

Springer Series in Statistics
Advisors:
P. Bickel, P. Diggle, S. Feinberg, U. Gather,
I. Olkin, S. Zeger

For other titles published in this series, go to
http://www.springer.com/series/692

Christiane Lemieux

Monte Carlo and
Quasi-Monte Carlo
Sampling

123

Christiane Lemieux
University of Waterloo
Department of Statistics & Actuarial Science
200 University Avenue W.
Waterloo ON N2L 3G1
Canada
clemieux@math.uwaterloo.ca

ISSN: 0172-7397
ISBN: 978-0-387-78164-8 e-ISBN: 978-0-387-78165-5
DOI: 10.1007/978-0-387-78165-5

Library of Congress Control Number: 2008942366

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

springer.com

A mes parents, Lise et Vincent Lemieux

Preface

The goal of this text is to provide a self-contained guide to Monte Carlo
and quasi–Monte Carlo sampling methods. These two classes of methods
are based on the idea of using sampling to study mathematical problems
for which analytical solutions are unavailable. More precisely, the idea is to
create samples that can be used to derive approximations about a quantity of
interest and its probability distribution. In the former case, random sampling
is used, while in the latter, low-discrepancy sampling is used.

Quasi–Monte Carlo sampling methods are typically used to provide ap-
proximations for multivariate integration problems defined over the unit hy-
percube. They do so by creating sets or sequences of vectors (u1, . . . , us),
with each uj taking values between 0 and 1, that sample the s-dimensional
unit hypercube more regularly than random samples do, hence mimicking
in a better way — with less discrepancy — the uniform distribution over
that space. For this reason, most of the theory that underlies these construc-
tions has been developed for problems that can be described as integration
problems over the s-dimensional unit hypercube.

On the other hand, random sampling — via the use of Monte Carlo meth-
ods — has been developed and used in a variety of situations that do not
necessarily fit the formulation above, which makes use of a function defined
over the unit hypercube. In particular, stochastic simulation models are usu-
ally constructed using random variables defined over the real numbers, the
nonnegative integers, or other domains that are not necessarily the unit inter-
val between 0 and 1. However, the computer implementation of such models
always relies, at its lowest level, on a source of (pseudo)random numbers that
are uniformly distributed between 0 and 1. Therefore, at least in principle, it
is always possible to reformulate a simulation model using a vector of input
variables defined over the s-dimensional unit hypercube.

Being able to perform this “translation” — between the more intuitive sim-
ulation formulation and the one viewing the simulation program as a function
f transforming input numbers u1, . . . , us into an observation of the output
quantity of interest — is extremely important when we want to successfully

vii

viii Preface

replace random sampling by quasi-random sampling in such problems. For
this reason, we will be discussing this translation throughout the book, re-
ferring to it as the “integration versus simulation” formulation, with the un-
derstanding that by “integration” we mean the formulation of the problem
using a function defined over the unit hypercube.

Because integration is the main area for which quasi-random sampling
has been used so far, a large part of this text is devoted to this topic. In
addition, simulation studies are often designed to estimate the mathematical
expectation of some quantity of interest. In such cases, the translation of this
goal into the formulation that uses a function f , as described in the preceding
paragraph, means we wish to estimate the integral of that function. Hence
these problems also fit within the integration framework.

A number of books have been written on the Monte Carlo method and
its applications (especially in finance) [120, 121, 137, 145, 165, 211, 236, 293,
314, 386, 391, 418, 424], stochastic simulation [45, 175, 217, 218, 243, 389],
and quasi–Monte Carlo methods [128, 308, 339, 441]. The purpose of this
text is to present all these topics together in one place in a unified way,
using the “integration versus simulation” formulation to help tie everything
together. After reading this book, the reader should be able to apply random
sampling to a wide range of problems and understand how to correctly replace
it by quasi-random sampling. The selection of topics has been done in that
perspective, and I certainly do not claim to be covering all aspects of Monte
Carlo and quasi–Monte Carlo methods or surveying all possible applications
for which these methods have been used. A very good source of information
that contains the most recent advances in this field is the biannual Monte
Carlo and Quasi–Monte Carlo Methods conference proceedings by Springer.

This book is organized as follows. The first chapter introduces the Monte
Carlo method as a tool for multivariate integration and describes the in-
tegration versus simulation formulation using several examples. The more
general use of Monte Carlo as a way to approximate a distribution is also
studied. The second chapter gives an overview of different methods that can
be used to generate random variates from a given probability distribution,
a task that needs to be done extensively in any simulation study. This ma-
terial comes early in the text because of its relevance in understanding the
integration versus simulation formulation. Chapter 3 contains information on
random number generators, which are essential for using random sampling on
a computer. Methods for improving the efficiency of the Monte Carlo method
that fall under the umbrella of variance reduction techniques are discussed in
Chapter 4. A description of quasi–Monte Carlo constructions and the qual-
ity measures that can be used to assess them is done in Chapter 5. Several
connections with random number generators are done in that chapter, which
is the reason why their presentation precedes our discussion of quasi–Monte
Carlo methods. Chapter 6 discusses the use of quasi–Monte Carlo methods
in practice, including randomized quasi–Monte Carlo and ANOVA decom-
positions. The last two chapters are devoted to applications, with Chapter 7

Preface ix

focused on financial problems and Chapter 8 discussing more complex prob-
lems than those typically tackled by quasi–Monte Carlo methods.

This text can be used for a graduate course on Monte Carlo and quasi–
Monte Carlo methods aimed either at statistics, applied mathematics, com-
puter science, engineering, or operations research students. It may also be
useful to researchers and practitioners familiar with Monte Carlo methods
who want to learn about quasi–Monte Carlo methods.

The level of this text should be accessible to graduate students with var-
ied backgrounds, as long as they have a basic knowledge of probability and
statistics. There is an appendix at the end explaining a few key concepts in
algebra required to understand some of the quasi–Monte Carlo constructions.
Problem sets are provided at the end of each chapter to help the reader put
in practice the different concepts discussed in the text.

There are several people whom I would like to thank for their help with
this work. Radu Craiu, Henri Faure, Crystal Linkletter, Harald Niederreiter,
and Xiaoheng Wang were kind enough to read over some of the material
and make useful comments and suggestions. The anonymous reviewers from
Springer also made suggestions that greatly improved this text. The students
in my “Monte Carlo methods with applications in finance” course at the
University of Calgary in the winter of 2006 used the preliminary version of
some of these chapters and also tested some exercises. Lu Zhao worked on
the solutions to the exercises for a subset of the chapters. Although their help
allowed me to fix several mistakes and typos, I am sure I have not caught
all of them, and I am entirely responsible for them. If possible, please report
them to clemieux@uwaterloo.ca.

I would also like to thank various persons who helped me get a better
understanding of the topics discussed in this book. These include Carole
Bernard, Mikolaj Cieslak, Radu Craiu, Clifton Cunningham, Arnaud Doucet,
Henri Faure, David Fleet, Alexander Keller, Adam Kolkiewicz, Frances Kuo,
Fred Hickernell, Regina Hee Sun Hong, Pierre L’Ecuyer, Don McLeish, Harald
Niederreiter, Dirk Ormoneit, Art Owen, Przemyslaw Prusinkiewicz, Wolf-
gang Schmid, Ian Sloan, Ilya Sobol’, Ken Seng Tan, Felisa Vázquez-Abad,
Stefan Wegenkittl, and Henryk Woźniakowski. In addition, I would like to
thank John Kimmel at Springer for his patience and support throughout
this process. The financial support of the Natural Sciences and Engineering
Research Council of Canada is also acknowledged.

Finally, I would like to thank my family for their support and encourage-
ment, especially my husband, John, and my two wonderful children, Anne
and Liam. Also, I am very grateful for all the wisdom that my father has
shared with me over the years in my academic journey. He has been my
greatest source of inspiration for this work.

Waterloo, Canada, October 2008 Christiane Lemieux

Contents

1 The Monte Carlo Method . 1
1.1 Monte Carlo method for integration . 3
1.2 Connection with stochastic simulation . 12
1.3 Alternative formulation of the integration problem via f :

an example . 20
1.4 A primer on uniform random number generation 22
1.5 Using Monte Carlo to approximate a distribution 25
1.6 Two more examples . 27
Problems . 34

2 Sampling from Known Distributions . 41
2.1 Common distributions arising in stochastic models 42
2.2 Inversion . 44
2.3 Acceptance-rejection . 46
2.4 Composition . 48
2.5 Convolution and other useful identities . 50
2.6 Multivariate case . 51
Problems . 55

3 Pseudorandom Number Generators . 57
3.1 Basic concepts and definitions . 58
3.2 Generators based on linear recurrences . 60

3.2.1 Recurrences over Zm for m ≥ 2 . 61
3.2.2 Recurrences modulo 2 . 64

3.3 Add-with-carry and subtract-with-borrow generators 66
3.4 Nonlinear generators . 67
3.5 Theoretical and statistical testing . 68

3.5.1 Theoretical tests for MRGs . 70
3.5.2 Theoretical tests for PRNGs based on recurrences

modulo 2 . 75
3.5.3 Statistical tests . 80

xi

xii Contents

Problems . 85

4 Variance Reduction Techniques . 87
4.1 Introduction . 87
4.2 Efficiency . 89
4.3 Antithetic variates . 89
4.4 Control variates . 101
4.5 Importance sampling . 111
4.6 Conditional Monte Carlo . 119
4.7 Stratification . 125
4.8 Common random numbers . 132
4.9 Combinations of techniques . 135
Problems . 136

5 Quasi–Monte Carlo Constructions . 139
5.1 Introduction . 139
5.2 Main constructions: basic principles . 143
5.3 Lattices . 146
5.4 Digital nets and sequences . 153

5.4.1 Sobol’ sequence . 157
5.4.2 Faure sequence . 161
5.4.3 Niederreiter sequences . 163
5.4.4 Improvements to the original constructions

of Halton, Sobol’, Niederreiter, and Faure 164
5.4.5 Digital net constructions and extensions 170

5.5 Recurrence-based point sets . 174
5.6 Quality measures . 179

5.6.1 Discrepancy and related measures 180
5.6.2 Criteria based on Fourier and

Walsh decompositions . 187
5.6.3 Motivation for going beyond error bounds 197

Problems . 197

6 Using Quasi–Monte Carlo in Practice . 201
6.1 Introduction . 201
6.2 Randomized quasi–Monte Carlo . 202

6.2.1 Random shift (or rotation sampling) 204
6.2.2 Digital shift . 206
6.2.3 Scrambling and permutations . 206
6.2.4 Partitions and Latin supercube sampling 209
6.2.5 Array-RQMC . 210
6.2.6 Studying the variance . 211

6.3 ANOVA decomposition and effective dimension 214
6.3.1 Effective dimension . 216
6.3.2 Brownian bridge and related techniques 222

Contents xiii

6.3.3 Methods for estimating σ2
I

and approximating fI(u) . 225
6.3.4 Using the ANOVA insight to find

good constructions . 228
6.4 Using quasi–Monte Carlo sampling for simulation 229
6.5 Suggestions for practitioners . 237
Problems . 239
Appendix: Tractability, weighted spaces

and component-by-component constructions 241

7 Financial Applications . 247
7.1 European option pricing under the lognormal model 247
7.2 More complex models . 256

7.2.1 Heston’s process . 257
7.2.2 Regime switching model . 258
7.2.3 Variance gamma model . 260

7.3 Randomized quasi–Monte Carlo methods in finance 260
7.4 Commonly used variance reduction techniques 273

7.4.1 Antithetic variates . 273
7.4.2 Control variates . 273
7.4.3 Importance sampling . 275
7.4.4 Conditional Monte Carlo . 279
7.4.5 Common random numbers . 281
7.4.6 Moment-matching methods . 282

7.5 American option pricing . 283
7.6 Estimating sensitivities and percentiles . 288
Problems . 298

8 Beyond Numerical Integration . 301
8.1 Markov Chain Monte Carlo (MCMC) . 303

8.1.1 Metropolis-Hastings algorithm . 305
8.1.2 Exact sampling . 310

8.2 Sequential Monte Carlo . 312
8.3 Computer experiments . 320
Problems . 332

A Review of Algebra . 335

B Error and Variance Analysis for Halton Sequences 341

References . 347

Index . 369

Acronyms and Symbols

⇒ convergence in distribution
�x� the smallest integer larger than or equal to x
[x] integer nearest to x
[g(z)] polynomial part of a formal Laurent series g(z)
ant antithetic
AWC add-with-carry
CDF cumulative distribution function
CI confidence interval
cmc conditional Monte Carlo
crn common random numbers
CUD completely uniformly distributed
cv control variate
Eff efficiency
Fm Galois field with m elements
Fm((z−1)) field of formal Laurent series over Fm

gcd greatest common divisor
HW half-width
Id the d× d identity matrix
i. i. d. independent and identically distributed
ind independent
IPA infinitesimal perturbation analysis
IS importance sampling
LCG linear congruential generator
LFSR linear feedback shift register
LR likelihood ratio
MC Monte Carlo
MCMC Markov chain Monte Carlo
MRG multiple recursive generator
MSE mean-square error
N0 the set of nonnegative integers
N(0, 1) standard normal variable

xv

xvi Acronyms and Symbols

OA orthogonal array
Φ(x) CDF of an N(0, 1) evaluated at x
Pn {u1, . . . ,un} ⊆ [0, 1)s

Pn(I) projection of Pn over I = {j1, . . . , jd} ⊆ {1, . . . , s}, given by
{(ui,j1 , . . . , ui,jd

), i = 1, . . . , n}
pdf probability density function
PRNG pseudorandom number generator
pst poststratification
ρ(X,Y) correlation coefficient between X and Y
roa randomized orthogonal array
RQMC randomized quasi–Monte Carlo
SAN stochastic activity network
scr scrambled
SIS sequential importance sampling
str stratification
SWB subtract-with-borrow
AT transpose of the matrix A
1A indicator function for event A; that is, 1A = 1 if event A occurs

and is 0 otherwise.
U(a, b) the uniform distribution over [a, b]
U([0, 1)s) the uniform distribution over [0, 1)s

u−I the vector u without the coordinates uj with j ∈ I; that is,
u−I = (uj : j /∈ I).

Zn the ring of integers modulo n
Z
∗
n the integers modulo n without 0

zα 100(1 − α)th percentile of the N(0, 1) distribution

Chapter 1

The Monte Carlo Method

The Monte Carlo method is a widely used tool in many disciplines, including
physics, chemistry, engineering, finance, biology, computer graphics, opera-
tions research, and management science. Examples of problems that it can
address are:

• A call center manager wants to know if adding a certain number of service
representatives during peak hours would help decrease the waiting time of
calling customers.

• A portfolio manager needs to determine the magnitude of the loss in value
that could occur with a 1% probability over a one-week period.

• The designer of a telecommunications network needs to make sure that
the probability of losing information cells in the network is below a certain
threshold.

Realistic models of the systems above typically assume that at least some
of their components behave in a random way. For instance, the call arrival
times and processing times for the call center cannot realistically be assumed
to be fixed and known ahead of time, and thus it makes sense instead to
assume that they occur according to some stochastic model.

The Monte Carlo simulation method uses random sampling to study prop-
erties of systems with components that behave in a random fashion. More
precisely, the idea is to simulate on the computer the behavior of these sys-
tems by randomly generating the variables describing the behavior of their
components. Samples of the quantities of interest can then be obtained and
used for statistical inference.

For instance, Monte Carlo simulation of the call center above would be
done by performing the following steps: (i) Choose a model describing the
system, including a description of the probability distributions for the random
variables in the system (arrival times of the calls, types of calls, processing
time per type of call, etc.); (ii) write a computer program that implements
this model and can thus simulate the behavior of this call center over a certain
period of time; (iii) use the program to create a sample of observations for

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 1
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 1,
c© Springer Science+Business Media LLC 2009

2 1 The Monte Carlo Method

the average waiting time experienced by the customers with and without the
additional service representatives; and (iv) perform statistical inference on
these samples to determine if the service representatives added significantly
help to reduce the waiting time.

In addition to this stochastic simulation formulation, the Monte Carlo
method can be used for problems that have no inherent probabilistic struc-
ture, for instance for the computation of multivariate integrals [165, 339,
391, 418] — discussed heavily in this text — and for solving systems of linear
equations [125].

The development of the Monte Carlo method as a statistical computing
tool goes back to the mid-1940s, when the first electronic computers were
built. More precisely, it was John von Neumann and Stanislaw Ulam who
first worked on the idea of using random numbers generated by a computer
in order to solve problems encountered in the development of the atomic
bomb. The name Monte Carlo — used in the title of the 1949 paper [320]
by Metropolis and Ulam — refers to the famous casino in Monaco, where
randomness is also used in a repetitive way. Early papers on the topic are
[319, 320], and historical accounts can be found in [95, 165, 318].

In this chapter, we first review the Monte Carlo method in the context of
integration. We then explain how estimation problems typically tackled by
stochastic simulation can be formulated in that context, thus revealing the
larger and more general scope of Monte Carlo methods. We also present a
simple example illustrating the nonuniqueness of the integration formulation
that corresponds to a given estimation problem. Then we discuss the use
of Monte Carlo methods to estimate a distribution, going beyond the more
traditional goal of estimating the mean. We conclude with two additional
examples to illustrate further the integration versus simulation formulation.

Before going further, we provide below a description of the different key
concepts discussed in this book.

Monte Carlo method: The use of random sampling as a tool to produce
observations on which statistical inference can be performed to extract
information about a system.

Monte Carlo integration: Special use of the Monte Carlo method, where
we randomly sample uniformly over some domain V ⊆ R

s and use the
produced sample {x1, . . . ,xn} to construct an estimator for an integral of
the form ∫

V

f(x)dx,

where f is a real-valued function defined over V . Note that we can usu-
ally recast the problem so that V = [0, 1)s, an assumption that we make
throughout this book. Hence, for our purposes, we think of integration
as being defined over [0, 1)s and as being tackled by producing a sample
u1, . . . ,un of points with each ui in [0, 1)s.

1.1 Monte Carlo method for integration 3

Stochastic simulation (or Monte Carlo simulation): The application of
the Monte Carlo method to problems where the goal is to study properties
of systems having stochastic components. Typically, it results in a sample
from a random variable of the form Y = h(X), which represents some out-
put measure of interest. The vector X contains random variables modeling
the system’s stochastic components and are the ones that are simulated in
order to obtain a sample from Y . An example illustrating this definition
will be described in Sect. 1.2.

Quasi–Monte Carlo sampling (or quasi-random or low-discrepancy sam-
pling): Method used to produce sets {u1, . . . ,un}, with each point ui in
[0, 1)s, that sample the unit hypercube [0, 1)s more uniformly than a ran-
dom sample of n independent points does.

1.1 Monte Carlo method for integration

To explain how to apply the Monte Carlo integration method, we start with
a discussion of univariate functions. We chose this one-dimensional setting
simply to ease the presentation. As we will see later in this section, the ad-
vantage of the Monte Carlo method over other numerical integration schemes
typically holds for larger dimensions, say at least 4 or 5.

Suppose we are given a function f(x) defined over an interval A ⊂ R. The
goal is to compute the integral

I(f) =
∫

A

f(x)dx.

If f is simple, chances are that we can easily integrate it and thus give a
closed-form solution for I(f). For example, if f(x) = x2 and A = [0, 1], then
from calculus we know that I(f) = 1/3. However, in some cases it is not
possible to find a closed-form solution for I(f). A simple example is when
f(x) is the probability density function (pdf) of a standard normal random
variable and A = [0, c] for some real constant c > 0. More precisely, the
problem here is to compute

I(f) =
∫ c

0

f(x)dx, (1.1)

where
f(x) =

1√
2π
e−x2/2.

In this case, I(f) = Φ(c) − Φ(0) = Φ(c) − 1/2, where Φ(·) is the cumulative
distribution function (CDF) of a standard normal random variable. Since
no closed-form expression exists for Φ(c), this implies that I(f) has to be
approximated.

4 1 The Monte Carlo Method

One possible approach to construct an approximation for I(f) is to use the
Monte Carlo method. To do so on the problem above, we first need to gen-
erate an i.i.d. random sample of n numbers x1, . . . , xn uniformly distributed
between 0 and c and then form the approximation

Qn =
c

n

n∑
i=1

f(xi). (1.2)

To construct the sample x1, . . . , xn, we assume for now that we have an
algorithm Rand01() that outputs independent random numbers uniformly
distributed between 0 and 1. By calling Rand01() n times, we can construct
a sample u1, . . . , un of i.i.d. random numbers and then transform them using
xi = cui for i = 1, . . . , n. Since each ui ∼ U(0, 1), clearly each xi ∼ U(0, c)
because

P (xi ≤ x) = P (cui ≤ x) = P (ui ≤ x/c) =

⎧⎨
⎩
x/c 0 ≤ x ≤ c
0 x < 0
1 x > c.

One way of understanding what the approximation (1.2) does is to look
at Fig. 1.1, where Qn is interpreted as the area of a rectangle of base c and
height

1
n

n∑
i=1

f(xi)

that approximates the mean value of f over its integration domain.
Alternatively, since the variables xi are random, we can think of Qn as a

random variable, compute its expectation, and verify that it is equal to I(f).

x2 x4 x3 x5 x1 c
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 1.1 Monte Carlo method in one dimension with n = 5 points. Qn corresponds to
the surface area of the shaded rectangle, whose height is given by the average over the five
evaluation points.

1.1 Monte Carlo method for integration 5

That is, we have

E(Qn) =
c

n

n∑
i=1

E(f(xi)) = c

∫ c

0

f(x1)
c

dx1 = I(f), (1.3)

where the second equality comes from the fact that each xi is uniformly
distributed over [0, c], and thus their pdf is 1/c. Hence, from (1.3), we have
that Qn is an unbiased estimator of I(f). In addition, the strong law of large
numbers implies that Qn converges to I(f) almost surely with n. In other
words, we are guaranteed that if we are willing to take n large enough, our
approximation Qn can become arbitrarily close to the desired quantity I(f)
with probability 1.

This simple example illustrates the basic idea of Monte Carlo. As we men-
tioned at the beginning of this section, for functions of one variable such
as the one above, there exist (deterministic) numerical methods that can
provide much more accurate approximations than Monte Carlo [73]. For in-
stance, based on the trapezoidal rule, the integral I(f) given in (1.1) is ap-
proximated by

Qn =
c

N

N∑
i=0

1
2
(f(xi) + f(xi+1)) =

c

2N
(f(x0) + f(xn)) +

c

N

N∑
i=1

f(xi),

where N = n− 1 and xi = ci/N, i = 0, . . . , n− 1. Thus, here we approximate
I(f) by the sum of the area of n trapezoids of width c/N , with the height of
their sides determined by f . Figure 1.2 illustrates the process.

The trapezoidal rule is part of a family of numerical integration meth-
ods called Newton-Cotes formulas that use equally spaced points to evaluate
the integrand. Another member of this family is Simpson’s rule, where a
piecewise-polynomial function (rather than a linear function, as in the trape-
zoidal rule) is fitted through the function evaluations. For a given odd integer
n and by setting N = n− 1, this is achieved by using the weights

c/3N, 4c/3N, 2c/3N, 4c/3N, . . . , 2c/3N, 4c/3N, c/3N

for the values f(x0), f(x1), . . . , f(xn) rather than c/2N, c/N, . . . , c/N, c/2N
as in the trapezoidal rule. These methods are particularly useful for well-
behaved, smooth functions, and their error usually depends on the value
of second- or higher-order derivatives of f . Another family of deterministic
numerical integration methods are the Gaussian quadrature methods, which
use evaluation points given by the roots of a certain polynomial rather than
using equally spaced points.

While it is true that, for functions of one variable, methods like Newton-
Cotes or Gaussian quadrature can easily outperform the Monte Carlo method,
the situation is different in the multivariate case. More precisely, consider the
general multivariate integration problem where the goal is now to estimate

6 1 The Monte Carlo Method

0 0.6 1.2 1.8 2.4 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 1.2 Trapezoidal rule with n = 6 points. I(f) is approximated by the sum of the area
of N = n − 1 = 5 trapezoids.

I(f) =
∫

[0,1)s

f(u)du, (1.4)

where u = (u1, . . . , us) is an s-dimensional vector in [0, 1)s and f : [0, 1)s → R

is a real-valued function. (At the end of this section, we come back to our
choice of fixing the integration domain to be the unit hypercube [0, 1)s.) For
instance, in the forthcoming Example 1.1, s = 2 and we consider the function

f(u) = f(u1, u2) = u3
1 +

2 sinu2

1 + u1
.

When the integral I(f) given in (1.4) cannot be evaluated analytically, a
general approach to approximate it is to use a quantity of the form

Qn =
n∑

i=1

wif(ui),

where Pn := {ui, i = 1, . . . , n} ⊂ [0, 1)s is a point set in [0, 1)s, and the
weights wi satisfy 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. In other words, the approxi-

mation Qn is obtained by taking a weighted average of n function evaluations
of f made at the n points in Pn. The extension of methods like the trapezoidal
rule or Simpson’s rule to this case consists in defining Pn to be a product rule.
That is, Pn is defined as the Cartesian product of some fixed one-dimensional
point set. For example, the multivariate version of the trapezoidal rule would
be to choose some N and use the point set

1.1 Monte Carlo method for integration 7

Pn = {(i1/N, . . . , is/N), ij = 0, . . . , N, j = 1, . . . , s}

with n = (N + 1)s and associated weights

wi1,...,is
= vi1 . . . vis

,

where

vl =
{

1/N if 1 ≤ l < N,
1/2N if l = 0 or l = N.

On the left-hand side of Fig. 1.4, we see an example of a point set used by
the trapezoidal rule when s = 2, N = 31, and thus n = (N + 1)2 = 1024. In
addition, Example 1.1 illustrates how to construct an approximation for I(f)
using the trapezoidal rule with s = 2 and N = 4 for a total of n = (N+1)2 =
25 evaluation points.

Example 1.1. When s = 2 and N = 4, the trapezoidal rule consists in using
the approximation

1
64

(f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1))

+
1
32

(f(0, 1/4) + f(0, 1/2) + f(0, 3/4) + f(1/4, 0) + f(1/2, 0) + f(3/4, 0)

+f(1, 1/4) + f(1, 1/2) + f(1, 3/4) + f(1/4, 1) + f(1/2, 1) + f(3/4, 1))

+
1
16

(f(1/4, 1/4) + f(1/4, 1/2) + f(1/4, 3/4) + f(1/2, 1/4) + f(1/2, 1/2)

+f(1/2, 3/4) + f(3/4, 1/4) + f(3/4, 1/2) + f(3/4, 3/4)) .

In Fig. 1.3, the hollow circles are points with a weight of (1/2N)× (1/2N) =
1/64, the hollow squares have a weight of (1/2N) × (1/N) = 1/32, and the
black circles have a weight of (1/N) × (1/N) = 1/16.

1

10

Fig. 1.3 Weights for trapezoidal rule with s = 2 and N = 4.

8 1 The Monte Carlo Method

For the function f(u) = u3
1 + 2 sin(u2)/(1 + u1), the trapezoidal rule with

N = 4 yields the approximation 0.8447, whereas the true value I(f) is given
by I(f) = 0.25 + 2 ln(2)(1 − cos(1)) = 0.8873, so the error is 0.0426.

The problem with these product rules is that the number of sampling
points n must grow exponentially fast with the dimension s in order to keep
the error bounded. This is due to the fact that, for these rules, the order of
magnitude of the error bound is the sth root of the order of magnitude of the
one-dimensional rule’s error [339]. For instance, the error of the trapezoidal
rule when s = 1 can be shown to be in O(n−2) under certain conditions;
on the other hand, the s-dimensional version of this rule has an error in
O(n−2/s). In Table 1.1, we show (in the second column) the error obtained
by the trapezoidal rule when approximating the integral of

f(u) =
1
s
(
√
u1 +

√
u2 + . . .+

√
us)

over [0, 1)s when N = 10 as s goes from 1 to 6. As expected, the error remains
constant although the total number n of evaluation points increases from 11
to 116 as s increases from 1 to 6. Equivalently, if we keep n approximately
equal to 113 by using N = [113/s − 1] (where [x] denotes the integer closest
to x), we see that the error increases substantially as s goes from 1 to 6
(third column). We also show in the last column of this table the behavior of
the error when s = 4 and N increases from 10 to 15. For the corresponding
sample of values of n, we can use regression to estimate the exponent α such
that cn−α fits the behavior of the error |I(f) − Qn| best. Doing so, we find
α = −0.4, which is not too far from the rate −2/s = −1/2 predicted by the
theory.

Table 1.1 Behavior of the trapezoidal rule for
∑s

j=1
√

uj/s.

s |I − Qn| s = 4

N = 10 n ≈ 113 N |I(f) − Qn|

1 0.006157 0.000004 10 0.006157

2 0.006157 0.000970 11 0.005354
3 0.006157 0.006157 12 0.004712
4 0.006157 0.016928 13 0.004189
5 0.006157 0.035384 14 0.003756
6 0.006157 0.063113 15 0.003393

For this simple example, it is easy to understand what goes wrong with the
trapezoidal rule: The function f(u) =

∑s
j=1

√
uj/s considered there is simply

a sum of s one-dimensional functions, and the trapezoidal rule is designed
so that only N + 1 = n−1/s distinct evaluation points are used for each of
these one-dimensional functions, although in total we are using n = (N +1)s

1.1 Monte Carlo method for integration 9

function evaluations. Hence, if N is fixed, the error remains constant even if
n = (N + 1)s increases. Alternatively, if n is fixed, then N ≈ n1/s decreases
with s, and thus the error increases with the dimension.

More generally, we can attribute the inadequacy of product rules as the
dimension s increases to a phenomenon called the curse of dimensionality,
which was coined by Richard Bellman [28] to describe the fact that each time
s increases by one, the “size” of the space [0, 1)s to be sampled “increases”
(in some sense). This “curse” is especially harmful to these rules because
as s increases they continue to use a set Pn that is built in a purely one-
dimensional fashion and thus fails to recognize the increase in the size of
[0, 1)s. As s increases, this results in larger and larger gaps in [0, 1)s, where
there are no points from Pn, but, on the other hand, more and more points
map to the same place on any given one-dimensional axis.

.. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.
. .

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

. .

.

. .

.

.

.

.

.

.

.
.

.

.
.

.

.

..

.

.

.

. .

.

.

. .

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.
. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

. ...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

..

.

.

.

.

. .

.
.

.

. .

.

..
.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.
.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.
..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

Fig. 1.4 Left-hand side: 1024 points for trapezoidal rule; right-hand side: 1024 random
points for Monte Carlo.

One possible approach for constructing a point set that avoids the rigidity
of the rectangular grids utilized by product rules is to use a purely random
sample of n points uniformly distributed in [0, 1)s, which is precisely what
the Monte Carlo integration method does. Indeed, with Monte Carlo, the set
Pn is formed by n i.i.d. uniform points over [0, 1)s and the weights wi are all
set to 1/n. More precisely, the integral I(f) in this case is estimated by the
Monte Carlo estimator

Qn =
1
n

n∑
i=1

f(ui), (1.5)

where the points ui are i.i.d. uniform over [0, 1)s. The pseudocode given in
Fig. 1.5 shows how to use Monte Carlo for the two-dimensional function
f(u) = u3

1 + 2 sin(u2)/(1 + u1) given in Example 1.1.
An example of a random two-dimensional point set is given on the right-

hand side of Fig. 1.4. Each point on this figure may correspond to one of
the n evaluation points (u1, u2) used in the pseudocode given in Fig. 1.5 in

10 1 The Monte Carlo Method

Evalf()

Q ← 0
for i = 1 to n

u1 ← Rand01()

u2 ← Rand01()
Q ← ((i − 1) × Q + u3

1 + 2 × sin(u2)/(1 + u1))/i
return (Q)

Fig. 1.5 Pseudocode to approximate the integral of f(u) = u3
1 + 2 sin(u2)/(1 + u1) using

Monte Carlo. Q is updated at each new evaluation point.

the case where n = 1024. Note that by contrast with the rectangular grid
shown on the left-hand side of Fig. 1.4, for the random point set shown on
the right-hand side of this figure, the probability of having two points that
map to the same coordinate on a given axis is 0.

As in the one-dimensional example, we can prove that the Monte Carlo
estimator Qn given in (1.5) is unbiased since for an i.i.d. uniform point set
Pn we have

E(Qn) =
1
n

n∑
i=1

E(f(ui)) =
∫

[0,1)s

f(u)du = I(f),

where the second equality comes from the fact that the pdf of a uniformly
distributed vector over [0, 1)s is 1. Also as before, the strong law of large num-
bers tells us that Qn converges to I(f) almost surely as n grows. Moreover,
the central limit theorem shows that

Qn − I(f)
σ/

√
n

⇒ N(0, 1),

where ⇒ means convergence in distribution and σ2 is the variance of f(U).
That is,

σ2 =
∫

[0,1)s

(f(u) − I(f))2du.

Thus, approximate confidence intervals of the form
(
Qn ± σ̂√

n
zα/2

)

can be constructed for I(f), where σ̂ is the sample standard deviation given by

σ̂ =

(
n∑

i=1

(f(ui) −Qn)2

n− 1

)1/2

1.1 Monte Carlo method for integration 11

and zα/2 is the 100(1−α/2)th percentile of the standard normal distribution.
Hence the probabilistic error of the Monte Carlo estimator is in O(1/

√
n),

which is independent of the dimension s. The variance of Qn can be estimated
by σ̂2/n and is often used as a benchmark when the Monte Carlo method is
compared against other (stochastic) integration methods.

Table 1.2 gives results for the Monte Carlo estimator similar to the ones
presented in Table 1.1 for the trapezoidal rule. That is, the second to fourth
columns of the table show the Monte Carlo error as s goes from 1 to 6 and n is
11s, [113/s]s, and 1331 for the second, third, and fourth columns, respectively;
the sixth column shows the Monte Carlo error when s = 4 and n goes from
114 to 164. In comparison with Table 1.1, we added the column n = 1331 to
see what happens when n is fixed, while the value n = [113/s]s ≈ 113 = 1331
used in the third column varies with s due to the rounding operation that
was necessary in order to apply the trapezoidal rule.

Table 1.2 Behavior of the MC error for
∑s

j=1
√

uj/s.

s |I − Qn| s = 4

N = 10 n ≈ 113 n = 1331 N |I(f) − Qn|

1 0.070262 0.000415 0.000415 10 0.000528
2 0.015078 0.000050 0.000741 11 0.000739
3 0.000254 0.000254 0.000254 12 0.000461
4 0.000528 0.000510 0.000779 13 0.000416
5 0.000373 0.000839 0.000340 14 0.000253
6 0.000081 0.001424 0.000137 15 0.000097

The results for the Monte Carlo error are quite different from those ob-
tained with the trapezoidal rule, which were given in Table 1.1. First, when
s increases from 1 to 6 and n = 11s (second column), we see that the error
decreases with s and eventually becomes much smaller than the one obtained
with the trapezoidal rule. When n remains constant as s increases (third and
fourth columns), the error stays more or less the same and does not have the
same upward trend as the trapezoidal rule. Finally, when s = 4 and n goes
from 114 to 164, the error is at least 10 times smaller than with the trape-
zoidal rule and decreases in a slightly more erratic way. These results support
the suggestion — based on the comparison of the convergence rates of n−2/s

versus n−1/2 for the trapezoidal rule and Monte Carlo, respectively — that
even for moderate dimensions s, the Monte Carlo method can outperform
methods such as the trapezoidal rule.

Although the Monte Carlo error has the nice property that its conver-
gence rate of 1/

√
n does not depend on the dimension, this rate is often

considered to be quite slow. For example, to reduce the error by a factor of
10, one must increase the sample size n by 100 (on average). For this reason,
a lot of work has been done on finding ways of improving the Monte Carlo

12 1 The Monte Carlo Method

error, and two different paths can be taken for that purpose. The first one
is to try to find ways of reducing the variance σ2 of f , or more precisely
to try to find another function φ whose integral is also I(f) but that has a
smaller variance than f . Methods achieving this fall under the umbrella of
variance reduction techniques, which will be discussed in Chap. 4. The sec-
ond approach is to use an alternative sampling mechanism — often called
quasi-random or low-discrepancy sampling — whose corresponding error has
a better convergence rate. Using these alternative sampling mechanisms for
numerical integration is usually referred to as “quasi–Monte Carlo” integra-
tion. For example, sampling methods based on scrambled nets [357, 359] have
the property that, for sufficiently smooth functions, the corresponding inte-
gration error is in O(n−3/2 logs/2 n), which for a fixed dimension s is much
better than the O(1/

√
n) associated with Monte Carlo integration. Chapters

5 and 6 discuss these alternative sampling mechanisms and the associated
quasi–Monte Carlo integration methods. A Monte Carlo estimator to which
no improvement technique has been applied is usually referred to as a “naive
Monte Carlo” or “crude Monte Carlo” estimator.

Our assumption that the integration domain is the unit hypercube [0, 1)s is
usually not very restrictive since one can often perform a change of variables
to satisfy this requirement. For instance, in our example with the normal
density function, we could define u = x/c and rewrite (1.1) as

I(f) =
∫ 1

0

c√
2π
e−c2u2/2du.

Applying the Monte Carlo method to this problem then amounts to generat-
ing n i.i.d. uniform points u1, . . . , un in [0, 1) and constructing the estimator

Qn =
1
n

n∑
i=1

c√
2π
e−c2u2

i /2,

which is exactly the same as before since u ∼ U(0, 1) if and only if x ∼
U(0, c). More generally, the fact that we can reinterpret simulation problems
as integration over the unit hypercube justifies our choice of focusing on this
specific domain. The next section discusses how to do this reinterpretation.

1.2 Connection with stochastic simulation

When the Monte Carlo method is presented as a tool for multivariate inte-
gration, one question that often arises is: Are there any practical applications
where such integrals have to be solved? The answer is a clear yes since many
problems arising from the fields of physics, finance (see Chap. 7), and bi-
ology — just to name a few — can be formulated as integration problems.

1.2 Connection with stochastic simulation 13

In particular, and as mentioned before, a large class of problems that fit
the integration formulation are those for which stochastic simulation is used
to estimate a mathematical expectation. In that context, people use Monte
Carlo simulation without necessarily using the integration formulation. Our
point of view is that in such cases Monte Carlo simulation and Monte Carlo
integration are just two different ways of viewing the problem and how it can
be tackled by Monte Carlo methods. The former typically provides a more
intuitive way of setting up the problem, while the latter can be more useful
when studying theoretical properties of the estimators obtained, especially
when variance reduction techniques or quasi–Monte Carlo are used.

It should be noted that simulation is a general tool that can be used to
do more than just approximating mathematical expectations. With this in
mind, we give in Fig. 1.6 a description of the integration versus simulation
formulation.

1. Sample observations of a random vector X describing the simulation model and
look at the distribution of Y = h(X), which represents the output measure of
interest or

2. sample the “source of randomness” u and look at the distribution of f(u) :=
h(g(u)), where g represents the function used to transform u into an observation
of X (such functions are discussed in Chap. 2).

Fig. 1.6 The integration (2) versus the simulation (1) formulation.

Since this dual interpretation is a recurrent theme in this text, it must
be well understood before proceeding to the following chapters. In Example
1.2 below, which is similar to other queueing examples that can be found in
simulation textbooks such as [45, 243], we describe in detail how to perform
the translation from simulation to integration.

Example 1.2. Consider a bank that operates from 10 am to 3 pm. We assume
that there is only one teller, that the clients arrive according to a Poisson
process at a rate of 1 per minute, and that each client stays with the teller
for a random length of time that has an exponential distribution with mean
45 seconds. We assume these service times and all interarrival times are in-
dependent from each other. The goal is to estimate the expected number c5
of clients that will wait more than 5 minutes for a teller at the bank during
a given day of operation. (We suppose that all clients that arrived before 3
pm will eventually be served.)

To estimate by simulation the quantity c5 described in Example 1.2, one
would run, say, n = 1000 independent realizations of a given day at that
bank — generating at random the arrival times and service times — count
for each realization how many clients waited more than 5 minutes, and then
take the average over the n runs.

14 1 The Monte Carlo Method

To be more precise, we will describe with pseudocode how simulation can
be used to estimate c5. In general, a computer program that implements
a simulation model requires the use of event lists, procedures to manage
queues, statistical counters, etc. [45, 243]. These tools can be implemented
from scratch, but there also exist several simulation software packages that
have all of this built-in and that require very little programming from the
user (see, for example, [243, 266] and the references therein).

Fortunately, our simple simulation model does not require any of these
tools since we can use Lindley’s equation [292], which gives us the following
recurrence relation for the waiting times Wj based on the interarrival and
service times:

Wj = max(0,Wj−1 + Sj−1 −Aj), j ≥ 1, (1.6)

where

Wj = waiting time in the queue of the jth customer,
Aj = interarrival time between the (j − 1)th and jth customers,
Sj = service time of the jth customer,

andW0 = S0 = 0. To understand where this relation comes from, imagine you
enter the bank system described in Example 1.2. If the person that entered
before you waited for 3 minutes before spending 40 seconds with the teller
and you arrived 1 minute after that person, then your waiting time is 3−1 = 2
minutes and 40 seconds. This is because you are not in the system during the
first minute of waiting of the client in front of you, but then you enter and
wait two minutes while that other person waits, and you wait an additional
40 seconds while that customer is being served. If, instead, the client in front
of you only waits 15 seconds before being served, then by the time you enter
the system, that client has left 5 seconds ago and therefore you do not wait.

Using the notation above, we can now say that the quantity we wish to
estimate is

c5 = E

⎛
⎝ N∑

j=1

1Wj>5

⎞
⎠ , (1.7)

where we used the indicator function

1Wj>5 =
{

1 if Wj > 5
0 otherwise,

and N is the number of clients that arrived during the bank’s hours of oper-
ation. Note that N itself is random since the number of clients that come to
the bank on a given day depends on the interarrival times observed during
that day. In our case, N is actually a Poisson random variable with mean

1.2 Connection with stochastic simulation 15

5×60×1 = 300 since we assumed we had a Poisson arrival process with rate
one per minute over five hours.

From (1.7) and the description given so far, we can see how this problem
fits the simulation framework and its associated notation, as given in Fig.
1.6. More precisely, we have that

X = (A1, S1, A2, S2, . . .)

and h(X) =
N(X)∑
j=1

1Wj(X)>5,

where N(X) and Wj(X) are functional representations of N and Wj used to
highlight the dependence on X.

Using Lindley’s equation (1.6), we can then perform one simulation of
this model as shown in Fig. 1.7, where βA = 1 and βS = 0.75 represent the
mean interarrival time and the mean service time in minutes, respectively. In
this pseudocode, we assume that the function Exp(β) returns an observation
from the exponential distribution with mean β. That is, if X ← Exp(β), then
P (X ≤ x) = 1− e−x/β for x > 0. Equivalently, we say that Exp(β) returns a
random variate from the exponential distribution with mean β.

OneSimBank(βA, βS)

NbWait5 ← 0
w ← 0
a ← Exp(βA)

time ← a
while (time < 300) do

s ← Exp(βS)
a ← Exp(βA)
time ← time + a
w ← max(0, w + s − a)
if ((time < 300) and (w > 5)) then

NbWait5 ← NbWait5 + 1
return NbWait5

Fig. 1.7 Pseudocode for Example 1.2. Times are in minutes.

To estimate the quantity c5 given in (1.7) with n = 1000 independent
simulations and, say, compute a 95% confidence interval for c5, one would
run the algorithm Run1000Sim described on the left-hand side of Fig. 1.8,
where we assume that ave(y) and var(y) return the sample average and
variance of the vector y, respectively. On the right-hand side of this figure,
we give an example of what an execution of this algorithm might look like.

Now, to see how estimating c5 by simulation is equivalent to using Monte
Carlo for numerical integration, we first need to say more about the function

16 1 The Monte Carlo Method

Run1000Sim() y(1) = 10
for i = 1 to 1000 do y(2) = 16

y(i) ← OneSimBank(1,0.75) y(3) = 8

hw = 1.96 ×
√

var(y)/1000 y(4) = 2
print (“average is”, ave(y)) y(5) = 95
print (“95% CI half-width is”, hw) . . .

y(1000) = 70
average is 40.875
95% CI half-width is 2.163

Fig. 1.8 Pseudocode to estimate c5 based on 1000 runs (left); example of output (right).

Exp(·). We assume here that its implementation has the representation given
in Fig. 1.9, where, as discussed in Sect. 1.1, Rand01() returns i.i.d. observa-
tions from the U(0, 1) distribution.

Exp(β)
u ← Rand01()

return GenExpon(u, β)

Fig. 1.9 Pseudocode for generating exponential random variates with mean β.

The function GenExpon then uses this random number u and transforms
it into an observation from the exponential distribution with mean β. More
precisely, this function can be implemented using inversion (also called the
inverse-function method by some authors). The idea of inversion is to generate
observations from a given probability distribution by evaluating the inverse
of the corresponding CDF at a value uniformly distributed between 0 and 1.
Figure 1.10 illustrates the idea.

For example, since the exponential distribution with mean β has the CDF
F (x) = 1 − e−x/β , by setting u = F (x) = 1 − e−x/β , we then find that

1 − u = e−x/β ,
⇔ −x/β = ln(1 − u),
⇔ x = −β ln(1 − u),

and thus F−1(u) = −β ln(1 − u). Therefore, we can implement the function
GenExpon(u, β) as shown in Fig. 1.11.

If U ∼ U(0, 1), then the value X returned by GenExpon(u, β) has the
correct distribution since

1.2 Connection with stochastic simulation 17

1

F(x)

−1

u

x=F (u)

Fig. 1.10 Inversion. For a given u, find x such that F (x) = u.

GenExpon(u, β)
return −β ln(1 − u)

Fig. 1.11 Pseudocode for generating an exponential random variate with mean β by
inversion.

P (X ≤ x) = P (−β ln(1 − U) ≤ x) = P (1 − U ≥ e−x/β)
= P (U ≤ 1 − e−x/β) = 1 − e−x/β .

Hence, within each simulation, each variate aj and sj can be viewed as a
function of u = (u1, u2, . . .) since, for j = 1, 2, . . . , we can write

aj = g1(u2j−1), (1.8)
sj = g2(u2j), (1.9)

where g1(·) = GenExpon(·, 1) and g2(·) = GenExpon(·, 0.75). Similarly,N itself
can be written as a function ζ(·) of u = (u1, u2, . . .) since

N =
∞∑

j=1

1a1+...+aj<300,

and aj is a function of u2j−1 for each j ≥ 1. More precisely, based on (1.8),
we can write

N = ζ(u1, u2, . . .) :=
∞∑

j=1

1g1(u1)+g1(u3)+...+g1(u2j−1)<300. (1.10)

18 1 The Monte Carlo Method

Also, using (1.6) along with (1.8) and (1.9), we can see that each wj can
be written as a certain function ηj of u1, . . . , u2j−1. More precisely, we have
wj = ηj(u1, . . . , u2j−1), where η1(u1) = 0, and then ηj(·) can be defined
recursively by setting

ηj(u1, . . . , u2j−1) = max(0, ηj−1(u1, . . . , u2j−3) + g2(u2j−2) − g1(u2j−1)).

Hence the whole sum

C5 :=
N∑

j=1

1wj>5 (1.11)

can be written as a certain function f of u = (u1, u2, . . .) by replacing each
wj by ηj(u1, . . . , u2j−1) and N by ζ(u1, u2, . . .). That is, we have

C5 = f(u) =
ζ(u1,u2,...)∑

j=1

1ηj(u1,u2,...,u2j−1)>5. (1.12)

When we run OneSimBank(1,0.75), we end up evaluating this function
f at a certain point u = (u1, u2, . . .), where the uj ’s are i.i.d. U(0, 1).
Figure 1.12 illustrates the idea. In the case considered there, the point
(0.45, 0.14, 0.62, 0.97, 0.05, . . . , 0.09, 0.07, 0.33, . . .) produces a value of N
equal to 288 and a value of

C5 =
N∑

j=1

1wj>5 = f(0.45, 0.14, 0.62, 0.97, 0.05, . . . , 0.09, 0.07, 0.33, . . .) = 36.

u1 = 0.45 → a1 = 35.9 → w1 = 0 C5 = 0 A1 = 35.9
u2 = 0.14 → s1 = 6.8
u3 = 0.62 → a2 = 58.1 → w2 = 0 C5 = 0 A2 = 93.9
u4 = 0.97 → s2 = 157.8
u5 = 0.05 → a3 = 3.1 → w3 = 154.7 C5 = 0 A3 = 97.0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
u575 = 0.09 → a288 = 5.7 → w288 = 314.2 C5 = 36 A288 = 17980.5
u576 = 0.07 → s288 = 3.3
u577 = 0.33 → a289 = 24.0 A289 = 18004.5

Fig. 1.12 How to view OneSimBank(1,0.75) as a function evaluation. Times are in sec-
onds. C5 is updated each time a new waiting time wj is computed. Aj = a1 + . . . + aj is
the arrival time of the jth client.

The algorithm Run1000Sim() then returns an estimate

1.2 Connection with stochastic simulation 19

1
1000

1000∑
i=1

f(ui)

for c5, where f is as defined in (1.12). More intuitively, each f(ui) is an obser-
vation for the value C5 given in (1.11) based on the input vector of uniform
numbers ui = (ui1, ui2, . . .) required to generate the random observations
a1, s1, a2 . . . for the ith simulation. Hence we can say that using 1000 i.i.d.
simulation runs to estimate c5 is equivalent to using a sample of n = 1000
i.i.d. points to integrate the function f given in (1.12) using the Monte Carlo
integration method. We also note that this estimator is unbiased since

E(C5) = E

⎛
⎝ N∑

j=1

1wj>5

⎞
⎠ = c5.

From this example, we see that going from the simulation to the integration
formulation simply amounts to rewriting the problem so that the input is the
vector u of uniform numbers used to run the simulation. In that setting, we
can think of f as the mechanism by which the simulation program takes a
sequence of i.i.d. uniform numbers and transforms them into an observation
of the quantity for which we want to estimate the expectation. The dimension
s of the domain of f is the number of uniform numbers required to run the
simulation. In the example above, we have that s = ∞ because there is no
a priori upper bound on the number of uniform numbers required to run
the simulation. However, for a given simulation run, only a finite number of
coordinates is actually required to evaluate f . For instance, in Fig. 1.12, only
the first 577 coordinates of u = (0.45, 0.14, . . . , 0.09, 0.07, 0.33, . . .) are used
to get an observation for C5 = f(u).

More generally, for this problem, the required number of uniform numbers
is equal to 2N + 1, where N is the Poisson random variable corresponding
to the number of clients who arrive during the bank’s hours of operation.
Indeed, we need to generate N service times and N + 1 interarrival times
in order to determine N since we need to generate the arrival time of the
first client that arrives after 3 pm in order to know how many clients arrived
before 3 pm. This is because the arrival time of the last client entering before
3 pm is not a stopping time; i.e., when this client arrives, we do not have
enough information to determine that this is indeed the last client. If the
problem was instead to estimate the number of persons who wait more than
5 minutes among the first 300 clients, then s would be 599 since in that case
we would only need to generate 300 interarrival times and 299 service times
(we do not need a service time for the last client since we are only interested
in his or her waiting time).

It is important to point out that the definition of the integrand f cor-
responding to a simulation problem depends on a number of choices that
have to be made when designing the simulation model and its computer

20 1 The Monte Carlo Method

implementation. In particular, the definition of f is determined by which
random variables need to be simulated (e.g., successive interarrival times
as we did or increments of a Poisson process as in [128]), which method is
used for non-uniform random variate generation, how the uniform random
numbers are assigned to the random variables to be simulated, etc. An exam-
ple illustrating these choices is given in the next section. These choices can
make a significant difference in the definition of f , which in turn can affect
the computation time required to evaluate it and, more importantly, have
an impact on the effectiveness of variance reduction techniques and quasi–
Monte Carlo methods meant to improve on naive Monte Carlo estimation.
For instance, so far we only talked about the inversion method to generate
observations from nonuniform distributions. But other methods are available,
such as acceptance-rejection [332]. This method is quite popular, but it does
not work too well with quasi–Monte Carlo methods because it has the effect
of increasing the dimension of the underlying function f . For quasi-random
sampling, inversion is usually preferred.

Since nearly all applications for which simulation is used require generation
of random variates from a variety of distributions, and given the fact that
how this step is performed has an important impact on how we go from
the simulation formulation to the integration one, a discussion of different
methods that are available for generating random variates will be given in
Chap. 2.

1.3 Alternative formulation of the integration problem
via f : an example

In this section, we give an example that shows how different choices in the
design of the simulation model and its computer implementation can im-
pact the corresponding integration formulation for a very simple estimation
problem.

Example 1.3. Suppose we want to estimate by simulation the probability that
a gamma random variable with shape parameter 2 and scale parameter 0.75
is greater than 2; i.e., we want p = P (X > 2.5), where X ∼ Gamma(2, 0.75).
To do so, we assume we have access to the following functions:

GenExpon(u, β): if u ∼ U(0, 1), it returns an exponential random
variate with mean β using inversion;

GenPoisson(u, λ): if u ∼ U(0, 1), it returns a Poisson variate with mean λ
using inversion;

GenGamma(u, α): if u ∼ U([0, 1)∞), it returns a Gamma(α, 1) variate
using acceptance-rejection.

1.3 Alternative formulation of the integration problem via f : an example 21

The reason why the input vector u of uniform numbers has unbounded di-
mension for GenGamma is that with acceptance-rejection methods random ob-
servations must be generated until some criterion is satisfied, and therefore
there is no a priori bound on the number of uniform numbers required. This
will be discussed in more detail in Chap. 2.

A first approach to estimating p by simulation would be to use the fact
that if X1 and X2 are independent exponential random variables with mean
β = 0.75, then X1 + X2 ∼ Gamma(2, 0.75). Based on this, we can generate
two exponential random variates using GenExpon, add them up, and check
whether they exceed 2.5 or not. In other words, here we are using the con-
volution approach — also to be discussed in Chap. 2 — to generate gamma
variates. This is illustrated in the left panel of Fig. 1.13.

A second approach would be to use the fact that a Gamma(2, 0.75) random
variable can be thought of as the arrival time of the second event for a Poisson
process with arrival rate λ = 1/0.75. This is because a Poisson process with
arrival rate λ is known to have corresponding interarrival times that are
exponential with mean 1/λ. If we denote by N the number of events (arrivals)
that have occurred for such a process by time 2.5 and use the fact that
N has a Poisson distribution with mean 2.5λ = 10/3, then we have that
P (X > 2.5) = P (N < 2). This approach is illustrated in the middle panel of
Fig. 1.13.

Finally, a third approach is to directly generate gamma variates and check
whether they are larger than 2.5 or not. In that case, we can use the fact
that if X ∼ Gamma(α, 1), then βX ∼ Gamma(α, β). This is illustrated in
the right panel of Fig. 1.13. For all three approaches, p can be estimated
by repeated calls to SimGammaj, each time using different random uniform
numbers as the input.

SimGamma1(u1, u2) SimGamma2(u1) SimGamma3(u)
x1 ← GenExpon(u1,0.75) N ← GenPoisson(u1,10/3) x ← GenGamma(u,2)
x2 ← GenExpon(u2,0.75) if (N < 2) then x ← 0.75x
if (x1 + x2 > 2.5) then return 1 if (x > 2.5) then

return 1 else return 0 return 1
else return 0 else return 0

Fig. 1.13 Pseudocode showing three different approaches to estimating the probability
p = P (Gamma(2, 0.75) > 2.5).

Using these three approaches, we can define three functions f1 to f3 —
corresponding to SimGammaj for 1 ≤ j ≤ 3 — where each of them is such that
its integral I(f) equals the desired quantity p:

22 1 The Monte Carlo Method

f1(u1, u2) =
{

1 if GenExpon(u1, 0.75) + GenExpon(u2, 0.75) > 2.5,
0 else;

f2(u1) =
{

1 if GenPoisson(u1, 10/3) < 2,
0 else;

f3(u1, u2, . . .) =
{

1 if 0.75 × GenGamma((u1, u2, . . .), 2) > 2.5,
0 else.

Estimators for p can then be obtained as

p̂j =
1
n

n∑
i=1

fj(ui).

Note that f1 is bidimensional, while f2 is one-dimensional, and f3 is de-
fined over [0, 1)∞. Figure 1.14 shows f1(u1, u2) (top) and f2(u) (bottom).
Although these two functions look quite different, they both integrate to the
desired quantity p, which is why in each case an approximation for their inte-
gral gives an (unbiased) estimator for p. Note that if we were to use inversion
to generate gamma variates within the SimGamma3 approach, then the corre-
sponding function would be almost the same as f2(u), but reflected around
u = 0.5.

What can be learned from this example is that, for a given estimation
problem for which simulation is used, there are many different equivalent
integration formulations, and each of them yields a different estimator. Al-
though all of these different estimators usually have the same expectation,
their variance might be significantly different after applying variance reduc-
tion techniques and/or quasi-random sampling. The successful application
of such techniques thus requires a clear understanding of this issue. This is
one of the reasons why the integration versus simulation formulation is a
recurrent theme in this book.

1.4 A primer on uniform random number generation

As we have seen already, the practical implementation of the Monte Carlo
method requires the use of a random number generator. So far, this has
been encapsulated within the generic function Rand01(), which is assumed
to produce i.i.d. uniform numbers between 0 and 1. Algorithms that can be
used to implement this type of function will be discussed in detail in Chap. 3.
However, because these generators are so crucial to the Monte Carlo method,
we want to say a few words on this important topic before going further.

Although intuitively one may think that the best way to generate random
numbers is to use some kind of physical device, in practice (e.g., in program-
ming languages and software) pseudorandom number generators are used in-
stead. Those are deterministic programs that output numbers u1, u2, . . . that

1.4 A primer on uniform random number generation 23

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1.14 Graphical representation of f1(u1, u2) (top) and f2(u) (bottom).

look like they are i.i.d. U(0, 1). They are preferred over physical devices be-
cause the latter are typically slower, do not allow the possibility to be “reset”
so that the same sequence can be output again, and are also hard to analyze.

An example of a generator is the following function [123], which is a special
case of a linear congruential generator (LCG) [276]:

xi = 950706376 xi−1 mod m,
m = 231 − 1 = 2147483647,
ui = xi/m,

x0 = 1 (seed).

Hence, this generator outputs a sequence of numbers starting with

u0 = 1/2147483647 = 4.66e − 10,
u1 = 950706376/2147483647 = 0.44271,

u2 = (9507063762 mod 2147483647)/2147483647 = 0.0601,

24 1 The Monte Carlo Method

and so on. Since the variables xi in this example can only take values in
the set of integers from 1 to 231 − 2, the sequence output by this generator
eventually starts cycling. In fact, this particular generator can be shown to
have a period length of 231−2, which is maximal for the value m used for the
modulo but is quite short for many typical studies. Examples of generators
with a longer period are discussed in Chap. 3.

An important question is: How do we know if a given generator is good or
not? To answer this, several tests have been designed to assess the quality of
random number generators. There are theoretical tests, which typically study
structural aspects of the generator over its whole period, and statistical tests,
which consider a sample of values output by the generator and use it to
formally verify statistically if the assumption of true randomness should be
rejected or not. We will discuss these tests in more detail in Chap. 3.

A word of caution about random number generators is that before starting
a simulation study it is important to make sure the generator used has been
tested appropriately and can be safely used. In our opinion, two examples
of generators that can be safely used are L’Ecuyer’s MRG32k3a, for which
C code is given in [252], and Matsumoto and Nishimura’s Mersenne-Twister
[310]. The latter is implemented in MatLab R©7 and has a period of 219937−1;
the former has a period close to 2191. Examples of bad generators found in
commercial packages are discussed in [105, 109, 255, 269, 274]. Well-known
examples are the infamous generator RANDU that was included in the IBM
Scientific Subroutine Library used in the 1960s and 1970s [220], the LCG that
was used in Excel R©prior to its 2007 version [493], and the generator ran1()
published in [379]. An important anomaly of that generator is discussed in
[432].

Users are also advised not to attempt to change the seed of a generator
without a proper understanding of its behavior. An interesting example of
what can happen if this is not done properly can be found in [311] and at the
link [492]. Also, a common approach is to use the computer’s internal clock
to choose a seed. This is typically done by users who do not like the idea
that the same random numbers are used each time they call their program,
something that in their view goes against the idea that the numbers are
supposed to be random. One possible problem with this approach is that it
is not guaranteed that the sequences used from two different seeds chosen in
this way will not overlap. Another problem is that the seed returned by the
clock itself might not be uniformly distributed, and thus to be safe one should
actually test this uniformity (in addition to the generator’s uniformity) before
employing this method. Users who want different streams of numbers should
instead use generators that can create different substreams of numbers that
are guaranteed not to overlap. Such generators are discussed in [272].

1.5 Using Monte Carlo to approximate a distribution 25

1.5 Using Monte Carlo to approximate a distribution

In the examples we have seen so far, the Monte Carlo method has only been
used to estimate expectations, and typically the first moment of the distri-
bution is the focus of interest. However, the sample h(x1), . . . , h(xn) used to
construct the estimator

1
n

n∑
i=1

h(xi)

for an expectation of the form E(h(X)) can clearly be used to extract more
information on the distribution of h(X) in addition to its mean.

In particular, the CDF of h(X) can be approximated by the empirical
CDF

F̂n(y) =
1
n

n∑
i=1

1yi≤y, (1.13)

where yi = h(xi), i = 1, . . . , n. The empirical CDF F̂n is discontinuous,
but continuous variants can be obtained by using interpolation (see Prob.
1.15 and also [23]). Note that, for each y, F̂n(y) is an unbiased estimator
of F (y) = P (h(X) ≤ y). Hence, by the strong law of large numbers, F̂n

converges in distribution to the CDF of Y = h(X) as n goes to infinity.
Once we have an approximation for the CDF F (·) of the variable Y = h(X)

of interest, we can also get estimates for quantiles. That is, for 0 < p < 1, we
can estimate the 100pth quantile of Y = h(X), given by

qp = F−1(p) = inf{y : F (y) ≥ p}.

More precisely, based on F̂n, we can estimate F−1(p) by

q̂p = inf{y : F̂n ≥ p} = y(�np�),

where y(1) ≤ . . . ≤ y(n) are the order statistics of the sample y1, . . . , yn.
Alternative quantile estimators can be obtained based on variants of F̂n

(see Prob. 1.15). It is important to note that, in general, q̂p is a biased esti-
mator of qp and that the method used to estimate the CDF influences the size
of the bias. Example 1.4 illustrates this in a very simple setting. Although
this bias goes to 0 with n under minimal conditions, in some circumstances
it might be worthwhile to assess its magnitude using techniques such as boot-
strapping (see Prob. 1.16).

Example 1.4. Suppose n = 4 and y1, . . . , y4 is an i.i.d. sample from the U(0, 1)
distribution. Then the estimator for the median is q̂0.5 = y(3), for which the
expectation is E(Y(3)) = 3/5 since Y(3) has a beta distribution with parame-
ters (3, n + 1) = (3, 5). However, F−1(0.5) = 0.5 for the U(0, 1) distribution
since its CDF is F (x) = x for 0 ≤ x ≤ 1. Therefore, the estimator y(3) has a
bias of 3/5 − 1/2 = 1/10 in this case. More generally, for a sample of size n,

26 1 The Monte Carlo Method

we have

q̂0.5 =
{
y((n+1)/2) if n is odd,
y(n/2+1) if n is even.

Therefore, for n odd, q̂p has no bias, but for n even, the bias is

n/2 + 1
n+ 1

=
n+ 2

2(n+ 1)
− 1

2
=

1
2(n+ 1)

,

which goes to 0 with n. Note that if we were using linear interpolation to
define F̂n, then the corresponding estimator for the median would be

1
2
(y(n/2) + y(n/2+1))

with a bias of
1
2

(
(n/2) + (n/2) + 1

n+ 1
− 1
)

= 0.

Confidence intervals for quantiles can be obtained if we have a central
limit theorem for the estimate q̂p, as discussed for example in [401] and also
in [23, 156, 178]. The approximate confidence intervals for qp thus obtained
have the form

q̂p ±
√
p(1 − p)√
nψ(q̂p)

zα/2

at the 100(1−α)% level, where ψ(·) is the pdf of the random variable under
study. Comparing this with the confidence interval

p̂n ±
√
p̂n(1 − p̂n)√

n
zα/2

for p = P (Y > y) based on p̂n = 1− F̂n(y), we see that the standard error is
multiplied by a factor of 1/ψ(qp) in the case of the quantile.

Another way of obtaining confidence intervals for quantiles is to find inte-
gers m1 and m2 such that 1 ≤ m1 < m2 ≤ n and P (y(m1) < qp < y(m2)) =
1 − α using the fact that

P (y(m1) < qp < y(m2)) =
m2−1∑
l=m1

(
n

l

)
pl(1 − p)n−l

and then use (y(m1), y(m2)) as a confidence interval.

1.6 Two more examples 27

1.6 Two more examples

We end this chapter by presenting two more examples taken from applica-
tions where simulation is a useful tool for estimating quantities of interest.
In each case, we discuss the formulation of the problem using the function
representation f(u) and its relation to the choice of the simulation model. To
facilitate this discussion, for each problem we present pseudocode in which
the random source of input is represented by uniform numbers uj , for instance
obtained by prior calls to Rand01().

Gillespie’s method for chemical simulations

In biology and chemistry, systems that interact via a set of chemical reactions
are often studied. More precisely, here we follow [142] and assume we have
K different types of reactions and M different types of molecules inside a
space whose volume is equal to V . Let Xj(t) be the number of molecules of
type j present in the system at time t. When a reaction takes place, it affects
the system by modifying the number of molecules according to some vector
ν in Z

K . For instance, if K = 3, then ν = (−1,−1, 1) describes a reaction
whereby one molecule of type 1 and one molecule of type 2 react and are
transformed into one molecule of type 3. In what follows, νk denotes this
vector for the kth reaction type in the system.

Realistic models of such systems typically view these reactions as occur-
ring randomly. The stochastic model proposed by Gillespie in [142] makes
use of a propensity function rk(X) for each reaction k, where X = X(t) =
(X1(t), . . . , XM (t)) gives us the number of molecules of each type at time t.
This function is such that

rk(X)dt = probability, given X = X(t), that a reaction of
type k will occur between t and t+ dt

= rkNk(X),

where rk is a constant that depends on the physical properties of the reac-
tants, the volume V , and the temperature of the system, while Nk(X) is the
number of possible subsets of molecules at time t that can be used as the re-
actants for the kth reaction. For example, if νk = (−1,−1, 1) as above, then
Nk(X) = X1(t)X2(t) is the number of different pairs that can be formed
using one molecule of type 1 and one of type 2. If νk = (−2, 0, 1), then
Nk(X) = X1(t)(X1(t) − 1)/2 since we then need two (unordered) molecules
of type 1.

Given a certain system with an initial number X1(0), . . . , XM (0) of mole-
cules and a number K of different reactions, we want to study its behavior
as measured by the number of molecules of each type over a certain interval
of time [0, T].

28 1 The Monte Carlo Method

This system can be simulated exactly simply by generating the time τ
until the next reaction and the type κ of reaction. For this purpose, we use
the fact that at time t the joint distribution of τ and κ conditioned on X is
given by

ϕτ,κ(τ, k|X, t) = rκ(X) exp(−r0(X)τ), τ ≥ 0, κ = 1, . . . ,K,

where

r0(X) =
K∑

k=1

rk(X).

Moreover, this conditional joint density function can be rewritten as

ϕτ,κ(τ, κ|X, t) = ϕτ (τ |X, t)ϕκ(k|τ,X, t), (1.14)

where
ϕτ (τ |X, t) = r0(X) exp(−r0(X)τ), τ > 0,

is the marginal density function of τ and

ϕκ(k|τ,X, t) =
rk(X)
r0(X)

, k = 1, . . . ,K, (1.15)

is the conditional density function of κ given τ and X at time t. Note that,
given X, κ is independent of τ and thus (1.15) is the marginal density function
of κ given X. Hence the marginal distribution of τ is exponential with mean
1/r0(X), and κ has a discrete distribution with probabilities proportional to
the individual propensity functions, evaluated at the current time t.

Using (1.14), we can proceed as in Fig. 1.15 to simulate this system for a
certain period of time T . In that code, we assume that, for r = (r1, . . . , rK)
and u ∼ U(0, 1), the function DiscDist(K, r, u) returns a variate equal to k,
with probability proportional to rk, for k = 1, . . . ,K. As will be discussed in
Chap. 2, one way to do this is to return the index k such that

k−1∑
l=1

r̃l ≤ u <
k∑

l=1

r̃l,

where
r̃l =

rl∑K
l=1 rl

.

Also, we assume the function Number(k,X) returns the number Nk(X) of
combinations of molecules that can react together for a reaction of type k,
given the vector X containing the number of molecules of each type.

In the code given in Fig. 1.15, we have chosen to use the uniform numbers
uj in chronological order inside the simulation. That is, we use u1 to generate
the first reaction time, u2 to generate that reaction’s type, then u3 to generate

1.6 Two more examples 29

the second reaction time, and so on. This is similar to what we did in our
bank example from Sect. 1.2.

Gillespie(T ,X,r1, . . . , rK , u1, u2, . . .)
t ← 0
j ← 1 // keeps track of which uniform uj we are using
while t < T do

r0 ← 0
for l = 1 to K

r[l] ← rl Number(l,X)
r0 ← r0 + r[l]

τ ← −r0 ln(1 − uj)
t ← t + τ
if t < T then

κ ← DiscDist(K, r, uj+1)
X ← X + νκ

j ← j + 2
return(X)

Fig. 1.15 Code for the simulation algorithm of Gillespie. The input X gives the initial
number of molecules of each type, and r = (r[1], . . . , r[K]).

Now, suppose that for some molecule type j we want to write Xj(T) as
a function of the uniform numbers u1, u2, . . . that are used to generate the
reaction times τ and types κ in this system. To do so, we first define

N = number of reactions that occurred in [0, T]

=
∞∑

j=1

1τ1+...+τj<T ;

Nk(T) = number of reactions of type k that occurred in [0, T]

=
N∑

j=1

1jth reaction is of type k.

Using this formulation, we might think that N is only a function of u1, u3, . . . ,
since τ1 is a function of u1, τ2 is a function of u3, and so on. But N also
depends on the other uniform numbers — those used to generate the type of
reaction — since the transformation

τj = −r0(X) ln(1 − u2j−1)

depends on the value r0(X) = r0(X(Tj−1)) of the sum of the propensity
functions at the time Tj−1 = τ1+. . .+τj−1 when τj is generated, which in turn
depends on which reactions were chosen at the previous times T1, . . . , Tj−2.

30 1 The Monte Carlo Method

Similarly, the indicator
1jth reaction is of type k

is a function of u2j , but it also depends on r0(X(Tj−1)) and each individual
propensity function rl(X(Tj−1)), as these define the probability with which
the jth reaction type is chosen.

Hence, for this problem, the formulation f(u) that shows how the uniform
numbers uj are transformed into the output of interest is quite complex and
not particularly enlightening. But we describe it anyway, and to do so it is
useful to introduce the recursive function

ηj := ηj(u2, u4, . . . , u2j)
= value of X(t) between the jth and (j + 1)th reactions
= ηj−1(u2, u4, . . . , u2j−2) + νDiscDist(K,r(ηj−1(u2,u4,...,u2j−2)),u2j),

where η0 = X(0). We then have

Tj := Tj(u1, u2, . . . , u2j−1) = time of the jth reaction
= Tj−1(u1, . . . , u2j−3) − r0(ηj−1(u2, . . . , u2j−2)) ln(1 − u2j−1),

where T0 = 0, and

N := N(u1, u2, . . .) =
∞∑

l=1

1Tl(u1,...,u2l−1)≤T ,

the value of which can be determined using only a finite number of variables
uj for reasons similar to those outlined in our discussion of Example 1.2.
Finally, we have

Nk(Tj) := Nk(Tj ;u2, u4, . . . , u2j) =
j∑

l=1

1k=DiscDist(K,r(ηl−1(u2,u4,...,u2l−2)),u2l)

and then write

X(T) = X(0) +
K∑

k=1

Nk(TN(u1,u2,...);u2, u4, . . . , u2N)νk,

for which the jth component is precisely Xj(T). Hence Xj(T) is a function
of u1, u2, . . . , u2N+1, where N is the number of reactions that took place
between 0 and T and is thus random. Hence the corresponding function has
unbounded dimension.

Other approaches to simulate this system could lead to completely different
functions f . For instance, an alternative simulation model described in [142]
is to generate, after each reaction, a tentative time τk for the next reaction
for each reaction type k = 1, . . . ,K. Then we let the next reaction time τ

1.6 Two more examples 31

be the minimum of these K reaction times τ1, . . . , τK , with the reaction type
κ being the one corresponding to the time τκ that achieves the minimum.
Hence a total of K uniform numbers are needed to generate each pair(τ, κ),
instead of two as in the approach described in Fig. 1.15. If we are interested in
replacing random sampling by quasi-random sampling, the first formulation
is advantageous for K > 2, because it should require fewer random numbers,
thus making use of point sets of lower dimension.

Equity-linked contract with a surrender option

Here we study a simplified version of a risk management problem for a life
insurance company inspired by the problem discussed in [166]. Consider a life
insurance policy with a maturity of 25 years issued to an individual of age x
at time 0 and defined so that, in return for a premium P paid at time 0, the
insured (or his or her estate) receives a payment

C(k) = min
(
P, P

(
S(k)
S(0)

)α)

at time k in case of death between ages x+k−1 and x+k, where S(k) is the
value of an index at time k and α is a constant in (0, 1). That is, the insured
is guaranteed to at least get his or her money back, and if the index does well
then he or she gets an appreciation of the amount P paid that is related to
the return of the index. If the insured is still alive at age x+25, then C(25) is
paid at time 25. The insured also has the option of withdrawing the capital
insured, but pays a penalty β in this case. That is, if the insured surrenders
the contract between age x+ k − 1 and age x+ k, where k < 25, then he or
she receives (1 − β)C(k) at time k.

Suppose the company adopts the following (very naive) strategy. Upon
receipt of the premium P , it invests all of it in the index, the behavior of
which is described by S(·). Hence the company incurs a loss at time k < 25
if S(k) < S(0) and the insured dies during that year since it then pays out P
at time k while only holding P × S(k)/S(0) < P . However, it realizes a gain
if S(k) > S(0) since in that case it pays P × (S(k)/S(0)α), which is smaller
than the amount P × (S(k)/S(0)) held.

Suppose the goal is to determine the probability that the value of the in-
surer’s portfolio will become negative when holding a certain number m of
these contracts, given the strategy above. To estimate this probability, as-
sumptions must be made on mortality, surrender behavior, and the dynam-
ics for the index. To keep things simple, here we assume that the decision
to surrender is independent of the behavior of the index and that we have
a multiple-decrement table providing both mortality and surrender rates at
any age x. We denote by q(d)

x and q(w)
x the probability that between age x and

x+ 1, an individual of age x will die or surrender his or her contract, respec-
tively. For the index, we assume a lognormal model, where log(S(t)/S(0))

32 1 The Monte Carlo Method

follows a normal distribution with mean (μ− σ2)t and variance σ2t, where μ
and σ are the return rate and volatility of the index, respectively.

In Fig. 1.16, we give pseudocode to simulate a portfolio of 1000 contracts
sold to individuals of age 40. The code returns 1 if the value of the fund at
time k, denoted V (k), becomes negative for some k ∈ {1, . . . , 25}. We assume
all payments are made at the end of the year. We also assume that individuals
are independent, so that the number Xk of departures between age x+k and
x+ k + 1 — either due to death or surrender — has a binomial distribution
with parameters (Lk, qk), where

qk = q
(d)
x+k + q

(w)
x+k,

Lk = number of contracts still in place at time k.

We ask the reader to verify in Prob. 1.18 that, conditioned on Xk, the number
of deaths Dk between age x+k and age x+k+1 has a binomial distribution
with parameters (Xk, q

(d)
x+k/qk).

EqLinked(25,μ,σ,P ,α,β,u1, . . . , u75)
L ← 1000 // number of contracts held
V ← L × P // value of the portfolio
k ← 1
S ← 1 // normalized value of the index
neg ← 0 // indicator of V < 0
while k ≤ 25 and V > 0

q ← q
(d)
40+k−1 + q

(w)
40+k−1

X ← Binom(L, q, u3k−2)

D ← Binom(X, q
(d)
40+k−1/q, u3k−1)

W ← X − D
R ← exp(μ − σ2/2 + σ× Norm01(u3k))
S ← S × R
if S < 1 then

C ← P
else

C ← P × Sα

V ← V × R − D × C − W × (1 − β) × C
L ← L − D − W
k ← k + 1
if V ≤ 0 then

neg ← 1
return(neg)

Fig. 1.16 Pseudocode for the risk management problem. We assume the function
Norm01(u) returns a variate from the standard normal distribution if u ∼ U(0, 1) (see
Prob. 1.10).

Define

1.6 Two more examples 33

τ = min{k : V (k) ≤ 0}
to be the first year where the fund’s value became zero or less. To show how
the indicator function

1τ≤25 (1.16)

can be written as a function of u = (u1, . . . , u75), we use the following inter-
mediate functions:

Xk := Xk(u1, u4, . . . , u3k−2) = number of departures in year k
= Binom(Lk−1, qk, u3k−2),

Lk := Lk(u1, u4, . . . , u3k−2) = Lk−1 −Xk

= number of contracts still in place at time k, where L0 = m,

Dk := Dk(u1, u2, u4 . . . , u3k−2, u3k−1) = number of deaths in year k

= Binom(Xk, q
(d)
x+k/qk, u3k−1),

Wk := Wk(u1, u2, u4, . . . , u3k−2, u3k−1) = Xk −Dk,

Rk := Rk(u3, u6, . . . , u3k) = S(k)/S(0)
= cumulative return on the index at time k
= exp(k(μ− σ2/2) + σZk),

Zk := Zk(u3, u6, . . . , u3k) = Norm01(u3) + . . .+ Norm01(u3k),
Ck := Ck(u3, u6, . . . , u3k) = death capital paid at time k

= P × min(1, Rk).

We can then write the value of the fund at time k as

V (k) := V (k;u1, . . . , u3k) = V (k − 1) × exp[(μ− σ2/2) + σNorm01(u3k)]
−Ck(u3, u6, . . . , u3k) × (Dk(u1, u2, u4, . . . , u3k−2, u3k−1)
+(1 − β) ×Wk(u1, u2, u4, . . . , u3k−2, u3k−1)).

Finally, we write the indicator function (1.16) as

f(u1, . . . , u75) = 1V (1;u1,u2,u3)≤0 + 1V (1;u1,u2,u3)>0,V (2;u1,...,u6)≤0 + . . .

+1V (1;u1,u2,u3)>0,...,V (24,u1,...,u72)>0,V (25,u1,...,u75)≤0.

Let us discuss how alternative simulation models for this problem would
affect the definition of f . First, since the behavior of the index is independent
from the other random variables in this problem — the number of deaths
and surrenders each year — we could simulate it first, for instance using the
first 25 uniform numbers u1, . . . , u25. In addition, rather than generating the
values of the index sequentially in time, we could have generated them in any
desired order by using the Brownian bridge formulation. This will be discussed

34 1 The Monte Carlo Method

in more detail in Chap. 6. Next, rather than simulating the number of deaths
and surrenders each year by using the binomial distribution, we could also
have chosen to generate each year, for each contract that is still held in the
portfolio, whether the individual holding the contract will die, surrender, or
stay in the portfolio. That would require one uniform number per contract
each year, which for a large portfolio represents a big increase in the dimension
of the problem, in addition to making the number of uniform numbers, and
thus the dimension, random. A less naive approach would be to simulate at
time 0, for each individual, the pair (k, j) indicating in which year k they leave
the portfolio and for what reason j ∈ {death, surrender, end of contract},
something that can be done using at most two uniform random numbers per
individual. However, this would still require more uniform numbers than in
the approach described in Fig. 1.16.

Problems

1.1. Consider the function f(u) =
√

1 − u2 defined over [0, 1). (a) Evaluate
I(f) =

∫ 1

0
f(u)du. (b) If U ∼ U(0, 1), what is σ2 = Var(f(U))? (c) Use the

Monte Carlo method to estimate Qn based on n = 10, 1000, and 100,000
points. In each case, compute a 95% confidence interval for I(f) based on
your estimates for I(f) and σ. Comment on the behavior of the size of the
half-width of your confidence interval as n grows, and compare it with the
exact size of the half-width.

1.2. Consider the function f(u1, u2, u3) = u1 + sin(2πu2) + u2
3 defined over

[0, 1)3. (a) Evaluate I(f). (b) Estimate I(f) using (i) the Monte Carlo method
with n = 1000 points and (ii) the multivariate trapezoidal rule with N = 9.
Repeat with n = 8000 and N = 19. Compare the error |Qn − I(f)| obtained
for each of the two methods.

1.3. Consider the functions (i) f1(u) = (
∏s

j=1 e
uj)/c1 and (ii) f2(u) =∑s

j=1 e
uj/c2. (a) Find the constants c1 and c2 such that f1 and f2 both

have an integral of 1. (b) Using the constants found in (a), compare for both
(i) and (ii) the error obtained by the Monte Carlo method, the multivariate
trapezoidal rule, and Simpson’s rule for s = 5, 10 and n =59,049 and then
for s = 15 and n =14,348,907. (c) If you cannot afford more than 106 func-
tion evaluations, what is the largest dimension s for which you can still use
Simpson’s rule (or the trapezoidal rule)?

1.4. Show that for any function f(u) of the form f(u) =
∑s

j=1 g(uj), where
g : [0, 1) → R, and any given integer N ≥ 1, the integration error obtained
for this function with the trapezoidal rule based on n = (N + 1)s points is
constant as s increases.

Problems 35

1.5. We mentioned in Sect. 1.2 that the function GenExpon(u, β) could be
implemented using inversion. This means that the value x returned by
GenExpon(u, β) is such that F (x) = u, where F (x) = 1 − e−x/β is the
CDF of an exponential random variable with mean β. Using this, implement
GenExpon(u, β) and create an i.i.d. sample of size n = 1000 from the expo-
nential distribution with β = 2. Construct a relative frequency plot based on
this sample and compare it with the pdf of an Exp(2). Verify that the sample
average and sample variance are “close” to their theoretical values of 2 and
4, respectively.

1.6. Hit-and-Miss. The hit-and-miss method [45, 165, 391] is an alternative
to Monte Carlo integration. It works as follows. Suppose you want to compute

I(f) =
∫

A

f(u)du,

where f(u) < ∞ for all u ∈ A and A ⊆ R
s is such that you can generate

random variables ui that are uniformly distributed over A. The idea is to find
a constant M such that f(u) ≤ M for all u ∈ A and then generate an i.i.d.
sample (u1, w1), . . . , (un, wn) uniformly distributed over A× [0,M]. Then, let

yi =
{

0 if f(ui) ≤ wi

1 otherwise,

and estimate I(f) by

Hn =
1
n

n∑
i=1

yi × Vol(A) ×M.

(a) Show that Hn is an unbiased estimator of I(f). (b) Devise a hit-and-
miss algorithm to estimate the integral I(f) of f(u) =

√
1 − u2 over u ∈

[0, 1). (b) Compute a 95% confidence interval for I(f) based on n = 1000
with your hit-and-miss algorithm from (a). (c) Compare the half-width of
the interval obtained in (b) with that of a 95% confidence interval based
on Monte Carlo integration and n = 1000, as computed in Prob. 1.1. (d)
Compare the theoretical variance of your hit-and-miss estimator with that of
the Monte Carlo estimator based on the same value of n. Is this comparison
consistent with your answer to part (c)?

1.7. Verifying matrix multiplication. In theoretical computer science, the
term “Monte Carlo algorithm” typically refers to a probabilistic algorithm
that tests a certain property of a mathematical system and returns a correct
answer with probability at least p for any instance considered. The algorithm
is then said to be p-correct. A well-known example is the Miller-Rabin algo-
rithm for testing primality [323, 381]. Here we consider Freivald’s algorithm
[42, 131], which can be used to verify matrix multiplication and works as
follows. Suppose you have three d × d matrices, A,B, and C, and want to

36 1 The Monte Carlo Method

test whether C = AB or not. The idea is to randomly generate a binary
vector X in {0, 1}d and return yes if (XA)B = XC and no otherwise. This
algorithm can be shown to be p-correct with p = 0.5. Furthermore, when it
returns false, we can be sure that it is correct. The problem is that when it
returns true we cannot determine if it is correct or if it is making a mistake in
the case where AB �= C. (a) Show that if you run this algorithm five times,
the probability of obtaining a correct answer is at least 31/32 for any choice
of matrices A,B, and C. (b) Implement this algorithm with

A =

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, B =

⎡
⎣3 1 2

4 6 5
8 7 9

⎤
⎦ ,

and the following three cases for C:

C1 =

⎡
⎣35 34 39

80 76 87
125 118 135

⎤
⎦, C2 =

⎡
⎣35 34 38

80 77 87
125 118 135

⎤
⎦, C3 =

⎡
⎣35 34 38

80 76 87
125 118 135

⎤
⎦ .

Run it (at most) five times to make a decision (each time with a different
X), and then repeat the process 1000 times. For each of C1, C2, and C3, how
many times do you get the correct answer out of 1000 trials? Comment on
your result in light of your answer to (a). (c) Repeat part (b) with ten trials
instead of five to make a decision. What is the value p such that you can
say that your algorithm is at least p-correct for any choice of matrices A,B,
and C?

1.8. (a) Show that each of the functions f1 to f3 defined in Example 1.3
has an integral I(f) equal to p. (b) Compute the variance Var(fi(U)) for
1 ≤ i ≤ 3.

1.9. (a) Estimate the probability p defined in Example 1.3 using the function
f1 based on n = 5000 function evaluations. Compare this with the true value
of p. (b) Extend the idea used in (a) to estimate p̃ = P (Gamma(20, 0.75) >
25) and compare it with an approximate value for p̃, for instance by using
the function gammainc in Matlab.

1.10. We mentioned in Sect. 1.1 that there was no closed-form formula for
the CDF Φ(x) of a Normal(0,1) random variable. However, there exist good
approximations for Φ(x), such as Hasting’s approximation, which is presented
in [1, p. 932]. Also, several mathematical software packages have functions
that compute such approximations (for example, normcdf in Matlab). (a)
Compare the value returned by the Monte Carlo estimate Qn + 0.5 with
n = 1000 and as described in (1.2) for (i) Φ(1.282), (ii) Φ(1.645), and (iii)
Φ(1.96), with an approximation such as those mentioned above. (b) For a
given value of c, what is the theoretical variance of Qn? (c) For each of
the three values of c used in (a) (i.e., 1.28, 1.645, and 1.96), compare the

Problems 37

theoretical variance of Qn with its estimated variance (based on n = 1000).
(d) Consider the following alternative approach for estimating Φ(c), where
we assume that the function Norm01() returns i.i.d. standard normal variates
(this is of course a very unlikely way to proceed in practice since if we have
a way to generate normal variates via the Norm01 function, we could also
probably find a better approximation for Φ(c)):

SimPhi(c)
sum ← 0
for i = 1 to n

x← Norm01()
if (x < c)

sum ← sum + 1
Rn ← sum/n
return (Rn)

What is the theoretical variance of Rn? (e) Use the estimator Rn to estimate
(i) Φ(1.28), (ii) Φ(1.645), and (iii) Φ(1.96), and compare the estimated vari-
ance of Rn with its theoretical variance. To implement Norm01(), you can
use inversion and an approximation for Φ−1 such as the one given in [216,
pp. 95–96], or you can use the function randn in Matlab.

1.11. Consider the queueing example discussed in Sect. 1.2. (a) Compute an
approximate 95% confidence interval for the fraction of clients that will wait
more than 10 minutes on a given day using (i) n = 10, (ii) n = 100, (iii)
n = 1000, and (iv) n =10,000 simulations. Compute the relative half-width of
the confidence interval in each case, and discuss its behavior as n increases.
(b) We explained in Sect. 1.2 that s = ∞ for this problem, although for a
given simulation the number S of uniform numbers required to evaluate f
is finite. Compute the expected value of S. (c) For n = 1000, what is the
average value of S obtained with your simulation program?

1.12. Assume the following model for one share of IBM stock. At time t > 0,
the value of the stock S(t) follows a lognormal distribution; i.e., lnS(t) has
a normal distribution with mean ln(S(0)) + (r − σ2/2)t and variance σ2t,
where σ is the volatility of the stock and r is the risk-free interest rate. In
what follows, assume S(0) = 100, r = 0.05, and σ = 0.2. (a) Write an
expression involving the CDF Φ of a Normal(0,1) to describe the probability
pK that S(T) is larger than some fixed quantityK > 0. (b) Using pseudocode,
describe how you could use n simulations of the price S(T) to estimate pK .
(c) For T = 1 and K = 110, compare an approximate value for pK (based on
approximations for Φ(x) such as those mentioned in Prob. 1.10) with the one
obtained using simulation as in (b), with n = 1000. Does the 95% confidence
interval based on these n simulations contain the approximate value? (d)

38 1 The Monte Carlo Method

Describe two different functions f1 and f2 defined over [0, 1)s for some s (s
does not need to be the same for f1 and f2) whose integral is equal to E(S(T))
for T = 1.

1.13. (a) Repeat part (c) of the previous problem using a different stream
of pseudorandom numbers. (Make sure you do this correctly. One possibility
is to perform two computations (e.g., using a loop) within one call to the
program. Changing the seed/state arbitrarily can lead to overlapping streams,
as discussed on p. 24.) Are the two confidence intervals obtained with the two
different streams comparable? (b) Perform the same comparison as in (a), but
with (i) n = 10 and n =10,000. Comment on the differences observed with
respect to the value of n.

1.14. Repeat Prob. 1.2, only with Monte Carlo, but with n = 10 and n =
1000, and repeat the process m = 100 times (computing a 95% confidence
interval each of the m times). (a) Compute the sample variance of your
estimator Qn based on these m = 100 samples, and compare it with the true
variance of Qn. (b) Out of the m times, how many times did your confidence
interval contain the true value for I(f)?

1.15. Consider the empirical CDF F̂n described in (1.13). (a) Propose a mod-
ification to F̂n based on linear interpolation, thereby obtaining a continuous
empirical CDF F̃n. (b) Derive an expression for the estimate q̃p of the pth
quantile of F based on F̃n.

1.16. Suppose we have a sample X1, . . . , Xn of i.i.d. observations from a
certain distribution and an estimator θ = θ(X1, . . . , Xn) defined over the
sample. For instance, θ might be the sample variance. It is sometimes of
interest to investigate the properties of the distribution of θ. One way to do
this is to use the bootstrap technique, introduced by Efron in [97] and surveyed
in detail in [98, 100]. This technique is based on the following approach:

1. For i = 1, . . . , B:

a. Randomly and uniformly choose n indices li,1, . . . , li,n from {1, . . . , n}
with replacement.

b. Compute
θ̂i = θ(xli,1 , . . . , xli,n

).

2. Use the obtained sample θ̂1, . . . , θ̂B to infer on the desired property. For
instance, if the goal is to estimate Var(θ), then we can use the estimator

σ̂2
θ =

1
B − 1

B∑
i=1

(θ̂i − θ̄)2,

where

θ̄ =
1
B

B∑
i=1

θ̂i.

Problems 39

To get a confidence interval for E(θ̂i), we can either use a percentile ap-
proach and construct the 100(1 − α)% confidence interval

(
θ̂(Bα/2), θ̂(B(1−α/2))

)

or a central limit theorem approach with
(
θ̄ − zα/2

σ̂θ√
B
, θ̄ + zα/2

σ̂θ√
B

)
.

(a) Use bootstrapping to estimate the variance of the relative half-width of the
confidence interval discussed in Prob. 1.11 (with n = 1000) using B = 100
draws. Based on this, compute a 95% confidence interval for this relative
half-width. (b) Explain how you would perform Step 2 of the bootstrapping
algorithm described above in order to estimate the bias of an estimator θ.

1.17. In the τ -leap approach suggested by Gillespie in [143], the chemical sys-
tem described in Sect. 1.6 is simulated approximately by using a discretization
in time steps of size τ within which the propensity functions are assumed to
remain constant throughout [kτ, (k + 1)τ) for k = 0, 1, . . . , T/τ − 1. (a) For
this approximate model, what is the distribution of the number of reactions
of type k occurring between kτ and (k + 1)τ? (b) Based on your answer to
(a), propose an algorithm for simulating (approximately) the chemical system
described in Sect. 1.6 based on the τ -leap approach.

1.18. Show that for the equity-linked problem whose pseudocode is given in
Fig. 1.16, conditioned on Xk, the number of deaths between age x + k and
age x+ k + 1 has a binomial distribution with parameters (Xk, q

(d)
x+k/qk).

1.19. Explain how you would proceed to generate the pair (k, j) giving the
time k of “departure” from the portfolio and reason j for one individual at
time 0, as discussed at the end of Sect. 1.6.

Chapter 2

Sampling from Known Distributions

In this chapter, we give an overview of different methods that can be used to
generate random variates from a given distribution. Even if inversion should
be the preferred choice for quasi–Monte Carlo users, it is important to be
aware of other methods that are available for that purpose. First of all, in-
version is sometimes slower and more difficult to apply than other methods.
In such cases, Monte Carlo users may prefer these other methods. Also, when
working with predefined functions (e.g., randn in Matlab) to generate obser-
vations from a given distribution, it is quite possible that the underlying
method is not based on inversion. In addition, there are applications for
which the common approach used by people working in that area is to use
something other than inversion (e.g., in computer graphics, for ray genera-
tion). In such cases, even if ultimately the quasi–Monte Carlo user will try to
use inversion instead of these other methods in order to modify code or algo-
rithms appropriately, it is important to understand what the other method
does. Finally, in some cases inversion may not be directly applicable, and an
alternative method needs to be used.

We assume the reader is familiar with common distributions such as those
already encountered in Chap. 1 — exponential, gamma, binomial, and normal
— and will not describe specifically how to handle each one of these in this
chapter. Instead, we wish to describe general techniques that can be used
for a variety of models. More precisely, we describe four general approaches
that can be used for generating random variates from a given (univariate)
distribution and then talk about the multivariate case. Much more extensive
coverage of specific distributions and algorithms can be found in [45, 75, 196,
243, 391]. In particular, Luc Devroye’s book (which is out of print) can be
downloaded from his Web page [485].

Before we do this, we want to briefly discuss a few distributions that are
often encountered in simulation models.

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 41
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 2,
c© Springer Science+Business Media LLC 2009

42 2 Sampling from Known Distributions

2.1 Common distributions arising in stochastic models

Our goal in this section is simply to talk about a few distributions that are
commonly used in stochastic models. Our discussion is by no means extensive,
as we restrict ourselves to distributions arising in the different examples used
throughout the book.

Normal and Lognormal Distribution

The normal distribution arises very often in financial simulation models. We
already saw an example in Sect. 1.6 when discussing equity-linked contracts.
One reason why it arises so often is that the Brownian motion is often used
as a building block to model asset prices, and the increments of a Brownian
motion are normally distributed. Because of the importance of this process,
we give a formal definition before going further. The reader is referred to
[212, 350, 388] for more information.

Definition 2.1. A standard Brownian motion is a continuous-time stochastic
process {B(t), t ≥ 0} with the following properties:

1. B(0) = 0.
2. The increments over disjoint intervals are independent. That is, for r <
s < t < u, B(u) −B(t) and B(s) −B(r) are independent.

3. The increments are stationary. That is, for any r, s, t > 0, B(r+ t)−B(r)
and B(s+ t) − B(s) have the same probability function, which is normal
with mean μ = 0 and variance t.

If {B(t), t ≥ 0} is a standard Brownian motion, then for σ > 0 and μ ∈ R, the
process {σB(t) + μt, t ≥ 0} is a Brownian motion with drift μ and diffusion
coefficient σ.

The simplest financial model that uses a Brownian motion is the lognormal
model encountered in Chap. 1, which amounts to having the asset price S(t)
at time t given by

S(t) = S(0) exp
(
(μ− σ2/2)t+ σB(t)

)
,

where μ and σ are the instantaneous return rate and volatility of the asset
price, respectively. Since B(t) ∼ N(0, t), we have that S(t) has a lognormal
distribution with parameters ((μ− σ2/2)t, σ2t).

In financial simulations, the multinormal distribution is also often encoun-
tered either when modeling a vector of financial assets — in which case they
are driven by Brownian motions that are correlated — or when looking at a
given asset value at different times.

2.1 Common distributions arising in stochastic models 43

Exponential, Gamma, Weibull, and Poisson distributions

The exponential distribution is frequently encountered in simulation models,
partly because Poisson processes are often used to model stochastic processes
that count the occurrence of a certain event — for example, client arrivals
in a queue, molecular reactions in a chemical system, claims arrivals for an
insurance company — and in this case the interarrival time between two
events is known to have an exponential distribution.

The gamma distribution shows up in financial models that include jumps,
as we discuss in Sect. 7.2 of our chapter on financial applications. It also
arises as the distribution of the kth event from a Poisson process and more
generally as a sum of exponential random variables. The Weibull distribution
arises as the minimum of a sample of i.i.d. exponential random variables. All
three distributions can also be used to model failure times.

The Poisson distribution is used to count the number of events in a Poisson
process. An example was discussed in Prob. 1.17. Users may sometimes want
to draw from it directly rather than generating exponential interarrival times
until a certain time limit is reached. Inversion can be used to do that, and
specific aspects of this task are discussed in [129].

Beta distribution

The beta distribution often arises when studying order statistics. More pre-
cisely, it comes up when we look at a sample of n i.i.d. U(0, 1) random vari-
ables u1, . . . , un, because then the ith smallest observation u(i) has a beta
distribution with parameters (i, n+ 1 − i).

Copula-based models

Models based on copulas have become increasingly popular over the last ten
years or so, for instance in biostatistics and risk management [104, 130].
Formally, a copula is a joint distribution C defined over [0, 1]k and such that
each marginal distribution is a U(0, 1). A theorem by Sklar [404] says that for
any joint CDF F (x1, . . . , xk) with given marginal CDFs H1(x1), . . . , Hk(xk),
there exists a copula such that we can write

F (x1, . . . , xk) = C(H1(x1), . . . , Hk(xk)). (2.1)

By writing the joint CDF F (x1, . . . , xk) in this way, we specify the distribu-
tion in two steps. We start by choosing the marginal distributions and then
introduce the dependence relation between the variables Xj via the copula
function C. This formulation also naturally suggests the use of inversion to
generate (x1, . . . , xk). We will come back to copulas in Sect. 2.6.

44 2 Sampling from Known Distributions

2.2 Inversion

This method goes back to the beginnings of Monte Carlo. It was proposed
by von Neumann in a letter to Stan Ulam discussing their “random numbers
work” [95]. We discussed on p. 16 of Chap. 1 how to use inversion for the
exponential distribution. More generally, for a continuous distribution with
CDF F (·), it can be applied as in Fig. 2.1.

1. U ← Rand01().
2. Return X = F−1(U).

Fig. 2.1 Steps to apply inversion for continuous distributions.

This looks very simple, but the applicability and effectiveness of this
method rests on how easy it is to compute the inverse CDF F−1. For the expo-
nential, Weibull (see Prob. 2.2), and other distributions, the inverse function
can be determined rather easily. But for the normal, gamma, beta, and other
distributions, in particular those that do not have closed-form expressions for
the corresponding CDF, inversion cannot be applied directly, and an approx-
imation for F−1 must first be determined. For instance, Kennedy and Gentle
discuss rational fraction approximations for the inverse CDF of a normal dis-
tribution [216, pp. 95–96]. In that setting, F−1(u) can be approximated by a
function of the form [349]

F−1(u) ≈ t+
p0 + p1t+ p2t

2 + p3t
3 + p4t

4

q0 + q1t+ q2t2 + q3t3 + q4t4

for u > 0.5 and constants qi, pi, where t = (ln(1/u2))1/2. The case u < 0.5
is handled by using the symmetry of the normal pdf, which implies that
F−1(u) = −F−1(1 − u). Another well-known approximation for the inverse
CDF of a normal, which is particularly popular in finance [145, p. 68], is the
one proposed by Moro [324]. For other distributions, approximations have
been implemented in various software packages and libraries, for example in
Matlab’s statistical toolbox.

