) ⇒ Y ⊆ X )
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Like the other conditions discussed earlier, this is a universal claim: that for all A, B
there is a smallest set Y satisfying the corresponding Generality Claim.9

Note that

(8.21) every and no satisfy (UC).

Proof. For every, take Y = A − B, and for no, take Y = A ∩ B. �

Using (UC), we can substantiate part of von Fintel’s claim:

(8.22) Properly proportional quantifiers do not satisfy (UC).

Proof. If Q 1 is a non-trivial proportional quantifier, we can always find finite sets A, B
such that |A ∩ B| ≥ 2, ¬Q 1(A, B), but for some a ∈ A ∩ B, Q 1(A − {a}, B). Let b
be a distinct element of A ∩ B. Then Q 1(A − {b}, B) (the proportions are the same).
Therefore, a set Y satisfying (UC) has to be a subset of both {a} and {b}; i.e. Y = ∅.
But that is impossible, since ¬Q 1(A − ∅, B). So no set Y satisfies (UC) for this choice
of A and B. �

By similar methods, one can see that, for example, the quantifiers at most k do not
satisfy (UC) for k ≥ 1.

Thus, (UC) is fundamental for von Fintel’s claim. But have we formulated it cor-
rectly? (UC) does not require that the set Y is non-empty, but (vFint) requires that C
is, so should we perhaps add that requirement to (UC)? No; then not even every or no
satisfies it (namely, when A − B = ∅ or A ∩ B = ∅, respectively). But we may note
the following: If Q 1(A, B) holds, then for these A, B the condition in (UC) is trivially
satisfied, with Y = ∅. Disregarding that case, we are left with:

(UC′) if ¬Q 1(A, B), there is a set Y such that Q 1(A − Y , B) holds and ∀X (Q 1(A −
X , B) ⇒ Y ⊆ X )

Now this set Y , if it exists, is necessarily non-empty. However, as just noted, it follows
that (UC′) is only apparently weaker:

(8.23) (UC) and (UC′) are equivalent.

So what might have looked like a problem with (UC) wasn’t one, after all.
Which quantifiers, then, do satisfy (UC)? Not only every and no, but von Fintel’s

claim may still be correct, for the exceptions are rare and do not seem to be denota-
tions of simple determiners. Here are some examples:

(8.24) The quantifiers Q 1(A, B) ⇔ A = ∅ or |A| ≥ n satisfy (UC).

9 Moltmann (1995) rather takes (UC), for each A, B, as an assertion condition, and argues that
von Fintel’s account mixes truth conditions and assertion conditions and therefore has problems
with compositionality. Our interpretation of (UC) here as a general constraint on Q 1 is more
charitable, in that it clarifies von Fintel’s own remarks (but see n.12) and does not cause problems
for compositionality.
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Proof. By (8.23), it is enough to verify (UC′). So suppose ¬Q 1(A, B). Then 1 ≤
|A| < n. We claim that with Y = A the minimality condition in (UC′) holds. First,
Q 1(A − A, B) by definition. Second, if Q 1(A − X , B), then either A − X = ∅ or
|A − X | ≥ n. But |A − X | ≤ |A| < n. Thus, A − X = ∅, i.e. A ⊆ X . �

Other examples include Q 1(A, B) ⇔ A = ∅ and Q 1(A, B) ⇔ A = ∅ or (|A| = n
|A ∩ B| ≤ k) or |A| ≥ n + 1. One could give an exact characterization in the number
triangle,10 but we shall not pursue this, since we have already established that (UC)
rules out numerous common determiner denotations.

Thus, although one could quibble with von Fintel’s claim that his truth condi-
tions for sentences with (connected) exception phrases rule out determiners other
than every and no, we may readily concede that (UC) rules out all other simple
determiners (and most complex ones as well).

But this brings us to two main questions: (a) Where does (UC) come from? (b) Are
the (vFint) truth conditions—which in a sense presuppose (UC)—correct?

Starting with the first question, we have seen that (UC) comes from the desire
to have the (vFint) truth conditions rule out e.g. proportional quantifiers. But the
question now is whether there is any independent motivation for (UC) as a general
constraint on quantifiers that can occur in exception sentences. It seems to us that,
despite its elegance and impressive consequences, (UC) has an ad hoc character. There
doesn’t seem to be an intuition behind it that clearly relates to the semantics of excep-
tion sentences. It is true that von Fintel does suggest one such intuition: roughly that
the smaller the exception set, the more information is conveyed by the exception sen-
tence, and that the pragmatic maxim of being maximally informative has thus been
lexicalized in except.

We do not find this suggestion very convincing, for two reasons. First, even though
one might have some success in arguing that a reluctance to convey either tautolo-
gical or contradictory information may have semantic consequences—this was Bar-
wise and Cooper’s idea of how to explain the distribution of determiners permitted
in existential-there sentences (Chapter 6.3.2)—in the present case it is not at all a
matter of avoiding logical truths or falsehoods. We see no good reason why conver-
sational implicatures in this particular case should have moved from the pragmatic
realm where they normally belong into grammar.

But the main reason we do not find the suggestion convincing is that the answer to
question (b) above seems to be negative. (vFint) is not even correct for every and no.
We have already seen this in sections 8.3 and 8.5, where we found strong reasons to
discredit (IC1), and natural examples where (NC3) fails. Consider again, say, (8.14a),
repeated below:

(8.14a) All dishwashers except very low-end models have a water-saving feature. In
fact, a few of the very low-end models have this feature as well.

10 Incidentally, the above counterexamples to (UC) were found by ‘translating’ (UC′) to the
number triangle and looking for possible patterns, and would have been harder to find without
that graphical representation.
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As usual, there is no controversy about the fact that the first sentence, read as every
A except C B, entails the Generality Claim:

every(A − C , B)

We further know from (8.21) above that (UC) holds for every, with Y = A − B. But
the second sentence states precisely that

A ∩ C ∩ B 	= ∅
Thus, C 	⊆ A − B, contrary to what (vFint) implies. Similar remarks hold for the
other counterexamples to (IC1) and (NC3) discussed earlier.11 But then, if (vFint)
is not correct, the motivation for assuming (UC) as a general constraint disappears
as well.

Summing up: A crucial reason for von Fintel’s particular truth conditions for
exception sentences was the desire to enforce the Quantifier Constraint. And,
together with (UC), they indeed (almost) enforce that constraint. But the price is too
high: they don’t give correct results for every and no. And there is no convincing
independent motivation for (UC).

Thus, so far we have found no sound reason for accepting the Quantifier Con-
straint, except, of course, the classical theory of universal claims with exceptions
(section 8.8). But if one wants to use that motivation, there are simpler ways to imple-
ment it than via (vFint) + (UC), which in any case do not give empirically correct
results.

8 .10 THE ACCOUNT IN MOLTMANN 1995

Moltmann’s idea is that the except C operation transforms the NP denotation (Q 1)A

pointwise: it either subtracts C from each set in (Q 1)A, or adds C to each set. Thus,
every boy except John contains the same sets as every boy except that John has been
subtracted from each of those sets. Similarly, no boy except John consists of the sets
X ∪ { j} for each set X containing no boys. She gives the following truth conditions
(expressed in the terminology used here) for sentences of the form (8.2):

(8.2) ⇔





C 	=∅ & ∃X (Q 1(A, X ) & B=X −C) if ∀X (Q 1(A, X ) ⇒ C ⊆X )
C 	=∅ & ∃X (Q 1(A, X ) & B=X ∪C) if ∀X (Q 1(A, X ) ⇒ C ⊆X )
undefined otherwise

(8.25)

Again we have added the requirement C 	= ∅, not explicit in Moltmann 1995, but
needed for her explicit claim that the Negative Condition (in the form of (NC2)) fol-
lows from her truth definition.

(8.25) too is an interesting proposal. Here are some of its consequences:

(8.26) Suppose (8.2) is true according to definition (8.25). Then

11 Significantly, von Fintel does not discuss (in the connected case) any examples where C is
not a singleton.
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(a) ¬Q 1(A, B), so (NC2) holds.
(b) C ⊆ A, so (IC2) and (IC1) hold.

Proof. (a) If Q 1(A, B), then either C ⊆ B or C ⊆ B. But in the former case, also
Q 1(A, X ) for some X such that B = X − C , and thus C ⊆ X − C , i.e. C = ∅, con-
tradicting the assumption. Similarly, in the latter case, Q 1(A, X ) for some X such that
B = X ∪ C , so again C = ∅.

(b) (Moltmann) Suppose first ∀X (Q 1(A, X ) ⇒ C ⊆ X ). Since we also know that
Q 1(A, X ) for some X , Q 1(A, A ∩ X ) holds by C. It follows that C ⊆ A ∩ X
and hence C ⊆ A. Next, suppose ∀X (Q 1(A, X ) ⇒ C ⊆ X ), and let C ′ = C − A.
Again take X such that Q 1(A, X ). Now

A ∩ X = A ∩ (X ∪ C ′)

since A ∩ C ′ = ∅, so, using C twice, it follows that Q 1(A, X ∪ C ′). Hence,
C ⊆ X ∪ C ′, which implies that C ⊆ A. �

(8.27) In the cases Q 1 = every and Q 1 = no, we again obtain the truth conditions in
(8.13): every A except C B ⇐⇒ ∅ 	= C = A − B
no A except C B ⇐⇒ ∅ 	= C = A ∩ B

Proof. We check the case when Q 1 = every; the other case is similar. Suppose first
that (8.2) is true according to definition (8.25). By the definition, and (8.26b), we
have ∅ 	= C ⊆ A. This means that the first case, but not the second, in (8.25) holds.
Thus, there is a set X such that A ⊆ X and B = X − C . But this readily implies that
A − B = C .

Now suppose that ∅ 	= C = A − B. Again, ∅ 	= C ⊆ A, so the first case (but not
the second) in the definition holds. Now let X = A ∪ B. It follows that A ⊆ X and
B = X − C , so (8.2) holds. �

Notably, (GC) does not follow from Moltmann’s truth conditions. But the idea is
that there is a requirement implicit in the truth definition which enforces the Quan-
tifier Constraint and hence excludes quantifiers other than all and no, and then of
course (GC) would follow. The same remarks hold for (NC1) and (NC3).

The implicit requirement is simply that (8.2) be defined. Moltmann calls this the
Homogeneity Condition, treating it as an assertion condition of exception sentences,
rather than an expressly formulated constraint on Q 1. But there is not a big differ-
ence between saying that a sentence of the form (8.2) is assertible (meaningful) only
if it gets a definite truth value by definition (8.25), and saying that only quantifiers
satisfying the following (universal) condition qualify for use in exception sentences:

(HC) if C ⊆ A, either ∀X (Q 1(A, X ) ⇒ C ⊆ X ) or ∀X (Q 1(A, X ) ⇒ C ⊆ X )

So we shall use (HC) as Moltmann’s version of the Quantifier Constraint. Which
quantifiers does (HC) allow? This time the answer is easy:

(8.28) Q 1 satisfies (HC) if and only if for each A, (Q 1)A (as a set of sets) is a subset
of either allA or noA.
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Proof. With C = A in (HC), we get

∀A[∀X (Q 1(A, X ) ⇒ A ⊆ X ) or ∀X (Q 1(A, X ) ⇒ A ⊆ X )]

from which the claim readily follows. �

Again we see that certain quantifiers other than all and no satisfy the requirement. But
they are all fairly ‘unnatural’: e.g. the (C, E, and I) quantifier which is
allA when |A| is even and noA (or 0A) when |A| is odd. Simple standard quantifiers
such as at least k, at most k, exactly k, most, few, etc. are all excluded.12

Our main points, however, are the same as before. First, it is clear that (HC) essen-
tially reformulates the Quantifier Constraint, but does not independently motivate it.
Second, the account leads to the truth conditions (8.13) when Q 1 = every or Q 1 =
no, and therefore is not empirically correct.13

8 .11 COUNTER-EVIDENCE TO THE QUANTIFIER
CONSTRAINT

To avoid the examples presented in (8.16) from Garcia-Álvarez 2003, one would have
to claim that these sentences are not of the same form as those to which the analysis
is supposed to apply: say, that the exception phrases in such sentences are free, or that
except has a different meaning in them. Actually, sentences where except is used
with most or few are often discarded as ill-formed, or else given a rather cursory
treatment.

Free exception phrases with quantifiers other than every and no are sometimes
discussed. But the analysis offered seems to suffer problems similar to those discussed

12 Actually, Moltmann argues that in order to exclude quantifiers like at least two or most, the
truth definition needs to be amended. This is because she starts by reading (8.25) locally, and (HC)
as an assertion condition. She then observes that in a universe with exactly k boys, say [[boy]] =
A = {a1, . . . , ak}, each of which except John = a1 passed the exam, so [[passed the exam]] =
B = {a2, . . . , ak}, the sentence

(i) k boys except John passed the exam.

will come out true according to (8.25) (since if at least k({a1, . . . , ak}, X ), then {a1, . . . , ak} ⊆ X ,
and so C = {a1} ⊆ X ). Likewise, if k = 2,

(ii) Most boys except John passed the exam.

will come out true (since if most({a1, a2}, X ), then {a1, a2} ⊆ X , and so C = {a1} ⊆ X ). So a local
version of (HC) is satisfied, and in order to still be able to claim that these sentences are not assert-
ible, she complicates the truth definition by adding a (somewhat more global) requirement that it
must hold not only in the ‘‘intended model’’ but also in all ‘‘appropriate extensions’’.

Thus, our account with (8.25) and (HC) is a ‘global reconstruction’ of Moltmann’s account, not
the one she actually gives. Though perhaps not true to all her intentions, it has the virtue of being
simpler, and of directly eliminating (i) and (ii): at least k and most simply fail to satisfy (HC), when
it is taken as a general constraint on the quantifiers allowed. (Somewhat analogous comments apply
to the discussion in von Fintel 1993 of essentially the same examples.)

13 Again, significantly, Moltmann does not discuss examples where the problems with (8.13)
show up, i.e. examples where the set C is not a singleton.
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above for connected exception phrases. Consider, for example, von Fintel 1993,
which argues that some uses of free exception phrases can be accounted for by a vari-
ant of the analysis given there for the connected case.

Von Fintel argues that a sentence like

(8.29) Except for the assistant professors, most faculty members supported the dean.

should be analyzed by a weakening of the analysis he provided for connected excep-
tion phrases (section 8.9 above): the meaning is essentially given by the conjunction
of the Generality Claim (Q 1(A − C , B)) and (NC2) (¬Q 1(A, B)), but there is no
longer a requirement that C is the smallest such set, and that is why quantifiers like
most are allowed.

This is again simple and elegant, but is it correct? Consider the following variant
of (8.29):

(8.30) Except for the assistant professors, few faculty members supported the dean.

This seems clearly consistent both with few faculty members in total supporting the
dean (perhaps there was a very small number of assistant professors), and with this
not being the case. And in fact, similar remarks can be made for (8.29).

The main observation here is that the Negative Condition simply doesn’t always fol-
low. This is even clearer with the examples in (8.16). Consider again (8.16e), repeated
here:

(8.16e) Few people except director Frank Capra expected the 1946 film ‘It’s a Won-
derful Life’ to become a classic piece of Americana.

Obviously, the truth of this sentence in no way excludes that few people expected the
film to be a success. Rather, one would guess the opposite to be true, given that the
addition of one more (i.e. Frank Capra) still leaves the total number of optimists few.
So (NC2) fails. (NC1) is outright false, since it claims that one optimistic person is
not few.

As to (NC3), it says in this case that few persons identical to Frank Capra did not
expect the film to become a classic piece of Americana. This happens to be true: actu-
ally the number of such people is zero, given that (8.16e) is true. But we have already
seen that (NC3) is not true in general, not even for every and no.

So even if it could be argued that exceptives like those in (8.16) are free, it would
not follow that the standard analysis is correct. But, in fact, no convincing argument
that the exceptives in (8.16) are free exists, as far as we know, and neither has it
been convincingly shown that the word except has a different meaning in these and
similar sentences. It seems appropriate to at least look for a revision of the standard
account that handles these cases as well.

8 .12 A MODEST PROPOSAL

The following proposal is, we think, simple, not unreasonable, and consistent with
all the examples and observations considered so far in this chapter.
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We start from the classical picture of universal statements with exceptions (sec-
tion 8.8), but we extend it slightly. There seems to be a wider class of generalization
statements, all of the form Q 1 A B. Such a statement can be either positive or negative,
and only generalization statements can have exceptions, and thus admit sentences of
the form

(8.2) Q 1A except C B

An exception to a positive statement is something in A − B, and an exception to a
negative one is something in A ∩ B. We do not yet know exactly which ones the gener-
alization quantifiers are—i.e. we don’t know the correct Quantifier Constraint—but
we do know that every, most, and many are positive generalization quantifiers, and
that no and few are negative ones. Very roughly, it seems that positive generalization
statements say something about how small A − B is, and negative ones something
about how small A ∩ B is.

Now, the semantic content of a sentence of this form simply is, we propose, that
the Generality Claim (GC) holds, and in addition an Exception Claim saying that
there are exceptions in C .

Note that, by the definition of the notion of an exception, an exception in C is
always in A ∩ C . We have arrived at a definition of the operator Exc that was sought
at the beginning of this chapter. Let Q 1 be any type 〈1, 1〉 generalization quantifier
and C any set:

the operation Excw

Excw(Q 1, C) is the type 〈1, 1〉 quantifier defined as follows: for each M and each
A, B ⊆ M ,

(8.31) Excw(Q 1, C)M (A, B) ⇐⇒ (Q 1)M (A − C , B) & something in A ∩ C is
an exception for Q 1.

‘‘w’’ stands for ‘‘weak’’, and the reason for the particular wording of (8.31) will
become clear when we see the strong version below. But first let us note that provided
Q 1 is C and E, so is Excw(Q 1, C) (so we don’t need the subscript M ). It is
not I, due to the fixed set C . Note further that the Inclusion Condition, in the
form (IC2), follows, but none of the Negative Conditions we have encountered. This
is just what we want.

Next, one easily verifies the following:

(8.32) a. Excw(every, C)(A, B) ⇐⇒ A − C ⊆ B and (A ∩ C) − B 	= ∅
b. Excw(no, C)(A, B) ⇐⇒ A − C ⊆ B and (A ∩ C) − B 	= ∅

In particular, when C = { j}, we obtain the correct conditions A − B = { j} and A ∩
B = { j}, respectively. So for every and no, but not for other quantifiers, (NC1) and
(NC2) do hold, and (NC3) does not in general, as we noticed should be the case.
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Consider two of the examples in section 8.7:

(8.16a) Johnston noted that most dishwashers except very low-end models have a
water-saving feature.

By our proposal, what Johnston noted is that if you consider the dishwashers that
are not low-end models, most (but not necessarily all) of these have a water-saving
feature, and furthermore that some of the low-end dishwashers lack that feature. As
we have argued, this is the semantic content you want for that (part of the) sentence.

(8.16f ) Few except visitors will know that Czechoslovakia produces wine.

Thus, excepting the visitors, few people know about Czechoslovakia’s wine produc-
tion, though some visitors know about it. But there is no claim—at least, not in the
semantics—about how many visitors know this. In particular, it is not claimed, as
(NC3) would have it, that few visitors are ignorant of it, and perhaps not even that it
is false that few visitors know it, which is what (NC1) would say.

There are cases when the Exception Claim seems to say something stronger: not
only that something in A ∩ C is an exception, but that everything is. But even for
every and no, this stronger reading is not quite the one proposed in von Fintel 1993
and Moltmann 1995. This is because (IC1), which is implied by those accounts, is in
fact too strong, and moreover exception conservativity should always hold. (However,
for every and no, the stronger version will imply all three versions of the Negative
Condition.) When we come to the most general form of exceptive determiners in the
next section, we will see that the stronger version, defined below via the operator Excs,
becomes more prominent.

the operation Excs

With Q 1, C , M , A, B as before, define

(8.33) Excs(Q 1, C)M (A, B) ⇐⇒ (Q 1)M (A − C , B), A ∩ C 	= ∅, & every-
thing in A ∩ C is an exception for Q 1.

Clearly, Excs(Q 1, C)M (A, B) implies Excw(Q 1, C)M (A, B). We obtain

(8.34) a. Excs(every, C)(A, B) ⇐⇒ ∅ 	= A ∩ C = A − B
b. Excs(no, C)(A, B) ⇐⇒ ∅ 	= A ∩ C = A ∩ B

The difference between this and the version we rejected earlier is precisely that A ∩ C
replaces C . Indeed, for both the weak and the strong account here, but not for the
accounts discussed earlier, we have:

(8.35) Exci(Q 1, C) is exception conservative, i.e., for i = w or s,
Exci(Q 1, C)M (A, B) ⇐⇒ Exci(Q 1, A ∩ C)M (A, B)

As to the choice between the weak and the strong version, consider

(8.36) All students except foreigners were invited.
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Here it seems plausible that no foreign students were invited, in addition to the
fact that the non-invited students were all foreigners. This is the strong reading (but
without the claim that all foreigners are students!). On the other hand, consider the
following variant:

(8.37) No students except foreigners came to the inauguration.

This says that there were only foreign students at the inauguration, but it is not so
clear that it also says that all of the foreign students were there. If not, it is the weak
reading.

Finally, we note that although we have construed exception statements as conjunc-
tions of the Generality Claim and an Exception Claim, it could be argued that these
two claims do not have exactly the same status. Suppose it is obvious that all Swedish
logicians know a certain fact (say, that Professor Nilsson has retired). It is then quite
odd to ask, Do all logicians except Swedes know this? (Rather, one would
ask, Do all logicians apart from Swedes know this?) Likewise, if it is clear
that all assistant professors support the dean, it is odd to ask, Do all professors
except assistant professors support the dean? But the oddity seems not
to be due just to the fact that the answer is known to be No, since the Exception
Claim is not fulfilled. Rather, it suggests that the Exception Claim may be presup-
posed and not simply entailed. We recognize this possibility, but we shall not discuss
presupposition further here.

8 .13 QUANTIFIED EXCEPTION PHRASES

We now discuss briefly how to extend the account to the operator Except whose
second argument is a type 〈1〉 quantifier rather than a set. An obvious first idea is to
let Except(Q 1, Q)(A, B) hold if there is X ∈ Q such that Exc(Q 1, X )(A, B). But this
definition does not work: not any set in Q will do. For example, if Q = Ij , then X ∈
Q amounts to j ∈ X , but if X contains other elements besides j, Exc(Q 1, X )(A, B)
will not give the right truth conditions. In that case we obviously need X = { j}.

Is there a way to always find the right sets in Q? We don’t know, but the most
successful proposal we are aware of comes from Moltmann (1995). The idea is to
use the smallest set that a quantifier lives on. Even though it provably doesn’t cover
all cases (see below), it gives the right result for a great majority of them. We use
this idea in the following definition of the operation Except, in a strong and a weak
version:14

14 Moltmann does not discuss the problems stemming from the fact that the smallest set a
quantifier lives on may vary between universes, nor the related issue of verifying that exceptive
determiners denote E quantifiers (see below), nor the fact that sometimes there is no smallest
live-on set.
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the operations Excepts and Exceptw

When Q 1 is as before, and Q is a type 〈1〉 quantifier such that WQ M

(Chapter 3.4.1.2) is defined for each M , let, for each M and each A, B ⊆ M ,

(8.38) Excepti(Q 1, Q)M (A, B) ⇐⇒
∃ X ⊆ WQ M [Q M (A ∩ X ) & Exci(Q 1, X )M (A, B)]

where i is s or w.

As usual, we first need to check that these operations yield C and E quan-
tifiers. It is clear that if Q 1 is C, so is Excepti(Q 1, Q) (when defined). As to
E, the live-on behavior of Q plays a role. Recall (Corollary 12 in Chapter 3.4) that
when Q is E, M ⊆ M ′, and WQ M and WQ M ′ are both defined, WQ M ⊆ WQ M ′ .
We introduce a technical term for a slight strengthening of this property:

(8.39) Q is called strongly E if and only if

(a) Q is E
(b) WQ M is defined for every M
(c) If M ⊆ M ′, WQ M = WQ M ′ ∩ M

Fact 1
If Q 1 is E and Q is strongly E, then Excepti(Q 1, Q) is E.

Proof. Suppose A, B ⊆ M ⊆ M ′. We need to show that the following are equivalent:

(i) ∃X ⊆ WQ M [Q M (A ∩ X ) and Exci(Q 1, X )M (A, B)]
(ii) ∃X ⊆ WQ M ′ [Q M ′ (A ∩ X ) and Exci(Q 1, X )M ′ (A, B)]

Since WQ M ⊆ WQ M ′ and Q 1, Q are both E (hence also Exci(Q 1, X )), it is clear
that (i) implies (ii). Conversely, suppose that X satisfies the condition in (ii). Let
Y = X ∩ M . Thus A ∩ X = A ∩ Y . Using exception conservativity (8.35) and the
assumptions about E, it follows that Q M (A ∩ Y ) and Exci(Q 1, Y )M (A, B). Also,
by (c) above, Y ⊆ WQ M . That is, (i) holds. �

This is helpful, since it appears that in most actual cases (but not all; see below), Q is
in fact strongly E. (Q 1, as a determiner denotation, is of course always E.) For
example, if Q is a proper name, a conjunction of proper names, a bare plural, or of the
form (Q 2)A where Q 2 is definite, it follows from previous results that Q is strongly
E.15 Likewise, when Q 2 is any quantifier such that, for each A, A is the smallest set
that (Q 2)A

M lives on (if non-trivial), (Q 2)A is strongly E.16 For a different example,

15 Lemma 1 (d) and (3.16) in Ch. 3; Proposition 10 in Ch. 4.6.
16 See Lemma 1 (e), Proposition 13, in Ch. 3, and the remarks after that proposition.
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consider the quantifier Q = Ij ∧ (Im ∨ Is), the denotation of John, and Mary or
Sue, discussed in Chapter 4.5.5.3. This is a case when WQ M changes with M ; we
leave it to the reader to verify that

(8.40) For Q = Ij ∧ (Im ∨ Is), WQ M = M ∩ { j, m, s}.
It follows that this quantifier too is strongly E.

Next, let us verify that the above definition gives the desired result in some familiar
cases. The truth conditions are calculated using the definition of Excepti, exception
conservativity, and familiar facts about the quantifiers involved; only the final result
is shown here.

• Excepti(Q 1, Cpl) = Exci(Q 1, C)
• Excepts(Q 1, Ij) = Exceptw(Q 1, Ij) = Excs(Q 1, { j}) = Excw(Q 1, { j})
Thus, the truth conditions for proper names are entirely as before. This, of course, is
a criterion for any definition of an Except operation. For bare plurals too, Excepti gives
what we earlier had with Exci; here both the strong and the weak versions are used.

Now consider the following:

(8.41) a. Every student except the three Swedes showed up.
b. Every student except three Swedes showed up.

We obtain

• Excepti(Q 1, the threeC )(A, B) ⇐⇒ |C | = 3 & Exci(Q 1, C)(A, B) & C ⊆A

• Excepti(Q 1, threeC )(A, B) ⇐⇒ ∃X ⊆C[|A∩X | = 3 & Exci(Q 1, X )(A, B)]

This seems right, but note that there is a clear preference for the strong version here.
(8.41a) says that the set of students who didn’t show up consists precisely of the three
Swedes; the weak reading which says that only some of the Swedes may have been
exceptions is inadequate. Similarly for (8.41b); calculating the particular truth condi-
tions we obtain, in the strong case,

(s) |A − B| = 3 & A − B ⊆ C

and in the weak case,

(w) ∃X ⊆ C[|A ∩ X | = 3 & A − B ⊆ X & (A ∩ X ) − B 	= ∅]

(w) is compatible with the number of Swedish students not showing up being exactly
two, for example (as long as there are at least three Swedish students): just add one
Swedish student (who did show up) to those two and you get a set X satisfying the
condition in (w). This is clearly inadequate. It is also useful to compare (8.41b) with
the sentence

(8.42) Every student except at most three Swedes showed up.

The truth conditions are as in (s) and (w) with ‘‘= 3’’ replaced by ‘‘≤ 3’’. This is right
for the strong reading, but, by the reasoning indicated above, we see that, as long as
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there are at least three Swedish students, the weak readings of (8.41b) and (8.42) are
in fact equivalent—again a sign of the inadequacy of these weak readings.17

Note further that in (8.41a) there have to be exactly three Swedes in the (discourse)
universe, and they all have to be students. This is not required in (8.41b): three
Swedish students failed to show up (though all other students showed up), but there
may be other Swedes around, and not all of them need be students. This accords
pretty well with intuitive judgments, we think.18

(8.43) a. No books except John’s short stories are missing.
b. No books except two of John’s short stories are missing.

We calculate, with John’s = Poss(allei, { j}, every, R) and two of John’s = Poss(allei,
{ j}, two, R):

• Excepti(Q 1, John’sC )(A, B) ⇐⇒
C ∩ Rj 	= ∅ & Exci(Q 1, C ∩ Rj)(A, B) & C ∩ Rj ⊆A

• Excepti(Q 1, two of John’sC )(A, B) ⇐⇒
∃X ⊆ C ∩ Rj[|A ∩ X | = 2 & Exci(Q 1, X )(A, B)]

Similar remarks can be made in this case; the strong reading is preferred in (8.43b).
Note that the exceptions are only short stories that John has written (assuming R is

17 There is another possible problem with (8.42), however, even in the strong reading. This is
because Exci builds in the condition that there are exceptions, but (8.42) may be compatible with
every student (including the Swedes if there are any) showing up. That is, a downward monotone
Q may allow that there are no exceptions. If this is true, the definition needs to be amended accord-
ingly. But the situation is not quite clear. Observe e.g. that phrases like every student except
no Swedes do not make much sense, and an explanation for this might be precisely that the truth
conditions should entail, as we have assumed, that there are exceptions.

18 We note in this connection an additional putative problem with the truth definition. Con-
sider the three sentences

(i) Most dishwashers except at least three/three/at most three low-end models have a water-saving
feature.

We consider only the strong truth conditions, which are, respectively,

(ii) ∃X ⊆ C [|A ∩ X | ≥ 3 / = 3 / ≤ 3 & most(A − X , B) & ∅ 	= A ∩ X ⊆ A − B]

Each of these conditions allows that there are three low-end dishwashers lacking a water-saving
feature, but also many other low-end models that possess such a feature. This is completely in order
for at least three. It seems all right also for three; the sentence is a bit odd to utter, but that
looks like the effect of an implicature. But for at most three (and perhaps also for exactly
three) it becomes distinctly more odd. We are not sure if this is also a pragmatic effect, but for
now we just note the problem.

Garcia-Álvarez (2003) gives no examples of this form, but here are some:

(iii) a. Yet even that will prove unattainable for most except two or three parties, say analysts.
(www.infid.be/election−16feb.htm)

b. 16 of us booked on Serenade August 14th. First cruise for most except two of us.
(boards.cruisecritic.com/showthread.php?t=88950&page=3)

c. Most except three patterns are currently available . . . (link.aip.org/link/?PODIE2/
17/202/1)
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authorship); other short stories are irrelevant. This effect is obtained precisely because
C ∩ Rj , and not C , is the smallest set that John’sC lives on, and X is accordingly
required to be a subset of C ∩ Rj . Similarly for two of John’sC .19

Next, consider the following pair:

(8.44) a. No professors except John and Mary attended the meeting.
b. No professors except John or Mary attended the meeting.

For (8.44a), we get the obvious truth conditions, as can also be seen from the remarks
above and the fact that Ij ∧ Im = { j, m}pl. The strong conditions seem obligatory.
The sentence would be false if both John and Mary are professors, and John but not
Mary attended the meeting, but that scenario is allowed by the weak conditions.

For (8.44b), on the other hand, we have (when j, m ∈ M )

• Excepti(Q 1, Ij ∨ Im)(A, B) ⇐⇒
∃X ⊆ { j, m}[(j ∈ X ∩ A ∨ m ∈ X ∩ A) & Exci(Q 1, X ∩ A)(A, B)]

This allows that John was the only professor attending the meeting, or Mary was the
only such professor, or John and Mary were the only such professors. Contrast this
with

(8.45) No professors except John attended the meeting, or no professors except Mary
attended the meeting.

Here the third case, that both attended, is excluded (since it is impossible that both
disjuncts are true). Even though intuitions may be less strong here, this aspect of the
truth conditions seems fairly reasonable.

A possible problem, however, is that (8.44b) (but not (8.44a)), allows that while
John was the only professor attending the meeting, Mary is not a professor at all. But
(8.44b) ought to entail that Mary and John are both professors. This problem seems
specific to disjunctions; in the next sentence, for example, there is no inclination to
conclude that Swedes are professors; only that some Swedish professor attended.

(8.46) No professors except some Swedes attended the meeting.

This remark is similar to the one made about (IC1) in section 8.3. In general, with
Q 1 A except Q C

2 B, and even if W(Q C
2 )M

= C , there is no entailment that C ⊆ A.

19 Let us check that C ∩ Rj is the smallest set two of John’sCM lives on, when non-trivial. Non-
triviality in this case means that |C ∩ Rj | ≥ 2. Now suppose two of John’sCM lives on D; i.e., for all
B ⊆ M ,

|C ∩ Rj ∩ B| = 2 ⇐⇒ |C ∩ Rj ∩ B ∩ D| = 2

Take any a ∈ C ∩ Rj . Then choose B ⊆ M such that a ∈ B and |C ∩ Rj ∩ B| = 2. Thus, |C ∩
Rj ∩ B ∩ D| = 2, which means that C ∩ Rj ∩ B ⊆ D, and hence a ∈ D. Since a was arbitrary, it
follows that C ∩ Rj ⊆ D. And since two of John’sCM clearly lives on C ∩ Rj , we have Wtwo of John’sCM

=
C ∩ Rj .
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However, in the particular case of a disjunction like Ij ∨ Im = some{ j,m}, it seems one
does want { j, m} ⊆ A. For now, we merely record this problem.

Finally, we note that the analysis works in the same way for more complex Boolean
combinations, as in

(8.47) No professors except John, and Mary or Sue, attended the meeting.

This sentence is well-formed and has a rather clear meaning, which our treatment
accounts for—except for the ‘disjunction problem’ just mentioned.

Concerning the choice between weak and strong readings, we have already seen
that for bare plurals, the weak reading is the default, but there are also cases where the
strong reading is intended. Similarly for simple unquantified possessives like John’s.
It seems that (8.43a) can be read either weakly, so that only some of John’s short stor-
ies are missing, or strongly, so that all of them are missing. However, in (8.41)–(8.44)
except for (8.43a), and in (8.47), a strong reading was required. We may tentatively
propose the following

Strong Exceptions Principle
When the putative exceptions are explicitly enumerated or quantified over, all of
them are in fact exceptions. That is, in these cases the strong truth conditions for
exceptives are used.

In the vast majority of exception sentences, including all of the above examples,
the quantifier Q which is the second argument to Excepti is strongly E, and it seems
that definition (8.38) does a pretty good job of accounting for their meaning. But it is
also clear that the definition is not completely correct. This is because there are cases
with Q of the form Q C

1 where there is no smallest set that the quantifier lives on, and
yet the exception sentence makes perfectly good sense. For example, a mathematician
could unproblematically say:

(8.48) All odd numbers except denumerably many primes have property P.

In the universe of natural numbers, there is no smallest set that denumerably
many prime lives on (denumerably many(A, B) ⇔ |A ∩ B| = ℵ0). But that is clearly
beside the point; it is the set of (all) primes we want. And the truth conditions
intended for (8.48) are clear: there is a denumerable set X of primes such that
Excs(all, X )(odd number, P).20

This example is mathematical, and we know that cases where WQ M is undefined
have to involve infinite sets. But the point seems perfectly general: the live-on prop-
erty is irrelevant for this quantifier of the form Q C

1 ; what is required is merely that
X in definition (8.38) be a subset of C . And the same could be said of many other
quantifiers of that form, even when it happens to be the case that C is the smallest

20 (8.48) may be true or false depending on what P is. Since we do not yet know how to extend
definition (8.38) to the case when there isn’t always a smallest live-on set, we chose not to define
the operator Excepti(Q 1, Q) for that case, rather than incorrectly stipulating that it always yields,
say, false.
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live-on set, for example, tenC , at least threeC , the fiveC . However, we also saw above
that for possessives like two of John’sC it is essential that X is a subset of C ∩ Rj , which
in those cases is the smallest live-on set.

Thus, this definition of Except, like the definition of Poss in the previous chapter,
still has some drawbacks. The problems are different in the two cases, though. For
Except, we would like to add some instances when Except, as it now stands, is unde-
fined, but where exception phrases still make sense. But there is no obvious way, when
just an arbitrary type 〈1〉 quantifier Q is given, to locate the set C we want to use in
place of WQ M in the definition.

For Poss, the problem was instead that when Q was not of the form Q C
1 , there

was no obvious way to formulate narrowing. We circumvented that by letting both
Q 1 and C be arguments of Poss, noting that the type 〈1〉 quantifiers that apparently
occur in that position could in fact be recast in the form Q C

1 . A similar strategy would
not be possible for Except, if only because certain quantifiers that are provably not of
that form, such as Ij ∧ (Im ∨ Is), are still good in exception phrases. In both cases, the
operators we defined seem to be on the right track, but they still leave something to
be desired.

In conclusion, let us say that although we have been critical of the received views
about exceptives, we recognize that those views and ours coincide materially in many
cases of exceptives with every and no. For these determiners, they coincide com-
pletely when the exception phrase is a proper name or a conjunction of proper names;
they almost coincide when that phrase is a quantified NP (a case dealt with by Molt-
mann (1995) but not by von Fintel (1993)), the difference being that we insist on
(IC2), and exception conservativity, rather than (IC1). They differ, however, when
the exception phrase is a bare plural or a non-quantified possessive NP, since then the
weak reading is often used. They also differ substantially for exceptions to determiners
other than every and no.

A main novelty here is the rationale behind our account, which builds on a simple
and classical idea of universal statements with exceptions, but rejects the old Quan-
tifier Constraint and leaves room for the exceptions with many, most, and few that
speakers actually use.

8 .14 FURTHER ISSUES

Clearly, what we have done here only scratches the surface of the semantics of excep-
tion sentences. We have looked only at except, and only at certain forms of connec-
ted exception phrases. Much more is required for a comprehensive account, and a lot
more can also be found in the literature. We hope that some of the observations made
here have a place in such an account. Below we list some issues for the account given
here that would require further study:

• A main issue is the formulation of the proper Quantifier Constraint. Clearly, few
if any quantifiers besides every, no, few, many, most can occupy the Q 1 position of
Exci or Excepti, and one would like a principled explanation of this. The standard



Exceptive Quantifiers 323

accounts, although they attempt to explain this, don’t succeed: they leave out few,
many, and most, and even for every and no they get the meaning wrong.21

• A related issue is the division of generalization statements into positive and negat-
ive ones. The notion is clear for every and no (see section 8.8), but we had to just
stipulate (section 8.12) that most and many were positive and few negative.

• There is also the question of constraints on the Q argument in Excepti. Here there
seems to be much freedom, but certain quantifiers are forbidden. To take one
example, every A except only John is clearly unacceptable, so the quantifier
denoted by only John, i.e. (Oj)M (B) ⇔ B = { j}, should somehow be ruled out.
Similarly for every A except no C (see n. 17).

• Although the Strong Exceptions Principle proposed in the previous section may be
part of the truth, one would like a more precise statement, and an explanation, of
how the choice between weak and strong readings is made.

• A general truth definition for sentences of the form Q 1 A except Q B is still lacking.
The operations Excepti come close, but are not completely general, since sentences
like (8.48) are not handled correctly. They should be seen as part of a definition,
not a definition of an operator that is essentially partial with respect to Q . Also, the
possible problems signaled in notes 17 and 18 need to be resolved.

• Similarly, should we think of the operations Exci as partial, i.e. as defined only
when Q 1 satisfies the correct Quantifier Constraint, or should we assign the cor-
responding sentences a truth value in the other cases too?

• Should we think of except as ambiguous between weak and strong readings, or
is one of these, rather, the basic meaning, and the other sometimes enforced by
pragmatic factors?

21 Garcia-Álvarez (2003) proposes as a Revised Quantifier Constraint that Q 1 cannot be per-
sistent and symmetric. The unacceptability of examples like #Some/Four students except
foreigners were invited corroborates this. He also notes that many does have a persistent
and symmetric interpretation, but argues that when many occurs in exception sentences, it has a
proportional interpretation. So this revised constraint may well be correct, but we cannot derive
it from the truth conditions without further assumptions. If Q 1 is persistent, and the Generality
Claim Q 1(A − C , B) holds, it follows that Q 1(A, B) holds too. This contradicts (NC2), but we
have found reason to doubt (NC2) in general: few A except C B is fully compatible with few A B.
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Which Quantifiers are Logical?

The question of logicality has already been touched upon several times. There is no
unanimity in the literature about what logicality is, nor indeed about whether it is a
well-defined notion. But almost everyone would agree, it seems, that topic neutrality
or subject independence, that is, I, is at least a necessary condition. In section 9.1
we present the general version of isomorphism closure for arbitrary operations, and
mention some known—though perhaps not widely enough known—facts about it
and some of its variations.

As regards natural language quantification, I is quite significant. We express its
significance in two claims (section 9.2): one is that simple quantirelations—including
determiners and quantificational adverbs—all denote I quantifiers, and the other
that those denoting non-I quantifiers all arise from more general I operations
by freezing some arguments.

In section 9.3 we consider constancy, a property which is here (non-standardly)
distinguished from logicality. We already described constancy as being given by the
same rule in every universe (Chapter 3.4.1.3), and now we look at what appears to
be the empirical manifestation of that property, which concerns the behavior of cer-
tain expressions in intuitively valid arguments, and which we call inference constancy.
Speakers’ intuitions about what is constant and what is variable in inferences—i.e.
about form—are quite robust, and the idea is to use in this way a given consequence
relation to identify the constants, in a sense reversing Bolzano’s (and Tarski’s) method
of defining consequence, given the constants. One outcome of this is further evidence
that quantifier expressions should not be interpreted in models, contrary to what is
sometimes stated in the literature.

Finally, we come back to the question of logical constants (section 9.4), but rather
than attempt a resolution of this vexed issue, we note that at least two precise and
informative properties of (most of) these expressions have been identified—I
and E—and that the two are equivalent to one single condition: invariance under
injections.1

9 .1 LOGICALITY AND I

If logic, as most people seem to agree, is independent of subject-matter, then logical
constants ought to be invariant under arbitrary bijections between universes (or,

1 We are grateful to Johan van Benthem for several valuable comments on an earlier draft of
this chapter.
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more weakly, under arbitrary permutations of the universe). Suppose you map (in a
one–one fashion) triangles to file cabinets, lines to ice-cream cones, and ‘‘intersects’’
to ‘‘contains’’. Then, if

(9.1) Every triangle intersects at least four lines.

is true in a model,

(9.2) Every file cabinet contains at least four ice-cream cones.

must be true in the corresponding isomorphic model. That’s just what it means for
every and at least four to be I.

One might feel that, especially in the case of mathematical or geometrical objects,
not all such mappings should be allowed, but only those that go between geomet-
rical objects, say, and respect certain requirements. This gives you concepts that are
invariant under a restricted class of bijections. For example, Euclidean geometry deals
with properties invariant under rigid motions, such as rotation, translation (in the
geometric sense), and reflection. And this shows that these properties are geometrical,
not logical : logic treats all objects the same, so logical properties are invariant not only
under rigid transformations but under all bijections.

9.1.1 Isom in arbitrary types

I is not restricted to quantifiers. For example, propositional connectives certainly
don’t care about subject-matter: a conjunction applies uniformly to two sentences (or
sets, or whatever), without regard for what these sentences are about. So it is I too.

In general, over any universe M of individuals we can form the objects of finite type
over M : relations over M , functions on M , relations over relations over M (that is,
Lindström quantifiers on M ), functions from such relations to individuals, etc. There
are various means of describing the types of these objects: for example, in the follow-
ing way.

Let the elements (individuals) of M have type e, the two truth values (1 and 0)
have type t, and all other types be of the form τ → σ or (τ1, . . . , τn), the former
standing for functions from objects of type τ to objects of type σ , and the latter for
n-tuples of objects of type τ1, . . . , τn, respectively. Relations are identified with their
characteristic functions from tuples to truth values, so that instead of R(a1, . . . , an)
or (a1, . . . , an) ∈ R we can write R(a1, . . . , an) = 1. For example, sets of individuals
have type π = e → t, so quantifiers on M of type 〈1, 1〉 in our earlier classification
now get type (π , π ) → t in this type system, as sets of pairs of sets of individuals.

Any bijection f between two universes M and M ′ can be lifted pointwise to a bijec-
tion—still denoted f —from objects of any finite type over M to objects of the same
type over M ′. For example,

• If u is a truth value, f (u) = u (by stipulation).
• If R is a binary relation between individuals in M , f (R) = {( f (a), f (b)) : (a, b)

∈ R}.
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• If F is a function from binary relations between individuals in M to sets of indi-
viduals in M , f (F ) is the corresponding function over M ′ defined by f (F )(R′) = S ′
iff F ( f −1(R′)) = f −1(S ′). (Thinking of F as a relation instead, we have f (F ) =
{( f (R), f (S)) : F (R) = S}.)2

Now consider universal operators, i.e. functionals O that—like our quantifi-
ers—associate with each universe M an object OM of a certain type over M . Gen-
eralizing the notion of I for quantifiers, we get the following:

Isom and Perm for arbitrary operators on universes

An operator O on universes in the above sense is I iff for all universes M and
all bijections f with domain M :

(9.3) f (OM ) = Of (M )

In the special case where f is a permutation on M , we get the condition P (or
with fixed M , the condition PM ):

(9.4) f (OM ) = OM

That is, OM is a fixed point of f .

For example, if Q is a type 〈1, 1〉 quantifier,

Q f (M )( f (A), f (B)) ⇐⇒ f (Q M )( f (A), f (B)) [by (9.3)]

⇐⇒ Q M (A, B) [by the definition of f (Q M )]

which is our previous version of I for Q .
At the lowest types—in particular, for predicate expressions—these conditions

have strong effects:

2 More precisely, define by induction for each type τ a bijection f from T M
τ —the set of objects

over M of type τ —to T M ′
τ , as follows:

(i) If a ∈ T M
e = M , f (a) is already defined.

(ii) If u ∈ T M
t = {0, 1}, f (u) = u.

(iii) If a = (a1, . . . , an) ∈ T M
(τ1,...,τn), f (a) = ( f (a1), . . . , f (an)). If f is already a bijection from T M

τi

to T M ′
τi

, 1 ≤ i ≤ n, this gives a bijection from T M
(τ1,...,τn) to T M ′

(τ1,...,τn).

(iv) If F ∈ T M
τ→σ and a′ ∈ T M ′

τ , then ( f (F ))(a′) = f (F ( f −1(a′))). In other words, ( f (F ))(a′) =
b′ iff F ( f −1(a′)) = f −1(b′)), which is equivalent to:

(a) If a ∈ T M
τ and b ∈ T M

σ , then f (F )( f (a)) = f (b) iff F (a) = b.

If f is already a bijection from T M
τ to T M ′

τ , and from T M
σ to T M ′

σ , this defines a bijection
from T M

τ→σ to T M ′
τ→σ .
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Proposition 1

1. No individuals in M satisfy PM (if |M | ≥ 2). But all truth functions (type
(t, . . . , t) → t) do.

2. The only subsets of M satisfying PM are ∅ and M.

3. The only binary relations on M satisfying PM are ∅, M × M, the identity rela-
tion on M, and its complement.

4. For ternary relations we get a few more cases, such as the relation R(x1, x2, x3) defined
as x1 = x2 & x1 �= x3. Etc.

Proof. This observation has been made by many people: e.g. Westerståhl (1985b),
Tarski (1986), Keenan (2000). Let us look here just at the case of a binary relation
R on M .

Suppose R is distinct from each of ∅, M × M , the identity relation on M , and
its complement. Then there are a, b, c, d , e ∈ M such that a �= b, (a, b) ∈ R, (c, c) ∈
R, and (d , e) �∈ R. If d = e, consider a permutation f on M that maps c and d onto
each other, but leaves everything else as it is. Then (c, c) ∈ R, but ( f (c), f (c)) �∈ R,
so PM is violated. If d �= e, let f instead map a to d and b to e (and vice versa):
(a, b) ∈ R but ( f (a), f (b)) �∈ R, again violating PM . �

A fortiori, very few logical constants can be found among predicate expressions in nat-
ural languages. (Possible English examples could be the noun thing, and one reading
of the verb be or of adjectives like same and different.)

Note also that, interestingly, the number of I relations between individuals is
not only small but essentially independent of the size of the universe.3 This is false for
objects of higher types: the number of I such objects (of a given type) is relatively
large, and increases with the size of the universe. For example, over a universe with
n elements, there are 2(n+1)3

type 〈1, 1〉 quantifiers satisfying P, and 2(n+1)(n+2)/2

ones satisfying C and P.
On the other hand, also for higher-type objects there are many more non-I

ones than I ones—e.g. there are exactly 23n
C type 〈1, 1〉 quantifiers over

a fixed universe with n elements. (Over a universe with two elements (!), there are
512 C quantifiers, of which 64 are P.) Thus, in terms of the number of
possible denotations, it looks like a significant fact that so many quantification-related
expressions in natural languages, in particular determiners, denote I operations or
relations.

9.1.2 Isom is necessary for logicality

A number of people have, largely independently of each other, proposed I or
P as a necessary condition for logicality, starting with Mostowski (1957) and

3 Westerståhl (1985b) explicitly calculates the number of k-ary relations on a universe M satis-
fying P.
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Lindström (1966); some also in full type-theoretic generality, e.g. Tarski (1986) and
van Benthem (1986). An informative overview of the status of the condition is van
Benthem (2002). One noteworthy thing is that practically all formal languages that
logicians or computer scientists have proposed indeed have the property that truth is
preserved under isomorphism, and that all the operators used, and all those definable
from them in the system, satisfy I.

There are also converse results, for example:

Theorem (McGee 1996)
On a fixed universe M, the P operations taking relations over individuals as argu-
ments, i.e. the quantifiers on M, are essentially the ones definable in the logic FO∞,∞.4 As
to the I ones, you can define in FO∞,∞, for each cardinal k, such operations restricted
to universes of cardinality κ .

Theorem (van Benthem 1991)
On a finite universe M, the P operations over finite types are exactly the ones definable
in finite type theory.5

These results emphasize that I and P are not very restrictive requirements,
at the level of quantifiers and higher. Do they tell us anything about the logicality of
quantifiers? If you consider FO∞,∞ or finite type theory as unproblematically belong-
ing to logic, they might. But many are reluctant to do this, because they feel that these
systems belong to mathematics rather than logic. Mathematics does have a subject-
matter, so the argument goes, involving sets, numbers, functions, geometrical objects,
etc. And the content of these formal systems essentially hinges on what mathematical
objects exist.

Take another, closely related case: second-order logic, SO, where one is allowed to
quantify also over subsets of (or relations on) the universe. In SO one can characterize
the natural numbers, and one can formulate many undecided mathematical issues,
such as the Continuum Hypothesis, in a way that makes them either logically true or
logically false. But the Continuum Hypothesis is concerned with how many sets of
natural numbers there are, and so, many people conclude, it is not a logical issue but
a mathematical one, and therefore SO is not really logic either. (See Väänänen 2001
for a recent statement of this view, and Boolos 1998 for a dissenting opinion.)

9.1.3 Strengthening Isom

If I is necessary, one may consider strengthening it to a necessary and sufficient
condition. One obvious way to strengthen I is to weaken the requirement that f
is a bijection. An interesting weakening is proposed by Feferman (1999). Essentially,

4 FO∞,∞ is FO, but where you allow arbitrarily long conjunctions and disjunctions and arbit-
rarily long sequences of ∀x and ∃y.

5 This is a logical theory with variables for each type, and the two basic operations λ-abstraction
and function application; see e.g. van Benthem 1991 for details.
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he considers invariance under homomorphisms rather than isomorphisms, or, more
precisely, under functions from M onto M ′ that are not necessarily one–one.6

The resulting criterion H has drastic consequences for monadic quantifiers.7

Onto mappings can collapse any non-empty set to a set with one element; up to H
there are basically only two (kinds of) sets: empty ones and non-empty ones. One
immediate consequence is that the identity relation is not invariant under such map-
pings. Indeed:

Theorem (Feferman 1999)
The monadic (generalized ) quantifiers satisfying H are exactly the ones definable in
FO without identity.

The treatment of identity is precisely the difference between I and H. I
enforces topic neutrality, whereas H in addition enforces number neutrality: not
only is the actual extension of predicate expressions deemed irrelevant to logic, but
also the number of objects in those extensions. Only whether the extension is empty
or non-empty matters. This is why only the existential quantifier ∃, and those defin-
able from it in FO without identity, qualify.

The restriction to monadic operators is essential. As Feferman observes, many
polyadic operators not usually regarded as logical satisfy H: for example, the well-
ordering quantifier (see Chapter 2.4).

Interestingly, Feferman’s main motivation for H is that he wants to resolve an
issue that we too have been grappling with in this book: what is it that constitutes a
quantifier being the same operation on universes of different sizes? I has no effect
here, since it only compares universes of the same size. In Chapter 3.4 we explicated
constancy roughly as being given by the same rule on each universe, and noted that
E corresponds to the special case when that rule doesn’t mention the universe at
all. In Chapter 4.5.3 we argued that although E is a sufficient but not necessary
condition, it seems to hold for all quantifiers in natural languages that do not involve
the logical predicate thing. However quantifiers like ∀ or QR , which fail to satisfy E,

6 Such functions are sometimes called endomorphisms. Some care is needed to formulate the
lifting of such a map f to objects of higher type. If f is not one–one, condition (iv) in n. 2 cannot
be used: first, because f −1 is not defined, and second, because condition (a), which does not use
f −1, need not define a function unless the further requirement that f (a1) = f (a2) implies F (a1) =
F (a2) is added. However, for a set A (and correspondingly for relations), the proper requirement is:

(b) a ∈ A iff f (a) ∈ f (A)

This is stronger than simply saying that f maps A to f (A) = {f (a) : a ∈ A}, since the latter allows
that a �∈ A but still f (a) ∈ f (A); viz. if f (a) = f (b) for some b ∈ A. Indeed, (b) says that f maps A
to f (A) and (when A ⊆ M ) M − A to f (M − A).

7 H says that whenever f is a mapping from M onto M ′ for which the lift appropriate for a
universal operator O is well-defined, f (OM ) = Of (M ). In particular, if Q is a type 〈1, 1〉 quantifier,
and f is such that (b) in n. 6 holds for A, B ⊆ M , then

Q M (A, B) ⇐⇒ Q M ′ ( f (A), f (B))

As Feferman’s theorem shows, this is a very strong requirement.
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seem nevertheless to be given by the same rule on every universe. So a final explication
of this idea of sameness was left open.

Is H a better alternative? It does resolve—or rather eliminate—the problem.
But to us, it seems perfectly reasonable to say that, for example, at least four yields the
same quantifier on every universe: adding or deleting elements from the universe, as
long as we do not alter A or B, has no effect on the truth value of At least four
A are B. That is, we do think E is a sufficient condition. But then H cannot
be the right criterion. There might be other reasons for denying that at least four is
logical —for example, Feferman’s idea that identity is not a logical notion—but even
so, it can still be regarded as the same over all universes.

In general, we agree with the verdict in van Benthem 2002 that, as criteria of logic-
ality, invariance conditions like the ones we have been discussing here are to some
extent circular. This is most clear in the case of identity. Suppose we were uncer-
tain whether identity is a logical notion or not. Well, restricting attention to invari-
ance under bijections settles this in one way, and choosing surjections settles it in the
opposite way. That is, the question has to be settled beforehand, and neither I
nor H can tell us anything here that we didn’t know already.

However, as van Benthem emphasizes, this in no way precludes the potential for
such invariance conditions to be (necessary) properties of logical expressions. To us,
it seems that I is the proper explication of the idea of topic neutrality, whereas
H is too radical in this respect. In any case, the claim that I is a necessary part
of logicality appears to be practically uncontroversial.8

9 .2 TWO CLAIMS ABOUT I AND NATURAL LANGUAGE
QUANTIFICATION

We have already observed that a great many determiner expressions in natural lan-
guages are I. In fact, the following seems true.

(A) All lexical quantifier expressions in natural languages denote I quantifiers.

Many complex determiners are I too; for example, all Boolean combinations
of I quantifiers are I. But there are some exceptions. About them, we make
the following claim:

(B) All non-I quantifier expressions come from I operations or relations by freez-
ing some arguments.

Recall that we defined the notion of freezing for type 〈1, 1〉 quantifiers in
Chapter 4.5.5, in fact as an operation from global type 〈1, 1〉 quantifiers to global
type 〈1〉 quantifiers. We also discussed (three) alternative definitions of freezing, but
argued that the version we chose is best suited to an account of natural language quan-
tifiers (e.g. it underpins certain properties of definite quantifiers (Chapter 4.6) and

8 Tarski (1986) seems to think the issue is a matter of stipulation. Sher (1991) argues that I
is both necessary and sufficient for logicality.
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exceptive quantifiers (Chapter 8.13)). This notion is easily lifted to arbitrary universal
operations.

The field of a binary relation over individuals is the union of its domain and range.
This can be extended in an obvious way to arbitrary relations, indeed to objects of
any type:

(9.5) field(u) =





{u} if u is an individual
∅ if u is a truth value
{x : x belongs to some tuple in u} if u is a relation

Also, if u is a function from X to Y , the field of u is the field of the corresponding
binary relation (u′(x, y) ⇔ u(x) = y). We now define freezing as follows:

general freezing

Let O be a universal operator as above, which for simplicity we think of as rela-
tional, so that for each M , OM = OM (X1, . . . , Xn) is a (perhaps higher-order) rela-
tion over M of a given type. If S is a fixed object of the type of the kth argument
place, define a new universal operator OS , with one less argument place, as follows:
For all M , and all X1, . . . , Xk−1, Xk+1, . . . , Xn over M of suitable types,

(9.6) (OS )M (X1, . . . , Xk−1, Xk+1, . . . , Xn) ⇐⇒
OM ∪ field(S)(X1, . . . , Xk−1, S, Xk+1, . . . , Xn)

Similarly for simultaneous freezing of several arguments.

Our earlier example of freezing in Chapter 4.5.5,

(Q A)M (B) ⇐⇒ Q M ∪ A(A, B)

is an instance of (9.6). We also noted that Q A is E when Q is. This holds in general
(recall that E is defined for arbitrary universal operators):

(9.7) With O and S as above: if O is E, so is OS .

Indeed, this was one of our reasons for choosing the above version of freezing, which
extends the universe, if necessary, to the individuals involved in the fixed object S; the
other two alternatives do not satisfy (9.7).

We illustrate Claim (B) with a number of examples:

9.2.1 Proper names

Montagovian individuals of the form Ia are not I (Chapter 3.2.4). But consider
the operation E that with each M associates a relation EM such that, for all a ∈ M
and B ⊆ M :

EM (a, B) ⇐⇒ a ∈ B

E is I, and, for a fixed individual a, Ia is Ea, the freezing of E to a.
((Ea)M (B) ⇔ EM ∪ {a}(a, B) ⇔ a ∈ B ⇔ (Ia)M (B)) So if, in the Montagovian tradi-
tion, one construes proper names as quantifier expressions, i.e. as expressions that
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‘‘can be reasonably taken to signify a quantifier’’ (Chapter 0.2.3), they conform to
Claim (B).9

9.2.2 Restricted noun phrases

We have already seen that noun phrases of the form every dog, most profess-
ors, all except three bikes are usually not I (Proposition 7 in Chapter 3),
but that they result from I type 〈1, 1〉 quantifiers by freezing the first (restriction)
argument.

9.2.3 Possessives

Possessive determiners—discussed at length in Chapter 7—almost never denote
I quantifiers. But what about the operation Poss that we took to be the denotation
of the possessive morpheme ’s? As defined in Chapter 7.7, Poss isn’t really a universal
operator in the sense of the present chapter, since it takes (among other things) global
type 〈1, 1〉 quantifiers as arguments. These quantifiers are themselves universal oper-
ators, and do not fit in the type hierarchy of section 9.1.1 above. A universal operator
can take only typed objects, such as quantifiers on a given universe, as arguments. But
there is still a sense in which the Claim (B) is satisfied.

