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Preface

In 1925, H. Ulenbeck and S. Goudsmith suggested the idea of spin
as a kind of intrinsic moment in electrons, thus establishing a funda-
mental building block in the physics of magnetic phenomena in solids.
Currently, research in the area of magnetism is largely motivated by
the needs of technology. However, research efforts outside the scope
of technological needs are useful for the advancement of the physics of
spin itself. It is well known that spin-dependent/related phenomena
such as magneto-resistance, superconductivity, magneto-optics and oth-
ers have been under intense theoretical and experimental investigation
resulting in the creation of new devices in the area of digital recording
and spin-dependent transport-based technologies. On the other hand,
further development of experimental research techniques enhanced the
accuracy of measurements such as, for example, scanning tunneling mi-
croscopy, exchange force microscopy, angle- and spin-resolved photoe-
mission, scattering of neutrons and electrons on magnetic type of exci-
tations, challenging physicists to improve the interpretations of results
on a computational rather than qualitative basis. Some examples are
new quantitative understandings of phenomena such as the interplay
of different types of low-lying excitations involving charge, spin, and
lattice degrees of freedom in manganites and conventional superconduc-
tors, the unique role of quantum spin fluctuations in thermodynamics
and transport properties of unconventional superconductors and weak
ferromagnets, the influence of electron correlations on order/disorder of
magnetic nanoclusters or quantum dots, and co-existance of non-uniform
magnetic ordering and superconductivity.

This book reviews a rather limited selection of recent progress made
in the vast field of magnetism. The list of chapters comprise such is-
sues as: new many-body theoretical developments and applications de-
signed to more accurately describe the ground state and excitations of
strongly correlated systems on arbitrary energy scales, spin-dependent
tunnel currents and proximity effects at the interface of magnetic ma-
terials and superconductors, application of first-principle calculations to

xv
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explore spin-dependent material properties close to a quantum critical
point such as spectrum of magnetic fluctuations, magneto-crystalline
anisotropy, non-uniform magnetism, search for quantum phase transi-
tions in narrow-band metals.

SAMED HALILOV

Washington, D.C.
February, 2004
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FERROMAGNET - SUPERCONDUCTOR
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Institute of Physics and Nanotechnology Center, Maria Curie-Sk�lodowska University,
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Abstract We discuss some properties of the ferromagnet - superconductor prox-
imity system. In particular, the emphasis is put on the physics of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state. In addition to An-
dreev reflections it features a number of unusual thermodynamic and
transport properties, like: oscillatory behavior of the pairing amplitude,
density of states and superconducting transition temperature as a func-
tion of the ferromagnet thickness. Surprisingly, under certain conditions
spontaneous spin polarized current is generated in the ground state of
such a system. We provide some informations regarding experimental
observations of this exotic state.

Keywords: Proximity effect, Fulde-Ferrell-Larkin-Ovchinnikov state
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2 Fulde-Ferrell-Larkin-Ovchinnikov-like state in FM - SC Proximity System

1.1 Introduction
When a normal non-magnetic metal is connected to a superconductor

it acquires superconducting properties, like non-zero pairing amplitude.
This effect, known as the proximity effect [1], has extensively been stud-
ied for almost half a century. It is rather well understood by now in
terms of Andreev reflections [2], according to which an impinging elec-
tron (with energy less than superconducting gap) on the normal metal
(NM) / superconductor (SC) interface is reflected back as a hole and
the Cooper pair is created in superconductor. From the point of view of
Andreev reflections the proximity effect can be regarded as a non-zero
density of the Andreev correlated electron - hole pairs on the normal
metal side of the interface.

When a normal metal is replaced by a ferromagnet (FM), another
energy scale enters problem, namely the exchange splitting which is re-
lated to the spin polarization of the electrons. Such FM/SC hybrid
structures are important from the scientific point of view, as they allow
the study of the interplay between ferromagnetism and superconductiv-
ity [3] as well as of device applications in such areas of technology as
magnetoelectronics [4] or quantum computing [5].

It is widely accepted that ferromagnetism and superconductivity are
two antagonistic phenomena, so one could expect that the proximity ef-
fect in FM/SC system should be suppressed. Indeed, the one can argue
that in ferromagnet there are different numbers of spin-up (majority) n↑
and spin-down (minority) n↓ conduction channels, and due to the fact
that incident and reflected particles occupy different spin bands, only a
fraction n↓/n↑ of majority particles can be Andreev reflected [6].

On the other hand if an exchange field acts on the Cooper pairs, one
would expect that either it is too weak to break the pair, or it suppresses
completely superconductivity. However when a Cooper pair is subjected
to the exchange field, it acquires a finite momentum and for certain val-
ues of the exchange splitting a new superconducting state is realized,
known as Fulde - Ferrell - Larkin - Ovchinnikov (FFLO) state [7, 8].
Interestingly such state features a spatially dependent order parameter
corresponding to the non-zero center of mass motion of the Cooper pairs.
This state features in non-zero spin polarization, almost normal tunnel-
ing characteristics and almost normal Sommerfeld specific heat ratio,
anisotropic electrodynamic properties. Unfortunately the bulk state is
very sensitive to the impurities and shape of the Fermi surface. Another
novel feature of this state is a current flowing in the ground state. The
unpaired electrons tend to congregate at one portion of the Fermi sur-
face so a quasiparticle current is produced. In order to satisfy the Bloch
theorem: no current in the ground state, a supercurrent, generated by
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the nonzero value of the pairing momentum, flows in opposite direction,
and the total current is zero.

Similar oscillations of the pairing amplitude have been predicted [9]-
[12] in ferromagnet/superconductor proximity systems. It turns out that
these oscillations are responsible for the oscillatory behavior of the SC
critical temperature Tc, first experimentally observed by Wong et al.
[13], and the density of states [14] as the thickness of the FM slab is
varied. In fact, the oscillations of the Tc in FM/SC multilayers can be
also explained in terms of the effective π-junction behavior [10]. It was
shown that at specific FM thickness the Josephson coupling between
two SC layers can lead to a junction with an intrinsic phase (of the
order parameter) difference δϕ = π, which exhibits a higher Tc than the
ordinary one (δϕ = 0). The π-junction effect has been originally pro-
posed by Bulaevskii et al. [15] to arise in the tunnel barriers containing
magnetic impurities. It was also suggested that the π-junction can be
realized in high-Tc superconducting weak links [16], where the SC order
parameter changes its sign under π/2 rotation. This has tremendous
consequences as it leads to many important effects [17, 18], like: the
zero energy Andreev states, zero-bias conductance peaks, large Joseph-
son current, time reversal symmetry breaking, paramagnetic Meissner
effect and spontaneously generated currents.

From the point of view of the present paper the important issue is the
formation of the Andreev bound states in FM/SC proximity system.
The Andreev states arise due to the fact that the quasiparticles of the
ferromagnet participating in the Andreev reflections move along closed
orbits. Such states have been first studied by de Gennes and Saint-
James [19] in the insulator/normal metal/superconductor (I/NM/SC)
trilayer. The energies of these states are always smaller than the SC gap
∆ and symmetrically positioned around the Fermi level. They strongly
depend on the geometry of the system as well as on the properties of
the interfaces. In high-Tc (d-wave) superconductors, these states can be
shifted to zero energy, due to the specific form of the symmetry of the
order parameter [20], thus indicating π-junction behavior in the system.
Naturally, such Andreev states can also arise in the I/FM/SC het-
erostructures. Moreover, it is possible to shift the energies of these states
by changing the exchange splitting, as was first demonstrated by Kuple-
vakhskii & Fal’ko [21]. In turn, by properly adjusting the exchange split-
ting the position of the Andreev bound states can be moved to the Fermi
energy. The system under such circumstances behaves like that being in
the π-junction phase as the spontaneous current is generated [22].

Some of our results have already been published [22]-[24]. Here we
wish to present a more detailed study of the FM/SC proximity sys-
tem in terms of FFLO physics. In some situations the ground state
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of FM/SC structures has properties of both the FFLO and the π-
junction, leading to various interesting and unexpected phenomena.

The paper is organized as follows: In Sec. 1.2 the simple model which
allows for self-consistent description of the FM/SC heterostructure is
introduced. In Sec. 1.3 the nature of the Andreev bound states in
the ferromagnet is discussed. The spontaneously generated current and
corresponding magnetic field in the ground state are studied in the Sec.
1.4. In Sec. 1.5 show some transport properties of the system, in the
Sec. 1.6 we compare our system to usual FFLO state, and finally, we
conclude in Sec. 1.6.

1.2 Model and theory
To study the properties of FM/SC system we have adopted the 2D

Hubbard model featuring the exchange splitting in the ferromagnet and
an electron - electron attraction in superconductor. The Hamiltonian is:

H =
∑
ijσ

[
tij +

(
1
2
Eexσ − µ

)
δij

]
c+
iσcjσ +

1
2

∑
iσ

Uiniσni−σ (1)

where in the presence of a vector potential �A(�r), the hopping integral is

given by tij = −te
−ie

∫ �rj
�ri

�A(�r)·d�r
for nearest neighbor lattice sites, whose

positions are �ri and �rj, and zero otherwise. The exchange splitting
Eex is only non-zero on the FM side, unlike as Ui (electron - electron
attraction) being non-zero only in SC. µ is the chemical potential,
c+
iσ, (ciσ) are the usual electron creation (annihilation) operators and

n̂iσ = c+
iσciσ.

In the following we shall work within Spin - Polarized - Hartree -
Fock - Gorkov (SPHFG) approximation [22] assuming periodicity in
the direction parallel to the interface while working in a real space in
the direction perpendicular. Labeling the layers by integer n and m at
each ky point of the Brillouin zone we shall solve the following SPHFG
equation: ∑

m′,γ,ky

Hαγ
nm′(ω, ky)G

γβ
m′m(ω, ky) = δnmδαβ (2)

where the only non-zero elements are: H11
nm and H22

nm = (ω− 1
2σEex±µ±

tcos(ky∓eA(n)))δnm± tδn,n+1 for the upper and lower sign respectively,
H33

nm = H11
nm and H44

nm = H22
nm with σ replaced by −σ and H12

nm = H21
nm =

−H34
nm = −H43

nm = ∆nδnm and Gαβ
nm is corresponding Green’s function

(GF ).
As usual, the self-consistency is assured by the relations determining

the FM (mn) and SC (∆n) order parameters, current (Jy↑(↓)(n)) and
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the vector potential (Ay(n)) respectively:

mn = nn↑ − nn↓ =
2
β

∑
ky

2N−1∑
ν=0

Re
{
(G11

nn(ων, ky) − G33
nn(ων, ky))e(2ν+1)πi/2N

}
(3)

∆n = Un

∑
ky

〈cn↓(ky)cn↑(ky)〉

=
2Un

β

∑
ky

2N−1∑
ν=0

Re
{
G12

nn(ων, ky)e(2ν+1)πi/2N
}

(4)

Jy↑(↓)(n) =
4et

β

×
∑
ky

sin(ky − eAy(n))
2N−1∑
ν=0

Re
{
G11(33)

nn (ων, ky)e(2ν+1)πi/2N
}

(5)

Ay(n + 1) − 2Ay(n) + Ay(n − 1) = −4πJy(n) (6)

The details of the calculations can be found in [23].

1.3 Andreev bound states
Before we discuss results of fully self-consistent calculations we would

like to turn the attention to origin of Andreev bound states and take a
look at physics of them from the point of view of semiclassical approach.

From quasiclassical considerations, each bound state corresponds to
quasiparticle moving along a family of closed trajectories [25]. The en-
ergy of such bound state is determined by the Bohr-Sommerfeld quan-
tization rules, according to which the total phase accumulated during
one cycle has to be equal to multiples of 2π. Interestingly, the bound
states also emerge in the normal metal/superconductor (NM/SC) struc-
tures [19] due to the Andreev reflections [2], according to which an inci-
dent electron is reflected back as a hole at the interface, and a Cooper
pair is created in SC. Such states are built up from a combination
of electron and hole wave functions. The example of the closed quasi-
particle trajectory, producing the bound state, in an insulator/(normal
metal)/superconductor I/NM/SC, is shown in the Fig. 1. It con-
sists of an electron e segment, which includes a ordinary reflection at
the I/NM interface, and hole h one, retracing backwards the electron
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Figure 1. The example of the quasiparticle path corresponding to the Andreev
reflections, giving a bound state. The quasiparticle is trapped in the normal region
because of normal reflection at the I/NM surface and the Andreev reflection at the
NM/SC interface. The total phase accumulated during one cycle is equal: −(α1 +
α2) ± (ϕ1 − ϕ2) + β(E).

trajectory. The total accumulated phase in this case consists of contri-
bution from Andreev reflections at point A: −α1 + ϕ1 and B: −α2 + ϕ2

as well as contribution from the propagation through the normal metal
β(E). α1(2) = arccos(E/|∆0|) is the Andreev reflection phase shift,
while ϕ1(2) is the phase of the SC order parameter at point A (B).
β(E) = 2L(ke − kh) + β0 is the electron-hole dephasing factor and de-
scribes the phase acquired during the propagation through the normal
region, where the first term corresponds to the ballistic motion and the
second one to the reflection at the I/NM surface. L is the thickness
of NM , and ke (kh) is the electron (hole) wave vector. Thus the Bohr-
Sommerfeld quantization condition is:

−(α1 + α2) ± (ϕ1 − ϕ2) + β(E) = 2nπ (7)

where the ±(ϕ1 − ϕ2) stands for the trajectories in the ±ky (parallel to
the interface) direction.

If there is no phase difference between points A and B in the Fig.
1 (for example NM/SC interface), the bound states always appear in
pairs symmetrically positioned around the Fermi level because of the
time reversal symmetry in the problem. Moreover, due to the fact that
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there is no difference between electrons and holes at the Fermi level
(β(E = 0) = 0), there is no E = 0 solution. In other words, the bound
states always emerge at finite energies.

The situation is quite different if there is a phase difference (ϕ1 −ϕ2)
between points A and B (see Fig. 1). The example can be the inter-
faces with d-wave superconductors oriented in the (110) direction, where
(ϕ1−ϕ2) = π. In this case, due to the additional phase shift π the bound
states can emerge even at zero energy. Such zero-energy Andreev bound
states, in the case of high-Tc superconductors, have been predicted by
Hu [20] and are known as zero-energy mid-gap states. The presence of
the Andreev bound states at zero energy features in many important ef-
fects, like zero-bias conductance peaks, π-junction behavior, anomalous
temperature dependence of the critical Josephson current, paramagnetic
Meissner effect, time reversal symmetry breaking and spontaneous in-
terface currents [17, 18].

Although the zero-energy states (ZES) are likely to appear when the
phase of the order parameter at the interface is not constant, the re-
sulting density of states at the Fermi energy is energetically unfavorable
and any mechanism able to split these states will lower the energy of
the system [18, 26]. On of these is the self-induced Doppler shift [27, 17]
δ = evFA, where A is a vector potential. The situation is schematically
depicted in the Fig. 2. At low temperature (T ∗ ≈ (ξ0/λ)Tc, where λ

Figure 2. Generating of the spontaneous currents.

is the penetration depth of the magnetic field) the splitting of the zero
energy states produces a surface current. This current generates a mag-
netic field (screened by a supercurrent), which further splits ZES due to
the Doppler shift effect. The effect saturates when the magnetic energy
is equal to the energy of the Doppler shifted ZES.
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Naturally, the Andreev bound states also arises in I/FM/SC het-
erostructures [21, 28–31, 23, 24, 32]. More importantly, as it was first
predicted by Kuplevakhskii & Fal’ko [21], it is possible to shift these
states to zero energy by tuning the exchange splitting. So the crossing
of the zero energy solution can be obtained either by changing the phase
difference (ϕ1−ϕ2) or by varying FM coherence length (exchange field).

The properties of such bound states have been also studied fully
quantum-mechanically within lattice models of the FM/SC systems
[31, 23, 24] and similar their behavior have been obtained. Interest-
ingly, it turns out, that as in the case of the high-Tc structures [27],
such zero energy Andreev states support spontaneous currents flowing
in the ground state of the FM/SC system [22–24]. The mechanism of
generating of such currents is the same, as earlier discussed, namely the
self-induced Doppler shift. So in fact, when the current flows, such one
of the states will be twice shifted: once due to the exchange (Zeeman)
splitting, and the second time due to the Doppler shift.

For energies less than superconducting gap, the only Andreev bound
states will contribute to the density of states ρ(E). However, as it was
mentioned, for fixed thickness and exchange splitting, there will be An-
dreev bound states at different energies, for different angles of particle
incidence (γ2 in the Fig. 1). Thus to get the density of states, one has
to sum the energies of these states over all values of γ2:

ρ(E) =
π/2∑

γ2=−π/2

δ(E − Ebound) (8)

and talk, in fact, about Andreev bands rather that single states. How-
ever, all that was said on properties of the bound states, remains true
for Andreev bands too. In particular the splitting of the whole band
due to the spontaneous current is illustrated in the Fig. 3. The addi-
tional structure comes from the other (higher order) Andreev reflections.
Superconducting energy gap ∆0 = 0.376 in this figure.

There is also a strong correlation between Andreev bound states
(bands) and the pairing amplitude [31, 22, 23]. Each time the pairing
amplitude at the I/FM interface changes its sign, the Andreev bound
state (band) crosses the Fermi energy. Moreover in this case the spon-
taneous current is generated.

From the experimental point of view the density of states, in particular
its temperature dependence, can be a good measure of the current car-
rying ground state. At certain thicknesses of FM for which the current
flows there is a huge drop in the ρtot(εF) at characteristic temperature
T ∗ ≈ (ξS/λ)Tc, where ξS and λ are coherence length and penetration
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Figure 3. Doppler splitting of the zero-energy state. From Ref. [23].

depth respectively. T ∗ simply indicates the temperature at which mag-
netic instability, which leads to the generation of the current, takes the
place. Such behavior is depicted in the Fig. 4 and should be observable
experimentally. If there is no current the DOS is due to the Andreev
band and is almost constant (we are well below Tc), and as soon as the
current starts to flow the Andreev band splits so we observe a drop in
ρtot(εF). The important point is that T ∗ and Tc are different tempera-
tures.

1.4 Spontaneous current
The most remarkable feature of our calculations is that the solution

of the SPHFG equations frequently converges to a solution with the
finite current jy(n) even though the external vector potential is zero.
The typical example of such a current, flowing parallel to the FM/SC
interface, (jtot

y (n) = jy↑(n) + jy↓(n)) is shown in the Fig. 5 for a few
values of the exchange splitting. Behavior of the current, as a function
of the layer index, is very similar to the density of states at the Fermi
level. The oscillating nature of the current comes from the Friedel like
oscillations of the DOS [23]. This is because current is proportional to
the DOS at the Fermi level. Within semiclassical calculations, which
neglect these effects the current is very smooth [32].

Another important issue is the distribution of the current through
the whole trilayer structure. We find that it flows mostly in the positive
y direction on ferromagnetic side and in the negative direction in the
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Figure 5. The total (spontaneous) current jtot
y (n) = jy↑(n)+ jy↓(n) flowing parallel

to the FM/SC interface for a number of exchange splittings. From Ref. [23].

superconductor. Notably the total current, integrated over the whole
sample, is equal to zero within numerical accuracy. This is as it should
be for the true ground state and found to be in the FFLO state, where
the current associated with the unpaired electrons is balanced by the su-
percurrent flowing in the opposite direction. Similarly here (see Fig. 6).
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Figure 6. Schematic view of the current distribution.

Obviously, the spontaneous current distribution (see Fig. 6) generates
the magnetic field through the sample. The total magnetic flux weakly
depends on the thickness of the sample and the exchange splitting. Its
magnitude is found to be a fraction of the flux quantum Φ0 = h/2e and
is smaller than upper critical field of the bulk superconductor. This is
rather a large field and could be observable in temperature dependent
measurements (see Fig. 7).

1.5 Transport properties
Some information on spontaneous currents can be also obtained from

conductance calculations. To do so we attached a normal metal electrode
to our FM/SC system and calculate current through NM/FM/SC
system using nonequilibrium Keldysh Green’s function technique [33].
To calculate this current in terms of various physical processes we went
along the way outlined in Ref. [34] and got corresponding spin polarized
formula for the current as a sum of four different contributions I =
I1 + I2 + I3 + IA, where:

I1 = 4π2t2NF

e

h̄

∑
σ

∫
dω|1

+G11r
FNσ(ω)|2ρ11

NNσ(ω)ρ11
FFσ(ω)[f(ω − eV ) − f(ω)] (9)

I2 = 8π2t2NF

e

h̄

∑
σ

∫
dωRe{tNFG21a

NFσ(ω)[1 + G11r
FNσ(ω)]}

×ρ11
NNσ(ω)ρ12

FFσ(ω)[f(ω) − f(ω − eV )] (10)
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Figure 7. The temperature dependence of the total magnetic flux for thickness of
the FM slab L/ξS = 2.6 (solid), 6 (dashed) and 15 (dotted curve).

I3 = 4π2t4NF

e

h̄

∑
σ

∫
dω|G12

FNσ(ω)|2

ρ11
NNσ(ω)ρ22

FF−σ(ω)[f(ω − eV ) − f(ω)] (11)

IA = 4π2t4NF

e

h̄

∑
σ

∫
dω|G12

FFσ(ω)|2

ρ11
NNσ(ω)ρ22

LL−σ(ω)[f(ω − eV ) − f(ω + eV )] (12)

I1 corresponds to normal electron tunneling between electrodes, I2 is
a net transfer of single electron with creation or annihilation of pairs
as an intermediate state. I3 corresponds to a process in which electron
from normal electron is converted to a hole in superconductor - branch
crossing process in language of BTK theroy [35], while IA is the Andreev
tunneling.

The differential conductance G(eV ) = dI/d(eV ) as a function of
eV = µNM−µSC is shown in the Fig. 8. Clearly, if there is a spontaneous
current in the ground state, the conductance peak is split, similarly as
in the DOS. We could expect such behavior because G(eV ) is propor-
tional to the DOS at the Fermi energy. And again this effect could be
observable in the tunneling experiments.

We have also extracted Andreev conductance form the total one and
ploted in the Fig. 9. We can see that conductance associated with the
Andreev processes is strongly enhanced when the current flows in the
ground state. Unfortunately it could be very difficult experimentally
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Figure 8. The total differential conductance for the solution with and without the
spontaneous current.

Figure 9. Corresponding Andreev differential conductance for the solution with and
without the spontaneous current.

measure Andreev conductance only. Despite the fact that for energies
less than SC gap the only allowed process is Andreev reflection, as in
the point contact geometry, it doesn’t work in our system. The problem
is that even at very low energies there is a finite DOS at the Fermi level
due to ferromagnet. Naturally the pairing amplitude is induced in FM
slab but this is not true energy gap in the quasiparticle spectra and we
always deal with some single electron processes in tunneling events.
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1.6 2D FFLO state
Before closing discussion on the spontaneous current we wish to make

a remark regarding the nature of the ground state in our system. To
begin with we recall that recently it has been predicted [36] that under
certain conditions a 3D-FFLO state is energetically more favorable than
usual 1D state. The 3D state manifests itself in oscillatory behavior of
the pairing amplitude not only in the direction perpendicular to the
interface but also in direction parallel to it. Moreover, changing the
thickness of the FM slab, one can switch the ground state of the system
between 3D and 1D-FFLO state [36, 23].

The current carrying ground state of our system can be interpreted
as a 2D-FFLO state. The argument is as follows: The oscillations of
the pairing amplitude in the direction perpendicular to the interface
occur regardless whether the spontaneous current flows or not. Within
the FFLO theory [7, 8], the period of the oscillations is related to the
x-component of the center of mass momentum of the Cooper pair Q.
On the FM side of our model the FFLO periodicity is governed by
Q = (2Eex/vF)vF

vF
, where vF is the Fermi velocity vector. This can be

interpreted as the usual 1D-FFLO state in confined geometry. On the
other hand, when the current flows parallel to the interface, there is a
finite vector potential in the y-direction. This can be regarded as a y-
component of the Q-vector. So one can say that when the spontaneous
current flows, the 2D-FFLO state is realized. Moreover when the FM
thickness is changed the ground state of the system is switched between
2D- and 1D-state, which manifests itself in spontaneous current flow or
in the lack of it. In the present calculations this vector was found during
the self-consistency procedure, as it is related to the vector potential in
the y-direction. Moreover, the effective Qy changes its value from layer
to layer leading to inhomogeneous FFLO-like state in both dimensions.

1.7 Conclusions
The competition between ferromagnetism and superconductivity in

FM/SC heterostructures give raise to the Fulde - Ferrell - Larkin -
Ovchinnikov (FFLO) state in these systems. The original bulk FFLO
state manifests itself in a spatial oscillations of the SC order parame-
ter as well as in spontaneously generated currents flowing in the ground
state of the system. We have argued that a very interesting version of
this phenomenon accures in FM/SC proximity systems. In short, due
to the proximity effect and Andreev reflections at the FM/SC interface,
the Andreev bound states appear in the quasiparticle spectrum. These
states can be shifted to the zero energy by tuning the exchange splitting
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or the thickness of the ferromagnet, thus they became zero-energy mid-
gap states which lead to various interesting effects. In particular, the oc-
curence of spontaneous currents in the ground state can be related to the
zero-energy states, as in the case of high-Tc superconductors. It seems
that some combination of both phenomena is realized in a real systems.
The fact that oscillatory behavior of SC order parameter is strongly
correlated with the crossing of the Andreev bound states through Fermi
energy and the generation of the spontaneous currents further support
FFLO - Andreev bound states picture. The experimental confirma-
tion of the existence of the spontaneous (spin polarized) currents in the
ground state would support the FFLO - Andreev bound states scenario
in these structures.

Acknowledgments
This work has been partially supported by the grant no. PBZ-MIN-

008/P03/2003.
BLG would like to thank the Center for Computational Material Science
(CMS) of TU Wien for hospitality during the preparation of the above
talk.

References

[1] C. J. Lambert, R. Raimondi, J. Phys. Condens. Matter 10, 901 (1998).

[2] A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

[3] N. F. Berk, J. R. Schrieffer, Phys. Rev. Lett. 17, (1966) 433; C. Pfleiderer,M.
Uhlarz, S. M. Hayden, R. Vollmer, H. v. Lohneysen, N. R. Bernhoeft, G. G.
Lonzarich, Nature 412, (2001) 58; D. Aoki, A. Huxley, E. Ressouche, D. Braith-
waite, J. Flouquet, J. -P. Brison, E. Lhotel, C. Paulsen, Nature 413, (2001)
613.

[4] G. E. W. Bauer, Yu. V. Nazarov, D. Huertas-Hernando, A. Brataas, K. Xia, P.
J. Kelly, Materials Sci. Eng. B 84, (2001) 31; S. Oh, D. Youm, M. R. Beasley,
Appl. Phys. Lett. 71, (1997) 2376; L. R. Tagirov, Phys. Rev. Lett. 83, (1999)
2058.

[5] G. Blatter, V. B. Geshkenbein, L. B. Ioffe, Phys. Rev. B 63, (2001) 174511.

[6] M. J. M. de Jong, C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995).

[7] P. Fulde, A. Ferrell, Phys. Rev. 135, A550 (1964).

[8] A. Larkin, Y. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).

[9] A. I. Buzdin, L. N. Bulaevskii, S. V. Panyukov, JETP Lett. 35, 178 (1982); A.
I. Buzdin, M. V. Kuprianov, JETP Lett. 52, 487 (1990).
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EXCHANGE FORCE IMAGE
OF MAGNETIC SURFACES

— A First-Principles Study on NiO(001) Surface —

Hiroyoshi Momida∗, Tamio Oguchi
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1-3-1 Kagamiyama, Higashihiroshima 739-8530
Japan

Abstract A recently proposed surface atom-probe technique, exchange force mi-
croscopy, is examined on an antiferromagnetic NiO (001) surface system.
It is shown that atomic force of a ferromagnetic Fe probe on the surface
gives a clear spin image when the probe is located within 1Å above the
contact point. Exchange force images show antiferromagnetic pattern
of the Ni sites along the [110] direction and asymmetry around the O
sites. The asymmetric feature comes from the superexchange interac-
tion between the probe and the second-layer Ni atoms via the surface
O ion, being a key proof of the exchange force image on observation.

Keywords: Exchange force microscopy, surface magnetism, first-principles calcula-
tion.

2.1 Introduction
Exchange force microscopy (EFM) is a spin-dependent extension of

non-contact type atomic force microscopy (AFM) by measuring forces
acting on a ferromagnetic probe depending on relative spin orientation
to the surface atoms [1]. The basic setup of EFM is quite analogous to
that of magnetic force microscope (MFM). If the tip and surface are close
to each other, typically the order of Å, short-range exchange interaction
becomes dominant over relatively long-range magnetic dipole one and a
spin image of the magnetic surface can be observed in an atomic scale.
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A lot of efforts have been made to development of EFM instrumental
setup and surface preparation [2–4] as well as theoretical predictions and
quantitative estimation of EFM from first principles [5, 6]. Nakamura
has calculated atomic forces between Fe thin films with two kinds of rel-
ative magnetization orientations, parallel and anti-parallel, to evaluate
exchange force in a realistic system [5]. The magnitude of obtained ex-
change force is an order of nN, which can be measured with the present
non-contact AFM techniques. He found that the exchange force shows
an oscillatory behavior as a function of the film distance and that the
interaction is dominated by direct exchange between the neighboring d
orbitals for short distances while becomes indirect or RKKY-type via
more extended s and p orbitals for larger distances. ¿From the lateral
variation of the exchange force and its derivative with respect to the
distance, it has been concluded that the exchange force may provide us
clear information of the spin density distribution of the magnetic sur-
face [6].

However, it may be hard to flip the spin direction of the probe dur-
ing the observation and more essentially the exchange force cannot be
extracted precisely from the atomic force because both atomic and ex-
change forces have the same symmetry on the ferromagnetic surface.
Instead of measuring the ferromagnetic surface with a spin-flipped tip,
it should be much easier to measure an anti-ferromagnetic surface with
a spin-fixed ferromagnetic tip. This is a quite similar idea to spin-
polarized scanning tunneling microscopy (STM) measurement for anti-
ferromagnetic Mn adsorbed on W(110) reported recently [7].

Quite recently we have carried out first-principles calculations for
type-II anti-ferromagnetic NiO (001) clean surface to investigate sur-
face structure, electronic structure and spin-density distribution [8]. We
have found that the oxygen atoms at the surface may have the spin mo-
ment of 0.07µB, which is parallel to that of the Ni atom beneath. In
this study, we calculate exchange force of a ferromagnetic Fe probe on
antiferromagnetic NiO (001) surface to predict exchange force images of
the magnetic surface in an atom scale.

2.2 Models and Methods
We calculate atomic forces of a ferromagnetic Fe probe on antiferro-

magnetic NiO (001) surface to evaluate exchange forces. An important
point here is that in case of anti-ferromagnetic surface, we can obtain
exchange force with the ferromagnetic tip just by subtracting the forces
on antiferromagnetically inequivalent sites. To model such a system, Fe
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mono-layer on 5-layer NiO (001) slab is adopted for the EFM calcula-
tions as shown in Fig. 1.

Fe

Ni

Ni Ni

Ni

Figure 1. Model system of exchange force microscopy: ferromagnetic Fe monolayer
on 5-layer antiferromagnetic NiO(001) slab. Contour plot represents spin density
distribution on (100) cross-section. Solid (broken) lines represent positive (negative)
spin density. Interval of the density is 0.002 µB/a3

0, where a0 is the Bohr radius. High
spin density region around Ni and Fe is not shown.

For comparison, we have performed electronic structure calculations
for clean NiO (001) surface with use of a 9-layer slab model as well
as bulk NiO. We use lattice constant of 4.084 Å taken from the equi-
librium value of bulk NiO. In the present work, we assume no struc-
tural relaxation in case of the EFM calculations. We especially focus on
probe-height and lateral dependences of the exchange force. The lateral
dependence gives us the exchange force images we like to investigate.
Our calculations are based on local-spin-density approximation to the
density functional theory. One-electron scalar-relativistic Kohn-Sham
equations are solved self-consistently by using full-potential linear aug-
mented plane wave (FLAPW) method. The Kohn-Sham wavefunctions
are expanded by the basis set with the energy cutoff of 15 Ry. The Bril-
louin zone integration is done by using two-dimensional uniform k-mesh
including six k points in the irreducible zone.