For a distribution that is not continuous, inversion is applied as shown
in Fig. 2.2. We give in Fig. 2.3 an example where a simple discrete distri-
bution with P (X = x) equal to 0.22, 0.16, 0.33, and 0.29 for x = 0, 1, 2, 3,
respectively, is inverted. If U falls in the interval [0, 0.22), we return X = 0; in
[0, 22, 0.38), we return X = 1; in [0.38, 0.71), we return X = 2; and in [0.71, 1],
we return X = 3. This clearly causes X to have the correct distribution.

Several known discrete distributions are such that inf{y : F (y) ≥ u} can
be determined explicitly. For instance, if X has a geometric distribution with
parameter p, then P (X = x) = p(1 − p)x, where x ∈ {0, 1, . . .}. Therefore,

2.2 Inversion 45

1. U ← Rand01().
2. Return X = inf{y : F (y) ≥ U}.

Fig. 2.2 Steps to apply inversion for noncontinuous distributions.

x

u

1

3210

0.71

0.38

0.22

Fig. 2.3 Inverting the CDF of a discrete distribution over {0, 1, 2, 3}. The u shown is such
that inversion returns x = 3.

F (x) =
x∑

y=0

p(1 − p)y = (1 − (1 − p)x),

and thus

inf{y : F (y) ≥ u} = inf{y : (1 − (1 − p)y) ≥ u}
= inf{y : 1 − u ≥ (1 − p)y}
= inf{y : (1 − u)1/y ≥ 1 − p}
= inf{y : (1/y) ln(1 − u) ≥ ln(1 − p)}
= �ln(1 − p)/ ln(1 − u)�.

Just as in the continuous case, though, for some distributions we might
not be able to derive an explicit expression for inf{y : F (y) ≥ u}. When this
happens, using inversion turns out to be a searching problem, where for a
given U the goal is to quickly find the index i such that

i−1∑
j=0

pj < U ≤
i∑

j=0

pj , (2.2)

where pj = P (X = xj), and we assumed the domain of X was {x0, x1, . . .},
where xj ≤ xj+1 for all j ≥ 0. (We also assumed that the sum

∑−1
j=0 pj = 0.)

As required, the index i satisfying (2.2) is the smallest one such that F (xi) ≥
U . Of course, one can perform a simple linear search starting from i = 0
in order to identify the correct index, but more efficient methods can (and

46 2 Sampling from Known Distributions

should) be used. For instance, we can use a binary search rather than a linear
one, or a “bucket scheme” meant to improve on binary search [45].

Even if inversion is sometimes slower than other methods, the fact that
it uses one uniform number per random variate and transforms this number
in a monotone way makes it the preferred choice when used in combination
with quasi–Monte Carlo and other variance reduction techniques. As we will
see below, it also works naturally well with joint distributions specified by
copula functions.

2.3 Acceptance-rejection

Here the idea is to generate random variates from an alternative distribution
and then accept or reject them according to a criterion designed so that over-
all the variates that are output have the correct distribution. More precisely,
to generate random variates with a pdf ϕ(x), we first find a function t(x)
that is majoring ϕ(x) over its domain (i.e., t(x) ≥ ϕ(x) for all x) and whose
integral is finite. Note that t(x) itself usually is not a density function since

T =
∫
t(x)dx ≥

∫
ϕ(x)dx = 1, (2.3)

but r(x) := t(x)/T is a density function. The function t(x) should be chosen
so that it is easy to generate observations from r(x). The algorithm described
in Fig. 2.4 can then be used.

1. Generate Y having density r(x).
2. Generate U ∼ U(0, 1), independent of Y .
3. If U ≤ ϕ(Y)/t(Y), then return X = Y ; otherwise go back to step 1.

Fig. 2.4 Steps for acceptance-rejection.

To understand why acceptance-rejection works, we follow the proof given
in [243, App. 8A]. We first notice that each time we go through the three steps
above, a pair (Y,U) is generated. To be accepted, a pair must be such that
U ≤ ϕ(Y)/t(Y). Hence, an observation X output by this algorithm has the
same distribution as (Y |U ≤ ϕ(Y)/t(Y)); i.e., the conditional distribution of
Y given that Y is accepted. Therefore,

P (X ≤ x) = P (Y ≤ x|U ≤ ϕ(Y)/t(Y)) =
P (Y ≤ x,U ≤ ϕ(Y)/t(Y))

P (U ≤ ϕ(Y)/t(Y))
.

Now,

2.3 Acceptance-rejection 47

P

(
Y ≤ x,U ≤ ϕ(Y)

t(Y)

)
=
∫ x

−∞
P

(
U ≤ ϕ(y)

t(y)

)
r(y)dy =

∫ x

−∞

ϕ(y)
t(y)

r(y)dy

=
1
T

∫ x

−∞
ϕ(y)dy =

F (x)
T

,

where F (x) is the CDF corresponding to ϕ(x), and T is as defined in (2.3).
In addition, we have

P

(
U ≤ ϕ(Y)

t(Y)

)
=
∫ ∞

−∞

ϕ(y)
t(y)

r(y)dy =
1
T
.

Hence P (X ≤ x) = F (x), as required.
Figure 2.5 illustrates the acceptance-rejection method in the case where

ϕ(x) = 12x2(1−x) for 0 ≤ x ≤ 1, which corresponds to the Beta distribution
with parameters α = 3 and β = 2. Since the maximum of ϕ(x) occurs at
x = 2/3, where ϕ(x) = 16/9, this means we can take t(x) = 16/9, for
x ∈ [0, 1], corresponding to a uniform density r(x) over [0, 1]. In Fig. 2.5, we
show ϕ(x), t(x), and 200 points corresponding to trials (Y,Ut(Y)). When the
second coordinate Ut(Y) is below ϕ(Y), the point is accepted; otherwise it
is rejected. For this particular sample, 111 points were accepted and 89 were
rejected for a proportion 111/200 = 0.555 of acceptance, not too far from the
theoretical one of 1/T = 9/16 = 0.5625.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2.5 Acceptance-rejection method for ϕ(x) = 12x2(1 − x) (solid line); t(x) = 16/9 is
the dotted line.

For practical applications, one should obviously try to use a majoring
function t(x) that more closely follows the pdf under consideration. By doing
so, the probability 1/T of accepting Y increases, which causes the expected
number of trials to decrease. To illustrate this, Fig. 2.6 gives an example of an
acceptance-rejection algorithm for the Gamma(k, 1) distribution [391, 431].
The majoring function in this case is based on a Laplace distribution and is

48 2 Sampling from Known Distributions

such that

ϕ(x)
t(x)

=
∣∣∣∣ (θ − 1)x
θ(k − 1)

∣∣∣∣
k−1

exp
(
−x+

|x− (k − 1)| + (k − 1)(θ + 1)
θ

)
. (2.4)

The Laplace distribution with location parameter k−1 and scale parameter
θ — also called double exponential — is described by the pdf [391]

r(x) =
1
2θ

exp
(
|x− (k − 1)|

θ

)
. (2.5)

The alternative name double exponential comes from the fact that, when
k = 1, for x > 0 the pdf (2.5) is just a scaled exponential pdf, which is
reflected around the y-axis to get the x < 0 part. The pdf (2.5) is simple
enough that we can easily use inversion to perform Step 1 of the algorithm
described in Fig. 2.6; see Prob. 2.10.

1. Generate a Laplace variate Y with location parameter k − 1 and scale θ = 1 +√
4k − 3/2.

2. If Y < 0, then return to Step 1.
3. U ← Rand01().
4. If U ≤ ϕ(Y)/t(Y), then return Y ; otherwise go back to Step 1.

Fig. 2.6 Steps describing an acceptance-rejection algorithm for the gamma distribution
with parameters (k, 1), where ϕ(·)/t(·) is given in (2.4). At least two uniform numbers are
used every time we go through these four steps.

2.4 Composition

This method can be used when the CDF from which we want to generate
observations can be written as a sum,

F (x) =
∞∑

i=1

piFi(x), (2.6)

where pi ≥ 0,
∑∞

i=1 pi = 1, and each Fi(·) is a CDF. Hence a random vari-
able with a CDF of the form (2.6) is such that with probability pi it has a
distribution determined by Fi(·). We can then use the algorithm shown in
Fig. 2.7 to generate variates from a CDF of the form (2.6).

Of course, each of the two steps themselves require that some generating
method be used, for instance inversion based on two independent uniform
numbers U1 and U2 (one for generating I, the other for X). Note also that,

2.4 Composition 49

1. Generate I according to P (I = i) = pi.
2. Return an observation X having CDF FI(·) and independent from I.

Fig. 2.7 Steps describing how to use composition to generate random variates.

unlike inversion, we need at least two uniform numbers to generate one vari-
ate.

The composition method arises naturally for mixture distributions, but
it can also be useful for tackling complicated density functions by breaking
them down into different components, in which case pi corresponds to the area
under the curve of the ith component. We illustrate this idea in Example 2.2.

Example 2.2. Consider the beta density function ϕ(x) = 12x2(1 − x) for 0 ≤
x ≤ 1. Here we can form a piecewise linear function as illustrated in Fig. 2.8.
This function passes through the maximum of ϕ(x) occurring at (2/3, 16/9);
the inflection point (1/3, 8/9), where the second derivative of ϕ(x) becomes
negative; the endpoint (1,0); and the point (1/9, 0) obtained by drawing a line
from the inflection point (1/3, 8/9) that has the same slope as ϕ(x) at that
point. (This slope is given by 4.) The remainder of the area under the curve
of ϕ(x) can then be split into three areas. The area under the curve of the
piecewise linear function can be shown to be 68/81, which means that about
84% of the draws based on the composition method will require generating
observations from a distribution with a piecewise linear pdf, something that
is relatively easy to achieve (see Prob. 2.6). Problem 2.5 at the end of the
chapter asks you to find the corresponding values of pi and Fi(x), i = 1, . . . , 4,
for Fig. 2.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 2.8 Composition applied to the beta pdf 12x2(1 − x). The area under the curve is
partitioned into four pieces.

50 2 Sampling from Known Distributions

2.5 Convolution and other useful identities

The convolution method is useful for random variables that can be written as
a sum of i.i.d. random variables, typically coming from a simpler distribution.
More precisely, we assume X = Y1 + . . .+ Yn, where the Yi are i.i.d. random
variables. Well-known examples are as follows:

1. X ∼ Gamma(n, β): Yi ∼ Exp(β).
2. X ∼ χ2(n): Yi = Z2

i , where Zi ∼ N(0, 1).
3. X ∼ Binomial(n, p): Yi ∼ Bernoulli(p).
4. X ∼ Negative Binomial(n, p): Yi ∼ Geometric(p).

The main disadvantage of this method is that it requires that n random
variates be generated in order to get a single observation from X.

More generally, relationships between different distributions can be used
for random variate generation. For instance, Fox [126] uses the fact that, for
a sample of n i.i.d. uniform variates in [0, 1], the ith order statistic has a beta
distribution with parameters (i, n + 1 − i). Based on this, he suggests the
method shown in Fig. 2.9 for generating a random variate X ∼ Beta(a, b),
where a and b are positive integers.

1. Generate a + b − 1 i.i.d. uniform numbers in (0, 1).
2. Return the ath smallest observation.

Fig. 2.9 Steps for generating a beta variate with parameters (a, b) using ranked data.

Another way of generating a beta variate is to use the fact that if Y1 is a
Gamma(a, 1) and Y2 is a Gamma(b, 1), independent from Y1, then Y1/(Y1 +
Y2) is a Beta(a, b).

Finally, a clever way of generating normal variates, due to Box and Muller
[36], exploits the idea that the joint pdf of two independent standard normal
variables x and y is given by

ϕX,Y (x, y) =
1
2π
e−(x2+y2)/2,−∞ < x, y <∞.

We can then perform a change of variables using polar coordinates — which is
why a variation of this method, due to Marsaglia [301] and based on rejection,
is called the polar method — as follows: r =

√
x2 + y2 and θ = arctan(y/x).

Hence we have x = r cos θ and y = r sin θ, and the joint pdf of r and θ is

ϕR,Θ(r, θ) =
|J |
2π

e−r2/2, r > 0, 0 ≤ θ ≤ 2π,

where |J | is the Jacobian of the transformation given by

2.6 Multivariate case 51

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Hence ϕR,Θ(r, θ) = (r/2π)e−r2/2 with corresponding CDF

FR,Θ(r, θ) = (θ/2π)(1 − e−r2/2), r > 0, 0 ≤ θ ≤ 2π.

Thus r and θ are independent, and we can generate them by inversion as

r =
√

− ln 2(1 − U1),
θ = 2πU2.

Transforming these back into x and y gives us the Box-Muller method de-
scribed in Fig. 2.10. This method is quite popular for generating normal
variates, but users should know that the sample produced when the source of
randomness is a simple LCG has abnormal properties, as is illustrated nicely
in [314].

U1 ← Rand01()

U2 ← Rand01()

X1 ←
√

−2 ln(1 − U1) cos(2πU2)

X2 ←
√

−2 ln(1 − U1) sin(2πU2)
return (X1, X2)

Fig. 2.10 Pseudocode for the Box-Muller method. It returns two independent standard
normal variates.

2.6 Multivariate case

Here we consider the problem of generating vectors (x1, . . . , xk) of observa-
tions with a joint CDF F (x1, . . . , xk). First, a general approach that can
be used is what we could call nested conditioning [243], where we generate
each variate x1, . . . , xk successively, starting with x1, for which we need the
marginal distribution FX1(x) given by

FX1(x) =
∫ x

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ(x1, . . . , xk)dxk . . . dx2dx1,

where ϕ(x1, . . . , xk) is the joint pdf associated with the CDF F . Once we
have x1, then we generate x2 conditionally on x1. That is, we generate an
observation x2 from FX2|X1(x|x1) given by

52 2 Sampling from Known Distributions

FX2|X1(x|x1) =
∫ x

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞

ϕ(x1, . . . , xk)
ϕ1(x1)

dxk . . . dx3dx2,

where ϕ1(x1) is the marginal pdf of X1. We continue like this until the last
variate xk, generated from the conditional distribution

FXk|X1,...,Xk−1(x|x1, . . . , xk−1).

Of course, for this method to be applicable, we need to be able to determine
the marginal and conditional distributions and have a way of generating
variates from each of them. Also, the efficiency of the method depends heavily
on the order we chose for generating the variates xi. That is, among the k!
possible choices, some might lead to a much faster generation of the vector
(x1, . . . , xk) [391].

Here is a simple example to illustrate this method.

Example 2.3. Suppose we want to generate a vector (x1, x2) having the joint
pdf

ϕ(x1, x2) =
{

2 if 0 ≤ x2 ≤ x1 ≤ 1
0 else. (2.7)

We have that the marginal pdf of X1 is

ϕ1(x1) =
∫ x1

0

2dx2 = 2x1, 0 ≤ x1 ≤ 1,

and thus the marginal CDF of X1 is

FX1(x1) = x2
1, 0 ≤ x1 ≤ 1.

We must then get the conditional pdf of X2 given X1,

ϕX2|X1(x2|x1) =
1
x1
, 0 ≤ x2 ≤ x1 ≤ 1,

so that the conditional CDF of X2 given X1 = x1 is

FX2|X1(x2|x1) =
x2

x1
, 0 ≤ x2 ≤ x1.

Overall, the algorithm shown in Fig. 2.11 can be used to generate (x1, x2).

Second, an important case to discuss is the multinormal distribution. That
is, suppose we want to generate a vector (x1, . . . , xk) that follows a multinor-
mal distribution with mean μ = (μ1, . . . , μk)T and covariance matrix Σ. In
that case, we can use the fact that if Z = (Z1, . . . , Zk)T is a vector of i.i.d.
standard normal random variables, then AZ has a multinormal distribution
with mean zero and covariance matrix AAT. Hence, by using a matrix C such
that CCT = Σ, we can use the identity

2.6 Multivariate case 53

U1 ← Rand01()

x1 ←
√

U1

U2 ← Rand01()

x2 ← x1U2

return(x1, x2)

Fig. 2.11 Pseudocode for using nested conditioning for the simple bivariate distribution
(2.7).

X = μ + CZ,

where X = (x1, . . . , xk)T. To get a matrix C such that CCT = Σ, we can use
the lower-triangular matrix obtained from the Cholesky decomposition of Σ.
As we will see in Chap. 6, other choices might be more suitable when using
quasi–Monte Carlo sampling.

The third case we discuss is the use of copulas to model a joint distribution.
The general approach to generate a vector (x1, . . . , xk) of variates having the
joint CDF F (x1, . . . , xk) given by (2.1) is shown in Fig. 2.12.

Generate (u1, . . . , uk) according to C.

return xj = H−1
j (uj), j = 1, . . . , k.

Fig. 2.12 Steps describing the general approach for generating random variates modeled
using a copula C and having marginal CDF H1, . . . , Hk.

We illustrate with the following two examples how models described by
copulas tend to lend themselves nicely to the use of inversion. More examples
are given in [130, 462], for instance.

Example 2.4. Consider a bivariate Gaussian copula. In this case, we have
C(u, v) = Φ2,ρ(Φ−1(u), Φ−1(v)), where Φ−1 denotes the inverse standard nor-
mal CDF, and Φ2,ρ represents the CDF of a bivariate normal with correlation
coefficient ρ, for which the covariance matrix is

Σ =
(

1 ρ
ρ 1

)
.

Here, we can generate (U1, U2) so that they follow C by first generating a
vector (Z1, Z2) from the bivariate normal with correlation ρ and then set
U1 = Φ(Z1) and U2 = Φ(Z2). This works since then we have

54 2 Sampling from Known Distributions

P (U1 ≤ u1, U2 ≤ u2) = P (Φ(Z1) ≤ u1, Φ(Z2) ≤ u2)
= P (Z1 ≤ Φ−1(u1), Z2 ≤ Φ−1(u2))
= Φ2,ρ(Φ−1(u1), Φ−1(u2)) = C(u1, u2).

Note that the second equality in the display above holds because the inverse
transform Φ−1 is a continuous and monotonically increasing function. Once
we have (U1, U2) with the desired dependence structure — as prescribed
by the copula — then we get X1 and X2 by applying the chosen marginal
distribution to U1 and U2. That is, we let X1 = H−1

1 (U1) and X2 = H−1
2 (U2).

This clearly produces a pair (X1,X2) with the correct distribution since

P (X1 ≤ x1,X2 ≤ x2) = P (H−1
1 (U1) ≤ x1,H

−1
2 (U2) ≤ x2)

= P (U1 ≤ H1(x1), U2 ≤ H2(x2))
= C(H1(x1),H2(x2)).

Example 2.5. A well-known family of copulas are the Archimedean copulas,
which can be expressed as

C(u1, . . . , ud) = φ−1(φ(u1) + . . .+ φ(uk)),

where φ is a convex, decreasing function with domain (0, 1] and range [0,∞)
such that φ(1) = 0, and is called the generator of the copula. A member of
this family is Frank’s bivariate copula, where

C(u1, u2) =
1
α

ln
(

1 +
(exp(αu1) − 1)(exp(αv1) − 1)

exp(α) − 1

)
.

For this special case, correlated uniform numbers (U1, U2) following this bi-
variate CDF can be generated as in Fig. 2.13, where α̃ = eα [136].

FrankBivCopula(α̃)
V1 ← Rand01()

V2 ← Rand01()

T ← α̃V1 + (α̃ − α̃V1)V2

U1 ← V1

U2 ← logα̃[T/(T + (1 − α̃)U2)]
return (U1, U2)

Fig. 2.13 Pseudocode showing how to generate (U1, U2) according to Frank’s bivariate
copula.

Problems 55

Problems

2.1. Show that if {B(t), t ≥ 0} is a standard Brownian motion, then we have
that Cov(B(s), B(t)) = min(s, t) for t, s ≥ 0.

2.2. A Weibull random variable has a pdf given by

ϕ(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k

,

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Describe
an algorithm that uses inversion to generate random variates having a Weibull
distribution with generic parameters (k, λ).

2.3. Suppose you want to generate observations from a truncated distribu-
tion. That is, for some real numbers a < b and some pdf ϕ(x) (with associated
CDF F (·)), ∞ < x < ∞, you want to generate random variates having the
truncated pdf

ϕ̃(x) =

{
ϕ(x)

F (b)−F (a) a ≤ x ≤ b

0 else.

Assume the inverse CDF F−1(·) can be computed. Describe an algorithm to
generate variates from the truncated pdf above.

2.4. Describe an algorithm to generate observations from the continuous em-
pirical distribution F̃n defined in Prob. 1.15.

2.5. Compute the values of pi and Fi(x) for the composition method applied
to the beta pdf ϕ(x) = 12x2(1 − x) discussed in Example 2.2.

2.6. Consider the pdf that corresponds to the piecewise linear function shown
in Fig. 2.8, which, as discussed in Example 2.2, accounts for about 85% of the
draws when using the composition method. (a) Give an expression for that
pdf. (b) Give an algorithm to generate variates from this pdf using inversion.

2.7. For the beta pdf ϕ(x) = 12x2(1 − x), 0 ≤ x ≤ 1, implement the
acceptance-rejection approach described on p. 47, and for a sample of 100,000
beta variates compute the average number of uniform variates required to
output one beta variate.

2.8. An example of an acceptance-rejection algorithm to generate random
variates is given in [11, p. 25]. In this case, the goal is to generate three-
dimensional random unit vectors. To do so by acceptance-rejection, the idea
is to generate a random point uniformly in [−1, 1)3, accept it if it is within
the unit sphere centered at (0, 0, 0) (and then rescale it so that its length is
one), and reject it otherwise. (a) Prove that this method correctly generates
a random unit vector. (b) What is the expected number of trials required
in order to generate one vector? (c) Use a two-dimensional version of that

56 2 Sampling from Known Distributions

method to perform the Buffon’s needle experiment, which can be used to
estimate π as follows [42]. Throw n needles of length 0.5 on a floor with
planks of width 1 and infinite length; estimate π by the fraction n/k, where
k is the number of times the needle fell across a crack in the floor. To simplify
things, assume we want to estimate 1/π and thus can use the approximation
k/n. Use n = 1000, and verify whether a 95% confidence interval based on
this sample contains 1/π or not.

2.9. Consider a random variable X having the following probability distri-
bution:

P (X = 0) = 0.05,
P (X = 1) = 0.10,
P (X = 2) = 0.15,

P (x < X ≤ y) = c(y − x) for 0 < x < y < 1
and 1 < x < y < 2.

(a) Find the value of c such that the distribution above is a valid probability
distribution. (b) Give an algorithm using inversion to generate random vari-
ates having the distribution above. Make sure the transformation you use is
monotone.

2.10. Consider the Laplace distribution whose pdf is given in (2.5). (a) De-
scribe one way of applying composition to generate Laplace random variates.
(b) Describe how to use inversion to generate Laplace random variates.

2.11. Consider the bivariate distribution under study in the pseudocode given
in Fig. 2.11. Suppose the goal is to estimate μ = E(X1+X2) by drawing n i.i.d.
pairs of observations (xi,1, xi,2) for i = 1, . . . , n. (a) Compute the variance
of the estimator obtained based on the approach described in Fig. 2.11. (b)
Give pseudocode for the approach that consists in first generating X2 instead
of X1. (c) Compare the variance of the estimator for μ obtained using the
approach in (b) with the one from (a).

2.12. Consider a multivariate normal vector X with covariance matrix Σ
having entries of the form σij = σiσjρij , where σ2

i is the variance of Xi, for
i = 1, . . . , d, and ρij is the correlation between Xi and Xj for 1 ≤ i, j ≤ d.
Give a formula for the entries of the d×d lower-triangular matrix C obtained
by Cholesky decomposition of Σ.

2.13. Find the generator φ corresponding to the Gumbel-Hougaard copula
[130]

C(u, v) = exp
{
− [(− lnu)α + (− ln v)α]1/α

}
.

2.14. Show that the pair (U1, U2) output by the algorithm described in Fig.
2.13 has the desired distribution.

Chapter 3

Pseudorandom Number Generators

As seen in the previous chapters, the use of the Monte Carlo method relies
on the availability of uniform random numbers in order to perform random
sampling. Although theoretical results for this method are based on the as-
sumption that truly uniform random numbers are used, in practice, and as
mentioned in Sect. 1.4, pseudorandom numbers are used. That is, we use
sequences of numbers that look like they are random but that are in fact pro-
duced by a deterministic algorithm called a pseudorandom number generator
(PRNG).

The concept of randomness is hard to define and can lead to philosophical
considerations that we will not attempt to discuss here. Unfortunately, the
“aura of mystery” that surrounds this concept sometimes leads people to
think that they can invent some bizarre function to generate random numbers
or “tweak” an existing generator so that “it behaves more randomly”. But
as Knuth wisely said [220]: “Random numbers should not be chosen with a
method chosen at random. Some theory should be used.” A useful discussion
of “what is a random sequence?” can also be found in Knuth’s book [220,
Sect. 3.5].

If we agree that randomness is a concept that is difficult to define, then it
becomes even less clear what we mean by “sequences of numbers that look
like they are random”. A pragmatic explanation is to say we want those
pseudorandom numbers to be such that results from computations based
on them should lead to conclusions similar to those that would have been
obtained with true random numbers. The approach that has been taken in
the literature on random number generators in order to verify if this (vague
and general) property holds for a given generator is to devise various “tests”
assessing their quality. Several such tests will be discussed in this chapter.

As we mentioned in Sect. 1.4, in the past there have been bad generators
proposed in the literature and/or used in various software, “bad” meaning
that such generators are likely to provide invalid results for several applica-
tions. Hence it is important for anyone using pseudorandom numbers to have
at least some basic knowledge about PRNGs and what makes them good or

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 57
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 3,
c© Springer Science+Business Media LLC 2009

58 3 Pseudorandom Number Generators

bad. This chapter is aimed at providing such knowledge. We do not cover all
the generators that have been proposed or present all tests that can be used
to assess their quality. But we think the information provided in this chapter
will at least allow the reader to correctly use PRNGs and have enough back-
ground information to be able to read more complete references on this topic
such as [120, 221, 248, 257, 339, 441] if needed. Also, we pay special attention
to aspects of random number generators that are related to the construction
of low-discrepancy point sets for quasi–Monte Carlo.

This chapter is organized as follows. First, we review basic concepts and
definitions pertaining to PRNGs. We then discuss generators based on linear
recurrences, which include several widely used families. A brief discussion of
add-with-carry and subtract-with-borrow generators comes next, as well as
a short description of nonlinear generators. We conclude with a discussion of
tests that can be used to assess the quality of PRNGs. The material presented
here is largely based on [248, 257].

3.1 Basic concepts and definitions

Before we start, let us first take a step back and explain why “true” random
number generators are not used. Although in principle such a generator could
be implemented — for example, based on principles of quantum mechanics
— in practice, random number generators based on physical devices are not
the ideal thing. First, measurement errors and other technical details may
introduce some kind of bias or deviation from true randomness that would be
hard to assess. Second, such generators may be too slow for many applications
where millions of numbers are required. Third, it is sometimes useful to be
able to generate more than once a sequence of “random numbers” either
for debugging purposes or to use certain variance reduction techniques, such
as “common random numbers”, as discussed in Chap. 4. This property of
generators is usually referred to as “repeatability”.

Instead of using some kind of physical device, approaches based on the use
of computers started to be studied and proposed around 1950. For instance,
in 1955 the RAND Corporation published a table with one million random
digits produced by an electronic roulette wheel [64]. Alternatively, John von
Neumann proposed at the end of the 1940s the “mid-square” method to
generate random numbers, whereby random digits are extracted by squaring
the previous number and outputting its middle digits [332]. For example, if
the current number is 3456, we square it and obtain 11,943,936, from which
we extract the four middle digits 9439 and repeat the process. Although this
method was quickly found not to be very useful in practice, it contains the
major ingredients used to construct the generators that are used nowadays
in that it uses a deterministic algorithm based on some kind of recurrence

3.1 Basic concepts and definitions 59

and implemented on a computer to generate numbers that attempt to look
random.

More precisely, a PRNG can be described as a structure of the form
(S, T, τ, ξ, x0) [248], where

S = state space,
T = output space,

τ : S → S = transition function,
ξ : S → T = output function,

x0 = seed.

The sequence u0, u1, . . . produced by the PRNG is then defined as ui = ξ(xi),
for i ≥ 0, where xi = τ(xi−1) for i ≥ 1. In other words, the function τ is
used to go from one state xi−1 to the next xi, and then each of these states
is transformed into a number in the output space T using the function ξ.
Unless otherwise stated, we assume that τ is a bijection and ξ is one-to-one.
Also, all the generators that we will be looking at in this chapter have an
output space T given by [0, 1).

Example 3.1. Let S = Z11, the ring of integers modulo 11, T = [0, 1), τ(x) =
6x mod 11, ξ(x) = x/11, and x0 = 1. The first 12 numbers of the resulting
sequence are then

u0 = x0/11 = 1/11,
u1 = x1/11 = τ(1)/11 = 6/11,
u2 = x2/11 = τ(x1)/11 = τ(6)/11 = (36 mod 11)/11 = 3/11,
u3 = x3/11 = . . . = 18 mod 11/11 = 7/11,
u4 = x4/11 = . . . = 42 mod 11/11 = 9/11,
u5 = x5/11 = . . . = 54 mod 11/11 = 10/11,
u6 = x6/11 = . . . = 60 mod 11/11 = 5/11,
u7 = x7/11 = . . . = 30 mod 11/11 = 8/11,
u8 = x8/11 = . . . = 48 mod 11/11 = 4/11,
u9 = x9/11 = 2/11,
u10 = x10/11 = 1/11,
u11 = x11/11 = 6/11.

Of course, this extremely small generator should not be used in practice.
As shown above, it produces only ten different numbers between 0 and 1, and
the sequence repeats these ten numbers in the same order forever. In other
words, the period of this generator is 10, period meaning the smallest integer
ρ such that ui+ρ = ui for all i ≥ 0. In this example, the small period is due to

60 3 Pseudorandom Number Generators

the fact that we chose a very small state space S with only 11 elements, and,
by definition, a PRNG has a period of at most |S| since every time xi = x0

we have that τ(xi+j) = τ(xj) for all j ≥ 0. In Example 3.1, any seed x0

different from 0 produces a sequence with a period of length 10, while taking
x0 = 0 produces the sequence 0, 0, 0 . . . of period 1. In this case, we say the
generator has two possible cycles.

From this discussion, it is obvious that one of the important properties that
a good generator should have is a very long period. How long? The period
should be orders of magnitude larger than the total number N of values to be
output by the generator. By orders of magnitude, a rule of thumb might be
to say that the period should be at least N2, or maybe even N3. These magic
numbers come from systematic testing of generators [262, 271], where it has
been shown that if N/

√
ρ is large enough — that is, N is a large enough

fraction of the square root of the period ρ — then tests that look at the
first N numbers output by some types of generators can detect a departure
from true randomness. From this point of view, generators with a period of
about 231 should not be used since the square root of such periods is less
than one million. Note that generators with periods of that size are still in
use. For instance, one of the three generators available in Matlab 7.3.0 is a
multiplicative congruential generator with a period of 231 − 2 [499].

In addition to the period length, there are many other quantitative prop-
erties that can be used to assess the quality of a generator by making use
of various theoretical and statistical tests that have been developed for that
purpose. We will come back to this in Sect. 3.5.

The important qualitative properties that a generator should have are as
follows [248]: efficiency (both in terms of space and time), repeatability (as
discussed on p. 58), portability (that is, the sequence output by the generator
does not depend on the programming language, compiler, or machine used),
ease of implementation, and jumping ahead capabilities, which are useful
when the sequence output by the generator is subdivided into substreams so
that one can “jump” to the next substream without having to generate all
the intermediate values [272].

3.2 Generators based on linear recurrences

In this section, we discuss a few basic generators whose transition function is
described by a linear recurrence over a state space of the form Zm for some
positive integer m.

3.2 Generators based on linear recurrences 61

3.2.1 Recurrences over Zm for m ≥ 2

We will start with a very simple construction called a linear congruential
generator, which was introduced by Lehmer in 1949 [276].

Definition 3.2. A linear congruential generator (LCG) is a PRNG for which
S = Zm for some positive integer m, called the modulus, τ(x) = (ax+c) mod
m, where a ∈ Z\{0} is called the multiplier, c ∈ Z\{0} is the increment, and
ξ(x) = x/m.

Hence, an LCG is completely determined by the modulus m, the multiplier
a, and the increment c. The toy PRNG mentioned in Example 3.1 had m =
11, a = 6, and c = 0. When c = 0, the maximal period of an LCG is m − 1
and is obtained when m is a prime and a is a primitive element modulo m
[291]. That is, a must be a generator of the cyclic group (Z∗

m, ·), where Z
∗
m

represents Zm without the element 0, and · denotes multiplication modulo
m. In what follows, we drop the modulo m notation for convenience, as we
assume all operations are carried out in the ring Zm. To see why the maximal
period of m−1 is reached when the multiplier a is a primitive element modulo
m, consider the sequence output by the LCG in this case. It has the form

X = (x0/m, a · x0/m, (a2 · x0)/m, . . . , (am−1 · x0)/m, (am · x0)/m, . . .).

Since a is a primitive element modulo m, we have that ai �= aj for all 0 ≤
i �= j ≤ m − 2 and am−1 = 1. Since (Z∗

m, ·) is a cyclic group, x0a
i �= x0a

j

for all 0 ≤ i �= j ≤ m − 2, so the first m − 1 elements of X are all distinct,
and the mth one, (am−1 · x0)/m, is equal to x0/m. This means the sequence
starts repeating itself at that point.

An LCG with c = 0 and m prime is usually called a multiplicative linear
congruential generator (MLCG) (or sometimes just multiplicative congruen-
tial generator). Note that taking a nonzero increment c when m is prime
only has the benefit of allowing a period of m instead of m− 1 for the LCG.
A nonzero increment is more useful when m is not prime. For example, a
popular choice is to take m equal to a large power of two because arithmetic
operations in Zm then become easy to perform. That is, one can take m = 2e,
where e is the word size of the computer (e.g., e = 32), and then the mod-
ulo m operations are done automatically as arithmetic operations overflow.
However, when m is a power of two, if c = 0, then the maximal period of
the generator is m/4 and is reached when a mod 8 = 5 and x0 is odd. If c is
a nonzero odd integer and a mod 8 = 5, then the maximal period of m can
be reached with m a power of two [220]. The infamous generator RANDU,
known for severe defects due to abnormal correlations, is an LCG with a
power-of-two modulus defined by the recurrence xi = 65539xi−1 mod 231

[220].
In practice, since log2m cannot exceed the word length of the computer

used, LCGs cannot have a very long period and therefore should not be used.

62 3 Pseudorandom Number Generators

The reason why we talk about them here is that they provide a nice first
example of PRNG that can be understood easily. Also, this construction can
be used to construct recurrence-based point sets for quasi–Monte Carlo, as
discussed in Chap. 5. In addition, they can be used as the component of a
combined generator, as given in Def. 3.4.

One way of constructing a PRNG with a longer period than an LCG is to
use a recurrence of higher order for the transition function. This leads to the
more general notion of a multiple recursive generator (MRG) [159, 220].

Definition 3.3. Let k ≥ 1 and m be prime. A multiple recursive generator
is a PRNG for which S = Z

k
m, and the state yi = (xi, . . . , xi−k+1) at step i

evolves through the recurrence

xi = τ(yi−1) = (a1xi−1 + . . .+ akxi−k) mod m, i ≥ k, (3.1)

where aj ∈ Z for j = 1, . . . , k, ak �= 0, and the output is ξ(yi) = xi/m.

The case where k = 1 corresponds to the MLCG, which, as we saw, is
a special case of Def. 3.2. Another special case of an MRG is the additive
lagged-Fibonacci generator, where the transition function is given by

xi = (xi−r + xi−k) mod m.

For instance, Mitchell and Moore in 1958 proposed a generator based on the
recurrence

xi = (xi−24 + xi−55) mod 224.

Other types of lagged-Fibonacci generators are obtained by replacing (Zm,+)
by another pair of operation and state space.

The maximal period that can be reached by an MRG is mk − 1 and is
attained when the characteristic polynomial P (z) = zk − a1z

k−1 − . . . − ak

of the recurrence is a primitive polynomial (over the Galois field Fm) [291].
This means P (z) must be such that the smallest integer r for which

zr ≡ 1 mod P (z)

is r = mk−1. That is, the powers of z (modulo P (z)) from 0 tomk−1 generate
the set of nonzero polynomials over Fm of degree less than k. Methods for
testing primitivity are given in [221]. In particular, a necessary condition for
P (z) to be primitive is that ak and at least one other coefficient ar with
1 ≤ r < k must be nonzero. For this reason, MRGs based on trinomials are
often used, which then give a recurrence of the form

xi = (arxi−r + akxi−k) mod m

that can be implemented efficiently [252].
Another way of constructing a PRNG with a long period is to combine

several generators. More precisely, the idea is to run J generators in parallel

3.2 Generators based on linear recurrences 63

and then combine their respective states in some way to get an output for
the combined generator. Here we describe how to combine MRGs, an idea
that has led to several successful PRNGs currently used in practice.

Definition 3.4. For j = 1, . . . , J , let

xj,i = (aj,1xj,i−1 + . . .+ aj,kj
xj,i−kj

) mod mj , i ≥ kj (3.2)

be the recurrence defining the transition function of the jth generator. Let
δ1, . . . , δJ be arbitrary integers and define the outputs

zi = δ1x1,i + . . .+ δJxJ,i mod m1, ui = zi/m1,

and

wi =
(
δ1x1,i

m1
+ . . .+

δJxJ,i

mJ

)
mod 1. (3.3)

Then both zi and wi can be used as output for a combined MRG.

Let ρj be the period of the MRG defined by the recurrence (3.2). It can be
proved that under some conditions both sequences u0, u1, . . . and w0, w1, . . .
output by (3.3) have a period length ρ equal to the least common multiple of
ρ1, . . . , ρJ , and the sequence (3.3) is equivalent to an MRG with a composite
modulus and coefficients aj that can be computed explicitly, as explained in
[252]. This connection is useful when investigating the theoretical properties
of generators like this.

To illustrate the concept of combined generators, we can use the generator
MRG32k3a [252] mentioned in Chap. 1, which is a combined MRG with two
components and for which

x1,i = (1403580x1,i−2 − 810728x1,i−3) mod (232 − 209),
x2,i = (527612x2,i−1 − 1370589x2,i−3) mod (232 − 22853),
zi = (x1,i − x2,i) mod (232 − 209),
ui = zi/(232 − 209).

The parameters of this generator were found through extensive searches based
on theoretical and statistical tests.

Prior to this, Wichmann and Hill [474, 475] proposed a combined generator
based on three components and defined by

x1,i = 171x1,i−1 mod 30269,
x2,i = 172x2,i−1 mod 30307,
x3,i = 170x3,i−1 mod 30323,

wi =
(x1,i

30360
+

x2,i

30307
+

x3,i

30323

)
mod 1.

This generator is apparently used in Excel 2003 and Excel 2007 [493].

64 3 Pseudorandom Number Generators

3.2.2 Recurrences modulo 2

Because of the binary nature of computers, it certainly makes sense to try
using PRNG constructions that are defined directly in terms of binary oper-
ations. More formally, one can use recurrences over F2, the Galois field with
two elements, which we identify as 0 and 1. A first simple construction based
on this idea was proposed by Tausworthe in 1965 [434]as follows.

Definition 3.5. A linear feedback shift register (LFSR) (or Tausworthe gen-
erator) has a transition function based on the recurrence

xi = (a1xi−1 + . . .+ akxi−k) mod 2 (3.4)

and output value

ui =
L∑

j=1

xiν+j−12−j , (3.5)

where the step size ν and word length L are positive integers. (L is usually
taken to be equal to the word size of the machine; i.e., L = 32 or L = 64.)

If the recurrence (3.4) has a maximal period ρ of 2k − 1 and gcd(ρ, ν) = 1,
then the sequence u0, u1, . . . , also has period ρ [434]. Note that (3.4) is just
a special case of (3.1) with m = 2, which is why the maximal period is
2k − 1, and it is reached if the characteristic polynomial of the recurrence
P (z) = zk − a1z

k−1 − . . .− ak is a primitive polynomial over F2.
This construction has been generalized by replacing the “bits” xi by vectors

xi of L bits. That is, we can replace (3.4) by a recurrence of the form

xi = a1xi−1 + . . .+ akxi−k, (3.6)

where xi = (xi,1, . . . , xi,L) and all operations are performed modulo 2. In
other words, xi is obtained by performing a bitwise exclusive-or operation∗

on the vectors xi−j for which aj = 1. The state yi is then given by the vector
(xi, . . . ,xi−k+1) of kL bits, and the output is obtained as

ui =
L∑

j=1

xi,j2−j . (3.7)

This type of generator is called a generalized feedback shift register (GFSR)
[289]. It can be shown that the maximal period that can be reached by this
type of generator is still 2k − 1. Recall that, in principle, the period can be
as large as |S|, which in this case is 2kL since the state vector yi contains
kL bits. In order to get closer to this upper bound, the recurrence defining
the transition function of a GFSR needs to be generalized further, leading to

∗ The exclusive-or operation ⊕ is defined by the rule 0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1.

3.2 Generators based on linear recurrences 65

a class called twisted generalized feedback shift register (TGFSR) [309]. This
general class includes the well-known Mersenne-Twister [310]. To describe
this class, it is useful to first rewrite the GFSR using the matrix notation
[248]

xi = Axi−1,

where the xi are vectors of kL bits and A is a kL× kL matrix of the form

A =

⎛
⎜⎜⎜⎝

0 IL . . . 0
...

...
. . .

...
0 0 . . . IL
akI ak−1IL . . . a1IL

⎞
⎟⎟⎟⎠ ,

where IL is the L × L identity matrix. The twisted GFSR amounts to re-
placing the matrices ajIL on the last row of A by more general matrices.
In addition, the output function (3.7) can be generalized by using tempering
transformations. The well-known Mersenne-Twister MT19937 described in
[310] is a TGFSR to which such tempering has been applied. It is shown to
have a period of 2kL−r − 1 = 219937 − 1, where k = 624, L = 32, and r = 31
is a parameter that is used in the definition of the recurrence that deter-
mines the transition function. Several implementations of this generator can
be found on the Internet [487]. As we mentioned in Sect. 1.4, it is offered as
one of three possible generators in Matlab 7.3.0 and is the default generator
in Matlab 7.4.

It turns out that all these constructions can be defined using the following
general setup [267] based on matrix notation, which are referred to as F2-
linear generators in the recent survey [269].

Definition 3.6. An F2-linear generator has a state space S = F
k
2 for some

positive integer k, and for xi ∈ S,

xi = τ(xi−1) = Axi−1,

where A is a k × k matrix with entries in F2. The output is defined as

ui = ξ(xi) =
L∑

l=1

yi,l−12−l, (3.8)

where yi = (yi,0, . . . , yi,L−1)T, yi = Bxi, and B is an L × k matrix with
entries in F2.

In the definition above, the matrix A is the transition matrix and B is
the output matrix, which typically includes tempering transformations. The
maximal period length of 2k − 1 for this type of generator is attained if
P (z) = det(A − zIk) is a primitive polynomial over F2 [248, 339]. Several
generators based on this construction are proposed in [267], with periods
ranging between 264 − 1 and 2128 − 1.

66 3 Pseudorandom Number Generators

These F2-linear generators can be combined using similar ideas as for
MRGs [249, 268, 461]. More precisely, one can choose J generators re-
spectively based on matrices A1, B1, . . . , AJ , BJ . Then, at step i, com-
pute the state xi,j for each generator as xi,j = Ajxi−1,j and then define
yi = B1xi,1 ⊕ . . . ⊕ BJxi,J , where the ⊕ operation is a bitwise exclusive-or
performed on the L-bit vector operands. The output can then be defined as

ui =
L∑

l=1

yi,l2−l.

Examples of good combined Tausworthe generators with the relevant code
are given in [254]. Examples of good combined TGFSRs with tempering and
very long periods (up to about 21250) are given in [268], and more recent
constructions can be found in [372].

3.3 Add-with-carry and subtract-with-borrow
generators

This class of generators was proposed by Marsaglia and Zaman [304]. They
have similarities with MRGs but do not exactly fit Def. 3.3 due to their “add”
or “carry” features. More precisely, the add-with-carry (AWC) generator is
defined by the recurrence

xi = xi−r + xi−k + ci mod m, (3.9)
ci+1 = 1xi−r+xi−k+ci≥m,

where b and k > r are positive integers and ci is called the carry. Since
there is no multiplication involved and the value of ci+1 indicates whether m
must be subtracted or not when performing the modulo m operation in (3.9),
this generator is very fast. The recurrence defining the subtract-with-borrow
(SWB) generator is given by

xi = xi−r − xi−k − ci mod m,
ci+1 = 1xi−r−xi−k−ci<0,

where k > r and ci is called the borrow. A variant can be obtained by ex-
changing r and k in these recurrences. For both the AWC and SWB, the
carry/borrow can be thought of as a way of adding noise to an otherwise
simple lagged-Fibonacci generator. In addition, the output is produced us-
ing ideas similar to those used for LFSRs. That is, rather than defining
ui = xi/m, the output of the AWC and SWB can be defined more gen-
erally as

3.4 Nonlinear generators 67

ui =
L−1∑
j=0

xLi+jm
j−L.

Note that this is different from (3.5) in that the successive digits

xiL, xiL+1, . . . , xiL+L−1

are defining ui from the least significant to the most significant digit (and
also ν in (3.5) is taken equal to L here).

These generators are attractive because they are fast and can have a very
long period. For instance, one of the generators proposed in [304] is an SWB
with m = 232 − 5, k = 43, r = 22, and a period of m43 −m22 ≈ 21376. They
can also be combined and generalized in different ways [158].

It turns out that these two generators have been shown by Tezuka and
L’Ecuyer to be very closely related to an MLCG with modulus m̃ = mk +
mr ±1 for the AWC and m̃ = mk−mr ±1 for the SWB [447]. More precisely,
for m̃ prime, their output is equal (up to the first L digits) to that of an MLCG
with the modulus m̃ given above and the multiplier a = m(m̃−2)L mod m̃.
Therefore, the numbers ui produced by an AWC or SWB are within m−L

from those of the approximating MLCG. Unfortunately, this fact implies
that these generators have bad theoretical properties related to their lattice
structure and should therefore be avoided, as discussed in [65, 158, 448]. We
will briefly come back to this point in Sect. 3.5.1.

3.4 Nonlinear generators

The generators we have seen so far were all based on linear recurrences for
the transition function and linear output functions. For some applications
— such as cryptography — linear generators are not suitable because their
structure is too simple and makes it easy to predict the next number in
the output sequence. Nonlinear generators are based on transition functions
and/or output functions that are not linear and therefore have a structure
that is much more complicated than for linear generators. This makes them
better suited for applications where the unpredictability of the sequence is
important. However, these generators are often quite slow and therefore are
usually not suitable for applications where speed is important. An interesting
idea to get the best of both worlds is to combine a small nonlinear generator
with a large linear generator, as done in [261]. Further work in that direction
seems a promising research area.

We will not discuss nonlinear generators in detail here and instead illus-
trate the idea with a simple example. We refer the reader to the recent survey
[344] for information on these generators.

68 3 Pseudorandom Number Generators

Definition 3.7. An explicit inversive congruential generator [102] is de-
scribed by a transition function

xi = (ai+ c) mod m

and an output function

ui =
x−1

i

m
,

where x−1
i is the inverse of xi modulo m (that is, x−1

i is such that x−1
i xi =

1 mod m).

For instance, if m = 11, a = 6, and c = 1, then we have x0 = 1, x1 =
7, x2 = 13 mod 11 = 2, x3 = 19 mod 11 = 8, x4 = 25 mod 11 = 3, x5 =
31 mod 11 = 9, . . . , and so on. Therefore, u0 = 1/11, u1 = 8/11 (since 7 ×
8 mod 11 = 1), u2 = 6/11, u3 = 7/11, u4 = 4/11, u5 = 5/11, etc.

It can be shown that, for m prime, the inverse x−1
i can be computed as

x−1
i = (ai + c)m−2 mod m and the period of this generator is m. Also, here

the choice of parameters (a and c in this case) is not as crucial as it is for the
linear generators described in the previous section. This type of generator
was tested empirically alongside other well-known generators in [274].

3.5 Theoretical and statistical testing

For all the different families of generators that we have seen in the previ-
ous sections, parameters must be chosen to define a specific generator. For
example, for an MRG, we need to choose a prime m, an order k, and coeffi-
cients a1, . . . , ak in Zm. How do we do this? In practice, a typical approach
is to perform a search (exhaustive or not) in which several sets of param-
eters are tested by analyzing the quality of the resulting generator. In the
first stage, the tests performed are often of a theoretical nature. That is,
they look at certain properties of the generators over the whole period and
that can be analyzed in a precise, quantitative way. An obvious one is the
period length. Depending on the type of generator, we can define other cri-
teria, as discussed below. Once a few “good” generators have been found,
they can then be tested further using statistical tests, which analyze samples
produced by the generator and try to detect obvious discrepancies from “true
randomness”.

When talking about theoretical tests for a generator defined over a state
space S, it is useful to consider the following set:

Ψs = {(u0, u1, . . . , us−1) : x0 ∈ S}. (3.10)

That is, we look at all possible initial states (seeds) x0 and for each of
them form an s-dimensional point by taking the first s successive numbers

3.5 Theoretical and statistical testing 69

u0, u1, . . . , us−1 output by the generator with this seed. Hence Ψs contains
|S| points.

For instance, for the toy MLCG based on m = 11 and a = 6, for s = 2 we
have

Ψ2 = {(0, 0), (1/11, 6/11), (2/11, 1/11), (3/11, 5/11), (4/11, 2/11),
(5/11, 8/11), (6/11, 3/11), (7/11, 9/11), (8/11, 4/11),
(9/11, 10/11), (10/11, 5/11)} .

Note that for an MRG with maximal period mk−1, the set Ψs can be written
using the alternative definition

Ψs = {(ui, . . . , ui+s−1), i = 0, . . . ,mk − 2} ∪ {0},

assuming the seed used to initialize the sequence u0, u1, . . . is not zero. That
is, here we build Ψs by forming overlapping s-tuples from the sequence output
by the generator until the cycle starts to repeat itself. The s-dimensional point
0 — corresponding to the zero seed — is then added to the |S| − 1 = mk − 1
points obtained. Compared to (3.10), this simply lists the points in a different
order. Again using the toy MLCG with m = 11 and a = 6, this alternative
definition amounts to writing

Ψ2 = {(1/11, 6/11), (6/11, 3/11), (3/11, 7/11), (7/11, 9/11), (9/11, 10/11),
(10/11, 5/11), (5/11, 8/11), (8/11, 4/11), (4/11, 2/11), (2/11, 1/11)}
∪ {(0, 0)} .

The reason why the set Ψs is useful in understanding the theoretical prop-
erties of a generator is as follows [248]. Suppose the initial seed x0 of the gen-
erator is randomly chosen. If one uses the generator in an application where
s random numbers are needed for each run, then we can think of the vector
u containing these s numbers as being randomly chosen from the set Ψs.
Ideally (if we had a true random number generator), u should be uniformly
distributed over [0, 1)s. However, since Ψs is finite, the actual distribution is
only approximately uniform, and the quality of the approximation depends
on the structure of Ψs. If Ψs contains a very large number of points — which
amounts to asking S to be large — that are well spread out over [0, 1)s, then
the approximation should be reasonably good. If Ψs does not contain too
many points or if they are not very well spread out, then the approximation
will not be very good. As explained below, most theoretical tests thus look
at Ψs for different values of s and try to measure its uniformity.

70 3 Pseudorandom Number Generators

3.5.1 Theoretical tests for MRGs

For MRGs, the set Ψs has a lattice structure [30, 220, 302, 384]. That is, it
can be written as Ψs = Ls ∩ [0, 1)s, where Ls is a lattice defined by

Ls =

⎧⎨
⎩x =

s∑
j=1

zjvj : z = (z1, . . . , zs) ∈ Z
s

⎫⎬
⎭ , (3.11)

for some vectors v1, . . . ,vs ∈ R
s that depend on the coefficients aj of the

recurrence and the modulus m [259]. These vectors are said to form a basis
for Ls because Ls is obtained by considering all possible integer linear com-
binations of the vectors vj . Note that the choice of basis is not unique [54].
Figure 3.1 shows an example of the set Ψ2 for an MLCG with m = 251 and
a = 33.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

.

..

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.
.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

..

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

Fig. 3.1 Lattice structure of Ψ2 for the MLCG based on m = 251 and a = 33.

For an MLCG, note that

Ψs =
{(

x0

m
,
ax0

m
,
a2x0

m
, . . . ,

as−1x0

m

)
: 1 ≤ x0 ≤ m− 1

}
∪ {0},

where all operations are performed modulo m. Hence, in this case, a possible
choice for the basis v1, . . . ,vs defining the lattice L is to take

3.5 Theoretical and statistical testing 71

v1 = (1, a/m, a2/m, . . . , as−1/m),
v2 = (0, 1, 0, . . . , 0),

...
vs = (0, . . . , 0, 1).

The coefficient z1 in (3.11) is then used to determine one of the m points in
Ψs, and the other coefficients z2, . . . , zs simply determine a unit cube in Z

s.
Theoretical tests for MRGs usually consider the lattice structure of Ψs for

some value of s and try to measure its uniformity. For example, in the spec-
tral test [68], one measures the largest distance ds between adjacent parallel
hyperplanes that together cover the points in Ψs. The smaller this distance is,
the better the uniformity of Ψs. Figure 3.2 shows two successive hyperplanes
separated by d2 for two small MLCGs. On the left-hand side, d2 = 0.128,
while on the right-hand side it is equal to 0.196. (We will explain shortly how
to compute these numbers.) Thus, from the point of view of the spectral test,
the set of the left-hand side is better because the corresponding value of d2

is smaller. The spectral test can also be generalized in a way that makes it
useful for studying generators that do not necessarily have a lattice structure
(e.g., nonlinear generators) [174], but we will not discuss these generalizations
here.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

..
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

Fig. 3.2 Hyperplanes at a distance d2 for the MLCG based on n = 61 and a = 11 (left)
or a = 5 (right).

Another possibility is to count the number of hyperplanes that intersect
[0, 1)s for the family of hyperplanes that are the farthest apart [85, 302]. For
instance, in Fig. 3.2, on the left-hand side there are ten lines for the family
of lines that are the farthest apart, while there are only five such lines for the
MLCG shown on the right-hand side. It turns out that one of the weaknesses
of the generator RANDU that was mentioned on p. 24 of Chap. 1 is that the
set Ψ3 for the generator falls on only 15 parallel hyperplanes.

72 3 Pseudorandom Number Generators

To give an idea of how to compute ds, we will use simple examples to
illustrate what is at stake here. Methods for doing this actually compute
�s = d−1

s , which turns out to be the length of the shortest vector — using
the L2 norm — in the dual lattice L∗

s of Ls, defined by

L∗
s = {h ∈ R

s : h · v ∈ Z for all v ∈ L},

where the operation · in h ·z is the product h1z1 + . . .+hszs. So, for instance,
because (1/m, a/m, . . . , as−1/m) is in Ls, a necessary condition for h to be
in L∗

s is that we must have

h1

m
+
h2a

m
+ . . .+

hsa
s−1

m
∈ Z,

which holds if and only if

h1 + h2a+ . . .+ hsa
s−1 = 0 mod m.

Another way of understanding how this dual lattice is related to the orig-
inal lattice Ls (3.11) on which the points of Ψs lie is to observe that a basis
for L∗

s can be obtained by taking the columns of the inverse of the matrix
that has the vectors v1, . . . ,vs used in (3.11) on its rows [54]. For instance,
if m = 61 and a = 5, then for s = 2 we can use the basis v1 = (1/61, 5/61)
and v2 = (0, 1) for L2. Since

(
1/61 5/61

0 1

)−1

=
(

61 −5
0 1

)
,

the vectors (61, 0) and (−5, 1) form a basis for the two-dimensional dual
lattice L∗

2 of this MLCG. For this simple example, it turns out that (−5, 1)
is the shortest vector in L∗

2, with a length of
√

26. This corresponds to the
distance of 1/

√
26 = 0.196 between the two hyperplanes that are highlighted

on the right-hand side of Fig. 3.2. For the MLCG with m = 61 and a = 11
shown on the left-hand side of this figure, we can similarly obtain the vectors
(61, 0) and (−11, 1) as a basis for the corresponding dual lattice L∗

2. In this
case, the vector (61, 0)+5(−11, 1) = (6, 5) is the shortest vector for L∗

2, with
a length

√
61, whose inverse 1/

√
61 = 0.128 equals the distance between the

hyperplanes highlighted on the left-hand side of Fig. 3.2.
For these two simple examples, it was easy to find the shortest vector in L∗

s.
In general, sophisticated methods such as those described in [106, 108, 118,
221, 259] need to be used in order to determine this quantity. The problem can
be formulated using integer programming with a quadratic objective function
because the goal is to find (z1, . . . , zs) in Z

s such that ‖z1w1 + . . .+zsws‖2 is
minimized, where w1, . . . ,ws is a basis for L∗

s. The choice of the basis turns
out to be quite important for methods that attempt to solve this problem.

3.5 Theoretical and statistical testing 73

Note that for the general problem of finding the shortest vector in a lattice,
there is no known polynomial-time algorithm that can find an exact solution.
Actually, this problem is hard enough that some people study cryptographic
systems based on the difficulty of finding such vectors, just like RSA-type
cryptographic systems are based on the fact that factoring large integers is
a difficult problem for classical computers. In this context, norms other than
the Euclidean norm might be used. Alternative norms can also be useful for
testing MRGs. For instance, the length of the shortest vector in the dual
lattice measured using the L1 norm (i.e., using the norm ‖x‖1 = |x1| + . . .+
|xs|) is equal to one plus the number of hyperplanes on which the points of
Ψs lie. As before, this is for the family of hyperplanes that are the farthest
apart [85].

Interestingly, the original description and name of the spectral test were
not based on the geometrical interpretation above, but instead on looking at
the quantity

S(h) =
1
|S|

∑
u∈Ψs

eh·u, (3.12)

where |S| is the cardinality of the state space S (and thus of Ψs), and the
operation · in h · u is the product h1u1 + . . . + hsus. For a truly uniform
vector u, we have that

E(eh·u) =
{

1 if hj = 0 mod m for all j,
0 else.

From this point of view, S(h) represents an approximation for the expectation
E(eh·u), which is obtained by averaging over the points in Ψs. Coveyou and
MacPherson argue in [68] that “wave functions” S(h) with a “smaller” h (i.e.,
low-frequency waves) are the most important, and for that reason one should
know what is the worst (smallest) vector h for which the corresponding wave
function S(h) fails to correctly approximate the true value E(eh·u). Using
the fact that if h ∈ L∗

s , then S(h) = 1, we see that this is precisely what ls
measures.

Now, assuming that ds can be computed (or at least approximated), the
next step is to decide for which values of s we should compute ds. Typically,
when a generator is designed, the broad area for which it will be used may
be known, but not the specific applications. Therefore, generators should be
designed so that they do well for a variety of applications. From this point
of view, choosing a single value of s for which ds will be computed is not
realistic. Instead, what is typically done is that ds is computed for several
values of s. For example, in one of the first papers where the spectral test
was used to systematically search for good MLCGs [123], ds was computed
for s = 2, . . . , 6.

The next thing to do is to determine how these values ds obtained for dif-
ferent s should be compared when assessing the generator. When s increases,
the notion of distance changes too and therefore one should attempt to scale

74 3 Pseudorandom Number Generators

the different ds values so that they can be compared more fairly. One possi-
bility is to try to use theoretical lower bounds d∗s for ds and then scale each
ds as d∗s/ds, which will be a value between 0 and 1. These lower bounds can
be computed exactly for s ≤ 8, and otherwise certain bounds can be found,
as discussed in [61, 253]. These lower bounds represent the shortest possible
distance between hyperplanes that can be achieved for s-dimensional lattices
whose basis vectors are in R

s and thus cannot necessarily be realized among
the set of all possible MRGs. That is, even the best possible MRGs might
have d∗s/ds < 1 as they are restricted to rational vectors for their basis.

Once the values ds are normalized like this, one can define a figure of merit
such as

MT = min
2≤s≤T

d∗s/ds,

which returns the smallest (worst) normalized ds for all s considered. For
instance, in [119, 123], exhaustive searches to find all multipliers satisfying
M6 ≥ 0.8 were done for m = 231 − 1 and m = 232, respectively. Just to
give an idea, for the modulus m = 231 − 1, out of the 534 million multipliers
yielding a maximal period, only 414 satisfied the bound M6 ≥ 0.8.

In addition, one can compute ds for sets of the form

ΨI = {(ui1 , ui2 , . . . , uis
) : x0 ∈ S}, (3.13)

where I = {i1, . . . , is} and 1 ≤ i1 < i2 < . . . < is [250]. Using lacunary indices
i1, . . . , is like this can help detect problems that would not be uncovered by
restricting the assessment only to successive indices, as is done with Ψs since
in that case I = {1, 2, . . . , s}. For instance, L’Ecuyer shows in [250] that one
of the SWB generators recommended in [204] is such that the set Ψ{1,11,25}
lies within a distance of 2−24 from a pair of planes that are 1/

√
3 apart, which

is very large. This means that if this generator is used for a problem whose
dimension (i.e., the number of uniform numbers used per run) is at least 25,
then severe three-dimensional correlations might create abnormal results.

Using this broader type of subset leads to the general criterion

MI = min
I⊆I

d∗|I|/dI

for testing MRGs, where I is a set of subsets I, dI is the quantity computed
by the spectral test for ΨI (i.e., the maximal distance between hyperplanes),
and d∗|I| is a lower bound on dI . Criteria like this have been proposed and used
in [264] to find LCGs that can be used for quasi–Monte Carlo integration.
There, the set I was of the form

I = {{1, 2, . . . , t1}, {1, t2}, {1, s3, t3}, {1, r4, s4, t4}, 2 ≤ t1 ≤ d1, 2 ≤ t2 ≤ d2,

2 ≤ s3 < t3 ≤ d3, 2 ≤ r4 < s4 < t4 ≤ d4}

3.5 Theoretical and statistical testing 75

for integers d1, d2, d3, d4 ≥ 2 (for example, d1 = 32, d2 = 24, d3 = 12, d4 = 8
are used in [264]). More recent work in this area can be found in [106, 108].

To conclude our discussion of the spectral test, we would like to mention
that despite the fact that ds is difficult to compute, there are useful bounds
that can be used to make an initial assessment about the quality of the lattice
structure of a generator [159, 250].

Theorem 3.8. (i) For an MRG of order k and based on the coefficients
a1, . . . , ak, we have that

ds ≥
(

1 +
k∑

i=1

a2
i

)−1/2

.

(ii) For an MLCG with multiplier a, if the modulus m can be expressed as

m =
t∑

j=1

cij
aij

for some integers cij
, for j = 1, . . . , t, then for I = {i1, . . . , it} we have that

dI ≥

⎛
⎝ t∑

j=1

c2ij

⎞
⎠

−1/2

.

Result (ii) above is the reason why the AWC and SWB generators do not
do well in the spectral test. Recall that these generators can be closely ap-
proximated by an MLCG with m of the form ak ± ar ± 1, which means that
dI ≥ 1/

√
3 for I = {1, r − 1, k − 1}.

3.5.2 Theoretical tests for PRNGs based
on recurrences modulo 2

Here we are still trying to measure the uniformity of sets of the form Ψs,
but the tools are different because the structure of Ψs is different. However,
it is interesting to note that, for F2-linear generators, Ψs also has a lattice
structure, but in a different mathematical sense. Although the tests we are
about to present can be explained in this lattice setting, we prefer to use
a geometrical interpretation to describe them, and we refer the reader to
[66, 135, 256, 268, 435, 437, 441] for more information on the lattice structure
of these generators, which will also be discussed in Chap. 5.

We discuss two quantities that can be used to measure the uniformity of
Ψs for generators based on recurrences modulo 2. They are both related to
the concept of (q1, . . . , qs)-equidistribution, which we now define:

76 3 Pseudorandom Number Generators

Definition 3.9. Let q1, . . . , qs be nonegative integers, and let q = q1+. . .+qs.
A set Ψs of 2k points in [0, 1)s is (q1, . . . , qs)-equidistributed (in base 2) if every
cell of the form

s∏
j=1

[
rj

2qj
,
rj + 1
2qj

)
, (3.14)

for 0 ≤ rj < 2qj , j = 1, . . . , s, contains 2k−q points from Ψs.

In other words, here we partition the unit cube in 2q congruent boxes of
size 2−qj in dimension j and verify that each box contains the same number
of points. Obviously, this condition can only be satisfied if there are at least
as many points as there are boxes, which means we must have q ≤ k. The
boxes (3.14) are often referred to as elementary intervals [335].

In Fig. 3.3, we show the point set Ψ2 obtained from an LFSR with k = 6
and illustrate its (1, 3)-equidistribution and (3, 1)-equidistribution on the left-
hand side and right-hand side, respectively. Details about the LFSR used to
produce this figure are given at the end of this subsection.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 3.3 (1, 3)-equidistribution (left) and (3, 1)-equidistribution (right) of a set Ψ2 with
64 points. In both cases, each of the 16 boxes contains four points.

The first criterion that we present is called the resolution in [249].

Definition 3.10. The resolution of Ψs is the largest integer �s such that Ψs

is (�s, . . . , �s)-equidistributed.

The geometric interpretation for the resolution is that �s is the largest
integer such that we can partition [0, 1)s into congruent cubic boxes of volume
2−s�s — this is done by partitioning each axis into 2�s intervals of size 2−�s

— and get an equal number of points from Ψs in each box. Alternatively,
a generator that has a resolution of �s in s dimensions is said to be (s, �s)-
equidistributed, or s-distributed to �s bits of accuracy [135, 220, 450]. For
instance, the Mersenne-Twister MT19937 is said to be “623-distributed” up

3.5 Theoretical and statistical testing 77

to 32 bits of accuracy. This means that the resolution of the corresponding
623-dimensional point set Ψ623 has resolution �623 = 32.

By definition, �s ≤ �∗s := min(�k/s�, L), where L is the number of bits
used in the representation of the numbers output by the generator, as given
in (3.8), and k is such that |S| = 2k. Figure 3.4 shows that the point set
Ψ2 with k = 6 from Fig. 3.3 has a resolution �2 of 2. That is, each of the
22×2 = 16 squares shown in this figure contains 2k−4 = 22 = 4 points from
Ψ2. But �2 �= 3 since for the 64 squares of size 1/8×1/8, half of them contain
two points, while the other half contain none. For the Mersenne-Twister
MT19937, since k = 19937 and L = 32 in this case, the 623-dimensional
resolution �623 of 32 is maximal because �19937/623� = 32.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 3.4 Ψ2 has a resolution �2 = 2.

If a generator is such that �s = �∗s for s = 1, . . . , k, then it is said to
be maximally equidistributed [135, 248], or asymptotically random [450]. The
Mersenne-Twister MT19937 is not maximally equidistributed since for in-
stance �6241 < �∗6241 = �19937/6241� = 3 (see [310, Table II]). Note that since
k = 19937 for the Mersenne-Twister, the resolution �s for all s = 1, . . . , 19937
would need to reach its maximal upper bound in order for this generator to
be maximally equidistributed. Generators that are maximally equidistributed
can be found in [254, 267, 268].

Similarly to what was discussed for the spectral test, more complex criteria
based on the resolution can be defined, such as

ΔI = min
I∈I

(�I/�∗|I|),

where �I is the resolution of the set ΨI defined in (3.13), �∗|I| = min(k/|I|, L)
is the maximum resolution for a set of 2k points — defined over L bits — in
dimension |I|, and I is a set of subsets I [268].

78 3 Pseudorandom Number Generators

We now present a second criterion for generators based on recurrences
modulo 2. The terminology used here comes from [82].

Definition 3.11. The t-value of Ψs is the smallest integer t such that Ψs

is (q1, . . . , qs)-equidistributed for all (q1, . . . , qs) satisfying q ≤ k − t, where
q = q1 + . . .+ qs.

The origin of this criterion goes back to Sobol’ [415], who labeled it as τ
to measure the quality of his so-called LPτ -sequence, which is now usually
referred to as the Sobol’ sequence. The notation with the letter t was intro-
duced by Niederreiter in [335] and is widely used in the study of quasi–Monte
Carlo methods. The smaller t is, the better the equidistribution.

If we compare it with the resolution, we observe that the equidistribution
measured by the t-value is not restricted to cubic boxes as was the case for
the resolution. This means that it measures the equidistribution to a greater
extent than the resolution does. It also implies that computing t is more
difficult than computing the resolution because more partitions of boxes must
be considered. In practice, the resolution and related criteria are typically
used to evaluate the quality of generators based on recurrences modulo 2.
The t-value is mostly used for finding small generators that can be used for
quasi–Monte Carlo integration.

We now turn to the problem of computing the resolution and t-value. Just
as we did for the spectral test, here we will only give the basic principles and
illustrate with a very simple example how this works. We refer the reader
to [66, 135, 249, 378, 441] for more information and efficient algorithms to
compute these quantities.

The first thing to note is that the dyadic elementary intervals defined in
(3.14) play a key role in these two quality criteria. It is useful to label these
intervals using the integers (r1, . . . , rs) introduced in (3.14), which determine
the position of the elementary interval in the unit cube [0, 1)s. For instance,
if s = 2 and q1 = 3, q2 = 1, then (r1, r2) = (2, 1) refers to the rectangle with
corners at (0.25, 0.5), (0.25, 1), (0.375, 0.5), and (0.375, 1), which is shown
with complete (nondashed) lines on the right-hand side of Fig. 3.3. The next
thing to understand is that to verify the (q1, . . . , qs)-equidistribution of Ψs,
for each point u = (u0, . . . , us−1) in Ψs, we need to look at the first q1 bits
of u0, the first q2 bits of u1, and so on, finishing off with the first qs bits of
us−1. These s bit strings identify a label (r1, . . . , rs) that indicates in which
elementary interval u is. The third thing to notice is that each point u in Ψs

is obtained by choosing one of the 2k possible initial states x0 to initialize
the generator. Hence, we are looking at a system of the form

Cx0 = y, (3.15)

where x0 runs over the set of k-bit vectors that can be used as initial states,
y = (y0,1, . . . , y0,q1 , . . . , ys−1,1, . . . , ys−1,qs

) is a q-bit vector containing the
first q1 bits of u0, the first q2 bits of u1, and so on, and it identifies an

3.5 Theoretical and statistical testing 79

elementary interval. The q × k matrix C := C(A,B, q1, . . . , qs) depends on
the generator and represents the linear transformation used to turn x0 into
y. Based on the general setup given in Def. 3.6, it is possible to verify that

C(A,B, q1, . . . , qs) =

⎛
⎜⎜⎜⎝

Bq1

Bq2A
...

Bqs
As−1

⎞
⎟⎟⎟⎠ , (3.16)

where the notation Br represents the r× k matrix formed by the first r rows
of the output matrix B of the generator. That is, (3.15) and (3.16) tell us
that the bits y0,1, . . . , y0,q1 are obtained by applying the output matrix Bq1

to x0, the q2 bits y1,1, . . . , y1,q2 are obtained by first applying A to x0 and
then applying Bq2 , and so on until the qs bits ys−1,1, . . . , ys−1,qs

, obtained by
applying A a total of s− 1 times to x0, and then applying Bqs

.
Now, in this setup, being (q1, . . . , qs)-equidistributed means that when x0

runs over all 2k possible k-bit vectors, each possible q-bit vector (there are
2q of them) occurs the same number of times when the linear transformation
C is applied to all possible x0’s. As noted before, this “number of times” is
necessarily given by 2k−q, which implies that we must have q ≤ k for this
property to make sense. Note that the matrix C is a q × k binary matrix.
Therefore, the property that we are looking for is that we want this matrix
to have rank q. Based on this fact, if, for example, we want to know whether
or not Ψs has maximal resolution �∗s , then we just need to construct the
matrix C(A,B, �∗s , . . . , �

∗
s) required to test the (�∗s , . . . , �

∗
s)-equidistribution of

Ψs and verify that it has rank s�∗s. If instead we want to verify whether or not
the t-value equals a certain value T , then we need to verify for each matrix
C(A,B, q1, . . . , qs) corresponding to vectors (q1, . . . , qs) such that q ≤ k−T if
the matrix has the desired rank q. The fact that there are several such vectors
is the reason why computing t is more time-consuming than computing the
resolution.

To conclude this discussion, we look at a very simple example and compute
the resolution and t-value for s = 2. The generator we use is the LFSR whose
corresponding two-dimensional sample set Ψ2 is shown in Figs. 3.3 and 3.4.
This generator is based on the recurrence

xi = (xi−5 + xi−6) mod 2

and output function

ui =
6∑

j=1

x4i+j−12−j .

The corresponding matrix A is given by

80 3 Pseudorandom Number Generators

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

4

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

and B = I6, the 6× 6 identity matrix. We will look at (q1 + q2)× k matrices
C(A,B, q1, q2) obtained by taking the first q1 rows of I6 and the first q2 rows
of A. First consider the matrix C(A,B, 3, 3). If its rank is 3 + 3 = 6, then it
means that �2 = 3. It turns out that its rank is 5. However, the rank of the
matrix C(A,B, 2, 2) is 4, and thus �2 = 2, as we can see in Fig. 3.4.

Moving on to the determination of the t-value, we already know that
t > 0 since �2 < 3, and thus Ψ2 is not (3, 3)-equidistributed. So now we
want to check if t ≤ 2. We know the (2, 2)-equidistribution holds, but
we need to verify the (0, 4)-, (4, 0)-, (3, 1)-, and (1, 3)-equidistributions.
That is, we need to verify that C(A,B, q1, q2) has rank 4 for (q1, q2) in
{(0, 4), (4, 0), (3, 1), (1, 3)}, which they all do. So we know t ≤ 2. Similarly, to
determine if t = 1, we need to check that C(A,B, q1, q2) has rank 5 for (q1, q2)
in {(5, 0), (0, 5), (1, 4), (4, 1), (2, 3), (3, 2)}. They all do except C(A,B, 2, 3),
and so t = 2. The failure to be (2, 3)-equidistributed can be seen in Fig. 3.4,
where it is clear that if we slice each of the cubic boxes horizontally, one of
the 1/4 × 1/8 rectangles thus obtained contains two points, while the other
contains none.

3.5.3 Statistical tests

Once a generator with good theoretical properties has been identified — for
instance, a combined MRG with a long period and good results with respect
to the spectral test — the next step is to test its local properties with the
help of various statistical tests.

In general, statistical tests for random number generators test the hypoth-
esis

H0 : the sequence u0, u1, . . . output by the generator is a sequence of i.i.d.
U(0, 1) random variables.

They do so by forming a test statistic of the form

Z = ζ(u0, u1, . . . , un−1)

based on the n first numbers u0, . . . , un−1 output by the generator, and whose
distribution underH0 is known or can be approximated. We can then formally
test H0 by computing the associated p-value. For instance, if we fix a level
of type I error α (the probability of rejecting H0 given that H0 is true), then

3.5 Theoretical and statistical testing 81

we reject H0 if the p-value is smaller than α. Alternatively, without formally
fixing α, we can compute the p-value and become “suspicious” when it is
considered “small”.

Of course, the deterministic nature of PRNGs implies thatH0 is necessarily
false for them. From this point of view, it seems like applying such tests is a
waste of time because we know there exists at least one test for which H0 will
be rejected. The reason why these tests are still useful is that although we
know H0 is false, if it is difficult to gather statistical evidence showing that
H0 is false, then we can have more confidence in the underlying generator
than if it is very easy to find a test for which H0 is rejected.

Now, the next question is: Which tests should be performed? The setup
above, where each function ζ gives rise to a different test, provides us with an
unmanageably large number of choices. A reasonable approach is to choose
functions ζ that share similarities with the applications for which the gener-
ator is likely to be used. Unfortunately, we usually do not have this kind of
knowledge when generators are designed. As a compromise, we can look for
functions ζ that measure a more “intuitive” notion of uniformity and/or that
seem more “natural”.

There are several packages for testing randomness that include a wide vari-
ety of tests like that. Examples are the Diehard package of George Marsaglia
[503], the TestU01 package of Pierre L’Ecuyer and Richard Simard [497], and
a package developed by NIST (National Institute of Standards and Technol-
ogy) [486]. Here we mention a few tests that are commonly used and refer
the reader to [120, 221, 251, 262, 269, 391, 471] and the references therein
for more examples. Just to give an idea, NIST recommends 16 tests be used
when assessing a generator, while Knuth recommends 13 tests [221]. In the
library TestU01, the smallest battery of tests offered computes a total of 144
test statistics and p-values for each generator tested.

We will not attempt to create our own list of tests that should be per-
formed on a generator to make sure it is safe. Our “recommendation” for
users who need random numbers is to either use a well-tested generator like
MRG32k3a or else, if one wants to use a known generator (perhaps one that
is implemented in the programming language/software used), at least make
sure it is not on a “blacklist” somewhere for having failed too many tests (see,
for instance, Table 1 in [269]). If it is not a known generator, then at least
apply some battery of tests (such as SmallCrush from TestU01) to make sure
there is no gross defect. The information given below should be sufficient for
understanding the contents of such batteries of tests and how they operate.

We start by describing a very common test called the serial test [220],
and then we will describe a general setup that includes several tests used in
practice.

The serial test is simply a Pearson chi-square goodness-of-fit test such as
those typically done when testing if a sample of observations follows a given
distribution. In our case, the sample is obtained by forming r vectors of s
points obtained by n = rs successive calls to the generator. That is, we look

82 3 Pseudorandom Number Generators

at
ui = (usi, usi+1, . . . , usi+s−1), i = 0, . . . , r − 1.

We then consider a group of k = ds cubic cells in [0, 1)s obtained by parti-
tioning each interval [0, 1) into d subintervals of length 1/d. The statistic Z
for the serial test is formed by counting the number of points in the sample
u0, . . . ,ur−1 that fall in each cell. More precisely, let Nj be the number of
points that fall in cell j for j = 1, . . . , k (assuming a given labeling has been
chosen for the cells). The vector (N1, . . . , Nk) then has a multinomial distri-
bution with parameters (k, p1, . . . , pk), where pj = 1/k for each j = 1, . . . , k.
From standard results in statistics, under H0 the distribution of the quantity

X2 =
k∑

j=1

(Nj − r/k)2

r/k

approaches a chi-square distribution with k − 1 degrees of freedom as r goes
to infinity. Typically, a rule of thumb is to say that if the expected number
of points per cell r/k is at least 5, then the approximation by a chi-square
should be reasonably good. We can then compute the value taken by X2

for a given sample — call it x — and determine p = P (X2 > x|H0) or
p = P (X2 < x|H0). For instance, suppose s = 2, d = 5, r =10,000, and
that we get x = 5. For a chi-square random variable X2 with 24 degrees of
freedom, we have that p = P (X2 < 5) = 1.26 × 10−5 is very small, which
suggests that H0 should be rejected. In other words, the sample considered
is “too uniform”. A two-sided test with α > 2.52 × 10−5 would reject H0 in
this case.

It turns out that several other tests can be derived from the vector
(N1, . . . , Nk) described above. More generally, we can use the following setup
to describe several statistical tests commonly used for random number gen-
erators [262]. Consider

Z =
k∑

j=1

β(Nj),

where β is a real-valued function. For example, we have

Serial test : Z = X2 =
∑k

j=1
(Nj−r/k)2

r/k ,

Negative entropy : Z = −H =
∑k

j=1(Nj/r) log2(Nj/r),
Collisions : Z = C =

∑k
j=1(Nj − 1)1Nj>1.

For these three examples, a larger value of Z means the points are less uni-
formly distributed in [0, 1)s. A very small value of Z means the points are
very (maybe too much) uniformly distributed in [0, 1)s. The negative entropy
can be related to a loglikelihood ratio test for the multinomial distribution
[251]. The collisions test counts the number of collisions that occur within

3.5 Theoretical and statistical testing 83

the sample, where by collision we mean that a point falls in a cell already
occupied by at least one other point.

Once a function β is chosen, the next step is to determine the distribution
of Z under H0 or at least get an approximation for it. We already saw that,
under H0 and the assumption that r/k ≥ 5, the distribution of X2 was ap-
proximately chi-square. An important factor that determines the distribution
of Z is whether we are working in a dense case setting or a sparse case setting.
The sparse case means roughly that r/k is small, so that we are very likely
to observe zero values for some of the variables Nj . The dense case means
r/k is quite large. For instance, the setting we described for the serial test
was the dense case because we (implicitly) assumed k was fixed and looked
at the distribution of X2 as r → ∞. More generally, we have Theorem 3.12.

Theorem 3.12. [262] (Dense case) Under H0 and when k is fixed and r →
∞, under some mild conditions we have

Z − E(Z) + (k − 1)σc

σc
⇒ χ2(k − 1),

where σ2
c = Var(Z)/(2(k − 1)), χ2(k − 1) denotes the chi-square distribution

with k − 1 degrees of freedom.

The mild conditions mentioned in the statement of this theorem are sat-
isfied by X2 and −H but not C. Knuth shows how to compute the exact
distribution of C in [220]. The case Z = X2 discussed previously fits the
setup of Theorem 3.12, with E(Z) = k − 1 and σc = 1. For Z = −H,
the connection with the loglikelihood ratio test can be used to show that
E(Z) = log2(k) − (k − 1)/2n ln 2 and Var(Z) = (k − 1)/(2n2(ln 2)2) [251].

The sparse case differs from the dense case in that as r goes to infinity we
also make the number of cells k go to infinity in such a way that the average
number of points per cell r/k tends toward a constant δ. More precisely, we
have Theorem 3.13.

Theorem 3.13. [262] (Sparse case) Under H0 and when k → ∞, r → ∞,
and r/k → δ, where 0 < δ <∞, under mild conditions

Z − E(Z)√
Var(Z)

⇒ N(0, 1). (3.17)

In the sparse case, the mild conditions are satisfied by X2, −H, and C.
General expressions for E(Z) and Var(Z) are given in [273]. Once those are
evaluated, we can compute p-values; i.e., p = P (Z > z|H0), where z is the
value of Z obtained for a given sample. If p is too small, then H0 should
be rejected. It should be noted that since the statistic C is integer-valued,
the approximation (3.17) by the normal distribution is good only if the expec-
tation of C is large enough. If it is too small (e.g., smaller than 50 or so [262]),
then a Poisson approximation should be used instead. For instance, in [255],

84 3 Pseudorandom Number Generators

the collision test is performed on several widely used generators with s = 2,
d = r/16, and r equal to different powers of two ranging between 215 and
220. The distribution of Z in this case is Poisson with a mean λ = r2/(2k),
which in the setting of [255] gives λ = 128.

Another family of tests that can be defined using the setup above is as
follows [271]. Define Ii as the number (label) of the cell where ui has fallen.
Then sort these variables in increasing order, thereby obtaining I(0) ≤ I(1) ≤
. . . ≤ I(r−1). Compute the spacings Sj = I(j) − I(j−1) for j = 1, . . . , r − 1,
and let Z := B be the number of collisions between these spacings, that is,
the number of j in {1, . . . , r− 2} such that S(j) = S(j+1), where S(1) ≤ . . . ≤
S(r−1) are the order statistics of the spacings S1, . . . , Sr−1. This test is called
the birthday spacings test in [303], where it was introduced, because we can
view each point ui as a “person” with a “birthday” Ii in a year with k days.

For instance, suppose we have a sample of r = 8 and k = 4 cells. Assume
the eight points fall in cells 4, 4, 2, 1, 1, 3, 1, 4. Then I(0) = I(1) = I(2) = 1,
I(3) = 2, I(4) = 3, and I(5) = I(6) = I(7) = 4, so that S1 = 0, S2 = 0, S3 =
1, S4 = 1, S5 = 1, S6 = 0, S7 = 0. Hence S(1) = . . . S(4) = 0 and S(5) = . . . =
S(7) = 1, which means B = 5.

It can be shown that if r is large and λ = r3/4k is small, then under H0,
B follows approximately the Poisson distribution with mean λ [271]. One can
then compute P (B ≥ z|H0) or P (B < z|H0), where z is the value of Z for
a given sample, and reject H0 if the p-value is too small. To give an idea
of what is a “large” r and a “small” λ, in [271] values of r of about ρ1/3

are used (where ρ is the period of the generator under study) and d chosen
so that r/k = r/ds is about 1. See Prob. 3.15 for more specific examples of
parameters.

So far, we have assumed that the sample u0, . . . ,ur−1 was formed by using
nonoverlapping numbers produced by the generator. For this reason, under
H0, these r points are assumed to be independent. Alternatively, one can use
overlapping points. That is, the points in the sample are then defined as ui =
(ui, ui+1, . . . , ui+s−1) for i = 0, . . . , r−1. One advantage of these overlapping
tests over their nonoverlapping counterpart is that they can detect departures
from H0 almost as well, although they require n = r + s − 1 numbers to be
output by the generator rather than n = rs. On the other hand, finding
the distribution of the corresponding test statistic in the overlapping case is
usually much more difficult [471].

Finally, in addition to computing p-values in order to give us an idea of how
likely it is to have observed a value z for the statistic Z, another possibility is
to perform a second-level test. That is, for a given test statistic Z, generate a
sample Z1, . . . , Zm of Z and then perform a statistical test that compares the
empirical distribution thus obtained with the distribution of Z under H0. For
instance, Knuth [221] suggests generating m replications B1, . . . , Bm of the
birthday spacings test and then performing a Pearson chi-square goodness-
of-fit test for these Bi to see if they are close enough to a Poisson distribution,
as would be the case under H0.

Problems 85

Problems

3.1. For each of the two MLCGs (i) m = 61 and a = 17 and (ii) m = 61 and
a = 3, (a) find all the cycles of the generator; (b) determine a set Σ of seeds
such that for each cycle there is exactly one seed in Σ that generates that
cycle, and (c) plot Ψ2.

3.2. Consider an MLCG with a prime modulus m > 1000 and a multiplier
a that is a primitive element modulo m. Suppose that from a given output
ui you want to jump ahead to ui+1000 without having to generate all 999
intermediate values. How would you proceed?

3.3. A well-known result in number theory [291] says that if m is prime, then
there are φ(m − 1) elements in {1, . . . ,m − 1} that are primitive elements
modulo m, where φ(p) is the Euler function, which gives the number of el-
ements i in {1, . . . , p − 1} such that gcd(i, p) = 1. Also, once a primitive
element modulo m has been identified — call it a — the other ones take the
form ar mod m, where r runs over all integers in {1, . . . ,m − 2} such that
gcd(r,m− 1) = 1. Use this result to find all primitive elements modulo 31.

3.4. Show that for ar, ak ∈ {1, . . . ,m− 1} and m prime, the recurrence

xi = (arxi−r − akxi−k) mod m

is equivalent to the recurrence

xi = (arxi−r + ãkxi−k) mod m,

where ãk = (m− 1)ak mod m.

3.5. Give expressions for the matrices A (transition matrix) and B (output
matrix) in Def. 3.6 that correspond to an LFSR generator.

3.6. Plot Ψ2 for the LFSR generator defined by k = 7, a7 = 1, a3 = 1 (aj = 0
for all other j), and (i) ν = 1 and L = 7 and (ii) ν = 3 and L = 7.

3.7. Show how to initialize a GFSR of the form (3.6)–(3.7) so that it is
equivalent to an LFSR of the form (3.4)–(3.5).

3.8. For k = 7, . . . , 10, determine how many different LFSR generators of the
form (3.4)–(3.5) have a maximal period of 2k − 1.

3.9. Show that for a prime modulus m and x ∈ {1, . . . ,m− 1} we have that
the inverse of x modulo m is given by x−1 = xm−2 mod m.

3.10. Describe an algorithm to compute ak mod m that requires O(log k)
multiplications. (This problem is usually referred to as modular exponentia-
tion.)

86 3 Pseudorandom Number Generators

3.11. Generate the first 1000 points produced by the explicit inversive con-
gruential generator of [274] with m = 231 − 1, a = 7, and b = 1. Plot
{(ui, ui+1), i = 0, . . . , 999}.

3.12. Compute the value of d2 from the spectral test for the MLCG with
m = 61 and a = 17.

3.13. Show that if h ∈ L∗
s , then the quantity S(h) defined in (3.12) equals 1.

3.14. Compute the resolution �2 and the t-value (for s = 2) for the toy LFSR
described in Prob. 3.6.

3.15. For each of the generators (i) to (iii) described below, compute the test
statistics discussed in Section 3.5.3: X2,−H, C, and B (from the birthday
spacings test). Use s = 2 and try r = 215 and r = 216, and for d take d = 8 for
X2 and H, d = r2/16 for C, and d = r3/2/2 for B. The generators to test are
(i) MRG32k3a, (ii) the explicit inversive congruential generator from Prob.
3.11, and (iii) the LCG defined by m = 231 − 1 and a = 65539 (RANDU).

3.16. As a follow-up to Prob. 3.15, perform a second-level test for the gen-
erator MRG32k3a and the birthday spacings test. More precisely, generate
a sample of 100 observations B1, . . . , B100 of the test statistic B, and then
perform a chi-square goodness-of-fit test based on the five bins corresponding
to B = i for i = 0, . . . , 3 and B ≥ 4. Compute the test statistic and p-value
for this chi-square test.

Chapter 4

Variance Reduction Techniques

4.1 Introduction

In Chap. 1, we said that one way of improving the Monte Carlo integration
error is to try reducing the variance σ2 of the integrand f . More precisely,
the goal is to find another function φ whose integral is equal to the integral
of f but whose variance is smaller than that of f . Methods that achieve this
are called variance reduction techniques, and we will be describing several of
them in this chapter. This topic has been widely studied and is surveyed,
for example, in [45, 165, 243, 247, 321, 391], which also give several other
references.

In our presentation of these techniques, we go back and forth between the
integration formulation and the more intuitive simulation setup. In prepa-
ration for this, we first recall the notation used when discussing these two
different interpretations.

Following the terminology of Fig. 1.6, if the goal of the simulation study
is to estimate the expectation μ of some output function h(X), then we can
write

μ = E(h(X)) =
∫

[0,1)s

f(u)du = E(f(U)). (4.1)

The first equality in (4.1) states the problem using the simulation formulation,
where X is the vector of random variables required to run the simulation.
The second equality rewrites the problem as a multivariate integral over the
unit hypercube. The third equality views μ as the expected value of f when
evaluated at a randomly uniformly distributed point U in [0, 1)s. In addition,
we also use the notation

Y = f(U) = h(X). (4.2)

That is, Y is the random variable that represents the output measure of
interest, written either as the valuation of f at a random input point U or
the output of a simulation run driven by the random variables in X.

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 87
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 4,
c© Springer Science+Business Media LLC 2009

88 4 Variance Reduction Techniques

For instance, in Example 1.2, the random vector X can be defined as
the vector (A1, S1, A2, S2, . . .) of interarrival and service times, and h in this
case is

h(X) =
N(X)∑
j=1

1Wj(A1,S1,...,Aj)>5,

where we wrote the waiting time Wj as a function of (A1, S1, . . . , Aj) and
the total number N = N(X) of clients that entered the bank during a day
as a function of X to make the dependence on X as explicit as possible.

In practice, a realization x is generated from a uniform vector u using a
random variate generation method such as those discussed in Chap. 2. Hence
we can write x = g(u) for some function g. Therefore the relation between
f and h is that f(u) = h(g(u)); that is, f = h ◦ g. For instance, in Example
1.2, g was given by

g(u) = (− ln(1 − u1),−0.75 ln(1 − u2),− ln(1 − u3), . . .) = (a1, s1, a2, . . .).

As we mentioned at the end of Sect. 1.2 and as illustrated in Example 1.3,
for a given μ there are several choices to make that will affect the definition of
the function f in (4.1). With the notation we just introduced, we can be more
precise about this and view g as representing our choice of random variate
generation method and the pair (h,X) as our description of the simulation
model to be used for estimating μ. For instance, in Example 1.3, the three
possibilities considered via the functions f1 to f3 respectively correspond to
using (1) X = (X1,X2), where X1 and X2 are independent Exp(0.75) and
h(X) = 1X1+X2>2.5; (2) X = N , where N ∼ Poisson(10/3) and h(X) =
1N<2; and (3) X = X, where X ∼ Gamma(2, 0.75) and h(X) = h(X) =
1X>2.5.

To summarize, we have the notation in Fig. 4.1:

g : [0, 1)s → R
k is the function that transforms a vector of s i.i.d. uniform numbers into

a vector X = (X1, . . . , Xk) of random variables used to describe the simulation model;
h : R

k → R is the function that takes as input a vector X of random variables describing
the simulation model and turns them into an observation of the quantity of interest; and
f : [0, 1)s → R is the composition of g and h (i.e., f(u) = h(g(u))) and represents
the function that turns a vector of s i.i.d. uniform numbers into an observation of the
quantity of interest. This is the integrand in the integration formulation of the problem.

Fig. 4.1 Different ways of describing a problem through the functions g, h, and f .

Before we begin our presentation of the most commonly used variance
reduction techniques, we first briefly discuss the concept of efficiency.

4.3 Antithetic variates 89

4.2 Efficiency

Finding ways of constructing estimators with smaller variance can often lead
to an improvement in the efficiency as well. The efficiency is a quality measure
for estimators that takes into account both their variance and computation
time [165]. Considering the efficiency rather than just the reduction in vari-
ance is certainly desirable, as we want to prevent the use of techniques that
could only reduce the variance at the expense of a large increase in compu-
tation time. The concept of efficiency can be defined in different ways. The
definition we chose to use comes from [247] and goes back to [165] in the case
of unbiased estimators. It has the intuitive property that it is independent of
n for a naive unbiased Monte Carlo estimator, as we will see shortly. A more
general treatment of efficiency can be found in [153, 157].

Definition 4.1. The efficiency of an estimator μ̂ for a quantity μ is given by

Eff(μ̂) = [MSE(μ̂) × C(μ̂)]−1,

where MSE(μ̂) = Var(μ̂) + B2(μ̂) is the mean-square error of μ̂, B(μ̂) =
E(μ̂) − μ is the bias of μ̂, and C(μ̂) is the expected computation time for μ̂.

The larger the efficiency, the better is the estimator. This definition also
implies that if we have two unbiased estimators μ̂1 and μ̂2 that require the
same computation time, then if Var(μ̂1) < Var(μ̂2), we prefer μ̂1 over μ̂2.

If μ̂ is a naive unbiased Monte Carlo estimator for μ, then Var(μ̂) = σ2/n,
where σ2 is the variance of f(U), and the expected computation time is cn
for some constant c > 0. Since μ̂ is unbiased, the efficiency is thus Eff(μ̂) =
1/cσ2, which is independent of n. This means that for the naive Monte Carlo
estimator, our definition of efficiency is such that the decrease in variance
obtained by increasing the sample size is exactly offset by the increase in
computation time. Therefore, in order to find more efficient estimators than
the naive Monte Carlo estimator, we need to find ways of getting a q-fold
reduction in variance while restricting the increase in computation time to a
factor no larger than q.

For each of the variance reduction techniques presented in this chapter, we
will mostly be discussing how and why they reduce the variance, but we will
also use numerical examples to compare the efficiency of the corresponding
estimators with the naive Monte Carlo method.

4.3 Antithetic variates

This method was introduced by Hammersley and Morton in 1956 [164]. It
can be applied easily to most problems and often produces at least a modest
variance reduction. In its simplest form, it is based on the idea that instead of

90 4 Variance Reduction Techniques

estimating μ by the average of i.i.d. random variables having expectation μ,
use pairs of negatively correlated random variables, again with expectation μ.
Within each pair, the negative correlation should have the effect of “cancelling
out” departures from μ. Therefore, if we approximate μ by the average of the
pairs’ average, we should get an estimator with smaller variance. More general
ways of applying antithetic variates are discussed in [6, 7, 57, 122, 477].

In what follows, we make the assumption that n is even and apply
antithetic variates in a way that preserves the total number of function eval-
uations. That is, we replace n independent observations by n/2 pairs of anti-
thetic observations. In this way, comparisons based on the variance are more
“fair”. We could also double the number of function evaluations, replacing
each observation by a pair of antithetic observations, but then the extra work
would need to be taken into account when making variance comparisons.

Using the integration point of view, the method of antithetic variates con-
sists in replacing the naive Monte Carlo estimator

Qn =
1
n

n∑
i=1

f(ui)

by the antithetic estimator

Qn,ant =
1
n/2

n/2∑
i=1

f(ui) + f(ũi)
2

,

where ũi ∼ U([0, 1)s) is negatively correlated with ui, for i = 1, . . . , n/2. The
most common way to induce this negative correlation is to define ũij = 1−uij ,
where uij and ũij are the jth coordinates of ui and ũi, respectively. From
now on, we assume antithetic variates are applied with this particular choice
of definition for ũi.

From the simulation point of view and using the notation given in Fig.
4.1, the antithetic variates estimator can be written as

μ̂ant =
1
n/2

n/2∑
i=1

h(Xi) + h(X̃i)
2

,

where X̃i is generated using the random numbers in ũi = (1−ui1, . . . , 1−uis)
as input. That is, for some function g, we have

Xi = g(ui1, . . . , uis),
X̃i = g(1 − ui1, . . . , 1 − uis).

Let σ2 = Var(f(U)). Then the variance of Qn,ant is given by

4.3 Antithetic variates 91

Var(Qn,ant) =
0.25
(n/2)

(σ2 + σ2 + 2Cov(f(ui), f(ũi)))

=
σ2

n
+

1
n

Cov(f(ui), f(ũi)), (4.3)

which is no larger than the naive Monte Carlo estimator’s variance σ2/n
as long as Cov(f(ui), f(ũi)) ≤ 0. Hence the performance of this technique
depends on how much of the negative correlation between ui and ũi is pre-
served after f is applied to these two points. Theorem 4.3 below addresses
this question. Equivalently, using the simulation point of view, we can say
that the method’s ability to reduce the variance depends on how the nega-
tive correlation between ui and ũi will be preserved (i) once these points are
transformed into Xi and X̃i, respectively, and then (ii) after h is applied to
Xi and X̃i. Theorem 4.4 below partly addresses this question.

Note that the variance of Qn,ant can be estimated by the estimator

σ̂2
n,ant =

1
(n/2)(n/2 − 1)

n/2∑
i=1

(Zi −Qn,ant)2,

where Zi = 0.5(f(ui) + f(ũi)), since these Zi’s are independent. It is im-
portant to observe that it would be incorrect to use the sample variance
of {f(u1), . . . , f(un/2), f(ũ1), . . . , f(ũn/2)} to construct an estimator for the
variance of Qn,ant, as this sample does not contain n independent observa-
tions but rather n/2 pairs of correlated observations.

We note that with the antithetic variates method, any linear function is
integrated with zero error. Problem 4.4 at the end of the chapter asks you to
prove this. The following example deals with a simple special case.

Example 4.2. Assume we want to estimate I(f) =
∫ 1

0
f(u)du, where f(u) =

au + b and a, b are some real constants. Of course, we know I(f) = a/2 + b
in this case. Consider the naive Monte Carlo estimator based on a sample of
size n, where n is even,

Qn =
1
n

n∑
i=1

(aui + b),

where u1, . . . , un are i.i.d. U(0, 1). A simple calculation shows

Var(Qn) =
a2

12n
.

Now, suppose we use the antithetic pairs (aui + b, a(1 − ui) + b) for i =
1, . . . , n/2, where u1, . . . , un/2 are independent U(0, 1) and form the antithetic
estimator

92 4 Variance Reduction Techniques

Qn,ant =
1
n/2

n/2∑
i=1

(
aui + b+ a(1 − ui) + b

2

)
.