For any type 〈1, 1〉 quantifiers Q 1, Q 2, let UP(Q 1, Q 2) be the universal operator
defined, for each M and each A, B, C ⊆ M and R ⊆ M2, by

(9.8) UP(Q 1, Q 2)M (C , R, A, B) ⇐⇒
(Q 1)M (C ∩ domA(R), {a ∈ C ∩ domA(R) : (Q 2)M (A ∩ Ra, B)})

(So UP is an operator taking universal operators to universal operators.) Now the fol-
lowing facts are easily established:

Fact 2
(a) If Q 1, Q 2 are I, so is UP(Q 1, Q 2).

(b) If Q 1, Q 2 are C and E, then for any C , R,
Poss(Q 1, C , Q 2, R) = UP(Q 1, Q 2)C ,R

Thus, given that possessive determiners denote possessive quantifiers, i.e. quanti-
fiers of the form Poss (Q 1, C , Q 2, R), where Q 1 and C come from the determiner

9 This particular observation is of course trivial. Yet we do not think Claim (B) is completely
empty. It is true that in type theory you can always find a ‘logical skeleton’ (van Benthem’s expres-
sion, personal communication) behind each expression by taking out all non-logical primitives by
λ-abstraction. Inserting the primitives as values then gives you an expression equivalent to the ori-
ginal one. However, natural languages don’t have λ-abstraction in the syntax, and it is interesting to
note (as scholars have since Montague) how they manage without it. Also, there is a small issue, as
we have observed, about just how the frozen universal operation is to be defined. Finally, in natural
languages there are sometimes more complex ‘skeletons’ behind non-I quantifier expressions
than those obtained by mere λ-abstraction, as the example of possessives below illustrates.
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itself, and Q 2 and R are set by context (sometimes by other semantic rules), it fol-
lows that each possessive determiner denotes a quantifier that results from freezing
arguments of an I operation.10

Similar observations can be made for the operator Possw in Chapter 7.8.1.

9.2.4 Exceptive quantifiers

Exactly analogous things can be said about the operators Exci used in Chapter 8.12
to handle certain exceptive quantifiers (where i is w or s). Defining, for each type
〈1, 1〉 quantifier Q 1, the universal operators UEi(Q 1) so that UEi(Q 1)M (C , A, B) ⇔
Exci(Q 1, C)M (A, B), we see that the type 〈1, 1〉 exceptive quantifier Exci(Q 1, C) res-
ults from freezing the first argument of UEi(Q 1), and that UEi(Q 1) is I
if Q 1 is.

As to the more general operators Excepti introduced in Chapter 8.13, which take
a type 〈1, 1〉 quantifier Q 1 and a type 〈1〉 quantifier Q as arguments, we first note
that these are partial operators, since they are undefined on Q if WQ M (the smal-
lest set that Q M lives on) is undefined for any M . They are, however, total on finite
universes.

Now in this case it can again be seen that if Q 1 and Q are I, so is
Excepti(Q 1, Q) (when defined). But note that when Excepti is used to interpret
exceptive determiners, Q is never I (e.g. when Q is Cpl, or Ij , or of the form Q C

2 ).
So what we would like to say here is rather that exceptive quantifiers result by freezing
Q in some I higher-order operation. Notice that the situation is different from
the one with Poss or Exci, in that there the quantifier arguments are in general I.
However, the present notion of freezing doesn’t apply to global quantifiers, so we can-
not quite express the fact that exceptive quantifiers conform to Claim (B) in this way.

One option is to resort to the tactics of note 10, defining operators UExcepti taking
local quantifiers as arguments (in addition to the set arguments A, B). As noted there,
we can then freeze Q M rather than Q , and Claim (B) is almost satisfied.

We conclude that, roughly, Claim (B) holds for exceptives too, even though the
exact formulation of freezing needs some further technical amendments that we shall
not go further into here.

Moreover, similar remarks can be made regarding other higher-order operators that
we used for the interpretation of determiners—for example, the operator Def from
Chapter 7.11.

10 One might let ’s denote UP rather than Poss, but neither of these is a universal operator. A
third option is to have it denote the universal operator UPoss, defined for each M by

UPossM (Q 1, C , Q 2, R, A, B) ⇔ Q 1(C ∩ domA(R), {a ∈ C ∩ domA(R) : Q 2(A ∩ Ra, B)})
where Q 1, Q 2 are type 〈1, 1〉 quantifiers on M , and A, B, C , R are as before. UPoss is I, and its
relation to Poss is the following:

(i) If Q 1, Q 2 are C and E, then for any M and any C , R,
Poss(Q 1, C , Q 2, R)M = (UPoss(Q 1)M ,C ,(Q 2)M ,R)M

This is almost as in Claim (B), but not quite, since freezing is local in (i).
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9.3 CONSTANCY

In this book we treat logicality and constancy as distinct properties. This is hardly
standard; the literature contains much discussion about the notion of a logical con-
stant, but little about constancy. But separating the two makes certain issues clearer,
it seems to us.

Consider again the quantifier most, and restrict attention to finite universes. Is it a
logical constant? It certainly is topic-neutral (I), and constant in the sense of E.
But this may not settle the question. One might argue that most is too mathematical
to be logical: for example, it is not definable in FO (as will be shown in Chapter 14),
and it involves comparison of cardinalities. On finite sets this still seems rather inno-
cent. Perhaps there is no correct answer.

Barwise and Cooper (1981) make a strong claim against the logicality of most, how-
ever. Part of the argument comes from infinite sets where most might be thought of
as involving not just size but some notion of measure or topology. We can leave that
aside here. More interesting is the conclusion that Barwise and Cooper draw:

The difference between ‘‘every man’’ and ‘‘most men’’ is this. The interpretation of both
‘‘most’’ and ‘‘man’’ depend on the model, whereas the interpretation of ‘‘every’’ is the same
for every model (p. 163)

Thus, the issue of logicality is tied directly to what gets interpreted in models and what
doesn’t.11

If Barwise and Cooper’s remark is meant to apply to finite models and natural
language (as their examples seem to indicate), and not just to models where mathem-
atical interpretations of most different from the cardinality interpretation might be
relevant, then we believe their claim is mistaken. Briefly, whatever the verdict on the
logicality of most, it is definitely constant, and that’s why it should not be interpreted
in models.

How do we know that most is constant? Our explication of constancy—as being
given by the same rule on every universe—sounds a bit abstract and imprecise. But it
seems to us that the constancy of an expression is also reflected in its linguistic beha-
vior, in a way that is in fact easy to test. The idea is that such expressions are constant
in inferences in a way that clearly sets them apart from other expressions. In the rest of
this section we try to explain this idea.

9.3.1 Inference constancy

The idea we shall try to bring home is this: Insofar as consequence or entailment
is a matter of form, quantifier expressions, but not predicate expressions (with few
exceptions), are fixed in that form: they are what we shall call inference constant. Such

11 It is important to note that the issue does not concern the vagueness or context dependence of
most. Barwise and Cooper make clear—as we have done in this book—that a fixed context assump-
tion should eliminate this kind of unclarity. In particular, it should fix the appropriate ‘threshold’
(the one we take to be 1/2 here for simplicity). Thus, it is not context dependence that prevents
most from being logical, according to Barwise and Cooper.
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constancy is an empirical fact about languages, not something theorists can stipulate
one way or the other. Moreover, it is a phenomenon that can be used to identify the
expressions which are constant in the more abstract interpretational sense.

In fact, our point is so obvious that it seems to be forgotten. Consider straightfor-
ward entailments like the following. Once the reasoning

(9.9) a. Most students passed.
b. Hence: Some students passed.

is seen to be correct or valid, it is self-evident that

(9.10) a. Most teachers are taller than Bill.
b. Hence: Some teachers are taller than Bill.

is not only valid as well, but is in fact another instance of the same entailment. And it
is equally self-evident that

(9.11) a. At least two students passed.
b. Hence: All students passed.

is not only incorrect, but completely irrelevant to the correctness of (9.9). Even if a
replacement of quantifiers turns (9.9) into a correct inference (say, if we replace most
by at least two, but keep some), that inference still says nothing at all about (9.9).

We have here a very palpable difference between quantifier expressions and pre-
dicate expressions. Replacement of predicate expressions preserves the entailment.
Replacement of quantifier expressions often destroys it. And the reason is that the lat-
ter kind of replacement, but not the former, results in a different inference (scheme),
without significant relations to the original one. In (9.9), most and some are fixed, but
students is not. We now try to describe this idea a little more carefully.

9.3.2 Bolzano’s method

The idea of identifying a linguistic notion by studying how systematic replacement
of expressions preserves certain properties is one that, as far as we know, goes back
to Bernard Bolzano in the early nineteenth century (Bolzano 1837). But whereas
he used it to define consequence, we in a sense reverse his idea, in order to charac-
terize the constants themselves. We first illustrate it with a more recent and more
familiar application of the technique: identifying syntactic or semantic categories in a
language.

Example 1: Let the class of relevant expressions be the set of finite strings of words in
some language, and let the property to be preserved be grammaticality in the case of
syntactic categories, and meaningfulness in the case of semantic categories. Roughly,
strings u and v are said to have the same syntactic (semantic) category if and only
if, for every string s with u as a substring, s is grammatical (meaningful) iff s[u/v] is
grammatical. Categories can then be identified with equivalence classes under these
equivalence relations.
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This idea is simple, powerful, and intuitive. Substitutability of this kind should be
a mark of sameness of category. But the idea is also problematic in familiar ways. A
minor point is that one often cannot simply replace a word, say, by another, without
making morphological changes (man cannot replace women in two women came,
even though both are nouns). A more substantial point is that if there is no gram-
matical organization of the strings of words, the technique is very likely to give wrong
results: a substitution may succeed, or fail, when it shouldn’t. For a trivial example,
suppose we try to identify NPs in English, and consider John in

(9.12) Mary met John.

As desired, we may replace John by Lisa, Irene and Henry, some student,
the professors, more students than professors, a boy, them, etc., pre-
serving grammaticality, and these are all good NPs. But, we may also replace John by
David and went home, for example, which no one wants to call an NP.

It seems likely that for the method to succeed, some sort of grammar must be given,
attention must be restricted to strings generated by the grammar, and replacement
must be defined in a way that respects the grammar. This shows that the method
needs to be refined, not that it is useless or circular. It might be circular if the gram-
mar already mentioned the categories, but that is not necessary. Hodges (2001) gives
a precise definition of categories in an abstract framework which is far from trivial,
tracing the idea (for semantic categories) back to Husserl (1901).

However, even if it turned out in the end that, for English, no precise definition
of syntactic categories in the above format is really adequate, that wouldn’t make the
substitution technique useless. It would remain a powerful, indeed essential, heuristic
for finding the categories of various expressions (even if the delimitation in certain
cases requires other tools as well).

In what follows, we shall assume that (syntactic or semantic) categories of Eng-
lish words and phrases have been identified in some way or other. By an appropriate
replacement, we mean a replacement that respects these categories as well as morpho-
logical requirements.

Example 2: Consider (English, say) sentences, under appropriate replacement of parts,
and see when truth is preserved. This is Bolzano’s use of the method. Roughly, if a
sentence remains true under all appropriate replacements of certain of its parts, its
truth is special, or ‘‘analytical’’, dependent not just on facts about the world, but on
other factors.12 Similarly, if such replacements never make the premises of an infer-
ence true and the conclusion false, there is some ground for saying that the conclusion
follows from the premises. But, as Bolzano emphasized, these notions are relative to
a set of non-replaceable expressions—the constants. In fact, his general notion of
consequence can be seen as three-place; it holds between a (set of) premises, a conclu-
sion, and a chosen set of constants. Fixing the constant vocabulary in various ways,

12 Note that this presupposes an analysis of sentences into constituents, which makes Bolzano a
pioneer in the field of syntactic structure as well.
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we obtain a variety of special notions of consequence, suitable for different purposes,
which was precisely Bolzano’s idea.13

Among these notions, Bolzano only briefly mentions logical truth and consequence
(e.g. Bolzano 1837: §148(b), (c), where he defines ‘‘logically analytical’’), saying,
however, that the logical concepts—the ones to be held constant in this case—do
not form a sharply delimited area.

Bolzano’s idea is amazingly rich. A possible problem is that its implementation in
natural languages is exposed to ‘accidental’ effects due to scarce linguistic resources.
For example, suitable replacements for the word and should be (from a modern
standpoint) at least the fifteen other binary truth functions, but it is not clear that
English has a reasonable name for each of these. This might make us miss some
relevant counterexample. Worse, one might want to replace a set-denoting predic-
ate expression with one for any other possible extension (set), which certainly is
impossible in any natural language. When Tarski (1936) formulated his definition of
logical truth and consequence, 100 years later than Bolzano (and apparently unaware
of him), he avoided this problem by considering arbitrary interpretations of certain
parts, rather than replacing them by other parts. The basic idea, however, is the same.

Tarski too noted that the range of logical expressions—the ones not to replace
or interpret—is hard to delimit. (Later he suggested I as a criterion, as we have
seen.) Yet it has to be delimited in order for the notion of logical consequence to
make sense.

9.3.3 Bolzano reversed

We now suggest that a variant of the same method can be used to identify the con-
stants themselves. This time the complex expressions to be considered are inferences,
construed as finite sequences of sentences in some language, where the last one is the
conclusion and the others are premises. The point is that, just as speakers have intu-
itions about grammaticality or meaningfulness or truth, so they have intuitions about
validity or invalidity of inferences.

Such intuitions can be used, just as in the two examples above, as data for the sub-
stitution technique. Of course we must not assume that speakers are equipped with
sophisticated notions of consequence: for example, that they can distinguish logical
from analytical validity. That presumably already presupposes a notion of (logical)
constant, and those intuitions, if there are any, can clearly not be used in the present
context. The empirical fact we can use is simply that speakers have intuitions, in
many cases, about whether or not the conclusion of a given inference follows from
the premises.

Now, as we remarked in section 9.3.1 above, part of the intuition about the validity
of an inference is that some of the expressions involved are schematic, whereas others

13 See van Benthem 2003 for a recent and lucid survey of Bolzano’s theory of consequence,
with many striking comparisons to modern activities in logic. One thing to note is that Bolzano
also required the premises to be jointly consistent for the conclusion to follow; this condition is
usually dropped nowadays (anything follows from inconsistent premises), but if it is upheld, the
logic becomes non-monotone, as van Benthem notes.
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are not. That an expression is schematic in a given inference means roughly that it
can be replaced by a variable without disturbing validity. This results in an inference
scheme, and the notion of validity extends naturally to schemes. We let ‘‘inference
scheme’’ be the most general term here, so that an inference is the special case of an
inference scheme without schematic variables. The following notation is used:

(9.13) When u is an expression occurring in an inference scheme �, write �[u/x]
for the result of replacing at least one occurrence of u in � by the (new) vari-
able x.14

We can now make the following definition.

schematic expressions in valid inferences

An expression u occurring in a valid inference (scheme) � is schematic with respect
to � iff some scheme of the form �[u/x] is valid.

It follows from this definition that a variable in a valid scheme is trivially schematic.
Now look at plain inferences without variables. Even though the following statements
are imprecise, their approximate correctness should be obvious when one considers
examples like the ones in section 9.3.1, and innumerably many others like them:

(I) Predicate expressions and individual-denoting expressions are usually schematic
in inferences.

(II) Quantifier expressions are often non-schematic in inferences.

Of course, ‘‘usually’’ and ‘‘often’’ need to be qualified. As to (I), one should note
two things. First, identity is a predicate that usually seems non-schematic; consider
inferences like the following:

(9.14) a. Alex is a horse.
b. Henry is not a horse.
c. Hence: Alex is not identical to Henry.

This is not a problem; on the contrary, it strengthens the intuition that identity is a
(logical) constant. But identity is an exception among predicate expressions; we saw
this in terms of topic neutrality (I; see Proposition 1), and we see it also in terms
of constancy.

Second, for most predicate expressions, there exist valid inferences in which they
are not schematic. For example,

(9.15) a. John is a student.
b. Hence: John is human.

14 It is not required that all occurrences of u be replaced by x; the motivation for this will appear
below. Also, we can think of x as a semantic rather than a syntactic variable, so it ranges over the
objects of the kind to which the denotation of u belongs. For example, if u is the word and, x might
range over binary truth functions, and if u is a two-place predicate expression, x might range over
binary relations of the appropriate kind.
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This is presumably valid—in the sense that the conclusion would be judged to follow
from the premise.15 John is schematic in (9.15), but student and human are not.
But the point is that there are countless other valid inferences where these words are
schematic.

As to (II), one can certainly find valid inferences where quantifier expressions are
schematic in the sense used here, but they seem to be of particular kinds. One kind is
easy to identify, and hence exclude: when a quantifier expression u in � is a proper
subexpression of another expression in � which already is schematic. For example,
the following are valid:

(9.16) a. At least two students laughed.
b. Hence: At least two students laughed or John loves Mary.

(9.17) a. Mary is taller than Bill, and Bill is taller than Sue.
b. Hence: Mary is taller than Sue, or at least two students laughed.

In both of these, at least two is schematic: it can be replaced by any other determ-
iner without affecting validity. But these inferences are irrelevant to the issue of the
constancy of at least two, since the following are also valid:

(i) a. ϕ

b. Hence: ϕ or John loves Mary

(ii) a. Mary is taller than Bill, and Bill is taller than Sue
b. Hence: Mary is taller than Sue, or ϕ

We may call such occurrences of expressions in inferences spurious. Disregarding
inferences where the expression in question has spurious occurrences is one way of
focusing on relevant inferences. This effect is also seen in the following fact.

(9.18) If an occurrence of u is a proper subexpression of a redundant premise in �,
then that occurrence is spurious in �.

This is immediate, since a redundant premise can simply be replaced by a proposi-
tional variable. We give two examples; for simplicity they are taken from logical lan-
guages. Consider first the quantifier ∃. The following is trivially valid.

(9.19) ∀X (Q xX (x) ↔ X �= ∅)
P(a)

Q xP(x)

15 It will not do to disqualify the entailment (9.15) for not being a case whose validity is a
matter of form. First, since John can be replaced by a variable, one may well say that (9.15) is valid
because of its form. Second, to rule out entailments of this particular form would presuppose that
one already had a distinction between logical and non-logical expressions. Unless one is careful,
this could be a serious case of question begging.

One may avoid question begging by imposing a criterion of logicality independent of the notion
of constancy that we are trying to delineate here. Indeed, I is such a criterion, and would nicely
rule out human and John (Proposition 1). At the moment, however, we are trying to single out
quantifier expressions—if possible—solely by their behavior in intuitively valid inferences, without
involving other criteria.
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Now replace Q by ∃:

(9.20) ∀X (∃xX (x) ↔ X �= ∅)
P(a)

∃xP(x)

In (9.20), we can replace ∃ by a (quantifier) variable while preserving validity: ∃ is
schematic. However, the first occurrence of ∃ in (9.20), but not the second, is spuri-
ous: the whole premise where it occurs is redundant and can be replaced by a schem-
atic variable:

ϕ

P(a)

∃xP(x)

And in this inference, ∃ is non-schematic. Here is an analogous argument concerning
the identity symbol =. Since

‘R is symmetric’
R(a, b)

R(b, a)

is trivially valid, so is

‘ = is symmetric’
a = b

b = a

where = is schematic. But again, the first premise is redundant, and its occurrence
of = spurious.

There is, however, one kind of valid inference where (standard) logical constants
are schematic without having spurious occurrences. Again we illustrate with a logical
example, even though examples from natural languages are easy to construct.

(9.21) ∃xP(x)
∀x(P(x) ↔ R(x))

∃xR(x)

Here ∃ can be replaced by any type 〈1〉 quantifier variable Q .16 (9.21) is an extension-
ality claim: only the extension of the arguments matters to the operators denoted by

16 Note also the following variant of (9.21):

∃xP(x)
¬∃¬x(P(x) ↔ R(x))

∃xR(x)

Here too ∃ can be replaced by Q , provided we replace the first and the third occurrence, but not
the second. This shows why we must allow the possibility, in the definition of schematicity above,
that some but not all occurrences of u are replaced; see n. 14.
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these expressions. And in every model where the premises are true, P and R have the
same extension.

Here is a final and, at first sight, not so obvious example, this time from proposi-
tional logic:

(9.22) (p ∨ r) ∧ q
¬r

p ∧ q

Now ∧ is schematic, since, for any binary truth function #, the following is valid:

(p ∨ r) # q
¬r

p # q

(9.22) is also an extensionality claim. This is because in all valuations (models) where
the premises are true, p ∨ r and p must have the same truth value, so in fact the con-
clusion results from replacing, in one of the premises, an expression with one which
has the same extension.

We have illustrated in what kind of inferences one may expect quantifier expres-
sions to be schematic, and predicate expressions (apart from identity, etc.) to be non-
schematic. Hopefully, it has become clear that these are all exceptions in one way or
another, and that the ‘‘usually’’ and ‘‘often’’ in (I) and (II) above are well motivated.
And that is the reason why we feel confident in saying that quantifier expressions are
indeed inference constant.17

Whereas Bolzano (and Tarski) started from a set of logical constants and defined
logical consequence, we start from an intuitive notion of consequence and try to
identify the constants. In this sense it is a reversal. But the underlying method is the
same: use facts about preservation of an (in principle) empirically testable property
under appropriate replacement of parts of sentences.

9.3.4 What to interpret in models

Inference constancy is not the same notion as constancy in the sense of being given by
the same rule on every universe, but we take the former to be an indication of the lat-
ter. Inference constancy relies on which expressions preserve validity under arbitrary

17 The general format of the definition of this concept is thus: u is inference constant iff it is
non-schematic in all relevant inferences. Can this be made into a precise concept? That depends
on whether we can pin down the pertinent notion of relevance. We have seen how to identify two
kinds of irrelevant inferences. If these are all there are, we could stipulate that (assuming u occurs
in �) � is relevant to u iff u has no spurious occurrences in �, and � is not an extensionality
claim about u. (The examples in the text indicate how the concept of an extensionality claim could
be precisely defined.)

To test if this works, one should at least verify that the usual logical operators in classical pro-
positional or predicate logic are indeed inference constant in this sense. (It is clear that proposition
letters, predicate symbols, and individual symbols are not inference constant.) We leave it as an
open question whether this holds or not.
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appropriate replacements. If an expression can be thus replaced, there is no fixed rule
which tells us how to interpret it. If it cannot, that might be because there is such a
rule. And appropriately replacing an expression is of course very similar to interpret-
ing that expression in different models.

We might see the two notions as a proof-theoretic and a model-theoretic version of
the same idea. Or we could see inference constancy as an empirical counterpart of the
more theoretical idea of being given by the same rule. In any case, since the inference
constancy of quantifier expressions seems indubitable, the contention that they are
constant simpliciter is reinforced. And from this it follows that these expressions are
not the kind that get interpreted in models, contrary to Barwise and Cooper’s recom-
mendation cited at the beginning of this section.

In fact, it turns out that not even Barwise and Cooper themselves followed this
recommendation. This becomes clear when one considers issues of expressivity. Bar-
wise and Cooper (1981) proved one of the first significant undefinability results about
quantifiers: namely, that most is not definable in FO(QR), i.e. FO logic with the Res-
cher quantifier added, not even over finite models (see Proposition 12 in Chapter 14).
But in this result and its proof one uses first-order models and lets both most and
the Rescher quantifier have their constant meanings, given by the familiar rules. The
result means that sentences with the determiner most cannot be expressed using
only the unrelativized version of the quantifier—an important fact about express-
ive power. All such facts are relative to a notion of synonymy (an insight we elab-
orate on in Chapter 11). And in this as well as other similar cases, the synonymy in
question is standard logical equivalence, defined as sameness of truth value in all first-
order models.

To be sure, it is possible to define a much stricter notion of logical equivalence, this
time with respect to models where certain quantifier expressions as well as predicate
expressions are arbitrarily interpreted. This is equivalence in the logic FO(q) (some-
times called weak logic), which has the same formulas as FO(Q) for a, say, type 〈1〉
quantifier Q , but with models now of the form (M, q), where M is as before, and q
is any set of subsets of M (any local type 〈1〉 quantifier on M ). So the symbol ‘‘Q ’’ is
interpreted as an arbitrary quantifier, but ∀, ∃, and the other logical symbols in FO
have their fixed standard meaning. This logic was first studied by Keisler (1970), who
proved a completeness theorem for it.18 Sentences which are equivalent in this sense
are also logically equivalent in the usual sense, so FO(q)-equivalence refines standard
equivalence. Therefore, the Barwise and Cooper result transfers to it too: no FO(q)-
sentence can define most. But that result is weaker, and certainly not as interesting
from a linguistic perspective, precisely because a notion of synonymy wherein quan-
tifier expressions are treated as variable or schematic has no intuitive counterpart in

18 See also Westerståhl 1989: appendix B, for an overview. Keisler’s result was just a preliminary
step towards his proof that the logic FO(Q 1), where Q 1 means ‘there exist uncountably many’, had
a simple, complete axiomatization. But it is interesting to note that the only new axioms required
for FO(q) are precisely extensionality claims in the sense of the previous subsection (plus axioms
permitting change of bound variables).
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natural languages. Significantly, it is not this result that Barwise and Cooper state and
prove, but the result with fixed quantifiers and first-order models.

Granted, then, that quantifier expressions should not be interpreted in models,
this is further evidence for the adequacy of choosing the class of first-order models
(models in which only predicate expressions and individual-denoting expressions are
interpreted) in an account of quantification in natural languages (see Chapter 2.1).
The choice of models obviously affects the notion of logical equivalence: having the
same truth value in all (those) models. We shall use ‘‘logical equivalence’’ for same-
ness of truth value in all first-order models. Someone who insists that, say, most is
not a logical quantifier might deplore this terminology; for example, in her view (9.9)
above is not a case of logical consequence. That is, she wants to reserve ‘‘logical con-
sequence’’ or ‘‘logical equivalence’’ for a more restricted relation, one that refines
our notion.

We think that this is mostly a terminological question, and we have clearly
stated how these terms are used here. (More about logical equivalence will follow in
Chapters 11.3.2 and 12.1.) But for results about expressive power there is an import-
ant point in using the least refined version of logical equivalence. We already indic-
ated this in connection with Barwise and Cooper’s result above, and we will explain
the underlying mechanism in detail in Chapter 12.5.

9 .4 LOGICAL CONSTANTS

Is it thus the case that logical constants are simply expressions that are logical and con-
stant in our sense? Perhaps, but we have not defined logicality, or even claimed that it
can be defined; we only said that topic neutrality, i.e. I, is a necessary condition.

9.4.1 Logic versus mathematics

As to logicality conditions in addition to I, a common line of argument is that
essentially mathematical notions are not logical; in particular, logic should not rely on
facts about which sets exist. We already mentioned this in connection with FO∞,∞
and second-order logic in section 9.1.2 above, but let us restate the point, since it is
an important though difficult one.

Logic, according to this idea, has no subject-matter, but mathematics does: num-
bers, sets, functions, geometrical objects, etc. The truths of mathematics are neces-
sary—since mathematical objects are abstract and independent of the material
world—but not logical. The border line is not clear, though. For example, if iden-
tity is a logical notion, each finite number is characterizable in FO (in the sense that
each quantifier ∃=n is definable there). So at least things like

if A has five elements and B has three elements, some things in A are not in B

will then come out as logical truths, although they seem to involve numbers. Similarly
for

if A is a subset of B and B is a subset of A, then A = B
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However, these borderline cases are perhaps not very serious, since there is no con-
troversy at all about finite numbers and their properties, or about the subset relation.
Things get more complicated when mathematical objects whose existence is not clear
are involved. A paradigmatic case is size comparisons between infinite sets.

Such comparison essentially involves the existence of functions. To say that B has
at least the size of A is to say that there exists a one–one function from A to B. To
say that B has more elements than A is to say in addition that there is no one–one
function in the other direction. But which functions are there, really? One would
think that set theory gives the answer, but in fact all current set theories leave open
important questions about size comparison (such as the Continuum Hypothesis),
and there is no unanimity about if and how these gaps should be filled. Most logicians
conclude—though there are exceptions—that size comparison between infinite sets
clearly belongs to mathematics, not logic.

For quantifiers, special conditions that in various ways try to separate the math-
ematical from the logical have been proposed. The idea of using conditions involving
size comparison for this purpose was proposed by van Benthem (1986); an overview
can be found in Westerståhl 1989. We furthermore mentioned Feferman’s condition
H (section 9.1.2) with its drastic consequences. It has to be said that choosing
between these criteria feels more like stipulation than discovering the truth. And per-
haps that is precisely as it should be.

9.4.2 Isom + Ext

On the bright side, we do have two precise and informative requirements on logical
constants: namely, I and E. Also, we proposed certain universal generalizations
concerning the distribution of these properties: for I the claims (A) and (B) in
section 9.2 above, and for E the universal (EU) in Chapter 4.5.3.

Interestingly, the two characteristics appear to single out very much the same
expressions, although they are based on quite different intuitions. I is necessary,
but probably not sufficient, for logicality, and E is sufficient, but not necessary, for
constancy. But, as (EU) says, the exceptions to E appear to be few and of the same
kind. If we somehow disregard those, we can think of I + E as a necessary prop-
erty of logical constants. We end by observing that this combined condition can be
expressed as a simple strengthening of I.

Recall Feferman’s way of strengthening I by postulating invariance for arbit-
rary surjections, rather than bijections (section 9.1.3). Now, another obvious way to
weaken the requirement on the mapping is to allow it to be an injection (i.e. one–one
but not necessarily onto). Call the resulting invariance condition I.19 This works
for objects of any type; for a generalized quantifier Q of type 〈n1, . . . , nk〉, it can also
be expressed as follows:

(I) if f is an injection from M to M ′, and Ri ⊆ Mni for 1 ≤ i ≤ k, then
Q M (R1, . . . , Rk) ⇔ Q M ′ ( f (R1), . . . , f (Rk))

19 Lifting injections from M to M ′ to injections from objects of type τ over M to objects of
type τ over M ′ requires only small changes to the definition given in n. 2.
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Then we have (for arbitrary types):

Proposition 3
I is equivalent to I + E.

We leave the (easy) proof as an exercise.



10
Some Polyadic Quantifiers of Natural

Language

In this chapter we look at some instances of polyadic natural language quantifiers,
beginning in section 10.1 with the most common way of combining monadic quan-
tifiers, in ordinary clauses with more than one noun phrase: iteration. Such com-
bination does not really lead outside the class of monadic quantifiers, but the iter-
ation operation has interesting properties both from a logical and a linguistic point
of view. Another operation, cumulation, which is also monadically expressible, is
also mentioned.

Each of the remaining three sections deals with an operation that lifts monadic
quantifiers to irreducibly polyadic ones. Section 10.2 discusses resumption: i.e. apply-
ing monadic quantifiers to pairs, triples, etc. rather than to individuals, as can be
done with certain instances of adverbial quantification. Section 10.2.1 reviews the
(mainly linguistic) issue of what resumption has to do with ‘donkey’ anaphora,
and section 10.2.2 gives some useful (mainly logical) characterizations of resumptive
quantifiers in terms of certain properties.

Section 10.3 very briefly discusses the putative examples of branching quantifica-
tion in natural languages that were mentioned already in Chapter 2.5.2. Section 10.4,
finally, looks at reciprocals. We indicate a uniform approach to various kinds of recip-
rocal quantification, and end with a suggested semantic interpretation rule that works
for reciprocal predicates (helped each other study for the exam) and collect-
ive predicates (gathered for the protest) alike—indeed, the only occasion in
this book where we touch upon the issue of collective quantification.

Proofs that these three lifts do transcend monadic quantification will be given in
Chapter 15. We are taking these three as typical examples here, but note that several
other cases of polyadic natural language quantification have been suggested in the lit-
erature (see Keenan and Westerståhl 1997 for some further examples).

10 .1 ITERATION

Noun phrases and determiners occur not only as subjects in quantified sentences, but
as objects, in prepositional phrases, in subordinate clauses, etc. Consider

(10.1) John recognized all but four dogs.
(10.2) Two critics reviewed most films.
(10.3) At most three boys gave more dahlias than roses to Mary.



Some Polyadic Quantifiers 347

In each of these cases, the truth conditions of the sentence could be described with
a polyadic quantifier. Using our convention that when R is a binary relation, Ra =
{b : R(a, b)}, we would have (suppressing the universe):

(10.1)′ Q 1(A, R) ⇐⇒ |A − Rj| = 4. (type 〈1, 2〉)
(10.2)′ Q 2(A, B, R) ⇐⇒ |{a∈A : |B ∩ Ra| > |B − Ra|}| = 2 (type 〈1, 1, 2〉)
(10.3)′ Q 3(A, B, C , R) ⇐⇒

|{a∈A : |{b∈B :R(a, b, m)}|> |{b∈C :R(a, b, m)}|}| ≤ 3 (type 〈1, 1, 1, 3〉)
However, each of these can also be obtained by one and the same operation from

the usual monadic quantifiers: Ij , Im, all but four, two, most, at most three, more−than.
Describing them in this way is preferable, since it allows a compositional semantics,
as well as a straightforward account of (some of) the ambiguity in such sentences. The
operation is called iteration, and can be defined in the following way.

Let UN (‘unary’) be the class of quantifiers of type 〈n〉 for some n. It is enough,
as we will soon see, to define iteration for arbitrary quantifiers in UN. The iteration
operation has two arguments, but it can be repeated: applying it to two type 〈1〉 quan-
tifiers yields a type 〈2〉 quantifier, but this can in turn be iterated with a type 〈1〉
quantifier, resulting in a type 〈3〉 quantifier, etc. That is why UN is the smallest class
of quantifiers which is closed under iteration.

We generalize the notation Ra as follows: If R is (n + k)-ary, and a1, . . . , an are
individuals,

Ra1,...,an = {(b1, . . . , bk) : R(a1, . . . , an, b1, . . . , bk)}
One easily verifies that

(10.4) (Ra)b = Rab

iteration

Suppose Q 1 is of type 〈n〉 and Q 2 of type 〈k〉. It(Q 1, Q 2), also written Q 1 ·Q 2,
is the type 〈n + k〉 quantifier defined, for any M and any R ⊆ Mn+k, by (suppress-
ing M ):

(10.5) It(Q 1, Q 2)(R) ⇔ Q 1 ·Q 2(R) ⇔ Q 1({(a1, . . . , an) : Q 2(Ra1,...,an )})

The first thing to observe is that iteration is associative:

(10.6) (Q 1Q 2)Q 3 = Q 1(Q 2Q 3)

(The · is suppressed whenever convenient.) This follows using (10.4). Thus, paren-
theses are not needed, and we may write without ambiguity

Q 1Q 2 . . . Q n

As an initial example, we see that the truth conditions for John likes Mary are
obtainable as the iteration of Ij and Im (in that order):

IjIm(like) ⇐⇒ Ij({a : Im(like a)} ⇐⇒ like( j, m)
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Similarly, we could analyze the sentence Henry respects policemen by
means of Ih · policemen pl(respect), and construe John introduced Mary to
Peter as IjImIp(introduced to). Here are a few general facts about the iteration
operation.1

Fact 1
(a) If Q 1, Q 2 are I (E ), so is Q 1Q 2.

(b) Iteration interacts with inner and outer negation as follows:
(i) ¬(Q 1Q 2) = (¬Q 1)Q 2 (ii) (Q 1Q 2)¬ = Q 1(Q 2¬) (iii) (Q 1¬)(¬Q 2) =
Q 1Q 2 and consequently (iv) (Q 1Q 2)d = Q d

1Q d
2

The facts in (b) systematize various equivalences between sentences in natural lan-
guages. For example, (iii) explains why the following two sentences are equivalent (see
also the end of this subsection):

(10.7) a. Each critic reviewed at most three films.
b. No critic reviewed more than three films.

A number of logical questions about iteration arise naturally. One such question
is to what extent an iteration determines its components. The sentences in (10.7)
show that the components cannot be completely determined, because of facing neg-
ations. Another problem is that if one component is trivial (on M ), the whole iter-
ation becomes trivial. But these are the only obstacles: slightly generalizing a Prefix
Theorem in Keenan 1993, Westerståhl (1994) proves that if

(Q 1 . . . Q k)M = (Q ′
1 . . . Q ′

k)M

holds, where all Q i, Q ′
i are of type 〈1〉, non-trivial on M , and balanced on M in the

sense that (Q i)M (∅) ⇔ (Q ′
i)M (∅) (this is what avoids facing negations), then

(Q i)M = (Q ′
i)M

for each i. (There is also a global version of this result.)
Another issue is when the order among the quantifiers is important. More precisely,

for which Q 1, Q 2 does the following hold for every binary relation R? (We assume
that Q 1, Q 2 are of type 〈1〉, for simplicity.)

(10.8) a. Q 1Q 2(R) �⇒ Q 2Q 1(R−1) (scope dominance)
b. Q 1Q 2(R) ⇐⇒ Q 2Q 1(R−1) (order independence)

1 Westerståhl 1994 is a general study of iteration and its properties. A more general perspective
is taken in Keenan and Westerståhl 1997: from the functional perspective of generalized quantifiers
(Ch. 3.1.3), a type 〈n〉 quantifier Q can be seen as an arity reducer or a relation reducer: if R is
(n + k)-ary, Q(R) = {(a1, . . . , an) : Q(Ra1,...,an )} is an n-ary relation, so Q reduces the arity of R
from n + k to n. The point of this is that there are arity reducers in natural languages other than
quantifiers, one example being the English reflexive self (R) = {a : R(a, a)}.
(i) John criticized himself.

can be obtained by composing Ij with self : Ij self (criticized ) ⇔ criticized ( j, j). Here we restrict
attention to iteration of quantifiers.
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Note that we must use R−1 on the right-hand side, since, by definition, the first argu-
ment of the relation is linked to Q 1 and the second to Q 2. This becomes clearer if
one writes the iteration in logical notation. Definition (10.5) then becomes

Q 1Q 2xyR(x, y) ⇐⇒ defQ 1xQ 2yR(x, y)

so the properties above are

(10.9) a. Q 1xQ 2yR(x, y) �⇒ Q 2yQ 1xR(x, y) (Q 1 dominates Q 2)
b. Q 1xQ 2yR(x, y) ⇐⇒ Q 2yQ 1xR(x, y) (the pair (Q 1, Q 2) is independ-

ent)

For example, ∃ dominates ∀, but not vice versa. (Order) independence holds when
Q 1 = Q 2 = ∀, or Q 1 = Q 2 = ∃, but fails when, for example, Q 1 = Q 2 = ∃=3
(or ∃≤3, or ∃≥3, or Q R). Another case of independence is when one of the quantifiers
is a Montagovian individual; one easily shows that

(10.10) Every pair (Q , Ia) is independent (for arbitrary Q , and assuming a ∈ M ).

Zimmermann (1993) calls quantifiers satisfying this condition scopeless, and proves
that the Montagovian individuals are in fact the only examples.

The latter result is one of several attempting to characterize the scope dominant or
independent pairs. For example, Westerståhl (1986) showed that

(10.11) On each finite universe M , if Q 1, Q 2 are non-trivial, P, upward mono-
tone, and if Q 1 dominates Q 2, then either Q 1 = ∃ or Q 2 = ∀. Thus, if in
addition (Q 1, Q 2) is independent, Q 1 = Q 2 = ∃ or Q 1 = Q 2 = ∀.2

This has been generalized in several ways. Altman, Peterzil and Winter (2005) give
a characterization of the upward monotone cases of scope dominance that holds on
countable universes and does not assume P (thus allowing quantifiers like Ia).
It follows from that characterization that (10.11) holds for countable universes too
(under P); indeed, it seems likely that it holds for arbitrary universes. Ben-Avi
and Winter (2005) instead consider the case when Q 1 is upward monotone and Q 2
downward monotone, as in the following instance of scope dominance:

(10.12) Q Rx(¬∃)yR(x, y) �⇒ (¬∃)yQ RxR(x, y)

Under these monotonicity assumptions, they give a complete characterization (with
or without P) of scope dominance over finite universes. The influential paper van
Benthem 1989 brought up a number of questions about iteration and proved various
results, among them a strengthening of Zimmermann’s theorem: Montagovian indi-
viduals are in fact the only (non-trivial) quantifiers that dominate arbitrary quantifiers.

If the monotonicity requirement is dropped, there are two rather curious further
examples of independence assuming P, besides the ones mentioned in (10.11):
namely, Q 1 = Q 2 = Q odd and Q 1 = Q 2 = Q even. This is because

Q oddx Q oddy R(x, y)

2 The restriction to a given universe is necessary. For example, if Q 1 = Q 2 = ∀ on odd-
numbered universes and = ∃ on other universes, then (10.9b) clearly holds.
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in fact says (on finite universes) that the number of pairs in R is odd, so
Q oddy Q oddx R(x, y) makes the same claim about R−1, which of course is equival-
ent.3 It might well be true that these are the only other non-trivial and P cases
satisfying (10.1) on a given (finite) universe.

Westerståhl (1996) has a complete solution of the scope dominance problem
(without extra assumptions) for the case when Q 1 = Q 2. Such quantifiers were
called self-commuting by van Benthem, and it follows from this result that the only
non-trivial and P self-commuting quantifiers are indeed ∀, ∃, and, if the universe
is finite, Q odd and Q even (on infinite universes only ∀ and ∃ work).4 As far as we
know, the question of a general characterization of the independent (or, better, scope-
dominant) pairs is still open.

Returning now to the interpretation of sentences (10.1)–(10.3), they can be dealt
with directly with iteration as defined above, if one uses the type 〈1〉 quantifiers res-
ulting from freezing the relevant restriction arguments. Thus, one sees that the truth
conditions (10.1)′ –(10.3)′ can be expressed as follows:

(10.1)′′ Q 1(A, R) ⇐⇒ Ij ·(all but four)A(R)
(10.2)′′ Q 2(A, B, R) ⇐⇒ two A ·most B(R)
(10.3)′′ Q 3(A, B, C , R) ⇐⇒ (at most three)A·(more−than)B,C ·Im(R)

This gives an elegant compositional analysis of sentences of these forms.5 Without
going into details of meaning assignment and syntactic structure, the point is that
for such sentences, each noun phrase can be dealt with separately, bringing its own

3 Q evenx Q eveny R(x, y), on the other hand, says that |R| is even, if |M | is also even, but that |R|
is odd, if |M | is odd. The claim about Q odd is verified as follows. Note first that R = ⋃

a∈M {(a, y) :
y ∈ Ra}, and hence, if M = {a1, . . . , am},
(i) |R| = |Ra1 | + . . . + |Ram |
Then one calculates:

|R| is odd ⇔ |Ra1 | + . . . + |Ram | is odd

⇔ |{a ∈ M : |Ra| is odd}| is odd

⇔ Q oddQ odd(R)

The case of Q even is similar.
4 The theorem is that on a given universe M , Q is self-commuting iff it is either a union or

an intersection of Montagovian individuals (of the form Ia with a ∈ M ), or a finite symmetric
difference of such individuals, or the negation of such a symmetric difference. (The symmetric
difference of two sets X and Y , X � Y , is (X − Y ) ∪ (Y − X ). Since X � (Y � Z ) = (X � Y ) �
Z , the notion of a finite symmetric difference X1 � . . . � Xk makes sense.) Note that this covers
Q = ∃M = ⋃

a∈M Ia and Q = ∀M = ⋂
a∈M Ia.

5 Along these lines one may extend the iteration operation to quantifiers of type 〈1, . . . , 1, k〉.
Since the last argument is the scope, and the others are restrictions, conservativity and intersectivity
may be defined for such quantifiers (see Ch. 4.7), and one can see that these properties are preserved
under iteration: if the arguments are C (I), so is the iteration. Also, many of the technical
results about scope mentioned earlier have versions specially adapted to the case where Q 1, Q 2
result from freezing the restriction arguments of type 〈1, 1〉 quantifiers; e.g. such quantifiers are not
P, but one can often get by assuming that the corresponding type 〈1, 1〉 quantifiers are P
or I instead. See Westerståhl 1994.
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contribution to the meaning of the sentence, irrespective of what the other noun
phrases mean.

Moreover, their scope ambiguities correspond simply to the order of iteration.
(10.1) is not ambiguous, and, as we noted above, this is reflected in the fact that
Ij ·(all but four)A(R) is equivalent to (all but four)A ·Ij(R−1); i.e. that Ij is scopeless.
The two possible orders in (10.2) correspond to the readings where each of the two
critics reviewed most films, and where each of a large number of films was reviewed
by two critics, respectively. So scope order is the same as iteration order, and results
about scope dominance and independence like those mentioned above are directly
relevant to linguistic issues concerning which readings are possible for this kind of
sentence.

There is also a third reading of (10.2): the cumulative reading, which says that there
were two film-reviewing critics and that most films were reviewed by one of those two.

In general, we can define the cumulation (Q 1, Q 2)cl of two type 〈1〉 quantifiers Q 1
and Q 2 as follows (using logical notation):

(10.13) (Q 1, Q 2)clxyR(x, y) ↔ Q 1x∃yR(x, y) ∧ Q 2y∃xR(x, y)

So (Q 1, Q 2)cl is a conjunction of iterations, but is not itself an iteration; in fact,
Westerståhl (1994) proves that (disregarding trivial cases) it is an iteration if and only
if Q 1 = Q 2 = ∃. In particular, the cumulative reading of (10.2) is distinct from the
two iterative readings.

For (10.3), finally, we see, using the scopelessness of Ij, that there are two
iterative readings, the second one (the one where (more−than)B,C comes before
(at most three)A) saying that more dahlias than roses have the property of being given
to Mary by at most three boys. This is a very implausible reading of that sentence, of
course, since normally a flower can be given only once. But the implausibility comes
from facts about the world, not from the structure of the sentence. There may also be
a cumulative reading here; we leave it to the reader to formulate such a reading.

The smooth compositional analysis of sentences like (10.1)–(10.3) shows that
polyadic quantification can and should be avoided here. As van Benthem (1989) puts
it, they are safely inside the ‘‘Frege boundary’’ where monadic quantifiers are all you
need. Other cases, like the cumulative reading of (10.2), are perhaps located on that
boundary: they use Boolean combinations of iterations. Such sentences will be called
unary complexes; we restrict attention to type 〈2〉 quantifiers.6

unary complexes

A quantifier Q of type 〈2〉 is a unary complex iff there is a Boolean combination �

of iterations of the form Q 1Q 2(R) and inverse iterations of the form Q 3Q 4(R−1),
such that for all R, Q(R) ⇔ � (suppressing the universe as before). Q is a right
complex (left complex) if only iterations (inverse iterations) are used.

6 That term too is from van Benthem 1989, though he uses it for what we call right complexes
below.
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One reason to include inverse iterations is that sentences denoting iterations can be
ambiguous, so one may want access to both readings. Also, we said that cumulations
are unary complexes, but note that definition (10.13) uses both ‘straight’ and inverse
iterations.

As another example, it is proved in Westerståhl (1994) that Res2(∃≥2), the quanti-
fier that says of a binary relation R that it contains at least two pairs, is not an iteration,
but is a right complex. In the next section we discuss such resumptive quantifiers fur-
ther. Together with some other quantifiers to be discussed later in this chapter, they
exemplify natural language quantifiers that are way beyond the Frege boundary.

10 .2 RESUMPTION

In Chapters 0.1 and 4.1 we noted that, particularly in certain cases of adverbial quan-
tification, ordinary natural language quantifiers are sometimes applied to tuples of
individuals rather than to individuals. This was first observed by Lewis (1975); wit-
ness examples like

(10.14) a. Men are usually taller than women.
b. Men seldom make passes at girls who wear glasses. (Dorothy Parker)
c. People usually are grateful to firemen who rescue them.

In effect, this means that we are lifting a monadic quantifier Q of type 〈1, . . . , 1〉 to
a quantifier Resk(Q) of type 〈k, . . . , k〉. Put differently, we employ a monadic quan-
tifier to bind multiple variables simultaneously, in order to quantify over tuples. This
operation is called resumption, and the resulting polyadic quantifiers will be called
resumptive quantifiers. Another term is vectorized quantifiers; this is often used when
generalized quantifiers figure in the study of computational complexity in computer
science, where resumption is an expressive resource that often comes in handy (see
Ebbinghaus and Flum 1995).

Resk(Q) is just the old Q , but applied to universes Mk containing k-tuples (vectors)
of individuals. Like every quantifier, Q is defined over all universes, including those
of the form Mk. But over the universe M it is a polyadic quantifier. Let us state the
formal definition.7

resumption

Let Q be any monadic quantifier, of type 〈1, . . . , 1〉 with n arguments, and let
k ≥ 1. For any universe M , and any R1, . . . , Rn ⊆ Mk,

Resk(Q)M (R1, . . . , Rn) ⇐⇒ Q Mk (R1, . . . , Rn)

Note that Res1(Q) = Q .

7 Actually, resumption can be applied to quantifiers of any type, roughly by replacing each
individual variable by a k-tuple of new variables. We shall only discuss resumption of monadic
quantifiers here.
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In some natural language cases, Q is of type 〈1, 1〉 and the first argument of Resk(Q)
is a Cartesian product A1 × · · · × Ak. In (10.1b), for example, the first argument is
the product of the set of men and the set of girls wearing glasses, whereas the second
argument is the relation make passes at. But not always; (10.1c) expresses a relation
between the set of pairs of a person and a fireman such that the latter rescues the
former, and the set of pairs where the first element is grateful to the second.

The simplest resumptions of type 〈k〉 are Resk(∀) and Resk(∃). These are also
iterations: Resk(∀)x1 . . . xkR(x1, . . . , xk) is equivalent to ∀x1 . . .∀xkR(x1, . . . , xk), and
simply says that R is the universal relation (over M ): every k-tuple belongs to it.
Similarly, Resk(∃) = ∃ · . . . · ∃ (k factors) says of R that it is non-empty. But usually
resumptions are not iterations; in fact, Westerståhl (1994) proves that, for I Q
of type 〈1〉, and over finite universes, Resk(Q) is an iteration of k type 〈1〉 quantifiers
if and only if, on each M where it is non-trivial, it is either Resk(∀) or Resk(∃) or
Resk(Q odd), or a negation of one of these.8 We come back to issues of the expressive
power of resumption in Chapter 15.5.

In this section we discuss two aspects of resumption, one linguistic and the other
logical. First, we look a little more closely at quantificational adverbs, and at a sugges-
tion that resumption figures in the analysis of so-called ‘donkey’ sentences. Then we
discuss some logical properties of resumptions, and in particular show that resump-
tions can be neatly characterized in terms of certain of those properties.

Before we begin, however, let us go back to typical cases of adverbial quantifica-
tion like those in (10.1), and see if they really have resumptive readings. In fact, some
people find this doubtful, partly for one of the following two reasons: It is argued
that (a) these sentences actually quantify over events or situations and should be ana-
lyzed along those lines, or (b) that the resumptive truth conditions simply aren’t the
right ones.

As to (a), the issue of the extent to which events or similar entities should be used in
natural language semantics has been a complex and controversial one, ever since Dav-
idson (1967) first suggested that many sentences existentially quantify over events,
among other things in order to have Harry runs follow logically from Harry runs
fast.9 This is not the place to get into that debate, but we can make the observation
that if the sentences in (10.14) are taken to quantify over events or situations, these
are bound to contain the very elements (men, women, girls with glasses, etc.) of the
tuples that the resumptive quantifier would quantify over. So applying e.g. most to
events is in fact rather similar to applying it to ordered tuples, and in particular would
not give the truth conditions of standard iterative quantification. We can therefore
concentrate here on the objection (b), which seems to say that some such standard
truth conditions do capture the meaning of these sentences.

8 I is a necessary requirement here; note that e.g. Ia · Ib = Res2(I(a,b)).
9 This follows if the conclusion is taken as ∃e(e is an event of running and the agent of e is

Harry and e is fast), and similarly for the premise. If adverbs like fast are treated simply as verb
modifiers, on the other hand, it is difficult to get this entailment.
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Take (10.14a). In this case an event analysis doesn’t seem to be called for. Is the
resumptive reading an option? Consider some possible iterative alternatives. It seems
clear that (10.14a) does not imply

(10.15) Most men are taller than all women.

so we can rule out that sentence. Likewise, it seems pretty obvious that (10.14a)
implies, but is not implied by

(10.16) Most men are taller than some women.

Perhaps the most likely alternative is something like

(10.17) Most men are taller than most women.

Let us for the moment interpret most as more than 75 percent of the, to make the
example more realistic. Now consider a small country where there are 100,000 men
and 100,000 women, and 70,000 men are taller than all of the women, but each of
the remaining 30,000 men is only taller than 70,000 women. Also, no woman has the
same height as any man. It seems to us that (10.14a) is then clearly true. But (10.17)
is definitely false in this situation. It is not true that more than 75 percent of the men
are taller than more than 75 percent of the women. (Nor is the narrow scope reading
of (10.17) true.) However, of the 10 billion man–woman pairs, 9.1 billion are in the
taller than relation. This seems to us like fair evidence that readings where the number
of pairs is what counts, in particular resumptive readings, do occur.10

10.2.1 Quantificational adverbs and ‘donkey’ anaphora

Can determiners ever express resumptive quantification like some adverbs are able
to? Kamp (1981) and Heim (1982) proposed that determiners can indeed do this.
They were responding to a problem pointed out by Geach (1962) about the standard
interpretation of anaphoric pronouns having a quantified noun phrase as antecedent.
Anaphoric pronouns inside the scope or restriction of a quantified antecedent can be
treated as relation reducers in a now familiar way. As Quine (1960) suggested, they
function, like bound variables, to insure that several argument positions of a relation
are filled identically, thereby reducing the arity of the relation.

In some sentences, however, a pronoun that is anaphoric to a quantified antecedent
does not function in this way. Geach argued that

(10.18) Every farmer who owns a donkey beats it.

10 We are not denying that sentences like these can be vague, and that the resumptive reading
may give idealized truth conditions. But vagueness besets iterative quantification too. Our claim is
still that the resumptive truth conditions often come much closer to intuitions than any iterative
ones. Likewise, we don’t deny that adverbial quantification can sometimes have generic or ‘average’
readings (the typical man is taller than the typical woman). Nor do we deny that quantification
over events sometimes seems quite plausible: e.g. Dogs usually bark at cats (but as we noted,
this does not give iterative truth conditions). We merely claim, with Lewis (1975), that resumptive
readings exist.
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makes a universal assertion, so the scope of the existential quantification expressed by
a donkey is not wider than that of the universal quantification every farmer who
owns a donkey expresses,11 and specifically the assertion is that every farmer who
owns a donkey beats every donkey he owns. The standard treatment of anaphoric
pronouns with quantified antecedents does not provide this interpretation. Analysis
(10.19b) gives wide scope to the existential, not the universal, quantifier, and ana-
lysis (10.19a) leaves the variable y corresponding to the pronoun it unbound, thus
failing to require that what each farmer beats is even a donkey, let alone one he or
she owns.

(10.19) a. every x (farmer(x) ∧ some y (donkey(y), owns(x, y)), beats(x, y))
b. some y (donkey(y), every x (farmer(x) ∧ owns(x, y), beats(x, y))).

10.2.1.1 ‘Donkey’ pronouns and resumptive quantification

Kamp (1981) and Heim (1982) proposed that in (10.18) and other sentences of the
form

(10.20) Q A that R a B R′ it

the quantifier Q is interpreted resumptively. Specifically, they assign (10.18) the
interpretation

(10.21) Res2(every)xy(farmer(x) ∧ donkey(y) ∧ owns(x, y), beats(x, y))

and each sentence of the form (10.20) the interpretation:

(10.22) Res2(Q)xy(A(x) ∧ R(x, y) ∧ B(y), R′(x, y))

Their individual approaches to accomplishing this are not the same, but share the
common feature of not interpreting the indefinite article a as a quantifier, in effect
leaving the variable y over donkeys (Bs) free to be bound by the (resumptive) quanti-
fier every (Q) along with the variable x over farmers (As) that own (R) y. The decision
not to interpret a as a quantifier is supported by the article’s apparent lack of quanti-
ficational force in sentences with adverbial quantification such as (10.23a, b).

(10.23) a. A quadratic equation often has two distinct solutions.
b. Before 1914 a car seldom had an electric starter.

This approach interprets Geach’s sentence (10.18) as he said it should be inter-
preted, and likewise interprets similar sentences (10.24a, b)
(10.24) a. Some New Yorker who bought a lottery ticket lost it.

b. No actor who insults a critic is favorably reviewed by him.
as most people feel is natural; i.e. as

11 Analysis (10.19b) says that some donkey has the property that every farmer who owns it beats
it, which would, for instance, absurdly be made true vacuously by the existence of a wild donkey,
which is not owned by any farmer. Moreover, if two donkeys are owned, say by different farm-
ers, and one of the donkeys is beaten by the farmer who owns it, that fact does not suffice to
make (10.18) true, but it does satisfy (10.19b).
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(10.25) a. Res2(at least one)xy(New Yorker(x) ∧ bought(x, y) ∧ lottery ticket(y),
lost(y, x))

b. Res2(no)xy(actor(x) ∧ insults(x, y) ∧ critic(y), reviews favorably(y, x))

which have the truth conditions (10.26a, b).

(10.26) a. At least one New Yorker who bought at least one lottery ticket lost at
least one lottery ticket that he or she bought.

b. No actor who insults one or more critics is favorably reviewed by any
critic that he insults.

Does this analysis assign the right truth conditions to all ‘donkey’ sentences, i.e.
sentences of the form (10.20)? The answer is generally negative, and for two distinct
reasons. For one thing, it gets sentences like (10.27)–(10.29) wrong.

(10.27) At least two farmers who own a donkey are happy.

(10.28) At least two farmers who own a donkey beat it.

(10.29) Most farmers who own a donkey beat it.

As Partee pointed out, statement (10.27) is false if Jones and Smith are the only
existing farmers, farmer Jones is unhappy, and farmer Smith is happy. However, the
resumptive quantification analysis that Kamp’s and Heim’s rules give (10.27) would
make it true if farmer Smith owns at least two donkeys, despite the obvious irrel-
evance of this fact to the truth value of statement (10.27).12 Likewise, Kanazawa
(1994) pointed out that (10.28) is false if farmer Jones doesn’t beat the one donkey he
owns, while farmer Smith beats both of his donkeys (again assuming no other farm-
ers exist). Rooth (1987) drew attention to the corresponding failure of Kamp’s and
Heim’s resumptive quantification analysis for (10.29). These examples illustrate what
has become known as the proportion problem. Far from being exceptional, this prob-
lem arises for almost all quantifiers in the ‘farmer’ position of ‘donkey’ sentences. Van
der Does (1996), who deals with several of the issues discussed here, gives a charac-
terization of the quantifiers for which the proportion problem for the corresponding
‘donkey’ sentences does not arise: essentially these are just the quantifiers every, no,
some, and not every.

12 Note that the interpretive rules under discussion may be needed even for sentences that do
not actually contain a pronoun anaphoric to and outside the scope of a quantified noun phrase.
For instance,

(i) Some politician who ran for a higher office won.

means that some politician who ran for a higher office won an office for which he ran. Still, as
Kanazawa (1994) pointed out in connection with (10.28),

(ii) At least two politicians who ran for a higher office won.

does not mean that at least two pairs of a politician and a higher office for which he ran are such
that he won it. For this misinterpretation could count a politician as many times as he successfully
ran for higher office, while sentence (ii)’s truth value is not affected by how many times after the
first a given politician ran successfully.
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Second, it is widely acknowledged that even for these quantifiers, sentences of the
form (10.20) can have an interpretation different from (10.22). For instance, sen-
tences (10.30a–c)

(10.30) a. Every guest who had a credit card used it to pay his hotel bill.
b. At least one boy who had an apple for breakfast didn’t give it to his best

friend.
c. No man who had a credit card failed to use it.

prefer the interpretations (10.31a–c) respectively.

(10.31) a. Every guest who had a credit card used at least one credit card that he
had to pay his hotel bill.

b. At least one boy who had an apple for breakfast didn’t give every apple
that he had to his best friend.

c. No man who had a credit card failed to use every credit card that he had.