2.3 Results and Discussion

Electronic Structure and Spin Density in Bulk NiO
Before showing results for NiO surface, let us summarize the electronic

structure and spin density in bulk NiO, which have been well studied for
a couple of decades. Figure 2(c) shows partial density of states (DOS)
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calculated for bulk antiferromagnetic NiO, which is a reference to the
surface system we like to study.
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Figure 2. Calculated partial density of states of (a) surface layer and (b) center
layer in 9-layer NiO(001) slab and (c) bulk NiO. Thick solid, thin solid and broken
lines denote O-p and Ni-d eg and t2g components, respectively. The energy zero is
taken at the top of the valence band of each system. Top and bottom panels represent
the majority and minority spin states, respectively, of each layer.

Spin magnetic moment at the Ni site is 1.16µB, which comes from
hole in Ni-d eg (3z2 − r2 and x2 − y2) minority-spin band. So, the spin-
density distribution around Ni reflects the shape of the eg orbital, as
equivalently shown in the spin density distribution in the center layer of
the NiO slab in Fig. 3.

There is strong hybridization between O-p and Ni-d eg orbitals and
certain hole amplitude may exist also at the O sites. One can see weak
spin-density distribution around O in Fig. 3 but its integrated quantity,
namely spin moment, becomes zero at the O sites by symmetry.

Electronic Structure and Spin Density in NiO (001)
Surface

Contrast to the bulk NiO, the O ions may have finite size of spin
moment at surface because of symmetry breaking. Actually we get such
finite spin moment at surface O sites as much as 0.07µB. The surface
spin moment is parallel to that of the Ni site underneath and originates
in O-pz orbital as shown in Fig. 3. The O spin moments are diminished
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Ni

NiNi

Ni

Ni Ni

Figure 3. Calculated spin density distribution on (100) cross-section in 9-layer NiO
(001) slab. Solid (broken) lines represent positive (negative) spin density. Interval
of the density is 0.002 µB/a3

0, where a0 is the Bohr radius. High spin density region
around Ni is not shown.

quickly beyond the second layer, approaching to the bulk value. On
the other hand, the spin density distribution around Ni and the spin
moments are very rigid in nature.

Figure 2 shows partial DOS of the surface and center layer. Calculate
DOS of the center layer is just like bulk DOS while one can see a reduc-
tion of the band gap at surface due to Ni-d eg orbital. This reduction
comes from lack of hybridization of the eg orbital vertical to the surface
(3z2 − r2 component) while surface-parallel (x2 − y2) component of the
eg orbital is still bulk-like. Small spin polarization at the O sites can be
recognized, mostly originating from O-pz orbital.

Atomic and Exchange Forces of Fe Probe on
NiO(001) Surface

Calculated atomic forces are smooth functions of the probe height as
shown in Fig. 4.

The probe height is taken as the distance between the Fe mono-layer
and the surface layer of NiO (001) (see Fig. 1). The Fe probe atoms are
attracted more strongly by O than by Ni. But exchange force, which is
defined as the atomic force difference between different spin orientations
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Figure 4. Calculated atomic forces of Fe on surface Ni and O sites in antiferro-
magnetic NiO (001) in nN. Solid (empty) circles and squares denote atomic force of
Fe atom on Ni and O sites with parallel (anti-parallel) spin moment to that of Fe,
respectively. Solid and broken lines are fitted one to spline functions. Probe height is
defined as the distance between the Fe mono-layer and the surface layer of NiO (001).

is larger on Ni than that on O. ¿From Fig. 4, one can see the contact
points at the heights of 1.9 Å on O and of 2.2 Å on Ni.

Exchange force is defined as

Fex = Fup − Fdown, (1)

where Fup and Fdown are atomic forces of Fe probe with up and down
spin moment, respectively.
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Figure 5. Probe-height dependence of exchange force on surface Ni and O sites
in antiferromagnetic NiO (001) surface in nN. Solid circles and squares denote the
exchange force of Fe on Ni and O sites.

Figure 5 shows strong ferromagnetic forces obtained on the Ni sites
up to the probe height of 3.4 Å, which is about 1.2 Å above the con-
tact point. The forces are changed to anti-ferromagnetic beyond that
height while always antiferromagnetic on the O sites. The strong ferro-
magnetic forces may come from direct exchange between the Fe probe
and Ni surface atoms while the antiferromagnetic forces from indirect
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or superexchange mechanism. The magnitude of the exchange force is
the order of one tenth of nN, which should be observable with the state-
of-the-art non-contact AFM techniques. We can expect atomic-scale
resolution in the exchange force image below the height of 3.4 Å. Such
a precise height control of the order of Å is also possible with the latest
non-contact AFM techniques.

Ni

Ni

Ni

Ni

O

Ni

Ni

O

Figure 6. Lateral dependence of exchange force on surface Ni and O sites in antifer-
romagnetic NiO (001) surface. Solid and broken lines represent positive and negative
exchange forces. Interval of the force is 0.04nN.

Figure 6 shows the lateral distribution of the exchange force, namely
EFM image, of NiO (001) surface at a probe height near the contact
point. Qualitatively equivalent but weaker contrast image is obtained
at 1 Å above the contact point. Generally, the image tells us antifer-
romagnetic pattern of the NiO (001) surface along the [110] direction.
However, finite exchange force on the O sites makes the image asymmet-
ric. Since the charge density should be symmetric with respect to the
surface oxygen sites, observing such asymmetry should be a direct proof
of the exchange force.

2.4 Conclusions
We have performed first-principles electronic structure calculations

for anti-ferromagnetic NiO (001) clean surface and Fe probe on it. We
have found that exchange force images of NiO should be observable in
an atomic scale and asymmetric image due to super-exchange via the
surface O sites is a crucial proof of the exchange force.
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FOR METALS OR SUPERCONDUCTORS
WITH CHARGE-DENSITY WAVES

A. M. Gabovich, A. I. Voitenko
Institute of Physics, prospekt Nauki 46, 03028 Kiev-28, Ukraine

Mai Suan Li, H. Szymczak
Institute of Physics, Al. Lotnikow 32/46, PL-02-668 Warsaw, Poland

M. Pekala
Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, PL-02-089
Warsaw, Poland

Abstract We suggest to extend the well-known method of Tedrow and Meser-
vey to investigate spin polarization P in ferromagnets. Namely, metals
and superconductors partially gapped by charge-density waves (CDWs)
are proposed as counter-electrodes instead of ordinary superconductors.
Differential conductances G(V ) for the quasiparticle tunnel currents in
external magnetic fields are calculated. The results are substantially dif-
ferent from those for ordinary superconductors. In particular, current-
voltage characteristics are nonsymmetrical even for P = 0.

Keywords: Spin-dependent tunneling, charge-density waves, superconductors, mag-
netic field, spin polarization, current-voltage characteristics

3.1 Introduction
Spin-polarized electron tunneling between superconductor (S) and fer-

romagnetic (FM) electrodes is a powerful method for studying both the
electron properties of the paired state and the spin-splitted band struc-
ture of the itinerant electron spectrum [1, 2]. One of the main tasks here
consists in the determination of the electron polarization P inside the
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ferromagnet which is defined as

P =
NFM↓ − NFM↑
NFM↓ + NFM↑

, (1)

where NFM↓(↑) is the density of states (DOS) of the “majority” (“ mi-
nority”) electrons with spins directed opposite to (along) the direction of
the magnetic field H. At the same time, the corresponding “majority”
magnetic moments µs are directed along H, since µs = −µB < 0. Here
µB is the Bohr magneton. The definition (1) is not unique, and transport
properties may be better described by other combinations of majority
and minority current contributions [3]. A proper choice is crucially im-
portant for calculations in specific cases, but for the problem discussed
all changes might be reduced to the free parameter P renormalization.

The remarkable idea of Tedrow and Meservey [4, 5] consists in the es-
timation of P through the values of the differential tunnel conductivity
G(V ) ≡ dJ/dV measured at definite voltages V and magnitudes of the
external magnetic field H applied to the junction [1, 5]. Here J is a tun-
nel current. The method should work in this S-I-FM (superconductor-
insulator-ferromagnet) set-up because the initially identical peaks of con-
ductivities G↑(V ) and G↓(V ) from both spin subbands shift due to the
Zeeman effect in the superconducting films when the field is switched on
[6] and their amplitudes deform downwards and upwards nonsymmetri-
cally.

Unfortunately, the application of this scheme, promising in principle,
led for the junctions Al-Al2O3-FM, with FM = Ni and Co, to the deduced
P of the wrong positive sign (i. e. the majority of the magnetic moments
of tunneling electrons were found to be in the field direction), whereas the
band calculations predicted that the minority-spin electrons should give
the prevailing contribution to the DOS at the Fermi energy level and,
hence, to the overall current [1, 7]. To solve the apparent controversy,
a number of theoretical studies were carried out changing the starting
naive picture of the tunneling process. First, it was recognized that the
tunneling spin-splitted DOSes for ferromagnets differ from the band ones
because the probability of the electron penetration into the barrier region
depends on the kind of intermediate electronic states involved [1, 7–9].
The second required modification makes allowance for the non-Ohmic
(Fowler-Nordheim) character of conductivity caused by the electric field
distortion of the primordial barrier’s rectangular shape [10]. Finally, the
Zeeman splitting of the G(V ) peak in the superconducting electrode is
drastically diminished by the spin-orbit interactions especially effective
for heavy elements, with the respective scattering rate proportional to
Z4, where Z is the atomic number [1, 11]. Broadly speaking, the modern
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approaches treat the whole junction as a single entity and takes into
account the interface states and possible structural disordering [7, 12].

The spin mechanism of the superconductivity suppression [6, 13–15],
with the discussed spin splitting of G(V )-dependences being its precur-
sor, can dominate over the orbital (Meissner) depairing [16, 17] only in
special situations. For example, it can occur in thin film superconduct-
ing electrodes of the Al-Al2O3-FM sandwiches with the magnetic field
parallel to the junction plane, since the orbital depairing is small for thin
enough films and small mean free path l [1, 17, 18].

In the general case all the listed factors act simultaneously and their
interplay is rather complicated. Hence, it becomes clear that the re-
sources for selecting proper superconducting covers are not very nu-
merous. At the same time, the use of the paramagnetic effect in non-
magnetic electrodes to probe the ferromagnetic properties of the coun-
terelectrodes seems quite helpful. Therefore, we propose a new class
of tunneling partners for the ferromagnetic materials, namely, metals
partially gapped by charge-density waves (CDWs) – CDWMs. [19–24].
So, the tunneling scheme now has the form CDWM-I-FM. An exter-
nal magnetic field stimulates a paramagnetic effect analogous to that
in superconductors [25–27]. On the other hand, the giant diamagnetic
(Meissner) response does not appear for CDWMs at all because this
state lacks for superfluid properties [28, 29]. As for the spin-orbit cou-
pling, which leads to harmful spin-flips [11], its role can be diminished
by an adequate choice of the light-atom constituents for CDW materials.
But in any case, since the critical temperature Td of the CDW transition
usually is much larger than its superconducting counterpart Tc and the
same remains true for the corresponding order parameters Σ and ∆ (en-
ergy gaps |Σ| and |∆|), a much larger Zeeman splitting can be obtained
for CDW metals in comparison to that in superconductors, so that the
spin-orbital smearing would not suppress totally the separation between
G↑(V ) and G↓(V ) peaks.

3.2 Formulation
Below we analyse current-voltage characteristics (CVCs) for a tun-

nel junction between FM and CDW superconductor (CDWS), the latter
including CDW metal as a particular case, more simple from the math-
ematical as well as the physical points of view. Nevertheless, the main
emphasis will be placed on sandwiches with the normal CDWM as one
of its covers. This case is practically more important and easier to
examine. The bias voltage V is chosen as the difference between volt-
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ages at the itinerant (Stoner) ferromagnet and CDW superconductor:
V ≡ VFM − VCDWS.

It is presumed that for H high enough to produce experimentally
resolved splitting of the electron DOS peaks all domains inside the fer-
romagnet are completely aligned in the field direction [1]. We also an-
ticipate that the bulk polarization is preserved during the tunneling
process, i.e. the influence of the ferromagnet-insulator interface on the
tunnel current is totally neglected. We fully recognize that, generally
speaking, such is not the case, the boundary and disorder effects being
very important [2, 3, 7, 12, 30–33]. However, taking into account these
complications may be postponed until the specific CDWS(CDWM)-I-
FM junctions are produced. The main goal of this publication is to
consider the very possibility of the new type of counter-electrodes in
tunnel junctions to study magnetic materials.

The properties of the partially-gapped CDWS electrode are charac-
terized in the framework of the Bilbro-McMillan model [24, 34]. Ac-
cording to this approach, which with an equal success describes both
the Peierls insulating state in quasi-one-dimensional substances [19] and
the excitonic insulating state in semimetals [29, 35], the Fermi surface
(FS) consists of three sections. Two of them (i = 1, 2) are nested, with
the corresponding fermion quasiparticle spectrum branches obeying an
equation

ξ1(p) = −ξ2(p + Q), (2)

where Q is the CDW vector. So, the electron spectra here become
degenerate (d) and a CDW-related order parameter appears. The rest
of the FS (i = 3) remains undistorted under the electron-phonon (the
Peierls insulator) or Coulomb (excitonic insulator) interaction and is
described by the non-degenerate (nd) spectrum branch ξ3(p). A single
superconducting order parameter ∆ exists on the whole FS, whereas
a dielectric (CDW) order parameter Σ appears only on the nested FS
sections.

The resulting phase determined by the coupled superconducting ∆αγ
im

and dielectric Σαγ
im matrix order parameters in the presence of the exter-

nal magnetic field H without making allowance for the Meissner diamag-
netism is described by a certain system of the Dyson-Gor’kov equations
for the normal Gij and anomalous Fij temperature Green’s functions
[36]. Here Latin subscripts correspond to the section space, while Greek
superscripts reflect the spin structure of the order parameters. The
neglect of the diamagnetic effects when ∆αγ

im �= 0 is justified only for
Hp � Hc2, where Hp is the paramagnetic limit [6, 13–15] and Hc2 is the
upper critical magnetic field [37] (hereafter we suggest that all possible
CDW superconductors are of the II kind as is true at least for all known
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CDW alloys and compounds). It should be also born in mind that in
the mixed phase the diamagnetic response of the degenerate FS sections
is smaller in the ratio of ∆2/

(
∆2 + Σ2

)
as compared with that appro-

priate to the Bardeen-Cooper-Scrieffer (BCS) superconductor possessing
the same energy gap ∆ [38, 39].

The orbital influence of the magnetic field on CDWs being not so
large as in superconductors, nevertheless, can exist, at least in principle.
Namely, if the nesting conditions are imperfect (which is always the case)
and the Zeeman-splitting effects are negligible, a transverse magnetic
field, which reduces the quasiparticle spectrum dimensionality, results in
an increase of Td. (It is also true for the critical temperature TN of the
spin-density-wave (SDW) state [40–42]. Moreover, field-induced SDWs
were predicted [40, 43–45] and observed for organic substances [46, 47].
The situation for CDWs is more complicated, since in that case the
magnetic field acts not only diamagnetically but also paramagnetically
[26, 27].) But for present purposes, as it is clear from the aforesaid, one
can disregard this effect while investigating the spin-splitted peaks of
the differential conductivity for normal metals with CDW distortions.
Of course, it does not mean that Td itself does not depend on H if
one goes beyond the approximation adopted in this publication. Since
theoretical analysis of orbital and Pauli terms may lead to ambiguous
results for Td(H) or Σ(H), it is more useful to look at the available
experimental data.

For a majority of CDW substances Td is of the order of hundreds
Kelvins [19, 20, 24] (in SmTe3 Td ≈ 1300 K is even substantially higher
than the melting temperature 1096 K [48]) and, as a consequence, the
magnetic fields necessary to conspicuously alter Td are inaccessible to
experimentalists. There are, however, several compounds with smaller
Td, for which both the DOS spin-splittings and the dependences Td(H)
can be observed relatively easily. First of all, the A15 compound V3Si
with Td(H = 0) = 20.15 K should be mentioned. Its investigation in
the magnetic field showed [49] that the field-unduced CDW suppression
∆Td ∝ −H2 and is quite small indeed: even for a very large H = 156 kOe
the correction was 0.6 K. Organic substances α-(ET)2MHg(SCN)4 (M
= K, Tl, Rb, etc.) with Td = 8 − 10 K (at the pressure p = 1 bar
and H = 0) constitute another promising class of CDW objects [27, 50–
52]. There is even a point of view [53, 54] that the diamagnetic orbital
response in these compounds is connected to nonequilibrium persistent
currents. One should also mention a Peierls quasi-one-dimensional metal
Per2[Au(mnt)2] (“Per” and “mnt” mean perylene and maleonitriledithi-
olate) with Td(H = 0) = 12.2 K and a similar quadratic decrease of Td

with H as in V3Si [55].
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Thus, while studying Pauli paramagnetic splitting in normal CDW
metals no restrictions from above appear on the H amplitude other than
the natural limit µ∗

BH < |Σ|, where |Σ| is the magnitude of the CDW
order parameter. This inequality represents the paramagnetic limit for a
CDW metal [25, 26, 50, 56] that in the first approximation has the same
form and similar origin as its counterpart for superconductors. The Pauli
paramagnetic suppression of the CDW order parameter is due to the fact
that such a kind of the electron-hole pairing couples the bands (in the
excitonic insulator) or the different parts of the one-dimensional self-
congruent band (in the Peierls insulator) with the same spin direction,
contrary to the SDW case, where current carriers with the opposite spin
directions are paired. When the magnetic field is switched on, both
congruent FS sections having the chosen spin projection shift either up
or down in energy. Therefore, the nesting CDW vectors Q↓,↑ do not
coincide any more, and the initial CDW state is gradually destroyed. It
is remarkable that the CDW instability favours superconductivity in the
mixed phase for H �= 0 because the magnetic energy must overcome both
CDW and superconducting energetical benefits. The enhancement of
the paramagnetic limit in the CDW superconductor was predicted some
time ago [36], although have not yet been confirmed experimentally.

In the conjectured absence of the orbital magnetism the thermody-
namics of the CDW superconducting or normal metal in the magnetic
field [36] is similar to the behavior of the BCS superconductor, where
the diamagnetic phase with the homogeneous ∆ and the initial Tc sur-
vives for a low enough H until the I-kind field-induced transition into
the normal state occurs when H reaches the Clogston-Chandrasekhar
value [37]. Since, we are going to deal with smaller fields, the intrigu-
ing problem of the nonhomogeneous state [25] analogous to the Larkin-
Ovchinnikov-Fulde-Ferrel one in ordinary superconductors for H ≥ Hp

will be not touched upon. Hence, making allowance for the spin-singlet
structure (s-wave superconductivity and CDWs) of the matrix normal
Σαβ

ij = Σδαβ and anomalous ∆αβ
ij = Iαβ∆ ( (Iαβ)2 = −δαβ) self-energy

parts in the weak coupling limit, we must consider the self-consistent
equation system for the order parameters Σ and ∆ in the case of H = 0.
The explicit form of the equations can be found elsewhere [57].

Making use of the self-consistent solutions for functions Σ(T ) and
∆(T ) we calculate a quasiparticle tunnel current J(V ) between a fer-
romagnet and a CDW superconductor (or a CDW normal metal when
∆ ≡ 0) according to the expressions which can be straightforwardly
obtained by the Green’s function method of Larkin and Ovchinnikov
developed for BCS superconductors [58]. The particular case of P = 0
and H = 0 was treated in our previous publications, which contain all
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technical details [59–62]. Generally, the current J(V ) consists of six
components:

J(V ) =
∑

f=nd,d,ib

s =↓, ↑

Jf,s(V ); (3)

Jnd,↓(↑) =
(1 − µ) (1 ± P )

4eR

∞∫
−∞

dω K(ω, V, T ) |ω ∓ µ∗
BH| f∓(ω, H, ∆);

(4)

Jd,↓(↑) =
µ (1 ± P )

4eR

∞∫
−∞

dω K(ω, V, T ) |ω ∓ µ∗
BH| f∓(ω, H, D); (5)

Jib,↓(↑) =
µ (1 ± P ) Σ

4eR

∞∫
−∞

dω K(ω, V, T )sgn (ω ∓ µ∗
BH) f∓(ω, H, D).

(6)
Here

K(ω, V, T ) = tanh
ω

2T
− tanh

ω − eV

2T
, (7)

f∓(ω, H, A) =
θ (|ω ∓ µ∗

BH| − A)√
(ω ∓ µ∗

BH)2 − A2
, (8)

the upper (lower) sign corresponds to the majority (minority) spin ori-
entation, e is the electron charge, R is the “normal state” (above Td)
resistance of the junction, 0 ≤ µ ≤ 1 is is the relative portion of the FS
sections gapped by CDWs, θ(x) denotes the Heaviside theta function,

D(T ) =
[
∆2(T ) + Σ2(T )

]1/2
(9)

is an “effective” gap on the “dielectrized” FS sections and it can be shown
[57] that it is the BCS-Mühlschlegel function, i.e. D(T ) = ∆BCS(Σ0, T ).
The quantity Σ0 ≡ π

γTd is the magnitude of the CDW order parameter
for T = 0 and in the absence of superconductivity, γ = 1.78 . . . is the
Euler constant. We suggested that quasiparticles originating from all
FS sections make their contributions to the total current proportional
to the DOS of the relevant section. That means the absence of any kind
of the directional tunneling, which is possible, in principle [63–65]. Such
an assumtion may be justified by the inevitable spatial averaging over
CDW domains with different wave vector orientations.

The important difference between the problem in point and its coun-
terpart appropriate to the BCS superconductivity is the emergence of
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the terms Jib,↑(↓). They reflect the existence of the electron-hole pairing
[24, 29], originate from the interband Green’s function G12, and have
another structure than the remaining terms induced by conventional
normal Green’s functions G11 = G22 and G33 (see discussion in Refs.
[60, 62]). To a large extent G12 is analogous to the anomalous Gor’kov
Green’s function F , which, however, determines not a quasiparticle but
a Josephson tunnel current [66]. The appearance of the terms (6) leads
to the drastic asymmetry of the CVC of non-symmetrical tunnel junc-
tions involving CDWMs [62] as opposed to symmetrical CVC for similar
non-symmetrical junctions based on conventional superconductors [67].
It should be born in mind that those current components depend on the
sign of Σ, whereas the thermodynamical properties of CDW supercon-
ductors are degenerate with respect to this sign [36, 68].

When a CDW metal is normal, the expressions for the components (5)
and (6) remain the same with an accuracy of |Σ| substituted for D. At
the same time, the nd components are calculated explicitly for arbitrary
T :

Jnd,↓(↑) =
(1 − µ) (1 ∓ P ) V

2R
, (10)

and the current contribution Jnd = Jnd,↓ + Jnd,↑ from the nd FS section
obeys the Ohm’s law

Jnd = (1 − µ)
V

R
, (11)

Conductivities Gf,s(V ) can be obtained by differentiating relevant
Eqs. (4)-(6). At T = 0, the corresponding analytical expressions become

Gnd,↓(↑)(V ) =
(1 − µ) (1 ± P )

2R
sgn(V ) (eV ∓ µBH) f∓(eV, H, ∆), (12)

Gd,↓(↑)(V ) =
µ (1 ± P )

2R
sgn(V ) (eV ∓ µBH) f∓(eV, H, D), (13)

Gib,↓(↑)(V ) =
µ (1 ± P ) Σ

2R
sgn(V )f∓(eV, H, D). (14)

Naturally, for normal CDW metals the sum of the nd terms gives the
constant (1−µ)

R .

3.3 Results and discussion
Below we show the results obtained for the dependences of the di-

mensionless conductance RdJ/dV of the CDWM-I-FM junction on the
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Figure 1. Dependences of differential conductances on bias voltage V across the
tunnel junction made up of charge-density wave metal (CDWM) and ferromagnet
(FM) for various external magnetic fileds H . See explanations in the text.

dimensionless bias voltage eV/|Σ0|. The dimensionless parameters of
the problem are the reduced external magnetic field h = µ∗

BH/|Σ0|, the
reduced temperature t = kBT/|Σ0| and the polarization P . Here µ∗

B is
the effective Bohr magneton and kB is the Boltzmann constant.

The key result of this paper is represented by Fig. 1. It is readily
seen that G(V ) is asymmetrical, contrary to what is appropriate for
superconductors [67]. Mathematically it stems from an almost total
compensation between Gd(V ) and Gib(V ) peculiarities at voltages of
one sign and their enhancement at voltages of the other sign (for the
adopted choice Σ > 0 it means negative and positive V , respectively).
In the absence of the external magnetic field and spin polarization this
result was obtained by us earlier [61, 62]. When H is switched on, the
electronic DOS peak splits as in the case of superconductors [1, 18].
Unfortunately, the spin-splitting is noticeable only for a certain branch
(V > 0 for the case Σ > 0; see below). Thus, although a simple algebraic
procedure of Tedrow and Meservey of finding P from values of G for
certain V and H, deduced for S-I-FM junctions [1, 5], seems to fail
for CDWM-I-FM ones, the advantage of the set-up proposed here to
detect spin-polarization-induced changes consists in the amplification of
the spin-splitting effect for one CVC branch and a larger scale of Σ in
comparison to ∆.

Nevertheless, CVCs are very sensitive to the value of P . Moreover,
they crucially depend on the sign of Σ in CDWM. Let us first consider
the case Σ > 0 [Fig. 2, panel (a)]. One can see how the phenomenon of
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Figure 2. The same as in Figure 1 but for various FM polarizations P . Panels
correspond to different sign of the dielectric order parameter Σ in CDWM. See expla-
nations in the text.

spin-splitting reveals itself under the action of the magnetic field when
a CDWM constitutes a tunnel junction with a nonmagnetic electrode
(P = 0) and how for a ferromagnetic counter-electrode (P �= 0) this
picture is distorted and the minority-spin peak, which is situated closer
to the zero bias, disappears with increasing P , so that for the complete
polarization (P = 1, this limit is attainable in half-metallic ferromagnet
[69–72]) only one (majority) peak retains.

For the case Σ < 0 [Fig. 2, panel (b)] the minority-spin peak also
disappears with increasing P , but now it is situated farther from the
zero bias than the majority one. Hence, the “modified” symmetry real-
tionship

G(−Σ, V ) = G(Σ,−V ) (15)

obtained [61, 62] for junctions made up of nonferromagnetic normal
and/or superconducting CDW electrodes (cf. P = 0 curves on both
panels) is no more valid. Then different Σ signs can be distinguished
by CVC measurements. It is worth to underline once more that the
actual Σ sign in a specific junction might occur at random, induced
by unpredictable fluctuations, since the free energy of CDW normal or
superconducting metals does not depend on this sign [36, 68].

One should also bear in mind the possibility of the CVC fluctuation-
induced “symmetrization” if a hypothetical small extra term in the sys-
tem Hamiltonian proportional to eV Σ exists [59]. Then the measured
CVC would consist of different bias branches for Σ > 0 and Σ < 0 cases,
respectively. For nonmagnetic electrodes this phenomenon, due to the
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Figure 3. Hypothetical “symmetrization” effect for CDWM-FM tunnel junction.
See explanations in the text.

Eq. (15), might result in a totally symmetrical CVC (see Fig. 3, dashed
curves). But for P �= 0 the relation (15) is not fulfiled and the nonsym-
metricity of CVCs becomes unavoidable (solid curves). Unfortunately,
such CVCs are possible where the peculiarities are almost unnoticable,
although the CDW order parameter Σ is nonzero and may be arbitrarily
large.

It is natural that all many-body features mentioned above are due to
the gapped FS sections, so that when the gapping degree µ decreases,
the spin-splitting and the very G(V ) peculiarities at eV = |Σ|±µ∗

BH are
reduced and disappear, as is demonstrated in Fig. 4. The controlling
parameter µ can be changed in situ, e. g., by application of an external
pressure. Furthermore, CVCs turned out to be a sensitive probe of µ.

The smoothing effect of temperature is shown in Fig. 5. Already at
a relatively small value t = 0.2 the Zeeman splitting becomes unobserv-
able. However, since we can select CDW metals with Td’s of the order
of 10 − 15 K to ensure the accesible magnetic fields H ≈ 180 − 280 kOe,
temperatures required to detect paramagnetic effects will be quite con-
venient from the technical point of view.

If a CDW metal becomes superconducting at Tc < Td, which is not
a rare case [24], two gaps ∆ and D emerge on FS sections and, gener-
ally speaking, it should be four spin-splitted peaks for each voltage sign.
Usually both gaps differ substantially in amplitude, as is the case, e.g.,
in 2H -TaS2, where Tc ≈ 0.65 K and Td ≈ 77 K, or in Li0.9Mo6O17, where
Tc ≈ 1.7 K and Td ≈ 25 K. The A15 compounds are the only exceptions,
for which Tc and Td are of the same order of magnitude [24, 73]. As
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Figure 4. The same as in Figure 1 but for various degrees µ of the Fermi surface
degeneracy in the CDWM.

Figure 5. The same as in Figure 1 but for various temperatures T .
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Figure 6. The same as in Figure 1 but for the tunnel junction made up of charge-
density wave superconductor (CDWS) and FM. See explanations in the text.

an example, we considered an intermediate situation with the control
parameter δ0 ≡ ∆0/|Σ0| = 0.3 (see Fig. 6). Here ∆0 is a supercon-
ducting gap for T = 0 in a hypothetical state where the CDW order
parameter is absent. The actual ∆(0) = (∆0Σ

−µ
0 )

1
1−µ suppressed by

the CDWs is smaller than ∆0, namely, for the chosen set of parameters
δ(0) ≡ ∆(0)/Σ0 = 0.22. The numerical results are somewhat unex-
pected, since for the positive V -branch we see a paramagnetic splitting
of the D-peak only (here we can distinguish merely the majority peak for
∆). At the same time, for negative biases, for which the whole D-region
is almost structureless, a spin-splitting of the ∆-peak is clearly seen. This
asymmetry should be observed for any P ≥ 0 with a noticeable minority-
spin contribution to the electronic DOS. Thus, the same measurements
can discriminately reveal spin-dependent properties determined by both
superconductivity and CDWs. At the same time, those “additional”
peaks may make applicable here the Tedrow’s and Meservey’s procedure
of determining P of ferromagnet counter-electrodes.

Of course, the type of asymmetry displayed in Fig. 6 is appropriate
only to CDWs with Σ > 0. For Σ < 0 the CVC branches will have
different properties with splitted D-peaks manifesting themselves for
V < 0 and splitted ∆-peaks revealed for V > 0.

In conclusion, we would like to indicate several possible candidates
for the CDW partner of ferromagnets in tunnel sandwiches. Organic
CDW metals α-(ET)2MHg(SCN)4 (M = K, Tl, Rb) have been already
mentioned. The main weak point of this materials is the presence of a
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heavy element Hg, which is dangerous because of the possible spin-orbit
smearing of the spin-splitted G(V ) peaks. A two-leg ladder compound
Sr14−xCaxCu24O41 also seems very promising. Really, Ca doping alters
Td and |Σ| over a remarkably wide range from 210 K and 130 meV, re-
spectively, for x = 0 to 10 K and 130 meV for x = 9 [74]. The old
good 2H-NbSe2 with Tc = 7.2 K and Td = 33.5K [24] might be taken
into account too. On the whole, the spread of the fruitful ideas earlier
applied to superconductors [1, 18] to normal and superconducting met-
als partially gapped by CDWs seems useful for studying those strongly
correlated objects.
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[41] Bjelǐs, A. and Maki, K. (1990) Magnetic-field influence on the collective prop-
erties of charge- and spin-density waves, Phys. Rev. B42, 10275–10279.

[42] Bjelǐs, A. and Maki, K. (1992) Spin-density-wave and charge-density-wave phson
coherence lengths in magnetic fields, Phys. Rev. B45, 12887–12892.

[43] Gor’kov, L. P. (1984) Usp. Fiz. Nauk 144, 381.

[44] Maki, K. (1986) Thermodynamics of field-induced spin-density-wave states in
Bechgaard salts, Phys. Rev. B33, 4826–4829.