Then we can see that

Qn,ant =
1
n/2

n/2∑
i=1

a+ 2b
2

= a/2 + b = I(f),

and therefore Var(Qn,ant) = 0. Hence, for this example, using antithetic vari-
ates gives us a perfect estimator.

Alternatively, using the simulation framework — which is very simplistic
in this case — we can say the goal is to estimate E(X), where X ∼ U(b, b+a).
In that case, the Monte Carlo estimator is

μ̂mc =
1
n

n∑
i=1

Xi,

where the Xi are i.i.d. U(b, b+ a), while the antithetic estimator is

μ̂ant =
1
n/2

n/2∑
i=1

Xi + X̃i

2
,

where Xi = aui + b, X̃i = a(1 − ui) + b = a+ 2b−Xi, and u1, . . . , un/2 are
i.i.d. U(0, 1). Hence

μ̂ant =
1
n/2

n/2∑
i=1

a+ 2b
2

= a/2 + b = I(f).

In this simple example, we exploited the fact that initially we have that
ũi is perfectly negatively correlated with ui,

ρ(ui, ũi) =
Cov(ui, ũi)

σ2
u

= −1,

since σ2
u = Var(ui) = 1/3 − 1/4 = 1/12, and

Cov(ui, ũi) = E(ui − u2
i) − E2(ui) = 1/2 − 1/3 − 1/4 = −1/12.

Then, since f(u) is linear in u, this perfect negative correlation between ui

and ũi is preserved when f is applied, which means Cov(f(ui), f(ũi)) =
Var(f(ui)) (see Prob. 4.3). Thus, from (4.3), we see that Var(Qn,ant) = 0 and
Qn,ant = I(f). Figure 4.2 illustrates the application of antithetic variates for
this example.

In general, antithetic variates do not work perfectly because the functions
we deal with are usually not linear. In Fig. 4.3, we illustrate for two simple

4.3 Antithetic variates 93

0 1

a+b

u
1

u
2

1−u 1−u
2 1

a/2+b

b

Fig. 4.2 Antithetic variates applied to f(u) = au + b. Each point ui is paired with 1− ui

so that the average 0.5(f(ui) + f(1 − ui)) equals I(f) = a/2 + b.

functions the effect of nonlinearity. On the left-hand side of this figure, we
consider f(u) = u2. We see that, in this case, the average 0.5(f(ui)+f(1−ui))
— shown by a tick on the line that joins the two evaluations of f for a pair
of points — is not necessarily equal to the integral I(f) = 1/3 due to the
convexity of the function. The right-hand side of Fig. 4.3 shows an even worse
case, where for the function f(u) = (1 − 2u)2, which is symmetric around
u = 0.5, the two antithetic evaluations f(ui) and f(1 − ui) are equal. This
results in a “waste” of half the function evaluations and an increase in the
variance when applying antithetic variates compared with the naive Monte
Carlo method.

1/3

1

1 1

1

1/3

u
1

1−uu
2

1−u u
1

1−uu
2

1−u
2 1 2 1

Fig. 4.3 Antithetic variates applied to f(u) = u2 (left) and f(u) = (1−2u)2 (right). Each
point ui is paired with 1 − ui.

94 4 Variance Reduction Techniques

The lesson to be learned from looking at the simple function f(u) =
(1 − 2u)2 is that after applying the function f to ui and 1 − ui, a per-
fect negative correlation can be turned into a positive correlation and thus
cause the antithetic variates estimator to have a larger variance than the
naive Monte Carlo estimator. As mentioned before, the extent to which anti-
thetic variates will work depends on how much of the initial perfect negative
correlation between ui and 1−ui is preserved after applying f . The following
result offers some answers to this question. It comes from Lehmann [275] and
is discussed, for instance, in [45].

Theorem 4.3. [275] Let f : [0, 1)s → R be a bounded and monotone function
in each of its arguments. Suppose also that f is not constant in the interior of
its domain. Let U = (U1, . . . , Us) ∼ U([0, 1)s) and Ũ = (1−U1, . . . , 1−Us).
Then Cov(f(U), f(Ũ)) < 0.

This result says that if f is monotone in each of its arguments — and this
does not mean that it has to be, say, increasing in all of its arguments; i.e.,
it can be increasing in the first argument, decreasing in the second, etc. —
then in light of (4.3), using antithetic variates provides an estimator with a
smaller variance than with the naive Monte Carlo estimator.

The following result is also relevant, especially within the simulation for-
mulation.

Theorem 4.4. [473] Let X be a random variable with CDF F (·). If Ũ =
1 − U , then (F−1(U), F−1(Ũ)) has a minimum correlation among all pairs
of random variables with marginal CDF given by F (·).

What this result says is that to produce a pair (X,Y) of variables such
that (i) F is the marginal CDF of each of X and Y and (ii) the correlation
between X and Y is minimized, the optimal approach is to generate X by
inverting F at U , and Y by inverting F at 1 − U .

One of the implications of Theorem 4.4 is that if X = (X1,X2, . . . , Xs) is
a vector of independent random variables and each of them is generated by
inversion from u = (u1, u2, . . . , us) by letting Xj = F−1

j (uj), where Fj is the
CDF of Xj , then using antithetic variates to generate a random vector X̃ —
that is, we let X̃j = F−1

j (1−uj) — with the same distribution as X produces
pairs (Xj , X̃j) with minimum correlation. A good example that illustrates
this property is to consider the case where X ∼ N(0, 1). In that case, by
symmetry of the normal pdf, we have that Φ−1(1 − U) = −Φ−1(U) and
therefore X̃ = −X, which in turn implies that ρ(X, X̃) = −1. In other words,
the perfect negative correlation between U and 1−U is preserved in that case.
This property of the normal distribution has led to the somewhat common
practice that applying antithetic variates to normal variables amounts to
pairing each X with −X, regardless of the nonuniform generation method
used to generate X. However, taking X = F−1(U) and Y = −F−1(U) = −X

4.3 Antithetic variates 95

is not generally correct. As a simple counterexample, consider the case where
we want a marginal CDF that is exponentially distributed with mean β. Then

Y = −F−1(U) = β ln(1 − U) < 0

clearly does not have the correct distribution since we must have Y > 0.
We note that in light of Theorem 4.3 and using the fact that F−1 is mono-

tone for any CDF F , the (minimum) correlation between X and X̃ mentioned
in Theorem 4.4 can in fact be shown to be negative. However, since X and X̃
are further transformed when h is applied, Theorem 4.4 does not guarantee
that Y = h(X) and Ỹ = h(X̃) will also have a minimum correlation, even if
each pair (Xj , X̃j) does. Their correlation could actually be positive. Never-
theless, this theorem gives us at least some kind of “intermediate” optimality
result.

Going back to the result stated in Theorem 4.3, it is important to point
out that even if, for a given simulation study, we do not have an explicit
definition of the corresponding function f such that (4.1) holds, it can still
be feasible to check whether the monotonicity conditions given in this result
hold or not. Here is an example illustrating how this can be done.

Example 4.5. In Example 1.2, let FA be the CDF of the exponential distri-
bution with mean 1, let FS be the CDF of the exponential distribution with
mean 0.75, and let fj(u) = f(u1, . . . , uj−1, u, uj+1, . . .) as defined in (1.12).
There are two cases to consider:

1. If u is used to generate an interarrival time (by inversion) — that is, ak =
F−1

A (u) for some k ≥ 1 — then ak increases with u, and therefore, for any
u1, u2, . . . , uj−1, uj+1, . . ., fj(u) decreases with u because if an interarrival
time increases and everything else remains the same, this can only decrease
the waiting time of the clients from that point on and therefore decrease
the number of clients that will wait more than 5 minutes.

2. If u is used to generate a service time (by inversion) — that is, sk =
F−1

S (u) for some k ≥ 1 — then sk increases with u, and therefore, for any
u1, u2, . . . , uj−1, uj+1, . . ., fj(u) increases with u because if a service time
increases, this can only increase the waiting time of the clients that come
after and thus possibly increase the number of clients that will wait more
than 5 minutes.

Hence, for this example, f satisfies the monotonicity conditions given in
Theorem 4.3.

When the conditions of Theorem 4.3 hold, we can safely apply antithetic
variates. That is, applying antithetic variates should reduce the variance com-
pared to the naive Monte Carlo method. For some problems, it might be the
case that f is monotone only in a certain subset of its arguments. If that is
the case, then one can apply antithetic variates only to that subset. That is,
if J ⊆ {1, . . . , s} is such that f is monotone in uj if and only if j ∈ J , then
antithetic variates can be applied as follows:

96 4 Variance Reduction Techniques

1
n/2

n/2∑
i=1

f(ui) + f(ũJ ,i)
2

,

where ũJ ,i = (ũJ ,i,1, . . . , ũJ ,i,s), and

ũJ ,i,j =
{

1 − uij if j ∈ J ,
wij if j /∈ J ,

where the variables wij ∼ U(0, 1) are independent from the variables uij .
Finally, it is important to note that in order to apply Theorem 4.3, simu-

lation with antithetic variates must be done so that we have synchronization
[243, pp. 586ff.]. This means the jth uniform number uj has to be used for
the same purpose in the simulation based on u and the one based on ũ. It
is usually not too difficult to achieve this by carefully writing the simula-
tion code. For example, the code given in Fig. 1.7 for Example 1.2 achieves
synchronization. However, for this example, an implementation where service
times would be generated only when the service starts would not achieve syn-
chronization. The reason is that, for instance, in one simulation, customer 3
could start his service before customer 5 arrives and then in the antithetic
simulation he could start after customer 5 arrives. If this happens, then the
uniform number used for his service would be generated before the fifth in-
terarrival time in one case and after it in the other case, which would break
the synchronization.

Now that we have looked at the main theoretical aspects of antithetic
variates, let us present two examples that will illustrate how to apply this
method. These two examples will be used throughout the chapter to illustrate
the use of the different variance reduction techniques discussed.

Example 4.6. This example is closely related to Example 1.2, but with the
additional feature that the speed of the server is randomly determined at
the beginning of the day [45]. More precisely, with probability 0.2, the mean
service time is 35 seconds, with probability 0.7, it is 50 seconds, and with
probability 0.1, it is 55 seconds. Figure 4.4 gives pseudocode for using anti-
thetic variates in this example.

The second example has been used in [22] to illustrate the effectiveness
of different variance reduction techniques and their combinations. We find it
to be a useful example that is different from the more traditional queueing
problems.

Example 4.7. A stochastic activity network (SAN) is a directed acyclic graph
(N ,A), where the set of nodes N contains a source and a sink and the edges
in A represent activities. Each activity j ∈ A is assumed to have a certain
duration Dj , which is a random variable with a CDF Fj(·). Dummy activities
with zero duration can be used to enforce precedence relations between other
activities. Let N(A) denote the number of activities with a nonzero duration,

4.3 Antithetic variates 97

BankAntit(n) OneSimBankAntit()

mus ← [7/12,5/6,11/12] NbWait5 ← 0
for i = 1 to n/2 do w ← 0

result(i) ← OneSimBankAntit() u[1] ← Rand01()

hw ← 1.96 ×
√
var(result)/(n/2) type ← GenDisc([0.2,0.9,1],3,u[1])

print (“average is”, ave(result)) v ← mus[type]
print (“95% CI half-width is”, hw) u[2] ← Rand01()

a ← GenExpon(1,u[2])
GenDisc(p,k,u) time ← a
i ← 1 // antithetic initialization
done ← 0 aNbWait5 ← 0
while(i ≤ k AND done=0) aw ← 0

if u < p[k] then atype ← GenDisc([0.2,0.9,1],3,1 − u[1])
done ← 1 av ← mus[atype]
return(i) aa ← GenExpon(1,1 − u[2])

else i ← i + 1 atime ← aa
j ← 3
while (time < 300 or atime < 300) do

u[j] ← Rand01()

u[j + 1] ← Rand01()

s ← GenExpon(v, u[j])
a ← GenExpon(1,u[j + 1])
time ← time + a

w ← max(0, w + s − a)
if ((time < 300) and (w > 5)) then

NbWait5 ← NbWait5 + 1
// antithetic simulation
as ← GenExpon(av, 1 − u[j])
aa ← GenExpon(1, 1 − u[j + 1])
atime ← atime + aa
aw ← max(0, aw + as − aa)
if ((atime < 300) and (aw > 5)) then

aNbWait5 ← aNbWait5 + 1
j ← j + 2

return 0.5(NbWait5+aNbWait5)

Fig. 4.4 Pseudocode for using antithetic variates in Example 4.6.

let N(P) denote the number of directed paths from the source to the sink,
and let Ck ⊆ A be the set of activities on path k for 1 ≤ k ≤ N(P). The
completion time T of the network is the length of the longest path from the
source to the sink. Figure 4.5 gives an example of a SAN.

Here we assume the goal is to estimate the probability that the completion
time T will be smaller than some value t0 > 0. Formally, we want to estimate

μ = FT (t0) = P (T ≤ t0),

98 4 Variance Reduction Techniques

4

1

2

6

7

5

3

10

13

11
9

12

8source

 destination

Fig. 4.5 SAN example from [22]. Adapted with permission from A. N. Wilson and J. R
Wilson, Integrated Variance Reduction Strategies for Simulation, volume 44, number 2,
March–April 1996. Copyright 1996, the Institute for Operations Research and the Man-
agement Sciences, 7240 Parkway Drive, Suite 300, Hanover, Maryland 21076.

where the completion time T is given by

T := T (D1, . . . , DN(A)) = max
1≤k≤N(P)

Pk,

and Pk is the length of the kth path. That is,

Pk =
∑

j∈Ck

Dj .

The naive Monte Carlo estimator based on n i.i.d. simulations of a SAN is
given by

μ̂mc =
1
n

n∑
i=1

1Ti≤t0 ,

where
Ti = max

1≤k≤N(P)

∑
j∈Ck

Di,j

is the completion time for the ith simulation and Di,j is the simulated dura-
tion of the jth activity in the ith simulation.

The specific parameters used in our experiments are taken from [22] and
used for the SAN shown in Fig. 4.5. Activities 1, 3, 4, 7 and 13 are normally
distributed with respective means 5.5, 3.2, 13, 5.2, and 10.3 and standard
deviation equal to 0.25 times the mean. Activities 2, 5, 6, 8, 9, 10, 11, and
12 are exponentially distributed with respective means 14.7, 7, 16.5, 6, 20, 4,
16.5, and 10.3. Also, we use t0 = 75. Figure 4.6 gives pseudocode for using
antithetic variates in this example.

4.3 Antithetic variates 99

SanAntit(n, t0)
NA ← 13 //nb of activities
NP ← 6 // nb of paths
for i = 1 to n/2 do

max ← 0; amax ← 0
for j = 1 to NA do

u[j] ← Rand01()

D[j] ← GenF(j, u[j])
aD[j] ← GenF(j, 1 − u[j])

for k = 1 to NP do
L ← 0; aL ← 0
for j = 1 to ck do

L ← L + D[C[k, j]]

aL ← aL + aD[C[k, j]]
if (L > max) then

max ← L
if (aL > amax) then

amax ← aL
indic ← 1; aindic ← 1
if(max > t0) then

indic ← 0
if(amax > t0) then

aindic ← 0
result[i] ← 0.5(indic + aindic)

hw = 1.96 ×
√

var(result)/(n/2)
print (“average is”, ave(result))
print (“95% CI half-width is”, hw)

Fig. 4.6 Pseudocode for Example 4.7. We assume GenF(j, u) returns an observation from
the distribution of the jth duration by inversion of the uniform number u, C[k, j] returns
the index of the jth arc on the kth path, and ck is the number of arcs on path k.

Tables 4.1 and 4.2 give results comparing the efficiency of the naive Monte
Carlo and antithetic estimators for Examples 4.6 and 4.7 with n = 1024.
As is typically done in empirical studies on variance reduction techniques,
the values reported in these tables are based on a certain number m of i.i.d.
copies of each estimator (m = 25 in our case). That is, μ̂ is the average value
of the estimator over the sample μ̂1, . . . , μ̂m, and the half-width of, say, a
95% confidence interval is computed as

1.96

√√√√ 1
m(m− 1)

m∑
i=1

(μ̂i − μ̂)2.

The CPU time used to estimate the efficiency is based on the time required
to run these m groups of n simulations and compute the estimator desired.

100 4 Variance Reduction Techniques

Table 4.1 Comparison of Monte Carlo and antithetic estimators for Example 4.6 (bank).
HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 73.04 0.788 11.9 0.521
Antithetic 73.35 0.530 7.76 1.766

Table 4.2 Comparison of Monte Carlo and antithetic estimators for Example 4.7 (SAN).
HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 0.7502 5.41e−3 0.197 667913
Antithetic 0.7521 5.16e−3 0.151 951511

As predicted, for both examples, the antithetic estimator has a smaller
variance than the naive Monte Carlo estimator. Not surprisingly, the com-
putation time of the antithetic estimator is smaller than the Monte Carlo
one. This is due to the fact that we need to generate twice as many uniform
random numbers for the Monte Carlo estimator. Hence the gain in efficiency
is larger than the variance reduction, with an improvement factor of about
3.4 for the bank example and 1.4 for the SAN example. These efficiency gains
are fairly typical for antithetic variates and are not as large as those that can
be obtained by some other variance reduction techniques that can be applied
in a more problem-specific way.

To conlude this section, we wish to show in a simplified version of Example
4.6 the effect of applying antithetic variates on the function f . That is, in light
of the discussion at the beginning of this chapter, we can think of antithetic
variates as transforming the function f(u) into the function

φ(u) =
f(u) + f(1 − u)

2
,

where the notation 1 − u refers to the vector whose jth coordinate is 1 − uj

for j = 1, . . . , s.

Example 4.8. Consider Example 4.6, but where we are interested in estimat-
ing the mean waiting time ω30 for the first 30 clients. Note that the corre-
sponding dimension here is 60 as we need to generate the service speed, 30
interarrival times, and 29 service times. To get a sense for what the corre-
sponding 60-dimensional function f looks like (i.e., the function f such that
E(f(U)) = ω30, as in (4.1)), we can fix all but two of the coordinates and
then plot f as a function of the two remaining (unfixed) coordinates. In Fig.
4.7 (top), we show the function f as u22 and u23 vary — interarrival and

4.4 Control variates 101

service times for the tenth client — and where all other coordinates uj have
been randomly chosen (and fixed, as u22 and u23 vary over [0, 1)2). Note
that since all variables except u22 and u23 are fixed, the integral of the two-
dimensional function shown in these graphs is not ω30 but instead is given
by the conditional expectation of

∑30
j=1 wj/30 given u1, . . . , u21, u24, . . . , u60.

On the bottom of Fig. 4.7, we show the corresponding graph for φ(u). Note
that while f is monotonically decreasing in u22 and monotonically increasing
in u23 (arguments similar to those used in Example 4.5 can be applied to
verify why this holds), φ is not monotone.

4.4 Control variates

The method of control variates shares a common feature with the method of
antithetic variates. They are both based on the idea of using correlation in
order to reduce the variance of the naive Monte Carlo estimator. However,
the way the correlation is induced is quite different here. With antithetic
variates, we saw that (negative) correlation was induced directly on the sam-
pling points u. Using the notation Y = h(X) introduced in (4.2), with con-
trol variables, we instead try to find a variable C — the control variable —
that is related to our simulation model and correlated with Y but for which
μc = E(C) is known. By comparing the sample average of C obtained by
simulation with the exact mean μc, one can then appropriately adjust the
naive Monte Carlo estimator.

More precisely, suppose Y1, . . . , Yn and C1, . . . , Cn are two i.i.d. samples,
with Yi and Ci obtained from the ith simulation run. First, suppose Y and
C are positively correlated. In that case, we know that if

μ̂c =
1
n

n∑
i=1

Ci

is larger than μc, then the naive Monte Carlo estimator μ̂mc =
∑N

i=1 Yi/n is
probably also larger than μ, and so we should adjust μ̂mc by subtracting a
certain (positive) value related to the difference observed, μ̂c − μc. If μ̂c is
smaller than μc, then similarly we should add something positive to μ̂mc.

More precisely, a control variate estimator has the form

μ̂cv =
1
n

n∑
i=1

(Yi + β(μc − Ci)), (4.4)

where β is a constant to be determined. It is easy to see that, for a fixed β,
the control variate estimator is unbiased since

E(Yi + β(μc − Ci)) = E(Yi + β(μc − E(Ci))) = E(Y) + β × 0 = μ.

102 4 Variance Reduction Techniques

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

a(10)s(10)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0.4

0.5

0.6

0.7

0.8

0.9

1

a(10)s(10)

Fig. 4.7 Top: function f for simplified version of bank example; bottom: corresponding
antithetic variates function φ. The axes are labeled with the variate generated by the
corresponding uniform number.

To determine which value of β should be used, recall that our goal is to pro-
duce an estimator μ̂cv whose variance is smaller than the naive Monte Carlo
estimator μ̂mc. Hence we can find the value of β that minimizes Var(μ̂cv).
First, we write

4.4 Control variates 103

Var(μ̂cv) =
1
n

[
Var(Yi) + β2Var(Ci) − 2βCov(Yi, Ci)

]
,

and so
∂

∂β
Var(μ̂cv) =

1
n

[2βVar(Ci) − 2Cov(Yi, Ci)] . (4.5)

By setting (4.5) to 0 (and verifying that the second derivative is positive),
we see that Var(μ̂cv) is minimized when

β = β∗ :=
Cov(Yi, Ci)

Var(Ci)
.

Note that if we take β = β∗ in (4.4), then the corresponding estimator,
denoted μ̂cv,β∗ , has variance

Var(μ̂cv,β∗) =
1
n

[
Var(Yi) +

(Cov(Yi, Ci))2

Var(Ci)
− 2

(Cov(Yi, Ci))2

Var(Ci)

]

= (1 − ρ2)Var(μ̂mc), (4.6)

where

ρ = Corr(Yi, Ci) =
Cov(Yi, Ci)√

Var(Yi)Var(Ci)

is the correlation coefficient between Y and C. Hence, if ρ ± 1 — which
happens when Y and C are linearly correlated — then the control variate
estimator has zero variance. In general, the stronger the correlation (i.e., the
closer |ρ| is to 1), the better the improvement we get by using μ̂cv instead of
μ̂mc.

Of course, in practice we cannot compute β∗ exactly because the covariance
term Cov(Y,C) is usually unknown. (If it were known, then μ would also be
known and we would not need to estimate it). We thus have to estimate it.
We can do that by using the same sample (Y1, C1), . . . , (Yn, Cn) as the one
used to define μ̂cv. That is, we can take

β̂ =
∑n

i=1 YiCi − n(μ̂mc · μ̂c)
(n− 1)σ̂2

c

, (4.7)

where σ̂2
c is the sample variance of {Ci, i = 1, . . . , n}. If Var(C) is known

exactly, then it can replace σ̂2
c in (4.7).

One drawback of this approach is that the resulting estimator

μ̂cv,β̂ = μ̂mc + β̂(μc − μ̂c) (4.8)

is not necessarily unbiased. This results from the fact that β̂ now depends on
C1, . . . , Cn, and is no longer independent of μ̂c, so that E(β̂(μc − μ̂c)) is not
necessarily equal to E(β̂)E(μc − μ̂c) = 0.

104 4 Variance Reduction Techniques

More generally, when replacing the optimal β∗ by an estimate β̂, the vari-
ance expression (4.6) no longer holds. Thus, it would be wrong to estimate
Var(μ̂cv,β̂) by, for instance, (1 − ρ̂2)σ̂2

mc, where ρ̂ is the sample correlation
between Y and C and σ̂2

mc is the estimated variance of the Monte Carlo
estimator. Instead, Var(μ̂cv,β̂) can be estimated in the standard way as

1
n(n− 1)

n∑
i=1

(Ycv,i − μ̂cv,β̂)2, (4.9)

where Ycv,i = Yi + β̂(μc − Ci). But even with this formula, we must note
that if β̂ is given by (4.7), then the variables Ycv,i are not independent, and
therefore this sample variance estimator is not necessarily unbiased.

To get some insight on the impact of the bias introduced by replacing β∗

with the estimate β̂, it is useful to see the connection between control variates
and regression [241, 242]. More precisely, let us write

Y = μ+ β(μc − C) + ε,

where E(ε) = 0. Then, if we make the assumption that (Y,C) has a bivariate
normal distribution, standard results in regression imply that β̂ and μ̂cv,β̂ as
defined in (4.7) and (4.8), respectively, are the least-squares estimators of μ
and β, which can in turn be used to construct an unbiased estimator σ̂2

cv,β

for Var(μ̂cv,β̂) as in (4.9). Under this normality assumption, one can also
show that (μ̂cv,β̂ −μ)/σ̂cv,β has a Student t-distribution with n−2 degrees of
freedom. Hence μ̂cv,β̂ is an unbiased estimator of μ in that case. Furthermore,
it can be shown that the increase in variance that results from replacing β∗

by its least-squares estimate β̂ is such that

Var(μ̂cv,β̂)

Var(μ̂cv,β∗)
=
n− 1
n− 2

.

Hence the increase in variance becomes negligible as n tends to infinity.
Without the normality assumption, though, these results do not hold. In

such cases, the bias can be eliminated by using a technique called splitting,
which consists in using the estimator

μ̂cv,s =
1
n

n∑
i=1

Yi,cv,s,

where
Yi,cv,s = Yi − β̂−i(μc − Ci),

and β̂−i is the least-squares estimator for β, but where the results (Yi, Ci)
from the ith simulation are not included [45]. That is, β̂−i is based on the

4.4 Control variates 105

sample (Y1, C1), . . . , (Yi−1, Ci−1), (Yi+1, Ci+1), . . . , (Yn, Cn). Since β̂−i and
Ci are independent, we have that E(Yi,cv,s) = μ, and thus μ̂cv,s is unbiased.

Another possibility is to use a technique called jackknifing [45, 98, 99, 217].
In that case, the estimator

μ̂cv,j =
1
n

n∑
i=1

Yi,cv,j

is used, where
Yi,cv,j = nμ̂cv,β̂ − (n− 1)μ̂cv,β̂,−i,

and μ̂cv,β̂,−i represents the control variate estimator μ̂cv,β̂ in which the results
(Yi, Ci) from the ith simulation have been deleted.

The two preceding approaches manage to reuse the sample (Y1, C1), . . . ,
(Yn, Cn) in a clever way in order to reduce (or eliminate) the bias. How-
ever, they both imply additional computational time in order to construct
the values Yi,cv,s and Yi,cv,j . As an alternative to these two approaches, we
can instead use a small number r of pilot simulations and then compute β̂
based on the resulting sample (Y1, C1), . . . , (Yr, Cr). Since β̂ is now indepen-
dent of μ̂c, the control variate estimator and the variance estimator (4.9) are
unbiased. Here the additional computational effort is spent generating these
pilot simulations.

However, it should be noted that thanks to a result of Nelson [331], regard-
less of the distribution of (Y,C), if we use the least-squares estimate (4.7) for
β̂, we have a central limit theorem for μ̂cv,β̂ of the form

√
n(μ̂cv,β̂ − μ) ⇒ N(0, σ2

cv,β∗)

as n goes to infinity, where σ2
cv,β∗ = Var(μ̂cv,β∗) is given in (4.6). This result

implies that, in practice, if n is large enough, then we can construct confidence
intervals for μ based on the normal distribution, as will be done in Examples
4.9 and 4.10.

Before going further, let us go back to Examples 4.6 and 4.7 and see how
control variates can be used in these two cases.

Example 4.9. For the bank example given in Example 4.6, a possible con-
trol variable is to use the average interarrival time

∑N+1
i=1 ai/(N + 1), whose

expectation is 60 seconds. (The reason why we take N + 1 is because we
include the interarrival time between the last client and the first one who
arrives after 3 pm, which needs to be generated in order to determine N ,
as discussed on p. 19.) Another possibility is to use the average service time∑N

i=1 si/N , whose expectation is 0.2×35+0.7×50+0.1×55 = 47.5 seconds.
The former case is denoted CV-arrival in the results below, while the latter
one is denoted CV-service. Figure 4.8 gives pseudocode for using the control
variate based on the average service time.

106 4 Variance Reduction Techniques

SimCV RunCVSim

NbWait5 ← 0 for i = 1 to n
w ← 0 y(i) ← SimCV[1]
u ← Rand01() c(i) ← SimCV[2]
type ← GenDisc([0.2,0.9,1],3,u) β ← cov(y, c)/var(c)
v ← mus[type] return (ave(y) + β(47.5/60 − ave(c)))
a ← GenExpon(1,Rand01())
time ← a
sums ← 0
nbcust ← 1
while (time < 300) do

s ← GenExpon(mu,Rand01())
a ← GenExpon(1,Rand01())

time ← time + a
w ← max(0, w + s − a)

if ((time < 300) and (w > 5)) then
NbWait5 ← NbWait5 + 1
sums ← sums + s
nbcust ← nbcust + 1

return [NbWait5, sums/nbcust]

Fig. 4.8 Pseudocode for using CV-service. RunCVSim returns the control variate estimator,
the function cov(y, c) returns the sample covariance of the vectors y and c, SimCV[j] contains
the jth returned value of SimCV, and GenDisc is as described in Fig. 4.4.

Table 4.3 Comparison of Monte Carlo and control variate estimators for Example 4.6.

HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 73.04 0.788 11.9 0.5210
CV-arrival 74.90 0.732 11.98 0.5992
CV-service 73.14 0.500 11.95 1.2838

As is seen in Table 4.3, the control variate based on service time thus
manages to reduce the variance by a factor (0.788/0.5)2 = 2.5.

Note that since our results are based on 25 i.i.d. replications of the estima-
tors, we circumvent the problem of using a biased estimator for the variance
of μ̂cv,β̂ such as the one presented in (4.9), which we would use if we had only
performed one replication.

Example 4.10. For the SAN described in Example 4.7, a possible control vari-
able is to use the length of the path with the largest expected length, which
in our case is the path 4–7–12–13–11, for an expected length of 48.2. This is

4.4 Control variates 107

based on an idea used in [21, 22]. As can be seen in Table 4.4, the reduction
in variance is marginal in this case.

Table 4.4 Comparison of Monte Carlo and control variate estimators for Example 4.7.

HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 0.7502 5.41e−3 0.197 667913
CV 0.7500 5.34e−3 0.201 672314

Let us now say a few words on the kind of control variables that are
typically used in practice. As we said at the beginning of this section, in
theory, any variable C correlated with Y and whose expectation is known
can be used as a control variable. What this typically translates to is that
we use as control variables quantities that are closely related to the one for
which we try to estimate the mean but that are in some sense simpler and
thus for which the expectation is known.

A property that such functions often exhibit is that they are based on
the same vector X of random variables as the quantity of interest Y , which
means both Y and C can be computed at the same time. In other words,
there exists a function hc such that we can write C = hc(X), while Y =
h(X). The control variables used in Example 4.9 satisfy this. Control variables
having this property are sometimes called internal control variables [243].
An example of a control variable that does not satisfy this property — an
external control variable — is when we take C so that it represents the same
quantity as Y but for a simpler model. For instance, if we are trying to
estimate the mean waiting time in a complicated queueing model, we could
use as a control variable the average waiting time for a simpler but related
queueing model. For this to work, we need to make sure we have correlation
between the two quantities Y and C. This can usually be achieved by using
the same uniform numbers to generate the interarrival and service times in
both models. That is, we need to use common random numbers, a technique
discussed in Sect. 4.8. If we do so, we can assume there is a function c such
that we can write C = c(u), where c is defined in relation to the function f
such that Y = f(u) so that synchronization (see p. 96, Sect. 4.3) is achieved.
The following example illustrates the use of an external control variable.

Example 4.11. Suppose that, in Example 4.8, rather than modeling the ser-
vice times as exponential random variables with a varying mean, we instead
use a Weibull distribution with a mean of 45 seconds. Then let f be the
function

108 4 Variance Reduction Techniques

f(u1, . . . , u59) =
1
30

30∑
j=1

wj(− ln(1 − u1), γ(u2), . . . ,− ln(1 − u2j−1)),

where γ represents the inverse CDF of the Weibull distribution used to
model the service times. That is, in this definition of f(·), we wrote the
jth waiting time wj as a function of the previous interarrival times a1 =
− ln(1−u1), . . . , aj = − ln(1−u2j−1) and service times s1 = γ(u2), . . . , sj−1 =
γ(u2(j−1)). In that case, ω30 =

∫
[0,1)59

f(u)du cannot be computed exactly.
However, if we use exponential service times with a mean of 45 seconds in-
stead, then ω30 can be computed exactly [243, Example 11.11, p. 607] and is
denoted as ω30,exp below. Hence we can use the average waiting time in the
queue of the first 30 customers in the simpler model based on exponential
service times as our (external) control variable. The corresponding function
c(u) representing this control variable is given by

c(u1, . . . , u59) =
1
30

30∑
j=1

wj(− ln(1−u1),−0.75 ln(1−u2), . . . ,− ln(1−u2j−1)),

and the control variate estimator can then be written as

1
n

n∑
i=1

(f(ui) + β(ω30,exp − c(ui))).

Our preceding remark about common random numbers and synchronization
simply has to do with the fact that for both systems we use u1 to generate
the first interarrival time, u2 for the first service time, and so on. A similar
example is discussed in [243, Problem 11.14, p. 620].

In Example 4.9, we gave two possible control variables. It seems natural
that, just like for regression, we should be able to use more than one control
variable at the same time, with the hope that additional explanatory variables
will contribute to further reducing the variance. More precisely, with the
theory of multiple control variables [241, 242, 331], we are now looking at
estimators of the form

μ̂cv =
1
n

n∑
i=1

Yi + βT(μc − Ci), (4.10)

where CT
i = (C1i, . . . , Cqi) is a vector of q control variables, βT = (β1, . . . , βq)

is a vector of q coefficients, and μT
c = (E(C1), . . . ,E(Cq)) is the vector con-

taining the expectation of the q control variables. Based on arguments similar
to those used to derive the optimal β∗ in the single control variate case, it
can be shown that the vector of coefficients β that minimizes the variance of
the multiple control variate estimator (4.10) is given by

4.4 Control variates 109

β∗ = Σ−1
c Σy,c,

where Σc is the covariance matrix for the vector C, and

ΣT
y,c = [Cov(Y,C1), . . . ,Cov(Y,Cq)]

is the vector containing the covariances between Y and each of the control
variables Cj for j = 1, . . . , q. With this β∗, the corresponding estimator μ̂cv,β∗

has variance
Var(μ̂cv,β∗) = (1 −R2

y,c)Var(μ̂mc), (4.11)

where
R2

y,c = ΣT
y,cΣ

−1
c Σy,c

is the coefficient of determination of Y and C.
As in the case of a single control variate, here we are also faced with the

fact that in practice β∗ usually is not known exactly and that replacing it by
its estimate

β̂ = Σ̂−1
c Σ̂y,c

makes the corresponding estimator

μ̂cv,β̂ =
1
n

n∑
i=1

Yi + β̂
T
(μc − Ci)

biased in general. Here again, though, under the assumption that (Y,C) is
multinormal, μ̂cv,β̂ is unbiased and

Var(μ̂cv,β̂)

Var(μ̂cv,β∗)
=

n− 1
n− q − 1

, (4.12)

where μ̂cv,β∗ is the control variate estimator based on the exact optimal β∗,
whose variance is given in (4.11) [241, 242]. What the ratio (4.12) suggests
is that it may not always be beneficial to add control variables because the
reduction in variance that is obtained through the factor (1 − R2

y,c) may
be offset by the increase in the ratio (n − 1)/(n − q − 1) when q increases.
Intuitively speaking, this happens because each term of the form β̂j(μc,j −
Ĉj) adds noise to the control variate estimator, where Ĉj is the estimator∑n

i=1 Cji/n for the expectation μc,j of the jth control variable Cj . Hence,
if Cj does not help “explain” Y very much (that is, if Y and Cj are not
highly correlated), then its “variance-reducing” effect may be outweighed by
this noise. More generally, what we said about splitting, jackknifing, pilot
simulations, and the central limit theorem of Nelson all apply to the multiple
control variate case [45, 331].

The method of control variables can be used as a general framework to
study other variance reduction techniques. For example, we can think of
antithetic variates as using f(ui) − f(ũi) as a control variate, with β = 1/2

110 4 Variance Reduction Techniques

[155, 391]. Also, in [151], the theory of control variables is used to study an
estimation method called weighted Monte Carlo, which has been proposed in
the context of finance to calibrate models to market data [20]. The connection
between control variates and weighted estimators is studied in a more general
context in [177]. One of the tasks for which this connection can be helpful
is quantile estimation. More connections between control variates and other
variance reduction techniques are studied in [155].

Control variables can also be used in the following context ([165],[243,
p. 610], and [45, Problem 2.3.9]). Suppose we have q unbiased estimators
μ̂1, . . . , μ̂q for μ and want to use a linear combination

∑q
j=1 wjμ̂j of them

as our global estimator for μ. Then we can think of μ̂1 as our naive Monte
Carlo estimator and (μ̂1 − μ̂j), for j = 2, . . . , q, as our q−1 control variables.
We can then use the theory of control variables to determine the coefficients
wj that will produce the estimator with the smallest variance in the linear
combination.

Finally, if we look at the control variate method from the integration point
of view, we can say that it amounts to replacing f(u) by

φ(u) = f(u) + β(μc − c(u)),

where c : [0, 1)s → R is the function such that c(u) = C and E(c(U)) = μc.
Namely, just as we did for f , we can think of c as the function that turns
the vector u of uniform numbers used for the simulation into an observation
of the control variable. We described this formulation in Example 4.11. As
a second illustration, going back to Example 4.9, in that case the control
variable based on the average service time corresponds to the function

c(u) =
−v(u1)

29

⎛
⎝ 29∑

j=1

ln(1 − u2j+1)

⎞
⎠ ,

where

v(u) =

⎧⎨
⎩

35/60 if u < 0.2
50/60 if 0.2 ≤ u < 0.9
55/60 if u ≥ 0.9.

That is, the first random number u1 is used to determine the mean service
time, and then each of the 29 first service times are obtained by inverting
the exponential CDF with the chosen mean. In Fig. 4.9, in a fashion similar
to what was done in Fig. 4.7, we show the control variate integrand φ(u) as
u22 and u23 vary over [0, 1)2, while other variables are fixed. We see that as
u23 increases from 0 to 1, the corresponding service time s10 increases and
apparently causes β̂(μc − μ̂c) to decrease faster than μ̂mc increases, causing
φ(u) to decrease.

4.5 Importance sampling 111

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

a(10)s(10)

Fig. 4.9 Function φ(u) corresponding to the use of a control variable based on the average
service time for the simplified version of the bank. The axes are labeled with the variate
generated by the corresponding uniform number.

4.5 Importance sampling

Unlike the two variance reduction techniques previously discussed, impor-
tance sampling is a method that is not based on correlated sampling but
instead tries to direct the sampling effort toward the most important regions
of the integration domain. It is most useful for rare event simulation problems.
That is, this method is typically used when we need to observe an unlikely
event in order to estimate the quantity of interest. For such problems, we
may observe the rare event of interest only a few times (or not at all) in our
simulation runs, and therefore the estimate to be constructed might only be
based on a small number of observations.

The first example of such problems is to consider the bank in Example
4.6 but where we want to estimate the expected waiting time for clients who
wait more than 15 minutes. In a given simulation of a day at the bank, it is
possible that there will not be any customer waiting more than 15 minutes,
and thus the observation output for that run will be 0, although it is obvious
that the quantity to estimate is not 0. A second example is when the goal is to
estimate probabilities of losing information cells in communication networks
[55, 258]. These probabilities are usually pretty small (e.g., less than 0.001),
and naive simulation gives estimators with large relative errors that make
them unreliable. More generally, importance sampling is an especially useful

112 4 Variance Reduction Techniques

tool for estimating probabilities of rare events and quantiles with associated
probabilities close to 0 or 1 [154, 177]. A third example of an application
where importance sampling can be useful is in computer graphics, where
Monte Carlo methods are often used within path-tracing algorithms that are
designed to estimate the amount of light reaching different surfaces in a scene
to be rendered in the so-called global illumination problem [213, 330, 460]. In
that context, problems often arise because areas that are visually important
do not receive enough light, which in turn affects the quality of the rendering.

Importance sampling tries to address the problem of having too small a
number of observations where the event of interest took place by changing
the probability distribution of the underlying random variables in the simu-
lation, denoted by the vector X in (4.1), so that this event of interest occurs
more often. The estimator is then appropriately corrected so that it remains
unbiased.

Another technique often used for rare event simulation is splitting [149,
209, 260] and its companion approach, Russian roulette. According to Kahn
[209], both terms are apparently due to von Neumann and Ulam. The idea
of splitting/Russian roulette is to establish a certain criterion by which sim-
ulation runs can be valued in terms of their associated likelihood to enter an
“interesting region”. The interesting runs can then be “splitted”, meaning
that they are replicated in a certain number of copies. The counterpart is
that uninteresting simulations can be eliminated. The decision to eliminate
or not can itself be done using randomness, which is the “Russian roulette”
part of this methodology. As we will see in Chap. 8, these are the very same
ideas as those used in what is known as the bootstrap filter.

To describe the importance sampling estimator, we first write the quantity
μ to be estimated as

μ = E(h(X)) =
∫

Ω

h(x)ϕ(x)dx,

where ϕ(x) is the pdf of X. Now consider another pdf ψ(x) for X and write

μ =
∫

Ω

h(x)L(x)ψ(x)dx, (4.13)

where

L(x) =
ϕ(x)
ψ(x)

is called the likelihood ratio. Based on (4.13), the idea of importance sampling
is that rather than sampling X according to ϕ(x) and using the naive Monte
Carlo estimator

μ̂mc =
1
n

n∑
i=1

h(xi),

4.5 Importance sampling 113

we instead generate an i.i.d. sample x̃1, . . . , x̃n from the new pdf ψ(x) and
then use the importance sampling estimator

μ̂is =
1
n

n∑
i=1

h(x̃i)L(x̃i). (4.14)

Before going further, we must verify that L(x) is defined. A sufficient con-
dition for that is to make sure that ϕ is absolutely continuous with respect
to ψ (that is, ϕ(E) = 0 for every set E such that ψ(E) = 0) and to use the
convention that 0/0 = 0.

To verify that the importance sampling estimator μ̂is is unbiased, we sim-
ply write

E(μ̂is) = E(h(X̃)L(X̃)) =
∫

Ω

h(x)L(x)ψ(x)dx

=
∫

Ω

h(x)
ϕ(x)
ψ(x)

ψ(x)dx

=
∫

Ω

h(x)ϕ(x)dx = μ,

as required.
Hence, whatever choice we make for the new pdf ψ(x), as long as the

absolute continuity condition is satisfied, we are guaranteed that μ̂is is an
unbiased estimator. However, as we will see in the derivation of the variance,
not all choices of ψ(x) give us an estimator with reduced variance compared
with μ̂mc. This means that if the new pdf is not chosen carefully, we could
actually increase the variance.

Taking a look at the variance, we first write

Var(μ̂is) =
1
n

Var(h(X̃)L(X̃)).

Since E(h(X̃)L(X̃)) = μ, we can focus on E(h2(X̃)L2(X̃)). We have that

E(h2(X̃)L2(X̃)) =
∫

Ω

h2(x)L2(x)ψ(x)dx

=
∫

Ω

h2(x)
ϕ(x)
ψ(x)

ϕ(x)dx

= E(h2(X)L(X)).

Hence
Var(μ̂is) =

1
n

[
E(h2(X)L(X)) − μ2

]
, (4.15)

which means Var(μ̂is) ≤ Var(μ̂mc) if and only if

114 4 Variance Reduction Techniques

E(h2(X)L(X)) ≤ E(h2(X)). (4.16)

Just as we did for antithetic variates and control variates, it is useful
to determine if it is possible to obtain a zero-variance importance sampling
estimator in some cases. From (4.15), this means we want to know if we can
find ψ(x) such that

E(h2(X)L(X)) = μ2.

In the case where h(X) ≥ 0 for all X ∈ Ω, we can take ψ(x) = h(x)ϕ(x)/μ
and then

E(h2(X)L(X)) = μE(h(X)) = μ2,

as required. Obviously, since the optimal new density ψ(x) requires the knowl-
edge of μ, it cannot be determined in practice.

However, from this result and the inequality given in (4.16), we can get a
good sense for the properties that ψ(x) should have in order for the impor-
tance sampling estimator to have a smaller variance than the Monte Carlo
estimator. When h(x) is large, the new pdf should make x more likely, so that
the likelihood ratio L(x) is small. When h(x) is small, then we can afford to
have a likelihood ratio larger than one. Note that if L(x) is never larger than
one whenever h(x) is nonzero, then we are guaranteed that the importance
sampling estimator will have a smaller variance than the naive Monte Carlo
estimator. But it is usually difficult to guarantee that this condition will hold.

The analysis above gives us some intuition to guide us in our choice of the
new pdf ψ(x), but there is generally no way of constructing a pdf ψ(x) that
will achieve the largest variance reduction, or even to construct one that will
guarantee that the variance is reduced compared with the naive Monte Carlo
estimator. In fact, the task of identifying a good new pdf ψ(x) remains an
important research problem.

One possibility is to use a technique called exponential twisting/tilting,
which in the univariate case amounts to using a new pdf of the form

ψθ(x) = eθx−G(θ)ϕ(x),

where G(θ) = log E(eθX) is the cumulant generating function of X. Fur-
thermore, if the goal is to estimate P (X > x) for a large value x, then the
quantity E(h2(X)L(X)) on the left-hand side of (4.16), which we should try
to minimize in order to minimize the variance of the importance sampling
estimator, is given by

E(L(X)1X>x) = E(e−θX+G(θ)1X>x) ≤ e−θx+G(θ). (4.17)

This inequality suggests that to design an importance sampling estimator
based on exponential twisting, we should use the value of θ that minimizes the
upper bound above. Since G(θ) is the cumulant generating function of X, it is
convex, and therefore the minimum of the upper bound in (4.17) is attained

4.5 Importance sampling 115

at θ = θx, where θx is the root of the equation G′(θx) = x. An example where
this idea is applied will be presented in Chap. 7.

Another approach to ease the process of identifying a good importance
sampling distribution — which in some cases overlaps with exponential twist-
ing — is to restrict our attention to pdfs ψ(x) such that each random variable
Xi in the problem follows the same type of distribution as in the original for-
mulation with ϕ(x) but with different parameters. The parameters of the
new distribution are then chosen so that (hopefully) the variance of the re-
sulting importance sampling estimator will be reduced. This can be done in
a heuristic way using the reasoning discussed previously — trying to make
the more “important” or “costly” events happen more often — or by using
some kind of theoretical analysis where the parameters are derived by solving
a certain optimization problem or by exploiting properties of the problem at
hand. We give a few examples.

Using large deviations. In [146], the authors consider a certain type of pa-
rameter change for the application of importance sampling, and then, using
large deviations asymptotics, they derive an approximately asymptotically
optimal parameter change. This particular application of importance sam-
pling will be discussed in more detail in Chap. 7.

Searching for the best parameter. An alternative to the approach above is
to write out the problem of finding the parameters yielding the importance
sampling estimator with the smallest variance as a parametric optimization
problem that can then be solved using techniques such as infinitesimal per-
turbation analysis and stochastic approximation [133]. This typically requires
more computational work than approaches like the one used in [146], but
since this work is only done once, this is not an important disadvantage of
this method. It is used in the context of option pricing in [430, 459]. This
approach is discussed in more detail in Chap. 7 as well.

Exploiting properties of the problem. Asmussen uses importance sampling
in the context of risk theory to estimate the ruin probability of an insurance
company [13]. For a simple claim process model, he shows how to change the
pdf of the claim sizes and interarrival times based on exponential twisting and
the Lundberg equation, which is well-known in risk theory. He then proves that
the importance sampling estimator thus obtained is optimal in the infinite-
horizon case.

An alternative to the importance sampling estimator given in (4.14) is to
use the weighted importance sampling estimator (also called ratio estimate in
[176])

μ̂is,w =
∑n

i=1 h(x̃i)L(x̃i)∑n
i=1 L(x̃i)

.

A significant advantage of this estimator over the “usual” importance sam-
pling estimator (4.14) is that since the weights that multiply the h(x̃i) are
given by the normalized likelihood ratios

116 4 Variance Reduction Techniques

L(x̃i)∑n
i=1 L(x̃i)

, i = 1, . . . , n, (4.18)

they add up to 1 and are bounded between 0 and 1, which is not neces-
sarily the case with the estimator (4.14). Also, this weighted version can be
useful if ϕ and/or ψ are complicated pdfs with, for example, normalizing con-
stants that cannot be evaluated exactly. By normalizing the likelihood ratios
L(x̃i) as in (4.18), these constants cancel out and thus do not need to be
evaluated. The tradeoff is that μ̂is,w is no longer unbiased because although
E(h(x̃i)L(x̃i)) = μ and E(L(x̃i)) = 1, in general E(X/Y) is not equal to
E(X)/E(Y). However, it can be shown that this estimator is consistent; i.e.,
its bias goes to 0 as n goes to infinity [176, 391, 423].

Finally, we should also point out that sometimes importance sampling is
used simply because the alternative distribution ψ(x) is easier to sample from
and not necessarily because we are dealing with a rare event simulation.

We now illustrate the idea of importance sampling on our two examples. In
both cases, we are not really dealing with rare event simulations. Nevertheless,
we manage to reduce the variance by applying importance sampling in an ad
hoc way, following the intuition explained above of making the “important”
or “costly” events happen more often.

Example 4.12. In Example 1.2, one way to apply importance sampling is to
change the parameter of the exponential distribution used to simulate the
interarrival times. For example, we can use a mean of 58 seconds instead of
1 minute, which should increase the waiting times and therefore produce a
larger number of clients that wait more than 5 minutes. In this case, let Xi be
the vector Xi = (vi, ai,1, si,1, . . . , ai,Ni

, si,Ni
, ai,Ni+1), where vi is the mean

service time for the ith simulation, ai,j is the jth interarrival time in the ith
simulation, and si,j is the jth service time in the ith simulation. Then the
likelihood ratio has the form

L(x̃i) =
Ñi+1∏
j=1

e−ãi,j

(30/29)e−30ãi,j/29
=
(

29
30

)Ñi+1

e
∑ Ñi+1

j=1 ãi,j/29,

where the interarrival times ãi,j are generated according to an exponential
distribution with mean 58 seconds, and the variable Ñi is the corresponding
number of clients obtained under this new distribution for the ith simulation.
Hence the importance sampling estimator in this case is given by

μ̂is =
1
n

n∑
i=1

(
29
30

)Ñi+1

× e
∑ Ñi+1

j=1 ãi,j/29 ×
Ñi+1∑
j=1

1w̃i,j>5.

Figure 4.10 gives pseudocode for computing the importance sampling esti-
mator above. Table 4.5 gives numerical results where we compare the perfor-
mance of the importance sampling estimator against the naive Monte Carlo

4.5 Importance sampling 117

estimator. As we can see there, importance sampling reduces the size of the
confidence interval half-width by about 30% and increases the efficiency by a
factor of about two. The reason why the importance sampling estimator re-
quires a bit more time is that the expected number of clients arriving in a day
is larger than before as a result of the decrease in the expected interarrival
times.

SimIS

NbWait5 ← 0
w ← 0
u ← Rand01()

type ← GenDisc([0.2,0.9,1],3,u)
v ← mus[type]
u ← Rand01()

a ← GenExpon(58/60,u)
time ← a
sums ← 0
nbcust ← 1
L ← (29/30) × exp(a/29)
while (time < 300) do

s ← GenExpon(mu,Rand01())
a ← GenExpon(58/60,Rand01())
nbcust ← nbcust + 1
time ← time + a
L ← L × (29/30) × exp(a/29)
w ← max(0, w + s − a)

if ((time < 300) and (w > 5)) then
NbWait5 ← NbWait5 + 1

return (NbWait5 ×L)

Fig. 4.10 Pseudocode showing how to use importance sampling on the bank example.

Table 4.5 Comparison of Monte Carlo and importance sampling estimators for Example

4.6. HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 73.04 0.788 11.9 0.521
IS 72.71 0.567 12.4 0.964

118 4 Variance Reduction Techniques

Example 4.13. For the SAN described in Example 4.7, one way of applying
importance sampling is to decrease the expected duration of certain activities,
so that the length of the longest path decreases and thus becomes smaller
than T0 more often. For instance, we chose activities 2, 6, 9, and 11 and
changed their mean to 90% of their original value. (Note that each path
contains at least one of these activities.) Since these four activities have an
exponential distribution, the likelihood ratio for this change of measure is

L(x̃i) = 0.94e(1/0.9−1)(D̃i,2/d2+...+D̃i,11/d11),

where xi = (D̃i,1, D̃i,2, . . . , D̃i,13) is the vector containing the durations sam-
pled under the new distribution and dj is the original expected duration for
activity j. The corresponding importance sampling estimator is then

μ̂is =
1
n

n∑
i=1

1T (x̃i)≤t0L(x̃i),

where we used the notation T (x̃i) instead of Ti to emphasize the depen-
dence on x̃i. Table 4.6 gives the results. As we see there, importance sam-
pling reduces the half-width of the confidence interval by a modest factor of
about 1.1.

Table 4.6 Comparison of Monte Carlo and importance sampling estimators for Example
4.7. HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 0.7502 5.41e−3 0.197 667,913
IS 0.7499 4.90e−3 0.214 748,862

As we did for the previously discussed variance reduction techniques, we
now describe the function φ(u) corresponding to the integration formulation
of the importance sampling estimator. We can write it as

φ(u) = h(g̃(u))L(g̃(u)),

where g̃ corresponds to the function that transforms the vector of uniform
numbers u into a vector X according to the new pdf ψ(x). We use the g̃
notation to distinguish it from the function g used in Fig. 4.1, which has the
same meaning but for the original pdf ϕ(x). The function h(·) is as defined
in Fig. 4.1, and L(·) is the likelihood ratio. Figure 4.11 shows the function
φ(u) in our usual setting for the simplified bank example. Compared with
the function f(u) corresponding to the naive Monte Carlo estimator that is

4.6 Conditional Monte Carlo 119

shown in Fig. 4.7 (top), the function φ(u) depicted in Fig. 4.11 seems to be
larger in the “important” areas corresponding to larger waiting times.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

a(10)s(10)

Fig. 4.11 Function φ(u) corresponding to the use of importance sampling for the sim-
plified version of the bank. The axes are labeled with the variate generated by the corre-
sponding uniform number.

4.6 Conditional Monte Carlo

This method was introduced by Trotter and Tukey in 1956 [451] and gener-
alized shortly after [162, 165]. It shares a similarity with the control variates
technique in that it tries to use auxiliary information in order to improve the
quality of the naive Monte Carlo estimator. With conditional Monte Carlo,
rather than using this information to adjust the Monte Carlo estimator with
an appropriately chosen additive term as we do with control variates, we in-
stead compute the expectation of the quantity of interest conditioned on the
value taken by the auxiliary quantity.

More precisely, let Z be the conditioning variable, which is typically a
vector that we can either view as being a function of X (that is, Z = z(X))
or a function of U (that is, Z = ζ(U)). Typically, these functions (z or ζ)
actually only depend on a subset of X or U , and Z itself is usually a vector
of random variables. Examples will be given shortly.

120 4 Variance Reduction Techniques

The idea is then to write

μ = E(Y) = E(E(Y |Z)) (4.19)

using the properties of conditional expectation. Assuming E(Y |Z) is known,
this suggests the use of the conditional Monte Carlo estimator

μ̂cmc =
1
n

n∑
i=1

E(Y |Zi),

where Zi is obtained from the ith run of the simulation for i = 1, . . . , n.
Before going further, let us illustrate with an example how conditional

Monte Carlo works. For the bank example, we need to modify the problem
so that conditional Monte Carlo can be applied not too trivially.

Example 4.14. Suppose that in our bank example each client decides never
to come back to the bank with a certain probability. More precisely, if the
person had to wait less than 5 minutes, then the person decides to never come
back with probability 0.5, but if the person had to wait more than 5 minutes,
then the probability is 0.9. Suppose we wish to estimate the proportion of
the first 300 clients who will decide never to come back. Conditional Monte
Carlo could be applied as follows. Define Z to be the vector of waiting times
(W1, . . . ,W300). Let Y be

Y =
1

300

300∑
j=1

Bj ,

where Bj is an indicator function whose value is 1 if the jth person decides
never to come back and 0 otherwise. Note that 1+3×300−1 = 900 uniform
numbers are required in order to evaluate Y , while only 600 are required in
order to compute Z, the difference being due to the fact that to evaluate Y
we need to generate a decision of never coming back or not for each of the
300 clients.

Based on the fact that

E(Bj |Wj) =
{

0.5 if Wj ≤ 5
0.9 if Wj > 5,

we have that

E(Y |Z = (w1, . . . , w300)) =
1

300

300∑
j=1

(
0.5 × 1wj<5 + 0.9 × 1wj≥5

)
.

Hence the conditional Monte Carlo estimator is

4.6 Conditional Monte Carlo 121

μ̂cmc =
1
n

n∑
i=1

1
300

300∑
j=1

(
0.5 × 1wi,j<5 + 0.9 × 1wi,j≥5

)
,

where wi,j is the waiting time of the jth client on the ith simulation run.
In other words, with the conditional Monte Carlo estimator, rather than
randomly generating a decision (0 or 1) of coming back or not for each client,
we instead output the probability of deciding never to come back: 0.5 if the
waiting time was less than 5 minutes and 0.9 otherwise.

Table 4.7 contains numerical results comparing the efficiency of the naive
Monte Carlo and conditional Monte Carlo estimators for this example.

Table 4.7 Comparison of Monte Carlo and conditional Monte Carlo estimators. HW is
the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 0.5943 1.19e−3 16.3 166,910
CMC 0.5938 7.78e−4 11.8 535,333

Hence, conditional Monte Carlo manages to reduce the half-width of the
95% confidence interval by a factor of about 2/3, and with a significantly
smaller computation time due to a reduction from 900 to 600 variables to
generate, the gain in efficiency is by a factor larger than three.

Let us now study the bias and variance of the conditional Monte Carlo
estimator. We have that

E(μ̂cmc) =
1
n

n∑
i=1

E(E(Y |Zi)) = E(E(Y |Zi)) = E(Y) = μ,

where we used (4.19) for the second-to-last equality. Thus the conditional
Monte Carlo estimator is unbiased. Now, for the variance, we have

Var(μ̂cmc) =
1
n2

n∑
i=1

Var(E(Y |Zi)) =
1
n

Var(E(Y |Zi))

=
1
n

[Var(Y) − E(Var(Y |Zi))] ≤
1
n

Var(Y),

where the inequality follows from the fact that Var(Y |Zi) ≥ 0. Hence the con-
ditional Monte Carlo estimator has a variance no larger than the Monte Carlo
estimator’s variance. In fact, we have a strict inequality as long as Y is not
completely determined by Z, which happens, for example, if we take Z = Y .
This also tells us that we could in theory get a zero variance with our condi-
tional Monte Carlo estimator if E(Var(Y |Zi)) = Var(Y), which can happen if

122 4 Variance Reduction Techniques

Y and Z are independent. However, if this is true, then E(Y |Z) = E(Y) = μ,
which cannot be computed, and so conditional Monte Carlo cannot be applied
in this case. These two extreme cases suggest that, to get a good variance
reduction, we should try to choose a conditioning variable Z that “explains”
Y as little as possible but is still such that E(Y |Z) can be computed.

Note that since Z = ζ(u) usually depends on fewer variables uj than f
does, conditional Monte Carlo usually contributes to reducing the dimension
of the problem. Often, this translates into savings for the computation time
as well, as we saw in Table 4.7. This feature will also be useful when this
technique is combined with quasi–Monte Carlo sampling.

We now describe how conditional Monte Carlo can be used effectively on
the SAN example [22, 50].

Example 4.15. For this problem, conditional Monte Carlo can be applied as
follows. Choose a uniformly directed cutset L that is a subset of A such that
each path j from the source to the sink contains exactly one activity lj in L.
Then, take Z = (Dj : j ∈ A\L), that is, Z is the vector of durations for
activities that are not in the directed cutset L. In what follows, Y = 1T≤t0

is the indicator function that is equal to 1 when the completion time T is no
larger than t0. We have that

E(Y |Z = (Dj , j ∈ A\L))

= E

⎛
⎝

N(P)∏
j=1

1Pj≤t0 |Z

⎞
⎠ = E

N(P)∏
j=1

1Dlj
≤t̃j

0
=

N(P)∏
j=1

Flj (t̃
j
0), (4.20)

where

t̃j0 = max

⎛
⎝0, t0 −

∑
k∈Cj ,k �=lj

Dk

⎞
⎠ (4.21)

is the maximum duration that lj can have in order for the length of the jth
path to be smaller than or equal to t0, given the durations of the activities
that are not in L. Hence, the conditional Monte Carlo estimator is given by

μ̂cmc =
1
n

n∑
i=1

N(P)∏
j=1

Flj (t̃
j
0).

The pseudocode describing how to use conditional Monte Carlo for this ex-
ample is given in Fig. 4.12. The results obtained using the uniformly directed
cutset given by L = {2, 6, 9, 10, 11} as in [22] are given in Table 4.8.

As is seen in Table 4.8, conditional Monte Carlo increases the efficiency
by a factor larger than three for this example. Note that the conditioning
variable Z only requires thet eight uniform numbers be generated; i.e., if we
write Z = ζ(u), then u ∈ [0, 1)8, while for the original formulation Y = f(u)
is defined over [0, 1)13.

4.6 Conditional Monte Carlo 123

SanCMC

NA ← 13 //nb of activities
NP ← 6 // nb of paths
NL ← 5 // size of directed cutset
for j = 1 to NA − NL do

D[L̃[j]] ← GenF(L̃[j], Rand01())
esp ← 1
for k = 1 to NP do

L ← 0
for j = 1 to ck do

if (C[k, j] is not in L) then
L ← L + D[C[k, j]]

esp ← esp ×CDF (lk, max(0, t0 − L))
return (esp)

Fig. 4.12 Pseudocode to use conditional Monte Carlo for the SAN example. We assume
that L̃[j] returns the index of the jth activity that is not in L, CDF (lk, t) evaluates at t
the CDF of the activity lk in the kth path that is in the directed cutset, C[k, j] returns
the index of the jth arc on the kth path, and ck is the number of arcs on path k.

Table 4.8 Comparison of Monte Carlo and conditional Monte Carlo estimators for Ex-
ample 4.7. HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 0.7502 5.41e−3 0.197 667,913
CMC 0.7509 3.13e−3 0.195 1,995,301

More generally, if we look at the function φ(u) corresponding to the ap-
plication of conditional Monte Carlo, we have that

φ(u) = E(Y |ζ(u)),

where u = (u1, . . . , ut) is the vector of uniform numbers required to evalu-
ate ζ. As we just saw for the SAN example, the size t of this vector is typically
smaller than the original dimension s. Also, in the SAN example, we have

ζ(u) = (F−1
i1

(u1), . . . , F−1
it

(ut)),

where {i1, . . . , it} = A\L is the set of indices of durations that are not in the
uniformly directed cutset L. Furthermore, following (4.20), we have

φ(u) =
N(P)∏
j=1

Flj (t̃
j
0(u1, . . . , ut)),

124 4 Variance Reduction Techniques

where we wrote t̃j0 = t̃j0(u1, . . . , ut) as a function of u1, . . . , ut to emphasize
the dependence on u that occurs through the durations Dj = F−1

j (ur) in
(4.21) for whichever ur has been assigned to Dj , where 1 ≤ r ≤ t.

Figure 4.13 (top) shows the function f(u) corresponding to the SAN ex-
ample as u4 and u11 vary and all other coordinates are fixed (at some random
point in [0, 1)11). The function f is defined so that ui is used to generate the
duration of activity i for i = 1, . . . , 13. Hence the two coordinates u4 and u11

correspond to the durations of activities 4 and 11, respectively.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

D(4)

D(11)

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

D(4)

D(11)

Fig. 4.13 Top: function f for SAN example; bottom: corresponding function φ for CMC.
The axes are labeled with the variate generated by the corresponding uniform number.

4.7 Stratification 125

The function φ(u) corresponding to the application of conditional Monte
Carlo is shown on the bottom of Fig. 4.13 as u3 and u7 vary and all six
remaining coordinates are fixed (randomly, but to the same value as they
were for our depiction of f(u)). The function φ(u) is defined so that u3

and u7 generate the durations of activities 4 and 11, respectively, so that the
comparison with f(u) makes more sense. What we see there is that with naive
Monte Carlo the corresponding function f is a step function that is 0 on part
of its domain (when large numbers uj generate long durations) and then 1
elsewhere. By contrast, the function φ corresponding to the conditional Monte
Carlo estimator is 0 only on a small portion of its domain (corresponding to
cases where one of the values t̃j0 is zero) and then increases smoothly to 1.

4.7 Stratification

Stratification is a variance reduction technique that builds on ideas that are
commonly used in statistical sampling [60]. Namely, the main idea here is
to partition the sample space Ω (or the unit cube [0, 1)s) into M strata
and estimate μ separately for each stratum. For instance, suppose we write
Ω = S1 ∪ . . .∪ SM , where the strata Sl are disjoint (i.e., Sl ∩ Sm = ∅ for any
l �= m). Let pj = P (X ∈ Sj) for j = 1, . . . ,m. Then we can write

μ = E(h(X)) =
m∑

j=1

pjE(h(X)|X ∈ Sj).

This suggests the use of the stratified estimator

μ̂str =
m∑

j=1

pj μ̂j , (4.22)

where

μ̂j =
1
Nj

Nj∑
i=1

h(Xi,j), (4.23)

Xi,j is distributed according to the conditional density of (X|X ∈ Sj), and
Nj is the number of draws that we take with X in the jth stratum. Thus we
have that N1 + . . .+Nm = n. Since E(μ̂j) = E(h(Xi,j)) = E(h(X)|X ∈ Sj),
we have that μ̂str is unbiased.

The variance of μ̂str is given by

Var(μ̂str) =
m∑

j=1

p2
j

Nj
σ2

j ,

126 4 Variance Reduction Techniques

where σ2
j = Var(h(X)|X ∈ Sj). To analyze this variance further, we need

to say more about the variables Nj and how they are chosen. Here are two
possibilities.

1. Proportional allocation: Choose Nj = npj . This gives us

Var(μ̂str) =
1
n

m∑
j=1

pjσ
2
j ,

which can be shown to be smaller than the variance Var(h(X))/n of the
naive Monte Carlo estimator (see Prob. 4.13).

2. Optimal allocation (also called Neyman allocation): Find values for the Nj

such that the variance of μ̂str is minimized. Hence we need to solve the
optimization problem

minimize Var(μ̂str) =
m∑

j=1

p2
j

Nj
σ2

j ,

s.t. N1 + . . .+Nm − n = 0.

We can use a Lagrange multiplier λ and rewrite the problem as being the
minimization of

m∑
j=1

p2
j

σ2
j

Nj
+ λ(N1 + . . .+Nm − n).

Taking the derivative with respect to each Nj and putting them equal to 0,
we get

−
p2

j

N2
j

σ2
j + λ = 0 for j = 1, . . . ,m,

which means we must have

Nj =
pjσj√
λ

for j = 1, . . . ,m,

and λ is determined so that N1 + . . .+Nm = n, yielding

λ =
(
p1σ1 + . . .+ pmσm

n

)2

.

Thus the optimal allocation is to choose

Nj =
npjσj∑m
l=1 plσl

, j = 1, . . . ,m. (4.24)

Here the value of Nj is determined both by the probability pj associated
with the jth stratum and the variability of h(X|X ∈ Sj). Based on this,

4.7 Stratification 127

we can think of stratification as a way of doing importance sampling where
we make sure that the “important” strata are sampled more often than
the “unimportant” strata.

Note that, with optimal allocation we get the variance

Var(μ̂str) =
1
n

⎛
⎝ m∑

j=1

pjσj

⎞
⎠

2

,

which can be shown to be smaller than the variance of μ̂str under propor-
tional allocation (see Prob. 4.14). However, since the values σj are not known,
they must be estimated in order to determine the optimal values Nj given
by (4.24). This can be done by using a different (smaller) random sample
X1, . . . ,XN and either proportional allocation or poststratification, which
we now describe.

An alternative to the approach described above is to use poststratification,
where instead of choosing the sample sizes Nj a priori for each stratum and
then generating Xi conditionally on the stratum to which it belongs, we can
generate Xi as usual and determine afterward how many of them belong to
each stratum. More precisely, the poststratified estimator is given by

μ̂pstr =
m∑

j=1

pj

(
1
Nj

n∑
i=1

h(Xi)Bi,j

)
, (4.25)

where

Bi,j =
{

1 if Xi ∈ Sj

0 else

and Nj =
∑n

i=1Bi,j is the number of vectors Xi that belong to Sj for
j = 1, . . . ,m. Hence Nj is a random variable with (N1, . . . , Nm) having a
multinomial distribution with parameters (n, p1, . . . , pm). In the definition
(4.25), we assume that if Nj = 0, then the estimator

∑n
i=1 h(Xi)Bi,j/Nj is

set to 0.
The advantage of using poststratification is that the vectors Xi are gen-

erated as usual rather than by using the conditional distribution of X given
X ∈ Sj , which might be difficult to sample from in some cases. The drawback
is that using a random Nj introduces more variability in the estimator μ̂pstr

compared with the estimator μ̂str given in (4.22). Also, the poststratified es-
timator is only conditionally unbiased on the event that all Nj ≥ 1 [45, 394].
To see why, let A denote this event. Then we have

E(μ̂pstr|A) =
m∑

j=1

pjE

(
E

(
1
Nj

n∑
i=1

h(Xi)Bi,j |Bi,j , i = 1, . . . , n

)
|A
)

128 4 Variance Reduction Techniques

=
m∑

j=1

pjE
(

1
Nj

(NjE(h(Xi)|Xi ∈ Sj)|A)
)

=
m∑

j=1

pjE(h(Xi)|Xi ∈ Sj) = μ.

But this implies that E(μ̂pstr) = μP (A) ≤ μ. For the variance, we first
compute the conditional variance

Var

⎛
⎝ m∑

j=1

pj

Nj

n∑
i=1

h(Xi)Bi,j |Bi,j , i = 1, . . . , n

⎞
⎠ =

m∑
j=1

p2
j

Nj
σ2

j . (4.26)

We then use the formula

Var(μ̂pstr|A) = Var(E(μ̂pstr|Bi,j , i = 1, . . . , n)|A)
+E(Var(μ̂pstr|Bi,j , i = 1, . . . , n)|A)

to compute the (conditional) variance of μ̂pstr. First, note that the inner
conditional expectation in the first term is independent of Nj (conditioned
on A) and thus the first term vanishes. We can use (4.26) to compute the
second term and get

Var(μ̂pstr|A) =
m∑

j=1

p2
jσ

2
j E
(
N−1

j |A
)
. (4.27)

Hence we just need to compute E(N−1
j |A) where (N1, . . . , Nm) has a multi-

nomial distribution, as noted before. As was done for example in [60, pp.
134–135], we can estimate this expectation as follows:

1. For a multinomial distribution, we have that E(Nj) = npj and Var(Nj) =
npj(1 − pj).

2. If we condition on A, then these expectation and variance formulas are
only slightly different (since P (A) is almost 1 for n large), and so the ones
given in the previous item can be used as approximations even when we
condition on A (see Prob. 4.16).

3. For a random variable X such that P (X = 0) = 0, we can write

E
(

1
X

)
=

1
E(X)

E
(

1 +
X − E(X)

E(X)

)−1

.

4. Using Taylor series, we can write

1
1 + y

≈ 1 − y + y2.

4.7 Stratification 129

Combining these four steps, we write

E
(
N−1

j |A
)
≈ 1
npj

(
1 +

npj(1 − pj)
n2p2

j

)
=

1
npj

(
1 +

1 − pj

npj

)
.

Substituting this approximation into (4.27) gives

Var(μ̂pstr|A) ≈
m∑

j=1

pj

n
σ2

j

(
1 +

1 − pj

npj

)
.

Comparing this with proportional allocation, we see that the price to pay for
using poststratification is that we have an (approximate) extra term

1
n2

m∑
j=1

(1 − pj)σ2
j

added to the variance. If n is large, this O(n−2) term is pretty small.
Finally, to understand the differences between poststratification and naive

Monte Carlo, we can rewrite the latter in a form similar to (4.25), so that
we get

μ̂mc =
m∑

j=1

Nj

n

(
1
Nj

n∑
i=1

f(ui)Bi,j

)
.

Hence the poststratified estimator replaces the weights Nj/n used in the
Monte Carlo estimator by their expected value pj , which intuitively should
result in a reduction of the variance [217].

Let us now illustrate how stratification works on our bank example.

Example 4.16. For the bank example, we can use stratification on the variable
v that determines the mean service time [45]. That is, we let Sj = {X =
(v, a1, s1, . . .) ∈ Ω : v = vj} for j = 1, 2, 3. Hence the stratified estimator is

μ̂str = 0.2μ̂1 + 0.7μ̂2 + 0.1μ̂3,

where μ̂j is the estimator obtained when the mean service time is vj minutes,
with v1 = 35/60, v2 = 50/60, and v3 = 55/60. If we take n = 1024, then
with proportional allocation we get N1 = 205, N2 = 717, and N3 = 102. To
use optimal allocation, we generate a sample of size N = 100 and estimate
σ1, σ2, and σ3 using poststratification. We get σ̂1 = 6.87, σ̂2 = 62.1, and
σ̂3 = 62.1. Hence we can perform optimal allocation with N1 = 28, N2 = 872,
and N3 = 124. Results comparing the three forms of stratification with the
naive Monte Carlo estimator are given in Table 4.9. We see that the efficiency
is increased by a factor of about two for all three stratification methods.

130 4 Variance Reduction Techniques

Table 4.9 Results for the modified bank example using stratification. HW is the half-
width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

MC 73.04 0.788 11.9 0.521

post 73.07 0.493 11.9 1.328

prop 73.01 0.596 11.7 0.924
opt 72.95 0.530 11.9 1.147

Pseudocode describing how to use stratification with fixed Nj or post-
stratification is given in Fig. 4.14, where the function OneSimBank(·, ·) is as
defined on p. 15 of Chap. 1.

SimFixedStr(N1, N2, N3) SimPostStr

str ← 0 N ← [0, 0, 0]
for l = 1 to 3 x ← [0, 0, 0]

v ← mus[l] for i = 1 to n
for i = 1 to Ni U ← Rand01()

x[i] ← OneSimBank(1,v) l ← GenDisc([0.2,0.9,1],3,u)
str ← str + pl× ave(x) v ← mus[l]

return(str) result ← OneSimBank(1,v)
x[l] ← x[l] +result
N [l] ← N [l] + 1

return p1
x[1]
N [1]

+ p2
x[2]
N [2]

+ p3
x[3]
N [3]

Fig. 4.14 Pseudocode for stratification with the Nj fixed ahead of time (left) or a poste-
riori (right).

As was done in the previous sections, we conclude our discussion on strat-
ification with a description of the function φ(u) corresponding to the inte-
gration formulation of this technique. When Nj is fixed ahead of time, we
can break down the problem into m integration problems where the goal is
to estimate the integral of

φj(u) = h(g̃j(u)), (4.28)

where g̃j(·) is the function that transforms u = (u1, . . . , ut) into an observa-
tion X from the conditional pdf of X given X ∈ Sj for j = 1, . . . ,m. Then
each of these m integration problems are tackled using a sample of Nj i.i.d.
points u1, . . . ,uNj

. Note that the dimension t of these points might be smaller
than the original dimension s due to the fact that we generate observations

4.7 Stratification 131

X under the conditional pdf. For instance, in the bank example, we need one
less uniform number since we stratify on the mean service time and therefore
do not need to generate an observation for the random mean service time
under the conditional distribution.

For the poststratified estimator, we can first say that we are still integrat-
ing the function f(u) but now replace the equal 1/n weights of the Monte
Carlo estimator by the weights wi = pj/Nj , where j is the index of the stra-
tum to which Xi = g(ui) belongs for i = 1, . . . , n, and assuming all Nj are
at least 1. A second interpretation is to say that we wish to integrate the
function

m∑
j=1

pjφj(u), (4.29)

where φj(·) is as defined in (4.28), but we want to use a sample X1, . . . ,Xn

generated under the unconditional distribution rather than work with con-
ditional distributions. That is, we wish to use the sample g(u1), . . . , g(un)
rather than having m separate samples, each created according to g̃j(u), for
j = 1, . . . ,m. Hence we can think of poststratification as applying impor-
tance sampling to (4.29), where for each j the “original” distribution is the
conditional pdf ϕ(x|x ∈ Sj), and the new one used for importance sampling
is the unconditional pdf ϕ(x). Using the fact that

ϕ(x|x ∈ Sj) =
ϕ(x)1x∈Sj

pj
,

we have that the likelihood ratio for each j has the form

L(xi) =
ϕ(xi|xi ∈ Sj)

ϕ(xi)
=
Bi,j

pj
=

1g(ui)∈Sj

pj
.

If we use the usual importance sampling estimator, we get

m∑
j=1

pj

(
1
n

n∑
i=1

f(ui)1g(ui)∈Sj

pj

)
,

which is just the naive Monte Carlo estimator μ̂mc. Instead, the poststratified
estimator is obtained using the weighted importance sampling estimator μ̂is,w

described on p. 115. That is,

μ̂pstr =
m∑

j=1

pj

n∑
i=1

f(ui)1g(ui)∈Sj
/pj∑n

i=1 1g(ui)∈Sj
/pj

=
m∑

j=1

pj

Nj

n∑
i=1

f(ui)1g(ui)∈Sj
.

132 4 Variance Reduction Techniques

4.8 Common random numbers

This last technique is typically used when the goal is to estimate the difference
between two related quantities. More generally, it can be used when several
systems having common features need to be simulated in order to estimate
a function that depends on the response obtained from each system. For
instance, in the context of sensitivity analysis, we may want to find out
whether a parameter change will significantly affect the value of a certain
quantity of interest.

In what follows, we assume that the goal is to estimate

μ = μ1 − μ2,

where μj = E(fj(U)), j = 1, 2.
As the name suggests, the idea of common random numbers is to use the

same uniform random numbers to estimate μ1 and μ2. Intuitively speaking,
using the same source of randomness should have the effect that the differ-
ences observed are due to intrinsic differences between the two functions f1
and f2 rather than variations in the random numbers used.

The common random numbers estimator is thus given by

μ̂crn =
1
n

n∑
i=1

(f1(ui) − f2(ui)),

where u1, . . . ,un are i.i.d. uniform over [0, 1)s. It is obvious that this estima-
tor for μ is unbiased. Its variance is given by

Var(μ̂crn) =
1
n

(Var(f1(U)) + Var(f2(U)) − 2Cov(f1(U), f2(U)))

=
1
n

(σ2
1 + σ2

2 − 2σ1,2),

where σ1,2 = Cov(f1(U), f2(U)). By contrast, if instead we use independent
samples {u1,i : 1 ≤ i ≤ n} and {u2,i : 1 ≤ i ≤ n} to estimate μ1 and μ2,
respectively, then the corresponding estimator

μ̂ind =
1
n

n∑
i=1

f1(u1,i) −
1
n

n∑
i=1

f(u2,i)

has variance
Var(μ̂ind) =

1
n

(σ2
1 + σ2

2).

Hence the common random numbers estimator has a smaller variance than
the independent estimator if and only if σ1,2 > 0. Results closely related to
those seen for antithetic variates in Sect. 4.3 can be used to determine if this
condition holds. More precisely, we have the following theorem [473].

4.8 Common random numbers 133

Theorem 4.17. Let X be a random variable with CDF F (·), and let Y be a
random variable with CDF G(·). Then among all pairs with marginal CDFs
given by F (·) and G(·), (F−1(U), G−1(U)) is the one with maximal correla-
tion.

What this tells us is that if X represents a certain random variable in our
system and Y represents the same random variable but in the alternative
system — for which μ2 is estimated — then the best way to induce positive
correlation between X and Y is to use inversion with the same uniform ran-
dom number U to generate both of them. Similar to Theorem 4.4, this result
gives us a way to guarantee “intermediate” positive correlation between the
two measures to be estimated. To make sure this correlation actually holds
for f1 and f2, we can use the following result [45, 275], which is similar to
Theorem 4.3 in Sect. 4.3.

Theorem 4.18. Assume that f1 and f2 are bounded functions not constant
everywhere and that, for all j ≥ 1, they are either both increasing or both de-
creasing as a function of their jth argument uj. Then Cov(f1(U), f2(U)) ≥ 0.

The conditions of that theorem are the same as those given in Theorem
4.3, but this time they are used to verify that common random numbers can
reduce the variance compared with using independent simulations.

We now illustrate with our two examples how common random numbers
can be applied.

Example 4.19. For the bank example, let μ1 be the expectation of the num-
ber of clients that will wait more than 5 minutes when the mean interarrival
time is 60 seconds (as in Example 1.2), and let μ2 be the same quantity but
when the mean interarrival time is 55 seconds. Here, f1 is the same function
f as in Example 4.5, and f2 is almost identical to f1 except that it trans-
forms the uniform numbers designated for interarrival times into exponential
random variates with mean 55 seconds instead of 60 seconds. Using the same
arguments as in Example 4.5, we can easily verify that both f1 and f2 satisfy
the conditions of Theorem 4.18. Figure 4.15 gives the pseudocode for using
common random numbers in this case.

Numerical results comparing the efficiency of common random numbers
and the Monte Carlo estimator based on independent runs for Example 4.19
are given in Table 4.10. The common random numbers estimator not only
decreases the half-width of the 95% confidence interval by a factor larger
than four but also significantly reduces the computation time since the same
random numbers are used to simulate both systems. Overall, common random
numbers improves the efficiency by a factor of about 26.

Example 4.20. Suppose that in our SAN example we want to know if reducing
the mean duration of activities 2, 5, 6, 10, and 11 will significantly increase

134 4 Variance Reduction Techniques

Table 4.10 Comparison of independent (ind.) and common random numbers (CRN) es-
timators for Example 4.19. HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

ind. −50.70 1.86 24.7 4.48e−2

CRN −49.67 0.47 14.8 1.154

the probability of completing the network within t0. More precisely, we want
to estimate the difference μ = p0 − p1, where p0 is P (T ≤ t0) under the
original model assumptions, while p1 = P (T̃ ≤ t0), where T̃ is the completion
time when the duration means for activities 2, 5, 6, 9, and 11 are 90% of
their original values. Table 4.11 compares common random numbers with
independent simulations for this problem.

OneSimBankCRN

NbWait5 1 ← 0; NbWait5 2 ← 0
w1 ← 0
w2 ← 0
type ← GenDisc([0.2,0.9,1],3,Rand01())
v ← mus[type]
u ← Rand01()

a1 ← GenExpon(1,u)
a2 ← GenExpon(55/60,u)
time1 ← a1
time2 ← a2
while (min(time1,time2) < 300) do

s ← GenExpon(v,Rand01())
u ← Rand01()

a1 ← GenExpon(1,u)
a2 ← GenExpon(55/60,u)
time1 ← time1 + a1
time2 ← time2 + a2
w1 ← max(0, w1 + s − a1)
w2 ← max(0, w2 + s − a2)
if ((time1 < 300) and (w1 > 5)) then

NbWait5 1 ← NbWait5 1 + 1
if ((time2 < 300) and (w2 > 5)) then

NbWait5 2 ← NbWait5 2 + 1
return (NbWait5 1 − NbWait5 2)

Fig. 4.15 Pseudocode showing how to apply common random numbers for the bank
example.

4.9 Combinations of techniques 135

Table 4.11 Comparison of independent (ind.) and common random numbers (CRN) es-
timators for Example 4.20. HW is the half-width of a 95% confidence interval for μ.

Method μ̂ HW CPU(sec) Êff(μ̂)

ind. −0.0696 6.64e−3 0.305 1,473,409

CRN −0.0660 2.92e−3 0.406 214,710

Hence common random numbers reduces the size of the 95% confidence
interval half-width by a factor larger than two and increases the efficiency by
a factor of about seven compared with independent simulations.

We should mention that, for the same reasons we gave in Sect. 4.3, syn-
chronization is extremely important for common random numbers to work.
That is, we must make sure that, as much as possible, each uniform number
uj must be used for the same purpose in both simulations. Also, just like an-
tithetic variates, common random numbers do not need to be applied on all
uniform numbers. For instance, if, while verifying the conditions of Theorem
4.18, we realize that f1 and f2 are not both increasing or both decreasing
for a subset J of their arguments, then this suggests that common random
numbers should not be used for this subset.

It is fairly easy to see that, from the integration point of view, the use
of common random numbers as described above amounts to building an ap-
proximation for the integrand φ(u) = f1(u) − f2(u).

As mentioned at the beginning of this section, common random numbers
can be used in a much more general context, where we need to study J mea-
sures of performance corresponding to functions f1, . . . , fJ , and we need to
estimate M functions involving f1, . . . , fJ . For instance, f1 might correspond
to the reference system and f2, . . . , fJ to alternate configurations and the
goal is to simultaneously estimate E(f1(U)−fj(U) for j = 2, . . . , J . Another
example is in the context of control variates, where f2(u) might represent an
external control variate and the goal is to estimate f1(u) + β(μ2 − f2(u)), as
discussed on p. 108. A third example is in the context of regenerative sim-
ulation, where we are typically interested in estimating ratios of the form
E(f1(u))/E(f2(u)). An example of regenerative simulation will be given in
Sect. 7.3.

4.9 Combinations of techniques

Now that we have seen all these variance reduction techniques, it is natural
to wonder if we have to use them separately or if we can combine them. The
answer is that we can combine them, but care must be taken when doing

136 4 Variance Reduction Techniques

so. For instance, combining antithetic variates and common variates may
not necessarily reduce the variance even if each method does so separately
[218]. The reason is that when we write out the variance of the combined
estimator, some cross-covariance terms have a sign that cannot be predicted
by Theorems 4.3 and 4.18. This is because even if f is originally monotone in
each of its arguments, when we apply antithetic variates, as we saw in Fig.
4.7, this has the effect of transforming f into a function that no longer has
these monotonicity properties. That transformed function thus fails to satisfy
the conditions of Theorem 4.18.

Some combinations have been studied in more detail than others. For ex-
ample, Avramidis and Wilson look at the three pairwise combinations aris-
ing from control variates, conditional Monte Carlo, and correlation induction
techniques — this includes antithetic variates and another technique called
Latin hypercube sampling, which will be discussed in Chaps. 6 and 8 — and
show how to adapt results that hold for one of the techniques to the case
where it is combined with another one. In [146], importance sampling, strat-
ification, and conditional Monte Carlo are combined successfully. Hesterberg
[177] studies the combination of control variates and importance sampling in
the context of bootstrap simulations. In general, questions related to com-
bining variance reduction techniques and relating them to each other remain
an active research area.

Problems

4.1. Suppose μ̂1 and μ̂2 are estimators for μ. Assume μ̂1 has bias c/n, variance
σ2/n, and expected computation time d× n for some constants c, d, σ2 > 0.
If μ̂2 has a variance twice as small as μ̂1 and a bias twice as big as μ̂1, then
asymptotically what is the largest factor by which its computation time can
exceed that of μ̂1 for its efficiency to remain larger than μ̂1?

4.2. Let f(u) = au2 + bu+ c, where a, b, and c are some real constants. (a)
Give expressions for the variance of the naive Monte Carlo estimator and the
antithetic estimator for μ based on a total of n function evaluations. (b) Give
conditions in terms of a and b under which the antithetic variates estimator
has a smaller variance than the naive Monte Carlo estimator.

4.3. Let f(u) = au + b, where a and b are some real constants. Show that
ρ(f(U), f(1 − U)) = −1, where U ∼ U(0, 1).

4.4. Consider the function f(u) = a1u1 + . . . + asus + b. Show that the
antithetic estimator Qn,ant has a zero variance for this function for any real
constants a1, . . . , as, b.

4.5. Formulate the joint distribution function described in Theorem 4.4 using
a copula.

Problems 137

4.6. Apply the method of antithetic variates to estimate the quantity pK de-
scribed in Prob. 1.12 of Chap. 1. Use a total of n = 1000 function evaluations,
and compute the ratio of the 95% confidence interval half-width you get with
antithetic variates over what was obtained with naive Monte Carlo in Prob.
1.12 of Chap. 1.

4.7. Show that for the function f(u) =
∑s

j=1(1 − 2uj)2, the antithetic es-
timator increases the variance by a factor of two compared with the Monte
Carlo estimator.

4.8. Repeat the experiment outlined at the end of Sect. 4.4 for the bank
example, but using the two control variates simultaneously. Compare the
variance of the estimator obtained with that of each of the two single-control
variate estimators.

4.9. For the bank example and the control variable given by the average
service time, compare the estimate for c5 and the estimated variance of the
control variate estimator obtained in Example 4.9 with the ones based on (i)
splitting and (ii) jackknifing. Use m = 25 groups of n = 1024 simulations to
establish these comparisons.

4.10. Find a new distribution ψ(x) for importance sampling such that, when
h(x) < 0 for all x ∈ Ω, the resulting importance sampling estimator has zero
variance.

4.11. For the experiment outlined at the end of Sect. 4.5, repeat the experi-
ment, but with interarrivals having a mean of 50 seconds instead of 58 seconds
(under the new probability distribution). Estimate the variance of the impor-
tance sampling estimator in this case and compare it with the variance of the
naive Monte Carlo estimator.

4.12. In Prob. 1.12 of Chap. 1, assume that if S(T)/S(0) > 1.15, you sell the
stock at T = 1 with probability 0.75 and otherwise you keep it with proba-
bility 0.8. (a) Design a conditional Monte Carlo estimator for the probability
of selling the stock at T = 1. (b) Estimate the variance of your conditional
Monte Carlo estimator using n = 1000 runs and compare it with the variance
of the naive Monte Carlo estimator.

4.13. Show that the stratified estimator with proportional allocation has a
variance no larger than the naive Monte Carlo estimator’s variance.

4.14. Show that optimal allocation gives a stratified estimator with smaller
variance than proportional allocation by directly comparing the two vari-
ances.

4.15. Consider the SAN problem from Example 4.7. One way of applying
stratification is to choose a subvector of r duration DS = (Dj1 , . . . , Djr

) and
partition the range of DS into M = kr equiprobable strata. That is, we have

138 4 Variance Reduction Techniques

strata of the form Sl1,...,lr = [q1,l1 , q1,l1+1) × . . . × [qr,lr , qr,lr+1), where qj,lj

corresponds to the 100(lj/k)% percentile of Dj ’s distribution, and 1 ≤ lj ≤ k.
(a) Prove that if inversion is used to generate the Dj , then DS ∈ Sl1,...,lr if
and only if the uniform ujv

used to generate Djv
satisfies ujv

∈ [lv/k, (lv +
1)/k) for v = 1, . . . , r. (b) Using the result proved in (a), use stratification
(poststratification, then proportional, then optimal) based on j1 = 2, j2 = 6,
j3 = 9, and k = 2 to compute μ = P (T ≤ t0). Compare the variance obtained
for each method with n = 1024 and m = 25 repetitions with the naive Monte
Carlo estimator’s variance for which results were presented in Table 4.2. (You
can find in [146] a similar idea used in the context of finance.)

4.16. Show that if (N1, . . . , Nm) has a multinomial distribution with param-
eters (n, p1, . . . , pm), where pj = 1/m for all j, and A represents the event
where all Nj ≥ 1, then E(Nj |A) = E(Nj) = npj and Var(Nj |A) = Var(Nj) =
npj(1 − pj). Show that this does not necessarily hold if the probabilities pj

are not all equal.

4.17. Let f1(u) = au + b and f2(u) = (a + δ)u + b, where a, b, and δ are
some constants. (a) Give an expression for the variance of the common ran-
dom numbers estimator for μ1 − μ2 and compare it with the variance of the
estimator based on independent simulations. (b) For a given a and b, find the
smallest value for |δ| such that the (theoretical) 95% confidence interval for
μ1 − μ2 based on common random numbers will not contain 0. (c) Repeat
(b) but for the estimator based on independent simulations.

4.18. Apply common random numbers with n = 1000 to estimate the differ-
ence pK,σ=0.2−pK,σ=0.3 in the probability pK for σ = 0.2 and σ = 0.3 in Prob.
1.12 of Chap. 1. Compute a 95% confidence interval for pK,σ=0.2 − pK,σ=0.3.
Compare it with the 95% confidence interval obtained with independent sim-
ulations.

4.19. Consider the functions f1(u) = au+ b and f2(u) = cu+ d, where a, b,
c, and d are some real constants. Give an expression in terms of a, b, c, and d
for (i) the variance of the estimator μ̂crn+ant that combines common random
numbers and antithetic variates based on the i.i.d. sample points u1, . . . ,un/2

and (ii) the variance of the naive Monte Carlo estimator based on two i.i.d.
samples {u1,1, . . . ,u1,n} and {u2,1, . . . ,u2,n} (for f1 and f2, respectively).

4.20. Consider the combined antithetic variates and control variate estimator∑n
i=1 φ(ui)/n, where φ(u) = 0.5(f(u)+f(ũ))+β(μc−0.5(c(u)+c(ũ))). What

is the optimal β for that estimator?

Chapter 5

Quasi–Monte Carlo Constructions

5.1 Introduction

In this chapter and the following one, we discuss the use of low-discrepancy
sampling to replace the pure random sampling that forms the backbone of
the Monte Carlo method. Using this alternative sampling method in the con-
text of multivariate integration is usually referred to as quasi–Monte Carlo.
A low-discrepancy sample is one whose points are distributed in a way that
approximates the uniform distribution as closely as possible. Unlike for ran-
dom sampling, points are not required to be independent. In fact, the sample
might be completely deterministic.

Any attempt to construct such samples requires a precise way of measur-
ing their “uniformity”, so that we can compare different constructions and
also make sure that we are indeed improving on random sampling. In fact,
we are already familiar with the idea of measuring the uniformity of a point
set from our discussion in Sect. 3.5 on theoretical tests for random number
generators. Recall that there we were looking at the s-dimensional set Ψs rep-
resenting all possible sequences of s successive numbers that can be produced
by the generator, and our goal was to make sure this set was “as uniform
as possible”. We saw that sets Ψs arising from MRGs had a lattice structure
that could be assessed via the spectral test, whereas F2-linear generators
were producing sets Ψs whose uniformity could be measured via the concept
of equidistribution through the resolution and t-value. As we will see later
in this chapter, these uniformity measures can also be used for assessing the
quality of low-discrepancy samples designed for quasi–Monte Carlo. But we
will also see that many other measures can be used for that purpose.

As a first step, let us introduce a way of measuring the uniformity of a
point set that is not specific to a particular type of construction. More pre-
cisely, the idea is to measure the distance between the empirical distribution
induced by the point set and the uniform distribution via the Kolmogorov-
Smirnov statistic. The concept of discrepancy, which is heavily used in the

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 139
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 5,
c© Springer Science+Business Media LLC 2009

140 5 Quasi–Monte Carlo Constructions

quasi–Monte Carlo community — among other things in the terminology low-
discrepancy point set/sequence — looks precisely at such distance measures.
To present these ideas, let us first consider the one-dimensional case.

Consider samples Pn of size n over the unit interval [0, 1). An obvious
choice for a low-discrepancy sample Pn is {0, 1/n, 2/n, . . . , (n − 1)/n}, or
maybe {1/2n, 3/2n, . . . , (2n−1)/2n}. Alternatively to these two deterministic
choices, one could also use a randomized version,

Pn(v) := {v mod 1, (1/n+ v) mod 1, . . . , ((n− 1)/n+ v) mod 1},

where v ∼ U(0, 1). The higher uniformity of these one-dimensional samples
can be stated in various ways that more or less all relate to the fact that the
distance between adjacent pairs of points in those samples is equal to 1/n. As
a consequence, if we look at the empirical CDF induced by these samples, it
is always within 1/n of the CDF of the uniform distribution over [0, 1). That
is, consider the quantity

D∗(Pn) = sup
x∈[0,1)

|F (x) − F̂n(x)|, (5.1)

where for 0 ≤ x < 1, F (x) = x is the CDF of a U(0, 1) random variable and
F̂n(x) is the empirical CDF induced by Pn. That is,

F̂n(x) =
1
n

n∑
i=1

1ui≤x,

which is the proportion of the numbers ui that are smaller than or equal to x.
Then we have that

D∗({0, 1/n, 2/n, . . . , (n− 1)/n}) = 1/n,
D∗({1/2n, 3/2n, . . . , (2n− 1)/2n}) = 1/2n,

and

D∗(Pn(v)) = max
(
v − �nv�

n
,
(�nv� + 1)

n
− v

)
≤ 1
n
.

We illustrate in Fig. 5.1 how, for the point set {1/2n, 3/2n, . . . , (2n− 1)/2n}
with n = 5, the distance between F̂n(x) and F (x) is never more than 1/2n.

Comparing this with a truly random sample Pn, we see that if we are
unlucky, D∗(Pn) could be much larger than 1/n in that case. For instance,
for given integers k ∈ {1, . . . , n− 1} and j ∈ {0, . . . , n− k}, with probability
((n−k)/n)n, a given interval of the form [j/n, (j+k)/n) will contain no point,
hence creating a difference of at least k/2n with the uniform distribution.

Looking at the one-dimensional case helps give an idea of what low-
discrepancy sampling is and how it differs from random sampling. However,
the real challenge arises in the multidimensional case, where we need to find
a way of improving on random sampling without resorting to grids of the

5.1 Introduction 141

1

1/5

1/10 5/10 1

Fig. 5.1 Empirical distribution induced by {1/10, 3/10, 5/10, 7/10, 9/10} compared with
the uniform CDF of a U(0, 1). The dotted line shows the distance to F (x) = x.

form
PN × . . .× PN︸ ︷︷ ︸

s times

,

where PN is a one-dimensional low-discrepancy point set. As a special case
of this type of construction, consider the point set given by the rectangular
grid

Pn =
{(

l1
N
, . . . ,

ls
N

)
, lj = 0, . . . , N − 1, j = 1, . . . , s

}
, (5.2)

where n = Ns. (Note that this is slightly different from the point set used with
the trapezoidal rule in Chap. 1 simply because here we exclude the coordinate
1 from the one-dimensional version, which is why we obtain Ns points rather
than (N + 1)s.) As we discussed in Chap. 1, such constructions do not work
well for multivariate integration unless s is very small. An alternative way
to understand the problem with (5.2) is to look at how it departs from the
uniform distribution via the concept of discrepancy.

More precisely, we consider the multivariate version of (5.1), also called
the star discrepancy in the quasi–Monte Carlo literature [339]. To define this
quantity, we first consider all sets of the form

B(v) = {u ∈ [0, 1)s : 0 ≤ uj ≤ vj , 1 ≤ j ≤ s},

where v = (v1, . . . , vs) ∈ [0, 1)s. We can think of such sets as hyper-rectangles
with a corner at the origin. For a point set Pn, we then count how many of
its points ui fall in that box. That is, we determine the cardinality of the set

{ui : 0 ≤ ui,j ≤ vj , i = 1, . . . , n}

and denote it by α(Pn,v). The empirical distribution induced by Pn assigns a
probability of α(Pn,v)/n to this box instead of the value

∏s
j=1 vj assigned by

the uniform distribution over [0, 1)s. We can thus measure the departure (or
discrepancy) of Pn from uniformity by comparing α(Pn,v)/n and

∏s
j=1 vj

142 5 Quasi–Monte Carlo Constructions

via the Kolmogorov-Smirnov statistic, which yields the star discrepancy

D∗(Pn) = sup
v∈[0,1)s

|v1 . . . vs − α(Pn,v)/n|.

Figure 5.2 illustrates the measurement that is performed when computing
the star discrepancy.

v

v

1

2

Fig. 5.2 The dotted lines show a box B(v) with v1 = 0.4 and v2 = 0.7. We see that
α(Pn,v) = 6 out of n = 23 points fall in the box, thus producing a difference |v1v2−6/23| =
0.019.