None of these interpretations results from resumptive quantification by the quantifier
every, some (or at least one), or no.

In fact, sentences of the form (10.20) are often, though not always, ambiguous
between what may be termed strong and weak readings.

(10.32) Dstrong(Q)(A, B, R, R′) ⇔ Q(A ∩ {a : B ∩ Ra �= ∅)}, {a : B ∩ Ra ⊆ R′
a})

(10.33) Dweak(Q)(A, B, R, R′) ⇔ Q(A ∩ {a : B ∩ Ra �= ∅)}, {a : B ∩ Ra ∩ R′
a �= ∅})

We can see Dstrong as a polyadic lift, taking the type 〈1, 1〉 quantifier Q to the type
〈1, 1, 2, 2〉 quantifier Dstrong(Q), and similarly for Dweak.

Kanazawa (1994) and Chierchia (1992) argued convincingly that for every quan-
tifier Q , sentences of the form (10.20) can mean one or both of the propositions
defined in (10.32) and (10.33). Indeed, except when Q is most, in which case (10.20)
might possibly also mean

(10.34) Q(A ∩ {a : B ∩ Ra �= 0}, {a : Q(B ∩ Ra, R′
a)})

These are the only possible meanings of sentences having the form (10.20).
Now in the sentences (10.18), (10.24a), (10.24b), and others which served as

evidence supporting the resumptive interpretation (10.22) of sentences of the
form (10.20), Q was either every, some, or no. Comparing this to the strong reading
above, one easily verifies that

(10.35) When Q is every or not every,
Res2(Q)((A × B) ∩ R, R′) ⇐⇒ Dstrong(Q)(A, B, R, R′)

(10.36) When Q is some or no,
Res2(Q)((A × B) ∩ R, R′) ⇐⇒ Dweak(Q)(A, B, R, R′)

However, both of these fail for most other values of Q , and each fails for the
above values too when ‘‘strong’’ and ‘‘weak’’ are interchanged, or when the read-
ing (10.34) is used. Thus, it becomes clear that the facts which Chierchia, Kanazawa,
and others noticed about the possible interpretations of sentences of the form (10.20)
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demonstrate that only ‘accidentally’ do ‘donkey’ sentences ever express resumptive
quantification: i.e. when their quantifier is one of the few that were considered
in the research that led to proposing (10.22) as the general interpretation. So we
see that these sentences do not really demonstrate that determiners can express
resumptive quantification.

10.2.1.2 ‘Donkey’ pronouns as quantifiers

Evans (1977) had a different response to the problem Geach pointed out. He argued
that a pronoun outside the scope of a quantified noun phrase to which it is anaphoric
expresses a type 〈1〉 quantifier. In fact, the strong and weak interpretations are pre-
cisely of this sort. In the strong reading, the quantifier corresponding to it results
from every by freezing the restriction argument to the part of the antecedent quanti-
fier’s scope that lies in its restriction: B ∩ Ra. The weak reading simply employs the
quantifier some in place of every. Evans proposed using the sg, and Neale (1990) sug-
gests all ei instead. We do not evaluate these alternatives here. However, we should
mention that this approach is general in a way that the one using resumptive quanti-
fication cannot be, because ‘donkey’ sentences are instances of the more general form
(10.37a).

(10.37) a. Q 1 A that R Q 2 B R′ it

b. D(Q 1, Q 2, Q)(A, B, R, R′) ⇐⇒
Q 1(A ∩ {a : Q 2(B, Ra)}, {a : Q(B ∩ Ra, R′

a)})
(Note that Dstrong(Q 1) = D(Q 1, some, every) and Dweak(Q 1) = D(Q 1, some, some).)
Whereas Q 2 is some in ‘donkey’ sentences, in

(10.38) Everyone who owns exactly one Cadillac keeps it very clean.

Q 2 is exactly one. Although the resumptive interpretation (10.22) is completely
wrong for (10.38), this sentence like all others of the form (10.37a), including ‘don-
key’ sentences, can be interpreted using the lift in (10.34) according to the strategy
Evans proposed, where Q can be chosen to be every, some, Q 1, thesg, or allei, as turns
out to be appropriate.13 (Note that the scope of the quantifier Q introduced for the
‘donkey’ pronoun is uniquely determined, and thus the quantifier does not particip-
ate in scope ambiguities.)

We conclude that determiners cannot in fact express resumptive quantification in
English.14 In particular, sentences of the ‘donkey’ form (10.20) are not interpreted
with resumptive quantification. Nor are they support for the notion that the indefin-
ite article a does not express a quantifier.

Of course, English still has resumptive quantification; it is just expressed by
adverbs.

13 The lift defined in (10.34) determines exactly what scope is taken by the quantifier Q that
interprets the pronoun it outside the scope of its quantified antecedent Q 2(B, Ra). The strategy
of interpreting ‘donkey’ pronouns as quantifiers need not raise the specter of scope ambiguity for
these quantifiers.

14 Nor can they in any other language, so far as we know.
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10.2.2 Resumption, orientation, and tuple-isomorphisms

The resumption Resk(Q) is not only I if Q is, it is invariant under isomorphism
of k-tuples. In fact, this characterizes resumption, as we shall see. Closely related are
the so-called orientation properties of certain polyadic quantifiers introduced by van
Benthem (1989). We start with the case k = 2 and Q of type 〈1〉, and then discuss
how to generalize the results.

pair isomorphisms

Q of type 〈2〉 is closed under pair isomorphisms (satisfies 2-I) if, for any bijection
h from M2 to (M ′)2 and any R ⊆ M2,

Q M (R) ⇐⇒ Q M ′ (h(R))

where h(R) = {h(a, b) : R(a, b)}. Similarly for 2-P (let M ′ = M ). It is imme-
diate how to generalize this to k-I for any k, when Q has type 〈k, . . . , k〉.

Thus I = 1-I, and 2-I implies I, since any bijection g from M to
M ′ induces a bijection h from M2 to (M ′)2: h(a, b) = (g(a), g(b)). Similarly, (k + 1)-
I implies k-I.

Proposition 2
A type 〈2〉 quantifier is of the form Res2(Q) for some I Q, if and only if, it satisfies 2-
I. More generally, a type 〈k, . . . , k〉 quantifier is of the form Resk(Q) for some I
Q of type 〈1, . . . , 1〉 iff it satisfies k-I. Furthermore, the corresponding claims with
‘‘ I’’ replaced everywhere by ‘‘P’’ are also valid.

Proof. It is clear from the definitions that Res2(Q) satisfies 2-I when Q satisfies
I, since the behavior of Res2(Q) depends only on the behavior of Q on universes
of the form M2, and for such universes, I talks precisely about bijections mapping
pairs to pairs. By the same argument, Res2(Q) satisfies 2-P if Q satisfies P.

Now suppose Q ′ of type 〈2〉 satisfies 2-I. This means that Q ′ is given by a bin-
ary relation between cardinal numbers (also denoted Q ′):

Q ′(k, m) ⇐⇒ ∃M∃R ⊆ M2(|M2 − R| = k & |R| = m & Q ′
M (R))

(here k, m may be infinite cardinals). By 2-I it follows that if R ⊆ M2, S ⊆ (M ′)2,
|M2 − R| = |(M ′)2 − S|, |R| = |S|, and Q ′

M (R), then Q ′
M ′ (S). Hence,

Q ′
M (R) ⇐⇒ Q ′(|M2 − R|, |R|)

Now let Q be the (I) type 〈1〉 quantifier defined by the very same relation Q ′: for
all M and all A ⊆ M ,

Q M (A) ⇐⇒ Q ′(|M − A|, |A|)
Then we have Res2(Q)M (R) ⇔ Q M2 (R) ⇔ Q ′(|M2 − R|, |R|) ⇔ Q ′

M (R). In other
words, Res2(Q) = Q ′.
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If Q ′ instead satisfies 2-P, then, on every universe M , Q ′ is a binary relation
between cardinal numbers, which we can denote Q ′

M :

Q ′
M (k, m) ⇐⇒ ∃R ⊆ M2(|M2 − R| = k & |R| = m & Q ′

M (R))

The argument now proceeds as above, letting Q be given, on each M , by the rela-
tion Q ′

M .
The cases of k-I and k-P are similar. �

This proposition gives us a way of determining if a given quantifier is a resumption
or not. An even more convenient way to do the same thing, on finite universes, can
be expressed in terms of the notion of orientation (introduced by van Benthem).15

orientation

Q of type 〈2〉 is right-oriented if, for any M and any R, S ⊆ M2,

if |Ra| = |Sa| for all a ∈ M , and Q M (R), then Q M (S)

Similarly, it is left-oriented if |aR| = |aS| for all a ∈ M , and Q M (R) implies
Q M (S), where aR = {b : R(b, a)}.

For example, Q = ∀∃ is right-oriented, since Q M (R) says that Ra �= ∅ for all a ∈
M , so if |Ra| = |Sa|, then Sa �= ∅ too. But it is not left-oriented, since we can easily
have |aR| = |aS| for all a ∈ M and Q M (R), even though Sa = ∅ for some a. This
observation can be generalized. Recall the notions of a unary (right, left) complex
introduced at the end of section 10.1.

Proposition 3
Consider type 〈1〉 quantifiers satisfying P. Over finite universes, iterations of these are
right-oriented, and inverse iterations are left-oriented. Moreover, right (left) orientation
is preserved under Boolean operations on quantifiers, including inner negation and duals.
Hence, right (left) complexes are right- (left-) oriented.

Proof. An iteration has the form

(Q 1Q 2)M (R) ⇐⇒ (Q 1)M ({a : (Q 2)M (Ra)})
Now, if |Ra| = |Sa| for a ∈ M , and M is finite, it follows that |M − Ra| = |M −
Sa|. Therefore, by P, (Q 2)M (Ra) iff (Q 2)M (Sa), and hence (Q 1Q 2)M (R) iff
(Q 1Q 2)M (S). The case of inverse iterations is similar.

It is obvious that right (left) orientation is preserved under conjunction and (outer)
negation. (This holds generally, without assuming finite universes or P.) For inner
negation, we use the fact, mentioned in note 3, that

15 A model of the form (M , R) with R ⊆ M2 can be seen as a (directed) graph, and a type 〈2〉
quantifier Q as a property of graphs. Right (left) orientation then means that if (M , R) and (M , S)
are such that each node has the same out-degree (in-degree), and (M , R) has Q , then so does (M , S).
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(10.39) |R| = ∑
a∈M |Ra|

Therefore, if |Ra| = |Sa| for a ∈ M , then |R| = |S|. Moreover, if M is finite, we also
have |M2 − R| = |M2 − S|. Now

(Q¬)M (R) ⇐⇒ Q M (M2 − R)

and hence, if Q is P, right orientation follows. The argument for left orientation
is similar. �

For examples of non-orientation, consider the branching quantifiers, to be studied
in section 10.3 below. It is readily seen that these are usually neither right- nor left-
oriented. At the other extreme, however, we have resumptions.

Lemma 4
Over finite universes, resumptions of P quantifiers are both right-oriented and left-
oriented.

Proof. This follows from (10.39). As above, if |Ra| = |Sa| for a ∈ M , then |R| = |S|
and |M2 − R| = |M2 − S|, since M is finite. So if Res2(Q)M (R), then Q M2 (R),
hence Q M2 (S), since Q satisfies P, and therefore Res2(Q)M (S). The case of left
orientation is similar. �

Note, however, that the assumption of finiteness is essential here.

Example. Let N = {0, 1, 2, . . .}, R = N
2, and S = N

2 − {(i, 0) : i ∈ N}. For each
i ∈ N, Ri = N and Si = N − {0}. Thus, |Ri| = |Si| = ℵ0. Now let Q be any bin-
ary relation between cardinal numbers such that Q(0, ℵ0) holds, but Q(ℵ0, ℵ0) fails.
Q can be seen as a type 〈1〉 quantifier satisfying I (hence P), and we con-
sider Res2(Q). Since |N2 − R| = 0 and |N2 − S| = ℵ0, Res2(Q)N(R) is true, but
Res2(Q)N(S) is false.

Next we come to a more substantial observation, due to van Benthem (1989).

Lemma 5 (van Benthem)
Over finite universes, if Q is both right-oriented and left-oriented, then Q satisfies 2-
P.

Proof. The idea is that if R, S ⊆ M2, |R| = |S| (and hence |M2 − R| = |M2 − S|),
and Q M (R), then R can be transformed into S by a finite number of elementary
operations, each of which preserves membership in Q M . In detail, this is done as fol-
lows.16

R is a set of ordered pairs, or arrows. Consider the following two ways of ‘moving
an arrow’ (a, b) ∈ R:

• Replace (a, b) by (a, c) for some c ∈ M (head move), provided (a, c) is not in R.
(c = a is allowed.)

16 Since van Benthem (1989) only illustrates the proof with an example, we give a full proof
here. Impatient readers may skip it without loss.
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• Replace (a, b) by (c, b) for some c ∈ M (tail move), provided (c, b) is not in R. (c =
b is allowed.)

Note that a head move does not alter the out-degree (number of successors) of any
point, and a tail move leaves the in-degree of each point intact. Therefore, since Q
is both right- and left-oriented, if R′ results from R by one of these moves, Q M (R′)
holds. Also, |R′| = |R|. It is useful to allow one further kind of move:

• Replace (a, b) by (b, a) (‘switch’), provided (b, a) is not in R.

If R′ results from R by a switch, again Q M (R′). This is because a switch can be decom-
posed into a tail move followed by a head move, or vice versa, as follows. Suppose
R(a, b) but not R(b, a). If not R(b, b), first take (a, b) to (b, b) by a tail move (resulting
in R′′, say), and then take (b, b) to (b, a) by a head move (applied to R′′). The result is
R′. If, on the other hand, R(b, b) holds, take (b, b) to (b, a) by a head move, and then
(a, b) to (b, b) by a tail move. Again the result is R′.

Now assume that R, S ⊆ M , |R| = |S|, and Q M (R). If R �= S, there must exist
some (a, b) ∈ R − S, as well as some (c, d ) ∈ S − R (since R and S have the same
finite cardinality). We claim that R can be transformed into R′ = (R − {(a, b)}) ∪
{(c, d )} by a series of head moves, tail moves, and switches. Given that, and if R′ is
not equal to S, we keep repeating this step until we reach S.

To prove the claim about R′, distinguish the case when one of a, b is identical to
one of c, d from the case when a, b �= c, d . As a subcase of the first case, suppose
a = d . If not R(a, c), move as follows: (1) (a, b) ⇒ (a, c); (2) (a, c) ⇒ (c, a). If, on
the other hand, R(a, c) holds, do (1) (a, c) ⇒ (c, a); (2) (a, b) ⇒ (a, c). The other
subcases of the first case are similar. In the second case, consider

Subcase A: R(a, c) and R(c, a). Move (1) (c, a) ⇒ (c, d ); (2) (a, c) ⇒ (c, a); (3)
(a, b) ⇒ (a, c). This sequence of moves is legitimate and results in R′ (as is easily
seen if one draws a diagram).

Subcase B: R(a, c) and not R(c, a). Move (1) (a, c) ⇒ (c, a); (2) (c, a) ⇒ (c, d ); (3)
(a, b) ⇒ (a, c).

Subcase C : R(c, a) and not R(a, c). Move (1) (c, a) ⇒ (c, d ); (2) (a, b) ⇒ (a, c); (3)
(a, c) ⇒ (c, a).

Subcase D: Neither R(a, c) nor R(c, a). Move (1) (a, b) ⇒ (a, c); (2) (a, c) ⇒ (c, a);
(3) (c, a) ⇒ (c, d ).

This completes the proof. �

Putting together the two previous lemmas, and Proposition 2, we obtain the follow-
ing useful characterization of resumption.

Theorem 6
Over finite universes, a type 〈2〉 quantifier Q is the 2-ary resumption of a P type 〈1〉
quantifier iff Q is both right-oriented and left-oriented.
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10.3 BRANCHING

In Chapter 2.5.2 we mentioned the following sentence,

(10.40) Most boys in your class and most girls in my class have all dated each other,

suggested by Barwise (1978) as a straightforward example of a branching construction
in English that cannot be reduced to ordinary iterative quantification. Generalizing
to the branching of k M↑ type 〈1, 1〉 quantifiers, which need not be the same, the
intended truth conditions are obtained by means of the following polyadic lift to a
quantifier of type 〈1, . . . , 1, k〉. Define:

(10.41) Brk(Q 1, . . . , Q k)M (A1, . . . , Ak, R) ⇐⇒ ∃X1 ⊆ A1, . . . , ∃Xk ⊆ Ak
((Q 1)M (A1, X1) & . . . & (Q k)M (Ak, Xk) & X1 × · · · × Xk ⊆ R)

It can be shown (see Westerståhl 1994) that Brk(Q 1, . . . , Q k)(A1, . . . , Ak, R) logic-
ally implies the iteration Q A1

1 · . . . · Q Ak
k (R), as well as any iteration of these in any

order, but that even the conjunction of these iterations in general does not entail
Brk(Q 1, . . . , Q k)(A1, . . . , Ak, R). In fact, much stronger undefinability facts hold
(see Chapter 15.3).

We also noted in Chapter 2.5.2 that one issue that has been discussed is whether
branching of arbitrary generalized quantifiers can be defined. While there is no dis-
agreement about the definition when all arguments of the lift are M↑, Barwise’s
formulation even in the M↓ case has been disputed (by Sher (1997)), as well as his
claim that branching of a M↑ and a M↓ quantifier makes no sense. Westerståhl
(1987) suggested a general definition of branching of (right) continuous quantifiers
(Chapter 5.1), which entails Barwise’s (but not Sher’s) formulations in the M↑
and the M↓ case. We do not pursue this debate here, however, but will make a
few comments on the M↑ case.

What triggers the branching reading in (10.40)? That there are two NPs conjoined
with and is part of the explanation, but clearly not all of it. Consider

(10.42) Most students and at least three professors came to the meeting.

There is no temptation to read this in any other way than that most students came to
the meeting and at least three professors came to the meeting. To obtain a branched
effect, the predicate needs to be (at least implicitly) reciprocal, as in (10.40) and (the
branching reading of)

(10.43) At least three students and at least two professors are friends,

or it can be plural (collective). Compare

(10.44) Most students and at least three professors gathered for the protest.

This can hardly mean that most students gathered for the protest and at least three
professors gathered for the protest, but rather that one set consisting of most students
and at least three professors has the property gathered for the protest. The similarity



364 Quantifiers of Natural Language

between reciprocal and collective properties seems significant; we come back to it
briefly in the next section.

However, mere reciprocity may still not be enough for a branching reading. Wil-
frid Hodges has reported (personal communication) that if one changes the relation
in (10.40) to one that is not usually taken to be bipartite, as in

(10.45) Most boys in your class and most girls in my class know each other.

the most common interpretation is that there is a set consisting of most boys in your
class and most girls in my class, such that any two (distinct) members of this set know
each other. In the next section we look further at reciprocals and observe that an
expression R each other is naturally taken to predicate of a set that each two of its
members stand in the relation denoted by R to each other; e.g.

(10.46) John, Mary, and Sue know each other.

When the antecedent is quantified, as in

(10.47) Most of my friends know each other.

the set in question is one which contains most of my friends. This uses a so-called
Ramsey quantifier (see Chapter 15.4). However, the reading of (10.45) noted by
Hodges exhibits yet another mode of polyadic quantification: each NP provides a set
and know each other is predicated of their union.

As Henkin’s syntax for branching quantification nicely indicates, there is no sig-
nificant order between the branched quantifier symbols, or the NPs in the case of
natural language. The semantic counterpart of this is precisely the (order) independ-
ence that we discussed in connection with iteration in section 10.1. In the case of an
operation Lift that lifts two type 〈1, 1〉 quantifiers to a type 〈1, 1, 2〉 quantifier, inde-
pendence means that for all M , all A, B ⊆ M , and all R ⊆ M2,

(10.48) Lift(Q 1, Q 2)M (A, B, R) ⇐⇒ Lift(Q 2, Q 1)M (B, A, R−1)

When Lift is It, this holds very rarely, as we saw, but for Br2 it always holds: branching
is independent. But independence is not a sure sign of branching. There are other
independent lifts, such as cumulation; in particular, the lift suggested by (10.45) is
independent too.

Thus, several factors are needed to obtain a branching reading. We have indicated
only some of the issues here that deserve to be further studied. The main ones are
(a) whether one can find clear evidence for the correct interpretation (if there is one)
for branching of non-M↑ quantifiers; (b) how to obtain the branching readings.
The latter question concerns both what it is that triggers branching and, when it is
triggered, whether these readings can be obtained by a compositional semantic rule.

10 .4 RECIPROCALS

Virtually all languages have a special purpose means of saying that members of a group
are on a more or less equal footing as regards a relationship. In English, for example,
one can use the reciprocal expressions each other and one another to say:
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(10.49) a. John and Mary gave each other books.

b. Those guys hung out at one another’s homes throughout their child-
hood.

In this section we shall see that it is illuminating to treat reciprocals as expressing type
〈1, 2〉 quantifiers. We illustrate with a few typical cases, and refer to Dalrymple et al.
1998 for a more complete overview of reciprocal quantifiers.

10.4.1 What do reciprocals mean?

Sentences (10.49a, b) mean roughly (10.50a, b).

(10.50) a. Each of John and Mary gave the other books.

b. Each of those guys hung out at every other (one)’s home throughout
their childhood.

Generalizing, a sentence of the form

(10.51) (The) A R each other/one another

means (10.52a), that is (10.52b).17

(10.52) a. Each (of the) A R every other A
b. every x(A(x), every y(A(y) ∧ y �= x, R(x, y)))

Although a number of people (including Peters) have been tempted to try and ana-
lyze English reciprocals as if their universal quantificational force somehow derived
from the each of each other, one another is synonymous with each other
and has equally universal force despite containing one in place of each. Further-
more, both means for expressing reciprocity are completely fixed expressions, not
compositionally interpreted phrases, as is demonstrated for example by the lack of
synonymy between (10.49a) and the following.

(10.53) a. John and Mary gave every other books.
b. John and Mary gave all others books.
c. *John and Mary gave each different books.
d. *John and Mary gave each single other books.

In languages other than English, moreover, expressions synonymous with each
other often do not contain parts resembling the language’s universal quanti-
fier expression (nor its adjective meaning ‘different’). Therefore we do not think

17 Some people feel that each other and one another differ subtly in meaning. Occasionally
it is suggested that each other is used when only two people or things are involved, one another
when more than two are. Other conjectures distinguish the two reciprocal expressions by different
nuances of meaning. Dalrymple et al. (1998) examined 3,319 examples from The New York Times
and the Hector corpus (a pilot corpus for the British National Corpus), and found no differences of
grammaticality or meaning when either reciprocal expression was substituted for the other in any
example. If a difference in grammar or meaning does exist between these two English reciprocal
expressions, it is very difficult to find.
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that anything general is lost by treating reciprocal expressions as units that
semantically express type 〈1, 2〉 quantifiers, which vary little from one language to
the next.

Within each language, however, the quantifier expressed by reciprocals can vary
significantly. How equal between members of the group in question the footing must
be, figuratively speaking, can vary more than one might expect. Of course, (10.52b)
is the most common meaning of (10.51), in part because with overwhelming fre-
quency reciprocal sentences make statements about just two individuals. When more
individuals are involved, the strong interpretation (10.52b) is still very common, for
example with

(10.54) House of Commons etiquette requires legislators to address only the speaker
of the House and refer to each other indirectly.

However, it is quite clear, as many authors including Langendoen (1978) and
Dalrymple et al. (1998) have noted, that the reciprocal expression can mean very dif-
ferent things, including those exhibited in sentences (10.55)–(10.57).

(10.55) As the preposterous horde crowded around, waiting for the likes of Evans
and Mike Greenwell, five Boston pitchers sat alongside each other: Larry Ander-
sen, Jeff Reardon, Jeff Gray, Dennis Lamp and Tom Bolton.

(10.56) ‘‘The captain!’’ said the pirates, staring at each other in surprise.

(10.57) He and scores of other inmates slept on foot-wide wooden planks stacked atop
each other—like sardines in a can—in garage-sized holes in the ground.

Typical models satisfying (10.54)–(10.57) are illustrated in diagrams (10.58)–
(10.61), respectively.

(10.58)

(10.59)

(10.60)
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(10.61)

In each diagram, the set indicated by the dotted line comprises the group (denoted
by the antecedent of the reciprocal expression) among whom reciprocity is spoken of,
and the arrows represent the relation (denoted by the reciprocal expression’s scope)
with respect to which the members of that group are said to be on a more or less
equal footing.

Besides being accounted as true in differing types of circumstances, as illustrated
by the typical models above, each sentence except the last is also accounted false in
circumstances where others are considered true. For instance, the second clause of

(10.62) #House of Commons legislators refer to each other indirectly; the most
senior one addresses the most junior one directly.

contradicts the first one, showing that (10.54) is false in circumstances like any of
those depicted in (10.59)–(10.61). Similarly, (10.55) is false in

(10.63)

as well as in (10.60) and (10.61), though it is true in (10.59) and would be true in
(10.58) were that model not physically impossible for pitchers sitting alongside pitch-
ers. The circle in (10.63) which is not included in the group indicated by the dotted
line represents an individual who is not a Boston pitcher. Finally, the second clause of

(10.64) #The pirates were staring at each other in surprise; one of them wasn’t star-
ing at any pirate.

contradicts the first clause, and (10.56) is false in (10.61) even though it is true
in (10.60)—and would be true in (10.58) and (10.59) were those physically possible
for staring. So, the reciprocal each other really does express different quantifiers
in examples (10.54)–(10.57). The evident differences are not just manifestations of
vagueness, or some such phenomenon.

10.4.2 Type 〈1, 2〉 reciprocal quantifiers

Each quantifier expressed by each other in these examples is a relativization of one
of a small number of polyadic quantifiers. Following Dalrymple et al. (1998) we
define three type 〈2〉 quantifiers: FUL, LIN , and TOT .

FULM (R) ⇐⇒ M2 − IdM ⊆ R & |M | ≥ 2

LINM (R) ⇐⇒ M2 − IdM ⊆ R+ & |M | ≥ 2

TOTM (R) ⇐⇒ M ⊆ dom(R − IdM ) & |M | ≥ 2
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Here IdM is the identity relation on M , and R+ is the transitive closure of the binary
relation R: that is, the smallest transitive relation that includes R.18

It is immediately obvious that FUL ⇒ LIN ⇒ TOT.19

For any type 〈2〉 quantifier Q such as these, its relativization Q rel is the type 〈1, 2〉
quantifier defined by

(Q rel)M (A, R) ⇐⇒ Q A(A2 ∩ R)

The four type 〈1, 2〉 quantifiers expressed by the reciprocal each other in sen-
tences (10.54)–(10.57) are, respectively, the following:

Q rcp1
= FULrel

Q rcp2
= LIN rel

Q rcp3
= TOT rel

(Q rcp4
)M (A, R) ⇐⇒ (TOT rel)M (A, R ∪ R−1)

Fact 7
Q rcp1

�⇒ Q rcp2
�⇒ Q rcp3

�⇒ Q rcp4

Dalrymple et al. (1998) note that reciprocal statements are typically not ambigu-
ous, even if the reciprocal expression they contain can denote any of the type 〈1, 2〉
reciprocal quantifiers Q rcpi

(1 ≤ i ≤ 4). They propose a pragmatic principle to pre-
dict which meaning the statement will have: roughly that the reciprocal expression is
interpreted as that one of these quantifiers which gives the statement the (logically)
strongest truth conditions which are consistent with specified facts—the meanings
of other parts of the sentence, and certain extralinguistic facts.

10.4.3 Properties of reciprocal quantifiers

All of the type 〈1, 2〉 reciprocal quantifiers Q rcpi
defined above are I, E,

C, and M↑, where conservativity for a quantifier of this type is the property

Q M (A, R) ⇐⇒ Q M (A, A2 ∩ R)

and M↑ means that it is increasing in the relation argument. By E, we can sup-
press the subscript M when it is not needed for clarity.

Each also manifests indifference to self-relatedness; that is,

Q M (A, R) ⇐⇒ Q M (A, R − IdM )

18 Note that the condition M ⊆ dom(R − IdM ) in TOT in fact entails that |M | ≥ 2 (for non-
empty universes).

19 We write Q ⇒ Q ′, meaning ‘for all M and all R ⊆ M2, Q M (R) implies Q ′
M (R)’, and sim-

ilarly for other types.
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All these quantifiers except Q rcp3
and Q rcp4

, which are defined from TOT, are
almost ↓M; i.e. they satisfy A′ ⊆ A & |A′| ≥ 2 & Q(A, R) ⇒ Q(A′, R). Q rcp1
and Q rcp2

, which are defined from FUL and LIN, are convertible; i.e. they satisfy
Q(A, R) ⇔ Q(A, R−1). So does Q rcp4

.
Q rcp2

, which is defined from LIN, is the logically most complex of these interpreta-
tions of each other: whereas Q rcp1

, Q rcp3
, and Q rcp4

are definable in FO, Q rcp2
is

not monadically definable; i.e. it is not definable in terms of any monadic quantifiers
whatsoever—let alone just ∀ and ∃. This will be shown in Chapter 15.2.

10.4.4 Collective predicates formed with reciprocals, and quantification
of such predicates

Although we do not treat collective predication generally in this book, the special case
of reciprocals is sufficiently pertinent to warrant a brief discussion here.

We have seen that some quantifiers can be viewed as relation reducers (see note 1);
for example, a type 〈1〉 quantifier Q reduces a binary relation R to a set, {a : Q(Ra)},
to which another type 〈1〉 quantifier can apply (iteration). Conservative type 〈1, 2〉
quantifiers can also be construed as reducers. A notable difference, however, between
this case and the ones mentioned earlier is that here two first-order argument roles are
collapsed into an argument role that is not first-order but second-order or ‘‘collect-
ive’’, as it is sometimes termed in the linguistic literature. We illustrate the simplest
case by defining an operation EO that takes conservative type 〈1, 2〉 quantifiers to a
mapping from binary first-order relations to unary second-order properties; specific-
ally, EO(Q) is defined locally as follows with respect to any set M , when R ⊆ M2,

EO(Q)M (R) = {A ⊆ M : Q M (A, R)}(10.65)

If Q is E, as reciprocal quantifiers are, then EO(Q)M is independent of M , so we
henceforth suppress M .

For example, if Q is expressed by each other and R is denoted by see, then
EO(Q)(R) is the property of sets expressed by see each other.

Definition (10.65) generalizes straightforwardly to operations EOi,j for 1 ≤ i < j
whose value on Q maps each n-ary relation R with n ≥ j to a new relation missing R’s
ith and jth argument roles and having a new argument role for sets of the things that
could fill R’s ith and jth roles.

EOi,j(Q)(R) =
{(A, a1, . . . , an−2) :
Q(A, {(b, c) : R(a1, . . . , ai−1, b, ai, . . . , aj−2, c, aj−1, . . . , an−2)})}

For example, recommended each other to relates a set A and an individual a
such that the members of A recommended each other to a.

One reason why this perspective on reciprocals is interesting is that ordinary type
〈1〉 quantifiers, e.g. the one expressed by many students, can combine with collect-
ive predicates, including collective predicates formed from reciprocals.20

20 Some type 〈1〉 quantifiers resist combining with collective predicates. For example,
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(10.66) a. Many students gathered for the protest.
b. Many students helped each other study for the exam.

It is natural to want to interpret both of these by the same compositional rule. That
rule must clearly be different from the one used throughout this book for sentences
like

(10.67) Many students took the exam.

Dalrymple et al. (1998) build on van der Does 1993 to propose the following rule:

(10.68) CQ(Q 1, A, P) ⇐⇒
∀Y ⊆A(P(Y ) ⇒ ∃X ⊆A(|X | ≥ |Y | & |A−X | ≤ |A−Y | & P(X )
& Q 1(A, X ))) & (Q 1(A, ∅) or ∃X ⊆A P(X ))

This rule is complicated because it has to handle a wide range of type 〈1, 1〉 quantifiers
Q 1, increasing, decreasing, and non-monotone. But it is not hard to show that, in
accord with intuition, if Q 1 is I and M↑, then

(10.69) CQ(Q 1, A, P) ⇐⇒
∃X ⊆ A(P(X ) & Q 1(A, X )) or (Q 1(A, ∅) & ¬∃X ⊆ A P(X ))

(note that in non-trivial cases, the second disjunct will be false).21

Similarly, if Q 1 is M↓ and I, and if we assume that Q 1(A, X ) is not false
for all X ,

(10.70) CQ(Q 1, A, P) ⇐⇒ ∀X ⊆ A(P(X ) ⇒ Q 1(A, X ))

Now we can see that rule (10.68) assigns sentences such as

(10.71) a. Cats are suspicious of each other.
b. The students know each other.

the truth conditions we noted they have in section 10.4.1 above. This follows from
the next result.

(i) a. *Each student gathered for the protest.
b. ?Every student gathered for the protest.

sound highly anomalous. However, the fully acceptable sentences

(ii) a. All students gathered for the protest.
b. The students gathered for the protest.

are close or identical in meaning to (ia) and (ib). It is not completely clear whether the difference
in acceptability is related to a difference in meaning that we do not treat, or is instead accountable
to fundamentally syntactic facts of English.

21 The verification uses the following fact about monotonicity:

FACT: (a) If Q 1 is M↑ and I, Q 1(A, X ), X ,Y ⊆ A, and |X | < |Y |, then Q 1(A, Y ).

(b) If Q 1 is M↓ and I, Q 1(A, X ), X ,Y ⊆ A, and |X | > |Y |, then Q 1(A, Y ).

(For infinite sets, this fails if |X | < |Y | is replaced by |X | ≤ |Y |.)
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Proposition 8
Suppose Q 1 is C, E, and definite, and that Q A

1 is non-trivial on the universe
at hand, and furthermore that WQ A

1
= A. Let Q be Q rcpi

for some i. Then

Q(A, R) ⇐⇒ CQ(Q 1, A, EO(Q)(R))

Proof. Recall from Chapter 4.6 that, under the circumstances, when Q A
1 is non-trivial,

and hence a non-trivial principal filter, the generator WQ A
1

of that filter is independ-
ent of the universe, and always a subset of A.

(⇒) Assume Q(A, R), i.e. A ∈ EO(Q)(R), so the second conjunct of the right-hand
side follows. For the first conjunct, assume Y ∈ EO(Q)(R) for some Y ⊆ A. Tak-
ing X = A, we have |X | ≥ |Y |, 0 = |A − X | ≤ |A − Y |, and X ∈ EO(Q)(R). Also,
Q 1(A, X ), since Q 1 is definite.

(⇐) Assume CQ(Q 1, A, EO(Q)(R)). By non-triviality, ¬Q 1(A, ∅), so there is Y ⊆
A such that Y ∈ EO(Q)(R). Hence there is X ⊆ A such that X ∈ EO(Q)(R) and
Q 1(A, X ), i.e. WQ A

1
⊆ X . Since WQ A

1
= A, X = A, and thus we have Q(A, R). �

Under these circumstances the compositional rule gives the truth conditions for recip-
rocal sentences in terms of Q rcpi

that we have seen to be correct. For example, when
Q 1 = thepl, or the ten, or when we have the universal reading of a bare plural like cats,
construed as catpl = all cat

ei , WQ A
1

= A.
There are still problems with the suggested rule CQ, however. Dalrymple et al.

(1998) note that the pragmatic principle they propose for finding the correct recip-
rocal interpretation fails for some cases where Q rcp3

is used. Related problems with
Q rcp3

appear with CQ. Consider

(10.72) John’s students stared at each other in disbelief.

In a model where the students s1, . . . , sn stare in a ‘cycle’, i.e. si stares at si+1 for
i < n, sn stares at s1, and no other staring occurs, Q rcp3

(X , R) holds only if X = A =
{s1, . . . , sn}. So if John’s students are a proper subset of A, then (10.72) must be false.
But (10.68) and (10.69) (note that the universal reading of John’s is M↑) make
the sentence come out true, choosing X = A, since it is trivially true that John’s(A, A).
This shows that CQ does not cover all reciprocal readings, and hence not all collective
cases either. The issue of a correct semantic rule for reciprocal and plural predicates
as above apparently requires further study.

Likewise, one should further investigate the interesting question of whether
branching sentences involving (at least implicit) reciprocals, as discussed in the previ-
ous section, can be treated compositionally by a similar semantic rule, and how such
a rule then relates to the (correct) rule for simple reciprocals.
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11
The Concept of Expressiveness

The expressive power of languages is an intriguing subject. We are familiar with
the fact that logical languages are more or less expressive, and that certain concepts
expressible in some of these cannot be expressed in others. For example, each finite
cardinality is expressible in FO (with identity), but the concept of finitude itself (or
of infinity) is not. One question is what such claims mean, another is how they are
established. This will occupy much of the following chapters. Yet our main motivation
in this book for studying logical languages is the prospect of applying the results to
natural languages. Could logical results about expressivity really be relevant to natural
languages? Isn’t a plausible view that everything —if expressible in words at all—is
expressible somehow in every natural language? And yet, don’t we all know the diffi-
culty, and sometimes impossibility, of faithful translation between languages? Indeed,
an opposing but also popular view is that of linguistic relativism, according to which
it frequently happens that what can be said in one language cannot even be thought
by (monolingual) speakers of another language, let alone faithfully translated to it.

We’d like to convince the reader that there are precise ways of talking about facts of
expressivity for natural languages, and moreover that, in the case of facts concerning
quantification, they can be established using relatively simple model-theoretic tools.
But to make such a claim at all convincing, one must provide not only the concepts
needed to formulate the results in a clear way, but also the demonstrations that they
hold. This is roughly what we intend to do in the following chapters.

It is easy to see that such demonstrations can be non-trivial. If you want to show
that one language is more expressive than another, you must not only provide a trans-
lation in one direction, but also show that none in the other direction is possible.
Failed attempts at translation won’t suffice—you must find at least one sentence in
the stronger language which is provably not synonymous with any sentence in the
weaker language—in principle, an infinite task. What is surprising, and fascinating,
is that this task can sometimes be carried through.

The first question, then, is: How does one talk about expressive power? It seems
to us that although theorists as well as ordinary speakers often have strong intuitions
about facts of expressivity, the notion itself is rarely analyzed very far. But it looks like
a good idea to have a rather firm grip on the concept of expressivity that one is using
before trying to substantiate particular claims for particular languages.

Therefore, we start by focusing on that very concept in the present chapter, on
how it can be specified, and on related notions involved. Nothing we have to say
is sensational, and much seems straightforward, but we have not seen a comparable
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discussion of expressivity anywhere else. This chapter, then, also contains a sketch of
a theory of expressivity.

11 .1 PRELIMINARIES

Before presenting a general framework for talking about expressivity and translation
in section 11.2, we look at various linguistic items that might be involved in transla-
tion and explain why the level of sentences is the natural one for matters of expressive
power. This underlies the formulation of the basic concepts introduced in 11.2.

We also reemphasize (section 11.1.2) the crucial difference between quantifier
expressions on the one hand and predicate expressions on the other. This insight has
important consequences for the way in which expressivity issues are framed, as will
become clear when we discuss the notion of logical equivalence in section 11.3.2 and
in the following chapter.

11.1.1 Three levels of expressions

Consider the phenomenon of saying the same thing in different languages, i.e. the
notion of translation between two languages L1 and L2. A first issue is: Translation of
what? Thinking about that leads naturally to distinguishing three levels of linguistic
expressions.

11.1.1.1 The vocabulary level

There are innumerable examples of obviously correct translations of words in one lan-
guage into words or phrases in another language. The Swedish hund translates as the
English dog, and the English woman as the Swedish kvinna.1 Sometimes no single
word is available but a complex phrase is. For example, the Swedish farfar can
be translated as paternal grandfather, and the English grandfather as the
Swedish farfar eller morfar (father’s father or mother’s father).

Likewise, there are many familiar instances where there is no translation in L2 of
some lexical item in L1. For a trivial example from logical languages, let L1 be propos-
itional logic with all the usual connectives, and let L2 be propositional logic with only
∧ and ¬. There is no translation in L2 of the connective ∨; i.e. there is no expression
of the same category (binary propositional operator) which means the same. This
is not very significant for logical purposes; it may make expressing things in L2 a
little clumsier, but every sentence of L1 has a translation in L2. For translation at the

1 Are hund and dog really synonymous? In Swedish you can say Här ligger en hund
begraven, literally A dog is buried here, but meaning roughly ‘Something is not quite right
here’, but no direct translation of this idiom works in English. Linguists sometimes take such
examples to show that there are no true synonyms in natural languages, or no perfect translations
between languages. On the other hand, an interpreter asked to translate the sign Hundar äga
icke tillträde (‘Dogs not allowed’) would be foolish to take the example above as an obstacle
to translating hund by dog! What the examples show, we want to insist, is that you need to be
careful about which synonymy relation to choose. Much of this chapter deals with that issue; see sect.
11.3, and in particular sect. 11.3.6.
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vocabulary level, however, a necessary condition appears to be that the category (in
some suitable sense) does not change.

For further natural examples, consider color terms. The distribution of color terms
in the world’s languages has been studied extensively. The wide variation across
languages was first thought to support linguistic relativism. Careful studies show,
however, that the ability not only to discriminate among colors but also to categor-
ize them is by and large independent of language, and moreover that linguistic vari-
ation roughly follows fixed patterns of development, from languages with only two
basic color terms to languages with about eleven.2 Nevertheless, the linguistic variation
poses issues of translation. There are clear cases when a basic color term in one
language corresponds to a basic color term in another, and others when it corres-
ponds to a complex term, such as green or blue, or some other Boolean combina-
tion, perhaps involving non-basic terms like pale yellow, deep blue, greenish
blue. But it also seems likely that languages with many basic color terms will be
hard to translate to languages with few such terms. Such negative claims would be
more difficult to substantiate than the positive ones, since one would have to survey
somehow all possible simple or complex color terms in a language. However, even if
there is no translation at the vocabulary level of a certain basic color term in L2 to L1
(because L2 has more highly developed color terminology than L1), it might still be
possible to translate each L2-sentence saying that a particular object has that color to
an L1-sentence: namely, to one saying that the object has the same color as . . . , where
. . . is some familiar object known to display the color saliently.

Similar facts hold for non-basic color terms, which may stand for highly specific
shades of colors (e.g. scarlet, vermillion, and maroon are commonly named
shades of red in English). If, for example, a language has a term C for the color
of a male mallard duck’s neck feathers (example from Kay 2001), sentential
translation into English poses no problem. Even translation into a language that
has no word straightforwardly translating the English color may still work, as Kay
points out, since a speaker wishing to characterize a certain fish, say, as C can usually
say that the fish ‘‘looks like’’ the neck feathers of a male mallard. But this relies
heavily on context to provide the relevant dimension of comparison.

On the other hand, it is not hard to imagine cases where no such translation
strategy works. The relevant context may be unavailable, or the comparison object
unknown, or the notions of salience too different. Suppose you found an ancient
inscription using an unknown color term, but also giving a description of that color.
If the description was by means of a closed sentence, you might understand what the

2 See e.g. the classic Berlin and Kay 1969, or its extended and updated version, Kay et al. 2003.
Criteria for basic color terms are that they together exhaust the color spectrum of the language, that
they are disjoint (nothing can be a typical instance of two basic colors), that they are non-composite
(not built from meaningful smaller parts, eliminating, say, reddish), that they are predicable of
any kind of object (eliminating e.g. blond), etc. These criteria have been the subject of debate, but
the idea is sufficiently clear for our purposes here.

When there are only two basic terms, these seem invariably to stand for black and white. English
basic color terms could be black, white, red, green, yellow, blue, brown, purple, pink,
orange, and gray.
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color was, but if it was by means of a demonstration, you might never find out. Of
course, these possible epistemic circumstances should not be confused with semantic
ones, but they at least make it conceivable that a language L1 has color-ascribing
sentences that cannot be translated by any closed sentences of another language L2,
perhaps not even if contextual information is allowed. Whether this is the case or not
appears to be a wholly empirical question. Suppose it is the case. Then we have a def-
inite fact about relative expressive power between two whole languages, namely, the
following: It is not the case that L2 is at least as expressive as L1. For this just means, it
would seem, that there is something that can be said in L1 but not in L2.

In sum, straightforward claims about differences in expressivity between natural
languages are easy to find. We started with examples at the level of vocabulary, but
have also indicated how these relate to the sentential level, distinguishing cases which
essentially use context from those that don’t.

11.1.1.2 The level of closed sentences

The sentential level is where things are said. Sentences are the basic linguistic units
for expressing thoughts, propositions, things which can be true or false.3 This level is
rather obviously more fundamental than the vocabulary level. Positive claims about
translation at the vocabulary level can be ‘lifted’ to claims at the sentence level, but the
converse does not hold. For example, it would be misguided to conclude from the
propositional logic example above that propositional logic with the usual connect-
ives is fundamentally more expressive than propositional logic with only ∧ and ¬.
The former may be more convenient for certain purposes than the latter, but when
it comes to expressible propositions, they have equal power. Similar comments apply
to the case of color terms. Thus, expressive power should be measured at the senten-
tial level, as long as one is interested in what can, and what cannot, be said in various
languages.

A closed sentence has no parameters needing to be set by the utterance context in
order to determine what is said. As is well known, such sentences are rather rare in
natural languages.

11.1.1.3 The level of open sentences in context

Context dependence is ubiquitous, and often no obstacle to translation. As long as
the same context applies in the same way to both source and target, translation may
work fine. This is completely trivial; compare the following English to Swedish trans-
lations:

(11.1) a. The room was empty.
b. Rummet var tomt.

3 Assertions made with declarative sentences uncontroversially have truth conditions. Other
ways of saying, besides making statements, are also associated with truth conditions, via other
routes. A directive issued with an imperative sentence requests that the person addressed take action
to insure that a certain proposition becomes true (or to omit action so that it remains false). Using
a question, one can ask which of a presented collection of propositions are true. So various manners
of saying share the feature the text discusses explicitly in connection with declarative sentences.



The Concept of Expressiveness 379

(11.2) a. He saw her.
b. Han såg henne.

(11.3) a. I am hungry.
b. Jag är hungrig.

None of these sentences says anything true or false, unless a suitable context is spe-
cified; but once that is done, the translation pairs use it in exactly the same way. There-
fore, under a fixed context assumption, examples like these may be subsumed under
the level of closed sentences, at least for the purpose of discussing issues of expressive
power. This is a standard and for present purposes unproblematic practice.

But uses of context can be more complex. As a first example, suppose a request
such as the English Close the window! is to be translated in to a language L like
Japanese or Korean, which requires explicit indication of the social relations between
the speaker and the addressee. Each available alternative is restricted to certain rela-
tionships. Thus, context is needed for translation, since without it there is no way to
choose the correct version. On the other hand, neither the English sentence nor the
relevant L-sentences have contextual variables for this: the English one is insensitive to
it, and the alternatives in L signal it explicitly. A fixed context assumption determines
the right translation. But that translation indicates—some might even contend that
it says—something about social relations that the source sentence does not say or even
indicate. If that is included, the source and the target don’t really say the same thing,
so translation may not be exact after all. A conclusion is that, unsurprisingly, whether
translation is possible or not depends a lot on the notion of sameness of meaning that
one is working with. When source and target sentences make different use of the same
context, characterizing what is meant by ‘‘translation’’ may require appropriate choice
of the underlying notion of synonymy.4

Consider another familiar example. To say The elephant ate the peanuts
in Russian, you need to specify whether all the peanuts or just some of them were
eaten, whereas in Turkish you must specify whether the eating was witnessed or only
hearsay.5 The relevant facts are there in the world, but one language is indifferent to
them, whereas in another it can be compulsory to refer to them in the form used. This
sort of case seems slightly different from the previous one. There, one could imagine
L-speakers agreeing that the same request was expressed by both sentences, but that
the L-sentence had to express something else as well. A suitable notion of synonymy
might disregard that something, so meaning would be preserved after all. But in the
case of verb aspect, obligatory in Russian but not in English, Russian speakers might

4 Cases like this example may be described very differently by different persons. Some might
agree to talk about translation here, but insist that it does not preserve meaning. Others may reject
the label ‘‘translation’’ altogether, claiming that we are only discussing what would be the corres-
ponding thing to say in various situations. Terms like ‘‘translation’’ do not have fixed uses, and
we don’t want to make unnecessary stipulations here. We will suggest, however, that a translation
always has to preserve something ; i.e. that it is relative to some sameness relation, a relation that
may or may not deserve the label ‘‘synonymy’’.

5 The example is from Boroditsky 2002.



380 Beginnings of a Theory of Expressiveness

never call sentences using the two aspectual forms of a verb synonymous, and simil-
arly might find meaning-preserving translation from English impossible.6

A final example concerns giving directions and has been debated recently in the
literature. Most languages can use both absolute compass point-style directions and
relative left-right directions, but some languages have only the former. So whereas in
English I can tell someone My brother’s house is 20 meters to your left, in
such a language I would say something like My brother’s house is 20 meters
north. Both utterances require the location of the addressee, but the left-right one
also requires his orientation.7 This seems like two descriptions of the very same thing,
so here the problem is not so much what is said, but how. Both sentences use the con-
text, but in different ways: the left-right version requires the orientation, although it
does not refer to it explicitly.

These differences have been used in arguments for linguistic relativity, arguments
that have in turn been disputed.8 But disregarding what exactly goes on in people’s
heads when they think about directions, it seems that often the sentences talk about
the same features of the described situation; it is just that a correct translation needs
to incorporate a (systematic) mechanism by which left-right directions can be turned
into north–south directions relative to context, and vice versa. This may be quite
feasible, but clearly cannot be handled with a fixed context assumption.

In this book we restrict attention to expressivity at the level of closed sentences, or
cases of open sentences that can be treated with a fixed context assumption. At the
sentential level, we’ll be able to handle most cases of translation of vocabulary, includ-
ing those in which no direct paraphrase is available but an embedding sentence can
be translated. We’ll also be able to deal with standard uses of indexicals and other
context-referring expressions, as long as the source and the target use the context in
the same way. We may even be able to handle the ‘‘Close the window!’’ case above,
with a suitably chosen synonymy relation. But we don’t pretend to handle all cases of
context-sensitive translation, in particular not the directions case. Extending the ideas
here to such cases remains a project for further study.

11.1.2 Expressibility of quantifier expressions versus predicate
expressions

Actually, the examples of expressibility and translatability above are not typical of the
ones that most interest us here. The next example illustrates this.

Let L1 be Swedish and let L2 be English−, which is just like real English except
that it has no proportional determiners; in particular, it lacks most. Also, let English0

6 They would presumably agree that the two forms have something in common, and one might
take this as a basis for a technical notion of synonymy, relative to which translation would be pos-
sible.

7 More precisely, it normally requires that he is standing up (not lying down, e.g., or standing
on his head) and the direction in which he is facing.

8 E.g. Levinson (1996) argues for linguistic relativity using psychological studies of speakers of
Tzeltal (a Mayan language); the arguments are questioned in Li and Gleitman 2002.
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lack all determiners except the four Aristotelian ones, and also lack adverbs of
quantification, as well as all size-comparing constructions in terms of more, less,
fewer, as many as, majority, etc. Of course, English− and English0 are not nat-
ural languages, and have not even been precisely specified here, but the idea should
be sufficiently clear to make them possible languages.

Now, various precise things can be said about the relative expressive power of these
languages. For example, although there is no translation from Swedish to English− at
the vocabulary level, there is one at our preferred level of closed sentences (provided
there is one from Swedish to real English), since sentences of the form

(11.4) a. De flesta katter är grå.
b. De flesta lösningar till denna ekvation är heltal.

(meaning that most cats are gray, and that most solutions to this equation are integers,
respectively) can be translated9 as

(11.5) a. There are more gray cats than cats that are not gray.
b. There are more integer than non-integer solutions to this equation

which are sentences in English−, and similarly (though even more clumsily) for other
proportional determiners. Thus, English− is at least as expressive as Swedish. But
English0 certainly isn’t: no sentence at all in English0 is an adequate translation of
(11.4a). Rather, Swedish has strictly stronger expressive power than English0 (given
that it has at least the expressive power of real English).

Facts of this kind will interest us in what follows, and we will show how to estab-
lish them. But we have much less to say about, for example, the color terms in
the examples mentioned earlier. What is the crucial difference here, between all
or most, on the one hand, and gray, cat, equation, integer, on the other?
We have already answered this question, in terms of the distinction between quan-
tifier expressions and predicate expressions, introduced in Chapter 3.1.2. As we have
shown, these two kinds of expression have fundamentally different properties, which
motivate (Chapter 9.3) that the latter can get arbitrary interpretations in models,
whereas the former have fixed interpretations. No wonder, then, that in model-
theoretic semantics, there is much less to say about the expressivity of predicate
expressions than about that of quantifier expressions.

But what if someone denied that there is such a difference, and maintained that it is
our choice of a first-order model-theoretic apparatus that deprives us of the possibility
of saying anything significant about the meaning of predicate expressions, and that
this poor choice creates an appearance of a difference where there is none?

This objection has the cart before the horse. It is true that first-order models inter-
pret only predicate expressions, but that is not an arbitrary stipulation, or one made in
the interest of simplicity or elegance, or for mathematical reasons. Rather, we main-
tain, it is precisely because there are crucial intrinsic differences between quantifier

9 On one natural reading of most; cf. Ch. 2.4. For another reading, one might instead translate
by There are many more . . . .
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expressions and predicate expressions that a first-order account—i.e. one using first-
order models, not one using FO—is successful. We tried to establish, in Chapter 9,
that these differences force upon us a treatment of quantifier expressions as constants,
unless we are to violate fundamental intuitions about entailment in natural languages.
Likewise, predicate expressions are largely variable in entailments. So there is in fact
no reason to expect that expressivity issues for quantifier expressions and for predicate
expressions could be dealt with in the same way.

Thus, in the context of natural language quantification, we are in the fortunate pos-
ition that the technical tools for a study of expressivity that are required by basic facts
about natural languages are precisely the simple and familiar ones of first-order (in
our extended sense) model theory. Indeed, this is the key to the success of the logical
theory of generalized quantifiers in this area.

11 .2 A FRAMEWORK FOR TRANSLATION

In this section we present a general framework for talking about relative expressive
power and translatability. The underlying ideas are completely straightforward and
uncontroversial, we believe, but expressing them requires a modicum of precision,
which is what we try to provide here.

We begin by noting (11.2.1) that every claim about expressivity is relative to a
notion of saying the same thing, and that there are several such notions around. In
fact, rather than talking about meanings directly, it will be enough, and simpler, to
formulate our framework in terms of such same-saying relations (11.2.2). What these
relations all have in common is being partial equivalence relations, or PERs as we
shall call them. Section 11.2.3 explores this concept, and in particular the concept of
a PER between two languages; a concept which is necessary, we argue, when account-
ing for translation between languages. Another important concept is that of one PER
refining another.

Armed with these concepts, we proceed to define (11.2.4) the notion of a sentence,
or a set of sentences, in one language being translatable into another (relative to given
PERs), and more generally of a translation of the whole source language into the target
language. The existence of such a translation amounts precisely to the target language
being at least as expressive as the source language. We note some properties of transla-
tions, and end by introducing formalization as a special case of translation.

11.2.1 Expressiveness is relative to a notion of saying the same thing

One compares the expressive power of two languages by finding out what can be said
in them. Thus, a fundamental relation is going to be:

L2 is at least as expressive as L1,

which we shall write L1 ≤ L2, and the intended meaning is simply that
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everything that can be said in L1 can also be said in L2 (but not necessarily vice
versa).10

Or, put in a different but essentially equivalent way,

there is a translation from L1 to L2.

It will often be the case, however, that neither L1 ≤ L2 nor L2 ≤ L1 holds, but
that, say, a part of L1 can be translated into L2. Thus, the basic concept is really that
of an L1-sentence ϕ being translatable into L2, in the sense that there is an L2-sentence
saying the same thing. Then we can say that a set X of L1-sentences is translatable if
each member of X is translatable.

This idea, we think, is completely natural and straightforward. But note that it
depends crucially on a notion of saying the same thing. What that means is presumably
less clear. Or rather, there are different ways of making it precise, each perhaps reas-
onable for its own purposes. If that is so, there will be just as many different notions
of relative expressivity.

Does that in turn entail that every statement about expressivity becomes equally
ambiguous, and thus needs to be indexed with a particular purpose? Not necessarily.
The reason is that different notions of saying the same thing are often related, so that
one is a refinement of the other. Then, to make a positive claim that something in L1
is expressible in L2, relative to both notions of saying the same thing, it is enough to
establish that claim for the finer-grained notion. On the other hand, a negative claim
that something in L2 is not expressible in L1 only needs to be established for the less
fine-grained variant. This simple observation will be crucial in what follows.

Each notion of expressing the same thing uniformly generates a concept of relative
expressive power. We need to make that precise. But first, we need to lay down some
general properties of the candidate same-saying relations.

11.2.2 Sameness of meaning, without meanings

It is familiar wisdom in philosophy and logic that you shouldn’t introduce a class of
abstract objects unless you are able to say something intelligible about what it is for
two such objects to be the same, or different. This is, for example, Quine’s main argu-
ment against treating meanings or intensions as objects—their identity criteria are
obscure—and many others have rejected meanings for similar reasons. But there is no
immediate implication in the converse direction: you can very well have a reputable
notion of sameness of meaning—synonymy—without having meanings as objects.

In this book too synonymy is the basic relation, and the meanings themselves rarely
show up at all. However, our reason is not a conviction that meanings are necessar-
ily obscure. On the contrary, there are well-known theories of formal semantics that
we admire and respect, where meanings are perfectly precise model-theoretic objects.

10 If ≤ is a pre-order, as will be the case here (remark (f) in sect. 11.2.4.1), the relation ≡
defined by L1 ≡ L2 ⇔ L1 ≤ L2 & L2 ≤ L1 is an equivalence relation. Thus, we can, if we wish,
use the equivalence classes as absolute measures of expressive power. This gives a partial order of
expressivity, which is presumably all that one can expect.
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But there is a different, and stronger, argument why one should nevertheless stay with
synonymy as long as this is possible.

First, it is possible for much semantic discourse. Facts about relative expressive
power and translation can be stated in terms of synonymy. Another example of
an area which seemingly involves meanings but can be rephrased in terms of syn-
onymy is compositionality: instead of saying that the meaning of a compound expres-
sion is determined by the meanings of its parts and the mode of composition, you
can say, equivalently, that substitution of synonymous parts preserves meaning (see
Chapter 12.2.1).

Second, and no less important, suppose you have developed a theory of meaning
for some fragment of a language, associating a complex set-theoretic object, or a col-
lection of uses, or something else, with each well-formed expression. Now you want
to extend the theory to a larger fragment, or, within the same fragment, you want
to take account of a semantic distinction previously ignored. Often, this is not at all
trivial. You may have to begin anew, perhaps with some even more complex objects,
of which the ones used earlier can be seen as special instances. The same thing may
happen again at the next enlargement, etc.11

Thus, totally new concepts of meaning may be needed, but one constraint is usu-
ally obeyed: the new notion of meaning refines the old one. That is, two expres-
sions that were synonymous under the old notion of meaning may fail to be so
under the new one, since a new semantic distinction has been observed, but not vice
versa: if they had different meanings before, they must have different meanings after-
wards too.12

This means that when giving an account of a semantic phenomenon in terms of
synonymy, you need to be aware that your actual synonymy may be refined later on,
and to make your account able to cope with such refinement, but that is all. You do
not need to enable it to cope with vastly different technical notions of meaning.

It should be noted, however, that synonymies are less fine-grained than meanings.
Many different meaning assignments will result in the same synonmy relation, but
few of these will be of interest. For example, there is always the possibility of taking
the equivalence classes of the synonymy as meanings. This works, in the sense that
the synonymy corresponding in turn to that meaning assignment is the one you star-
ted with, but equivalence classes can be rather useless as meanings. In particular, it
is unlikely that they will cast much light on the phenomenon of understanding, and
doing that is sometimes seen as the main goal of a theory of meaning.

Still, the methodological choice of dealing with synonymy rather than meaning
works for our purposes here, or so we claim.