[45] Lebed, A. G. (2002) Field-induced spin-density-wave phases in quasi-one-
dimensional conductors: Theory versus experiments, Phys. Rev. Lett. 88,
177001.

[46] Kwak, J. F., Schirber, J. E., Chaikin, P. M., Williams, J. M., Wang, H-H., and
Chiang, L. Y. (1986) Spin-density-wave transitions in a magnetic field, Phys.
Rev. Lett. 56, 972–975.

[47] Audouard, A. and Askenazy, S. (1995) Spin-density wave transition and the
resistivity minimum of the Bechgaard salt (TMTSF)2NO3 at high magnetic
field, where TMTSF is tetramethyltetraselenafulvakene, Phys. Rev. B52, 700–
703.

[48] Gweon, G-H., Denlinger, J. D., Clack, J. A., Allen, J. W., Olson, C. G., DiMasi,
E., Aronson, M. C., Foran, B., and Lee, S. (1998) Direct observation of complete
Fermi surface, imperfect nesting, and gap anisotropy in the high-temperature
incommensurate charge-density-wave compound SmTe3, Phys. Rev. Lett. 81,
886–889.

[49] Williamson, S. J., Ting, C. S., and Fung, H. K. (1974) Influence of electronic
lifetime on the lattice instability of V3Si, Phys. Rev. Lett. 32, 9–12.

[50] Qualls, J. S., Balicas, L., Brooks, J. S., Harrison, N., Montgomery, L. K., and
Tokumoto, M. (2003) Competition between Pauli and orbital effects in a charge-
density-wave system, Phys. Rev. B62, 10008–10012.



References 41

[51] Singleton, J. (2000) Studies of quasi-two-dimensional organic conductors based
on BEDT-TTF using high magnetic fields, Rep. Prog. Phys. 63, 1111–1207.

[52] Andres, D., Kartsovnik, M. V., Biberacher, W., Weiss, H., Balthes, E., Müller,
H., and Kushch, N. (2001) Orbital effect of a magnetic field on the low-
temperature state in the organic metal α-(BEDT-TTF)2KHg(SCN)4, Phys. Rev.
B64, 161104.

[53] Harrison, N., Mielke, C. H., Christianson, A. D., Brooks, J. S., and Tokumoto,
M. (2001) Field-induced dynamic diamagnetism in a charge-density-wave sys-
tem, Phys. Rev. Lett. 86, 1586–1589.

[54] Harrison, N. (2002) Nonequilibrium persistent currents in charge-density-wave
systems, Phys. Rev. B66, 121101.

[55] Matos, M., Bonfait, G., Henriques, R. T., and Almeida, M. (1996) Modification
of the magnetic-field dependence of the Peierls transition by a magnetic chain,
Phys. Rev. B54, 15307–15313.

[56] Harrison, N. (1999) Destabilization of a charge-density wave by an oscillatory
chemical potential, Phys. Rev. Lett. 83, 1395–1398.

[57] Gabovich, A. M., Li, M. S., Szymczak, H., and Voitenko, A. I. (2003) Ther-
modynamics of superconductors with charge-density waves, J. Phys.: Condens.
Matter 15, 2745–2753.

[58] Larkin, A. I. and Ovchinnikov, Yu. N. (1966) Tunnel effect between supercon-
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Introduction
The development of density functional theory in combination with

rapidly increasing computing power has led to revolutionary progress in
electronic structure theory over the last 40 years. Nowadays, calculations
for materials with large unit cells are feasible, and applications to bio-
logical systems and complex materials of high technological importance
are within reach.

The situation is less favorable, however, for so-called strongly cor-
related materials, where strong localization and Coulomb interaction
effects cause density functional theory within the local density approxi-
mation (DFT-LDA) to fail. These are typically materials with partially
filled d- or f-shells. Failures of DFT-LDA reach from missing satellite
structures in the spectra (e.g. in transition metals) over qualitatively
wrong descriptions of spectral properties (e.g. certain transition metal
oxides) to severe qualitative errors in the calculated equilibrium lattice
structures (e.g. the absence of the Ce α − γ transition in LDA or the
30% error on the volume of δ-Pu). While the former two situations may
be at least partially blamed on the use of a ground state theory in the
forbidden range of excited states properties, in the latter cases one faces
a clear deficiency of the LDA. We are thus in the puzzling situation of
being able to describe certain very complex materials, heading for a first
principles description of biological systems, while not having successfully
dealt with others that have much simpler structures but resist an LDA
treatment due to a particular challenging electronic structure. The fact
that many of these strongly correlated materials present unusual mag-
netic, optical or transport properties has given additional motivation to
design electronic structure methods beyond the LDA.

Both, LDA+U [1–4] and LDA+DMFT [5–8] techniques are based on
an Hamiltonian that explicitly corrects the LDA description by correc-
tions stemming from local Coulomb interactions of partially localized
electrons. This Hamiltonian is then solved within a static or a dynami-
cal mean field approximation in LDA+U or LDA+DMFT respectively.
In a number of magnetically or orbitally ordered insulators the LDA
underestimation of the gap is successfully corrected by LDA+U (e.g.
late transition metal oxides and some rare earth compounds); however
its description of low energy properties is too crude to describe corre-
lated metals, where the dynamical character of the mean field is crucial
and LDA+DMFT thus more successful. Common to both approaches is
the need to determine the Coulomb parameters from independent (e.g.
“constrained LDA”) calculations or to fit them to experiments. Neither
of them thus describes long-range Coulomb interactions and the result-
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ing screening from first principles. This has led to a recent proposal [9]
of a first principles electronic structure method, dubbed “GW+DMFT”
that we review in this article. Similar advances have been presented in
a model context [10].

The paper is organized as follows: in section 1 we give a short overview
over the parent theories (GW, DMFT, and LDA+DMFT), while in sec-
tion 2 we introduce a formal way of constructing approximations by
means of a free energy functional. The form of this functional defin-
ing the GW+DMFT scheme is discussed in section 3; section 4 presents
different conceptual as well as technical issues related to this scheme.
Finally we present results of a preliminary static implementation com-
bining GW and DMFT, and conclude the paper with some remarks on
further perspectives for the development of the GW+DMFT scheme.

4.1 The parent theories

The GW Approximation
Even if density functional theory is strictly only applicable to ground

state properties, band dispersions of sp-electron semi-conductors and
insulators have been found to be surprisingly reliable – apart from a
systematic underestimation of band gaps (e.g. by ∼ 30% in Si and Ge).

This underestimation of bandgaps has prompted a number of attempts
at improving the LDA. Notable among these is the GW approximation
(GWA), developed systematically by Hedin in the early sixties [11]. He
showed that the self-energy can be formally expanded in powers of the
screened interaction W , the lowest term being iGW, where G is the
Green function. Due to computational difficulties, for a long time the ap-
plications of the GWA were restricted to the electron gas. With the rapid
progress in computer power, applications to realistic materials eventu-
ally became possible about two decades ago. Numerous applications to
semiconductors and insulators reveal that in most cases the GWA [12–
14] removes a large fraction of the LDA band-gap error. Applications to
alkalis show band narrowing from the LDA values and account for more
than half of the LDA error (although controversy about this issue still
remains [15]).

The GW approximation relies on Hedin’s equations [11], which state
for the self-energy that

Σ(1, 2) = −i

∫
d3 d4 v(1, 4)G(1, 3)

δG−1(3, 2)
δφ(4)

(1)

where v is the bare Coulomb interaction, G is the Green function and
φ is an external time-dependent probing field. We have used the short-
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hand notation 1 = (x1t1). From the equation of motion of the Green
function

G−1 = i
∂

∂t
− H0 − Σ (2)

H0 = h0 + φ + VH (3)

h0 is the kinetic energy and VH is the Hartree potential. We then obtain

δG−1(3, 2)
δφ(4)

= −δ(3 − 2)
[
δ(3 − 4) + δVH(3)

δφ(4)

]
− δΣ(3,2)

δφ(4)

= −δ(3 − 2)ε−1(3, 4) − δΣ(3,2)
δφ(4) (4)

where ε1 is the inverse dielectric matrix. The GWA is obtained by ne-
glecting the vertex correction δΣ/δφ, which is the last term in (4). This
is just the random-phase approximation (RPA) for ε−1. This leads to

Σ(1, 2) = iG(1, 2)W (1, 2) (5)

where we have defined the screened Coulomb interaction W by

W (1, 2) =
∫

d3v(1, 3)ε−1(3, 2) (6)

The RPA dielectric function is given by

ε = 1 − vP (7)

where

P (r, r′; ω) = −2i

∫
dω′

2π
G(r, r′; ω + ω′)G(r′, r; ω′)

= 2
occ∑
i

unocc∑
j

ψi(r)ψ∗
i (r

′)ψ∗
j (r)ψj(r′) (8)

×
{

1
ω − εj + εi + iδ

− 1
ω + εj − εi − iδ

}
(9)

with the Green function constructed from a one-particle band structure
{ψi, εi}. The factor of 2 arises from the sum over spin variables. In
frequency space, the self-energy in the GWA takes the form

Σ(r, r′; ω) =
i

2π

∫
dω′eiηω′

G(r, r′; ω + ω′)W (r, r′; ω′) (10)
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We have so far described the zero temperature formalism. For finite
temperature we have

P (r, r′; iνn) =
2
β

∑
ωk

G(r, r′; iνn + iωk)G(r′, r; iωk) (11)

Σ(r, r′; iωn) = − 1
β

∑
νk

G(r, r′; iωn + iνk)W (r, r′; iνk) (12)

In the Green function language, the Fock exchange operator in the
Hartree-Fock approximation (HFA) can be written as iGv. We may
therefore regard the GWA as a generalization of the HFA, where the
bare Coulomb interaction v is replaced by a screened interaction W . We
may also think of the GWA as a mapping to a polaron problem where
the electrons are coupled to some bosonic excitations (e.g., plasmons)
and the parameters in this model are obtained from first-principles cal-
culations.

The replacement of v by W is an important step in solids where screen-
ing effects are generally rather large relative to exchange, especially in
metals. For example, in the electron gas, within the GWA exchange and
correlation are approximately equal in magnitude, to a large extent can-
celling each other, modifying the free-electron dispersion slightly. But
also in molecules, accurate calculations of the excitation spectrum can-
not neglect the effects of correlations or screening. The GWA is phys-
ically sound because it is qualitatively correct in some limiting cases
[19].

The success of the GWA in sp materials has prompted further appli-
cations to more strongly correlated systems. For this type of materials
the GWA has been found to be less successful. Application to ferro-
magnetic nickel [16] illustrates some of the difficulties with the GWA.
Starting from the LDA band structure, a one-iteration GW calculation
does reproduce the photoemission quasiparticle band structure rather
well, as compared with the LDA one where the 3d band width is too
large by about 1 eV. However, the too large LDA exchange splitting (0.6
eV compared with experimental value of 0.3 eV) remains essentially un-
changed. Moreover, the famous 6 eV satellite, which is of course missing
in the LDA, is not reproduced. These problems point to deficiencies
in the GWA in describing short-range correlations since we expect that
both exchange splitting and satellite structure are influenced by on-site
interactions. In the case of exchange splitting, long-range screening also
plays a role in reducing the HF value and the problem with the exchange
splitting indicates a lack of spin-dependent interaction in the GWA: In
the GWA the spin dependence only enters in G but not in W .
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The GWA rather successfully improves on the LDA errors on the
bandgaps of Si, Ge, GaAs, ZnSe or Diamond, but for some materials,
such as MgO and InN, a significant error still remains. The reason for
the discrepancy has not been understood well. One possible explanation
is that the result of the one-iteration GW calculation may depend on the
starting one-particle band structure, since the starting Green’s function
is usually constructed from the LDA Kohn-Sham orbitals and energies.
For example, in the case of InN, the starting LDA band structure has
no gap. This may produce a metal-like (over)screened interaction W
which fails to open up a gap or yields a too small gap in the GW cal-
culation. A similar behaviour is also found in the more extreme case of
NiO, where a one-iteration GW calculation only yields a gap of about
1 eV starting from an LDA gap of 0.2 eV (the experimental gap is 4
eV) [17, 12]. This problem may be circumvented by performing a par-
tial self-consistent calculation in which the self-energy from the previous
iteration at a given energy, such as the Fermi energy of the centre of the
band of interest, is used to construct a new set of one-particle orbitals.
This procedure is continued to self-consistency such that the starting
one-particle band structure gives zero self-energy correction [17, 12, 18].
In the case of NiO this procedure improves the band gap considerably
to a self-consistent value of 5.5 eV and at the same time increases the
LDA magnetic moment from 0.9 µB to about 1.6 µB much closer to
the experimental value of 1.8 µB. A more serious problem, however, is
describing the charge-transfer character of the top of the valence band.
Charge-transfer insulators are characterized by the presence of occupied
and unoccupied 3d bands with the oxygen 2p band in between. The gap
is then formed by the oxygen 2p and unoccupied 3d bands, unlike the
gap in LDA, which is formed by the 3d states. A more appropriate in-
terpretation is to say that the highest valence state is a charge-transfer
state: During photoemission a hole is created in the transition metal
site but due to the strong 3d Coulomb repulsion it is energetically more
favourable for the hole to hop to the oxygen site despite the cost in
energy transfer. A number of experimental data, notably 2p core pho-
toemission resonance, suggest that the charge-transfer picture is more
appropriate to describe the electronic structure of transition metal ox-
ides. The GWA, however, essentially still maintains the 3d character
of the top of the valence band, as in the LDA, and misses the charge-
transfer character dominated by the 2p oxygen hole. A more recent cal-
culation using a more refined procedure of partial self-consistency has
also confirmed these results [18]. The problem with the GWA appears
to arise from inadequate account of short-range correlations, probably
not properly treated in the random-phase approximation (RPA). As in
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nickel, the problem with the satellite arises again in NiO. Depending on
the starting band structure, a satellite may be reproduced albeit at a too
high energy. Thus there is a strong need for improving the short-range
correlations in the GWA which may be achieved by using a suitable ap-
proach based on the dynamical mean-field theory described in the next
section.

Dynamical Mean Field Theory
Dynamical mean field theory (DMFT) [20] has originally been devel-

oped within the context of models for correlated fermions on a lattice
where it has proven very successful for determining the phase diagrams
or for calculations of excited states properties. It is a non-perturbative
method and as such appropriate for systems with any strength of the in-
teraction. In recent years, combinations of DMFT with band structure
theory, in particular Density functional theory with the local density
approximation (LDA) have emerged [5, 6]. The idea is to correct for
shortcomings of DFT-LDA due to strong Coulomb interactions and lo-
calization (or partial localization) phenomena that cause effects very
different from a homogeneous itinerant behaviour. Such signatures of
correlations are well-known in transition metal oxides or f-electron sys-
tems but are also present in several elemental transition metals.

Combinations of DFT-LDA and DMFT, so-called “LDA+DMFT”
techniques have so far been applied – with remarkable success – to tran-
sition metals (Fe, Ni, Mn) and their oxides (e.g. La/YTiO3, V2O3,
Sr/CaVO3, Sr2RuO4) as well as elemental f-electron materials (Pu, Ce)
and their compounds [7]. In the most general formulation, one starts
from a many-body Hamiltonian of the form

H =
∑

{imσ}
(HLDA

im,i′m′ − Hdc)a+
imσai′m′σ (13)

+
1
2

∑
imm′σ

U i
mm′nimσnim′−σ

+
1
2

∑
im�=m′σ

(U i
mm′ − J i

mm′)nimσnim′σ,

where HLDA is the effective Kohn-Sham-Hamiltonian derived from a
self-consistent DFT-LDA calculation. This one-particle Hamiltonian is
then corrected by Hubbard terms for direct and exchange interactions for
the “correlated” orbitals, e.g. d or f orbitals. In order to avoid double
counting of the Coulomb interactions for these orbitals, a correction term
Hdc is subtracted from the original LDA Hamiltonian. The resulting
Hamiltonian (13) is then treated within dynamical mean field theory by
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assuming that the many-body self-energy associated with the Hubbard
interaction terms can be calculated from a multi-band impurity model.

This general scheme can be simplified in specific cases, e.g. in sys-
tems with a separation of the correlated bands from the “uncorrelated”
ones, an effective model of the correlated bands can be constructed;
symmetries of the crystal structure can be used to reduce the number of
components of the self-energy etc.

In this way, the application of DMFT to real solids crucially relies on
an appropriate definition of the local screened Coulomb interaction U
(and Hund’s rule coupling J). DMFT then assumes that local quantities
such as for example the local Green’s function or self-energy of the solid
can be calculated from a local impurity model, that is one can find a
dynamical mean field G0 such that the Green’s function calculated from
the effective action

S =
∫ β

0
dτ

∑
mσ

c†mσ(τ)G−1
0mm′σ(τ − τ ′)cm′σ(τ ′)

+
1
2

∫ β

0
dτ

∑
mm′σ

Umm′nmσ(τ)nm′−σ(τ)

+
1
2

∫ β

0
dτ

∑
m�=m′σ

(Umm′ − Jmm′)nmσ(τ)nm′σ(τ) (14)

coincides with the local Green’s function of the solid. This is in analogy
to the representability conjecture of DMFT in the model context, where
one assumes that e.g. the local Green’s function of a Hubbard model
can be represented as the Green’s function of an appropriate impurity
model with the same U parameter. In the case of a lattice with infinite
coordination number it is trivially seen that this conjecture is correct,
since DMFT yields the exact solution in this case. Also, the model
context is simpler from a conceptual point of view, since the Hubbard U
is given from the outset. For a real solid the situation is somewhat more
complicated, since in the construction of the impurity model long-range
Coulomb interactions are mimicked by local Hubbard parameters.1 The
notion of locality is also needed for the resolution of the model within
DMFT, which approximates the full self-energy of the model by a local
quantity. Applications of DMFT to electronic structure calculations
(e.g. the LDA+DMFT method) are therefore always defined within a
specific basis set using localized basis functions. Within an LMTO [21]
implementation for example locality can naturally be defined as referring
to the same muffin tin sphere. This amounts to defining matrix elements
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GLR,L′R′(iω) of the full Green’s function

G(r, r′, iω) =
∑

LL′RR′
χ∗

LR(r)GLR,L′R′(iω)χL′R′(r′) (15)

and assuming that its local, that is “on-sphere” part equals the Green’s
function of the local impurity model (13). Here R,R′ denote the coor-
dinates of the centres of the muffin tin spheres, while r, r′ can take any
values. The index L = (n, l, m) regroups all radial and angular quantum
numbers. The dynamical mean field G0 in (13) has to be determined
in such a way that the Green’s function GimpurityL,L′ of the impurity
model Eq.(13) coincides with GLR,L′R(iω) if the impurity model self-
energy is used as an estimate for the true self-energy of the solid. This
self-consistency condition reads

Gimpurity(iωn) =
∑
k

(iωn + µ − Ho(k) − Σ(iωn))−1

where Σ, H0 and G are matrices in orbital and spin space, and iω + µ is
a matrix proportional to the unit matrix in that space.

Together with (13) this defines the DMFT equations that have to be
solved self-consistently. Note that the main approximation of DMFT is
hidden in the self-consistency condition where the local self-energy has
been promoted to the full lattice self-energy.

The representability assumption can actually be extended to other
quantities of a solid than its local Green’s function and self-energy. In
“extended DMFT” [22–25] e.g. a two particle correlation function is
calculated and can then be used in order to represent the local screened
Coulomb interaction W of the solid. This is the starting point of the
“GW+DMFT” scheme described in section 6.

Despite the huge progress made in the understanding of the electronic
structure of correlated materials thanks to such LDA+DMFT schemes,
certain conceptual problems remain open: These are related to the choice
of the Hubbard interaction parameters and to the double counting cor-
rections. An a priori choice of which orbitals are treated as correlated
and which orbitals are left uncorrelated has to be made, and the values
of U and J have to be fixed. Attempts of calculating these parameters
from constrained LDA techniques are appealing in the sense that one can
avoid introducing external parameters to the theory, but suffer from the
conceptual drawback in that screening is taken into account in a static
manner only [26]. Finally, the double counting terms are necessarily
ill defined due to the impossibility to single out in the LDA treatment
contributions to the interactions stemming from specific orbitals. These
drawbacks of LDA+DMFT provide a strong motivation to attempt the
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construction of an electronic structure method for correlated materials
beyond combinations of LDA and DMFT.

4.2 The Ψ-functional
As noted in [27, 28], the free energy of a solid can be viewed as a

functional Γ[G, W ] of the Green’s function G and the screened Coulomb
interaction W . The functional Γ can trivially be split into a Hartree
part ΓH and a many body correction Ψ, which contains all corrections
beyond the Hartree approximation : Γ = ΓH + Ψ. The latter is the
sum of all skeleton diagrams that are irreducible with respect to both,
one-electron propagator and interaction lines. Ψ[G, W ] has the following
properties:

δΨ
δG

= Σxc

δΨ
δW

= P. (16)

We present in the following a different derivation than the one given in
[27].

We start from the Hamiltonian describing interacting electrons in an
external (crystal) potential vext :

H = H0 +
1
2

∑
i�=j

Vee(ri − rj) (17)

with

H0 = −1
2

∑
i

(
∇2

i + vext

)
. (18)

The electron-electron interaction Vee(ri − rj) will later on be assumed
to be a Coulomb potential. With the action

S = −
∫

dτΨ†(δτ − H0 − VHartree)Ψ

+
1
2

∫
dτ : n (r) : V (r − r′) : n (r′) : (19)

the partition function of this system reads :

Z =
∫

DΨDΨ†exp(−S) (20)

Here the double dots denote normal ordering (i.e. Hartree terms have
been included in the first term in 18). We now do a Hubbard-Stratonovich
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transform, decoupling Coulomb interactions beyond Hartree by a con-
tinuous field φ, introduce a coupling constant α for later purposes (α = 1
corresponds to the original problem) and add source terms coupling to
the density fluctuations Ψ†Ψ and the density of the Hubbard-Stratonovich
field respectively . The free energy of the system is now a functional of
the source fields Σ and P :

F [Σ, P ] = ln
∫

DΨDΨ†Dφexp(−S[Σ, P ]) (21)

with

S[Σ, P ] = −
∫

dτΨ†GHartreeΨ +
1
2

∫
dτ φV −1φ

− iα

∫
dτφ(Ψ†Ψ − n) +

∫
dτΣΨ†Ψ +

1
2

∫
dτPφφ (22)

If in analogy to the usual fermionic Green’s function G = −〈TΨΨ†〉 we
define the propagator W = 〈Tφφ〉 of the Hubbard-Stratonovich field φ,
our specific choice of the coupling of the sources Σ and P leads to

δF

δΣ
= −G (23)

and

δF

δP
=

1
2
W (24)

Performing Legendre transformations with respect to G and W/2 we
obtain the free energy as a functional of both, the fermionic and bosonic
propagators G and W

Γ[G, W ] = F + tr(ΣG) − 1
2
tr(PW ) (25)

We note that W can be related to the charge-charge response func-
tion χ(r, r′; τ − τ ′) ≡ 〈Tτ [ρ̂(r, τ) − n(r)][ρ̂(r′, τ ′) − n(r′)]〉 :

W (r, r′; iωn) = V (r − r′)

−
∫

dr1dr2V (r − r1)χ(r1, r2; iωn)V (r2 − r′) (26)

This property follows directly from the above functional integral repre-
sentation and justifies the identification of W with the screened Coulomb
interaction in the solid. Taking advantage of the coupling constant α
introduced above we find that Γ is naturally split into two parts

Γα=1[G, W ] = Γα=0 + Ψ[G, W ] (27)
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where the first is just the Hartree free energy

Γα=0(G, W ) = Tr lnG − Tr[(G−1
H − G−1)G]

− 1
2
Tr lnW +

1
2
Tr[(v−1 − W−1)W ] (28)

(with G−1
H = iωn+µ+∇2/2−VH denoting the Hartree Green’s function

and VH the Hartree potential), while the second one

Ψ =
∫ 1

0
dα

δΓ
δα

(29)

contains all non-trivial many-body effects. Needless to mention, this cor-
relation functional Ψ cannot be calculated exactly, and approximations
have to be found.

The GW approximation consists in retaining the first order term in α
only, thus approximating the Ψ-functional by

Ψ[G, W ] = −1
2
Tr(GWG). (30)

We then find trivially

Σ =
δΨ
δG

= −GW (31)

P =
δΨ
δW

= GG. (32)

4.3 GW+DMFT
Inspired by the description of screening within the GW approximation

and the great successes of DMFT in the description of strongly correlated
materials, the “GW+DMFT” method [9] is constructed to retain the
advantages of both, GW and DMFT, without the problems associated
to them separately. In the GW+DMFT scheme, the Ψ-functional is
constructed from two elements: its local part is supposed to be calculated
from an impurity model as in DMFT, while its non-local part is given
by the non-local part of the GW Ψ-functional:

Ψ = Ψnon−loc
GW [GRR′

, WRR′
] + Ψimp[GRR, WRR] (33)

Since the strong correlations present in materials with partially localized
d- or f-electrons are expected to be much stronger in their local com-
ponents than in their non-local ones the non-local physics is assumed



GW+DMFT 55

to be well described by a perturbative treatment as in GW, while local
physics is described within an impurity model in the DMFT sense.

More explicitly, the non-local part of the GW+DMFT Ψ-functional
is given by

Ψnon−loc
GW [GRR′

, WRR′
] = ΨGW [GRR′

, WRR′
] − Ψloc

GW [GRR′
, WRR′

] (34)

while the local part is taken to be an impurity model Ψ functional.
Following (extended) DMFT, this onsite part of the functional is gener-
ated from a local quantum impurity problem (defined on a single atomic
site). The expression for its free energy functional Γimp[Gimp, Wimp] is
analogous to (27) with G replacing GH and U replacing V :

Γimp[Gimp, Wimp] = Tr lnGimp − Tr[(G−1 − G−1
imp)Gimp]

− 1
2
Tr lnWimp +

1
2
Tr[(U−1 − W−1

imp)Wimp]

+ Ψimp[Gimp, Wimp] (35)

The impurity quantities Gimp, Wimp can thus be calculated from the
effective action:

S =
∫

dτdτ ′ [−∑
c†L(τ)G−1

LL′(τ − τ ′)cL′(τ ′) (36)

+
1
2

∑
: c†L1

(τ)cL2(τ) : UL1L2L3L4(τ − τ ′) : c†L3
(τ ′)cL4(τ

′) :
]

where the sums run over all orbital indices L. In this expression, c†L is
a creation operator associated with orbital L on a given sphere, and the
double dots denote normal ordering (taking care of Hartree terms).

The construction (33) of the Ψ-functional is the only ad hoc assump-
tion in the GW+DMFT approach. The explicit form of the GW+DMFT
equations follows then directly from the functional relations between the
free energy, the Green’s function, the screened Coulomb interaction etc.
Taking derivatives of (33) as in (15) it is seen that the complete self-
energy and polarization operators read:

Σxc(k, iωn)LL′ = Σxc
GW(k, iωn)LL′ (37)

−
∑
k

Σxc
GW(k, iωn)LL′ + [Σxc

imp(iωn)]LL′

P (q, iνn)αβ = PGW(q, iνn)αβ (38)

−
∑
q

PGW(q, iνn)αβ + P imp(iνn)αβ

The meaning of (37) is transparent: the off-site part of the self-energy
is taken from the GW approximation, whereas the onsite part is calcu-
lated to all orders from the dynamical impurity model. This treatment
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thus goes beyond usual E-DMFT, where the lattice self-energy and po-
larization are just taken to be their impurity counterparts. The second
term in (37) substracts the onsite component of the GW self-energy thus
avoiding double counting. At self-consistency this term can be rewritten
as: ∑

k

Σxc
GW(τ)LL′ = −

∑
L1L′

1

W imp
LL1L′L′

1
(τ)GL′

1L1
(τ) (39)

so that it precisely substracts the contribution of the GW diagram to
the impurity self-energy. Similar considerations apply to the polarization
operator.

From a technical point of view, we note that while one-particle quan-
tities such as the self-energy or Green’s function are represented in the
localized basis labeled by L, two-particle quantities such as P or W are
expanded in a two-particle basis, labeled by Greek indices in (38). We
will discuss this point more in detail below.

We now outline the iterative loop which determines G and U self-
consistently (and, eventually, the full self-energy and polarization oper-
ator):

The impurity problem (36) is solved, for a given choice of GLL′ and
Uαβ: the “impurity” Green’s function

GLL′
imp ≡ −〈TτcL(τ)c+

L′(τ ′)〉S (40)

is calculated, together with the impurity self-energy

Σxc
imp ≡ δΨimp/δGimp = G−1 − G−1

imp. (41)

The two-particle correlation function

χL1L2L3L4 = 〈: c†L1
(τ)cL2(τ) :: c†L3

(τ ′)cL4(τ
′) :〉S (42)

must also be evaluated.

The impurity effective interaction is constructed as follows:

Wαβ
imp = Uαβ −

∑
L1···L4

∑
γδ

UαγOγ
L1L2

χL1L2L3L4 [O
δ
L3L4

]∗Uδβ (43)

where Oα
L1L2

≡ 〈φL1φL2 |Bα〉 is the overlap matrix between two-
particle states and products of one-particle basis functions. The
polarization operator of the impurity problem is then obtained as:

Pimp ≡ −2δΨimp/δWimp = U−1 − W−1
imp, (44)
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where all matrix inversions are performed in the two-particle basis
(see the discussion at the end of this section).

From Eqs. (37) and (38) the full k-dependent Green’s function
G(k, iωn) and effective interaction W (q, iνn) can be constructed.
The self-consistency condition is obtained, as in the usual DMFT
context, by requiring that the onsite components of these quan-
tities coincide with Gimp and Wimp. In practice, this is done by
computing the onsite quantities

Gloc(iωn) =
∑
k

[GH
−1(k, iωn) − Σxc(k, iωn)]−1 (45)

Wloc(iνn) =
∑
q

[V −1
q − P (q, iνn)]−1 (46)

and using them to update the Weiss dynamical mean field G and
the impurity model interaction U according to:

G−1 = G−1
loc + Σimp (47)

U−1 = W−1
loc + Pimp (48)

This cycle (which is summarized in Fig.1) is iterated until self-
consistency for G and U is obtained (as well as on G, W , Σxc and P ).
Eventually, self-consistency over the local electronic density can also be
implemented, (in a similar way as in LDA+DMFT [29, 30]) by recal-
culating ρ(�r) from the Green’s function at the end of the convergence
cycle above, and constructing an updated Hartree potential. This new
density is used as an input of a new GW calculation, and convergence
over this external loop must be reached.

We stress that in this scheme the Hubbard interaction U is no longer
an external parameter but is determined self-consistently. The appear-
ance of the two functions U and Wloc might appear puzzling at first
sight, but has a clear physical interpretation: Wloc is the fully screened
Coulomb interaction, while U is the Coulomb interaction screened by
all electronic degrees of freedom that are not explicitly included in the
effective action. So for example onsite screening is included in Wloc but
not in U . From Eq. (48) it is seen that further screening of U by the
onsite polarization precisely leads to Wloc.

In the following we discuss some important issues for the implemen-
tation of the proposed scheme, related to the choice of the basis func-
tions for one-particle and two-particle quantities. In practice the self-
energy is expanded in some basis set {φL} localized in a site. The
polarization function on the other hand is expanded in a set of two-
particle basis functions {φLφL′} (product basis) since the polarization
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Figure 1. Schematic representation of the inner (DMFT) self-consistency cycle
of the GW+DMFT scheme, consisting of the construction of the impurity model
effective action (36) from the Weiss field G and the impurity Coulomb interaction
U , the solution of the impurity model leading to an estimate for the impurity self-
energy Σimp and the polarization Pimp and the self-consistency condition where local
quantities of the solid are calculated and then used to update the impurity model.
Full self-consistency of the whole scheme requires an additional outer cycle updating
the GW Hartree Potential corresponding to the obtained electronic density (cf text).
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corresponds to a two-particle propagator. For example, when using the
linear muffin-tin orbital (LMTO) band-structure method, the product
basis consists of products of LMTO’s. These product functions are
generally linearly dependent and a new set of optimized product ba-
sis (OPB) [12] is constructed by forming linear combinations of product
functions, eliminating the linear dependencies. We denote the OPB set
by Bα =

∑
LL′ φLφL′cα

LL′ . To summarize, one-particle quantities like G
and Σ are expanded in {φL} whereas two-particle quantities such as P
and W are expanded in the OPB set {Bα}. It is important to note that
the number of {Bα} is generally smaller than the number of {φLφL′} so
that quantities expressed in {Bα} can be expressed in {φLφL′}, but not
vice versa. E.g. matrix elements in products of LMTOs can be obtained
from those in the {Bα} basis via the transformation

WRR′
L1L2L3L4

≡ 〈φR
L1

φR
L2
|W |φR′

L3
φR′

L4
〉 =

∑
αβ

Oα
L1L2

WRR′
αβ Oβ∗

L3L4
(49)

with the overlap matrix Oα
L1L2

≡ 〈φL1φL2 |Bα〉, but the knowledge of the
matrix elements WL1L2L3L4 alone does not allow to go back to the Wαβ.