For the rectangular grid (5.2), it can be shown that [339, pp. 41–42]

D∗(Pn) = 1 − (1 − 1/N)s, (5.3)

and therefore D∗(Pn) ∈ O(n−1/s). Hence, although the star discrepancy of
the rectangular grid goes to 0 with n, the convergence is quite slow. By
contrast, using the law of iterated logarithms, it can be shown that for a
random point set Pn, we have D∗(Pn) ∈ O(

√
log log n/

√
n) with probability

1, which for s > 2 converges to 0 faster than the rectangular grid’s star
discrepancy (5.3). Note that, when talking about asymptotic rates for the
discrepancy, we are implicitly assuming that we are working with a sequence
of points whose first n points form the set Pn.

Although D∗(Pn) goes to 0 with probability 1 for random point sets, our
goal here is to find constructions that avoid the gaps and clusters that typ-
ically arise with random point sets, as can be seen in Fig. 5.3 (top left).
Now, the question is: By how much can we improve on the random sam-
pling’s discrepancy if we use a deterministic construction instead? A widely
believed result is that the best possible bound attainable for a deterministic
sequence is

D∗(Pn) ≥ Bsn
−1(log n)s−1,

where Bs is a constant independent of n [339, p. 32]. This result was proved
in the case s = 2 by Schmidt [399] but is still a conjecture for s ≥ 3. Several

5.2 Main constructions: basic principles 143

examples of point sets and sequences of points achieving this bound are
known and are typically referred to as low-discrepancy point sets/sequences.
That is, a sequence of points u1,u2, . . . is called a low-discrepancy sequence
if D∗(Pn) ∈ O(n−1(log n)s), and finite point sets Pn obtained from such
constructions are called low-discrepancy point sets.

Informally speaking, in this text we think of low-discrepancy point sets as
sets of points Pn designed so that for a certain measure of uniformity — not
necessarily given by the star discrepancy — they are more uniform than a
random point set. The reason why we do not restrict ourselves to the star
discrepancy is that this measure is used mostly to look at the asymptotic
behavior of sequences of points and is very difficult to compute as soon as
the dimension becomes moderately large. We also use the term quasi–Monte
Carlo sampling (or low-discrepancy sampling or quasi-random sampling) to
refer to the process by which a low-discrepancy point set is used to sample
a function, typically for the purpose of integration but possibly for other
reasons.

In this chapter and the following one, our goal is to present the main tools
required to use low-discrepancy sampling, with an emphasis on topics that
are essential to correctly and successfully apply this approach in practice.
The current chapter is entirely devoted to presenting the main constructions
that are used to perform quasi–Monte Carlo sampling.

The basic principles for constructing low-discrepancy point sets/sequences
are presented in Sect. 5.2, and then two main families of constructions —
lattices and digital nets and sequences — are covered in Sects. 5.3 and 5.4, re-
spectively. In addition, the subclass of recurrence-based point sets is described
in Sect. 5.5. Then we discuss in Sect. 5.6 different uniformity/discrepancy
measures that can be used to assess the quality of these point sets. This
allows us to make several connections between the two main families of con-
structions for low-discrepancy point sets/sequences. These measures are also
used to present results on the integration error that arises in the context of
quasi–Monte Carlo integration.

5.2 Main constructions: basic principles

There are two main families of constructions for low-discrepancy point sets
and sequences: lattices and digital nets/sequences. Before explaining each of
them in detail, let us first give the intuition behind these two approaches and
describe the basic principles used to define them.

First, the rectangular grid described by (5.2) — and for which an example
is shown in Fig. 5.3 (top right) — suffers from the same problem as the
point sets used by the trapezoidal rule, which is that when we look at the
projections of these point sets on each axis, several points map onto each
other. That is, in (5.2), if we fix one of the values lj , then we can find Ns−1

144 5 Quasi–Monte Carlo Constructions

points in Pn whose jth coordinate is lj/N . The impact of this defect on the
integration error as s increases was discussed in Chap. 1.

From these observations, it seems clear that one of the properties that a
low-discrepancy point set should have is that its projections should also have
a low discrepancy. In particular, for a set Pn, it is best if each projection
Pn(I) contains n different points. Point sets with this property are said to be
fully projection-regular [264, 407]. Here, for a given subset I = {j1, . . . , jd} ⊆
{1, . . . , s} of indices, the notation Pn(I) refers to the d-dimensional point set

Pn(I) = {(ui,j1 , . . . , ui,jd
), i = 1, . . . , n}.

For instance, suppose we have the point set

Pn = {(0, 0, 0), (1/5, 2/5, 4/5), (2/5, 4/5, 3/5), (3/5, 1/5, 2/5), (4/5, 3/5, 1/5)}.

Then, for I = {1, 3}, we have

Pn(I) = Pn({1, 3}) = {(0, 0), (1/5, 4/5), (2/5, 3/5), (3/5, 2/5), (4/5, 1/5)},

and for I = {2} we have

Pn(I) = Pn({2}) = {0, 2/5, 4/5, 1/5, 3/5}.

This small point set is fully projection-regular since all its projections contain
five points. It is easy to check the cases I = {1}, {3}, {1, 2}, {2, 3} in addition
to the two cases shown above. Summarizing, we have the following definition.

Definition 5.1. A point set Pn is fully projection-regular if all its projections
Pn(I) contain n distinct points.

Note that if Pn is such that each one-dimensional projection Pn({j}) con-
tains n points for j = 1, . . . , s, then it is fully projection-regular since by
definition Pn(I) has at least as many points as Pn({j}) if j ∈ I.

Looking again at the rectangular grid shown in Fig. 5.3 (top right), one
way of modifying it so that it can become fully projection-regular would be
to work with vectors that are not parallel to the axes when generating the
points. That is, one way of building the rectangular grid with 64 points shown
in Fig. 5.3 is to look at the two vectors v1 = (1/8, 0) and v2 = (0, 1/8) and
then take all the combinations

z1v1 + z2v2, 0 ≤ z1, z2 < 8.

Instead, consider for instance the vector v = (1/64, 11/64). If we take all
the multiples zv mod 1 for z = 0, . . . , 63, where the modulo 1 operation is
applied componentwise, then we obtain the point set shown on the lower
left of Fig. 5.3. On this graph, we provide the value of z for the first few
points just to show the “wraparound” that occurs as a result of the modulo 1
operation. As opposed to the rectangular grid shown in the top-right corner

5.2 Main constructions: basic principles 145

of that figure, we now have 64 points that all map to a different coordinate
of the form i/64 for i = 0, . . . , 63 on each axis. This particular construction is
an example of a Korobov point set, introduced by Korobov [224] and Hlawka
[191] around 1960, which in turn is a special case of a lattice point set. These
constructions are discussed in Sect. 5.3. A related construction proposed in
1951 (even before Korobov point sets) for quasi–Monte Carlo integration is
the Richtmyer sequence [383], which we will also briefly discuss in Sect. 5.3.

The foundation of digital nets and sequences is based on a completely
different idea, which is to define ui by looking at the expansion of the index
i in a given base b ≥ 2. More precisely, for a nonnegative integer i, we first
write

i =
∞∑

l=0

al(i)bl,

where we assume infinitely many coefficients al(i) are zero. We then use the
radical-inverse function in base b, denoted φb and defined as

φb(i) =
∞∑

l=0

al(i)b−l−1.

Hence φb(i) ∈ [0, 1). This function is used to define the van der Corput
sequence in base b, which dates back to 1935 and is the building block for
digital nets and sequences [456]. More precisely, the ith term of this sequence
is simply given by φb(i− 1) for i ≥ 1. For example, to compute the first few
terms of the van der Corput sequence in base 5, we write

0 = 0×50+0×5; 1 = 1×50+0×5; . . . ; 5 = 0×50+1×5; 6 = 1×50+1×5, . . . ,

and then get u1 = 0, u2 = 1/5, u3 = 2/5, u4 = 3/5, u5 = 4/5, u6 = 1/25,
u7 = 6/25, u8 = 11/25.

It is useful to notice at this early stage of our discussion how the points in
this sequence fill in the interval [0,1). We first place five equidistant points at
j/5 for j = 0, . . . , 4, then we go back to the origin and place one additional
point in each subinterval formed at the previous stage, again spaced at a
distance of 1/5, and then repeat this process over and over, with a different
position for the first point of the sequence of five.

Also, if we compare the van der Corput sequence with a regular grid, we
see at least two big differences. The first is that with the van der Corput
sequence we do not need to decide ahead of time how many points n we
need. With a grid, Pn is not a subset of Pn+1 for n ≥ 2, so if we need more
points, we may have to completely reconstruct the point set. The second
difference is that the points in the van der Corput sequence are placed in
an order that in some sense attempts to never leave wide intervals in [0, 1)
containing no points. Such considerations usually do not appear when point

146 5 Quasi–Monte Carlo Constructions

sets are constructed with a prefixed cardinality. We will come back to this
“space-filling” property in Sect. 5.4.

We give in Fig. 5.3 (bottom right) an example of a digital net based on
the Sobol’ sequence [415]. Just like for the lattice shown on the left of this
point set, here we have 64 points that all map to a different coordinate of the
form i/64 for i = 0, . . . , 63. The uniformity of this point set does not show
up as a lattice structure, but one definitely observes a deterministic pattern
when looking at this point set. As we will see in Sect. 5.4, the uniformity is
instead measured using the concept of equidistribution.

5.3 Lattices

In Fig. 5.3 (bottom left), we depicted a two-dimensional example of a Korobov
point set and briefly described that construction. The more general class to

.

.

.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

. 2

. 3

. 4

. 5

. 6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5.3 Four different point sets with n = 64: random (top left), rectangular grid (top
right), Korobov lattice (bottom left), and Sobol’ (bottom right).

5.3 Lattices 147

which this construction belongs is the one that yields lattice rules, described
in detail in [197, 339, 407, 467]. Because the word “rule” usually refers to
an approximation of the form

∑n
i=1 f(ui)/n, to describe the actual point set

on which these rules are based, we use instead the term “lattice point set”,
which we now define.

Definition 5.2. For a given dimension s, a lattice point set Pn is defined by
an integration lattice Ls of the form

Ls = {v1w1 + . . .+ vsws,v ∈ Z
s} ,

where the s vectors w1, . . . ,ws in R
s — which form a basis — are linearly

independent over the rational numbers and are such that Z
s ⊆ Ls. The

corresponding point set is obtained as

Pn = Ls ∩ [0, 1)s.

In other words, the points in Pn are obtained by taking all integer lin-
ear combinations of the vectors that fall in [0, 1)s. Note that different bases
w1, . . . ,ws can lead to the same point set.

The resulting number of points n in Pn can be shown to be equal to
1/|det(W)|, where W is the s × s matrix whose ith row is wi [407]. The
quantity |det(W)| is called the determinant of L and is independent of the
basis W chosen. For instance, for a Korobov point set based on the generator
a, we can use

w1 =
1
n

(1, a, a2 mod n, . . . , as−1 mod n)

w2 = (0, 1, 0, . . . , 0)
...

ws = (0, . . . , 0, 1).

In this case, it is fairly easy to see that |det(W)| = 1/n, as required.
It can be shown that requiring Ls to be an integration lattice implies that

the components of the basis vectors must be rational numbers. In fact, the
basis vectors can all be written as fractions of the form l/n, where n is the
cardinality of the corresponding lattice point set Pn.

To reduce the number of possible bases, we can use the notion of rank r
and invariants n1, . . . , nr, where r is the smallest integer such that we can
find invariants satisfying (1) nl|nl+1 for all l < r; (2) n1 . . . nr = n; and (3)
we can write Pn as

Pn =
{(

i1
n1

z1 + . . .+
ir
nr

zr

)
mod 1, 0 ≤ il < nl, l = 1, . . . , r

}
(5.4)

148 5 Quasi–Monte Carlo Constructions

for some vectors z1, . . . , zr in Z
s. Here again, there is not a unique choice

for the vectors z1, . . . , zr, but the rank and invariants are uniquely deter-
mined. Hence, in the context of parameter searches for lattice point sets, it
is typical to first fix n, s, and the rank r and then search for “good” vectors
z1, . . . , zr. Examples with r = 2 and r = s can be found in [412] and [86, 407],
respectively. More recent work with r = 2, 3 has been done in [231].

Although lattice point sets of higher rank can work well in some settings, in
practice rank-1 lattices are more often used. Examples of applications include
[40, 132, 214, 354, 402]. Based on the representation (5.4), a rank-1 lattice is
determined by a generating vector z = (z1, . . . , zs) of s integers and is then
defined as

Pn =
{
i

n
(z1, . . . , zs) mod 1, i = 0, . . . , n− 1

}
.

One advantage that rank-1 lattices have over higher-rank lattices is that they
can be made fully projection-regular simply by choosing the integers zj to
be relatively prime with n [264, 407]. That is, we should have gcd(zj , n) = 1
for each j = 1, . . . , s. By contrast, higher-rank lattices cannot be made fully
projection-regular (see Prob. 5.2). For functions that are sums of univariate
functions, this difference turns out to be in favor of rank-1 lattices [277].
Figure 5.4 shows a comparison of rank-1 and rank-s lattices for s = 2. As
can be seen in this figure, one way of constructing a rank-s lattice is to take
a small rank-1 lattice, scale it appropriately, and then copy it in each of the
2s subcubes obtained by partitioning each of the s axes of [0, 1)s in two.
Using point sets defined in this way is usually referred to as a copy rule in
the context of multivariate integration [86, 407].

As mentioned in Sect. 5.2, a special case of rank-1 lattice is a construction
due to Korobov [224] and Hlawka [191] that we call a Korobov point set. It
has also been called the “good lattice points” method by several authors.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5.4 Left: a rank-2 lattice; right: a rank-1 lattice. Both have 64 points. The rank-2
lattice contains the same scaled point set in each of the four squares shown and is therefore
not fully projection-regular.

5.3 Lattices 149

For a given n and dimension s, it is defined by a generator a, which is chosen
to be an integer between 1 and n− 1. The point set is then defined as

Pn =
{
i

n
(1, a, a2 mod n, . . . , as−1 mod n) mod 1, i = 0, . . . , n− 1.

}
.

Hence, once a is chosen, we simply need to compute the s-dimensional integer
vector formed by the successive powers of a (reduced modulo n), and then
the n points in Pn are obtained by multiplying this vector by the n numbers
0, 1/n, . . . , (n − 1)/n. Figure 5.5 gives an example of a small Korobov point
set with n = 10. Figure 5.6 gives pseudocode to generate the n points of a
Korobov point set.

0

1

2

3

4

5

6

7

8

9

Fig. 5.5 A small Korobov point set with n = 10, a = 3, and s = 2. Arrows show the
effect of the modulo 1 operation, including on the point corresponding to i = 10.

As can be seen from the code in Fig. 5.6, generating a Korobov point set
is simple. And once n and s are chosen, only one parameter — the generator
a — must be chosen. The main consideration when choosing a is that first it
should be relatively prime with n because otherwise the point set is not fully
projection-regular [264, 407]. For example, if a = 2 and n = 8, we have that

Pn({2}) = {0, 2/8, 4/8, 6/8, 0, 2/8, 4/8, 6/8},

and so Pn({2}) only contains four distinct points rather than eight. Because
of this requirement, n is often chosen to be a prime number or a power of
two. In the first case, a can be any integer between 1 and n − 1, and in the
second case a can be any odd integer between 1 and n− 1.

Obviously, satisfying the requirement of being relatively prime to n should
not be the only criterion used for choosing a. For instance, taking a = 1
guarantees that a is relatively prime with n, but the resulting point set ends
up having all its points on the diagonal line joining (0,. . . ,0) and (1,. . . ,1) in

150 5 Quasi–Monte Carlo Constructions

InitKorobov(a, n, s, z)
z(1) ← 1
for j = 2 to s

z(j) ← a × z(j − 1) mod n

//

NextKorobov(n, z,u) // u is the previous point
return ((u + z/n) mod 1)

//
GenKorobov(a, n, s)

u ← 0
InitKorobov(a, n, s, z)

for i = 1 to n − 1
u ← NextKorobov(n, z,u)

Fig. 5.6 Code to generate all n points of a Korobov point set. Notice how we compute the
successive powers of a in a recursive way rather than trying to first raise it to the power j
and then reduce it modulo n, an approach that may easily cause numerical overflows.

[0, 1)s, which is obviously not very uniformly distributed. Instead, a should be
carefully chosen so that the resulting point set has good uniformity properties.
Several tables containing good choices of a for different values of n (and s)
can be found in the literature [35, 160, 197, 264, 300].

Going back to our discussion of lattice point sets in general, an important
observation to make is that so far we have assumed that the size n was fixed.
The tables giving parameters for good lattice point sets that were mentioned
in the previous paragraph are usually built by searching, for a fixed n, the
best generators according to some quality measure. Using point sets from such
tables has the obvious drawback of forcing a user who wants more precision
— and thus needs more evaluation points — to start over with a bigger point
set. To overcome this problem, Hickernell and his collaborators have proposed
a way of constructing extensible lattice sequences where, just like for digital
sequences, it is possible to increase the number of evaluation points without
discarding points previously used [182, 184]. Such sequences are based on
rank-1 lattices and are defined so that, for a given base b (usually a prime
number), the first bk points of the sequence form a lattice point set. The key
idea in order to define an extensible sequence is to make use of the radical-
inverse function in base b, which was used in the definition of the van der
Corput sequence on p. 145. More precisely, we have the following definition.

Definition 5.3. An extensible rank-1 lattice sequence based on a generating
vector z = (z1, . . . , zs) ∈ Z

s has its ith point given by

ui = φb(i− 1)z mod 1, i ≥ 1,

where φb(i) is the radical-inverse function in base b applied to i.

5.3 Lattices 151

Since the radical-inverse function is used to specify the order in which the
points occur in the extensible sequence, this order will be different from the
standard ordering used in the corresponding finite lattice point sets. This has
the advantage that if we use a number of points in the sequence that is not
a power of b, then the order of the points in the sequence is such that the
corresponding point set is typically more uniform than the first n points of
the lattice point set with cardinality equal to the smallest power of b larger
than n. We illustrate this with the following example.

Example 5.4. Consider the vector z = (1, 7, 49) and base b = 2. Its corre-
sponding extensible lattice sequence in dimension 3 starts off as

φ2(0)(1, 7, 49) mod 1 = (0, 0, 0),
φ2(1)(1, 7, 49) mod 1 = (1/2, 1/2, 1/2),
φ2(2)(1, 7, 49) mod 1 = (1/4, 3/4, 1/4),
φ2(3)(1, 7, 49) mod 1 = (3/4, 1/4, 3/4),
φ2(4)(1, 7, 49) mod 1 = (1/8, 7/8, 1/8),
φ2(5)(1, 7, 49) mod 1 = (5/8, 3/8, 5/8),
φ2(6)(1, 7, 49) mod 1 = (3/8, 5/8, 3/8),
φ2(7)(1, 7, 49) mod 1 = (7/8, 1/8, 7/8).

By contrast, if we use the “standard” ordering given by (i/n)z mod 1, for
n = 8, we instead have

(0, 0, 0), (1/8, 7/8, 1/8), (1/4, 3/4, 1/4), (3/8, 5/8, 3/8),
(1/2, 1/2, 1/2), (5/8, 3/8, 5/8), (3/4, 1/4, 3/4), (7/8, 1/8, 7/8).

We get the same eight points, but in a different order. In the second case,
note that the first four points have their first and third coordinates smaller
than 1/2. This means that these eight points start by filling the dyadic box
[0, 1/2]× [0, 1]× [0, 1/2]. This is not the case with the extensible lattice, which
instead alternates nicely between the two half-intervals [0, 1/2) and [1/2, 1)
for each coordinate. Hence, if we were to use only the first, say, five points in
each case, we would get a point set with better properties by using the first
five points of the sequence rather than the first five points of the finite lattice
of size 8 based on a standard ordering.

Let us now turn to the choice of the generating vector z for extensible
lattice sequences. A practical way to choose it is to first restrict the search
to extensible Korobov lattices — which are extensible lattices based on a
generating vector of the form (1, a, . . . , as−1) — and then to fix the dimension
s and a range [l1, . . . , l2] of powers of b to examine [186]. Then, by defining a
global measure that assesses the quality of Pbk for l1 ≤ k ≤ l2 in dimension s,

152 5 Quasi–Monte Carlo Constructions

computer searches aimed at finding an optimal generator a can be performed.
More recent work in this area that also provides a few examples of good
generators can be found in [141].

An extensible lattice sequence has some similarities with the Richtmyer
sequence, which was one of the early constructions proposed for quasi–Monte
Carlo integration [383]. This sequence can be described as follows. Choose a
vector α = (α1, . . . , αs) of irrational real numbers such that 1, α1, . . . , αs are
linearly independent over the rationals. Then use the sequence

ui = (i− 1)α mod 1, i ≥ 1,

where the modulo 1 operation is applied componentwise. For instance, if s = 2
and we take

(α1, α2) = (2 cos 2π/7, 2 cos 4π/7) = (1.247, 2.494),

then we get the points u1 = (0, 0),u2 = (0.247, 0.494),u3 = (0.494, 0.988),
and so on [333, p. 994]. One of the differences with the extensible Korobov
sequence is that here the “generating vector” α is based on irrational real
numbers. Note that if α were made up of rational numbers — that is, if we had
αj = pj/qj for some integers pj , qj — then the jth coordinate in the sequence
u1,u2, . . . would only map to the qj different values 0, 1/qj , . . . , (qj − 1)/qj .

A question related to the ability of increasing the number of points in a
lattice is the notion of lattices that are extensible in the dimension. That
is, one might be interested in rank-1 lattices with generating vectors z ∈ Z

s

to which additional coordinates zs+1, zs+2, . . . can be added if needed while
preserving the good quality of the lattice. Such component-by-component con-
structions have been devised by Sloan and his collaborators in several papers
over the last few years [229, 230, 231, 409, 410, 411]. Specific parameters for
dimensions up to d = 100 can be found in [409, 410, 411]. Typically, these
constructions are such that a certain quality measure — usually related to
an error bound for a certain class of functions — remains bounded as the
dimension of the lattice increases. The development of these component-by-
component constructions makes heavy use of existence results for lattice rules
that were derived in the context of tractability, as we will discuss at the end
of Chap. 6. That is, once it is known that it is possible to find a lattice rule,
say based on a rank-1 lattice, such that the corresponding integration error
“behaves well” for a certain class of functions, then the idea is to devise an
algorithm that can actually find that lattice.

The component-by-component approach can also be used for extensible
lattice sequences [62, 84] by applying an important existence result shown
by Hickernell and Niederreiter [188]. In particular, parameters for extensible
rank-1 lattices (not restricted to Korobov) are given in [62].

5.4 Digital nets and sequences 153

5.4 Digital nets and sequences

As we mentioned in Sect. 5.2, digital sequences are constructed so that their
ith point makes use of the expansion of i−1 in a certain base. Recall that for
b ≥ 2 we first defined the radical-inverse function in base b, denoted φb, as

φb(i) =
∞∑

l=0

al(i)b−l−1,

where the coefficients al(i) come from the expansion

i =
∞∑

l=0

al(i)bl

and where we assume infinitely many coefficients al(i) are zero. Recall also
that the ith term of the van der Corput sequence in base b is given by φb(i−1),
so that, for example, the first few terms of the van der Corput sequence in
base 5 are u1 = 0, u2 = 1/5, u3 = 2/5, u4 = 3/5, u5 = 4/5, u6 = 1/25,
u7 = 6/25, u8 = 11/25.

A few remarks are in order before going further.

(1) With sequences like that, the order in which the points are defined mat-
ters because it affects the space-filling performance of the sequence. For
instance, if the sequence instead started as

0, 2/5, 4/5, 1/5, 3/5, 11/25, 21/25,

gaps where there are no points would shrink faster.
(2) For the van der Corput sequence, when the base b gets larger, the space-

filling performance of the sequence gets worse because we move more
slowly from 0 to 1 when placing a cycle of b points.

(3) Following the discussion in item (1), a possibility for improving the space-
filling performance is to try to change the order of the points in the
sequence, and a natural way to do this is to permute the base b digits
of i used to construct the points. More details on this approach will be
given in Sects. 5.4.4 and 6.2.3.

Now, to extend the van der Corput sequence to a multidimensional se-
quence in [0, 1)s, two approaches come to mind. The first idea is to use a
different base b for each of the s coordinates. This is precisely what the Hal-
ton sequence does [161], where typically the jth prime number is used as the
base bj for the jth coordinate. Hence the ith term in this sequence is given by

ui = (φb1(i− 1), . . . , φbs
(i− 1)), i ≥ 1.

The star discrepancy of this sequence can be shown to be in O(n−1(log n)s)
[161], which implies that the Halton sequence qualifies as a low-discrepancy

154 5 Quasi–Monte Carlo Constructions

sequence. Related to the Halton sequence is the Hammersley point set [163],
which for a given n is defined as

Pn =
{
ui =

(
i− 1
n

, φb1(i− 1), . . . , φbs−1(i− 1)
)
, i = 1, . . . , n

}

and for which the star discrepancy is in O(n−1(log n)s−1).
From the remarks we made earlier, one can already suspect that the large

bases used by the Halton sequence in high dimensions might cause this se-
quence not to have such good space-filling properties. This is illustrated in
Fig. 5.7, where we show the 49th and 50th coordinates of the first 1000 points
of the Halton sequence. As we can see there, for this projection, the first 1000
points are concentrated on the main diagonal of [0, 1)2, with very large areas
in [0, 1)2 containing no points.

Fig. 5.7 First 1000 points of the Halton sequence, for the 49th and 50th coordinates,
based on b49 = 227 and b50 = 229.

To overcome this problem, a second idea is to try to use the same — pos-
sibly small — base for each coordinate. To do that, we need to use something
other than just the radical-inverse function to determine each coordinate be-
cause otherwise all the coordinates of a given point would be the same. One
possibility is to apply a linear transformation to the digits al(i) coming from
the expansion of i in base b before they are input into the radical-inverse
function. This is the idea that was used by Sobol’ in 1967 to define his LPτ -
sequence [415], where the base b is 2 and different carefully chosen linear
transformations are used for each coordinate. The Faure sequence [112] is
also based on this idea, but for any prime base b.

5.4 Digital nets and sequences 155

The generalization of these constructions is what is now known as digital
sequences and was introduced by Niederreiter in 1987 [335]. A recent survey
that also contains new results can be found in [341]. To keep things simple,
here we define a special case of the general definition of these sequences found
in [339] and [441]. By doing so, we wish to emphasize how this is just the
idea mentioned above of applying linear transformations to the digits al(i) of
i before using the radical-inverse function. The parameters required to define
a digital sequence are a base b and s generating matrices of infinite size.

Definition 5.5. Let b be a prime number and s ≥ 1 and k ≥ 1 be integers.
Assume we have s generating matrices C1, . . . , Cs of dimension ∞×∞ with
entries in Zb. Let

i =
∞∑

l=0

al(i)bl

with al(i) ∈ Zb be the digit expansion of i in base b, and define the vector

(ãj,0(i), ãj,1(i), . . .)T = Cj · (a0(i), a1(i), . . .)T

for each j = 1, . . . , s. The jth coordinate of the ith point of the digital
sequence based on C1, . . . , Cs is given by

uij =
∞∑

l=0

ãj,l(i− 1)b−l−1

for i ≥ 1 and j = 1, . . . , s.

The more general definition does not restrict b to be a prime and assumes
the generating matrices are defined over a commutative ring R with cardi-
nality b. It also applies bijections Tl from Zb to R to the digits al(i) before
multiplying them by the matrices Cj and then other bijections Tj,l from R
to Zb to the digits ãj,l(i) before defining uij . That is, we need a ring R to
perform additions and multiplications, and this can be viewed as our “work-
ing space”. The set Zb is then used just for handling input (the index i) and
output (the digits defining ui,j).

An important result that probably at least partly motivated the definition
of these sequences is that they can be shown to have a star discrepancy
D∗(Pn) in O(n−1(log n)s), meaning that the sequences thus produced can be
considered low-discrepancy sequences [335].

A digital net is a point set Pn based on the same principles as digital
sequences, the only difference being that the generating matrices now only
need a finite number of columns. That is, if the number of points is n = bk

for some k ≥ 1, then the generating matrices only need k columns since the
expansion of i in base b requires at most k digits a0(i), . . . , ak−1(i) in this case.
Most digital nets used in practice come from digital sequence constructions,
although there are some specific net constructions that have been proposed.
They will be discussed in Sect. 5.4.5.

156 5 Quasi–Monte Carlo Constructions

When referring to digital sequences, in addition to their base b and dimen-
sion s, they are often labeled according to the t-value discussed in Chap. 3
for the case b = 2. To introduce this quality parameter in a general base b,
we need the following definition, which is simply the generalization of Def.
3.9 introduced for b = 2 in Chap. 3.

Definition 5.6. Let q1, . . ., qs be nonnegative integers, and let q=q1+ . . .+qs.
A point set Pn with n = bk points is (q1, . . . , qs)-equidistributed in base b if
every cell (or elementary interval) of the form

J(r) :=
s∏

j=1

[
rj

bqj
,
rj + 1
bqj

)
, (5.5)

for 0 ≤ rj < bqj , j = 1, . . . , s, contains bk−q points from Pn.
Also, for a given vector (q1, . . . , qs), the set of all cells of the form J(r) is

called a (q1, . . . , qs)-partition.

We can now define the concepts of (t, k, s)-nets and (t, s)-sequences.

Definition 5.7. A set Pn containing n = bk points is called a (t, k, s)-net in
base b if it is (q1, . . . , qs)-equidistributed in base b whenever q ≤ k − t [335].
A (t, s)-sequence is a sequence of points for which each b-ary segment of the
form ulbk , . . . ,u(l+1)bk−1 with k ≥ t and l ≥ 0 is a (t, k, s)-net in base b. We
refer to the smallest value of t for which Pn is a (t, k, s)-net as the t-value of
Pn and similarly for sequences.

Sobol’ was the first to introduce the concept of t-value (in base 2) as a
way of characterizing the uniformity of his sequence. The constructions that
were proposed later were often motivated by the desire to improve this quality
measure. For example, Faure proposed sequences with t = 0 [112], and Nieder-
reiter first proposed sequences with better bounds on the t-value than those
for the Sobol’ sequence [336] and later proposed with Xing (t, s)-sequences
with t ∈ O(s), which is the optimal convergence order in an arbitrary base
for t as a function of s [345, 346, 347]. Because of the important historic
role that this quality parameter has played in the development of digital nets
and sequences, we chose to discuss it now rather than waiting until Sect. 5.6,
where we describe quality measures for low-discrepancy point sets.

In particular, the t-value (or at least upper bounds on it) appears in upper
bounds for the implied constant cs of the star discrepancy D∗(Pn) of the first
n points of a (t, s)-sequence, as can be seen for instance in [336, p. 53]. There,
the following upper bound is given on the discrepancy of the first n points of
a (t, s)-sequence:

D∗(Pn) ≤ cs(log n)s +O((log n)s−1), (5.6)

where for s ≥ 4 we have the general formula

5.4 Digital nets and sequences 157

cs =
1
s!
bt

b− 1
2�b/2�

(
�b/2�
log b

)s

.

(These bounds have recently been improved by a factor of 1/2 or 1/3 —
depending on b and s— in [225]). Thus it is important to be able to assess how
the t-value behaves as s increases in order to be able to say something about
the behavior of cs as s increases. A useful tool for finding constructions with
a small t-value is the MinT database created by Wolfgang Schmid and Rudolf
Schürer [400, 489]. (This database also contains very detailed and valuable
information on a large number of constructions and is updated regularly.)

In what follows, we start by discussing sequences and then talk about
net constructions. We already described the Halton sequence, which can be
thought of as a precursor to digital sequences, although it does not exactly
fit their framework since a different base b is used in each dimension. In
chronological order, the digital sequences that were first proposed were the
Sobol’ sequence, the Faure sequence, and the Niederreiter sequences. They
are discussed next.

5.4.1 Sobol’ sequence

As mentioned before, this sequence is defined in base b = 2. For each coor-
dinate j, it first requires a primitive polynomial in F2 that we denote pj(z)
and write out as

pj(z) = zdj + aj,1z
dj−1 + . . .+ aj,dj

,

where each aj,l ∈ F2 and dj is the degree of pj(z). We then need dj direction
numbers of the form

vj,r =
mj,r

2r
,

where mj,r is an odd integer between 1 and 2r − 1 for r = 1, . . . , dj . The
binary expansion of the numbers vj,r is used to determine the generating
matrices of this sequence and is written as

vj,r = vj,r,12−1 + vj,r,22−2 + . . .+ vj,r,dj
2−dj .

Once these dj direction numbers are chosen, the following ones are obtained
through the recurrence

vj,r = aj,1vj,r−1 ⊕ . . .⊕ aj,dj−1vj,r−dj+1 ⊕ vj,r−dj
⊕ (vj,r−dj

/2dj), (5.7)

where ⊕ represents the addition of vectors with components in F2 or, com-
putationally speaking, the exclusive-or operation on binary vectors.

158 5 Quasi–Monte Carlo Constructions

The rth column of Cj is then formed by the base 2 expansion of vj,r. That
is, each direction number is assigned to a column of Cj and fills it with its
binary representation. By the definition of the initial vectors vj,1, . . . , vj,dj

and the recurrence (5.7) used to obtain the next ones, one can see that each
Cj is a nonsingular upper-triangular matrix. In turn, this implies that each
one-dimensional projection of the Sobol’ sequence is a (0, 1)-sequence [415,
Remark 3.5], and thus the corresponding (t, k, s)-nets are fully projection-
regular for all k ≥ 0. Figure 5.8 shows the first 256 points of the two-
dimensional Sobol’ sequence.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5.8 Dyadic partition induced by q1 = 2 and q2 = 3. For the first 256 points of the
Sobol’ sequence, we have eight points in each box.

Let us look at a simple case to illustrate how this construction works.
Suppose that, for j = 3, we take p3(z) = z2 + z + 1. Since the degree of
p3(z) is two, we need to choose two direction numbers. Take v3,1 = 1/2 and
v3,2 = 3/4. In vector representation, it means v3,1 = (1, 0) and v3,2 = (1, 1).
Then, from the definition of p3(z), we have that a3,1 = a3,2 = 1, and so

v3,3 =
(

1
1

)
⊕
(

1
0

)
⊕

⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝ 0

1
1

⎞
⎠ ,

v3,4 =

⎛
⎝ 0

1
1

⎞
⎠⊕

(
1
1

)
⊕

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠ .

5.4 Digital nets and sequences 159

Therefore, the first four rows and four columns of C3 are
⎛
⎜⎜⎝

1 1 0 1
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

and the corresponding sequence thus starts as 0, 1/2, 3/4, 1/4, 3/8, 7/8, 5/8,
1/8, 9/16, 1/16, 5/16, 13/16, 15/16, 7/16, 3/16, 11/16.

As shown in [415, Thm. 3.3], the Sobol’ sequence in dimension s based
on primitive polynomials p1(z), . . . , ps(z) of respective degrees d1, . . . , ds is a
(t, s)-sequence with

t =
s∑

j=1

(dj − 1). (5.8)

For this reason, the primitive polynomials pj(z) are sorted by increasing
degree. With that assumption, we have that t ∈ O(s log s). Sobol’ gives con-
ditions under which the bound (5.8) on t is tight [415, Sect. 4]. That is, the
right-hand side of (5.8) is equal to the t-value in those cases. Note that it is
not tight for the jth one-dimensional projection of the sequence because the
t-value is given by 0 in that case rather than by dj − 1.

Although the direction numbers do not affect the value of this upper bound
on t, their choice affects the quality of portions of the sequence of finite size
(see Prob. 5.6). The direction numbers given by Sobol’ in [420] satisfy an
equidistribution criterion that he calls “Property A”, which means the first
2s points of the sequence are (1, 1, . . . , 1)-equidistributed. Similarly, his Prop-
erty A′ means the first 22s points are (2, 2, . . . , 2)-equidistributed. Alterna-
tively, using the terminology introduced in Chap. 3, we can say that Property
A means the resolution of the first 2s points is 1 and thus maximal. Similarly,
Property A′ means the resolution of the first 22s points is 2. Direction num-
bers for up to s ≤ 50 are given by Sobol’ and his collaborators in [420, 422].
Direction numbers for s > 50 that also satisfy certain equidistribution prop-
erties can be found in [203, 207, 208, 279]. A detailed implementation of the
Sobol’ sequence is provided in [43], but direction numbers only up to s = 40
are given there.

A last word about the Sobol’ sequence: To make the implementation more
efficient, Antonov and Saleev [8] have shown that permuting the order of the
points according to a Gray code is very helpful. More precisely, rather than
using the binary expansion (a0(i), a1(i), . . .) of i to determine the (i + 1)th
point in the sequence, the binary expansion (g0(i), g1(i), . . .) of g(i) ∈ N0 is
used, where g(·) is the Gray code function. This function satisfies g(0) = 0,
and g(i+1) is such that its binary expansion differs from that of g(i) in only
one position: If c is the smallest index such that ac(i) �= b − 1, then gc(i) is
the digit whose value changes, and it becomes gc(i) + 1 in the expansion for

160 5 Quasi–Monte Carlo Constructions

g(i + 1) [441, Theorem 6.6]. That is, gc(i + 1) = gc(i) + 1. We illustrate the
use of the Gray code with the following example.

Example 5.8. Consider the first eight points of the Sobol’ sequence. We have
that g(0) = 0. Since a0(0) = 0, then c = 0 is the smallest index such that
ac(0) < 1, and thus g(1) has the expansion (g0(1) = 1, g1(1) = 0, g2(1) =
0, . . .). Similarly, we find that c = 1 is the smallest index such that ac(1) < 1,
so that g(2) has the expansion (1, 1, 0, . . .). For i = 3, c = 0 is the smallest
index such that ac(2) < 1, and so g(3) has the expansion (0, 1, 0, 0, . . .). In a
similar manner, we get the expansions

g(4) : (0, 1, 1, 0, . . .),
g(5) : (1, 1, 1, 0, . . .),
g(6) : (1, 0, 1, 0, . . .),
g(7) : (0, 0, 1, 0, . . .).

Thus, with the Gray code, we enumerate the points from the original ordering
of the Sobol’ sequence in the order 1, 2, 4, 3, 7, 8, 6, 5.

Given the fact that using a Gray code only modifies the order of the points
over the first 2i points for each i ≥ 0, it can be shown that the sequence
thus obtained is still a (t, s)-sequence with the same value of t as the Sobol’
sequence [8, 441]. In fact, as shown by Tezuka in [441], using a Gray code in
base b is equivalent to premultiplying from the left the vector of coefficients
(a0(i), a1(i), . . . ,)T by a matrix G given by

G =

⎛
⎝ 1 b− 1 0

0 1 b− 1 0 . . .
. . .

⎞
⎠ . (5.9)

This is the same as multiplying the generating matrices Cj from the right by
G for each j = 1, . . . , s. Verifying again with the first eight numbers in the
Sobol’ sequence, we see that

G

⎛
⎜⎝
a0(i)
a1(i)

...

⎞
⎟⎠

is successively given by

G(0, 0, . . . , 0)T = (0, 0, . . .)T,
G(1, 0, . . .)T = (1, 0, 0, . . .)T,

G(0, 1, 0, . . .)T = (1, 1, 0, . . .)T,

5.4 Digital nets and sequences 161

G(1, 1, 0, . . .)T = (0, 1, 0, . . . ,)T,
G(0, 0, 1, 0, . . .)T = (0, 1, 1, 0, . . .)T,
G(1, 0, 1, 0, . . .)T = (1, 1, 1, 0, . . .)T,
G(0, 1, 1, 0, . . .)T = (1, 0, 1, 0, . . .)T,
G(1, 1, 1, 0, . . .)T = (0, 0, 1, 0, . . .)T,

thus getting the order 1, 2, 4, 3, 7, 8, 6, 5 just as before.

5.4.2 Faure sequence

A natural question that arises after having seen the definition of the Sobol’
sequence and the definition of the t-value is: Can we construct sequences
for which t = 0? As mentioned before, this question was answered by Henri
Faure in 1982 [112] when he presented a method to construct a sequence with
t = 0 in any prime base b, with the dimension s satisfying s ≤ b. In base b,
the generating matrix Cj for the Faure sequence is given by the transpose of
the Pascal matrix (with calculations done in Fb) raised to the power j − 1
for j = 1, . . . , s. Faure uses properties of Vandermonde matrices to show that
the construction thus obtained has t = 0. As was the case for the Sobol’
sequence, using a b-ary Gray code is helpful in implementing this sequence
[440, 441]. Pseudocode is given in [441, p. 196].

As discussed in Prob. 5.9, it can be shown that, for each subset I ⊆
{1, . . . , s}, the corresponding projection of the sequence over I is a (0, d)-
sequence, where d = |I|. In particular, just as for the Sobol’ sequence, each
one-dimensional projection of the Faure sequence is a (0, 1)-sequence and
thus the corresponding (0, k, s)-nets are fully projection-regular for k ≥ 0.

The following example describes the Faure sequence in a very simple case.

Example 5.9. Suppose we take s = b = 3 and truncate the generating matri-
ces to 3 × 3 matrices. Then

C1 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ C2 =

⎛
⎝ 1 1 1

0 1 2
0 0 1

⎞
⎠ C3 =

⎛
⎝ 1 2 1

0 1 1
0 0 1

⎞
⎠ .

Therefore (and not using a b-ary Gray code), the first five points are obtained
as follows. As usual, we first have u1 = (0, 0, 0), and then

C1

⎛
⎝1

0
0

⎞
⎠ =

⎛
⎝ 1

0
0

⎞
⎠

so that u2,1 = 1/3. Similarly, since the first columns of C2 and C3 are given
by (1, 0, 0)T, then u2,2 = u2,3 = 1/3. For the third point, we have

162 5 Quasi–Monte Carlo Constructions

C1

⎛
⎝2

0
0

⎞
⎠ =

⎛
⎝ 2

0
0

⎞
⎠

so that u3,1 = 2/3. Again, since C2 and C3 also have their first columns given
by (1, 0, 0), then u3 = (2/3, 2/3, 2/3). For u4, we have that

C1

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎝ 0

1
0

⎞
⎠ ,

and so u4,1 = 1/9. Similarly, since the second columns of C2 and C3 are
(1, 1, 0) and (2, 1, 0), then u4,2 = 1/3+1/9 = 4/9 and u4,3 = 2/3+1/9 = 7/9,
so that u4 = (1/9, 4/9, 7/9). Continuing with i = 5, we get

C1

⎛
⎝1

1
0

⎞
⎠ =

⎛
⎝ 1

1
0

⎞
⎠ ,

so that u5,1 = 1/3 + 1/9 = 4/9. Similarly, since the sums of the first two
columns of C2 and C3 are (2, 1, 0) and (0, 1, 0) respectively, this means u5 =
(4/9, 7/9, 1/9).

In addition to having a t-value equal to 0, another advantage of the Faure
sequence over the Sobol’ sequence is that the implied constant cs in the star
discrepancy bound (5.6) satisfies log cs ∈ O(−s log log s) and thus goes to
0 exponentially fast with s. By contrast, for the Sobol’ sequence, the best
known bound is log cs ∈ O(s log log s).

Although from the point of view of the t-value the Faure sequence is better
than the Sobol’ sequence, it is important to understand what exactly the t-
value measures when looking at finite sets Pn. For instance, suppose s =
360 and we take b = 367 for the Faure sequence. If we look at its first
3672 =134,689 points, then the fact that t = 0 means that all one- and two-
dimensional projections have optimal equidistribution in base b = 367. For
any u-dimensional projection with u > 2, we cannot say the corresponding
t-value is 0 because even a (1, 1, 1, 0, . . . , 0)-partition produces more boxes
than points. Hence it is not clear that overall the Faure sequence is better in
this setting, where s is large and n is not extremely big.

Also, while the Sobol’ and Halton sequences are extensible in their dimen-
sion, the Faure sequence cannot be extended in this way since the base b must
be at least as large as the dimension s. That is, for the Faure sequence, if we
first construct the sequence in dimension s with a base b ≥ s and then decide
to increase s to s1 > b, then we need to choose a new base b̃ ≥ s1 in order
to define a new Faure sequence in dimension s1. By contrast, with Sobol’
and Halton, if we want to increase the dimension from s to s1, we just need
to compute additional parameters — new bases for Halton and new direc-
tion numbers for Sobol’ — and can then simply extend the points from the

5.4 Digital nets and sequences 163

previously constructed s-dimensional sequence by adding s1 − s new coordi-
nates.

5.4.3 Niederreiter sequences

In addition to providing a general framework describing digital nets and
sequences, Niederreiter proposed in [336] a digital sequence for arbitrary bases
b that are a power of a prime that makes use of formal Laurent series. This
construction includes the Faure sequence as a special case, but not the Sobol’
sequence. The material presented in App. A may be useful for understanding
what follows.

To define the Niederreiter sequence in base b, several “ingredients” are
needed. First, we must choose s pairwise coprime polynomials pj(z) over Fb[z]
for j = 1, . . . , s. Let ej ≥ 1 be the degree of pj(z). Then, for each dimension
j, we must also choose a sequence of polynomials gj,m(z) for m ≥ 1 such that
gcd(gj,m(z), pj(z)) = 1 for all 1 ≤ j ≤ s and m ≥ 1. Once we have those,
we then build the generating matrices using the coefficients aj(m, k, r) ∈ Fb

from expansions of the form

zkgj,m(z)
(pj(z))m

=
∞∑

r=w

aj(m, k, r)z−r (5.10)

for 0 ≤ k < ej , m ≥ 1, and 1 ≤ j ≤ s. (The coefficient w ≤ 0 may depend
on j,m, k.) More precisely, the lth row of the jth generating matrix Cj is
determined first by computing the pair (q, u) arising from

l − 1 = qej + u.

That is, u = (l−1) mod ej and q = �(l−1)/ej�. Once we have the pair (q, u),
we then construct the lth row of Cj as

(cj,l,1, cj,l,2, . . .) = (aj(q + 1, u, 1), aj(q + 1, u, 2), . . .). (5.11)

That is, q determines which power of pj(z) and which polynomial gj,m(z) are
used in the fraction shown on the left-hand side of (5.10), and u determines
which power of z is used in the numerator of that same fraction. Then, the
whole row contains the coefficients of the expansion of that fraction.

Now, using the fact that the coefficients ar in a quotient of the form

p(z)
P (z)

=
∑
r=w

arz
−r

follow a recurrence whose characteristic polynomial is P (z) and that the
numerator p(z) is used to initialize this recurrence, we can give the following

164 5 Quasi–Monte Carlo Constructions

intuitive description of a given generating matrix Cj . From (5.11), we have
that its first group of ej rows each have elements that follow a recurrence
determined by pj(z), and each row is initialized differently as the powers zk

go from 0 to ej − 1. The polynomial gj,1(z) is also used for the initialization
of this first group. For the second group of ej rows, the recurrence is now
determined by (pj(z))2, and each row is again initialized differently through
the increasing powers of zk, each making use also of gj,2(z), and so on.

An important property of this construction is that it can be shown to
be a (t, s)-sequence with t =

∑s
j=1(ej − 1), just like we had for the Sobol’

sequence. Unlike the Sobol’ sequence, though, here we are not forcing pj(z)
to be a primitive polynomial, and thus by choosing pj(z) in ascending order
of degree within all irreducible polynomials in Fb[z], we obtain a smaller
bound on the t-value than for the Sobol’ sequence [337, p. 64]. Also, by
choosing the base b appropriately — and thus possibly taking b ≥ s, which
might yield the Faure sequence — it is possible to show that the implied
constant cs in the star discrepancy of the Niederreiter sequence is such that
log cs ∈ O(−s log log s)[335, p. 325]. Note that this is the same behavior as
for the Faure sequence, which makes sense since the Faure sequence is one
of the constructions we can choose when trying to minimize the behavior of
cs. On the other hand, if we only consider the base 2 Niederreiter sequences,
then we get the same behavior for cs as for the Sobol’ sequence.

On a more practical note, it seems that, most of the time, implementations
of this method take gj,m(z) = 1 [44, 337]. Also, it is important to know that
even if the bound on t given by

∑s
j=1(ej − 1) is smaller for the Niederreiter

sequence than for the Sobol’ sequence, the one-dimensional projections of the
Niederreiter sequence may not necessarily be (0,1)-sequences [397], which can
be a disadvantage from a practical point of view.

5.4.4 Improvements to the original constructions
of Halton, Sobol’, Niederreiter, and Faure

Over the years, a lot of research has been done to try to improve the four con-
structions that we just described. Here we discuss these improvements, start-
ing with the Halton sequence, then the Sobol’ and Niederreiter sequences,
and finally the Faure sequence. Numerical results illustrating the difference
between the original and improved constructions are given at the end of
Sect. 7.3.

Improvement to the Halton sequence

Although the Halton sequence suffers from severe space-filling problems in
high dimensions, it continues to be a rather popular method because of its

5.4 Digital nets and sequences 165

simplicity. An approach that has been studied by several researchers to try to
improve its properties is to permute the digits al(i) in each dimension before
applying the radical-inverse function [18, 19, 41, 58, 113, 115, 222, 306, 454,
457]. More precisely, a generalized Halton sequence is defined by s sequences
of permutations {πj,r}r≥1, j = 1, . . . , s, where for each r the permutation
πj,r acts on the integers [0, . . . , bj − 1], and bj is the jth base used (usually
taken to be the jth smallest prime number). The ith point in this sequence
is then

ui =

(∞∑
r=1

π1,r(ar(i− 1))b−r
1 , . . . ,

∞∑
r=1

πs,r(ar(i− 1))b−r
s

)
.

Figure 5.9 (left) shows the first 1000 points of a generalized Halton se-
quence where the permutations πj,r = πj have been chosen according to a
criterion that takes into account bounds obtained for the one-dimensional
van der Corput sequence in base b [114] but that also measures the quality
of two-dimensional projections (current work with Henri Faure [115]). The
permutations used there are simply based on a multiplicative factor. That is,
we choose for each dimension j a multiplier fj ∈ {1, . . . , bj − 1}, and for all
r ≥ 1 we let

πj,r(k) = fjk mod bj

for k = 0, . . . , bj − 1. The generalized Halton sequences described in [58, 306,
457] are also of this type.

0 1
0

1

0 1
0

1

Fig. 5.9 First 1000 points of a generalized Halton sequence for the 49th and 50th coordi-
nates based on the methods from [115] (left) and [19] (right).

A slightly more general type of permutation is used by Atanassov and
Durchova [19], where a specific multiplier fj is chosen for each dimension
j = 1, . . . , s, but then different permutations

166 5 Quasi–Monte Carlo Constructions

πj,r = fr−1
j k mod bj , r ≥ 1, (5.12)

are used for each digit. The multipliers in this case must be admissible integers
satisfying certain properties. A description of these properties can be found
in [18, 465], and they arise from a result by Atanassov [18], who showed that
generalized Halton sequences built from such admissible integers had a better
implied constant cs for their star discrepancy. In addition, in the same paper,
Atanassov was able to also improve the best implied constant cs known so
far [112] for the original Halton sequence, going from

cs =
1
2s

s∏
j=1

(bj − 1)
log bj

to

cs =
1
s!2s

s∏
j=1

(bj − 1)
log bj

.

This was an important result, as it proved that the implied constant for the
star discrepancy of the Halton sequence was going to 0 with s rather than
going to infinity. With a generalized Halton sequence based on admissible
integers, the result is even better because then the implied constant is shown
to be

1
s!

s∑
j=1

log bj
s∏

j=1

bj(1 + log bj)
(bj − 1) log bj

,

where the bases bj are assumed to be the first s prime numbers. In Fig. 5.9
(right), we show the 49th and 50th coordinates of the first 1000 points of a
generalized Halton sequence based on permutations similar to those given in
(5.12), except that the power r − 1 is replaced by r. The admissible integers
used are from E. Atanassov and can be found in the file haltondat.h at
[491].

Improvements to the Sobol’ and Niederreiter sequences

Compared with the original Halton and Faure sequences, in practice the
Sobol’ sequence seems to work quite well even in large dimensions, as long
as the direction numbers are chosen appropriately [150, 202, 278]. Neverthe-
less, different approaches have been taken to find improvements and gen-
eralizations of the Sobol’ sequence. An important class in that category is
Tezuka’s generalized Sobol’ sequence [441], where instead of being restricted
to primitive polynomials for the pj(z), the use of more general irreducible
polynomials is allowed, just like for the Niederreiter sequence in base 2. Also,
the generating matrices are obtained through a more general process with
these sequences than with the original Sobol’ sequences. In particular, the

5.4 Digital nets and sequences 167

generating matrices for the generalized Sobol’ sequences are not necessarily
nonsingular upper-triangular.

In fact, in [439], Tezuka proposes a construction that generalizes not
only the Sobol’ sequence but also the Niederreiter sequences and therefore
the Faure sequence. The main difference between the original and gener-
alized Niederreiter sequences of Tezuka is the replacement of the numerator
zkgj,m(z) in (5.10) by a polynomial yj,k(z) such that each group of ej polyno-
mials of the form yj,lej

(z), yj,lej+1(z), . . . , yj,(l+1)ej−1(z) has residues modulo
pj(z) that are linearly independent over Fb. Note that this condition was au-
tomatically met by the specific choice of polynomials made by Niederreiter.

Once we have these polynomials, then the lth row of Cj is determined by
first computing q = �(l − 1)/ej� and then letting

(cj,l,1, cj,l,2, . . .) = (aj(q + 1, l, 1), aj(q + 1, l, 2), . . .).

That is, as for the Niederreiter sequence, the first group of ej rows contains
coefficients that follow a recurrence whose characteristic polynomial is pj(z),
and the lth row is initialized by the specific choice of polynomial yj,l(z). Then
the second group has elements that follow a recurrence described by (pj(z))2,
and so on. Hence a major difference between Niederreiter’s sequence and
the generalized Niederreiter sequence of Tezuka is in the way the recurrence
determining each row of the generating matrices is initialized. Tezuka proves
that generalized Niederreiter sequences are still low-discrepancy sequences
and that their t-value is bounded above by

∑s
j=1(ej − 1), just as for the

original Niederreiter sequences. Conditions on the tightness of this upper
bound are studied in [82].

As mentioned earlier, these generalized Niederreiter sequences also include
the Sobol’ and Faure sequences as special cases. In that setting, the direction
numbers of the Sobol’ sequence can be reformulated in terms of the polyno-
mials yj,l(z) used above. More precisely, for the Sobol’ sequence, we use ej

polynomials ỹj,1(z), . . . , ỹj,ej
(z) such that deg(ỹj,l(z)) = ej − l, and then we

set yj,l(z) = ỹj,(l−1) mod ej+1(z).
Furthermore, the framework of generalized Niederreiter sequences enabled

Tezuka to propose a construction that he called a polynomial arithmetic ana-
logue of the Halton sequence because it is constructed using principles sim-
ilar to those of the Halton sequence but has better properties that can be
proved using the fact that they are a special case of generalized Niederreiter
sequences. The proposed construction turns out to be related to Faure se-
quences, as we will see shortly.

Another construction that can be thought of as improving on the Sobol’
and Niederreiter sequences are the Niederreiter-Xing sequences [345, 346,
347, 482]. These sequences are not a special case of generalized Niederreiter
sequences. They are based on global function fields and thus involve much
deeper mathematical tools than what we have seen so far. We believe it
would go beyond the scope of this text to explain this construction but still

168 5 Quasi–Monte Carlo Constructions

want to say a few words about it because of its theoretical importance. For
the Sobol’ and Niederreiter sequences, the bound on the t-value grows as
s log s as the dimension s increases. By contrast, Niederreiter-Xing sequences
are designed so that, for any base b that is a prime power, their t-value grows
only linearly with s, which is the optimal rate that can be obtained.

An implementation of these sequences is discussed in [377]. They have
been used in numerical experiments in [194], among others. Recent work on
(t, s)-sequences based on global function fields can be found in [312, 342],
where new improvements are presented. This active area of research is likely
to continue to produce more improvements in the near future.

Improvements to the Faure sequence

As we mentioned previously, even if the Faure sequence is optimal from the
point of view of the t-value, its space-filling properties are not always very
good for small n and large s. Figure 5.10 shows the first 1000 points of the
Faure sequence in base 53 over the 49th and 50th coordinates.

Fig. 5.10 First 1000 points of the Faure sequence in base 53 for the 49th and 50th
coordinates.

A successful approach proposed by Tezuka [440] for improving the Faure
sequence is to modify the generating matrices of the Faure sequence by
multiplying them (from the left) by nonsingular lower-triangular matri-
ces. More precisely, a generalized Faure sequence is obtained by taking Cj

as Aj(P j−1)T, where Aj is some nonsingular lower-triangular matrix, for
j = 1, . . . , s, and P is the Pascal matrix in Fb. It can be shown that the se-
quences obtained still have a t-value equal to 0 by using either the approach

5.4 Digital nets and sequences 169

with Vandermonde matrices used by Faure in [112] or the framework of
generalized Niederreiter sequences. Indeed, in this framework, generalized
Faure sequences amount to setting the yj,l(z) to arbitrary polynomials in
Fb[z], instead of fixing them to 1 as in the original Faure sequence. But just
as in the original definition, the pj(z) are chosen to be z − j + 1, and so
t =
∑s

j=1(ej − 1) = 0.
Figure 5.11 shows the 49th and 50th coordinates of the first 1000 points

of a generalized Faure sequence. For this example, the matrices Aj have been
chosen randomly. Experiments in finance done with a certain version of this
generalized sequence are reported in [374]. Implementations are available in
the software Finder from Columbia University [494].

Fig. 5.11 First 1000 points of a generalized Faure sequence in base 53 for the 49th and
50th coordinates.

More work in this area has been done in [116, 445, 449]. Namely, in [449]
Tezuka and Tokayama consider the generalized Faure sequence obtained by
taking Aj = P j−1. Interestingly, this particular choice corresponds to the
polynomial arithmetic analogue of the Halton sequence that was discussed
on p. 167 [439, 449]. In [116], Faure and Tezuka look at generating matrices
of the form

(P j−1)T(γjU), (5.13)

where U is some nonsingular upper-triangular matrix and the γj ’s are some
constants in Zb. They show that the sequences obtained in this way still
have t = 0. In the subsequent paper [445] by Tezuka and Faure, they refer to
sequences obtained with γj = 1 in (5.13) as reordered Faure sequences because
it can be shown that multiplying each generating matrix from the right by U
simply amounts to reordering the points in the Faure sequence in a way that

170 5 Quasi–Monte Carlo Constructions

improves its space-filling properties. This is similar to the fact that using a
Gray code amounts to reordering the points of a sequence and is equivalent
to multiplying each generating matrix from the right by a certain matrix
G as given in (5.9). However, in that case, it was motivated by making the
implementation easier rather than improving the space-filling properties. It
should be noted that Faure and Tezuka also prove in [116] the more general
result that if a sequence based on the generating matrices C1, . . . , Cs is a
(t, s)-sequence, then the sequence based on C1(γ1U), . . . , Cs(γsU) is also a
(t, s)-sequence. That is, multiplication from the right by γjU preserves the
t-value.

5.4.5 Digital net constructions and extensions

One of the most well-known approaches for constructing a digital net that
does not come from a digital sequence is the following idea, developed inde-
pendently by Niederreiter [338] and Tezuka [438]. Choose a base b that is a
prime power, a polynomial p(z) in Fb[z] of degree k, and then s polynomials
g1(z), . . . , gs(z) in Fb[z] of degree less than k. Consider the expansion

gj(z)
p(z)

=
∞∑

r=1

aj,rz
−r

for 1 ≤ j ≤ s, and then form the jth generating matrix Cj by taking

cj,l,r = aj,l+r−1 1 ≤ l, r ≤ k. (5.14)

It turns out that this construction can also be described as a lattice in the
polynomial setup. To do so, we first need the function ψ : Fb((z−1)) → R,
which is an evaluation mapping defined as

ψ

(∞∑
r=w

arz
−r

)
=

∞∑
r=w

arb
−r. (5.15)

Similarly, for a vector containing s components in Fb((z−1)), ψ evaluates each
component using (5.15).

Definition 5.10. The digital net described by (5.14) is a rank-1 polynomial
lattice point set of the form

Pn =
{
ψ

(
q(z)

g1(z)
p(z)

, . . . , q(z)
gs(z)
p(z)

)
: q(z) ∈ Fb[z]/(p(z))

}
,

5.4 Digital nets and sequences 171

where p(z) ∈ Fb[z] is a polynomial of degree k and the gj(z) are polynomials
in Fb[z] of degree less than k, all multiplications are done modulo p(z), and
n = bk.

The reason why n = bk is that there are bk polynomials q(z) in Fb[z]/(p(z)).
The analogy with the lattice construction is to view (g1(z), . . . , gs(z)) as
the generating vector, p(z) plays the role of n, and letting q(z) run over
Fb[z]/(p(z)) corresponds to multiplication by i = 0, . . . , n− 1.

The following example illustrates how to construct a small rank-1 polyno-
mial lattice point set.

Example 5.11. Suppose b = 2 and p(z) = z3 + z + 1. Then, for s = 2,
take g1(z) = 1 and g2(z) = z. In this case, the polynomial q(z) runs over
{0, 1, z, z + 1, z2, z2 + 1, z2 + z + 1, z2 + z}. Also, we need the expansion

1
z3 + z + 1

= z−3 + z−5 + z−6 + z−7 + . . .

(see App. A). Once we have that, we can easily compute quotients of the
form

p(z)
1 + z + z3

.

For instance, we get

z2 + 1
1 + z + z3

= (z−3 + z−5 + z−6 + z−7 + . . .) +

(z−1 + z−3 + z−4 + z−5 + . . .)
= z−1 + z−4 + z−6 +

Hence we have

u1 = (0, 0),
u2 = ψ(1/p(z), z/p(z))

= (2−3 + 2−5 + 2−6 + . . . , 2−2 + 2−4 + 2−5 + 2−6 + . . .)
≈ (0.17, 0.36),

u3 = ψ(z/p(z), z2/p(z))
= (2−2 + 2−4 + 2−5 + . . . , 2−1 + 2−3 + 2−4 + 2−5 + . . .)
≈ (0.36, 0.72),

u4 = ψ((z + 1)/p(z), (z2 + z)/p(z))
= (2−2 + 2−3 + 2−4 + . . . , 2−1 + 2−2 + 2−3 + 2−6 + . . .)
≈ (0.44, 0.89),

u5 = ψ(z2/p(z), (z + 1)/p(z))
= (2−1 + 2−3 + 2−4 + 2−5 + . . . , 2−2 + 2−3 + 2−4 + . . .)
≈ (0.72, 0.44),

172 5 Quasi–Monte Carlo Constructions

u6 = ψ((z2 + 1)/p(z), 1/p(z))
= (2−1 + 2−4 + 2−6 + . . . , 2−3 + 2−5 + 2−6 + . . .)
≈ (0.58, 0.17),

u7 = ψ((z2 + z + 1)/p(z), (z2 + 1)/p(z))
= (2−1 + 2−2 + 2−5 + . . . , 2−1 + 2−4 + 2−6 + . . .)
≈ (0.78, 0.58),

u8 = ψ((z2 + z)/p(z), (z2 + z + 1)/p(z))
= (2−1 + 2−2 + 2−3 + 2−6 + . . . , 2−1 + 2−2 + 2−5 + . . .

≈ (0.89, 0.78).

This construction has been studied further in [80, 81, 83, 226, 238, 239,
240, 237, 339, 378, 396]. A special case of this construction consists in taking
gj(z) = (g(z))j−1 mod p(z) for j = 1, . . . , s, which in the lattice setting can be
thought of as a polynomial equivalent of the Korobov point set. Parameters
for p(z) and g(z) can be found in [378] in what is called the Salzburg Tables.
These polynomial Korobov point sets will also be discussed in Section 5.5.

Generalized constructions called polynomial integration lattices, which are
the polynomial version of the lattice point sets discussed in Sect. 5.3, have also
been defined and studied [256, 285]. Here we choose a basis v1(z), . . . ,vs(z),
where each vj(z) is in F

s
b((z

−1)) and such that those vectors are independent
over Fb((z−1)). We then have the following definition.

Definition 5.12. A polynomial integration lattice is a point set of the form

Pn = {ψ(v(z)) : v(z) ∈ Ls} ∩ [0, 1)s, (5.16)

where Ls is the polynomial lattice defined by

Ls =

⎧⎨
⎩v(z) =

s∑
j=1

qj(z)vj(z) : qj(z) ∈ Fb[z], j = 1, . . . , s

⎫⎬
⎭

and such that F
s
b[z] ⊆ Ls.

It can be shown that the number of points in (5.16) is bk, where k is the
degree of the polynomial given by det(V −1) and V is the matrix whose rows
are given by the vj(z) [285].

This general construction can be used to draw interesting analogies be-
tween lattices and nets. However, as in the standard case, in practice, rank-1
polynomial lattices (including Korobov lattices) are mostly used and studied.
It might be for that reason that most people refer to “polynomial lattices”
to describe the rank-1 case [76, 80, 81, 226].

Just as for standard lattices, polynomial rank-1 lattices can also be made
extensible in their number of points. This idea is briefly mentioned in [265]
and discussed in much more detail in [340, 442]. The definition used in [340]

5.4 Digital nets and sequences 173

is more general than the one in [442], but the discussion in [442] establishes
a useful connection with the extensible construction for (standard) rank-1
lattices discussed on p. 150. We thus chose to present the construction given in
[442], which goes as follows. Choose a base b and a vector (g1(z), . . . , gs(z)) in
(Fb[z])s. Then choose a polynomial p(z) ∈ Fb[z]. For a given i, the polynomial
version of the radical-inverse function is obtained through the following steps:

(1) First write

i = a0(i) + a1(i) × b+ a2(i) × b2 + . . .+ am(i) × bm.

(2) Then construct the corresponding polynomial

vi(z) = a0(i) + a1(i) × z + a2(i) × z2 + . . .+ am(i) × zm.

(3) We now want to expand this polynomial in base p(z) rather than in base
z. That is, we need to find the polynomials (which act as coefficients)
ri,0(z), ri,1(z), . . . , ri,h(z) such that

vi(z) = ri,0(z) + ri,1(z) × p(z) + . . .+ ri,h(z) × (p(z))h

where h is given by
h =

⌊
m/e

⌋
and where e is the degree of p(z). It can be shown that

ri,l(z) =
[
vi(z)

(p(z))l

]
mod p(z),

where for a formal Laurent series g(z), the notation [g(z)] represents the
polynomial part of g(z).

(4) Once we have these coefficients ri,0(z), . . . , ri,h(z) for a given i, the poly-
nomial analogue of the radical inverse function in base p(z) is defined
as

φp(z)(i) =
ri,0(z)
p(z)

+
ri,1(z)
(p(z))2

+ . . .+
ri,h(z)
(p(z))h

.

An extensible polynomial rank-1 lattice (also called “polynomial version
of Hickernell sequences” in [442]) can then be defined by the sequence

ui = ϕ
(
g1(z)φp(z)(i− 1), . . . , gs(z)φp(z)(i− 1)

)
, i ≥ 1,

where

gj(z)φp(z)(i− 1) =
gj(z)ri,0(z) mod p(z)

p(z)
+
gj(z)ri,1(z) mod p(z)

(p(z))2
+ . . .

+
gj(z)ri,h(z) mod p(z)

(p(z))h

174 5 Quasi–Monte Carlo Constructions

and the evaluation function ϕ was defined in (5.15). More recent work on
this topic can be found in [76], for instance, where some existence results are
proved.

Another type of construction for digital nets that has been used to find nets
with an improved t-value is a method called a shift net, which was introduced
by Schmid [395]. The idea is as follows. A shift net with bk points in dimension
s = k is built by first choosing a k × k matrix for C1, the first generating
matrix. Assume this matrix consists of the k column vectors c1, . . . , ck. Then
the s−1 remaining generating matrices are obtained by shifting the columns
of C1. That is,

Cj = (cjcj+1 . . . csc1 . . . cj−1)

for j = 2, . . . , s. Parameters describing shift nets that minimize the t-value
are given in [395]. More recent work in this area can be found in [398]. Among
others, one of the improvements of [398] compared with [395] is that exhaus-
tive searches are performed for all dimensions considered, which enables the
authors to improve on the shift nets that were found in [395]. It is worth
mentioning that for some values of k and b (and recall that s must be equal
to k here), shift nets provide digital nets with the smallest t-value known so
far [489, 400].

Several constructions for digital nets that come from linear codes and
ordered orthogonal arrays have also been found to provide optimal values for
t, but we will not discuss these particular constructions here. Some references
on this topic are [31, 244] and the MinT database [400, 489].

Finally, another line of research that has been pursued recently is to con-
struct digital nets and sequences that work well for integrands belonging to
certain classes of smooth functions [77, 78]. These nets are characterized not
only by their t-value and are referred to as (t, α, β, n×k, s)-nets, which in the
case α = β = 1 and n = k are the same as a (t, k, s)-net. We do not pursue
this topic further here, as the applicability of these nets and sequences to
practical problems has not yet been studied.

5.5 Recurrence-based point sets

In this section, we discuss a framework studied in [265] that describes a class
of low-discrepancy point sets based on the same kind of recurrence-based
constructions as those used to build pseudorandom number generators. This
connection between pseudorandom number generators and constructions for
quasi–Monte Carlo goes back at least to [334]. The point sets obtained are
either lattices or digital nets. The framework that we are about to describe
simply provides another way of defining them.

Definition 5.13. A recurrence-based point set Pn is obtained as follows. First
choose a finite ring B of cardinality n, a transition function T , assumed to

5.5 Recurrence-based point sets 175

be a bijection over B, and then an output function η : B → [0, 1), assumed
to be one-to-one. Let xi = T (xi−1) for i ≥ 1. Then

Pn = {(η(x0), η(x1), . . . , η(xs−1)) : x0 ∈ B}.

In other words, a recurrence-based point set is obtained by looking at all
possible initial states x0 for the recurrence T (·), and in each case by forming
a point ui by running this recurrence s − 1 steps and applying η(·) to each
element in B thus obtained.

For instance, with an LCG with modulus n and multiplier a, we have that
B = Zn, T (x) = ax (where operations are performed in Zn), and η(x) = x/n.
Thus Pn is the same as the set Ψs that was defined in (3.10) in Chap. 3. More
precisely,

Pn =
{

1
n

(i, ai mod n, a2i mod n, . . . , as−1i mod n), i = 0, . . . , n− 1
}
,

which is the same as a Korobov point set with generator a in dimension s.
In the special case where the LCG has maximal period (which happens

if n is prime and a is a primitive element modulo n), the connection above
provides a very effective way of constructing a Korobov point set Pn using
the fact that x0, x1, . . . , xn−2 runs over all numbers in {1, . . . , n− 1}, as long
as x0 �= 0. More precisely, in this case we have that

Pn = Ψs = {(ui, ui+1, . . . , ui+1−s), i = 0, . . . , n− 2} ∪ {0}.

Thus Pn can be obtained by choosing a nonzero seed, running the LCG,
forming one point from each overlapping s-dimensional vector output by the
LCG, and adding the origin 0. Figure 5.12 gives pseudocode for generating
Pn using this idea.

The connection between Korobov point sets and LCGs also allows us
to discuss an important point. Since the generating vector has the form
(1, a, a2 mod n, . . .), it is clear that eventually its components will start re-
peating themselves, just like the output of an LCG does. In the best case
— when n is prime and a is a primitive element modulo n — the cycle will
be of length n− 1, corresponding to an LCG with maximal period. This im-
plies that if s ≥ n, each point of the Korobov point set contains repeated
coordinates. That is,

ui,j+l(n−1) = ui,j

for each i = 1, . . . , n, j = 1, . . . , s and l ≥ 1. While this might be considered
problematic — especially in cases where s is very large — it is important
to note that this problem disappears once the point set is randomized. For
instance, if we add (modulo 1) a random shift v uniformly distributed in
[0, 1)s to each point in the Korobov point set — the same v being added to
each point — then since the coordinates v1, v2, . . . of the random shift v do

176 5 Quasi–Monte Carlo Constructions

for j ← 1 to s
u[j] ← 0

// The first point is taken to be the origin
x ← 1

u[1] ← x/n
for j ← 2 to s

x ← ax mod n
u[j] ← x/n

// we now have the first nonzero point
for i ← 1 to n − 2

for j ← 1 to s − 1
u[j] ← u[j + 1]

x ← ax mod n
u[s] ← x/n
// we now have the (i + 1)th nonzero point

Fig. 5.12 Code to generate a Korobov point set based on maximum-period LCG.

not cycle, the cycle in the original deterministic points is broken after the
shift has been added. We will come back to this point in Sect. 6.2.

Going back to the general setup for recurrence-based point sets, one of the
properties of these point sets that can be very useful in practice is that they
can handle problems with an unbounded dimension. This is because once B,
T , and η are chosen, the dimension s of Pn can be taken to be arbitrarily
large with no additional parameters that need to be chosen. Concretely, this
can be implemented by generating the coordinates of each point ui as needed
until some condition (that depends on the coordinates generated so far) is
satisfied. For instance, in the bank example from Chap. 1, one would generate
coordinates ui,j for j ≥ 1 until an arrival time is obtained that is after the
bank’s closing time of 3 pm. In practice, though, and as discussed in the
LCG case in the previous paragraph, since problems of unbounded dimension
might result in s > n, recurrence-based point sets should be randomized to
handle such problems. For that reason, we will postpone our discussion about
implementation issues for problems with an unbounded dimension until Sect.
6.2 in the chapter on randomized quasi–Monte Carlo methods.

Another interesting property of recurrence-based point sets is that, as
shown in [284], they are fully projection-regular, and dimension-stationary,
a concept that we now define.

Definition 5.14. A point set Pn is dimension-stationary if, for any set I =
{i1, . . . , id} of positive integers and integer j ≥ 1 such that id + j ≤ s, we
have that Pn(I) = Pn({I + j}).

In other words, for a dimension-stationary point set, projections over in-
dices that have the same spacings are equal. So, for instance, a dimension-
stationary point set with s = 100 is such that

5.5 Recurrence-based point sets 177

Pn({1, 3, 4}) = Pn({2, 4, 5}) = Pn({3, 5, 6}) = . . . = Pn({97, 99, 100}).

Since Korobov point sets with gcd(a, n) = 1 are a special case of recurrence-
based point sets, it means they are dimension-stationary. Also, it is not too
hard to prove that the Faure sequence is dimension-stationary (see Prob.
5.9).

This brings us to the observation about Korobov point sets, which also
holds for any recurrence-based point sets, that although the criteria used
when searching for good Korobov generators a are typically restricted to
some dimension s0, once we have a generator a judged to be good for a given
number of points n, we can use it to construct a point set in any dimension
s. The only concern is that if s is larger than the dimension s0 used in the
computer search’s criterion, then the quality of the r-dimensional point set
for s0 < r ≤ s is unknown and could potentially be bad. However, even if we
only have information about the quality of projections Pn(I) for some sets
I ∈ I all such that, say, their largest index id ≤ s0, the dimension-stationarity
of Pn implies that the same quality properties hold for any projection of the
form Pn(I + j) with I ∈ I and j ≥ 0.

For example, suppose a Korobov generator a has been chosen so that it is
the best with respect to a criterion that considers the projections

Pn({1, 2}), . . . , Pn({1, 8}), Pn({1, 2, 3}), Pn({1, 2, 4}), . . . , Pn({1, 2, 8}), . . . ,
Pn({1, 3, 4}), . . . , Pn({1, 7, 8}).

Then we know that any projection of the form Pn({i, i+ j1}) with i ≥ 1 and
1 ≤ j1 ≤ 7 and Pn({i, i + j2, i + j2 + j3}) with i ≥ 1, j2 ≤ 6, j3 ≤ 7 − j2
will also be good. In other words, even if the search was done based on
s0 = 8, because of the dimension-stationarity we know that, for instance, the
projection Pn({100, 101, 102}) = Pn({1, 2, 3}) is also good. Hence it can be
reasonable to use a generator a chosen in this way to construct point sets
with dimension s > s0.

We end this section by discussing another example of a recurrence-based
point set, which is the polynomial Korobov lattice point set that was discussed
on p. 172. In that case, the corresponding generator is a polynomial LCG
[436, 437, 446, 441]. That is, here B is the ring F2[z]/(p(z)), where p(z) is a
polynomial in F2[z] of degree k. For the transition function, choose a(z) ∈ B
and take

T (x(z)) = a(z)x(z) mod p(z).

For the output function, first consider the formal Laurent series

x(z)
p(z)

=
∞∑

l=0

xlz
−l

and then let

178 5 Quasi–Monte Carlo Constructions

η(x(z)) = ϕ(x(z)/p(z)) =
∞∑

l=0

xl2−l, (5.17)

where the evaluation function ϕ(·) was defined in (5.15). One can prove that
the recurrence-based point set thus obtained can also be described as follows.
First form the set

Pn(z) = {q(z)(1, a(z), . . . , as−1(z))/p(z) : q(z) ∈ F2[z]/(p(z))},

and then take Pn = {ϕ(v(z)) : v(z) ∈ Pn(z)}, which is just the polyno-
mial Korobov lattice point set that we described in Sect. 5.4, p. 172. As we
mentioned there, a polynomial Korobov lattice is a special case of a rank-1
polynomial lattice, which is itself a special case of a digital net.

Furthermore, a special case of a polynomial Korobov lattice is to take
a(z) = zν for some ν ≥ 1. The point set Pn thus obtained corresponds to the
s-dimensional output space Ψs of a Tausworthe generator.

Recurrence-based point sets based on the more general class of F2-linear
generators are discussed in [371], where specific constructions are given. Con-
structions based on combined Tausworthe generators were used in [285] and
are discussed in the next example.

Example 5.15. A combined Tausworthe generator can be described using the
polynomial LCG formulation as follows [446]. We consider J polynomial
LCGs based on the recurrences

xj,i(z) = (zνj mod pj(z))xj,i−1(z) mod pj(z), i ≥ 1

for j = 1, . . . , J , where pj(z) is a primitive polynomial of degree kj over Fb

and gcd(νj , b
kj − 1) = 1. The J generators are then combined to produce an

output
η(x1,i(z)) + . . .+ η(xJ,i(z)),

with η as in (5.17) and where + is taken to be a digitwise addition in Zb.
It can be shown that the output thus obtained is equivalent to the one

obtained from a polynomial LCG based on the recurrence [446]

yi(z) = g(z)yi−1(z) mod p(z), (5.18)

where

p(z) =
J∏

j=1

pj(z),

g(z) =
J∑

j=1

gj(z)hj(z)p−j(z), (5.19)

p−j(z) = p(z)/pj(z),

5.6 Quality measures 179

and hj(z) is such that

hj(z)p−j(z) = 1 mod pj(z).

Also, if the polynomials pj(z) are pairwise relatively prime, then the pe-
riod of this polynomial LCG is equal to the least common multiple of
(bk1 − 1, . . . , bkJ − 1). This equivalent form can be useful to study theoretical
properties of these generators.

In addition, using the fact that g(z) and p(z) are relatively prime, we can
show that the recurrence (5.18) defines a bijection over the ring Fb[z]/(p(z)),
which we identify as the set of polynomials in Fb[z] of degree less than k =∑J

j=1 kj (Prob. 5.11 asks you to prove this). This implies that the combined
generator can be used to define a recurrence-based point set that corresponds
to a polynomial Korobov lattice based on the generator g(z) described by
(5.19) and containing bk elements.

In practice, however, polynomial Korobov lattices based on combined
Tausworthe generators can be obtained by implementing each component
separately and running the combined generator over all its cycles. More pre-
cisely, under the conditions that each component has maximal period and
that those periods are relatively prime, we can construct Pn as in Fig. 5.13.

For example, suppose we take b = 2 and use J = 2 generators described
respectively by the recurrences

x1,i(z) = zx1,i−1(z) mod (z4 + z + 1),
x2,i(z) = z4x2,i−1(z) mod (z7 + z3 + 1).

In this case, the combined generator has three nontrivial cycles, the first
one of length (24 − 1)(27 − 1) = 15 × 127 = 1905 corresponding to using
the seed 1 ∈ F2[z] for both components. Then we have the cycle of length
15 corresponding to only using the first component and the third cycle of
length 127 corresponding to only using the second component. Adding the
zero vector, we get 1905 + 15 + 127 + 1 = 2048 points, as required.

We can use this idea to build the polynomial Korobov point set in an
alternative way, where we initially construct the 2J − 1 cycles and then form
the s-dimensional points by taking overlapping s-tuples over these cycles, as
shown in Fig. 5.14. More details on this type of implementation are given in
[74, 266].

5.6 Quality measures

So far in this chapter, the quality measures that we have mostly discussed are
the star discrepancy and the t-value. Several other measures are described
in this section. We start by giving more information on the star discrepancy

180 5 Quasi–Monte Carlo Constructions

PolyCombTaus()
u1 ← 0
i ← 2
for l = 1 to 2J − 1

seed ← bin(l)
length ← 1
for j = 1 to J

if seed[j] = 1

length ← length ×(2kj − 1)
InitTaus(j, 1)

ui ← 0
for n ← 1 to length

if n = 1
for j = 1 to J

if seed[j] =1
for k = 1 to s

ui,k ← ui,k ⊕ Taus(j)
else

for k = 1 to s − 1
ui,k ← ui,k+1

ui,s ← 0
for j = 1 to J

ui,s ← ui,s ⊕ Taus(j)
i ← i + 1

Fig. 5.13 Code to generate all n points of a polynomial Korobov point set defined by
a combined Tausworthe generator when b = 2. We assume InitTaus(j, 1) initializes the
jth generator to the seed 1 ∈ F2[z], bin(l) returns the binary representation of l, Taus(j)
returns the next output of the jth Tausworthe generator, and ⊕ is a bitwise exclusive-or
(addition in Z2).

and other variations of that measure and discuss their use for providing error
bounds. We then use Fourier and Walsh expansions to study the integration
error associated with lattices and nets, respectively. This allows us to derive
more quality measures and to establish interesting connections between lat-
tices and nets. To conclude the section, we briefly discuss why it is useful to
look at alternative approaches to deterministic error bounds, which will lead
us into the next chapter, on randomized quasi–Monte Carlo methods.

5.6.1 Discrepancy and related measures

Recall that the star discrepancy of a point set Pn is given by

5.6 Quality measures 181

PolyCombTausCycle()
// Initialization

for l = 1 to 2J − 1
seed ← bin(l)
length[l] ← 1
for j = 1 to J

if seed[j] = 1

length[l] ← length[l] ×(2kj − 1)
InitTaus(j, 1)

for n ← 1 to length[l]
vl,n ← 0
for j = 1 to J

if seed[j] =1
vl,n ← vl,n ⊕ Taus(j)

// Generating the points
u1 ← 0
i ← 2
for l = 1 to 2J − 1

a ← length [l]
for n = 1 to length(l)

for k = 1 to s
ui,k ← vl,n+k−1 mod a

i ← i + 1

Fig. 5.14 Code to generate all n points of a polynomial Korobov point set defined by a
combined Tausworthe generator when b = 2. We assume InitTaus(j, 1) initializes the jth
generator to 1 and Taus(j) returns the next output of the jth Tausworthe generator.

D∗(Pn) = sup
v∈[0,1)s

|v1 . . . vs − α(Pn,v)/n|,

where α(Pn,v) is the number of points from Pn that are in

s∏
j=1

[0, vj).

A first obvious variation to this measure is to not restrict one corner to be
at the origin. This corresponds to the concept of extreme discrepancy D(Pn),
which for J = {w,v ∈ [0, 1)s : 0 ≤ wj ≤ vj < 1, 1 ≤ j ≤ s} is given by

D(Pn) = sup
J

|Rn(J(w,v))| ,

where

Rn(J(w,v)) =
s∏

j=1

(vj − wj) −
1
n
α(Pn,w,v)

182 5 Quasi–Monte Carlo Constructions

and α(Pn,w,v) is the number of points in Pn that are in

s∏
j=1

[wj , vj).

(Note that with this notation we can write the star discrepancy as

D∗(Pn) = sup
v∈[0,1)s

|Rn(J(0,v))|.)

Since the supremum in D(Pn) is taken over more intervals than in D∗(Pn),
it is clear that D(Pn) ≥ D∗(Pn). One can actually show that [228]

D∗(Pn) ≤ D(Pn) ≤ 2sD∗(Pn).

This can be generalized further by replacing J in the definition of the extreme
discrepancy by the set of all convex sets in [0, 1)s, thereby obtaining the
isotropic discrepancy. This can be useful for domains that are more general
than [0, 1)s, but we will not discuss this further here.

In one dimension, there are simple formulas for computing the discrepancy
of finite point sets. Namely, we have that if 0 ≤ u1 ≤ u2 ≤ . . . ≤ un ≤ 1,
then [339, Theorems 2.6 and 2.7]

D∗(u1, . . . , un) =
1
2n

+ max
1≤i≤n

∣∣∣∣ui −
2i− 1

2n

∣∣∣∣ ,

D(u1, . . . , un) =
1
n

+ max
1≤i≤n

(
i

n
− ui

)
− min

1≤i≤n

(
i

n
− ui

)
.

The case s = 2 can also lead to explicit formulas [339, p. 22], but beyond
that it is very difficult to compute the star and extreme discrepancies.

On the other hand, if we consider yet another way to generalize the def-
inition of discrepancy, which is to use a norm other than the L∞ (or sup)
norm, then it is possible to get discrepancy measures that can be computed
relatively easily. Most notably, the L2 discrepancy and L2 star discrepancy
are defined respectively as

T (Pn) =
(∫

J
(Rn(J(w,v)))2 dwdv

)1/2

,

T ∗(Pn) =

(∫
[0,1)s

(Rn(J(0,v)))2 dv

)1/2

. (5.20)

The L2 star discrepancy T ∗(Pn) is discussed in [333], among others, but
the unanchored version is more recent and was proposed by Morokoff and
Caflisch in [326]. One motivation for defining it is that the L2 star discrepancy

5.6 Quality measures 183

is known to put a strong emphasis on points near 0, which can sometimes
lead to misleading results [307, 326].

In contrast with the star discrepancy D∗(Pn) and extreme discrepancy
D(Pn), their L2 counterpart can be effectively computed. Namely, Warnock
[468] showed that

(T ∗(Pn))2 =
1
n2

n∑
i=1

n∑
j=1

s∏
k=1

(1−max(ui,k, uj,k))−2−s+1

n

n∑
i=1

s∏
k=1

(1−u2
i,k)+3−s.

A faster algorithm that runs in O(n(log n)s) is given by Heinrich in [170]. For
the unanchored version, it is shown in [326] that

T 2(Pn) =
1
n2

n∑
i=1

n∑
j=1

s∏
k=1

(1 − max(ui,k, uj,k))min(ui,k, uj,k)

−2−s+1

n

n∑
i=1

s∏
k=1

ui,k(1 − ui,k) + 12−s. (5.21)

It is also useful to know that, for a random point set Pn,

E((T ∗(Pn))2) = (2−s − 3−s)/n,
E((T (Pn))2) = 6−s(1 − 2−s)/n.

Going back to the star discrepancy and extreme discrepancy, the fact that
they cannot be easily computed for a given Pn unless s ≤ 2 might suggest that
these measures are useless. This would be wrong, as these measures are mostly
used to understand the asymptotic behavior of different constructions. First,
as we mentioned before, the concept of a low-discrepancy sequence makes use
of the star discrepancy, namely by referring to sequences for which D∗(Pn) is
in O(n−1(log n)s). Second, more generally the concept of star (and extreme)
discrepancy can be related to the concept of a uniformly distributed sequence,
which means the sequence u1,u2, . . . is such that

lim
n→∞

1
n

n∑
i=1

1J (ui) = λs(J)

for any subinterval J ∈ [0, 1)s, where

1J (u) =
{

1 if u ∈ J
0 otherwise

and λs(·) is the s-dimensional Lebesgue measure. A sequence that is uniformly
distributed has the useful property of providing an approximationQn for I(f)
that converges to I(f) as n goes to infinity. The connection with discrepancy
is that a sequence is uniformly distributed if and only if

184 5 Quasi–Monte Carlo Constructions

lim
n→∞

D∗(Pn) = 0

(the equivalence holds for the extreme discrepancy as well) [339, p.17].
Third, as we mentioned in Sect. 5.4, in addition to the asymptotic order
O(n−1(log n)s) of D∗(Pn), looking at the hidden constant cs in the O no-
tation is frequently used to compare the quality of different low-discrepancy
sequences as s increases.

More importantly, the concept of discrepancy can be used to derive de-
terministic upper bounds on the integration error. For example, a widely
cited result is the Koksma-Hlawka theorem [191] (Koksma proved the one-
dimensional version [223]), which states that for any function with a variation
in the sense of Hardy and Krause V (f) that is finite, we have the upper bound

En ≤ D∗(Pn)V (f) (5.22)

on the absolute error of integration En given by

En = |Qn − I(f)| .

Thus, when V (f) <∞ and Pn = {u1, . . . ,un} is based on a low-discrepancy
sequence, the integration error is in O(logs n/n). Comparing this with the
probabilistic Monte Carlo error that is in O(1/

√
n), one can argue that for

a fixed dimension s, the quasi–Monte Carlo error converges faster than with
Monte Carlo. This result is often used to motivate the use of quasi–Monte
Carlo by saying something like “for functions that are smooth enough and
if you are willing to take n sufficiently large, you will obtain a smaller error
with quasi–Monte Carlo than with Monte Carlo”.

The variation of f in the sense of Hardy and Krause is a multidimensional
version of the notion of variation in one dimension, defined for functions f
over [0, 1) as

V (f) = sup
P∈P

nP −1∑
i=0

|f(ui+1) − f(ui)|,

where P is the set of all partitions P of [0, 1) of the form P = {u0 = 0,
u1, . . . , unP

= 1}, with ui < ui+1, and for some nP ≥ 1. When the function
f is continuously differentiable, then

V (f) =
∫ 1

0

∣∣∣∣∂f(u)
∂u

∣∣∣∣ du,

so, for instance, the function f(u) = (1−2u)2 has a total variation of 4(1/2−
1/4) − 4(1/2 − (1 − 1/4)) = 2.

To extend this concept in higher dimensions, we first need to define the
variation of f on [0, 1)s in the sense of Vitali, given by

5.6 Quality measures 185

V (s)(f) = sup
P∈P

∑
J∈P

|Δ(f ;J)|,

where P is the set of all partitions P of [0, 1)s. That is, a partition P is
defined by s sets of the form {u0,j = 0, u1,j , . . . , unP,j

}, for j = 1, . . . , s, and
the sum over J ∈ P means we sum over all intervals J of the form

s∏
j=1

[ulj ,j , ulj+1,j)

for some 0 ≤ lj < nP,j , j = 1, . . . , s. The notation Δ(f ;J) represents the
alternating sum of the values of f at the vertices of J . That is, for J =∏s

k=1[ak, bk), we have [213, p. 20]

Δ(f ;J) =
1∑

j1=0

. . .
1∑

js=0

(−1)
∑ s

k=1 jkf(j1a1 + (1 − j1)b1, . . . , jsas + (1 − js)bs).

Here again, if f has continuous partial derivatives, we have the more conve-
nient formula

V (s)(f) =
∫

[0,1)s

∣∣∣∣ ∂sf

∂u1 . . . ∂us

∣∣∣∣ du1 . . . dus.

The last ingredient is to look at what we could call projections of the variation
in the sense of Vitali. That is, for a subset I = {i1, . . . , id} ⊆ {1, . . . , s},
we let V (d)(f ; I) be the value of V (d) for the function f (I)(ui1 , . . . , uid

) =
f(ũ1, . . . , ũs), where

ũj =
{
uj if j ∈ I
1 else.

That is, f (I) is obtained by fixing to 1 the variables with indices that are
not in I. So, for instance, if f(u) = u2

1 + u1u2 + 3u3, then f ({1,2})(u1, u2) =
u2

1 + u1u2 + 3.
We then have

V (f) =
s∑

d=1

∑
I:|I|=d

V (d)(f ; I).

Before going further, it should be noted that, for this definition of variation,
several simple functions can be shown to have V (f) = ∞. For instance, as
pointed out in [213], consider the two-dimensional function

f(u1, u2) =
{

0 if u1 ≤ u2

1 otherwise.

That is, f is 0 below the diagonal line that joins (0,0) and (1,1) and 1 above
it. It is easy to see that V (f) = ∞ for this function. More precisely, we can

186 5 Quasi–Monte Carlo Constructions

find partitions of the unit square containing an arbitrarily large number of
intervals J along the main diagonal such that |Δ(f, J)| = 1.

Going back to the Koksma-Hlawka inequality (5.22), we can see that it
gives a bound on the integration error to which two distinct quantities con-
tribute: D∗(Pn) measures the quality of the point set, and V (f) measures
how difficult it is to integrate the function f . Also, the particular choice of
norm V (·) used to measure the variability of f is specifically related to the
star discrepancy. A different choice of norm ‖ · ‖F for f would thus lead to a
different error bound of the form

En ≤ ‖Pn‖P‖f‖F ,

where ‖Pn‖P is a certain discrepancy measure associated to ‖ · ‖F [180, 181,
182]. For instance, in [181], Hickernell shows that a bound similar to (5.22)
exists if we replace the star discrepancy by an L2 version different from
the more common T ∗(Pn) that was defined in (5.20). Indeed, the L2 star
discrepancy T ∗(Pn) can be shown to give the expected squared error for a
certain class of functions, where the expectation is taken over a Brownian
sheet measure over this set of functions [479].

To get an analogue of (5.22), we must instead use a generalized L2 discre-
pancy defined by

D2(Pn) =

[∑
I

∫
[0,1)d

|α(Pn(I),vI) − vi1 . . . vid
|2 dvI

]1/2

, (5.23)

where the sum over I = {i1, . . . , id} runs over all nonempty subsets I ⊆
{1, . . . , s}, vI represents the d-dimensional vector (vi1 , . . . , vid

), and the quan-
tity α(Pn(I),vI) is defined as the number of points in the d-dimensional
projection Pn(I) that fall in

d∏
j=1

[0, vij
).

Just as was the case for T ∗(Pn), a formula for D2(Pn) exists and is given by
[181, Eq. (5.1c)]

(D2(Pn))2 =
(

4
3

)s

− 2
N

n∑
i=1

s∏
j=1

(
3 − u2

i,j

2

)

+
1
n2

n∑
i,i′=1

s∏
j=1

[2 − max(ui,j , ui′,j)] .

The class of functions for which D2(Pn) can provide an upper bound is
one for which the (generalized) L2 norm V2(f) is finite, where

5.6 Quality measures 187

V2(f) =

⎡
⎣ ∑
∅�=I⊆{1,...,s}

∫
[0,1)d

∣∣∣∣∣
∂df

∂uI

∣∣∣∣
u−I=(1,...,1)

∣∣∣∣∣
2

duI

⎤
⎦

1/2

,

and where for I = {i1, . . . , id}, we define u−I = (uj : j /∈ I). Then, for any
function f such that V2(f) is finite, the upper bound

En ≤ D2(Pn)V2(f)

holds for the absolute integration error En.
One way to generalize this result is to use an Lp norm to measure the

discrepancy and an Lq norm to measure the functions, where p and q are
such that 1/p+1/q = 1. Several other discrepancy measures are discussed in
[181], including some that use weights. We will discuss weighted measures in
more detail in the appendix at the end of Chap. 6.

We conclude this subsection with Table 5.1, which summarizes the dif-
ferent discrepancy measures that we discussed in this section. More detailed
information on the concept of discrepancy can be found in books such as
[27, 89, 228, 308, 339, 429].

Table 5.1 Summary of discrepancy measures discussed in this text

notation name anchored? norm comments

D∗(Pn) star discrepancy yes sup Used in Koksma-Hlawka
inequality.

D(Pn) extreme discrepancy no sup Closely related to D∗(Pn).
T ∗(Pn) L2 star discrepancy yes L2 Can be computed.

Used for average-case
error analysis.

T (Pn) L2 discrepancy no L2 Can be computed.
D2(Pn) generalized yes L2 Used in generalized

L2 discrepancy Koksma-Hlawka inequality.
Can be computed.

5.6.2 Criteria based on Fourier and Walsh
decompositions

We already described how the concept of (q1, . . . , qs)-equidistribution relates
to the t-value, which is often used to measure the quality of digital nets and
sequences. The equidistribution concept can be used to assess the quality of
these constructions in several other ways, as we will see in this section.

Also, although the nature of the high uniformity that characterizes lattice
point sets is unrelated to this concept of equidistribution, several interesting

188 5 Quasi–Monte Carlo Constructions

connections can be drawn between quality measures that are used to assess
the uniformity of lattice and net constructions. To do so, it is useful to look
at the equidistribution properties of nets from a functional point of view.
More precisely, if a point set is (q1, . . . , qs)-equidistributed in base b, then
a function that is constant on each b-adic elementary interval (or cell) J(r)
of the form (5.5) will be integrated with zero error by this point set. This
holds because the (q1, . . . , qs)-equidistribution property implies that each b-
adic elementary interval J(r) contains bk−q points from Pn. Thus a function
of the form

f(u) =
bq1−1∑
r1=0

. . .

bqs−1∑
rs=0

cr1u∈J(r)

has its integral approximated by

Qn =
1
n

n∑
i=1

f(ui) =
∑
r

cr
bm−q

bm
=
∑
r

crb
−q = I(f)

since the volume of J(r) is equal to b−q. Therefore the corresponding inte-
gration error is 0.

As building blocks for functions like that, we can use Walsh functions in
base b [26, 171, 172, 240] of the form

ξh(u) = e2πi〈h,u〉b ,

where i =
√
−1, h ∈ N

s
0, and the product 〈h,u〉b is computed as follows. For

each j, write the base b expansion of hj and uj

hj =
∞∑

l=0

hj,lb
l,

uj =
∞∑

l=1

uj,lb
−l.

Then

〈h,u〉b =
1
b

s∑
j=1

∞∑
l=0

hj,luj,l+1, (5.24)

where all operations are done in Zb. (As before, we are assuming b is prime.)
For instance, if b = 2, h = (3, 1), and u = (0.375, 0.875), then

〈h,u〉b =
1
2
(1 × 0 + 1 × 1 + 0 × 1) + (1 × 1 + 0 × 1 + 0 × 1) = 0.

Note that ∫
[0,1)s

ξh(u)du = 0.

5.6 Quality measures 189

To see how the functions ξh(u) can be used to study the (q1, . . . , qs)-equi-
distribution of a point set, observe that the digits

u1,1, . . . , u1,q1 ; . . . ;us,1, . . . , us,qs

can be used as labels to identify which cell J(r) of the (q1, . . . , qs)-partition
u is falling in. Hence, if u differs from v only through digits of the form uj,l

with l > qj , then the two points are in the same cell J(r). Now pick an h
such that hj,l = 0 for all l ≥ qj , j = 1, . . . , s. Its dot product with u and
v will be the same. Hence a Walsh function ξh(u) with an h of this form
is constant over the b-adic boxes induced by a (q1, . . . , qs)-partition and is
therefore integrated with zero error by such point sets. More precisely, we
have the following lemma.

Lemma 5.16. Let h be a vector and for each hj consider its expansion

hj =
∞∑

l=0

hj,lb
l

in base b. Let db(hj) be the smallest integer l such that hj,l = 0 for all
l > db(hj). If a point set Pn = {u1, . . . ,un} in base b is (q1, . . . , qs)-
equidistributed for values qj given by

qj = db(hj) + 1

for each j = 1, . . . , s, then

1
n

n∑
i=1

ξh(ui) = 0.

Note that in the case b = 2 we can write ξh(u) = (−1)〈h,u〉2 because

e2πi〈h,u〉2 = cos 2π〈h,u〉2 + i sin 2π〈h,u〉2

= cos 2π〈h,u〉2 =
{

1 if 〈h,u〉2 = 0
−1 if 〈h,u〉2 = 1/2.