11 E.g. think about how Frege (or for that matter, any present-day semanticist) had to complic-
ate his semantics to account for propositional attitudes, or how truth-conditional ‘static’ semantics
was generalized to dynamic ‘input–output’ semantics à la Heim 1982 or Kamp and Reyle 1993 or
Groenendijk and Stokhof 1991.

The advantage of using synonymy relations instead of meanings in this context has been stressed
by Wilfrid Hodges (e.g. Hodges 2002).

12 The ultimate refinement, of course, is the identity relation (within one language). It is some-
times proposed as the only ‘real’ synonymy. We return to this in sect. 11.3.6 below.
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11.2.3 Sameness is a partial equivalence relation (PER)

It is important that the same-saying relations we are interested in can hold between
expressions in one and the same language, as well as between expressions in two dif-
ferent languages. You could think of the one-language version and the two-language
version as two different relations, but in that case some obvious connections between
them must hold, which we will get to in a moment. But however you think of that, it
is clear that sameness of meaning has to be a partial equivalence relation, or a PER, as
we abbreviate it. That is, such a relation R must be:

(a) reflexive on its domain: if uRv holds for some v, then uRu

(b) symmetric: if uRv, then vRu

(c) transitive: if uRv and vRw, then uRw

Why partial? Well, even within one language there might be well-formed expres-
sions that are not assigned meanings, according to your favorite semantics, so a fortiori
they cannot be synonymous with themselves. Just to take one example, your favorite
semantics might assign meanings only to sentences, not to their non-sentential parts.
A related reason could be that you wish to enforce a principled distinction between
grammaticality and meaningfulness, so that only a subset of the grammatically well-
formed expressions are meaningful (think of colorless green ideas and similar examples).
Or, taking a different perspective, you might be working with an unfamiliar language,
and so far have only been able to assign meanings to a fragment of it. In this case the
synonymy relation reflects your present state of knowledge of the other language. But
of course fragments of familiar languages are frequently studied too; the partiality of
a corresponding semantics is then due to your decision to restrict attention to a thor-
oughly analyzed part of the language. We want a necessary condition on sameness of
meaning compatible with all of these possibilities; hence the notion of a PER.

The domain of any binary relation R on a set X , dom(R), is the set of objects in X
related by R to something in X . It is immediate that

(11.6) If ∼ is a PER on L, then dom(∼) = {u ∈ L : u ∼ u}.13

We say that ∼ is total if dom(∼) = L.

11.2.3.1 PERs between languages

Suppose L1 and L2 are two languages with corresponding s ∼1 and ∼2, respect-
ively. They can be any s, but for intuition, think of them as some sort of syn-
onymies. Also, think of languages simply as sets of (well-formed and unambiguous)
expressions of some kind. There is an obvious way in which a synonymy, say ∼,
between expressions in L1 and expressions in L2 should respect the given synonymies
or PERs. For example, if u, v are both in L1, then u ∼ v should imply u ∼1 v, and

13 The range of a relation R is the set of objects in X to which something in X is related by R,
and the field of R is the union of the domain and the range. If R is a PER, the domain, the range,
and the field of R all coincide.
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vice versa. Also, if u1 ∼1 v1, u1 ∼ u2, and u2 ∼2 v2, then we should have v1 ∼ v2.
This results in the following definition:

PERs between L1 and L2

Consider partial equivalence relations (PERs) on languages (i.e. on sets of expres-
sions). Let L1 and L2 be languages with respective PERs ∼1 and ∼2. A PER ∼ on
L1 ∪ L2 is called a PER between L1 and L2, or, more precisely, between (L1, ∼1)
and (L2, ∼2), iff

(11.7) ∼ ∩ (Li × Li) = ∼i, i = 1, 2

It easily follows from (11.7) that, in the above case,

(11.8) dom(∼) = dom(∼1) ∪ dom(∼2)

Note that we did not assume that L1 ∩ L2 = ∅. That makes sense, since, for
example, when L1 and L2 are logical languages of the kind used in this book, they
have their FO part in common. Similarly, if L1 and L2 are fragments of the same nat-
ural language. This implies of course that no expression belonging to two different
languages can mean one thing in the one language and another thing in the other
language. That is, it follows that

(11.9) if there is a PER between L1 and L2, then for u, v ∈ dom(∼1) ∩ dom(∼2),
u ∼1 v ⇔ u ∼2 v

But this restriction seems rather harmless. Some words, like the English be and the
Swedish be (meaning ‘to pray’), may appear to be shared but are really different words
(since they have different syntactic properties and meanings), and there is no problem
to treating them as different expressions in a more technical sense.14

On the other hand, precisely because the notion of expression is technical, there is
no obstacle to enforcing the disjointness of, say, two fragments of the same language
when one so desires; for example, if different kinds of semantics are considered for the
respective fragments.

It may be worthwhile to observe that the converse of (11.9) holds too; i.e. we have
the following proposition.

Proposition 1
The following are equivalent:

(a) There exists a PER between (L1, ∼1) and (L2, ∼2).

(b) For u, v ∈ dom(∼1) ∩ dom(∼2), u ∼1 v ⇔ u ∼2 v.

14 Our definition of a  between L1 and L2 allows (as Wilfrid Hodges pointed out) that some
L1-expression outside the domain of ∼1 not only belongs to but is meaningful in L2 (i.e. belongs
to dom(∼2)). This seems unnatural, and could be avoided with an extra condition, should one so
desire.
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Proof. Exercise.15 �

Note that if L1 ∩ L2 = ∅, condition (b) is trivially satisfied, so there is then always a
PER between L1 and L2. Indeed, the smallest (in terms of inclusion) such PER is ∼1
∪ ∼2. This is a rather trivial PER between L1 and L2, since it does not make anything
in L1 synonymous with anything in L2. In general, when condition (b) holds, there
will be lots of PERs between L1 and L2; see also the next subsection.

Note finally that it does follow from (11.7) that, as requested above, u1 ∼1 v1,
u1 ∼ u2, and u2 ∼2 v2 together imply that v1 ∼ v2.

11.2.3.2 PERs and partitions

Equivalence relations (total or partial) partition their domains, and it is often useful
to think in terms of the partition rather than the relation itself. A PER ∼ over a set
X splits dom(∼) into non-empty and pairwise disjoint equivalence classes, where, for
u ∈ dom(∼), the equivalence class of u is

[u]∼ = {v ∈ X : u ∼ v}
In general, a partition of X is a collection {Ci}i∈I of subsets of X such that

1. Ci �= ∅, for i ∈ I
2. Ci ∩ Cj = ∅, for i, j ∈ I , i �= j
3.

⋃
i∈I Ci = X

We have the following familiar facts:

(11.10) If ∼ is a PER on X , P∼ = {[u]∼ : u ∈ X } is a partition of dom(∼).

(11.11) Conversely, every partition {Ci}i∈I of dom(∼) corresponds to a PER on X ,
given by

u ∼ v ⇐⇒ u, v ∈ Ci , for some i ∈ I

in the sense that P∼ = {Ci}i∈I .

We can also say that a PER ∼ on X partitions all of X , into

(11.12) {[u]∼ : u ∈ X } ∪ {X − dom(∼)}
only X − dom(∼) is empty if ∼ is total. Put slightly differently, we can always extend
a  ∼ to a total equivalence relation ∼tot, where

u ∼tot v ⇐⇒ u ∼ v or u, v ∈ X − dom(∼)

15 Our purpose here is not to enter into the theory of equivalence relations but to present PERs
as a useful and natural tool, so we leave the proof of Proposition 1 as an exercise, with the following
hint for the direction (b) ⇒ (a): Let R be the relation ∼1 ∪ ∼2. Show that the transitive closure of
R (the smallest transitive relation containing R) is a PER between L1 and L2.
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∼tot is sometimes called the total one-point extension of ∼, since, thinking of ∼
as sameness of meaning, it gives all expressions in X − dom(∼) the same meaning
(unspecified which one, except that it has to be different from all the meanings of
expressions in dom(∼)). ∼tot = ∼ iff ∼ is total, and ∼tot partitions X into (11.12)
above, except that, as we said, the empty set is not in the partition when ∼ is total.

Now suppose again that ∼ is a  between L1 and L2. What are its equivalence
classes? A ∼-class can be identical to ∼1-class C1, in case nothing in C1 bears the rela-
tion ∼ to anything in L2. (Similarly, it can be identical to a ∼2-class.) But if there is
some u ∈ C1 related by ∼ to some v ∈ L2, then it is not hard to see that the ∼-class
of u has to be the union of the ∼1-class of u and the ∼2-class of v. These observations
are contained in the following proposition, whose proof is also left as an exercise.

Proposition 2
A PER on L1 ∪ L2 is a PER between L1 and L2 if and only if the following conditions
hold:

(a) Each ∼-class is either a ∼1-class or a ∼2-class, or a union of exactly one ∼1-class and
exactly one ∼2-class.

(b) Each ∼i-class is a subset of some ∼-class, i = 1, 2.

Note that this holds whether or not L1 ∩ L2 = ∅. Using this proposition, one can
calculate the number of possible PERs between L1 and L2, from the given number of
∼1-classes and of ∼2-classes, but we abstain from that here.

11.2.3.3 Examples of PERs

As we said, many PERs on a language L are nothing like synonymies. For a trivial
example, suppose expressions in L are made up of letters, and let

uRv ⇐⇒ u and v have the same number of letters

This is a PER, in fact a total one. Less trivial examples concern syntactic structure.
Suppose expressions in L are generated by grammar rules, including phrase structure
rules. Let

uRv ⇐⇒ u and v have isomorphic phrase structure trees

This is a perfectly natural PER, if one is interested in form rather than content, but
of course it has nothing to do with sameness of meaning.

The following PER, however, comes closer:

uRv ⇐⇒ u and v have the same denotation or extension

This presupposes that at least some expressions of L have extensions associated with
them in some systematic way, but the general idea is clear. A standard view is that
sameness of denotation is not sufficient for sameness of meaning—examples go back
to Aristotle (creature with kidneys versus creature with liver, etc.). Actu-
ally this issue is quite complex, and in interesting ways. We come back to it in more
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detail in section 11.3.1 below. For now, we note that sameness of denotation is at
least a candidate for a weak notion of synonymy.

If this seems overly generous, a less controversial candidate would be

uRv ⇐⇒ u and v are logically equivalent

Again, details need to be filled in, especially since we shall want to talk about logical
equivalence between sentences from different languages (Chapter 12.1). We will,
however, take logical equivalence as a basic concept of synonymy.

As we will see, many other synonymy concepts are refinements of logical equival-
ence. This is an important notion, so let us be precise about it too.

11.2.3.4 Refinements

Recall from our discussion at the end of section 11.2.2 that the passage from a syn-
onymy ∼ to a new synonymy ∼′ may involve not only making finer semantic distinc-
tions among the given expressions, but also extending the semantics to new expres-
sions. This leads to the following definition:

refining a PER

Let ∼ be any PER on L. We say that another PER ∼′ on L refines ∼ iff the follow-
ing two conditions hold:

(11.13) dom(∼) ⊆ dom(∼′)

(11.14) for u, v ∈ dom(∼), u ∼′ v implies u ∼ v

Thus, old expressions with the same meaning may get different meanings in the
refined semantics, but if the old expressions were already distinguished by ∼, they
are distinguished by ∼′ as well.

One can refine logical equivalence by adding stricter constraints on synonymy: for
example, some similarity of syntactic structure, or constraints having to do with cog-
nitive processing. This gives rise to a host of ‘synonymies’, most of which are at least
implicit in the literature. We give a survey of this landscape in section 11.3.

The effect of refinement is best appreciated by looking at the equivalence classes.
A refinement ∼′ of ∼ partitions the equivalence classes of ∼ into smaller classes, thus
giving a finer partition of dom(∼) (hence ‘refinement’). In addition, the ∼′-classes
may stretch into dom(∼′) − dom(∼). Formally:

Fact 3
Let ∼ and ∼′ be PERs on X . If dom(∼) ⊆ dom(∼′), then ∼′ refines ∼ iff, for each u ∈
dom(∼),

[u]∼′ ∩ dom(∼) ⊆ [u]∼
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In this case, {[v]∼′ ∩ dom(∼) : v ∈ [u]∼} is a partition of [u]∼, so

{[v]∼′ ∩ dom(∼) : v ∈ dom(∼)}
is a partition of dom(∼).

11.2.4 Translation and formalization

We now have the means at our disposal to formulate a general account of expressivity
in terms of translation. According to our discussion in section 11.2.1, we should start
with the concept of a sentence in one language being translatable into another lan-
guage. The basic notions involved are language and translation, and, to account for
the latter, sameness of meaning.

11.2.4.1 Expressive power in terms of translations

As to languages, we simply identify these with sets of expressions, as above. No spe-
cification of the nature of expressions (for example, that they are finite strings of
symbols) is needed at this point. We shall stipulate, however, that each language L
has associated with it a subset of L, consisting of the sentences in L. Furthermore,
we assume that expressions are unambiguous, so that synonymy relations can apply
to them. So ‘‘expression’’ is best seen here as a technical term, standing roughly for
‘analyzed word or phrase’.

As to sameness of meaning, we use the more general notion of a PER from the pre-
vious section. Thus, let L1 and L2 again be languages with corresponding PERs ∼1
and ∼2, and let ∼ be a PER between L1 and L2.

PERs are partial, and we say that an Li-expression is meaningful (more exactly,
∼i-meaningful ) if it is in the domain of ∼i. We restrict translation to meaningful
expressions. Of particular interest will be the set of meaningful Li-sentences, which
we denote LSenti:

(11.15) LSenti = {ϕ : ϕ is an Li-sentence in dom(∼i)}
It is natural to assume furthermore—though it will not play a significant role in what
follows—that Li-sentences stand in the relation ∼i only to other sentences; i.e.

(11.16) If u ∈ LSenti and u ∼i v, then v ∈ LSenti.

We now lay down the following definitions:

translatable sets of sentences

A sentence ϕ in LSent1 is ∼-translatable into L2, iff there is an L2-sentence ψ

such that

ϕ ∼ ψ

(Note that since ∼ is a PER between L1 and L2, ψ ∼ ψ , hence ψ ∼2 ψ , so a
fortiori ψ ∈ LSent2.)
Likewise, a set X ⊆ LSent1 of meaningful L1-sentences is ∼-translatable into L2 iff
each member of X is ∼-translatable into L2.



The Concept of Expressiveness 391

The following observation is practically immediate:

(11.17) X ⊆ LSent1 is ∼-translatable into L2 iff there is a function π from X to
LSent2 such that for all ϕ ∈ X , ϕ ∼ π (ϕ).

The if direction is clear. For the ‘only if’ direction one needs to select, for every mem-
ber ϕ of X , one of its ∼-equivalents in L2 as the value of π at ϕ.16

We call the function π a translation of X into L2.17 To extend this notion to that
of a translation of L1 into L2, we want to allow for the fact that, even though sen-
tences are fundamental for expressive power (see section 11.1.1), words and phrases
other than sentences may also be translatable. For this reason, the general concept of
a translation of one language into another is defined here as follows.

translations

A ∼-translation of L1 into L2 is a partial mapping π from L1 to L2 such that con-
ditions (i)–(iii) hold:

(i) π maps L1-sentences to L2-sentences (π is sentential)

(ii) LSent1 ⊆ dom(π ) ⊆ dom(∼1)

(iii) for all u ∈ dom(π ), u ∼ π (u) (π preserves meaning)

Thus, a translation—by stipulation—maps all the meaningful L1-sentences to syn-
onymous L2-sentences. It may also map other meaningful L1-expressions to L2-
expressions. Crucially, we require of a translation π that it preserves meaning, as given
by the PER between L1 and L2:

(11.18) u ∼ π (u) (An expression is ∼-synonymous with its translation.)

A weaker requirement would be that π preserves synonymy in the sense that whenever
u, v are L1-expressions in its domain:

(11.19) u ∼1 v ⇐⇒ π (u) ∼2 π (v) (Two expressions are synonymous in L1 if and
only if their translations are synonymous in L2.)

This does not use ∼, but only the local PERs within each language. Indeed, this
requirement is sometimes used as a criterion of translatability. We show below
(section 11.2.4.2), however, that in the present context it is too weak, and that pre-
servation of meaning is the correct requirement.

Finally, we can restate the concept of relative expressive power in the framework
just introduced.

16 When X is infinite, this requires some form of the Axiom of Choice or, as will in practice
usually be the case, the existence of a definable well-ordering on L2-expressions.

17 The word ‘‘translation’’ has the familiar ambiguity between, on the one hand, the function or
rule mapping L1-expressions to L2-expressions, and on the other hand, the value of that function
for a particular L1-expression, as when we say ‘‘ψ is a translation of ϕ.’’ This should not cause any
confusion.
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relative expressive power

Define

L1 ≤ L2 iff there exists a ∼-translation from L1 into L2

We read this: ‘‘L2 is at least as expressive as L1’’ (with respect to ∼), or ‘‘L2 is an
extension of L1’’. We also define

L1 < L2 iff L1 ≤ L2 and L2 �≤ L1
L1 ≡ L2 iff L1 ≤ L2 and L2 ≤ L1

Using (11.17), one sees that ‘‘translation’’ and ‘‘translatability’’ have the requisite rela-
tion to each other:

(11.20) L1 ≤ L2 iff LSent1 is ∼-translatable into L2.

For if π is a ∼-translation from L1 into L2, then clearly the restriction π ′ of π to
LSent1 is a function into LSent2 such that for all ϕ ∈ X , ϕ ∼ π ′(ϕ). Conversely, if
π ′ has the latter property, it is clearly sentential, and LSent1 = dom(π ′) ⊆ dom(∼1).
Thus, (i)–(iii) in the definition of a translation are satisfied.

We end with a few further comments on the preceding definitions.

(a) Every translation preserves synonymy, i.e. (11.19) holds. For take u, v ∈ dom(π ).
If u ∼1 v, then u ∼ v, u ∼ π (u), and v ∼ π (v), so by transitivity of ∼, π (u) ∼
π (v), and hence π (u) ∼2 π (v). The other direction is similar.

(b) Another observation is that the first part of condition (ii) in the definition of a
translation can be strengthened to

(11.21) LSent1 = dom(π ) ∩ {ϕ : ϕ is an L1-sentence}
For if ϕ is an L1-sentence in dom(π ), then ϕ ∼ π (ϕ) by (iii), and so ϕ ∼ ϕ; i.e.
ϕ ∼1 ϕ, since ∼ is a  between L1 and L2. Thus, ϕ ∈ LSent1, and we have the
inclusion from right to left. The inclusion in the other direction is given by (ii).

(c) With a similar argument, it follows that

(11.22) range(π ) ⊆ dom(∼2)

(d) In practice, one often wants to put stronger requirements on the translation π .
One reasonable demand is that it be computable in some sense, another that it
be compositional. The latter requirement presupposes some account of how Li-
expressions are structured. We deal with compositionality in detail in the next
chapter, but do not include it in our most general notion of a translation.

(e) It would have been more accurate to write L1 ≤∼ L2, rather than just L1 ≤ L2,
but for readability we often suppress reference to the PER ∼ (as well as to ∼1
and ∼2).

(f) Relative to a fixed ∼ and a class of languages with associated local PERs, such
that for any L1,L2 in this class, ∼ is a PER between L1 and L2, the relation ≤ is
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a pre-order, i.e. reflexive and transitive (see also note 10). For L ≤ L via the iden-
tity translation, and if L1 ≤ L2 via π and L2 ≤ L3 via σ , then L1 ≤ L3 via the
composition σπ .

(g) L1 < L2 means that L2 has stronger expressive power than L1, in the sense that
everything that can be said in L1 can also be said in L2 (relative to ∼), while there
is something that can be said in L2 but cannot be said (still relative to ∼), by any
sentence whatsoever, in L1. Similarly, L1 ≡ L2 means that the two languages are
intertranslatable and thus have the same expressive power (relative to the chosen
), whereas if both L1 �≤ L2 and L2 �≤ L1 hold, their expressive powers are
incomparable, in the sense that in each language, some sentence is not synonym-
ous (in the relevant sense) with any sentence in the other.

We have now made completely clear what is meant by one language being at least as
expressive as another. As a simple first example, consider a logical language L which
extends FO by adding the quantifiers ‘there are at least n things such that’, i.e. ∃≥n,
for each n. Since FO is a part of L, FO ≤ L via the identity mapping. But since to
each formula of the form ∃≥nxψ there is an (albeit much longer!) logically equivalent
formula in FO, one can also translate from L to FO, so L ≡ FO. In this case, the rel-
evant PER, for FO and L as well as between them, is standard logical equivalence, i.e.
truth in the same models.

By contrast, if FO(Q 0) is the logical language obtained by adding the quantifier
Q 0 (‘there are infinitely many things such that’) to FO, then FO < FO(Q 0) (same
PER). None of the infinitely many sentences in FO is logically equivalent to the sen-
tence Q 0xP(x) which says that (the denotation of) P is infinite.

Similarly, recall the languages English− and English0 from the beginning of
section 11.1.2. We claim that English− ≡ English, but that English0 < English, again
relative to a suitable notion of logical equivalence.

So far, of course, we are just saying that infinity is undefinable in FO, or that the
quantifier most is undefinable in English0. For someone versed in FO, the first claim
probably seems highly plausible. But plausibility isn’t always a trustworthy guide to
expressive power: some surprises are in store, as we will see. Fortunately, these partic-
ular claims can be proved, as we will see in Chapter 14.

11.2.4.2 Preservation of meaning and preservation of synonymy

The property (11.19), preservation of synonymy (repeated below),

(11.19) for u, v ∈ dom(π ), u ∼1 v ⇐⇒ π (u) ∼2 π (v)

is a weaker property than preservation of meaning, (11.18). A mapping π satisfying
(11.18) also preserves synonymy, but not vice versa. The property (11.19) involves
only the two local PERs on L1 and L2, not the given PER ∼ between them. How-
ever, we now observe that every synonymy-preserving mapping π induces a PER
∼[π ] between the languages, with respect to which π is a translation in our sense;
i.e. it preserves meaning. For simplicity, assume in this subsection and the next that
L1 ∩ L2 = ∅.
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from π to ∼[π ]

Given a partial function π from L1 to L2, define ∼[π ] as follows, for u, v ∈ L1 ∪ L2
(with L1 ∩ L2 = ∅):

(11.23) u ∼[π ] v iff (a) u, v ∈ L1 and u ∼1 v
or (b) u, v ∈ L2 and u ∼2 v
or (c) u ∈ L1, v ∈ L2, and π (u) ∼2 v
or (d) u ∈ L2, v ∈ L1, and π (v) ∼2 u

Note that condition (c) implies that u ∈ dom(π ) and that π (u), v ∈ dom(∼2), and
similarly for (d).

Proposition 4
Let π be a sentential map from L1 to L2 that preserves synonymy, and furthermore is
such that LSent1 ⊆ dom(π ) ⊆ dom(∼1) and range(π ) ⊆ dom(∼2). Then π is a ∼[π ]-
translation from L1 into L2.

Proof. (Outline) First, show that ∼[π ] is a PER between L1 and L2. It is clear from
the definition that ∼[π ] reduces to ∼i on Li (condition (11.7)), so it remains to check
that ∼[π ] is a PER. Symmetry is practically immediate; for reflexivity and transitivity,
one considers the four cases (a)–(d) for u ∼[π ] v in (11.23) (for transitivity each case
has two subcases). We leave this as an exercise.

Second, conditions (i) and (ii) in the definition of a ∼[π ]-translation are satisfied
by assumption. For condition (iii), suppose u ∈ dom(π ). Since range(π ) ⊆ dom(∼2),
also by assumption, we have π (u) ∼2 π (u). By (11.23), this means that u ∼[π ] π (u).
So π preserves meaning in the sense of ∼[π ], and is thus a ∼[π ]-translation from L1
into L2. �

This result explains how the two notions of preservation are related. However, a
moment’s reflection shows that preservation of synonymy only is too weak to cor-
respond to the intuitive idea of translation. The reason is that the induced PER ∼[π ]

between the two languages is essentially determined by π : u is treated as meaning the
same as π (u) just because u is mapped to π (u). But π is arbitrary, except for the fact
that (11.19) holds. For example, nothing prevents it from ‘translating’ Snö är vitt
as Grass is green (rather than as Snow is white), as long as all Swedish sentences
synonymous with Snö är vitt are mapped to English sentences synonymous with
Grass is green.

This becomes most clear in the extreme case when there are no non-trivial syn-
onymies in L1 or L2, so that the local PERs are the identity. Then condition (11.19)
just says that π is one–one, and so any one–one mapping from L1 to L2 preserves
synonymy.

A final example clinches the point. Consider the function which maps every sen-
tence of a language L to its negation. As a mapping from L to L, it preserves (any
reasonable notion of) synonymy in the sense that (11.19) holds, and it satisfies the
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other assumptions of Proposition 4, but it certainly does not preserve (any reasonable
notion of) meaning.

We conclude that the idea of translation between two languages intuitively requires
that there is a given synonymy relation between sentences in the one language and
sentences in the other, which reduces to the given local synonymy when one restricts
to one language, and which the translation mapping must respect. That is precisely
what our formal definition of a translation tries to capture.

11.2.4.3 Formalization

Formalization can be seen as a special case of translation in our sense. Thus, suppose
L1 is a natural language, or a fragment of such a language, and L2 is a logical language,
equipped with a PER ∼2 of logical equivalence. Translating L1 into L2 can serve the
purpose of bringing forth the ‘logical structure’ of L1, and also to provide L1 with a
semantics via the translation π and a given model-theoretic semantics for L2.

Formalization in this sense need not directly involve a given synonymy on L1.
Instead, via π we can pull back the logical equivalence from L2 to L1. In fact, this
is a general operation, not tied to logical equivalence or formalization:

pulling back a PER along π

Let ∼2 be a PER on L2, and let π be a partial function from a language L1 into
dom(∼2). Define, for u, v ∈ L1,

(11.24) u ∼1 v iff π (u), π (v) are both defined and π (u) ∼2 π (v)

Lemma 5
∼1 is a PER on L1, with LSent1 ⊆ dom(π ) ⊆ dom(∼1).

Proof. If u ∈ dom(∼1), there is v such that u ∼1 v, and hence π (u) ∼2 π (v). So
π (u) ∼2 π (u), whence u ∼1 u. This shows that ∼1 is reflexive on its domain. That
∼1 is symmetric and transitive is obvious. Thus, ∼1 is a PER on L1.

Next, if u ∈ LSent1, then u is an L1-sentence in dom(∼1), so by (11.24), u ∈
dom(π ). Thus, LSent ⊆ dom(π ).

Finally, if u ∈ dom(π ), then π (u) ∈ dom(∼2) by assumption, so π (u) ∼2 π (u),
and hence u ∼1 u. That is, dom(π ) ⊆ dom(∼1). �

By definition, the map π in (11.24) preserves synonymy with respect to (L1, ∼1) and
(L2, ∼2). Now we can apply Proposition 4:

Theorem 6

(a) Let π be any sentential map from L1 to L2 (L1 ∩ L2 = ∅), where L2 has a given PER
∼2, with range(π ) ⊆ dom(∼2). π and ∼2 induce a PER ∼1 on L1 by (11.24), and
a PER ∼[π ] between (L1, ∼1) and (L2, ∼2) by (11.23), in such a way that π is a
∼[π ]-translation from L1 into L2.
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(b) If on the other hand ∼ is a given PER between (L1, ∼1) and (L2, ∼2) and π is a ∼-
translation from L1 into L2, then the above construction gives back ∼1 and ∼. More
precisely:

(i) Defining u ∼′
1 v iff u, v ∈ dom(π ) and π (u) ∼2 π (v), we have that ∼′

1 = ∼1�
dom(π ).

(ii) If ∼[π ] is defined from ∼1, ∼2, and π as in (11.23), then ∼[π ] = ∼.

Proof. (a) is immediate from Lemma 5 and Proposition 4. For (b) (i), if u, v ∈ dom(π )
and u ∼′

1 v, then π (u) ∼2 π (v), i.e. π (u) ∼ π (v). Also, u ∼ π (u) and v ∼ π (v), so
u ∼ v, and hence u ∼1 v. Similarly, u ∼1 v implies u ∼′

1 v.
For (b) (ii), take u, v ∈ L1 ∪ L2. There are four cases. If u, v ∈ L1, then, by defini-

tion, u ∼[π ] v iff u ∼1 v iff u ∼ v. Similarly if u, v ∈ L2. If u ∈ L1 and v ∈ L2, then
u ∼[π ] v iff π (u) ∼2 v iff π (u) ∼ v iff u ∼ v, since u ∼ π (u) by the assumption that
π is a ∼-translation. The case when u ∈ L2 and v ∈ L1 is similar. �

Thus, any suitable map π from a language L1 into a given language L2 with a given
PER can be used to pull back that PER to L1, and thereby to define a corresponding
translation from L1 into L2. But, as we remarked at the end of the previous section,
this translation need not preserve any natural notion of meaning. Whether it does or
not depends on further properties of π . If, however, we already know that π is a reas-
onable translation of L1 into L2 relative to some PER between (L1, ∼1) and (L2, ∼2),
then, by (b) in the theorem above, pulling back ∼2 along π gives nothing new.

This theorem has nothing in se to do with formalization. But it makes sense to
mention the latter in this context, since a formalization π of a (fragment of a) natural
language L in some logical language with a given semantics has often been thought of
as a way to provide a semantics for L. If there is a given meaning assignment to the
logical expressions, then an L-expression u can simply be given the same meaning as
π (u). In terms of the corresponding synonymy relations, this is precisely the pulling
back operation described here.

For π to merit the label ‘‘formalization’’, further requirements clearly need to be
satisfied, such as:

• The source is a natural language (fragment), the target is a formal or logical lan-
guage, and the given PER is logical equivalence.

• π is compositional.
• Reasonable synonymy relations on the source language need to be appropriately

related to the induced PER on that language (in terms of refinement; what relations
we have in mind will become clear in the next section, in particular 11.3.8).

We return to these requirements in the next chapter. Formalization in this sense is
indeed a main tool of this book, not so much for providing semantics for languages,
but rather for transferring results about expressive power from formal to natural lan-
guages. How this works in detail will be spelled out in Chapter 12.5.
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11.3 VARIETIES OF SAMENESS

Expressibility, as defined in the previous section, is always relative to a PER (within
a language or between languages). But we are only interested in PERs that capture
some notion of synonymy. This section looks at some possible candidates, in partic-
ular sameness of denotation (11.3.1), logical equivalence (11.3.2), analytical equival-
ence (11.3.3), and various cognitive (11.3.4) and linguistic equivalences (11.3.5). One
sometimes finds in the literature very definite claims about what ‘‘synonymy’’ means,
or ought to mean, including the claim that there aren’t really any non-trivial syn-
onymies, i.e. that the synonymy relation amounts to identity (11.3.6). We try to be
as undoctrinaire about this as possible, since we don’t think that there is one right
notion but rather several, useful for different purposes. This last point is elaborated
in 11.3.7.

In the context of expressivity, we are also interested in how these notions relate to
each other, in terms of the refinement relation. In 11.3.8 we give a picture of the land-
scape in which the various synonymies live, and in particular how they are positioned
with respect to the synonymy relation that comes from logic: i.e. logical equivalence.

In a clear sense, sameness of denotation is a minimal requirement (in addition to
being a PER) on any synonymy, so let us start with that notion.

11.3.1 Sameness of denotation

Suppose u in L1 denotes m. Can we find an expression v in L2 which also denotes m?
This looks like a very weak notion of synonymy, but just how weak it is depends on
a number of factors: (a) what kind of object m is; (b) relative to what class of models
one takes the denotation to be; (c) whether one adopts a global or a local perspective.

For example, if u is a sentence, and sentences are taken to denote truth values, find-
ing v with the same truth value seems trivial. Trivial, that is, unless the same v has to
work for all models, in which case we go from truth values to truth conditions, and
get one standard notion of logical equivalence for sentences. If, on the other hand,
sentences denote propositions, finding v might be non-trivial even if the model (say,
of the possible worlds style) is fixed.

A first-order and local perspective with a fixed model M trivializes sameness of
denotation for sentences, but not necessarily for other kinds of expressions. A pre-
dicate expression denotes a relation over M , a noun phrase a set of subsets of M . It
might not be obvious whether or not we can find something in L2 denoting the same
relation, or the same set of subsets.

Likewise, consider just one language L. Take any set X of subsets of M . Can we
always find an expression in L that denotes X ? This is one of the effability questions
introduced in Keenan and Stavi 1986. It is a question about the expressive resources
of interpreted languages. The answer to this particular question in the case of English,
given some assumptions, turns out to be Yes.
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It is instructive to see an outline of the proof. First, we need to assume that M is
finite. Second, we also need to assume that for each a ∈ M , a name of a is available,
or rather a name of the Montagovian individual (Chapter 3.2.4) (Ia)M = {Y ⊆ M :
a ∈ Y } is available.18 Now, for any A ⊆ M , let SA be the unit set {A}. Then

SA = ∧
a∈A(Ia)M ∧ ∧

a∈M−A(¬Ia)M

so each SA is denotable, provided we assume, third, that (finite) Boolean combina-
tions of English NPs are English NPs. Now let X be any set of subsets of M , i.e.
any type 〈1〉 quantifier on M . Then, clearly, X = ∨

A∈X SA. Since this disjunction
is finite, the proof is complete. �

11.3.1.1 Local and global expressibility

The result just mentioned is local. For issues of expressivity, it is crucial to be clear
about the global/local distinction, discussed in Chapter 3.1.1. Let us elaborate the
point in greater detail, beginning at the level of sentences.

Suppose one claims that the English sentence

(11.25) Most philosophers smoke.

is expressible in a certain language L. From a global perspective, this asks for a char-
acterization of the truth conditions of (11.25) which is uniform over (1) universes,
and (2) the interpretations of philosopher and smoke. A definition which works
when restricted to people at my university, but fails for your university, is not what
one wants. Likewise, a definition that is correct for (11.25) but can’t handle, say,

(11.26) Most students jog.

would be less than satisfactory too.
From a local and first-order perspective, there is no interesting question about the

whole sentence (11.25)—it is either true or false. What about the noun philo-
sopher or the verb smoke, which denote subsets of M , or the noun phrase most
philosophers, treated as denoting a local type 〈1〉 quantifier (set of subsets) on M ?

L might lack a word for smoke. It might even lack a complex expression with the
same denotation as the English verb smoke (in the fixed intended model M). Smoke
would then be inexpressible in L. On the other hand, if M is finite and the assump-
tions from Keenan and Stavi’s effability result above hold for L, we could cook up
a complex predicate expression u in L—a disjunction enumerating the smokers in
M —with the correct denotation. The English smoke and the L-expression u would
be very different, since smoke is lexical, whereas u involves various proper names, but
they would have the same denotation in M.

18 This might seem unrealistically strong. The assumption can be replaced by a more plausible
one about available English NPs; see Keenan and Westerståhl 1997: 844 n. 4.
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But clearly, this ‘translation’ would be next to useless in practice. Also, as we have
said, it would usually need to be changed every time the discourse universe changes.19

For predicate expressions, there appears to be no other reasonable sense in which
one can raise expressivity issues in the present framework. The conclusion is that
the expressivity issues for predicate expressions that we can deal with in a local and
first-order framework are only marginally more interesting than the corresponding
(trivial) ones for sentences. Usually, to achieve translation of predicate expressions in
any interesting sense, one needs sameness of intension.

For quantifier expressions, the situation is different. L might lack a determiner with
the same denotation as most. Keenan and Stavi’s result shows that we may never-
theless, if L has certain basic resources, cook up an L-expression denoting the set of
subsets of M that most philosophers denotes. Again, this is a local, non-uniform
fact: the ‘translation’ depends crucially on M , it works only for finite universes, and
it is hard to see how it could have any use in practice.

But for noun phrases and determiners, there is a global notion of expressive power.
For most, this is precisely the issue of the uniform expressibility of sentence (11.25)
above; that is, expressibility regardless of what the arguments of the determiner are,
and of which universe we are in. As we will see, the global issue concerns the definab-
ility in L of the quantifier most.

Thus: for quantifier expressions, by contrast with predicate expressions, there are
both global and local facts of expressivity. Both kinds can be non-trivial. For example,
Keenan and Stavi (1986) show that not all local type 〈1, 1〉 quantifiers are extensions
of English determiner expressions, although all conservative ones are. In this book we
focus on global facts. Note that a positive global result about expressivity implies all
corresponding local versions.20 More importantly, if one is interested in principled
facts about language, local results seem to depend too much on the world.

For the unconvinced reader we offer the following final remark. Consider the ques-
tion: Is existential quantification definable in propositional logic? If you feel inclined
to answer Yes, because of the following fact:

(11.27) ∃xP(x) ↔ ∨
a∈M P(a)

then local definability is your preference. Indeed, many philosophers have found the
conceptual ties between existential quantification and disjunction very strong—see,
for example, the quote from Albert of Saxony in Chapter 1.1.2, or from Russell
in 1.2.3, or Peirce in 1.2.1, or the treatment of quantification in Wittgenstein’s
Tractatus. On the other hand, although for each M , the right hand side of (11.27) is a

19 Not to mention the fact that Elisabeth smokes, if true, would translate to a necessary truth
in L.

20 Conversely, a negative local result in principle implies the corresponding negative global fact.
But in the case of quantifier expressions, such negative local facts are unlikely to exist. If the model
is fixed, a quantified sentence either holds or not, so it cannot be the case that no L-sentence has
the same truth value, but that is seemingly what would be required. In Ch. 13 we will see what is
needed to prove a negative global fact of expressibility; it will then be clear that there really are no
shortcuts via local facts.
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good sentence in propositional logic—provided there are enough names and the uni-
verse is finite!—no one of these sentences works for different-size M . We feel inclined
to conclude that existential quantification is not expressible with the resources of pro-
positional logic, even though the object (the set of sets) in the world/model denoted
by a local existential quantifier can be described by a disjunction.

In conclusion, sameness of denotation in a fixed universe or model is a necessary
condition on synonymy, but not a sufficient one, in our opinion. On the other hand,
we have explained that the extensions of quantifier expressions are not really tied
to universes. Rather, they are objects that with each universe associate second-order
relations over that universe. Then, sameness of denotation or extension is a central
notion. In fact, it amounts precisely to the logical equivalence—truth in the same
models—of certain corresponding sentences. And it is precisely logical equivalence
that we propose as the weakest reasonable notion of synonymy.

11.3.2 Logical equivalence

For sentences, logical equivalence amounts to truth in the same models. Characterist-
ically, all models in the relevant class count, not just those constrained by, say, ana-
lytical connections between the meanings of certain words, or by mathematical facts.
For example, one also counts models where the interpretations of boy and female
have non-empty intersection, or where prime and odd have empty intersection. This
does not mean, of course, that there could be a boy who is female, or that it could be
that no prime numbers are odd. Presumably, that is impossible. It just means that for
logical equivalence we treat such words as expressions that can receive arbitrary inter-
pretations (of the right kind), unconstrained by certain features of their meaning in
English.

But how do we select the relevant class of models? Such a choice can be informed
by the expressive means of the language, and the level of analysis desired. And we have
already argued at length (see Chapter 9.4) that for a theory of quantification, the right
choice is the class first-order models, i.e. those described in Chapter 2.2, consisting of
a universe M and (a function I , assigning to the relevant atomic expressions) relations
over M , and possibly some selected individuals in M .

This allows us to apply the tools of standard model theory to the semantics of quan-
tification, for logical as well as natural languages. The former languages are specified
exactly and are unproblematic syntactically, whereas the latter are immensely com-
plex and only partly described by current grammars. Nevertheless, a model-theoretic
approach works for quantification in natural languages too, given a few reasonable
assumptions.

11.3.2.1 First-order English

To apply model-theoretic tools to, say, English, it is not necessary to work under the
fiction that we have a complete syntactic description of that language, or to restrict
attention to a small but exactly specified fragment. What is needed is something like
the following.
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fixed languages

Let us say that a language L is fixed if an appropriate class of models has been
selected, i.e. if it has been determined which (lexical) expressions are interpreted
in models and which aren’t, and, moreover, if a truth relation between L-sentences
and models in this class has been somehow specified. (We write M |= ϕ for ‘ϕ is
true in M’.)

Note that the same language (set of expressions) can be fixed in different ways, so a
fixed language is really a pair consisting of a language and a way to fix the model class.

For formal languages, our notion of a fixed language is essentially the logicians’
notion of a (model-theoretic) logic: a set of sentences, a class of models, and a truth
relation between them (subject to certain conditions).21 Here we use the term for nat-
ural languages too, where these things are less exactly specified. Still, as speakers of
such languages, we usually have a pretty good idea.

Let us choose, then, the class of first-order models. It is eminently possible to look
at English or any other natural language in this first-order way, as long as there is a
workable notion of lexical predicate expression (see Chapter 3.1.2) and individual-
denoting expression, and a reasonably fixed truth relation. Since this is an important
concept, we state it explicitly.

first-order English

First-order English is English from the perspective of first-order models (but
not from the perspective of FO!), i.e. where lexical predicate expressions and
individual-denoting expressions are interpreted in models, but nothing else is, and
the truth relation is the usual one for English speakers.

This truth relation is of course not specified exactly, but this need not be prob-
lematic. For atomic sentences it is the obvious one (see below). For a quantified sen-
tence, one may use a truth definition with the corresponding (generalized) quantifier,
provided it is fairly clear that the quantifier expression in question denotes that quan-
tifier. For other sentences, first-order model theory may give little or no help, and we
must rely on normal speakers’ practice.

Observe that first-order English is English, not some artificial language. It is Eng-
lish, looked at from a certain perspective.

Given that the lexical predicate expressions are identified, it is rather clear which
the atomic sentences of first-order English are. For example,

(11.28) a. John is happy.
b. Elsa liked him.22

c. Bill is taller than me.

21 See Barwise and Feferman 1985: ch. 1.
22 A first-order treatment of tense, i.e. not in tense logic but with quantification over temporal

variables, is easily carried out in first-order English, but we do not go into that here.
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Indexicals or demonstratives can be thought of as individual-denoting expressions,
given a fixed context assumption (section 11.1.1.3 above).

In some cases, there are choices to be made. Consider a sentence like

(11.29) John believes that Sara is very bright.

Believes and very are not interpreted in (first-order) models. From the perspect-
ive of first-order English there is nothing very illuminating to say about them, but
that is to be expected. Now, one choice is to regard (11.29) as a complex sentence of
the form

(11.30) a believes that b is very P1

Since belief is intensional, there will presumably be cases where (11.30) is true in M
and PM

1 = PM
2 , but

(11.31) a believes that b is very P2

is not true in M. If one wants to avoid this, one may instead regard (11.29) simply
as an atomic sentence, attributing a certain property to a.

For another example, consider modal expressions. Here our point can be made
even for logical languages. The formal language of modal predicate logic is just FO
extended with modal sentential operators � and ♦ and has the same non-logical sym-
bols as FO, so it is quite simple to regard it as a first-order language in our sense. This
time there is something one can say about the truth conditions of modal sentences
from a first-order perspective. We can use an S5-style modality, with a clause in the
truth definition of the form

M |= �ϕ iff, for all models M′, M′ |= ϕ

This does some justice to intuitions about modality in a first-order framework,
though much is left unaccounted for. Similar remarks hold for modal statements in
first-order English.

Thus, though details have to be worked out, a first-order view of English, singling
out those (lexical) expressions that denote individuals or relations between individu-
als for interpretation in models, is quite feasible. It handles matters of quantification
correctly, and while other semantic phenomena may be less adequately dealt with or
not at all, the corresponding sentences are not excluded, just seen in the same first-
order way.

11.3.2.2 Logical equivalence across languages

To sum up: A model-theoretic notion of logical equivalence is relative to a selection of
a class of models, i.e. to a choice of which expressions to regard as constant and which
not. Such a choice is only partly methodological, since it is constrained by strong intu-
itions about entailment and form. When it is made, the language, and the notion of
logical equivalence, is fixed. First-order models constitute a particular way of fixing
languages, formal as well as natural.
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But one more thing needs to be said about logical equivalence. Recall that for mat-
ters of translation between two languages, we need not one PER but three. Thus, we
need to be clear about logical equivalence between languages.

This issue does not arise in logic, at least as long as the two languages have the same
supply of predicate expressions. A model is just a universe and an assignment of inter-
pretations to items in the vocabulary, and then the same models can be used for both
languages, so the notion of truth in the same models also applies between them.

But this does not apply to real languages, or formal languages with fixed special
purpose (non-schematic) vocabularies. Still, it is not hard to see what to do. Logical
equivalence needs to be defined relative to a mapping between lexical expressions.
Such a mapping is presumably provided by considerations about translation not dealt
with here, since they concern items interpreted in models. But we can simply regard
it as given, and adapt the notion of logical equivalence accordingly.

Another way might be to first replace vocabulary expressions by formal symbols,
and then apply the usual notion of logical equivalence. But this is just a roundabout
way of defining a lexical mapping, since we in any case have to decide when sym-
bols in the respective vocabularies should be replaced by the same formal symbol, and
when by different ones.

Thus, we need to define logical equivalence relative to lexical mappings. In prin-
ciple, this is straightforward. But lexical mappings turn out to have a wider use, relat-
ing directly to translations between languages and to compositionality. We deal with
these matters in the next chapter (section 12.1), and therefore defer a precise defini-
tion of logical equivalence between languages until then.

11.3.3 Analytical/necessary equivalence

Some necessary connections between meanings go beyond the logical ones. It doesn’t
seem possible that someone has fully understood the English words brother, male,
and sibling, for example, without knowing how their meanings are connected, or
that someone knew the meaning of happy and yet believed that this adjective mostly
applies to inanimate things.

A standard way to enforce some such connections is with meaning postulates. Then,
not just any models count, but only those which are models of certain theories, where
a theory is simply a set of sentences in the relevant language. This works for math-
ematics as well. We can account to some extent for the idea that arithmetical truths
are necessary—but still not logically true—by restricting attention, in the definition
of necessary truth and necessary equivalence, to models that satisfy some arithmetical
theory. Call this the axiomatic approach.

Sometimes another method is used, and might in the case of mathematics seem
preferable in view of the fact that the axiomatic approach usually does not characterize
the intended mathematical structures, but allows non-standard ones as well. The idea
is roughly to ‘attach’ the relevant structure to the models one is using. For example,
one might add the natural numbers with addition, multiplication, etc., or a structure
of sets with the membership relation. We might call this the structural approach.
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For linguistic analyticity the structural approach is not always an option, since it
may not be a matter of characterizing particular objects or structures, but merely of
laying down certain connections between the meanings of words. But certain struc-
tures may be, as it were, built into natural languages too: for example, the ordered
structure of time, which underlies the use of tense, characteristic of many natural lan-
guages.

Mathematical meaning postulates can safely be assumed to be the same in all lan-
guages where the corresponding symbols occur—it is in fact not too much of an
idealization to assume that the mathematical expressions (symbols, sentences, etc.)
themselves are the same across languages. But for postulates stemming from the mean-
ings of ordinary words, there may in principle arise an issue of how to handle transla-
tion from L1 to L2 when the two languages have different meaning postulates.

If there is a translation π from L1 to L2, L1-postulates are mapped to L2-sentences.
What if the translated L1-postulates differ from the L2-postulates? Intuitions do not
seem very clear here. Could the postulates contradict each other? Suppose that bachel-
ors are male in L1 but that bachelorsπ can be femaleπ in L2.23 Then bachelor and
bachelorπ would not have the same extension in intended models, and π would
simply be a bad translation. So assume that each lexical u in L1 is interpreted in the
same way as uπ . Still, in principle, nothing prevents the translated L1-postulates from
selecting a quite different class of models than the L2-postulates, or even from contra-
dicting them (in which case there are no models satisfying both).

Should we restrict attention to models making both sets of postulates true, or to
models making at least one set true? On the first alternative one would probably have
to rule that a translation which preserves analytical equivalence is impossible when
the two sets contradict each other. But both alternatives seem ad hoc. And there is
another problem: A synonymy between languages should reduce to the given local
synonymy when restricted to sentences in one of the languages. On either alternative,
this is likely to fail if, as seems natural, the local analytical equivalence relation relies
only on the meaning postulates of the corresponding language. Thus, literal transla-
tion respecting meaning postulates from both sides may be impossible, a fact which
in itself is not surprising.

A different approach is the following. Recall that translation goes from language
L1 to language L2. But then it seems reasonable to apply the L1-postulates both in
L1 and L2, and forget about the L2-postulates. That is, assume the L1-postulates, in
L2 too, and use them to define what is (analytically) equivalent with what. If the L2-
postulates are somehow at variance with these, the quality of the translation might be
in doubt. But at least it is one kind of translation, based on one simple idea. And with
only the L1-postulates relevant between L1 and L2, as well as inside each of L1 and L2,
the general requirements on PERs between languages will be satisfied.

A case where we do have some intuitions is formalization, say of English into
a logical language L. As described in section 11.2.4.3, we can pull back the given
relation of logical equivalence in L to English. There we have various meaning

23 We use uπ for π (u), assume that L1 is English, and express matters a bit sloppily, but the
idea should be clear.
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postulates, e.g. that bachelors are male, but there are none in L. Logic has no meaning
postulates, but clearly, if we want to define a notion of analytical consequence or equi-
valence adequate for this case, we can use the translations of the English postulates.
In fact, these postulates are usually formulated—for example, in Montague Gram-
mar—directly in the logical language. So here we do use the one-sided notion of
equivalence just described. But if we had used either of the two alternatives sketched
two paragraphs up, a different notion would have resulted, one that would not be a
PER between English and L.

However analytic equivalence is defined, it restricts the relevant class of models.
Therefore logical equivalence refines analytical equivalence: two sentences that are logic-
ally equivalent will also be analytically equivalent, but not vice versa. At first sight, this
might lead one to think that we should look for some notion of analytical equivalence
as the weakest synonymy, in terms of which (negative) expressibility results should be
stated. We shall see, however, that this is not so, and that logical equivalence is the
right level for negative facts of expressibility. This will be explained in Chapter 12.5.

Philosophical digression

The notion of analyticity has come under fire in modern philosophy, and many philo-
sophers of language today—though by no means all of them—agree with Quine that
it is fruitless to try to separate the contribution of the world to the truth value of
a single sentence from the contribution of the meanings of its words. On the other
hand, if our starting-point is how dictionaries and grammars (partly) encode ordin-
ary language use, there is no doubt that there do exist various connections between
the meanings of words, and that understanding these words entails understanding
some of those connections. Indeed, that is not something a Quinean would deny.
The disagreement with Quine here is rather whether there are facts of language use
that can verify or falsify the statements found in dictionaries. Quine denies this (see
Quine 1960: §§ 15–16). We prefer, on the other hand, to regard them as (usually)
true descriptions. But even if Quine should be right about the principled issue, our
approach is unlikely to lead to vastly incorrect semantic results.

We are not claiming that the meanings of lexical items are commonly defined in
terms of others. The case of brother = male sibling is an exception rather than the rule.
To say that there are ‘‘connections’’ (encoded by meaning postulates), such as the one
that only animate objects can be happy, is a much weaker claim.

A Quinean might even agree to call such connections ‘‘postulates’’. The question
is where they come from, and the Quinean might prefer ‘‘meaning/world postulates’’
instead. The difference is not of great consequence for what we have to say here. But
we do call these connections analytic, in order to highlight the fact that they seem to
be somehow necessary but not logical; see Chapter 9.4, where we discussed the notion
of logicality and the border line between logic and mathematics.

11.3.4 Varieties of cognitive equivalence

Both logical and analytical equivalence are defined without reference to the cognit-
ive capacities of speakers. They disregard the fact that it may be arbitrarily hard for
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humans to find out if two sentences are logically (or analytically) equivalent, or if
one follows logically from the other. Indeed, unsolved mathematical problems can be
given this form. So even if all speakers were mathematicians, this divergence between
theory and human performance would not be overcome. But of course speakers need
not be mathematicians in order to have full mastery of their language, or translate it in
to another language. Thus, in many contexts it is natural to look for a synonymy rela-
tion that strengthens logical or analytical equivalence by taking cognitive capacities
into account.

Such a relation presumably needs to rely on some way of measuring the cognitive
effort or cost of processing sentences. It is not necessary here to recount or summarize
the vast literature on this subject.24 It’s enough to observe that cognitive considera-
tions yield natural notions of synonymy. Though precise definitions may be difficult,
some logical equivalences clearly are cognitive ones as well, whereas others are clearly
not. Here are a few examples of the first kind that involve quantification.

(11.32) a. Not more than five students came to the party.

b. At most five students came to the party.

c. Fewer than six students came to the party.

(11.33) a. Some student didn’t sign up for the next course.

b. Not every student signed up for the next course.

(11.34) a. Exactly one of the ten lottery tickets that John bought was a win.

b. Exactly nine of the ten lottery tickets that John bought were losing
tickets.

Not very much processing seems to be required in order to judge the sentences in
these pairs equivalent. On the other hand, individual differences may be huge. Com-
pare, for example, the well-documented25 differences in attitude towards sentences
like

(11.35) a. There is a 95 percent chance you will win.
b. There is a 5 percent chance you will lose.

On the other hand, there are many cases where one quantifier turns out to be express-
ible in terms of others, but where this fact is not something speakers can easily make
use of, because the cognitive effort is too big. One curious kind of example is from
Keenan 2005:

(11.36) a. Between a third and two-thirds of the students laughed at that joke.

b. Between a third and two-thirds of the students didn’t laugh at that joke.

24 See e.g. Croft and Cruse 2004; Sperber and Wilson 1995; Lewis 1979; Stenning and Ober-
lander 1995; Vallduvı́ and Engdahl 1996.

25 See Tversky and Kahneman 1974 and Kahneman and Tversky 2000.
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It takes (for most people) more than a little ‘figuring’ before seeing that these two are
equivalent.26 Other cases are more drastic. Consider

(11.37) a. There are more linguists than logicians.

b. There are more linguists who are not logicians than logicians who are not
linguists.

Some thought reveals that these are equivalent, given that the number of linguists
who are also logicians is finite.27 For a case when the intersection is infinite, on the
other hand—say, the number of even numbers that are divisible by 3—the correct
equivalence is (we have negated the sentences in order to make them true):

(11.38) a. There aren’t more even numbers than numbers divisible by 3.

b. If there are more even numbers non-divisible by 3 than odd numbers
divisible by 3, then there aren’t more even numbers non-divisible by 3
than even numbers divisible by 3.

Here more thinking, and some cardinal arithmetic,28 is required. Obviously, these
are not cognitively equivalent.

11.3.5 Possible linguistic equivalences

Instead of letting cognitive factors enter into a notion of synonymy, one might
strengthen the purely logical or analytical concept by requiring similarity with respect
to linguistic features such as

• morphosyntactic structure
• topic/focus relations
• presuppositions
• anaphoric behavior

Accordingly, there are numerous possible linguistic notions of synonymy. Moreover,
some of the relevant concepts depend on particular linguistic theories, a fact which
tends to multiply the possible synonymy relations.

For example, many linguists would regard

26 In general, one has to see that the condition

1/n · |A| ≤ |A ∩ B| ≤ (n − 1)/n · |A|
is equivalent to

1/n · |A| ≤ |A − B| ≤ (n − 1)/n · |A|
27 For then,

|A| > |B| ⇐⇒ |A − B| + |A ∩ B| > |B − A| + |A ∩ B|
⇐⇒ |A − B| > |A ∩ B|

28 Viz. that if |A ∩ B| is infinite, then |A| is the maximum of |A − B| and |A ∩ B|. See
Ch. 13.2.1.
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(11.39) a. Mary picked up the book.
b. The book was picked up by Mary.

as synonymous, in virtue of having, at some level of analysis, the same structure. But
if further factors are taken into account, such as topic/focus, their meanings are no
longer the same. Concerning our previous supposedly cognitively equivalent pairs of
quantified sentences, one could argue that at least (11.33a) and (11.33b), as well as
(11.34a) and (11.34b), are not linguistically equivalent, since the first but not the
second sentence allows later anaphoric reference to the student or the lottery ticket
in question.

In the philosophical literature, a well-known early attempt at strengthening logical
equivalence is Carnap’s (1936) notion of intensional isomorphism, which was intro-
duced in order to have a notion strong enough to sustain intersubstitutivity salva
veritate in intensional contexts. This required synonymous sentences to have the same
structure, and simple parts with the same intension.29

For formal languages, such notions are also familiar. In FO, for example, one could
require sameness of structure (i.e. being derived by the same formation rules in the
same order), perhaps up to changes of bound variables, and extensionally equivalent
atomic parts. In type theory, a less stringent notion is that of reducibility, in terms of
a sequence of λ-conversions, bound variable changes, and perhaps other operations as
well.30 One desirable aspect is that such synonymies usually are decidable, in contrast
with ordinary logical equivalence.

In linguistics, although it is not hard to find discussions of translational difficulties
for particular constructions in particular languages, general accounts of the notion
of translation, and thereby of a notion of synonymy that translation preserves, seem
rarer.31 Some early work of Keenan, however, though informal, presents a view very
much in line with the one in this chapter. Keenan (1974) discusses the concept of
sentences in two languages being exact translations of each other, defined as being
‘‘semantically related to other sentences of their respective languages in exactly the
same way’’ (p. 193). The semantic relations he speaks of include presupposition, and
others that differ from identity of truth conditions in that they concern more than
‘what is said’. Thus, for example, if ψ is an exact translation of ϕ, and ϕ presupposes
θ , then ψ must presuppose an exact translation of θ . Thus the synonymy that Keenan
requires translation to preserve is an identity of a meaning that he takes to be con-
stituted by a sentence’s semantic relations to other sentences in the same language.

29 See e.g. Lewis 1970; Cresswell 1985; Salmon 1986; Pagin 2003.
30 Type theories have the primitive operations of function or λ-abstraction—allowing one to

form, say, the predicate term λx(P1(x) ∧ ¬P2(x)) from P1(x) ∧ ¬P2(x) by abstracting over x —and
function application—allowing the application s(t) of the function s to the argument t (provided
they are of the right types). Then an abstraction followed directly by an application is normally
redundant; so e.g. λx(P1(x) ∧ ¬P2(x))(c) reduces by λ-conversion to P1(c) ∧ ¬P2(c).

31 The collection Guenthner and Guenthnerc-Reuter 1978 has some papers with a principled
discussion, in particular the contributions mentioned below, as well as Kamp 1978. In the same
volume, Givón 1978 gives a useful survey of a variety of translation problems between various lan-
guages, organized along the distribution of certain grammatical morphemes related to definiteness,
pronominal reference, and other features.
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Keenan goes on to argue that by this criterion, languages can be seen to differ in
expressive power, where ‘‘two languages are the same in logical expressive power if
each sentence of one has an exact translation in the other’’ (p. 194).

This argument is further elaborated in Keenan 1978, in the form of a polemic
against what is called the Exact Translation Hypothesis,

(ETH) Anything that can be said in one natural language can be translated exactly
into any other language (p. 157),

a claim defended in Katz 1972 and 1978. For example, Keenan argues that it will
often be the case that lexical predicate expressions in one language have no lexical
correspondents in other languages, and further that the operations forming complex
expressions, such as passive, differ so much across languages that it is reasonable to
expect exact translation to be hard or impossible. Though not stated explicitly, one
could take this to mean that some similarity of syntactic structure is required for exact
translation (since, for example, a complex predicate expression apparently does not
exactly translate an atomic one; cf. section 11.1.1.1 above).

Keenan lists other necessary conditions on exact translation, in terms of properties
required by the relevant synonymy: sameness of speech act, sameness of truth condi-
tions, preservation of presupposition and also of ambiguity.32 Another condition is
called sameness of derived truth conditions, which amounts to substitutability salva
veritate in various linguistic contexts. For example, though

(11.40) a. John sold a house to Mary.
b. Mary bought a house from John.

have the same truth conditions, the sentences in (11.41) can have different truth
values,

(11.41) a. The fact that John sold a house to Mary surprised us.
b. The fact that Mary bought a house from John surprised us.

and therefore the sentences in (11.40) are taken not to be exact paraphrases of each
other. Although failures of exact translation are said to be common between lan-
guages, translations that are inexact but still sufficient for actual cases of communica-
tion are (implicitly) taken to be usually possible.