4.4 Challenges and open questions

Global self-consistency
As has been pointed out, the above GW+DMFT scheme involves

self-consistency requirements at two levels: for a given density, that
is Hartree potential, the dynamical mean field loop detailed in section
4.1.0 must be iterated until G and U are self-consistently determined.
This results in a solution for G, W , Σxc and P corresponding to this
given Hartree potential. Then, a new estimate for the density must be
calculated from G, leading to a new estimate for the Hartree potential,
which is reinserted into (45). This external loop is iterated until self-
consistency over the local electronic density is reached.

The external loop is analogous to the one performed when GW cal-
culations are done self-consistently. From calculations on the homoge-
neous electron gas [31] it is known, that self-consistency at this level
worsens the description of spectra (and in particular washes out satellite
structures) when vertex corrections are neglected. Since the combined
GW+DMFT scheme, however, includes the local vertex to all orders and
only neglects non-local vertex corrections we expect the situation to be
more favorable in this case. Test calculations to validate this hypothesis
are an important subject for future studies. First steps in this direction
have been undertaken in [32].
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The notion of locality : the choice of the basis set
The construction of the GW+DMFT functional ΨGW crucially relies

on the notion of local and nonlocal contributions. In a solid these notions
can only be defined by introducing a basis set of localized functions cen-
tered on the atomic positions. Local components are then defined to be
those functions the arguments of which refer to the same atomic lattice
site. We stress that in this way the concept of locality is not a pointwise
(δ-like) one. It merely means that local quantities have an expansion
(15) within their atomic sphere the form of which is determined by the
basis functions used. This feature is shared between LDA+DMFT and
the GW+DMFT scheme, and approaches that could directly work in the
continuum are so far not in sight. If however, the basis set dependence
induced by this concept is of practical importance remains to be tested.

Within LDA+DMFT the choice of the basis functions enters at two
stages : First, the definition of the onsite U and the quality of the ap-
proximation consisting in the neglect of offsite interactions depends on
the degree of localization of the basis functions. Second, the DMFT
approximation promoting a local quantity to the full self-energy of the
solid is the better justified the more localized the chosen basis functions
are. However, in the spirit of obtaining an accurate low-energy descrip-
tion one might – depending on the material under consideration – in
some cases be led to work in a Wannier function basis incorporating
weak hybridisation effects of more extended states with the localized
ones. This then leads to slightly more extended basis functions, and one
has to compromise between maximally localized orbitals and an efficient
description of low-energy bands.

In GW+DMFT, some non-local corrections to the self-energy are in-
cluded, so that the DMFT approximation should be less severe. More
importantly, this scheme could (via the U self-consistency requirement)
automatically adapt to more or less localized basis functions by choosing
itself the appropriate U . Therefore, the basis set dependence is likely to
be much weaker in GW+DMFT than in LDA+DMFT.

Separation of correlated and uncorrelated orbitals
As mentioned in section 1 the construction of the LDA+DMFT Hamil-

tonian requires an a priori choice of which orbitals are treated as cor-
related or uncorrelated orbitals. Since in GW+DMFT the Hubbard
interactions are determined self-consistently it might be perceivable not
to perform such a separation at the outset, but to rely on the self-
consistency cycle to find small values for the interaction between itiner-
ant (e.g. s or p) orbitals. Even if this issue would probably not play a
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role for practical calculations, it would be satisfactory from a conceptual
point of view to be able to treat all orbitals on an equal footing. It is
therefore also an important question for future studies.

Dynamical impurity models
Dynamical impurity models are hard to solve, since standard tech-

niques used for the solution of static impurity models within usual
DMFT, such as the Hirsch-Fye QMC algorithm or approximate tech-
niques such as the iterative perturbation theory are not applicable. First
attempts have been made in [10] and [40] using different auxiliary field
QMC schemes and in [39] using an approximate “slave-rotor” scheme.
These techniques, however, have so far only been applied in the context
of model systems, and their implementation in a multi-band realistic
calculation is at present still a challenging project. In the following
section we therefore present a simplified static implementation of the
GW+DMFT scheme.

4.5 Static implementation
Here, we demonstrate the feasibility and potential of the approach

within a simplified implementation, which we apply to the electronic
structure of Nickel. The main simplifications made are: (i) The DMFT
local treatment is applied only to the d-orbitals, (ii) the GW calculation
is done only once, in the form [12]: Σxc

GW = GLDA · W [GLDA], from
which the non-local part of the self-energy is obtained, (iii) we replace
the dynamical impurity problem by its static limit, solving the impurity
model (36) for a frequency-independent U = U(ω = 0). Instead of
the Hartree Hamiltonian we start from a one-electron Hamiltonian in
the form: HLDA − V nonlocal

xc,σ − 1
2TrΣimp

σ (0). The non-local part of this
Hamiltonian coincides with that of the Hartree Hamiltonian while its
local part is derived from LDA, with a double-counting correction of
the form proposed in [33] in the DMFT context. With this choice the
self-consistency condition (45) reads:

Gσ
loc(iωn) =

∑
k

[GH
−1(k, iωn) − (Σxc

GW)non−loc (50)

− (Σimp,σ − 1
2
TrσΣimp,σ(0) + V loc

xc ) ]−1

We have performed finite temperature GW and LDA+DMFT calcula-
tions (within the LMTO-ASA[21] with 29 k-points in the irreducible
Brillouin zone) for ferromagnetic nickel (lattice constant 6.654 a.u.), us-
ing 4s4p3d4f states, at the Matsubara frequencies iωn corresponding to
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Figure 2. Partial density of states of d-orbitals of nickel (solid [dashed] lines give
the majority [minority] spin contribution) as obtained from the combination of GW
and DMFT (see text). For comparison with LDA and LDA+DMFT results see [33],
for experimental spectra see [34].

T = 630K, just below the Curie temperature. The resulting self-energies
are inserted into Eq. (50), which is then used to calculate a new Weiss
field according to (47). The Green’s function Gσ

loc(τ) is recalculated
from the impurity effective action by QMC and analytically continued
using the Maximum Entropy algorithm. The resulting spectral func-
tion is plotted in Fig.(2). Comparison with the LDA+DMFT results in
[33] shows that the good description of the satellite structure, exchange
splitting and band narrowing is indeed retained within the (simplified)
GW+DMFT scheme.

We have also calculated the quasiparticle band structure, from the
poles of (50), after linearization of Σ(k, iωn) around the Fermi level 2.
Fig. (3) shows a comparison of GW+DMFT with the LDA and exper-
imental band structure. It is seen that GW+DMFT correctly yields
the bandwidth reduction compared to the (too large) LDA value and
renormalizes the bands in a (k-dependent) manner.

We now discuss further the simplifications made in our implementa-
tion. Because of the static approximation (iii), we could not implement
self-consistency on Wloc (Eq. (46)). We chose the value of U(ω = 0)
(� 3.2eV ) by calculating the correlation function χ and ensuring that
Eq. (43) is fulfilled at ω = 0, given the GW value for Wloc(ω = 0)
(� 2.2eV for Nickel [38]). This procedure emphasizes the low-frequency,
screened value, of the effective interaction. Obviously, the resulting im-
purity self-energy Σimp is then much smaller than the local component
of the GW self-energy (or than V loc

xc ), especially at high frequencies. It
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Figure 3. Band structure of Ni (minority and majority spin) as obtained from the
linearization procedure of the GW+DMFT self-energy described in the text (dots) in
comparison to the LDA band structure (dashed lines) and the experimental data of
[35] (triangles down) and [34] (triangles up).

is thus essential to choose the second term in (37) to be the onsite com-
ponent of the GW self-energy rather than the r.h.s of Eq. (39). For the
same reason, we included V loc

xc in Eq.(50) (or, said differently, we im-
plemented a mixed scheme which starts from the LDA Hamiltonian for
the local part, and thus still involves a double-counting correction). We
expect that these limitations can be overcome in a self-consistent imple-
mentation with a frequency-dependent U(ω) (hence fulfilling Eq. (39)).
In practice, it might be sufficient to replace the local part of the GW self-
energy by Σimp for correlated orbitals only. Alternatively, a downfolding
procedure could be used.

4.6 Perspectives
In conclusion, we have reviewed a recent proposal of an ab initio

dynamical mean field approach for calculating the electronic structure
of strongly correlated materials, which combines GW and DMFT. The
scheme aims at avoiding the conceptual problems inherent to
“LDA+DMFT” methods, such as double counting corrections and the
use of Hubbard parameters assigned to correlated orbitals. A full prac-
tical implementation of the GW+DMFT scheme is a major goal for
future research, which requires further work on impurity models with
frequency-dependent interaction parameters [41, 42, 10] as well as stud-
ies of various possible self-consistency schemes.
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Notes
1. For a discussion of the appropriateness of local Hubbard parameters see [26].

2. Note however that this linearization is no longer meaningful at energies far away from
the Fermi level. We therefore use the unrenormalized value for the quasi-particle residue for
the s-band (Zs = 1).
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Abstract
The origin of both the long- and the short-range magnetic oscillations

in films of Cr metal is studied with photoemission (PE). The experi-
mental data are analyzed on the basis of results of the electronic struc-
ture calculations performed within the local spin-density approxima-
tion (LSDA) - layer Korringa-Kohn-Rostoker (LKKR) approach and the
density functional theory (DFT) using a screened-KKR Green’s func-
tion method. It is shown that the incommensurate spin-density wave
(SDW) can be monitored and important parameters of SDW-related in-
teractions, such as coupling strength and energy of collective magnetic
excitations, can be determined from the dispersion of the renormalized
electronic bands close to the Fermi energy. The used approach can
be applied to a large variety of other SDW systems including magnetic
multilayer structures highly relevant for technological applications. The
short-range PE intensity modulations at the Fermi energy are related
to the quantum-well states (QWS), which were for the first time ob-
served in <100> directions in Cr(100) layers. Possible contributions
of the QWS into the short-range and the long-range magnetic coupling
between marginal layers in Fe/Cr/Fe systems were discussed.

Keywords: Spin-density wave, quantum-well states, photoemission, chromium

In this contribution we report on mostly intriguing parts of the elec-
tronic structure of thin films of Cr metal. These parts are an incommen-
surate spin-density wave (SDW) state and short-range electronic density
of states (DOS) oscillations observed upon variation of thicknesses of Cr
layers.

The electronic properties of Cr are of high importance both for fun-
damental and more applied reasons. Bulk Cr is an almost unique ma-
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Figure 1. AF and FM couplung between magnetic moments of Fe layers (M1 and
M2) depending on thickness of Cr spacer (d1 and d2).

terial revealing itinerant antiferromagnetism with the spin-density wave
ground state at room temperature [1]. At the Nel temperature TN = 311
K chromium exhibits a transition from a paramagnetic (bcc lattice) to
an antiferromagnetic (AF) order (sc of CsCl type) that is modulated by
the incommensurate SDW along the <100> directions [1–3]. Thereby
the periods of the AF arrangement and the SDW oscillations amount
to 2 and ∼ 21 monolayers (ML) of Cr, respectively. It is widely ac-
cepted that the AF order (often referred to as the commensurate SDW)
is caused by a nesting of the Fermi surface (FS) sheets around the Γ
and the H points of the Brillouin zone (BZ) of bcc Cr, while the nature
of the incommensurate SDW is still the subject of extensive debates
[4–7]. The SDW in Cr is accompanied by a strain wave and a charge-
density wave (CDW) with half the period of the SDW [8] as well as
by a series of collective excitations including spin waves (magnons) and
phonons [1]. Electron interactions particularly with the magnetic exci-
tations lead to renormalization of the electronic structure of the ground
state. Although a number of attempts was made to study the renor-
malization of the electronic bands in some Cr systems [1, 9] the subject
requires further investigations.

A detailed understanding of the SDW and the SDW-related phenom-
ena in Cr is of primary interest, since the above short- and long-range
magnetic modulations give strong reason to use Cr as spacers in mag-
netic multilayer structures providing giant magnetoresistance, spin-valve
effect and applications in magnetic sensor technology [10]. One of the
mostly investigated up to now system Fe/Cr/Fe(100) shows that the
ferromagnetic (FM) or AF type of coupling between Fe layers (Fig. 1)
varies with thickness of Cr spacer following the short period (DS = 2
ML), whereas the strength of the coupling changes with the long pe-
riod [DL ∼ 11 ML, about half a wavelength of the incommensurate
SDW, Fig. 2] of oscillations [11–14]. Thereby, mostly accepted point
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Figure 2. Short- and long-range oscillations of the magnetic coupling.

of view considers the short range of oscillations to be caused by the
AF coupling between neighboring (100) ferromagnetic Cr monolayers in
the spacer. Although other mechanisms like quantum-well state (QWS)
or Ruderman-Kittel-Kasuya-Yosida (RKKY) [4, 7, 15] coupling are still
under discussion.

More controversial is the situation around the incommensurate long-
range oscillations. In their study Schilfgaarde and Harrison [4] suggested
that these modulations stem from aliasing of the short-range oscillations
due to a slight mismatch between the nesting vector spanning the FS
sheets around the Γ and the H points of the BZ and the period of the
reciprocal lattice in the <100> directions. This model, however, is not
supported by the experimental results obtained by scanning electron
microscopy with polarization-analysis [13]. On the other hand, it was
shown that the long-range oscillations can be caused by nesting condi-
tions characterized by smaller spanning vectors found at other sheets of
the FS [6, 7].

The description of the magnetic oscillations in thin films is com-
plicated by the fact that boundary conditions at the interfaces have
to be properly considered. While nodes of the SDW are expected at
Cr/Mo(100) junctions [16], interfaces with Fe(100) marginal layers re-
veal antinodes of the Cr magnetic moments. In the density-functional
theory study of Fe/Cr/Fe(100) by Niklasson et al. [17] mainly AF order
was found for Cr spacers with thicknesses < 10 ML. For thicker layers,
various branches of sometimes coexisting SDWs, which differ from each
other by the number of nodes m, were calculated. Upon increase of the
Cr thickness, each m branch is abruptly substituted by a (m+2) branch
giving rise to phase slips of the short-range oscillations [13], which, how-
ever, may also be correlated with peculiarities of the bulk nesting con-
ditions. The SDW order in Fe/Cr/Fe was also treated by means of the



70 Spin-density Wave and Short-range Oscillations

Korringa-Kohn-Rostoker Green’s function method within the framework
of the local spin-density functional formalism [18].

While the long-range magnetic oscillations in Cr films seems to be
relatively well investigated theoretically, experimental studies of the in-
commensurate SDW are mainly restricted to rather indirect information
obtained from measurements of induced magnetic properties of marginal
layers, which were performed, e.g., by means of the magneto-optic Kerr
effect [14], spin-polarized electron-energy loss spectroscopy [12] and scan-
ning electron microscopy with polarization analysis [13]. So far, no sys-
tematic photoemission (PE) studies of the magnetic oscillations in Cr
films of different thicknesses except Refs. [7, 19, 20] were reported. On
the other hand, particularly PE provides mostly direct insight into the
structure of the occupied electron states allowing better understanding
of the discussed phenomena.

Here we present results of PE studies of chromium films in both
regimes: incommensurate SDW for thick films [21] and AF coupling
for thin films, where incommensurate order is suppressed [22].

5.1 Incommensurate spin-density wave

Experimental
We studied the incommensurate SDW phenomena in Cr systems by an

angle-resolved PE of epitaxial Cr films (10 to 100 ML) grown on W(110).
The measurements were performed with a SCIENTA 200 electron-energy
analyzer using monochromatized light from a He lamp (hν = 40.8 eV).
The overall-system energy resolution including thermal broadening was
set to 130 meV full width at half maximum (FWHM), the angular res-
olution to 0.4◦. All experiments were carried out at room temperature
well below TN at the surface of Cr(110) [19, 23]. The base pressure in
the experimental set up was 6 × 10−9 Pa. Films of Cr were prepared
in situ on a W(110) crystal by deposition from a molybdenum crucible
heated by electron beam. Various thicknesses of Cr were used in order
to follow the transition from the thick films characterized by the SDW
state (47 and 100 ML) to the thin film (10 ML), where the incommen-
surate SDW is not present anymore [17]. “As deposited” samples were
annealed to 900◦C in order to ensure well-ordered films under consider-
ation. In all cases the grown epitaxial films revealed sharp low-energy
electron diffraction patterns.
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Figure 3. Cut of the calculated bulk FS of bcc Cr within the (110) plane (left). FS
jack around the Γ point (right).

Electronic structure calculations
The electronic structure of the Cr(110) semi-infinite crystal was calcu-

lated within a local spin-density approximation (LSDA) - layer Korringa-
Kohn-Rostoker (LKKR) multiple scattering approach. This method uses
the Green’s function technique and allows the calculation of systems with
a broken translational symmetry along one direction [24]. The calculated
layer resolved spectral density of states are related to the layer Green’s
function simply as D(k‖, E) = −Tr Im G(k‖, E)/π.

Experimental results and discussion
Fig. 3 (left) demonstrates a calculated cut of the bulk FS of bcc Cr

within the (110) plane. The contours of the FS around the Γ and the H
points of the bulk BZ look almost identical: They are rhomb-like and are
connected by the spanning vector ks. Therefore, they are expected to be
strongly affected by the magnetic ordering. Also the three-dimensional
FS jacks at the Γ and the H points [the Γ-point jack is shown in Fig.
3 (right)] have similar shapes. In a first approximation they can be
obtained from each other by a parallel transfer defined by the ks vector.
Therefore, everywhere in the region of these jacks one would expect the
energy gap and the band renormalization related to the SDW state.

We have performed experiments along the Γ− S direction in the sur-
face BZ of Cr by varying the polar electron-emission angle. In this way
the part of the FS around the Γ point, where the bumps at the corners
[see Fig. 3 (right)] do not distort the measurements, was sampled. As-
suming free-electron like final states, the measurements were carried out
along the path in the bulk BZ as shown in Fig. 4, where for simplicity
the FS calculated for bcc Cr is presented. The BZ for AF phase can be
obtained from the bcc BZ by folding. The path crosses the FS sheet in
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Figure 4. Path in the Brillouin zone sampled with hν = 40.8 eV (thick line). k‖
and k⊥ denote parallel and perpendicular to the (110) plane components of the wave
vector, respectively.

the region of interest marked by a shaded circle in the figure. Note that
the sampling path in this region reveals a nearly zero slop and, hence,
is characterized by only slightly changing k⊥ coordinate. Therefore, the
situation we have is very similar to the case of photoemission studies of
quasi-two dimensional (2D) systems (e.g., high temperature supercon-
ductors or surface states), where 2D slices of the electronic structure in
the reciprocal space are considered.

Fig. 5 presents the results of the LKKR spectral DOS calculations for
the bulk and the surface layer of AF sc Cr without the incommensurate
SDW modulation. Similar to other theoretical data [3, 19, 25] the AF
energy gap ∆ of about 390 meV is obtained in the k‖ region marked in
Fig. 4. The calculated gap is predominantly located in the region of
the unoccupied electron states. The corresponding “as measured” data
close to the energy-gap region taken for the 100-ML thick Cr layer are
shown in a gray-scale plot in Fig. 6(a). The measured band B follows
the behavior of the high DOS at the boundary of a bulk state continuum.
First, it approaches the Fermi energy (EF). At k‖ > 0.55 −1 it turns
back toward higher binding energies (BEs). The PE intensity of the
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Figure 5. Spectral LKKR-DOS. k‖ along the Γ−S direction. The darker the color,
the more intense the DOS.

Figure 6. Logarithmic PE signal. Dark areas represent higher intensity. (a) “As
measured” data. Energy of the band B maximum for each PE spectrum are marked
with white circles. Inset: two spectra taken below (k‖ = 0.36 −1) and above (0.50 −1)
the kink position. Vertical line is the kink energy. (b) Data corrected by the Fermi-
Dirac distribution with µ equal to the measured EF . In (c) µ − EF was selected to
be -20 meV.
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band in this k‖ region is almost negligible, a cross-section effect, which
is well known for folded bands in solids [26]. From Fig. 6(a) and further
careful analysis of the individual PE spectra, it is, however, by far not
clear as to whether the gap is seen in the EF region. On the other hand,
according to our calculations only small part of the AF gap (δ ∼ 20
meV, Fig. 5) is found below EF and can directly be observed with PE.

In order to extract information about unoccupied electron states we
followed the procedure used in Refs. [19, 27]. The raw data were divided
by the Fermi-Dirac distribution to allow observation of the thermally ex-
cited states. The corrected data are presented in Fig. 6(b). It seems
that indeed an energy gap in the region of the unoccupied states of ∼
170 meV is monitored here. The observed gap is narrower than the cal-
culated one. This finding can be explained by a reduction of the gap size
expected for room temperature as compared to the ground state. Note,
however, that the corrected results depend strongly on the used value
of the chemical potential µ that was estimated from the measurements
of EF for a metallic sample. Qualitatively different results are obtained
shifting µ by only 20 meV toward higher or lower BEs, variations, which
are much smaller than the energy resolution of the experiments. An
increase of the chemical potential leads to a considerably larger value of
the derived energy gap. Even more drastic changes are observed upon
decrease of µ [Fig. 6(c)]. The AF gap is not monitored anymore. In-
stead, the region between the Fermi energy and 0.2 eV above EF is filled
with electron states. The surface origin of these states is seen from a
comparison with the theoretical results shown in the right panel in Fig.
5.

As follows from the above analysis the proposed method to use the
Fermi-Dirac distribution correction of the PE data [19, 27] is not straight-
forward even to extract the energy-gap information related with the anti-
ferromagnetism, which is the main contribution into the magnetic order
in Cr metal below TN. In this respect, it seems there is no way to follow
fine gap changes that might be caused by the rather weak incommensu-
rate SDW contribution. In contrast to the energy gap the SDW-derived
renormalization of the shallow electronic bands in Cr systems can easily
be monitored. As seen in Fig. 5, the high DOS at the boundary of a bulk
state continuum reveals smooth monotonic dispersion when going from
the Γ point toward the gap at EF . In difference to that our experimental
band shows a pronounced “kink” at k‖ ∼ 0.45 −1. The observed kink
can be simulated by a superposition of two contributions: the calculated
single-particle LSDA data for small k‖ and a renormalized data for k‖
> 0.45 −1. The PE spectra of band B in the region of the kink [inset
in Fig. 6(a)] have an asymmetric lineshape with two structures: a main
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peak and a shoulder, which exchange their spectral weight crossing the
kink. The main peak that is quite broad at high BE becomes much
sharper close to EF . All above evidences that the signals measured in
the dispersion region before and after the kink have different nature.

This kind of behavior of bands close to EF is a well known phe-
nomenon for correlated systems [28]. There is a pole in the real part
of the self-energy Σ of the material at the energy of a collective exci-
tation. The strength of interaction is described via a coupling constant
λ that is defined as λ = −∂ReΣ/∂E|EF

. The energy dependence of Σ
can be inverted into a k dependence. Thereby (i) the self-energy pole
is transformed into the kink in the band dispersion and (ii) the cou-
pling constant is rewritten as λ = [(∂ELSDA/∂k)/(∂Eren/∂k)|EF

− 1]
depending on the ratio of the group velocities determined by the LSDA
[ELSDA(k)] and the renormalized [Eren(k)] bands. As a result both λ
and the energy of quasiparticle excitation can be derived from the anal-
ysis of the band dispersion in the vicinity of the kink. Energy gaps that
can appear to stabilize the excited state may complicate the situation.
In this case the quasiparticle energy is related not to EF , but to the
bottom of the corresponding gap.

The kink energy relative to the bottom of the calculated Fermi-energy
gap is estimated to be (81±7) meV for the 100-ML film [Fig. 6(a)] that
is of the order of the expected energy for the magnon excitations in Cr
metal [1, 29]. Interaction with phonons accompanying the strain-wave
or CDW state can be ruled out by the reason of much lower energy of
the phonon excitations [30]. To obtain λ the ratio of the group velocities
for the LSDA and the renormalized bands was substituted by the ratio
of the tangents of two angles α and β between the directions of the
corresponding band dispersion and the k‖ axis [see Fig. 6(a)]. The
directions of band dispersion were least-square approximated by straight
lines through the energy positions of the main peak of each individual
spectrum that are shown by white circles in the figure. By this procedure
a value λ = 1.41 ± 0.09 was obtained pointing to a moderate strong
quasiparticle interaction.

The dispersion of band B in the region of the kink was studied for
Cr films of different thicknesses (Fig. 7). In all cases the films were
selected to be thick enough to reveal the bulk and the surface (S1 and
S2) features of the electronic structure of the AF sc Cr (Fig. 5). In
this way both surface and bulk electronic properties of the bare anti-
ferromagnetic phase of Cr metal were excluded from the consideration
as possible reasons for the thickness dependent behavior of the kink,
which is discussed in the following. It is of high importance to underline
that no kink is observed for the 10-ML film, where the incommensurate
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Figure 7. PE signal in the region of the kink.

SDW is suppressed [17]. Apart from the theoretical results this fact is
considered as a further strong evidence for the SDW in thicker Cr films
and the possibility to monitor this state in the dispersion of the renor-
malized bands. The disappearance of the kink allows one to expel from
the analysis dimensionality effects like quantum well states, which are
expected to be mostly pronounced particularly for thin films. A decrease
of the film thickness from 100 to 47 ML does not result in the removal of
the kink, although it causes a slight drop of its energy to (73±7) meV.
Assuming a linear energy dispersion of the spin-wave excitation [1] this
may be assigned to the increase of the bulk period of the related SDW
due to growing influence of the boundary conditions. Also λ decreases
slightly with the thickness reaching the value 1.30 ± 0.09 for the 47-ML
thick film. As reported in Ref. [13] there are two phase slips in the cou-
pling between the marginal layers in the range from 47- to 100-ML thick
Cr spacers in Fe/Cr/Fe(100) systems. According to Niklasson et al. [17]
each slip originates in a jump from one branch of the SDW to another.
Therefore, the observed change of λ may be understood by slightly differ-
ent electron interaction with magnons associated with individual SDW
branches, which are expected to be also present in Cr/W(110).

To summarize this part of our study we have shown that angle-
resolved PE can successfully be used to monitor the SDW in thin films
of Cr. A valuable information about quasiparticle magnetic interactions
was obtained by the analysis of the dispersion of the renormalized elec-
tronic bands in the vicinity of EF . The used approach can be applied
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to a large variety of other SDW systems including magnetic multilayer
structures highly relevant for technological applications.

5.2 Short-range oscillations

Experimental
The regime of the short-range oscillations was studied with thin films

of chromium (thickness up to about 10 ML), where the long-range mod-
ulation phenomena are expected to be still not present. The samples
were prepared by layer-by-layer thermal deposition of Cr onto a 60-thick
film of Fe metal grown on a W(100) substrate followed by annealing.
The crystalline order of the samples was checked by low-energy electron
diffraction. In order to distinguish between contributions into normal-
emission PE signal from the Cr- and the Fe-derived valence states the
spectra were acquired immediately below the 3p-3d excitation threshold
of Fe (the Fano antiresonance, hν = 54 eV), where the Fe 3d PE intensity
is found to be strongly suppressed. The experiments were performed at
the Russian-German beamline at BESSY II [31] using an electron-energy
analyzer CLAM4 with an angular resolution of 1◦. The overall system
resolution was set to 130 meV FWHM. All measurements were carried
out at room temperature with a base pressure in the low 10−9-Pa range.

Photoemission spectra
Angle-resolved PE spectra acquired from the Cr/Fe/W structure in

normal-emission geometry are shown in Fig. 8 (left). There are basi-
cally two features (A and B), which vary their binding energies with
Cr coverage. Since structure A is located close to the Fermi energy,
its energy shifts result in variations of the PE intensity at EF . These
BE/intensity variations have a period of ∼ 2.2 ML [see Fig. 8 (right)],
which is not much different as compared to the period of the short-
range magnetic oscillations in Fe/Cr/Fe(100). To study origin of fea-
ture A, normal-emission PE experiments with photon-energy variation
were performed. Since no dispersion of feature A was monitored, a two-
dimensional character of this structure was concluded. Feature A is not
a surface state or a resonance: It shows oscillating behavior with Cr
thickness.

The binding energy of peak B reveals a non-monotonic behavior as
well. For very low Cr coverages it drops increasing again toward the
thickness of 6 ML. At 8 ML it shows minimum growing again at higher
coverages.
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Figure 8. Normal-emission PE spectra of Cr/Fe/W(100) taken at various Cr thick-
nesses (left). Binding energies of features A and B as function of Cr deposition (right).
Dotted vertical lines mark a 2-ML increment in increase of Cr coverage.

Electronic structure calculations
To understand the above thickness-dependent variations observed in

PE experiments performed without spin resolution, the electronic struc-
ture of the system was calculated self-consistently in the framework
of density functional theory using a screened-KKR Green’s function
method [32]. The Cr covered surface was modelled by a free Fe slab
of 10 ML thickness covered on both sides with n layers of Cr (n from
1 to 10). For the potentials the atomic sphere approximation was used,
nevertheless the charge density was expanded in spherical harmonics
up an angular momentum of �max = 6. This ensures a proper treat-
ment of the charge relaxation at the surface. The Cr interface moment
is oriented antiparallel to the adjacent Fe interface layer. To compare
with the normal-emission PE spectra the spin-dependent local density
of states (LDOS) of the surface Cr layer was calculated using the site
diagonal part of the Green’s function. Due to the 2D periodicity of the
system the in-plane wave vector k‖ is a good quantum number and real
space properties are obtained by a Fouier transformation and integra-
tion over the 2D surface Brillouin zone. To account for the finite angular
resolution of 1◦ the integration of the LDOS was restricted to k‖ values
smaller than 7% of the Brillouin zone mean radius. Furthermore the
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Figure 9. Spin-dependent angular-momentum resolved LDOS (bottom). Oscilla-
tions of the spun-up and the spin-down LDOS depending on thickness of Cr (top).

obtained LDOS was truncated by the Fermi-Dirac distribution function
for room temperature and broadened with a Gaussian of 130-meV width
according to the finite experimental energy resolution.

Discussion
Results for the spin-dependent k-integrated LDOS of the topmost Cr

layer for thicknesses 1 and 2 ML are depicted in Fig. 9 (bottom). The
s-, p-, d, and f -angular momentum character LDOS are marked by blue,
green, red, and yellow, respectively. Below we will consider only d-like
states, which reveal main contribution into the LDOS. The interface
coupling of Cr with Fe is antiferromagnetic, and also the successive Cr
layers carry moments of opposite sign. If Fe(100) is covered by 1 ML of
Cr, this layer carries a large spin moment of -3.43 µB per atom. (The
sign indicates AF coupling with the bulk Fe. In the following the terms
spin up and spin down will be used with respect to the bulk, where spin
up is defined as the majority spin.) The Cr 3d-spin up band is situated
above EF and thus only marginally hybridized with the Fe 3d-spin up
band, that is almost completely occupied. As a result, the Cr 3d-spin-up
band is quite narrow and has a steep slope just above EF , stabilizing the
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large moment. In turn, the moment yields a large spin split of the Cr
bands and the Fermi level is placed close to a peak of the almost occupied
spin-down band (feature C). The peak gives rise to a high value of the
spin-down LDOS at the Fermi energy. If Fe(100) is covered by 2 ML
of Cr, the unoccupied 3d-spin-down band of the surface layer is broader
than the unoccupied Cr 3d-spin-up in the previous case, since now a
considerable hybridization with the subsurface Cr 3d states takes place.
The result is a less steep slope above EF leading to a reduced moment of
2.96 µB, a related smaller spin split and a shift of the spin-up peak above
the Fermi level. (Note that the surface layer spin-up band corresponds
to the spin-down band of the previous case and vice versa.) Hence, the
total (spin up plus spin down) LDOS at EF becomes slightly smaller.