If we look at the vector (q1, . . . , qs) for which qj = d2(hj) + 1, the function
ξh(u) alternates between 1 and −1 over all dyadic boxes J(r) in the corre-
sponding (q1, . . . , qs)-partition. Figure 5.15 illustrates the sign change pattern
for s = 2 and h = (3, 1) over the corresponding dyadic (d2(h1) + 1, d2(h2) +
1) = (2, 1)-partition.

Alternatively, the vectors h can be represented as polynomials. More pre-
cisely, for a given h = (h1, . . . , hs) where each hj has the decomposition

hj =
∞∑

l=0

hj,lb
l,

190 5 Quasi–Monte Carlo Constructions

−1−1 1 1

11 −1 −1

Fig. 5.15 Function (−1)〈h,u〉2 over [0, 1)2 for h = (3, 1).

we associate the vector h(z) = (h1(z), . . . , hs(z)) of polynomials where each
hj(z) ∈ Fb[z] is given by

hj(z) =
∞∑

l=0

hj,lz
l.

From our discussion above, it is easy to see that the quantity db(hj) intro-
duced in Lemma 5.16 simply corresponds to the degree of the polynomial
hj(z) associated to hj , where we assume that deg(0) = −1. Hence we can
reformulate the result of this lemma by saying that if a point set is (q1, . . . , qs)-
equidistributed with qj = deg(hj(z)) + 1, then ξh(u) is integrated with zero
error by this point set. We can also look at

τ(h(z)) =
s∑

j=1

(deg(hj(z)) + 1), (5.25)

which turns out to be related to the t-value. More precisely, for a given
(t, k, s)-net, if τ(h(z)) ≤ k − t, then ξh(u) is integrated with zero error by
the net. (Problem 5.12 asks you to prove this.)

So far we only gave sufficient conditions for ξh(u) to be integrated with
zero error. In order to find necessary and sufficient conditions, we need to
talk about the dual space of a digital net. Before we do that, let us discuss
lattices first as for these we already introduced the concept of a dual lattice
in Chap. 3, but we will recall it here for the sake of completeness.

For lattices, the functions that can be used as building blocks to under-
stand which functions are well integrated by a lattice point set are those from
a Fourier basis. More precisely, consider the function

νh(u) = e2πih·u,

where the dot product h · u is now simply the usual

h · u =
s∑

j=1

hjuj . (5.26)

5.6 Quality measures 191

For any nonzero h, the integral of νh(u) over [0, 1)s is zero.
It can be shown that as long as h is not in the dual lattice corresponding

to a lattice point set Pn, then νh(u) is integrated with zero error [408]. Recall
that the dual lattice is the set

L∗
s = {h ∈ R

s : h · ui ∈ Z for all ui ∈ Pn}.

More precisely, we have [408, Theorem 1] the following lemma.

Lemma 5.17. If Pn is a lattice point set, then

1
n

n∑
i=1

e2πih·ui =
{

1 if h ∈ L∗
s

0 otherwise.

For digital nets, one can also define a dual space C∗
s based on the generating

matrices C1, . . . , Cs. More precisely, let C1, . . . , Cs be the ∞× k generating
matrices associated with a digital net in base b with n = bk points, and let
C be the k×∞ matrix obtained by concatenating the transpose of each Cj ;
that is,

C = (CT
1 | . . . |CT

s).

Let C∗
s be the null space of the row space of C,

C∗
s = {h ∈ F

∞
b × . . .× F

∞
b︸ ︷︷ ︸

s times

: C · h = 0}, (5.27)

where the product C · h is given by the k-dimensional vector
⎛
⎜⎝
∑s

j=1

∑∞
l=1 cj,l,1hj,l−1

...∑s
j=1

∑∞
l=1 cj,l,khj,l−1

⎞
⎟⎠ .

The following result [265, Lemma 2] is the equivalent of Lemma 5.17 for
digital nets.

Lemma 5.18. Let Pn be a digital net in base b with bk points, and let C∗
s be

defined as in (5.27). Then

1
n

n∑
I=1

ξh(ui) =
{

1 if h ∈ C∗
s

0 otherwise.

With this in mind, one way to draw a parallel between lattice point sets and
digital nets is to observe that they both perfectly integrate basis functions of
the form e2πih·u and e2πi〈h,u〉b — for lattices and nets, respectively — where
h is a vector that is not in the dual space corresponding to the point set.

Furthermore, let us assume, for the sake of argument, that for typical
functions arising in practice, the most important terms in their Walsh or

192 5 Quasi–Monte Carlo Constructions

Fourier decomposition are those associated with wave functions νh(u) or
ξh(u) with a “small” h. If the “shortest” h in the dual space is “big” enough,
it means several functions with a small h are perfectly integrated by Pn, and
thus a large part of f is correctly integrated by Pn. From this point of view,
it makes sense to choose Pn so that the smallest h in the dual space is as
large as possible.

Several connections between nets and lattices can be done by looking at
quality measures based on the property above. The t-value can be written
as the “length” of the shortest vector in the dual space of the digital net by
using a certain measure of distance or weight (see [343, 405] and prior to that
[438] for b = 2). That is, we can write the t-value as [343]

t = k + 1 − min
0 �=h∈C∗

s

τ(h(z)), (5.28)

where we use the representation of h as a polynomial when writing τ(h(z)),
which was defined in (5.25). Similarly, the resolution of the digital net —
which is the largest �s such that the net is (�s, . . . , �s)-equidistributed — is
given by [265]

�s = −1 + min
0 �=h∈C∗

s

‖h‖∞,

where
‖h‖∞ = max

1≤j≤s
(db(hj) + 1)

and db(h) was defined in Lemma 5.16. This result has been widely studied in
the case where the net comes from a recurrence-based point set derived from
different types of F2-linear generators in [66, 67, 436, 437].

Similarly, a measure sometimes used to assess the quality of lattices is the
Babenko-Zaremba index [25, 24], defined as

ρ = min
0 �=h∈L∗

‖h‖π,

where

‖h‖π =
s∏

j=1

max(1, |hj |).

This is closely related to the quantity

ls = min
0 �=h∈L∗

s

‖h‖2,

where

‖h‖2 =

⎛
⎝ s∑

j=1

h2
j

⎞
⎠

1/2

,

5.6 Quality measures 193

which is computed in the spectral test that was discussed in Chap. 3 as a
way of measuring the quality of the lattice Ψs induced by an MRG. The only
difference is that for ρ we use the sup norm to compute the shortest vector
in the dual lattice, while for ls we use the usual L2 norm. Bounds relating ρ
and ls can be found in [107] along with parameters for Korobov point sets
based on a quality measure that depends on the spectral test.

Each of the measures t, �s, and ls can be used within more global criteria
that evaluate several projections, such as the quantities MI and ΔI defined
in Sect. 3.5.1. We will come back to this in Chap. 6. Also, while these three
measures enjoy nice geometric interpretations, it is not the case for ρ, which
also turns out to be quite difficult to compute. For this reason, tables giving
good parameters with respect to ρ are usually limited to small values of s,
like s ≤ 10 [300].

For lattice point sets, a more popular measure based on the product norm
‖ · ‖π is to use the weighted Pα [182], given by

P̃α =
∑

0 �=h∈L∗
s

βI‖h‖−α
π , (5.29)

where βI is a nonnegative weight that depends on the set of indices

I = I(h) := {j : hj �= 0}.

These weights can be used to give more or less importance to the different
projections Pn(I). Compared with the measures ρ and �s, here we compute
a weighted sum of the inverse of the length of the vectors in the dual lattice
rather than focusing on the shortest one. Based on this interpretation, it is
clear that a smaller P̃α is preferred.

This measure generalizes the Pα studied in [407] and the references therein,
in which the weights are set to 1. The weighted Pα can also be used as the
“discrepancy” component of an error bound of the type (5.22) but for a
weighted space of periodic functions [182, Eq. (4.8c)]. From this point of
view, as before, we conclude that a smaller P̃α is preferred.

If the weights βI are given by a product of the form

βI = β0

∏
j∈I

βα
j ,

then the infinite sum defining P̃α can be shown to be equal to a sum over the
n points in Pn. More precisely, for α a positive even integer, we have [182,
Eq. (4.15)]

P̃α = β0

⎧⎨
⎩−1 +

1
n

n−1∑
i=0

s∏
j=1

[
1 − (−β2

j)α/2 (2π)α

α!
Bα(uij)

]⎫⎬
⎭ , (5.30)

194 5 Quasi–Monte Carlo Constructions

where Bα(·) is the Bernoulli polynomial of degree α. The first few Bernoulli
polynomials are given by [1]

B0(x) = 1,
B1(x) = x− 1/2,
B2(x) = x2 − x+ 1/6,
B3(x) = x3 − 3x2/2 + x/2,
B4(x) = x4 − 2x3 + x2 − 1/30.

The compact formulation (5.30) is used when this criterion is computed
in practice. Several tables of good parameters for lattice point sets are based
on searches made using criteria related to P̃α. Examples can be found in
[86, 160, 412, 407] and more recently in [186, 410].

Related to the weighted Pα is the concept of diaphony, introduced by
Zinterhof [484]. More precisely, the diaphony of a point set Pn is given by

F (Pn) =

⎛
⎝∑

h �=0

‖h‖2
πS

2
n(h)

⎞
⎠

1/2

, (5.31)

where

Sn(h) =
1
n

n∑
i=1

e2πih·ui .

Note that, for a lattice, the diaphony F (Pn) and P2 are equal. (Problem 5.18
asks you to prove this.) For general point sets, Zinterhof [484] proved the
important identity

F 2(Pn) =
1
n2

n∑
i=1

n∑
i′=1

g((ui − ui′) mod 1), (5.32)

where

g(u) = −1 +
s∏

j=1

(
1 − π2

6
+
π2

2
(1 − 2uj)2

)
.

Another connection between nets and lattices can be established through
the general concept of a weighted spectral test [174]. This quantity, denoted
Fr(Pn), generalizes the diaphony by replacing the term ‖h‖2

π by a weight r(h)
in the sum (5.31) and also by generalizing the quantity Sn(h) to be based on
either Fourier or Walsh basis functions. That is, the weighted spectral test is
defined as

Fr(Pn) =

⎛
⎝∑

h �=0

r(h)S̃2
n(h)

⎞
⎠

1/2

,

5.6 Quality measures 195

where

S̃n(h) =
{

1
n

∑n
i=1 e

2πih·ui for Fourier
1
n

∑n
i=1 e

2πi〈h,ui〉b for Walsh,

and where the products h · u and 〈h,u〉b were defined in (5.26) and (5.24),
respectively. The weight function r(·) must satisfy the following three condi-
tions: (i) r(h) > 0 for all h; (ii) r(0) = 1; and (iii)

∑
h r(h) <∞.

In addition to the classical diaphony, another special case of the weighted
spectral test is the dyadic diaphony introduced by Hellekalek and Leeb [173],
which can be viewed as the digital, base 2, version of the diaphony. More
precisely, it is obtained by taking the Walsh functions in base 2 and the
weight function

r(h) =
1

3s − 1

s∏
j=1

ρ(hj), (5.33)

where

ρ(hj) =
{

2−2g if 2g ≤ hj < 2g+1

1 if hj = 0.

Formulated using the polynomial setup, this means that for nonzero hj we
have ρ(hj) = 2−2dj , where dj is the degree of hj(z). It is shown in [173] that
the dyadic diaphony can be computed as

(
1

3s − 1
1
n2

n∑
i=1

n∑
i′=1

ζ(ui ⊕ ui′)

)1/2

,

where

ζ(u) = −1 + 3s
s∏

j=1

(
1uj=0 + 10<uj<1(1 − 21+�log2 uj�)

)
.

A weighted version of the dyadic diaphony was introduced in [285] and
defined by replacing the weight function (5.33) by

r(h) =
β0

3s − 1

s∏
j=1

βjρ(hj)

for some weights β0, . . . , βs > 0. It is shown in [285] that, for polynomial inte-
gration lattices in base 2, this weighted dyadic diaphony can be computed as

(
1

3s − 1
β0

n

n−1∑
i=0

ψ̃(ui)

)1/2

,

where

ψ̃(u) = −1 +
s∏

j=1

[
1 + 2β2

j

(
1 − 3 · 2�log2 uj�

)]
.

196 5 Quasi–Monte Carlo Constructions

The weighted dyadic diaphony is also studied in [227], where an additional
parameter α > 1 similar to the one used to define P̃α is introduced.

Our discussion of which types of functions are integrated perfectly by
lattice point sets leads us to the observation that the periodicity of the Fourier
basis functions suggests that lattices work best with periodic functions. As a
matter of fact, the integration error based on a lattice Pn can be shown to
be [408]

Qn − I(f) =
∑

0 �=h∈L∗
s

f̂(h) (5.34)

for functions whose Fourier expansion is absolutely convergent and where
f̂(h) is the Fourier coefficient of f evaluated at h. An error bound of the
Koksma-Hlawka type can then be obtained, where D∗(Pn) is replaced by the
weighted Pα [180, 182, 407].

Since f needs to be one-periodic with respect to each uj in order for
(5.34) to hold, several ways of periodizing f have been proposed [197, 407,
483]. Typically, and as explained in [407, Sect. 2.12], the idea is to choose
a transformation η : [0, 1] → [0, 1] that is smooth, increasing, and such that
η′(0) = η′(1) = 0. If we transform f into

f̃(u1, . . . , us) = f(η(u1), . . . , η(us))η′(u1) . . . η′(us), (5.35)

then f̃ is periodic since f̃(u1, . . . , us) = 0 whenever uj ∈ {0, 1} for some j,
and also, from calculus, we know that

∫
[0,1)s

f̃(u)du =
∫

[0,1)s

f(u)du.

For instance, Sidi proposed [403]

η(t) = t− 1
2π

sin(2πt),

which was used with success in [40] for option pricing in finance.
Transformations can also be applied to the lattice points themselves. One

such example is the baker transformation of Hickernell [183], where each co-
ordinate ui,j is replaced by 2ui,j if ui,j < 0.5 and by 2(1 − ui,j) otherwise.
Applying this transformation to a lattice point set makes it possible to get
error bounds for nonperiodic integrands that are similar to those obtained
for periodic integrands (and original lattice point sets). This transformation
has been shown to be useful for practical problems in [69, 263]. We can also
think of the baker transformation as periodizing the integrand based on the
function

η(u) = 1 − |2u− 1|,
and since the absolute value of this derivative (where it exists) is one,
f(η(u1), . . . , η(us)) integrates to the same thing as f , which is why we can

Problems 197

think of this method as simply changing the point set without affecting the
integrand. This is in contrast with periodizations based on an increasing η,
where the corresponding integrand f̃ given in (5.35) is different from f . It
should also be pointed out that recent work by Kuo et al. on periodization
indicates these transformations may fail in high dimensions [232].

5.6.3 Motivation for going beyond error bounds

Going back to the Koksma-Hlawka inequality (5.22), it is important to men-
tion that there are serious limitations that prevent this result from being re-
ally useful in practical settings. First, even for moderate values of s, n must
be very large in order for logs n/n to be smaller than 1/

√
n. For instance,

for s = 10, n must be at least about 1039 for the inequality to hold. Second,
the condition V (f) < ∞ often is not met for functions arising in practical
applications. In computer graphics, f often includes an indicator function for
sets whose boundaries are not parallel to the axes [213], which results in an
unbounded V (f). Functions with infinite variation are also often encountered
in derivative pricing in finance [366]. Finally, even when V (f) < ∞, the in-
equality (5.22) cannot reliably be used to give an idea of the error since it
only provides an upper bound, which turns out to be very hard to compute
anyway since both D∗

n and V (f) are hard to compute.
In practical settings where the user wants an estimate of the integration

error |Qn−I(f)| for a given n, point set Pn, and function f , something other
than the Koksma-Hlawka inequality must be used. At this point, it might be
tempting to revert to Monte Carlo, for which an easy way of estimating the
error is available. If we remind ourselves why it is so — Monte Carlo is based
on independent random samples that allow simple variance estimates of μ̂
to be made, and the central limit theorem then provides a way to construct
confidence intervals — a natural next question is “How could we allow error
estimation through random sampling in the context of quasi–Monte Carlo”?
Randomized quasi–Monte Carlo is an answer to that question and will be
discussed in the next chapter.

Problems

5.1. Show that a rank-1 lattice point set with n points based on the generat-
ing vector (z1, . . . , zs) is fully projection-regular if and only if gcd(zj , n) = 1
for all j = 1, . . . , s.

5.2. We briefly mentioned copy rules on p. 148. Following [277], we define a
νr copy rule point set as being of the form

198 5 Quasi–Monte Carlo Constructions

Pn =
ν−1⋃

m1=0

. . .

ν−1⋃
mr=0

p⋃
i=1

{((
m1/ν, . . . ,mr/ν, 0, . . . , 0︸ ︷︷ ︸

s−r times

)
+ ui

)
mod 1

}
, (5.36)

where {ui, i = 1, . . . , p} is a rank-1 lattice point set and ν ≥ 2 is an integer
such that gcd(p, ν) = 1. Hence the number of points is n = νrp. Show that
Pn as given in (5.36) is not fully projection-regular for s ≥ 2.

5.3. Write a program that, given an integer s, a generating vector z =
(z1, . . . , zs) in Z

s, and an integer i ≥ 1, returns the ith point from an ex-
tensible lattice sequence in base 2 based on z.

5.4. (a) Show that the first bk points of an extensible lattice sequence form a
lattice point set. (b) Show that, for k ≥ 2, the set of the first 2k points from
an extensible lattice sequence in base 2 can be obtained by taking the union
of the first 2k−1 points of the sequence and the set

{
i

2k
(z1, . . . , zs) mod 1, i = 1, 3, . . . , 2k − 1

}
.

5.5. (a) Write a program that, given an integer s and an integer i ≥ 1, outputs
the ith point of the Halton sequence. (b) Repeat (a) but for a generalized
Halton sequence that uses permutations based on multiplicative factors fj

for j = 1, . . . , s. An example of good factors can be found at [498]. (c) For
each of (a) and (b), write a program that returns the ith point to which a
random digital (b1, . . . , bs)-shift is added (see App. B).

5.6. (a) Consider the first 2k points of the Sobol’ sequence in [0, 1)s, where
k < ds and ds is the degree of the sth smallest primitive polynomial in base 2.
Show that the t-value of the point set obtained might depend on the choice
of direction numbers. (b) Consider a projection of the form Pn({j, j + 1})
with n = 2k for the Sobol’ sequence. For j = 10, 20, 30, 40, 50, 100, find the
smallest value of k such that the t-value for Pn({j, j + 1}), denoted t{j,j+1},
is independent of the direction numbers chosen in dimension j and j + 1.

5.7. Show that the Niederreiter sequence in base 2 does not include the Sobol’
sequence as a special case.

5.8. Compare the value of T (Pn) — using the formula (5.21) — for n =
1000, 5000, 10000 and s = 10, 20, 40 for the Sobol’ sequence with (i) the direc-
tion numbers as in [501] and (ii) setting the direction numbers vj,k = mj,k/2k

by choosing mj,k = 1 for k = 1, . . . , dj . (Code to implement the Sobol’ se-
quence is available on the Web. For instance, a widely used source is [501]
from the paper [43].)

5.9. (a) Show that for each I ⊆ {1, . . . , s} and each k ≥ 0, for n = bk, the
projection Pn(I) of the Faure sequence in base b has a t-value equal to 0. (b)
Show that the n = bk first points of the Faure sequence in base b ≥ s form

Problems 199

a dimension-stationary point set. Show that this is not necessarily true for
a generalized Faure sequence based on nonsingular lower-triangular matrices
A1, . . . , As. (c) Show that the first n points of the Sobol’ sequence do not
form a dimension-stationary point set.

5.10. (a) Consider a Tausworthe generator specified by a trinomial of the
form P (z) = zk + zr + 1 and parameters ν and L, where gcd(ν, 2k − 1) =
1. Write a program that, given an integer s, generates the corresponding
s-dimensional recurrence-based point set. (b) Suppose now that you have two
Tausworthe generators as above. Repeat (a) for the combined generator based
on these two Tausworthe generators. (c) Repeat (b) with three components.

5.11. Show that the recurrence (5.18) defines a bijection over the ring
Fb[z]/(p(z)), which we identify with the set of polynomials in Fb[z] of de-
gree less than k =

∑J
j=1 kj .

5.12. Prove the statement on p. 190 saying that if τ(h(z)) ≤ k − t, then
ξh(u) is integrated with a zero error by a (t, k, s)-net, where t ≤ k.

5.13. Show the propagation rule that says that if Pn is a (t, k, s)-net, then
for u < k the first bu points of Pn form a (t, u, s)-net.

5.14. Define tI to be the t-value of the projection Pn(I) of a digital net Pn.
Show that t = max∅�=I⊆{1,...,s} tI .

5.15. (a) Compute the value of T ∗(Pn), T (Pn), and D2(Pn) for n = 1000,
5000, 10000, 20000, 50000 and Pn obtained as (i) first n points of the Halton
sequence; (ii) first n points of the generalized Halton sequence implemented
in Prob. 5.5; and (iii) an extensible Korobov lattice sequence in base 2 based
on the generator a = 14471. Use s = 5, 10, 20, 50. (b) Repeat (a) but only for
the two-dimensional projection Pn({39, 40}) and the values of n listed in (a).

5.16. Show that (5.30) is a valid formula for P̃α using the fact that for the
Bernoulli polynomial of degree α — where α is even — we have the Fourier
expansion

Bα(u) = −α!
∑
h�=0

e2πihu

(2πih)α
, 0 < u < 1.

5.17. Show that applying the baker transformation to a point set is equiva-
lent to using the original point set to the function f(η(u1), . . . , η(us)), where
η(u) = 1 − |2u− 1|.

5.18. Prove that the formula (5.32) for the diaphony is equivalent to (5.30)
when α = 2 and the underlying point set is a lattice point set.

Chapter 6

Using Quasi–Monte Carlo in Practice

6.1 Introduction

In the preceding chapter, we presented several constructions that can be used
for quasi–Monte Carlo sampling and discussed how to assess their quality. In
this chapter, we focus on issues that arise when applying quasi–Monte Carlo
methods in practice. We first discuss randomized quasi–Monte Carlo, which,
as we mentioned at the end of the previous chapter, is an essential tool to
make low-discrepancy sampling applicable in practice. In Sect. 6.3, we discuss
ANOVA decompositions, which have been very useful for understanding the
success of quasi–Monte Carlo methods in practice. We discuss in Sect. 6.4
the use of quasi–Monte Carlo sampling in simulation studies and how it can
be combined with other variance reduction techniques. We conclude in Sect.
6.5 with a short discussion of different issues and suggestions that might be
helpful to practitioners.

We include an appendix to this chapter, where we briefly discuss the con-
cept of tractability and related results that have had a great impact on the
construction of low-discrepancy point sets over the last few years. This area of
study has connections with ANOVA decompositions, which is why we chose
to present it in this chapter rather than the previous one, but it does not
exactly fit with the more simulation-oriented issues discussed in the rest of
the chapter, which is why we put it in an appendix.

This chapter does not focus on specific applications. The next chapter will
discuss the use of quasi–Monte Carlo sampling in finance, which is proba-
bly the most well-known application for these methods. Another area where
quasi–Monte Carlo has been quite successful is computer graphics [213, 460].
The survey [364] by Owen describes quasi–Monte Carlo sampling for people
working in that area.

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 201
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 6,
c© Springer Science+Business Media LLC 2009

202 6 Using Quasi–Monte Carlo in Practice

6.2 Randomized quasi–Monte Carlo

The fact that the Monte Carlo method is based on an i.i.d. sample of points
makes it easy to get error estimates when applying this method. Since low-
discrepancy point sets do not have this property, we cannot directly estimate
the error in the same fashion. However, we can create a random sample of
quasi-random estimators, each based on a low-discrepancy point set of size
n. More precisely, randomized quasi–Monte Carlo consists in choosing a de-
terministic low-discrepancy point set Pn and applying a randomization such
that (i) each point ũi in the randomized point set P̃n is U([0, 1)s) and (ii) the
low discrepancy of Pn is preserved (in some sense) after the randomization.

Condition (i) guarantees that the estimator based on P̃n is unbiased. This
is because

E

(
1
n

n−1∑
i=0

f(ui)

)
=

1
n

n−1∑
i=0

E(f(ui) =
1
n

n−1∑
i=0

∫
[0,1)s

f(ui)dui = I(f),

where the second equality comes from the fact that each ui ∼ U([0, 1)s).
Condition (ii) is a natural one to ask for because our main motivation for
using quasi-random sampling is that we expect the low discrepancy of the
underlying point set Pn to produce a more accurate estimator than Monte
Carlo. We do not want this advantage to be lost by using a randomization that
would destroy this low discrepancy and take us back to random sampling.

In general, randomizations are designed for a certain class of constructions
so that at least one of the characterizations of the construction’s low discrep-
ancy is preserved. For example, the random shift mentioned briefly on p. 175
is designed for lattice point sets, in which points have the property of lying
on parallel equidistant lines, and this property is preserved after the shift is
applied.

Once a randomization method is chosen, we can create a sample of m i.i.d.
estimators of the form

μ̂rqmc,l =
1
n

n−1∑
i=0

f(ũi,l),

where {ũi,1, i = 0, . . . , n− 1},. . . , {ũi,m, i = 0, . . . , n− 1} are m independent
randomized copies of Pn. For instance, with the random shift method, we
have

ũi,l = (ui + vl) mod 1,

where v1, . . . ,vm are m i.i.d. uniform vectors over [0, 1)s. With these m i.i.d.
estimators, we can construct the unbiased estimator

μ̂rqmc =
1
m

m∑
l=1

μ̂rqmc,l

6.2 Randomized quasi–Monte Carlo 203

for I(f) and estimate its variance, denoted Var(μ̂rqmc), by the unbiased esti-
mator

σ̂2
m,rqmc =

1
m
σ̂2

rqmc,

where

σ̂2
rqmc =

1
m− 1

m∑
l=1

(μ̂rqmc,l − μ̂rqmc)2 (6.1)

is an unbiased estimator of Var(μ̂rqmc,l). The empirical variance σ̂2
m,rqmc can

then be compared with the one obtained from a Monte Carlo estimator based
on a total of nm sample points or with other randomized quasi–Monte Carlo
estimators. In addition, if m is large enough, one can construct confidence
intervals for I(f) based on the randomized quasi–Monte Carlo estimator.

This brings us to an important question that is often raised when pre-
senting the randomized quasi–Monte Carlo approach: For a fixed computing
budget, how should we choose the number of points n and the number of
randomizations m relative to each other? There is no obvious answer to this
question. A large n has the benefit of getting an increased quality/uniformity
from the low-discrepancy point set, possibly with a faster error reduction
than when m is increased. This is because in some settings (to be discussed
shortly) it can be shown that the variance of μ̂rqmc,l is in O(n−3 logs−1 n),
while in terms of m we only have that the variance of μ̂rqmc is the usual
O(1/m) that we get with Monte Carlo. In other words, in good scenarios
we have Var(μ̂rqmc) ∈ O(logs−1 n/(mn3)), so if we want to do better than
Var(μ̂mc) ∈ O(1/nm), it seems like we should take n as large as possible. On
the other hand, m must be taken large enough — say m ≥ 10 — so that the
variance estimate (6.1) is sufficiently reliable.

Randomization can also be used to improve the quality of a point set or
sequence. For example, we saw in Sect. 5.4.4 that one way of improving the
quality of the Halton sequence was to use permutations, and that Faure se-
quences could be improved by using nonsingular lower-triangular (NLT) ma-
trices multiplying the generating matrices. While these improvements can be
chosen in a deterministic way, they can also be chosen randomly. Sometimes
this is done only once and the resulting (randomized) point set is then used
just as in the deterministic quasi–Monte Carlo framework [348, 440]. That is,
no independent repetitions of this process are done in order to estimate the
error or variance.

We now describe the most common approaches used to randomize low-
discrepancy point sets.

204 6 Using Quasi–Monte Carlo in Practice

6.2.1 Random shift (or rotation sampling)

A very simple randomization method is to use a random shift [72], also called
a Cranley-Patterson rotation or rotation sampling, as shown on Fig. 6.1.

0

1

2

3

4

5

6

7

8

9

Fig. 6.1 A shifted point set. Original points are marked with filled circles and shifted
points are marked with white circles. Dotted lines indicate the effect of the mod1 opera-
tion.

As discussed before, the idea here is to generate a uniform random vector
v ∼ U([0, 1)s) and then let

ũi = (ui + v) mod 1,

for i = 1, . . . , n, where the modulo 1 operation is taken coordinatewise. Since
v is uniform, each point ũi in the randomized point set is also uniformly
distributed. For the sake of completeness, we prove this in the following
proposition.

Proposition 6.1. Let u ∈ [0, 1)s, v ∼ U([0, 1)s), and w = (u + v) mod 1.
Then w ∼ U([0, 1)s).

Proof. It is sufficient to show that, for any x ∈ [0, 1]s, P (wj ≤ xj , j =
1, . . . , s) = x1 . . . xs. First, by independence of the coordinates vj , we have

P (wj ≤ xj , j = 1, . . . , s) = P (w1 ≤ x1) . . . P (ws ≤ xs).

This means we just need to prove P (wj ≤ xj) for each j. We consider two
cases: (1) if uj ≤ xj , then P (wj ≤ xj) = P (vj ≤ xj − uj or 1 − uj ≤ vj ≤
1) = xj − uj + uj = xj ; (2) if uj > xj , then P (wj ≤ xj) = P (1 − uj ≤ vj ≤
1 − uj + xj) = 1 − uj + xj − (1 − uj) = xj .

This proves that Condition (i) is satisfied. To see in what sense Condition
(ii) is satisfied, we show in Fig. 6.1 an example of a small lattice point set and
the effect of the shift on it. For this example, the shift preserves the structure
of the point set in the sense that the original points lie on parallel equidistant

6.2 Randomized quasi–Monte Carlo 205

lines — in fact, on an infinite number of families of lines — and this remains
true after the shift. Also, the distance between these lines remains the same
for each family of parallel equidistant lines.

As we mentioned on p. 175, a major incentive for using a random shift
with Korobov point sets is that it breaks the cycles that would otherwise
appear in the coordinates of each point when s ≥ n. In particular, if the
dimension is unbounded, then applying a random shift becomes crucial. It
can be done rather easily if the random number generator used to generate
the shift can be reset to a given state. For instance, one can initially choose
an upper bound s0 on the maximum dimension, generate an s0-dimensional
random shift v, and save the current state x0 of the generator. Then, for a
given point ui = (ui,1, . . . , ui,s0), if it turns out that f cannot be evaluated
only with the first s0 coordinates of the randomized point

ũi = (ui + v) mod 1

(for instance, in the bank example, this would happen if, say, s0 = 600 and
it turns out that the 300th customer arrives before 3 pm, and thus at least
one more client needs to be simulated), then additional coordinates can be
obtained as

ũi,j = (ui,j + Rand01()) mod 1, j > s0, (6.2)

where Rand01() represents a call to the random number generator, and ui,j

should be easily obtainable from the construction chosen. For instance, if the
underlying point set is a Korobov point set enumerated in the order

ui =
i− 1
n

((
1, a, a2 mod n, . . . , as0−1 mod n

)
mod 1

)
,

then
ui,j =

1
n

(
(i− 1)aj−1 mod n

)
.

Once enough additional coordinates of the form ũi,j with j = s0+1, s0+2, . . .
have been generated, then the generator should be reset to the state x0 so
that if another point ũi′ with i′ > i also needs more than s0 coordinates,
then the same shift is added to that point when calling Rand01() in (6.2).

Summing up, the random shift is a very simple randomization that is easy
to apply. Although it is designed for lattice point sets, it can also be applied
to digital nets and sequences [325, 455], but in those cases it does not exactly
preserve the low-discrepancy properties of those point sets. In particular, if
Pn is (q1, . . . , qs)-equidistributed, then the randomly shifted version of Pn is
not necesssarily (q1, . . . , qs)-equidistributed.

The random shift method is discussed further in [264, 325, 453, 455].

206 6 Using Quasi–Monte Carlo in Practice

6.2.2 Digital shift

This method is to digital nets the equivalent of what the random shift modulo
1 is to lattices. It adds a random, uniform shift to the points of a digital net
Pn but using operations in Zb rather than ordinary real addition, where b is
the base in which the net is defined.

More precisely, for a digital net Pn in base b, generate a random vector
v = (v1, . . . , vs) uniformly in [0, 1)s and consider the base b expansion of its
coordinates. That is, write

vj =
∞∑

l=0

vj,lb
−l.

Then the digitally shifted version of Pn — denoted P̃n — has points ũi such
that

ũi,j =
∞∑

l=0

(ui,j,l + vj,l)b−l,

where the addition is performed in Zb and the digits ui,j,l come from the base
b expansion of ui,j . That is,

ui,j =
∞∑

l=0

ui,j,lb
−l.

This can also be used for randomizing Halton sequences, but in this case each
coordinate is defined with a different base bj [19, 464] (see App. B).

It is easy to see that this randomization preserves (q1, . . . , qs)-equidistri-
bution properties because performing a digital shift simply amounts to a
relabeling of the b-ary boxes for a given (q1, . . . , qs)-partition.

6.2.3 Scrambling and permutations

These randomization methods are also designed for digital nets, but they
perturb their structure more deeply than a simple random digital shift. We
start by describing a random linear scrambling, which can be thought of as
a randomized version of the transformations suggested by Tezuka to improve
the Faure sequence [440]. Its use as a randomization technique is studied in
detail in [194, 307, 365].

A random linear scrambling is applied by choosing s lower-triangular non-
singular matrices R1, . . . , Rs with elements in Zb and multiplying them with
the generating matrices of a digital net in base b. That is, this method
amounts to using randomized generating matrices of the form RjCj , j =
1, . . . , s, where the Cj are the original generating matrices. In addition, a

6.2 Randomized quasi–Monte Carlo 207

digital shift can be performed and has the advantage of simplifying the anal-
ysis of the point set obtained [307, p. 540], in particular because it ensures
that each randomized point is uniformly distributed over [0, 1)s [365, Remark
3.2]. As with the random digital shift, this method preserves (q1, . . . , qs)-
equidistribution properties. In fact, Matousěk shows in [308] that the t-value
of the scrambled net is not larger than the original net’s t-value, so the scram-
bling can potentially improve the quality of the net.

Another way to think about linear scrambling is to write [307]

RjCja = Rj ãj =

⎛
⎜⎝
Rj,1,1 0 0
Rj,2,1 Rj,2,2 0 . . . 0
...

...
. . .

...
...

⎞
⎟⎠ ã =

⎛
⎜⎝
πj

0(ãj,0)
πj

0,ãj,0
(ãj,1)

...

⎞
⎟⎠ ,

where
a = (a0(i), a1(i), a2(i), . . .)T

is the vector containing the base b expansion of i, and

ãj = Cja =

⎛
⎜⎝
ãj,0

ãj,1

...

⎞
⎟⎠ .

(We should really use the notation ãj,l(i) instead of ãj,l, but we choose to
omit the i to make the notation less heavy.) In other words, we can think of
Rj as a way of defining nested permutations πj

0, π
j
0,ãj,0

, πj
0,ãj,0,ãj,1

, . . . that are
applied to the digits of ãj . For instance,

πj
0(ãj,0) = Rj,1,1 × ãj,0,

πj
0,ãj,0

(ãj,1) = Rj,2,1ãj,0 +Rj,2,2ãj,1,

and so on, where all operations are performed in Zb. Note that the types of
permutations used above are linear. That is, they are restricted to be of the
form

π(ãj,r) = xãj,r + y

for some constants x and y in Zb, where y depends on the previous digits
ãj,r−1, . . . , ãj,0.

This formulation allows us to establish a parallel with the original scram-
bling technique proposed by Owen in 1994 [357], which amounts to the
approach above, but where general permutations — not necessarily linear
— are allowed. The process by which nested permutations are used to scram-
ble a point set is referred to as nested scrambling in [365]. In the terminology
of [365], random linear scrambling is called affine matrix scrambling.

Other forms of scrambling are discussed and compared in [194, 307, 365,
445]. For instance, we have:

208 6 Using Quasi–Monte Carlo in Practice

(1) Random digit scrambling [307]. Choose s random independent permuta-
tions π1, . . . , πs and apply the same πj to each digit in the expansion
of ãj . Hence, more general permutations (not necessarily linear) are ap-
plied than with random linear scrambling, but the same permutation is
applied to each digit in dimension j. This is also called positional uniform
scrambling in [365].

(2) Random linear digit scrambling [307]. This is a special case of the random
digit scrambling where permutations are of the form πj(a) = hja+gj for
some (random) hj ∈ {1, . . . , b − 1} and gj ∈ {0, . . . , b − 1}. This is also
called positional linear scrambling in [365].

(3) Fully random scrambling [307]. This is used to refer to Owen’s scrambling,
which is also called nested uniform scrambling in [365].

(4) I-binomial scrambling [445]. This corresponds to using a random lower-
triangular scrambling matrix of the form

Rj =

⎛
⎜⎜⎜⎜⎜⎝

h1 0 0 0 . . .
g2 h1 0 0 . . .
g3 g2 h1 0 . . .
g4 g3 g2 h1 . . .
...

.

⎞
⎟⎟⎟⎟⎟⎠

for j = 1, . . . , s, where the integers hl are nonzero elements of Zb, while
gl ∈ Zb. One interesting aspect of the I-binomial scrambling is that it
can be categorized as nested scrambling, although it requires only O(k)
integers to scramble k digits (for each dimension), while the two other
forms of nested scrambling — random linear scrambling and fully random
scrambling — require O(k2) and O(bk) integers, respectively [365].

(5) Affine striped matrix scrambling [365]. This is a special case of random
linear (or affine matrix) scrambling where we use

Rj =

⎛
⎜⎜⎜⎜⎜⎝

h1 0 0 0 . . .
h1 h2 0 0 . . .
h1 h2 h3 0 . . .
h1 h2 h3 h4 . . .
...

.

⎞
⎟⎟⎟⎟⎟⎠

for j = 1, . . . , s, and here the integers hl are nonzero elements of Zb.

These different scramblings will be discussed again later on, in Sect. 6.2.6.

Remark on Latin hypercube sampling

A well-known technique in simulation studies that bears some resemblance to
the scrambling and permutations that we just described is the Latin hypercube
sampling approach [313]. In Latin hypercube sampling, a point set Pn is

6.2 Randomized quasi–Monte Carlo 209

constructed so that each one-dimensional projection contains exactly one
point in each interval of the form [(j − 1)/n, j/n), for j = 1, . . . , n. This is
done by generating s random uniform permutations πj over [0, . . . , n−1] and
then defining

Pn =
{(

π1(i)
n

+ vi1, . . . ,
πs(i)
n

+ vis

)
, i = 0, . . . , n− 1

}
, (6.3)

where the vi,j are independent and uniformly distributed over [0, 1/n). Some-
times, a variant where each vij is replaced by 1/2n is used. To see the con-
nection with a scrambled digital net, we can think of the Latin hypercube
sampling point set (6.3) as being a scrambled (0, 1, s)-net in base n. We will
talk about Latin hypercube sampling in more detail in Chap. 8.

6.2.4 Partitions and Latin supercube sampling

For problems with a very large dimension s, one possible approach is to
split the set of variables into two sets, {u1, . . . , ud} and {ud+1, . . . , us}, and
apply quasi–Monte Carlo to the first set and Monte Carlo to the second set
[351, 352, 353]. The idea behind this hybrid approach is that if the problem is
formulated so that the first d variables are the most important, then applying
quasi–Monte Carlo to this first subset should help, while for the second set
we simply rely on random sampling. By choosing d appropriately, one thus
hopes to improve on pure Monte Carlo.

In [360], Owen develops a generalization of this idea that also has similar-
ities with Latin hypercube sampling. He called this method Latin supercube
sampling, and it works as follows:

(1) Split {1, . . . , s} into r groups {1, . . . , d1}, {d1 + 1, . . . , d1 + d2}, . . . , {d1 +
. . .+ dr−1 + 1, . . . , s}, where

∑r
l=1 dl = s.

(2) Choose r low-discrepancy point sets (randomized or not) of dimension
d1, . . . , dr, denoted P 1

n , . . . , P
r
n .

(3) Choose r random uniform permutations π1, . . . , πr of [1, . . . , n].
(4) The Latin supercube sampling method then uses as its ith point

(
u1

π1(i)
,u2

π2(i)
, . . . ,ur

πr(i)

)
.

That is, the first d1 coordinates of the ith point are obtained from the π1(i)th
point of P 1

n , the next d2 are obtained from the π2(i)th point of P 2
n , and so

on. Latin hypercube sampling is a special case of this method where r = s,
dl = 1 for all l, and P l

n = {v1,l, 1/n + v2,l, . . . , (n − 1)/n + vn,l}, where the
variables vi,l are either independent and uniformly distributed in [0, 1/n) or
simply set to 1/2n.

210 6 Using Quasi–Monte Carlo in Practice

This method is useful for problems where variables can be partitioned into
groups within which there is a lot of correlation but variables from different
groups interact only mildly. By applying Latin supercube sampling over these
corresponding subgroups and using the ANOVA decomposition framework,
one can expect that improvement over the Monte Carlo method should be
obtained [360].

6.2.5 Array-RQMC

We now describe an approach proposed by L’Ecuyer, Lécot, and Tuffin to
simulate Markov chains defined over an ordered space that relies on random-
ized low-discrepancy point sets [263]. This method — called array-RQMC —
works as follows.

Suppose that we want to generate N steps of a Markov chain X defined
over an ordered space and such that d uniform numbers are required to
generate the next state of the chain given the current state. Instead of using an
s = Nd-dimensional point set to perform this type of simulation — assigning
each Nd-dimensional point to one path of the chain — the idea of array-
RQMC is to use N i.i.d. randomized copies of a d-dimensional point set for
each step of the chain. Furthermore, at each step, the order in which the
points are assigned to the chain paths is determined by the current state.
That is, we can think of array-RQMC as using r = N underlying point sets
in the same way as Latin supercube sampling but where the permutations πl

for l = 1, . . . , r are determined in the following way.
First, π1(i) = i for i = 1, . . . , n. Then, for l ≥ 2, let x1,l−1, . . . , xn,l−1 be

the sample of the Markov chain obtained at step l−1. Rearrange this sample
according to the order defined on the state space of the Markov chain, thereby
obtaining

x(1),l−1 < . . . < x(n),l−1.

Then let πl be defined so that πl(j) = k, where k is such that xj,l−1 = x(k),l−1.
That is, the permutation used at step l is such that points from the lth copy
of the underlying d-dimensional point set are assigned to the Markov chain
paths according to the ordering obtained at the previous step l − 1.

Hence an important difference with Latin supercube sampling is that the
permutations used to reorder the point sets at each step are determined
in a systematic way from the definition of the Markov chain rather than
being generated randomly. In some settings — including common problems in
finance — the array-RQMC method can provide much more accurate results
than the standard randomized quasi–Monte Carlo approach based on an Nd-
dimensional point set, where each point is assigned to a path [263].

6.2 Randomized quasi–Monte Carlo 211

The idea of reordering low-discrepancy point sets for Markov chain sim-
ulation had been studied previously in a deterministic context in [245, 246],
among others.

6.2.6 Studying the variance

When a deterministic low-discrepancy point set is randomized, we can look at
the corresponding estimator and try to analyze its variance. At the beginning
of this section, we mentioned how to estimate that variance. Here, we give
expressions for its theoretical value. Although these expressions cannot be
evaluated exactly in general, they can provide useful insight on the different
randomization methods mentioned above and how they perform compared
with Monte Carlo. Let us start with the variance for a randomly shifted
lattice point set [264].

Proposition 6.2. If f is square-integrable and P̃n = {ũi, . . . , ũn} is a ran-
domly shifted lattice point set, then the corresponding estimator μ̂ defined
by

μ̂ =
1
n

n∑
i=1

f(ũi)

has variance
Var(μ̂) =

∑
0 �=h∈L∗

s

|f̂(h)|2, (6.4)

where f̂(h) is the Fourier coefficient of f evaluated in h, given by

f̂(h) =
∫

[0,1)s

f(u)e−2πih·udu,

and L∗
s is the dual lattice associated with the lattice Ls such that the unshifted

point set Pn ⊆ Ls.

Similarly, for a digitally shifted net, we have the following result [265],
which makes use of the dual space C∗

s of the net that was defined in (5.34)
and the product 〈h,u〉b that was defined on p. 188.

Proposition 6.3. If f is square-integrable and P̃n is a digitally shifted net
in base b, then the corresponding estimator μ̂ has variance

Var(μ̂) =
∑

0 �=h∈C∗
s

|f̃(h)|2, (6.5)

where f̃(h) is the b-ary Walsh coefficient of f evaluated in h, given by

212 6 Using Quasi–Monte Carlo in Practice

f̃(h) =
∫

[0,1)s

f(u)e−2πi〈h,u〉bdu.

A similar result can be obtained for point sets based on the Halton se-
quence, with the multibase digital shift discussed on p. 206, and is discussed
in App. B.

A few words about these two results are in order. First, the variance ex-
pressions given in (6.4) and (6.5) are closely related to formulas for the de-
terministic error of the corresponding point set that can be found in [408]
for lattices and [265] for nets. More precisely, for digital nets, we have the
expression

Qn − I(f) =
∑

0 �=h∈C∗
s

f̃(h), (6.6)

similar to the error bound (5.34) for lattice point sets, and this holds as long
as ∑

0 �=h∈C∗
s

|f̃(h)| <∞.

Note that for the variance expressions (6.4) and (6.5) to hold, we only need
f to be square-integrable, or equivalently to have

∑
h

|f̂(h)|2 <∞ (Fourier/lattice) or
∑
h

|f̃(h)|2 <∞ (Walsh/nets).

By contrast, for the error bounds (5.34) and (6.6), we needed the (much)
stronger condition of absolute convergence

∑
h

|f̂(h)| <∞ (Fourier/lattice) or
∑
h

|f̃(h)| <∞ (Walsh/net).

Recall that in Sect. 5.6 we argued informally that, under the assumption
that the most “important” basis functions (Fourier or Walsh) were the ones
associated with “small” vectors h, it made sense to try to make sure the dual
space (or lattice) had no “short vectors”. In terms of the variance expressions
above, doing that will avoid large contributions in (6.4) and (6.5).

Note that, for Monte Carlo, the variance of an estimator based on n points
is given by

1
n

∑
0 �=h∈Zs

|f̂(h)|2

(where we can also replace f̂ by a b-ary Walsh coefficient f̃ and sum over
N

s
0 instead). The difference from the shifted randomized quasi–Monte Carlo

methods is that here we sum over all h but each term is divided by n. Since
the dual space (or dual lattice) corresponding to a point set of cardinal-
ity n contains n times less vectors than the whole set of vectors h [407],
this means that the shifted randomized quasi–Monte Carlo estimators have

6.2 Randomized quasi–Monte Carlo 213

smaller variances than the Monte Carlo estimator if, on average, the Fourier
(Walsh) coefficients are smaller over the dual lattice (space).

This also means that, based on the expressions (6.4) and (6.5), we can
easily construct “bad” functions for which the variance of the shifted ran-
domized quasi–Monte Carlo estimator will be larger than for Monte Carlo.
For example, a nonconstant function whose Fourier coefficients are 0 for all
nonzero h that are not in the dual space will have a variance n times larger
than Monte Carlo. Although it is important to be aware of these worst cases,
functions like this are not necessarily likely to arise in practice. In a way, this
potential problem comes from the fact that randomizations based on a shift
are “too simple” and do not sufficiently “shuffle” or “scramble” the point set
in order to prevent the existence of functions that interact in a destructive
way with the deterministic point set on which the estimator is based.

The scrambling approach proposed by Owen in 1995 to randomize nets
does not suffer from this drawback. It inputs enough randomness in the de-
terministic construction to prevent the occurrence of bad functions for which
the scrambled net estimator performs significantly worse than Monte Carlo.
More precisely, we have the following proposition [361].

Proposition 6.4. Let μ̂scr be the estimator constructed from a (fully random)
scrambled (t, k, s)-net in base b. For any square-integrable function f with
variance σ2,

Var(μ̂scr) ≤
bt

n

(
b+ 1
b− 1

)s

σ2, (6.7)

where n = bk.

It should be pointed out that, as discussed in [444], the price to pay for
using fully random scrambling is that in some cases where the integrand
happens to be approximated with small error by a deterministic net, the
scrambled version of the net might have an increased error compared with its
deterministic counterpart. Here again, while it is important to be aware of
this possible disadvantage, one could argue that it is outweighed by the ability
of the scrambled net to provide an error estimate and destroy potential bad
interactions between its underlying deterministic point set and the function
to be integrated.

Another possible disadvantage of the full scrambling approach compared
with the random digital shift is that its implementation requires significantly
more space and time. An alternative is to use a random linear scrambling or
I-binomial scrambling with a digital shift. As shown in [194, 307], Prop. 6.4
also holds for these two randomization techniques. However, their advantage
over scrambled nets is that their implementation is about as simple as for the
random digital shift since the generating matrices RjCj can be recomputed at
the beginning and then each point is generated as in the random digital shift
approach. More generally, Prop. 6.4 holds for any randomization approach
that satisfies the following properties [194, 307]:

214 6 Using Quasi–Monte Carlo in Practice

(1) Each point ũi, i = 1, . . . , n in the randomized point set P̃n is uniformly
distributed over [0, 1)s.

(2) For 1 ≤ i, i′ ≤ n and 1 ≤ j ≤ s, if ui,j,l = ui′,j,l for l = 1, . . . , r but
ui,j,r+1 �= ui′,j,r+1, then

a. ũi,j,l = ũi′,j,l for l = 1, . . . , r;
b. (ũi,j,r+1, ũi′,j,r+1) is uniformly distributed over {(a1, a2) ∈ F

2
b : a1 �=

a2}; and
c. (ũi,j,p, ũi,j,q) are uncorrelated for any p, q > r + 1.

As mentioned in [365], it is crucial that the scrambling approach be nested
in order for Property 2(b) to be satisfied. Simple digital shifts and positional
scrambling do not satisfy this property.

Note that although Prop. 6.4 suggests that scrambled nets cannot do
much worse than Monte Carlo, the convergence rate for their variance is
still O(1/n). This might lead to the conclusion that randomized quasi–Monte
Carlo does not capture the advantage of quasi–Monte Carlo over Monte Carlo
deduced from the Koksma-Hlawka inequality and similar results. Recall, how-
ever, that these results required f to be of bounded variation, while Prop.
6.4 only assumes f is square-integrable. It turns out that if we make further
assumptions on f , the convergence rate of the variance can be improved to
O(n−3+ε) [359]. More precisely, for any scrambling satisfying the two prop-
erties above, we have the following theorem.

Theorem 6.5. [359, Theorem 2] If f is a “smooth” function (that is, there
exists A ≥ 0 and β ∈ (0, 1] such that

∣∣∣∣ ∂s

∂u1 . . . ∂us
f(u) − ∂s

∂u1 . . . ∂us
f(u∗)

∣∣∣∣ ≤ A‖u − u∗‖β

for all u,u∗ ∈ [0, 1)s), then for a scrambled digital net we have that the
corresponding estimator μ̂scr is such that

Var(μ̂scr) ∈ O(n−3 logs−1 n).

6.3 ANOVA decomposition and effective dimension

In Chap. 1, we illustrated the advantage of Monte Carlo methods over rectan-
gular grids by considering the simple function f(u) =

∑s
j=1

√
uj , which is a

sum of s univariate functions. Similarly, to understand the behavior of quasi–
Monte Carlo methods for numerical integration, it is useful to decompose an
s-dimensional integrand as a sum of 2s components based on each possible
subset uI = (ui1 , . . . , uid

) of variables, where I = {i1, . . . , id} ⊆ {1, . . . , s}.

6.3 ANOVA decomposition and effective dimension 215

More precisely, we can use a functional ANOVA decomposition [99, 193,
416]

f(u) =
∑

I⊆{1,...,s}
fI(u),

where, for nonempty subsets I, we have

fI(u) =
∫

[0,1)s−d

fI(u)du−I −
∑
J⊂I

fJ(u),

where d = |I| and −I = {1, . . . , s}\I is the complement of I in {1, . . . , s}.
The ANOVA component f∅(u) is simply the integral

I(f) =
∫

[0,1)s

f(u)du.

We also have that
∫
[0,1)s fI(u) = 0 for all nonempty I and that

∫
[0,1)s

fI(u)fJ (u)du = 0

for all I �= J . That is, the ANOVA components are orthogonal. Here is an
example to illustrate these definitions.

Example 6.6. Suppose s = 2 and f(u) = u1 + 2u1u
2
2 + u3

2. Then

f∅(u) = 13/12,

f{1}(u) =
∫ 1

0

f(u)du2 − 13/12 = 5u1/3 − 5/6,

f{2}(u) =
∫ 1

0

f(u)du1 − 13/12 = u2
2 + u3

2 − 7/12,

f{1,2}(u) = 2u1u
2
2 − 2u1/3 − u2

2 + 1/3.

The usefulness of this decomposition in the context of quasi–Monte Carlo
was first noticed by Sobol’ [416, 417] and developed further in [185, 360, 421].
One way to use it is to look at the components’ variance

σ2
I =

∫
[0,1)s

f2
I (u)du

and then write Var(f) = Var(f(U)) = σ2 =
∑

I σ
2
I . Therefore

SI =
σ2

I

σ2
∈ [0, 1]

can be interpreted as a measure of the relative importance of fI and is called
the global sensitivity index in [419]. If we know — or can guess — which

216 6 Using Quasi–Monte Carlo in Practice

subsets I correspond to important components fI , then, informally speak-
ing, we can say that quasi–Monte Carlo approximations based on point sets
for which the corresponding projections Pn(I) are of high quality should be
accurate. Going further, information on global sensitivity indices can be used
as a guide for constructing or choosing a low-discrepancy point set for that
problem. For instance, in the weighted Pα criterion (5.29), one could try to
choose the weights βI proportionally to the indices SI . Similar ideas for other
criteria will be discussed briefly in Sect. 6.3.4.

It should be noted that finding a closed-form expression for the ANOVA
components fI is typically not possible since, among other things, it requires
knowing the value of I(f). For the same reason, the variance σ2

I is usually
not known exactly. It is, however, possible to estimate σ2

I and approximate
fI(u) [9, 286, 419, 421], as we will see in Sect. 6.3.3.

6.3.1 Effective dimension

Studying the ANOVA decomposition of a function can help in assessing the
difficulty level of the corresponding integration problem. One way to summa-
rize that assessment is through the concept of effective dimension, which was
first introduced in [375] to explain the success of quasi–Monte Carlo methods
on a 360-dimensional problem in finance. This concept was used as a way of
measuring the number of “important” variables in this problem, and the fact
that it was much smaller than 360 was used as an argument to explain why
quasi–Monte Carlo methods could be successful on such problems.

More precisely, we have the following definitions [51, 185].

Definition 6.7. The effective dimension of f in the superposition sense (and
in proportion p) is the smallest integer dS such that

1
σ2

∑
I:|I|≤dS

σ2
I ≥ p.

The effective dimension of f in the truncation sense (and in proportion p) is
the smallest integer dT such that

1
σ2

∑
I:|I|≤dT

σ2
I ≥ p.

What this definition says is that a function with an effective dimension d
can be well approximated (from a least-squares point of view) by a sum of
functions of at most d variables each (for the superposition sense) or a sum
of functions involving only the first d variables u1, . . . , ud (for the truncation
sense version).

6.3 ANOVA decomposition and effective dimension 217

For example, in [51], a 360-dimensional problem involving the pricing of a
mortgage-backed security is shown to have a dimension of 1 in the superposi-
tion sense, with p very close to 1; in [286], an Asian option pricing problem
with s = 32 is shown to have an effective dimension of 2 in the superposi-
tion sense in proportion p = 0.97. More examples in finance are studied in
[463, 466].

Having a small effective dimension in the truncation sense is believed to
be especially important for functions integrated with the Sobol’ sequence,
since the upper bound on the quality parameter tI of its projections Pn(I)
increases as the indices in I increase [422]. Indeed, we have that

tI ≤
∑
j∈I

(dj − 1),

where dj is the degree of the primitive polynomial pj(z) used in dimension j.
Since these degrees form a nondecreasing sequence, it is clear that the bound
on tI increases with the value of the indices in I. This fact was noted explicitly
by Sobol’ and his collaborators back in 1992 [422]. Shortly after, researchers in
finance noticed this fact as well, and this led to the development of techniques
that can be used to modify f so that this type of effective dimension can be
reduced, as was discussed in Sect. 6.3.2.

The following example studies the effective dimension in the superposition
and truncation senses for simple functions. As we mentioned before, in prac-
tice it is usually impossible to compute these quantities exactly, but they can
at least be approximated, as we will see in Sect. 6.3.3.

Example 6.8. We consider three functions. To simplify things, assume we are
interested in computing effective dimensions for a proportion p = 0.99.

(1) As in [417], consider a linear function of the form

f(u) = f0 +
s∑

j=1

cj(uj − 1/2), cj ∈ R,

which is already written in its ANOVA form. That is, for this function,
we have

f{j} = cj(uj − 1/2)

for j = 1, . . . , s, and fI(u) = 0 for all subsets I containing more than one
index. It is easy to see that

σ2 =
1
12

s∑
j=1

c2j ,

σ2
{j} =

c2j
12
,

and therefore the global sensitivity indices are given by

218 6 Using Quasi–Monte Carlo in Practice

S{j} =
c2j∑s

j=1 c
2
j

for j = 1, . . . , s. This function has an effective dimension of 1 in the
superposition sense for any constants cj , but the truncation sense version
has a value that depends on these constants. For instance, if they are all
equal, then dT = �0.99s�. If we have cj = cj for some 0 < c < 1, then dT

is the smallest integer d such that

∑
I⊆{1,...,d}

σ2
I =

c2(1 − c2d)
1 − c2

≥ 0.99σ2 = 0.99
c2(1 − c2s)

1 − c2
.

After rearranging, we get that

dT =
⌈ log(1 − 0.99(1 − c2s))

2 log c

⌉
.

Table 6.1 gives values of dT for different combinations of c and s.

Table 6.1 Effective dimension in the truncation sense for linear function f(u) = f0 +∑s
j=1 cj(uj − 1/2).

c\s 5 10 20 50 100

0.99 5 10 20 50 97
0.95 1 2 4 10 19
0.9 1 1 2 5 10
0.5 1 1 1 1 2
0.1 1 1 1 1 1

(2) One way of constructing a function with bivariate components is to take
the previous function and raise it to the power two. That is, consider

f(u) =

⎛
⎝c0 +

s∑
j=1

cj(uj − 1/2)

⎞
⎠

2

= c20 +
s∑

j=1

c2j (uj − 1/2)2 + 2
∑
i<j

cicj(ui − 1/2)(uj − 1/2).

In that case,

6.3 ANOVA decomposition and effective dimension 219

I(f) = c20 +
1
12

s∑
j=1

c2j ,

f{j} = c2j (uj − 1/2)2 −
c2j
12
,

f{i,j} = 2cicj(ui − 1/2)(uj − 1/2),

so that

σ2
{j} =

c4j
80

−
c4j
144

=
c4j
180

, j = 1, . . . ,

σ2
{i,j} =

c2i c
2
j

36
, 1 ≤ i < j ≤ s.

Therefore, if the constants cj are all equal to some constant c, then we
have

σ2 =
sc4

180
+
s(s− 1)c4

2 × 36
,

and the global sensitivity indices are given by

S{j} =
(
s+

5s(s− 1)
2

)−1

, j = 1, . . . , s,

S{i,j} =
(
s

5
+
s(s− 1)

2

)−1

, 1 ≤ i < j ≤ s.

Thus, as expected, all components of the same size have the same global
sensitivity index value. On the other hand, if cj = cj for some 0 < c < 1,
then we have

σ2 =
c4(1 − c4s)
180(1 − c4)

+
1

18(1 − c2)

[
c6
(

1 − c4(s−1)

1 − c4

)
− (s− 1)c2s

]
,

and similarly we get

∑
I⊆{1,...,d}

σ2
I =

c4(1 − c4d)
180(1 − c4)

+
1

18(1 − c2)

[
c6
(

1 − c4(d−1)

1 − c4

)
− (d− 1)c2d

]
.

Using this, we can compute the effective dimension in the truncation
sense, as shown in Table 6.2.

(3) Consider now a multiplicative function of the form

f(u) =
s∏

j=1

|4uj − 2| + aj

aj + 1

220 6 Using Quasi–Monte Carlo in Practice

Table 6.2 Effective dimension in the truncation sense for f(u) = (f0 +
∑s

j=1 cj(uj −
1/2))2.

c\s 5 10 20 50 100

0.99 5 10 20 50 97
0.95 5 10 20 49 72
0.9 5 10 20 36 36
0.5 5 7 7 7 7
0.1 3 3 3 3 3

for some nonnegative constants aj , j = 1, . . . , s [363, 419]. The case aj = 0
is often used as a test function for comparing different integration methods
[19, 43, 58, 73, 127]. As shown in [363], we have that

σ2
I =

∏
j∈I

1
3(1 + aj)2

.

For this type of function, the smaller aj is, the more important the
variable j is. For instance, in [419], Sobol’ shows that, for the choice
a1 = a2 = 0 and a3 = . . . = a8 = 3 in dimension 8, we have that
S{1} = S{2} = 0.329, while S{j} = 0.021 for all other values j ≥ 3. In
addition, S{1,2} = 0.110, S{i,j} = 0.007 if one of the indices i or j is 1 or
2, and S{i,j} = 0.0004 otherwise. Based on his calculations, we get that
dS = 3 for this example, but dT = 8.

Another way of defining the effective dimension that is especially relevant
in the context of simulation is as follows [284].

Definition 6.9. The effective dimension of f in the successive-dimensions
sense (and in proportion p) is the smallest integer dU such that

1
σ2

∑
I:I∈Is,du

σ2
I ≥ p,

where Is,du
= {{i, . . . , i+ dU − 1}, 1 ≤ i ≤ s− dU + 1}.

Here we not only restrict the subsets I to contain no more than dU indices
but also restrict the range of I (the largest index in I minus the smallest
one) to be no larger than dU − 1. So, for instance, the subset I = {1, 2, 100}
would be considered when summing up the variance contributions for dS = 3
but not for dU = 3 since the range of I in this case is 99 > 2. This added
restriction is relevant in settings where f is defined so that variables uj with
indices that are not too far apart interact more than those with indices that
are far apart.

The question of whether or not problems need to have a small effective
dimension in order for quasi–Monte Carlo to work well might appear as a

6.3 ANOVA decomposition and effective dimension 221

controversial issue based on recently published papers [362, 443, 444]. More
precisely, what is shown by Owen in [362] is that, for scrambled nets, high-
dimensional square-integrable functions must have a low effective dimension
in order for the corresponding estimator to have a variance much smaller
than Monte Carlo for practical sample sizes. By contrast, in [443], what is
shown is that it is possible to construct a class of functions with maximal
effective dimension (both in the truncation and superposition senses) for
which generalized Sobol’ sequences — defined specifically for this class of
functions — achieve an error rate of O(n−1), which is much better than
the O(1/

√
n) associated with Monte Carlo. Hence the result in [362] is for

randomized nets and looks at a wide class of functions, while in [443] the result
is for deterministic constructions whose defining parameters are allowed to
depend on the specific (small) class of functions under study.

From our point of view, the practical implication of these two different
results is that if one needs to work with a wide class of functions and decides
to use scrambled nets, then he or she should know that, for reasonable values
of n, improvement on the Monte Carlo method will be significant only if
the functions to be integrated have a small effective dimension. If one is
interested in a very specific class of functions, then it is possible (at least
theoretically) to construct a deterministic point set that will provide a very
good approximation, even if the function has a high effective dimension.

Finally, the ANOVA decomposition framework can be used to characterize
functions further by using the concept of dimension distribution introduced in
[365] and studied also in [17, 297]. A dimension distribution for a function f
is a probability distribution on the values {1, . . . , s}. The effective dimension
then becomes a certain quantile of that distribution. More precisely, following
[365], we have the following definition.

Definition 6.10. For a given function f : [0, 1)s → R, the dimension distri-
bution of d in the superposition sense, denoted pS(·), is such that

pS(d) =
∑

I:|I|=d

σ2
I/σ

2

for d = 1, . . . , s. The dimension distribution of d in the truncation sense is
such that

pT (d) =
∑

I:m(I)=d

σ2
I/σ

2

for d = 1, . . . , s, where m(I) = max(j|j ∈ I) is the largest index in I.

Based on the dimension distribution, one can define the concept of average
dimension given by

DS =
∑

I σ
2
I |I|∑

I σ
2
I

in the superposition sense and by

222 6 Using Quasi–Monte Carlo in Practice

DT =
∑

I σ
2
Im(I)∑
I σ

2
I

in the truncation sense. The average dimension discussed in [17] is taken in
the superposition sense. This concept provides an alternative way of charac-
terizing functions that can be useful for understanding how successful quasi–
Monte Carlo methods will be in integrating them.

6.3.2 Brownian bridge and related techniques

Recall the formulation for μ = E(h(X)) discussed in Chap. 4,

μ = E(h(X)) =
∫

Ω

h(x)ϕ(x)dx =
∫

[0,1)s

f(u)du,

where we view X as the vector of random variables to be simulated, and ϕ(x)
represents the pdf of X. As discussed before, we can write f(u) = h(g(u)),
where g(·) is the transformation used to generate an observation x with joint
density function ϕ(x).

When X consists of observations B(t1), . . . , B(ts) from a standard
Brownian motion {B(t), t ≥ 0}, the most straightforward way to generate
these observations is to take g(u1, . . . , us) = (x1, . . . , xs), where

xj = xj−1 +
√
tj − tj−1Φ

−1(uj),

for j = 1, . . . , s, and x0 = 0. That is, each uj is used to generate the increment
of the Brownian motion between tj and tj−1.

Furthermore, in matrix notation, this approach can be described as follows
[2, 327]. We have that

⎛
⎜⎝
B(t1)

...
B(ts)

⎞
⎟⎠ = A

⎛
⎜⎝
Φ−1(u1)

...
Φ−1(us)

⎞
⎟⎠ , (6.8)

where

A =

⎛
⎜⎜⎜⎝

√
t1 0 0 . . . 0√
t1

√
t2 − t1 0 . . . 0

...
. . .√

t1
√
t2 − t1

√
t3 − t2 . . .

√
ts − ts−1

⎞
⎟⎟⎟⎠ .

Note that AAT equals the covariance matrix of B(t1), . . . , B(ts). That is,

6.3 ANOVA decomposition and effective dimension 223

Σ = AAT =

⎛
⎜⎜⎜⎝

t1 t1 . . . t1
t1 t2 . . . t2
...

...
...

t1 t2 . . . ts

⎞
⎟⎟⎟⎠ ,

which holds because Cov(B(t), B(s)) = min(s, t) for a Brownian motion (see
Prob. 2.1).

For this type of problem, one approach that can be used to reduce the
effective dimension is to exploit the Brownian bridge property of B(·) to gen-
erate the observations B(t1), . . . , B(ts) in an arbitrary order. More precisely,
for any u < v < w, this property tells us that B(v)|(B(u) = a,B(w) = b) has
a normal distribution with mean

w − v

w − u
a+

v − u

w − u
b

and variance
(v − u)(w − v)

w − u
.

This idea was first studied in [52], where it was suggested to use u1 to generate
the final observation B(ts), then u2 to generate B(t�s/2�), then u3 and u4 to
generate B(t�s/4�) and B(t�3s/4�), respectively, and so on.

The technique above can be generalized as follows. In (6.8), replace the
matrix A by any matrix B such that BBT = AAT := Σ, where Σ is the
covariance matrix of B(t1), . . . , B(ts). This approach is called the generalized
Brownian bridge technique in [327]. For example, in [2], principal components
analysis is used to define B. That is, B is defined as B = PD1/2, where
P ’s columns are formed by the eigenvectors of the covariance matrix Σ and
D is a diagonal matrix containing the corresponding eigenvalues of Σ in
decreasing order. This method was shown to numerically outperform the
Brownian bridge technique in [2], but its computation time is longer since to
simulate n Brownian motion paths, it runs in O(ns2) rather than the O(ns)
required for the standard and Brownian bridge methods. Following this work,
different modifications were proposed in [4] to reduce the computation time
for the principal components method.

Another approach that in some sense goes even further in that direction
is one proposed by Imai and Tan [200], where a matrix V of the form V =
AH is used, with A the lower-triangular matrix obtained from the Cholesky
decomposition of Σ and H an orthogonal matrix chosen so as to minimize
the effective dimension of the problem in the truncation sense. A feature
of this technique not present in the methods based on the Brownian bridge
and principal components analysis is that the chosen matrix V depends on
the problem. In the examples provided in [200], this technique results in a
smaller error than the principal components approach. A generalization of
this technique that seems quite promising is studied in [201].

224 6 Using Quasi–Monte Carlo in Practice

A generalization of principal components analysis called the Karhunen-
Loève expansion [3, p. 75],[382, p. 141] is also discussed in [2]. This method is
used in the context of quantization-based option pricing in [369]. It rewrites
the realization of a Gaussian process X = {X(t), t ≥ 0} into an infinite sum
of the form

X(t, ω) =
∑
l≥1

√
λlξl(ω)el(t),

where the ξl are i.i.d. standard normal variables, the {el(t), l ≥ 1} are eigenba-
sis functions that depend on the structure of the process X, and the constants
λl are the corresponding eigenvalues, sorted in decreasing order. This decom-
position thus separates the randomness in X — modeled via the dependence
on ω — from its time dependence. Hence, once we have the terms λl and
ξl (which must usually be determined numerically), we can approximate the
whole process {X(t), t ≥ 0} by drawing a sufficiently large number of nor-
mal variables ξl. As for the principal components decomposition, it has the
property that the approximation

m∑
l=1

√
λlξl(ω)el(t)

based on m terms maximizes the explained variability among all approxima-
tions based on m normal variables.

Although the methods above succeed in making the transformation g rely
more heavily on the first few variables uj , this does not necessarily mean
that once we apply the transformation h to x = g(u) it will reduce the
effective dimension of f(u) = h(g(u)). In some cases, it works quite well.
For instance, for a 32-dimensional Asian option pricing problem in finance,
using the Brownian bridge makes the one- and two-dimensional ANOVA
components explain 99% of the variance instead of 80% with the standard
method [286]. This translates into variance reduction factors (compared with
the standard method) of about 9 for the Sobol’ sequence and 6 for a Korobov
point set, both with n = 1024. By contrast, Papageorgiou provides numerical
results in [373] showing that for a certain type of digital option in finance,
the Brownian bridge technique produces estimators with a larger error than
the standard method does. Hence the Brownian bridge technique should not
be applied blindly.

Similar ideas can be used to generate Poisson processes [128]. For instance,
one can use u1 to generate the total number N of arrivals over the simulation
horizon and then generate the actual arrival times conditioned on N . Using
the fact that the ordered arrival times conditioned on N have a beta distri-
bution, they can be generated in an order that intuitively should reduce the
effective dimension. That is, we can first generate the median arrival time,
then the one corresponding to the 25th percentile, and so on, just as in the
Brownian bridge technique. Other ideas for transforming f can be found in

6.3 ANOVA decomposition and effective dimension 225

[425], an early reference that contains several useful ideas for the successful
application of quasi–Monte Carlo sampling in a practical setting.

Finally, using conditional Monte Carlo (discussed in Chap. 4) typically
amounts to reducing the number of input variables that need to be generated,
thereby resulting in an automatic reduction of the (nominal) dimension. For
instance, the dimension decreased from 13 to 8 in the SAN example discussed
in Sect. 4.6.

6.3.3 Methods for estimating σ2
I and approximating

fI(u)

In practice, it is usually not possible to compute the variance contributions
σ2

I explicitly or to get exact expressions for the ANOVA components fI(u)
since, among other things, they require knowing the value I(f) of the integral
of f . In this section, we discuss two approaches that have been proposed to
approximate these quantities.

First, in [9, 419, 417], the authors directly write σ2
I as an integral and

estimate it using either Monte Carlo or quasi–Monte Carlo methods. In par-
ticular, when I = {j} contains only one index j, we have that

σ2
{j} =

∫ 1

0

(∫
[0,1)s−1

f(u)du−j − I(f)

)2

duj

=
∫ 1

0

(∫
[0,1)s−1

f(u)du−j

)2

duj − (I(f))2,

where u−j = (u1, . . . , uj−1, uj+1, . . . , us). Hence one can use the Monte Carlo
estimator

σ̂2
{j} =

1
n

n∑
i=1

f(ui,j ,u
(1)
i,−j)f(ui,j ,u

(2)
i,−j) − μ̂2, (6.9)

where the superscripts (1) and (2) refer to two independent samples for u−j ,
and μ̂ is the Monte Carlo estimator for I(f). Hence, to construct the s es-
timates σ̂{1}, . . . , σ̂{s}, one needs two independent samples, {u(1)

1 , . . . ,u(1)
n }

and {u(2)
1 , . . . ,u(2)

n }. Confidence intervals for the sensitivity indices can then
be constructed using bootstrapping, as discussed by Archer et al. [9]. Here,
the bootstrap resampling is done over the sample of size n corresponding to
the summands in (6.9). Archer et al. propose this approach because it does
not require any additional function evaluations, which typically represent the
most expensive part of the calculation. Based on this, they choose to use as
many as B =10,000 resamples, arguing that 1000 would probably be sufficient
for the application at hand.

226 6 Using Quasi–Monte Carlo in Practice

For subsets I containing more than one index, Sobol’ [417] suggests looking
at the quantity

γI =
1
σ2

∑
∅�=J⊆I

σ2
J , (6.10)

which can be estimated by

γ̂I =
1
σ̂2

(
1
n

n∑
i=1

f(u(1)
i)f(u(1)

i,I ,u
(2)
i,−I) − μ̂2

)
(6.11)

using the fact that

γI =
1
σ2

∫ (∫
f(u)du−I

)2

duI (6.12)

(see Prob. 6.9). Here the notation (u(1)
i,I ,u

(2)
i,−I) represents a point whose co-

ordinates j ∈ I are taken from the point u(1)
i and the coordinates j /∈ I

are taken from the point u(2)
i . One of the reasons why the quantity γI is

interesting is that it is closely connected to the effective dimension dT in the
truncation sense. That is, for a level p, one can determine dT by computing
γ̂I for subsets I of the form I = {1, 2, . . . , d}, increasing d until γ̂I ≥ p. The
smallest value of d for which this holds is thus an approximation for dT . This
approach is used in [463].

Rather than using the Monte Carlo method, it is also possible to use
quasi–Monte Carlo to construct the estimators above. For instance, in [9]
the authors choose a 2s-dimensional low-discrepancy point set of size n and
use its first s coordinates to define the first point set and the last s ones to
define the second point set. That is, we let

u(1)
i = (ui,1, . . . , ui,s),

u(2)
i = (ui,s+1, . . . , ui,2s),

for i = 1, . . . , n, and can then construct the estimators (6.9) and (6.11). (Note
that σ̂2 must be estimated differently when using quasi-random sampling; see
Prob. 8.12.)

A different approach, discussed in [286] and based on ideas developed
in [5] in the context of quasi-regression, is to use a complete orthonormal
polynomial basis {vl(u)}l to decompose f and then rewrite fI(u) and σ2

I

in terms of the coefficients in this decomposition. Approximations for fI(u)
and σ2

I can then be built by approximating a large enough number of those
coefficients.

More precisely, we write

f(u) =
∑

l

βlvl(u),

6.3 ANOVA decomposition and effective dimension 227

where
βl =

∫
f(u)vl(u)du.

Furthermore, assuming that v0(u) = 1, we have that β0 = I(f).
In what follows, we assume that the basis {vl(u)}l is defined as a tensor

product of a one-dimensional complete basis {wr(u)}r≥0, where wr(u) is a
polynomial of degree r. In that case, the index l is a vector containing the
degrees rj of each polynomial in the product defining vl. That is,

vl := vr =
s∏

j=1

wrj
(uj),

where r = (r1, . . . , rs). Since

f(u) =
∑

l

βlvl(u),

it can then easily be proved that

σ2
I =

∑
r∈RI

β2
r , (6.13)

where the set RI in (6.13) consists of all vectors r ∈ N
s
0 satisfying rj = 0 if

and only if j /∈ I. Similarly, we have

γI =
1
σ2

∑
∅�=J⊆I

∑
r∈RJ

β2
r ,

where γI was defined in (6.10). Based on these expressions, estimators for σ2
I

and γI can be obtained as follows.

(1) Choose a finite set R of vectors r for which the corresponding coefficient
βr will be estimated.

(2) Replace βr by their Monte Carlo (or quasi–Monte Carlo) estimators

β̂r =
1
n

n∑
i=1

f(ui)vr(ui).

(3) Make the adjustments required to take into account the fact that β̂2
r is

not an unbiased estimator of β2
r . For instance, it can be proved that [286]

β̂2
r,bc =

n

n− 1

(
β̂2
r − 1

n2

n∑
i=1

v2
r(ui)f2(ui)

)

is an unbiased estimator of β2
r .

228 6 Using Quasi–Monte Carlo in Practice

(4) Build the estimator
σ̂2

I,R =
∑

r∈RI∩R
β̂2
r,bc

for σ2
I , and in turn use it to give estimated lower bounds of the form

γ̂I =
∑
J⊆I

σ̂2
J,R

for γI .

For this approach also, Monte Carlo methods can be replaced by quasi–
Monte Carlo ones, as done in [286]. Further improvement can be obtained
with more advanced quasi-regression tools based on wavelets, such as those
presented in [205].

6.3.4 Using the ANOVA insight to find good
constructions

In the previous chapter, we described several approaches that can be used for
constructing low-discrepancy point sets. In each case, some parameters must
be chosen: the generator a for Korobov point sets, the generating vector z
for a rank-1 lattice, the direction numbers for the Sobol’ sequence, the lower-
triangular matrices for generalized Faure sequences, the permutations for the
Halton sequence, etc. If we start with the assumption that, generally, quasi–
Monte Carlo works better with functions having a low effective dimension
in some sense, then we can use this as a guide in our search for “good”
parameters. More precisely, if we assume that we are working with such
functions — that either occur “naturally” or that have been “engineered” to
have this property, for example by using the Brownian bridge technique —
then a sensible approach for choosing these parameters is to try to define
selection criteria that look closely at the low-dimensional projections of Pn.
One such criterion was discussed briefly in Chap. 3 and is denoted Mt1,...,td

in [282], where it is used to find good generators a for Korobov point sets.
This criterion looks at projections of the form Pn(I) with I = {1, j2, . . . , jl},
where jl ≤ tl for l = 2, . . . , d, and I = {1, 2, . . . , t} for t ≤ t1. For instance,
M32,24,12,8 means we consider all projections of the form

{1, 2, . . . , d} for d ≤ 32,
{1, j1} for j1 ≤ 24,

{1, j1, j2} for 1 < j1 < j2 ≤ 12,
{1, j1, j2, j3} for 1 < j1 < j2 < j3 ≤ 8.

6.4 Using quasi–Monte Carlo sampling for simulation 229

The quality of each projection is measured by the normalized spectral test
d∗|I|/dI , and Mt1,...,td

returns the worst case — that is, the smallest value of
d∗|I|/dI — over all projections.

In [284], the performance of Korobov point sets based on generators chosen
via the more traditional measure M8 — used to find good LCGs in [123, 119,
253] — is compared with those chosen via M8,8,8. Numerical results show that
in some cases the M8 generators perform significantly worse than the M8,8,8

ones. Intuitively, what this means is that if we do not look carefully at some of
the low-dimensional projections of a point set, then undetected defects might
cause the corresponding estimator to be subperforming. In Table 1 of [264],
for each value of n, three generators a are given. The first one is based on M32

and therefore fails to look at several important low-dimensional projections
compared with the ones based on M32,24,12,8 and M32,24,16,12 given on the
second and third rows, respectively.∗

A criterion similar to Mt1,...,td
based on the resolution gap rather than

the spectral test is used in [285] to find polynomial Korobov lattices based
on combined Tausworthe generators, where the resolution gap is simply the
difference �∗s − �s between the best possible resolution �∗s for an s-dimensional
point set and its actual resolution �s. More generally, Panneton and L’Ecuyer
[371] use criteria like this based on either the resolution gap, the t-value, or
a quantity called the neighbor-free gap to find recurrence-based point sets
based on F2-linear generators. In [397], the value tI of the quality parameter
t is computed for several projections Pn(I) of the Sobol’ sequence and is
investigated as a way of defining alternatives to the t-value, which corresponds
to the largest tI for all I ⊆ {1, . . . , s}. Similar ideas are discussed briefly in
[237].

Alternatively, this kind of reasoning can be used to define weighted spaces
of functions in which variables uj are assumed to have less and less impor-
tance as j increases. The introduction of such spaces has allowed important
breakthroughs in the study of the tractability of integration, which in turn
have led to several new ideas for constructing low-discrepancy point sets in
high dimensions. This is what we discuss in the appendix to this chapter.

6.4 Using quasi–Monte Carlo sampling for simulation

We go back again to the formulation from Chap. 4, where we write

∗ We would like to use this opportunity to point out that the values of a used in [150]
that come from [264] were not the ones that were recommended as being the best in [264].
The “good” a’s in [264] are those given in the second or third row of each group of three
generators given for each n in Table 1 of that paper, as pointed out at the beginning of
p. 1226 in [264]. For instance, for n = 1021, a = 76 or a = 306 should be chosen over
a = 331.

230 6 Using Quasi–Monte Carlo in Practice

μ = E(Y) = E(h(X)) =
∫

Ω

h(x)ϕ(x)dx, (6.14)

and where ϕ(x) is the joint density function of the vector X of random vari-
ables to be simulated. From this point of view, Monte Carlo and randomized
quasi–Monte Carlo amount to estimating μ by

μ̂ =
1
n

n∑
i=1

h(xi),

where each xi has density ϕ(·).
In the Monte Carlo case, the xi’s are independent, while in the randomized

quasi–Monte Carlo case, they are correlated. In Fig. 6.2, we show a sample
of 1024 bivariate standard normal random variates with correlation 0 (top)
generated (pseudo)randomly (left) or based on a two-dimensional randomly
digitally shifted Sobol’ sequence (right). The lower figures show the same
types of samples but with a correlation of 0.5 for the bivariate normal. In both
cases, inversion of the normal CDF has been used to generate the standard
normal variates.

For the specific examples investigated in these figures, it looks like the low
discrepancy of the Sobol’ point set managed to produce a bivariate sample
that in some sense deviates less from the true bivariate normal density than
in the random case. If in turn the function h of interest is able to capture this
improved behavior, we can hope that the Sobol’ sequence will give rise to a
more precise estimator. But if, for example, the function h is zero on most
of its domain and nonzero only in a small region far away from (0,0), then
randomized quasi–Monte Carlo, just like Monte Carlo, will suffer from having
too few sample points in the region of interest. In this case, the improved
empirical distribution of the sample based on randomized quasi–Monte Carlo
might be of little help. For that reason, randomized quasi–Monte Carlo, just
like Monte Carlo, will benefit from importance sampling in such cases. The
use of importance sampling within quasi–Monte Carlo is studied in [195,
233, 264]. Moreover, recent work studying the combination of quasi–Monte
Carlo methods with splitting techniques — which are related to importance
sampling — can be found in [260].

More generally, the formulation (6.14) is helpful in understanding the in-
teraction between randomized quasi–Monte Carlo and common variance re-
duction techniques. Importance sampling affects the transformation of u into
x and also h by multiplying the original function h by the likelihood ra-
tio derived from the chosen change of measure. Control variates only affect
the definition of h. Note, however, that h should be modified differently for
randomized quasi–Monte Carlo than for Monte Carlo because the optimal
coefficient β depends on the distribution of the estimators for μ and μc —
where, as in Chap. 4, μc denotes the expectation of the control variable —
which is modified by the use of randomized quasi–Monte Carlo methods [187].

6.4 Using quasi–Monte Carlo sampling for simulation 231

Fig. 6.2 Sample of 1024 bivariate normal variates with ρ = 0 (top) and ρ = 0.5 (bottom),
based on random sampling (left) or quasi–Monte Carlo sampling (right).

That is, one should use

βrqmc =
Cov(Ŷrqmc, Ĉrqmc)

Var(Ĉrqmc)
,

where

Ŷrqmc =
1
n

n∑
i=1

Yi and Ĉrqmc =
1
n

n∑
i=1

Ci

are the two estimators for μ = E(Y) and μc = E(C) based on a randomized
low-discrepancy point set with n points. This optimal βrqmc can be estimated
by constructing m i.i.d. copies of the estimators Ŷrqmc and Ĉrqmc in a manner
similar to how Var(μ̂rqmc) is estimated, as discussed on p. 202.

Conditional Monte Carlo completely changes the formulation (6.14), as it
amounts to having

232 6 Using Quasi–Monte Carlo in Practice

μ =
∫
Z

E(h(X)|z)ψ(z)dz,

where ψ is the pdf of Z. As was discussed on p. 225, this reduces the (nomi-
nal) dimension of the problem, but it can also increase the smoothness of the
function. This can be seen in Fig. 4.13 from Chap. 4, where an indicator func-
tion was transformed into a continuous function for the SAN problem. This
is particularly helpful when applying quasi–Monte Carlo methods, which is
confirmed by the numerical results given in [285], where the use of conditional
Monte Carlo on the SAN example provides a greater variance reduction for
quasi–Monte Carlo than for Monte Carlo. More precisely, Table 6.3 shows the
variance reduction factor brought by conditional Monte Carlo for a randomly
shifted Korobov point set (rKor) and Monte Carlo for different values of n.
The particular SAN example is the same as the one discussed in Chap. 4.

Table 6.3 Variance reduction obtained by applying CMC on SAN example with s = 13.

n 4093 16381 65521
MC 4.1 4.1 4.1
rKor 43 200 126

Summing up, quasi-random sampling based on randomized low-discre-
pancy point sets can be thought of as a general variance reduction technique
in the sense that it can be applied to a wide class of problems without neces-
sarily any specific information on the problem at hand. However, its success
clearly depends on certain properties of the function to be integrated that
have to do with its interaction with the low-discrepancy point set used. For
example, if the point set has good uniformity properties for the projections
that correspond to important ANOVA components, then the randomized
quasi–Monte Carlo estimator should have a lower variance than the Monte
Carlo estimator. Also, the gains are usually larger in terms of efficiency since
several randomized low-discrepancy constructions can be generated rather
quickly — faster than constructing a random point set by repeatedly calling
a pseudorandom number generator. When using techniques meant to reduce
the effective dimension — such as the Brownian bridge technique — the com-
putation time usually increases, but the greater variance reduction that can
be obtained may compensate for this drawback, thus yielding efficiency gains
as well.

Estimating quantiles

So far, we have focused on the use of quasi–Monte Carlo methods for esti-
mating an integral or an expectation. With randomized quasi–Monte Carlo,
it is possible to go beyond this type of problem, just as was the case for
Monte Carlo, as discussed in Sect. 1.5. In particular, one can construct an

6.4 Using quasi–Monte Carlo sampling for simulation 233

empirical CDF and estimate quantiles using the same ideas as in [23], where
it is shown how to use Latin hypercube sampling for that purpose. In fact,
quantile estimators based on randomized quasi–Monte Carlo methods have
been used for value-at-risk estimation problems in [206, 235, 367].

More precisely, as in Sect. 1.5, suppose that, for a given value of p ∈ (0, 1)
and a random variable Y = h(X) representing the output of a simulation
based on the vector of random variables X, we want to find an estimate for
the 100pth quantile qp. Here we use the representation Y = f(U), where U is
uniformly distributed in [0, 1)s. Suppose Pn = {u1, . . . ,un} is a randomized
quasi–Monte Carlo point set, and let yi = f(ui) for i = 1, . . . , n. We can then
define as the approximation for the CDF of Y

F̂n,rqmc(y) =
1
n

n∑
i=1

1yi≤y

and the corresponding quantile estimate

q̂p,rqmc = F̂−1
n,rqmc(p) = y(�np�),

where y(1) ≤ . . . ≤ y(n) are the order statistics of the sample. Note that
since the yi’s have a different multivariate distribution than when random
sampling is used — in particular, they are not independent — the bias of
the estimator q̂p,rqmc is different from the bias of the estimator q̂p based
on random sampling. We illustrate this with the following example, which
parallels Example 1.4 discussed in Sect. 1.5.

Example 6.11. Suppose n = 4, y = f(u) = u, and we use the point set P4 =
{v, (0.25 + v) mod 1, (0.5 + v) mod 1, (0.75 + v) mod 1)}, where v ∼ U(0, 1).
This corresponds to a one-dimensional randomly shifted lattice point set with
n = 4. Then

q̂0.5,rqmc = y(3) ∼ U(0.5, 0.75),

and therefore E(q̂0.5,rqmc) = 0.625, with a corresponding bias of 0.125. Recall
that for a random sample, we saw in Example 1.4 that the bias was 0.1.

More generally, for a sample of size n based on a randomly shifted lattice
point set, we have

q̂0.5,rqmc =

{
y(n+1

2) ∼ U
(

n−1
2n , n+1

2n

)
if n is odd

y(n
2 +1) ∼ U

(
n
2n ,

n+2
2n

)
if n is even.

Therefore, when n is odd, we have E(q̂0.5,rqmc) = 1/2 and thus the random-
ized quasi–Monte Carlo quantile estimator has no bias, but when n is even,
E(q̂0.5,rqmc) = 1/2+(1/2n), and therefore in this case the bias is 1/2n. Recall
that, for the corresponding quantile estimator described in Example 1.4, the
bias was instead 1/(2(n + 1)). However, if we compare the variances of the
two estimators when n is even, then we have that

234 6 Using Quasi–Monte Carlo in Practice

Var(q̂0.5,rqmc) =
1

12n2

since q̂0.5,rqmc ∼ U(n/2n, (n + 2)/2n), while with the Monte Carlo method
we have

Var(q̂0.5) =
n

4(n+ 1)2

since, as seen in Example 1.4, q̂0.5 = y(n/2+1) has a beta distribution with
parameters (n/2+1, n/2). Hence the randomized quasi–Monte Carlo estima-
tor has a mean-square error in O(1/n2), while for the Monte Carlo estimator
it is in O(1/n) because the variance is in O(1/n).

This example demonstrates that quantile estimators based on randomized
quasi–Monte Carlo point sets have different properties than estimators based
on Monte Carlo. In general settings, it might be difficult to assess the bias and
variance as we did in the example above, but the hope is that if the variables
Yi are sampled so that the corresponding approximation F̂n,rqmc for the CDF
of Y is more accurate than the one obtained by random sampling, then the
resulting quantile estimator q̂p,rqmc extracted from that better approximation
should also be more accurate. In [23, Sect. 2], the authors show that under
mild conditions this is the case when Latin hypercube sampling is used. That
is, they show that as n→ ∞, the estimator q̂p,rqmc obtained from an n-point
Latin hypercube sampling estimator has a bias that goes to 0 and a variance
no larger than that of the Monte Carlo estimator.

Numerical results confirm the superiority of this estimator, not only to
Monte Carlo but also to estimators of the form

1
n

n∑
i=1

q̂p,i, (6.15)

where q̂p,i is a quantile estimator based on a random sample {Y (1)
i , . . . , Y

(m)
i }

but where there might be a dependence within the sample {Y (l)
i , i = 1, . . . , n}

for a given l. In other words, here we compute n different estimators q̂p,i,
i = 1, . . . , n of the quantile, each based on independent replications — in
the quasi–Monte Carlo context, this can be done by creating m copies of
a randomized point set and then using the first point of each of those m
randomized point sets to construct the first estimator, the second point of
each randomized point set to construct the second estimator, and so on — but
with a dependence across those n estimators. The idea is that each of these n
estimators then has the same expectation as the Monte Carlo estimator, but
we expect that the correlation across the different estimators q̂p,i, i = 1, . . . , n
will contribute to providing an overall estimator (6.15) with smaller variance.
One problem with this approach is that quantile estimators can be quite
inaccurate when they are based on too small a sample size, especially when
p is near 0 or 1. In the numerical experiments reported in [23], the estimator

6.4 Using quasi–Monte Carlo sampling for simulation 235

that uses the n points of a Latin hypercube sample to compute q̂p performs
much better than those of the form (6.15).

Examples

We end this section with a detailed description of how to use a randomly
shifted Korobov point set on a variant of the simple bank example of Chap.
1 and then on a finance problem.

Example 6.12. For the bank example discussed in Chap. 1, we can use a
randomly shifted Korobov point set to run the simulations as follows. Each
shifted point provides the uniform numbers required to generate the interar-
rival and service times for one simulation of the bank. To simplify things for
now, we assume that instead of fixing the simulation horizon, the goal is to
estimate the number of clients among the first 300 that will wait more than
5 minutes. By doing so, the dimension s of the problem becomes 599 (one
interarrival time and one service time per client, except for the last one, who
only needs an interarrival time).

The code to run these simulations is given in Figs. 6.3 and 6.4. Results
are given in Table 6.4. What we see there is that the randomized quasi–
Monte Carlo estimator reduces the half-width of the 95% confidence interval
by a factor greater than 2, while the computation time is also smaller. In
general, randomly shifted Korobov lattices and digital nets in base 2 require
less computation time than Monte Carlo.

RunAllSim(a, n, m, 599)

InitKorobov(a, n, 599, z)
for k ← 1 to m

for j = 1 to 599
vj ← Rand01()

u ← 0
result[1] ← OneSimBank(v)
for i = 2 to n do

NextKorobov(n, z,u)
w ← (u + v) mod 1
result[i] ←OneSimBank(w)

x[k] ← ave(result)
print(“average is”,ave(x))

hw ← 1.96 ×
√

var(x)/m
print (“95% CI half-width is”, hw)

Fig. 6.3 Running simulations of the bank example based on a shifted Korobov point set
with m randomizations.

236 6 Using Quasi–Monte Carlo in Practice

OneSimBank(u1, u2, . . . , u599)

time ← 0
NbWait5 ← 0
w ← 0
a ← GenExpon(u1,1)
t ← 1 // number of clients simulated so far
for t = 2 to 300 do

s ← GenExpon(u2(t−1),0.75)

a ← GenExpon(u2t−1,1)
w ← max(0, w + s − a)
if (w > 5) then

NbWait5 ← NbWait5 + 1
return NbWait5

Fig. 6.4 Pseudocode for the function OneSimBank.

Table 6.4 Comparison of Monte Carlo and randomly shifted Korobov point set with
n = 1024, a = 139, and m = 25 for the bank example. Shown are the estimates μ̂
for the number of clients (among the first 300) who will wait more than 5 minutes, the
corresponding 95% confidence half-width (HW), and the time in CPU required for the
computation.

μ̂ HW CPU(sec.)

MC 39.15 0.422 7.42
rKOR 38.99 0.189 4.66

Example 6.13. We use the setup from Prob. 1.12, where the value of one
share of IBM stock at time t, denoted S(t), is assumed to follow a lognormal
distribution (i.e., lnS(t) has a normal distribution with mean ln(S(0))+(r−
σ2/2)t and variance σ2t under our pricing measure), where r is the risk-
free interest rate and σ is the volatility of the stock price. Now consider an
Asian call option on this stock, which is a financial contract whose payoff at
expiration time T is given by

C(T) = max

⎛
⎝0,

1
s

s∑
j=1

S(tj) −K

⎞
⎠,

where K is the strike price and 0 ≤ t1 < . . . < ts = T are observation dates
where the price of the stock is recorded. It can be shown — and we will
explain this in more detail in Chap. 7 — that the value C(0) of this option
at time 0 is given by

C(0) = E
(
e−rTC(T)

)
.

6.5 Suggestions for practitioners 237

There is no known analytical formula for this price, but Monte Carlo and
(randomized) quasi–Monte Carlo can be used to estimate C(0). An early
reference on the use of Monte Carlo for this problem is [215].

In Figs. 6.5 and 6.6, we give code for estimating C(0) based on a randomly
shifted Korobov point set. We assume there that the observation dates are
of the form tj = jT/s for j = 1, . . . , s.

RunAllSim(a, n, m, s)
InitKorobov(a, n, s, z)
for k ← 1 to m

for j = 1 to s
vj ← Rand01()

u ← 0
result[1] ← AsianCall(v)
for i = 2 to n do

NextKorobov(n, z,u)
w ← (u + v) mod 1

result[i] ←AsianCall(w)
x[k] ← ave(result)

print(“average is”,ave(x)

hw ← 1.96 ×
√

var(x)/m
print (“95% CI half-width is”, hw)

Fig. 6.5 Running simulations of the Asian call option example based on a shifted Korobov
point set with m randomizations.

Table 6.5 gives results for the case where the expiration time is T = 1
year, s = 32, r = 0.05, σ = 0.3, S(0) = 50, and K = 50. In addition to
using randomly shifted Korobov point sets (with the same generator a as
in Table 6.4), we also test a randomly digitally shifted Sobol’ point set and
generalized Halton point sets based on the multiplicative factors suggested
in [115], which can also be found at [498]. Note that we have made no effort
to try to improve the computation time of the generalized Halton sequence
in these experiments. A more careful implementation could certainly reduce
this computation time.

6.5 Suggestions for practitioners

To conclude this chapter, we wish to offer a few tips that can be useful to
practitioners when applying quasi–Monte Carlo. Generally, one of the most

238 6 Using Quasi–Monte Carlo in Practice

AsianCall(r, σ, S(0), s, T, K, u1, u2, . . . , us)

a ← (r − σ2/2) × (T/s)

b ← σ ×
√

T/s
S[0] ← S(0)
sum ← 0
for t = 1 to s do

z ← Norm01(ut)
S[t] ← S[t − 1] × expa+bz

sum ← sum +S[t]
sum ← sum/s
C ← exp(−rT)× (sum −K)
if C > 0 then

return C
else

return 0

Fig. 6.6 Code for evaluating the discounted payoff of the Asian call option.

Table 6.5 Comparison of Monte Carlo (MC), randomly shifted lattice point set (rKOR),
randomly digitally shifted Sobol’ sequence (rSOB), and randomly digitally shifted gen-
eralized Halton sequence (rGHal) with n = 1024 and m = 25 for the Asian call option
example. Shown are the option price estimates μ̂, the corresponding 95% confidence interval
half-width (HW), and the CPU time required.

μ̂ HW CPU(sec.)

MC 7.029 0.102 0.575
rKOR 7.067 0.014 0.456
rSOB 7.063 0.012 0.466
rGHal 7.070 0.015 1.93

important decisions to make is the choice of construction. The first thing to
do in this selection process is to decide whether we should use a sequence or
a point set of fixed size. A sequence should clearly be used if the user wants
to be able to increase the size of n if desired, to improve the accuracy of the
approximation. A sequence might also be preferable if the user does not want
to be restricted in terms of specific values of n to use. That is, point sets of a
fixed size (e.g., lattices, whether they are standard or polynomial) are some-
times “offered” only for certain values of n, typically given by prime powers.
If this is too restrictive and the user wants to be able to take n =10,000
or n =20,000, for example, then a sequence should be used. This is because
taking the first 10,000 points of a point set with, say, n =16,384, provides no
guarantee on the quality of the subset chosen.

A second consideration is to look at what kind of function is to be in-
tegrated. For instance, if the function can be shown to belong to a certain

Problems 239

class of integrands (like the weighted classes discussed in the appendix to
this chapter), then constructions specifically built for these classes should be
used, such as the rank-1 lattices given in [409, 410]. If not much is known on
the integrand, then a more “general-purpose” construction like the Sobol’ se-
quence might be more appropriate. A third consideration is the dimension of
f : Is it known or is it unbounded? If it is unbounded, then recurrence-based
point sets are a good choice.

In terms of implementation, there are a few libraries that contain quasi–
Monte Carlo routines [490, 491, 500, 496], and more links can be found on
the Web site [490]. In addition, simple constructions such as rank-1 lattices
(including Korobov) and generalized Halton sequences such as those discussed
in [115] can be implemented from scratch rather easily.