Katz (1978) in turn criticizes Keenan (1974), claiming on the one hand that trans-
lation with preservation of presupposition is in fact possible where Keenan said it
wasn’t, and on the other that Keenan does not adequately distinguish different levels
of translation. Indeed, Katz explicitly relates translation to notions of synonymy much
as we have done, whereas this is at most implicit with Keenan. Our aim here is not
to discuss the validity of their respective claims, however, but to point out that the
discussion is based on a treatment of synonymy and translation very similar to ours
(though less formal), and that linguists tend to impose stronger notions of synonymy
(resulting in what Katz calls ‘‘non-logical translation’’) than philosophers.

32 In the strong form that if a sentence is ambiguous between several readings, its translation
must be ambiguous in the same way.
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Let us note finally that Keenan (1978) is careful to state that negative claims about
expressive power, i.e. claims about untranslatability, can be made plausible but not
conclusively demonstrated, since ‘‘at the moment, it is not possible effectively to enu-
merate the set of all meanings expressible in any given [natural] language’’ (p. 173).
Thus, it could be just our lack of imagination or ingenuity that prevents us from find-
ing a required translation. For formal languages, as we will see in later chapters, such
claims can be conclusively demonstrated, even though an infinite number of mean-
ings are expressible. The extent to which this allows us to conclude anything about
natural languages will be discussed in Chapter 12.5.

11.3.6 The ultimate refinement: identity

If ‘‘sameness of meaning’’ is taken very strictly, and if the meaning of a word or phrase
is taken to include all linguistically relevant aspects of its role in the language, then it
may be that no two distinct expressions have the same meaning.

For example, if substitutability salva veritate in all contexts is required, including
intensional contexts, idioms (see note 1 in section 11.1.1 above), not to mention con-
texts of quotation, this is a likely consequence. Similarly, if not just extension and
intension but also connotations count, including perhaps even associations triggered
by the sounds or shapes of the words themselves.

The result is that synonymy becomes identity, the ultimate refinement of any PER.
From this it is but a short step to the conclusion that meaning-preserving translation
between different languages is impossible.

Such a stance is sometimes taken. It is not inconsistent, but it is, to say the least,
unhelpful. In general, we would say, a concept of synonymy is helpful only if there
are, on the one hand, lots of distinct synonymy classes, but on the other hand, in each
(or at least most) of these classes lots of distinct expressions.

Someone could try to argue that the intuition that synonymy is a substantial
relation is simply wrong: a closer look at the complexities of meaning reveals that
there turn out to be no non-trivial synonymies. But here we disagree, partly because
there are familiar arguments in favor of less inclusive notions of meaning or con-
tent—such as descriptive content—which do generate interesting synonymy rela-
tions; but mostly because we don’t think that sameness of meaning is an absolute
notion—rather, it is relative to particular practices of linguistic communication, or,
in the case of distinct languages, of translation.

11.3.7 Where do relations of synonymy come from?

Notions of descriptive content are familiar attempts to abstract away from the subject-
ive associations that usually accompany the production or understanding of utter-
ances, and from certain background facts about the utterance situation, and to
focus on what expressions standardly communicate. The motivations, coming from
ordinary practices of linguistic communication, are well known and need not be
rehearsed here. Connotations are usually private, and thus difficult or impossible to
communicate, and even when they could be communicated, they are not meant to be;
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the point of communication is (often) another. Background facts affect how things are
said, but usually not what is said. Abstracting from these, we are left (hopefully) with
a communicated content. When the purpose of communication is related to inform-
ation about the world (in a wide sense), that content can be termed ‘‘descriptive’’.33

The concept of descriptive content is not undisputed: Can we be sure that for nat-
ural languages there really is such a thing? This question is deceptive. Although lan-
guage use is an empirical phenomenon, descriptive content is a theoretical concept,
and one cannot simply go out and look for it in nature (just as one cannot go out and
look for the relation of synonymy). What one can look for are aspects of linguistic
communication and understanding for which positing such a level of content is help-
ful. We have no doubt that such aspects of communication are ubiquitous. Indeed,
this book argues that an extensional and model-theoretic treatment of quantification
provides a clear and succinct account of significant linguistic practices, so it is in itself
a contribution to a notion of descriptive content.

Most of the synonymy relations mentioned previously can be thought of as some
sort of sameness of some sort of descriptive content, and are thus related to the ways in
which speakers use language to communicate information. Other kinds of sameness
of other kinds of content may underwrite other uses of language. Whenever there is
a practice of linguistic communication, it is natural to suppose that there is a relevant
notion of sameness of meaning.

The point becomes most clear for translation between different languages. We
here refer to translation not just as the abstract notion introduced previously, but
as an activity through which thousands of translators and interpreters earn their liv-
ing, helping millions of people to communicate across languages. This may seem
trivial, but is very much to the point. We have here a genuinely linguistic activity
whose purpose and usefulness are not in any way in doubt. Everyone realizes that
without translation, communication and understanding among people would be ser-
iously impeded.

Moreover, everyone knows too that a translation can be more or less accurate. Com-
plete accuracy is often felt to be unachievable—see the remarks above on identity as a
synonymy—so one selects a level of accuracy suitable for the purpose at hand. How-
ever, within such a level or practice of translation, it is often absolutely clear that a
proposed translation is correct, and that another one is simply wrong. It is perfectly
natural to say that correctness here consists in preservation of something: namely, of
that level of meaning or content one desires to communicate. Again, translation is
relative to a notion of sameness of meaning, and it succeeds when the source and the
target have this relation to each other. This is clearest in factual contexts concerning
aspects of descriptive content, but need not be restricted to them. Translation of, say,
fiction may follow the same pattern, using other synonymies.

33 Of course, we are simplifying. For example, there is an ongoing discussion about the very
notion of ‘what is said’, about different kinds of content that an utterance many have, and about
how background and context determines that content; see e.g. Perry 2001; Stanley 2000; Recanati
2002. However, under the idealization of a fixed context assumption (sect. 11.1.1.3), one can still
say that these authors do posit a level of descriptive content(s), or ‘official content’, or ‘what is said’.
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To deny this is to hold the view that the activity of translators and interpreters
may be practically or pragmatically useful but is linguistically irrelevant. To us, this
seems like a refusal to theorize about an important linguistic phenomenon. In this
chapter and the next, we are presenting a general way of talking about the activity of
translation and thus of expressivity, with a minimum of theoretical tools, the main
tool being precisely the notion of a PER or a synonymy relation, within and between
languages.

11.3.8 A landscape of possible synonymies

To get a feeling for the variety of possible synonymy relations, one can try to picture
them under the (pre-)order of refinement (section 11.2.3.4). Fig. 11.1 is designed to
help with this. For simplicity, we restrict attention to one fixed language L, and to
total PERs on the set LSent of its sentences.

Thus, there is a fixed class MOD of models for L, and the PERs above the dot-
ted horizontal line are defined in terms of sameness of truth value in certain of these
models. When X ⊆ MOD, we use the notation

ϕ ⇔X ψ

for truth in the same X -models, i.e. for all M ∈ X , M |= ϕ iff M |= ψ . Thus ⇔
= ⇔MOD is logical equivalence, truth in the same models, and ⇔∅ is the universal
relation LSent × LSent, included in the diagram for completeness.

⇔∅

⇔{M0} ⇔{M1}

⇔Mod(T )

∼Mod(T ),C

∼C

⇔X∩Y

⇔X ⇔Y

⇔X∪Y

⇔

=
Figure 11.1 A landscape of PERs over L
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The next level contains all PERs of the form ⇔{M}. These are the sameness of
denotation PERs relative to a fixed model.34

If T ⊆ LSent is a theory—a set of meaning postulates—let Mod (T ) = {M :
for all ϕ ∈ T , M |= ϕ}. Then ⇔Mod (T ) is the analytical equivalence corresponding
to the postulates in T .

Refinement goes downward in the diagram, and is sometimes indicated with a line
between a PER and another below that refines it. Note that

if X ⊆ Y , then ⇔Y refines ⇔X

(Note also that the diagram assumes that M0 ∈ Mod (T ).)
Logical equivalence refines all PERs above the horizontal dotted line. In addition,

this part of the diagram has a semi-lattice structure, since ⇔X∪Y is the greatest lower
bound of ⇔X and ⇔Y : it refines both, and if ⇔Z also refines both ⇔X and ⇔Y ,
then ⇔Z refines ⇔X∪Y .35

Below the horizontal dotted line are PERs that refine PERs above it by adding extra
requirements, not expressible in terms of classes of models. Thus, various cognitive
and linguistic equivalences are found here. At the bottom we have the only PER refin-
ing all the others: identity.

Note that such extra requirements can be made not only on logical equivalence
but also on analytical equivalences. For example, let ∼Mod (T ),C be the PER obtained
from ⇔Mod (T ) by adding the requirement that ϕ, ψ also satisfy some cognitive condi-
tion C , and let ∼C be obtained by adding the same condition to logical equivalence.
Then, as logical equivalence ⇔ refines ⇔Mod (T ), ∼C refines ∼Mod (T ),C . In addition,
of course, ∼Mod (T ),C refines ⇔Mod (T ), and ∼C refines ⇔.

As we have emphasized, if a negative expressibility result holds relative to a particu-
lar PER ∼, it also holds relative to all refinements of ∼. That is, it persists going down
in the diagram. Now, all such negative results in the following chapters are primar-
ily established for logical equivalence ⇔. A fortiori, they hold for refinements of ⇔,
such as ∼C in Fig. 11.1. But it might seem from the diagram that they tell us nothing
about perfectly reasonable PERs such as ⇔Mod (T ) or ∼Mod (T ),C .

We will see in the next chapter, however (section 12.5), that in a certain sense,
PERs based on meaning postulates are irrelevant for expressivity issues. Thus, logical
equivalence remains the focal point of Fig. 11.1 for negative facts of expressivity.

34 If LSent is countably infinite, |LSent| = ω, then there are 2ω possible PERs on LSent. MOD,
on the other hand, is a proper class. So there will be innumerably many more classes of models than
there are PERs, which means that each PER above the horizontal dotted line will correspond to lots
of model classes. For example, if L-sentences are I-closed—a sentence true in M is true in all
models isomorphic to M—then ⇔{M} = ⇔Is(M), where Is(M) is the (proper) class of models
isomorphic to M.

35 This follows from the fact that ϕ ⇔X ∪Y ψ if and only if ϕ ⇔X ψ and ϕ ⇔Y ψ . Also,
⇔X ∩Y is an upper bound of ⇔X and ⇔Y , but not necessarily the least one.



12
Formalization: Expressibility, Definability,

Compositionality

The motivation for the previous chapter was to present tools and concepts making it
possible to infer in a reasonably precise way facts about expressivity for natural lan-
guages from facts about expressivity for logical languages. But we also tried to make
plausible that some of these concepts are interesting in their own right. To attain the
original goal, however, still a few more pieces need to be in place.

To begin, we need a precise account of logical equivalence across languages; this
is given in section 12.1, in terms of the concept of a lexical mapping. Next, the issue
of compositionality must be addressed. We did not make compositionality a require-
ment on translation, but it is perhaps the first extra condition that comes to mind.
In section 12.2, we discuss compositionality in an abstract setting, with a twist how-
ever, in that we distinguish compositionality of a language from compositionality of
a translation.

It should normally be possible to extend a lexical mapping to a compositional
translation—provided certain conditions on the grammars of the respective lan-
guages are fulfilled. We lay down such conditions in section 12.4, and show that the
desired extension is then indeed possible. The main condition is that the syntactic
rules of the source language should be definable in the target language. Therefore, we
first spend section 12.3 talking a bit about definitions in general, motivating a notion
of definability closely related to uniform translation.

Finally, in section 12.5 we pull all the threads together to achieve, we hope, a reas-
onably detailed and coherent picture of the relation between expressivity issues for
natural and for formal languages.

12 .1 LOGICAL EQUIVALENCE REVISITED

Section 11.3.2.2 in the previous chapter noted that although logical equival-
ence—truth in the same models—is well-defined for one language, we need to
extend it to a relation between languages, in order to talk about translations that pre-
serve this relation.

The general situation is as follows. We have two languages L1 and L2. They can
be formal or natural languages, but they are first-order in our extended sense; i.e.
we have distinguished the predicate expressions (those denoting relations between
individuals) from other expressions. The atomic predicate expressions (and atomic
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individual-denoting expressions) are the only expressions that get interpreted in
models. L1 and L2 are fixed, in the sense that the relation of truth in a model is sup-
posed to be given.

Now, in general, the atomic predicate expressions of L1 will be different from those
in L2. A model, however, is defined (Chapter 2.2) as M = (M , I ), where I assigns
suitable interpretations to predicate and individual-denoting expressions in a vocabu-
lary. Thus, there is no question of a sentence from L1 and a sentence from L2 being
true in the same models. In order to define a relation of logical equivalence between L1
and L2, we need to know when two predicate expressions of the respective languages
are to have the same interpretation. We will account for that in terms of a notion of
lexical mapping.

For the record, let us first state the standard notion of logical equivalence inside one
language L. As before, if ϕ is an L-sentence, Vϕ is the set of vocabulary expressions
occurring in ϕ.1

logical equivalence inside one language

Let L be a fixed first-order language (in our extended sense), with vocabulary V ,
and let ϕ, ψ be L-sentences. Using ⇔ for logical equivalence, define

(12.1) ϕ ⇔ ψ iff for all models M for V : M |= ϕ iff M |= ψ

Here V is the total vocabulary of L. But we also allow models (M , I ) where I is defined
for a subset of V . Assuming the truth relation is reasonable, one will have

(12.2) (M , I ) |= ϕ iff (M , I � Vϕ) |= ϕ

i.e. only lexical items actually occurring in ϕ matter for its truth or falsity in a model.
Thus, in (12.1), one can restrict attention to models for Vϕ ∪ Vψ .

12.1.1 Lexical mappings

In the simplest case, a lexical mapping just maps atomic expressions in L1 to atomic
expressions in L2 in a one–one fashion (such mappings will be called strict). This
gives an obvious correspondence between the respective models. For example, sup-
pose �, from English to Swedish, is such that �(John) = John, �(happy) =
lycklig, and �(logician) = logiker. Then the two sentences

(12.3) a. John is happy.
b. John är lycklig.

1 In some suitable sense of ‘‘occur’’; e.g. we may want to say that the lexical item buy occurs in
the sentence Harry bought new shoes.
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make the same claim: if (12.3b) is true in M = (M , I ), where I (John) = a and
I (lycklig) = R, then, trivially, (12.3a) is true in the corresponding model, the one
which interprets John as a and happy as R, i.e. the model

�M = (M , I ◦�)

But isn’t it odd to say that (12.3a) and (12.3b) are logically equivalent? No, the
equivalence is relative to �, and relative to �, (12.3a) and (12.3b) trivially make the
same claim. The fact that these two sentences are logically equivalent relative to � is
no more remarkable than the fact that (12.3a) is logically equivalent to itself.

Now consider

(12.4) a. Most logicians are happy.
b. De flesta logiker är lyckliga.

Again we find that (12.4b) is true in (M , I ) if and only if (12.4a) is true in (M , I ◦�),
so these sentences too are logically equivalent, relative to �. This time, however, the
equivalence does not only depend on �. � does not map most to de flesta; lex-
ical mappings, as we defined them, only map predicate expressions and individual-
denoting expressions. It just so happens that these two determiners denote the same
quantifier, i.e. most. But that is a fact about the given truth relation for the respect-
ive languages. Of course, since this is the case, we could have mapped most to de
flesta—they are, after all, lexical items. From a linguistic point of view, this seems
quite natural. But we have already argued at length (Chapter 9.3) that this would gen-
erate a very non-standard notion of logical equivalence, and not the one we are usually
interested in. Quantifier expressions are constant, and so they should not be inter-
preted in models. Hence, lexical mappings used for explicating the notion of logical
equivalence between languages do not concern quantifier expressions.2

Further, by the same explanation as above, we see (given our default interpretation
of most/de flesta) that (12.4b) is also logically equivalent (relative to �) to, say,

(12.5) There are more happy logicians than unhappy ones.

This equivalence could not be reduced to a mapping of lexical quantifier expressions.
However, in the general case, it may not be possible to map lexical predicate expres-

sions to other lexical predicate expressions, or to have the mappings be one–one.
There might be two distinct words in L1 for which only one counterpart in L2 is
reasonable. Or, a lexical predicate expression in L1 may correspond to a complex pre-
dicate expression in L2.

Such cases cannot be ruled out in advance, it seems. Note that we are not attempt-
ing to say anything about where lexical mappings come from, or what makes one
such mapping reasonable and another not. Indeed, within a first-order (albeit in our
extended sense) and extensional framework one should not expect to be able to say
anything about that. Lexical mappings are just given. The intuitions that neverthe-
less make us pretty good judges of such mappings are intuitions about a synonymy

2 For somewhat similar reasons, we do not take � to map the English be to the Swedish vara.
Rather, in (12.4a) and (12.4b) these verbs are seen as part of the atomic predicate expressions.
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relation that has nothing to do with logical equivalence, and that has to precede an
account of logical equivalence between two different languages.

Suppose, for example, that ophthalmologist and eye doctor both are
mapped by � to the Swedish ögonläkare.3 We may still say that all of the following
three sentences are logically equivalent, relative to �:

(12.6) a. Most ophthalmologists are happy.
b. Most eye doctors are happy.
c. De flesta ögonläkare är lyckliga.

The explanation is as before: (12.6c) is true in (M , I ) if and only if (12.6a), say, is true
in �M = (M , I ◦�). But now there is an asymmetry: whereas in the one–one case
we could as well have started with a model for the English sentence, saying instead
that (12.4a) is true in (M , I ′) if and only if (12.4b) is true in (M , I ′◦�−1), this is not
possible when � is not one–one. We have to start with models for the target language
of �, and find the corresponding models for the source language.

Similarly if a language L1 has a color word bloog with no lexical correspondent
in English, but with the same extension as blue or green. Clearly, this correspond-
ence can underwrite a notion of logical equivalence between L1 and English. Note
that now � will not map bloog directly to an English predicate expression. It is bet-
ter to think of it as mapping the atomic formula bloog(x) to the English x is blue
or x is green.

There is another consequence. Normally, we would not say that (12.6a) and
(12.6b) are logically equivalent in English. However, if logical equivalence between
English and Swedish, relative to �, is to reduce to the respective relations of logical
equivalence inside these languages—and recall that this is the basic requirement of a
PER between two languages (Chapter 11.2.3.1)—then it seems that we have to say
just that, since both are logically equivalent to (12.6c)!

What happens is that � induces a new relation of logical equivalence over L1: truth
not in the same models but in the same �-models (models of the form �M). (12.6a)
and (12.6b) are equivalent in this sense. We see that � has introduced a meaning
postulate in English: namely, one saying that eye doctors are ophthalmologists, and
vice versa. In this sense, the induced logical equivalence relation is more like analyt-
ical equivalence, although its meaning postulates in this case derive from a translation
into another language, i.e. the lexical mapping �. As with other relations of analytical
equivalence, they reduce the number of allowed models, and hence ordinary logical
equivalence refines analytical equivalence.

We are now ready for the general concept of a lexical mapping. We do not restrict
attention to logical languages. But we still write, whenever P is an n-ary predicate
expression, the corresponding atomic formula P(x1, . . . , xn), though this now abbre-
viates some expression obtained from an actual L-sentence by replacing names with
variables. English examples of such formulas could be x is green, x likes y, z
runs fast, etc. Also, when ϕ(x) is an arbitrary L-formula in this extended sense,

3 Treating, for simplicity, the compound noun eye doctor as an atomic predicate expression.
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we continue to use ϕ(x)M,x for the set of (sequences of) objects in M satisfying it:

ϕ(x)M,x = {a : M |= ϕ(a)}
Here is the definition:

lexical mappings

A lexical mapping � from L1 to L2 associates with each atomic L1-formula
P(x1, . . . , xn) an L2-formula, written P�(x1, . . . , xn), with the same free variables.

� is strict if it can be seen as mapping atomic expressions in L1 to atomic expres-
sions in L2 (of the same arity) in a one–one fashion.

If M is an L2-model, and V1 a vocabulary of predicate expressions in L1, define
a model �M for V1 as follows:

�M = (M , P�M)P∈V1 = (M , P�(x)M,x)P∈V1

So the extension of P in �M is the same as the extension of the formula
P�(x) in M.

A �-model is an L1-model of the form �M.

Lexical mappings can be seen as special cases of what logicians call ‘‘interpreta-
tions’’: interpretation of one vocabulary in another, and of one structure (model) in
another. A comprehensive account is Hodges 1993: ch. 5, whose notation we follow
here. Since ‘‘interpretation’’ is already occupied, however, we continue to use ‘‘lexical
mapping’’.4

In the general case, � thus maps atomic L1-formulas to L2-formulas. But in the
strict case, we can continue to think of � as mapping atomic predicate expressions to
atomic predicate expressions, and write �(M , I ) as (M , I ◦�).

12.1.2 Logical equivalence relative to a lexical mapping
First, let us spell out how a lexical mapping � from L1 to L2 restricts the permissible
L1-models, inducing a  ⇔�

1 which is refined by the given relation ⇔1 of logical
equivalence for L1.

L1-equivalence relative to �

If � is a lexical mapping from L1 to L2 and ϕ, ψ are L1-sentences:

(12.7) ϕ ⇔�
1 ψ iff for all �-models �M: �M |= ϕ iff �M |= ψ .

4 According to the classification in Hodges 1993, a lexical mapping in our sense here is a one-
dimensional, unrelativized, and injective interpretation of a relational vocabulary V1 in V2. A two-
dimensional interpretation, e.g., takes elements of one structure to pairs of elements in the other,
as when complex numbers are interpreted as pairs of reals (the interpretation then needs to be
equipped with a coordinate map to this effect). A relativized interpretation takes one structure to a
substructure of the other, as when rationals are interpreted as the pairs (m, n) of integers such that
n �= 0. Finally, if an interpretation is not injective, identity in one structure can correspond to an
equivalence relation in the other.



Formalization 419

Clearly ⇔�
1 is a PER on L1. Equally clearly:

(12.8) If � is strict, then ⇔�
1 = ⇔1.

But otherwise, ⇔1 will normally be a proper refinement of ⇔�
1 .

We can now formulate the appropriate notion of logical equivalence across
languages.

logical equivalence between two languages

Let (L1, ⇔1) and (L2, ⇔2) be fixed languages as above, with their respective rela-
tions of logical equivalence, and let � be a lexical mapping from L1 to L2. Further-
more, assume that L1 ∩ L2 = ∅. Define the relation ⇔� as follows:

(12.9) ϕ ⇔� ψ iff (a) ϕ, ψ ∈ L1 and ϕ ⇔�
1 ψ

or (b) ϕ, ψ ∈ L2 and ϕ ⇔2 ψ

or (c) ϕ ∈ L1, ψ ∈ L2, and for all L2-models M,

�M |= ϕ iff M |= ψ

or (d) ϕ ∈ L2, ψ ∈ L1, and for all L2-models M,

�M |= ψ iff M |= ϕ

Proposition 1
When L1 and L2 are disjoint, ⇔� is a PER between (L1, ⇔�

1 ) and (L2, ⇔2).

Proof. We need only check that ⇔� is a PER. Reflexivity and symmetry are obvious.
For transitivity, suppose ϕ ⇔� ψ and ψ ⇔� θ . We must show ϕ ⇔� ψ . There are
four cases, each with two subcases.

(a): ϕ, ψ ∈ L1, so ϕ ⇔�
1 ψ .

(a1): θ ∈ L1. Then ψ ⇔�
1 θ , so ϕ ⇔�

1 θ , i.e. ϕ ⇔� θ .

(a2): θ ∈ L2. Let M be an L2-model. Then �M |= ϕ iff �M |= ψ (since ϕ ⇔�
1 ψ)

iff M |= θ (since ψ ⇔� θ ). That is, ϕ ⇔� ψ .

(b): ϕ, ψ ∈ L2. Similar to case (a).

(c): ϕ ∈ L1 and ψ ∈ L2.

(c1): θ ∈ L2, so ψ ⇔2 θ . If M is any L2-model, �M |= ϕ iff M |= ψ iff M |= θ ,
as desired.

(c2): θ ∈ L1. Take any �-model, i.e. any model of the form �M. Then, �M |= ϕ

iff M |= ψ iff �M |= θ . This shows that ϕ ⇔�
1 θ , and so ϕ ⇔� θ .

(d): ϕ ∈ L2 and ψ ∈ L1. Similar to case (c). �
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Thus, we have a bona fide relation of logical equivalence between two disjoint lan-
guages, relative to a lexical mapping. The restriction to disjoint languages will not
be a problem here. For, as we will see later in this chapter: (i) In our applications
of this notion, we shall never have to consider lexical mappings between logical lan-
guages. Different such languages need not be, and often are not, disjoint, but for
them we can use the standard notion of logical equivalence. (ii) We shall in fact be
mostly interested in strict lexical mappings for applications (cf. section 12.5). Such
mappings just switch labels for predicates, and then the assumption of disjointness
is harmless.

It is still possible to question the label ‘‘logical’’ for relations of the form ⇔� .5 One
could claim that an equivalence relation based on meaning postulates is analytical, not
logical, and consequently one could limit logical equivalence between an L1-sentence
and an L2-sentence to the trivial case where both are logically true (or false). But such
a relation would not do the work we need here.

As far as we know, the notion of logical equivalence between languages has not
been discussed in the literature, and so it is not surprising if our intuitions about it
are less than clear. Our position, roughly, is the following. We propose that the rela-
tion ⇔� for a strict �—and this is the case we will use in applications here—is true
logical equivalence. In this case, no meaning postulates arise in the source language
(see (12.8) above). Further, logical equivalence is truth in the same models: that is,
truth however the corresponding (by �) atomic predicate expressions are interpreted,
provided they are interpreted in the same way. As we have said, in this context those
expressions function merely as labels for predicates. Thus, it seems to us that, relative
to a strict �, ⇔� does indeed preserve the essence of logical equivalence (recall that
� is supposed to be given, independently justified lexical mapping).

Furthermore, even when � is not strict, there is clearly a principled difference
between ordinary meaning postulates for a given language L1, on the one hand, and
meaning postulates resulting from translation into another language L2, on the other.
The latter are not intrinsic to L1 but merely due to translation difficulties. Perhaps the
label ‘‘logical’’ is not appropriate, but then neither is ‘‘analytical’’; we should rather
invent a new term for this case. However, in this book we continue to talk about
logical equivalence relative to �.

Leaving now the issue of meaning postulates, let us consider another feature of lex-
ical mappings. Such a mapping has a direction; it goes from one language to another.
How does this square with the fact that logical equivalence between languages is a
PER, hence symmetric, or ‘direction-less’?

We make two remarks about this. First, suppose that a lexical predicate expression
P occurs in an L2-sentence ψ , but not in any formula to which an atomic L1-formula
is mapped by �. Can ψ be logically equivalent to an L1-sentence? Yes, if both ψ and
ϕ are logically true, or both logically false. Then there is no requirement that their
respective vocabularies be the same. The same holds for logical equivalence between

5 This was pointed out to us by Tim Williamson, and the discussion that follows is inspired by
his comments.
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two languages; indeed, the meaning postulates induced by � may further contribute
to making seemingly unrelated sentences logically equivalent (relative to �).6

However, let us say that P occurs essentially in ψ if there are two L2-models
M1,M2 which differ only on the interpretation of P, such that ψ is true in M1
and false in M2. Then we can state:

(12.10) If P as above occurs essentially in ψ , then ψ does not stand in the relation
⇔� to any L1-sentence.

The reason is that with M1,M2 as above, �M1 = �M2, so the condition (12.9)
(c) can never obtain. In conclusion: Yes, there is an asymmetry, and in cases like these,
⇔� will be only a partial equivalence relation on L1 ∪ L2.

The second remark is that we could indeed go on to ask if it would be reasonable
to strengthen the requirements on lexical mappings so as to make them bidirectional.
Or, we can ask what happens when there is a lexical mapping � from L1 to L2, and
a mapping � from L2 to L1 (which agree in some suitable sense). Some subtleties are
known here from the theory of interpretations (Hodges 1993: ch. 5), but we shall
have to leave the matter at this point.

Let us finally observe that a lexical mapping � generates a partial ⇔�-translation
from L1 into L2. This is because, whenever P(c), say, is an atomic L1-sentence, we
will have

P(c) ⇔� P�(c�)

by definition, provided � also maps individual-denoting L1-expressions to corres-
ponding L2-expressions denoting the same individual. (We glossed over this in the
earlier definition.) When can such a mapping be extended to a total translation (pre-
serving logical equivalence), in the sense of Chapter 11.2.4? One would guess that
sentences in these languages would have to be generated in a reasonably systematic
way, which also reflected their semantics; i.e. that compositionality would be required.
We deal with this notion next.

12 .2 COMPOSITIONALITY

We have not made compositionality part of the notion of translation, but it looks like
a highly relevant extra requirement. Actually, the issue of compositionality is some-
what controversial, and there are frequent discussions of various aspects of it in the
literature. Here we shall not enter into that debate. We do believe that composition-
ality is an important property, and that it is part of the explanation of how a seemingly
infinite (or unbounded) language capacity can be handled by finite means. But in this

6 Here is an illustration. Suppose the English bachelor(x) is mapped to the Swedish
ogift(x)och man(x) (i.e. to ‘unmarried man’), and unmarried(x) is mapped to ogift(x).
Then All bachelors are unmarried will be true in all �-models. Thus, it will be logically
equivalent, relative to �, to any logically true Swedish sentence.
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chapter we merely formulate the notion, and see how it fits with other notions already
introduced.

Even so, there is a distinction we think is important, but that is not often made
clear. On the one hand, a language can be compositional, in the sense of having
a compositional semantics. On the other hand, a translation of one language into
another can be compositional. There are certain historical and theoretical reasons for
thinking that conflating these is a good idea. Nevertheless, we shall keep them apart,
and begin with the former.

12.2.1 Compositional languages

Consider a language as a set L of linguistic expressions. To even talk about the com-
positionality, or not, of L, at least two things need to be in place: first, that the L-
expressions must be structured ; second, that they must have a semantics, usually in the
form of an association of some sort of semantic values (‘meanings’) with them. Only
then can the Principle of Compositionality begin to make sense:

(PoC1) The meaning of a compound expression is determined by the meanings of
its parts and the mode of composition.

Actually, as we have said, you don’t really need meanings, but only synonymy, if you
instead use a principle along the lines of:

(PoC2) Substitution of synonymous parts of a compound expression preserves
meaning.

The main requirement on syntactic structure here is that there is a(n immedi-
ate) constituent relation among expressions. Such a relation is standardly induced by
syntactic rules generating the well-formed expressions.7 Abstractly, syntactic struc-
ture is then algebraic structure. The classical (Montague-style) approach uses total
many-sorted algebras, where sorts correspond to syntactic categories. A more recent
(Hodges-style) approach uses partial algebras instead, without sorts. Here partiality
takes care of category constraints, so that a syntactic rule is simply undefined for argu-
ments that don’t ‘fit’. We rely here on Hodges’ approach, though the formal details
will not matter much.8

Thus, suppose that L is generated by an algebra of the form L = (L, A, �), where
A is a subset of L, the set of atomic (lexical) expressions, and � is a set of syntactic rules,

7 For simplicity, we presuppose a generative perspective in what follows. But a constituent rela-
tion can also be given by grammar formats not based primarily on generation, as in ‘model-theoretic
syntax’ or HPSG-style grammars.

8 For Montague’s approach, see Montague 1970c; Janssen 1986; and Hendriks 2001. For the
Hodges-style framework, see Westerståhl 1998; Hodges 2001; and Westerståhl 2004; the latter
paper also contains a comparison between the two approaches. Mixed variants are possible; Keenan
and Stabler (2004) use partial algebras and primitive syntactic categories. Hodges (2003) employs a
format where the properties of a constituent relation are described axiomatically, without assuming
an underlying generative syntax.
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or partial functions from Ln to L (for some n). That L is generated means that each of
its expressions is either atomic or the result of a finite number of rule applications.

An expression may be generated in different ways, which may correspond to its
being ambiguous. So it is not really surface expressions that should be assigned mean-
ings, but—for maximum generality—their generation histories or analysis trees.
These are represented by terms in the (partial) term algebra corresponding to L. For
example, the term

(12.11) α(β(a, b, γ (c)), γ (a))

represents an expression obtained by applying rule γ to the atom c and then apply-
ing rule β to atoms a, b and the result of the first application, and finally applying
rule α to the result of that and the result of applying γ to a.9 This term is well-
defined—grammatical—if and only if the relevant partial functions are defined for
the relevant arguments.

Strictly speaking, we should thus think of L as a set of analysis trees, possibly with a
function val mapping these to their surface manifestations. For simplicity, however,
we ignore this complication whenever possible.

Next, a semantics is a partial function µ from L to some set M .10 Elements of M
can be thought of as meanings, but we make no assumption about what they are. The
(µ-)meaningful L-expressions are those in the domain of µ. µ induces a PER ≡µ on L:

u ≡µ v iff µ(u) and µ(v) are both defined, and µ(u) = µ(v)

(u, v ∈ L). Now we can express (PoC1) as follows:

Rule(µ) For each syntactic rule α ∈ � there is an operation rα such that whenever
α(u1, . . . , un) is meaningful, µ(α(u1, . . . , un)) = rα(µ(u1), . . . , µ(un)).

Note that this formulation presupposes that whenever α(u1, . . . , un) is meaningful,
so are all of u1, . . . , un. That is, it presupposes that dom(µ) is closed under subterms;
this is sometimes called the Domain Principle.

(PoC2) becomes the following principle:

Subst(≡µ) For each α ∈ �, if α(u1, . . . , un) and α(v1, . . . , vn) are both meaningful,
and if ui ≡µ vi, 1 ≤ i ≤ n, then α(u1, . . . , un) ≡µ α(v1, . . . , vn).

Subst(≡µ) does not mention µ but only ≡µ; indeed, it can be formulated for any
PER on L.11 The next fact is practically immediate:

9 Note that α, β, etc. are used here in two ways: as formal symbols (in (12.11)), and as the rules
or functions these symbols stand for (in the preceding text). We could distinguish them by using α
for the symbol and α for the function, but usually the ambiguous use does not cause confusion.

10 Sometimes, one may want to count certain ungrammatical expressions as meaningful, e.g.,
since such expressions are frequently used and still understood. One would then give µ a domain
stretching outside L. We ignore such complications in what follows; i.e. we restrict attention to
meaningful grammatical expressions.

11 Subst(≡µ) says that ≡µ is a congruence. It does not presuppose the Domain Principle. A more
general version of Subst(≡µ), used in Hodges 2001, allows substitution of arbitrary synonymous
subterms, not just immediate ones; this is essentially (12.12) below. If dom(µ) is closed under sub-
terms, the two versions are equivalent; see Westerståhl 2004.
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Fact 2
Given that dom(µ) is closed under subterms, Rule(µ) and Subst(≡µ) are equivalent.

Rule(µ) (or Subst(≡µ)) clearly captures a core meaning of compositionality, i.e.
(PoC1) or (PoC2), but it is a rather weak principle. Roughly, it has more bite, the
more synonymies there are in L, but when there are few synonymies, it requires
almost nothing of L and µ. This can be seen from the following

Fact 3
If µ is one–one, i.e. if there are no non-trivial synonymies in L, then Subst(≡µ) holds.

Proof. Since in this case, ui ≡µ vi implies ui = vi, Subst(≡µ) holds trivially. �

One may wonder how this can be the case, if Rule(µ) is to capture the idea that the
meaning of a complex expression can be ‘figured out’ from the meaning of its parts
and the relevant syntactic rule of composition. Even if there are no non-trivial syn-
onymies in L, a lot of non-trivial ‘figuring out’ may be required to get at the meanings
of its complex expressions. So how can (PoC1) then be trivially true?

The answer lies in the fact that we required nothing of the semantic operations
rα except that they exist. For a more realistic rendering of compositionality, the rα
should be computable in some relevant sense. However, it is still useful to isolate the
core meaning of compositionality as we have done, and then strengthen it by adding
further requirements.

It is thus quite clear and, we hope, uncontroversial, what the essence of compos-
itionality of a language amounts to. Our account does not rely on a particular view
of grammar. The algebraic approach gives an abstract frame into which almost any
current variety of grammar can be fitted. It is a general way of talking about mean-
ingful structured expressions, which abstracts away from particular grammar formats
and particular notions of meaning. The intuitive principles (PoC1) and (PoC2) are
in fact formulated at such a general level, and our account here merely gives them
some precision.

12.2.2 Compositional translation

Now let us return to the situation in Chapter 11.2.4.1, with two languages Li, i =
1, 2, with associated local PERs ∼i, and a PER ∼ between them. A translation π from
L1 into L2 must respect ∼, but this alone is not enough to make it in any way system-
atic. For example, suppose π maps Alla katter är grºa to All cats are gray,
but also maps Alla ankor är vita (‘All ducks are white’) to It is not the case
that some duck is not white. Such a translation, although truth-conditionally
correct, hardly qualifies as compositional. Or does it?

The motivation for a compositionality requirement on translation is easy to see.
Languages are (usually) infinite, but in order to be useful to us, a translation π

between two languages needs to be describable in a finite manner, for example in
a translation manual. Intuitively, compositionality seems to offer a way to realize
this goal.
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We just saw what it (minimally) means for Li to be compositional—that Subst(∼i)
holds—but what exactly is a compositional translation? A first suggestion might be:
Rule(π ). But in this sense the translation suggested above could well be compositional.
Indeed, this requirement is so weak that under very general circumstances, if there is
a translation at all between L1 and L2, there is also a compositional one. This is the
content of the following proposition.

Proposition 4
Let (Li, ∼i) be as above, with a PER ∼ between them, and π a ∼-translation from L1
to L2. For u ∈ Li, let [u]i be the ∼i-equivalence class of u, i.e. [u]i = {v ∈ Li : u ∼i v}.
Now assume that for each L1-expression u, there are at least as many L2-synonyms of its
translation π (u) as there are L1-synonyms of u. That is, assume that |[u]1| ≤ |[π (u)]2|.
Then there is a ∼-translation π ′ from L1 to L2 satisfying Rule(π ′).

Proof. Take u ∈ dom(π ), and let Xu = [u]1 ∩ dom(π ).12 We know that range(π ) ⊆
dom(∼2) ((11.22) in Chapter 11.2.4.1). It follows that π , restricted to Xu, maps Xu
onto π (Xu), which is a subset of [π (u)]2. Now take any subset of [π (u)]2 of cardin-
ality |Xu|, and let π ′, restricted to Xu, map Xu in a one–one fashion onto that subset.
By our assumption, this is possible. Doing the same for all sets of the form Xu clearly
results in a one–one mapping π ′ from dom(π ) to dom(∼2) meeting the requirements
of a translation; in particular, u ∼ π ′(u). But since π ′ is one–one, Rule(π ′) holds by
Fact 3. �

In practice, the cardinality condition in this proposition might well be satisfied. But
the main point is that this condition is totally irrelevant to the idea of composition-
ality. Also, the structure of Li-expressions has not been involved at all. We conclude
that Rule(π ) (or Subst(≡π )) is too weak.

Rule(π ) says nothing about the given PERs ∼i.13 An apparently more promising
idea is to express the compositionality of π as a substitution condition involving the
given PERs ∼1, ∼2, and ∼. Assume, then, that Li is generated by Li = (Li, Ai, �i),
i = 1, 2, and that A1 ⊆ dom(π ). Consider the following condition:

Subst(∼1,2,π ) For each α ∈ �1, if α(u1, . . . , un) and α(v1, . . . , vn) are both
in dom(π ), and if ui ∼1 vi, 1 ≤ i ≤ n, then π (α(u1, . . . , un)) ∼2
π (α(v1, . . . , vn)).

Alas, this condition too is virtually empty, provided L1 is compositional.

Fact 5
If L1 is compositional, in the sense that Subst(∼1) holds, and if π is a translation from L1
to L2, then Subst(∼1,2,π ) holds too.

12 If u is a sentence, Xu = [u]1 by condition (ii) in the definition of translation in ch. 11.2.4.1
(assuming condition (11.16)), but if u is another L1-expression, Xu might be a proper sub-
set of [u]1.

13 It only involves the PER ≡π over L1, where u ≡π v iff u and v have the same translation.
≡π refines ∼1 (since u ≡π v ⇒ π (u) = π (v) ⇒ π (u) ∼2 π (v) ⇒ u ∼1 v), but it is not a very
interesting relation.
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Proof. If α(u1, . . . , un) and α(v1, . . . , vn) are both in dom(π ), then they are both
meaningful in the sense of ∼1, by the requirements on translations. So if ui ∼1 vi,
1 ≤ i ≤ n, it follows by Subst(∼1) that

α(u1, . . . , un) ∼1 α(v1, . . . , vn).

Since π is a translation (and thus preserves synonymy),

π (α(u1, . . . , un)) ∼2 π (α(v1, . . . , vn)) �

Let us take stock. It seems that the versions of compositionality for translations that
most immediately correspond to what we have called the core version of composi-
tionality for languages are too weak, in the sense that if there exists a translation at
all, then (under certain conditions) it can always be taken to be compositional in this
sense. This is not really surprising, however. Compositionality for languages was for-
mulated without any regard for the nature of meanings; indeed, a synonymy relation
suffices. But in translation from L1 to L2, L1-expressions are mapped not to mean-
ings but to L2-expressions. It then seems reasonable not to disregard the structure of
L2-expressions, but that is precisely what we have done so far.

What confuses this issue is that since Montague it is not uncommon to give a
semantics for a language by means of a translation into a formal language, i.e. a form-
alization (see Montague 1974). You map from one syntactic algebra to another, and
compositionality is preservation of structure, in the sense that the mapping is a homo-
morphism. The target algebra comes from a logical language, already assumed to have
a transparent model-theoretic semantics, and the formalization is a precise way of
giving the semantics for the source language. The logical algebra can be seen as a
handy intermediate step, in principle dispensable. But in the general case of trans-
lation between two arbitrary languages, there is no such assumption, and the two
syntactic algebras should be equally important.

The main difference between the Montague-style approach and the Hodges style
approach is not that one uses total many-sorted algebras and the other uses partial
one-sorted algebras. Rather, it is that one deals with translation (albeit for the purpose
of giving a semantics) between two languages, and the other with the semantics of
one language. An achievement of Hodges’ approach is the realization that you can say
interesting things concerning compositionality independently of the nature of mean-
ings. But if we are interested in compositional translation, we need a Montague-style
account of compositionality. In fact, we can obtain that without about abandoning
the simpler partial algebra framework of Hodges, by suitably strengthening the con-
dition Rule(π ).

But note that since there is no ambition to define the semantics by means of the
translation, we are still assuming that a synonymy (a PER) between the two languages
is given, and hence that the translation must conform to that relation.

Rule(π ) says that for each syntactic rule α in L1 there is a corresponding opera-
tion rα on the expressions in L2. What we should add is simply that this operation is
definable by means of the syntactic operations in L2. In this sense, the little example at
the beginning of this subsection is an instance of non-compositional translation, since
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two complex L1-expressions obtained with the same syntactic rule were translated as
L2-expressions formed by different rules. That is, the translation was not uniform.

To express the appropriate condition, one needs the notion of a polynomial in
a partial algebra L = (L, A, �). This is simply a term in the corresponding term
algebra with variables. Instead of giving a precise definition, we explain by means of
an example.

Starting with the term (12.11), i.e.

α(β(a, b, γ (c)), γ (a))

we can obtain, replacing some atoms by variables, the polynomial

p(x, y) = α(β(x, b, γ (y)), γ (x))

p(x, y) does not stand for a primitive operation of L as α, β, γ do, but it is definable
from them. For every assignment of objects u, v in L to x, y it gives a well-defined
object p(u, v) in L, obtained in the obvious way: first apply γ to u and v, resulting in
u1 and v1, say; then apply β to u, b, v1, resulting in u2, and finally apply α to u2, u1.
This is assuming that all of the operations are defined for the relevant arguments. If
that fails at some point, p(u, v) is undefined. So p is a partial operation on L, just as
α, β, and γ themselves may be.

Here, then, is what it means for a translation π from L1 to L2, where Li is generated
by Li = (Li, Ai, �i) and A1 ⊆ dom(π ), to be compositional:

DefRule(π ) For each n-ary syntactic rule α∈�1 there is a polynomial pα(x1, . . . , xn)
in the term algebra of L2 such that whenever α(u1, . . . , un) is in the
domain of π , π (α(u1, . . . , un)) = pα(π (u1), . . . , π (un)).14

This is a syntactic condition, but in a semantic framework. π is a ∼-translation, so the
polynomial pα which acts as a definition of the L1-rule α in L2 is required to be such
that whenever α(u1, . . . , un) is translatable, α(u1, . . . , un) ∼ pα(π (u1), . . . , π (un)).

We have the following connection between compositionality of the languages L1
and L2, and compositionality of a translation π between them.

Proposition 6
If there is a compositional translation from L1 to L2, and if L2 is compositional, then so
is L1. More precisely, if dom(∼1) = dom(π ), then DefRule(π ) together with Subst(∼2)
implies Subst(∼1).

Proof. (Outline) Suppose α(u1, . . . , un), α(v1, . . . , vn) are in dom(∼1), and
hence in dom(π ). By DefRule(π ), there is a polynomial pα(x1, . . . , xn)
such that π (α(u1, . . . , un)) = pα(π (u1), . . . , π (un)) and π (α(v1, . . . , vn)) =
pα(π (v1), . . . , π (vn)). Now Subst(∼2) can be generalized as follows:15

14 In particular, pα is required to be defined for the arguments π (u1), . . . , π (un), under these
circumstances. Furthermore, we are assuming a Domain Principle for each Li, which means that
if α(u1, . . . , un) is in dom(∼i), then so is each uj . By the definition of a translation, dom(∼1) =
dom(π ), so we also have a Domain Principle for translation: whenever α(u1, . . . , un) is in the
domain of π , so is each uj .

15 Provided dom(∼2) is closed under subterms; cf. n. 11. If not, we would replace Subst(∼2) by
the stronger (12.12) in the definition of compositionality.
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(12.12) If p(x1, . . . , xn) is a polynomial in (the term algebra of) L2, ui ∼2 vi,
1 ≤ i ≤ n, and if p(u1, . . . , un) and p(v1, . . . , vn) are both defined, then
p(u1, . . . , un) ∼2 p(v1, . . . , vn).

Now, if ui ∼1 vi, then π (ui) ∼2 π (vi), 1 ≤ i ≤ n. Hence, by the above,

pα(π (u1), . . . , π (un)) ∼2 pα(π (v1), . . . , π (vn)), so
π (α(u1, . . . , un)) ∼2 π (α(v1, . . . , vn))

It follows that

α(u1, . . . , un) ∼1 α(v1, . . . , vn)

so Subst(∼1) holds. �

One cannot expect that, conversely, Subst(∼1) implies Subst(∼2) under DefRule(π );
for example, there might be a ‘non-compositional part’ of L2, outside the range of the
translation π .

Another feature of compositional translation that we might expect is some version
of the following: if each operation α ∈ �1 is definable in L2, then every mapping
from A1 to L2 respecting ∼ can be extended to a compositional ∼-translation of L1
into L2. This is reminiscent of a familiar fact from universal algebra: if A is a term
algebra (or a free algebra) generated from a set X , and B is any algebra of the same
signature (vocabulary), then every mapping from X to B can be extended to a homo-
morphism from A to B.16

In our case however, the signatures of the two algebras may be very different, and
somehow one would have to describe how syntactic categories inL1 map to categories
inL2. Here it seems that one would actually need primitively given categories, as with
the total many-sorted framework.

We shall not enter into the details of this, but instead go back to a special case,
which is the one we are mostly interested in anyway: namely, where languages have
predicate expressions interpreted in models, and the relations ∼1, ∼2, and ∼ are
logical equivalences. The mapping from atoms to L2 is then what we have called a
lexical mapping. We want to describe conditions under which a lexical mapping can
be extend to a compositional translation. First, however, we consider some general
requirements of definitions.

12 .3 REQUIREMENTS ON DEFINITIONS

Definitions are closely connected to uniform translation. Translation maps expres-
sions to expressions, but if you want to do that in any systematic way, expressions of
the same form had better translate similarly. The various forms of expressions usu-
ally correspond to syntactic operations by means of which complex expressions are
built, so you want the operations themselves to be translatable, or, more precisely,

16 See, in the context of partial algebras, Grätzer 1968: ch. 2.
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you want the operations in the source language to correspond to operations in the
target language, or at least be definable from such operations. That is exactly what
the notion of compositional translation in the preceding subsection required. Let us
try to make this notion of definability more concrete.

We lay down a few conditions of definitions, and discuss their effect by means of
an example. Since there are many kinds of definitions, these conditions are partly stip-
ulative. But they single out a natural concept which, we claim, is the reasonable one
to use in the present context.

Recall the classical terminology, where the definiendum in a definition is the thing
to be defined, and the definiens the thing defining it.

(i) We consider explicit definitions. Such definitions are standardly required to be
non-circular. Also, defined concepts should be eliminable.17

(ii) The definiens in a definition is a—usually schematic— sentence in the relevant
language. Note that it is one sentence, not a set of sentences.

By a schematic sentence we mean a real sentence, where at least one subexpres-
sion is regarded as a parameter or variable. This is to obtain some degree of uniform-
ity (see section 12.5.2 below). That we chose sentences and not some other kind of
expression is consonant with the focus here on sentential translations. It is not a severe
restriction.

Sometimes explicit definitions are contrasted with contextual ones. If the latter are
definitions in which the meaning of some term is given by providing a sense for each
sentence containing it, but without giving an explicit sense or reference to the term
itself, then that contrast is justified.18 An explicit definition singles out in a given uni-
verse a relation, an operation, a quantifier, etc. (usually uniformly over each model).

17 By contrast, a recursive definition is circular, in the sense that the defined concept appears in
both the definiens and the definiendum. For an example, take the definition of the transitive closure
R+ of a binary relation R:

xR+y ⇐⇒ ∃z(xRz & zR+y)

If correctly formulated (this one is), recursive definitions are perfectly all right and produce well-
defined concepts (in fact, with some extra apparatus they can be reformulated as explicit ones).
There are logics, stronger than FO, which allow some form of recursive definitions, e.g. so-called
fixed-point logics (see e.g. Ebbinghaus and Flum 1995, and Ch. 15.2 below). They have been extens-
ively studied in logic related to computer science, and several of the definability results presented
in the following chapters have versions for these logics, though they are usually more difficult.

In natural languages one can find some instances of recursively definable concepts—e.g. the
transitive closure of parent is ancestor —but, it seems, no simple general mechanisms to form recurs-
ive definitions. For this reason, and for reasons of simplicity, we restrict attention to FO-based
logics in this book, and hence to explicit definitions.

18 This is related to the famous context principle in Frege’s Grundlagen, (1884), which can be
taken to recommend such definitions. Frege is after a definition of the natural numbers, and at
one point suggests doing it contextually by explaining the meaning of each sentence with ‘‘number
words’’. He then rejects this and gives an explicit definition, since he wants numbers to be objects
over which one can quantify. As Dummett and others have pointed out, this presupposes that the
numbers are already there in the domain one is talking about, in fact as classes: the explicit defin-
ition singles out certain classes a numbers. The problem about a correct definition is then pushed
to classes instead; it was a problem that Frege struggled with, but could never solve satisfactorily.
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Our trivial point in (ii) is that this can always be done by means of a sentence-like
expression, rather than some other kind of expression.19

To see how our requirements on definitions work, consider the following example.
Suppose Eric is a staunch defender of first-order logic FO, and argues as follows:
‘‘Infinity is definable in FO after all, for it is definable in set theory, and e.g. Zermelo-
Fraenkel set theory (ZF ) is a first-order theory!’’ What is wrong with this argument?

The problem is that it does not distinguish a logic or a language from a theory for-
mulated in that language. A definition of infinity in set theory uses the vocabulary
and axioms of that theory in an essential way. More precisely, if the definition has
the form

inf (P) ⇐⇒ ψ

then ψ will contain, besides the one-place predicate symbol P and the usual logical
apparatus of FO, also the two-place predicate symbol ∈ (the only non-logical sym-
bol in ZF ). One may then choose what we called in Chapter 11.3 (when discussing
analytic or necessary equivalence) the structural approach, and on top of a model M
build a set-theoretic structure VM, with the elements of M as atoms or urelements. So
VM also contains sets of atoms, sets of sets of atoms, functions between sets of atoms,
etc., and satisfies some standard axiomatization of set theory with atoms. Then let ψ

be the sentence

∃x∃f (P(x) ∧ ‘f is a bijection’ ∧ ‘dom(f ) = P’ ∧ ‘range(f ) = P − {x}’)
where the parts in quotes stand for corresponding FO-formulas in the predicate sym-
bols P and ∈. Since a set is infinite if and only if there is a one–one correspond-
ence between that set and the result of removing one element from it, we have, for
all M = (M , A),

(12.13) A is infinite ⇐⇒ VM |= ψ

So in a sense this is a definition of infinity, but it does not satisfy our requirements: the
term inf is not eliminable, but only expressed in terms of ∈, and ∈ is not eliminable
at all.

Note that it is necessary to use ∈ as a predicate symbol, since both ∃x and ∃f are
first-order quantifiers in ψ , in the sense (Chapter 2.1) that they range over the indi-
viduals—atoms and sets—in the universe of the model VM .

If, on the other hand, we treat ∃f as a second-order quantifier, then we don’t need
∈ or the extended universe VM . Second-order models are just like first-order ones (at
least if there are no second-order predicate constants), but second-order quantifiers
by definition range over relations (or functions) over M . Hence, instead of writ-
ing, say, ∃P . . . x ∈ P . . . with first-order quantification over a universe which also

Dummett 1991 contains a detailed discussion of Frege’s view of the context principle and the role
of contextual definitions. We mention this here only to agree with the Dummettian point that an
explicit definition presupposes an independently given domain of objects.

19 E.g., instead of defining symmetric difference (an operation on pairs of subsets of the universe)
by the expression (A − B) ∪ (B − A), one can instead use the formula (A(x) ∧ ¬B(x)) ∨ (B(x) ∧
¬A(x)).
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contains sets, we can write ∃P . . . P(x) . . . with second-order quantification over M .
Indeed, the argument shows that infinity is definable in second-order predicate logic,
SO (Chapter 2.5.1). This is uncontroversial; our claim is only that it is not defin-
able in FO.

Sometimes one does consider definitions like (12.13), using extra non-logical sym-
bols with fixed interpretations, and extended models. For example, in computer sci-
ence logic, one may have reason to restrict attention to models with built-in total
order, i.e. models of the form (M, ≤), where M is a model in our sense and ≤ is a
total order on M . If one only deals with universes where one can expect to have access
to some total order, this is natural. But in the general case, that would be a gratuitous
assumption.

A case closer to natural language could involve time: suppose that only models with
an ordering relation satisfying some reasonable temporal axioms were considered, and
some (or all) predicates had an argument place for time. Presumably, infinity would
still not be definable, since whether a predicate has an infinite extension or not at a
certain time need have nothing to do with its extension at other times. But even if it
were, we would merely have reduced infinity to another concept, which in turn is not
eliminable.

Now suppose our staunch objector Eric is suitably impressed by these arguments,
but instead tries the following line: ‘‘Infinity is still definable in FO because there are
FO-sentences which are only true in infinite models!”

This could take two forms. First, let ϕn be an FO version of ∃≥nxP(x), saying that
(the interpretation of) P has at least n elements. We have, for any M and A ⊆ M ,

(12.14) A is infinite ⇐⇒ for all n, (M , A) |= ϕn

But this violates the requirement that the definition should be one sentence, not infin-
itely many.20

The other possibility is to use extra non-logical symbols, though not ones with
fixed interpretations, as above. For example, let θ be an FO-sentence in the one-place
P1 and the two-place P2 which says that P2 is a strict dense total ordering of P1; i.e.
for all M , all A ⊆ M , and all R ⊆ M2,

(M , A, R) |= θ ⇐⇒ R is a strict dense total ordering of A

A strict total ordering can only be dense (between two points there is always a third)
if its domain is infinite, and conversely, on any infinite set one can always define a
dense total ordering.21 Thus, for any M and any A ⊆ M ,

(12.15) A is infinite ⇐⇒ there exists R ⊆ M2 s.t. (M , A, R) |= θ

20 Unless one takes the whole right-hand side of (12.14) to be the definiens. But then one is
back to the previous case of relying on a given mathematical structure—again a set-theoretic one
including the satisfaction relation and the natural numbers—for the definition to work.

21 At least if the Axiom of Choice holds.
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But this definition is in even worse shape than (12.13): there is no way to eliminate
the relation symbol P2; in particular, it cannot be treated as a symbol with a fixed
interpretation.22

This sort of definability has nevertheless been studied in model theory, where it is
called definability with extra predicates, or PC-definability. It is connected to interest-
ing mathematical issues (see, for example, Hodges 1993: chs. 5.2 and 6.6). However,
it concerns a particular form of definition in SO, since it existentially quantifies over
relations: (12.15) could be written

A is infinite ⇐⇒ (M , A) |= ∃P2 θ

where P2 now functions as a second-order variable for binary relations. Again, we
have a definition of infinity in SO, not in FO.23

(12.13)–(12.15) are putative definitions of infinity in FO that in different ways
violate straightforward requirements on definability, the ones we use here. Indeed,
infinity is not definable in FO, as we will see in Chapter 14.2. So let us end by giving
an example of another logical language, still of the first-order kind, where it is defin-
able. Recall the type 〈1, 1〉 Härtig quantifier, which says of two sets that they are of
equal cardinality:

IM (A, B) ⇐⇒ |A| = |B|
In a language containing this quantifier we can again characterize infinity as preserva-
tion of size while removing one element:

A is infinite ⇐⇒ there is a ∈ A s.t. |A| = |A − {a}|
⇐⇒ (M , A) |= ∃x(P(x) ∧ Iy(P(y), P(y) ∧ y �= x))

This definition fulfills all requirements: it uses one sentence in the logic FO(I )
obtained by adding the Härtig quantifier to FO, and there are no extra predicate sym-
bols, just the one corresponding to A. So infinity is indeed definable in FO(I ).

Note finally that in these definitions in logical languages, the defining sentences
are clearly schematic as we required: they use formal predicate symbols, which can be
arbitrarily interpreted in models. Such symbols are not available in natural languages.
There one has to use real sentences with real predicate expressions, but still treat them
as schematic. We will see shortly how this can be done.

12 .4 EXTENDING LEXICAL MAPPINGS TO
COMPOSITIONAL TRANSLATIONS

Return now to the circumstances described in section 12.1. We have a lexical map-
ping � from (L1, ⇔1) to (L2, ⇔2), where ⇔i is logical equivalence. The Li can be

22 Suppose R is a fixed binary relation, and we consider only models (M , A) such that M con-
tains the field of R. It is always false that for all such models,

A is infinite ⇐⇒ (M , A, R) |= θ

23 More exactly, we have a �1
1 definition of infinity; cf. Ch. 2.5.
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formal or natural languages, but are treated as first-order languages in our extended
sense, so that only atomic predicate expressions (and individual-denoting expressions)
get interpreted in models. � induces a PER ⇔�

1 on L1, of which ⇔1 is a refine-
ment, and we defined logical equivalence between L1 and L2 (relative to �) as a PER
⇔� between (L1, ⇔�

1 ) and (L2, ⇔2). Our objective now is to show that if the Li are
generated by syntactic rules, codified in algebras Li = (Li, Ai, �i), as in section 12.2
above, and if the L1-rules are definable in L2, then � extends to a ⇔�-translation
from L1 to L2.

A precise proof of such a fact would need to rely on specific features of the syntactic
rules for the two languages. But we can outline the structure of the required argument
without going into unnecessary detail.

12.4.1 Definable grammar rules

The choice of L1-rules depends on whether L1 is a formal or a natural language
(fragment), and on the preferred grammar format. We focus on rules involving pre-
dicate expressions and sentences. Let us look at some sample types. Consider, first,
rules taking predicate expressions to sentences, or, more generally, to formulas. For
instance, suppose α1 applies to two one-place predicate expressions δ1 and δ2, and
that (roughly)

α1(δ1, δ2) = ‘‘most δ1 areδ2’’

So in this case L1 is English (or a fragment of English), and presumably one-place pre-
dicate expressions come from different parts of speech (say, intransitive verbs, nouns,
and adjectives), and α1 places various constraints on δ1 and δ2. But these details are
irrelevant here.