Further increase of the Cr thickness causes continuous saturation of
the variation of the magnetic moment at the value of ∼ 2.6 µB. The
latter is the consequence of the saturation of the discussed above hy-
bridization phenomena. The obtained value is in good agreement with
previously obtained values [23, 33]. Correspondingly the BE of peak C
does not change anymore and constant-amplitude oscillations separately
of the spin-up and the spin-down LDOS with the period of exactly 2 ML
are monitored [see Fig. 9 (top)]. It is expected that these oscillations,
which are due to the AF interaction between neighboring Cr layers, are
responsible for the 2-ML short-range oscillations of the magnetic cou-
pling between marginal Fe layers in Fe/Cr/Fe structures. Note that the
total LDOS does not vary anymore at Cr coverages higher than about 3
ML.

Therefore these spin-resolved k-integrated LDOS modulations can-
not explain the behavior of our non-spin-resolved experimental spectra
particularly close to the Fermi energy (feature A). Moreover the angle-
resolved PE data taken in the normal-emission geometry should be com-
pared to results of LDOS calculations restricted to the k region close to
k‖ = 0. The corresponding k-resolved LDOS results for topmost layers
of Cr in the cases of 2-, 4-, 6-, and 8-ML Cr systems are shown in Fig.
10. To analyze the character of the electron eigenstates the probability
amplitudes of the states in the center of the Brillouin zone were calcu-
lated. For the states close to the Fermi level we find a strong localization
effect that means all states are localized in the direction perpendicular
to the surface inside the Fe or the Cr layer. For the Cr states with a
probability amplitude mainly concentrated in the Cr layer two types of
states can be distinguished: surface and quantum well states. In Fig.
10 the surface state is always located at EF and seen in the spin-up
LDOS (feature D). In difference to the surface state the quantum well
states, which are monitored in this figure in the spin-down LDOS, change
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Figure 10. k-resolved LDOS for 2 ML, 4 ML, 6 ML, and 8 ML of Cr on Fe/W(100).

their positions periodically crossing the Fermi energy with Cr coverage
(marked by circles in the figure). Thereby the period of these crossings,
which are displayed in the spin-integrated k-resolved LDOS as variations
of intensities at EF , is very close to the one observed in our PE experi-
ment. By this reason we assign the PE intensity oscillations of peak A
in our data to the QWS behavior. Our study is a first observation of the
QWS in <100> directions in thin films of chromium. It is anticipated
that the QWS mechanism can contribute into the short-range regime of
the magnetic coupling in Fe/Cr/Fe systems. Its contribution, however,
is weaker than that of the bare AF interaction, since the QWS LDOS
is approximately one order of magnitude smaller than the LDOS associ-
ated with the AF coupling. One may speculate that the aliasing of the
QWS and the AF modulations of the LDOS can cause oscillations with
a periodicity close to that of the long-range oscillations of the magnetic
coupling in Fe/Cr/Fe multiplayer structures.

Feature B in Fig. 8 can be assigned to the main LDOS peak (Fig.
10), which is located at about 1.2 eV (0.088 Ryd) BE for the system 1
ML of Cr on Fe(100) [not shown]. As obtained from our calculations the
binding energy of this peak follows changes of the magnetic moment of
Cr. With decrease of the latter, peak B shifts toward the Fermi energy.
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For the 2-ML system it is found at 0.85 eV (0.063 Ryd). Beginning from
3-4 ML coverages the position of peak B [0.80 eV (0.059 Ryd)] does not
change anymore. On the basis of the above, energy location of feature B
can be used as a measure of the magnetic moment in the surface region
of Cr layers. The strong decrease of the BE of this feature at very low
Cr coverages seen in Fig. 8 can be explained by intermixing at room
temperature of the Fe and Cr atoms at the Cr/Fe(100) interface observed
also by other experimental techniques [34]. The magnetic moment at the
intermixed interface is strongly reduced, since neighboring Fe and Cr
atoms trend to align antiferromagnetically to each other. Upon further
Cr deposition, relative concentration of Fe in the surface region decreases
and the surface magnetic moment grows. The BE minimum of peak B
observed at about 8 ML coverage might be associated with a constitution
of the incommensurate SDW state, which is expected to take place in the
range of these coverages. Than the decrease of the binding energy could
be explained by a possible node of the SDW at the vacuum boundary of
the Cr layer.

In the last part of our work we have shown that PE is an appro-
priate tool to study not only the long-range, but also the short-range
oscillations in thin films of Cr. The short-range photoemission intensity
modulations at the Fermi energy are related to the quantum-well states,
which were for the first time observed in <100> directions in Cr(100)
layers. Possible contributions of the QWS into the short-range and the
long-range magnetic coupling between marginal layers in Fe/Cr/Fe sys-
tem were discussed. It was found that the binding energy of the main
peak in the k-resolved normal-emission LDOS of the topmost layer of
Cr can be used to follow the magnetic moments at the surfaces of Cr
systems.
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THE ROLE OF HYDRATION AND
MAGNETIC FLUCTUATIONS IN THE
SUPERCONDUCTING COBALTATE

M.D. Johannes, D.J. Singh
Center for Computational Material Science
Naval Research Laboratory
Washington, D.C. 20375

Abstract We report electronic structure calculations within density functional
theory for the hydrated superconductor Na1/3CoO21.33H2O and com-
pare the results with the parent compound Na0.3CoO2. We find that
intercalation of water into the parent compound has little effect on the
Fermi surface outside of the predictable effects expansion, in particular
increased two-dimensionality. This implies an intimate connection be-
tween the electronic properties of the hydrated and unhydrated phases.
Additional density functional calculations are used to investigate the
doping dependence of the electronic structure and magnetic properties
in hexagonal NaxCoO2. The electronic structure is highly two dimen-
sional, even without accounting for the structural changes associated
with hydration. At the local spin density approximation level, a weak
itinerant ferromagnetic state is predicted for all doping levels in the
range x = 0.3 to x = 0.7, with competing but weaker itinerant antifer-
romagnetic solutions. Comparison with experiment implies substantial
magnetic quantum fluctuations. Based on the simple Fermi surface
and the ferromagnetic tendency of this material, it is speculated that a
triplet superconducting state analogous to that in Sr2RuO4 may exist
here.

Keywords: Hydrated superconductor, magnetic quantum fluctuations, triplet su-
perconductivity

Introduction
During the past year, the discovery of likely unconventional super-

conductivity in NaxCoO2·yH2O (x ∼1/3, y ∼4/3) and the unusual mag-
netotransport properties of NaxCoO2 (x∼2/3), have focused attention
on these materials and the connection between them.[1] In fact, lay-
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ered cobalt oxide materials have lately been the subject of considerable
fundamental and practical interest for several reasons. LixCoO2 is an
important cathode material for lithium batteries. In that context, the
interplay between the transition metal-oxygen chemistry, the Co mixed
valence and magnetism are important ingredients in the performance of
the material. [2] Layered cobaltates, AxCoO2 also form for A=Na and K,
but in more limited concentration ranges. [3] Single crystals of NaxCoO2,
with nominal x=0.5 were investigated by Terasaki and co-workers. [4]
Remarkably, they found that even though the material is a good metal,
it also has a large thermopower of approximately 100 µV/K at room
temperature. This was the first time that an oxide showed promise of
matching the thermoelectric performance of conventional heavily doped
semiconductors for thermoelectric power conversion. Interest in modifi-
cations of this material to minimize its thermal conductivity for thermo-
electric applications led to the discovery that similar anomolously high
thermopowers were present in other materials with hole doped CoO2 lay-
ers [5–7], especially so-called misfit compounds in which the intercalat-
ing Na is replaced by more stable rocksalt like oxide blocks. [8–12] This
demonstrates that the exceptional thermopower of metallic NaxCoO2 is
not essentially related to the details of the intercalating layer.

Theoretical studies, stimulated by these discoveries, emphasized both
the band-like nature of the material, [13, 14] consistent with its good
metallic properties, the proximity to magnetism, and possible renormal-
izations related to a magnetic quantum critical point, [15] the proximity
to charge ordering (which is seen at some doping levels), [16] and possi-
ble strongly correlated electron physics [17, 18]. Intriguingly, both band
structure and strong correlated models (i.e. the Heikes model) are able
to explain the high thermopowers. [19, 20] Recently, it was demon-
strated by magnetotransport measurements that the thermopower at
x ∼ 0.68 is strongly reduced in magnetic field with a universal scaling
law [21] showing that spin entropy underlies the high thermopower and
thus again emphasizing the role of magnetic fluctuations in the system
as well as possible strong correlated electron physics. [21, 22] Indeed,
some of the misfit compounds are in fact magnetic, with ferromagnetic
ground states. [23]

The last few years have seen the discovery of a number of novel uncon-
ventional superconductors associated with magnetic phases. Focusing on
triplet (or likely triplet) superconductors, these include UGe2 (Tc ∼ 1K),
[24] URhGe (Tc ∼ 0.25K), [25] and ZrZn2 (Tc ∼ 0.3K), [26, 27] where
ferromagnetism coexists with superconductivity, and Sr2RuO4 (Tc ∼
1.5K), [28, 29] which has a paramagnetic Fermi liquid normal state, but
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is “near” magnetic phases. Although the exact pairing mechanism has
not been established in these materials, it is presumed that spin fluc-
tuations are involved, most probably the quantum critical fluctuations
in the materials with co-existing ferromagnetism and superconductivity.
[30–36] In Sr2RuO4, strong nesting related antiferromagnetic spin fluc-
tuations are found in local density approximation (LDA) calculations
and experiment. [37, 38] In addition ferromagnetic fluctuations, which
have recently been observed in the parent compound at a doping level
of 0.75 [39], may also be present, and if so, these would favor a triplet
superconducting state. [40]

Takada and co-workers recently showed that NaxCoO2 can be readily
hydrated to form NaxCoO2 · yH2O. This material has the same CoO2

layers, but with a considerably expanded c axis, which accomodates the
intercalating water and Na. In this material, x ∼ 0.3, is lower than the
range readily formed in NaxCoO2. Remarkably, Takada and co-workers
found that NaxCoO2 · yH2O is a superconductor with Tc ∼ 5K. [41, 42]
The nearness to magnetism and possible strong correlations immediately
lead to suggestions of unconventional superconductivity in this material,
beginning with the discovery paper of Takada, as well as discussions of
the role of water in producing the superconductivity. Scenarios that have
been advanced include no role at all, screening Na disorder, preventing
competing charge ordered states, modifying the doping level via unusual
chemistry, enhanced two-dimensionality, and others. [43–49]

Since superconductivity is fundamentally an instability of the metallic
Fermi surface, a first step is to understand the relationship of the elec-
tronic structure of NaxCoO2·yH2O with its unhydrated parent NaxCoO2.
We present density functional based bandstructure calculations using the
linearized augmented planewave (LAPW) method [50, 51] of Na1/3CoO2·
4/3H2O with both Na ions and water molecules explicitely included
(no virtual crystal approximation is made). In the first part of this
manuscript, we show that, from an electronic structure point of view,
the hydrated and unhydrated compounds are identical, aside from struc-
tural effects due to the expansion of the c-axis. With the knowledge that
the electronic structure of the parent compound is likely to reflect that
of the superconducting compound, we proceed in the second part of the
manuscript to investigate NaxCoO2 in terms of its doping dependencies,
magnetic properties, and possible quantum critical fluctuations. Based
on the two dimensional 3d transition metal oxide structural motif, there
are speculations that the superconductivity may be related to that of
the cuprate high-Tc superconductors. Here an alternate possibility is
discussed, that is the connection with the triplet superconductors men-
tioned above.
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6.1 Hydrated and Unhydrated Band Structures
The exact structure of the hydrated compound has yet to be conclu-

sively resolved. So far, all experimental data [52–54, 42, 43] indicates
that it belongs to the hexagonal symmetry P63/mmc (# 194), but re-
finements of the water molecule positions, Na ion positions, and apical
oxygen heights vary. Lynn et al [52] find that the Na ions are displaced
compared to the unhydrated parent compound and are surrounded by
H2O molecules with basically the same structure as D2O ice. However,
other neutron diffraction studies show that [55], even below the freezing
point of water, there may be no static position for the water molecule
as a whole, emphasizing disorder.

Figure 1. The tripled, hydrated structure corresponding to the superconductor.
The green and red planes are Co-O, dark blue ions are Na, and the red and light
blue molecules are water. Bonds between the Na molecules are drawn to emphasize
the four-fold coordination. One of the H ions is located 1.73 Åfrom an O ion in the
plane above it, the other position is determined by preserving the H2O bond angle
and maximizing the distance between any two H ions
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The structure used for our calculation was based in large part on the
neutron and x-ray diffraction results of Ref. [53] and is shown in Fig.
2. To achieve this structure fully occupied shifted Na (6h) and H2O
(24l) sites were assumed and then ions/molecules were systematically
removed according to coordination and bonding rules until the observed
proportions were obtained. The bond angles are held to 109◦ and the
O-H bond distance to 0.99 Å. We employed this structural configuration
by tripling the formula unit of the parent compound Na2xCo2O4 (al-
ready doubled to account for both Co-O planes), expanding the c-lattice
to its reported value [53] of 37.1235 a.u. and adding four H2O molecules
for each Na ion, resulting in a formula unit with integer values of all
constituent atoms: Na2Co6O128H2O. This eliminated the need for the
virtual crystal approximation, allowing us to take the possible effects
of Na ordering into account, which we find a posteriori to be unim-
portant for the CoO2 derived electronic structure, based on comparison
with previous virtual crystal results. The water molecules were oriented
with H ions pointing away from the Na ion and toward the Co-O plane.
Since the Na and H2O sites are only partially occupied in the P63/mmc
symmetry, we required a different space group for computation. Our
structure has the considerably lowered P21/m symmetry (#11), but re-
mains pseudohexagonal with lattice vectors of length

√
3a such that the

planar area of the unit cell is tripled. In other words, we include the local
structure and coordination, but not long range disorder in the Na H2O
layers, yielding a lower average symmetry. However, electronic structure
around the Fermi level is hexagonal to a high precision, indicating that
scattering from disorder in the Na H2O layers is weak. This may be
important for superconductivity considering the pair breaking effect of
scattering in unconventional superconductors. The apical oxygen height
was relaxed to its optimal position 1.81 a.u. above the Co plane. We
oriented each water molecule with both H ions pointing away from the
Na ion and with one as close as possible to an O in the Co-O plane.
The present local density approximation calculations were done using
the LAPW method as implemented in the WIEN2k code with well con-
verged basis sets employing an Rkmax of 4.16, sphere radii of 1.86 (Co),
1.6 (O), 2.0 (Na), and 1.0 and 0.88 for the O and H respectively of water.
The water molecules were treated using LAPW basis functions, whereas
all other ions were treated with an APW + LO basis set. Additional
local orbitals were added for Co and Na p-states and O s-states.

The most important bands in the conventional hexagonal Brillouin
zone (BZ) of the unhydrated parent compound are four Eg’ and two A1g

Co-derived bands near the Fermi energy. Our expanded hexagonal unit
cell results in a BZ one third the volume of the original and rotated by an
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Figure 2. The bands along the Γ-M in the small zone are formed by the folding of
the blue triangle down onto the green and then again onto the red in the irreducible
Brillouin zone. The symmetry points marked are those of the larger zone, those of
the smaller zone are easily identifiable by analogy

angle of 30◦. The rotation and expansion of the original BZ necessitates
a double downfolding process as illustrated in Fig. 2, and needs to
be remembered when comparing our band structure and prior results.
[13, 16].

To clarify the similarities and differences between the hydrated and
unhydrated structures, we performed a second calculation in a similar
unit cell, neglecting the water molecules. We found that artificially
expanding the c-axis with a vacuum produced unphysical and highly
dispersive bands. The c-axis in our comparison calculation was fixed at
its lower unhydrated value of 20.4280 a.u. for this reason.

Fig. 3 shows both bandstructures on the same energy scale, each
centered around its respective Fermi energy. The difference in c-axis
parameter is reflected in the Γ - A distance which is nearly twice as big
in the parent compound. An inspection of the bands crossing and just
above the Fermi energy reveals a somewhat greater splitting in the unhy-
drated compound than in the superconducting compound, but a nearly
identical overall band dispersion. Bands containing water character are
determined to be at least 0.2 Ryd below the Fermi energy by looking
at the projected atomic character of each eigenvalue. The observable
increase in splitting can be attributed to interplanar coupling which is
substantially suppressed when the c-axis expands to accomodate wa-
ter. Thus, the sole effect of the water on the electronic structure is to
collapse the two (nearly) concentric Fermi surfaces of the unhydrated
compound until they are practically a single degenerate surface in the
hydrated compound. While this collapse may be important, it is a purely
structural effect achieved by the forced separation of Co-O planes and is
unrelated to the specific chemical composition of water. This shows that
the water itself, at least in this or similar structural configurations, is
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Figure 3. A comparison of the hydrated compound (lower panel) with its expanded
c lattice parameter and an unhydrated compound with identical dimensions with the
exception of the c-axis which remains at the unhydrated value. The differences in dis-
persion between the two structure is completely attributable inter-planar interaction
which is reduced by hydration.

completely irrelevant to the electronic structure of Na0.33CoO21.33H2O
and that the Fermi surface is insensitive to its presence. This result does
not depend on the specific position and orientation of the water. We cal-
culated another bandstructure, with water positions based loosely on the
ice-like model [52] and obtained an identical result for the partially filled
Co bands.

6.2 Quantum Critical Fluctuations
Our calculations in the previous section lead us to believe that re-

sults obtained for the parent, or unhydrated, cobaltate will retain their
validity in the superconducting compound and that electronic structure
properties of the system can be accurately obtained without employing
the full, extensive structure. Here, well converged LDA calculations are
reported for NaxCo2O4 for x=0.3,0.5,0.7. In addition, calculations are
reported for a strained lattice corresponding to the structure reported
for superconducting NaxCoO2 · yH2O, but neglecting the intercalating
water. The calculations were done using the general potential linearized
augmented planewave method with local orbitals, [51, 56] as described
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Figure 4. LDA fixed spin moment energy as a function of constrained spin mag-
netization of NaxCoO2 on a per Co atom basis for x=0.7 (×), x=0.5 (*) and x=0.3
(+). The curves are spline interpolations as a guide to the eye. Note the breaks at
0.3, 0.5 and 0.7 µB for x=0.7, 0.5 and 0.3, respectively. These correspond to the band
gap between crystal field split Co d manifolds. The calculations were done keeping
the structure fixed and varying the Na site occupation via the virtual crystal method
(see text).

in Ref. [57], except that better Brillouin zone samples, corresponding
to a minimum special k-points mesh of 16 × 16 × 2 in the hexagonal
zone are used here to obtain convergence of the magnetic energies. As
discussed in Ref. [57], a virtual crystal method is used to account for
the partially occupied Na site.

Although there is some hybridization, the valence band structure of
Na0.5CoO2 consists of three manifolds of bands separated by gaps – a
lower lying occupied O 2p derived manifold, followed by Co t2g and eg

manifolds. [57] As expected from ionic considerations the Fermi energy,
EF lies near the top of the t2g manifold, which contains 0.5 holes per Co
ion. Because of the actual axial site symmetry, the t2g manifold can be
regarded as consisting of two-fold (also labeled eg) and one-fold (labeled
ag) crystal field states. These overlap, but the top of the t2g manifold
is primarily of ag character in Na0.5CoO2, with the result that the band
structure near EF can be roughly viewed as consisting of one band per
Co ion with a filling of 3/4 (1/2 hole per Co). The present LDA calcu-
lations for the electronic structure of Na0.7CoO2 and Na0.3CoO2 follow
this picture. The Fermi surfaces consist of simple rounded hexagonal
cylinders, centered on the Γ − A line, and additional small sections.
These calculations were done holding the crystal structure fixed at that
of Na0.5CoO2 and varying the Na occupancy in the virtual crystal. The
dominant ag character at the top of the t2g manifold is, however, lost
for the strained lattice, discussed below.
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The magnetic properties are similar for the various Na contents in the
range x = 0.3 to x = 0.7. Results of fixed spin moment constrained LDA
calculations are shown in Fig. 4. In particular, itinerant ferromagnetism
is found. In each case, the energy decreases with magnetization until a
magnetization at which the band edge is reached in the majority spin.
Then the energy increases rapidly reflecting the crystal field induced gap
between the t2g and eg manifolds.

Thus, independent of x in this range, the LDA predicts a ferromag-
netic ground state, with a spin moment per Co equal to the number of
holes (p = 1 − x) and a half metallic band structure (here we refer to
the hole concentration as the concentration of holes in the t2g manifold;
without any Na, p=1; Na electron dopes the sheets, which leads to a
reduction in p). The fixed spin moment curves show a shape crossing
over from parabolic at low moment to more linear as the band edge is
approached. As may be seen, the shapes and initial curvatures for the
different doping levels are roughly similar. The trend towards slightly
weaker initial curvatures at higher Na concentration is possibly an arti-
fact due to the fixed crystal structure used in the present calculations. It
reflects increasing hybridization (increasing band width and decreasing
density of states) as charge is added to the CoO2 planes. In reality, the
lattice would be expected to expand, perhaps compensating this trend.
In any case, for this range of x, ferromagnetism with a magnetic en-
ergy of approximately, E(FM) ≈ −50p in meV/Co and spin moment
M(FM) = p in µB/ Co is found. As mentioned, calculations were also
done for a strained cell with the structure of the superconducting sample,
but without H2O. These calculations were done for x=0.5 and x=0.35,
the latter corresponding to the experimentally determined doping level.
In both cases, the LDA predicted a ferromagnetic state. The magnetic
energies were E(FM) =-20 and -27 meV/Co for x=0.5 and x=0.35, re-

Table 1. LSDA spin magnetizations and energies for NaxCoO2. All quantities are
on a per Co basis. Energies are in meV, spin moments are in µB , FM denotes ferro-
magnetic and AF denotes the partially frustrated nearest neighbor AF configuration
discussed in the text. M is the total spin magnetization, and m is the magnetization
inside the Co LAPW sphere, radius 1.95 Bohr. Negative energies denote instabilities
of the non-spin-polarized state.

E(FM) M(FM) m(FM) E(AF) m(AF)

x=0.3 -25. 0.70 0.56 -9. 0.36
x=0.5 -13. 0.50 0.41 -3. 0.21
x=0.7 -4. 0.30 0.25 ≥-1. 0.04
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spectively. Thus the behavior is similar, but the magnetic energies are
somewhat larger in magnitude.

LDA calculations were also done for an antiferromagnetic configura-
tion with the unit cell doubled along one of the in-plane lattice vectors.
Thus, within a Co plane, each Co ion has four opposite spin nearest
neighbors and two like spin nearest neighbors. At all three doping levels
investigated an antiferromagnetic instability was found, but this insta-
bility is weaker than the ferromagnetic one. Details of the LDA moments
and energies are given in Table 1. Essentially, the energy of the antifer-
romagnetic configuration examined tracks the ferromagnetic energy at
a value ∼ 1/4 as large in this range of x. [58]

The LDA generally provides a good description of itinerant ferromag-
netic materials. It is known to fail for strongly correlated oxides where
on-site Coulomb (Hubbard) repulsions play an important role in the
physics. In such cases, the LDA underestimates the tendency of the ma-
terial towards local moment formation and magnetism. Here, the LDA
is found to predict ferromagnetic ground states for materials that are
paramagnetic metals in experiment. While materials for which the LDA
substantially overestimates the tendency towards magnetism are rare, a
number of such cases have been recently found. These are generically
materials that are close to quantum critical points, and include Sc3In,
[59] ZrZn2, [60] and Sr3Ru2O7 (Ref. [61]). Sr3Ru2O7 displays a novel
metamagnetic quantum critical point, [62] while, as mentioned, ZrZn2

shows coexistence of ferromagnetism and superconductivity.
Density functional theory is in principle an exact ground state the-

ory. It should, therefore, correctly describe the spin density of magnetic
systems. However, common approximations to the exact density func-
tional theory, such as the LDA, neglect Hubbard correlations beyond
the mean field level, yielding the underestimated magnetic tendency of
strongly Hubbard correlated systems. Overestimates of magnetic ten-
dencies, especially in the LDA are very much less common. Another
type of correlations that is missed in these approximations are quantum
spin fluctuations. This is because the LDA is parameterized based on
electron gases with densities typical for atoms and solids. However, the
uniform electron gas is very far from magnetism in this density range.
In solids near quantum critical points, the result is an overestimate of
the magnetic moments and tendency toward magnetism (i.e. misplace-
ment of the position of the critical point) due to neglect of the quantum
critical fluctuations. [63, 64]

The present results for NaxCoO2 show a weak ferromagnetic insta-
bility that is robust with respect to doping and structure (note the in-
stability for the strained lattice). Based on this, and the experimentally
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observed renormalized paramagnetic state, it seems likely that NaxCoO2

is subject to strong ferromagnetic quantum fluctuations of this type, and
that these are the reason for the disagreement between the LDA and ex-
perimental ground states.

The effects of such quantum fluctuations can be described on a phe-
nomenological level using a Ginzburg-Landau theory, in which the mag-
netic properties defined by the LDA fixed spin moment curve are renor-
malized by averaging with an assumed (usually Gaussian) function de-
scribing the beyond LDA critical fluctuations. [65, 66] Although a quan-
titative theory allowing extraction of this function from first principles
calculations has yet to be established, one can make an estimate based
on the LDA fixed spin moment curves as compared with experiment. In
particular, NaxCoO2 shows a disagreement between the LDA moment
and experiment equal to p = 1 − x, and has a very steeply rising LDA
energy for moments larger than p. Thus one may estimate an r.m.s. am-
plitude of the quantum fluctuations of ξ ≈ αp in µB, with 1/2 < α < 1,
and most likely closer to 1. These are large values c.f. ZrZn2. It is there-
fore tempting to associate the superconductivity of NaxCoO2 ·yH2O with
ferromagnetic quantum critical fluctuations. Considering the simple 2D
Fermi surface, which consists of rounded hexagonal cylinders plus small
sections, [57] and the ferromagnetic fluctuations, a triplet state like that
originally discussed for Sr2RuO4 (Ref. [29]) seems plausible. Specula-
tions about the ingredients in a spin fluctuation mediated triplet super-
conducting scenario are now given based on the calculated results.

Within a spin fluctuation induced pairing approach analogous to that
employed for Sr2RuO4 the key ingredient is the integral over the Fermi
surface of the k-dependent susceptibility with a function of the assumed
triplet symmetry, [30, 31, 40] i.e. in the simplest case, k · k′/kk′. For a
Fermi surface in the shape of a circular cylinder, radius kF , the needed
integral is proportional to

∫ 2π
0 dθcos(θ)V (2kFsin(θ/2)), where V (k) is

the assumed pairing interaction. In any case, for a smooth variation of
the spin fluctuations with k and a maximum at k=0 (ferromagnetic),
the integral is roughly proportional to kF times the variation of V from
k = 0 to k = 2kF . This latter variation depends on the detailed shape
of V (k), but may be expected to cross over from being proportional to
k2

F for small kF to proportional to kF for larger kF . Neglecting small
Fermi surface sections, kF varies as p1/2. One possibility for V (k) is a
function smoothly going from a finite value at k = 0 to near zero at the
zone boundary (reflecting the rather weak antiferromagnetic instability
relative to the ferromagnetic), with a size at k = 0 given by the LDA
ferromagnetic energy (∝ p2) or alternately a Hund’s exchange coupling
(p independent) times ξ (∝ p).



96 Hydration and Magnetic Fluctuations in the Superconducting Cobaltate

Within such a p-wave scenario it would be quite interesting to mea-
sure the variation of the superconducting properties of NaxCoO2 · yH2O
as a function of doping level. The above arguments imply a substan-
tial model dependent variation up to the level where proximity to the
critical point suppresses Tc, with the implication that still higher val-
ues of Tc may be obtained. It should be stated that unconventional
superconductivity is in general more sensitive to scattering than s-wave
superconductivity and so the effect of scattering due to Na and H2O dis-
order may be significant, and besides it should be emphasized that the
mechanism and superconducting symmetry of NaxCoO2 ·yH2O have yet
to be established, and in fact, even conventional electron-phonon super-
conductivity competing with spin fluctuations has not been excluded.

Summary and Open Questions
We have shown, by explicitely including water in an LAPW calcula-

tion, that the effect of the water in Na1/3CoO21.33H2O is overwhelm-
ingly structural and imperceptibly electronic. The bandstructures of the
hydrated and unhydrated compounds differ only through suppression of
inter-planar coupling. The resulting decrease in bandsplitting may have
relevance to superconductivity, but the same effect can be achieved with
any spacer that sufficiently separates the Co-O planes. The question of
water’s particular role in the superconductivity is still very open, but
we have shown that it has no effect on the electronic structure near the
Fermi surface, other than to make it more two dimensional.

That our density functional-derived magnetic moments overestimate
the observed moment of NaxCoO2 for all values of x, strongly implies
that ferromagnetic quantum fluctuations are present in the system. We
postulate that the superconductivity of the hydrated compound could
arise through these fluctuations resulting in a new example of triplet
state superconductivity.

It will be very interesting to see what experiment says about the sym-
metry of the superconducting state. If indeed it is a triplet, this mate-
rial with its relatively high critical temperature will provide an excellent
arena for testing theories of spin fluctuation mediated superconductivity.
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HOLSTEIN-PRIMAKOFF
REPRESENTATION FOR STRONGLY
CORRELATED ELECTRON SYSTEMS

Siyavush Azakov

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Abstract First we show that the algebra of operators entering the Hamiltonian
of the t − J model describing the strongly correlated electron system is
graded spl(2.1) algebra. Then after a brief discussion of its atypical rep-
resentations we construct the Holstein-Primakoff nonlinear realization
of these operators which allows to carry out the systematic semiclassi-
cal approximation, similarly to the spin-wave theory of localized mag-
netism. The fact that the t−J model describes the itinerant magnetism
is reflected in the presence of the spinless fermions.

For the supersymmetric spl(2.1) algebra the supercoherent states are
proposed and the partition function of the t − J model is represented
as a path integral with the help of these states.

Keywords: Supersymmetry, itinerant magnetism, spin-wave theory, supercoherent
states.

7.1 Introduction
The discovery of high transition temperature ceramic superconductors

has renewed interest in the study of strongly correlated electron systems,
since it is widely believed that the anomalous properties of such materials
are related to the strong Coulomb repulsion of electrons [1].

One of the most interesting models which has received much attention
is the two-dimensional single-band Hubbard model [2]. Its Hamiltonian
describes a single electron band in a tight binding basis, with an on-site
electron-electron repulsion for electrons of opposite spin.

Ĥ = −t
∑

〈 i,j 〉,σ=↑,↓
(ĉ†iσĉjσ + ĉ†jσĉiσ) + U

∑
i

n̂i↑n̂i↓ , (1)

where n̂iσ = ĉ†iσĉiσ is the operator of a number of electrons at the site
i with spin projection σ, the symbol 〈 i, j 〉 indicates ordered (i < j)
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nearest-neighbor pairs, U > 0. At each site of the lattice we have four
states

|0 〉 , |σ 〉 = ĉ†σ|0 〉 , σ =↑ (1), ↓ (−1) , |2 〉 = | ↑↓ 〉 = ĉ†↑ĉ
†
↓|0 〉 , (2)

where |0 〉 describes the empty lattice site, which serves as the vacuum
for electron operators, i.e. ĉσ|0 〉 = 0, |σ 〉 is the state of the singly
occupied site with the spin projection σ, and |2 〉 is the state describing
the doubly occupied site.