In practical settings, users generally like to be able to estimate the error
of their approximations, which means a randomization should be applied to
the point set. For lattices, a random shift is typically used. For digital nets,
our point of view is that if the underlying point set is believed to be of good
quality, then using a random digital shift is a reasonable choice. Otherwise,
a random scrambling is probably more appropriate.

Problems

6.1. Consider the bank example from Chap. 1 also discussed in Example
6.12, where we fixed the number of clients at 300. Suppose now that, as in
Chap. 1, the bank is simulated for 5 hours, so that the number of clients
is random. (a) Estimate the expected number of clients that will wait more
than 5 minutes in a given day at the bank using 25 repetitions of a randomly
shifted Korobov point set based on n = 1021 and a = 76. (b) Determine by
how much the (estimated) variance of this estimator reduces the variance of
the corresponding Monte Carlo estimator based on 1021 × 25 independent
simulations.

6.2. Write a program that, given two s-dimensional points u and v in [0, 1)s,
computes the point obtained by performing a b-ary digital addition of u and
v (as in the random digital shift method in base b), where b > 2. (b) Repeat
(a) with b = 2.

6.3. Show that the random digital shift in base b does not satisfy Property
2(b) on p. 214 but that the random linear scrambling does.

6.4. Consider the bank example as implemented in Prob. 6.1. Compare the
following randomized quasi–Monte Carlo methods based on m = 25 ran-
domizations through their empirical variance: (i) randomly shifted Korobov
lattice with n = 1024 and a = 139; (ii) first 1024 points of a randomly
digitally (b1, . . . , bs)-shifted Halton sequence; and (iii) same as (ii) but for a
generalized Halton sequence implemented in Prob. 5.5.

240 6 Using Quasi–Monte Carlo in Practice

6.5. Consider the Asian option problem studied in Example 6.13. Compare
the empirical variance of the estimator based on m = 25 randomizations of
a Korobov point set with parameters n = 1021 and a = 76 when (i) no pe-
riodization is applied; (ii) the periodization proposed by Sidi and mentioned
on p. 196 is applied; (iii) the baker transformation is applied; and (iv) no
periodization but the use of the Brownian bridge technique.

6.6. Show that σ̂2
{j} as given in (6.9) is an unbiased estimator of σ2

{j}.

6.7. Consider the function

f(u) =
s∏

i=1

(1 + c(uj − 1/2)).

(a) Determine the ANOVA components of this function. (b) Give an expres-
sion for σ2

I for all I ⊆ {1, . . . , s}. (c) Give an expression for the average
dimension in the superposition sense. (d) Give an expression for the effective
dimension in the truncation sense and the superposition sense.

6.8. Using the estimator γ̂I given in (6.11), estimate γ{1,...,d} for d = 1, . . . , 31
for the Asian option problem from Example 6.13, and use your results to esti-
mate the effective dimension of the underlying function (in proportion 0.99).
(b) Repeat but with paths generated using the Brownian bridge technique,
as in Prob. 6.5.

6.9. Prove that the equality (6.12) holds and then that (6.11) is an unbiased
estimator for γI .

6.10. Consider the component-by-component rank-1 lattice point set de-
scribed in [409]. Compare the empirical variance of the randomly shifted
version of this point set based on m = 25 randomizations obtained for (a)
the Asian option problem and (b) the function

f(u) =
20∏

j=1

|4uj − 2| + j

1 + j

with that of (i) the Monte Carlo estimator (based on the same total number of
function evaluations) and (ii) the first 2003 points of the extensible Korobov
lattice sequence in base 2 using the generator a = 14471.

6.11. Consider the bank example described in Example 6.12. Compare the
performance (using the empirical variance) of (i) array-RQMC based on the
two-dimensional Korobov point set with n = 1021 and a = 76, 25 random
shifts, and using as in [263] the underlying Markov chain defined by

X1 = W1 = 0;X2 = W1 + S1;X3 = W2;X4 = W2 + S2, etc.,

Appendix: Tractability, weighted spaces, and constructions 241

(ii) the Latin supercube sampling method also based on using dj = 2 and
a randomly shifted two-dimensional Korobov point set based on n = 1021
and a = 76, and (iii) a randomly shifted Korobov point set with n = 1021,
a = 76, and s = 599.

Appendix: Tractability, weighted spaces,
and component-by-component constructions

Another way to study low-discrepancy sequences is through the concept of
computational complexity for multivariate integration (see [189, 190, 470, 479],
for example, and the survey [406]). The goal here is to determine, for a certain
class of functions, the minimum number n of function evaluations required to
build an approximation whose worst case error for that class is ε times smaller
than the trivial approximation by zero and to look at how this number n
behaves as a function of the dimension s.

More precisely, since here we are interested in asymptotics not only with
respect to n but also with respect to s, we will rewrite the point set Pn as
Pn,s and consider families of the form {Pn,s}, where n, s ≥ 1. That is, we
are considering a construction that can be extended both in the number of
points and the dimension. Second, we consider the worst-case error e(Pn,s)
of a point set Pn,s = {u1, . . . ,un} over some class of functions Fs equipped
with a norm ‖ · ‖s. This worst-case error is defined as

e(Pn,s) = sup
f∈Fs,‖f‖s≤1

|I(f) −Qn|

for n, s ≥ 1, where, as usual,

Qn =
1
n

n∑
i=1

f(ui).

We also define
e0,s = sup

f∈Fs,‖f‖s≤1

|I(f)| .

We then define n = nmin(ε, s, Pn,s) as the smallest n for which the worst-
case error satisfies e(Pn,s) ≤ e0,sε. So, for example, if ε = 0.001, then
nmin(ε, s, Pn,s) is the smallest value of n such that the first n points of our
construction can be used to build an estimator Qn whose corresponding error
will be at least 1000 times smaller than the trivial approximation Q0 := 0 for
all f ∈ Fs.

Definition 6.12. A family {Pn,s} is tractable if and only if there exist non-
negative constants C, q, and p such that

242 6 Using Quasi–Monte Carlo in Practice

nmin(ε, s, Pn,s) ≤ Csqε−p (6.16)

for all s ≥ 1 and for all ε in (0, 1). If (6.16) holds with q = 0, then we say
{Pn,s} is strongly tractable.

Furthermore, integration in Fs is said to be QMC-tractable if there exists a
family {Pn,s} that is tractable and similarly for strong tractability. If no such
family exists, then integration over that space is said to be QMC-intractable.

Since ε < 1, this means we want p to be as small as possible in (6.16). The
smallest (infimum) power p in the bound (6.16) is called the ε-exponent and
the strong ε-exponent, for tractability and strong tractability, respectively.
Also, the smallest (infimum) power q for which the desired bound holds is
called the s-exponent. A possible variation is to replace the worst-case error
by an average error using some measure on the space of functions under study
[470, 469, 479, 480], but we will not discuss this further here.

An important property to point out is that it can be shown that

e(Pn,s) = Ds(Pn,s),

where Ds(·) is the discrepancy measure that corresponds to the space of
functions Fs under study and its accompanying norm ‖ · ‖s. That is, one can
explicitly construct a function f such that ‖f‖s = 1 and for which the upper
bound

|Qn − I(f)| ≤ Ds(Pn,s) × ‖f‖s = Ds(Pn,s)

is in fact an equality. Based on this, if we go back to the Koksma-Hlawka
inequality, it is clear that strong tractability cannot be achieved in this setting
because by definition all low-discrepancy point sets are such that

D∗(Pn,s) ∈ O(n−1(log n)s),

and therefore e(Pn,s) clearly depends on s in this case.
To remove the dependence on the dimension s that arises in bounds such

as the Koksma-Hlawka inequality, weights γj can be used to assess the impor-
tance of each variable uj . This is in contrast with the class of functions that
are of bounded variation in the sense of Hardy and Krause, for which there is
an implicit assumption that all the variables uj are equally important. The
use of weights is consistent with our discussion in Sect. 6.3.4, where we argued
that, in practice, problems can sometimes be formulated (or engineered) so
that the variables u1, u2, . . . , us are of decreasing importance.

In what follows, we will be using sequences γ = {γj} of weights such that

γ1 ≥ γ2 ≥ . . . ≥ γj ≥ . . . ≥ 0.

With such weights, we can obtain an error bound similar to the Koksma-
Hlawka inequality but with a weighted version of the discrepancy D2(Pn)
introduced in (5.23). That is, the weighted L2-discrepancy

Appendix: Tractability, weighted spaces, and constructions 243

D2,γ(Pn) =

[∑
I

γI

∫
[0,1)d

|α(Pn(I),vI) − vi1 . . . vid
|2 dvI

]1/2

is used, where I = {i1, . . . , id} and

γI =
∏
j∈I

γj .

(Weighted discrepancy measures are also considered in [180, 181, 182] with
the assumption γj = γ for all j in [180, 181].) The corresponding norm ‖ · ‖s

is defined as

V2,γ(f) =

⎡
⎣∑

I

γ−1
I

∫
[0,1)d

(
∂df

∂uI

∣∣∣∣
u−I=(1,...,1)

)2

duI

⎤
⎦

1/2

, (6.17)

and one can get the error bound

|Qn − I(f)| ≤ D2,γ(Pn)V2,γ(f).

The class of functions Fs,γ for which V2,γ(f) is finite is in the Sobolev
space W

(1,1,...,1)
2 ([0, 1)s), which consists of all functions defined over [0, 1)s

for which each mixed partial derivative of the form

∂df

∂ui1 . . . ∂uid

, 1 ≤ i1 < . . . < id ≤ s,

is square-integrable. In fact, this space can be defined as a weighted Sobolev
space and could be made more general by introducing more parameters in
the definition of its associated norm. Our brief overview of tractability results
does not require this added generality, and for this reason it will not be
discussed further here. Another widely used type of space in tractability
results are the weighted Korobov spaces, which are used to study periodic
functions and are thus relevant when studying deterministic lattice point sets.

Note that even if the choice of the weights γj does not influence whether
or not a function belongs to Fs,γ — that is, if f ∈ Fs,γ , then f ∈ Fs,γ′ as long
as γ and γ′ both represent a sequence of positive weights — the norm V2,γ(f)
increases as the weights γj decrease through the terms γ−1

I included in the
definition (6.17). In turn, since e(Pn,s) is defined as the worst case error for
functions with V2,γ(f) ≤ 1, it means that as the weights γj decrease, this
worst-case is taken over a smaller set of functions, which is why the choice
of γj affects what kind of tractability result we get. Equivalently, the choice
of γj influences the value of the corresponding discrepancy D2,γ(Pn), which
can be more easily seen by looking at the following formula, given in [413]:

244 6 Using Quasi–Monte Carlo in Practice

D2,γ(Pn) =

⎡
⎣ s∏

j=1

(
1 +

γj

3

)2

− 2
n

n−1∑
i=0

s∏
j=1

(
1 +

γj

2
(1 − u2

i,j)
)

+
1
n2

n∑
i,i′=1

s∏
j=1

(1 + γj min(1 − ui,j , 1 − ui′,j))

⎤
⎦

1/2

.

Hence, for a given function f in Fs,γ , as we decrease the weights γj , the
discrepancy D2,γ(Pn) decreases at the expense of an increase in the norm
V2,γ(f).

We can now state the following important result.

Theorem 6.13. [413] (i) Multivariate integration in Fs,γ is strongly QMC-
tractable if and only if

∞∑
j=1

γj <∞,

and in that case the ε-exponent is in [1, 2]. (ii) Multivariate integration in
Fs,γ is QMC-tractable if and only if

a := lim sup
s→∞

∑s
j=1 γj

ln s
<∞.

If a is finite, then the d-exponent belongs to [a/12, a/6] and the ε-exponent
belongs to [1, 2]. (iii) Let nγ,min(ε, s, Pn,s) be the minimal number of sample
points needed to reduce the initial error by a factor of ε by a quasi–Monte
Carlo algorithm. Then

nγ,min(ε, s, Pn,s) ≤
⌊exp(1

6

∑s
j=1 γj) − 1
ε2

⌋

and
nγ,min(ε, s, Pn,s) ≥ (1 − ε2)1.055

∑ s
j=1 γj .

Hence, this result shows that the weights γj must decrease fast enough
that

∑∞
j=1 γj is finite in order for integration to be strongly QMC-tractable

in the corresponding space. For instance, weights of the form γj = γj for
some 0 < γ < 1 satisfy this condition.

Typically, results in this area are not constructive. That is, the existence
of a construction that can get the error below ε with a certain number of
points is demonstrated, but the specific construction achieving this is not
given. However, such results are useful to understand better which types of
functions are difficult or easy for multivariate integration. Also, results in
this area have been used to a large extent in several papers on component-by-
component constructions. Here the idea is to start with a class of functions
known to be tractable or QMC-tractable, identify the type of quasi–Monte

Appendix: Tractability, weighted spaces, and constructions 245

Carlo construction that can achieve these tractability results, and then use the
corresponding discrepancy measure to guide a search where the parameters
defining the construction for a given n are found one dimension at a time by
minimizing this discrepancy measure. We will illustrate this approach with an
example coming from [409]. (Our setting is not as general as in [409], as we do
not exploit the full generality of weighted Sobolev spaces, but is sufficiently
broad to include the specific numerical example given in that paper.)

Component-by-component construction of a rank-1 lattice

We consider as before the class Fs,γ , where we assume that
∑∞

j=1 γj < ∞,
so that integration is known to be strongly QMC-tractable for that space.
The first step toward finding a construction that achieves the corresponding
bound on its discrepancy for a given n (recall that the discrepancy is equal to
the worst-case error e(Pn,s) for which a bound ε× e0,s independent of s has
been established via the strong tractability result) is to narrow the choice
of possible constructions. This can be done using a result in [414], which
shows that if n is sufficiently large, then a shifted lattice point set can achieve
the bound. From there, one possibility is to try to find that shifted lattice,
and this is the approach used in [410]. Alternatively, one can try to find an
unshifted lattice and study the error of its randomly shifted version. This can
be achieved by looking at the mean-square discrepancy of the lattice, given
by [414]

Ev(D2
2,γ(Pn,s + v)),

where Pn,s denotes the unshifted lattice and the expectation Ev is taken over
the random shift v. In [409], it is shown that

E(D2
2,γ(Pn,s + v)) ≤ 1

n

⎛
⎝ s∏

j=1

(1 + γj/2) −
s∏

j=1

(1 + γj/3)

⎞
⎠ , (6.18)

and because it can be shown that for this class of functions we have [413]

e0,s =
s∏

j=1

(
1 +

γj

3

)
,

then it can be proved that

Ev(D2
2,γ(Pn,s + v))
e0,s

is bounded independently of s. Therefore, strong tractability can be achieved
in a probabilistic sense by a randomly shifted lattice.

Based on this, a component-by-component construction algorithm for find-
ing such lattices (for a given n) is given in [409]. The algorithm rests on the

246 6 Using Quasi–Monte Carlo in Practice

fact that if we have a generating vector (z1, . . . , zj) for which (6.18) is satis-
fied for s = j, then a successive component zj+1 can be found so that same
bound will hold with s = j + 1. It suffices to choose this next component
zj+1 by simply searching the one that minimizes E(D2

2,γ(Pn,j+1 +v)), which
is given by

E(D2
2,γ(Pn,s + v)) =

1
n

n∑
i=1

s∏
j=1

[
1 + γj

(
B2

(
izj

n
mod 1

)
+

1
3

)]

−
s∏

j=1

(
1 +

γj

3

)
,

where B2(·) is the Bernoulli polynomial of degree 2.
Examples of parameters with γj of the form 0.9j for n = 2003 are given

in [409, Table 5.1] up to dimension s = 100.

Chapter 7

Financial Applications

Financial problems such as option pricing form a rich class of applications for
simulation, variance reduction techniques, and quasi–Monte Carlo sampling.
They provide a unique opportunity to present these topics in an applied
setting and therefore represent a valuable learning tool that we believe will
be useful to the reader. Readers interested in a more extensive treatment of
Monte Carlo simulation in finance are referred to [145, 202, 314].

The problems studied in this chapter all fit in the following framework.
We start with a market model where we have q underlying assets and denote
by Sj(t) the value of the jth asset at time t for j = 1, . . . , q. We also have a
bank account, which pays interest at a rate rt ≥ 0 at time t. Most of the time,
we assume that rt = r is constant, and the corresponding value of r is called
the risk-free rate. We think of an option in a loose sense as a security that
entitles its holder to a certain payoff whose value depends on one or more of
the q underlying assets. We are interested in determining different quantities
related to the option, the most important one being its value at a given time,
for a given model of the underlying assets.

We start in Sect. 7.1 by considering the special case of European option
pricing under the lognormal model and then explain in Sect. 7.2 how to han-
dle more complex models. In Sect. 7.3, we discuss the use of quasi–Monte
Carlo methods and then describe in Sect. 7.4 how variance reduction tech-
niques can be used in finance. We conclude with two sections on more com-
plex estimation problems, starting with American option pricing in Sect. 7.5
and then sensitivity and percentile estimates — including value-at-risk — in
Sect. 7.6.

7.1 European option pricing under the lognormal model

In this section, we assume that the type of contract we are interested in is
a European option. This type of contract has a specified expiration time T

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 247
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 7,
c© Springer Science+Business Media LLC 2009

248 7 Financial Applications

and gives its owner the right — but not the obligation — to perform certain
actions at time T involving the option’s underlying asset(s), which produces a
certain payoff H(T,S), where S = {(S1(t), . . . , Sq(t)), t ≥ 0}. For example, a
European call on a single asset gives its owner the right to buy the asset at
time T for a predetermined price K called the strike price. In other words,
the payoff at time T of an option like this is given by

H(T, S) = max(0, S(T) −K).

A European put option is a similar contract, but where the owner is instead
given the right to sell the asset at the strike price value K.

The two options mentioned above are path-independent options, which
means their associated payoff only depends on the price of the underlying
asset at the expiration time T . Later, we will see examples of path-dependent
options, whose payoff at expiration depends not only on the final value of the
underlying asset(s) but also on earlier values at t < T .

In this section, we assume that each underlying asset has a price Sj(t)
at time t that is lognormally distributed and that the bank account pays
a fixed rate r. This corresponds to the model used by Black and Scholes
in their seminal work [33]. Formally, this means our vector S of assets is a
multivariate geometric Brownian motion. More precisely, suppose (Ω,F , P)
is a complete probability space. Let B be a vector of q independent standard
Brownian motions on (Ω,F , P). Also, we let {Ft, t ≥ 0} denote the (P -
augmented) natural filtration generated by B. (We will not define this notion
in detail here. Ft can be thought of as the information gathered by observing
{B(s), 0 ≤ s ≤ t}. See [212, 350] for more information.)

The behavior of S is then described by the stochastic differential equation
(SDE)

dS(t) = μS(t)dt+MS(t)dB(t), (7.1)

where μT = (μ1, . . . , μq) is the vector of return rates for S and M is a q × q
matrix such that C = MMT is the covariance matrix of S. For instance, if
the q underlying assets are independent, then Cij = σ2

i if i = j and is zero
otherwise, where σi is the volatility of the ith asset. More generally, if asset
i and asset j have a correlation ρij and a volatility σi and σj , respectively,
then Cij = ρijσiσj .

For readers that are not too familiar with SDEs, (7.1) probably does not
give much intuition about the behavior of S(·). To help give some insight, we
will focus for a moment on the one-dimensional case, where S = S is a single
asset. Equation (7.1) then becomes

dS(t) = μS(t)dt+ σS(t)dB(t), (7.2)

whose solution can be proved to be

S(t) = S(0)e(μ−σ2/2)t+σB(t)

7.1 European option pricing under the lognormal model 249

using Ito’s lemma [350]. Hence S(t) has a lognormal distribution because
lnS(t) = lnS(0) + (μ − σ2/2)t + σB(t) and B(t) ∼ N(0, t). In particular,
E(S(t)) = S(0)eμt. A stochastic process that satisfies an SDE of the form
(7.2) is called a geometric Brownian motion.

Going back to the multivariate case described by (7.1), this model im-
plies that the vector (lnS1(t), . . . , lnSq(t)) has a multinormal distribution
with parameters that can be inferred from (7.1). Equivalently, a description
that turns out to be useful when manipulating this model is to say that
Sj(t) = Sj(0)eXj(t) for j = 1, . . . , q, where the vector (X1(t), . . . , Xq(t)) has
a multinormal distribution with marginal means E(Xj(t)) = (μj − σ2

j /2)t
and covariance terms Cov(Xi(t),Xj(t)) = ρijσiσjt, where, as before, μj is
the rate of return for asset j, σj is its volatility, and ρij is the correlation
term between asset i and asset j. Hence this model is completely specified
by the parameters μj , σj , for j = 1, . . . , q, and ρij for 1 ≤ i < j ≤ q.

Now that we have a model for S(·), the goal is to find the value V0 at time
0 of a given European option with payoff H(T,S). In order to do that, we
use the theory of option pricing. Here, we only give a very brief overview of
this theory and refer the reader to [92, 150, 370] for more details.

To derive a formula for V0, we first assume that the model is specified
in a way that prevents the existence of arbitrage opportunities, which are
strategies involving the construction of a portfolio with an initial value less
than or equal to 0 and with a future payoff that is nonnegative and takes a
positive value with nonzero probability. In turn, the no-arbitrage assumption
implies the existence of a risk-neutral probability measureQ — also sometimes
called the equivalent martingale measure — under which for each asset the
discounted value process {Zj(t) := e−rtSj(t), t ≥ 0} is a martingale. In partic-
ular, the martingale property means that we must have EQ(Zj(t)|Fs) = Zj(s)
for t > s.

In addition, we assume the parameters in our model have been chosen so
that the market is complete, which means that any payoff H(T,S) at time
T can be replicated by constructing an appropriate portfolio over the under-
lying assets. The fundamental theorem of asset pricing [370] states that this
assumption is equivalent to the existence of a unique risk-neutral probability
measure.

Under these assumptions, we have that

V0 = EQ(e−rTH(S(T))). (7.3)

That is, the value at time 0 of the option is given by the expected value —
under the measure Q — of its discounted payoff. From now on, we will drop
the Q in the notation EQ because all expectations are computed under this
measure unless otherwise stated.

Now, in order to use (7.3), we need to know the behavior of S under the
new measure Q. It turns out that for the lognormal model (7.1), S under Q
still obeys an equation of the form (7.1), but where the vector μ of rates of

250 7 Financial Applications

return is replaced by r = (r, . . . , r)T. In other words, under Q, we simply
assume that the return on each asset Sj(·) is r rather than μj .

The following example illustrates how to use (7.3) in the case of a European
call option on a single asset. We then look at two more complex examples.

Example 7.1. For a call option under the lognormal model, we want to com-
pute

C0 = E(e−rT max(0, S(T) −K)),

where S satisfies
dS(t) = rS(t)dt+ σS(t)dB(t).

Hence S(t) = S(0)e(r−σ2/2)t+σB(t), and it can be proved that

C0 = S(0)Φ(d1) −Ke−rTΦ(d2), (7.4)

where

d1 =
ln(S(0)/K) + (r + σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T (Prob. 7.2 asks you to verify this). This is the formula

derived by Black and Scholes in [33] but using a different approach. It is
usually referred to as the Black-Scholes-Merton formula to underline the
important contribution of Merton [316], who expanded and enhanced the
work of Black and Scholes shortly after the publication of their work in 1973.

Example 7.2. Another common type of option is an Asian option. An Asian
call option has a payoff defined by

H(T, S) = max

⎛
⎝0,

1
d

d∑
j=1

S(tj) −K

⎞
⎠ , (7.5)

where, as before, K is the strike price and the variables tj are observation
times where the value of the asset is recorded and satisfy 0 ≤ t1 < . . . < td =
T . Hence, for the Asian option, we compare an average value of the underlying
asset with the strike price rather than only looking at the value at expiration.
This type of option is thus path-dependent. Here the theoretical value of the
option at time 0 is given by

Cas,0 = E

⎡
⎣e−rT max

⎛
⎝0,

1
d

d∑
j=1

S(tj) −K

⎞
⎠
⎤
⎦ ,

which has no closed-form expression.

Example 7.3. If in the previous example we use a geometric average instead
of the arithmetic average

∑d
j=1 S(tj)/d, then a closed-form expression for the

value

7.1 European option pricing under the lognormal model 251

Cg,as,0 = E

⎡
⎢⎣e−rT max

⎛
⎜⎝0,

⎛
⎝ d∏

j=1

S(tj)

⎞
⎠

1/d

−K

⎞
⎟⎠
⎤
⎥⎦

can be found. Informally, the geometric average makes things easier because
a product of lognormal random variables is itself lognormal, whereas a sum
of lognormal random variables does not have a known distribution. Hence,
for an Asian call option on the geometric average, the value at time 0 has a
Black-Scholes-Merton–like formula given by

Cg,as,0 = e−rT (ea+0.5bΦ(d1) −KΦ(d2)), (7.6)

where

a = ln(S(0)) + (r − 0.5σ2) × T (d+ 1)/2d,
b = σ2(T/d)(d+ 1)(2d+ 1)/6d,

d1 = (− ln(K) + a+ b)/
√
b,

d2 = d1 −
√
b,

and, for simplicity, we assume that tj = jT/d for j = 1, . . . , d. Values of tj
that are not equally spaced can be handled similarly.

In the three examples discussed so far, in two cases we were able to ana-
lytically solve the expression

V0 = E(e−rTH(T,S)).

For cases like the Asian call option on the arithmetic average, where we can-
not obtain a closed-form expression for the time-0 value V0, the Monte Carlo
method can be used to provide an estimate of the expectation above. This
idea was first proposed by Boyle in his seminal paper [37]. Before describing
this approach in general, let us look at how it can be applied to estimate C0

for the plain call option and then the time-0 value of the Asian call option
Cas,0. Even if we have an analytical expression for C0 for the plain call option,
it is helpful to use this as a first example describing how to use the Monte
Carlo method.

So, for the plain call option, we can estimate C0 by

1
n

n∑
i=1

e−rT max(0, Si(T) −K), (7.7)

where {Si(T), i = 1, . . . , n} is an i.i.d. sample from the lognormal distribution
with parameters (lnS(0)+(r−σ2/2)T, σ2T). More precisely, this sample can
be obtained from an i.i.d. sample {Z1, . . . , Zn} of N(0, 1) random variables
as follows:

252 7 Financial Applications

Si(T) = S(0)e(r−σ2/2)T+σ
√

TZi , i = 1, . . . , n.

In turn, as was seen in Chap. 2, the variables Zi can be generated by inverting
the N(0, 1) CDF. That is, we let Zi = Φ−1(ui), where ui ∼ U(0, 1).

For the Asian call option, we need to generate not only the final value of
the underlying asset but also all the values that enter the average in (7.5).
For that purpose, we can use the recursive relation

S(tj) = S(tj−1)e(r−σ2/2)Δj+σ
√

ΔjZj , j = 1, . . . , s, (7.8)

where the Zj ’s are i.i.d. N(0, 1) and Δj = tj − tj−1, j = 1, . . . , s. The pseu-
docode given in Fig. 7.1 explains how to construct the Monte Carlo estimator
for Cas,0 based on a random point set Pn and where we assume tj = jT/s
just to simplify things.

AsianCall(Pn, r, σ, T, d, S(0))
a ← (r − σ2/2)T/d

b ← σ
√

T/d
sum2 ← 0
prevS ← S(0)
for i = 1 to n do

sum ← 0
for j = 1 to d do

Z ← Norm01(ui,j)
S ← prevS ×ea+bz

sum ← sum + S
prevS ← S

x ← sum/d − K
if x > 0 then

sum2 ← sum2 +xe−rT

return sum2/n

Fig. 7.1 Pseudocode for estimating Cas,0 with Monte Carlo.

Hence the pseudocode given in Fig. 7.1 returns the estimator

Ĉas,0 =
1
n

n∑
i=1

e−rT max

⎛
⎝0,

1
d

d∑
j=1

Si(tj) −K

⎞
⎠ , (7.9)

where the {Si(t1), . . . , Si(td)}, for i = 1, . . . , n, represent n i.i.d. realization
paths for the underlying asset.

So far, we have only seen options on one asset. An example of an option on
several assets is a call option on the maximum of q assets, which is sometimes
called a rainbow option. Its payoff is defined by

7.1 European option pricing under the lognormal model 253

H(T,S) = max
(

0, max
1≤j≤q

Sj(T) −K

)
.

In other words, at expiration, the holder of the option has the right to buy
at a price K any of the q underlying assets and rationally chooses to buy the
most expensive one. The payoff is thus given by the difference between the
highest-valued asset and the strike price K. To use the Monte Carlo method
for estimating the value at time 0 of this option, denoted Cm,0, we need
to generate observations of correlated lognormal random variables based on
(7.1). This can be done as follows. We let

Sj(T) = Sj(0)e(r−σ2
j /2)T+

√
TWj ,

where

Wj =
q∑

l=1

Mj,lZl

and the variables Zl are i.i.d. N(0, 1). Note that multiasset models are usually
specified by giving the covariance matrix C — that is, the volatilities σj

and correlation terms ρij are given — rather than the matrix M such that
MMT = C. One can then get M by performing a Cholesky decomposition
of C, thus finding a lower-triangular matrix M such that MMT = C.

Putting it all together, Cm,0 can be estimated using the pseudocode given
in Fig. 7.2.

RainbowCall(Pn, r, σ, M,S(0), σ, q)
for j = 1 to q do

a[j] ← (r − σ2
j /2)T

sum ← 0
for i = 1 to n do

for j = 1 to q do
Z[j] ← Norm01(ui,j)

max ← 0
for j = 1 to q do

w ← 0
for l = 1 to q do

w ← w + M [j][l]Z[l]

S ← Sj(0) × ea+w
√

T

if S > max then
max ← S

x ← max − K
if x > 0 then

sum ← sum +xe−rT

return sum/n

Fig. 7.2 Pseudocode for estimating Cm,0 with point set Pn.

254 7 Financial Applications

In general, the Monte Carlo method for European pricing in the lognormal
model can be applied as follows. Assume we have a payoff function H(T,S)
that depends on Sj(t1), . . . , Sj(td), for j = 1, . . . , q.

(1) For i = 1, . . . , n:

a. Generate observations under the risk-neutral measure Q for

Si
j(t1), . . . , S

i
j(td)

for each security j = 1, . . . , q. (The pseudocode given in Figs. 7.1 and
7.2 can be combined to do that. More details are given below.)

b. Compute the payoff

Hi = H(T, Si
1(t1), . . . , S

i
1(td), . . . , S

i
q(t1), . . . , S

i
q(td)).

(2) Return the estimate
1
n

n∑
i=1

e−rTHi.

We now wish to establish the correspondence between this “simulation”
formulation and the underlying integration problem over [0, 1)s that is solved
when we estimate

V0 = E(e−rTH(T,S))

with Monte Carlo. Using the same notation as in Fig. 1.6 of Chap. 1, we can
write

V0 =
∫

[0,1)s

f(u)du

and use two intermediate functions g(·) and h(·) such that f(u) = h(g(u))
and a random vector X corresponding to the random variables that need to
be simulated. In our case, we can choose X to be

X = (S1(t1), . . . , S1(td), . . . , Sq(t1), . . . , Sq(td)).

In that case, we define h(X) = e−rTH(T,X). Also, if we use the standard
path generation method described in Fig. 7.1 combined with the approach
used in Fig. 7.2 for generating correlated asset prices, then we can obtain X
by applying the following function g to a vector u of s = dq uniform random
numbers in [0, 1)s. Here we assume tj−tj−1 = T/d for j = 1, . . . , d to simplify
the notation. Also, since each component of X depends on several uniform
numbers, we use intermediate functions gj,l : [0, 1)s → R and wj : [0, 1)q → R

to describe g, where j indexes assets and l indexes time. More precisely, we
write

X = g(u) = (g1,1(u), . . . , g1,d(u), . . . , gq,1(u), . . . , gq,d(u)), (7.10)

where

7.1 European option pricing under the lognormal model 255

gj,l(u) = Sj(0)elaj+bj(wj(u1,...,uq)+...+wj(u(l−1)q+1,...,ulq))

for j = 1, . . . , q and l = 1, . . . , d, with

aj = (r − σ2
j /2)T/d,

bj =
√
T/d,

wj(u(k−1)q+1, . . . , ukq) =
q∑

p=1

Mj,pΦ
−1(u(k−1)q+p),

where M is such that MMT = C. That is, here we chose to use the
first set u1, . . . , uq of q random numbers to generate a vector of q i.i.d.
standard normal random variables, transform them into correlated normals
w1(u1, . . . , uq), . . . , wq(u1, . . . , uq), and use them to generate observations for
the q prices at time t1 = T/d. Then the next q random numbers are used for
the prices at time t2 = 2T/d and so on.

As mentioned above, the dimension s is equal to the number q of processes
that need to be simulated multiplied by the number of observations d per path
that are required. This quantity d stems either from the payoff definition
(e.g., the number of prices that enter the average for an Asian option) or
the size of the time steps chosen when discretizing the process when it is not
possible to generate observations directly from the price dynamics. The need
for discretization typically arises with more complex models such as those
discussed in Sect. 7.2, for example when the volatility itself is a stochastic
process.

Hence, high-dimensional problems in finance can come either from payoff
functions that are based on several observations, a large number of secu-
rities, or a fine discretization possibly combined with a large maturity T .
For instance, mortgage-backed security problems tend to have a large associ-
ated dimension since the maturity is typically between 20 and 30 years, and
monthly cash flows need to be simulated (e.g., s is between 240 and 360).
An example will be given in Sect. 7.3. As for the number of steps in the
discretization, a rule of thumb is to take d ∈ O(

√
n), so that the O(1/d) error

from the discretization process is about the same as the error produced from
Monte Carlo sampling, which is O(1/

√
n) [93].

Going back to the notation above for g and f , to help understand it better
we will reuse the three option examples that we have seen so far and in each
case describe explicitly what the function f is.

Example 7.4. For a plain call option, we have that

f(u) = f(u1) = e−rT max(0, S(0)e(r−σ2/2)T+σ
√

TΦ−1(u1) −K).

For the Asian call option, we have

256 7 Financial Applications

f(u) = f(u1, . . . , ud)

= e−rT max

⎛
⎝0,

1
d

d∑
j=1

S(0)e(r−σ2/2)T/d+σ
√

T/dΦ−1(uj) −K

⎞
⎠.

For the rainbow call option on the maximum of q assets, we have

f(u) = f(u1, . . . , uq)

= e−rT max
(

0, max
1≤j≤q

(Sj(0)e(r−σ2
j /2)T+

∑ q
l=1 Mj,lΦ

−1(ul)) −K

)
.

Once a model for S and a payoff function have been chosen, the main
factor that affects the definition of the function f is the choice of what we
could call the path generation method. In Example 7.4 above, when successive
observations S(t1), . . . , S(td) need to be generated for pricing the Asian call
option, we use the standard method where the prices S(tj) are generated
in chronological order using the recursive formula (7.4). As was seen in Sect.
6.3, alternative methods are the generalized Brownian bridge techniques such
as those used in [2, 4, 200, 327]. The method chosen for path generation can
greatly affect the effective dimension of f and therefore the performance of
quasi–Monte Carlo methods for pricing the corresponding option. Choosing
a generation method can also be formulated in terms of the choice of the
matrix M satisfying MMT = C, as was discussed in Sect. 6.3 of Chap. 6.
Another factor that affects the definition of the function f is the method
chosen for generating normal variates. Above, we chose inversion for reasons
discussed in Chap. 2 having to do mainly with the fact that it is best suited
for quasi–Monte Carlo.

7.2 More complex models

Although the lognormal model used by Black and Scholes [33] and Merton
[316] is still quite popular due to its simplicity, several more realistic models
have been proposed over the years as alternatives to this model. Often, these
more complicated models include added sources of randomness — for in-
stance, the volatility is assumed to be stochastic instead of being constant —
which make the market incomplete [92], and thus there is more than one
risk-neutral probability measure to choose from for pricing options. In this
text, we do not discuss how to choose the risk-neutral probability measure
in those cases and assume that for such models a specific measure has been
chosen. See, for instance, [20, 103, 138, 314] and the references therein for
methods of choosing an appropriate martingale measure.

In what follows, we will illustrate with three models how paths can be
generated under models more complex than the lognormal one. For these

7.2 More complex models 257

models, we often need to discretize the associated SDE. To do so, there are
several methods available (see, for instance, [219]), but here we use a Euler
scheme to keep things simple.

7.2.1 Heston’s process

This model replaces the constant volatility in the lognormal model by a
stochastic volatility [49, 179],

dS(t) = rS(t)dt+ σ(t)S(t)
[
ρdB1(t) +

√
1 − ρ2dB2(t)

]
,

dσ2(t) = κ
[
θ − σ2(t)

]
dt+ σvσ(t)dB1(t),

where B1(·) and B2(·) are two independent standard Brownian motions, κ
is the speed of mean reversion, θ > 0 is the long-run mean variance, σv > 0
is the volatility of the volatility process, and ρ is the correlation between the
Brownian motions driving S(·) and σ2(·).

A closed-form expression can be derived for the price of a plain call option
under that model [179], but for more complicated options we might need to
use Monte Carlo and a discretization of the process. Suppose we use a Euler
scheme with d steps to discretize both S(·) and σ(·). Let Δ = T/d. Then,
using a uniform random point u = (u1, u2, . . . , u2d), paths can be generated
as in Fig. 7.3 [49, 476].

HestonPaths(σ(0), κ, θ, ρ, σv , T, d, S(0),u)
σ[0] ← σ(0)
S[0] ← S(0)
t0 ← 0
for l = 1 to d

S ← S[l − 1]

σ ← σ[l − 1]
Z1 ← Norm01(u2l−1)
Z2 ← Norm01(u2l)

Z ← ρZ1 +
√

1 − ρ2Z2

S[l] ← S(1 + rΔ + σ
√

ΔZ)
if S[l] < 0 then

S[l] ← 0

σ2[l] ← σ2 + κ(θ − σ2)Δ + σvσ
√

ΔZ1

if σ2[l] < 0 then

σ2[l] ← 0

Fig. 7.3 Pseudocode for generating discretized paths under Heston’s process, where S[l]
and σ[l] represent S(tl) and σ(tl), respectively.

258 7 Financial Applications

Note how we chose to assign the uniform variates uj in the chronological
order in which they are required. That is, u1 and u2 are used to generate
S(t1) and σ(t1), then u3 and u4 are used to generate S(t2) and σ(t2), and
so on. This is of course arbitrary, and another “natural” choice would have
been to assign u1, . . . , ud to generate Z1(·) and then ud+1, . . . , u2d to generate
Z2(·). The assignment is irrelevant in the Monte Carlo context, but it can
make a difference in the quasi–Monte Carlo context, as we will see in Sect.
7.3. This issue was also briefly investigated in [29].

7.2.2 Regime switching model

The underlying idea here is to assume that the parameters describing the
behavior of the market are themselves random and change according to an
unobservable (hidden) Markov process. For example, in [103], the model con-
sists of a risky underlying asset driven by a Markov-modulated geometric
Brownian motion. That is, there is a Markov chain X(t) whose state space
is the set of N unit vectors e1, . . . , eN (i.e., ei is an N -dimensional vector of
zeros with a one in the ith position), and then we have

dS(t) = μ(t)S(t)dt+ σ(t)S(t)dB(t),

where μ(t) = XT(t) · μ, σ(t) = XT(t) · σ, and then μ = (μ1, . . . , μN)T and
σ = (σ1, . . . , σN)T are the N possible values for the return and volatility
parameters of the asset, respectively.

We can thus view the N possible states of the Markov process X(t) as
N different business cycles, where μi and σi are the return and volatility of
the asset associated with the ith business cycle. Similarly, the risk-free rate
is assumed to take a value in rT = (r1, . . . , rN) depending on the business
cycle. The N × N infinitesimal generator matrix for X(·) is denoted by A.
That is, if X(t) = ei, then for j �= i, a transition to state ej occurs according
to a Poisson process with rate Aij ≥ 0 and Aii =

∑
j �=i Aij . Equivalently,

we can say that, while in state ei, the time until the next transition follows
an exponential distribution with mean −1/Aii and will be in state ej with
probability −Aij/Aii for j �= i.

In [103], option pricing formulas are derived under a risk-neutral proba-
bility measure for which the underlying asset obeys the SDE

dS(t) = r(t)S(t)dt+ σ(t)S(t)dB(t).

Under that measure, we have that

lnS(T)/S(t) ∼ N

(∫ T

t

(r(s) − σ2(s)/2)ds,
∫ T

t

σ2(s)ds

)
.

7.2 More complex models 259

Equivalently, if we define Ji(t, T) to be the occupation time of X(t) in state
ei over the time interval [t, T], then we can write

Pt,T :=
∫ T

t

r(s)ds =
N∑

i=1

riJi(t, T),

Ut,T :=
∫ T

t

σ2(s)ds =
N∑

i=1

σ2
i Ji(t, T),

and we have that lnS(T)/S(t) ∼ N(Pt,T − Ut,T /2, Ut,T).
The pseudocode given in Fig. 7.4 outlines an approach for generat-

ing a terminal price S(T) for this model using a uniform random point
u = (u1, u2, . . .).

RegimeSwitchPath(X[0], A, r, σ, T,u)
I ← X[0] // state of the chain
t ← 0
j ← 2
for i = 1 to N

J [i] ← 0 // occupation time
while t < T do

τ ← ln(1 − uj)/AI,I // time until next transition
p ← 0
m ← 1
while uj+1 > p do // generate next state

if m �= I then
p ← p − AI,m/AI,I

m ← m + 1
if t < T then

J [I] ← J [I] + τ
else

J [I] ← J [I] + T − t
t ← t + τ
I ← m − 1 // update state
j ← j + 2

P ← 0, U ← 0
// reached time T
for i = 1 to N

P ← P + riJ [i]

U ← U + σ2
i J [i]

S(T) ← S(0)e(P−U/2)+
√

UΦ−1(u1)

Fig. 7.4 Pseudocode for generating a terminal price under regime switching, given an
input point u.

260 7 Financial Applications

Note how we chose to assign the first uniform number u1 to generate the
price at time T , and used the subsequent uniform variates to simulate the un-
derlying Markov chain. The dimension of u is unbounded because in the sim-
ulation approach described in Fig. 7.4 we do not know a priori how many
times the chain will change its state before we reach the expiration time T .
Note that if the regime changes were instead modeled using a discrete-time
Markov chain where, say, we assume there is a transition every month, then
the dimension would be bounded.

7.2.3 Variance gamma model

Financial models for which randomness is input through the Brownian motion
are such that the price paths are almost surely continuous. Sometimes prices
move in an abrupt way that cannot be captured by a continuous model. It is
therefore of interest to study models that allow jumps to occur in the price
paths. An example of this is the jump-diffusion model that was proposed by
Merton in 1976 [317], in which a jump process is added to the components
of the geometric Brownian motion model.

In what follows, we describe instead the variance gamma model proposed
by Madan et al. [299]. It works as follows [150]. We first write S(t) = S(0)eX(t)

and then model X(t) as X(t) = B(G(t)), where B(·) is a Brownian motion
with drift μ and diffusion coefficient σ and G(·) is a gamma process with
parameters a and b. That is, for fixed times s < t, we have that the increments
G(t) −G(s) ∼ Gamma(a(t− s), b), where a, b > 0, and these increments are
independent. The model proposed by Madan et al. is defined so that a = 1/b,
which means that the expectation of the increment G(t) −G(s) is t− s. We
can then simulate a discretized path of S(·) as shown in Fig. 7.5 [150]. Since
we work under the risk-neutral probability measure Q there, we take μ = r.

7.3 Randomized quasi–Monte Carlo methods in finance

We start with a short discussion recalling the difference between quasi–Monte
Carlo and Monte Carlo simulation adapted to the problem of pricing Euro-
pean options.

With Monte Carlo, we use a set of n independent points in [0, 1)s to
generate n independent paths S1, . . . ,Sn of the vector of underlying assets,
compute the payoff H(T,Si) obtained on each path, discount it back to time
0, and then take the average over all paths. Here the dimension s is influenced
by the number q of underlying assets, the number of prices per path that need
to be simulated, and the model used for the underlying assets. For instance,

7.3 Randomized quasi–Monte Carlo methods in finance 261

VarGammaPath(b, r, σ,u)
t0 ← 0
X[0] ← 0
for l = 1 to d

X ← X[l]
Y ← Gamma(u2l−1, (tl − tl−1)/b, b)
Z ← Norm01(u2l)

X[l] ← X[l − 1] + μY + σ
√

Y Z

S[l] ← exp(X[l])

Fig. 7.5 Pseudocode for generating discretized paths of a variance gamma process. The
function Gamma(u, a, b) uses inversion to generate from u ∼ U(0, 1) a gamma random vari-
able with parameters (a, b).

with one asset and a stochastic volatility or variance gamma model, we saw
in Sect. 7.2 that s = 2d, where d is the number of discretization steps used.

With quasi–Monte Carlo sampling, we use n points in [0, 1)s that come
from a low-discrepancy point set Pn instead. If Pn has been randomized ac-
cording to the description made in Sect. 6.2, then each point ui used to
generate a path of S in the quasi–Monte Carlo setting is uniformly dis-
tributed in [0, 1)s, and thus the path generated has the same distribution
properties as with Monte Carlo. The difference is that now the n paths are
correlated. Numerical examples illustrating the use of this approach will be
given throughout the rest of this chapter.

We now discuss a few important topics related to the use of quasi–Monte
Carlo in finance.

Choice of path generation method, assignment of coordinates,
and dimension reduction

We already discussed in Sect. 6.3 how techniques like the Brownian bridge,
principal components, and the approach from [200, 201] could be used as
path generation methods aimed at reducing the effective dimension. These
approaches can be useful and should be investigated when quasi–Monte Carlo
is used. But they should not be applied blindly either, as the study from [373]
shows us.

Also, unless we are working with one asset driven by only one random
process — for instance, the lognormal model — we usually have to deal with
simulations where several underlying random processes need to be simulated,
and in that case we must decide how to assign the uniform numbers uj in u
to these various processes.

262 7 Financial Applications

The first possibility is an interleaved (or sequential) assignment, where the
numbers uj are assigned as needed. For example, for a stochastic volatility
model, we assign u1, u2 to the generation of S(t1) and σ(t1), u3, u4 to the
generation of S(t2) and σ(t2), and so on, as shown in Fig. 7.3. The second pos-
sibility is a block assignment, where we break down u = (u1, . . . , us) into suc-
cessive blocks, which are then assigned to the various processes. Again using
the example of a stochastic volatility model, this means we assign u1, . . . , ud

to the generation of the first Brownian motion and ud+1, . . . , u2d to the sec-
ond Brownian motion. Hence, in that case u1, ud+1 are used to generate S(t1)
and σ(t1), u2, ud+2 are used to generate S(t2) and σ(t2), and so on.

Although there is no clear answer to how this assignment should be done
on a given problem, here are a few things to take into account. If the different
processes that need to be simulated are used to define variables that do not
interact with each other too much, then an assignment by block might be
better suited. An example of a problem like this is the pricing of a European
option on the maximum of several assets that each follow an independent
jump process.

Also, if a generalized Brownian bridge approach is applied to only some of
the processes, then it makes sense to use a separate block of uniform numbers
uj for each of the processes simulated with that approach and another one
for the other processes [29].

If the different processes give rise to random variables that interact more
strongly, then interleaving might be better. An example of this is when two
Brownian motions need to be simulated for an underlying asset that follows
a stochastic volatility model. In addition, an assignment by block might not
be a good choice if the underlying point set is such that the quality of its
projections Pn(I) deteriorates as the indices in I increase. This is because
the processes will be assigned blocks of different quality and, for instance, the
last block might be of poor quality. Hence, for block assignments, it might
be better to use a dimension-stationary point set since by definition we then
have that Pn({1, . . . , d}),Pn({d+1, . . . , 2d}), and any projections of the form
Pn({ld + 1, . . . , (l + 1)d}) are the same, and thus they all have the same
quality.

If a more rigorous approach for choosing the assignment is desired, then
one possibility is to first perform a study of the ANOVA components to
determine which of the situations above prevails. Techniques such as those
discussed in Sect. 6.3.3 can be used for that purpose.

Table 7.1 gives results for the problem of pricing an Asian option under
Heston’s process, where the number of steps d in the discretization is as-
sumed to correspond to the number of prices entering the average. We use
the parameters S(0) = K = 100, r = 0, κ = 2, σ(0) = 0.1, θ = 0.01,
σv = 0.1, ρ = 0.5, and T = 0.5 year [476]. We compare the Monte Carlo
method with the Sobol’ sequence and a polynomial Korobov lattice, both of
which have been randomly digitally shifted using m = 25 repetitions. The
polynomial Korobov lattice is based on a combined Tausworthe generator

7.3 Randomized quasi–Monte Carlo methods in finance 263

with two components, defined respectively by (ν1 = 1, P1(z) = z3 + z + 1)
and (ν2 = 4, P2(z) = z7 + z3 + 1).

Table 7.1 Asian call option under Heston’s process: price estimate μ̂ and 95% confidence
interval half-width (HW) with n = 1024, m = 25, and different numbers of time steps d in
the discretization.

d = 32 d = 64 d = 128

μ̂ HW μ̂ HW μ̂ HW

MC 1.674 2.85e−2 1.642 3.36e−2 1.640 3.60e−2
Sob leave 1.659 1.52e−2 1.627 1.36e−2 1.631 1.80e−2
Sob block 1.655 1.36e−2 1.632 2.07e−2 1.637 1.96e−2
pKor leave 1.659 8.02e−3 1.638 8.62e−3 1.628 8.15e−3
pKor block 1.659 9.51e−3 1.638 6.18e−3 1.631 7.04e−3

A few things should be mentioned about these results. First, both random-
ized quasi–Monte Carlo methods perform better than Monte Carlo, reducing
the width of the 95% confidence intervals by factors ranging between about
2 and 4. The polynomial Korobov lattice generally performs better than the
Sobol’ sequence. Using an interleaved assignment or one by block does not
seem to make a consistent difference for this particular problem.

As a final note, recall that the generalized Brownian bridge technique is
meant to reduce the effective dimension of the integrand. A related idea is to
use methods that result in the need for a point set with smaller dimension. At
least two methods fall in that category: array-RQMC, and conditional Monte
Carlo. With array-RQMC, an example of Asian call option pricing under the
lognormal model is discussed in [263], where a two-dimensional point set is
required instead of an s-dimensional one, where s in the number of prices en-
tering the average. Using array-RQMC instead of Monte Carlo in that case re-
sults in variance reduction factors between 1500 and 40,000. With conditional
Monte Carlo, as discussed in Sect. 7.4.4, a stochastic volatility model with d
time steps in the discretization can be handled by a d-dimensional point set
instead of a 2d-dimensional one. This fact combined with the added smooth-
ness of the integrand that is obtained when applying conditional Monte Carlo
can result in important gains when using randomized quasi–Monte Carlo in-
stead of Monte Carlo [476]. Numerical results illustrating this will be given
in Sect. 7.4.4.

Problems of unbounded dimension

We already discussed in Sect. 7.1 some reasons that can cause the dimension
s of the function f associated with a given problem to be large. In what
follows, we mention a few cases where the dimension is unbounded.

264 7 Financial Applications

For European pricing, typically the dimension is finite because the simu-
lation horizon T is fixed. Cases where we could have an unbounded problem
are if the simulation model requires an unbounded number of random vari-
ates. An example of this is the regime switching model discussed in Sect. 7.2,
assuming we use the straightforward simulation approach described there.
This can also happen with models that include jumps if instead of using the
discretization approach mentioned in Sect. 7.2 we decide to explicitly sim-
ulate the jumps themselves. Since the number of jumps is random and at
least one uniform variate is needed for each, this causes the dimension to be
unbounded.

Outside the framework of European option pricing, problems of unbounded
dimension arise when we need to run financial simulations until a certain
event takes place and this event occurs at a random time. For instance, prob-
lems in risk theory involving the computation of the probability of ruin of an
insurance company can give rise to simulations having this property. More
precisely, one of the approaches used to estimate ruin probabilities is based on
regenerative simulation, which is such that the end of the simulation is deter-
mined by a random stopping time, much like the bank simulation discussed
in Chap. 1. The following example discusses this specific application.

Example 7.5. An insurance company receives claims at random times and of
random size. These claims define an aggregate claim process

L(t) =
N(t)∑
k=1

Yk, t > 0,

where Yk > 0 is the size of the kth claim received and N(t) is the number of
claims received during the time interval (0, t]. In addition, we let tk be the
time at which the kth claim is received. We assume here that the aggregate
claim process is a compound Poisson process. That is, the times Tk = tk −
tk−1, k ≥ 1, between two successive claims are i.i.d. exponential random
variables and the claim sizes Yk are i.i.d. random variables.

In exchange for the payment of the claims, the company charges a premium
at a rate c(·). We let U(t) be the company’s surplus at time t. The rate
function c(·) is allowed to depend on the surplus value, so that we have

dU(t) = c(U(t))dt− dL(t).

That is, U(t) grows at the rate specified by c(·) until a claim comes and makes
U(t) drop by the value of the claim.

The goal is to estimate the probability of ruin of the insurance company,
given by

ψu = P (U(t) ≤ 0 for some t ≥ 0|U(0) = u).

A naive approach for estimating ψu is to simulate the surplus process for a
large number L of claims and verify for each claim if it causes U(t) to become

7.3 Randomized quasi–Monte Carlo methods in finance 265

smaller than or equal to 0. We can then estimate ψu by the proportion of
simulation runs in which ruin occurred. Since ψu is typically very small, this
naive approach can be highly inefficient, and importance sampling should be
used to improve the accuracy of this approach. Asmussen wrote several papers
describing how this can be done using exponential twisting — which was
discussed in Sect. 4.5 — and other well-known tools in risk theory [13, 15, 16].

Another approach is to use the duality between the surplus process and
its associated storage process {X(t), t ≥ 0}, described by

dX(t) =
{
−c(X(t)) + dU(t) if X(t) > 0,
dU(t) if X(t) = 0, (7.11)

and an initial value X(0) = u [13, 14]. That is, X(·) starts at the same point
as U(·), but then its change is the negative of the change observed for U(·),
except that when X(·) reaches 0, it stays there until the next jump. Figure
7.6 illustrates the difference between the two processes.

U(t) X(t)

t t

Fig. 7.6 The surplus process U(·) versus the storage process X(·).

It can be shown that the probability of ruin ψu satisfies

ψu = 1 − lim
d→∞

Dd(u)∑d
k=1 Tk

, (7.12)

where Dd(u) is the total time that X(·) spent below u before the dth claim
arrived. One can then estimate the ratio on the right-hand side of (7.12) by
running simulations with a very large number of claims [322]. Alternatively,
as in [458], we can use the fact that the process X(·) is a regenerative process,
where the regenerative epochs are the times where X(·) hits (going down)
the level u. The regenerative epochs for a given realization of X(·) are shown
in Fig. 7.7.

The fact that X(·) is a regenerative process implies that we have

lim
d→∞

Dd(u)∑d
k=1 Tk

=
E(D)
E(τ)

,

where

266 7 Financial Applications

reg reg

D D1 2

Fig. 7.7 The regenerative epochs for the process X(·), along with D1(u) and D2(u).

D = amount of time spent by X(·) below u during one regenerative cycle,
τ = length of a regenerative cycle.

This means we can estimate ψu as

ψ̂u = 1 −
∑n

i=1Di/n∑n
i=1 τi/n

, (7.13)

where Di and τi are respectively the values of D and τ for the ith simu-
lated regenerative cycle, and n is the number of regenerative cycles that are
simulated.

When we simulate a regenerative cycle, we start with X(0) = u, simulate
claim sizes and arrival times, and update X(t) according to (7.11) — deter-
mining also at what time D the process X(·) goes above u — until the time
τ where X(τ) = u. Hence the number N of claims that need to be simulated
per cycle is a random variable with, in our case, a Poisson distribution. Since
the dimension of this problem is 2N — for each of the N claims, we need
one uniform number to generate the interarrival time between two claims and
one uniform number to generate the claim size — it means the dimension is
unbounded for this type of problem.

Note that the estimator (7.13) is biased because the expectation of the
ratio of two random variables is not generally equal to the ratio of their
expectations. However, this estimator is strongly consistent [243]. Also, to
construct a confidence interval for ψ̄u := E(D)/E(τ), we can use the following
approach [243, pp. 532–533]. Define

Zi = Di − ψ̄uτi, i = 1, . . . , n.

Then the variables Zi are i.i.d. with mean zero and variance

σ2
Z = σ2

D + ψ̄2
uσ

2
τ − 2ψ̄uσD,τ ,

7.3 Randomized quasi–Monte Carlo methods in finance 267

where σ2
D = Var(D), σ2

τ = Var(τ), and σD,τ = Cov(D, τ). Hence, by the
central limit theorem,

∑n
i=1 Zi/n

σZ/n
⇒ N(0, 1) as n→ ∞.

It can then be shown that

D̄

τ̄
− ψ̄u ⇒ N

(
0,
σ̂2

Z

nτ̄

)
,

where

D̄ =
1
n

n∑
i=1

Di,

τ̄ =
1
n

n∑
i=1

τi,

σ̂2
Z = σ̂2

D +
(
D̄

τ̄

)2

σ̂2
τ − 2

D̄

τ̄
σ̂D,τ .

Figure 7.8 gives pseudocode to simulate one regenerative cycle, assuming
that the premium rate function is of the form c(u) = cu+δ. This is equivalent
to a fixed premium rate c and the assumption that the surplus earns interest
at a rate δ. Under this assumption, we have that, for t < T1 [322],

X(t) = X(0)e−δt − c

δ
(1 − e−δt).

Furthermore, we assume the interarrival times between claims have a mean
of 1/λ and that the claim sizes Yk are exponential with mean β. The value θ
computed in this code represents the time that elapses between the moment
where X(·) reaches u (going down) and the last claim that occurred before
that and can thus be found by solving

u = X(θ) = Xe−θδ − c

δ

(
1 − e−θδ

)
,

thus obtaining

θ =
1
δ

ln
(
δX + c

δU + c

)
.

Note that for a simulation like this, where the dimension is unbounded and
uniform numbers are used for two different purposes — claim size and claim
time — it is more convenient to use the interleaving approach described in
the pseudocode above to assign the uniform numbers to the variables to be
simulated since we do not know beforehand the size of the blocks required
for each purpose.

268 7 Financial Applications

RuinRegen(δ,c,λ,β,u,u)
X ← u
j ← 1
D ← 0
sumT ← 0
done ← 0
while (done = 0)

T ← GenExpon(uj , 1/λ)
x ← Xe−δ×T − c × (1 − e−δ∗T)/δ
// x is the new value of X(·) just before claim Y arrives
Y ← GenExpon(uj+1, β)
if x > 0 then

X̃ ← x + Y
else

X̃ ← Y

// X̃ is the tentative new value for X(·)
if X ≤ u then

D ← D + T
if X > u and x < u then

done ← 1
θ ← (1/δ) ln((δX + c)/(δU + c))
sumT ← sumT+θ

else
sumT ← sumT +T

j ← j + 2

X ← X̃
return(D,sumT)

Fig. 7.8 Pseudocode describing how to estimate the ruin probability ψu based on the
regenerative approach.

In Table 7.2, we give results comparing the performance of Monte Carlo
(n = 1024), randomly shifted Korobov lattices (n = 1021, a = 76), and
randomly digitally shifted polynomial Korobov lattices — with n = 1024,
the same construction as the one used in Table 7.1 — for the estimator based
on regenerative simulation, as done in [458]. Similar results and additional
ones, including the importance sampling approach of [13] mentioned at the
beginning of the example, are compared for both Monte Carlo and quasi–
Monte Carlo in [281].

What we see in Table 7.2 is that both randomized quasi–Monte Carlo
methods perform better than Monte Carlo, the half-width of the 95% con-
fidence interval being reduced by factors between 1.6 and 2.4 when using a
polynomial Korobov lattice instead of Monte Carlo.

7.3 Randomized quasi–Monte Carlo methods in finance 269

Table 7.2 Results for the ruin probability estimation problem using the regenerative
method based on n ≈ 1021 and m = 25. Shown are the probability estimate μ̂ and the
corresponding 95% confidence interval half-width (HW).

u = 0 u = 10

μ̂ HW μ̂ HW

MC 0.8419 4.70e−3 0.0377 1.11e−3
Kor 0.8399 3.04e−3 0.0390 9.34e−4
pKor 0.8410 1.92e−3 0.0382 6.98e−4

Valuation of mortgage-backed securities

This problem has been used by several researchers to test the performance
of quasi–Monte Carlo methods for high-dimensional finance problems [4, 51,
56, 278, 348, 375]. For this reason, we believe that our discussion of the use
of quasi–Monte Carlo methods in finance would be incomplete without a
description of this problem.

Here the goal is to evaluate the time-0 value of the cash flow received by
the holder of a mortgage-backed security, which is a product that banks sell
to investors and in which the cash flows come from the payments made by
mortgage holders.∗

This type of product can become quite complex depending on how the
bank pools the mortgages and distributes the cash flows. The problem de-
scription used in [51, 348] keeps things simple and assumes that the only
source of uncertainty when valuing such cash flows is the interest rate. More
precisely and following [51], the problem here is to estimate an expectation
of the form

M0 = E

(
M∑
l=1

vlcl

)
,

which represents the time-0 value of this contract. Here vl is the discount
factor for month l and cl is the cash flow for month l. Both of these quantities
depend on the interest rate process in the following way. Let il be the interest
rate for month l. As in [51], we use the interest rate model

il = K0e
ξlil−1, l ≥ 1,

where ξl ∼ N(0, σ2). Then

∗ These products have received a lot of attention recently because of their role in the
mortgage crisis in the United States.

270 7 Financial Applications

vl =
l−1∏
k=0

(1 + ik)−1

and
cl = crl((1 − wl) + wlfl),

where

c = monthly mortgage payment,
wl = fraction of remaining mortgages prepaying in month l

= K1 +K2 arctan(K3 × il +K4),
rl = fraction of remaining mortgages at month l,

=
l−1∏
k=1

(1 − wk),

fl = (remaining annuity at month l)/c

=
M−l∑
k=0

(1 + i0)−k.

Therefore the problem is completely specified by the parameters (i0,K0, σ
2)

for the interest rate model and (K1,K2,K3,K4) for the prepayment model.
As in [51], we choose K0 = exp(−σ2/2) so that E(ik) = i0. Hence, overall,
we need to specify (K1,K2,K3,K4, σ, i0).

In [51], two sets of parameters are chosen. The first one is given by

(K1,K2,K3,K4, σ, i0) = (0.01,−0.005, 10, 0.5, 0.02, 0.007)

and is such that the 360-dimensional function f(·) satisfying

M0 =
∫

[0,1)360
f(u)du

is almost linear in its 360 inputs u1, . . . , us. (This is based on the assumption
that the normal random variables ξl are generated by inversion.) The second
choice,

(K1,K2,K3,K4, σ, i0) = (0.04, 0.0222,−1500, 7, 0.02, 0.007),

does not have such a strong linear component. Following [51], they are referred
to as “nearly linear” and “nonlinear”, respectively, in what follows.

Figures 7.9 and 7.10 provide results of experiments made on these two sets
of parameters to compare the performance of different digital sequences on
this problem. Here we chose to study the difference between the original con-
structions of Faure and Halton and improved versions of these sequences, as
discussed in Sect. 5.4.4. We also compare the Sobol’ sequence with well-chosen

7.3 Randomized quasi–Monte Carlo methods in finance 271

initial direction numbers — in our case, they are coming from [279] — and
the naive choice of initializing all of them to one, as is sometimes done in
comparative studies [348]. The generalized Halton sequence used in these ex-
periments comes from [115], while the generalized Faure sequence is based on
current work with H. Faure that is not yet published. All estimators based
on digital sequences are randomly digitally shifted.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

n=number of points

mc
naiveSob
goodSob
Faure
GFaure
Halton
GHalton

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

n=number of points

mc
naiveSob
goodSob
Faure
GFaure
Halton
GHalton

Fig. 7.9 Absolute error (top) and variance (bottom) based on 25 randomizations for the
“nearly linear” case.

In each figure, the top graph shows the absolute error of the approxima-
tion based on m = 25 copies of an estimator based on n simulations, where
n is plotted on the x-axis. To compute the absolute error, we use the ap-
proximations for the real value M0 given in [51], which are 131.78706 and
130.712365, for the nearly linear and nonlinear sets of parameters, respec-
tively. As is typically done when studying this type of problem [51, 348], we
chose to show the absolute error and estimated variance as functions of the
number of points n, shown at every multiple of 2000 between 0 and 100,000.

272 7 Financial Applications

This is especially convenient when comparing digital sequences that have
different bases b. (With only one base b, we could have chosen to restrict
ourselves to values of n that are powers of b.)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

n=number of points

mc
naiveSob
goodSob
Faure
GFaure
Halton
GHalton

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n=number of points

mc
naiveSob
goodSob
Faure
GFaure
Halton
GHalton

Fig. 7.10 Absolute error (top) and variance (bottom) based on 25 randomizations for the
“nonlinear” case.

Looking at Figs. 7.9 and 7.10, we see that there is a clear difference between
the original Faure and Halton sequence and their generalized version, the
latter being much better. The same can be said for the Sobol’ sequence with
or without appropriate direction numbers. In fact, for the nonlinear problem,
the original Faure sequence and the Sobol’ sequence with direction numbers
initialized to one are worse than Monte Carlo.

7.4 Commonly used variance reduction techniques 273

7.4 Commonly used variance reduction techniques

Option pricing has been and continues to be an excellent source of applica-
tions for variance reduction techniques [38, 150, 202, 314]. In this section, we
illustrate with different examples how the variance reduction techniques seen
in Chap. 4 can be used to provide more accurate estimators. We also discuss
a few additional techniques that turned out to be useful in the context of
finance.

7.4.1 Antithetic variates

In the context of option pricing, using antithetic variates amounts to replacing
each realization path of a given underlying asset by a pair of antithetic paths.
The discounted payoff for each path is then computed, and the average of
the two values thus obtained is returned. The idea is that, in an antithetic
pair, if we have one path where the asset’s value has an upward trend, then
the other one will have a downward trend so that the two paths average out
to a behavior closer to what is expected.

In Fig. 7.11, we give pseudocode where antithetic variates are used to
price Asian options. There, we use the fact that Φ−1(1 − u) = −Φ−1(u),
which comes from the symmetry of the normal density function, as discussed
in Chap. 4.

7.4.2 Control variates

This technique has been used quite successfully in finance and was in fact
already discussed in the seminal paper by Boyle [37]. Translated into the
financial context, using control variates means finding a variable related to
the payoff of the option that needs to be priced and for which the expectation
can be computed. For instance, in [215], an Asian option based on a geometric
average is used as a control variate to price the corresponding option on the
arithmetic average. More precisely, let

Ĉg,as,0 =
1
n

n∑
i=1

e−rT max

⎡
⎢⎣0,

⎛
⎝ d∏

j=1

Si(tj)

⎞
⎠

1/d

−K

⎤
⎥⎦ .

Then the control variate estimator for an Asian call option on the arithmetic
average is given by

Ĉas,0 + β̂
(
Cg,as,0 − Ĉg,as,0

)
,

274 7 Financial Applications

AntitAsianCall(Pn, r, σ, S(0), T, d)
sum ← 0
S[0] ← S(0)
S̄[0] ← S(0)

for i = 1 to n
for j = 1 to d

x ← Norm01(ui,j)

S[j] ← S[j − 1]e(r−σ2/2)(T/d)+σx
√

T/d

S̄[j] ← S̄[j − 1]e(r−σ2/2)T/d−σx
√

T/d

temp ← (S[1] + . . . + S[d])/d
if temp > K then

Z ← e−rT (temp − K)
else

Z ← 0
temp2 ← (S̄[1] + . . . + S̄[d])/d

if temp2 > K then
Z̄ ← e−rT (temp2 − K)

else Z̄ ← 0
sum ← sum + 0.5(Z + Z̄)

return sum/n

Fig. 7.11 Using antithetic variates for an Asian call option based on a point set Pn.

where β̂ is computed as in (4.7), with Yi given by the summand in Ĉas,0, as
defined in (7.9), Ci given by the summand in Ĉg,as,0, μ̂mc by Ĉas,0, and μ̂c

by Ĉg,as,0.
Several other examples where control variates are used in finance can be

found in, for instance, [29, 48] and the references given in [38, 150]. Recent
applications with American options can be found in [34, 101], and novel
approaches for option pricing that allow one to use control variates for which
the expectation is not known are studied in [139, 426].

In Table 7.3, we give numerical results illustrating the performance of
antithetic variates and control variates for the Asian option problem using
the same parameters as in Table 6.5 from Chap. 6. That is, the expiration
time is T = 1 year, s = 32, r = 0.05, σ = 0.3, and S(0) = 50. The label
“QMC” refers to a randomly digitally shifted Sobol’ sequence.

What we see in Table 7.3 is that for this problem the control variate
works very well, reducing the half-width of the 95% confidence interval by
a factor of about 20 or 25 for the Monte Carlo estimator. The reduction
factor brought by the control variate is not as important for the randomized
quasi–Monte Carlo estimator, but whether we use antithetic variates and/or
control variates, the randomized quasi–Monte Carlo estimator always has a
smaller error than that for the corresponding Monte Carlo estimator.

7.4 Commonly used variance reduction techniques 275

Table 7.3 Comparison of naive simulation (MC/QMC) for the Asian call option example
and then for both MC and QMC, the combination with antithetic variates (AV), control
variate (CV), and the pair AV+CV, with n = 1024 and m = 25 repetitions. Given are the
price estimates μ̂ and the corresponding 95% confidence interval half-width (HW).

K = 45 K = 55
μ̂ HW μ̂ HW

MC 7.0854 0.048 2.1403 0.0304
AV 7.0835 0.018 2.1431 0.0188
CV 7.0640 0.0019 2.1229 0.0014

AV+CV 7.0647 0.0014 2.1235 0.0010

QMC 7.0657 0.0063 2.1166 0.0085

AV 7.0645 0.0046 2.1238 0.0047
CV 7.0643 0.0013 2.1238 0.0010

AV+CV 7.0646 0.0008 2.1236 0.0006

7.4.3 Importance sampling

A typical setup under which importance sampling is useful in finance is for
pricing out-of-the-money options. This is because in such cases realization
paths simulated under naive Monte Carlo will most of the time yield zero-
valued payoffs, thus causing the resulting estimator to have a large relative
error. In such cases, importance sampling can be used to change the measure
and generate paths where the final payoff is positive more often. Deciding how
to change the measure is usually nontrivial, but in some cases it is possible to
establish a theoretical justification for a given measure change. An example
of this is given in [146] and works as follows. We rewrite the payoff function in
terms of a vector Z of independent standard normal random variables. That
is, we suppose the goal is to estimate

E(e−rTφ(Z)).

For instance, for an Asian call option, we have

φ(Z) = e−rT max

⎡
⎣0,

1
d

⎛
⎝ d∑

j=1

S(0)e(r−σ2/2)tj+σ
√

Δt(Z1+...+Zj) −K

⎞
⎠
⎤
⎦ .

Importance sampling is then applied by changing the mean of Z from 0 to
some vector θ = (θ1, . . . , θd). The likelihood ratio thus has the form

L(Z) =
exp(−

∑d
j=1 z

2
j /2)

exp(−
∑d

j=1(zj − θj)2/2)

276 7 Financial Applications

= exp

⎛
⎝−

d∑
j=1

zjθj + dθTθ/2

⎞
⎠ .

The vector θ is determined by maximizing the function G(θ) exp(−θTθ/2),
where G(θ) is such that the payoff can be written as φ(Z) = G(Z)1G(Z)≥0.
For instance, for an Asian call option, we have

G(Z) =
1
d

⎛
⎝ d∑

j=1

S(0)e(r−σ2/2)tj+σ
√

Δt(Z1+...+Zj) −K

⎞
⎠.

In Table 7.4, we give some results obtained with the change of measure
above when the parameters are T = 1 year, r = 0.05, S(0) = 50, K = 55,
σ = 0.1, tj = j/16, j = 1, . . . , 16. For each method, we give the estimate
for Cas,0 and the half-width of a 95% confidence interval obtained with 100
repetitions based on 4096 runs each [280].

Table 7.4 Comparison of naive simulation (MC/QMC–Sobol’) and importance sampling
(IS) for the Asian call option based on n = 4096 and m = 100. Shown are the option
estimates μ̂ and half-width (HW) of the corresponding 95% confidence interval.

MC QMC
μ̂ HW μ̂ HW

plain 0.202 1.11e−3 0.202 3.13e−4
IS 0.202 2.76e−4 0.203 1.54e−4

What we see in Table 7.4 is similar to what was observed for the control
variate studied in Table 7.3 in that importance sampling brings a larger
error reduction for Monte Carlo (about 4) than for randomized quasi–Monte
Carlo (about 2), but with or without importance sampling, the latter always
dominates the former.

Another approach for choosing a good importance sampling measure is to
formulate the problem as an optimization one and then use techniques such
as infinitesimal perturbation analysis and stochastic approximation to solve
it [430]. More precisely, the goal is to find an importance sampling measure
P equivalent to the risk-neutral probability measure Q but for which the
corresponding importance sampling estimator has a smaller variance. That
is, consider the importance sampling estimator for a European option price
with payoff H(T) = H(T,S) given by

μ̂is =
1
n

n∑
i=1

(
dQ

dP

)
i

e−rT H̃i(T),

7.4 Commonly used variance reduction techniques 277

where the payoffs H̃1(T), . . . , H̃n(T) are simulated under P and (dQ/dP)i

is the likelihood ratio (or Radon-Nikodym derivative) observed in the ith
simulation. This estimator has a variance

Var(μ̂is) =
1
n

(
EP

((
dQ

dP

)
e−rT H̃i(T)

)2

− V 2
0

)
.

Assume P is parameterized by some variable θ. If we let

ν(θ) = EP

((
dQ

dP

)2

e−2rT (H̃i(T))2
)
, (7.14)

then our goal is to determine the value of θ that solves the optimization
problem

min
θ∈Θ

ν(θ), (7.15)

where Θ = {θ : Pθ is equivalent to Q}. As was shown in [430], this problem
can be simplified by reformulating the expectation in ν(θ) as an expectation
under Q rather than P . That is, we use the fact that

ν(θ) =
∫

Ω

e−2rT (H(T))2
(
dQ

dP

)2

dP

=
∫

Ω

e−2rT (H(T))2
(
dQ

dP

)
dQ

= EQ

(
e−2rT (H(T))2

dQ

dP

)
. (7.16)

The advantage of (7.16) over (7.14) is that under Q the payoff H(T) no
longer depends on θ, and it is therefore easier to apply techniques such as
IPA to solve (7.15) as these techniques require derivation of the term inside
the expectation with respect to θ.

The optimization problem (7.15) can then be solved using stochastic ap-
proximation [133, 234, 385] as follows:

1. Initialize θ0.
2. Iteratively compute

θn+1 = ΠΘ(θn − anĥn)

until some stopping criterion is met, where {an, n ≥ 1} is a sequence of
positive numbers that goes to 0, ĥn is an estimate of the gradient ∇ν(θ) at
θn, and ΠΘ is a projection operator on Θ.

Typically, the sequence {an, n ≥ 1} is chosen so that
∑

n an = ∞ and∑
n a

2
n < ∞, as these conditions are required (along with other conditions)

to guarantee the convergence of the stochastic approximation algorithm. The

278 7 Financial Applications

stopping criterion is met when either n > N1 or anĥn < ε for some prespec-
ified threshold values N1, ε > 0. For instance, in the numerical experiments
reported in [430], the values N1 = 100 and ε = 0.0005 are used.

To get the estimate ĥn, we can use the IPA estimator [133, 144, 150, 192],
which is based on the identity

∂

∂θ
E(Y (θ)) = E

(
∂

∂θ
Y (θ)

)
, (7.17)

which holds under certain continuity conditions and the existence of finite
moments. In our case,

Y (θ) = e−2rT (H(T))2
dQ

dPθ
,

and since the expectation ν(θ) = EQ(Y (θ)) is computed under Q, only the
Radon-Nikodym derivative dQ/dPθ in Y (θ) depends on θ, as mentioned be-
fore. Furthermore, the conditions allowing (7.17) to hold are typically met
for most payoffs [430], and thus in this case we get that

∂

∂θ
E(Y (θ)) = e−2rT (H(T))2

∂

∂θ
(dQ/dPθ).

Example 7.6 illustrates this approach on the Asian call option example as
done in [430].

Example 7.6. Suppose we want to price an Asian call option that is out of
the money under the lognormal model. In that case, we can define Pθ to be
the measure under which

dS(t) = (r + θ)S(t)dt+ σS(t)dW (t),

where W (·) is a standard Brownian motion under Pθ defined as

W (t) = B(t) − θt

and where B(·) is a standard Brownian motion under Q. From Girsanov’s
theorem [350], we know that

dQ

dPθ
= exp−θW (T)−θ2T/2 .

But we wish to use (7.16) rather than (7.14), so it is appropriate to work
with the Q-Brownian motion B(·) instead of W (·), and thus we obtain

dQ

dPθ
= exp−θ(B(T)−θT)−θ2T/2 = exp(−θB(T) + θ2T/2).

Now, we also need to compute

7.4 Commonly used variance reduction techniques 279

∂(dQ/dPθ)
∂θ

= (−B(T) + θT) exp−θB(T)+θ2T/2 .

Hence, an IPA estimator for ĥn can be constructed as

ĥn =
1
N2

N2∑
i=1

e−2rTHi(T)(−Bi(T) + θnT) exp(−θnB
i(T) + θ2

nT/2), (7.18)

where Hi(T) and Bi(T) are respectively the payoff under Q and the terminal
value of the Brownian motion for the ith simulation.

As was discussed in [430], the fact that Hi(T) is simulated under Q im-
plies that the estimator ĥn given in (7.18) will suffer from the same kind of
problems as the original option price estimator. To avoid this drawback, we
can simply perform another change of measure bringing us back to P and
use instead

ĥn =
1
N2

N2∑
i=1

e−2rT (H̃i(T))2(−W i(T) − θnT) exp(−2θnW
i(T) − θ2

nT),

where we wrote everything in terms of the P -Brownian motion W (·). The
factor of 2 in the second exponential comes from the fact that we must mul-
tiply again by dQ/dPθ when going from Q to Pθ. Typically, the number of
simulation runs used to construct ĥn is relatively small. For instance, in [430],
the value N2 = 100 is used.

7.4.4 Conditional Monte Carlo

When the underlying assets follow a multivariate geometric Brownian motion,
the distribution of S(t) given S(0) is known. For more complicated models
such as those discussed in Sect. 7.2, the distribution of S(t) may not be
known, for instance because the volatility is modeled by a stochastic process.
Conditional Monte Carlo can be useful in that context because even if the
distribution of S(t) given S(0) is not known, in some cases the conditional
distribution of S(t) given S(0) and (σ(u), 0 ≤ u ≤ t) is known [199, 476].

More precisely, for models of the form

dS(t) = rS(t)dt+ σ(t)S(t)
(
ρdB1(t) +

√
1 − ρ2dB2(t)

)
,

dσ2(t) = γ(t)dt+ η(t)dB1(t),

we have that
lnS(T)|(σ(u), u ≤ t, S(0)) ∼ N(a, b)

280 7 Financial Applications

with

a = lnS(0)ξ + rT − 1 − ρ2

2

∫ T

0

σ2(t)dt,

b = (1 − ρ2)
∫ T

0

σ2(t)dt,

and where

ξ = exp

(
−ρ2

2

∫ T

0

σ2(t)dt+ ρ

∫ T

0

σ(t)dB1(t)

)
.

Based on this, we have that the price of a plain call option conditional on
the path {B1(t), 0 ≤ t ≤ T} has a closed-form expression similar to the
Black-Scholes-Merton option price (7.4) and is given by

S(0)ξΦ(d̃1) −Ke−rTΦ(d̃2), (7.19)

where

d̃1 =
lnS(0)ξ/K + (r + σ̃2/2)T

σ̃
√
T

,

d̃2 = d̃1 − σ̃
√
T ,

and σ̃2 =
1
T

∫ T

0

σ2(t)dt.

Hence we can apply conditional Monte Carlo by conditioning on {σ(t), 0 ≤
t ≤ T}. However, in practice, we cannot simulate the whole path {σ(t), 0 ≤
t ≤ T} but only a discretized version of it. Hence our conditioning vector is

Z = (σ(t1), . . . , σ(td)),

which means we use the approximations

σ̃2 ≈ 1
T

d∑
j=1

σ2(tj−1)Δj ,

ξ ≈ exp

⎛
⎝−ρ2

2

d∑
j=1

σ2(tj−1)Δj + ρ

d∑
j=1

σ(tj−1)(B1(tj) −B1(tj−1))

⎞
⎠

in the Black-Scholes-Merton–like formula (7.19), where Δj = tj − tj−1.
Summing up, we can use the (approximate) conditional Monte Carlo

estimator

μ̂cmc =
1
n

n∑
i=1

S(0)ξiN(d̃i
1) −Ke−rTN(d̃i

2),

7.4 Commonly used variance reduction techniques 281

where ξi, d̃i
1, and d̃i

2 are calculated based on the ith path {σi(t1), . . . , σi(td)}
for i = 1, . . . , n. Hence, with conditional Monte Carlo, we only need to gen-
erate {σ(tj), j = 1, . . . , d} and not {S(tj), i = 1, . . . , d}.

Table 7.5 gives results comparing Monte Carlo, a randomized Sobol’ point
set, and a randomized polynomial Korobov lattice for the problem of pricing
a plain call option under Heston’s process with or without conditional Monte
Carlo. The parameters for Heston’s process are the same as in Table 7.1.
That is, r = 0, κ = 2, σ(0) = 0.1, θ = 0.01, σv = 0.1, and T = 0.5 year. In
Table 7.5, we experiment with two different values of S(0) and ρ. We see that
in contrast with the control variate and importance sampling applications
seen previously, here conditional Monte Carlo brings a larger reduction of
the 95% confidence interval’s half-width for randomized quasi–Monte Carlo
(reduction factors of 10 and more) than Monte Carlo (reduction factors of
about 2).

Table 7.5 Using conditional Monte Carlo to price a simple call option under Heston’s
process, with n = 1024 and m = 25. Shown are the option price estimates μ̂ and half-
width of the corresponding 95% confidence interval (HW).

ρ = −0.5 ρ = 0.5

S(0) = 90 S(0) = 110 S(0) = 90 S(0) = 110

without CMC

μ̂ HW μ̂ HW μ̂ HW μ̂ HW

MC 0.122 8.39e−3 10.42 1.07e−1 0.288 2.00e−2 10.21 1.08e−1
Sobol’ 0.120 8.33e−3 10.41 1.86e−2 0.287 1.69e−2 10.22 3.64e−2
pKor 0.125 4.70e−3 10.40 1.42e−2 0.291 9.69e−3 10.21 1.08e−2

with CMC

μ̂ HW μ̂ HW μ̂ HW μ̂ HW

MC 0.123 1.26e−3 10.40 4.33e−2 0.291 8.30e−3 10.21 5.10e−2
Sobol’ 0.123 1.59e−4 10.40 4.65e−3 0.287 3.61e−3 10.21 8.06e−3
pKor 0.123 1.13e−4 10.40 2.63e−3 0.289 3.57e−3 10.21 3.98e−3

7.4.5 Common random numbers

A natural setting for this method in finance is for estimating “greeks”, which
are partial derivatives of the option’s value with respect to a parameter. For
instance, for an option whose value at time 0 is denoted by V0 := V0(S(0)),
its delta is given by

282 7 Financial Applications

μd =
∂V0(S(0))
∂S(0)

,

and its gamma is given by the second derivative

μg =
∂2V0(S(0))
∂S(0)2

.

Section 7.6 discusses some of the reasons for studying these quantities.
In some cases, closed-form expressions can be found for these greeks. But

in more complex settings, they must be estimated. In [47], common random
numbers are used within the finite difference method to estimate various
greeks. Using this approach, we can, for example, estimate the delta by

μ̂d =
[V0(S(0) + h) − V0(S(0)]

h

where h is a small quantity; for instance, h = 0.0001. The way common
random numbers are applied here is that the same random numbers are used
to generate paths starting at S(0) and S(0) + h. The use of randomized
quasi–Monte Carlo for such problems is discussed in [283].

7.4.6 Moment-matching methods

These methods have been used in finance, in particular within a method
called empirical martingale simulation [91, 90]. They are based on the idea of
adjusting a given set of underlying variables, after the simulation is done, so
that their empirical mean equals their theoretical expectation. For instance,
suppose we want to estimate an option on one asset for which the prices
S(t1), . . . , S(td) need to be simulated. Using the fact that E(e−rtjS(tj)) =
S(0) for each tj under the risk-neutral measure, we can define a modified
version {S̃1(tj), . . . , S̃n(tj)} of the sample {S1(tj), . . . , Sn(tj)} for each tj as
follows. First, let

Zi(t1) = Si(t1), i = 1, . . . , n,

Z0(t1) =
1
n
e−rt1

n∑
i=1

Zi(t1),

S̃i(t1) = S(0)
Zi(t1)
Z0(t1)

, i = 1, . . . , n.

Then, recursively define, for j = 2, . . . , d,

7.5 American option pricing 283

Zi(tj) = S̃i(tj−1)
Si(tj)
Si(tj−1)

,

Z0(tj) =
1
n
e−rtj

n∑
i=1

Zi(tj),

S̃i(tj) = S(0)
Zi(tj)
Z0(tj)

.

7.5 American option pricing

As mentioned before, European options can only be exercised at expiration
time. While this feature simplifies the task of pricing these contracts, in
practice options can usually be exercised before expiration. Such options are
called American options.

For a while, it was thought that American options could not be priced using
the Monte Carlo method, but since then several techniques based on Monte
Carlo have been proposed, for instance in [53, 134, 298, 48, 169, 387, 481]. A
recent survey can be found in [150, Chap. 8].

Formally, the problem is to estimate

V0(S(0)) = sup
0≤τ≤T

E
(
e−rτH(τ,S)

)
,

where τ is a stopping time that represents the moment when the option is
exercised, thereby resulting in a payoff H(τ,S). Hence this problem qualifies
as an optimal stopping problem.

In what follows, we make the assumption that there is a finite set of equally
spaced exercise times t1, . . . , tb = T where the option can be exercised. Such
options are usually called Bermudan options. As before, we use the notation
Δj = tj − tj−1 for j = 1, . . . , b.

Several methods for pricing American options — including those based on
Monte Carlo — that use this type of discretization first formulate the pricing
problem using dynamic programming. This is a natural idea since for a given
realization path of the underlying process, the first information that can be
extracted is the terminal value of the option, given by H(T,S). Using this,
we can then work our way backward, determining the value at time tj of the
option, given by

Vj(S(tj)) = max(H(tj ,S), Cj(S(tj))) (7.20)

for j = b− 1, . . . , 0, where H(tj ,S) is the exercise value of the option and

Cj(S(tj)) := e−rΔj E(Vj+1(S(tj+1))|Ftj
)

284 7 Financial Applications

is the continuation value of the option, given by the discounted expected
option value at the next exercise time, conditioned on the prices observed so
far. It is also implicit in this definition of the continuation value that we are
conditioning on the event that the option has not been exercised before time
tj . The time-0 value of the option is then given by V0(S(0)).

Hence, to solve the problem based on dynamic programming, we need
to have an estimate for the continuation value. To achieve this with Monte
Carlo, we can first generate n i.i.d. paths {Si(t1), . . . ,Si(tb)}, i = 1, . . . , n.
But then, at time tj , to estimate the continuation value Cj(Si(tj)) for path
i, we only have one path where S(tj+1) is simulated conditioned on S(tj).
If we want to use all paths in our estimate, then paths other than path i
must be weighted accordingly, much like in the construction of an importance
sampling estimator. This stochastic mesh approach is studied in [48].

Another possibility is to use (nonlinear) regression to estimate the contin-
uation value Cj(S(tj)) on each path [53, 298, 452]. The idea here is to think of
the current prices S1(tj), . . . ,Sn(tj) as the independent variables and the op-
tion values at the next time step, given by Vj+1(S1(tj+1)), . . . , Vj+1(Sn(tj+1)),
as the dependent variables. By choosing a basis of M multivariate functions
ψl(xj), l = 0, . . . ,M − 1, where xj is a vector of variables each of which is a
function of the prices observed so far, we can approximate the continuation
value Cj(S(tj)) as

Cj(S(tj)) ≈
M−1∑
l=0

β̂l,jψl(xj),

where β̂l,j is an approximation for the regression coefficient βl,j . That is,

(β̂0,j , . . . , β̂M−1,j)T = (ΨT
j Ψj)−1ΨT

j (y1, . . . , yn)T, j = 1, . . . , b,

where yi = e−rΔjVj+1(Si(tj+1)), and the element on the ith row and lth
column of Ψj is given by ψl(xi

j) for i = 1, . . . , n, l = 0, . . . ,M − 1.
When applying this type of method, one needs to decide (i) which poly-

nomials to use; (ii) how to define x; (iii) whether to include all paths or not
when estimating the regression coefficients βl,j ; and (iv) whether the regres-
sion coefficients should be estimated beforehand or if everything should be
done using the same set of n paths. In [298], it is suggested for (iii) to keep
only the paths that are in the money at each time tj . That is, we only keep the
paths for which the payoff H(tj ,Si) is positive. However, other authors have
found that this approach was sometimes less accurate than the one where all
paths are used [150]. As for (iv), an advantage of precomputing the regression
coefficients β̂l,j for l = 0, . . . ,M − 1 and j = 1, . . . , b is that when a second
set of simulation runs is performed, the resulting estimator is based on an
average of i.i.d. discounted payoffs when using Monte Carlo simulation. This
is not the case if everything is done using the same paths because then the
β̂j,l introduce dependence across the discounted payoffs that form the esti-
mator. As for (i) and (ii), for a plain put option, one can sometimes simply

7.5 American option pricing 285

take xj = xj = S(tj) and use the first few powers 1, xj , . . . , x
M−1
j of xj as

basis functions. For more complicated payoffs, there are several possibilities.
For instance, in [298], the authors suggest taking

x = (S(tj), (S(t1) + . . .+ S(tj))/j)

for an American-Asian option and then the eight basis functions

ν0(1), ν1(x1), ν2(x1), ν1(x2), ν2(x2), ν1(x1)ν1(x2), ν1(x1)ν2(x2), ν2(x1)ν1(x2),

where νl(x) is a (weighted) Laguerre polynomial of degree l satisfying

ν0(x) = 1, ν1(x) = e−x/2, ν2(x) = e−x/2(1 − x).

Once we have a way of estimating the continuation value, an estimate of
the American option’s price at time 0 can be obtained by simulating n paths
and estimating in a backward recursive way the optimal exercise time on
each path. This is the least-squares Monte Carlo approach of Longstaff and
Schwartz [298]. The code in Fig. 7.12 describes this approach in detail. There,
we assume that the regression coefficients have been precomputed.

LeastSquaresMC(Pn, β)
for i ← 1 to n

t∗(i) ← T

generate Si(t1), . . . ,Si(tb) based on ui

for j ← b − 1 downto 1
for i ← 1 to n

Ci
j ←

∑M−1
l=0 β̂l,jψl(x

i
j)

if H(tj ,Si) > Ci
j then

t∗(i) ← tj
return 1

n

∑n
i=1 e−rt∗(i)H(t∗(i),Si)

Fig. 7.12 Pseudocode describing least-squares Monte Carlo with paths generated by a
point set Pn.

The estimator returned by this type of method is low-biased — that is,
the bias is negative — since it uses for each path an estimate of the optimal
exercise time, hence resulting in a possibly suboptimal exercise policy that
causes the option to be undervalued. It can be shown that as the number of
simulation paths n and the number of basis functions M go to infinity, the
bias of the estimator goes to 0 [59]. But for finite n and M , there is a bias and
so typically it is of interest to use another approximation that is high-biased,
so that we can have a lower bound and an upper bound on the true price.

The stochastic mesh approach of Broadie and Glasserman [48] mentioned
above produces a high-biased estimator. It can be coupled with variance

286 7 Financial Applications

reduction techniques and quasi–Monte Carlo methods to produce accurate
bounds [39, 48].

Another family of methods that produce high-biased estimators are the
dual pricing methods introduced independently in [387] and [169]. Our pre-
sentation here follows [387] and [150]. Dual approaches rely on an important
result that states that the American option pricing problem can be written
as

V0(S(0)) = inf
M(·)∈H1

0

E
(

sup
0≤t≤T

(e−rtH(t,S) −M(t))
)
, (7.21)

where H1
0 is the set of all martingales M(·) for which E(sup0≤t≤T |Mt|) <∞

and such that M(0) = 0. Based on (7.21), for a given martingale M(·) ∈ H1
0,

the quantity

E
(

sup
0≤t≤T

(e−rtH(t,S) −M(t))
)

(7.22)

gives us an upper bound on the American option’s price V0(S(0)). If we let
M∗ be the martingale that achieves the infimum in (7.21), then the goal is
to find a good approximation for M∗ so as to obtain an upper bound that is
close to the true value V0(S(0)).

The dual formulation (7.21) has an interesting interpretation, which is
to view the process M(·) as the discounted value of a trading strategy for
the option. The quantity inside the expectation then represents the largest
possible loss that could be produced by this strategy. That is, if an investor
sells the American option and enters the trading strategy described by M(·),
then in the worst case he or she loses sup0≤t≤T e

−rtH(t,S)−M(t) (value at
time 0). The price of the option must then be given by the smallest possible
value that this discounted worst-case loss can take, where the optimization
is done over all trading strategies.

Going back to the problem of identifying a martingale M that can be used
to construct the upper bound (7.22), here we discuss one possible approach,
following the presentation in [150, pp. 474–475]. The main idea is to define
the discrete-time martingale M = {Mj , j = 0, . . . , b}, where

Mj = D1 + . . .+Dj

and Dj is the difference

Dj = e−rΔjVj(S(tj)) − Cj−1(S(tj−1)). (7.23)

Since by definition

Cj−1(S(tj−1)) = E(e−rΔjVj(S(tj))|S(tj−1)),

we have that E(Dj) = 0 and M is indeed a martingale. In fact, it can be
shown that this martingale is the discretized version of the martingale that
solves the optimization problem (7.21). However, the exact continuation value

7.5 American option pricing 287

usually is not known in practice. Furthermore, if we replace Vj(S(tj)) and
Cj−1(S(tj−1)) by estimates in (7.23), then the difference may not have a
zero expectation, and therefore this simulated version of M may not be a
martingale.

An alternative approach is to define

D̂j = e−rΔj (V̂j(S(tj)) − E(V̂j(S(tj))|Ftj−1)), (7.24)

where
V̂j(S(tj)) = max(H(tj ,S), Ĉj(S(tj)))

and the estimated continuation value Ĉj(S(tj)) can be obtained by regression,
as in the least-squares Monte Carlo approach of Longstaff and Schwartz.
The second term E(V̂j(S(tj))|Ftj−1) can be estimated using an inner set of
simulations of the prices S(tj) given S(tj−1). Figure 7.13 gives pseudocode
for computing the dual estimator in this fashion. Note that, depending on
the choice of basis functions and variables x, it might be possible to compute
exactly the expectation in (7.24) [150].

DualApproach(Pn, β)
for i ← 1 to n

M [i, 0] ← 0 // ith simulated martingale
generate Si(t1), . . . ,Si(tb) based on ui

V̂ i
b ← Hi

b
for p ← 1 to N

generate S̃p(tb) given Si(tb−1)

Ṽ p
b ← H̃p

b

D̂[i, b] ← e−rΔb(V̂ i
b − 1

N

∑N
p=1 Ṽ p

b)

for j = b − 1 downto 1

Ci
j ←

∑M
l=0 β̂l,jψl(x

i
j)

V̂ i
j ← max(Hi

j , Ci
j)

for p = 1 to N

generate S̃p(tj) given Si(tj−1)

C̃p
j ←

∑M−1
l=0 β̂l,jψl(x̃

p
j)

Ṽ p
j ← max(H̃p

j , C̃p
j)

D̂[i, j] ← e−rΔj (V̂ i
j − 1

N

∑N
p=1 Ṽ p

j)

for j = 1 to b

M [i, j] ← M [i, j − 1] + D̂[i, j]
if (e−rtj Hi

j − M [i, j]) > maxi then

maxi ← e−rtj Hi
j − M [i, j]

return 1
n

∑n
i=1 maxi

Fig. 7.13 Pseudocode describing dual approach based on martingales and approximate
value functions. We assume the regression coefficients have been precomputed, and use the
notation Hi

j = H(tj ,Si(tj)), H̃p
j = H(tj , S̃p(tj)).

288 7 Financial Applications

Table 7.6 gives results using least-squares Monte Carlo on a Bermudan-
Asian option problem that was studied in [298], where T = 2 years and
Δj = 1/100 for j = 1, . . . , 200. The option cannot be exercised during the
first three months of the contract, but the prices observed during that period
enter the average that determines the payoff. In fact, taking 0 to be the
valuation time, the average used to determine the payoff at time 0 ≤ t ≤ T
is taken from time −0.25 years until time t. Thus, in addition to the strike
price K and the initial stock price S(0), we also need to know the average
stock price A from time −0.25 until time 0. In Table 7.6, we fix A = 90,
K = 100, and the stock price is assumed to follow a lognormal model with
volatility σ = 0.2. The risk-free rate is r = 0.06. The regression coefficients
are precomputed using 5000 runs and Monte Carlo.

Table 7.6 Comparison of Monte Carlo and randomized Sobol’ methods for pricing a
Bermudan-Asian option using the (low-biased) least-squares approach with n = 1024 points
and m = 25 repetitions. Shown are the option price estimates μ̂ and half-width of the
corresponding 95% confidence interval (HW).

S(0) = 90 S(0) = 100 S(0) = 110

μ̂ HW μ̂ HW μ̂ HW

MC 3.346 0.101 7.943 0.162 14.532 0.217
QMC 3.341 0.060 7.927 0.054 14.527 0.053

As seen in Table 7.6, in all cases considered, the Sobol’ estimator provides
a more precise estimator, with a reduction of the 95% confidence interval’s
half-width by factors ranging between 1.7 and 4.

7.6 Estimating sensitivities and percentiles

We saw in Sect. 7.4 one way of estimating sensitivities of option prices —
called the greeks — using finite differences and common random variates.
Determining the value of the greeks is an important task in mathematical
finance because, for example, these quantities are required for constructing
portfolios that hedge a given instrument. We illustrate this with a simple
example.

Example 7.7. Suppose an investor sells a call option on a stock and wants
to establish a trading strategy where positions at in the stock and bt in the
riskless investment at time t are continuously monitored and that replicates
the option’s value at any time 0 ≤ t ≤ T . For a European option, the trad-
ing strategy should be self-financing. That is, no money should be added or
withdrawn from the replicating portfolio between time 0 and the expiration

7.6 Estimating sensitivities and percentiles 289

time T . Formulated alternatively, this means that the (continuous) rebal-
ancing of the portfolio should be done at a zero net cost. In this way, the
no-arbitrage argument implies that the time-0 value of the trading strategy
must be equal to the option’s price at time 0. Furthermore, it can be shown
that the number at of shares of stock that should be held at time t is given
by the delta of the option [198]. That is, we should have

at =
∂V (S(t))
∂S(t)

,

where V (S(t)) is the value of the option at time t. Hence the option and the
replicating portfolio not only have the same value at any time t but also the
same delta.

In simple settings, this quantity can be calculated exactly. For example,
for a plain call option under the lognormal model, we have that

∂V (S(t))
∂S(t)

= Φ(d1),

where, as in the Black-Scholes-Merton option pricing formula (7.4),

d1 =
ln(S(t)/K) + (r + σ2/2)(T − t)

σ
√
T − t

.