Next, consider a rule αx , for each variable x, such that

αx(δ) = ‘‘QRxδ(x)’’

This time, L1 is a logical language, obtained by adding some quantifiers to FO, much
like the ones we focus on in this book, but here with the additional twist that there
is a category of one-place predicate expressions (‘‘set terms’’) and that whenever δ is
such an expression and y is a variable, ‘‘δ(y)’’ is a formula. Barwise and Cooper (1981)
present quantifier languages in this form.

A final example could be a branching construction for English: say,

α2(δ1, δ2, ρ) = ‘‘most δ1 and δ2 ρ each other’’

What about rules involving quantifier expressions as arguments? For example,
instead of α1, we could have the following more general rule:

α0(Q , δ1, δ2) = ‘‘Q δ1 are δ2’’

One reason to focus instead on one rule of type α1 for each quantifier is that a rule
like α0 is less likely to be definable. For example, if L2 is the language English− from
Chapter 11.1.2, then α1 is definable (in terms of a comparative there are more
. . . than . . . ), but it is less clear that α0 would be. Another reason is that definitions
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involving quantifier variables, which would be needed to define α0, go beyond our
first-order framework.

A grammar with rules such as those above will also need rules for forming pre-
dicate expressions. For example, consider a (Montague-style) rule βn, applying to a
one-place predicate expression δ and a formula ϕ, such that

βn(δ, ϕ)

is either ‘‘δ[xn] such that ϕ[xn]’’, where appropriate insertions of the variable xn (or
the ‘pronoun’ hen; see Montague 1970b) have taken place, or, for a Barwise and
Cooper (1981)-style formal language, a set term ‘‘x̂n[δ(xn) ∧ ϕ]’’.

In general, whenever Li has a category of (n-ary) predicate expressions, we shall
assume that it also has the means of forming, for any (simple or complex) such expres-
sion δ, formulas that we write

δ(x)

saying that x satisfies the predicate in question, and similarly for sentences with
individual-denoting expressions in place of the variables.

Next, we must specify an appropriate notion of definability. The rules exemplified
above are rules for syntax. But L1 and L2 are already equipped with (model-theoretic)
semantics. So we take a definition of a rule to be a systematic (uniform) account, in
L2, of the meaning of expressions (in L1) that the rule generates. By means of such a
definition L1-expressions of that form are translated into L2. It remains to formulate
the relevant notions in a precise way, and to verify that if all the rules are definable,
all of L1 can be translated.

definable operations

Take α1 and βn above as examples, and recall that definitions are schematic sen-
tences without circularity or extra predicates.

A definition in L2 of α1 is an L2-sentence θα1 with exactly two one-place atomic
predicate expressions P ′

1, P ′
2, such that for every L1-sentence α1(P1, P2) with atomic

P1, P2, and every model (M , A1, A2),

(12.16) (M , A1, A2) |= α1(P1, P2) ⇐⇒ (M , A1, A2) |= θα1

Similarly, a definition in L2 of βn is an L2-formula θβn with one free variable
and two one-place atomic predicate expressions P ′

1, P ′
2, such that for every predic-

ate expression in L1 of the form βn(P1, P2(xn)), where Pi is atomic, and for every
model (M , A1, A2) and every a ∈ M ,

(12.17) (M , A1, A2) |= βn(P1, P2(a)) ⇐⇒ (M , A1, A2) |= θβn (a)

So we use atomic predicate expressions, in both languages, as schematic symbols
that can be given arbitrary interpretations in models. (In formal languages, such sym-
bols are already available, and the same symbols can be used in both the definiens
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and the definiendum.) Clearly, such definitions must be independent of the choice
of atomic predicate expressions. This requires one final piece of equipment to be in
place: a notion of substitution.

substitution of formulas for atomic predicate expressions

Let θ be an Li-formula containing an n-ary atomic predicate expression P, and let
ϕ be an Li-formula, not containing P, with at least n free variables, of which x =
x1, . . . , xn correspond to the distinct argument places of P. A notion of substitution
for Li is a rule that under these circumstances yields a formula θ [P/ϕ] s.t. for all
models M for Vθ [P/ϕ],

(12.18) M |= θ [P/ϕ] ⇐⇒ (M, ϕ(x)M,x) |= θ

where ϕ(x)M,x interprets P (modulo appropriate assignments to eventual remain-
ing free variables).

In the case when ϕ is a formula of the form δ(x), where δ is a predicate expres-
sion, we write simply θ [P/δ] (in place of θ [P/δ(x)]).

Substitution is furthermore required to be independent of the choice of P, in
the sense that if P ′ is an n-ary atomic predicate expression occurring neither in θ

nor in ϕ, then

(12.19) (θ [P/P ′])[P ′/ϕ] = θ [P/ϕ]

That is, if θ ′ is obtained by simply replacing P by P ′ in θ , then substituting ϕ for
P in θ is the same as substituting ϕ for P ′ in θ ′.

Similarly for simultaneous substitution θ [P1/ϕ1, . . . , Pk/ϕk].

This description is rough, since we have avoided all details concerning appropriate
selection of variables (to prohibit clashes, unwanted bindings, etc.), but it suffices for
present purposes.

We have given a minimal semantic condition that a notion of substitution must
satisfy, without going into the syntax of the sentences θ [P/ϕ], except for the require-
ment (12.19). For a language with a completely described syntax, substitution could
instead be defined syntactically. This is done for formal languages of various kinds;
usually it tends to be somewhat intricate. The present semantic characterization has
the advantage of being applicable to languages for which we do not have an exactly
specified syntax, such as English, or English0, as long as we are prepared to believe
that, in the cases we encounter, it would be reasonably straightforward to identify the
relevant substitution instances.

12.4.2 An extension theorem

The result we can now get is not completely general, but uses the sample syntactic
rules above. Still, the idea should be clear.
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Theorem 7
Suppose that (Li, ⇔i) are generated by (Li, Ai, �i) and equipped with notions of substi-
tution, i = 1, 2, and that each L1-rule is definable in L2. Then every lexical mapping �

from L1 to L2 can be extended to a compositional ⇔�-translation �∗ of L1 into L2 (i.e.
DRule(�∗) holds).24

Proof. Note that there is no requirement that L1 and L2 have the same categories
or the same organization of grammars. For example, L1 could be a natural language
fragment and L2 a formal language, or vice versa. What is required is that both have
a category sentence, and it is in terms of this category that facts of definability and
expressive power are stated.

�∗ is already defined via � for atomic L1-formulas, and, through them, for atomic
predicate expressions in L1. It is extended inductively to complex L1-expressions as
follows, where we write u�∗ for the translation of the expression u.

Suppose u = α1(δ1, δ2), where (δ1)�∗ and (δ2)�∗ are already defined. Consider the
definition θα1 as in (12.16) above. By (12.19) for L2, we may assume that P ′

1, P ′
2 do

not occur in (δ1)�∗ or (δ2)�∗ . Let

α1(δ1, δ2)�∗ = θα1 [P ′
1/(δ1)�∗ , P ′

2/(δ2)�∗ ]

Again by (12.19), this is well-defined, i.e. independent of the choice of P ′
1, P ′

2. Simil-
arly, if u = βn(δ, ϕ), we let

βn(δ, ϕ)�∗ = θβn [P ′
1/δ�∗ , P ′

2/ϕ�∗ ]

With similar definitions for all the rules, this extends �∗ to the whole of L1.
By Proposition 1, ⇔� is a PER between (L1, ⇔�

1 ) and (L2, ⇔2). Therefore, to
show that �∗ is a ⇔�-translation, all that remains to verify is that for all L1-sentences
ϕ, ϕ ⇔� ϕ�∗ . It suffices to prove by induction that for all L1-formulas ϕ, all models
M for Vϕ�∗ , and all appropriate sequences a of elements of M ,

(12.20) �M |= ϕ(a) ⇐⇒ M |= ϕ�∗ (a)

In the following we suppress mention of the sequence a (we are not dealing in detail
with variables anyway).

If ϕ is atomic, (12.20) holds by the definition of a lexical mapping.
Suppose ϕ is complex, say of the form α1(δ1, δ2). Note that the induction hypo-

thesis entails that, writing δi for δi(x),

δ
�M,x
i = (δi)

M,x
�∗

24 This is inspired by the Reduction Theorem (Theorem 5.3.2) of Hodges 1993, adapted to
what we call lexical mappings between two different languages with different grammars. Though
the context is slightly different, we think Hodges’ characterization of this result as ‘‘fundamental
but trivial’’ is still to the point.
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Choose one-place atomic predicate expressions P1, P2 in L1 not occurring in δ1 or δ2,
nor in ϕ�∗ . Then

�M |= α1(δ1, δ2) ⇔ (�M, δ�M,x
1 , δ�M,x

2 ) |= α(P1, P2) [substitution in L1]

⇔ (M, δ�M,x
1 , δ�M,x

2 ) |= α(P1, P2) [since Pi �∈ Vϕ�
]

⇔ (M, (δ1)M,x
�∗ , (δ2)M,x

�∗ ) |= α(P1, P2) [induction hyp.]

⇔ (M, (δ1)M,x
�∗ , (δ2)M,x

�∗ ) |= θα [definability of α1]

⇔ M |= θα[P ′
1/(δ1)�∗ , P ′

2/(δ2)�∗ ] [substitution in L2]

⇔ M |= α1(δ1, δ2)�∗

Similarly for other forms of complex L1-expressions. �

12.5 WHY FORMAL DEFINABILITY RESULTS MATTER FOR
NATURAL LANGUAGES

This chapter and the previous one have presented a general framework for talking
about translation, expressivity, and similar notions, and established a few basic facts
about them. We are now ready to use that framework to explain in what way logical
results that are formulated and proved for formal languages may tell us something
about natural languages as well.

Here is a typical situation. We have two languages L1 and L2, and a sentence ϕ in
L1 which is claimed to be inexpressible in, or untranslatable to, L2. So the question is:
(a) What exactly is it that is being claimed?
(b) How can that claim be established or proved?

One often takes these questions lightly, relying on one’s intuitive knowledge of the
two languages to surmise what can be said, and what cannot be said, in L2. But such
questions need not, and sometimes should not, be taken so lightly. A sloppy notion
of expressivity threatens to dilute the claim into triviality, or to make it intolerably
vague. And even though intuitions about what can (or cannot) be said in a language
play an important heuristic role, it is all too easy to forget some complex construction
in L2. After all, in principle one needs, as Keenan (1978) said, to ‘‘effectively . . . enu-
merate the set of all meanings expressible in any given language’’ (p. 173), if one is to
show that something cannot be expressed in it.

We’ll discuss (a) and (b) using a very simple running example as illustration:
namely, when L1 is Swedish, ϕ is the sentence

(12.21) De flesta hundar skäller.

(most dogs bark), and L2 is English0 (beginning of Chapter 11.1.2), i.e. English
without proportional determiners or other constructions involving comparison of
cardinalities (even adverbs of quantification like usually). Of course, this example
does not have much interest in itself, involving as it does a language which is not an
actual but only a possible natural language. But it can be used to nicely illustrate some
basic points.
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The claim, then, is that the Swedish (12.21) cannot be expressed in English0. What
does this mean, and how could we know it? We discuss the first question in the next
three subsections, and the second question in section 12.5.4.

12.5.1 The role of lexical mappings

As we have stressed, all claims of translatability—and hence of untranslatability—are
relative to some notion of synonymy, or, more precisely, to a PER between the two
languages. But the formal results that one might use here employ particular logical
languages and a particular PER: logical equivalence. Therefore, it makes sense to view
L1 and L2, in our case Swedish and English0, as fixed first-order languages, in the
extended sense of that term used in this book (see Chapter 11.3.2.1).

Note that this does not imply any change in those languages; it just means that we
choose to consider lexical predicate expressions (and individual-denoting expressions)
as the only expressions that get interpreted in models.

Since L1 and L2 are viewed in this way, the respective relations of logical equival-
ence (truth in the same models), say ⇔1 and ⇔2, are reasonably well delineated.
These may not be the synonymy relations one had in mind when making the ori-
ginal claim about inexpressibility. But we saw in Chapter 11.3.8 that logical equi-
valence has a special place among the natural PERs of a language, in particular, that
many of the other PERs that come up in a linguistic or cognitive context refine logical
equivalence.

The only exception to this rule appeared to be PERs obtained by imposing mean-
ing postulates. We will argue shortly (section 12.5.3) that meaning postulates are
rather irrelevant to questions of expressibility. For the moment, just assume that the
PER implicitly underlying the intuitive claim of inexpressibility was one that refines
logical equivalence. Then it is often sufficient to restrict attention to logical equival-
ence, for if inexpressibility of ϕ in L2 holds already for logical equivalence, it certainly
holds for all of its refinements. If there were an L2-sentence ψ synonymous with ϕ in
the stronger sense, then ψ would also be logically equivalent to ϕ.

Now, as we saw in section 12.1, logical equivalence between two different languages
is relative to a lexical mapping. The next question, then, is this: Is the expressibility
claim relative to a particular lexical mapping, or is it enough that there exists a lexical
mapping allowing one to find a logically equivalent L2-sentence?

The latter option is not what we want. To see this, consider the following case.
Suppose � maps skälla(x) to bark(x), but hund(x) to dog(x) and x �= x, an
unsatisfiable predicate. Of course this is totally unrealistic, but the point is that if
we allow lexical mappings to map atomic predicate expressions to complex predic-
ate expressions, we have no control over what those complex expressions might be.
In this case, if M = (M , A, B) is any model for the vocabulary {dog, bark}, then
�M = (M , ∅, B). So (12.21) can never be true in �M, which means that if ψ is any
logically false sentence in English0, then

ϕ ⇔� ψ
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Even if this example is extreme, it shows that the meaning postulates induced by lex-
ical mappings may seriously influence the relation ⇔� . Thus, translatability relative
to some lexical mapping is a trivial notion: all L1-sentences will be translatable in this
sense. Likewise, translatability relative to all lexical mappings would be trivial too;
almost no sentences except logical truths would then be translatable.

Instead, the choice of a suitable lexical mapping precedes the expressivity issues we
deal with here. As we have said before, such mappings are simply regarded as given.
So the expressivity claim we are looking at—that (12.21) is not logically equivalent
to any sentence in English0 —has to concern logical equivalence relative to a fixed
lexical mapping �.

12.5.2 Uniform expressivity

The basic notion of translation (Chapter 11.2.4) does not require more than the exist-
ence in L2 of sentences that are ⇔�-equivalent to the relevant L1-sentences. But in
practice one wants more. If (12.21) was equivalent to an L2-sentence, but

(12.22) De flesta katter jamar.

(most cats meow) was not, we would hesitate to say that (12.21) was expressible in
L2. In fact, even if (12.22) was equivalent to an L2-sentence, but only to one with a
completely different form than the translation of (12.21), we would still be hesitant.
Expressibility, as we usually think of it, should be uniform.

In section 12.4.1 above we introduced a concept that can be used to define the
required kind of uniformity: a notion of substitution. First, some terminology.

schematic sentence pairs

A pair of sentences (ϕ, ψ) such that ϕ ⇔� ψ is called schematic (relative to �),
iff � is strict (section 12.1.1) on the atomic predicate expressions of ϕ and maps
these onto the atomic predicate expressions of ψ .

The idea is that in schematic sentence pairs, the atomic predicate expressions can
be used as schematic predicate letters, if one so desires. Now uniformity is defined as
follows.

uniform translations

Suppose L1 and L2 are both equipped with notions of substitution. A ⇔�-
translation π from L1 into L2 is uniform iff the following condition holds: If
(ϕ, π (ϕ)) is a schematic pair, where the atomic predicate expressions of ϕ are
P1, . . . , Pn, and the corresponding (by �) atomic predicate expressions of π (ϕ)
are R1, . . . , Rn, then, for any atomic predicate expressions P ′

1, . . . , P ′
n in L1,

(12.23) π (ϕ[P1/P ′
1(x1), . . . , Pn/P ′

n(xn)]) =
π (ϕ)[R1/(P ′

1)�(x1), . . . , Rn/(P ′
n)�(xn)]
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Suppose π translates the Swedish (12.21) to the English (not English0) sentence
Most dogs bark. (De flesta hundar skäller, Most dogs bark) is schem-
atic. That π is uniform means that it should also translate (12.22) to Most cats
meow, provided � maps katt to cat and jama to meow. Thus, in effect, both hund,
skäller and dog, bark are treated as schematic predicate letters.

But note that (12.23) does not require that the (P ′
i )� are atomic or that

(ϕ[P1/P ′
1(x1), . . . , Pn/P ′

n(xn)]), π (ϕ[P1/P ′
1(x1), . . . , Pn/P ′

n(xn)])) is schematic.
For an illustration we consider formal versions of these languages. Suppose the atomic
formula in ‘formal Swedish’ farmor(x) (paternal grandmother) is mapped by � to

θ (x) = ∃y ∃z (mother-of(x, z) ∧ father-of(z, y))

Then the Swedish De flesta farmödrar röker (most paternal grandmothers
smoke), formally,

(12.24) de-flesta x(farmor(x), röker(x))

should be translated by π to

(12.25) most x(θ (x), smoke(x))

obtained by uniform substitution from the formal translation of (12.21).
Uniform translation starts from a schematic sentence pair, where lexical predicate

expressions in the source language correspond to lexical predicate expressions in the
target language in a one–one fashion, but allows replacing the former by other lex-
ical predicate expressions in the source language and the latter by the corresponding,
possibly complex, predicate expressions in the target language.

Notice that we cannot go in the other direction. The fact that (12.24) is translated
by π to (12.25) depends essentially on the particular lexical mapping of farmor(x),
and if that predicate expression is replaced by another, it is simply irrelevant what
happens when we replace mother-of(x) and father-of(x) in (12.25) by other
predicate expressions. That is why the condition that (ϕ, π (ϕ)) be schematic in the
above definition of uniformity is crucial.

The present notion of uniformity expresses a minimal semantic condition that
seems eminently reasonable. There is no mention of the syntactic mechanisms behind
substitution. As we said, this can be an advantage if it is not clear what exactly the
syntactic rules are. But if we know how sentences are constructed, we can be more
specific. In section 12.2.2 we discussed an abstract notion of compositional transla-
tion which used the grammar rules of both target and source language, and in section
12.4 we saw how such translations could be generated from lexical mappings under
certain conditions, in precisely the first-order model-theoretic case we are focusing
on now.

Compositionality (of the translation) entails uniformity. This is clear for the
abstract characterization of compositionality: DefRule(π ) from section 12.2.2. The
use of variables in the defining polynomial for each L1-rule guarantees uniformity.
Also, for the present special case of first-order languages (in our extended sense), it is
not hard to prove, by induction on the grammar rules for L1, the following corollary
to Theorem 7.
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Fact 8
The compositional translation �∗ obtained in the proof of Theorem 7 by extending a lex-
ical map � is uniform, in the sense of satisfying (12.23).

12.5.3 Meaning postulates and expressivity

Let us now give the argument promised earlier that meaning postulates are irrelev-
ant to issues of expressivity. Think of analytical or necessary equivalence as obtained
by adding meaning postulates to some given PER ∼. Then analytical equivalence is
coarser than ∼.25 So it could be that an L1-sentence that has no logical equivalent in
L2 nevertheless is analytically equivalent to some L2-sentence. Doesn’t this jeopardize
the idea of focusing on logical equivalence as we are doing here?

No. The point is precisely uniformity. Meaning postulates are by definition not
uniform; there is no expectation that if one replaces the atomic predicate expressions
in a meaning postulate, then another meaning postulate will result.

Given meaning postulates, translation of an individual sentence could succeed ‘by
accident’. We have seen that, via a certain meaning postulate, our running example
(12.21) could become analytically false, and hence translatable to English0. Or, more
realistically, consider the Swedish

(12.26) Alla ungkarlar är ogifta.

(All bachelors are unmarried.) We do not want to say that

(12.27) All unmarried men are unmarried.

is a good translation of this into English (or English0): it does not say anything about
the translation of other sentences of the same form.

As soon as meaning postulates are introduced, uniformity disappears. But uniform-
ity is an essential ingredient in typical concepts of expressivity, although we did not
make it part of the most general concepts of translation and expressive power. Uni-
formity is what motivates disregarding meaning postulates, and focusing on logical
equivalence as the basic (coarsest) synonymy relation.

The upshot is that for issues of translatability, it makes sense to restrict attention
to uniform translation, i.e. to schematic sentence pairs. Is this a severe restriction,
given that � cannot in general be required to be strict? No, because it seems plausible
that non-schematic sentence pairs can be obtained from schematic ones by substi-
tution. A given sentence ϕ in the source language need not have a translation ψ in
the target language such that (ϕ, ψ) is schematic, because ϕ may contain primitive
predicate expressions that can only be expressed by complex predicate expressions
(formulas) in the target language. But it is likely that there is another sentence ϕ′,

25 This can seem confusing. But recall that we are talking about synonymy relations, and that
∼ makes more distinctions than analytical equivalence: There will be analytically equivalent sen-
tences which do not stand in the relation ∼ to each other, and are thus distinguished by ∼, but not
vice versa.
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resulting from ϕ by replacing primitive expressions with ones that do have primit-
ive correspondents, i.e. on which � is strict. For example, instead of De flesta
farmödrar röker (most paternal grandmothers smoke), one considers De flesta
kvinnor röker (most women smoke). If ϕ′ has a translation ψ ′ such that (ϕ′, ψ ′)
is schematic, we obtain the translation of ϕ by substitution. If there is no uniform
translation, there might still be a translation that succeeds ‘by accident’, but that is
not the kind of translation we want here. Our focus is not on the translation of pre-
dicate expressions (i.e. on �), but on the translation of quantifier expressions, and that
is another reason why uniformity with respect to predicate expressions is a reasonable
requirement.

12.5.4 The role of formalization

Assume now that L1 and L2 are disjoint (possible) natural languages. We have seen
that they can be regarded as first-order in the sense that only predicate expressions
and individual-denoting expressions are interpreted in models, and thus are equipped
with standard relations ⇔1 and ⇔2 of logical equivalence. Furthermore, a lexical
mapping � from L1 to L2 is assumed to be given, which (section 12.1) results in a
relation ⇔� of logical equivalence between L1 and L2.

We also assume that L1 and L2 can be formalized. In Chapter 11.2.4.3 we defined
formalization as translation into logical languages, subject to certain conditions yet
to be specified. The logical languages here are of the form FO(Q 1, Q 2, . . .), and we
may assume they have the same predicate symbols, and therefore the same relation,
denoted ⇔, of logical equivalence (truth in the same models).

Our goal is to show that, under reasonable conditions, the claim that an L1-
sentence is inexpressible in L2 transfers via the formalization to the corresponding
logical languages (where it may become susceptible to a rigorous proof ). The idea is
straightforward, but it may be worthwhile to spell out the details, and we now have
the machinery to do so.

We saw in Chapter 11.2.4.3 that ⇔ can be pulled back to L1 and L2 along the
respective mappings, and (Theorem 6) that a reasonable necessary condition for these
mappings to be formalizations is that this pulling back of ⇔ results precisely in ⇔1
and ⇔2, respectively. Thus, we assume that

(*) πi is a ⇔[πi]-translation of (Li, ⇔i) into a logical language (Lf
i, ⇔), i = 1, 2.

Recall that ⇔[πi] is the uniquely determined (by Theorem 6) PER between Li and
Lf

i that the formalization πi respects.
In our running example, we could assume that Lf

1 is FO(most), since we need form-
alize only a fragment of the source language to which (12.21) belongs. For purposes
of illustration, assume that Lf

2 is just FO.26

26 The target language must be formalized more carefully, since the aim is to prove that no
target language sentence expresses the same meaning as the given source language sentence. Because
L2 = English0 lacks all comparative constructions, even proportional quantifiers, we may assume
for the sake of illustration that Lf

2 is FO.
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Now observe that πi can also be seen as a lexical mapping (via its mapping of
atomic sentences). This leads us to the following two further assumptions:

(I) π1 = π2 ◦ �

(II) �, π1, and π2 are all strict.

The motivation for the strictness of � was given at the end of the preceding subsec-
tion: we are not really assuming this in general, but rather restricting attention to the
fragment of the languages considered on which � is strict. Next, as a lexical mapping,
πi maps atomic predicate expressions of Li to formal predicate symbols of Lf

i. Clearly,
there can be no reason whatever not to map distinct predicate expressions to distinct
formal symbols. Also, since � maps atomic L1-expressions to atomic L2-expressions
in a one–one fashion, there is no loss of generality in assuming that if π1 maps an
atomic predicate expression P to a formal predicate symbol, then π2 maps the image
of P under � to the same predicate symbol. That is, π1 = π2 ◦ �.

Finally, recall from section 12.1.2 above that, as a lexical mapping, πi generates a
PER, written ⇔πi , of logical equivalence relative to πi, between Li and Lf

i. The last
requirement we need is that the two PERs ⇔πi and ⇔[πi] are suitably related. In fact,
under the final assumption we shall make, they become identical.

This assumption is that the formalization is set up so that truth of an Li-sentence ϕ

in a model is the same as truth of πi(ϕ) in the corresponding model. In other words,
it is simply the assumption that the formalizations preserve truth conditions:

(III) For any Li-sentence θ and any modelM for the predicate symbols in πi(θ ) (i =
1, 2), M |= πi(θ ) iff πiM |=i θ .

Here |= is the truth relation for logical languages, and |=i is the truth relation
for Li. Recall that if M = (M , I ), then πiM = (M , I ◦ πi). Also, by definition
(section 12.1.2 above), (III) amounts to the condition

θ ⇔πi πi(θ )

holding for any Li-sentence θ .
To express the import of (III), it is convenient to define the following PER:

(12.28) For ϕ, ψ in Lf
1 ∪ Lf

2, define: ϕ ⇔[π1,π2] ψ iff πi(ϕ) ⇔ πj(ψ), where i (j) is
1 if θ (ψ) is in L1 and 2 if it is in L2.

Lemma 9
Conditions (I)–(III) entail that ⇔� = ⇔[π1,π2] and that ⇔[πi] = ⇔πi .

Proof. If ϕ, ψ ∈ Li, ϕ ⇔� ψ iff ϕ ⇔i ψ (by definition) iff πi(ϕ) ⇔ πi(ψ) (since πi

is a translation and hence preserves synonymy; chapter 11.2.4.2) iff ϕ ⇔[π1,π2] ψ .
Suppose instead that ϕ ∈ L1 and ψ ∈ L2 (the case ϕ ∈ L2 and ψ ∈ L1 is symmetric).
ϕ ⇔� ψ is the condition that for all L2-models M,
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(12.29) �M |=1 ϕ iff M |=2 ψ

If M = (M , I ) is a model for the logical vocabulary, we have, by strictness (condition
(II)), that π2M = (M , I ◦ π2), and hence, by (I),

�(π2M) = (M , I ◦ π2◦�) = (π2 ◦ �)M = π1M
Now ϕ ⇔[π1,π2] ψ means that π1(ϕ) ⇔ π2(ψ); that is, for all models M for the
logical vocabulary, M |= π1(ϕ) iff M |= π2(ψ). If (12.29) holds, we obtain, using
the above and condition (III), for any such model M:

M |=π2(ψ) iff π2M |=2ψ iff �(π2M) |=1ϕ iff π1M |=1ϕ iff M |= π1(ϕ)

The converse direction is similar. This proves the first claim of the lemma. The second
claim is proved similarly. �

Now we have what is needed to show that the envisaged strategy for proving inex-
pressibility works.

Proposition 10
Suppose ϕ is an L1-sentence, such that it can proved that π1(ϕ) is not logically equivalent
to any Lf

2-sentence in the same predicate symbols. If conditions (I)–(III) hold, it follows
that ϕ does not stand in the relation ⇔� to any L2-sentence ψ such that the pair (ϕ, ψ) is
schematic. Thus, there is no uniform ⇔�-translation of a part of L1 containing ϕ into L2.

Proof. Suppose, for contradiction, that ϕ is ⇔�-equivalent to an L2-sentence ψ such
that the pair (ϕ, ψ) is schematic. Thus, ϕ ⇔[π1,π2] ψ , i.e. π1(ϕ) ⇔ π2(ψ). But this
contradicts the assumptions, since it follows from them that π1(ϕ) and π2(ψ) have
the same predicate symbols. �

In our example, suppose (12.21) is formalized in Lf
1 = FO(most) as

(12.30) most x(P1(x), P2(x))

and Lf
2 = FO. Then we do have the result—to be proved in Chapter 14.2—that

(12.30) is not logically equivalent to any FO-sentence in the vocabulary {P1, P2}. So
provided (I)–(III) hold, which seems unproblematic, we can conclude that none of
the infinitely many sentences of English0 in the vocabulary {dog,bark} will do as a
translation of (12.21).

12.5.5 Summing up

Suppose we want to know if a sentence ϕ in a language L1 is expressible in another
language L2, or, more generally, if there is a translation of a set of L1-sentences into
L2. Concerning a negative answer, we made the following points:

• Translation only makes sense relative to a synonymy relation (a PER) between L1
and L2. However, we don’t have to consider all possible such PERs, but only the
coarsest one, logical equivalence.



Formalization 445

• We are not attempting (here) to explain how predicate expressions are translated.
Rather, a lexical mapping � is assumed to be given, mapping some atomic predic-
ate expressions of L1 to atomic predicate expressions of L2, and others perhaps to
complex predicate expressions of L2.

• We focus on uniform translation, so that a translation of a particular sentence into
another serves as a schema, allowing one to replace predicate symbols according
to �. A consequence is that, once � is given, meaning postulates become irrelevant
to translation (although they may play a role in finding a suitable �).

• If there are grammars for the two languages (or for relevant fragments of them),
one wants translation to be compositional, a requirement which is stronger than
uniformity.

• To apply facts from logic, we formalize both L1 and L2, i.e. translate them into
logical languages. This induces relations of logical equivalence between L1, L2, and
the logical languages.

• In order to establish that ϕ is not (uniformly) translatable into L2, it provably suf-
fices to show, given certain natural conditions on the formalizations and the PERs
they induce, that the formalization of ϕ is not expressible in the logical language
formalizing L2.

Negative facts of expressibility are ‘infinite’: one must show that none of in prin-
ciple infinitely many sentences works as a translation. But many such facts are known
for logical languages, and, under the circumstances indicated, some of them can be
transferred to natural languages. Logical expressibility and its linguistic applications
are the subject of the remaining chapters.

What about positive facts? An excursion into logic might be helpful here too, but
there are some caveats.

Suppose one can show that the formalization of ϕ is logically equivalent to some
sentence in the language formalizing L2. First, that sentence might not be the form-
alization of anything in L2! The logical language may allow constructions with no
natural counterparts in L2, in which case nothing about L2 follows.

But suppose the logical equivalent of ϕ is in fact the formalization of an L2-sentence
ψ . Under the same circumstances as above (conditions (I)–(III)), we may then con-
clude that ϕ is logically equivalent to ψ . But—and this is the second caveat—we
only get logical equivalence. Some logical equivalences are linguistically less natural,
or cognitively hard to grasp, as we have seen (Chapter 11.3). In other words, there
is no guarantee of a translation relative to stronger notions of synonymy. Still, the
logical equivalent may be adequate, or at least it may serve as an indication that it
could be worthwhile to look for a more natural translation.

In the final part of the book, we now turn our attention to the logical languages
obtained from FO by adding quantifiers, and to techniques and results concerning
their expressive power. Via formalization, such results can be directly relevant to issues
of expressive power for natural languages.
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13
Definability and Undefinability in Logical
Languages: Tools for the Monadic Case

Already in Chapter 2 (sections 2.3 and 2.4) we described how new quantifiers could
be added syntactically and semantically to FO. There is a point in being quite precise
about this, not least when dealing with matters of definability. To prove a positive
definability result, one usually has to exhibit the defining sentence, and it helps if this
sentence belongs to a well-defined language, in order to see if it fills the requirements
we made on definitions in Chapter 12.3. To prove a negative undefinability result, on
the other hand, one needs to verify that no sentence works as a definition. Then it is
crucial that the eligible sentences are generated by a precise grammar and have precise
truth conditions.

Thus, section 13.1 recalls the definition of a logic of the form FO(Q 1, Q 2, . . .),
the already introduced (Chapter 11.2.4) notion of relative expressive power for such
logics, and two measures of the syntactic complexity of their formulas, which will be
used to prove claims about all formulas of a given logic by induction. Section 13.2
presents the appropriate notion of definability of a quantifier in a logic, and observes
that relative expressive power can be cashed out in terms of definability; indeed, this
is an especially simple instance of Theorem 7 in Chapter 12.4. A number of examples
of definable quantifiers are given, and the crucial role of I in logical languages is
pointed out.

The bulk of the chapter, however, concerns undefinability. Section 13.3 intro-
duces the principal strategy for proving that a quantifier is not definable in a given
logic, and section 13.4 presents the main tool for implementing that strategy: the
Ehrenfeucht–Fraı̈ssé technique. A detailed proof that this technique works is given
at the end.

This chapter is more technical than the previous ones. As will be explained below,
using the tools to prove undefinability is often easy. The reader interested primarily
in applications can thus focus on the notions introduced, and skip the details of the
proofs, at least at first reading.

13 .1 LOGICS WITH QUANTIFIERS

Below, Q is a type 〈1, 1〉 quantifier, but the definitions that follow are easily emended
to other types.
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logics

The logical language, or better, the logic FO(Q) is given by, first, adding (Q-syn)
to the usual formation rules for FO:

(Q-syn) If ϕ, ψ are formulas and x is a variable, then Qx(ϕ, ψ) is a formula.

Here Qx binds free occurrences of x in ϕ and in ψ . Second, the truth definition
for FO is extended with the clause:

(Q-sem) If ϕ = ϕ(x, y1, . . . , yn) = ϕ(x, y) and ψ = ψ(x, y) have at most the
free variables shown, M is a model, and a1, . . . , an = a a sequence of
elements of M , then

M |= Qx(ϕ(x, a), ψ(x, a)) iff Q M (ϕ(x, a)M,x , ψ(x, a)M,x)

In FO(Q), one quantifier is added, but we can in the same way add several, obtain-
ing logics FO(Q 1, . . . , Q m) or even FO({Q n : n ∈ I}), where I may be infinite, and
the Q n are quantifiers of any type.1

This is the official notion of a logic in the present and the following chapters. The
general idea is that a logic has a syntax, i.e. a grammar which generates its well-formed
sentences, and a semantics, i.e. a truth relation between models and sentences.2 In
the present case, both the syntax and the semantics are obtained by adding clauses for
each additional quantifier to the standard account of FO.

In Chapter 11.2.4 we defined the notion of relative expressive power between lan-
guages, in terms of the existence of a translation that preserves some notion of syn-
onymy. For logics, this notion is standard logical equivalence, i.e. truth in the same
models. Thus, it is clear what L1 ≤ L2, L1 < L2, and L1 ≡ L2 mean, when L1 and L2
are logics in the present sense. To repeat:

• L1 ≤ L2 iff each L1-sentence is logically equivalent to L2-sentence.

Proving general statements about all formulas in a logic L often relies on induction
over some measure of complexity of such formulas: one first proves the statement for
all formulas of complexity 0 (usually the atomic ones), and then that if the statement
holds for formulas of complexity less than n, it also holds for compound formulas of

1 The syntax of variable-binding can be varied in many ways. In linguistics, for formulas used
to express quantified sentences in a natural language, notations like [Q x : ϕ]ψ are often used,
emphasizing that ϕ is the restriction of the quantifier and ψ its scope. But the present notation
works for all types. Also, as pointed out in Ch. 2.4, we could have used two variables instead of
one, writing Q x, y(ϕ, ψ) instead (so x is bound in ϕ and y in ψ).

2 There are various notions of a model-theoretic or abstract logic in the literature; see e.g.Barwise
and Feferman 1985. Roughly, a logic consists of a class S of sentences and a truth relation |=
between elements of S and models in some specified class, such that (S, |=) satisfies some basic
structural requirements. These requirements (and much more) automatically hold for logics in the
sense here, where S is the set of sentences (or formulas) generated by first-order means using some
chosen quantifier symbols as variable-binding operators, |= is given by the corresponding Tarski-
style truth definition, and the models are all first-order.
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complexity n. The simplest complexity measure is what is often called the degree: the
number of occurrences of logical symbols (except the identity symbol) in a formula.
For example, the degree of following formula is 7.

(13.1) ∃xP(x) ∧ ∀z(P(z) → Qx(x = x, ∀y(R(x, y, z) → y = z)))

A proof that a property P holds of all L-formulas by induction over the degree then
proceeds as follows. First, in the base step, one shows that P holds for all atomic for-
mulas. Second, the induction step consists in showing that if ϕ and ψ satisfy P, then
so do ¬ϕ, ϕ ∧ ψ , ϕ ∨ ψ , ϕ → ψ , as well as ∃xϕ, ∀xϕ, and Qx(ϕ, ψ). Often, mat-
ters are further simplified by taking, say, ¬, ∧, and ∃ as primitive, so that the clauses
for ∨, →, and ∀ can be omitted in the proof.

We will also have use for another complexity measure on formulas, their so-called
quantifier rank, which is the number of nestings of quantifiers that occur in a formula.
For example, although (13.1) has four quantifier symbols, its quantifier rank is 3.
Here is a precise inductive definition of the notion of quantifier rank, for the case
of a logic FO(Q) with Q of type 〈1, 1〉:

quantifier rank

1. qr(ϕ) = 0, if ϕ is atomic
2. qr(¬ϕ) = qr(ϕ)
3. qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = qr(ϕ → ψ) = max(qr(ϕ), qr(ψ))
4. qr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1
5. qr(Qx(ϕ, ψ)) = max(qr(ϕ), qr(ψ)) + 1

13.2 DEFINABILITY

The notion of definability is closely tied to expressive power. Below is a precise
account of what it means for a quantifier Q to be definable in a logic L. We take a
quantifier of type 〈1, 1, 2〉 as an example, but the idea extends to any type.

definability of Q in L

Q is definable in L iff there is an L-sentence ψ , containing two one-place predicate
symbols and one two-place predicate symbol, such that, for all M and all A, B ⊆
M and R ⊆ M2,

Q M (A, B, R) ⇐⇒ (M , A, B, R) |= ψ

Note how the vocabulary of the defining sentence corresponds exactly to the type of
the quantifier (see Chapter 12.3).
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In Chapter 12 we said that, under favorable circumstances, questions of relative
expressive power boil down to questions of definability of logical constants. Here is a
statement of this fact for the present notion of logic.

Proposition 1
FO(Q 1, . . . , Q n) ≤ L if and only if each Q i is definable in L.

This is clear from left to right, and in the other direction one can use a routine
induction. But note that the right-to-left direction is a special case of Theorem 7 in
Chapter 12.4: that Q i is definable in L in the present sense entails that the forma-
tion rule for Q i is an operation definable in L in the sense of Chapter 12.4.1. In this
case the non-logical vocabulary of the two languages is the same, so the mapping �

in Theorem 7 is the identity mapping. The PERs involved are just standard logical
equivalence, and languages of the form FO(Q 1, . . . , Q m) have the standard notion
of substitution. So the theorem says that there is a (compositional) translation �∗ of
FO(Q 1, . . . , Q m) into L, i.e. that FO(Q 1, . . . , Q m) ≤ L.

An even more obvious property of definability is transitivity.

Fact 2
If Q is definable in FO(Q 1, . . . , Q m), and each Q i is definable in L, then Q is definable
in L.

To get some more feeling for the concept of definability, we go through some easy
first examples.

13.2.1 Examples of definability

Some is definable from the existential quantifier, since

someM (A, B) ⇐⇒ A ∩ B �= ∅ ⇐⇒ ∃M (A ∩ B)

Using the above notion of definability, we can also write this:3

someM (A, B) ⇐⇒ (M , A, B) |= some x(A(x), B(x))

or simply say that the following sentence is valid:

some x(A(x), B(x)) ↔ ∃x(A(x) ∧ B(x))

Likewise, all is definable from ∃,

all x(A(x), B(x)) ↔ ¬∃x(A(x) ∧ ¬B(x))

as is, say, ∃≤2:

∃≤2xA(x) ↔ ∀x∀y∀z(A(x) ∧ A(y) ∧ A(z) → x = y ∨ y = z ∨ x = z)

3 Here and below we follow the convenient and very slight abuse of language that consists in
using the same letter (A, B, . . .) for a predicate symbol and the set or relation it denotes.
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Thus, we have

(13.2) FO ≡ FO(some) ≡ FO(all) ≡ FO(∃≤2)

Recall the Härtig quantifier I mentioned earlier, and the quantifier MO with
MOM (A, B) ⇔ |A| > |B|. Obviously I is definable in terms of MO,

IM (A, B) ⇔ |A| ≤ |B| & |B| ≤ |A| ⇔ ¬MOM (A, B) & ¬MOM (B, A)

(the converse does not hold). The first of the following two facts was explained in
Chapter 12.3; the second is obvious.

(13.3) Q 0 is definable from I .

(13.4) most is definable from MO (and Boolean operations):
mostM (A, B) ⇐⇒ |A ∩ B| > |A − B| ⇐⇒ MOM (A ∩ B, A − B)

We will see later that more is not definable from most. But note that if A ∩ B is
finite, we have (cf. Chapter 11.3.4)

|A| > |B| ⇔ |A−B| + |A ∩ B| > |B−A| + |A ∩ B| ⇔ |A−B| > |B−A|
which means that in this case,

MO x(A(x), B(x)) ↔ most x((A(x) ∧¬B(x)) ∨ (B(x) ∧¬A(x)), A(x))

Let the right-hand side of this equivalence be ψ . Now if A ∩ B is instead infinite, then
|A| is the maximum of |A − B| and |A ∩ B|, and |B| is the maximum of |B − A| and
|A ∩ B|. It follows that in this case,

|A| > |B| ⇐⇒ |A−B| > |B−A| & |A−B| > |A ∩ B|,
which means that

MO x(A(x), B(x)) ↔ ψ ∧ most x(A(x), ¬B(x))

Now this means that if we also have the quantifier Q 0 at our disposal, we can actually
define MO:

MO x(A(x), B(x)) ↔ ψ ∧ (Q 0x(A(x) ∧ B(x)) → most x(A(x), ¬B(x)))

So MO is definable from most and Q 0 together, and we have proved the following
not completely obvious proposition.

Proposition 3
FO(MO) ≡ FO(Q 0, most)

Consider now the type 〈1, 1, 1〉 quantifier more−than, which is denoted by a two-
place English determiner. As we pointed out in Chapter 4.7, more−than and MO are
interdefinable:

more-thanM (A, B, C) ⇐⇒ |A ∩ C | > |B ∩ C | ⇐⇒ MOM (A ∩ C , B ∩ C)

|A| > |B| ⇐⇒ more−thanM (A, B, M )
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Hence the following fact.

Fact 4
FO(more−than) ≡ FO(MO)

We end with some general facts about the expressive power of relativization
(Chapter 4.4). It is significant that a relativized quantifier often has greater expressive
power than its unrelativized version—more about this later. The relativized quanti-
fier is always at least as strong.

Fact 5
Q is definable in FO(Qrel), for Q of any type.

Proof. Say Q is of type 〈1, 1〉, so Q rel is given by (Q rel)M (A, B, C) ⇔ Q A(A ∩ B, A ∩
C). Thus, Q M (A, B) ⇔ (Q rel)M (, A, B); that is,

Qx(A(x), B(x)) ↔ Q relx(x = x, A(x), B(x))

is valid. �

Next, although relativizing once may increase expressive power, doing it once more
has no effect.

Fact 6
(Qrel)rel is definable in FO(Qrel).

Proof. We noted in Chapter 4.4 that relativizing first to one set and then to another
is the same as relativizing once to their intersection. For example, when Q is of type
〈1, 1〉, one calculates:

((Q rel)rel)M (A, B, C , D) ⇐⇒ (Q rel)M (A ∩ B, C , D)

That is,

(Q rel)relx(A(x), B(x), C(x), D(x)) ↔ Q relx(A(x) ∧ B(x), C(x), D(x))

is valid. �

From these two facts we directly obtain the following corollary.

Corollary 7
FO(Qrel) ≡ FO((Qrel)rel)

Finally, the following proposition is slightly less trivial to prove; one uses induction
over the degree of the definition of Q 1, but we omit it here, since we shall only use
the result as a heuristic aid (in section 13.4 below).

Proposition 8
If Q 1 is definable in FO(Q 2), then Q rel

1 is definable in FO(Q rel
2 ).

Combining this result with the previous corollary, we obtain the following.

Corollary 9
Q 1 is definable in FO(Q rel

2 ) if and only if Q rel
1 is definable in FO(Q rel

2 ).
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13.2.2 The role of Isom

In Chapter 9 we pointed out that I, in addition to being fundamental for nat-
ural language quantification, is a necessary condition of logicality. This condition says
roughly that it doesn’t matter which particular universe we are in and which particu-
lar interpretations we give to the relevant non-logical symbols; any isomorphic model
gives the same result. In this chapter we assume throughout that all quantifiers talked
about satisfy I. The rough idea then takes the following precise form.

Proposition 10
If M ∼= M′ and M |= ψ , where ψ is any sentence of any logic L = FO({Q i : i ∈ I}),
and all the Q i satisfy I, then M′ |= ψ . More generally, if f is an isomorphism from
M to M′, and ϕ = ϕ(x1, . . . , xn) is an L-formula, then

M |= ϕ(a1, . . . , an) ⇐⇒ M′ |= ϕ(f (a1), . . . , f (an))

This is a trivial but fundamental fact about logics. We omit the straightforward proof,
which is by induction on the degree of ϕ.

13 .3 UNDEFINABILITY

If one is interested in questions of expressive power, it is necessary, as we saw in
Chapter 12.5, to be able to prove certain facts about definability and undefinabil-
ity. Although one can get pretty good at guessing what the facts are, guesses can be
wrong, and proof is needed in the end. In particular, undefinability results need proof.
Such proofs range from fairly easy to impossibly difficult. However, logicians have
developed a set of tools especially apt to deal with this sort of question (and many
other logical issues as well). They were invented in the 1950s by Roland Fraı̈ssé and
Andrzej Ehrenfeucht and have been developed and refined ever since. A generic name
for these tools is Ehrenfeucht–Fraı̈ssé games (though the game-theoretic formulation
is not the one we shall start with). Here we call them simply EF-tools.

Especially for undefinability in terms of monadic quantifiers, the EF-tools are often
very easy to use, and we treat this case in some detail. There is a simple strategy for
proving a quantifier, or any notion, to be undefinable in a logic with monadic quan-
tifiers, and the application of this strategy to particular cases does not require further
use of or proficiency in mathematical logic. It may require some combinatorics, which
in principle ranges from trivial to arbitrarily hard, but several familiar cases from nat-
ural language quantification turn out to be located towards the trivial side. It is rather
satisfactory, we think, that some results of this sort of complexity—that a quanti-
fier is not definable in a certain logic, so that adding it strictly increases expressive
power—can be verified by such simple means, and that is the reason why we take
some space to present the method here.

Thus, the practical use of this method does not require that one has understood
exactly why it works, only how it works. Our presentation keeps the ‘what’ and the
‘how’ separate from the ‘why’, and the reader who does not wish to indulge in logical
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subtleties may thus be content with learning the strategy below, and then going dir-
ectly to the applications in Chapter 14 and later.

Let Q be a quantifier and L a logic. The idea for proving that Q is not definable in L
is the following. Find two models M and M′ which (a) are close in the sense that no
L-sentence can distinguish between them, but (b) are such that Q does distinguish
them; i.e. some sentence ψ involving Q is true in one but not in the other. If this
holds, we are done, because any putative definition of Q in L would be an L-sentence,
so ψ would also be (equivalent to) some L-sentence, hence have the same truth value
in M and M′ by (a); but this is ruled out by (b).

Note that Q can be a quantifier of any type. In fact, it can be any concept for which
a notion of definability in logics exists. Likewise, L can be any logic (see note 2),
though here we consider only those of the form FO({Q n : n ∈ I}).

To express the strategy succinctly, the following standard terminology is con-
venient.

L-equivalence

Let M and M′ be two models (for the same vocabulary). M is L-equivalent to
M′, in symbols,

M ≡L M′

if the same L-sentences are true in both; i.e. if, for every L-sentence ϕ, M |= ϕ ⇔
M′ |= ϕ. If this is required to hold only for ϕ of quantifier rank at most r (some
r > 0), we write

M ≡Lr M′

The latter notation is a special case of the first one, provided we introduce the restric-
ted logics Lr , where L is a logic in the earlier sense, and Lr is simply L restricted to
sentences of quantifier rank at most r.

The above idea for proving undefinability can be formulated in terms of either ≡L
or ≡Lr . However, it is quite important for us that the strategy works also in the case
of finite universes, and then one has to use ≡Lr . This is a consequence of the next
proposition.

Proposition 11
If M is finite and M ≡FO M′, then M ∼= M′.

So L-equivalent (hence FO-equivalent) finite models are too close to be useful in our
strategy; they are isomorphic, and hence cannot be distinguished by any quantifier Q ,
or any concept satisfying I.

Proposition 11 is a standard fact about finite models. To begin, if M has m ele-
ments, then the FO-sentence equivalent to

∃=mx(x = x)
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is true in M, hence also in M′, so M ′ has m elements too. Furthermore, for each rela-
tion R in M, one can write a long FO-sentence of the form ∃x1 . . . ∃xm[· · ·], where
· · · describes exactly which tuples from x1, . . . , xm belong to R and which don’t. This
sentence is then true in M′ as well, and from this it readily follows
that M ∼= M′. �

On the other hand, if r is smaller than the size of M and we know only that M ≡Lr

M′, it no longer follows that M ∼= M′; note that the first sentence used in the above
argument has quantifier rank |M | + 1. Indeed, in the cases when the strategy works,
we must have M ≡Lr M′ but M �∼= M′.

It thus becomes clear that one main concern in undefinability proofs is to verify
that the relation ≡Lr holds between two models. A problem here is that the rela-
tion concerns only sentences, not arbitrary formulas. This means that the method of
induction over the degree of formulas cannot easily be applied. So the crucial part of
our method will be to formulate a criterion for Lr-equivalence which is more directly
suited to applications. The EF-tools provide precisely such a criterion. It is particu-
larly easy to formulate and apply in the monadic case. We first formulate a version
of the criterion, after some motivating discussion, and then prove the theorem that
it really does characterize Lr-equivalence. In the next chapter we consider numer-
ous applications to natural language quantifiers, and in Chapter 15 we look at some
applications of EF-tools for polyadic quantifiers.

13 .4 EF-TOOLS FOR THE MONADIC CASE

We want to show that a particular quantifier, say Q , is not definable in L = FO({Q n :
n ∈ I}), where the Q n are monadic. To simplify things, we often deal explicitly only
with the following case:

• Q is of type 〈1〉 and the Q n are of type 〈1, 1〉.
If one is interested in the interdefinability of natural language quantifiers denoted
by quantirelations, this special case is particularly relevant. First, quantirelation
denotations are of type 〈1, 1〉. Second, they are relativizations of type 〈1〉 quantifi-
ers (Chapter 4.5), and we saw earlier, in Corollary 9, that a relativized quantifier is
definable in a logic with another relativized quantifier if and only if the unrelativized
quantifier is also definable in that logic. However, it will be clear how to express the
criterion for arbitrary monadic types.

13.4.1 The structure of monadic models

Let M = (M , A1, . . . , Am) be a monadic model.
When m = 1, the universe M of M = (M , A) is partitioned into A and M − A.

We call A and M − A the parts of M, and similarly for M′. With L-sentences one
can clearly talk about the parts of models, and also about arbitrary unions of these
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parts. We call these unions the blocks of M, and include the empty set among them.
Thus, the blocks of (M , A) are the four sets ∅, A, M − A, M .

This generalizes to any m. For example, if M = (M , A, B), there are four parts (cf.
Chapter 4.8):

A∩BA−B
B−A

M−(A∪B)

M

We can form 42 = 16 blocks from these, such as B, (A − B) ∪ (B − A), M − A, etc.
Let us use the following notation.

parts and blocks
• the parts (of the partition induced by A1, . . . , Am) are P1,M, . . . , P2m,M
• the corresponding blocks are U1,M, . . . , U22m ,M

both assumed to be enumerated in some fixed order (so some parts and blocks in
this numeration may be empty).

Fact 8 in Chapter 3.3 easily generalizes to the general case above; two monadic
models (for the same vocabulary) are isomorphic iff their corresponding parts have
the same size:

Fact 12
M ∼= M′ ⇐⇒ |Pi,M| = |Pi,M′ | for 1 ≤ i ≤ 2m

13.4.2 A criterion for Lr-equivalence over monadic models

To say in FO that a set has exactly k elements in general requires a sentence of quan-
tifier rank k + 1. Since all logics contain FO, it is clear that one necessary condition
for M and M′ to be Lr-equivalent to each other is that, for any i:

(a) If Pi,M or Pi,M′ has fewer than r elements, then |Pi,M| = |Pi,M′ |.
Next, we are assuming L = FO({Q n : n ∈ I}), so the criterion must say something

about how M and M′ behave with respect to each Q n. The following condition
must be satisfied (assuming Q n is of type 〈1, 1〉):
(b) If X , Y are blocks in M, and X ′, Y ′ are corresponding blocks in M′, then

(Q n)M (X , Y ) ⇔ (Q n)M ′ (X ′, Y ′).
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Here X and X ′ are said to be corresponding if, for some i, X = Ui,M and X ′ =
Ui,M′ . Then X = ϕi(x)M,x and X ′ = ϕi(x)M

′ ,x , for some FO-formula ϕi(x) (indeed,
ϕi(x) is a Boolean combination of atomic formulas). If also Y = ψi(x)M,x and Y ′ =
ψi(x)M

′,x , then (b) says that the sentence

Qx(ϕi(x), ψi(x))

which has quantifier rank 1, has the same truth value in M and M′; clearly a neces-
sary condition.

Conditions (a) and (b) are almost sufficient for Lr-equivalence. What remains to be
accounted for is the fact that one can compare, by means of sentences involving FO-
quantifiers and the Q n, not only blocks, but sets resulting from blocks by ‘moving
around’ some elements in the universe. Here is an example.

Consider M = (M , A); let a, b be distinct elements of A, and c an element of M −
A, and suppose the corresponding facts hold for a′, b′, c′ in M′ = (M ′, A′). Suppose
further that it holds that

(Q n)M ((A ∪ {c}) − {a, b} , (M − A) ∪ {a})
Then, if M ≡Lr M′ and r ≥ 4, it must be the case that

(Q n)M ′ ((A′ ∪ {c′}) − {a′, b′} , (M ′ − A′) ∪ {a′})(13.5)

This is because the sentence

∃x∃y∃z[A(x) ∧ A(y) ∧ ¬A(z) ∧ x �= y ∧
Q nw((A(w) ∨ w = z) ∧ w �= x ∧ w �= y , ¬A(w) ∨ w = x)]

of quantifier rank 4, is true in M, and hence in M′. It follows that there are
a′′, b′′, c′′ ∈ M ′ such that a′′, b′′ ∈ A′, c′′ ∈ M ′ − A′, and

(13.6) (Q n)M ′ ((A′ ∪ {c′′}) − {a′′, b′′} , (M ′ − A′) ∪ {b′′})
And since we have assumed I for Q n, (13.5) follows. More in detail: Let f be a
function with domain M ′ that maps a′′ to a′, b′′ to b′, and c′′ to c′, but is the identity
on all other arguments. Then f is an isomorphism from M′ to itself, and so by I,
(13.5) follows from (13.6).

Here is a more precise account of this sort of situation, given two monadic models
M = (M , A1, . . . , Am) and M′ = (M ′, A′

1, . . . , A′
m).

partial isomorphisms and corresponding block variants

• (a1, . . . , ak) ∈ Mk and (a′
1, . . . , a′

k) ∈ (M ′)k are isomorphic, (a1, . . . , ak) ∼=
(a′

1, . . . , a′
k), if for all i, j, l : ai ∈ Al ⇔ a′

i ∈ A′
l and ai = aj ⇔ a′

i = a′
j . Then

{(ai, a′
i) : 1 ≤ i ≤ k} is a partial isomorphism from M to M′.

• If a1, . . . , ak ∈ M and Z ⊆ M , a subset X of M is a {a1, . . . , ak}-variant of Z if
it is obtained from Z by adding or deleting some of a1, . . . , ak. That is, (X − Z )
∪ (Z − X ) ⊆ {a1, . . . , ak}. Thus, X and Z are the same ‘up to’ a1, . . . , ak.



460 Logical Results on Expressibility

• X1, . . . , Xp and X ′
1, . . . , X ′

p are corresponding r-block variants if there are
isomorphic a1, . . . , ak ∈ M and a′

1, . . . , a′
k ∈ M ′ with k < r, and blocks

Ui1,M,
. . . ,
Uip,M s.t. for 1 ≤ l ≤ p,

1. Xl is a {a1, . . . , ak}-variant of Uil ,M, and X ′
l is a {a′

1, . . . , a′
k}-variant of

Uil ,M′ ;

2. aj ∈ Xl ⇔ a′
j ∈ X ′

l for 1 ≤ j ≤ k.

Armed with these notions, we can formulate the following criterion.

Lr-similarity

We say that M and M′ are Lr-similar, in symbols,

M ≈Lr M′

iff the following holds:

(13.7) If Pi,M or Pi,M′ has fewer than r elements, |Pi,M| = |Pi,M′ |.
(13.8) For each n ∈ I , if Q n has p arguments, and X1, . . . , Xp and X ′

1, . . . , X ′
p are

corresponding r-block variants, then (Q n)M (X1, . . . , Xp) ⇔
(Q n)M ′ (X ′

1, . . . , X ′
p).

The next theorem is essentially due to Fraı̈ssé and Ehrenfeucht.

Theorem 13
The following are equivalent, for any monadic models M and M′ with the same vocab-
ulary, and any logic L = FO({Q n : n ∈ I}) where the Q n are monadic:

(i) M ≡Lr M′
(ii) M ≈Lr M′

It should be immediately clear that it can be much easier to verify that M ≈Lr

M′ holds than to directly prove M ≡Lr M′. We give a proof of the theorem in the
next section, and proceed to applications to various natural language quantifiers after
that.

13.4.3 Proof that the criterion is correct

Let M be a model. A subset X of M is definable in M, relative to a logic L, if it is the
extension in M of some L-formula. To prove Theorem 13, we need to know which
sets are definable in a monadic model.
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L-definable sets

A set X ⊆ M is L-definable in M iff there is some L-formula ϕ(x) with one
free variable which defines it, i.e. such that

X = ϕ(x)M,x = {a ∈ M : M |= ϕ(a)}
More generally, if a = a1, . . . , ak is a sequence of elements of M , X is L-definable
in M with parameters a iff, for some L-formula ϕ(x, x1, . . . , xk) with exactly the
free variables shown,

X = ϕ(x, a)M,x

Proposition 14
If M is a monadic structure, a1, . . . , ak ∈ M, and L any logic, then the L-definable sub-
sets of M with parameters a1, . . . , ak are precisely the {a1, . . . , ak}-variants of the blocks
of M.

Observe that the (variants of the) blocks depend on M but not on the logic L.
So it follows from the proposition that we might as well take L = FO; strengthen-
ing the logic does not make more sets definable. This is a special feature of monadic
models—it fails completely for polyadic models4 —that we make use of here.

To prove the proposition, one needs a simple but fundamental lemma. Recall from
Chapter 3.3.2 that an automorphism on M is an isomorphism from a M to itself:
f : M ∼= M.5 The next lemma, which is a direct consequence of Proposition 10,
holds for all structures, monadic or not. Note also that it holds for any logic L.

Lemma 15
If X is L-definable in M with parameters a1, . . . , ak, and f is an automorphism on M
such that f (ai) = ai for 1 ≤ i ≤ k, then f preserves X in the sense that, for any a ∈ M,
a ∈ X ⇔ f (a) ∈ X .