The Hubbard Hamiltonian (1) may be rewritten in terms of the Hub-
bard operators which are the projection operators. For each site i the
Hubbard operators are

X̂AB
i = |A 〉ii〈B| , (3)

where |A 〉i = (|0 〉i, |σ 〉i, |2 〉i), and

Ĥ = −t
∑

(i,j),σ

(
X̂σ0

i + σX̂2σ̄
i

)(
X̂0σ

j + σX̂ σ̄2
j

)
+ U

∑
i

X̂22
i (4)

(i, j) denotes a nearest neighbor pairs, σ̄ = −σ. The Hubbard operators
obey a simple multiplication law X̂AB

i X̂CD
i = δBCX̂AD

i and the following
supercommutation relations[

X̂AB
i , X̂CD

j

]
s

= δij

(
X̂AD

i δBC − (−1)χAB
i χCD

j X̂CB
i δAD

)
, (5)

where s = 2
{
θ
(
χAB + χCD − 3/2

)
− 1/2

}
and the graded characters

χAB of the Hubbard operators are 0 in the case of the bosonic operators(
X̂00, X̂22, X̂σσ, X̂σσ̄, X̂02, X̂20

)
and 1 in the case of the fermionic oper-

ators
(
X̂0σ, X̂σ0, X̂2σ, X̂σ2

)
. Supercommutation relations (5) show that

16 Hubbard operators {XAB} are generators of the u(2.1) superalgebra
and Eqn.(3) fixes its representation.

For superconductivity the most relevant are the low-energy excitations
in the strong coupling regime, where U � t.

Doing the strong coupling expansion (in parameter t/U) in the second
order one gets an effective Hamiltonian which acts on a Hilbert space
where states with doubly occupied sites are excluded [3]. This Hamilto-
nian has the same low-energy spectrum as the original Hamiltonian. It
is called the t − J model Hamiltonian [6] and has the following form

Ĥt−J = −t
∑

(i,j),a=1,2

X̂a
i X̂aj +

J

2

∑
(i,j)

(
ŜiŜj − 1

4
n̂in̂j

)
, (6)
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where J = 4t2

U and X̂a, Ŝ, n̂ denote the following combinations of elec-
tron operators (to simplify the notations we drop the site index). Hole
operators:

X̂1 ≡ X̂0↑ = (1 − n̂↓)ĉ↑ , X̂2 ≡ X̂0↓ = (1 − n̂↑)ĉ↓ , X̂a ≡ X̂†
a . (7)

Spin operators:

Ŝ =
1
2

∑
σ,σ′

ĉ†σσ̂σσ′ ĉσ′ =
(
Ŝx, Ŝy, Ŝz

)
≡

(
Ŝ1, Ŝ2, Ŝ3

)
, (8a)

(σ̂x, σ̂y, σ̂z are the usual Pauli matrices)

Ŝ+ = Ŝx + iŜy = X̂↑↓ , Ŝ− =
(
Ŝ+

)†
= X̂↓↑ , Ŝz =

1
2

(
X̂↑↑ − X̂↓↓) .

(8b)
Charge operator:

n̂ =
∑
σ

n̂σ = 1 − X̂00 . (9)

The set of these operators operating in the restricted Hilbert space form
a representation of the graded (supersymmetric) Lie algebra spl(2.1),
which is the graded extension of the Lie algebra su(2). In fact, intro-
ducing the operator

Ŝ0 = 1 − 1
2
n̂ (10)

one can easily check that the operators (7),(8) and (10) satisfy the follow-
ing commutation/anti-
commutation relations

[Ŝµ, Ŝν] = iελ
0µνŜλ , µ, ν, λ = 0, 1, 2, 3 , (11a)

[X̂a, Ŝµ] =
1
2
(σµ)a

bX̂
b , a, b = 1, 2 , (11b)

{X̂a, X̂
b} = (σµ)b

aŜµ , (11c)

{X̂a, X̂b} = 0 . (11d)

The summation over repeated “Lorentz” and ‘spinorial” indices is as-
sumed, σ0 = 12, Ŝµ = (Ŝ0, Ŝ), ε3

012 = 1, (σµ)b
a = (δab, σab). The greek

four-vector indices are raised and lowered using the metric tensor gµν =
diag(1,−1,−1,−1). Note that the even sector of the algebra is su(2) ×
u(1), where su(2) corresponds to the spin degrees of freedom and u(1)
to the charge degree of freedom. The generator Ŝ0 should be introduced
in order to close the spl(2.1) algebraic rules (11b) and (11c). We must
specify the commutation rules between operators defined at different
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sites as well. We declare that bosonic operator defined at a given site al-
ways commutes with an operator defined at another site, while fermionic
operators defined at two different sites always anticommute.

Thus, the t−J model which describes a system of itinerant magnetism
has a Hamiltonian which is bilinear in a set of operators belonging to a
graded Lie algebra, whereas the Hamiltonian of the Heisenberg model of
antiferromagnet to which the t − J model reduces at half-filling (when
at each site we have only one electron) is bilinear in a set of operators
belonging to a usual Lie algebra. Hence, as suggested by Wiegmann
[7], models of itinerant magnetism can be considered as a supersym-
metric extension of models of localized magnetism: the hole being the
superpartner of the spin.

The operators which enter the Hamiltonian (6) of the t − J model
belong to the fundamental representation of the spl(2.1) algebra. In the
restricted Hilbert space where doubly occupied sites are excluded and
states are |0 〉, | ↑ 〉 and | ↓ 〉 they are represented by 3 × 3 matrices.

Our aim now is to consider them in an arbitrary representation of the
algebra. This is the standard way to develop the spin-wave technique
for quantum spin systems, by introducing Holstein-Primakoff (HP) rep-
resentation [8]. It is worthwhile to note, that when we speak about
a specific model we assume a specific choice of the representation for
the operators. The dynamics described by the model and the physical
consequences usually depend on the chosen representation.

Spin-wave theory helps us considerably in the understanding of the
spin 1

2 quantum ferromagnetic or antiferromagnetic Heisenberg model.
HP representation allows to develop systematic semiclassical approxi-
mation which is 1/s expansion (where s is the eigenvalue of the spin op-
erator). We would like to mention that the most accurate Monte-Carlo
simulations done for 2-dimensional Heisenberg antiferromagnet with spin
1/2 not so long ago [9] gave the values of the ground state energy and
the sublattice magnetization which differ less than 1/1000 with those
obtained by the second order spin-wave theory in 1960’s [10]. Up to now
nobody can theoretically explain this striking agreement. Probably the
large-s limit captures the essential physics, since the generalization to
higher spin preserves the symmetries of the original model.

HP representation is also effectively used in the reduction of the model
of Heisenberg antiferromagnet to the nonlinear σ-model [11]. This reduc-
tion plays an essential role in our understanding of the one-dimensional
Heisenberg antiferromagnet where charge and spin excitations are sepa-
rated and the ground state is not a Fermi liquid. It has been suggested
that this spin-charge separation may also occur in two dimensions and is
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responsible for the unusual normal state properties found in the cuprate
superconductors.

The rest of the paper is organized as follows. Sec.2 is devoted to a
brief review of the irreducible representations of the spl(2.1) algebra, and
more details of the so-called atypical representations which are relevant
for the strongly correlated electron system are given. In Sec.3 we in-
troduce slave particles and define HP representation for these operators
considered in atypical representations. In the Hamiltonian approach HP
representation allows to obtain systematically the leading order of the
semiclassical approximation and the corrections. In Sec.4 we construct
coherent states for the spl(2.1) algebra, which is a graded algebra, so
they can be called supercoherent states. Using these states one can ob-
tain a partition function of the t − J model as a path integral in the
form which again can be used to develop a systematic semiclassical ap-
proximation.

The final section concludes with a discussion of the results and possible
future development.

7.2 Representations of the spl(2.1) algebra
The representation theory for the spl(2.1) algebra has been studied in

detail in [12], and several classes of representations were found. It was
shown in this paper that the states of a finite dimensional irreducible
representation are labeled by the eigenvalues of the operators Ŝ0, Ŝ2

and Ŝz which we denote by s0, s(s + 1) and m respectively. A general
irreducible representation has an arbitrary complex s0, and integer or
half-integer s. As it is shown in [12] there are at most four multiplets

|s0, s, m 〉 , m = −s,−s + 1, . . . , s (12a)
|s0 + 1

2 , s − 1
2 , m′ 〉 , m′ = −s + 1

2 . . . . , s − 1
2 (12b)

|s0 − 1
2 , s − 1

2 , m′ 〉 , m′ = −s + 1
2 , . . . , s − 1

2 (12c)
|s0, s − 1, m 〉 , m = −s + 1, . . . , s − 1 , (12d)

which transform among themselves under the action of operators (7)-
(10). The multiplets (12a) and (12d) are called even and the multiplets
(12b) and (12c) are called odd.

The even operators acting on these states preserve the parity

Ŝ0|s0, s, m 〉 = s0|s0, s, m 〉 , (13a)

Ŝz|s0, s, m 〉 = m|s0, s, m 〉 , (13b)

Ŝ±|s0, s, m 〉 =
√

(s ∓ m)(s ± m + 1)|s0, s, m ± 1 〉 . (13c)
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The same relations hold for (12b)-(12c). Instead the odd operators
change the parity of the state e.g.:

X̂a|s0, s, m 〉
= eiα

√
s − (−1)am |s0 + 1

2 , s − 1
2 , m + (−1)a1

2
〉 (14a)

X̂a|s0, s, m 〉 = 0 (14b)

X̂a|s0 + 1
2 , s − 1

2 , m′ 〉 = 0 (14c)

X̂a|s0 + 1
2 , s − 1

2 , m′ 〉
= e−iα

√
s − (−1)am′ + 1

2 |s0, s, m
′ − (−1)a1

2
〉 , (14d)

The phase α should be introduced since the relative normalization of the
even and odd multiplets is not fixed apriori: however, different choices
of α lead to equivalent irreducible representations. For convenience we
set α = 0.

The algebra spl(2.1) is a rank-2 graded Lie algebra and has just two
Casimir operators [12]

K̂2 = −ŜµŜµ +
1
2
X̂aX̂

a − 1
2
X̂aX̂a , (15a)

K̂3 = Ŝ0(X̂aX̂
a − X̂aX̂a − ŜµŜµ)

+
1
6
[εabX̂a(Ŝ · σ)bcX̂

c + X̂a(Ŝ · σ)abε
bcX̂c]

+
1
12

[εabX̂aX̂
c(Ŝ · σ)bc + X̂aεbcX̂c(Ŝ · σ)ab] , (15b)

where εab is the antisymmetric tensor (ε12 = 1). The Casimir operators
(15) have eigenvalues which look simply in terms of s0 and s ; K2 =
s2 − s2

0, K3 = s0(s2 − s2
0). There are two classes of representations

which are called atypical and those for which K2 and K3 are equal to
zero, i.e. those where s0 = s and s0 = −s. These representations are
called atypical because for them in contrast with the usual Lie algebras,
the eigenvalues of the Casimir operators do not specify the irreducible
representations.

The s0 = s and s0 = −s atypical irreducible representations are iso-
morphic. The states of the former are (12a) and (12b) and of the latter
are (12c) and (12d), and in both cases the dimensionality of the irre-
ducible representation is 4s + 1. For the physical systems we wish to
study the relevant representation is the s0 = s atypical irreducible rep-
resentation, and, in the future, we will deal only with two multiplets
(12a) and (12b) in the case when s0 = s. By choosing the generic state
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vector in column-vector form

|Ψ 〉 =
( |s + 1

2 , s − 1
2 , m′ 〉

|s, s, m 〉
)

(16)

we can present the generators Ŝµ, X̂a, X̂
a in the matrix form. For the

even generators we have the block diagonal form

Ŝ0 =
(

(s + 1
2)1 2s 0
0 s12s+1

)
, (17a)

Ŝ =

(
Ŝ2s 0
0 Ŝ2s+1

)
, (17b)

where Ŝn are the su(2) algebra generators in the n-dimensional repre-
sentation, and 1n is the n×n identity matrix. The odd generators have
the block-off-diagonal form

X̂a =
(

0 Da

0 0

)
, X̂a =

(
0 0

D†
a 0

)
, (18)

where the rectangular (2s + 1)× 2s D1 and D2 matrices are defined as

D1 =

⎛⎜⎜⎜⎜⎝
√

2s · · · 0 0 0
...

...
...

...
0 · · · √

2 0 0
0 · · · 0

√
1 0

⎞⎟⎟⎟⎟⎠ , (19a)

D2 =

⎛⎜⎜⎜⎜⎝
0

√
1 0 · · · 0

0 0
√

2 · · · 0
...

...
...

...
...

0 0 0 · · · √
2s

⎞⎟⎟⎟⎟⎠ . (19b)

The Hubbard operators (7) and (8) belong to the fundamental s =
1
2 atypical irreducible representation of spl(2.1), and hence the single-
particle physical states of strongly correlated electron system carry this
representation.

The odd generators of spl(2.1) enter the hopping terms of the Hamil-
tonian (6), which can be thought of as the operators which destroy or
create a hole in favor of a spin or vice versa. Eqs. (14) explicitly expose
this property: the odd generators are step operators which interchange
states with different parity by raising or lowering by a half unit the
eigenvalues s0 and s.
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The matrices (17) and (18) are the higher-dimensional generalizations
of the Hubbard matrices and the states (12a) and (12b) (where s0 = s)
are the generalized “spin” and “hole” state, respectively, on which the
above mentioned operators act. One can introduce the electric charge
operator Ê = 2Ŝ0 − 2sÎ, so that the states (12a) have E = 0 and the
states (12b) have E = 1. The conservation of the total electron number
can be restated as the conservation of the total charge if we consider the
original s = 1

2 representation∑
i

Êi =
∑

i

(2Ŝ0i − 2sÎ) = Nh ≡ M − Nel, (20)

where Nh is the number of holes, M is the number of sites and Nel is
the number of electrons.

7.3 Slave particles. Holstein-Primakoff
representation

Now we may proceed in the same way as we usually do for the spin
operators [4] . We introduce at each site i two Bose operators b̂1i, b̂2i

and one spinless Fermi operator f̂i

[b̂iα, b̂†jβ] = δαβδij, , [b̂iα, b̂jβ] = [b̂†iα, b̂†jβ] = 0 ,

{f̂i, f̂
†
j } = δij , {f̂i, f̂j} = {f̂ †

i , f̂ †
j } = 0 , (21)

which obey the holonomic constraint at each site

2∑
α=1

b̂†iαb̂iα + f̂ †
i f̂i = 2s · 1 . (22)

Then one can easily check that the algebra (11) of operators Ŝµ, X̂a, is
satisfied if we choose the following representation (again we drop the site
index)

Ŝ =
1
2

∑
α,β=1,2

b̂†ασαβb̂β , Ŝ0 = 1s + 1
2 f̂ †f̂ ,

X̂1 = f̂ †b̂1 , X̂2 = f̂ †b̂2 (23)

and the (4s + 1) states (12a) and (12b) are represented by

|s, s, m 〉 =
1√

(s + m)!(s − m)!

×(b̂†1)
s+m(b̂†2)

s−m|0 〉b|0 〉f , (24a)
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|s + 1
2 , s − 1

2 , m′ 〉 =
eiΛ√

(s − 1
2 + m′)!(s − 1

2 − m′)!

×(b̂†1)
s−1

2+m′
(b̂†2)

s−1
2−m′

f̂ †|0 〉b|0 〉f , (24b)

where Λ is a phase, which should be present because the relative normal-
ization of the multiplets (12a) and (12b) is not apriori fixed. |0 〉b(|0 〉f)
is the vacuum for b̂α(f̂) operators [5].

In order to get the HP representation we will follow the procedure
used in the pure spin case [4]. Then the (4s + 1) dimensional Hilbert
space spanned by the states (12a), (12b) is put into correspondence with
the Hilbert space generated by the states (b̂†2)

n|s, s, s 〉 and (b̂†2)
n|s+ 1

2 , s−
1
2 , s − 1

2
〉 satisfying the relation b̂†2b̂2 + f̂ †f̂ ≤ 2s . In this Hilbert space

the b̂1 operator can be excluded with the help of the constraint (22)

b̂1 =
√

2s − b̂†b̂ − f̂ †f̂ , (25)

where b̂ ≡ b̂2 and it can be considered as a Fock space with the vacuum
|Φ0 〉 = |s, s, s 〉 and for each state we have b̂†b̂ + f̂ †f̂ ≤ 2s. In this space
the operators can be represented as follows:

Ŝ0 = s + 1
2 f̂ †f̂ , X̂1 = f̂ †

√
2s − b̂†b̂ − f̂ †f̂ (26)

Ŝz = s − b̂†b̂ − 1
2 f̂ †f̂ , X̂2 = f̂ †b̂

Ŝ+ =
√

2s − b̂†b̂ − f̂ †f̂ b̂ , X̂1 =
√

2s − b̂†b̂ − f̂ †f̂ f̂

Ŝ− = b̂†
√

2s − b̂†b̂ − f̂ †f̂ , X̂2 = b̂†f̂ .

It is straightforward to check that the (single-site) commutation relations
(11) are fulfilled and the two Casimir operators (15) are identically zero
in this realization.

This is the generalization to spl(2.1) of the usual Holstein-Primakoff
representation for su(2) spin algebra and it can be called a graded HP
representation. For s = 1

2 we have the following correspondence with
the states of the restricted Hilbert space which we had from the very
beginning: |0 〉 = f̂ †|Φ0 〉, | ↑ 〉 = |Φ0 〉, | ↓ 〉 = b̂†|Φ0 〉. We see that the b̂
operator is a spin-flip operator.

In the HP representation the conservation of the total charge (20)
takes the form

M∑
i=1

f̂ †
i f̂i = Nh. (27)
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At half-filling (when holes are absent) the graded HP representation
reduces to the standard one, and now it is explicitly seen that for this
particular filling the t − J model reduces to the Heisenberg model.

From the representation (26) we may refer to the semiclassical regime
as the regime in which

1
2s

〈 b̂†i b̂i + f̂ †
i f̂i 〉 ≤ 1 (28)

namely, when the spin “flip” or hole “flow” rate on each site is expected
to be very small.

Whenever Eq.(28) is reliable, the square roots in Eqs.(26) can be ex-
panded in powers of 1/s. This approach generalizes the spin wave theory
for the models describing localized magnetism to the models describing
itinerant magnetism where the operators entering the Hamiltonian be-
long to the graded algebra, and it leads to a description of the system
in terms of interacting bosons and fermions. The itinerant nature of
the magnetism described by the t − J model is seen in the presence of
spinless fermions.

7.4 Supercoherent States for spl(2.1)
Superalgebra

In order to construct coherent states in the graded case of the spl(2.1)
superalgebra we can proceed almost in the same way as we usually do
in the case of the su(2) algebra describing spin operators [13], since the
even sector of spl(2.1) is isomorphic with su(2) × u(1) algebra.

The coherent states will be constructed again in the s0 = s atypical
representation with state vectors (16). One can show that the state
|N, η 〉, which is described by the unit vector N = (sin ϑ cos ϕ, sin ϑ sin ϕ,
cos ϑ) and the Grassmann variable η of the form

|N, η 〉 =
e−ζ∗Ŝ−

(1 + |ζ|2)s
|s, s, s 〉 + η

e−ζ∗Ŝ−

(1 + |ζ|2)s−1
2

|s + 1
2 , s − 1

2 , s − 1
2
〉

= |N 〉s|0 〉f + η|N 〉
s−1

2
f̂ †|0 〉f , (29)

where ζ = − tan ϑ
2 e−iϕ and |N 〉s is the spin coherent state in the space

with spin s, has all the properties of the coherent state. Namely

〈N, η|Ŝµ|N, η 〉 = (s, sN) + η̄η(s + 1
2 , (s − 1

2)N) . (30)

(we put Λ = 0). Using commutation relations

[X̂1, e
ξŜ−

] = 0, [X̂2, e
ξŜ−

] = ξeξŜ−
X̂1 , (31a)
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[X̂2, eξŜ−
] = 0, [X̂1, eξŜ−

] = −ξeξŜ−
X̂2 , (31b)

we also get

X̂1|N, η 〉 =
√

2s cos(ϑ/2)|N 〉
s−1

2
f̂ †|0 〉f , (32a)

X̂2|N, η 〉 =
√

2seiϕ sin(ϑ/2)|N 〉
s−1

2
f̂ †|0 〉f , (32b)

X̂1|N, η 〉 =
η

cos(ϑ/2)

(
sin(ϑ/2)eiϕb̂†|N 〉

s−1
2
−
√

2s|N 〉s
)
|0 〉f ,(33a)

X̂2|N, η 〉 = −ηb̂†|N 〉
s−1

2
|0 〉f , (33b)

and

〈N, η|X̂1|N, η 〉 =
√

2s cos(ϑ/2)η̄,

〈N, η|X̂2|N, η 〉 =
√

2s sin(ϑ/2)eiϕη̄ , (34a)

〈N, η|X̂1|N, η 〉 =
√

2s cos(ϑ/2)η,

〈N, η|X̂2|N, η 〉 =
√

2s sin(ϑ/2)e−iϕη. (34b)

The overlap of two supercoherent states takes the form

〈N1, η1|N2, η2 〉 = s〈N1|N2 〉s
[
1 + η̄1η2

(
1
2

〈N1|N2 〉1
2

)−1 ]
(35)

and

s〈N1|N2 〉s = eiΦ(N1,N2,N0)s
(1 + N1 · N2

2

)s
. (36)

We have the resolution of unity (in the pure spin case):∫
dµs(N)|N 〉ss〈N| = 1 (37)

where ∫
dµs(N) . . . =

2s + 1
4π

∫ π

0
sin ϑdϑ

∫ 2π

0
dϕ . . . . (38)

For the supercoherent states the resolution of unity will take the form∫
dµ

s−1
2
(N)dη̄dηe−γsη̄η|N, η 〉〈N, η| = 1 , (39)

where γs = 2s+1
2s .
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We can now construct a path integral representation for the partition
function almost in the same manner as we do for pure spin systems [14],
[4].

For arbitrary spin we will generalize (10) as follows

n̂i = −2Ŝ0i + (2s + 1)1. (40)

So from (6),(30) and (34) we get

〈N, η|Ĥt−J|N, η 〉 = Ht−J(N, η̄, η)

=
Js2

2

∑
(i,j)

Ni · Nj +
J(s − 1

2)2

2

∑
(i,j)

Ni · Njη̄iηiη̄jηj

+
Js(s − 1

2)
2

∑
(i,j)

Ni · Nj(η̄iηi + η̄jηj)

−J(s + 1
2)2

2

∑
(i,j)

η̄iηiη̄jηj − 2JM(s + 1
2)2

+2st
∑
(i,j)

(
cos

ϑi

2
cos

ϑj

2

+ei(ϕi−ϕj) sin
ϑi

2
sin

ϑj

2

)
η̄iηj . (41)

The overlap of two states, with N′ ≈ N

〈N′, η′|N, η 〉 = s〈N′|N 〉s
[
1 + η̄′η

(
1
2

〈N′|N 〉1
2

)−1 ]
� exp

{
isΦ(N′,N,N0) + e−

i
2
Φ(N′,N,N0)η̄′η

}
, (42)

where the phase Φ(N′,N,N0) can be written as

Φ(N′,N,N0) = A(N) · (N′ − N) (43)

and the vector potential A(N) is given as a solution to the equation

∇N × A(N) = N . (44)

The continuum limit is given by

Z =
∫

Dµ
s−1

2
(N)Dη̄Dη exp

{∫ β

0
dτ

∑
i

[i(s − 1
2 η̄iηi)A(Ni) · Ṅi

−η̄i∂
(γ)
τ ηi + η̄iηi] −

∫ β

0
dτHt−J(N, η̄, η)

}
(45)
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∫ β

0
dτ η̄i(τ)∂(γ)

τ ηi(τ) ≡
N−1∑
j=0

η̄i(τj)[γsηi(τj) − ηi(τj+1)] . (46)

This expression for the partition function can be used as a starting point
for the semiclassical approximation which we may apply if s → ∞.

7.5 Discussion and Conclusions
We have shown in the present paper, how the graded Holstein-

Primakoff representation can be constucted in the natural way for opera-
tors entering the Hamiltonian of the t−J model, which is one of the most
popular models used to describe the strongly correlated electron system.
This representation allows to develop a systematic semiclassical approx-
imation similar to spin-wave theory of the localized magnetism. Since
the t − J model describes the itinerant magnetism and has holes, this
approximation is a semiclassical description of these holes interacting
with the spin-waves. In the case of the square bipartite lattice one way
to proceed is to divide it into two sublattices and act exactly as we do
in the case of the Heisenberg antiferromagnet on the square lattice [10].
On one sublattice, say A, we will use the representation (26) on another
sublattice, say B, we will use a unitary transformed representation

Ŝ0 = s + 1
2 f̂ †f̂ , X̂1 = f̂ †b̂ , (47)

Ŝz = −s + b̂†b̂ + 1
2 f̂ †f̂ , X̂2 = −f̂ †

√
2s − b̂†b̂ − f̂ †f̂ ,

Ŝ+ = b̂†
√

2s − b̂†b̂ − f̂ †f̂

and as a vacuum state the state |Φ̃0 〉 = |s,−s,−s 〉. Then expanding the
operators (26) and these operators in 1/s up to O(1) and substituting
them into t − J model Hamiltonian (6) we will obtain the Hamiltonian
describing a hole interacting with the spin waves in the Néel background.
Such a Hamiltonian was proposed in [15] and the analysis of its spectrum
was carried out.

A semiclassical description for other classical backgrounds can be ob-
tained from the supercoherent states representation of the partition func-
tion for the t − J model (45) as a path integral, which is another result
of this paper.
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TUNING THE MAGNETISM OF
ORDERED AND DISORDERED
STRONGLY-CORRELATED ELECTRON
NANOCLUSTERS

Nicholas Kioussis, Yan Luo, and Claudio Verdozzi

Department of Physics
California State University Northridge, California 91330-8268

Abstract Recently, there has been a resurgence of intense experimental and theo-
retical interest on the Kondo physics of nanoscopic and mesoscopic sys-
tems due to the possibility of making experiments in extremely small
samples. We have carried out exact diagonalization calculations to study
the effect of energy spacing ∆ in the conduction band states, hybridiza-
tion, number of electrons, and disorder on the ground-state and thermal
properties of strongly-correlated electron nanoclusters. For the ordered
systems, the calculations reveal for the first time that ∆ tunes the inter-
play between the local Kondo and non local RKKY interactions, giving
rise to a “Doniach phase diagram” for the nanocluster with regions of
prevailing Kondo or RKKY correlations. The interplay of ∆ and dis-
order gives rise to a ∆ versus concentration T = 0 phase diagram very
rich in structure. The parity of the total number of electrons alters
the competition between the Kondo and RKKY correlations. The local
Kondo temperatures, TK , and RKKY interactions depend strongly on
the local environment and are overall enhanced by disorder, in contrast
to the hypothesis of “Kondo disorder” single-impurity models. This in-
terplay may be relevant to experimental realizations of small rings or
quantum dots with tunable magnetic properties.

Keywords: Phase diagram, Kondo effect, RKKY interaction, Nanoclusters.

8.1 Introduction
Magnetic impurities in non-magnetic hosts have been one of the cen-

tral subjects in the physics of strongly correlated systems for the past
four decades[1]. Such enduring, ongoing research effort is motivated
by a constant shift and increase of scientific interest over the years,
from dilute [2] to concentrated impurities [3], from periodic [4] to disor-
dered samples [5, 6], and from macroscopic [7] to nanoscale phenomena
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[8]. Macroscopic strongly correlated electron systems at low tempera-
tures and as a function of magnetic field, pressure, or alloying show a
wide range of interesting phenomena, such as non-Fermi-liquid behavior,
antiferromagnetism, ferromagnetism, enhanced paramagnetism, Kondo
insulators, quantum criticality or superconductivity[1, 7]. These phe-
nomena are believed to arise through the interplay of the Kondo effect,
the electronic structure and intersite correlations. In the simplest single-
impurity case, the Kondo problem describes the antiferromagnetic inter-
action, J , between the impurity spin and the free electron spins giving
rise to an anomalous scattering at the Fermi energy, leading to a large
impurity contribution to the resistivity[1]. The low-energy transport
and the thermodynamic properties scale with a single characteristic en-
ergy, the Kondo temperature, TK ∝ exp(−1/ρ(EF)J), where ρ(EF) is
the density of states of the conduction electrons at the Fermi energy [1].
At T >> TK, the impurity spin is essentially free and the problem can
be treated perturbatively. At T << TK, the impurity spin is screened
forming a singlet complex with the conduction electrons, giving rise to
a local Fermi liquid state.

For dense Kondo or heavy fermion compounds containing a periodic
array of magnetic ions interacting with the sea of conduction electrons,
the physics is determined from the competition between the non lo-
cal Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and the local
Kondo interactions[9]. The RKKY interaction is an indirect magnetic
interaction between localized moments mediated by the polarized con-
duction electrons, with an energy scale of order JRKKY ∝ J2ρ(EF),
which promotes long- or short-range magnetic ordering. On the other
hand, the Kondo effect favors the formation of singlets resulting in a
non-magnetic ground state. In the high temperature regime the local-
ized moments and the conduction electrons retain their identities and
interact weakly with each other. At low-temperatures, the moments or-
der magnetically if the RKKY interaction is much larger than the Kondo
energy, while in the reverse case, the system forms a heavy Fermi liq-
uid of quasiparticles which are composites of local moment spins bound
to the conduction electrons[7, 9]. Thus, the overall physics can be de-
scribed by the well-known “Doniach phase diagram”, originally derived
for the simple Kondo necklace model[10]. The description of the low-
temperature state, when both the RKKY and the Kondo interactions are
of comparable magnitude, is an intriguing question that remains poorly
understood and is the subject of active research[9].

The interplay of disorder and strong correlations has been a sub-
ject of intensive and sustained research, in view of the non-Fermi-liquid
(NFL) behavior in the vicinity of a quantum critical point[11]. Various
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disorder-driven models have been proposed to explain the experimen-
tally observed[7] NFL behavior at low temperatures[5–7, 12]. The phe-
nomenological “Kondo disorder” approaches [5, 13], based on single-
impurity models, assume a distribution of Kondo temperatures caused
by a distribution of either f − c orbital hybridization or of impurity
energy levels. These models rely on the presence of certain sites with
very low TK spins leading to a NFL behavior at low T . An open issue
in such single-site Kondo approaches, is whether the inclusion of RKKY
interactions would renormalize and eliminate the low-TK spins[4, 14–16].
An alternative view is the formation of large but finite magnetic clusters
(Griffith phases) within the disordered phase through the competition
between the RKKY and Kondo interactions [6, 17].

On the other hand, the possibility of making experiments in extremely
small samples has lead to a resurgence of both experimental and theo-
retical interest of the physics of the interaction of magnetic impurities
in nanoscopic and mesoscopic non-magnetic metallic systems. A few
examples include quantum dots[18], quantum boxes[19] and quantum
corrals[20]. Recent scanning tunneling microscope(STM) experiments
[21] studied the interaction of magnetic impurities with the electrons
of a single-walled nanotube confined in one dimension. Interestingly, in
addition to the bulk Kondo resonance new sub peaks were found in short-
ened carbon nanotubes, separated by about the average energy spacing,
∆, in the nanotube. The relevance of small strongly correlated systems
to quantum computation requires understanding how the infinite-size
properties become modified at the nanoscale, due to the finite energy
spacing ∆ in the conduction band which depends on the size of the par-
ticle [8, 19, 22–24]. For such small systems, controlling TK upon varying
∆ is acquiring increasing importance since it allows to tune the cluster
magnetic behavior and to encode quantum information. While the ef-
fect of ∆ on the single-impurity Anderson or Kondo model has received
considerable theoretical[8, 19, 22–24] and experimental[21] attention re-
cently, its role on dense impurity clusters remains an unexplored area
thus far. The low-temperature behavior of a nanosized heavy-electron
system was recently studied within the mean-field approximation[25]. A
central question is what is the effect of ∆ on the interplay between the
Kondo effect and the RKKY interaction

In this work we present exact diagonalization calculations for d- or
f -electron nanoclusters to study the effects of energy spacing, parity of
number of electrons, and hybridization on the interplay between Kondo
and RKKY interactions in both ordered and disordered strongly corre-
lated electron nanoclusters. While the properties of the system depend
on their geometry and size[26], the present calculations treat exactly the
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Kondo and RKKY interactions, the disorder averages, and they provide
a distribution of local TK’s renormalized by the intersite f-f interactions.
Our results show that: i) tuning ∆ and the parity of the total number of
electrons can drive the nanocluster from the Kondo to the RKKY regime,
i.e. a zero- temperature energy spacing versus hybridization phase dia-
gram; ii) the temperature versus hybridization “Doniach” phase diagram
for nanoclusters depends on the energy spacing ; iii) changing the total
number of electrons from even to odd results in an enhancement (sup-
pression) of the local Kondo (RKKY) spin correlation functions; iv) the
∆ versus alloy concentration T = 0 phase diagram exhibits regions with
prevailing Kondo or RKKY correlations alternating with domains of fer-
romagnetic (FM) order; and v) the local TK’s and the nearest-neighbor
(n.n) RKKY interactions depend strongly on the local environment and
are overall enhanced by disorder. The disorder-induced enhancement of
TK in the clusters is in contrast to the hypothesis of “Kondo disorder”
models for extended systems.