Now, even when the delta can be computed exactly, in practice it is not
possible to continuously update the portfolio’s composition. If the portfolio is
updated only a discrete number of times, then a discretization error between
the option and the replicating portfolio’s value is introduced, which causes the
rebalancing cost to be larger than zero. Although frequent rebalancing trans-
actions can allow the replicating portfolio’s value to stay relatively close to
the option’s value, the high transaction costs associated with such strategies
are an incentive to choose less frequent rebalancing transactions.

An alternative way of reducing the discretization error caused by a non-
continuous rebalancing is to add more securities in the replicating portfolio
and try to match not only the value and delta of the option but other deriva-
tives as well. A development in multivariate Taylor series can be used to
show how this can help reduce the discretization error [495]. For example,
one might want to add a call option on the same stock but with a different
strike price, so that the gamma of the option, given by the second derivative

∂2

∂S2(t)
V (S(t)),

and the portfolio’s gamma match. To establish such strategies, greeks other
than the delta must thus be computed, which is one reason why it is important

290 7 Financial Applications

to know how to provide good estimators for these quantities when exact
formulas are not available.

As we saw in the example above, under the lognormal model and for a
simple call (or put) option, the greeks can be computed exactly. But for
more complex models and/or option payoffs, this might not be the case. For
such cases, finite differences can be used, as discussed on p. 282. Alternative
approaches are infinitesimal perturbation analysis (IPA — also called pathwise
differentiation) [133, 144, 150, 192] and the likelihood ratio method (LR —
also called the score function method) [133, 152]. We already explained IPA
in the section on importance sampling, but we discuss it again here in the
context of greeks estimation.

Estimating sensitivities using IPA

As we mentioned on p. 278, the idea of IPA is to estimate a quantity of the
form

∂

∂θ
E(Y (θ))

using the estimator
1
n

n∑
i=1

∂

∂θ
Y i(θ).

For this method to work, we need the relation

E
[
∂

∂θ
Y (θ)

]
=

∂

∂θ
E(Y (θ)) (7.25)

to hold, and we need the derivative

∂

∂θ
Y (θ)

to exist almost everywhere. Note that one of the conditions required for (7.25)
to hold is that Y (θ) must be a continuous function of θ.

In the context of option price sensitivities, E(Y (θ)) represents the option’s
price based on the risk-neutral pricing formula (7.3), and thus Y (θ) is the
discounted payoff of the option. Hence, for IPA to be applicable, we need the
payoff to be differentiable (with probability 1) with respect to θ.

We illustrate this approach with the example of estimating delta for an
Asian call option under the lognormal model [150, pp. 389–390].

Example 7.8. Here the goal is to estimate

∂

∂S0
E(v(S0)),

7.6 Estimating sensitivities and percentiles 291

where

v(S0) = e−rT max

⎛
⎝0,

1
d

d∑
j=1

S0e
(r−σ2/2)tj+σB(tj) −K

⎞
⎠.

The function v(S0) is continuous and differentiable almost everywhere —
except in S0 = K — and therefore we can write

∂

∂S0
E(v(S0)) = E

(
∂

∂S0
v(S0)

)
,

where

∂

∂S0
v(S0) =

{
e−rT 1

d

∑d
j=1 e

(r−σ2/2)tj+σB(tj) if v(S0) > 0
0 otherwise.

(7.26)

Note that v(S0) > 0 is equivalent to having

S0 > K

⎛
⎝1
d

d∑
j=1

e(r−σ2/2)tj+σB(tj)

⎞
⎠

−1

.

Since (7.26) still involves a sum of lognormal random variables, no closed-
form expression can be found for E(∂v(S0)/∂S0), and it must therefore be
estimated by simulation. Table 7.7 gives numerical results comparing the
performance of Monte Carlo and randomized quasi–Monte Carlo methods
for this problem.

Estimating sensitivities using LR

The likelihood ratio method can be applied to estimate

∂

∂θ
E(Y (θ))

when θ is a parameter of the pdf of Y ; that is, when Y (θ) = h(X) and
E(Y (θ)) can be written as

∂

∂θ
E(Y (θ)) =

∂

∂θ

∫
Ω

h(X)ϕθ(x)dx,

where ϕθ(x) is the pdf of X. Assuming that the order of the derivative and
integral can be interchanged, we can then write

292 7 Financial Applications

∂

∂θ
E(Y (θ)) =

∫
Ω

h(X)
∂

∂θ
ϕθ(x)dx

=
∫

Ω

h(X)
∂ϕθ(x)/∂θ
ϕθ(x)

ϕθ(x)dx

= E
(
h(X)

∂ϕθ(x)/∂θ
ϕθ(x)

)
.

The LR estimator is then defined as

1
n

n∑
i=1

h(xi)
∂ϕθ(xi)/∂θ
ϕθ(xi)

.

Hence the LR estimator has the same form (up to a constant) as an impor-
tance sampling estimator, if we think of ϕθ as the “new measure” and ∂ϕθ/∂θ
as the “original measure”.

One advantage that the LR estimator has over the IPA estimator is that it
can handle discontinuous payoff functions. However, in settings where both
methods can be applied, the IPA estimator tends to provide estimators with
much smaller variances [133, 150]. This can be seen in Table 7.7.

We illustrate the use of LR for the Asian call option discussed in
Example 7.8.

Example 7.9. Recall that the goal here is to estimate

∂

∂S0
E(v(S0)),

where

v(S0) = e−rT max

⎛
⎝0,

1
d

d∑
j=1

S0e
(r−σ2/2)tj+σB(tj) −K

⎞
⎠ .

To apply LR, we need to rewrite the function v(S0) so that S0 becomes a
parameter of a pdf. This can be done as

v(S0) = e−rT max

⎛
⎝0,

1
d

d∑
j=1

eX1(S0)+X2+...+Xj −K

⎞
⎠ ,

where

X1(S0) ∼ N(lnS0 + (r − σ2/2)t1, σ2Δ1),
Xj ∼ N((r − σ2/2)Δj , σ

2Δj), j = 2, . . . , d,

Δj = tj − tj−1, and thus the variables Xj are independent. Hence, we have

7.6 Estimating sensitivities and percentiles 293

ϕS0(x) =
exp(−(x1 − (lnS0 + r − σ2/2)t1)2/2σ2t1)√

2πσ2t1

×
d∏

j=2

exp(−(xj − (r − σ2/2)Δj)2/2σ2Δj)√
2πσ2Δj

,

and therefore

∂

∂S(0)
ϕS(0)(x) =

(x1 − (lnS(0) + (r − σ2/2)Δ1))
S(0)σ2Δ1

× ϕS(0)(x).

Hence the LR estimator has the form

e−rT

n

n∑
i=1

max

⎛
⎝0,

1
d

d∑
j=1

exi,1+...+xi,j −K

⎞
⎠× (xi,1 − (lnS0 + (r − σ2/2)Δ1))

S(0)σ2Δ1
.

Table 7.7 gives numerical results comparing the performance of Monte Carlo
and a randomized Sobol’ point set for this problem. We use the same param-
eters as in Table 7.3: r = 0.05, σ = 0.3, T = 1 year, S(0) = 50.

Table 7.7 Performance of Monte Carlo and quasi–Monte Carlo for IPA and LR estimators.
Shown are the estimates μ̂ for delta and the half-width of the corresponding confidence
interval (HW) based on n = 1024 and m = 25.

s = 32 s = 64

K = 45 K = 55 K = 45 K = 55

μ̂ HW μ̂ HW μ̂ HW μ̂ HW

IPA

MC 0.771 5.88e−3 0.366 7.55e−3 0.773 4.96e−3 0.364 6.76e−3
Sobol’ 0.775 2.83e−3 0.371 2.86e−3 0.775 2.95e−3 0.365 3.18e−3

LR

MC 0.732 4.64e−2 0.358 2.45e−2 0.742 6.98e−2 0.361 3.82e−2
Sobol’ 0.773 1.09e−2 0.366 1.14e−2 0.769 1.69e−2 0.366 1.73e−2

As expected, the IPA estimators generally have smaller variances than the
LR estimators. The Sobol’ estimators have a confidence interval with an half-
width that is smaller than for Monte Carlo by factors ranging between about
2 and 4.

294 7 Financial Applications

Estimating percentiles, including value-at-risk

In addition to security pricing and sensitivity estimates, another type of prob-
lem in finance is to study the tail behavior of large portfolios. More precisely,
let Πt(S(t)) be the value at time t of a large portfolio containing different
instruments with values depending on S(t), and let Δt be a certain period of
time. We are interested in studying the loss random variable

L(Δt) := Πt(S(t)) −Πt+Δt(S(t+Δt))

of the portfolio over the interval of time [t, t+Δt). Based on this loss variable,
we give three possible risk measures for the portfolio. Note that these risk
measures are typically computed under the actual probability measure rather
than the risk-neutral probability measure.

(1) Fix a level α ∈ (0, 1) and find the smallest value Lα such that

P (L(Δt) > Lα) > α.

The value Lα is the value-at-risk (VaR) of the portfolio at the level α.
(2) Fix a loss value L, and calculate the probability pL = P (L(Δt) > L).

This measures the probability of losing more than L over an interval of
length Δt.

(3) Fix a loss value L, and compute the conditional tail expectation (CTE)
E(L(Δt)|L(Δt) > L).

The value-at-risk is a widely used risk measure. Its importance stems from
the fact that government regulations in several countries require banks to
estimate their value-at-risk on a daily basis [315, Chap. 1]. However, the
value-at-risk has been criticized by certain authors, in particular because it
fails to be a coherent risk measure, as defined in [10]. The conditional tail
expectation — also called TailVaR — is an alternative to value-at-risk that
fulfills the conditions for being a coherent risk measure [10, 478]. This risk
measure has been studied by several researchers in actuarial science (see [46]
and the references therein). In what follows, we focus on estimating the value-
at-risk and the corresponding loss probability pL. Clearly, the techniques used
to perform these estimations could also be used for the TailVaR and other
related risk measures.

Generally speaking, quantile estimation is technically more difficult than
estimating a probability. In addition, if we can estimate pL for several large
values of L, then an estimate of the value-at-risk can be obtained. Hence we
will first discuss the problem of estimating pL and then talk about how the
value-at-risk can be derived.

Estimating the loss probability pL by simulation is hard not only because
it deals with rare events but also because the loss random variable L(Δt)
is typically associated with portfolios that include a large number of options
and derivatives that must all be simulated. It is thus crucial for such problems

7.6 Estimating sensitivities and percentiles 295

to find ways of improving the accuracy of the plain Monte Carlo estimator
of the form

p̂L =
1
n

n∑
i=1

1Li>L,

where the variables Li form an i.i.d. sample of loss observations obtained as

Li := Πt(S(t)) −Πt+Δt(Si(t+Δt)), i = 1, . . . , n,

where the values Si(t+Δt) are distributed conditionally on S(t). Since we are
interested in the tail of the loss distribution, it is natural to use importance
sampling in order to improve the efficiency of the estimator for pL. Although
this idea has been studied by other authors, here we restrict our attention
to the approach proposed by Glasserman, Heidelberger, and Shahabuddin
[147, 148], which is also discussed in [150].

First, to identify the change of measure to be used with importance sam-
pling, a delta-gamma approximation based on the assumption of a market
consisting of normal factors can be used. That is, we make the assumption
that the vector ΔS(t) = S(t + Δt) − S(t) representing the change in the
underlying assets over [t, t + Δt) is normally distributed. The delta-gamma
approximation then consists in writing

L(Δt) ≈ D := −∂Π(S(t), t)
∂t

×Δt−ΔT
Π×ΔS(t)− 1

2
(ΔS(t))TΓΔS(t), (7.27)

where

ΔT
Π =

(
∂

∂S1(t)
Πt(S(t)), . . . ,

∂

∂Sq(t)
Πt(S(t))

)

is the vector of deltas and Γ is a matrix whose element in position (j, l) is
given by the mixed partial derivative

Γj,l =
∂2Π(t)

∂Sj(t)∂Sj(t)
, j, l = 1, . . . , q.

By using an appropriate change of variables, the delta-gamma approxima-
tion D can be rewritten as a function of a vector Z of i.i.d. standard normals
[150, p. 486]. The mechanism used to do that is quite similar to the one de-
scribed in Sect. 2.6 for generating a vector of multinormal random variables.
More precisely, assume ΔS(t) ∼ N(0, Σ). Here, the mean of ΔS(t) is taken
to be zero because typically Δt is small (e.g., one week). Now let C be such
that CCT = Σ. For example, C can be obtained by performing a Cholesky
decomposition of the covariance matrix Σ. Hence, we can write ΔS(t) = CZ,
where Z ∼ N(0, Iq), and the delta-gamma approximation then becomes

D = −∂Π(S(t), t)
∂t

×Δt−ΔT
Π × CZ − 1

2
ZTCTΓCZ.

296 7 Financial Applications

By choosing C appropriately, we can make the matrix (1/2)CTΓC diago-
nal. For example, we can take C = C̃U , where C̃ is obtained by Cholesky
decomposition of Σ and U is the matrix whose columns are formed by the
eigenvectors of (1/2)C̃TΓC̃. We then get

(1/2)CTΓC = (1/2)UTC̃TΓC̃U = (1/2)Λ,

where Λ is the diagonal matrix containing the eigenvalues λ1, . . . , λq of
(1/2)C̃TΓC̃. With this choice of matrix C, we get the delta-gamma approx-
imation

D = −∂Π(S(t), t)
∂t

×Δt−ΔT
Π × CZ − 1

2
ZTΛZ. (7.28)

This rewriting is helpful to derive a closed-form expression for the cumu-
lant generating function G(θ) of D [150, p. 487]. More precisely, using the
formulation (7.28), it can be shown that as long as maxj θλj < 1/2, we have

G(θ) = −θ × ∂

∂t
Π(S(t), t) +

1
2

q∑
j=1

(
θ2b2j

1 − 2θλj
− log(1 − 2θλj)

)
, (7.29)

where the vector (b1, . . . , bq) is given by ΔT
Π × C.

In turn, this can be used to choose an importance sampling measure by
using the following key point: Applying importance sampling by performing
an exponential twisting with parameter θ on the distribution of the delta-
gamma approximation D is equivalent to modifying the mean and covariance
matrix of the underlying multinormal vector Z in (7.28) according to θ [148].
More precisely, it corresponds to using Z ∼ N(μ, Σ̃), where

μj =
θbj

1 − 2λjθ
, j = 1, . . . , q,

and Σ̃ is a diagonal matrix whose jth element is given by (1 − 2λjθ)−1.
Furthermore, the choice of the “twisting parameter” θ can be determined
using the general technique outlined in Chap. 4 on p. 114 since, as we just
saw, under the normality assumption on ΔS(t), we have the closed-form
expression (7.29) for the cumulant generating function of D. Interestingly, the
parameter θ∗L chosen in this way — that is, θ∗L is the solution to G′(θ∗L) = L,
where L is the value for which we want pL — is such that, under the new
twisted measure, we have

Eθ∗
L
(L(Δt)) = L.

Hence, rather than being the 1−pL quantile of the loss distribution, L is now
its expectation.

With this approach, the probability of loss is estimated by an estimator
of the form

7.6 Estimating sensitivities and percentiles 297

p̂L,is =
1
n

n∑
i=1

e−θ∗
LD̃i+G(θ∗

L)1L̃i>L, (7.30)

where the loss L̃i and its corresponding delta-gamma approximation D̃i are
simulated under the new measure, for which Z ∼ N(μ, Σ̃). Figure 7.14 gives
pseudocode for constructing the estimator (7.30), and Table 7.8 gives results
comparing the performance of Monte Carlo and quasi–Monte Carlo for esti-
mating pL with or without importance sampling. The portfolio used is taken
from [147] and consists of a short position in ten call options on ten different
stocks, each with initial value 100, rate of return of 5%, volatility of 0.3, and
strike price of 100. The correlation between each pair of stocks is 0.2. The
options’ expiration time is 0.5, and the time period Δt used is equal to 10
trading days, where it is assumed that there are 250 trading days per year.

As we can see, for the naive estimators (without importance sampling),
the randomized quasi–Monte Carlo estimator based on the Sobol’ sequence
performs better than the Monte Carlo one, reducing the confidence interval’s
half-width by factors between 1.6 and 1.8. When importance sampling is ap-
plied, the improvement is marginal. One reason might be that the change
of measure used is (approximately) optimal for the Monte Carlo estimator
but not necessarily for the quasi–Monte Carlo one. The improvement ob-
tained by using importance sampling is interesting, with reduction factors
ranging between about 3 and 7. It works especially well for the case where
the probability pL of loss is smaller.

ProbLossIS(L, Pn)

obtain C̃ by Cholesky decomposition of Σ

find eigenvalues λ1, . . . , λq of (1/2)C̃TΓC̃

let U be formed with eigenvectors of (1/2)C̃TΓC̃

C ← C̃U
compute the vector of deltas ΔΠ

(b1, . . . , bq) ← ΔT
ΠC

find the solution θ∗L to G
′
(θ) = L

compute μ and Σ̃
for i ← 1 to n

for j ← 1 to q

Zi
j ← μj + Σ̃jjΦ−1(uij)

compute D̃i based on Zi as in (7.28)

L̃i ← Πt(S(t)) − Πt+Δt(S(t) + CZi)

return 1
n

∑n
i=1 exp(−θ∗LD̃i + G(θ∗L))1L̃i>L

Fig. 7.14 Pseudocode for estimating pL with IS.

Similarly, the value-at-risk at the level α can be estimated by

298 7 Financial Applications

Table 7.8 Probability of loss estimates based on n = 1024 and m = 25. Shown are the
estimates p̂L and the corresponding 95% confidence interval half-width.

no IS IS

L = 30.9 L = 41.9 L = 30.9 L = 41.9

p̂L HW p̂L HW p̂L HW p̂L HW

MC 0.0496 1.40e−3 0.010 5.82e−4 0.0496 4.91e−4 0.0099 8.68e−5
Sobol’ 0.0502 7.79e−4 0.050 3.58e−4 0.0500 3.58e−4 0.0100 8.18e−5

L̂α,is = F̂−1
n,is(α) = inf{L : F̂n,is(L) ≥ α}, (7.31)

where

F̂n,is(L) = 1 − 1
n

n∑
i=1

e−θLD̃i+G(θ∗
L)1L̃i>L (7.32)

is an approximation for the CDF of L based on importance sampling. Note
that in order to compute the value-at-risk estimate L̂α,is, we need to de-
termine F̂n,is(L) for a range of values of L. As discussed in [150], the same
change of measure can be used for these different values of L, so that the
same samples {L̃i, i = 1, . . . , n} and {D̃i, i = 1, . . . , n} can be used for all
values of L when constructing the empirical CDF (7.32).

Glynn [154] discusses other ways of constructing an empirical CDF based
on importance sampling which in turn yield alternative ways of estimating
quantiles through (7.31).

Problems

7.1. Show that, as stated on p. 249, if S(t) follows the lognormal model, then
E(S(t)) = S(0)eμt.

7.2. Prove the validity of the formula for C0 given in Example 7.1.

7.3. Prove the validity of the Black-Scholes-Merton–like formula (7.6) for an
Asian call option on the geometric average.

7.4. Consider a rainbow call option on the maximum of two assets that both
have initial value S(0) = 100, σ = 0.2. Assume that the correlation between
the two assets is 0.5, r = 0.05, K = 90, and T = 1. (a) What is the covari-
ance matrix C in this case? (b) Find the Cholesky decomposition of C. (c)
Construct a 95% confidence interval for Cm,0 based on n = 1000 runs.

7.5. Give an expression for E(S(t)) for the variance gamma model discussed
in Sect. 7.2.

Problems 299

7.6. Consider the mortgage-backed security problem discussed in Sect. 7.3.
Implement the Brownian bridge technique for this problem. Compare the
variance of the (randomly digitally shifted) Sobol’ sequence with or without
the Brownian bridge, using n = 8192 points and m = 25 repetitions, for both
the “nearly linear” and “nonlinear” parameter sets.

7.7. Verify if the monotonicity conditions that are sufficient for antithetic
variates to reduce the variance are satisfied for the Asian call option problem.

7.8. Apply antithetic variates to the Monte Carlo method for the “nearly
linear” mortgage-backed security problem using n =10,000. Comment on
the variance reduction obtained. Would you expect to get the same kind of
reduction on the “nonlinear” problem?

7.9. Write a program that can compute the estimator Ĉas,0 for the Asian call
option. (a) Compute a 95% confidence interval for Cas,0 based on n = 1000
runs for S(0) = 50, K = 45, r = 0.05, T = 1, s = 32, and σ = 0.3. (b)
Implement the control variate based on the call option on the geometric
average. Compare the empirical variance (again based on n = 1000 runs)
of the control variate estimator with that of the naive estimator using the
same parameters as in (a). (c) In addition to the control variate described in
(b), use also the terminal price S(T) as a control variate, and compare the
empirical variance (based on n = 1000 runs) with the estimators from (a)
and (b).

7.10. Implement the moment-matching method described in Sect. 7.4.6 to
estimate the Asian call option with the same parameters as in the previous
problem.

7.11. Write a program that can compute the estimator for the plain put
option. (a) Using the parameters S(0) = 50, K = 55, r = 0.05, T = 1, and
σ = 0.2, construct a 95% confidence interval for the time-0 value P0 of the
put option. (b) Construct an importance sampling estimator by changing r
to r = 0.06. (i) What is the likelihood ratio for your estimator. (ii) Construct
a 95% confidence interval for P0 using the importance sampling estimator,
again with n = 1000. (c) Construct a 95% confidence interval for P0 by
instead estimating C0 and using the put-call parity, which says that C0 +
Ke−rT = S(0) + P0. Compare the half-width with that of the naive and IS
estimators.

7.12. Using the same example as in Table 7.7, estimate delta for an Asian
option using finite differences and common random numbers with (i) h = 0.01
and (ii) h = 0.0001.

7.13. Derive expressions for both the IPA and LR estimators in the case of
an Asian put option.

300 7 Financial Applications

7.14. Apply the importance sampling approach described in Sect. 7.6 to es-
timate the conditional tail expectation using the same setup as in Table 7.8.

7.15. Determine the value-at-risk for p = 0.01 using the empirical CDF based
on (i) naive Monte Carlo and (ii) the importance sampling estimator using
the same setup as in Table 7.8.

Chapter 8

Beyond Numerical Integration

In this chapter, we discuss areas of application for quasi–Monte Carlo that
go beyond numerical integration. Taking a step back, we recall that the gen-
eral task discussed in this book is that of sampling. As mentioned before,
we can think of numerical integration as using the produced sample average
to approximate the true mean of the distribution of interest. But sampling
can be used for many other tasks. For example, we briefly discussed per-
centile/quantile estimation in Chaps. 1 and 7.

Here we want to focus on a few important statistical approaches that rely
on random sampling and see how to replace this by quasi-random sampling.
The topics we discuss in this chapter are Markov chain Monte Carlo (MCMC),
sequential Monte Carlo, and computer experiments. A common feature that
the first two topics share is that there is some sort of dynamic updating pro-
cess done on the simulated processes in order to produce a sample from a
complicated distribution, in contrast with the fixed models we have assumed
so far. On the other hand, computer experiments deal with problems where a
very complicated function needs to be studied in order to better understand
a given system. Typically, this function can be evaluated using a computer
program, but the valuation is expensive and therefore needs to be done at
well-chosen sample points. The task of choosing these points falls under the
umbrella of experimental design. As a consequence, the idea of using sampling
methods that are more uniform than random sampling has been studied ex-
tensively in this area. For instance, the method of Latin hypercube sampling,
which we briefly described in Chap. 6, was introduced in the context of com-
puter experiments in [313]. This sampling aspect of computer experiments
offers a first connection with the quasi-random methods discussed in this
text. More generally, the task of evaluating a function’s integral, determining
its most important variables, or constructing a good approximation for it
are of interest in both fields, which is why we thought a brief discussion of
computer experiments would fit well in this last chapter.

In order to better relate the topics discussed in the present chapter with
the stochastic simulation setup used so far, we provide in Table 8.1 a simpli-

C. Lemieux, Monte Carlo and Quasi–Monte Carlo Sampling, 301
Springer Series in Statistics 692, DOI: 10.1007/978-0-387-78165-5 8,
c© Springer Science+Business Media LLC 2009

302 8 Beyond Numerical Integration

fied description that outlines the similarities and differences between these
different topics.

Table 8.1 Overview of the tasks discussed in the current chapter and how they relate to

the ongoing topic of simulation.

Goal: estimate properties of h(X) by sampling

Model: Can draw from the Cannot draw directly X not necessarily
distribution of X, from X; h might be stochastic, but h is

but not from simple. very complicated; need
Y = h(X) directly. well-chosen points X

where h will be evaluated
to better understand h(X).

Method: stochastic simulation MCMC and seq. MC computer experiments

In our treatment of MCMC, we review two quasi–Monte Carlo versions
of Metropolis-Hastings type algorithms that have been proposed recently. In
the first case, successive draws from a quasi-random sample are used at each
time step, while in the second one, quasi-random sampling is used at each
time step to search the state-space for a good “proposal”. We also discuss the
exact (or perfect) sampling algorithm proposed by Propp and Wilson and its
quasi-random versions presented in [70, 71, 287].

Sequential Monte Carlo algorithms can be described as sampling meth-
ods where on-line observations are used to update the sampling process.
They combine ideas from MCMC algorithms and importance sampling to
perform on-line Bayesian inference. Our coverage here will be to give a brief
description of this family of methods and discuss how to replace their random
sampling component by quasi-random sampling.

In our discussion of computer experiments, we first discuss a few pro-
posals for experimental design that naturally lead back to some of the low-
discrepancy point sets described in the previous chapters. We then revisit
the problem of estimating the sensitivity indices of a function in the context
of computer experiments. Our goal here is mostly to establish a few con-
nections between these two fields — computer experiments and quasi–Monte
Carlo integration — that should be useful to researchers working in one of
these fields who are unfamiliar with the work done in the other field.

All the “quasi–Monte Carlo connections” discussed in this chapter are still
at an early stage of study. Our treatment of these topics is meant to give the
reader an overview of a few new and exciting possibilities for quasi–Monte
Carlo sampling that go beyond the integration applications for which it has
been mostly used in the past. Our coverage does not go too far either in
depth or in breadth but will hopefully convince the reader of the wide range
of problems for which quasi–Monte Carlo sampling can be useful.

8.1 Markov Chain Monte Carlo (MCMC) 303

8.1 Markov Chain Monte Carlo (MCMC)

In all the examples seen so far in this book, we have assumed that we were
able to sample from the distributions of interest. For instance, in financial
simulations, to generate Brownian motion paths we simply need to draw
observations from the normal distribution, which can easily be done. How-
ever, there are several applications — especially those involving Bayesian
inference — where it is not possible to directly sample from the distribu-
tion of interest. For such problems, the idea of MCMC is to cleverly choose
a Markov chain whose stationary distribution corresponds to the distribu-
tion from which we want to sample. By running simulations of this Markov
chain for long enough, one can then construct a sample that approximates
the distribution of interest.

A very general way to construct such chains is via what is known as the
Metropolis-Hastings algorithm, which involves the choice of a proposal distri-
bution and then the use of an acceptance-rejection step to converge to the
correct distribution. Details are given in the following section. Another pop-
ular method is Gibbs sampling, which we will not discuss here because it can
be formulated as a special case of Metropolis-Hastings. We refer to [140] for
more details and to [290] for a quasi-random Gibbs sampler.

As mentioned above, the underlying Markov chain needs to be run long
enough to get a good approximation of the distribution of interest. Determin-
ing how long is “long enough” is not obvious, and to circumvent this problem,
Propp and Wilson [380] have proposed a way of simulating Markov chains
using a coupling from the past principle, which allows one to get a sample
that has the exact distribution. This is what we discuss in Sec. 8.1.2.

Before going further, we introduce the notation that will be used in this
section. First, we let π(x) denote the distribution from which we want to
sample, where x ∈ R

d. We let {X0,X1, . . .} be an ergodic Markov chain
whose stationary distribution is given by π(x).

A typical problem for which MCMC is useful is Bayesian inference, where
one has observed data D, unknown parameters θ, and a model specified by a
prior distribution r(θ) and a likelihood distribution l(D|θ). The goal is then
to get information about the posterior distribution, which can be written as

π(θ|D) =
r(θ)l(D|θ)∫
r(θ)l(D|θ)dθ

, (8.1)

using Bayes’ Theorem. So, in this case, x = θ and π(x) = π(θ|D). Because
of the integral in the denominator, it is typically impossible to get a closed-
form expression for the posterior distribution π(θ|D) given in (8.1). But if
we can get a sample from that distribution (or at least from a distribution
that approximates it reasonably well), then we can perform inference and
get, for example, estimates for the expected value of the parameters θ given
D. MCMC is precisely the tool used to produce such samples.

304 8 Beyond Numerical Integration

The general way to use MCMC for inference is to use a burn-in period of
length M , corresponding to observations {xt, t ≤M}, which we assume have
not reached the stationary (or steady-state) distribution, and then approxi-
mate

μ(h) = Eπ(h(X)) =
∫
h(x)π(x)dx

by

μ̂(h) =
1
N

M+N∑
t=M+1

h(xt),

where h is some integrable real-valued function defined over R
d. The idea is

that if M is large enough, then XM+1,XM+2, . . . ,XM+N are dependent but
they each (approximately) follow the stationary distribution π(·). Thus by
the ergodic theorem, μ̂(h) converges to μ(h) almost surely. To get an unbiased
variance estimate, one possible approach is to use a batch means estimator,
where the N observations are grouped into B batches of size N/B. We then
form an approximately independent sample {Y1, . . . , YM} by letting

Yi =
1

N/B

N/B∑
t=1

h(XM+(i−1)N/B+t), i = 1, . . . , B.

Another possibility is to run a number n of chains Xi,0,Xi,1, . . ., for i =
1, . . . , n, and then take

Yi =
1
N

N∑
t=1

h(Xi,M+t).

Sometimes N is chosen equal to 1, so that no time averaging is done, and the
quality of the estimation relies on having a large enough number n of chains.
In what follows, unless otherwise stated, we take M = 0 (i.e., no burn-in
period).

Before explaining the Metropolis-Hastings algorithm, we use a simple ex-
ample taken from [70] to illustrate the use of MCMC.

Example 8.1. Consider a random walk over the integers {1, . . . ,K} with semi-
absorbent barriers. That is, here we have a Markov chain with transition
probabilities

Aij = P (Xt = i|Xt−1 = j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p if 1 ≤ i = j + 1 ≤ K
1 − p if 1 ≤ i = j − 1 ≤ K
p if i = j = K
1 − p if i = j = 1
0 else.

Stated differently, the transition matrix A for this chain is given by

8.1 Markov Chain Monte Carlo (MCMC) 305

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − p 1 − p 0 . . . 0

p 0 1 − p
. . .

0 p 0
. . .

...
. 1 − p

0 0 p p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The stationary distribution of this Markov chain is described by

π(k) = c0

(
p

1 − p

)k

, k = 1, . . . ,K, (8.2)

where c0 is a normalizing constant. (Problem 8.1 asks you to find its value.)
Obviously, in this case one can sample very easily from π. For instance,
using inversion, we can proceed as in Fig. 8.1, where Π(i) =

∑I
i=1 π(i) and

Π(0) = 0.

sample U ∼ U(0, 1)
return I such that Π(I − 1) ≤ U < Π(I + 1)

Fig. 8.1 Using inversion to generate observations from a random walk with semiabsorbent
barriers.

As discussed in Chap. 2, the index I can be found by linear search or
binary search. Using MCMC to generate samples from this distribution does
not make sense in practice, but here is how it would work. First, we need
to choose an initial state x0 and a number N of steps for which we will be
running the chain. The chain can then be generated using a random uniform
vector u = (u1, . . . , uN) as input, as shown in Fig. 8.2.

In contrast with this artificial example, in typical applications we are of-
ten given a description of π that is not defined explicitly as the stationary
distribution of a Markov chain, and thus we have to devise an appropriate
Markov chain to be used in MCMC. A general way to do this is to use the
Metropolis-Hastings algorithm, which we discuss next.

8.1.1 Metropolis-Hastings algorithm

This approach was proposed by Hastings [168] as a generalization to the
Metropolis algorithm given in [319]. More recent descriptions can be found,
for example, in the texts [140, 386]. It relies on the choice of a proposal distri-
bution used to draw a candidate for the next observation of the chain given

306 8 Beyond Numerical Integration

MCMC(x0, K, p; u1, . . . , uN)
for t = 1 to N

if ut < p then
if xt−1 < K then

xt ← xt−1 + 1
else

xt ← xt−1

else
if xt−1 > 1 then

xt ← xt−1 − 1
else

xt ← xt−1

Fig. 8.2 Simulating a random walk with semiabsorbent barriers over {1, . . . , K}.

the current state. The candidate is then accepted with a certain probability.
More precisely, let q(·|x) be the proposal distribution. For a candidate Y
generated according to q(Y|Xt), it is accepted with probability

α(Xt,Y) = min
(

1,
π(Y)q(Xt|Y)
π(Xt)q(Y|Xt)

)
.

Hence this acceptance probability requires being able to evaluate — at least
up to a constant — the target distribution π(·).

We illustrate the idea with the following example.

Example 8.2. Consider the random walk with semiabsorbent barriers from
Example 8.1. Assume that we are limited in the type of random walk that
we can simulate and only have the choice of simulating a symmetric walk.
The symmetric random walk can then be used as the proposal distribution
within the Metropolis-Hastings algorithm. In that case, we have

α(Xt, Y) =

⎧⎨
⎩

min
(
1, 1/2

p (p
1−p)Y −Xt

)
if Y = Xt + 1 or Y = Xt = K

min
(
1, 1/2

1−p (p
1−p)Y −Xt

)
if Y = Xt − 1 or Y = Xt = 1.

Clearly, if p = 1/2, then the proposal distribution coincides with the true
one, α(Xt, Y) = 1, and a proposal is always accepted. If p > 1/2, then a
“right move” — where Xt = Xt−1 + 1 — is always accepted, while a left one
is accepted with probability 1/2p < 1. This makes sense since the chain used
as a proposal is not making enough right moves compared with the true one.
Conversely, if p < 1/2, then a left move is always accepted, while a right one
is accepted only with probability 1/(2(1 − p)).

To prove that the Markov chain produced by the Metropolis-Hastings algo-
rithm has the correct stationary distribution, we need to look at its transition

8.1 Markov Chain Monte Carlo (MCMC) 307

probability, which satisfies

φ(Xt+1|Xt) = φ(Xt+1|Xt, accept)P (accept) + φ(Xt+1|Xt, reject)P (reject)

=
{
q(Xt+1|Xt)α(xt,Xt+1) if Xt+1 �= Xt(
1 −
∫
q(y|Xt)α(Xt,y)dy

)
if Xt+1 = Xt.

(8.3)

We also use the fact that, by definition of α(Xt,Xt+1), if π(Y)q(Xt|Y) <
π(Xt)q(Y|Xt), then

α(Xt,Y) =
π(Y)q(Xt|Y)
π(Xt)q(Y|Xt)

and α(Y,Xt) = 1.

Therefore, in this case,

α(Xt,Y)π(Xt)q(Y|Xt) = α(Y,Xt)π(Y)q(Xt|Y). (8.4)

This equality also holds if π(Y)q(Xt|Y) ≥ π(Xt)q(Y|Xt). Combining (8.3)
and (8.4), we get the detailed balance equation/condition

π(Xt)φ(Xt+1|Xt) = π(Xt+1)φ(Xt|Xt+1). (8.5)

If we integrate on both sides of (8.5) with respect to Xt, then we get
∫
π(Xt)φ(Xt+1|Xt)dXt = π(Xt+1).

This equation says that if Xt is distributed according to π(·), then the Markov
chain used in the algorithm produces a state Xt+1 at time t + 1 that is
also distributed according to π(·). Hence the stationary distribution of the
chain produced by this algorithm is indeed π. In the case of a continuous
distribution π(·), a bit more is needed to prove that the chain’s distribution
will actually converge to π(·). We refer the reader to [386, Sect. 7.3] for more
information.

To describe the Metropolis-Hastings algorithm in more detail, we assume
there is a function gx : [0, 1)d → R

d such that if u ∼ U([0, 1)d), then y =
gx(u) ∼ q(y|x). Using this notation, we give in Fig. 8.3 pseudocode describing
how to produce N steps of the Metropolis-Hastings algorithm based on an
input vector u of dimension s = N(d+ 1).

A quasi–Monte Carlo version of this algorithm has been proposed by Owen
and Tribble [368]. It uses the concept of a completely uniformly distributed
sequence, which is reviewed in [288] but goes back to papers by Korobov in
the early 1950s.

Definition 8.3. A sequence u1, u2, . . . ∈ [0, 1] is completely uniformly dis-
tributed (CUD) if, for every integer d ≥ 1, the points ui = (ui, . . . , ui+d−1)
satisfy

lim
n→∞

D∗(Pn) = 0,

308 8 Beyond Numerical Integration

MH(u1, . . . , uN(d+1))

Initialize x0

for t = 1 to N
l = (t − 1)(d + 1)
Y ← gxt−1(ul+1, . . . , ul+d)

if ul+d+1 ≤ α(xt−1,y) then
xt ← y

else
xt ← xt−1

Fig. 8.3 Pseudocode describing the Metropolis-Hastings algorithm.

where Pn = {u1, . . . ,un} andD∗(·) is the star discrepancy defined in Chap. 5.

Note the similarity between the construction Pn used in that definition
and the recurrence-based point sets discussed in Chap. 5. In both cases,
we construct a multidimensional point set by taking overlapping tuples of a
sequence u1, u2, . . . of numbers in [0, 1]. The latter case can be viewed as a
finite-n version of the above in the sense that we consider a sequence u1, u2, . . .
that is periodic with period n and thus contains at most n different values.
Hence it can only approximately satisfy the CUD definition. It should also be
noted that if the points ui are defined by using nonoverlapping (or partially
overlapping) tuples, then the star discrepancy of these points still goes to 0
with n if the sequence u1, u2, . . . is CUD [368, Lemma 1].

The quasi–Monte Carlo Metropolis algorithm proposed by Owen and Trib-
ble consists of using the first N(d + 1) elements of a CUD sequence in the
Metropolis-Hastings algorithm described in Fig. 8.3. Owen and Tribble show
that, for chains defined over a finite state-space Ω and under some additional
conditions, we have

p̂n(ω) :=
1
n

n∑
t=1

1Xt=ω → π(ω) as n→ ∞ for each ω ∈ Ω.

In other words, the observations X1,X2, . . . output by the algorithm are such
that the corresponding empirical probability distribution p̂n converges to the
desired one.

In their numerical experiments, Owen and Tribble use approximate CUD
sequences based on small LCGs, to which a random shift is added. They
effectively use overlapping s-tuples to construct Pn, although they arrange
the points in a different order. That is, for an LCG of maximal period of the
form

xi = axi−1 mod n, ui = xi/n i ≥ 1,

8.1 Markov Chain Monte Carlo (MCMC) 309

and in the case s = d+ 1 = 2, they form the sequence

0, 0, u1, u2, . . . , un−1, u2, u3, . . . , un−1, un, 0, 0, . . . ,

add to it (modulo 1) the sequence

v1, v2, v1, v2, v1, . . . ,

where v1, v2 are i.i.d. U(0, 1), and then take the n nonoverlapping pairs of
this sequence of period 2n. This amounts to using the n points of a randomly
shifted Korobov lattice point set based on the generator a but in an order
different from the one given by

ui =
(
i− 1
n

(1, a) + (v1, v2)
)

mod 1, i = 1, . . . , n,

and different from the order induced by the LCG within the recurrence-based
point set definition, which is given by

ui =
(

1
n

(ai−1 mod n, ai mod n) + (v1, v2)
)

mod 1. (8.6)

Based on the definition (8.6), they instead use the sequence of points

(0, 0),u1,u3, . . . ,un−2,u2,u4, . . . ,un−1.

A second quasi–Monte Carlo adaptation of the Metropolis-Hastings al-
gorithm has been proposed in [69]. There, the low-discrepancy sampling is
applied in a very different way. It is used to replace the local independent
sampling performed within the multiple-try Metropolis algorithm proposed
in [295]. This algorithm consists in replacing the single trial Yt+1 done at
each time step in the Metropolis algorithm by a set of r independent trials
{Yt+1,1, . . . ,Yt+1,r}. One of these trials y is then selected with a probability
proportional to its associated weight function, given by

w(y,xt) = π(y)q(xt|y)λ(xt,y),

where λ(·, ·) is a symmetric function to be chosen. The selected proposal y is
accepted with a certain probability p, which must be determined so that the
detailed balance condition is preserved. To do so, it is necessary to augment
the current state Xt = x with a set of r−1 states whose distribution depends
on y. More precisely, once y is chosen, we must draw x∗

1, . . . ,x
∗
r−1 according

to q(·|y), let x∗
r = x, and define the (generalized) acceptance probability

to be

p = min
{

1,
w(yt+1,1,x) + . . .+ w(yt+1,r,x)

w(x∗
1,y) + . . .+ w(x∗

r ,y)

}
.

310 8 Beyond Numerical Integration

The idea explored in [69] is to replace at each time step the independent
sampling used to generate the trials {Yt+1,1, . . . ,Yt+1,r} by correlated sam-
pling based on some conditional joint density function q̃(y1, . . . ,yr|x) whose
marginals are precisely given by q(y|x). One way of getting this conditional
joint density function is to choose a randomized low-discrepancy point set
Pr = {ũ1, . . . , ũr} of size r and then generate the sample of trials using

y1 = gx(ũ1), . . . ,yr = gx(ũr).

That is, the structure of the point set Pr is used to induce correlation among
the trials. The decision to accept or reject y is still based on a randomly
and uniformly drawn number U . It is shown in [69] that the augmented
sample x∗

1, . . . ,x
∗
r−1 for the current state x must be generated according to

the conditional density q̃((x1, . . . ,xr−1|y)|xr) when this type of correlated
sampling is used, so that the detailed balance condition is preserved. When
Pr is constructed by taking a deterministic point set {u1, . . . ,ur} and adding
a shift v — by addition modulo 1 or digitally — then it suffices to determine
the vector w ∈ [0, 1)s such that x = gy(w), and then let

xi = gy(ui+1 ⊕ w), i = 1, . . . , r − 1,

where we assume u1 = 0, and ⊕ corresponds to the operation used to ran-
domize the point set. Hence this form of correlated sampling, based on a
low-discrepancy point set, lends itself quite well to this adaptation of the
multiple-try Metropolis algorithm.

8.1.2 Exact sampling

As we mentioned before, with MCMC, one needs to simulate the chosen
Markov chain for a sufficiently large number of steps in order to get samples
that are close enough to the desired distribution π(·). Although tests can be
done to determine whether we have run the chain for a large enough number
of steps (see, for example, [140, Chaps. 3 and 7]), there is something a bit
unsatisfying about the fact that this approach does not produce samples that
have exactly the desired distribution.

As an alternative to this type of sampling (sometimes called forward sam-
pling), Propp and Wilson introduced in 1996 a method called exact sampling
(also called perfect sampling), which removes the problem of determining
for how many steps the chain should be run and produces samples with the
correct distribution π(·). The idea is to simulate several chains in parallel
and use coupling from the past. That is, the chains are simulated from some
time −t until time 0, with t increased until we go back far enough in time to
observe a single common state for all chains at time 0.

8.1 Markov Chain Monte Carlo (MCMC) 311

To describe this idea in more detail, we assume for now that the Markov
chain to be simulated has a finite state-space Ω = {ω1, . . . , ωK}, and a transi-
tion probability q(y|x), for x,y ∈ Ω. As before, we assume that there exists
a function gx : [0, 1)d → Ω such that if u ∼ U([0, 1)d), then gx(u) is dis-
tributed according to q(·|x). The algorithm as described in [380] also makes
use of maps defined as follows. Assume we start K chains at time t ≤ 0,
with one chain starting in each of the K states of Ω. Then we get K paths
from time t to time 0 and let the lth path be denoted Xl

t,X
l
t+1, . . . ,X

l
0. For

t ≤ v ≤ 0, define the map F v
t : Ω → Ω so that F v

t (ωl) = Xl
v. That is, F v

t

takes as input the initial position of a path at time t and outputs its position
at time v. The notation ft is used to denote the one-step map F t+1

t that de-
termines what happens at time t. This notation is convenient to explain the
idea of the coupling from the past approach, which amounts to decreasing t
until the map F 0

t becomes a constant map. Figure 8.4 describes in detail the
approach of Propp and Wilson, as explained in [380].

ExactSim(u1, u2, . . .)
t = 0
F 0

t ← IK (the identity map over {ω1, . . . , ωK})
repeat

t ← t − 1
for l = 1 to K

ft(ωl) ← gωl (u−(t+1)d+1, . . . , u−(t+1)d+d)

F 0
t ← F 0

t+1 ◦ ft

until F 0
t is constant

return x ← F 0
t (ω1)

Fig. 8.4 Exact sampling algorithm proposed by Propp and Wilson.

Because ultimately our goal is to see how quasi–Monte Carlo sampling can
be used within this algorithm, it is important to understand how randomness
is used here. As Fig. 8.4 shows, the same random input u = (u1, u2, . . .) is
used for all K chains, and also the same d-dimensional portion,

(u−(t+1)d+1, . . . , u−(t+1)d+d),

of that point u is reused at time t every time we go through the repeat loop.
The last thing to point out is that since the value of t that will cause all
chains to coalesce by time 0 is unknown and unbounded a priori, the total
number d×(−t) of uniform numbers required to perform the algorithm above
is random. Hence, exact sampling requires constructions that can handle an
unbounded dimension.

312 8 Beyond Numerical Integration

The idea of using correlated sampling within the algorithm of Propp and
Wilson was first studied in [70, 71]. A quasi–Monte Carlo version of this
algorithm was proposed in [287], and further improvements based on the
array-RQMC method discussed in Chap. 6 were proposed in [270].

The quasi–Monte Carlo exact sampling proposed in [287] is implemented
by first choosing a randomized low-discrepancy point set Pn suitable for deal-
ing with infinite dimensions. Then, each point ui ∈ Pn is used as the input
to the algorithm ExactSim() described in Fig. 8.4. We thus obtained a sam-
ple x1, . . . ,xn, where each xi has the desired distribution π(·). The whole
process can then be repeated using independent randomizations. Numerical
experiments reported in [287] show that the samples thus obtained produce
approximations

1
n

n∑
i=1

h(xi)

for Eπ(h(X)) having less variance than random exact sampling for simple
functions h. Examples with continuous state-spaces where exact sampling is
applied to Metropolis-Hastings algorithms as in [63] are also given. In this
case, the quasi–Monte Carlo versions reduce the variance by factors up to 30
compared with Monte Carlo.

8.2 Sequential Monte Carlo

A very good introduction to sequential Monte Carlo can be found in [87].
Our treatment and notation follow this reference. Sequential Monte Carlo
can be used to perform Bayesian inference when the data are accumulated
sequentially rather than being given a priori. Hence, inference is performed
on-line, with posterior distributions being updated sequentially.

More precisely, here we assume we have an unobserved Markov process
{Xt, t = 0, 1, . . .} with Xt ∈ Ω, initial distribution p0(X0), and transition
function q(Xt|Xt−1). We also have an observation process {Yt, t = 1, 2, . . .}
with Yt ∈ Y, where the observations Y1, . . . ,Yt are conditionally indepen-
dent given the states X1, . . . ,Xt. In addition, we assume a model for Yt given
Xt described by a density function r(yt|xt).

We use the notation x0:t and y1:t to denote the sequences {x0, . . . ,xt} and
{y1, . . . ,yt}, respectively.

The goal is to estimate the posterior distribution π(x0:t|y1:t), expectation
of various quantities under that distribution, and also the marginal distribu-
tion pt(xt|y1:t) at time t, which is called the filtering distribution.

If the model is such that

Xt = AXt−1 +Gat,

Yt = HXt + bt,

8.2 Sequential Monte Carlo 313

where A, G, and H are matrices and the at,bt are independent standard
multinormal, then one can use the Kalman filter [167, 210] to obtain the exact
updated mean and covariance of the posterior distribution. Other types of
models also admit analytical solutions, for example when together (Xt,Yt)
model a partially observed Markov chain, in which case one can use the
hidden Markov model filter.

Typically, more complex models are used to represent practical applica-
tions, and in such cases it is not possible to obtain analytical expressions for
the posterior distribution of interest. Sequential Monte Carlo is meant to be
used in such cases. It is based on the idea of generating a set of weighted
particles {(wi,xi,0:t), i = 1, . . . , n}, where the weights wi add up to 1. The in-
formation obtained by observing y1,y2, . . . is then incorporated sequentially
to update the simulation model. The weights are chosen so that the estimator

n∑
i=1

wih(xi,0:t) (8.7)

can be used to approximate expectations of the form

Eπ(h(x0:t)), (8.8)

where h(·) is some integrable function. The purpose of the weights is that
in most cases the particles that are generated do not have the correct dis-
tribution π(x0:t|y1:t). In such cases, properly chosen weights can be used to
produce unbiased (or at least consistent) estimators for (8.8). This is similar
to the approach used in importance sampling, with the likelihood ratio acting
as a weight in the setting above.

In sequential Monte Carlo methods, most of the time the correct weights
— the ones that would make sure (8.7) is an unbiased estimator of (8.8) —
are usually known only up to a constant. If we denote them by w̃i, then the
correct (normalized) weights are given by

wi =
w̃i∑n
i=1 w̃i

.

This is similar to the weighted importance sampling approach discussed in
Chap. 4. The following definition, taken from [294], describes a property that
such weights should have.

Definition 8.4 ([294]). A set of random draws and weights {(wi,xi), i =
1, 2 . . .} is said to be properly weighted with respect to the distribution π if,
for any integrable function h, we have

lim
n→∞

∑n
i=1 wih(xi)∑n

i=1 wi
= Eπ(h(X)).

314 8 Beyond Numerical Integration

We now turn to the sequential nature of the algorithms under study in
this section. As a first step, we apply Bayes’ Theorem and write

π(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫

p(y1:t|x0:t)p(x0:t)dx0:t
, (8.9)

where we use the same notation p(·) to denote various densities, the argu-
ments inside the parentheses specifying which variables we are considering.
Note that the denominator in (8.9) is equal to p(y1:t), which typically cannot
be computed in closed form.

We can then derive

π(x0:t+1|y1:t+1) =
p(y1:t+1|x0:t+1)p(x0:t+1)∫

p(y1:t+1|x0:t+1)p(x0:t+1)dx0:t+1

=
p(y1:t|x0:t)r(yt+1|xt+1)p(x0:t)q(xt+1|xt)

p(y1:t+1)

=
π(x0:t|y1:t)r(yt+1|xt+1)q(xt+1|xt)

p(y1:t+1|y1:t)
, (8.10)

where for the second equality we used the fact that the observations yt are
conditionally independent given the states xt and for the third equality we
used the fact that

p(y1:t+1) = p(y1:t+1|y1:t)p(y1:t).

Similarly, the filtering distribution can be written recursively as

p(xt|y1:t) =
r(yt|xt)p(xt|y1:t−1)∫
r(yt|xt)p(xt|y1:t−1)dxt

. (8.11)

Now, with sequential Monte Carlo, the idea is to choose a proposal sam-
pling function q̃(xt|xt−1,y1:t) from which, at each time t, we generate the
next state xi,t for path i, given xi,t−1 and y1:t. Ideally, one should use
q̃(xt|xt−1,y1:t) = π(xt|yt), but this is usually impossible. A common choice
is to choose the transition function q(xt|xt−1), which means that conditioned
on the state at time t − 1, the paths are generated independently from the
observation process.

Once the paths xi,0:t−1 are augmented with the next state xi,t via the
proposal q̃(·), the weights wi must be adjusted so that the sample paths xi,0:t

are still properly weighted. To determine how this can be done, we see from
(8.10) that we should use the recursive weight update

w̃i = wi
r(yt|xi,t)q(xi,t|xi,t−1)
q̃(xi,t|xi,0:t−1,y1:t)

, i = 1, . . . , n. (8.12)

8.2 Sequential Monte Carlo 315

Note that if the transition function q(xt|xt−1) is chosen as the proposal func-
tion q̃, then the preceding update becomes

w̃i = wi × r(yt|xi,t), i = 1, . . . , n.

The sequential Monte Carlo method based on this idea is called sequential
importance sampling (SIS) and is described in Fig. 8.5. As usual, we assume
that there exists a function g(u;xt,y1:t) such that if u ∼ U([0, 1)d), then
g(u;xt,y1:t) is distributed according to the proposal q̃(·|xt,y1:t). We also
assume that all paths are initialized to a common starting point x0. Thus,
an s = nd-dimensional point set is required in order to run this algorithm.

SeqIS(u1, . . . ,un)
for i = 1 to n

xi,0 ← x0

wi ← 1/n
for t = 1 to T

get yt

W ← 0
for i = 1 to n

xi,t ← g(ui,(t−1)d+1, . . . , ui,td;xi,t−1,y1:t)

augment xi,0:t−1 with xi,t

wi ← wi × p(yt|xi,t)q(xi,t|xi,t−1)/q̃(xi,t|xi,t−1,y1:t)
W ← W + wi

for i = 1 to n
wi ← wi/W

// the weighted sample {(wi,xi,0:t), i = 1, . . . , n} can
// then be used to evaluate, e.g., Eπ(g(X0:t))

Fig. 8.5 Pseudocode describing the sequential importance sampling approach.

One problem with this approach is that, as t increases, most of the weights
tend to get quite small, and then only a small number of paths account for
most of the weights. This problem is sometimes referred to as having a small
effective sample size, which is defined as [88]

n∗ =
n

1 + Varπ(wi)

and estimated as
n̂∗ =

1∑n
i=1 w

2
i

.

If we look at the two extreme cases, we see that when the weights wi are all
equal to 1/n, then n̂∗ = n, but if one weight is equal to 1 and all the other
ones are zero, then n̂∗ = 1.

316 8 Beyond Numerical Integration

One way of circumventing this degeneracy problem is to use a method
called the bootstrap filter. The idea here is to use resampling — as done in
the bootstrap method — at each time step to modify the sample so that
only the most likely paths are kept. Paths are resampled according to their
associated weights wi. Figure 8.6 gives the details.

BootStrapFilter(x0;u1, . . . ,un)
for i = 1 to n

xi,0 ← x0

wi ← 1/n
for t = 1 to T

W ← 0
for i = 1 to n

l ← (t − 1)d + 1
x̃i,t ← g(ui,l, . . . , ui,l+d−1;xi,t−1,y1:t)
x̃i,0:t ← [xi,0:t−1; x̃i,t]
wi ← wi × r(yt|xi,t)q(xi,t|xi,t−1)/q̃(xi,t|xi,t−1,y1:t)
W ← W + wi

W0 ← 0
for i = 1 to n

wi ← wi/W
Wi ← Wi−1 + wi

// resampling
for i = 1 to n

find I such that WI−1 < ui,dT+t ≤ WI

xi,0:t ← x̃I,0:t

Fig. 8.6 Bootstrap filter approach.

Several other variants and generalizations of these approaches have been
proposed in the literature. We refer the reader to [87, 294, 386] for more
information on this. We will not go much further on these variants, though,
since our goal here is just to explain how to replace the “Monte Carlo” part
of sequential Monte Carlo by quasi–Monte Carlo.

Our description of both the SIS algorithm and the bootstrap filter explic-
itly shows how uniform numbers are used to generate the paths. From that
point of view, it should be clear how one can apply (randomized) quasi–Monte
Carlo instead of Monte Carlo. However, there are some subtle issues arising
with the bootstrap filter if quasi–Monte Carlo is used. First, performing the
resampling step requires some random numbers. More precisely, in the stan-
dard approach described in Fig. 8.6, we need at each time step n uniform
numbers in order to perform the resampling step based on the multinomial
distribution with parameters (n,w1, . . . , wn). In that figure, we chose to use
the last T coordinates of the point set for this purpose. In addition, it is
important to realize that the resampling step implies that there is not a one-

8.2 Sequential Monte Carlo 317

to-one mapping between points in Pn = {(ui,1, . . . , ui,s), i = 1, . . . , n} and
paths {xi,0:T , i = 1, . . . , n}. This is because at time T , due to the resampling
mechanism, paths issued from a common “ancestor” will share common initial
portions issued from a given point i, while the initial portion of some points
in Pn will disappear if they were used to generate a particle that eventually
was eliminated. Example 8.5 illustrates this issue.

Example 8.5. Suppose n = 3, d = 2, and T = 3, and that the outcome of the
resampling steps done at times 1 and 2 are 1, 1, 2 and 2, 2, 3. Then the three
paths obtained and the corresponding coordinates used to generate them are

paths coordinates
x1,1,x2,2,x1,3 u1,1,u1,2, u2,3, u2,4, u1,5, u1,6

x1,1,x2,2,x2,3 u1,1,u1,2, u2,3, u2,4, u2,5, u2,6

x2,1,x3,2,x3,3 u2,1,u2,2, u3,3, u3,4, u3,5, u3,6.

Related to this, another observation is that there is no obvious way to
decide how the points {(ui,(t−1)(d+1)+1, . . . , ui,dt), i = 1, . . . , n} should be
assigned to the newly resampled set of particles {xi,0:t−1, i = 1, . . . , n} in
order to generate the next states conditioned on xi,t−1. Equivalently, one
must decide how the paths should be ordered after the resampling step is
performed. In [354], the above-mentioned assignment is done at random (i.e.,
using a random permutation). Also, the uniform numbers required for the
resampling step are simply taken as i.i.d. uniform numbers and are thus
independent from the ones used to generate the states xi,t.

Since the point set used in [354] is a randomly shifted Korobov lattice
and is therefore dimension-stationary, this corresponds to using the Latin
supercube sampling method discussed in Chap. 6, with T blocks of size d
based on T copies of a d-dimensional (randomly shifted) Korobov point set
and then a block of size T − 1 based on Monte Carlo sampling. That is, the
underlying point set used in the code described in Fig. 8.6 has its ith point
given by

ũi = (ũ1
i,1, . . . , ũ

1
i,d, ũ

2
π1[i],1

, . . . , ũ2
π1[i],d

, ũ3
π2[i],1

, . . . , ũ3
π2[i],d

, . . . ,

ũT
i,πT−1[i],1

, . . . , ũT
πT−1[i],d

, wi,Td+1, . . . , wi,dT+T−1),

where

ũl
i,j = (ui,j + vl

j) mod 1, i = 1, . . . , n, j = 1, . . . , d, l = 1, . . . , T,

and the numbers vl
j are i.i.d. U(0, 1), ui is the ith point of the d-dimensional

Korobov point set, and the numbers wi,j used for the resampling step are i.i.d.
U(0, 1). Clearly, one could also use the (d + 1)th coordinates of a (d + 1)-
dimensional Korobov point set to perform the resampling step.

An interesting idea would be to try using array-RQMC for sequential
quasi–Monte Carlo. That is, one could choose a (d + 1)-dimensional low-

318 8 Beyond Numerical Integration

discrepancy point set Pn and a way to order the states xi,t. Then, at time t,
the order induced by {xi,t−1, i = 1, . . . , n} can be used to assign the points
ui of a randomized version of Pn — independent from the one used at other
time steps — to the resampling step and the generation of the next state xi,t.

Although the resampling step avoids the degeneracy problem that can
occur in sequential importance sampling, it has some disadvantages, too.
The main problem is that this step introduces additional variability in the
simulated paths. A possible remedy is to perform residual resampling [294],
whereby instead of performing a completely random resampling step, each
path i is chosen deterministically mi = �nwi� times, and the remaining n−
(m1 + . . . + mn) draws are done at random, based on the adjusted weights
proportional to

nwi −mi, i = 1, . . . , n.

Note that in this case the resampling step only requires n − (m1 + . . . +
mn) uniform numbers. Other authors have even suggested ways of doing the
resampling step that only require one uniform number [386, p. 555], a method
called systematic resampling. In fact, here the n uniform numbers required
to perform the resampling step are chosen to be

ui =
i− 1
n

+ v, i = 1, . . . , n,

where v ∼ U(0, 1/n). Hence this amounts to using a one-dimensional ran-
domly shifted lattice point set.

In addition to the reference [354] mentioned above, other papers that dis-
cuss the use of quasi–Monte Carlo within bootstrap filters are [117, 376].

We conclude this section with a simple example that illustrates the use
of randomized quasi–Monte Carlo sampling within the two sequential Monte
Carlo methods that we discussed.

Example 8.6. Consider a symmetric two-dimensional random walk where the
step sizes are normally distributed. That is,

xt = xt−1 + ξt, t ≥ 1,

where ξt is a standard bivariate normal with marginal variances c and x0 = 0.
Suppose that only a noisy observation of the position of xt can be done at
each time step. That is, yt = xt + εt, where εt is a standard bivariate normal
with marginal variances σ2 and is recorded at each time t = 1, 2, The
goal is to get an estimate of the position xt at time t given the observations
y1,y2, . . . ,yt gathered so far.

In this case, one could use the Kalman filter to derive exact expressions
for the updated mean and variance of xt given y1, . . . ,yt at each time step.
In Figs. 8.7 and 8.8, we show how to use sequential importance sampling
and the bootstrap filter, respectively. In both cases, we assume the transition
function q(xt|xt−1) is used as the proposal q̃.

8.2 Sequential Monte Carlo 319

RW-SIS(u1, . . . ,un)
for i = 1 to n

xi,0 ← 0
wi ← 1/n

for t = 1 to T
W ← 0
for i = 1 to n

xi,t ← xi,t−1 +
√

c(Φ−1(ui,2t−1), Φ
−1(ui,2t))

wi ← wi × exp(−‖yt − xi,t‖2/2c)
W ← W + wi

for i = 1 to n

wi ← wi/W
// estimate of xT

μ̂ ← 0
for i = 1 to n

μ̂ ← μ̂ + wi × h(xi,T)
return(μ̂)

Fig. 8.7 Using sequential importance sampling for the two-dimensional random walk.

RW-BootStFil(u1, . . . ,un)
for i = 1 to n

xi,0 ← 0
wi ← 1/n

for t = 1 to T
W ← 0
for i = 1 to n

x̃i,t ← xi,t−1 +
√

c(Φ−1(ui,3t−2), Φ
−1(ui,3t−1))

x̃i,0:t ← x̃i,0:t−1; x̃i,t

wi ← exp(−‖yt − x̃i,t‖2/2c)
W ← W + wi

W0 ← 0
for i = 1 to n

wi ← wi/W
Wi ← Wi−1 + wi

// estimate of Eπ(h(xt))
μt ← 0
for i = 1 to n

μt ← μt + wi × h(xi,t)
// resampling
for i = 1 to n

find I such that WI−1 < ui,3t ≤ WI

xi,0:t ← x̃I,0:t

// can reorder the samples here

Fig. 8.8 Bootstrap filter for a simple two-dimensional random walk example.

320 8 Beyond Numerical Integration

In the pseudocode for the bootstrap filter, when we say “can reorder the
samples here” on the last line, we are referring to the comment made previ-
ously about the possibility of choosing a random permutation to assign the
newly chosen paths to the points ui. Also, in the code for the bootstrap filter,
we perform the inference step before the resampling, as advised in [294, Sect.
2.4].

8.3 Computer experiments

Computer experiments [392, 393, 472] is an area that has a lot in common
with stochastic simulation and quasi–Monte Carlo methods. This method-
ology can be used to study complex systems for which true physical ex-
perimentation would be too costly. When these systems can be modeled as
stochastic processes, one uses stochastic simulation to perform inference on
the measures of interest. We have seen several such examples in this book so
far. Instead, computer experiments deal with systems where the output mea-
sures of interest, called responses, are determined in a very complex way, but
usually deterministically, by several input variables, called factors. Further-
more, there is typically some level of uncertainty associated with the values
taken by these factors.

In a computer experiment, the response corresponding to a certain choice
of factors is obtained by running a computer program that implements a
model of the system. As we just mentioned, this model is usually assumed
to be deterministic (i.e., the program will output the same response if the
same set of factors is used). The model can thus be represented as a func-
tion f : R

d → R that takes as input the values x1, . . . , xd of the factors
and outputs the response y = f(x1, . . . , xd). To complete the model, the
range of possible values for the factors must be determined, possibly also
with their probability distribution over this range. Typically, for factors xj

that are controllable, we choose a range [Lj ,Hj] giving the possible values
for xj , and for inference purposes we simply assume a uniform distribution
over this range. Factors that are not controllable might be modeled differ-
ently. For instance, in [12] the authors study the problem of circuit design
in electrical engineering. There the factors are divided into two categories:
(i) 20 adjustable engineering variables for the sizes of electrically active de-
vices (such as transistors) and (ii) 16 factors representing variability due to
manufacturing noise. An output measure of interest in this case is the time
delay for propagation of signals through the circuit. In this model, the 20
controllable factors are each assumed to take a value within a specified range
[Lj ,Hj], but the 16 uncontrollable factors are assumed to have a multivariate
normal distribution.

8.3 Computer experiments 321

Before going further, we discuss a simpler example often found in the com-
puter experiments literature, which is the borehole function problem presented
in [328].

Example 8.7. The problem here is to study the flow of water through a bore-
hole that is drilled from the ground surface through two aquifers. The output
measure of interest is the flow rate y through the borehole in m3/yr, and there
are eight factors determining this quantity, which are listed below along with
their range of possible values.

x1 = rw = radius of the borehole in [0.05, 0.15],
x2 = r = radius of influence in [100, 50000],
x3 = Tu = transmissivity of upper aquifer in [63070, 115600],
x4 = Hu = potentiometric head of upper aquifer in [990, 1110],
x5 = Tl = transmissivity of lower aquifer in [63.1, 116],
x6 = Hl = potentiometric head of lower aquifer [700, 820],
x7 = L = length of borehole in [1120, 1680],
x8 = Kw = hydraulic conductivity of borehole in [9855, 12045].

These eight factors determine the response y in the following way:

y = f(x1, . . . , x8) =
2πx3(x4 − x6)

ln(x2/x1)
(
1 + 2x7x3

ln(x2/x1)x2
1x8

+ x3
x5

) . (8.13)

Even if this function can be written in a compact form and evaluated very
quickly on a computer, when we look at (8.13) it is not easy to determine how
each factor is influencing the response. Computer experiments techniques can
thus be used to get useful information on this function.

In general, the systems under study are very complex, and we do not
necessarily attempt to write out explicitly the function that describes how
the computer program transforms the factors into the response. Instead, we
rely on the computer program to gather information on this function and use
it to perform a number of tasks of interest. Generally speaking, these tasks
attempt to better understand the relationship between the factors and the
response.

The first task might be sensitivity analysis, where we try to determine
which of the factors are the most important and how the response is affected
by changes in the values of the factors. Answering this question can in turn
suggest which factors need to be estimated the most accurately. The second
task might be to identify a surrogate function that approximates reasonably
well the more complicated one under study. That is, given some values for
the factors, the surrogate should output a response close to the one output
by the computer program. Usually, the goal is to find a surrogate that can
be evaluated rather easily and is therefore less costly to work with than
the computer program, which for complex systems could require a lot of

322 8 Beyond Numerical Integration

computation time. Once we have a good approximation, then other tasks
can be conducted more easily such as optimization. That is, one might be
interested in determining which values for the factors provide the optimal
response according to some appropriate optimality criterion.

Now, for all these tasks, one needs to query the computer program that
implements the function under study at a certain number of well-chosen val-
ues for the factors. This task is often referred to as experimental design and
provides a first connection with quasi–Monte Carlo. A second connection can
be established when looking at methods used to perform sensitivity analy-
sis in the context of computer experiments. Indeed, the “global sensitivity
indices” that were defined in Chap. 6 have also been used in the context of
computer experiments, and recent work has been done in this area to de-
vise efficient methods to estimate these indices. These two topics are the
ones we chose to discuss in this section. It is clear that many other connec-
tions between quasi-random sampling and computer experiments could lead
to interesting advances for either field. For example, there have been several
papers written recently investigating the idea of using low-discrepancy point
sets to construct approximations for functions rather than simply estimating
their integrals (see, for example, [79, 190] and the references therein). We
refer the reader to [110, 296] for more on these connections.

Experimental design and low-discrepancy point sets

For a computer experiment with d factors, a d-dimensional space needs to be
sampled. Often, each factor can take values in a certain finite range that is a
subset of the real numbers. By rescaling these ranges appropriately, we can
assume the sampling space in the unit cube [0, 1]d. This assumption is made
explicitly in [355, 417].

We now discuss different methods that have been used to choose a design
Pn = {u1, . . . ,un} containing the n vectors at which the function f will
be evaluated. We start with the two extremes, which are (i) to use random
sampling (i.e., take Pn as a set of i.i.d. vectors in [0, 1)d) and (ii) to use a
2d-factorial design, where for each factor j we select two possible values ul

j

and uh
j and then evaluate f at each of the 2d possible combinations of the

form
{(ux(1)

1 , . . . , u
x(d)
d), x(j) ∈ {l, h}, j = 1, . . . , d}.

One could obviously extend this to an Nd-factorial design, where for example
each factor takes each of the N possible values {0, 1/N, . . . , (N − 1)/N},
much like in the rectangle rule for integration described in Chap. 1. It is
clear that designs like this require the total number of sample points n to be
much too large for moderate values of d. On the other hand, a completely
random sample might fail to appropriately sample the factors. Similarly to
researchers working on Monte Carlo methods who have come up with quasi–

8.3 Computer experiments 323

Monte Carlo counterparts in order to avoid this property of random sampling,
people working in computer experiments have devised improved sampling
mechanisms, typically referred to as space-filling designs in that area.

A first step in that direction is Latin hypercube sampling (LHS), which was
discussed in Chap. 6. For the sake of completeness, we recall this construction
using notation that will be useful in the forthcoming discussion. With LHS
one makes sure that each factor is evaluated exactly once in each interval of
the form [(i−1)/n, i/n), for i = 1, . . . , n, over the n evaluations of f that are
performed. This goal is achieved by taking

ui,j =
Ãi,j − 1

n
+ wi,j , (8.14)

where the variables wi,j are i.i.d. U(0, 1/n), Ai,j = i for all j = 1, . . . , d, and
Ã is obtained by applying random i.i.d. permutations of [1, . . . , n] to each
of the d columns of A. In practice, for d > 1, it is equivalent to taking the
first permutation to be the identity, and the remaining permutations are then
drawn randomly.

Using this description, it is clear that for each factor there will be exactly
one value in each interval of the form [(i−1)/n, i/n) among the n trial vectors
used.

In the description above, we used an n× d matrix A of the form

A =

⎡
⎢⎢⎢⎣

1 1 . . . 1
2 2 . . . 2
...

...
...

...
n n . . . n

⎤
⎥⎥⎥⎦ (8.15)

to describe the design used by LHS. This matrix can be viewed as the de-
terministic structure that underlies LHS and is often called a sampling plan.
That is, if in LHS all permutations were given by the identity, then the value
for Ai,j would tell us that, for the ith design point, we will use a value in the
(Ai,j)th cell of [0, 1), given by [(i− 1)/n, i/n), for the jth factor. Hence, if no
permutations were used in LHS, we would then have

ui ∈
[
i− 1
n

,
i

n

)d

.

Obviously, this is not very good since it means all n points u1, . . . ,un fall
within a distance — taken in the sup norm sense — of 1/n of the main diag-
onal in the unit cube [0, 1)d. Using random permutations allows the points to
be better distributed in the unit cube while preserving the one-dimensional
stratification. Figure 8.9 illustrates the effect of the permutations on a small
example.

324 8 Beyond Numerical Integration

00 1 1

1 1

Fig. 8.9 Stratified design with no permutations (left) and with permutation π2 = [4231]
as in LHS (right).

We will be using this matrix A to describe a generalization of LHS based on
orthogonal arrays, as discussed in [356]. This matrix will also be convenient
to explain methods that are used for sensitivity analysis. In addition, this
description is helpful for handling slightly more general setups than the one
chosen here, where we assumed each factor had been rescaled to the interval
[0, 1]. Sometimes authors prefer to work with real-valued factors X1, . . . , Xd

assumed to be independent and each having a marginal pdf ϕj(x) for j =
1, . . . , d. In that context, the choice of design is usually done in two steps: (1)
produce a set of n vectors

{(xi,1, . . . , xi,d), i = 1, . . . , n}

according to some sampling method, where xi,j is distributed according to
ϕj for each i = 1, . . . , n, and each j = 1, . . . , d; and (2) use a sampling plan
A, possibly modified with permutations, in order to define the design

{(xA[i,1],1, . . . , xA[i,d],d), i = 1, . . . , n}.

(Here we use the notation A[i, j] instead of Ai,j to avoid double subscripts.)
This more general framework can, however, be converted to the previous

one, where the goal is to construct a good design over [0, 1]d. Example 8.8
illustrates this idea, which refers back to the integration versus simulation
formulation discussed throughout this book.

Example 8.8. Suppose d = 2, and X1, X2 are assumed to be independent and
exponentially distributed random variables with mean β. Using inversion, we
can obtain such variables using

X = −β ln(1 − U).

8.3 Computer experiments 325

The following steps describe how to use LHS sampling to generate a set of
n inputs {(xi,1, xi,2), i = 1, . . . , n}. First generate n independent uniform
vectors ui ∈ [0, 1)d, i = 1, . . . , n. Then produce two stratified samples over
[0, 1) as {

wi,j =
i− 1
n

+
uj,1

n
, i = 1, . . . , n

}
for j = 1, 2,

and let
xi,j = −β ln(1 − ui,j), i = 1, . . . , n, j = 1, 2.

This completes Step (1) as indicated above. Now consider the sampling plan
A for LHS given in (8.15) with d = 2 columns. Generate one random uniform
permutation π of [1, . . . , n], and use it to permute the second column of A.
That is, A becomes

Ã =

⎡
⎢⎢⎢⎣

1 π(1)
2 π(2)
...

...
n π(n)

⎤
⎥⎥⎥⎦ .

Then the LHS sample is given by

{(xÃ[i,1],1, xÃ[i,2],2), i = 1, . . . , n}

or, equivalently,
{(xi,1, xπ(i),2), i = 1, . . . , n}.

Going back to the general application of LHS, its superiority over Monte
Carlo shows up when we measure the variability of the estimator

μ̂lhs =
1
n

n∑
i=1

f(ui)

as an approximation for the mean output value

I(f) =
∫

[0,1)d

f(u)du. (8.16)

In [313], the authors prove a result that, translated in our setup, is as follows.

Theorem 8.9 ([313]). If f is monotonic in each of its arguments, then
Var(μ̂lhs) ≤ Var(μ̂mc).

The proof of this theorem relies on results from [275], which were also used
to prove a similar theorem for antithetic variates, as discussed in Chap. 4.
More results on the variance of the LHS estimator are given in [355, 427].
In [427], the following theorem is given, which uses the concept of ANOVA
decomposition described in Chap. 6.

Theorem 8.10. If f is square-integrable, then

326 8 Beyond Numerical Integration

Var(μ̂lhs) =
1
n

∑
J⊆{1,...,s},|J|>1

σ2
J + o(1/n).

Neglecting the o(1/n) term, this result implies that for a function whose
effective dimension in the superposition sense is 1, the variance of the LHS
estimator is negligible. Said differently, the result implies that the one-
dimensional ANOVA components are very well integrated by LHS: Their
corresponding variance terms σ2

{j} get “knocked out” of the variance expres-
sion, with only some residual components that are absorbed in the o(1/n)
term. This holds because the one-dimensional projections of the LHS point
set are stratified along each axis, as we mentioned earlier.

A natural way of trying to “knock out” more terms in the variance is to
consider generalized versions of LHS where higher-dimensional projections
of Pn are well stratified. Readers of this book might immediately think of
(t, k, s)-nets as a way of achieving that. In the computer experiments com-
munity, people have also looked at orthogonal arrays [356, 355], which turn
out to be closely connected to digital nets, as we explain below.

With LHS, the sampling plan A described in (8.15) is given by d identi-
cal columns containing the elements from 1 to n. Hence, if we look at two
columns, we only get n of the possible n2 pairs of the form {(i, j), 1 ≤ i, j ≤
n}. Correspondingly, this means that, without the permutations, any two-
dimensional projection of the LHS point set would have its points close to
the main diagonal. If A is built more carefully — not merely by padding the
same column d times — we can avoid this behavior. This is the idea of an
orthogonal array, which we now define.

Definition 8.11. An n × d matrix A with elements in {1, . . . , q} is called
an orthogonal array (OA) of strength τ ≤ d if any τ columns of A form an
n× τ matrix in which each of the qτ possible rows appears the same number
λ = (n/qτ) of times. The array A is then denoted OA(n, d, q, τ). The maximal
strength of the OA is the largest value of τ for which A is an OA of strength τ .

It is clear that n must be a multiple of a power of q in order for this
definition to make sense. For example, with LHS, q = n and the sampling
plan used is an OA(n, d, n, 1). Lists of OAs of different strengths can be found
on the Internet; for example, in the databases [488, 502].

To use (8.14) with an OA, we must first redefine the variables wi,j , so that
they are now i.i.d. U(0, 1/q) instead of U(0, 1/n), for i = 1, . . . , n, j = 1, . . . , d.
This is because we are now possibly using bigger cells for the stratification as
q ≤ n. If we then take Ã to be an OA(n, d, q, τ) in (8.14), with the elements
in each column randomly permuted, and divide by q instead of n, we get a
randomized orthogonal array estimator μ̂roa, given by

μ̂roa =
1
n

n∑
i=1

f(ui), (8.17)

8.3 Computer experiments 327

where

ui,j =
Ãi,j − 1

q
+ wi,j , i = 1, . . . , n, j = 1, . . . , d.

The following example illustrates how to construct such an estimator in a
simple case.

Example 8.12. Consider an OA(4, 3, 2, 2) given by
⎡
⎢⎢⎣

1 1 1
1 2 2
2 1 2
2 2 1

⎤
⎥⎥⎦ .

We can use this OA to produce a sample u1, . . . ,u4 to be used in (8.17)
as follows. First, generate two random permutations π2, π3 of [1, 2, 3, 4], and
then construct Ã by permuting the second and third columns of the OA by
π2 and π3, respectively. For instance, if π2 = [1 4 2 3] and π3 = [2 1 3 4], then
the OA becomes

Ã =

⎡
⎢⎢⎣

1 1 2
1 2 1
2 2 2
2 1 1

⎤
⎥⎥⎦ ,

and we have

ui,j =
Ãi,j − 1

2
+ wi,j ,

where the variables wi,j are i.i.d. U(0, 1/2). The sample Pn obtained is such
that if we consider the projection Pn({1, 2}), then we have one observation
randomly distributed within each cell of the form

[j1/2, (j1 + 1)/2) × [j2/2, (j2 + 1)/2),

where j1, j2 ∈ {0, 1}. The same is true for the two other two-dimensional
projections, Pn({1, 3}) and Pn({2, 3}). However, there is no guarantee that
in one dimension we will have one observation in each cell of the form [j/4, (j+
1)/4) for j = 0, . . . , 3. We can only say that there will be two observations in
each cell of the form [j/2, (j + 1)/2) for j = 0, 1.

Consider a modified “midpoint rule” version μ̃roa of this estimator where
wi,j = 1/2q for each i = 1, . . . , n and j = 1, . . . , s. That is, instead of having a
point randomly distributed within each cell, it is placed in the center. Figure
8.10 illustrates the idea.

If the maximal strength of the OA is τ , then the corresponding estimator
has a variance approximately given by [358, 355]

1
n

∑
J:|J|>τ

σ2
J . (8.18)

328 8 Beyond Numerical Integration

1 1

11

0 0

Fig. 8.10 Sample based on stratification (left) versus midpoint rule (right).

Instead of discussing (8.18) further, we focus on an example where we can
give more precise information on the quality of the approximation above. For
an OA(q2, d, q, 2), it can be shown that [355]

Var(μ̃roa) =
1
n

∑
I:|I|>2

σ2
I × (1 + ε(n)),

where ε(n) ∈ O(n−1/2) and n = q2.
A few remarks are in order here. First, the midpoint rule version of the

randomized OA estimator is biased, and this bias can be shown to be in
O(q−2), or equivalently in O(n−2/τ). Hence, to make sure that the bias does
not dominate the variance in the MSE of this estimator, we must have τ ≤ 3.
Another remark is that an OA of strength τ > 1 produces a point set Pn with
good τ -dimensional projections. But, for s < τ , the s-dimensional projections
are not that good because they stratify these subspaces in a number of cells
smaller than n. For instance, the midpoint rule version of an OA(q2, d, q, 2)
has very good two-dimensional projections of the form

{(
i− 1
q

+
1
2q
,
j − 1
q

+
1
2q

)
, 1 ≤ i, j ≤ q

}
,

but the one-dimensional projections are projecting q points on each coordi-
nate of the form

i− 1
q

+
1
2q
, i = 1, . . . , q.

Hence this construction is not fully projection-regular. If instead of the
midpoint rule we use uniform draws within the cells, as discussed initially
when we defined the estimator μ̂roa, then at least the point set obtained
is fully projection-regular with probability 1. But the stratification done on

8.3 Computer experiments 329

s-dimensional projections for s < τ is still over a number of cells smaller
than n.

A related construction proposed by Tang for computer experiments has
the advantage of retaining the one-dimensional “maximal” stratification per-
formed by LHS [433]. Tang calls it an OA-based Latin hypercube design. It
works as follows. First choose an OA(q2, d, q, 2) and permute the order of
each column independently. Then, in each column, replace the q occurrences
of the symbol j ∈ {1, . . . , q} by a random permutation of [(j−1)q+1, . . . , jq].
Call the matrix obtained B. Then define Pn = {ui, i = 1, . . . , n} by

uij =
Bij − 1

n
+ wij , j = 1, . . . , d,

where the variables wij are i.i.d. U(0, 1/n). It is easy to see that the point
set obtained is in fact an (0, 2, s)-net in base q.

The idea above avoids the problem of points projecting onto each other
that is encountered by the OA-based design discussed previously. This feature
of OAs is also the reason why we cannot say that an OA-based design of
strength τ is an (0, τ, d)-net in base q. This is because the corresponding
point set Pn is not (q1, . . . , qd)-equidistributed when each ql is 0 except one,
which is equal to τ . However, if Pn is a (t, k, s)-net in base b and we define
A so that

Ai,j = �q × ui,j� + 1,

then A is an OA(bk, s, b, k).
Starting from the concept of orthogonal arrays, several other combinatorial

connections can be established. For instance, OAs can be related to families
of hash functions and linear codes [428]. Also, OAs can be generalized to
a concept called an ordered (or generalized) orthogonal array [31, 96, 305],
which is more closely related to (t, k, s)-nets than OAs are.

More recently, another connection between (t, k, s)-nets and computer ex-
periments was made [32]. More precisely, one of the ideas explored in that
paper is to use scrambled nets to construct designs for computer experiments.
However, instead of working with cubic cells, hyper-rectangles are used to al-
low a better sampling of the (not necessarily uniform) distribution of the
input variables. More connections are discussed in [296].

Revisiting sensitivity indices estimation in the context
of computer experiments

As we mentioned above, one of the goals of computer experiments is to per-
form sensitivity analysis, and more precisely to determine which factors are
the most important in determining the response. The concept of ANOVA
decomposition can be used for this purpose. In particular, recall what we
defined as the global sensitivity indices in Chap. 6 following the terminology

330 8 Beyond Numerical Integration

of [9]. They are the quantities

SI =
σ2

I

σ2

indicating the proportion of the variance of f explained by the ANOVA com-
ponent fI . We have discussed in Chap. 6 methods that can be used to estimate
these indices SI . Here we will focus on the method used by Sobol’ and his
collaborators in [9, 419, 417] and explain it using the concept of a sampling
plan described above so that we can tie this back to current work in this area.

If we focus on the task of estimating quantities of the form σ2
{j} for j =

1, . . . , d, then the idea of these authors amounts to using a sampling plan of
the form ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
2 2 . . . 2
...

...
...

n n . . . n

1 n+ 1 . . . n+ 1
2 n+ 2 . . . n+ 2
...

...
...

n 2n . . . 2n
...

n+ 1 n+ 1 . . . 1
n+ 2 n+ 2 . . . 2

...
...

...
2n 2n . . . 2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This n(d + 1) × d plan is obtained by drawing, for each of the d factors, an
i.i.d. sample of 2n values labeled from 1 to 2n. To estimate σ2

{j}, we use the
first n rows and then the (j + 1)th block of n rows sequentially pairing each
of the rows in the two blocks and then summing the product of the value of
f evaluated at each input in the pair. That is, we form the estimator

σ̂2
{j} =

1
n

n∑
i=1

f(ui,jui,−j)f(ui,j ,un+i,−j) − μ̂2, (8.19)

where −j = {1, . . . , d}\{j}, and

μ̂ =
1
2n

2n∑
i=1

f(ui).

8.3 Computer experiments 331

For each term appearing in the sum (8.19), we see that the jth factor is always
evaluated at the same value ui,j . This approach is called the substituted-
columns plan in the literature.

One criticism of the substituted-columns plan approach is that the “sam-
pling efficiency” of the plan is not maximal. This concept refers to the number
of degrees of freedom of the estimator for σ2

{j} divided by the total number of
runs (or function evaluations) used by the design. In the setting above, this
number is

n

n(d+ 1)
=

1
d+ 1

since each estimate of σ2
{j} is based on n independent sample values, while

we perform a total of n(d+ 1) function evaluations.
Consequently, other authors have proposed alternative sampling plans that

have a higher sampling efficiency [329]. We discuss one such proposal here,
called the permuted-columns plan, where one starts with an i.i.d. sample of
n draws for each factor. The permuted column plan is an na × d matrix
obtained by generating a groups of d− 1 permutations of [1, . . . , n] that are
used to scramble the original sample, where a > 0 is an integer to be chosen.
That is, the (ln+ k)th row of the sampling plan is defined as

k, πl+1,2(k) . . . , πl+1,d(k),

where the permutations πl+1,j of [1, . . . , n] are independent. By definition,
each value between 1 and n appears exactly a times in each column. Let
{rj(i, 1), . . . , rj(i, a)} be the set of row numbers in the sampling plan where
the jth column is equal to i. To estimate σ2

{j}, we can then use the estimator

Ŝj =
1
n

n∑
i=1

a∑
l=1

(f(ui,j ,urj(i,l),−j) − f̂i,j)2

a− 1
,

where

f̂i,j =
1
a

a∑
l=1

f(ui,j ,urj(i,l),−j).

The advantage of this estimator over that of the substituted-columns plan
is that the function is evaluated at a× n points in total and each estimator
σ2
{j} is based on a total of a × n evaluations. However, the problem is that

this estimator is in general biased because, unlike the substituted-columns
plan estimator, the vectors {urj(i,l),−j , i = 1, . . . , n} are not necessarily in-
dependent since some repetitions may occur through the permutations. For
instance, suppose n = d = 3, a = 2, and that we have

332 8 Beyond Numerical Integration

π1,2 = [3, 2, 1],
π2,2 = [3, 1, 2],
π1,3 = [2, 1, 3],
π2,3 = [3, 2, 1].

Then we get the sampling plan
⎡
⎢⎢⎢⎢⎢⎢⎣

1 3 2
2 2 1
3 1 3
1 3 3
2 1 2
3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Hence, in that case, for j = 1, if we look at the two rows for which the first
column has a 1, we get [

1 3 2
1 3 3

]
,

and thus we reuse the same value twice for the second factor. Consequently,
the two random quantities f(u1,1, u3,2, u2,3) and f(u1,1, u3,2, u3,3) used to
compute an estimate of the variance of f given u1 = u1,1 are not independent.
One possibility to avoid this problem is to use a balanced incomplete block
design [329]. We will not discuss this idea further here, and we refer the reader
to [329] for more information and to [111] for connections between balanced
incomplete block designs and quasi–Monte Carlo concepts.

The reader may recall from Chap. 6 that in addition to the approach
of Sobol’ and his collaborators, we also discussed a method for estimating
the global sensitivity indices based on function approximation and quasi-
regression. More generally, this approach can be used to construct an approx-
imation for the function under study in computer experiments. As discussed
at the beginning of this section, finding a surrogate that is more amenable to
certain tasks such as optimization is often of interest. Hence, if one uses the
approach of [286] for the purpose of estimating the global sensitivity indices,
the benefit is that we get “for free” an approximation for f as well.

Problems

The problems in this chapter are simply meant to get the reader familiar
with some of the underlying tools used in the statistical techniques discussed
in this chapter.

8.1. Find the value of the normalizing constant c0 in (8.2) that ensures we
indeed have a density function.

Problems 333

8.2. Verify that the stationary distribution of the Markov chain described in
Example 8.1 satisfies (8.2).

8.3. Implement the code shown in Fig. 8.2 to simulate a random walk with
semiabsorbent barriers, with K = 20 and (i) N = 100, (ii) N = 1000, and
(iii) N =10,000. Graph in each case the histogram depicting the sample x1

to xN , and compare it with the true distribution as described in (8.2).

8.4. Is the Markov chain produced by the Metropolis-Hastings algorithm
time-reversible? Explain.

8.5. Consider a proposal distribution q(y|x) given by a bivariate normal den-
sity with mean x and covariance matrix given by

[
2 1
1 2

]
.

Following our discussion in Subsect. 8.1.1 of the multiple-try Metropolis algo-
rithm based on correlated sampling, write a computer program that correctly
generates a sample of r = 8 trials based on this distribution and using a ran-
domly shifted Korobov point set with n = r = 8 points and multiplier a = 5
and then generates the augmented sample x∗

1, . . . ,x
∗
r−1.

8.6. Explain how a Kalman filter could be used to determine the posterior
distribution of the model discussed in Example 8.6.

8.7. Show that (8.11) holds.

8.8. Show that if {(wi,xi,0:t), i = 1, . . . , n} is a properly weighted sample,
then

{(ŵi,xi,0:t+1), i = 1, . . . , n},
with ŵi a rescaled version of (8.12) and xi,0:t+1 being obtained by augmenting
xi,0:t with xi,t+1 drawn from q̃(·|xi,0:t,y1:t) (as in the SIS approach discussed
on p. 314), is also a properly weighted sample.

8.9. Show that the OA-based Latin hypercube design proposed by Tang in
[433] is a (0, 2, d)-net in base q.

8.10. Show that, as stated on p. 329, if Pn is a (t, k, s)-net in base b and we
define A so that

Ai,j = �q × ui,j� + 1,

then A is an OA(bk, s, b, k).

8.11. Describe the sampling plan that would be used to construct the d− 1
estimators of the form σ̂2

{1,j} for j = 2, . . . , d.

8.12. Consider a randomized low-discrepancy point set Pn = {u1, . . . ,un}
in [0, 1)d, where ui ∼ U([0, 1)d for each i = 1, . . . , n. Construct an unbiased
estimator for the variance of f based on Pn.

Appendix A

Review of Algebra

The purpose of this appendix is to provide the background on algebra —
rings, fields, and, in particular, polynomial rings and formal Laurent series
— required to understand the concepts discussed in this work. We refer the
reader to [94, 291, 390] for further information.

Definition A.1. A group is an ordered pair (G, ∗), where G is a set and ∗ is
a binary operation on G satisfying the following axioms:

(1) Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
(2) Identity: There exists an element e ∈ G — called an identity — such that

for all a ∈ G, a ∗ e = e ∗ a = a.
(3) Inverse: For each a ∈ G, there exists an element a−1 — called the inverse

of a — such that a ∗ a−1 = e.

If, in addition, we have that a ∗ b = b ∗ a for all a, b ∈ G (commutativity),
then the group is said to be Abelian.

Note: Rather than referring to a group as an ordered pair, we can also say
that G is a group under ∗.

Example A.2. The set Z of integers is a group under the operation + with
e = 0 and a−1 = −a.

Definition A.3. A ring is a set together with two binary operations + and
× (called addition and multiplication) satisfying:

(1) (R,+) is an abelian group.
(2) × is associative.
(3) Distributivity: For all a, b, c ∈ R, we have (a+ b) × c = (a× c) + (b× c)

and a× (b+ c) = (a× b) + (a× c).

The ring is said to be commutative if multiplication is commutative. The ring
is said to have an identity (or to contain a 1) if there is an element 1 ∈ R
such that 1 × a = a× 1 = a for all a ∈ R.

335

336 Appendix A: Review of Algebra

Note: We often write ab instead of a× b and denote the additive identity of
R by 0 and the additive inverse of a by −a.
Example A.4. The set Z of integers is a ring under the usual addition and
multiplication operations. It is in fact a commutative ring with identity, which
is the integer 1.

Example A.5. Consider the set of equivalence classes over Z under the modulo
n operation. That is, consider the set Zn = {[0], [1], . . . , [n− 1]}, where

[a] = {m ∈ Z : m = a mod n}

for a = 0, 1, . . . , n− 1 is called the congruence class of a mod n. Define addi-
tion and multiplication over this set as follows:

[a] + [b] = [a+ b] and [a][b] = [ab].

Then Zn is a commutative ring with identity, which is given by [1], and is
called the ring of integers modulo n. We often identify the sets [i] with the
integer i and think of Zn as the set {0, . . . , n − 1} equipped with addition
and multiplication modulo n.

Definition A.6. Given a ring R, a polynomial f(z) over R is a sequence

f(z) = (c0, c1, . . . , cn, 0, 0, . . .)

with ci ∈ R for all i and ci = 0 for all i > n = deg(f). We denote by R[z] the
set of polynomials over R. We define addition and multiplication on R[z] by

(c0, c1, . . .) + (d0, d1, . . .) = (c0 + d0, c1 + d1, . . .)

and
(c0, c1, . . .)(d0, d1, . . .) = (e0, e1, . . .),

where e0 = c0d0, e1 = c0d1 + c1d0, and, in general,

ek =
∑

i,j:i+j=k

cidj .

We define the zero polynomial by (0, 0, . . .) and denote it by 0; similarly, we
denote (1, 0, 0, . . .) by 1. Then R[z] is a commutative ring with identity.

Example A.7. Consider the polynomial ring Z2[z] and two of its elements:
f(z) = 1 + z and g(z) = 1 + z2. Then f(z) + g(z) = z + z2 and f(z)g(z) =
1 + z + z2 + z3.

Definition A.8. A field F is a commutative ring with an identity in which
each element a ∈ F has a multiplicative inverse. That is, for each a ∈ F ,
there exists a−1 ∈ F such that aa−1 = 1. This means each element a ∈ F is
a unit.

Appendix A: Review of Algebra 337

Example A.9. If n is prime, then Zn is a field.

Example A.10. The set R of real numbers is a field under the usual addition
and multiplication rules.

Notation. For b a positive integer, the notation Fb is used to denote the (Ga-
lois) field with b elements. When b is prime, we thus have the correspondence
Fb = Zb.

A polynomial ring over a field F is denoted F [z]. The advantage of work-
ing with a field when defining a polynomial ring is that we have a division
algorithm. That is, if we choose a nonzero polynomial g(z) ∈ F [z], then,
for any f(z) ∈ F [z], we can find polynomials q(z), r(z) ∈ F [z] such that
f(z) = q(z)g(z) + r(z), where deg(r) < deg(g). This in turn can be used
to determine the gcd of two polynomials f(z) and g(z) over F [z], which is
defined as follows [390].

Definition A.11. For a field F and two polynomials f(z), g(z) ∈ F [z], we
have that gcd(f(z), g(z)) is given by a polynomial d(z) ∈ F [z] such that (i)
d(z) divides f(z) and g(z); (ii) if c(z) is any common divisor of f(z) and g(z),
then c(z) divides d(z); and (iii) d(z) is monic (its leading coefficient is the
identity).

Next, we have the following definition.

Definition A.12. A polynomial f(z) ∈ F [z] is said to be irreducible over F
if deg(f) > 0 and f(z) = g(z)q(z) with g(z), r(z) ∈ F [z] can hold only if
either q or g is a constant polynomial.

In a certain sense, irreducible polynomials play the same role as prime
numbers. Another important concept is the following.

Definition A.13. The residue class ring F [z]/(f(z)) is the set {[r(z)] :
deg(r) < deg(f)}, where

[r(z)] = {p(z) ∈ F [z] : p(z) = r(z) mod f(z)}
= {p(z) ∈ F [z] : p(z) = q(z)f(z) + r(z) for some q(z) ∈ F [z]}.

It can be shown that the relation mod f(z) is an equivalence relation over
F [z], so that each g(z) ∈ F [z] belongs in exactly one set [r(z)].

For instance, if b = 2 and f(z) = z7 + z3 + 1, then

z8 mod (z7 + z3 + 1) = z8 − z(z7 + z3 + 1) = z4 + z.

Theorem A.14. The residue class ring F [z]/(f(z)) is a field if and only if
f(z) is irreducible over F .

For a special class of irreducible polynomials f(z), the field F [z]/(f(z))
has the following particularly useful representation.

338 Appendix A: Review of Algebra

Definition A.15. A primitive polynomial f(z) ∈ Fb[z] is an irreducible poly-
nomial for which the set {zk mod f(z), k = 0, . . . , bd − 1} is equal to the set
of all polynomials in Fb[z] with degree less than d = deg(f(z)).

Hence, if f(z) is a primitive polynomial of degree d, then the elements of
Fb[z]/(f(z)) can be identified with the powers zk for k = 0, . . . , bd − 1.

Formal Laurent series

The field of formal Laurent series plays an important role in the definition of
several families of digital nets and sequences. It is thus important to define
this concept.

A useful analogy is to think of the field of formal Laurent series (in a given
base b) as the field of real numbers. In this context, we view the ring Fb[z]
of polynomials over Fb as the “integers”. Similarly, we consider the ring of
polynomial quotients of the form f(z)/g(z), where f(z), g(z) are polynomials
in Fb[z], and view these quotients as the “rational numbers”. Then, the field
of formal Laurent series over Fb[z] is defined as the set Fb((z−1)) of elements
L of the form

L =
∞∑

r=w

arz
−r,

where the coefficients ar are in Fb. In particular, quotients f(z)/g(z) of poly-
nomials can be expressed as formal Laurent series. Some examples will be
given shortly.

At this point, it is useful to mention that when we consider expansions
coming from ratios of polynomials of the form

f(z)
g(z)

=
∑
r=w

arz
−r, (A.1)

where g(z) is a monic polynomial of degree e, and the degree of f(z) is no
larger than e, then w = 1 in (A.1), and the coefficients a1, a2, . . . can be
shown to follow a recurrence whose characteristic polynomial is g(z) [337, p.
65]. The role of f(z) is to initialize this recurrence. An example follows.

Example A.16. Let b = 2 and consider g(z) = z3 + z + 1. Then we have that

1
z3 + z + 1

= a1z
−1 + a2z

−2 + a3z
−3 +

Rearranging, we have that

1 = a1z
2 + a2z + (a1 + a3) + (a1 + a2 + a4)z−1 + (a2 + a3 + a5)z−2 + . . . ,

which means we must find coefficients a1, a2, . . . that satisfy

Appendix A: Review of Algebra 339

a1 = 0,
a2 = 1,

a1 + a3 = 1,
a1 + a2 + a4 = 0,
a2 + a3 + a5 = 0,

and so on. Hence we get a1 = a2 = 0, a3 = 1, and then the next coefficient
ar follows the recurrence ar = ar−2 + ar−3, implying that a4 = 0, a5 = 1,
a6 = 1, a7 = 1, and so on. Therefore we have that

1
1 + z + z3

= z−3 + z−5 + z−6 + z−7 +

If instead we wish to compute for instance

1 + z

1 + z + z3
,

then this means the initial conditions are now a1 = 0, a2 = 1, a1 + a3 = 1,
so that

1 + z

1 + z + z3
= z−2 + z−3 + z−4 + z−7 +

Alternatively, we can simply compute

1 + z

1 + z + z3

as

1
1 + z + z3

+
z

1 + z + z3
= z−3 + z−5 + z−6 + z−7 + . . .

+z−2 + z−4 + z−5 + z−6 + . . .

= z−2 + z−3 + z−4 + z−7 +

Appendix B

Error and Variance Analysis
for Halton Sequences

In this appendix, we extend to Halton sequences results that are known for
digital nets and that were mentioned in Chap. 6.