Proof. Suppose ϕ(x, x1, . . . , xk) defines X in M with parameters a1, . . . , ak. Then a ∈
X ⇔ M |= ϕ(a, a1, . . . , ak) ⇔ M |= ϕ(f (a), f (a1), . . . , f (ak)) (by Proposition 10)
⇔ M |= ϕ(f (a), a1, . . . , ak) ⇔ f (a) ∈ X . �

Proof of Proposition 14. Each block Ui,M is definable by an FO-formula (a Boolean
combination of atomic formulas). To define an {a1, . . . , ak}-variant of Ui,M, just add
suitable disjuncts of the form x = xj , and conjuncts of the form x �= xl .

4 E.g. a non-standard model of the ordering of the natural numbers contains non-standard
‘numbers’, and the set of standard numbers is not definable in FO. It is, however, definable in
FO(Q 0), as the set of elements which have finitely many predecessors.

5 In model theory, the set of automorphisms on a structure is a fundamental object of study.
At one extreme are the rigid structures which have only one automorphism: the identity function.
A typical example is a well-ordered set, i.e. a structure (M , <), where < well-orders M . If M is
a monadic structure, on the other hand, then, e.g., any permutation of M that does not move
elements from one part to another will be an automorphism.
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Now suppose that X is L-definable in M with parameters a1, . . . , ak, and let X ′ =
X − {a1, . . . , ak}. We prove that X ′ is a {a1, . . . , ak}-variant of a block in M; it then
follows that so is X .

Let i1, . . . , iq be those i such that Pi,M ∩ X ′ �= ∅. Thus,

X ′ ⊆ Pi1,M ∪ . . . ∪ Piq ,M = Up,M

for some p. Suppose, for contradiction, that X ′ is not a {a1, . . . , ak}-variant of Up,M.
Then there must be a j and a b ∈ Pij ,M − X ′ such that b �= a1, . . . , ak. And by our
assumptions, there is some a ∈ Pij ,M ∩ X ′, whence a �= a1, . . . , ak. Let f be the per-
mutation of M which interchanges a and b but leaves all other elements as they are.
f is an automorphism on M (since a and b are in the same part) such that f (ai) = ai
for 1 ≤ i ≤ k. But a ∈ X ′ whereas b = f (a) �∈ X ′, contradicting Lemma 15. So X ′ is
a {a1, . . . , ak}-variant of Up,M, and the proof is finished. �

After these preparations, we can finally proceed to the proof of the main result.

Proof of Theorem 13: (i) ⇒ (ii): This is the easy direction. We saw an example of the
required reasoning in the preceding subsection, but let us now do the general case.
Suppose M ≡Lr M′. Since it takes at most k + 1 FO-quantifiers to say that a set
has exactly k elements, it is clear that (13.7) holds. For (13.8), suppose that Q n has
type 〈1, 1〉 and that X1, X2 and X ′

1, X ′
2 are as described there, relative to a1, . . . , ak ∈

M and a′
1, . . . , a′

k ∈ M ′ with (a1, . . . , ak) ∼= (a′
1, . . . , a′

k), for some k < r. Let
ϕ(x, x1, . . . , xk) and ψ(x, x1, . . . , xk) be standard FO-formulas that define X1 and X2,
respectively, in M, with parameters a1, . . . , ak. Note that the same formulas define
X ′

1 and X ′
2, respectively, in M′, with parameters a′

1, . . . , a′
k. Now each aj belongs to

exactly one Pi,M; let that part be defined by θj(x) in M. If (Q n)M (X1, X2), then

∃x1 . . . ∃xk(θ1(x1) ∧ · · · ∧ θk(xk) ∧ Q nx(ϕ(x, x1, . . . , xk), ψ(x, x1, . . . , xk)))

is true in M. Since this sentence has quantifier rank k + 1 ≤ r, it is also true in M′,
so there are b1, . . . , bk ∈ M ′ such that bj ∈ Pi,M′ and

M′ |= Q nx(ϕ(x, b1, . . . , bk), ψ(x, b1, . . . , bk))

Let f map each bj on a′
j but leave everything else as it is. Then f is an automorphism

on M′ (since no element is moved from one part to another), so, by Proposition 10,

M′ |= Q nx(ϕ(x, a′
1, . . . , a′

k), ψ(x, a′
1, . . . , a′

k))

But this means that (Q n)M ′ (X ′
1, X ′

2). The other direction is similar, so (13.8) holds.

(ii) ⇒ (i): Suppose that M ≈Lr M′. We shall prove the following statement, for all
L-formulas ϕ:

(A)ϕ If k ≤ r, a1, . . . , ak ∈ M , a′
1, . . . , a′

k ∈ M ′, and (a1, . . . , ak) ∼= (a′
1, . . . , a′

k),
and if ϕ(x1, . . . , xk) has quantifier rank at most r − k and at most the free vari-
ables shown, then
(B) M |= ϕ(a1, . . . , ak) ⇔ M′ |= ϕ(a′

1, . . . , a′
k)
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We prove (A)ϕ by induction over ϕ. This is enough, since with k = 0 we get the
desired result that M ≡Lr M′.

In the base step, ϕ is an atomic formula. But (a1, . . . , ak) ∼= (a′
1, . . . , a′

k) means
precisely that (B) holds for atomic formulas.

For the induction step, assume (a1, . . . , ak) ∼= (a′
1, . . . , a′

k). If k = r, then ϕ has
quantifier rank 0, and is thus an atomic formula, or a Boolean combination of atomic
formulas. But we already saw that (B) holds for atomic formulas, and it is practic-
ally immediate that this extends to Boolean combinations of atomic formulas. (To
be meticulous, one should prove this by induction over the degree of the Boolean
combinations.)

Thus we may assume k < r. There are a few cases to consider. If ϕ is a conjunction
ψ1 ∧ ψ2, the conclusion is immediate from the induction hypothesis that (A)ψ1 and
(A)ψ2 hold. (qr(ψi) ≤ qr(ϕ) ≤ r − k, and the assumption about variables is satisfied,
so (B) holds for each ψi.) Similarly if ϕ is a negation.

The two remaining cases are when ϕ is ∃xψ and when it is Q nx(ψ1, ψ2). The first
of these is actually a (simple) special case of the second one, which deals with a quan-
tified formula in general. So we go directly to the second case.

Suppose then ϕ(x1, . . . , xk) = Q nx(ψ1(x, x1, . . . , xk), ψ2(x, x1, . . . , xk)) with at
most the free variables shown, and with quantifier rank at most r − k. Now look
at the definable sets Xi = ψi(x, a1, . . . , ak)M,x , i = 1, 2. By Proposition 14, Xi is a
{a1, . . . , ak}-variant of some block Upi ,M. Let X ′

i = ψi(x, a′
1, . . . , a′

k)M
′ ,x, i = 1, 2.

We claim that

(C) X1, X2 and X ′
1, X ′

2 are corresponding r-block variants.

Since M ≈Lr M′, (C) implies that (Q n)M (X1, X2) ⇔ (Q n)M ′ (X ′
1, X ′

2). But this
means that (B) holds, and we are done.

So it only remains to verify (C). There are two things to check, for i = 1, 2:

(C1) aj ∈ Xi ⇔ a′
j ∈ X ′

i , for 1 ≤ j ≤ k.
(C2) X ′

i is a {a′
1, . . . , a′

k}-variant of Upi ,M′ .

For (C1), observe that (aj , a1, . . . , ak) ∼= (a′
j , a′

1, . . . , a′
k), and that ψi has quantifier

rank at most r − (k + 1). (You can see why we allowed repetitions in partial iso-
morphism sequences!) This means that the induction hypothesis (A)ψi applies (since
k + 1 ≤ r), and hence

M |= ψi(aj , a1, . . . , ak) ⇔ M′ |= ψi(a′
j , a′

1, . . . , a′
k)

so (C1) follows.
For (C2), note that in general it need not be the case that if a formula defines one

block in a model, it defines the corresponding block in other models. (For example,
the formula ψ(x) = (x = x) ∧ Q 0y(y = y) defines the universe M in infinite mod-
els, but ∅ in finite models.) But here we are assuming M ≈Lr M′, and that is what
makes the difference.

Now, ‘up to’ a1, . . . , ak, Xi is the block

Upi ,M = Pi1,M ∪ · · · ∪ Pil ,M
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We know, by Proposition 14, that, ‘up to’ a′
1, . . . , a′

k, X ′
i is some block in M′; what

we must show is that this is precisely Upi ,M′ . In view of (C1), it is enough to show
that, for each part Pj,M of M,

(D) (X − {a1, . . . , ak}) ∩ Pj,M �= ∅ ⇔ (X ′ − {a′
1, . . . , a′

k}) ∩ Pj,M′ �= ∅
Suppose a �= a1, . . . , ak and a ∈ Pj,M. Since M ≈Lr M′ and k + 1 ≤ r, it follows
that there is a′ �= a′

1, . . . , a′
k such that a′ ∈ Pj,M′ . This is because our assumption

requires Pj,M to have at least m elements, where m is some number ≤ k + 1 (depend-
ing on how many of a1, . . . , ak are in Pj,M), and then by condition (13.7), so does
Pj,M′ . But this means that (a, a1, . . . , ak) ∼= (a′, a′

1, . . . , a′
k), so again (A)ψi applies,

yielding

M |= ψi(a, a1, . . . , ak) ⇔ M′ |= ψi(a′, a′
1, . . . , a′

k)

i.e. a ∈ X iff a′ ∈ X ′. The other direction is similar, so (D) is proved, whereby the
induction step is completed, and the whole proof is finished. �

This proof is a nice example of a somewhat complex inductive argument. The main
induction is over formula complexity. But the (carefully chosen) claim (A)ϕ to be
established itself quantifies over all k ≤ r, where k is the maximal number of free vari-
ables and r − k the maximal quantifier rank. As it were, the proof combines an induc-
tion over the complexity of ϕ with a downward induction over k: the case k = r is
(almost) trivial, but for smaller k one needs to use the induction hypothesis for k + 1
(as each (monadic) quantifier is ‘peeled off’, the number of free variables increases by
1, and the quantifier rank, as well as the formula complexity, decreases by 1).
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Applications to Monadic Definability

In this chapter we apply the EF-tools to present a variety of results about the express-
ive power of certain monadic quantifiers. As promised, to apply the method, it suf-
fices to be familiar with the notions involved (such as equivalence up to quantifier
rank r, etc.), and some of the applications are surprisingly easy, considering that the
results themselves are not trivial. Others involve more or less combinatorics. After
repeating the general method (section 14.1), we begin with (un)definability relative
to FO (section 14.2), and then relative to stronger logics (section 14.3). Section 14.4
is devoted to issues of expressivity and monotonicity, and section 14.5 gives a num-
ber of exercises for the reader who wishes to try his or her own hand at applying the
EF-tools.

The direct applications of the method concern logical languages. But we saw in
Chapter 12.5 how results about such languages may transfer to natural languages,
under certain conditions. In each section with applications below, we also discuss the
possible consequences for expressibility issues within natural languages. In particular,
section 14.4 explores the prospects of finding a universal statement that would some-
how describe or even explain the role of monotonicity in the context of expressive
power in natural languages, in view of certain rather striking technical results about
definability in terms of monotone quantifiers. So far, however, these prospects seem
rather bleak.

14 .1 THE METHOD

Our general method for undefinability proofs is the following.

method for undefinability proofs

To show that Q of type 〈1〉 is not definable in L, find, for each r > 0, two models
M = (M , A) and M′ = (M ′, A′) such that

(i) M ≈Lr M′
(ii) Q M (A) but not Q M ′ (A′)

More generally, and for Q of any type, it suffices that there is some sentence ψ

involving Q and only one-place predicates such that, for each r, there are models
M and M′ such that
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(i) M ≈Lr M′
(ii) M |= ψ but M′ �|= ψ

(In the first case above, ψ is QxP(x).)

This method works because if there were a definition of Q in L, ψ would be logically
equivalent to an L-sentence θ .1 Choosing r to be the quantifier rank of θ , and using
Theorem 13 in Chapter 13.4, it would follow by (i) that θ , and hence ψ , has the same
truth value in M and M′, but this contradicts (ii).

Note that the method works also if Q is polyadic, as long as the sentence ψ con-
taining Q uses only one-place predicate symbols. This is required because we have
defined the relation ≈Lr only for monadic models.

14 .2 FO-UNDEFINABILITY

For L = FO, the condition for FOr-similarity, and hence FOr-equivalence, becomes
simply (13.7):

(13.7) If Pi,M or Pi,M′ has fewer than r elements, then |Pi,M| = |Pi,M′ |.
It is very easy to construct models meeting this condition. Consider the type 〈1〉 quan-
tifier Q even which says of a set that it has an even number of elements. This is a
classical example of quantifier that is not definable in FO.

Fact 1
Q even is not first-order definable.

To prove this, we need to exhibit, for each r > 0, two models M = (M , A) and
M′ = (M ′, A′) such that |A| is even, |A′| is odd, and M ≈FOr M′. But this is almost
trivial, for example:

r+1 r

r r+1

M M

That is, M = M ′ has 2r + 1 elements, A has r + 1 elements, an A′ has r elements.
So all parts of M and M′ have ≥ r elements, hence M ≈FOr M′. But only one of
r, r + 1 is even. �

1 θ is obtained from ψ by systematically eliminating Q using the definition.
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Other choices of M,M′ work too. For example, we could have taken sets such
that |A| = r + 1, |A′| = r, but |M − A| = |M ′ − A′|. Then, note that regardless of
whether the latter number is < r or ≥ r, condition (13.7) still holds.

An even simpler proof of Fact 1 is this: consider the quantifier ‘|M | is even’. (Actu-
ally, this is not a quantifier in the sense we defined, but we could easily include it: its
type would be 〈〉, and it would be expressed by a propositional constant, true on even-
numbered universes and false on others.) To show, by our strategy, that this quantifier
is not FO-definable, we need only, for each r, choose two universes M , M ′ such that
|M | is even, |M ′| is odd, and |M |, |M ′| ≥ r. So ‘|M | is even’ is not FO-definable. But
then Fact 1 follows, since ‘|M | is even’ is definable from Q even:

|M | is even ⇐⇒ (Q even)M (M )

Hence, if Q even were FO-definable, ‘|M | is even’ would be too. �

Q even is perhaps not a natural language quantifier, but its relativization is: (Q even)rel

= an even number of. So from Facts 1 and Facts 2 and 5 in the preceding chapter, we
can conclude the following.

Fact 2
An even number of is not first-order definable.

Next, here is an easy proof of another well-known fact (cf. the discussion in
Chapter 12.3).

Fact 3
Q 0 (and hence an infinite number of ) is not FO-definable.

Proof. Fix r. Then simply take M = (M , A) and M′ = (M ′, A′) such that A is infin-
ite, |A′| = r, and |M − A| = |M ′ − A′|. For example, as follows:

ℵ0 r

3 3

M M′

Clearly, M ≈FOr M′, (Q 0)M (A), but not (Q 0)M ′ (A′). �

Notice how extremely simple this proof is (once we have assured ourselves that the
method is correct). There are many other ways to obtain the same result. For example,
one can observe that the set of sentences

{∃≥nx(x = x) : n = 1, 2, . . .} ∪ {¬Q 0x(x = x)}
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is such that each finite subset is true in some model, but the whole set cannot be true
in any model. This shows that FO(Q 0) does not have the compactness property (see
Chapter 2.6). But FO is compact, so Q 0 cannot be definable in FO.

Or, one may use the fact that with Q 0 one can characterize the standard order-
ing N = (N, <) of the natural numbers: one adds to the usual axioms for a strict
order with a first but no last element, and where each element has an immediate suc-
cessor—call their conjunction ψ1 —the axiom

ψ2 = ∀x¬Q 0y(y < x)

which guarantees that each element has only a finite number of predecessors. Then it
holds that

(M , R) |= ψ1 ∧ ψ2 ⇐⇒ (M , R) ∼= (N, <)

This implies that the Tarski property fails for FO(Q 0): it is not true that every sen-
tence which has an infinite model also has an uncountable model: ψ1 ∧ ψ2 has only
countable models. But the Tarski property holds for FO, so Q 0 cannot be definable
in FO. Or, one may invoke Gödel’s theorems: If Q 0 were definable in FO, one could
characterize the standard model of arithmetic by means FO-sentences, but Gödel’s
incompleteness theorem, together with his completeness theorem for FO, has the
consequence that this is not possible.

These properties of FO (which are established in any reasonably advanced logic
textbook) are of course highly significant from a logical point of view. But invoking
them to prove that the notion of infinity is not expressible in FO seems like using
too heavy artillery. The method using the EF-tools, on the other hand, proves to
be exactly what one wants. Moreover, it applies to logics where compactness, com-
pleteness, etc. fail, and hence are not available to show facts of undefinability. And
furthermore, in contrast to all of the other methods hinted at above, it applies also to
finite models.

Next, let us state the following fact.

Fact 4
QR (and hence most) is not first-order definable.

Proof. The models chosen in the (first) proof of Fact 1 work here too, since |A| >

|M − A|, but |A′| ≤ |M − A′|. �

By a slightly more careful choice of models, one shows similarly that none of the prop-
erly proportional quantifiers, i.e. the quantifiers p/q and [p/q], where 0 < p < q (see
Chapter 2.3)—and hence neither their relativizations such as more than two-thirds of
the, etc.—are definable in FO.

Note that this is undefinability even if we should restrict attention to finite uni-
verses. It has nothing to do with the inability of FO to express the notion of infinity,
but points to another weakness of the expressive power of FO, one that natural lan-
guages do not suffer from.

The facts mentioned above about Q 0, infinitely many, and an even number of may
not seem too exciting from a natural language perspective. But no one can deny that
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most or more than two-thirds of the are natural language expressions, indeed
quantirelations (determiners). As we explained in detail in Chapter 12.5, Fact 4 and
similar facts have consequences for natural languages, at least if these can be treated as
first-order in the sense that one uses first-order models to describe (however roughly)
the truth conditions of their sentences. We don’t see why any natural language would
resist such a treatment—as was stressed in Chapter 11.3.2, the claim is not that this
completely captures the basic semantics of any natural language; on the contrary, it
will slur over much of that semantics, but the claim is that it provides enough for
an adequate treatment of quantification. Then, the language viewed from this per-
spective can be formalized in logical languages of the kind discussed here, and via the
formalization, facts about definability transfer between a language and its formaliza-
tion.

For example, if one language had no means whatever of making comparisons of
size, it (or relevant parts of it) might be formalizable in FO, and then Fact 4 tells us,
by the mechanism described in Chapter 12.5, that Swedish, for example, is not trans-
latable into that language.

More generally, there is a methodological conclusion concerning the adequacy of
FO as a semantic framework. In the early days of formal semantics it was often sup-
posed that the ‘logical form’ associated with sentences and carrying most of their
semantic information would be expressible with FO means. There have also been
contrary claims, using quite involved arguments. For example, Hintikka and Sandu
(1997) attempt to discredit FO by arguing that natural language semantics needs the
game-theoretic machinery of IF logic (see Chapter 2.5.1) instead. The conclusion
that FO is insufficient for natural language semantics is correct, it seems to us, but
it can be established much more simply and directly, precisely by the fact that most
and similar quantirelations are not expressible in FO.

14 .3 UNDEFINABILITY IN OTHER LOGICS

That the FO-undefinability of most has nothing to with infinity is also seen by the
following result.

Fact 5
QR (and hence most) is not definable in FO(Q 0).

Proof. This is intuitively obvious, since we gave a finite counterexample to the FO-
definability of QR , and on finite models Q 0 has no effect (all formulas of the form
Q 0xψ are unsatisfiable). But we immediately get a formal proof as well. In fact, the
models in the first proof of Fact 1 work again. This time, we also have condition
(13.8) in the definition of FO(Q 0)-similarity to check. It says that, for any corres-
ponding r-block variants X in M and X ′ in M′,

X is infinite ⇐⇒ X ′ is infinite

which is trivial, since all subsets of these universes are finite. �
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In a similarly trivial way, using finite models as counterexamples, one can establish
the following fact, whose proof we leave as an exercise.

Fact 6
The Härtig quantifier I is not definable in FO(Q 0).

We first proved that QR is not FO-definable, and then the stronger result that it
is not definable in FO(Q 0). This fact about QR can be strengthened even further, as
follows.

Fact 7
QR (and hence most) is not definable in FO(I ).

Proof. (Note that this implies Fact 5, since Q 0 is definable from I .) For any r > 0,
use the following models:

4r 2r

2r 4r

M M

To check that M ≡FO(I )r M′, we only need to verify that if X , Y and X ′, Y ′ are cor-
responding r-block variants, then

|X | = |Y | ⇐⇒ |X ′| = |Y ′|
But this is easy to see. Note that, in both models, variants of ∅ have size between 0 and
r − 1, i.e. in the interval [0, r), and variants of M have size in (5r, 6r]. Also, in M,
variants of A are in (3r, 5r), and variants of M − A are in (r, 3r), whereas in M′ the
situation is reversed. This means that if |X | = |Y |, then X and Y must be variants of
the same block, and moreover, that block must be either ∅ or M . But then it is clear
that |X | = |X ′| and |Y | = |Y ′|. The argument in the other direction is symmetric,
and we are done. �

In the converse direction, we have the following.

Proposition 8
Q 0 is not definable in FO(most).

Proof. This is a little more subtle, since we saw in Chapter 13.2.1 that Q 0 is definable
in FO(MO). But take r > 0 and choose
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ℵ0 3r

r r

M M′

So (Q 0)M (A) holds, but not (Q 0)M ′ (A′). Condition (13.7) is clearly satisfied. To
check condition (13.8), we must convince ourselves that if X , Y and X ′, Y ′ are cor-
responding r-block variants, then

(14.1) |X ∩Y | > |X −Y | ⇐⇒ |X ′∩Y ′| > |X ′−Y ′|
There are sixteen cases to check here (four cases for each of X and Y ). In view of
the fact that the result is not immediately obvious, let us be patient and go through
them. Certain symmetries will reduce our work. The following lemma, which is a
straightforward consequence of our definitions, also helps.

Lemma 9
Suppose (a1, . . . , ar−1) ∼= (a′

1, . . . , a′
r−1), and X , Y and X ′, Y ′ are corresponding

r-block variants, relative to {a1, . . . , ar−1} and {a′
1, . . . , a′

r−1}, and blocks Ui,M, Uj,M
and Ui,M′ , Uj,M′ . Then:

(a) If |Ui,M| = |Ui,M′ |, then |X | = |X ′|.
(b) X ∩ Y and X ′ ∩ Y ′ are also corresponding r-block variants. Similarly for X − Y

and X ′ − Y ′.

Now let us verify (14.1).

Case 1. X is a {a1, . . . , ar−1}-variant of ∅. By the lemma, |X ∩ Y | = |X ′ ∩ Y ′| and
|X − Y | = |X ′ − Y ′|. Thus, (14.1) holds.

Case 2. X is a {a1, . . . , ar−1}-variant of A.

Case 2.1. Y is a {a1, . . . , ar−1}-variant of ∅. By the lemma, |X ∩ Y | = |X ′ ∩ Y ′|< r.
Also, |X − Y | = ℵ0, and |X ′ − Y ′| > 2r. Thus, both sides of (14.1) are false.

Case 2.2. Y is a {a1, . . . , ar−1}-variant of A. Now |X ∩ Y | = ℵ0, and |X ′ ∩ Y ′| >

2r, whereas |X − Y | = |X ′ − Y ′| < r, so both sides of (14.1) are true.

Case 2.3. Y is a {a1, . . . , ar−1}-variant of M − A. This is similar to case 2.1.

Case 2.4. Y is a {a1, . . . , ar−1}-variant of M . Similar to 2.2.
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Case 3. X is a {a1, . . . , ar−1}-variant of M − A.

Case 3.1. Y is a {a1, . . . , ar−1}-variant of ∅. Again using Lemma 9, |X ∩ Y | =
|X ′ ∩ Y ′| and |X − Y | = |X ′ − Y ′|. Note that the latter equality depends on the fact
that X − Y and X ′ − Y ′ are corresponding r-block variants of M − A and M ′ − A′,
respectively, and that in our chosen models, |M − A| = |M ′ − A′|.
Case 3.2. Y is a {a1, . . . , ar−1}-variant of A. In this subcase too, X ∩ Y and X ′ ∩ Y ′
are corresponding r-block variants of ∅, and X − Y and X ′ − Y ′ are corresponding
r-block variants of M − A and M ′ − A′, respectively.

Cases 3.3 and 3.4. These are similar to subcases 3.1 and 3.2, but with the roles of
X ∩ Y and X − Y reversed.

Case 4. X is a {a1, . . . , ar−1}-variant of M .

Case 4.1. Y is a {a1, . . . , ar−1}-variant of ∅. As before, |X ∩ Y | = |X ′ ∩ Y ′| < r,
whereas |X − Y | = ℵ0, and |X ′ − Y ′| > 3r.

Case 4.2. Y is a {a1, . . . , ar−1}-variant of A. We have |X ∩ Y | = ℵ0, and |X ′ ∩
Y ′| > 2r. Since X − Y and X ′ − Y ′ are corresponding r-block variants of M − A
and M ′ − A′, respectively, it follows that |M − A| = |M ′ − A′| < 2r, so both sides
of (14.1) aretrue. This and the next subcase are the only occasions where we need the
fact that A′ has 3r elements (for the others 2r would have been enough).

Case 4.3. Y is a {a1, . . . , ar−1}-variant of M − A. This is symmetric to 4.2.

Case 4.4. Y is a {a1, . . . , ar−1}-variant of M . Symmetric to 4.1.

This concludes the proof of (14.1), and thereby of Proposition 8. �

Observe that (13.8) would not hold if we had MO instead of most. For,

|M ′| > |A′|, but |M | �> |A|
so MO, but not most, can distinguish M from M′.

Summing up some the preceding results, we have the following.

Corollary 10

(a) FO(most) < FO(MO) and FO(I ) < FO(MO), but FO(most) and FO(I ) have
incomparable expressive power.

(b) FO(Q 0) < FO(I )

Proof. We know (Chapter 13.2.1) that FO(most) ≤ FO(MO), that FO(I ) ≤
FO(MO), and that FO(Q 0) ≤ FO(I ). Fact 7 tells us that most is not definable
in FO(I ), and hence neither is MO, so FO(I ) < FO(MO). The just proved
proposition says that Q 0 is not definable in FO(most). It follows that neither I
nor MO is definable in FO(most), since Q 0 is definable from each of them. Thus
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FO(most) < FO(MO), and I and most are incomparable. Finally, that I is not
definable in FO(Q 0), so that FO(Q 0) < FO(I ), is Fact 6. �

Furthermore, from this and the fact that FO(more−than) ≡ FO(MO) (Fact 4 in
Chapter 13), we immediately obtain that the type 〈1, 1, 1〉 more−than, which is the
denotation of a two-place English determiner, is not definable in terms of the one-
place determiner denotation most.

Corollary 11
FO(most) < FO(more−than).

However, as we see using Proposition 3 in Chapter 13, more−than is definable if we
are allowed to use two English one-place determiner denotations: namely, most and
infinitely many.

Continuing the discussion of most, let us now compare it to its type 〈1〉 counterpart
QR. QR is definable from most, but not vice versa.

Proposition 12
Most is not definable in FO(QR).2

Proof. To see this we choose, given r,

r r r r+1

4r 4r

M M′

A B A′ B′

(where A and B, as well as A′ and B′, are disjoint). Observe here that each of ∅, A, B,
and A∪B has size less than its complement, and that this still holds if at most r − 1
elements are added or deleted. The same holds in M′. From this, it is not hard to
verify (we leave the details as an exercise) that M ≈FO(QR)r M′. However,

¬mostM (A∪B, B), whereas mostM ′ (A′∪B′, B′),

so M and M′ can be distinguished by means of most. �

Most of the definability results so far in this chapter are summed up in Fig. 14.1.

2 Apparently (see Barwise and Cooper 1981: 216) this result was first proved by David Kaplan
in 1965; the proof, which made essential use of infinite models, was never published. We men-
tioned in Ch. 2.4 (n. 11) that Rescher (1962) made the even stronger claim—without proof—that
most isn’t definable from any finite number of type 〈1〉 quantifiers; see Theorem 14 below. The first
proof using the EF-tools and finite models was given by Barwise and Cooper (1981).
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Figure 14.1 Relative strengths of some logics

Here the lines from left to right mean ‘strictly weaker than’, whereas the logics in
the upper part of the diagram are incomparable in strength to the logics in the lower
part. We also note that all logics in the diagram except FO(QR) relativize: the rela-
tivizations of their quantifiers are already definable in them. For example, (Q 0)rel

= infinitely many, which is definable by the sentence Q 0x(A(x) ∧ B(x)), but most =
(QR)rel is not definable in FO(QR). FO(most) relativizes, since most is already a rela-
tivized quantifier (Fact 6 in Chapter 13); one easily sees that FO(I ), FO(MO), and
FO(QH ) also relativize.

The only fact of Fig. 14.1 that doesn’t follow from results in this chapter is the
claim that logic with the Henkin quantifier is stronger than FO(MO). We saw in
Chapter 2.5 that MO is definable in FO(QH ). Exercise 4 at the end of this chapter
shows that an even number of is not definable in FO(MO), whereas Exercise 5 shows
that it is definable in FO(QH ). It follows that FO(MO) < FO(QH ).

The logic FO(Q even) ≡ FO(an even number of) is not itself in Fig. 14.1; this logic
is incomparable in strength to all the logics in the diagram except FO and FO(QH ).

These expressibility facts have consequences for natural language semantics. For
example, we see that different forms of size comparison have different strength. It is
unlikely that a natural language has a primitive expression (NP) denoting QR; instead,
many languages have quantirelations denoting the stronger most (and other propor-
tional quantifiers). But these cannot compare the sizes of arbitrary sets (only of dis-
joint sets: if A ∩ B = ∅, most(A ∪ B, B) ⇔ |A| > |B|). We also see that comparison
only in terms of ‘‘as many as’’ but not ‘‘more than’’ or ‘‘at least as many as’’, even
with the help of Boolean operations and universal and existential quantification, is
not sufficient for MO, or even for most.

No natural language is likely to have a quantirelation denoting MO, because
quantirelations are C. But many languages manage size comparison for arbit-
rary sets with other constructions, such as the English More As than Bs exist
(using the two-place more−than), or There are more As than Bs (same quanti-
fier in an existential-there construction), or simply The number of As is greater
than the number of Bs. Suppose that a putative language L lacks all of these. Can
we conclude that English is not translatable into L? As we saw in Chapter 12.5, we
can, if there is an adequate formalization of L in a logical language Lf in which MO
is not definable. But note that the conclusion presupposes that Lf really is adequate:
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it must capture a sufficiently large portion of L, and in particular not leave out any
other comparative constructions that L might employ.

In addition to facts about particular (real or possible) natural languages, there is
again a methodological consequence of some importance, signaled by Proposition 12.
This proposition is in fact quite significant. We have seen that often Q rel is defin-
able from Q . For example, all is definable from ∀, at least five is definable from ∃≥5,
an even number of is definable from Q even. Thus one might be inclined to think
that, after all, type 〈1〉 quantifiers are enough for natural language. That ‘type 〈1〉 is
enough’ has been the received wisdom in logic since Frege, when used to formulate
mathematical facts. But that is not how logic is used in natural language semantics.
And Proposition 12 tells us that for some very common natural language quantifiers,
type 〈1〉 is not enough.

The question ‘‘Is type 〈1〉 enough for natural languages?’’ is ambiguous, as we can
now see. On the one hand, we showed in Chapter 4.5 that all type 〈1, 1〉 quantire-
lation denotations are relativizations of type 〈1〉 quantifiers (Proposition 3 in that
chapter). So in this sense it is enough to have the type 〈1〉 quantifiers, and the opera-
tion of relativization, at hand. But on the other hand, we have seen that the relativiza-
tion operation may increase expressive power. Proposition 12 shows, via a translation
argument, that there is no way to express Most As are B using only the locution
most things in the universe are A and the usual FO apparatus. In this sense,
type 〈1〉 is definitely not enough.

In fact, this answer to the question can be significantly strengthened, in two direc-
tions.

Theorem 13 (Westerståhl 1991; Kolaitis and Väänänen 1995)
Suppose Q is of type 〈1〉 and monotone (increasing or decreasing). Then, over finite mod-
els, Qrel is definable in FO(Q ) if and only if Q is first-order definable.

The proof, using the EF-tools, relies on the same strategy; one has to go through
a number of cases, using some patience and a little combinatorics. Lots of familiar
quantifiers are monotone, and for this case we thus know precisely when type 〈1〉 ‘is
enough’. Very often, it is not. But note that the restriction to monotone quantifiers
is essential: Q even is not FO-definable (Fact 1), but an even number of = (Q even)rel is
definable in terms of it.

The second strengthening is the following.

Theorem 14 (Kolaitis and Väänänen 1995)
Most is not definable in any logic of the form FO(Q 1, . . . , Q n), where the Q i are of type
〈1〉. (In fact, the same holds for all the properly proportional quantifiers.)

To prove this, more combinatorics is required, but in essence it boils down to com-
bining our strategy with a clever use of the pigeon-hole principle.3 Clearly, the

3 Suppose you are putting objects in boxes. If there are more objects than boxes, at least one
box is going to contain more than one object. This is the simplest form of pigeon-hole principle,
but there are many combinatorially more intricate versions.
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theorem provides an even stronger sense in which type 〈1〉 is ‘not enough’ for natural
language semantics.

Interdefinability among monadic quantifiers is a vast but still reasonably manage-
able subject, and several general results are known. A survey containing a large part of
the known facts is Väänänen 1997.

14 .4 MONOTONICITY AND DEFINABILITY

Monotone quantifiers are ubiquitous in natural languages; see Chapter 5.3. Many
simple and complex quantifier expressions in natural languages denote monotone
quantifiers or Boolean combinations of monotone quantifiers: e.g. at most four, more
than seven, at least two-thirds of the, exactly one, between three and six, either exactly three
or at least nine. It is tempting to venture the suggestion that all determiner denotations
are such Boolean combinations, but an even number of and related quantifiers form
conspicuous exceptions. However, could it be that this quantifier is definable from
monotone ones in some other way?

Thus, it makes sense to ask for a characterization of which quantifiers are logically
definable from monotone ones, and to see if an answer to that question leads to a
suitable generalization that pinpoints the role of monotone quantification in natural
languages. We discuss these issues, which are a bit more subtle than one might think,
in this section. The technical results come from Väänänen 1997 and Väänänen and
Westerståhl 2002, to which we refer for proofs and further details.

Unless otherwise indicated, monotone here means monotone increasing. Also, we
restrict attention to finite models. Recall the characterization of the (I and) mono-
tone type 〈1〉 quantifiers in Chapter 5. Each such quantifier has the form Q f , where
f is a function from natural numbers to natural numbers such that f (n) ≤ n + 1 for
all n (Chapter 5.4.1), and

(Q f )M (A) ⇐⇒ |A| ≥ f (|M |)
Furthermore, the relativizations of these quantifiers are precisely the right monotone
C and E type 〈1, 1〉 quantifiers, by Proposition 3 in Chapter 4. Each one of
these thus has the form Q rel

f , where

Q rel
f (A, B) ⇐⇒ |A ∩ B| ≥ f (|A|)

(no need to mention M here). Recall also the characterization of monotonicity in
the number triangle (Chapter 5.4.2), where the quantifiers Q f (or Q rel

f ) are precisely

Kolaitis and Väänänen prove by these methods that, on finite models, MO is not definable from
any finite number of type 〈1〉 quantifiers, not even if I is added. And on finite models, most is
expressively equivalent to MO (Ch. 13.2.1), so the result follows. The extension to all properly
proportional quantifiers is (a special case of a result) proved by Väänänen (1997). Kolaitis and
Väänänen also prove that I is not definable from type 〈1〉 quantifiers; this requires more combinat-
orics (van der Waerden’s Theorem, which is a more advanced version of the pigeon-hole principle).



Applications to Monadic Definability 477

those which, on each level n, switch from − to + at at most one point (namely, the
point (f (n), n − f (n))).

Let Q be any type 〈1〉 quantifier. The characterization question above splits into
two:

(a) When is Q definable in terms of monotone type 〈1〉 quantifiers, i.e. quantifiers
of the form Q f ?

(b) When is Q definable in terms of monotone, C and E type 〈1, 1〉 quan-
tifiers, i.e. quantifiers of the form Q rel

f ?

Since (right) monotone quantirelation denotations usually are of the form Q rel
f , the

second question seems to be of greater linguistic interest.4 But the first question has a
simpler answer, which, moreover, is easily visualizable in the number triangle.

bounded oscillation

The oscillation of a type 〈1〉 quantifier Q at level n in the number triangle is the
number of times Q switches from + to −, or vice versa, at that level. Q has
bounded oscillation if there is a finite bound m on the oscillation of Q (at any level).
See Fig. 14.2.

−− +− − +− + + +− + + − +− − + + − +− − + + + − +− − + + + − − +− − − + + + − − +− − − + + + − − − +− − − + + + + − − − +− − − − + + + + − − − +− − − − − + + + + − − − +

Figure 14.2 A boundedly oscillating quantifier

For example, any monotone quantifier has bounded oscillation (with m = 1). The
quantifier either between three and five or more than eight has bounded oscillation (with
m = 3). Indeed, any Boolean combination of monotone quantifiers has bounded
oscillation. On the other hand, an even number of is a typical quantifier with unboun-
ded oscillation.

Theorem 15 (Bounded Oscillation Theorem, Väänänen 1997)
Q is definable in terms of quantifiers of the form Q f if and only if Q has bounded
oscillation.

The proof, as usual, uses the EF-tools.

4 From a linguistic perspective, one should rather ask when Q rel is definable in terms of quanti-
fiers of the form Q rel

f . But we saw in Corollary 9 in Ch. 13.2 that this question has the same answer
as (b).
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However the Bounded Oscillation Theorem fails drastically for definability in
terms of quantifiers of the form Q rel

f . An illustration of this is the fact that Q even, and
thus an even number of, is, rather surprisingly, definable in terms of one such quanti-
fier. The function f0 needed to express Q even is simply

(14.2) f0(n) =
{

1 if n is even
2 if n is odd

Somewhat less perspicuously, Q rel
f0

is expressible in English as follows:

(14.3) Q rel
f0

(A, B) iff either some A are B and there is an even number of A, or at least
two A are B and there is an odd number of A.

Now we can define Q even with a simple trick:

(Q even)M (A) ⇐⇒ |A| is even

⇐⇒ 1 ≥ f0(|A|)
⇐⇒ A = ∅ or ∃a ∈ A(|{a}| ≥ f0(|A|))
⇐⇒ A = ∅ or ∃a ∈ A (Q rel

f0
)M (A, {a})

⇐⇒ (M , A) |= ¬∃xA(x) ∨ ∃x(A(x) ∧ Q rel
f0

y(A(y), y = x)) �(14.4)

In fact, this argument has nothing in particular to do with Q even, but works for any
E type 〈1〉 quantifier, or equivalently (Proposition 2 in Chapter 6), any symmetric
C and E type 〈1, 1〉 quantifier: recall (Corollary 4 in Chapter 6) that the
latter are exactly the quantifiers Q for which there is a set S of numbers such that

Q M (A, B) ⇐⇒ |A ∩ B| ∈ S

Thus we have the following result.

Proposition 16
All symmetric C and E quantifiers are definable in terms of one quantifier of
the form Q rel

f .

Theorem 15 answers question (a) above, but what about (b), which appeared to be
linguistically more relevant? Väänänen and Westerståhl (2002) introduce a generaliz-
ation of the notion of bounded oscillation, called bounded color oscillation, and prove,
again using the EF-tools, that the quantifiers with that property are exactly the ones
definable in terms of quantifiers of the form Q rel

f , thus answering (b). Theorem 15 is
a special case of this Bounded Color Oscillation Theorem. Bounded color oscillation
is also defined with the help of the number triangle, but is less easy to visualize. We
shall not give the definition here, only note that it is a very general property. Indeed, it
turns out to be quite hard to find examples of quantifiers with unbounded color oscil-
lation. The only known example, at least as far as we know, is a quantifier construed
explicitly for that purpose in Väänänen and Westerståhl 2002, using some serious
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finite combinatorics (van der Waerden’s Theorem). It is most certainly not a natural
language quantifier.

Thus, it appears to be quite safe to propose as a linguistic universal that all quantire-
lation denotations are definable, in the first-order logical sense used here, from mono-
tone C and E quantifiers. But such a universal may be almost empty. Can
it be improved?

A strengthening that naturally comes to mind is that the quantifiers used in the
definition also be quantirelation denotations. Is the universal true in that form? A test
case is precisely an even number of, defined as above from the quantifier Q rel

f0
. Is the

latter a natural language quantifier?
We saw in (14.3) how to express Q rel

f0
in English. But notice that it is one thing

that there exists a reasonable English sentence expressing the defining condition of a
particular C and E type 〈1, 1〉 quantifier, and quite another thing that this
quantifier is denoted by some English determiner phrase. Indeed, it is quite clear that
(14.3) does not provide such a determiner phrase, and it seems to us implausible that
one could be provided.

For example, looking at the first disjunct of (14.3),

(14.5) Some A are B, and there is an even number of A,

one might be inclined to try a relative construction like

(14.6) Some A such that there is an even number of them are B.

But this seems not to work: with a phrase some A such that ϕ one can restrict A to
those objects satisfying ϕ, not state a property of A.

If this is correct, we could say that Q rel
f0

is perhaps a natural language quantifier, but
not a quantirelation denotation, which means that the suggested strengthening of the
universal about monotone definability is false.5

Moreover, even if it were possible to cook up some determiner phrase denoting
Q rel

f0
, there would remain the question of whether the definition of an even number of

in terms of it, given by (14.4), is ‘reproducible’ by some reasonable English sentence.
This is the issue we mentioned briefly at the end of Chapter 12.5.5, about whether
positive definability facts in logic can be transferred to natural languages. Two things
can be said. First, we would certainly not get a cognitively synonymous paraphrase,
since the trick that (14.4) builds on, though simple, is not one that speakers can be
expected to grasp immediately. Second, it appears to be quite hard to render (14.4)
in English, due to the fact that the scope of the quantification is a unit set, and it is
not obvious how to make a verb phrase denote a unit set.6

5 At least if there is no essentially different definition of an even number of, in terms of a mono-
tone C and E type 〈1, 1〉 quantifier, which seems unlikely.

6 It may work in special cases: e.g. slightly analogous to the second disjunct of (14.4), one
could say

There is some A such that no B is identical to it.
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Coming back to our search for a non-trivial monotonicity universal, let us, instead
of trying to strengthen the requirements on the quantifiers Q rel

f , consider if we can
strengthen the notion of monotonicity itself. One such strengthening was discussed
in Chapter 5.6: smoothness.

At one point it was conjectured that all right increasing determiner denotations are
in fact smooth, but we have seen that although this seems to hold in a vast majority of
the cases, there are some exceptions. We found one kind of exception in Chapter 7.13
(Proposition 8), with M↑ possessive determiners like at least two of most
students’; these are not smooth. But they are not I either. If we limit atten-
tion to I and M↑ quantirelation denotations, there are still some that are not
smooth: it appears that each of those involves a cardinality condition on the restric-
tion argument (see Chapter 5.6): for example, at least two of the five (or
more).

But even if not all right monotone quantirelation denotations are smooth or co-
smooth, might it not still be the case that all quantirelation denotations are logical
definable from smooth ones? No, an even number of still looks like an exception, and
indeed it is. This follows from the next result from Väänänen and Westerståhl 2002,
which is a corollary to one half of their Bounded Color Oscillation Theorem.

Theorem 17 (Väänänen and Westerståhl 2002)
If Q is definable in terms of quantifiers of the form Q rel

f , where f is smooth, then Q has
bounded oscillation.

Summing up, our search for a linguistic universal about definability from mono-
tone quantifiers has been somewhat disappointing. We cannot require these quanti-
fiers to be smooth; nor can we require them to be quantirelation denotations. We do
have a

(14.7) General monotonicity universal : All (I) quantifiers denoted by quantire-
lations in natural languages are logically definable from monotone C
and E quantifiers.

But this seems to allow far too much. The one remaining option would be to
restrict the form of the definition, so that only definitions that are easily rendered in,
say, English are allowed. But we already saw that the definition of an even number of
from Q f0 is not a likely candidate. So perhaps the proper conclusion is that (14.7) is
the best one can do, and that in natural languages, almost all determiner denotations
can be obtained rather simply from monotone ones, but that an even number of and
its variants are exceptions.

We shall leave the discussion of how monotonicity relates to expressivity issues for
natural languages here, but presumably it could be taken much further. First, as just
indicated, one could restrict the allowed forms of definition to ‘linguistically natural’
ones. For example, iteration is a particularly natural linguistic form for defining quan-
tifiers, or, more generally, Boolean combinations of iterations, i.e. unary complexes

i.e. ∃x(Ax ∧ no y(By, y = x)) (in other words, A − B �= ∅, or, not all A are B). But with other
determiners this looks much worse.
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(see Chapter 10.1). There are some studies of this kind of definability.7 But a suf-
ficiently general and viable notion of ‘natural language definability’ is still lacking.
Second, we saw in Chapter 5 that right monotonicity is just one of the basic forms of
monotonicity occurring in natural languages; the others being the four weak forms of
left monotonicity, ↑SEM, etc. It would be interesting to study how these too relate
to issues of expressive power.

14 .5 EXERCISES

This chapter has presented and illustrated a method for undefinability proofs. The
following exercises are meant to further familiarize the reader with this method, as
well as to state some additional facts about definability.

1. Show that Q 0 is not definable in the logic FO({∃≥n : n = 1, 2, . . .}).
2. Show that more than one-third of is not FO-definable. Is it definable in FO(most)?

[This is harder.]

3. Show that the quantifiers p/q and [p/q], where 0 < p < q (Chapter 2.3) are not
FO-definable.

4. Show that an even number of is not definable in FO(MO). [Hint: Show that not
even ‘|M | is even’ is so definable.]

5. Show that ‘|M | is even’ is definable with the Henkin prefix, i.e. in the logic
FO(QH ). [Hint: Consider the sentence

QH uvxy((u = x → v = y) ∧ (u = y ↔ v = x) ∧ u �= v)

Show (cf. Chapter 2.5) that this says that there is a function f such that f = f −1

and f (a) �= a for all a ∈ M . Conclude that |M | must be even.]

6. Show that QR is not definable in FO(Q even).

7. Give two proofs of Fact 6: one with finite models and one with infinite models
[this presupposes use of uncountable sets].

8. Fill in the details of the proof of Proposition 12.

9. Show that, over finite models, more than one-half of is definable in terms of at
least one-half of, and vice versa. Is at least one-third of definable in terms of more
than one-third of ? [Harder.]

10. Partial type 〈1, 1〉 quantifiers: Associate with Q a domain on each M ,
dom(Q M ) ⊆ P(M ), for the first argument, and treat Q M (A, B) as undefined
whenever A �∈ dom(Q M ). For example, this is how a determiner like the three
is treated in Barwise and Cooper 1981: the threeM (A, B) is defined iff |A| = 3,
and then the truth condition is just A ⊆ B.

7 Though some of it concerns local rather than global definability. See e.g. van Benthem 1989;
Keenan 1992; Ben-Shalom 1994; Westerståhl 1994.
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(a) Formulate C, E, and I for partial type 〈1, 1〉 quantifiers. Define
a notion of partial type 〈1〉 quantifier so that the C and E partial
type 〈1, 1〉 quantifiers are precisely the relativizations of these.

(b) Adapt the notion of a quantifier Q being definable in a logic L to the case
when Q is partial.

Any partial type 〈1, 1〉 quantifier Q has a total version Qtot defined by

Q tot
M (A, B) ⇐⇒ A ∈ dom(Q M ) & Q M (A, B)

(c) Suppose the condition ‘A ∈ dom(Q M )’ is definable in L (in the usual sense,
just like a total type 〈1〉 quantifier). Show that Q is definable in L iff Qtot is
definable in L.

(d) Let Q be such that A ∈ dom(Q M ) ⇔ |A| is even, and on such A, Q M (A, B)
means A ⊆ B.

i. Show that Q is FO-definable.

ii. Show that Qtot is not FO-definable. [Hint: Define Q even from Qtot .]

(e) Adapt the strategy for proofs of the undefinability of Q in L to the case when
Q is partial. Consider the quantifier Q such that A ∈ dom(Q M ) ⇔ |A| is
odd, and, for such A, Q M (A, B) ⇔ |A ∩ B| is even. Show that Q is not FO-
definable.

11. Show that ‘|M | is even’ is definable in FO(Q f0 ), where f0 is the function defined
by (14.2). Conclude that Q f0 is not FO-definable. Is Q even definable in FO(Q f0 )?

12. Show that Q even is definable from a quantifier of the form Q rel
g , where g is non-

decreasing. [Try g(n) = n if n is even, g(n) = n − 1 if n is odd.]

13. A function f is eventually constant if there are n0 and k such that for all n ≥ n0,
f (n) = k. Call f trivial if either f of f d is eventually constant. Show that Q f is
FO-definable iff f is trivial.

14. (Väänänen and Westerståhl 2002) Show that if f is non-trivial and smooth, then
it eventually leaves the edges of the number triangle, in the sense that

∀r ∃n0 ∀n > n0 (r < f (n) < n − r).

15. (Väänänen and Westerståhl 2002) Strengthen Exercise 4 by showing that ‘|M | is
even’ is not definable from smooth quantifiers. [Hint: Suppose it were definable
in FO({Q rel

f1
, . . . , Q rel

fk
}), where the fi are smooth. Conclude from Exercise 13

that we can assume that the fi are non-trivial. Since ‘|M | is even’ has empty
vocabulary, it suffices to find for each r sets M and M ′, where one has even and
the other has odd cardinality, such that M ≈FO({Q rel

f1
,...,Q rel

fk
})r M ′. First, given r,

use Exercise 14 to find n1 such that for 1 ≤ i ≤ k,

∀n > n1 (r < fi(n) < n − r)

Then take M and M ′ with |M | > n1 + r and |M ′| = |M | + 1, and verify that
this works.] Conclude that the converse of Theorem 17 fails.



15
EF-tools for Polyadic Quantifiers

In this final chapter we shall see how the EF-tools can be made to work for arbitrary
quantifiers and structures. The idea is the same, but the criterion for Lr-equivalence
needs to be reformulated. The simplest and most intuitive way to do this is in terms of
certain two-person games, and we begin by describing these (sections 15.1 and 15.2).
Applying these games to interesting examples turns out to be harder than in the mon-
adic case, but we give some relatively simple illustrations, and then a rather detailed
outline of the application to branching quantifiers, in section 15.3. The result is that
branching of many familiar quantirelation denotations is not definable from any finite
number of monadic quantifiers.

There is a similar result for Ramsey quantifiers (section 15.4), which we mention
without giving the proof, and which is relevant for the interpretation of certain recip-
rocal sentences in natural language. For resumptions (section 15.5) there are slightly
weaker results; in this case the monadic EF-tools can actually be used. We give a fair
amount of detail, and for the rest refer the reader to Hella et al. 1997. Also, we dis-
cuss the inverse question of under what circumstances a quantifier is definable from
its k-ary resumption.

In each case, we state the conclusions about natural languages that may be drawn
from these logical results, via formalization as described in Chapter 12.5.

15 .1 EF-GAMES

Let two models M,M′ for the same vocabulary be given. They do not have to be
monadic, but let us suppose (for simplicity) that they are relational; i.e. the vocabu-
lary only has predicate symbols (of various arities). EF r(M,M′) is the simple game
played in r rounds by two players, called Duplicator and Spoiler, in the following way.

the game EF r(M, M′)
Each round begins by Spoiler making a move. He chooses one of M,M′, and
then picks an element in the chosen model. Duplicator has to respond by pick-
ing an element in the other model. After r rounds, the game is over, and elements
(a1, a′

1, . . . , ar , a′
r) have been picked, where a1, . . . , ar ∈ M and a′

1, . . . , a′
r ∈ M ′.

Now Duplicator wins if

(a1, . . . , ar) ∼= (a′
1, . . . , a′

r)

Otherwise Spoiler wins.
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So the idea is that Duplicator is trying to show that M and M′ are as similar
as possible, whereas Spoiler is trying to show that they are different. Who can suc-
ceed depends on the models M and M′, of course, but also on how many rounds
are played.

For example, let M = (N, <) be the ordered structure of the natural numbers, and
M′ = (Q, <) the rational numbers with the usual ordering. These models are quite
different, so it should be easy for Spoiler to win the corresponding game. In fact, he
can win in three rounds, as follows. In the first two rounds he picks natural numbers
n and n + 1. To avoid losing, Duplicator has to pick two rational numbers q1 and q2
with q1 < q2. But then, in the third round, Spoiler picks a rational number between
q1 and q2. Duplicator should respond with a natural number between n and n + 1,
but there is none, so she loses.

Of course one may lose a game because of poor playing. What interests us is
whether one of the players has a winning strategy, which allows him or her to win
no matter how the opponent plays. In the example above, we saw that Spoiler has a
winning strategy in the game EF 3(M,M′). It is an elementary fact of game theory
that in any game EF r(M,M′), either Duplicator or Spoiler has a winning strategy.

For another example, consider monadic modelsM = (M , A) and M′ = (M ′, A′),
where |A| = k, |A′| > k, and |M − A|, |M ′ − A′| > k. Then Duplicator can always
win the game EF k(M,M′). For the best Spoiler can do (from his point of view) is to
pick k distinct elements in A′. But Duplicator can always respond with k distinct ele-
ments in A (and if he picks elements in M − A′, she responds with elements in M −
A, etc.). So after k rounds, she wins. But if a (k + 1)th round is played, and Spoiler
picks another element of A′, Duplicator can respond only with either an element of A
that has already been picked, or an element of M − A; in either case she loses. Thus,
Duplicator has a winning strategy in EF k(M,M′), but not in EF k+1(M,M′).

Now consider condition (13.7) (Chapter 13.4), in the definition of Lr-similarity,
for any monadic models. From the example just mentioned it is clear that if the con-
dition holds, then Duplicator has a winning strategy in EF r(M,M′). On the other
hand, if the condition fails, say that |Pi,M| < r but |Pi,M′ | �= |Pi,M|, then by similar
reasoning, Spoiler can always win.

Let us write

M ∼ FOr M′

to mean that Duplicator has a winning strategy in EF r(M,M′). From the reasoning
just indicated, and Theorem 13 in Chapter 13.4, we get the theorem below, restricted
to monadic structures.

Theorem 1
For all models M,M′ for the same vocabulary (monadic or not),

M ≡FOr M′ ⇐⇒ M ∼ FOr M′

But the game-theoretic formulation works equally well for non-monadic models.
Moreover, it too can be generalized to logics with added quantifiers. We now define
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the corresponding games, and show that they result in a modified strategy for undefin-
ability proofs.

Consider first L = FO(Q), where Q is of type 〈1〉. In a game for this logic, the
players have to pick not only elements of the models but also subsets of the universes
(belonging to Q M or Q M ′ ).

the game EF (Q)r(M, M′)
This time, at each round Spoiler can either make a move as in EF r(M,M′), called
an ∃-move (and Duplicator must respond with a similar move), or he can make a
Q-move, as follows. Spoiler chooses one of M and M′ (say, M; the other case
is symmetric), and a subset X of M such that Q M (X ) holds. Duplicator must
respond with X ′ ⊆ M ′ such that Q M ′ (X ′) (if she is unable to do this, she loses).
Next, Spoiler picks an element a′ ∈ M ′, and Duplicator responds with a ∈ M ,
subject to the condition

a ∈ X ⇔ a′ ∈ X ′

(if this is impossible, she loses). Thus, after r rounds, elements a1, a′
1, . . . , ar , a′

r
have been picked, and Duplicator wins iff

(a1, . . . , ar) ∼= (a′
1, . . . , a′

r)

Letting M ∼ FO(Q)r M′ mean that Duplicator has a winning strategy in
EF (Q)r(M,M′), we have the following result.1

Theorem 2
For all models M,M′ for the same vocabulary, M ∼FO(Q)r M′ implies that
M ≡ FO(Q)r M′.

Proof. Suppose Duplicator has a winning strategy τ in EF (Q)r(M,M′). We show by
induction over the complexity of ϕ that

(A)ϕ If k ≤ r, and a1, . . . , ak ∈ M and a′
1, . . . , a′

k ∈ M ′ have been played according
to τ , and if ϕ(x1, . . . , xk) has quantifier rank at most r − k and at most the free
variables shown, then

(B) M |= ϕ(a1, . . . , ak) ⇔ M′ |= ϕ(a′
1, . . . , a′

k)

The case k = 0 gives the result. So suppose that a1, . . . , ak ∈ M and a′
1, . . . , a′

k ∈ M ′
have been played according to τ . Since τ is winning, Duplicator has not lost at round
k, which implies that (a1, . . . , ak) ∼= (a′

1, . . . , a′
k).

The base step is when ϕ(x1, . . . , xk) is atomic. But then it is immediate that (B)
holds. Likewise, for a conjunction or a negation the result follows directly from the

1 Note to the reader: If you skipped Ch. 13.4.3, you should skip the proof of this theorem too.
But if not, the proof will be very easy to follow, since it has the same structure as the second half
of the proof of Theorem 13 in that chapter.
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induction hypothesis. Furthermore, if k = r, ϕ(x1, . . . , xk) has quantifier rank 0 and
is thus an atomic formula or a Boolean combination of atomic formulas. Then (B)
follows by the reasoning just made. Assume, then, that k < r.

Of the remaining cases, we look at ϕ(x1, . . . , xk) = Qxψ(x, x1, . . . , xk), assumed
to have quantifier rank at most r − k. Suppose M |= Qxψ(x, a1, . . . , ak). With X =
ψ(x, a1, . . . , ak)M,x , we have Q M (X ). Now let Spoiler play X . τ works whatever set
Spoiler plays; assume Duplicator’s response is X ′ ⊆ M ′ such that Q M ′ (X ′). We
claim that

(C) X ′ = ψ(x, a′
1, . . . , a′

k)M
′ ,x

This means that M′ |= Qxψ(x, a′
1, . . . , a′

k). Suppose (C) is not true. There are two
cases.

Case 1: There is some a′ in X ′ − ψ(x, a′
1, . . . , a′

k)M
′ ,x . Let Spoiler play a′. τ tells

Duplicator to play some a ∈ M . Since τ is winning, a ∈ X . Also, by the induction
hypothesis (A)ψ (for k + 1 rounds; note that ψ has quantifier rank at most r − (k +
1)), a �∈ ψ(x, a1, . . . , ak)M,x , contradicting the definition of X .

Case 2: There is some a′ in ψ(x, a′
1, . . . , a′

k)M
′ ,x − X ′. τ directs Duplicator to pick

some a ∈ M , and, by the same reasoning as in case 1, a ∈ ψ(x, a1, . . . , ak)M,x − X ,
a contradiction.

The other direction is symmetric, so (B) is proved, and thereby the theorem. �

This theorem is in principle what we need to reformulate the strategy for undefin-
ability proofs (see below), but we may still ask: What about the converse? The reader
who looked at the first half of the proof of Theorem 13 in Chapter 13.4 will recall
that it is essential for that argument to work that the sets talked about are definable
by L-formulas in the respective models. For monadic models only the (variants of
the) blocks mattered, and they were precisely the definable sets (Proposition 14 in
Chapter 13.4), so no extra stipulation about definability was needed for the notion of
Lr-similarity. In the general case, however, we do need such a stipulation. So consider
the following modified game.

the game DEF (Q)r(M, M′)
This game is as EF (Q)r(M,M′), except that the Q-moves are as follows: Suppose
a1, . . . , ak ∈ M and a′

1, . . . , a′
k ∈ M ′ have been played (k < r). Spoiler chooses

one of M and M′ (say, M), and a subset X of M such that Q M (X ), and which
is L(r−k)-definable in M with parameters a1, . . . , ak. The rest of the move is played
as before.

This game is easier for Duplicator to win, since Spoiler’s choice of sets is severely
restricted. For example, if M is infinite, there are uncountably many subsets of M ,
but only countably many definable ones. But note that the proof above goes through
exactly as before, since the set we had Spoiler play at the induction step was in fact
L(r−k)-definable in M with parameters a1, . . . , ak. So we may as well use the game
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DEF (Q)r(M,M′) for undefinability proofs, which is good, since it is in general
easier to describe a winning strategy for Duplicator in this game.