The rest of the paper is organized as follows. In Sec. II, we describe
the model for both the periodic and disordered clusters. In Secs. IIIA
and IIIB we present results for the ground-state and thermal properties
of the ordered and disordered nanoclusters, respectively. Section IV
contains concluding remarks.

8.2 Methodology
The one dimensional Anderson lattice model is

H = −t
∑
iσ

(c†iσci+1σ + H.c) + Ef

∑
iσ

nf
iσ

+U
∑

i

nf
i↑n

f
i↓ + V

∑
iσ

(f †iσciσ + H.c.). (1)

Here, t is the nearest-neighbor hopping matrix element for the conduc-
tion electrons, c+

i,σ(ci,σ) and f+
i,σ(fi,σ) create (annihilate) Wannier elec-

trons in c- and f - like orbital on site i with spin σ, respectively; Ef is the
energy level of the bare localized orbital, V is the on-site hybridization
matrix element between the local f orbital and the conduction band and
U is the on-site Coulomb repulsion of the f electrons. We use a simple
nearest-neighbor tight-binding model for the conduction band disper-
sion, εk = −2tcosk. We consider the half-filled (Nel = 2N) symmetric
(Ef = −U

2 ) case, with U = 5(6) for the periodic (disorder) case. We
investigate one-dimensional rings of N = 4 and 6. Most of the results
presented are for the N = 6 case, except for the results for T > 0 where
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we have used N = 4 sites. The exact diagonalization calculations employ
periodic boundary conditions.

Ordered Clusters
We have investigated the ground-state properties as a function of

the hybridization and the energy spacing in the conduction band, ∆ =
4t/(N − 1) = 4t

5 . We have calculated the average f− and c−local mo-
ments, < (µf

i )2 >≡< Sf,z
i Sf,z

i > and < (µc
i)

2 >≡< Sc,z
i Sc,z

i >, respec-
tively. Here, Sf

i and Sc
i are given by

Sf
i =

1
2

∑
σ,σ

′
τσσ′f+

iσfiσ′ (2)

and
Sc

i =
1
2

∑
σ,σ

′
τσσ

′ c+
iσciσ

′ , (3)

where τ are the Pauli matrices.
We have also calculated the zero-temperature f-f and f-c spin correla-

tion functions (SCF) < Sf
i Sf

i+1 >≡< g|Sf,z
i Sf,z

i+1|g > and < Sf
i Sc

i >≡<

g|Sf,z
i Sc,z

i |g >, respectively. Here, |g > is the many-body ground state
and Sf,z

i is the z-component of the f-spin at site i. As expected, the
cluster has a singlet ground state (Sg = 0 where Sg is the ground-state
spin) at half filling. We compare the onsite Kondo correlation func-
tion < Sf

i Sc
i > and the nearest-neighbor RKKY correlation function

< Sf
i Sf

i+1 > to assign a state to the Kondo or RKKY regimes, in anal-
ogy with mean field treatments[27]. The spin structure factor related to
the equal-time f − f spin correlation functions in the ground state is

Sff(q) =
1
N

∑
i,j

< g|Sf
i · Sf

j |g > eiq(xi−xj). (4)

The temperature-dependent local f-spin susceptibility, χf(T ),is

kBTχf(T )
(gµB)2

=
1
Q

∑
α

e
− Eα

kBT < α|Sf(i)STot|α >, (5)

where

Q =
∑
α

e
− Eα

kBT (6)

is the partition function. Here, STot is the z-projection of the total
spin (both the f - and c-contributions), and |α > and Eα are the exact
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many-body eigenstates and eigenvalues, respectively. When V = 0, the
localized spins and conduction electrons are decoupled and χf(T ) is
simply the sum of the Curie term due to the free f spins and the Pauli
term of the free conduction electrons. For finite V , χf(T ) decreases
with temperature at low-temperatures. The specific heat is calculated
from the second derivative of the free energy F , Cv = −T ∂2F

∂T2 . At
V = 0, the specific heat of the system is given by the sum of the delta
function at T = 0 that originates from the free localized spins and the
specific heat of free conduction electrons. For finite V the specific heat
exhibits a double-peak structure: the high-temperature peak is almost
independent of the hybridization and arises from the free conduction
electron contribution, whereas the low-temperature peak varies strongly
with hybridization.

Disordered Clusters
We consider a random binary alloy cluster, AN−xBx, of N=6 sites and

different number of B atoms, x = 0-N, arranged in a ring described by
the half-filled (Nel = 2N = 12) two-band lattice Anderson Hamiltonian
in Eq.(1). We introduce binary disorder in the f -orbital energy εi

f (= εA
f

or εB
f ) and in the intra-atomic Coulomb energy Ui (= UA or UB), to

model a Kondo-type A atom with εA
f = −UA/2= -3 (symmetric case)

and a mixed-valent (MV) type B atom with εB
f = -2 and UB = 1. For

both types of atoms V A = V B = V = 0.25. For t = 1, this choice
of parameters leads to a degeneracy between the doubly-degenerate c-
energy levels, εk = −t, and the energy level εB

f + UB. Upon filling the
single particle energy levels for any x, N − x (x) electrons fill the εA

f

(εB
f ) levels, and two electrons the -2t conduction energy level, with the

remaining N − 2 electrons accommodated in the x+4 degenerate states
at −t. This in turn results in strong charge fluctuations.

The temperature-dependent f susceptibility, χf
x(T ), at concentration

x, is given by

kBTχf
x(T )

(gµB)2
=

1
Q

∑
Cx,αCx

e
−EαCx

kBT < αCx |Sf(i)STot|αCx >, (7)

where Cx denote the configurations at concentration x, |αCx > and
ECx are the configuration-dependent exact many-body eigenstates and
eigenvalues, respectively, and Q denotes the partition function.



Results and discussion 121

8.3 Results and discussion

Ordered Clusters
1. Ground State Properties

In Fig. 1 we present the variation of the local Kondo SCF < Sf
i Sc

i >

(squares) and the nearest-neighbor RKKY SCF < Sf
i Sf

i+1 > (circles) as
a function of hybridization for two values of the hopping matrix element
t = 0.2 (closed symbols) and t = 1.2 (open symbols), respectively. As
expected, for weak hybridization V the local nearest-neighbor RKKY
(Kondo) SCF is large (small), indicating strong short-range antiferro-
magnetic coupling between the f − f local moments, which leads to
long range magnetic ordering for extended systems. As V increases,
< Sf

i Sf
i+1 > decreases whereas the < Sf

i Sc
i > increases (in absolute

value) saturating at large values of V. This gives rise to the conden-
sation of independent local Kondo singlets at low temperatures, i.e., a
disordered spin liquid phase. For large V the physics are local. Interest-
ingly, as t or ∆ decreases the f-c spin correlation function is dramatically
enhanced while the f-f correlation function becomes weaker, indicating
a transition from the RKKY to the Kondo regime.

In Fig. 2 we present the average local f - (circles) and c- (squares)
moments as a function of hybridization for two values of the hopping
matrix element t = 0.2 (closed symbols) and t = 1.2 (open symbols),
respectively. In the weak hybridization limit, the large on-site Coulomb
repulsion reduces the double occupancy of the f level and a well-defined
local f moment is formed 〈µ2

f〉 = 1.0 while 〈µ2
c〉 = 0.5. With increasing V

both charge- and spin- f1uctuations become enhanced and the local f−
moment decreases monotonically whereas the c− local moment exhibits
a maximum. In the large V limit both the f− and c− local moments
show similar dependence on V, with < µ2

c >≈< µ2
f >, indicating that the

total local moment µ vanishes. The effect of lowering the energy spacing
∆ is to decrease (increase) the f− (c−) local moment, thus tuning the
magnetic behavior of the system. Note that the maximum value of the
c− local moment increases as ∆ decreases. This is due to the fact that
for smaller t values the kinetic energy of conduction electrons is lowered,
allowing conduction electrons to be captured by f electrons to screen the
local f moment, thus leading to an enhancement of the local c− moment.

In Fig. 3 we present the energy spacing versus V zero-temperature
phase diagram of the nanocluster, which illustrates the interplay between
Kondo and RKKY interactions. In the RKKY region < Sf

i Sf
i+1 > is

larger than the < Sf
i Sc

i > and the total local moment is non zero; in
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Figure 1. Nearest neighbor f-f spin-spin correlations (circles) and on-site f-c spin-
spin correlations (squares) as a function of V for two values of the hopping parameter
of t = 0.2 (closed symbols) and t = 1.2 (open symbols), respectively.

the Kondo regime < Sf
i Sf

i+1 > is smaller than the < Sf
i Sc

i >, the total
local moment vanishes, and the ground state of the system is composed
of independent local singlets. The solid crossover curve indicates the
V = Vc or ∆ = ∆c values, where the local and non local spin correlation
functions are equal, i.e., < Sf

i Sf
i+1 >=< Sf

i Sc
i >. The dashed curve

denotes the set of points where the on-site total local moment µ = 0.
Thus, in the intermediate regime, which will be referred to as the free
spins regime [11], < Sf

i Sf
i+1 > is smaller than the < Sf

i Sc
i >, the f

moment is partially quenched and µ �= 0. Interestingly, we find that
the free spins regime becomes narrower as the average level spacing
∆ is reduced. This result may be interpreted as a quantum critical
regime (QCP) for the nanoring due to the finite energy spacing, which
eventually reduces to a quantum critical point when ∆ → 0.
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Figure 2. f - (circles) and c− (squares) local moment versus hybridization for two
values of the hopping parameter of t=0.2 (closed symbols) and t=1.2 (open symbols),
respectively.

Fig. 4 shows the spin structure factor of the local f electrons Sff(q)
for various values of V and for t = 0.2. As discussed earlier, the ground
state of the half-filled symmetric periodic Anderson model is a singlet.
For small V, the spin structure factor exhibits a maximum at q = π,
indicating the presence of strong antiferromagnetic correlations between
the local f moments, consistent with the large values of < Sf

i Sf
i+1 >

in Fig. 1. With increasing hybridization, the maximum of Sff(q =
π) decreases and vanishes at very large hybridization, indicating that
the ground state undergoes a transition from the antiferromagnetic to
the nonmagnetic Fermi liquid phase. This is consistent with the zero-
temperature phase diagram in Fig. 3.

The spin gap as a function of hybridization V for two values of en-
ergy spacing is shown in Fig. 5. The spin gap is defined as the energy
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Figure 3. Energy spacing ∆ versus hybridization zero-temperature phase diagram.
The solid curve denotes the crossover point of the spin-spin correlation function in
Fig. 1; the dashed curve denotes the set of points where the on-site total moment
square 〈(µf + µc)

2〉 = 0.0 ± 0.05.

difference between the singlet ground state and the lowest-lying excited
triplet (S = 1) state. As expected, there is a nonzero spin gap for the
half-filled Anderson lattice model, which increases with hybridization.
Interestingly, the spin gap dramatically increases as the average energy
level spacing ∆ is reduced. Thus, the energy spacing or equivalently the
size of the cluster tunes the low-energy excitation energy which controls
the low-temperature specific heat and susceptibility.

2. Thermal Properties

The T=0 exact diagonalization results on small clusters are generally
plagued by strong finite size effects[26, 28]. Performing calculations at
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Figure 4. Spin structure factor as a function of wave-vector for different values of
V and for t=0.2.

T > 0 gives not only the thermodynamic properties of the system, but
most importantly diminishes finite-size effects for (kBT � ∆).

In Fig. 6, we show the nearest-neighbor f-f spin-spin correlations and
on-site f-c spin-spin correlation as a function of temperature for for
t = 0.2 and for V = 0.2 < Vc and V = 0.4 > Vc, where Vc = 0.25.
At high temperatures, the free moments of the f and conduction elec-
trons are essentially decoupled. The nearest-neighbor non local spin
correlation function falls more rapidly with T than the on-site local f −c
spin-spin correlations, indicating that the non local spin correlations can
be destroyed easier by thermal fluctuations. For V < Vc, the nanoclus-
ter is dominated by RKKY (Kondo) interactions at temperatures lower
(higher) than the crossover temperature, T cl

RKKY , which denotes the
temperature where the non local and local interaction become equal in
the nanocluster. In the infinite system this temperature would denote
the ordering Néel temperature. On the other hand, for V > Vc the
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Figure 5. Spin gap as a function of V for t = 0.2 and 1.2. The spin gap increases
exponentially (linearly) for small (large) V.

RKKY and Kondo spin correlation functions do not intersect at any T ,
and the physics become dominated by the local interactions.

In Fig. 7 we present the crossover temperature T cl
RKKY for the cluster

as a function of hybridization for different values of t. This represents the
phase diagram of the strongly correlated nanocluster, which is similar
to the “Doniach phase diagram” for the infinite Kondo necklace model.
The phase within the crossover curve denotes the regime where the non
local short-range magnetic correlations are dominant. For V < Vc and
T >> T cl

RKKY one enters into the disordered “free” local moment regime.
On the other hand, for V > Vc and at low T , the nanocluster can
be viewed as a condensate of singlets, typical of the Kondo spin-liquid
regime. Interestingly, the T cl

RKKY can be tuned by the energy spacing
∆ or the size of the cluster. Thus, increasing ∆ or decreasing the size of
the nanocluster results to enhancement of the non local nearest-neighbor
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Figure 6. Nearest-neighbor f-f and on-site f-c spin-spin correlation functions versus
temperature for t = 0.2 and for V = 0.2 < Vc and V = 0.4 > Vc, Vc = 0.25.

magnetic correlations and hence T cl
RKKY . This result is the first exact

“Doniach phase diagram” for a nanocluster.
In bulk Kondo insulators and heavy-fermion systems, the low-T sus-

ceptibility and specific heat behavior is determined by the spin gap,
which for the half-filled Anderson lattice model, is determined by the
ratio of V to U . On the other hand, strongly correlated nanoclusters are
inherently associated with a new low-energy cutoff, namely the energy
spacing ∆ of the conduction electrons. Thus, a key question is how can
the low-temperature physics be tuned by the interplay of the spin gap
and the energy spacing. In Fig. 8 we present the local f magnetic sus-
ceptibility as a function of temperature for t = 0.2 and for V = 0.2 < Vc,
V = Vc = 0.25, and V = 0.4 > Vc. For small V , the spin gap which
is smaller than ∆ controls the exponential activation behavior of χf at
low T . On the other hand, in the large V limit, the spin gap becomes
larger than ∆ (see Fig. 5) and the low-T behavior of the susceptibility
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Figure 7. Effect of energy spacing, ∆ = 4t
N−1

on the exact “Doniach phase dia-
gram” for a strongly correlated electron nanochain. The crossover curve represents
the crossover temperature T cl

RKKY , where the non local short range AF spin correla-
tions become equal to the local on-site Kondo spin correlations.

shows no exponential activation. At high T we can see an asymptotic
Curie-Weiss regime, typical of localized decoupled moments.

In Fig. 9, we present the specific heat as a function of temperature for
V = 0.4 and different t. At V = 0, the specific heat is given by the sum
of a delta function at T = 0 for the localized spins and the specific heat
of free fermions. As expected, by switching on the coupling V , they are
combined to form a two-peak structure. The broad peak at high T is
rather similar to the free-electron gas. The low-T behavior is associated
with the lowest energy scale, which as in the case of the susceptibility,
is determined by the lowest value between the spin gap and the energy
spacing ∆. For large values of t (or ∆) the spin gap is reduced (see
Fig. 5) and the spin gap is the lowest energy scale. Consequently, the
low-T behavior exhibits exponential activation associated with the spin
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Figure 8. Local f magnetic susceptibility as a function of temperature for t = 0.2
and with V = 0.2 < Vc, V = Vc = 0.25 and V = 0.4 > Vc.

gap. On the other hand, for small energy spacing the physics become
local (Kondo regime) and the low-T sharp peak shifts towards higher
temperatures and becomes broader.

Disordered Clusters
1. Effect of Disorder

The configurations for x ≤ 3 are shown in Fig. 10, left panel, along
with the value of the spin, Sg, of the ground-state. The A (B) atoms are
denoted by closed (open) circles, respectively. Except for the homoge-
nous cases (x=0 and x = 6), with a Sg = 0 ground state, for all x there
are configurations with Sg �= 0. The average occupation and average LM
for the periodic Kondo and MV lattices are < nA

f >= 1, < (µA
f )2 > =

0.99, and < nB
f > = 1.6, < (µB

f )2 > = 0.43, respectively. We carry out
a detailed analysis for x=1 (Sg =2) to demonstrate the FM transition
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Figure 9. Specific heat as a function of temperature with V = 0.4 and various
values of t = 0.2, 0.6 and 1.0. The low-T peak for larger energy spacing is due to the
spin gap.

induced by a single MV atom in an otherwise Kondo cluster. Studies of
extended systems have reported similar occurrence of ferromagnetism in
the MV phase[29]. As expected, the singlet ground state of the x = 0
Kondo cluster is characterized by n.n. anti-ferromagnetic (AF) f-f spin
correlations (< SA

f (i)SA
f (i + 1) > = - 0.58). The introduction of a MV

atom renders them ferromagnetic. Since UB is small, the B impurity
tends to remove charge from the the conduction band, in particular
from the k-state with εk = −t, which has large amplitude at the B site
and at the opposite A site across the ring. Such a depletion is different
for the two spin states, thus yielding a maximum value for the f-moment
of the MV atom. The f -f spin correlation function between the Kondo
and MV atoms are AF (< SA

f (i)SB
f (i + 1) > = - 0.23), while they are

FM among the Kondo atoms (< SA
f (i)SA

f (i + 1) > = +0.94). A similar
result was recently found in ab initio calculations[30], where introducing
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Figure 10. Left panel: Alloy configurations for various concentrations x ≤ 3 (the
x > 3 cases are obtained by exchanging closed and open circles). For each x ≤ 3
configuration, the value of the ground-state spin Sg is reported. Right panel: Energy
difference (in units of 10−4t ) between the lowest S ≤ 2 eigenstates and the ground
state as function of εB .

a nitrogen impurity in small (1-5 atoms) Mn clusters induces ferromag-
netism via AF coupling between the N to the Mn atoms, whilst Mn-Mn
couple ferromagnetically. We find that there is a crossover in Sg from 0
→ 1 → 2 → 0 (Fig. 10, right panel) indicating a reentrant nonmagnetic
transition around εB = 2. This almost saturated FM Sg = 2 domain
is robust against small changes in UB, V , εA, UA, cluster size (N = 7),
and band filling (Nel = 10) provided that the Kondo atom has a large
LM.

Figure 11. Temperature dependence of the average f-susceptibility for different alloy
concentrations. The inset shows the low-temperature behavior.
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In Fig. 11 we present Tχf
x(T ) as a function of temperature for different

x. As T → 0 (inset Fig. 11) Tχf
x(T ) approaches a finite value for x = 1−4

while it vanishes exponentially for x=0, 5 and 6. This is due to the fact
that the former concentrations involve some configurations which are
magnetic, while the latter have singlet ground states (Fig. 10). The
stronger (weaker) low-temperature dependence for x = 1 (x = 2 − 4)
is due to the smaller (larger) spin gap between the ground state and
the lowest excited states. The magnetic susceptibility displays also a
magnetic crossover upon varying x, and reveals a Curie-like divergence at
low T for x = 1− 4. The temperature-dependent results for the specific
heat, not reported here, show corroborative evidence of this disorder-
induced magnetic crossover.

2. Effect of Energy Spacing

Next we address a number of important open issues, namely (1) the
effect of ∆ on the interplay between RKKY and Kondo interactions
in disordered clusters, (2) the characterization of the single-impurity
“Kondo correlation energy” TK in a dense-impurity cluster and (3) the
effect of disorder and ∆ on the distribution of the local TK’s. In the
following, εB = −2.

In contrast with previous studies, which introduced a phenomeno-
logical distribution P (TK) of single-impurity Kondo temperatures, the
advantage of the present calculations is that one calculates exactly the
Kondo correlation energy: we employ the so-called “hybridization” ap-
proach[31], with TK defined as

kBTK(i) = Eg(Vi = 0) − Eg, (8)

where Eg(Vi = 0) is the ground-state energy of the dense-impurity clus-
ter when V is set to zero at the ith site. Eq.(8) reduces to kBTK =
Eband − EF + εf − Eg[22, 32] in the single impurity case. Here, EF

is the highest occupied energy level in the conduction band and Eband

is the conduction band energy. This definition of the local TK takes
into account the interaction of the f -moment at site i with the other
f -moments in the system [33].

In Table I we list for the periodic, x=0, case the local Kondo f-c
spin correlation function < SA

f (i)SA
c (i) >, the n.n. f-f spin correlation

function < SA
f (i)SA

f (i + 1) >, and the local Kondo temperature for two
different values of t (The energy spacing is ∆ = 4t/(N −1) ≡ 4t/5). As t
or ∆ decreases the f-c spin correlation function is dramatically enhanced
while the f-f correlation function becomes weaker, indicating a transition
from the RKKY to the Kondo regime. This is also corroborated by the
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increase in the local TK(i). The energy spacing affects not only the
magnetic (A) atoms but the MV atoms as well. Thus, increasing t
drives the B atoms from the non-magnetic, NM (nf ≈ 2), to the MV
and finally to the Kondo regime.

We next examine the role of even versus odd number of electrons on
the magnetic behavior of the uniform x=0 case. For t = 1, changing the
number of electrons from Nel = 12 to Nel = 11 results in: (a) an enhance-
ment of the local Kondo f-c spin correlation function, < SA

f (i)SA
c (i) >

from -0.01 to -0.12; and (b) a suppression of the nearest-neighbor f-f
spin correlation function < SA

f (i)SA
f (i + 1) > from -0.58 to -0.20 (Due

to the broken symmetry for Nel = 11, the f-f spin correlation func-
tions range from -0.5 to +0.02). This interesting novel tuning of the
magnetic behavior can be understood as follows: For an odd-electron
cluster, the topmost occupied single particle energy level is singly oc-
cupied. On the other hand, for an even-electron cluster, the topmost
occupied single-particle energy level is doubly occupied, thus blocking
energy-lowering spin-flip transitions. This energy penalty intrinsically
weakens the Kondo correlations[19]. As expected, changing the number
of electrons from even to odd changes Sg = 0 to Sg = 1

2 . For t= 0.05
(Kondo regime), the on site f-c correlation function does not depend as
strongly on the parity in the number of electrons because the sites are
locked into singlets. On the other hand, < SA

f (i)SA
f (i + 1) > becomes

suppressed as in the case of large energy spacing. Similar results were
found for the various disordered concentrations.

Figure 12. A-atoms: Local Kondo Temperatures (in K) vs the local f − c spin
correlation function, for different configurations and two different values of t. The
closed circles refer to the x = 0 case and the lines are a guide to the eye.

In Fig. 12 we present the local TK(i) as a function of the local f-c spin
correlation function < SA

f (i)SA
c (i) > for all Kondo (A) atoms in the
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Table 1. Local Kondo f-c and n.n. f-f spin correlations functions and the local
Kondo temperature (in K) for two values of t (in eV). The average energy spacing is
∆ = 4t/(N − 1) ≡ 4t/5.

< SA
f (i)SA

c (i) > < SA
f (i)SA

f (i + 1) > TK(i)

t=0.05 -0.626 -0.322 551.8

t=1.00 -0.011 -0.584 173.4

singlet ground state at any concentration x for t= 0.05 and 1.0. Note
the different scales both on the horizontal and vertical axis in the panels.
In both panels, the closed circles correspond to the x=0 lattice case and
the line is a guide to the eye. The results indicate a correlation between
TK and the f-c spin correlation function (the larger TK’s correspond to
the more negative f-c values) as one would expect, since both provide a
measure of the Kondo effect. For t=0.05, most of the disordered cluster
configurations are in the Kondo regime (Sg = 0), with larger TK values;
consequently, panel (a) has a larger number of singlet configurations.
The introduction of MV impurities induces a distribution of TK(i)’s,
whose values are overall enhanced compared to those for the x=0 case,
except for several configurations for t=0.05, in contrast with single-site
theories for extended systems[5]. It is interesting that P (TK) for t=0.05
exhibits a bimodal behavior centered about 710 and 570K, respectively:
The higher TK’s originate from isolated Kondo atoms which have MV
atoms as n.n. so that the local screening of the magnetic moment of the
A atom is enhanced.

The effect of alloying and ∆ on the RKKY versus Kondo competi-
tion for a given x is seen in Fig. 13 (left panel), where the configuration
averaged local < SA

f (i)SA
c (i) >x and < SA

f (i)SA
f (i + 1) >x correlation

functions are plotted as a function of t. The solid curves denote the
uniform x=0 case, where we drive the cluster from the RKKY to the
Kondo regime as we decrease t. We find that the stronger the average
Kondo correlations are the weaker the average RKKY interactions and
vice versa. In the weak Kondo regime the configurations exhibit a wider
distribution of RKKY interactions indicating that they are sensitive to
the local environment. In contrast, in the strong Kondo regime, the
Kondo (A) atoms become locked into local Kondo singlets and the n.n.
RKKY interactions are insensitive to the local environment. Interest-
ingly, both energy spacing and disorder lead to an overall enhancement
of the RKKY interactions compared to the homogenous state.

In the right panel of Fig. 13 we present the t versus x phase diagram
for the nanocluster at T = 0 . We compare the < SA

f (i)SA
c (i) >x

and < SA
f (i)SA

f (i + 1) >x to assign a state of specific concentration to
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Figure 13. Left panel: Configuration-averaged local f − c (top) and n.n. f − f
spin correlations (bottom) for the A atoms as function of t. The solid line refers to
the homogenous x = 0 case. Right panel: Zero-temperature t vs x phase diagram for
the nanocluster. Black (gray) circles denote the Kondo (RKKY) regime. The white
circles and the dashed contour delimit the FM region. The horizontal stripes denote
the non-magnetic (NM), mixed valence (MV) and local moment (LM) behavior of the
B-atoms.

the Kondo or RKKY regimes (black and gray circles, respectively), in
analogy with the x = 0 case (Table I) and with mean field treatments
[27]. The horizontal gray stripes denote qualitatively ranges of t where
the B atoms exhibit NM, MV and LM behavior. An interesting feature
of the phase diagram is the appearance of a large FM region (Sg �= 0)
enclosed by the dashed line. The RKKY region at large t and large x
originates from the B atoms which become magnetic. For the non FM
configurations and for x < 5 the Kondo (RKKY) correlations of the A
atoms dominate at small (large) t, in analogy with the x = 0 case. On
the other hand, for x = 5 the local Kondo correlations of the single
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A atom at low t dominate over the f-f correlations between the A-B
and B-B pairs. For the uniform (x=6) MV case we include only results
in the large t regime, where the MV atoms acquire LM’s which couple
antiferromagnetically. Overall, the RKKY interactions prevail for any
concentration when t is comparable or larger than the hybridization V .

8.4 Conclusions
Recent advances in STM experiments have made it possible to study

the electronic and magnetic properties of strongly correlated electrons
in nanoscopic and mesoscopic systems. There are two main differences
between nanosized clusters and the infinite lattice. First, the discrete
energy levels of the conduction band states introduce a new low-energy
scale, i.e., the average energy level spacing ∆. This new energy scale that
competes with the spin gap can effect the low-temperature behavior of
the system. Second, the results depend on the parity of the total number
of electrons. If Ntot is odd, the ground state is doubly degenerate.

We have carried out exact diagonalization calculations which reveal
that the: (1) energy spacing; (2) parity of the number of electrons; and
(3) disorder, give rise to a novel tuning of the magnetic behavior of a
dense Kondo nanocluster. This interesting and important tuning can
drive the nanocluster from the Kondo to the RKKY regime, i.e. a tun-
able “Doniach” phase diagram in nanoclusters. We have employed the
criterion of comparing the exact non local versus local spin correlation
functions to determine if the nanocluster lies in the RKKY versus Kondo
regime. For weak hybridization, where the spin gap is smaller than ∆,
both the low-temperature local f susceptibility and specific heat exhibit
an exponential activation behavior associated with the spin gap. In con-
trast in the large hybridization limit, ∆ is smaller than the spin gap,
the physics become local and the exponential activation behavior disap-
pears. The interplay of ∆ and disorder produces a rich structure zero-
temperature alloy phase diagram, where regions with prevailing Kondo
or RKKY correlations alternate with domains of FM order. The distri-
bution of local TK and RKKY interactions depends strongly on the local
environment and are overall enhanced by disorder, in contrast to the hy-
pothesis of single-impurity based “Kondo disorder” models for extended
systems. We believe that the conclusions of our calculations should
be relevant to experimental realizations of small clusters and quantum
dots. For example, the recent experiments[21] of magnetic clusters on
single-walled carbon nanotubes of varying size provide much flexibility
for investigating the interplay of Kondo and RKKY effects at different
energy scales.
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DENSITY FUNCTIONAL CALCULATIONS
NEAR FERROMAGNETIC QUANTUM
CRITICAL POINTS
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Abstract We discuss the application of the density functional theory in the lo-
cal density approximation (LDA) near a ferromagnetic quantum critical
point. The LDA fails to describe the critical fluctuations in this regime.
This provides a fingerprint of a materials near ferromagnetic quantum
critical points: overestimation of the tendency to magnetism in the lo-
cal density approximation. This is in contrast to the typical, but not
universal, tendency of the LDA to underestimate the tendency to mag-
netism in strongly Hubbard correlated materials. We propose a method
for correcting the local density calculations by including critical spin
fluctuations. This is based on (1) Landau expansion for the free energy,
evaluated within the LDA, (2) lowest order expansion of the RPA sus-
ceptibility in LDA and (3) extraction of the amplitude of the relevant
(critical) fluctuations by applying the fluctuation-dissipation theorem to
the difference between a quantum-critical system and a reference system
removed from the quantum critical point. We illustrate some of the
aspects of this by the cases of Ni3Al and Ni3Ga, which are very simi-
lar metals on opposite sides of a ferromagnetic quantum critical point.
LDA calculations predict that Ni3Ga is the more magnetic system, but
we find that due to differences in the band structure, fluctuation effects
are larger in Ni3Ga, explaining the fact that experimentally it is the less
magnetic of the two materials.

Keywords: quantum criticality, magnetism, density functional theory, first-principles
calculation.

9.1 Introduction
Recent low temperature experiments on clean materials near ferro-

magnetic quantum critical points (FQCP) have revealed a remarkable
range of unusual properties, including non-Fermi liquid scalings over a
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large phase space, unusual transport, and novel quantum ground states,
particularly coexisting ferromagnetism and superconductivity in some
materials. Although criticality usually implies a certain universality,
present experiments show considerable material dependent aspects that
are not well understood, [1] e.g. the differences between UGe2 and
URhGe [24, 25] and ZrZn2, [4] which both show coexisting ferromag-
netism and superconductivity but very different phase diagrams, in con-
trast to MnSi, where very clean samples show no hint of superconduc-
tivity around the QCP, possibly because of the lack of the inversion
symmetry. [5]

Moreover, by far not every magnetic material can be driven to a QCP
by pressure or by other means of supressing ferromagnetism. Typically,
the transition becomes first order as the Curie temperature, TC is de-
pressed. If this happens too far away from the fluctuation dominated
regime, nothing interesting is seen. Also, more pedestrian effects are
often important. For example, impurities or other defects can lead to
scattering that smears out the quantum critical region.