Consider a scrambled Halton sequence based on nonsingular lower-trian-
gular generating matrices in respective bases b1, . . . , bs. That is, the jth co-
ordinate of the ith point of that sequence is given by

uij =
∞∑

r=1

∞∑
l=1

cjr,labj ,l(i),

where cjr,l is the entry on the rth row and lth column of the jth generating
matrix Cj , and abj ,l(i) is the lth digit in the base b expansion of i,

i =
∞∑

l=1

abj ,l(i)bl−1
j .

For simplicity, assume the bases b1, . . . , bs are the first s primes.
Consider the point set Pn = {u1, . . . ,un} in [0, 1)s formed by the first

n = bk1
1 . . . bks

s

points of this sequence, where the kj are positive integers. Furthermore, for
the following analysis, we are making the assumption that each coordinate
ui,j is determined by only kj digits in base bj . Equivalently, and since the
generating matrices are assumed to be lower-triangular, this means we are
using a generating matrix Cj with kj rows and kj columns for j = 1, . . . , s.

The dual space of this point set Pn is defined as

C∗
s = {h ∈ N

s
0 : CT

j · (hj)kj
= 0 for all j = 1, . . . , s},

where the notation CT
j · (hj)kj

means we only consider the first kj digits in
the expansion of hj in base bj . That is,

341

342 Appendix B: Error and Variance Analysis for Halton Sequences

CT
j · (hj)kj

=

⎛
⎜⎝
∑kj

l=1 Cj,l,1hj,l−1

...∑kj

l=1 Cj,l,kj
hj,l−1

⎞
⎟⎠ ,

where the coefficients hj,l come from

hj =
∞∑

l=0

hj,lb
l
j .

(An equivalent definition — to be used later — is to pad Cj with zeros and
make it have an infinite number of rows, so that we can then compute the
untruncated product CT

j · hj .)
For h ∈ N

s
0, define the multibase Walsh basis function

φ
(b1,...,bs)
h (u) = e2πi

∑ s
j=1(hj ·uj)/bj

where i =
√
−1,

hj · uj =
∞∑

l=1

hj,l−1uj,l ∈ Zbj
,

and the coefficients uj,l come from the decomposition of uj in base bj . That
is,

uj =
∞∑

l=1

uj,lb
−l
j .

Now, for a real-valued function f defined over [0, 1)s and h ∈ N
s
0, define the

Walsh coefficient

f̃ (b1,...,bs)(h) =
∫

[0,1)s

f(u)φ(b1,...,bs)
−h (u)du.

Proposition B.1. Let Pn be the first n points of a scrambled Halton sequence
based on generating matrices Cj of size kj × kj with elements in Zbj

for
j = 1, . . . , s, where n = bk1

1 . . . bks
s and each kj ∈ N. Then, for a given h ∈ N

s
0,

we have
1
n

n∑
i=1

φ
(b1,...,bs)
h (ui) =

{
1 if h ∈ C∗

s

0 otherwise.

Proof: We can write
hj · uj = hT

j (C̃j · xi,j),

where C̃j is an ∞× nj matrix described by

C̃j,l,r =
{
Cj,l,r if l ≤ kj , r ≤ kj

0 otherwise.

Appendix B: Error and Variance Analysis for Halton Sequences 343

That is, C̃j is an ∞×nj matrix obtained by padding Cj with zeros to fill up
the extra dimensions and where

nj = �logbj
n�

is the number of digits in base bj required for the decomposition of the indices
i = 0, . . . , n − 1 in that base. The vector xi,j is an nj-dimensional vector
containing the expansion of i in base bj . That is,

xi,j = (xi,j,0, xi,j,1, . . . , xi,j,nj
)T,

where the xi,j,l are such that

i− 1 =
nj∑
l=0

xi,j,lb
l
j .

Now, if h is in the dual C∗
s , then hT

j · C̃j = 0T for each j = 1, . . . , s, by

definition. Hence, in that case hj ·uj = 0, and thus φ(b1,...,bs)
h (ui) = 1 for each

i, from which the first part of the result follows.
If h is not in C∗

s , then for at least one j we have

yj := C̃T
j · hj �= 0.

Let
J = {j : yj �= 0}

and
ñ =

∏
j∈J

bj ≥ 2.

Now consider an index j for which yj �= 0. Observe that from the definition
of C̃j we have that

hj · uj = hT
j (C̃j · xi,j) = (yj)kj

· (xi,j)kj
. (B.1)

That is, we only need to consider the first kj components of yj and xi,j .
When i−1 runs from 0 to n−1, these first kj components of xi,j take each of
the bkj

j values in Z
kj

bj
a total of n/bkj

j times. Since yj �= 0, the product (B.1)
takes each of the bj values in Zbj

a total of n/bj times. In addition, since the
bj are primes, the (k1 + . . .+ ks)-dimensional vector

(xi,1| . . . |xi,s)

takes each value in Z
k1
b1

× . . .×Z
ks

bs
exactly once as i goes from 1 to n. Hence

the sum ∑
j∈J

(hj · uj)/bj mod 1

344 Appendix B: Error and Variance Analysis for Halton Sequences

takes each value of the form w/ñ for w ∈ {0, . . . , ñ− 1} a total of
∏
j∈J

b
kj−1
j

∏
j /∈J

b
kj

j

times, which is equal to n/ñ.
Since for any positive integer b we have that

b−1∑
v=0

e2πi(v/b) = 0,

this proves the result (use this with b = ñ).
With this result, it becomes easy to prove the following ones.

Proposition B.2. Let Pn be defined as above. Then, for a function f such
that ∑

h∈N
s
0

|f̃ (b1,...,bs)(h)| <∞,

the integration error is given by

1
n

n∑
i=1

f(ui) − I(f) =
∑

0 �=h∈C∗
s

f̃ (b1,...,bs)(h).

Proof. We can write

1
n

n∑
i=1

f(ui) =
1
n

n∑
i=1

∑
h∈N

s
0

φ
(b1,...,bs)
h (ui)f̃ (b1,...,bs)(h)

=
1
n

∑
h∈N

s
0

f̃ (b1,...,bs)(h)
n∑

i=1

φ
(b1,...,bs)
h (ui)

=
∑
h∈C∗

s

f̃ (b1,...,bs)(h),

where the change of order in the summation — done from the first to the
second line — is allowed because we assumed that the Walsh coefficients of
f converge absolutely. Since I(f) = f̃ (b1,...,bs)(0), the result follows.

Proposition B.3. Let Pn be defined as above, and consider the set P̃n ob-
tained by performing a random digital shift in the multibase (b1, . . . , bs). Then,
for a square-integrable function f , the variance of the estimator μ̂ based on
P̃n is given by

Var(μ̂) =
∑

0 �=h∈C∗
s

|f̃ (b1,...,bs)(h)|2.

Appendix B: Error and Variance Analysis for Halton Sequences 345

Proof. Let w ∼ U([0, 1)s). The randomized point set P̃n = {ũ1, . . . , ũn} is
defined by

ũi = S(b1,...,bs)(ui,w), i = 1, . . . , n,

where S(b1,...,bs)(ui,w) has its jth component given by

ũi,j =
∞∑

l=1

(ui,j,l + wj,l)b−l
j ,

where addition is performed in Zbj
.

We first write

μ̂ = g(w) :=
1
n

n∑
i=1

f(ũi).

We can then use Parseval’s identity [124]

Var(μ̂) = Var(g(w)) =
∑

0 �=h∈N
s
0

|g̃(h)|2 (B.2)

because the multibase Walsh basis functions form an orthonormal set (which
follows from the fact that each of the j components is a standard Walsh basis
function). Moreover,

g̃(h) =
∫
g(w)φ−h(w)dw

=
1
n

∫
[0,1)s

n∑
i=1

f(S(b1,...,bs)(ui,w))φ−h(w)dw

=
1
n

n∑
i=1

∫
[0,1)s

f(ũi)φ−h(M (b1,...,bs)(ũi,ui))dũi

=
1
n

n∑
i=1

φh(ui)
∫

[0,1)s

f(ũi)φ−h(ũi)dũi

=
1
n

n∑
i=1

φh(ui)f̃(h)

=
{
f̃(h) if h ∈ C∗

s

0 otherwise,
(B.3)

where M (b1,...,bs)(ũi,ui) has its jth component given by

∞∑
l=1

(ũi,j,l − ui,j,l)b−l
j

and where the subtraction is done in Zbj
. Substituting (B.3) in (B.2), we get

the desired result.

References

1. M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables, volume 55 of Applied Mathematics.
National Bureau of Standards, Washington D.C., 1964.

2. P. Acworth, M. Broadie, and P. Glasserman. A comparison of some Monte Carlo and
quasi-Monte Carlo techniques for option pricing. In P. Hellekalek and H. Niederre-
iter, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
volume 127 of Lecture Notes in Statistics, pages 1–18. Springer-Verlag, New York,
1997.

3. R. J. Adler. An Introduction to Continuity, Extrema, and Related Topics for General
Gaussian Processes, volume 12 of IMS Lecture Notes–Monograph Series. Institute
of Mathematical Statistics, Hayward, CA, 1990.

4. F. Åkesson and J. P. Lehoczy. Path generation for quasi-Monte Carlo simulation of
mortgage-backed securities. Management Science, 46:1171–1187, 2000.

5. J. An and A. B. Owen. Quasi-regression. Journal of Complexity, 17:588–607, 2001.
6. I. J. Andréasson. Combinations of antithetic methods in simulation. Technical Report

NA 72.49, Royal Institute of Technology, Stockholm, 1972.
7. I. J. Andréasson and G. Dahlquist. Groups of antithetic transformations in simula-

tion. Technical Report NA 72.57, Royal Institute of Technology, Stockholm, 1972.
8. I. A. Antonov and V. M. Saleev. An economic method of computing LPτ -sequences.

USSR Computational Mathematics and Mathematical Physics, 19:252–256, 1980.
9. G. E. B. Archer, A. Saltelli, and I. M. Sobol’. Sensitivity measures, ANOVA-like tech-

niques and the use of bootstrap. Journal of Statistical Computation and Simulation,
58:99–120, 1997.

10. P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent risk measures. Mathe-
matical Finance, 9:203–228, 1999.

11. J. Arvo et al. State of the Art in Monte Carlo Ray Tracing for Realistic Image
Synthesis. ACM SIGGRAPH 2001 Course 29. ACM, New York, 2001.

12. R. Aslett, R. J. Buck, S. G. Duvall, J. Sacks, and W. J. Welch. Circuit optimization
via sequential computer experiments: Design of an output buffer. Applied Statistics,

47:31–48, 1998.
13. S. Asmussen. Conjugate processes and the simulation of ruin problems. Stochastic

Processes and Their Applications, 20:213–229, 1985.
14. S. Asmussen. Ruin probabilities expressed in terms of storage process. Advances in

Applied Probability, 20:913–916, 1988.
15. S. Asmussen, K. Binswanger, and B. Højgaard. Rare events simulation for heavy-

tailed distributions. Bernoulli, 6:303–322, 2000.

347

348 References

16. S. Asmussen and R. Rubinstein. Complexity properties of steady-state rare events
simulation in queueing models. In J. Dshalalow, editor, Advances in Queueing: The-
ory, Methods, and Open Problems, pages 429–462. CRC Press, Boca Raton, FL,
1995.

17. D. I. Asotsky, E. E. Myshetskaya, and I. M. Sobol’. The average dimension of a mul-
tidimensional function for quasi-Monte Carlo estimates of an integral. Computational
Mathematics and Mathematical Physics, 46:2061–2067, 2006.

18. E. Atanassov. On the discrepancy of the Halton sequences. Mathematica Balkanica,
18:15–32, 2004.

19. E. Atanassov and M. K. Durchova. Generating and testing the modified Halton

sequences. In I. Dimov, I. Lirkov, S. Margenov, and Z. Zlatev, editors, Numerical
Methods and Applications, 5th International Conference, NMA 2002, Borovets, Bul-
garia, August 20-24, 2002, volume 2542 of Lecture Notes in Computer Science, pages
91–98. Springer-Verlag, Berlin, 2002.

20. M. Avellaneda. Minimum-entropy calibration of asset-pricing models. International
Journal of Theoretical and Applied Finance, 1(4):447–472, 1998.

21. A. N. Avramidis, K. W. Bauer, Jr., and J. R. Wilson. Simulation of stochastic activity

networks using path control variates. Journal of Naval Research, 38:183–201, 1991.
22. A. N. Avramidis and J. R. Wilson. Integrated variance reduction strategies for sim-

ulation. Operations Research, 44:327–346, 1996.
23. A. N. Avramidis and J. R. Wilson. Correlation-induction techniques for estimating

quantiles in simulation experiments. Operations Research, 46(4):574–591, 1998.
24. K. I. Babenko. Approximation by trigonometric polynomials in a certain class of

periodic functions of several variables. Soviet Mathematics Doklady, 1:672–675, 1960.
25. K. I. Babenko. Approximation of periodic functions of several variables by trigono-

metric polynomials. Soviet Mathematics Doklady, 1:513–516, 1960.
26. K. G. Beauchamp. Applications of Walsh and Related Functions. Academic Press,

London, 1984.
27. J. Beck and W. W. L. Chen. Irregularities of Distribution. Cambridge University

Press, Cambridge, 1987.

28. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
Princeton, NJ, 1961.

29. H. Ben Ameur, P. L’Ecuyer, and C. Lemieux. Variance reduction of Monte Carlo and
randomized quasi-Monte Carlo estimators for stochastic volatility models in finance.
In P. A. Farrington and H. B. Nemhard, editors, Proceedings of the 1999 Winter
Simulation Conference, pages 336–343. IEEE Press, Piscataway, NJ, 1999.

30. W. A. Beyer, R. B. Roof, and D. Williamson. The lattice structure of multiplicative
congruential pseudo-random vectors. Mathematics of Computation, 25(114):345–363,
1971.

31. J. Bierbrauer, Y. Edel, and W. Ch. Schmid. Coding-theoretic constructions for
(t, m, s)-nets and ordered orthogonal arrays. Journal of Combinatorial Designs,
10:403–418, 2002.

32. D. Bingham and D. Mease. Latin hyperrectangle sampling for computer experiments.
Technometrics, 48:467–477, 2006.

33. F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of
Political Economy, 81:637–654, 1973.

34. N. Bolia and S. Juneja. Function-approximation-based perfect control variates for
pricing American options. In N. Steiger and M. E. Kuhl, editors, Proceedings of the
2005 Winter Simulation Conference, pages 1876–1883. IEEE Press, Piscataway, NJ,
2005.

35. I. Borosh and H. Niederreiter. Optimal multipliers for pseudo-random number gen-
eration by the linear congruential method. Bit, 23:115–129, 1983.

36. G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.
Annals of Mathematical Statistics, 29:610–611, 1958.

References 349

37. P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4:323–
338, 1977.

38. P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security pricing.
Journal of Economic Dynamics and Control, 21(8–9):1267–1321, 1997.

39. P. Boyle, A. W. Kolkiewicz, and K. S. Tan. An improved simulation method for
pricing high-dimensional American derivatives. Mathematics and Computers in Sim-
ulation, 62:315–322, 2003.

40. P. Boyle, Y. Lai, and K. S. Tan. Pricing options using lattice rules. North American
Actuarial Journal, 9:50–76, 2005.

41. E. Braaten and G. Weller. An improved low-discrepancy sequence for multidimen-

sional quasi-Monte Carlo integration. Journal of Computational Physics, 33:249–258,
1979.

42. G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, Englewood
Cliffs, NJ, 1996.

43. P. Bratley and B. L. Fox. Algorithm 659: Implementing Sobol’s quasirandom sequence
generator. ACM Transactions on Mathematical Software, 14(1):88–100, 1988.

44. P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests of low-

discrepancy sequences. ACM Transactions on Modeling and Computer Simulation,
2:195–213, 1992.

45. P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation, second edition.
Springer-Verlag, New York, 1987.

46. V. Brazauskas, B. L. Jones, M. L. Puri, and R. Zitikis. Estimating conditional tail
expectations with actuarial applications in view. Journal of Statistical Planning and
Inference, 138:3590–3604, 2007.

47. M. Broadie and P. Glasserman. Estimating security price derivatives using simulation.
Management Science, 42:269–285, 1996.

48. M. Broadie and P. Glasserman. A stochastic mesh method for pricing high-
dimensional American options. Manuscript, 1997.

49. M. Broadie and Ö. Kaya. Exact simulation of option greeks under stochastic volatility
and jump-diffusion models. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A
Peters, editors, Proceedings of the 2004 Winter Simulation Conference, pages 1607–
1615. IEEE Press, Piscataway, NJ, 2004.

50. J. M. Burt and M. B. Garman. Conditional Monte Carlo: A simulation technique for
stochastic network analysis. Management Science, 18:207–217, 1972.

51. R. E. Caflisch, W. Morokoff, and A. B. Owen. Valuation of mortgage-backed securities
using Brownian bridges to reduce effective dimension. The Journal of Computational
Finance, 1(1):27–46, 1997.

52. R. E. Caflisch and B. Moskowitz. Modified Monte Carlo methods using quasi-random
sequences. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-
Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes in Statis-
tics, pages 1–16. Springer-Verlag, New York, 1995.

53. J. Carriere. Valuation of early-exercise price of options using simulations and non-
parametric regression. Insurance: Mathematics and Economics, 19:19–30, 1996.

54. J. W. S. Cassels. An Introduction to the Geometry of Numbers. Classics in Mathe-
matics. Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.

55. C. S. Chang, P. Heidelberger, and P. Shahabuddin. Fast simulation of packet loss
rates in a shared buffer communications switch. ACM Transactions on Modeling and
Computer Simulation, 5(4):306–325, 1995.

56. S. K. Chaudhary. Acceleration of Monte Carlo methods using low discrepancy se-
quences. PhD thesis, UCLA, 2004.

57. R. C. H. Cheng. The use of antithetic variates in computer simulations. Journal of
the Operational Research Society, 33:229–237, 1982.

58. H. Chi, M. Mascagni, and T. Warnock. On the optimal Halton sequence. Mathematics
and Computers in Simulation, 70:9–21, 2005.

350 References

59. E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares regression
method for American option pricing. Finance and Stochastics, 6:449–471, 2002.

60. W. G. Cochran. Sampling Techniques, second edition. John Wiley and Sons, New
York, 1977.

61. J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups, third
edition, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-
Verlag, New York, 1999.

62. R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules for multi-
variate integration. SIAM Journal on Scientific Computing, 28(6):2162–2188, 2006.

63. J. N. Corcoran and R. L. Tweedie. Perfect sampling from independent Metropolis-
Hastings chains. Journal of Statistical Planning and Inference, 104(2):297–314, 2002.

64. RAND Corporation. A Million Random Digits with 100,000 Normal Deviates. The
Free Press, Glencoe, IL, 1955.

65. R. Couture and P. L’Ecuyer. On the lattice structure of certain linear congru-
ential sequences related to AWC/SWB generators. Mathematics of Computation,
62(206):798–808, 1994.

66. R. Couture and P. L’Ecuyer. Lattice computations for random numbers. Mathematics
of Computation, 69(230):757–765, 2000.

67. R. Couture, P. L’Ecuyer, and S. Tezuka. On the distribution of k-dimensional vec-
tors for simple and combined Tausworthe sequences. Mathematics of Computation,
60(202):749–761, S11–S16, 1993.

68. R. R. Coveyou and R. D. MacPherson. Fourier analysis of uniform random number
generators. Journal of the ACM, 14:100–119, 1967.

69. R. V. Craiu and C. Lemieux. Acceleration of the multiple-try metropolis algorithm
using antithetic and stratified sampling. Statistics and Computing, 17:109–120, 2007.

70. R. V. Craiu and X.-L. Meng. Antithetic coupling for perfect sampling. In E. I.
George, editor, Bayesian Methods with Applications to Science, Policy, and Official
Statistics (Selected Papers from ISBA 2000), pages 99–108. Eurostat, Luxembourg,
2000.

71. R. V. Craiu and X.-L. Meng. Multi-process parallel antithetic coupling for forward
and backward Markov chain Monte Carlo. Annals of Statistics, 33:661–697, 2005.

72. R. Cranley and T. N. L. Patterson. Randomization of number theoretic methods for
multiple integration. SIAM Journal on Numerical Analysis, 13(6):904–914, 1976.

73. P. Davis and P. Rabinowitz. Methods of Numerical Integration, second edition. Aca-
demic Press, New York, 1984.

74. D. C. Dembeck. Dynamic numerical integration using randomized quasi-Monte Carlo
methods. Master’s thesis, University of Calgary, 2003.

75. L. Devroye. Non-uniform Random Variate Generation. Springer-Verlag, New York,
1986.

76. J. Dick. The construction of extensible polynomial lattice rules with small weighted
star discrepancy. Mathematics of Computation, 76:2077–2085, 2007.

77. J. Dick. Explicit constructions of quasi-Monte Carlo rules for the numerical integra-
tion of high dimensional periodic functions. SIAM Journal on Numerical Analysis,
45:2141–2176, 2007.

78. J. Dick. Walsh spaces containing smooth functions and quasi-Monte Carlo rules of
arbitrary high order. SIAM Journal on Numerical Analysis, 46:1519–1553, 2008.

79. J. Dick, P. Kritzer, and F. Y. Kuo. Approximation of functions using digital nets. In
A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2006, pages 275–298. Springer, New York, 2008.

80. J. Dick, P. Kritzer, F. Pillichshammer, and W. Ch. Schmid. On the existence of
higher order polynomial lattices based on a generalized figure of merit. Journal of
Complexity, 23:581–593, 2007.

81. J. Dick, F. Y. Kuo, F. Pillichshammer, and I. H. Sloan. Construction algorithms for
polynomial lattice rules for multivariate integration. Mathematics of Computation,
74:1895–1921, 2005.

References 351

82. J. Dick and H. Niederreiter. On the exact t-value of some standard low-discrepancy
sequences. Journal of Complexity, 2008. In press.

83. J. Dick, F. Pillichshammer, and B. J. Waterhouse. The construction of good exten-
sible Korobov rules. Computing, 79:79–91, 2007.

84. J. Dick, F. Pillichshammer, and B. J. Waterhouse. The construction of good exten-
sible rank-1 lattices. Mathematics of Computation, 77:2345–2373, 2008.

85. U. Dieter. How to calculate shortest vectors in a lattice. Mathematics of Computation,
29(131):827–833, 1975.

86. S. A. R. Disney and I. H. Sloan. Lattice integration rules of maximal rank formed
by copying rank 1 rules. SIAM Journal on Numerical Analysis, 29:566–577, 1992.

87. A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods
in Practice. Springer-Verlag, New York, 2001.

88. A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 10:197–208, 2000.

89. M. Drmota and R. F. Tichy. Sequences, Discrepancies and Applications, volume 1651
of Lecture Notes in Mathematics. Springer-Verlag, New York, 1997.

90. J.-C. Duan, G. Gauthier, and J.-G. Simonato. Asymptotic distribution of the EMS

option price estimator. Management Science, 47(8):1122–1132, 2001.
91. J.-C. Duan and J.-G. Simonato. Empirical martingale simulation for asset prices.

Management Science, 44:1218–1233, 1998.
92. D. Duffie. Dynamic Asset Pricing Theory, second edition. Princeton University Press,

Princeton, NJ, 1996.
93. D. Duffie and P. Glynn. Efficient Monte Carlo simulation for security prices. The

Annals of Applied Probability, 5(4):897–905, 1995.
94. D. S. Dummit and R. M. Foote. Abstract Algebra, second edition. John Wiley and

Sons, New York, 1999.
95. R. Eckhardt. Stan Ulam, John von Neumann and the Monte Carlo method. Los

Alamos Science, pages 131–143, 1987. Special Issue.
96. Y. Edel and J. Bierbrauer. Construction of digital nets from bch-codes. In H. Nieder-

reiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editors, Monte Carlo and Quasi-

Monte Carlo Methods 1996, volume 127 of Lecture Notes in Statistics, pages 221–231.
Springer-Verlag, New York, 1997.

97. B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics,
7:1–26, 1979.

98. B. Efron. The Jackknife, the Bootstrap and Other Resampling Plans, volume 38 of
CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadel-
phia, 1982.

99. B. Efron and C. Stein. The jackknife estimator of variance. Annals of Statistics,
9:586–596, 1981.

100. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall,
New York, 1993.

101. S. M. T. Ehrlichman and S. G. Henderson. American options from MARS. In
B. Lawson, J. Liu, F. Perrone, and F. Wieland, editors, Proceedings of the 2006
Winter Simulation Conference, pages 719–726. IEEE Press, Piscataway, NJ, 2006.

102. J. Eichenauer-Herrmann. Inversive congruential pseudorandom numbers: A tutorial.
International Statistical Reviews, 60:167–176, 1992.

103. R. J. Elliott, L. Chan, and T. K. Siu. Option pricing and Esscher transform under
regime switching. Annals of Finance, 1:423–432, 2005.

104. P. Embrechts. Copulas: A personal view. Journal of Risk and Insurance, 2009. To
appear.

105. K. Entacher. Bad subsequences of well-known linear congruential pseudorandom
number generators. ACM Transactions on Modeling and Computer Simulation,
8(1):61–70, 1998.

352 References

106. K. Entacher and B. Hechenleitner. A parallel search for good lattice points using
lll-spectral tests. Journal of Computational and Applied Mathematics, 189:424–441,
2006.

107. K. Entacher, P. Hellekalek, and P. L’Ecuyer. Quasi-Monte Carlo node sets from linear
congruential generators. In H. Niederreiter and J. Spanier, editors, Monte Carlo and
Quasi-Monte Carlo Methods 1998, pages 188–198. Springer, Berlin, 2000.

108. K. Entacher, G. Laimer, H. Röck, and A. Uhl. Normalization of the spectral test in
high dimensions. Monte Carlo Methods and Applications, 10:265–272, 2004.

109. K. Entacher, T. Schell, and A. Uhl. Bad lattice points. Computing, 75:281–295, 2005.
110. K.-T. Fang. Some applications of quasi-Monte Carlo methods in statistics. In K.-T.

Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2000, pages 10–26. Springer, New York, 2001.

111. K.-T. Fang, Y. Tang, and J. Yin. Lower bounds for wrap-around Ls-discrepancy and
constructions of symmetrical uniform designs. Journal of Complexity, 21:757–771,
2005.

112. H. Faure. Discrépance des suites associées à un système de numération (en dimension
s). Acta Arithmetica, 41:337–351, 1982.

113. H. Faure. Good permutations for extreme discrepancy. Journal of Number Theory,
42(1):47–56, 1992.

114. H. Faure. Selection criteria for (random) generation of digital (0, s)-sequences. In
H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods
2004, pages 113–126. Springer, New York, 2006.

115. H. Faure and C. Lemieux. Generalized Halton sequence in 2008: A comparative study.
Manuscript, 2008.

116. H. Faure and S. Tezuka. Another random scrambling of digital (t, s) sequences. In K.-
T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2000, pages 242–256. Springer, New York, 2001.

117. P. Fearnhead. Using random quasi-Monte Carlo within particle filters, with appli-
cation to financial time series. Journal of Computational and Graphical Statistics,
14:751–769, 2005.

118. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Mathematics of Computation, 44:463–471,
1985.

119. G. S. Fishman. Multiplicative congruential random number generators with modulus
2β : An exhaustive analysis for β = 32 and a partial analysis for β = 48. Mathematics
of Computation, 54(189):331–344, 1990.

120. G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer
Series in Operations Research. Springer-Verlag, New York, 1996.

121. G. S. Fishman. A First Course in Monte Carlo. Duxbury Press, Belmont, CA, 2005.
122. G. S. Fishman and B. D. Huang. Antithetic variates revisited. Communications of

the ACM, 26:964–971, 1983.
123. G. S. Fishman and L. S. Moore III. An exhaustive analysis of multiplicative congru-

ential random number generators with modulus 231 − 1. SIAM Journal on Scientific
and Statistical Computing, 7(1):24–45, 1986.

124. G. B. Folland. Fourier Analysis and Its Applications. Wadsworth and Brooks, Pacific
Grove, CA, 1992.

125. G. E. Forsythe and R. A. Leibler. Matrix inversion by a Monte Carlo method.
Mathematical Tables and Other Aids to Computation, 4(31):127–129, 1950.

126. B. L. Fox. Generation of random samples from the Beta and F distributions. Tech-
nometrics, 5:269–270, 1963.

127. B. L. Fox. Implementation and relative efficiency of quasirandom sequence generators.
ACM Transactions on Mathematical Software, 12:362–376, 1986.

128. B. L. Fox. Strategies for Quasi-Monte Carlo. Kluwer Academic, Boston, 1999.
129. B. L. Fox and P. W. Glynn. Computing Poisson probabilities. Communications of

the ACM, 31:440–445, 1988.

References 353

130. E. W. Frees and E. A. Valdez. Understanding relationships using copulas. North
American Actuarial Journal, 2:1–25, 1998.

131. R. Freivalds. Fast probabilistic algorithms. In Proceedings of the 8th Symposium on
the Mathematical Foundations of Computer Science, volume 74 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1979.

132. J. H. Friedman and M. H. Wright. A nested partitioning procedure for numerical
integration. ACM Transactions on Mathematical Software, 7:76–92, 1981.

133. M. C. Fu. Optimization via simulation: A review. Annals of Operations Research,
53:199–248, 1994.

134. M. C. Fu, S. B. Laprise, D. B. Madan, Y. Su, and R. Wu. Pricing American options:
A comparison of Monte Carlo simulation approaches. Journal of Computational
Finance, 2:49–74, 1999.

135. M. Fushimi and S. Tezuka. The k-distribution of generalized feedback shift register
pseudorandom numbers. Communications of the ACM, 26(7):516–523, 1983.

136. C. Genest. Frank’s family of bivariate distributions. Biometrika, 74:549–555, 1987.
137. J. E. Gentle. Random Number Generation and Monte Carlo Methods, second edition.

Springer, New York, 2003.
138. H. Gerber and E. Shiu. Option pricing by Esscher transforms. Transactions of the

Society of Actuaries, 46:99–140, 1994.
139. M. C. Giles. Multi-level Monte Carlo path simulation. Operations Research, 56:607–

617, 2008.
140. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in

practice. Chapman and Hall/CRC, Boca Raton, FL, 1998.
141. H. S. Gill and C. Lemieux. A search for extensible Korobov rules. Journal of Com-

plexity, 23:603–613, 2007.
142. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of

Physical Chemistry, 81:2340–2361, 1977.
143. D. Gillespie. Approximate accelerated stochastic simulation of chemically reacting

systems. Journal of Chemical Physics, 115:1716–1733, 2001.
144. P. Glasserman. Gradient Estimation via Perturbation Analysis. Kluwer Academic,

Norwell, MA, 1991.
145. P. Glasserman. Monte Carlo Methods in Financial Engineering, volume 53 of Ap-

plication of Mathematics – Stochastic Modelling and Applied Probability. Springer,
New York, 2004.

146. P. Glasserman, P. Heidelberger, and P. Shahabuddin. Asymptotically optimal im-
portance sampling and stratification for pricing path dependent options. Journal of
Mathematical Finance, 9(2):117–152, 1999.

147. P. Glasserman, P. Heidelberger, and P. Shahabuddin. Importance sampling and strat-
ification for value-at-risk. In Y. S. Abu-Mostafa, B. LeBaron, A. W. Lo, and A. S.
Weigend, editors, Computational Finance 1999 (Proceedings of the Sixth Interna-
tional Conference on Computational Finance). MIT Press, Cambridge, MA, 1999.

148. P. Glasserman, P. Heidelberger, and P. Shahabuddin. Variance reduction techniques
for estimating value-at-risk. Management Science, 46:1349–1364, 2000.

149. P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Multilevel splitting
for estimating rare event probabilities. Operations Research, 47(4):585–600, 1999.

150. P. Glasserman and B. Yu. Simulation for American options: Regression now or

regression later. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo
Methods 2002, pages 213–226. Springer, New York, 2004.

151. P. Glasserman and B. Yu. Large sample properties of weighted Monte Carlo estima-

tors. Operations Research, 53:298–312, 2005.
152. P. W. Glynn. Likelihood ratio gradient estimation: An overview. In Proceedings of

the 1987 Winter Simulation Conference, pages 366–375. IEEE Press, Piscataway, NJ,
1987.

153. P. W. Glynn. Efficiency improvement techniques. Annals of Operations Research,
53:175–197, 1994.

354 References

154. P. W. Glynn. Importance sampling for Monte Carlo estimation of quantiles. In Pro-
ceedings of the Second International Workshop on Mathematical Methods in Stochas-
tic Simulation and Experimental Design, pages 180–185. St. Petersburg University
Press, St. Petersburg, Russia, 1996.

155. P. W. Glynn and R. Szechtman. Some new perspectives on the method of control
variates. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2000, pages 27–49. Springer-Verlag, Berlin, 2002.

156. P. W. Glynn and M. Torres. Nonparametric estimation of tail probabilities for the
single-server queue. In P. Glasserman, K. Sigman, and D. D. Yao, editors, Stochastic

Networks: Stability and Rare Events, volume 117 of Lecture Notes in Statistics, pages
109–138. Springer, New York, 1996.

157. P. W. Glynn and W. Whitt. The asymptotic efficiency of simulation estimators.
Operations Research, 40:505–520, 1992.

158. M. Goresky and A. Klapper. Efficient multiple-with-carry random number generators
with maximal period. ACM Transactions on Modeling and Computer Simulation,

13:310–321, 2003.
159. A. Grube. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Zeitschrift für ange-

wandte Mathematik und Mechanik, 53:T223–T225, 1973.
160. S. Haber. Parameters for integrating periodic functions of several variables. Mathe-

matics of Computation, 41:115–129, 1983.
161. J. H. Halton. On the efficiency of certain quasi-random sequences of points in evalu-

ating multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.
162. J. M. Hammersley. Conditional Monte Carlo. Journal of the ACM, 3:73–76, 1956.
163. J. M. Hammersley. Monte Carlo methods for solving multivariable problems. Annals

of the New York Academy of Sciences, 86:844–874, 1960.
164. J. M. Hammersley and D. C. Handscomb. A new Monte Carlo technique: Antithetic

variates. Proceedings of the Cambridge Philosophical Society, 52:449–475, 1956.
165. J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen, London,

1964.
166. M. R. Hardy, R. K. Freeland, and M. C. Till. Validation of long-term equity return

models for equity-linked guarantees. North American Actuarial Journal, 10:28–47,
2006.

167. P. J. Harrison and C. F. Stevens. Bayesian forecasting (with discussion). Journal of
the Royal Statistical Society, Series B, 38:205–247, 1976.

168. W. K. Hastings. Monte Carlo sampling methods using Markov chains and systems.
Biometrika, 57:97–109, 1970.

169. M. B. Haugh and L. Kogan. Pricing American options: A duality approach. Opera-
tions Research, 52:258–270, 2004.

170. S. Heinrich. Efficient algorithms for computing the L2 discrepancy. Mathematics of
Computation, 65:1621–1633, 1996.

171. P. Hellekalek. General discrepancy estimates: The Walsh function system. Acta
Arithmetica, 67:209–218, 1994.

172. P. Hellekalek. On the assessment of random and quasi-random point sets. In
P. Hellekalek and G. Larcher, editors, Random and Quasi-Random Point Sets, vol-
ume 138 of Lecture Notes in Statistics, pages 49–108. Springer, New York, 1998.

173. P. Hellekalek and H. Leeb. Dyadic diaphony. Acta Arithmetica, 80:187–196, 1997.
174. P. Hellekalek and H. Niederreiter. The weighted spectral test: Diaphony. ACM

Transactions on Modeling and Computer Simulation, 8(1):43–60, 1998.
175. S. G. Henderson and B. L. Nelson, editors. Elsevier Handbooks in Operations Re-

search and Management Science: Simulation, volume 13. Elsevier Science, Amster-
dam, 2006.

176. T. Hesterberg. Advances in importance sampling. PhD thesis, Statistics Department,
Stanford University, 1988.

177. T. Hesterberg. Control variates and importance sampling for efficient bootstrap
simulations. Statistics and Computing, 6:147–157, 1996.

References 355

178. T. Hesterberg and B. L. Nelson. Control variates for probability and quantile esti-
mation. Management Science, 44:1295–1312, 1998.

179. S. L. Heston. A closed-form solution for options with stochastic volatility with ap-
plications to bond and currency options. Review of Financial Studies, 6:327–343,
1993.

180. F. J. Hickernell. Quadrature error bounds with applications to lattice rules. SIAM
Journal on Numerical Analysis, 33:1995–2016, 1996.

181. F. J. Hickernell. A generalized discrepancy and quadrature error bound. Mathematics
of Computation, 67:299–322, 1998.

182. F. J. Hickernell. Lattice rules: How well do they measure up? In P. Hellekalek and
G. Larcher, editors, Random and Quasi-Random Point Sets, volume 138 of Lecture
Notes in Statistics, pages 109–166. Springer, New York, 1998.

183. F. J. Hickernell. Obtaining o(n−2+ε) convergence for lattice quadrature rules. In K.-
T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2000, pages 274–289. Springer, New York, 2001.

184. F. J. Hickernell and H. S. Hong. Computing multivariate normal probabilities using
rank-1 lattice sequences. In G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons,
editors, Proceedings of the Workshop on Scientific Computing (Hong Kong), pages
209–215. Springer-Verlag, Singapore, 1997.

185. F. J. Hickernell and H. S. Hong. The asymptotic efficiency of randomized nets for
quadrature. Mathematics of Computation, 68:767–791, 1999.

186. F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. Extensible lattice se-
quences for quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing,
22:1117–1138, 2001.

187. F. J. Hickernell, C. Lemieux, and A. B. Owen. Control variates for quasi-Monte
Carlo. Statistical Science, 20:1–31, 2005.

188. F. J. Hickernell and H. Niederreiter. The existence of good extensible rank-1 lattices.
Journal of Complexity, 19:286–300, 2003.

189. F. J. Hickernell and X. Wang. The error bounds and tractability of quasi-Monte
Carlo methods in infinite dimension. Mathematics of Computation, 71:1641–1661,
2001.

190. F. J. Hickernell and H. Woźniakowski. Integration and approximation in arbitrary
dimensions. Advances in Computational Mathematics, 12:25–58, 2000.

191. E. Hlawka. Funktionen von beschränkter variation in der theorie der gleichverteilung.
Annali di Matematica Pura ed Applicata, 54:325–333, 1961.

192. Y.-C. Ho and X.-R. Cao. Discrete-Event Dynamic Systems and Perturbation Anal-
ysis. Kluwer Academic, Norwell, MA, 1991.

193. W. Hoeffding. A class of statistics with asymptotically normal distributions. Annals
of Mathematical Statistics, 19:293–325, 1948.

194. H. S. Hong and F. J. Hickernell. Algorithm 823: Implementing scrambled digital

sequences. ACM Transactions on Mathematical Software, 29:95–109, 2003.
195. W. Hörmann and J. Leydold. Importance sampling to accelerate the convergence of

quasi-Monte Carlo. Technical Report 49, Department of Statistics and Mathemat-
ics,Wirtschaftuniversität Wien, February 2007.

196. W. Hörrmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Vari-
ate Generation. Springer-Verlag, New York, 2003.

197. L. K. Hua and Y. Wang. Applications of Number Theory to Numerical Analysis.
Springer, Berlin, 1981.

198. J. Hull. Options, Futures, and Other Derivative Securities, sixth edition. Prentice-
Hall, Englewood Cliffs, NJ, 2006.

199. J. Hull and A. White. The pricing of options on assets with stochastic volatilities.
Journal of Finance, 42:281–300, 1987.

200. J. Imai and K. S. Tan. Enhanced quasi-Monte Carlo methods with dimension re-
duction. In E. Yücesan and C.-H. Chen, editors, Proceedings of the 2002 Winter
Simulation Conference, pages 1502–1510. IEEE Press, Piscataway, NJ, 2002.

356 References

201. J. Imai and K. S. Tan. An accelerating quasi-Monte Carlo method for option pricing
under the generalized hyperbolic Lévy process. To appear, 2008.

202. P. Jäckel. Monte Carlo Methods in Finance. Wiley, New York, 2002.
203. J. Jaffari and M. Anis. On efficient Monte Carlo-based statistical static timing analy-

sis of digital circuits. In J. Roychowdhury and L. Scheffer, editors, Proceedings of the
IEEE International Conference on Computer Aided Design (IEEE-ICCAD) 2008.
IEEE Press, New York, 2008.

204. F. James. A review of pseudorandom number generators. Computer Physics Com-
munications, 60:329–344, 1990.

205. T. Jiang and A. B. Owen. Quasi-regression with shrinkage. Mathematics and Com-
puters in Simulation, 62:231–241, 2003.

206. X. Jin and A. X. Zhang. Reclaiming quasi-Monte Carlo efficiency in portfolio value-at-
risk simulation through Fourier transform. Management Science, 52:925–938, 2006.

207. S. Joe and F. Y. Kuo. Remark on Algorithm 659: Implementing Sobol’s quasiran-
dom sequence generator. ACM Transactions on Mathematical Software, 29(1):49–57,
2003.

208. S. Joe and F. Y. Kuo. Constructing Sobol’ sequences with better two-dimensional
projections. SIAM Journal on Scientific Computing, 30:2635–2654, 2008.

209. H. Kahn. Use of different Monte Carlo sampling techniques. In H. Meyer, editor,
Symposium on Monte Carlo Methods, pages 146–190. John Wiley and Sons, New
York, 1956.

210. R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME Journal of Basic Enginnering, Series D, 82:35–45, 1960.

211. M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. Wiley–Interscience, New
York, 1986.

212. I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus, second edition.
Springer-Verlag, New York, 1988.

213. A. Keller. Quasi-Monte Carlo methods for photorealistic image synthesis. PhD thesis,
Universität Kaiserlautern, 1997.

214. A. Keller. Stratification by rank-1 lattices. In H. Niederreiter, editor, Monte Carlo
and Quasi-Monte Carlo Methods 2002, pages 299–314. Springer, New York, 2004.

215. A. G. Z. Kemna and A. C. F. Vorst. A pricing method for options based on average
asset values. Journal of Banking and Finance, 14:113–129, 1990.

216. W. J. Kennedy, Jr. and J. E. Gentle. Statistical Computing. Dekker, New York, 1980.
217. J. P. C. Kleijnen. Statistical Techniques in Simulation, Part. 1. Dekker, New York,

1974.
218. J. P. C. Kleijnen. Statistical Techniques in Simulation, Part. 2. Dekker, New York,

1975.
219. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.

Springer-Verlag, Berlin, 1992.
220. D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms, second edition. Addison-Wesley, Reading, MA, 1981.
221. D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms, third edition. Addison-Wesley, Reading, MA, 1998.
222. L. Kocis and W. J. Whiten. Computational investigations of low-discrepancy se-

quences. ACM Transactions on Mathematical Software, 23(2):266–294, 1997.
223. J. F. Koksma. Een algemeene stelling uit de theorie der gelikmatige verdeeling modulo

1. Mathematica B (Zutphen), 11:7–11, 1942/1943.
224. N. M. Korobov. The approximate computation of multiple integrals. Doklady Aka-

demii Nauk SSSR, 124:1207–1210, 1959. In Russian.
225. P. Kritzer. Improved upper bounds on the star discrepancy of (t, m, s)-nets and

(t, s)-sequences. Journal of Complexity, 22:336–347, 2006.
226. P. Kritzer and F. Pillichshammer. Constructions of general polynomial lattices for

multivariate integration. Bulletin of the Australian Mathematical Society, 76:93–110,
2007.

References 357

227. P. Kritzer and F. Pillichshammer. The weighted dyadic diaphony of digital sequences.
In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2006, pages 549–560. Springer, New York, 2008.

228. L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley and
Sons, New York, 1974.

229. F. Y. Kuo. Component-by-component constructions achieve the optimal rate of con-
vergence for multivariate integration in weighted Korobov and Sobolev spaces. Jour-
nal of Complexity, 19:301–320, 2003.

230. F. Y. Kuo and S. Joe. Component-by-component constructions of good lattice rules
with a composite number of points. Journal of Complexity, 18:943–976, 2002.

231. F. Y. Kuo and S. Joe. Component-by-component construction of good intermediate-
rank lattice rules. SIAM Journal on Numerical Analysis, 41:1465–1486, 2003.

232. F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Periodization strategy may fail in high
dimensions. Numerical Algorithms, 46:369–391, 2007.

233. F. Y. Kuo, W. T. M. Dunsmuir I. H. Sloan, M. P. Wand, and R. S. Womersley.
Quasi-Monte Carlo for highly structured generalized response models. Methodology
and Computing in Applied Probability, 10:239–275, 2008.

234. H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained
and Unconstrained Systems, volume 26 of Applied Mathematical Sciences. Springer-
Verlag, New York, 1978.

235. Y. Lai and K.S. Tan. Simulation of nonlinear portfolio value-at-risk by Monte Carlo
and quasi-Monte Carlo methods. In M. Holder, editor, Financial Engineering and
Applications 2006. ACTA Press, Cambridge, 2006.

236. D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical
Physics, second edition. Cambridge University Press, Cambridge, 2005.

237. G. Larcher. Digital point sets: Analysis and applications. In P. Hellekalek and
G. Larcher, editors, Random and Quasi-Random Point Sets, volume 138 of Lecture
Notes in Statistics, pages 167–222. Springer, New York, 1998.

238. G. Larcher, A. Lauss, H. Niederreiter, and W. Ch. Schmid. Optimal polynomials for
(t, m, s)-nets and numerical integration of multivariate Walsh series. SIAM Journal

on Numerical Analysis, 33(6):2239–2253, 1996.
239. G. Larcher, H. Niederreiter, and W. Ch. Schmid. Digital nets and sequences con-

structed over finite rings and their application to quasi-Monte Carlo integration.
Monatshefte für Mathematik, 121(3):231–253, 1996.

240. G. Larcher and C. Traunfellner. The numerical integration of Walsh series. Mathe-
matics of Computation, 63:277–291, 1994.

241. S. S. Lavenberg, T. L. Moeller, and P. D. Welch. Statistical results on multiple con-
trol variables with application to queueing network simulation. Operations Research,
30(1):182–202, 1982.

242. S. S. Lavenberg and P. D. Welch. A perspective on the use of control variables to
increase the efficiency of Monte Carlo simulations. Management Science, 27:322–335,
1981.

243. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis, third edition.
McGraw-Hill, New York, 2000.

244. K. M. Lawrence, A. Mahalanabis, G. L. Mullen, and W. Ch. Schmid. Construction
of digital (t, m, s)-nets from linear codes. In S. D. Cohen and H. Niederreiter, editors,
Finite Fields and Applications, volume 233 of Lecture Notes Series of the London
Mathematical Society, pages 189–208. Cambridge University Press, Cambridge, 1996.

245. C. Lécot and S. Ogawa. Quasirandom walk methods. In K.-T. Fang, F. J. Hickernell,
and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 63–85. Springer, New York, 2001.

246. C. Lécot and B. Tuffin. Quasi-Monte Carlo methods for estimating transient measures
of discrete time Markov chains. In H. Niederreiter, editor, Monte Carlo and Quasi-
Monte Carlo Methods 2002, pages 329–343. Springer, New York, 2004.

358 References

247. P. L’Ecuyer. Efficiency improvement via variance reduction. In J. D. Tew, S. Mani-
vannan, D. A. Sadowski, and A. F. Seila, editors, Proceedings of the 1994 Winter
Simulation Conference, pages 122–132. IEEE Press, Piscataway, NJ, 1994.

248. P. L’Ecuyer. Uniform random number generation. Annals of Operations Research,
53:77–120, 1994.

249. P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators. Mathe-
matics of Computation, 65(213):203–213, 1996.

250. P. L’Ecuyer. Bad lattice structures for vectors of non-successive values produced by
some linear recurrences. INFORMS Journal on Computing, 9(1):57–60, 1997.

251. P. L’Ecuyer. Random number generators and empirical tests. In P. Hellekalek,
G. Larcher, H. Niederreiter, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, volume 127 of Lecture Notes in Statistics,
pages 124–138. Springer, New York, 1998.

252. P. L’Ecuyer. Good parameters and implementations for combined multiple recursive

random number generators. Operations Research, 47(1):159–164, 1999.
253. P. L’Ecuyer. Tables of linear congruential generators of different sizes and good lattice

structure. Mathematics of Computation, 68(225):249–260, 1999.
254. P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators. Math-

ematics of Computation, 68(225):261–269, 1999.
255. P. L’Ecuyer. Software for uniform random number generation:distinguishing the good

and the bad. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors,
Proceedings of the 2001 Winter Simulation Conference, pages 95–105. IEEE Press,
Pistacaway, NJ, 2001.

256. P. L’Ecuyer. Polynomial integration lattices. In H. Niederreiter, editor, Monte Carlo

and Quasi-Monte Carlo Methods 2002, pages 73–98. Springer, New York, 2004.
257. P. L’Ecuyer. Random number generation. In S. G. Henderson and B. L. Nelson,

editors, Elsevier Handbooks in Operations Research and Management Science: Sim-
ulation, chapter 3, pages 55–81. Elsevier Science, Amsterdam, 2006.

258. P. L’Ecuyer and Y. Champoux. Estimating small cell-loss ratios in ATM switches via
importance sampling. ACM Transactions on Modeling and Computer Simulation,
11:76–105, 2001.

259. P. L’Ecuyer and R. Couture. An implementation of the lattice and spectral tests for
multiple recursive linear random number generators. INFORMS Journal on Com-
puting, 9(2):206–217, 1997.

260. P. L’Ecuyer, V. Demers, and B. Tuffin. Rare-event, splitting and quasi-Monte Carlo.
ACM Transactions on Modeling and Computer Simulation, 17:1–45, 2006.

261. P. L’Ecuyer and J. Granger-Piché. Combined generators with components from dif-
ferent families. Mathematics and Computers in Simulation, 62:395–404, 2003.

262. P. L’Ecuyer and P. Hellekalek. Random number generators: Selection criteria and
testing. In P. Hellekalek and G. Larcher, editors, Random and Quasi-Random Point
Sets, volume 138 of Lecture Notes in Statistics, pages 223–265. Springer, New York,
1998.

263. P. L’Ecuyer, C. Lécot, and B. Tuffin. Randomized quasi-Monte Carlo simulation of
Markov chains with an ordered state space. In H. Niederreiter and D. Talay, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 331–342. Springer-Verlag,
New York, 2006.

264. P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214–1235, 2000.

265. P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo
methods. In M. Dror, P. L’Ecuyer, and F. Szidarovszki, editors, Modeling Uncer-
tainty: An Examination of Stochastic Theory, Methods, and Applications, pages 419–
474. Kluwer Academic Publishers, Boston, 2002.

266. P. L’Ecuyer, L. Meliani, and J. Vaucher. SSJ: A framework for stochastic simulation
in Java. In E. Yücesan and C.-H. Chen, editors, Proceedings of the 2002 Winter
Simulation Conference, pages 234–242. IEEE Press, 2002.

References 359

267. P. L’Ecuyer and F. Panneton. A new class of linear feedback shift register generators.
In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors, Proceedings of
the 2000 Winter Simulation Conference, pages 690–696. IEEE Press, Pistacaway, NJ,
2000.

268. P. L’Ecuyer and F. Panneton. Construction of equidistributed generators based on
linear recurrences modulo 2. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter,
editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 318–330. Springer,
New York, 2002.

269. P. L’Ecuyer and F. Panneton. Random number generators based on linear recurrences
modulo 2. In C.Alexopoulos, D. Goldsman, and J. R. Wilson, editors, Advancing the

Frontiers of Simulation: A Festschrift in Honor of George S. Fishman. Springer,
New York, 2008. Forthcoming.

270. P. L’Ecuyer and C. Sanvido. Coupling from the past with randomized quasi-Monte
Carlo. Manuscript.

271. P. L’Ecuyer and R. Simard. On the performance of birthday spacings tests for certain
families of random number generators. Mathematics and Computers in Simulation,
55:139–148, 2001.

272. P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented random-
number package with many long streams and substreams. Operations Research,
50(6):1073–1075, 2002.

273. P. L’Ecuyer, R. Simard, and S. Wegenkittl. Sparse serial tests of uniformity for
random number generators. SIAM Journal on Scientific Computing, 24:652–668,
2002.

274. H. Leeb and S. Wegenkittl. Inversive and linear congruential pseudorandom num-
ber generators in empirical tests. ACM Transactions on Modeling and Computer
Simulation, 7(2):272–286, 1997.

275. E. L. Lehmann. Some concepts of dependence. Annals of Mathematical Statistics,
37:1137–1153, 1966.

276. D. H. Lehmer. Mathematical methods in large scale computing units. Annals of the
Computation Laboratory of Harvard University, 26:141–146, 1951.

277. C. Lemieux. A comparison of copy rules and Korobov rules. Yellow Series Research
Paper No. 836, Department of Mathematics and Statistics, University of Calgary,
2004.

278. C. Lemieux. Randomized quasi-Monte Carlo methods: A tool for improving the
efficiency of simulations in finance. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, and
B. A Peters, editors, Proceedings of the 2004 Winter Simulation Conference, pages
1565–1573. IEEE Press, 2004.

279. C. Lemieux, M. Cieslak, and K. Luttmer. RandQMC user’s guide: A package for
randomized quasi-Monte Carlo methods in C. Technical Report 2002-712-15, De-
partment of Computer Science, University of Calgary, 2002.

280. C. Lemieux and J. La. A study of variance reduction techniques for American option
pricing. In N. Steiger and M. E. Kuhl, editors, Proceedings of the 2005 Winter
Simulation Conference, pages 1884–1891. IEEE Press, Piscataway, NJ, 2005.

281. C. Lemieux and P. L’Ecuyer. Lattice rules for the simulation of ruin problems. In
H. Szczerbicka, editor, Proceedings of the 1999 European Simulation Multiconference,
volume 2, pages 533–537. The Society for Computer Simulation, Ghent, Belgium,
1999.

282. C. Lemieux and P. L’Ecuyer. A comparison of Monte Carlo, lattice rules and other
low-discrepancy point sets. In H. Niederreiter and J. Spanier, editors, Monte Carlo
and Quasi-Monte Carlo Methods 1998, pages 326–340. Springer, Berlin, 2000.

283. C. Lemieux and P. L’Ecuyer. Using lattice rules for variance reduction in simulation.
In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors, Proceedings
of the 2000 Winter Simulation Conference, pages 509–516. IEEE Press, Piscataway,
NJ, 2000.

360 References

284. C. Lemieux and P. L’Ecuyer. Selection criteria for lattice rules and other low-
discrepancy point sets. Mathematics and Computers in Simulation, 55:139–148, 2001.

285. C. Lemieux and P. L’Ecuyer. Randomized polynomial lattice rules for multivariate
integration and simulation. SIAM Journal on Scientific Computing, 24(5):1768–1789,
2003.

286. C. Lemieux and A. B. Owen. Quasi-regression and the relative importance of the
ANOVA components of a function. In K.-T. Fang, F. J. Hickernell, and H. Nieder-
reiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 331–344.
Springer, New York, 2001.

287. C. Lemieux and P. Sidorsky. Exact sampling with highly-uniform point sets. Math-
ematical and Computer Modelling, 43:339–349, 2006.

288. M. B. Levin. Discrepancy estimates of completely uniformly distributed and pseudo-
random number sequences. International Mathematics Research Notices, 22:1231–
1251, 1999.

289. T. G. Lewis and W. H. Payne. Generalized feedback shift register pseudorandom
number algorithm. Journal of the ACM, 20(3):456–468, 1973.

290. J. G. Liao. Variance reduction in Gibbs sampler using quasi-random numbers. Journal
of Computational and Graphical Statistics, 3:253–266, 1998.

291. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications,
revised edition. Cambridge University Press, Cambridge, 1994.

292. D. V. Lindley. The theory of queues with a single server. Proceedings of the Cambridge
Philosophical Society, 43:277–289, 1952.

293. J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New
York, 2001.

294. J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems. Journal
of the American Statistical Association, 93:1032–1044, 1998.

295. J. S. Liu, F. Liang, and W. H. Wong. The use of multiple-try method and local
optimization in Metropolis sampling. Journal of the American Statistical Association,
95:121–134, 2000.

296. M. Q. Liu and F. J. Hickernell. Experimental designs using digital nets with small
number of points. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-
Monte Carlo Methods 2004, pages 343–354. Springer-Verlag, New York, 2006.

297. R. Liu and A. B. Owen. Estimating mean dimensionality of analysis of variance
decompositions. Journal of the American Statistical Association, 101:712–721, 2006.

298. F. A. Longstaff and E. S. Schwartz. Valuing American options by simulations: A
simple least-squares approach. Review of Financial Studies, 14(1):113–147, 2001.

299. D. B. Madan, P. Carr, and E. C. Chang. Tha variance gamma process and option
pricing. European Finance Review, 2:79–105, 1998.

300. D. Maisonneuve. Recherche et utilisation des bons treillis. Programmation et résultats
numériques. In S. K. Zaremba, editor, Application de la théorie des nombres à

l’analyse numérique, pages 121–201. Academic Press, New York, 1972.
301. G. Marsaglia. Random variables and computers. In J. Koseznik, editor, Information

Theory, Statistical Decision Functions, Random Processes: Transactions of the Third
Prague Conference, pages 499–510. Czechoslovak Academy of Sciences, Prague, 1962.

302. G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National
Academy of Sciences of the United States of America, 60:25–28, 1968.

303. G. Marsaglia. A current view of random number generators. In L. Billard, editor,
Computer Science and Statistics: The Interface, pages 3–10. Elsevier Science Pub-
lishers, Amsterdam, 1985.

304. G. Marsaglia and A. Zaman. A new class of random number generators. The Annals
of Applied Probability, 1:462–480, 1991.

305. W. J. Martin and D. R. Stinson. Association schemes for ordered orthogonal arrays

and (t,m,s)-nets. Canadian Journal of Mathematics, 51:326–346, 1999.
306. M. Mascagni and H. Chi. On the scrambled Halton sequence. Monte Carlo Methods

and Applications, 10:435–442, 2004.

References 361

307. J. Matousěk. On the L2-discrepancy for anchored boxes. Journal of Complexity,
14:527–556, 1998.

308. J. Matousěk. Geometric Discrepancy. Springer, Berlin, 1999.
309. M. Matsumoto and Y. Kurita. Twisted GFSR generators. ACM Transactions on

Modeling and Computer Simulation, 2(3):179–194, 1992.
310. M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30, 1998.

311. M. Matsumoto, I. Wada, A. Kuramoto, and H. Ashihara. Common defects in initial-
izing pseudorandom number generators. ACM Transactions Modeling Comp. Simu-

lation, 17(4):15, 2007.
312. D. J. S. Mayor and H. Niederreiter. A new construction of (t, s)-sequences and some

improved bounds on their quality parameters. Acta Arithmetica, 128:177–191, 2007.
313. M. D. Mckay, R. J. Beckman, and W. J. Conover. A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21:239–245, 1979.

314. D. L. McLeish. Monte Carlo Simulation and Finance. John Wiley and Sons, Hobo-

ken, NJ, 2005.
315. A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts,

Techniques, Tools. Princeton Series in Finance. Princeton University Press, Prince-
ton, NJ, 2005.

316. R. Merton. The theory of rational option pricing. Bell Journal of Economics and
Management Science, 4:141–183, 1973.

317. R. C. Merton. Option pricing when the underlying stock returns are discontinuous.
Journal of Financial Economics, 3:125–144, 1976.

318. N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science,
15:125–130, 1987.

319. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. Journal of Chemical
Physics, 21:1087–1092, 1953.

320. N. Metropolis and S. M. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44:335–341, 1949.

321. H. Meyer, editor. Symposium on Monte Carlo Methods. John Wiley and Sons, New
York, 1956.

322. F. Michaud. Estimating the probability of ruin for variable premiums by simulation.
Astin Bulletin, 26:93–105, 1996.

323. G. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and
System Sciences, 13(3):300–317, 1976.

324. B. Moro. The full Monte. Risk, 8:57–58, February 1995.
325. H. Morohosi and M. Fushimi. A practical approach to the error estimation of quasi-

Monte Carlo integration. In H. Niederreiter and J. Spanier, editors, Monte Carlo and
Quasi-Monte Carlo Methods 1998, pages 377–390. Springer-Verlag, Berlin, 2000.

326. W. J. Morokoff and R. E. Caflisch. Quasi-random sequences and their discrepancies.
SIAM Journal on Scientific Computing, 15:1251–1279, 1994.

327. W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo simulation of random walks
in finance. In H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editors,
Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 of Lecture Notes in
Statistics, pages 340–352. Springer-Verlag, New York, 1997.

328. M. D. Morris, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of com-
puter experiments: Use of derivatives in surface prediction. Technometrics, 35:243–
255, 1993.

329. M. D. Morris, L. M. Moore, and M. D. McKay. Sampling plans based on balanced
incomplete block designs for evaluating the importance of computer model inputs.
Journal of Statistical Planning and Inference, 136:3203–3220, 2006.

362 References

330. R. Měch. Modeling and simulation of the interaction of plants with the environment
using L-systems and their extensions. PhD thesis, University of Calgary, 1997.

331. B. L. Nelson. Control-variate remedies. Operations Research, 38:974–992, 1990.
332. J. Von Neumann. Various techniques used in connection with random digits. U.S.

National Bureau of Standards Applied Mathematics Series, 12:36–38, 1951.
333. H. Niederreiter. Quasi-Monte Carlo methods and pseudorandom numbers. Bulletin

of the American Mathematical Society, 84(6):957–1041, 1978.
334. H. Niederreiter. Multidimensional numerical integration using pseudorandom num-

bers. Mathematical Programming Study, 27:17–38, 1986.
335. H. Niederreiter. Point sets and sequences with small discrepancy. Monatshefte für

Mathematik, 104:273–337, 1987.
336. H. Niederreiter. Low discrepancy and low dispersion sequences. Journal of Number

Theory, 30:51–70, 1988.
337. H. Niederreiter. Remarks on nonlinear congruential pseudorandom numbers. Metrika,

35:321–328, 1988.
338. H. Niederreiter. Low-discrepancy point sets obtained by digital constructions over

finite fields. Czechoslovak Mathematical Journal, 42:143–166, 1992.
339. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, vol-

ume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics.
SIAM, Philadelphia, 1992.

340. H. Niederreiter. The existence of good extensible polynomial lattice rules. Monat-
shefte für Mathematik, 139:295–307, 2003.

341. H. Niederreiter. Nets, (t, s)-sequences and codes. In A. Keller, S. Heinrich, and
H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages
83–100. Springer, New York, 2008.

342. H. Niederreiter and F. Özbudak. Low-discrepancy sequences using duality and global
function fields. Acta Arithmetica, 130:79–97, 2007.

343. H. Niederreiter and G. Pirsic. Duality for digital nets and its applications. Acta
Arithmetica, 97:173–182, 2001.

344. H. Niederreiter and I. Shparlinski. Recent advances in the theory of nonlinear pseu-
dorandom number generators. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter,
editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 86–102. Springer,
New York, 2001.

345. H. Niederreiter and C. Xing. Low-discrepancy sequences obtained from algebraic
function fields over finite fields. Acta Arithmetica, 72:281–298, 1995.

346. H. Niederreiter and C. Xing. Low-discrepancy sequences and global function fields
with many rational places. Finite Fields and Their Applications, 2:241–273, 1996.

347. H. Niederreiter and C. Xing. The algebraic-geometry approach to low-discrepancy
sequences. In P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, editors,
Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 of Lecture Notes in
Statistics, pages 139–160. Springer-Verlag, New York, 1997.

348. S. Ninomiya and S. Tezuka. Toward real-time pricing of complex financial derivatives.
Applied Mathematical Finance, 3:1–20, 1996.

349. R. E. Odeh and J. O. Evans. Algorithm AS 70: Percentage points of the normal
distribution. Applied Statistics, 23:96–97, 1974.

350. B. Øksendal. Stochastic Differential Equations: An Introduction with Applications,

third edition. Springer-Verlag, New York, 1992.
351. G. Ökten. A probabilistic result on the discrepancy of a hybrid-Monte Carlo sequence

and applications. Monte Carlo Methods and Applications, 2:255–270, 1996.
352. G. Ökten. Applications of a hybrid-Monte Carlo sequence to option pricing. In

H. Niederreiter and J. Spanier, editors, Monte Carlo and Quasi-Monte Carlo Methods
1998, pages 391–406. Springer, Berlin, 2000.

353. G. Ökten, B. Tuffin, and V. Burago. A central limit theorem and improved error
bounds for a hybrid Monte Carlo sequence with applications in computational finance.
Journal of Complexity, 22:435–458, 2006.

References 363

354. D. Ormoneit, C. Lemieux, and D. J. Fleet. Lattice particle filters. In D. Koller and
J. Breese, editors, Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, pages 395–402. Morgan Kaufmann, San Francisco, CA, 2001.

355. A. B. Owen. Orthogonal arrays for computer experiments, integration and visualiza-
tion. Statistica Sinica, 2:439–452, 1992.

356. A. B. Owen. Lattice sampling revisited: Monte Carlo variance of means over ran-
domized orthogonal arrays. Annals of Statistics, 22:930–945, 1994.

357. A. B. Owen. Randomly permuted (t, m, s)-nets and (t, s)-sequences. In H. Nieder-
reiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods
in Scientific Computing, volume 106 of Lecture Notes in Statistics, pages 299–317.

Springer-Verlag, New York, 1995.
358. A. B. Owen. Monte Carlo variance of scrambled equidistribution quadrature. SIAM

Journal on Numerical Analysis, 34(5):1884–1910, 1997.
359. A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of

Statistics, 25(4):1541–1562, 1997.
360. A. B. Owen. Latin supercube sampling for very high-dimensional simulations. ACM

Transactions on Modeling and Computer Simulation, 8(1):71–102, 1998.

361. A. B. Owen. Scrambling Sobol and Niederreiter-Xing points. Journal of Complexity,
14:466–489, 1998.

362. A. B. Owen. Necessity of low effective dimension. Manuscript, 2002.
363. A. B. Owen. The dimension distribution and quadrature test functions. Statistica

Sinica, 13:1–17, 2003.
364. A. B. Owen. Quasi-Monte Carlo sampling. In H. W. Jensen, editor, Monte Carlo

Ray Tracing: SIGGRAPH 2003 Course 44, pages 69–88. ACM, New York, 2003.
365. A. B. Owen. Variance and discrepancy with alternative scramblings. ACM Transac-

tions on Modeling and Computer Simulation, 13:363–378, 2003.
366. A. B. Owen. Multidimensional variation for quasi-Monte Carlo. In Jianqing Fan and

Gang Li, editors, International Conference on Statistics in honour of Professor Kai-
Tai Fang’s 65th birthday, pages 49–74. World Scientific Publications, Hackensack,
NJ, 2005.

367. A. B. Owen and D. A. Tavella. Scrambled nets for value-at-risk calculations. In
S. Grayling, editor, VAR Understanding and Applying Value-At-Risk, pages 257–
273. Risk Publications, London, 1997.

368. A. B. Owen and S. D. Tribble. A quasi-Monte Carlo Metropolis algorithm. Proceed-
ings of the National Academy of Sciences, 102(25):8844–8849, 2005.

369. G. Pagès. Functional quantization for pricing derivatives. Technical Report 5392,
INRIA, 2004.

370. H. H. Panjer, editor. Financial Economics: With Applications to Investments, In-
surance, and Pensions. The Actuarial Foundation, Schaumburg, IL, 1998.

371. F. Panneton and P. L’Ecuyer. Infinite-dimensional highly-uniform point sets defined
via linear recurrences in F2w . In H. Niederreiter and D. Talay, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2004, pages 419–430. Springer, New York, 2006.

372. F. Panneton, P. L’Ecuyer, and M. Matsumoto. Improved long-period random number
generators based on linear recurrences modulo 2. ACM Transactions on Mathematical
Software, 32(1):1–16, 2006.

373. A. Papageorgiou. The Brownian bridge does not offer a consistent advantage in
quasi-Monte Carlo integration. Journal of Complexity, 18(1):171–186, 2002.

374. A. Papageorgiou and J. Traub. Beating Monte Carlo. Risk, 9:63–65, June 1996.
375. S. Paskov and J. Traub. Faster valuation of financial derivatives. Journal of Portfolio

Management, 22:113–120, 1995.
376. V. Philomin, R. Duraiswami, and L. Davis. Quasi-random sampling for condensation.

In D. Vernon, editor, Proceedings of the European Conference on Computer Vision,
Part II, volume 1843 of Lecture Notes in Computer Science, pages 139–149. Springer,
New York, 2000.

364 References

377. G. Pirsic. A software implementation of Niederreiter-Xing sequences. In K.-T. Fang,
F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2000, pages 434–445. Springer, New York, 2001.

378. G. Pirsic and W. Ch. Schmid. Calculation of the quality parameter of digital nets
and application to their construction. Journal of Complexity, 17:827–839, 2001.

379. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, 1992.

380. J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures and Algorithms, 9(1–2):223–
252, 1996.

381. M. O. Rabin. Probabilistic algorithms for primality testing. Journal of Number
Theory, 12:128–138, 1980.

382. M. M. Rao. Stochastic Processes: Inference Theory. Mathematics and Its Applica-
tions. Kluwer Academic Publishers, Dordrecht, 2000.

383. R. D. Richtmyer. On the evaluation of definite integrals and a quasi-Monte Carlo
method based on properties of algebraic numbers. Technical Report LA-1342, Los
Alamos Scientific Laboratory, 1951.

384. B. D. Ripley. The lattice structure of pseudo-random number generators. Proceedings
of the Royal Society of London, Series A, 389:197–204, 1983.

385. H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathe-
matical Statistics, 22:400–407, 1951.

386. C. P. Robert and G. Casella. Monte Carlo Statistical Methods, second edition.
Springer Texts in Statistics. Springer, New York, 2005.

387. L. C. G. Rogers. Monte Carlo valuation of American options. Mathematical Finance,
12:271–286, 2002.

388. S. M. Ross. Introduction to Probability Models, fifth edition. Academic Press, New
York, 1993.

389. S. M. Ross. Simulation, fourth edition. Elsevier Academic Press, New York, 2006.
390. J. Rotman. Galois Theory, second edition. Springer, New York, 1998.
391. R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley and Sons,

New York, 1981.
392. J. Sacks, S. B. Schiller, and W. J. Welch. Designs for computer experiments. Tech-

nometrics, 31:41–47, 1989.
393. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of

computer experiments. Statistical Science, 4:409–423, 1989.
394. C.-E. Särndal, B. Swensson, and J. Wretman. Model Assisted Survey Sampling.

Springer, New York, 1992.
395. W. Ch. Schmid. Shift-nets: A new class of binary digital (t, m, s)-nets. In

P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, editors, Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Computing, volume 127 of Lecture
Notes in Statistics, pages 369–381. Springer-Verlag, New York, 1997.

396. W. Ch. Schmid. Improvements and extensions of the “Salzburg Tables” by using
irreducible polynomials. In H. Niederreiter and J. Spanier, editors, Monte Carlo and
Quasi-Monte Carlo Methods 1998, pages 436–447. Springer, Berlin, 2000.

397. W. Ch. Schmid. Projections of digital nets and sequences. Mathematics and Com-
puters in Simulation, 55:239–248, 2001.

398. W. Ch. Schmid and R. Schürer. Shift-nets and Salzburg tables: Power computing in
number-theoretical numerics. In E. Efinger and A. Uhl, editors, Scientific Computing
in Salzburg – Festschrift on the Occasion of Peter Zinterhof’s 60th Birthday, pages
175–184. Österreichische Computer Gesellschaft, Vienna, 2005.

399. W. M. Schmidt. Irregularities of distribution. vii. Acta Arithmetica, 21:45–50, 1972.
400. R. Schürer and W. Ch. Schmid. MinT: A database for optimal net parameters. In

H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods
2004, pages 457–469. Springer, Berlin, 2006.

References 365

401. R. J. Serfling. Approximation Theorems for Mathematical Statistics. Wiley, New
York, 1980.

402. J. E. H. Shaw. A quasirandom approach to Bayesian statistics. Annals of Statistics,
16:895–914, 1988.

403. A. Sidi. A new variable transformation for numerical integration. In H. Brass and
G. Hämmerlin, editors, Numerical Integration IV, volume 112 of Internationl Series
on Numerical Mathematics, pages 359–373. Birkhäuser, Basel, 1993.

404. A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de
l’Institut de Statistique de l’Université de Paris, 8:229–231, 1959.

405. M. M. Skriganov. Coding theory and uniform distributions. Technical report, Steklov
Mathematical Institute, St. Petersburg, 1998.

406. I. H. Sloan. QMC integration – beating intractability by weighting the coordinate
directions. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2000, pages 103–123. Springer, New York, 2001.

407. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press,
Oxford, 1994.

408. I. H. Sloan and P. J. Kachoyan. Lattice methods for multiple integration: Theory,
error analysis and examples. SIAM Journal on Numerical Analysis, 24:116–128,
1987.

409. I. H. Sloan, F. Y. Kuo, and S. Joe. Constructing randomly shifted lattice rules in
weighted Sobolev spaces. SIAM Journal on Numerical Analysis, 40:1650–1665, 2002.

410. I. H. Sloan, F. Y. Kuo, and S. Joe. On the step-by-step construction of quasi-Monte
Carlo integration rules that achieve strong tractability error bounds in weighted
Sobolev spaces. Mathematics of Computation, 71:1609–1640, 2002.

411. I. H. Sloan and A. V. Rezstov. Component-by-component construction of good lattice
rules. Mathematics of Computation, 71:263–273, 2002.

412. I. H. Sloan and L. Walsh. A computer search of rank 2 lattice rules for multidimen-
sional quadrature. Mathematics of Computation, 54:281–302, 1990.

413. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient
for high dimensional integrals? Journal of Complexity, 14:1–33, 1998.

414. I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration for weighted
Korobov classes. Journal of Complexity, 17:697–721, 2001.

415. I. M. Sobol’. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7:86–112,
1967.

416. I. M. Sobol’. Multidimensional Quadrature Formulas and Haar Functions. Nauka,
Moskow, 1969. In Russian.

417. I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical
Modeling and Computer Experiments, 1:407–414, 1993. Published in Russian in 1990.

418. I. M. Sobol’. A Primer for the Monte Carlo Method. CRC Press, Boca Raton, FL,
1994.

419. I. M. Sobol’. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and Computers in Simulation, 55:271–280,
2001.

420. I. M. Sobol’ and Y. L. Levitan. The production of points uniformly distributed in
a multidimensional cube. Technical Report Preprint 40, Institute of Applied Mathe-
matics, USSR Academy of Sciences, 1976. In Russian.

421. I. M. Sobol’ and Y. L. Levitan. On the use of variance reducing multipliers in Monte
Carlo computations of a global sensitivity index. Computer Physics Communications,
117:52–61, 1999.

422. I. M. Sobol’, V. I. Turchaninov, Y. L. Levitan, and B. V. Shukhman. Quasirandom
sequence generators. Technical report, Keldysh Institute of Applied Mathematics,
1992.

423. J. Spanier. A new family of estimators for random walk problems. Journal of the
Institute for Mathematics and Its Applications, 23:1–31, 1979.

366 References

424. J. Spanier and E. M. Gelbard. Monte Carlo Principles and Neutron Transport Prob-
lems. Addison-Wesley, Reading, MA, 1969.

425. J. Spanier and E. H. Maize. Quasi-random methods for estimating integrals using
relatively small samples. SIAM Review, 36:18–44, 1994.

426. A. Speight. A multilevel approach to control variates. Manuscript, 2007.
427. M. Stein. Large sample properties of simulations using Latin hypercube sampling.

Technometrics, 29:143–151, 1987.
428. D. R. Stinson. Combinatorial techniques for univeral hashing. Journal of Computer

and System Sciences, 48:337–346, 1994.
429. O. Strauch and Š. Porubský. Distribution of Sequences: A Sampler. Peter Lang

Publishing Group, Frankfurt am Main, 2005.
430. Y. Su and M. C. Fu. Importance sampling in derivative securities pricing. In J. A.

Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors, Proceedings of the 2000
Winter Simulation Conference, pages 587–596. IEEE Press, Piscataway, NJ, 2000.

431. P. R. Tadikamalla. Computer generation of gamma random variables ii. Communi-
cations of the ACM, 21:925–928, 1978.

432. A. Tajima, S. Ninomiya, and S. Tezuka. On the anomaly of ran1() in Monte Carlo
pricing of financial derivatives. In J. Charnes and D. Morrice, editors, Proceedings
of the 1996 Winter Simulation Conference, pages 360–366. IEEE Press, Piscataway,
NJ, 1996.

433. B. Tang. Orthogonal array-based Latin hypercubes. Journal of the American Sta-
tistical Association, 88:1392–1397, 1993.

434. R. C. Tausworthe. Random numbers generated by linear recurrence modulo two.
Mathematics of Computation, 19:201–209, 1965.

435. S. Tezuka. Walsh-spectral test for GFSR pseudorandom numbers. Communications
of the ACM, 30(8):731–735, August 1987.

436. S. Tezuka. Random number generation based on the polynomial arithmetic modulo
two. Technical Report RT-0017, IBM Research, Tokyo Research Laboratory, October
1989.

437. S. Tezuka. Lattice structure of pseudorandom sequences from shift-register gener-
ators. In O. Balci, editor, Proceedings of the 1990 Winter Simulation Conference,
pages 266–269. IEEE Press, Piscataway, NJ, 1990.

438. S. Tezuka. A new family of low-discrepancy point sets. Technical Report RT-0031,
IBM Research, Tokyo Research Laboratory, January 1990.

439. S. Tezuka. Polynomial arithmetic analogue of Halton sequences. ACM Transactions
on Modeling and Computer Simulation, 3:99–107, 1993.

440. S. Tezuka. A generalization of Faure sequences and its efficient implementation.
Technical Report RT0105, IBM Research, Tokyo Research Laboratory, 1994.

441. S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, MA, 1995.

442. S. Tezuka. Polynomial arithmetic analogue of Hickernell sequences. In H. Niederreiter,
editor, Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 451–459. Springer,
New York, 2004.

443. S. Tezuka. On the necessity of low-effective dimension. Journal of Complexity,
21:710–721, 2005.

444. S. Tezuka. Discrepancy between QMC and RQMC. Uniform Distribution Theory,
2:93–105, 2007.

445. S. Tezuka and H. Faure. I-binomial scrambling of digital nets and sequences. Journal
of Complexity, 19:744–757, 2003.

446. S. Tezuka and P. L’Ecuyer. Efficient and portable combined Tausworthe random num-
ber generators. ACM Transactions on Modeling and Computer Simulation, 1(2):99–
112, 1991.

447. S. Tezuka and P. L’Ecuyer. An analysis of add-with-carry and subtract-with-borrow
generators. In J. J. Swain, D. Goldsman, R.C. Crain, and J. R. Wilson, editors,
Proceedings of the 1992 Winter Simulation Conference, pages 443–447. IEEE Press,

Piscataway, NJ, 1992.

References 367

448. S. Tezuka, P. L’Ecuyer, and R. Couture. On the add-with-carry and subtract-with-
borrow random number generators. ACM Transactions on Modeling and Computer
Simulation, 3(4):315–331, 1994.

449. S. Tezuka and T. Tokuyama. A note on polynomial arithmetic analogue of Halton
sequences. ACM Transactions on Modeling and Computer Simulation, 4:279–284,
1994.

450. J. P. R. Tootill, W. D. Robinson, and D. J. Eagle. An asymptotically random Taus-
worthe sequence. Journal of the ACM, 20:469–481, 1973.

451. H. F. Trotter and J. W. Tukey. Conditional Monte Carlo for normal samples. In
H. Meyer, editor, Symposium on Monte Carlo Methods, pages 80–88. John Wiley

and Sons, New York, 1956.
452. J. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style

options. IEEE Transactions on Neural Networks, 12:694–703, 2001.
453. B. Tuffin. On the use of low-discrepancy sequences in Monte Carlo methods. Technical

Report No. 1060, I.R.I.S.A., Rennes, France, 1996.
454. B. Tuffin. A new permutation choice in Halton sequences. In P. Hellekalek, G. Larcher,

H. Niederreiter, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte Carlo Meth-

ods 1996, volume 127 of Lecture Notes in Statistics, pages 427–435. Springer-Verlag,
New York, 1998.

455. B. Tuffin. Variance reduction order using good lattice points in Monte Carlo methods.
Computing, 61:371–378, 1998.

456. J. G. van der Corput. Verteilungsfunktionen: I, II. Proceedings of the Nederlandse
Akademie van Wetenschappen, 38:813–821, 1058–1066, 1935.

457. B. Vandewoestyne and R. Cools. Good permutations for deterministic scrambled
Halton sequences in terms of L2-discrepancy. Journal of Computational and Applied
Mathematics, 189:341–361, 2006.

458. F. J. Vázquez-Abad. RPA pathwise derivative estimation of ruin probabilities. In-
surance: Mathematics and Economics, 26:269–288, 2000.

459. F. J. Vázquez-Abad and D. Dufresne. Accelerated simulation for pricing Asian op-
tions. In D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan, edi-
tors, Proceedings of the 1998 Winter Simulation Conference, pages 1493–1500. IEEE
Press, Piscataway, NJ, 1998.

460. E. Veach. Robust Monte Carlo methods for light transport simulation. PhD thesis,
Stanford University, 1997.

461. D. Wang and A. Compagner. On the use of reducible polynomials as random number
generators. Mathematics of Computation, 60:363–374, 1993.

462. S. S. Wang. Discussion on the paper “Understanding Relationships Using Copulas”
by E. Frees and E. Valdez. North American Actuarial Journal, 3:137–141, 1999.

463. X. Wang and K.-T. Fang. The effective dimension and quasi-Monte Carlo integration.
Journal of Complexity, 19:101–124, 2003.

464. X. Wang and F. J. Hickernell. Randomized Halton sequences. Mathematical and
Computer Modelling, 32:887–899, 2000.

465. X. Wang, C. Lemieux, and H. Faure. A note on Atanassov’s discrepancy bound
for the Halton sequence. Technical report, Department of Statistics and Actuarial
Science, University of Waterloo, 2008.

466. X. Wang and I. H. Sloan. Why are high-dimensional finance problems of low effective
dimension? SIAM Journal on Scientific Computing, 27:159–183, 2005.

467. Y. Wang and F. J. Hickernell. An historical overview of lattice point sets. In K.-T.
Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2000, pages 158–167. Springer, New York, 2001.

468. T. Warnock. Computational investigations of low discrepancy point sets. In S. K.
Zaremba, editor, Application de la théorie des nombres à l’analyse numérique, pages
319–343. Academic Press, New York, 1972.

368 References

469. G. W. Wasilkowski. Integration and approximation of multivariate functions:
Average-case complexity with isotropic Wiener measure. Journal of Approximation
Theory, 77:212–227, 1994.

470. G. W. Wasilkowski. Average case complexity. Journal of Complexity, 12:257–272,
1996.

471. S. Wegenkittl. Generalized φ-divergence and frequency analysis in Markov chains.
PhD thesis, University of Salzburg, 1998.

472. W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris.
Screening, predicting, and computer experiments. Technometrics, 34:15–25, 1992.

473. W. Whitt. Bivariate distributions with given marginals. The Annals of Statistics,
4(6):1280–1289, 1976.

474. B. A. Wichmann and I. D. Hill. An efficient and portable pseudo-random number
generator. Applied Statistics, 31:188–190, 1982. See also corrections and remarks in
the same journal by Wichmann and Hill, 33: 123 (1984); McLeod 34: 198–200 (1985);
Zeisel 35: 89 (1986).

475. B. A. Wichmann and I. D. Hill. Building a random number generator. Byte,
12(3):127–128, 1987.

476. G. A. Willard. Calculating prices and sensitivities for path-dependent derivatives
securities in multifactor models. Journal of Derivatives, 5:45–61, Fall 1997.

477. J. R. Wilson. Antithetic sampling with multivariate inputs. American Journal of
Mathematical and Management Sciences, 3:121–144, 1983.

478. J. L. Wirch and M. R. Hardy. A synthesis of risk measures for capital adequacy.
Insurance: Mathematics and Economics, 25:337–347, 1999.

479. H. Woźniakowski. Average case complexity of multivariate integration. Bulletin (New
Series) of the American Mathematical Society, 24:185–194, 1991.

480. H. Woźniakowski. Average case complexity of linear multivariate problems. Part 1:
Theory; part 2: Applications. Journal of Complexity, 8:337–372, 373–392, 1992.

481. R. Wu and M. C. Fu. Optimal exercise policies and simulation-based valuation for
American-Asian options. Operations Research, 51:52–66, 2003.

482. C. Xing and H. Niederreiter. A construction of low-discrepancy sequences using global
function fields. Acta Arithmetica, 73:87–102, 1995.

483. S. K. Zaremba. La méthode des bons treillis pour le calcul des intégrales multiples. In
S.K. Zaremba, editor, Application de la théorie des nombres à l’analyse numérique,
pages 39–116. Academic Press, New York, 1972.

484. P. Zinterhof. Über einige abschätzungen bei der approximation von funktionen
mit gleichverteilungsmethoden. Österreichischen Akademie der Wissenschaften
Mathematisch-Naturwissenschaf Sitzungsberichte II, 185:121–132, 1976.

485. cg.scs.carleton.ca/˜luc/rnbookindex.html.
486. csrc.nist.gov/rng/.
487. en.wikipedia.org/wiki/mersenne twister.
488. lib.stat.cmu.edu/designs/owen.html.
489. mint.sbg.ac.at.
490. mint.sbg.ac.at/hintlib/.
491. parallel.bas.bg/˜emanouil/sequences.html.
492. random.mat.sbg.ac.at/news/seedingtt800.html.
493. support.microsoft.com/kb/828795.
494. www.cs.columbia.edu/˜ap/html/information.html.
495. www.cs.uwaterloo.ca/˜paforsyt/agon.pdf.
496. www.iro.umontreal.ca/˜simardr/ssj/index.html.
497. www.iro.umontreal.ca/~simardr/testu01/tu01.html.
498. www.math.uwaterloo.ca/˜clemieux/flfactors.html.
499. www.mathworks.com. See documentation on the function rand.
500. www.multires.caltech.edu/software/libseq/.
501. www.netlib.org/toms/659.
502. www.research.att.com/~njas/oadir/index.html.
503. www.stat.fsu.edu/pub/diehard/.

Index

acceptance-rejection, 20, 46–48, 55

admissible integers, 165

ANOVA

components, 232, 240, 262

decomposition, 210, 214–229, 325

antithetic variates, 89–101, 109, 136,
273–274, 299

arbitrage, 249

array-RQMC, 210, 240, 263, 312, 317

asymptotically random, 77

average dimension, 221

Babenko-Zaremba index, 193

baker transformation, 197, 240

bank example, 13–19, 88, 96, 100, 105, 107,
111, 116, 120, 129, 137, 205, 235

batch means (within MCMC), 304

Bayesian inference, 303

Bernoulli polynomial, 194

Black-Scholes-Merton formula, 250, 251,
280, 298

bootstrapping, 25, 38, 136, 225

borehole function, 321

Box-Muller algorithm, 50

Brownian bridge, 33, 222–225, 240, 299

generalized, 223, 256, 262

Brownian motion, 42, 55, 222, 248, 257,
260, 262, 278

geometric, 248, 258

burn-in period, 304

Cholesky decomposition, 53, 56, 223, 253,

295, 298

coefficient of determination, 109

common random numbers, 58, 107,
132–135, 138, 281, 299

complete market, 249, 256

completely uniformly distributed sequence,
307

component-by-component, 152, 240, 245

conditional Monte Carlo, 119–125, 136,
225, 231, 263, 279

conditional tail expectation, 294, 300

control variable, 101–110, 136, 230–231,
273, 299

external, 107, 135

internal, 107

multiple, 108

copula models, 43, 53–54, 56

coupling from the past, 303, 310

Cranley-Patterson rotation, 204

crude Monte Carlo, 12

curse of dimensionality, 9

delta-gamma approximation, 295

detailed balance condition, 307, 309

diaphony, 194, 198

dyadic, 195

weighted, 196

digital net

dual space, 191

digital sequence

Sobol’, 262

digital net, 155

(t, k, s)-net, 156, 329, 333

dual space, 211

scrambled net, 12, 221

shift net, 174

digital sequence, 155

(t, s)-sequence, 156

Faure, 154, 156, 161–163, 177

numerical results with, 270

generalized Faure, 169

numerical results with, 271

369

370 Index

generalized Niederreiter, 167

generalized Sobol’, 167, 221

Niederreiter, 163–164

Niederreiter-Xing, 168

polynomial arithmetic analogue of
Halton sequence, 168

Sobol’, 78, 146, 154, 157–161, 198, 217,

229, 239, 299

numerical results with, 237, 270, 281,
287, 293, 297

dimension distribution, 221

dimension-stationary, 177, 199, 262

direction numbers, 157, 159, 166, 271

discrepancy

L2 discrepancy, 183, 199

(definition of) low-discrepancy

sequence/point set, 143

extreme, 182

generalized L2 discrepancy, 186

isotropic, 182

star, 142, 153–157, 162, 165, 181, 308

weighted L2, 242

mean-square, 245

discretization, 255, 280

Euler, 257

dual pricing method, 286–287

effective dimension, 216–222, 226, 228, 240,
326

effective sample size, 315

efficiency, 89, 98, 117, 122, 129, 133, 232,
331

elementary intervals, 76, 156, 188

empirical CDF, 25, 38, 140, 233, 298, 300

equidistribution, 75–80, 156, 188, 206

maximal, 77

equity-linked contract, 31–34, 39

exact sampling, 310–312

exclusive-or, 64, 157

experimental design

balanced incomplete block design, 332

experimental design, 301, 322

factorial design, 322

OA-based Latin hypercube design, 329,

333

space-filling design, 323

exponential twisting/tilting, 114, 265, 296

financial model

Heston, 257, 262, 281

jumps, 260, 264

lognormal, 31, 37, 42, 247, 278, 289, 290,
298

regime switching, 258, 264

variance gamma, 260, 298

finite difference, 282

formal Laurent series, 163, 173, 178,
338–339

Fourier series, 191, 192, 211

Freivald’s algorithm, 35

fully projection-regular, 144, 148, 158, 177,
198, 328

fundamental theorem of option pricing, 249

generating matrices, 155–164, 167–170,
206–208, 213

Gillespie’s algorithm, 27–31

τ -leap approach, 39

Girsanov’s theorem, 278

global illumination problem, 112

global sensitivity indices, 215, 217, 240,
322, 329, 332

good lattice points, see lattice–Korobov
point set

Gray code, 159, 169

greeks, 282, 288

delta, 282, 289, 295

gamma, 282, 289, 295

Halton sequence, 153–154, 162, 165, 167,
198, 212, 239

generalized, 165, 198, 239

numerical results with, 237, 271

numerical results with, 270

Hammersley point set, 154

hedging, 288

hit-and-miss method, 35

importance sampling, 110–119, 230, 265,
295, 299, 313

weighted, 115, 131, 313

infinitesimal perturbation analysis, 115,
276, 290, 299

inversion, 16, 20, 35–37, 41, 44–46, 55–56,
94, 132, 230, 256, 324

jackknifing, 105, 137

Kalman filter, 313, 318, 333

Karhunen-Loève expansion, 224

Koksma-Hlawka inequality, 184, 196, 214,
242

Laguerre polynomial, 285

Latin hypercube sampling, 136, 208, 233,
323

Latin supercube sampling, 209, 317

lattice, 70, 147

Index 371

basis, 70, 72, 147

copy rule, 148, 198

determinant, 147

dual, 72, 191, 193, 211

extensible, 150

extensible Korobov, 151, 198

integration, 147

invariants, 147

Korobov point set, 145, 148, 175, 193,
228, 235, 239, 309, 333

numerical results with, 232, 268

polynomial, see polynomial lattice

rank, 147

rank-1, 148, 239, 240, 245

shortest vector, 72, 193

structure (for PRNG), 67, 70–73

least-squares Monte Carlo, 285

likelihood ratio, 112, 277, 313

method, 291, 299

Lindley’s equation, 14

Longstaff and Schwartz algorithm, 285

LPτ -sequence, 78, 154

Markov Chain Monte Carlo, 303–312

martingale, 249, 286

measure

absolutely continuous, 113

equivalent martingale, 249

risk-neutral probability, 249, 256, 282,
294

Metropolis-Hastings algorithm, 303,
305–310, 312, 333

acceptance probability, 306, 309

multiple-try, 309, 333

MinT, 157, 174

moment-matching method, 282, 299

Moro’s algorithm, 44

mortgage-backed security, 217, 255, 268,
269, 299

naive Monte Carlo, 12

numerical examples, see bank example,
greeks, option (American, Asian),
ruin probability, stochastic activity
network, value-at-risk

occupation time, 259

option

American, 283–288

Asian, 217, 224, 236, 250, 255, 262, 273,
278, 292, 298

Bermudan, 283

continuation value, 284

digital, 224

European, 247

path-dependent, 248

path-independent, 248

put-call parity, 299

rainbow, 252, 256, 298

order statistics, 25, 50, 233

orthogonal array, 324, 326–329

OA-based Latin hypercube design, 329,
333

ordered, 174, 329

strength, 326

Pα, 194

weighted, 193, 216

percentile estimation, see quantile
estimation

perfect sampling, see exact sampling

periodization, 196

Sidi’s transformation, 197, 240

polar method, 50

polynomial lattice, 170–174

extensible, 173

integration lattice, 172, 196

Korobov, 178, 229

numerical results with, 262, 268, 281

polynomial LCG, 178

polynomial version of Hickernell
sequences, 174

rank-1, 171, 173

Salzburg Tables, 172

primitive

element, 61, 85, 176

polynomial, 62, 64, 157, 164, 167, 337

principal components, 223

probabilistic Monte Carlo algorithm, 35

product rule, 6–9

projection

definition of, 144

quality of, 143, 154–169, 177, 216–217,
262, 328

use in quality measures, 186–187,
194–196, 228–229

propagation rule, 199

proposal distribution, 305, 314

pseudorandom number generator

F2-linear, 65, 193, 229

add-with-carry, 66, 75

bad, 24, 57, 81

combined, 62, 63, 65

combined Tausworthe, 178, 199, 229, 262

cycle, 60, 69, 85, 179

explicit inversive congruential, 67, 86

generalized feedback shift register, 64

jumping ahead, 60, 85

372 Index

lagged-Fibonacci, 62, 66

linear congruential, 23, 61, 175, 229, 308

linear feedback shift register, 64, 76, 79,

85

Mersenne-Twister, 24, 65, 76

mid-square method, 58

MRG32k3a, 24, 63, 86

multiple recursive, 62

multiplicative (linear) congruential, 61,
85

nonlinear, 67

period, 24, 59, 64, 175, 179, 308

randomness, 57, 68

RANDU, 24, 61, 71, 86

seed, 24, 38, 59, 69, 175

subtract-with-borrow, 66, 74–75

Tausworthe, 64, 178

tempering, 65

(q1, . . . , qs)-partition, 156, 189, 206

quantile estimation, 25, 294, 298

quasi-regression, 226

radical-inverse function, 145, 150, 173

Radon-Nikodym, 277

randomization

digital shift, 205–206

scrambling, 206–208, 213, 239

shift, 176, 204–205

rare event, 111, 294

ratio estimate, see weighted importance
sampling

recurrence-based point set, 62, 175–180,
193, 239, 308–309

regenerative

epochs, 265

process, 265

simulation, 135, 266–268

repeatability, 58, 60

residual resampling, 318

resolution, 76, 86, 159, 192, 229

Richtmyer sequence, 145, 152

ruin probability, 115, 264–268

storage process, 265

surplus process, 264

Russian roulette, 112

sampling plan, 323, 333

permuted-columns, 331

substituted-columns, 331

score function, see likelihood ratio method

scrambled net, see digital net

self-financing, 289

sensitivity analysis, 132, 321, 329

sequential Monte Carlo, 312–320

bootstrap filter, 112, 316

filtering distribution, 312, 314

particles, 313, 317

properly weighted sample, 313, 333

sequential importance sampling, 315

shift net, see digital net

Sidi’s transformation, see periodization

Simpson’s rule, 5

Sobolev space, 243

spectral test, 71, 86, 193, 229

weighted, 195

splitting, 104, 112, 137, 230

statistical test, 24, 68, 80–84

p-value, 80, 82

birthday spacings test, 84, 86

collisions test, 82–84

dense case, 83

negative entropy test, 82

overlapping test, 84

Pearson chi-square test, 81, 84

serial test, 81

sparse case, 83

type I error, 80

stochastic activity network, 96–99, 106,
117, 122–125, 133, 137, 232

stochastic approximation, 276–278

stochastic differential equation, 248, 257,
258, 264–265, 279

stochastic mesh method, 284, 286

stochastic volatility, 258, 279

stopping time, 19, 283

stratification, 125–131

optimal allocation, 126, 137

post stratification, 127

proportional allocation, 126, 137

surrogate function, 321, 332

synchronization, 96, 107, 135

systematic resampling, 318

t-value, 78, 86, 156–161, 167, 169, 174,
191–193, 199, 207, 229

TailVar, see conditional tail expectation

time-reversible, 333

tractability, 152, 229, 241

trapezoidal rule, 5–9, 34, 141, 143

unbounded dimension, 19, 21, 30, 176, 205,
239, 260, 263, 311

uniformly directed cutset, 122

uniformly distributed sequence, 184

value-at-risk, 233, 293–298, 300

Index 373

van der Corput sequence, 145, 150, 153,
165

variance of RQMC estimator
estimate, 202–203
formulas, 211–214

variation
in the sense of Hardy and Krause, 184

in the sense of Vitali, 185

infinite, 186, 197

Walsh series, 188–196, 211–213

multi base, 342

weighted Monte Carlo, 110

springer.com

Modern Multivariate Statistical Techniques
Regression, Classification, and Manifold Learning
Allen Julian Izenman

This book is for advanced undergraduate students, graduate
students, and researchers in statistics, computer science, artificial
intelligence, psychology, cognitive sciences, business, medicine,
bioinformatics, and engineering. Familiarity with multivariable
calculus, linear algebra, and probability and statistics is required.
The book presents a carefully-integrated mixture of theory and
applications, and of classical and modern multivariate statistical
techniques, including Bayesian methods.

2008. Approx 760 pp. (Springer Texts in Statistics) Hardcover
ISBN 978-0-387-78188-4

Asymptotic Theory of
Statistics and Probability
Anirban DasGupta

This book is an encyclopedic treatment of classic as well as
contemporary large sample theory, dealing with both statistical
problems and probabilistic issues and tools. It is written with an
emphasis on the conceptual discussion of the importance of a
problem and the impact and relevance of the theorems. The book
has nearly 600 exercises for practice and instruction, and another
300 worked out examples. It also includes a large compendium of
300 useful inequalities on probability, linear algebra, and analysis
that are collected together from numerous sources, as an invaluable
reference for researchers in statistics, probability, and mathematics.

2008. Approx. 724 pp. (Springer Texts in Statistics) Hardcover
ISBN 978-0-387-75970-8

Semi-Markov Chains and Hidden
Semi-Markov Models toward Applications
Vlad Barbu and Nikolaos Limnios

This book is concerned with the estimation of discrete-time semi-
Markov and hidden semi-Markov processes. Semi-Markov processes
are much more general and better adapted to applications than the
Markov ones because sojourn times in any state can be arbitrarily
distributed, as opposed to the geometrically distributed sojourn time
in the Markov case. Another unique feature of the book is the use of
discrete time, especially useful in some specific applications where
the time scale is intrinsically discrete. The models presented in the
book are specifically adapted to reliability studies and DNA analysis.

2008. 226 pp. (Lecture Notes in Statistics) Softcover
ISBN 978-0-387-73171-1

Easy Ways to Order► Call: Toll-Free 1-800-SPRINGER ▪ E-mail: orders-ny@springer.com ▪ Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 ▪ Visit: Your
local scientific bookstore or urge your librarian to order.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