Moreover, one can now show that the converse implication holds. The structure
is as in the first half of the proof of Theorem 13 in Chapter 13, but the details are
somewhat different.2

The description of these games is straightforwardly reformulated for quantifiers
of other types. For example, if Q has type 〈1, 1〉, the ∃-moves are as before, but a
Q-move requires Spoiler to pick two (possibly suitably definable) sets X1, X2 ⊆ M
(say), such that Q M (X1, X2), and Duplicator must then respond with X ′

1, X ′
2 such that

Q M ′ (X ′
1, X ′

2). Then Spoiler picks two elements a′, b′ ∈ M ′, and Duplicator responds
with a, b ∈ M , with the condition that a ∈ X1 ⇔ a′ ∈ X ′

1, and b ∈ X2 ⇔ b′ ∈ X ′
2. If

after r rounds k elements in each structure have been played (so r ≤ k ≤ 2r), the win-
ning condition for Duplicator is as before, that the respective sequences are partially
isomorphic.

Similar Q-moves apply to Lindström quantifiers of arbitrary type 〈n1, . . . , nk〉.
Then Spoiler first picks (definable) ni-ary relations Ri in one of the models, 1 ≤ i ≤ k.

2 Here is a sketch: Suppose M ≡FO(Q)r M′. The required winning strategy for Duplicator
in DEF (Q)r (M,M′) will be to maintain the condition, at round k when a1, . . . , ak ∈ M and
a′

1, . . . , a′
k ∈ M ′ have been played:

(F)k For all L-formulas ϕ(x1, . . . , xk) with at most the free variables shown and quantifier rank at
most r − k, M |= ϕ(a1, . . . , ak) ⇔ M′ |= ϕ(a′

1, . . . , a′
k).

For k = 0 this is just the assumption. Suppose k < r and (F)k has been maintained. We describe
Duplicator’s strategy when Spoiler makes a Q-move; handling ∃-moves is similar, but simpler. Sup-
pose he plays X = ψ(x, a1, . . . , ak)M,x such that Q M (X ), where ψ has quantifier rank r − (k +
1). Thus, M |= Qxψ(x, a1, . . . , ak). Then Duplicator plays X ′ = ψ(x, a1, . . . , ak)M

′ ,x . By (F)k,
Q M ′ (X ′) holds. Next, Spoiler plays a′ ∈ M ′.

Case 1: a′ ∈ X ′. Duplicator must pick a ∈ X such that, given that a, a1, . . . , ak ∈ M and
a′, a′

1, . . . , a′
k ∈ M ′ have been played, (F)k+1 holds. Suppose this is not possible. That means that

for all a ∈ X there is a formula ϕa of quantifier rank r − (k + 1) such that M |= ϕa(a, a1, . . . , ak)
but M′ �|= ϕa(a′, a′

1, . . . , a′
k). In other words,

M |= ∀x(ψ(x, a1, . . . , ak) → ∨
a∈X ϕa(x, a1, . . . , ak))

This formula has quantifier rank r − k, so by (F)k it is satisfied by a′
1, . . . , a′

k in M′. Hence, in
particular,

M′ |= ∨
a∈X ϕa(a′, a′

1, . . . , a′
k)

But this contradicts the assumption about the ϕa. The only problem with this argument is that X
may be infinite, so it looks as if we have an infinite disjunction, and hence not an L-formula at all.
But here we can use the following fact, which is not too hard to establish:

(i) For a fixed quantifier rank n, there are only finitely many non-equivalent Ln-formulas in a given
(finite) vocabulary.

Thus we can replace the disjunction above with a finite one, and the argument goes through.
Case 2: a′ �∈ X ′. Reason as in case 1, but with ¬ψ instead of ψ and M − X instead of X . This

completes the proof.
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Duplicator responds with relations R′
i , after which Spoiler chooses ni-tuples ai (in the

other model), and Duplicator correspondingly chooses a′
i, such that ai ∈ Ri ⇔ a′

i ∈
R′

i . The winning condition is the same: the respective sequences of all elements in
chosen tuples of the respective models must be partially isomorphic. The theorem
generalizes with the same proof to this case. It also generalizes without change to
logics of the form L = FO({Q j : j ∈ I}); then Spoiler can make a Q j-move for any j.

We thus have the following result (of which Theorem 1 is a special case):

Theorem 3
For any logic L = FO({Q j : j ∈ I}), and for all models M,M′ with the same vocab-
ulary, M ∼Lr M′ ⇔ M ≡Lr M′ (where the left-hand side now refers to a winning
strategy in the corresponding DEF game).

Getting back now to our main concern: as a general strategy for undefinability
proofs we have arrived at the following.

strategy for undefinability proofs: polyadic case

To show that a certain property P is undefinable in L = FO({Q j : j ∈ I}), find,
for each r, models M,M′ such that M has P but M′ doesn’t, and Duplicator
has a winning strategy in DEF ({Q j : j ∈ I})r(M,M′).

The strategy is guaranteed to work (by the previous theorem), but in practice it can
be quite complicated to describe winning strategies. It seems to require some sort of
analysis of the definable sets in the models. But the notion of Lr-definability is very
similar to the notion of Lr-equivalence, which is the very notion we are trying to char-
acterize! So the characterization is in a sense circular, by contrast with the monadic
case.3 In general, undefinability results for polyadic quantifiers are much harder than
in the monadic case, and it is much less easy to find non-trivial illustrative examples.
But there are some, and to give more feeling for these games, we now look at two
of them.

Example 4
Let M be a denumerable set (e.g. the set of natural numbers), and let, for each n,
Mn be a model (M , E), where E is an equivalence relation on M with n equival-
ence classes, each of which has denumerably many elements. Now consider the games
EF r(Mn,Mm). Since maintaining a partial isomorphism is just a matter of being
able to pick elements in corresponding equivalence classes (there are no quantifier
moves), it is clear, using Theorem 2, that

(15.1) If r ≤ m, n, where m, n are natural numbers or ℵ0, then Mn ≡FOr Mm.

From this it is easy to see, using the strategy, that the type 〈2〉 quantifiers

3 Another version of the game, which to some extent eliminates this circularity, can be found in
Caicedo 1980.
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(Q feq)M (R) ⇐⇒ R is an equivalence relation on M with finitely many equi-
valence classes

(Q eeq)M (R) ⇐⇒ R is an equivalence relation on M with an even number of
equivalence classes

are not definable in FO. Now the same conclusion could in fact be reached already
from our earlier results about monadic quantifiers, since

(15.2) Q even is definable from Q eeq, and Q 0 is definable from Q feq.

This is because for any set A ⊆ M , the identity relation restricted to A is an equival-
ence relation with exactly |A| equivalence classes (the unit sets {a} for a ∈ A). There-
fore,

|A| is even iff (M , A) |= Q eeqx(A(x) ∧ x = y)

A is infinite iff (M , A) |= ¬Q feqx(A(x) ∧ x = y)

So one might think that the undefinability of Q feq and Q eeq in FO is just a matter of
certain corresponding monadic quantifiers being undefinable in FO. But this is actu-
ally far from the case. We shall see (in the next subsection) that no monadic quantifiers
can help to define Q feq and Q eeq; they are essentially polyadic in a strong sense. An
indication of this is that it does not help to add Q 0 or Q even to FO. Indeed, (15.1)
can be strengthened to

(15.3) If r ≤ m, n, where m, n are natural numbers or ℵ0, then Mn ≡FO(Q 0)r Mm
and Mn ≡FO(Q even)r Mm.

To see this, consider the game DEF (Q even)r(Mn,Mm). We must define a win-
ning strategy for Duplicator. The ∃-moves are handled as indicated above. Suppose
a1, . . . , ak ∈ Mn and b1, . . . , bk ∈ Mm have been played, k < r, and that Spoiler
chooses a set X in Mn, definable from a1, . . . , ak, with an even number of elements.
In particular, X must be a finite set,4 and it is not hard to verify that the finite sets
definable in Mn from a1, . . . , ak are precisely the subsets of {a1, . . . , ak}. Say X is
{ai1 , . . . , ais}; then Duplicator chooses Y = {bi1 , . . . , bis}. Obviously |Y | is even too.
Also, it is clear that however Spoiler chooses an a ∈ Mn, Duplicator can respond
with a b ∈ Mm such that a ∈ X ⇔ b ∈ Y , and the partial isomorphism between
chosen elements is maintained. A similar argument works for Q 0.5

Example 5
A (non-directed) graph is a structure M = (M , R) where R is any symmetric binary
relation on M . The elements of M are then called vertices, and if R(a, b) holds, there
is said to be an edge between a and b. A path from a to b is a finite sequence of edges
starting from a and ending in b. M is connected if for any a, b ∈ M , there is a path
from a to b. It is a fact that

4 Here we think of Q even as defined for arbitrary universes, and containing the even-numbered
subsets, but not the odd-numbered or infinite subsets.

5 Since FO(Q 0) ≡ FO(¬Q 0), we can consider the game DEF (¬Q 0)r (Mn,Mm), and then
exactly the same strategy wins.
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Figure 15.1 A graph with one cycle, and a graph with two cycles

(15.4) Connectedness is not an FO-definable property of graphs.

To show this, we use pairs of graphs of the following kind.6 For r > 0, the first graph
has 2r + 2 vertices, connected in a big cycle. The second graph has the same number
of vertices, but divided into two cycles, each of size 2r−1 + 1. The case for r = 4 is
shown in Fig. 15.1.

Consider the game EF r(M,M′). We claim that

(15.5) For the graphs above, Spoiler can win in five steps.

Here are hints for a strategy: At round 1, we may suppose a1, b1 are played. At round
2, Spoiler picks b5. The shortest path from b5 to b1 has length 4; we say that the dis-
tance between these points is 4. Now if Duplicator picks a vertex in M with distance
≤3 from a1, then Spoiler wins in at most two more rounds by choosing the vertices
between that vertex and a1. Duplicator must respond with vertices between b1 and
b5, but there are too many of them. So suppose she picks a vertex with distance at
least 4 from a1, i.e. some ai with 5 ≤ i ≤ 15. Then, at round 3, Spoiler picks b7. So
Duplicator must pick a vertex aj which still has distance at least 4 from a1 (since there
are still two rounds left), but which also has distance 2 from aj (since b7 has distance 2
from b5). But the path b7, b8, b9, b1 has length 3, whereas the path from aj to a1 that
does not involve ai has greater length, so Duplicator loses anyway in the remaining
two rounds.

However, if only four rounds are allowed, Duplicator has a winning strategy. An
analysis of what makes these arguments work will in fact show that

6 The construction goes back to Fagin 1975.
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(15.6) For the general case when M and M′ have 2r + 2 elements, Duplicator has
a winning strategy in EF r(M,M′).

But M is connected, whereas M′ is not, so (15.4) follows.

15 .2 HELLA’S BIJECTIVE EF-GAME

Recall the various lifts of monadic quantifiers that we encountered in Chapter 10.
Here the obvious question about expressivity is whether adding the lifts increases
expressive power, i.e. if it allows us to say more than we could without them. If O is
such a lift, we want to know, for any monadic Q 1, . . . , Q n (of the appropriate types):

Is O(Q 1, . . . , Q n) definable in FO(Q 1, . . . , Q n)?

When O is iteration, cumulation, or comes from a unary complex, it is clear that
O(Q 1, . . . , Q n) is indeed definable in FO(Q 1, . . . , Q n). For example,

(Q 1, Q 2)clxy(A(x), B(y), R(x, y)) ↔
Q 1x(A(x), ∃y(B(y) ∧ R(x, y))) ∧ Q 2y(B(y), ∃x(A(x) ∧ R(x, y)))

So in this sense one cannot say more with the cumulation lift, even though one
can say certain things more elegantly. However, for branching, Ramseyfication, and
resumption, expressive power does increase. In fact, for these lifts something stronger
holds: essentially, no monadic quantifiers can replace them. A variant of the EF-
games, due to Hella (1996), allows us in some cases to prove results of this kind.

the bijective game BEF r(M, M′)
This game is played in r rounds as follows. In each round k, Duplicator chooses
a bijection gk from M to M ′ (if she cannot do that, i.e. if |M | �= |M ′|, she loses),
and Spoiler responds by an element ai ∈ M . After r rounds, Duplicator wins if

(a1, . . . , ar) ∼= (g1(a1), . . . , gr(ar))

Otherwise, Spoiler wins.

Think of this as Duplicator proposing a bijection as an isomorphism, daring
Spoiler to show that it is not. If the models are in fact isomorphic, she can always
choose the isomorphism, and so will always win. But even if they are not isomorphic,
she can sometimes win: a chosen bijection may not work, but then in the next round
she can choose another one. And she may be able to keep this up for all the rounds of
the game.

This will not work if M and M′ are monadic. For then, if the structures are not
isomorphic, no bijection is an isomorphism, so for each bijection g there is some a
and some Ai such that a ∈ Ai but g(a) �∈ A′

i, or vice versa. So if Spoiler chooses a,
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he wins in one round. But suppose the vocabulary has a binary relation (symbol) R.
There may be a1, a2 such that (a1, a2) ∈ R and (g(a1), g(a2)) �∈ R′, but Spoiler can
pick only one of a1, a2 in a given round, and in the next round Duplicator may switch
to another bijection.

Let FO(Mon) be the logic obtained by adding all monadic quantifiers to FO, i.e.
FO({Q : Q is a monadic quantifier}).
Proposition 6
If Duplicator has a winning strategy in BEF r(M,M′), then M ≡FO(Mon)r M′.

Proof sketch. Consider a formula ϕ(y) = Qx(ψ1(x, y), . . . , ψn(x, y)) with a monadic
quantifier Q , and sequences a in M and b in M ′. Now if g is any bijection from M to
M ′ such that for every a ∈ M and 1 ≤ j ≤ n,

M |= ψj(a, a) ⇐⇒ M ′ |= ψj(g(a), b)

then, simply by I,

Q M (ψ1(x, a)M,x , . . . , ψn(x, a)M,x) ⇐⇒ Q M ′ (ψ1(x, b)M
′ ,x , . . . , ψn(x, b)M

′,x)

regardless of which quantifier Q is. Using this observation, it is not hard to prove the
following, by induction on the complexity of ϕ:

(A)ϕ If g1, . . . , gk are bijections from M to M ′ which Duplicator has chosen accord-
ing to her winning strategy (k ≤ r), and a1, . . . , ak are the elements chosen by
Spoiler, and if ϕ has quantifier rank at most r − k, then

M |= ϕ(a1, . . . , ak) ⇐⇒ M′ |= ϕ(g1(a1), . . . , gk(ak))

The case k = 0 gives the result.7 �

We can illustrate the game by returning to two previous examples.

Example 4 continued
Consider again the models Mn and Mm. We can strengthen (15.1) and (15.3) to

(15.7) If r ≤ m, n, where m, n ≤ ℵ0, then Mn ≡FO(Mon)r Mm.

To see this, suppose we have a1, . . . , ak in Mn and b1, . . . , bk in Mm such that
(a1, . . . , ak) ∼= (b1, . . . , bk). Let [ai] be the equivalence class of ai, and similarly for
bi. Also, let Ai = [ai] − {a1, . . . , ak} and Bi = [bi] − {b1, . . . , bk}. Then each Ai and
each Bi has cardinality ℵ0, and likewise for A = M − (A1 ∪ · · · ∪ Ak) and B = M −
(B1 ∪ · · · ∪ Bk). Thus there is a bijection g from M to M such that g(Ai) = Bi ,
1 ≤ i ≤ k, and g(A) = B. But this means that for each a ∈ M ,

{(a1, b1), . . . , (ak, bk)} ∪ {(a, g(a))} is a partial isomorphism.

7 If the models are finite, one can show that the converse of Proposition 6 holds too; see Hella
1996.
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Hence, at each stage of the game, Duplicator can choose a bijection which preserves
the partial isomorphism, whatever Spoiler plays. �

We thus obtain, by the now familiar method, the result that the type 〈2〉 quantifiers

(15.8) Q feq and Q eeq are not definable in FO(Mon).

That is, not only are they not definable from Q 0 or Q even; they are not definable from
any finite number of quantifiers of any monadic types.

Example 5 continued
Recall the two models M,M′ of size 2r + 2, one consisting of a big cycle, and the
other of two smaller cycles (see Fig. 15.1). We hinted by means of an example that
Duplicator can always win EF r(M,M′). It was observed by Hella and Sandu (1995)
that a substantially stronger statement is true:

(15.9) Duplicator has a winning strategy in BEF r(M,M′).

For a proof, see Hella and Sandu 1995 or Hella et al. 1997. Here is the idea. We must
show that Duplicator can choose successively r bijections g1, . . . , gr from M to M ′
such that, no matter how Spoiler successively chooses his a1, . . . , ar ∈ M , ai = aj ⇔
gi(ai) = gj(aj), and there is an edge between ai and aj iff there is an edge between
gi(ai) and gj(aj). The strategy involves, when Spoiler has picked a, always choosing
bijections which cut the big cycle in half, mapping one half onto one small cycle, and
the other half onto the other small cycle, and which furthermore are such that the
cutting points are as far away from a (and previously chosen points) as possible. Given
the size of the models, it can be shown that this can be kept up for r rounds, and in
such a way that a partial isomorphism is maintained.

It follows from this that connectedness of graphs is not definable in FO(Mon). In
the next section we apply (15.9) to one of our polyadic lifts: branching. Here is yet
a third application. Recall the notion of the transitive closure R+ of a binary relation
R, i.e. the smallest transitive relation extending R. It can be defined by recursion, and
one way to make it a logical tool is to add it as a closure operator. Then, whenever
ϕ(u, v) is a formula,

[TCu,vϕ(u, v)](x, y)

is a new atomic formula, with the truth condition

[TCu,vϕ(u, v)](x, y)M,x,y = (ϕ(x, y)M,x,y)+

Another way would be to add a type 〈2, 2〉 quantifier Q tc, where (Q tc)M (R, S) ⇔
S = R+. It is also common to consider addition of fixed-point operations to FO, which
means allowing certain forms of inductive definitions, of which transitive closure is a
special case.
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Theorem 7 (Hella)
Transitive closure, in any of these forms, is not definable in FO(Mon).

Proof. (Outline) This time we consider, for any r, models M = (M , R) and M′ =
(M ′, R′), where M is a directed cycle (the edge relation goes from ai to ai+1 but not
in the other direction) of length 2r+1, whereas M′ has two directed cycles, each of
length 2r . Again one can show that Duplicator has a winning strategy in the game
BEF r(M,M′). Now R+ is the universal relation in M , but (R′)+ is not the universal
relation in M ′; it still consists of two disjoint subgraphs. Thus, the sentence

∀x∀y[TCu,vR(u, v)](x, y)

is true in M, but false in M′. Or, in terms of the quantifier Q tc ,

Q tcxy(R(x, y), x = x ∧ y = y)

is true in M, but false in M′. �

Corollary 8
The quantifier LIN from Chapter 10.4.2 is not definable in FO(Mon).

Proof. LIN M (R) holds iff |M | ≥ 2 and M2 − IdM ⊆ R+, so with M and M′ as
above, LIN xyR(x, y) is true in M and false in M′. �

Consequently, the quantifier LIN rel = Q rcp2
, which is one interpretation of the recip-

rocal each other, is not monadically definable either.

15 .3 APPLICATION TO BRANCHING QUANTIFICATION

Recall the branching lift Brk from Chapter 10, which takes k monotone increas-
ing type 〈1, 1〉 quantifiers Q 1, . . . , Q k and gives a type 〈1, . . . , 1, k〉 quantifier
Brk(Q 1, . . . , Q k). This lift applies most naturally to determiner denotations, but
there is a corresponding lift—we may use the same name for it—taking k monotone
increasing type 〈1〉 quantifiers to a type 〈k〉 quantifier:

Brk(Q 1, . . . , Q k)M (R) ⇐⇒
∃X1, . . . , Xk ⊆ M [(Q 1)M (X1) & . . . & (Q k)M (Xk) & X1 × · · · × Xk ⊆ R]

Hella et al. (1997) use (15.9) to characterize exactly the circumstances under which
Brk(Q 1, . . . , Q k) is definable in terms of Q 1, . . . , Q k, or indeed any monadic quan-
tifiers. The main outcome is in that in many typical cases, such as branching of the
quantifier, most, or at least m n’ths of the, the branching quantifier is not definable from
any monadic quantifiers. So branching truly allows one to say more than is possible
with ordinary operations like iteration or Boolean combinations. In the rest of this
section we sketch how this result is obtained.
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15.3.1 An instructive example

First, let us see how a special case can be obtained from the facts we already established
in Chapter 13.4 about monadic quantifiers. Let H = [1/2] = (QR)d; that is, HM (A)
says, on finite universes, that at least half of the elements of M are in A. Consider the
sentence

Br2(H , H )xy(x �= y)

This says that there are subsets X , Y of M , each of which contains at least half of
the elements of M , and which are disjoint. But then X and Y have exactly half of the
elements of M . And the existence of two such sets is tantamount to saying that |M |
is even. Thus, ‘|M | is even’ is definable in FO(Br2(H , H )).

However, we know that ‘|M | is even’ is not definable in FO(H )—by Exercise 4 in
Chapter 14.5 (or Exercise 15), it is not definable in FO(most), hence not in FO(QR),
which is equivalent to FO(H ). Thus, we have established the first claim of the follow-
ing fact:

(15.10) Br2(H , H ) is not definable in FO(H ), not even on finite models. Likewise,
Br2(H rel, H rel) is not definable in FO(H rel).

Note that H rel = at least half of the. The second claim follows from the fact that
Br2(H , H ) is definable in terms of Br2(H rel, H rel); cf. (15.13) below.

15.3.2 The general result

The monotone type 〈1〉 quantifiers are those of the form Q f (Chapter 5.4), and the
C and E monotone type 〈1, 1〉 quantifiers are their relativizations. We have
already seen that by making requirements on f , one can impose further conditions
on Q f besides being monotone; an example was smoothness in Chapter 5.6. Now,
let us say that f is bounded, if there is a fixed number m such that for all n,

f (n) < m, or f (n) > n − m

Otherwise f is unbounded. That is, a bounded function never leaves the edges of the
number triangle by more than a fixed distance. ∃ and ∃≥k and ∀ have bounded func-
tions, whereas the function for QR is unbounded. But also very ‘unruly’ quantifiers
may be bounded; an example is the quantifier Q f0 from Chapter 14.4, which has
bound 2.

Let us start with a simple case: Br2(Q f , Q f ). A first observation is:

(15.11) If f is bounded, Br2(Q f , Q f ) is definable in FO(Q f ). Also, Br2(Q rel
f , Q rel

f )

is definable in FO(Q rel
f ).

Proof. First note that the claim that f (n) is a fixed number p > 0 can be expressed
using Q f : f (|M |) = p iff

∃ distinct a1, . . . , ap s.t. (Q f )M ({a1, . . . , ap}) ∧ ¬(Q f )M ({a1, . . . , ap−1})
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This sentence is readily written in FO(Q f ); call it ϕp. Similarly, we can write a
sentence ψq saying that f (|M |) = |M | − q > 0. Also, the case f (n) = 0 is expressed
by a sentence ξ = Q f x(x �= x).

Next, in each of these cases with a fixed value for f , the branching condition

∃X , Y [|X |, |Y | ≥ p & X × Y ⊆ R]

is expressible in FO. For example, if f (n) = p > 0, this can be written as a sentence
ηp in FO:

∃ distinct x1, . . . , xp, y1, . . . , yp
∧

1≤i,j≤p R(xi , yj)

There is a similar sentence ζq for the case f (n) = n − q > 0. Note also that when
f (n) = 0 ( f (n) = n + 1), the branching condition is trivially true (false).

Now, normally there are infinitely many values of f (n) or n − f (n) to cover, so
these conditions cannot be put together in a single sentence. But when f is bounded,
there are only finitely many values. Indeed, when the bound is m, we can conclude
that the sentence Br2(Q f , Q f )xyR(x, y) is equivalent to

ξ ∨
∨

1≤p<m

(ϕp ∧ ηp) ∨
∨

q<m

(ψq ∧ ζq)

The statement for the branching of Q rel
f is proved similarly. This time, to formulate

the branching condition Br2(Q f , Q f )M (X1, X2, R), we need to express statements of
the forms

f (|Xi|) = 0, f (|Xi|) = |Xi| + 1, f (|Xi|) = p, f (|Xi|) = |Xi| − q
(p > 0, q ≥ 0), and this can be done with the quantifier Q rel

f . �

Thus, branching of bounded quantifiers does not increase expressive power. The
main result, however, is that for unbounded quantifiers, expressive power does
increase, beyond the reach of all monadic quantifiers.

(15.12) If f is unbounded, Brk(Q f , . . . , Q f ) is not definable in FO(Mon), for k >

1. Likewise, Brk(Q rel
f , . . . , Q rel

f ) is not definable in FO(Mon).

Note first that the second statement follows from the first: it is an easy exercise to
verify that

(15.13) Brk(Q f , . . . , Q f ) is definable in FO(Brk(Q rel
f , . . . , Q rel

f )).

Second, we may restrict attention to the case k = 2, because of the following fact:

(15.14) Brk(Q f , . . . , Q f ) is definable in FO(Brk+1(Q f , . . . , Q f )).

This follows, since for all models (M , R) with R ⊆ Mk, one has

(M , R) |= Brk(Q f , . . . , Q f )x1 . . . xkR(x1, . . . , xk) ↔
Brk+1(Q f , . . . , Q f )x1 . . . xk+1R(x1, . . . , xk)
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which can be verified by just applying the truth definition for Brk and Brk+1, treat-
ing separately the cases (i) f (|M |) = 0, (ii) f (|M |) = |M | + 1, and (iii) 0 < f (|M |)
≤ |M |.

Thus, returning to the proof of (15.12), our task is to find, given r, two models
M,M′ which are equivalent up to quantifier rank r for sentences in FO(Mon), but
such that a fixed sentence involving Br2(Q f , Q f ) is true in one and false in the other.
To give the idea, suppose Q f = QR . Then we can use the models of Example 5; see
Fig. 15.1. Consider the following sentence:

(15.15) ∃x∃yBr2(QR , QR)uv(R(u, v) → u = x ∨ v = y)

First, (15.15) is true in M′. Suppose, for illustration, that r = 4. Let x = c1, y =
b1, X = {b1, . . . , b9, c1}, and Y = {c1, . . . , c9, b1}. Then QR

M ′ (X ) and QR
M ′ (Y ), since

both sets contain more than half of the elements of the universe. But if u ∈ X and
v ∈ Y and R′(u, v) holds, then either u must be c1 or v must be b1.

Second, (15.15) is not true in M. For take any x, y ∈ M , and any X , Y ⊆ M con-
taining at least ten elements each (still for the case r = 4). But then there necessar-
ily has to be u ∈ X − {x} and v ∈ Y − {y} such that R(u, v) (since |X − {x}|, |Y −
{y}| ≥ 9). So the branching condition cannot be satisfied.

Third, we already saw in (15.9) that Duplicator has a winning strategy in
BEF r(M,M′).

This proves (15.12) in the special case of Q f = QR , or Q rel
f = most. But in fact the

argument can be generalized to any unbounded quantifier, Q f . Then one chooses, by
unboundedness, the size n of the models such that 2r−1 ≤ f (n) ≤ n − 2r−1. The big
cycle still has size 2r + 2, but now we add two ‘boxes’ (disjoint sets) P and S (and
corresponding one-place predicates) with |P| = f (n) − 2r−1 and |S| = n − f (n) −
2r−1, and similarly in M ′. By suitably extending R and R′ to these boxes, one can
insure that the first two parts of the above argument still go through, and also the
third part, since the added boxes will in fact not disturb Duplicator’s winning strategy.

Finally, it remains to generalize all of the above to the branching of k quantifiers:
Brk(Q f1 , . . . , Q fk ). It turns out that it is not quite enough to require that each of
f1, . . . , fk is unbounded. What one needs is, rather, a condition that guarantees that
for each m there are i, j, and n such that

m ≤ fi(n), fj(n) ≤ n − m

and at the same time all the other fl (n) are distinct from 0 and n + 1. Such a condi-
tion, which may be called unboundedness of the tuple (f1, . . . , fk), can be formulated.
Also, the previous arguments can be extended to cover this case; see Hella et al. 1997
for details. The result is the following.

Theorem 9 (Hella et al. 1997)
Let Q 1, . . . , Q k be either monotone type 〈1〉 quantifiers, or monotone, C, and
E type 〈1, 1〉 quantifiers (k > 1). Then the following are equivalent:
(a) Brk(Q 1, . . . , Q k) is definable in FO(Q 1, . . . , Q k).
(b) Brk(Q 1, . . . , Q k) is definable in FO(Mon).
(c) (Q 1, . . . , Q k) is bounded.
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15.3.3 Linguistic conclusions
Natural languages like English have lots of determiners, like most, that denote
unbounded M↑ quantifiers. Granted that certain sentences in such languages
have readings where these quantifiers are branched (see Chapter 10.3), it follows, as
detailed in Chapter 12.5, that branching strengthens expressive power. No English sen-
tence formalizable in FO(Mon) can provide the branched reading of, say, Barwise’s
example

(15.16) Most boys in your class and most girls in my class have all dated each other.

And formalizability in FO(Mon) is not a very severe requirement. Any English sen-
tence whose NPs—either non-quantificational or formed with Dets taking one or
more restriction arguments—are interpreted in a straightforward compositional way,
e.g. allowing Boolean combinations, relative clauses, etc., will be thus formalizable,
and hence unable to express branched readings.

The theorem also tells us that if there were a rendering of (15.16) from monadic
quantifiers with a construction formalizable in FO(Mon), there would be one already
from most. There isn’t, since most is unbounded, but what about the bounded case?
Are branched readings with bounded English determiner denotations readily express-
ible without branching in English? This depends on whether one thinks the defini-
tions in the proof of (15.11) above can be ‘naturally’ rendered in English. We venture
no definite judgment, but note that although the sentences are long and complex, part
of the complexity comes from using long conjunctions and disjunctions, and from
quantifying explicitly over many variables; which may be a case of practical but not
principled complexity.

If one restricts attention to very simple linguistic constructions, the facts change.
It is proved by Westerståhl (1994) that Brk(Q 1, . . . , Q k) (Q i of type 〈1〉) is an iter-
ation (i.e. is reducible in the sense of Keenan (1992)) if and only if, on each universe
where the quantifiers are non-trivial, Q 1, . . . , Q k is of the form ∃, . . . , ∃, ∀, . . . , ∀.
For example, the branched reading of

(15.17) At least two boys in your class and at least two girls in my class have all dated
each other.

is not reducible. The reading is readily expressed in FO by

∃a, b ∈ A ∃c, d ∈ B(a �= b ∧ c �= d ∧ R(a, c) ∧ R(a, d ) ∧ R(b, c) ∧ R(b, d ))

but saying this in plain English is bound to be somewhat awkward.

15 .4 APPLICATION TO RAMSEY QUANTIFIERS AND
RECIPROCALS

15.4.1 A characterization theorem
The Ramsey quantifiers mentioned in Chapter 2.4, and indirectly in Chapter 10.4
(see below), can be defined as follows. For Q of type 〈1, 1〉, A ⊆ M , and R ⊆ Mk,

Ramk(Q)M (A, R) ⇐⇒ ∃X ⊆ A(Q M (A, X ) & X k − Id k
X ⊆ R)
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where Id k
X = {(a, . . . , a) : (a, . . . , a) ∈ X k} (we have earlier written IdX for Id 2

X ).
There is an analogous definition for Q of type 〈1〉. It is usually assumed that Q is
(right) increasing.

Theorem 10 (Hella et al. 1997)
If Q is a monotone type 〈1〉 quantifier, or the relativization of such a quantifier, then
Ramk(Q) is definable in FO(Mon) iff Ramk(Q) is definable in FO(Q) iff Q is bounded
(k > 1).

The right-to-left direction is similar to the proof of (15.11) above, but the other
direction requires new constructions (and a new EF-game) that we shall not present
here.8

15.4.2 Linguistic conclusions
We saw in Chapter 10.4 that polyadic quantification enters into reciprocal construc-
tions in natural languages in at least two ways. First, the phrases each other and
one another can be taken to express various type 〈1, 2〉 quantifiers, and one of these,
Q rcp2

= LIN rel, which occurs in English sentences like

(15.18) Five Boston pitchers sat alongside each other.

is not definable in FO(Mon), as Corollary 8 above shows. Granted that this sentence
has that reading, there is no way to produce the correct truth conditions by means of
only monadic quantifiers and standard operations on these.

This is an instance of the more general observation that natural languages (and FO)
have no general way of forming the ‘ancestral’, i.e. the transitive closure of a given
relation, even though it does have primitive terms for the transitive closure of some
relations, such as ancestor for parent.

The second way in which polyadicity appears with reciprocals is for certain quan-
tified reciprocal sentences, like

(15.19) Most of John’s friends know each other.

Since most is M↑, this is naturally interpreted along the lines

∃X ⊆ A(most(A, X ) & X 2 − IdX ⊆ R)

(with A as the set of John’s friends), i.e. as

Ram2(most)(A, R)

8 Actually, the result about Ramk(Q) in Hella et al. 1997 is stronger than Theorem 10, and con-
cerns definability in the logic FOω

∞,ω(Q k−1) = ⋃
n≥1 FOn

∞,ω(Q k−1), where FOn
∞,ω(Q M ) allows

infinite conjunctions and disjunctions but only has a supply of n variables, and Q m is the collec-
tion of all generalized quantifiers whose arguments are at most m-ary relations (so Q 1 = Mon).
This requires yet another variant of the Ehrenfeucht–Fraı̈ssé technique, so-called pebble games. It
is shown that if Q is bounded, Ramk(Q) cannot be defined from quantifiers in Q k−1 even if infin-
ite conjunctions and disjunctions are allowed. The interest of the logic FOω∞,ω comes from the fact
that various recursive operators like [TCu,vϕ(u, v)], which are not definable in FO(Q 1) (Example 5
above), are definable in FOω∞,ω(Q 1).
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Even though in this case each other denotes a first-order definable type 〈1, 2〉 quan-
tifier (viz. Q rcp1

= FUL rel), Theorem 10 shows that the quantification employed in
(15.19) is not expressible with any finite number of monadic quantifiers.9

Recall that these logical undefinability facts hold (also) for finite models. The
reciprocal sentences exemplified above are by no means odd or extreme, and
they provide rather striking illustrations of natural language using essentially poly-
adic quantification.

15 .5 APPLICATION TO RESUMPTION AND ADVERBIAL
QUANTIFICATION

In Chapter 10 we saw that, in addition to the by now standard question of whether
adding a polyadic lift allows one to say more than one could without it, there is in the
case of resumption also the issue of what we can say using only resumptive quantific-
ation. Roughly: What is the logical strength of adverbial quantification compared to
quantification by means of determiners? In this section, we look at each of the logical
questions in turn, and try to assess the significance of the results obtained.

15.5.1 Definability in terms of resumptive quantifiers

Recall the definitions of resumption of type 〈1〉 quantifiers and their relativizations
from Chapter 10: For R, S ⊆ Mk and A1, . . . , Ak ⊆ M ,

Resk(Q)M (R) ⇐⇒ Q Mk (R)
Resk(Q rel)M (S, R) ⇐⇒ (Q rel)Mk (S, R) ⇐⇒ Q S(S ∩ R)

One may note that the second of these is ‘almost’ the relativization of first, in the
following sense:

(15.20) (Resk(Q))rel
M (A, R) ⇐⇒ Resk(Q rel)M (Ak, R)

Now, a characteristic feature of the k-ary resumption of Q is that it is sensitive only
to how Q behaves on universes whose size is a k’th power. Thus, if Q ′ is identical to
Q on such universes, but possibly completely different on universes of other sizes, one
still has Resk(Q) = Resk(Q ′). This has consequences for definability issues.

For example, it is trivial to find type 〈1〉 quantifiers which are not definable from
their resumptions: Let Q be equal to the existential quantifier on universes whose size
is a square, and equal to, say, Q even on other universes. Then Res2(Q) = Res2(∃), so
it is FO-definable. But Q even is not FO-definable, and hence neither is Q .10 So Q is
not definable in terms of Res2(Q).

9 In (10.69) in Ch. 10.4.4 we gave the truth conditions for sentences like (15.19) by means of
an operator CQ, which (since ¬most(A, ∅)) yields exactly Ram2(most)(A, R).

10 The counterexamples used in the proof of Fact 1 in Ch. 14.2 can readily be taken to have a
size that is not a square.
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However, quantifiers that change behavior radically between universes do not seem
very natural. We know that E is a strong requirement of constancy over universes,
so the next result is not surprising.

Proposition 11
If Q is any E monadic quantifier, then Q is definable from Resk(Q). In particular, all
quantifiers of the form Q rel are definable from their resumptions.

Proof. We look at the type 〈1, 1〉 case; the others are similar. Suppose k = 2. We make
the following

Claim: Q M (A, B) ⇐⇒ ∃a Res2(Q)M (A × {a}, B × {a})
Thus, Q is defined by the sentence ∃x Res2(Q)yz(A(y) ∧ z = x, B(y) ∧ z = x), and
the result follows. To prove the claim, note first that, under the assumptions (which
in this chapter always include I), Q is a relation between three cardinal num-
bers: |A − B|, |A ∩ B|, |B − A|. We have Res2(Q)M (A × {a}, B × {a}) ⇔ Q M2 (A ×
{a}, B × {a}). Also, note that, for any set Y ,

|Y × {a}| = |Y |
and furthermore, (A × {a}) − (B × {a}) = (A − B) × {a}, (A × {a}) ∩ (B × {a}) =
(A ∩ B) × {a}, etc. So the right- and left-hand sides of the claim in fact express the
same relation between cardinal numbers. (Notice that by E, we do not have to
worry about the cardinality |M2 − ((A ∪ B) × {a})|—which is in general distinct
from |M − (A ∪ B)|—and that is why the argument works.)

For k = 3, we instead have

Q M (A, B) ⇐⇒ ∃a Res3(Q)M (A × {a} × {a}, B × {a} × {a})
etc. �

But many non-E quantifiers are also definable from their resumptions. Consider,
for example, ∀, for which we have

∀M (A) ⇐⇒ A = M ⇐⇒ A × A = M2 ⇐⇒ Res2(∀)M (A × A)

Another example is the proportional quantifiers, as we now show.

Proposition 12
The type 〈1〉 proportional quantifiers are definable from their resumptions.

Proof. Take Q = (p/q), so Q M (A) ⇔ |A| > p/q · |M |. Now

|A| > p/q · |M | ⇐⇒ |A| · |M |k−1 > p/q · |M | · |M |k−1

⇐⇒ |A × Mk−1| > p/q · |Mk|
⇐⇒ Resk(Q)M (A × Mk−1)
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In other words, the definition is

QyA(y) ↔ Resk(Q)yx1 . . . xk−1(A(y) ∧ x1 = x1 ∧ . . . ∧ xk−1 = xk−1) �

We may also note the following.

Proposition 13
The class of quantifiers definable in terms of their k-ary resumptions is closed under
Boolean operations, as well as inner negations and duals.

Proof. This is because, as is easily verified,

Resk(¬Q) = ¬Resk(Q)
Resk(Q 1 ∧ Q 2) = Resk(Q 1) ∧ Resk(Q 2)
Resk(Q¬) = Resk(Q)¬ �

Digression: Recall our earlier discussion of E as a suitable notion of constancy for
quantifiers. We found that natural language quantifiers taking more than one argu-
ment are normally E, but among the type 〈1〉 ones there were some conspicuous
exceptions, like ∀ and QR. In our tentative universal (EU) in Chapter 4.5.3 we sug-
gested that the exceptions are due to the presence of a logical constant thing that
denotes the universe. The question still remains, however, if there is some slightly
weaker property than E of type 〈1〉 quantifiers that better captures the idea of con-
stancy for them. The above results suggest one answer: consider the property of being
definable from its binary resumption.

The E quantifiers have this property, but so do ∀ and proportional quantifi-
ers like QR , which are not E but still qualify as intuitively ‘constant’.11 Proposi-
tion 13 shows that it is somewhat well-behaved, and in view of what was said above
about trivial examples of quantifiers not being definable from their resumptions due
to irregular behavior on universes that are not of the form Mk, we see that the prop-
erty indeed captures a form of constancy which is slightly weaker than E. But one
should not make too much of this. We can in any case see that, extensionally, this is a
better approximation of constancy for type 〈1〉 quantifiers than E.

15.5.2 Linguistic consequences, 1

We saw in Chapter 0 that there are languages such as Straits Salish which do not have
D-quantification (using determiners) but only A-quantification (using adverbs, aux-
iliaries, etc., instead). One might wonder if the expressive power of such languages
differs from those having both, or from a language with only D-quantification.

Consider adverbial quantification and assume that these adverbs always denote
quantifiers of the form Resk(Q), k ≥ 1. As an example easy to think of, one may

11 Note that instead of the direct argument above that ∀ is definable from Res2(∀), we could
have used the fact that ∀ is co-E, and applied Propositions 11 and 13.
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consider the possibility of expressing quantified statements in English by means of
adverbs only; no determiners. Proposition 11 tells us that as long as Q is E, it can
always be defined from Res2(Q). But the linguistic interest of this is doubtful: first,
because it is not at all clear that the definition used in the proof of that proposition
has any natural rendering in English (see Chapter 12.5.5), and second, because Q is
trivially definable from Res1(Q) = Q !

In general, when comparing the strength of EnglishA (English with only adverbial
quantification) and EnglishD (English with only determiner quantification), and a
fortiori of, say, Straits Salish and English, one issue is clearly the supply of adverbs and
determiners. Sentences like All/some/most dogs bark can be translated roughly
as Dogs always/sometimes/usually bark, where we can think of the adverb
as denoting Res1(every), Res1(some), and Res1(most), respectively. Likewise, Few/no
cats are green becomes Cats are rarely/never green, but for, say, More
than two-thirds of the/All but three dogs bark we presumably have to
find corresponding adverbs. In English, this is not necessarily possible. However, it
might well be possible for other languages.

Modulo the supply of adverbs, the above renderings of D-quantification by means
of A-quantification seem linguistically quite natural. But one should also ask if more
complex quantificational constructions can be treated similarly. An obvious case is
iteration. It might seem that iteration by means of adverbs is hard or impossible, since
two quantificational adverbs cannot occur in the same clause, whereas two or more
determiners can easily occur in the same clause. But one can achieve the same effect
with relative clauses. Compare

(15.21) a. Most dogs bark at some cats.
b. Dogs usually are things that sometimes bark at cats.

The second sentence is somewhat clumsy, but that may simply be because English
has a smooth alternative with determiners. In a language like Straits Salish, the second
type of construction may not be clumsy at all.

In conclusion, we have again seen that instances of positive logical definability
need not carry over to ‘linguistic definability’, because the synonymy (PER) of logical
equivalence is weaker than (refined by) relevant notions of linguistic synonymy. ‘Lin-
guistic definability’ is a less precise, or at least less familiar, notion, but tentatively we
may still conjecture that having to use A-quantification rather than D-quantification
need not reduce expressive power, as long as the supply of adverbs, or other means of
A-quantification, in the one language matches the supply of determiners in the other.

We now turn to undefinability results for resumption.

15.5.3 Definability of resumption

It is not too hard to show—in fact, using the machinery introduced in chapter 13
for monadic structures—that the resumption of some common quantifiers increases
logical expressive power, in the sense that, for example, Res2(most) is not definable in
FO(most) (a direct proof of this is given at the end of this subsection). For monotone
type 〈1〉 quantifiers, some more general facts are known. But we do not have, so far,
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any general characterization of which resumptions are undefinable in terms of any
monadic quantifiers. Such results, although one can make educated guesses as to what
they might look like, appear to be very hard to prove. Below, we shall outline what is
known at present, including a proof of a main result about resumption in Hella et al.
1997. As before, the proofs, although they form excellent illustrations of how to use
the EF-tools, can be skipped if one so wishes.12

Here is a first complication. As with branching and Ramseyfication, we have, for
any type 〈1〉 Q :

(15.22) Resk(Q) is definable in FO(Resk(Q rel))

since one easily checks from the definitions that

Resk(Q)M (R) ⇔ Resk(Q rel)M (Mk, R)

So, to show that Resk(Q rel) is undefinable in L, it is enough to show that Resk(Q)
is undefinable in L. But this fact is less helpful than before, since this time we do
not have L = FO(Mon) but rather, say, L = FO(Q 1, . . . , Q n), and then it is likely
that what we want to show in the relativized case is that Resk(Q rel) is undefinable in
FO(Q rel

1 , . . . , Q rel
n ), and this does not follow in general. In other words, the type 〈1〉

case and the (relativized) type 〈1, 1〉 case have to be treated separately. Let us start
with the type 〈1〉 case.

Most of the results concern monotone quantifiers. Consider a typical monotone
type 〈1〉 quantifier, say,

Q f = [1/3]

so (Q f )M (A) means that A contains at least one-third of the elements of M .13 Let
Q g be any monotone type 〈1〉 quantifier. We will show that

(15.23) Res2(Q f ) is not definable in FO(Q g ).

Proof. First, we note that f clearly has the following property:

(a) ∀m∃n(m ≤ f (n2) ≤ int(n2/2)

where int(x) is the integral part of x (i.e. the biggest integer ≤ x). We are going to use
the EF-tools, as in Chapter 14.1. Fix r > 0. Given n ≥ r, think of the interval [0, n]
as the corresponding level in the number triangle, but now include also real numbers:
[0, n] consists of all real numbers x such that 0 ≤ x ≤ n. For x, y ∈ [0, n], we say that
x is far away from y if |x − y| ≥ r + 1. Our objective is to show:

(b) There are n and x, y ∈ [0, n] such that x < y, y is not an integer, and

(i) x and y are far away from each of 0, n, g(n), n − g(n)

(ii) xy = f (n2)

12 Again, the result about resumption in Hella et al. 1997 is stronger than Theorem 14 below,
as it concerns definability in FOω∞,ω(Q 1, . . .).

13 Then f (n) = int((n + 2)/3), where int(x) is the integral part of x.
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If we let a = int(x) and b = int(y), it follows that

ab < f (n2) ≤ (a + 1)(b + 1)

Therefore, if we take (monadic) models M,M′

B
A

B′
A′

M M

with |M | = n, |A| = a, |B| = b, |A′| = a + 1, and |B′| = b + 1 (and A ⊆ B, A′ ⊆
B′), it is clear that the sentence

Res2(Q f )xy(A(x), B(y))

which expresses that |A × B| ≥ f (|M |2), is false in M, but true in M′. Thus, to
establish (15.23) it suffices to show that

(c) M ≈FO(Q g )r M′

But this follows from (i) above, which guarantees that for corresponding r-block vari-
ants (Chapter 13.4.2) X in M and X ′ in M′, we always have |X | ≥ g(n) ⇔ |X ′| ≥
g(n). Note that the only blocks of M over whose cardinality we have no ‘control’ are
B − A and M − (B − A), but for them we have |B − A| = |B′ − A′|, and |M − (B −
A)| = |M − (B′ − A′)|.

So it only remains to prove (b). This requires calculation; the rest of the proof
is mathematics. Let us say that x ∈ [0, n] is n-good if it is far away from each of
0, n, g(n), n − g(n). Clearly, in any subinterval I of [0, n] of length c1 = 3 + 6(r +
1), there has to be some n-good integer; indeed there has to be an n-good subinterval
of I of length 1 (where an interval is n-good if each of its elements are). Similarly, one
sees that a subinterval of length c2 = 3c1 + 6(r + 1) has to have an n-good subinter-
val of length c1. Let m = (c2 + c2/(

√
2 − 1))2. By (a), there is a number n such that

m ≤ f (n2) ≤ n2/2. Let l = f (n2), µ = √
l , and ν = l/n. We now claim that

(d) µ − ν ≥ c2

To prove (d), we distinguish two cases. Let d = c2/(
√

2 − 1).
Case 1: l ≥ dn. Then

µ − ν = ν(
√

n2/l − 1) [a little calculation]

≥ l/n(
√

2 − 1) [since l ≤ n2/2]

≥ d (
√

2 − 1) [by assumption of the case]

= c2
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Case 2: l < dn. Then µ − ν = √
l − l/n ≥ √

l − d (assumption) ≥ √
m − d

(since m ≤ l ) = c2.
This proves (d), so there is an n-good subinterval I of [ν, µ] of length ≥ c1. Con-

sider the function F (x) = l/x. One verifies that F is a bijection from [ν, µ] to [µ, n]
which has derivative < −1, which means that the image F (I ) also is an interval of
length ≥ c1. Thus, there is some n-good y = F (x) on F (I ), and we can choose y
to be a non-integer. Also, x is n-good, and xy = l = f (n2). This proves (b), and
thereby (15.23). �

Note that the only property of f used in this proof was that (a) holds. In fact, the
proof can be generalized as follows. First, it suffices to assume that f is unbounded on
squares, which means that

∀m∃n(m ≤ f (n2) ≤ n2 − m)

For f (n2) is either ≤ int(n2/2) or > int(n2/2), and at least one of these alternatives
occurs infinitely often, which means that either (a) holds, or

(a′) ∀m∃n(int(n2/2) < f (n2) ≤ n2 − m).

In case (a′) holds, one proceeds as before until the definition of n and l . Then one
takes, using (a′), n such that int(n2/2) < f (n2) ≤ n2 − m and sets l = n2 − f (n2) +
1 = f d(n2). Now m ≤ l ≤ n2/2, so we can continue as above, using the dual sen-
tence

¬Res2(Q f )xy(¬(A(x), B(y)))

instead.
Second, it is not very hard to generalize all of this to k-ary resumption. [One

lets m = (c2 + c2/( k(k−1)
√

2 − 1))k, l = f (nk) (when the case corresponding to (a)
holds), µ = k

√
l , ν = k−1

√
l/n, and d = (c2/( k(k−1)

√
2 − 1))k−1. The calculations work

much as before. The function F to use is F (x) = lx1−k, and the relevant sentence is
Resk(Q f )x1 . . . xk(A(x1), . . . , A(xk−1), B(xk)).14]

Third, one can arrange to have x, y far away from 0, n, gi(n), n − gi(n), for any given
functions g1, . . . , gl ; the proof goes through as before, with a corresponding change
in the definition of c1 and c2. And fourth, one can show that if f is instead bounded in
the relevant sense, i.e. if it is bounded on numbers of the form nk,15 then Resk(Q f ) is
actually definable in FO(Q g , Q h), where g(n) = f (nk) and h(n) = nk − f (nk). The

14 One has to generalize the proof in this way, since, in contrast with branching and Ramseyfic-
ation, it is not the case in general that Resk(Q) is definable in terms of Resk+1(Q): e.g. the behavior
of Q on universes of the form M2 need have nothing to do with its behavior on universes of the
form M3.

15 We say that f is bounded on a set X if there is some m such that for all n ∈ X , either f (n) < m
or n − f (n) < m.
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details of all of this are in Hella et al. 1997. Summing up, we have the following result,
where M1 is the class of all monotone type 〈1〉 quantifiers.

Theorem 14 (Hella et al. 1997)
Resk(Q f ) is definable in FO(M1) iff f is bounded on {nk : n = 1, 2, . . .}.

This theorem is fine as far as it goes, but it is restricted to monotone quantifiers.
In principle, resumption has nothing much to do with monotonicity. From a logical
point of view, one would like to generalize the theorem to resumption of arbitrary
type 〈1〉 quantifiers, and to definability in terms of arbitrary monadic quantifiers. But
we know of no such generalization. The only result in this direction that we know of
is the following.

Theorem 15 (Luosto 2000)
Res2(QR) is not definable in FO(Mon). (Hence, by (15.22), Res2(most) is not definable
in FO(Mon) either.)

The proof of this theorem combines the EF-tools with the most complex use of finite
combinatorics—Ramsey theory—that we are aware of, and we won’t even begin to
try to explain the idea here. Moreover, Luosto has shown that this complexity seems
to be necessary for the proof.16

For non-monotone type 〈1, 1〉 quantifiers we know of no general results, but
we quote from Westerståhl 1994 the following fact, alluded to at the beginning of
Chapter 10.2 (the proof was sketched in note 3 of Chapter 10).

Proposition 16
On finite models, Resk(Q even) is definable in FO(Q even). In fact, Resk(Q odd) =
Q odd · · · Q odd, (k factors) and hence Resk(Q even) = Q evenQ odd · · · Q odd (k − 1
occurrences of Q odd).

But there is no result, as far as we know, corresponding to Theorem 14, let alone
anything about non-monotone quantifiers. Väänänen and Westerståhl (2002) had to
use van der Waerden’s Theorem to find an example of a type 〈1, 1〉 quantifier not
definable in terms of relativizations of monotone type 〈1〉 quantifiers (Chapter 14.4),
and, taking a hint from Luosto’s results just mentioned, it may be just as hard to find
one whose resumption is not definable in this way.

We end this subsection with a much simpler proof (due to Per Lindström) of
a (much) weaker result: namely, that Res2(most) is not definable in FO(most). This
provides an ulterior illustration of a straightforward application of the EF-tools:

Fix r > 0. It is quite easy to see that there are numbers k, m, n such that

(i) (k − 1)m ≤ n < km
(ii) 2r < k < m < n, and m − k, n − m > 2r

16 More precisely, Luosto (1999) shows that (a result similar to) Theorem 15 implies van der
Waerden’s Theorem.
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Now take a pair of models as follows:

k m k−1 m

n n

M M ′
A B A′ B′

Consider the sentence

Res2(most)xy((¬(A(x) ∨ B(x)) ∧ y = x) ∨ (A(x) ∧ B(y)) , A(x) ∧ B(y))

The first disjunct of the first formula in the scope of the quantifier denotes {(a, a) :
a ∈ M − (A ∪ B)}, which has the same cardinality as M − (A ∪ B), i.e. n. The second
disjunct denotes A × B. Thus, the sentence in fact claims that |A × B| > |M − (A ∪
B)|, which is true in M, but false in M′, by (i). On the other hand, it is quite easy to
see from (ii) that M ≈FO(most)r M′.17 This proves the result. As with Theorem 14,
although the resumptive quantifier is polyadic, the monadic EF-tools work here too,
since only one-place predicates are used in the relevant sentence. �

Remark: Surely a similar result can be proved for the relativization of any properly
proportional quantifier? What about Q f when f is unbounded on squares? We leave
these speculations to the interested reader.

15.5.4 Linguistic consequences, 2

Even in the absence of completely general results, the above theorems, and in par-
ticular Theorem 15, being undefinability results, have immediate linguistic con-
sequences. Briefly, adverbial quantification increases expressive power.

If we grant that a sentence like (10.14) in Chapter 10.2, repeated here as

(15.24) Men are usually taller than women.

has a resumptive reading

(15.25) Res2(most)(man × woman, taller than)

it is natural to ask if that reading can be obtained by some linguistic construction
using only most or other type 〈1, 1〉 quantifiers. For example, is it reducible (an iter-
ation of two type 〈1, 1〉 quantifiers)? The answer is No: It follows from a result in

17 Indeed, M ≈FO(MO)r M′. The difference in size between any two different blocks is at least
2r. So a comparison of size, which is what the quantifier MO can do, is unaffected by ‘moving
around’ fewer than r elements, and gives parallel results in the two models.
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Westerståhl 1994 that (15.24) is not even a unary complex, i.e. not even a Boolean
combination of iterations and inverse iterations.18

But Luosto’s theorem above provides a much more general answer, via the reason-
ing in Chapter 12.5. No construction using any monadic quantifiers which is form-
alizable in FO(Mon) can give the correct (uniform) truth conditions for (15.24). It
seems fairly safe to conclude that a language with only D-quantification could not
express (15.24).19 Thus the fact that determiners do not express resumptive quantific-
ation, as we saw in Chapter 10.2.1, really does limit the expressive power of languages
that lack A-quantification, which could be why no such language has been found.

18 This notion was defined in ch. 10.1 for type 〈1〉 quantifiers, but readily extends to type
〈1, 1〉 quantifiers. To see how the result in Westerståhl 1994 applies, see Peters and Westerståhl
2002: n. 8.

19 Theorem 15 provides an acute illustration of the difference between global and local defin-
ability. It was proved in van Benthem 1989 that, on each universe M , Res2(QR) is a unary complex,
and this extends to Res2(most). But the form of the complex depends on M . This local result gives
no information about uniform definability.
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all ei 24
X − Y (set complement of Y with respect to

X ) 28
Y (set complement of Y with respect to an

unspecified universe) 51
FO 56
M, (M , I ) (model) 56
cM, PM 56
uM (interpretation of u in M) 56
V , Vϕ (vocabulary) 57
¬ (negation; object language) 58;

(inner and outer negation of
quantifiers) 25, 92, 132

∧, ∨ (conjunction and disjunction; object
language) 58;

(conjunction and disjunction of
quantifiers) 91

= (identity; object language and
metalanguage) 58

|= (satisfaction relation) 57
[[u]]M,f , [[u]] (interpretation of expression u in

model) 57 n., 58, 113
a, x, (a1, . . . , an) (finite sequence of objects or

variables) 59
ψ(x, a)M,x (extension of formula in model) 59
Q (global quantifier) 60, 65
Q M (local quantifier) 60, 65
|X | (cardinality of set X ) 60
Q 0, QC , Q even, QR (selected type 〈1〉

quantifiers) 60–1
〈n1, . . . , nk〉 (type of a quantifier) 60, 65
p/q, [p/q] (proportional quantifiers) 61
most, MO, I (selected type 〈1, 1〉

quantifiers) 62–3
PO 68
QH 68
SO 68
�1

1 , �1
1 68

IF 71
0M , 1M (trivial quantifiers) 80
Q [A] (restriction of type 〈1〉 quantifier) 87,

145
Cpl (bare plural quantifier) 88
Qd (dual) 92, 132
Ij (Montagovian individual) 94
Q(k, m) 96, 159∼= 98, 459
f (R) 99, 325
WQ M 104
uG 115
(BClDet), (BClNP), 131

square(Q) 133
Q rel (relativization of Q) 134
QA (freezing of type 〈1, 1〉 quantifier) 144
more−than, as many−as, propmore−than

(selected type 〈1, 1, 1〉 quantifiers) 154
M↑, ↓M, ↑M↓ etc. 168
Q f 175
Q rel

f 176
↑SEM, ↓NWM, etc. 179–81
domA(R) 254
Ra 254
Poss 255
Poss′ 259
Possw 260
Def 281
Excw, Excs 314–5
Exceptw, Except s 317
T M

τ (set of objects of type τ over M ) 326 n.
O S (freezing of universal operator) 331
�[u/x] 338
It(Q 1, Q 2), Q 1 · Q 2, Q 1Q 2 (iteration)

347
(Q 1, Q 2)cl (cumulation) 351
Resk (resumption lift) 352
Dstrong, Dweak, D 357–8
aR 360
Brk (branching lift) 363, 494
FUL, LIN, TOT 367
R+ (transitive closure) 368, 429 n. 17
Q rcp1

–Q rcp4
368

EO, EOi,j 369
CQ 370
PER (partial equivalence relation) 385
LSent 390
L1 ≤ L2, L1 < L2, L1 ≡ L2 392
∼[π] 394
⇔ (logical equivalence) 412, 415
⇔X 412
�M 418
⇔� 419
(L, A, �) (partial algebra generating L) 422
≡µ 423
Rule(µ) 423
Subst(≡µ) 423
DefRule(π ) 427
θ [P/ϕ] 435
⇔[π1,π2] 443
FO(Q), FO(Q 1, . . .) 450
qr(ϕ) (quantifier rank) 451
M ≡L M′ (L-equivalence) 456
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Lr 456
Pi,M, Uj,M (parts and blocks of monadic

model) 458
M ≈Lr M′ 460
EF r (M,M′) 483
M ∼FOr M′ 484
EF (Q)r(M,M′) 485

DEF (Q)r (M,M′) 486
M ∼Lr M′ 486
BEF r(M,M′) 491
FO(Mon) 492
[TCu,vϕ(u, v)] 493
Ramk (Ramsey lift) 498
FO(M1) 507
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