9.2 The LDA Description Near a FQCP
One of the fingerprints of a FQCP, maybe the most universal one, is a

substantial overestimation of the tendency to magnetism in conventional
density functional theory (DFT) calculations, such as within the local
density approximation (LDA). Generally, approaches based on density
functional theory (DFT) are successful in accounting for material depen-
dence in cases where sufficiently accurate approximations exist. Density
functional theory is in principle an exact ground state theory. It should,
therefore, correctly describe the spin density of magnetic systems. This
is usually the case in actual state of the art density functional calcula-
tions. However, common approximations to the exact density functional
theory, such as the LDA, may miss important physics and indeed fail to
describe some materials. A well know example is in strongly Hubbard
correlated systems, where the LDA treats the correlations in an orbitally
averaged mean field way and often underestimates the tendency towards
magnetism.

Overestimates of magnetic tendencies, especially in the LDA, are con-
siderably less common, the exceptions being materials near magnetic
quantum critical points (QCP); here the error comes from neglect of
low energy quantum spin fluctuations. In particular, the LDA is pa-
rameterized based on the uniform electron gas at densities typical for
atoms and solids. However, the uniform electron gas at these densi-
ties is stiff against magnetic degrees of freedom and far from magnetic
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Table 1. Some materials near a FQCP that we have investigated by LDA calcula-
tions. Type 1 materials are ferromagnetic both in the calculations and in experiment;
magnetic moments in µB per formula unit are given. Type 2 are ferromagnetic only
in the calculations (calculated moments given, and type 3 are paramagnetic (suscep-
tibility in 10−4emu/mol is given). The references are to the LDA calculations.

Material ZrZn2 Ni3Al Sc3In FeAl Ni3Ga
Type 1 1 1 2 2
Calc/Exp 0.72/0.17 0.71/0.23 1.05/0.20 0.80 0.79
Ref. [16] [17] [18] [19] [17]

Material Sr3Ru2O7 SrRhO3 Na0.5CoO2 Pd
Type 2 2 2 3
Calc/Exp 0.80 0.9 0.5 11.6/6.8
Ref. [8] [20] [10] [21]

QCP’s. Thus, although the LDA is exact for the uniform electron gas,
and therefore does include all fluctuation effects there, its description of
magnetic ground states in solids and molecules is mean field like. This
leads to problems such as the incorrect description of singlet states in
molecules with magnetic ions as well as errors in solids when spin fluctu-
ation effects beyond the mean field are important. In solids near a QCP,
the result is an overestimate of the magnetic moments and tendency to-
ward magnetism (i.e. misplacement of the position of the critical point)
due to neglect of the quantum critical fluctuations. [6, 7] Examples
include three types of materials: paramagnets that are ferromagnetic
in the LDA, ferromagnets where the equilibrium magnetic moment is
substantially overestimated in the LDA, and paramagnets where the
paramagnetic susceptibility is substantially overestimated.

We list examples of materials in all three categories in Table 1. At
least two of these are cases where a large deviation between the LDA
and experimental magnetic properties were noted, followed by trans-
port measurements that suggest a nearby ferromagnetic quantum critical
point. In particular, in Sr3Ru2O7, LDA calculations with the experimen-
tal crystal structure found a sizeable moment, [8] while experimentally
the material was known to be a paramagnetic metal. Grigera and co-
workers then showed that Sr3Ru2O7 has a metamagnetic quantum crit-
ical point at moderate field. [9] Pd metal provides another example:
the calculated LDA magnetic susceptibility is nearly twice larger that
the experimental one. Correspondingly, Nicklas et al[11] found a FQCP
in the Pd1−xNix system at x = 0.026, where the transport properties
become non-Fermi liquid.
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We emphasize that substantial overestimates of the tendency of met-
als towards ferromagnetism within the LDA is a rare occurance, and
propose that it be used as an indicator of critical fluctuations in a ma-
terial. However, for this to be an effective screen, competing states, like
antiferromagnetism need to be ruled out in each material. An interest-
ing case study is LiV2O4, which is a paramagnetic metal and occurs in
the cubic spinel structure. Remarkably, it was discovered by Kondo and
co-workers that this material behaves at low temperature like a heavy
fermion metal. [12] LDA calculations showed that the material is un-
stable against ferromagnetism with a sizeable moment. [14, 15, 13] But
calculations also show that the interactions are antiferromagnetic, and
as a result it is more unstable against antiferromagnetism, which how-
ever is frustrated on the spinel lattice. While LiV2O4 may be near an
antiferromagnetic QCP, it is not a material near an FQCP.

9.3 “Beyond-LDA” Critical Fluctuations
A popular way to add quantum or termal fluctuation to a mean-field

type theory is via fluctuation corrections to Ginzburg-Landau expansion
of the free energy. For a detailed discussion we refer the reader to the
book of Moriya [22] and the review article of Shimizu [23]. In short,
one writes the free energy (or the magnetic field) as a function of the
ferromagnetic magnetization, M,

Estatic(M) = a0 +
∑
n≥1

1
2n

a2nM2n, (1)

Hstatic(M) =
∑
n≥1

a2nM2n−1 (2)

(obviously, a2 gives the inverse spin susceptibility without fluctuations),
and then assume Gaussian zero-point fluctuations of an r.m.s. magni-
tude ξ for each of the d components of the magnetic moment (for a 3D
isotropic material like Pd, d = 3). After averaging over the spin fluc-
tuations, one obtains a fluctuation-corrected functional. The general
expression can be written in the following compact form:

H(M) =
∑
n≥1

ã2nM2n−1

ã2n =
∑
i≥0

Cn−1
n+i−1a2(n+i)ξ

2iΠn+i−1
k=n (1 +

2k

d
). (3)

For instance,

ã2 = a2 +
5
3
a4ξ

2 +
35
9

a6ξ
4 +

35
3

a8ξ
6...
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ã4 = a4 +
14
3

a6ξ
2 + 21a8ξ

6...

... (4)

The unrenormalized coefficients can be taken from fixed spin momen
LDA calculations, in which case ξ becomes the amplitude of those fluc-
tuations only, which are not taken into account in LDA (as mentioned,
LDA includes some quantum fluctuation, specifically short-range fluctu-
ations present in the interacting uniform electron gas). In principle, one
can estimate ξ from the fluctuation-dissipation theorem, which states
that (see, e.g., Refs. [24, 25])

ξ2 =
4h̄

Ω

∫
d3q

∫
dω

2π

1
2

Im χ(q, ω), (5)

where χ(q, ω) is the magnetic susceptibility and Ω is the Brillouin zone
volume. It is customary to approximate χ(q, ω) by its small q, small ω
expansion [24, 25]:

χ0(q, ω) = N(EF) − aq2 + ibω/q (6)
χ−1(q, ω) = χ−1

0 (q, ω) − I, (7)

With the expansion (6) the integrations can be performed analytically,
and the final result reads:

ξ2 =
bv2

FN(EF)2

2a2Ω
[Q4 ln(1 + Q−4) + ln(1 + Q4)]. (8)

where Q = qc

√
a/bvF , and qc is the cutoff parameter for momentum

integration in Eqn. 5 (the frequency integration at a given q is usually
assumed to be cut off at ω = vFq).

To proceed along these lines one needs to find a way to calculate the
crucial parameters of the expansion (6). It was suggested by Moriya [22]
that these can be expressed as certain integrals over the Fermi surface,
by expanding the RPA expression for χ0. Below, we offer a deriva-
tion equivalent to that of Moriya, but rendering the results in more
computable form. We start with the RPA expressions for the real and
imaginary parts of χ0 :

Re χ0(q,0) =
∑
k

[f(Ek) − f(Ek+q)] (Ek+q − Ek)−1 (9)

Im χ0(q,ω) =
∑
k

[f(Ek) − f(Ek+q)]δ(Ek+q − Ek − ω), (10)

where f(E) is the Fermi function, −df(E)
dE = δ(E−EF). Expanding Eqn.

9 in ∆ = Ek+q−Ek = vk·q+1
2

∑
αβ µαβ

k qαqβ + ..., we get to second order
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in q

Re χ0(q,0) = N(EF) +
∑
k

[
1
2

(
dδ(εk − EF)

dEF

)
(vk·q+

1
2

∑
α,β

µαβ
k qαqβ)

+
1
6

(
d2δ(εk − EF)

dE2
F

)
(vk·q)2].

The odd powers of vk cancel out and we get (α, β = x, y, z)

Re χ0(q) =

N(EF) +
∑
α,β

qαqβ

4

d
〈
N(EF)µαβ

〉
dEF

+
∑
α,β

qαqβ

6
d2 〈N(EF)vαvβ〉

dE2
F

= N(EF) +
q2

4
d 〈N(EF)µxx〉

dEF
+

q2

6
d2

〈
N(EF)v2

x

〉
dE2

F

,

where v2
x = v2

y = v2
z, µxx = µyy = µzz. The last equality assumes

cubic symmetry; generalization to a lower symmetry is trivial. Using
the following relation,

∑
k

∇kF (εk) =
∑
k

dF (εk)
dεk

∇k · εk =
∑
k

dF (εk)
dεk

vk,

one can prove that

d2
〈
N(EF)v2

x

〉
dE2

F

= −d 〈N(EF)µxx〉
dEF

. (11)

Therefore

Re χ0(q) = N(EF) − q2

12
d2

〈
N(EF)v2

x

〉
dE2

F

(12)

Similarly, for Eqn. 10 one has

Im χ0(q,ω) =
∑
k

[(
−df(ε)

dε

)
ωδ(vk·q − ω)

]
(13)

After averaging over the directions of q, this becomes, for small ω,

Im χ0(q,ω) =
ω

2

∑
k

δ(εk)
vkq

θ(vkq − ω) =
ω

2q

〈
N(EF)v−1

〉
v =

√
v2
x + v2

y + v2
z. (14)
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Although in real materials the Fermi velocity is obviously different along
different directions, it is still a reasonable approximation to introduce an
average vF . Then the above formulae reduce all parameters needed for
estimating the r.m.s. amplitude of the spin fluctuations to four integrals
over the Fermi surface, specifically, the density of states, N(EF), a =
1
12

d2〈N(EF )v2
x〉

dE2
F

, b = 1
2

〈
N(EF)v−1

〉
and vF =

√
3 〈N(EF )v2

x〉
N(EF ) .

The physical meaning of these parameters is as follows. a defines
the rate at which the static susceptibility χ(q, 0) falls away from the
zone center, i.e. the extent to which the tendency to ferromagnetism is
stronger than that to antiferromagnetism. This translates into the phase
space in the Brillouin zone where the spin fluctuations are important. b
controls the dynamic effects in spin susceptibility.

Note that the cutoff parameter qc remains the only undefined quantity
in this formalism. One obvious choice is qc =

√
N(EF)/a, because for

larger q the approximation (6) gives unphysical negative values for the
static susceptibility. On the other hand, one may argue that qc should
reflect mainly the geometry of the Fermi surface and thus not depend
on a at all. We will come back to this issue later in this paper and will
propose an approach that avoids using qc whatsoever.

9.4 Ni3Al and Ni3Ga
Here we use the closely related compounds Ni3Al and Ni3Ga to illus-

trate some of the above ideas. Further details may be found in Ref. [17].
These have the ideal cubic Cu3Au cP4 structure, with very similar lat-
tice constants, a = 3.568 Å and a = 3.576 Å, respectively, and have been
extensively studied by various experimental techniques. Ni3Al is a weak
itinerant ferromagnet, Tc = 41.5 K and magnetization, M=0.23 µB/cell
(0.077 µB/Ni atom) [26] with a QCP under pressure at Pc=8.1 GPa,
[27] while Ni3Ga is a strongly renormalized paramagnet. [28] Further, it
was recently reported that Ni3Al shows non-Fermi liquid transport over
a large range of P and T range down to very low T . [29]

Previous LDA calculations showed that the magnetic tendency of both
materials is overestimated within the LDA, and that Ni3Ga is incorrectly
predicted to be a ferromagnet. [30–35] Moreover, in the LDA the ten-
dency to magnetism is stronger in Ni3Ga than Ni3Al, opposite to the
experimental trend. This poses an additional challenge to any theory
striving to describe the material dependent aspects of quantum critical-
ity. The two materials are expected to be very similar electronically (the
small difference between the two is due to relativistic effects associated
with Ga in Ni3Ga). Thus these two very similar metals offer a very use-
ful and sensitive benchmark for theoretical approaches. We use this to
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Figure 1. Calculated LDA band structure (left) and density of states (right) per
f.u. for non-spin-polarized Ni3Al (solid lines) and Ni3Ga (dotted lines). EF is at 0
eV.

test an approach based on the fluctuation dissipation theorem applied
to the LDA band structures with an ansatz for the cut-off qc. We find
that this approach corrects the ordering of the magnetic tendencies of
the materials, and gives the right ground states at ambient pressure as
well as a reasonable value of Pc for Ni3Al.

The LDA calculations were done using the general potential linearized
augmented planewave (LAPW) method with local orbital extensions [36,
37, 39] as decribed in Ref. [17], with the exchange-correlation functional
of Hedin and Lundqvist with the von Barth-Hedin spin scaling [40, 41].
The LDA electronic structure is given in Fig. 1 and Table 2, while re-
sults of fixed spin moment calculations of the magnetic properties at the
experimental lattice parameters and under hydrostatic compression are
given in Figs. 2 and 3. The two compounds are very similar in both
electronic and magnetic properties, the main apparent difference being
the higher equilibrium moment of Ni3Ga (0.79 µB/f.u. vs. 0.71 µB/f.u.),
in agreement with other full potential calculations. [34, 35]

The propensity towards magnetism may be described in terms of the
Stoner criterion, IN(EF), where I is the so-called Stoner parameter,
which derives from Hund’s rule coupling on the atoms. For finite mag-
netizations, the so-called extended Stoner model [42], states that, to the
second order in the spin density, the magnetic stabilization energy is
given by

∆E = M2[
∫ M

0
m dm/2Ñ(m) − I/4], (15)

where Ñ(M) is the density of states averaged over the exchange splitting
corresponding to the magnetization M. Fitting the fixed spin moment
results to this expression, we find IAl = 0.385 eV and IGa = 0.363 eV.
These gives IN(EF) =1.21 and IN(EF) = 1.25 for Ni3Al and Ni3Ga,
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Figure 2. Energy vs. fixed spin moment for Ni3Al and Ni3Ga at the experimental
lattice parameters. The energy zero is set to the non-spin-polarized value.

respectively. Both numbers are larger than unity, corresponding to a
ferromagnetic instability, and the value for Ni3Ga is larger than that
for Ni3Al. Importantly, the difference comes from the density of states,
since IAl > IGa. In both compounds, magnetism is suppressed by com-
pression, with an LDA critical point at a value δa/a ∼ -0.05 – -0.06.
In Ni3Al, the critical point at δa/a =-0.058 corresponds to the pressure
of Pc =50 GPa, [43] which is much higher than the experimental value.
It is interesting that, as in ZrZn2 [16], the exchange splitting is very
strongly k-dependent; for instance, in Ni3Al at some points it is as small
as 40 meV/µB near the Fermi level, while at the others (of pure Ni d
character) it is close to 220 meV/µB.

Notwithstanding the general similarity of the two compounds, there
is one important difference near the Fermi level, specifically, the light
band crossing the Fermi level in the middle of the Γ-M or Γ-X directions
is steeper in Ni3Al (Fig. 1). This, in turn, leads to smaller density of
states. This comes from a different position of the top of this band at
the Γ point, 0.56 eV in Ni3Ga and 0.85 eV in Ni3Al. The corresponding
electronic state is a mixture of Ni p and Al (Ga) p states, and is the
only state near the Fermi level with substantial Al (Ga) content. Due
to relativistic effects, the Ga p level is lower than the Al p level and this
leads to the difference in the position of the corresponding hybridized
state. Note that this is a purely scalar relativistic effect. Including spin
orbit does not produce any further discernible difference.

Returning to magnetism, the fixed spin moment calculations provide
the energy E as a function of the magnetization M (Fig. 2). One can
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Figure 3. FSM calculations under hydrostatic pressures. Magnetic energy, defined
as the energy relative to the non-spin-polarized result at the same volume, as a func-
tion of the moment and linear compression. Left and right panels correspond to Ni3Al
and Ni3Ga, respectively.

Table 2. Magnetic energy (see text), magnetic moment in µB/cell and N (EF ) in
eV−1 for Ni3Al and Ni3Ga on a per spin per formula unit basis.

|∆E| (meV) M (calc.) M (expt.) N (EF )

Ni3Al 10.3 0.71 0.23 3.2
Ni3Ga 14.3 0.79 0.00 3.4

write a Landau expansion for E(M) as in Eqn. 1, which may then be
treated as a mean field expression adding the effects of spin fluctuations.
[23]

Treating this as a mean field expression and adding the effects of spin
fluctuations [23] leads to renormalization of the expansion coefficients.
The renormalized coefficients ãi are written as power series in the aver-
aged square of the magnetic moment fluctuations beyond the LDA, ξ2

as in Eqn. 3. ξ may then be estimated by requiring that the corrected
Landau functional reproduces the experimental magnetic moment (for
Ni3Al) or experimental magnetic susceptibility (for Ni3Ga). The “exper-
imental” ξ’s obtained in this manner are are 0.47 and 0.55, respectively,
which implies that spin fluctuation effects must be stronger in Ni3Ga
than in Ni3Al.

A link can now be made between this fact and the electronic struc-
tures, using the formalism outlined in the previous section. As discussed,
the cutoff parameter qc is the least well defined quantity in this formal-
ism. Furthermore, the fermiology of these compounds is very compli-
cated: in the paramagnetic state, there are four Fermi surfaces, two
small and two large (one open and one closed). In this situation, it is
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hardly possible to justify any simple prescription for qc. Therefore, we
chose a different route: we assume that qc is the same for both materials,
and choose a number which yields a good description of both the equi-
librium moment in Ni3Al and the paramagnetic susceptibility in Ni3Ga,
qc = 0.382 a−1

0 . Note that this is larger that the diameters of the small
Fermi surfaces but smaller than the radius of the Brillouin zone, ≈ 0.5
a−1

0 .
To calculate the above quantities, especially a, we need accurate values

of the velocities on a fine mesh. Numerical differentiation of energies
within the tetrahedron method proved to be too noisy. Therefore we use
the velocities obtained analytically as matrix elements of the momentum
operator, computed within the optic program of the WIEN package. A
bootstrap method, [44] as described in Ref. [21], was used to obtain
stable values for a, b. We found for Ni3Al, using as the energy unit Ry,
the length unit Bohr, and the velocity unit Ry·Bohr, a = 230, b = 210,
vF = 0.20, and ξ = 0.445 µB. For Ni3Ga a = 140, b = 270, vF = 0.19,
and ξ = 0.556 µB. Using the resulting values of ξ each compound
we obtain a magnetic moment of M = 0.3 µB/cell for Ni3Al and a
paramagnetic state with the renormalized susceptibility χ(0, 0) = 1/ã2 =
6.8×10−5 emu/g for Ni3Ga, thus correcting the incorrect ordering of the
magnetic tendencies of these two compounds and reproducing extremely
well the experimental numbers of M = 0.23 µB, χ(0, 0) = 6.7 × 10−5

emu/g, respectively. This qualitative behavior is due to the different
coefficient a, i.e., different q dependencies of χ0(q, 0) at small q, which
relates to the phase space available for soft fluctuations.

Now we turn to the pressure dependence. The above results imply that
beyond-LDA fluctuations are already larger than the moments them-
selves at P = 0. In this regime, we may assume that the size of the
beyond-LDA fluctuations is only weakly pressure dependent. Then we
can apply Eqn. 3 to the data shown in Fig. 3 using ξ = 0.47 as needed
to match the P = 0 value of M . This yields a value Pc=10 GPa in quite
good agreement with the experimental value, Pc=8.1 GPa. [27]

9.5 Towards a Fully First Principles Theory
The results for Ni3Al and Ni3Ga, discussed above, and in Ref. [17],

show that an approach based on correction of the LDA using the fluctu-
ation dissipation theorem has promise. However, the results hinge on an
unknown cut-off, which serves the purpose of including fluctuations that
are associated with the FQCP and are not included in the LDA, from
those that are included in the LDA. While it is apparently possible to
obtain useful results using reasonable ansatz for this cut-off, it would be



150 Density Functional Calculations near FQCP

much better to have a truly first principles theory, with no parameters.
In order to construct such a theory, one should find a way of solving the
double counting problem, i.e including in the correction only those fluc-
tuations that are not already taken into acount at the LDA level. This
amounts to subtracting from Eqn. 5 the fluctuations already included
in the LDA. Since the LDA is known to work well for materials far from
an FQCP, this means that the correction should be zero or close to it
for the most materials.

We suggest that a consistent way to accomplish this is by introducing
a “reference” susceptibility χref(q, ω) and subtracting it from χ(q, ω) :

ξ2 =
4h̄

Ω

∫
d3q

∫
dω

2π

1
2

Im[χ(q, ω) − χref(q, ω)], (16)

We shall use the same expansion6 for both χ(q, ω) and χref(q, ω), to
derive equivalent expansions

χ−1(q, ω) = χ−1
0 (0, 0) − I + Aq2 − iBω/q, (17)

where χ−1
0 (0, 0) = 1/N(EF) (density of states per spin) is the bare (non-

interacting) static uniform susceptibility, and the Stoner parameter I is
only weakly dependent on q and ω. Note that A = a/N2, B = b/N2,
where a and b are the coefficients introduced in Eq.6. We also introduce
a notation, ∆ = N(EF)−1 − I. As long the same functional form (17) is
used for χ(q, ω) and χref(q, ω), the condition for the convergence of the
integral (16) is that the coefficients A and B, controlling the short-range
and high frequency fluctuations are the same. Of course, the parameter
∆, defining the proximity to the QCP, is different in the reference sys-
tem, which like the uniform electron gas upon which the LDA is based,
should be far from any QCP (let us call ∆ for the reference system ∆0).

To calculate the integral ((16), we write it in the following form:

ξ2 =
4h̄

Ω

∫
d3q

∫
dω

2π

1
2

Im[χ(∆,q, ω) − χ(∆0,q, ω)]. (18)

For instance, χ(0,q, ω) represents the susceptibility right at the FQCP.
This diverges for q = 0, ω = 0. The derivation then proceeds as follows:

∫ ωc

dω Im[χ(∆, q, ω)] =
q

2B
ln[

(∆ + Aq2)2 + B2ω2
c/q2

(∆ + Aq2)2
]. (19)

Where we introduce the Landau cutoff frequency, ωc = vq (here v is an
average Fermi velocity) and the notation β = Bv. We will also need the
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following function:

F (∆, β, x) =
∫

x3dx ln[(∆ + x2)2 + β2]

=
(∆ + x2)2 + β2

4
{ln[(∆ + x2)2 + β2] − 1}

− ∆(∆ + x2)
2

{ln[(∆ + x2)2 + β2] − 2} + β∆tan−1 β

∆+x2

Now

ξ2 =
2

ΩA2B
lim

Q→∞
[F (∆, β, Q) − F (∆0, β, Q)

−F (∆, 0, Q) + F (∆0, 0, Q) − F (∆, β, 0)
+F (∆0, β, 0) + F (∆, 0, 0) − F (∆0, 0, 0)].

This is particularly easy to evaluate at ∆ = 0. The result is

Ξ2(∆0) =
2

ΩA2B
[∆0β(

π

2
− tan−1 ∆0

β
) +

β2 − ∆2
0

4
ln

∆2
0 + β2

β2
+

∆2
0

4
ln

∆2
0

β2
]

Ξ2(S0) =
N2bv2

F

2Ωa2
[4S0 tan−1(S−1

0 ) + ln(1 + S2
0) − S2

0 ln(1 + S−2
0 )],

where S0 = ∆0N
2/bvF . Obviously, for arbitrary ∆ the answer is simply

ξ2 = Ξ2(S0) − Ξ2(S). (20)

Given that usually the reason for a quantum criticality is a large density
of states, it makes sense to take the Stoner parameter for the reference
system the same as for the system in question. The point is that the
density of states is a highly non-local parameter (note that it involves a
delta function integral in energy), which can hardly be discerned from
local information about the charge density, while the Stoner parameter is
a very local quantity associated with the exchange-correlation potential.
The difference between ∆ and ∆0 then comes from the difference between
N = N(EF) and the density of states, N0, of the reference system.

One may think about several different ways for choosing N0. One may
be to take average N(E) over the width of the valence band, N0 = n/t,
where n is the total number of states in the band and t is its width. One
can also think about the density of states of the uniform electron gas with
the same Stoner parameter. There may be other, more sophisticated
prescriptions. Probably, the most practical approach will be found after
several trial and error tests with real materials.
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9.6 Summary and Open Questions
The failure of the usual approximations to density functional theory,

for example, the LDA, to describe the magnetic properties of materials
near ferromagnetic quantum critical points is associated with renormal-
ization due to critical fluctuations. It is pointed out that since such
fluctuations are invariably antagonistic to ferromagnetic ordering, devi-
ations between experiment and LDA calculations in which the LDA is
overly ferromagnetic can be a useful screen for materials near FQCPs.
These errors in the LDA can be corrected using a phenomenalogical Lan-
dau function approach with the fluctuation amplitude as a parameter.
However, there is hope that this parameter can be obtained from the
electronic structure via the fluctuation dissipation theorem and a suit-
able reference system. The key remaining challenges in our view are to
define the reference system to be used, and to use calculations to de-
termine the usefulness of this approach for real materials near a critical
point.
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INTERPLAY BETWEEN HELICOIDAL
MAGNETIC ORDERING AND
SUPERCONDUCTIVITY ON
THE DIFFERENTIAL CONDUCTANCE
IN HONI2B2C/AG JUNCTIONS

I. N. Askerzade

Institute of Physics, Azerbaijan National Academy of Sciences, Baku-370143,Azerbaijan
and
Department of Physics, Ankara University, Tandogan, 06100,Ankara, Turkey

Abstract The point contact spectra of magnetic superconductor HoNi2B2C/Ag
based junctions is analysed in the framework of Blonder-Tinkham-
Klapwijk (BTK) theory. The anomalous behavior in the dI/dV curves
above the Neel temperature (TN ∼ 5 K) is attempted to be explained by
the partial suppression of superconducting gap parameter of the preval-
ing helical incommensurate structure.

Keywords: Magnetic superconductor, helical incommensurate structure

10.1 Introduction
Eight years after the discovery[1] of rare earth transition metal boro-

carbides (nitrides) RTBC(N) with T=Ni, Pd, Pt transition metals, the
place of RTBC(N) compounds within the family of more or less exotic
superconductors is still under debate. For this class of exotic super-
conductors there are several properties which taken together might be
interpreted also as hints for unconventional (d-wave or p-wave) super-
conductivity. For example, d-wave superconductivity has been proposed
for YNi2B2C and LuNi2B2C compounds.[2] Phase-sensitive experiments
[3] and the observation of Andreev bound state near appropriate surfaces
[4] must await to confirm or disprove the predicted d-wave scenario.

It is well-known[5, 6] that the measurement of the differential con-
ductivity of superconductor-insulator-normal metal (SC/I/N) junctions
is a very sensitive method to probe the superconductinfg properties.
Point-contact spectroscopy studies on borocarbide compounds are mo-
tivated by the possibility of a detailed investigation of the anisotropy of
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the gap parameter and the coexistence of superconductivity and mag-
netism in magnetic borocarbides. Andreev reflection spectroscopy for
nonmagnetic borocarbides Y(Lu)Ni2B2C is known to yield supercon-
ducting energy gap peaks. [7, 8] For the magnetic borocarbides with Dy
and Er gap-like features in the Andreev reflection spectrum have also
been seen. In the Dy compound superconductivity develops in the pres-
ence of antiferromagnetic ordering with TN = 10.5 K and it is the only
borocarbide with the Neel temperature greater than the superconduct-
ing transition temperature, viz. TN > Tc = 6 K. For instance, the Er
compound with Tc = 10.8 K exhibits antiferromagnetic (AFM) ordering
[9] below TN = 5.9 K. HoNi2B2C compounds are marked by a complex
magnetic structure.[10] In these compounds, the AFM structure devel-
ops below the Neel temperature TN ∼ 5 K which is related[11] to the
c-axis modulated commensurate magnetic structure with wave vector
QAF = c∗ = 2π/c. Other magnetic structures have been observed in the
temperature region TN < T < Tm = 6 K, spiral (helicoidal) c-axis mod-
ulated incommensurate with wave vector Qc = 0.91 c∗ and a-axis modu-
lated incommensurate with wave vector Qa = 0.55 a∗. In HoNi2B2C
reentrant or almost reentrant superconductivity was detected over a
large range manisfesting magnetic ordering.[12] Experimental point con-
tact study was conducted by Rybaltchenko et al.[13] but the explanation
of the suppression of Andreev pecularities are mostly unexplored.

Our primary aim is to discuss the influence of the helicoidal structyre
on the GNS(V ) curve of HoNi2B2C/Ag junctions in the framework of
Blonder, Tinkham, and Klapwijk[6] (BTK) formalism.

10.2 Basic Equations
First, we shall discuss the effect of a helicoidal structure on super-

conductivity. This question has been originally considered by Morosov
[14] and also more recently in application to Ho borocarbides.[15] As it
was shown[14, 15] using Bogoliubov transformations the gap parameter
in the spectrum of electron quasiparticles becomes strongly anisotropic
and vanishes at the boundaries of the breaks in the Fermi surface due
to the Bragg planes generated by the magnetic ordering (i.e. when the
Bragg planes intersect the Fermi surface).

Transport through NS junctions has successfully been investigated
using the Bogoliubov-de Gennes (BdG) equation [6] . In the BdG form-
lism, the quasiparticles in SC are represented by a two-element column
vector
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ψ(x) =
(

u(x)
v(x)

)
, (1)

where u(x) and v(x) are the electron and hole components of the quasi-
particle excitations, and obey the BdG equations

Eu(x) = H0u(x) +
∫

dx′∆(x,x′)v(x′), (2)

Ev(x) = −H0v(x) +
∫

dx′∆(x,x′)u(x′), (3)

where H0 = −∇2

2m + V (x) − µ is the single-particle Hamiltonian with µ
being the Fermi energy , V (x) and ∆(x,x′) are the ordinary potential
and pair potential, respectively. We assume the superconducting order
parameter is not degraded by the normal metal, and thus neglect the
proximity effect, i.e. for the NS interface (at x=0) problem we can write

∆(x) = ∆Θ(x), (4)

where Θ(x) is a step function. As result of calculations, the formula
for the differential conductance of the junction normal metal-isotropic
superconductor was obtained [6].

The BTK theory[6] for isotropic superconductors can be extended
to the anisotropic case by including the momentum k depencence of
the superconducting energy gap ∆(k) in the expression for Andreev
reflection probabnility A(ε, ∆(k)) and the normal reflection probability
B(ε, ∆(k)). Then, the differential conductance GNS of an NS junction
normalized to the normal state value GNN at T = 0 can be written as

GNS

GNN
=

∂INS
∂V

∂INN
∂V

=
∂

∂V

∫
d3k vz [1 + A(ε, ∆(k)) − B(ε, ∆(k))]

∂
∂V

∫
d3k vz [1 − Z2/(1 + Z2)]

, (5)

where Z is the barrier height, which can be introduced phenomenologi-
cally. vz is the positive velocity component perpendicular to the interface
of NS junction. As mentioned above, in this approximation the prox-
imity effect is not taken into account, although the symmetry of the gap
parameter strongly influences the behavior at the surface in the case of
pure d-wave or p-wave symmetry.

Calculation of the differential conductance based on Eq. (1) for an
N/d-wave superconductor has been performed by Tanaka et al.[16] and
for a ferromagnet/d-wave superconductor by Zhu et al.[17] Dependence
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of the subgap structure on d-wave parameters and orientation of the to
the NS boundary are presented. It is necessary to note calculations [18]
in the framework of BTK formalism for possible p-wave gap parameter in
Sr2RuO4. For the heavy fermion systems [19] UPt3 similar calculations
were performed by introducing odd-parity gap parameter. In all these
cases the anisotropy of the gap parameter leads to a transformation of
the plateu at (−∆, ∆) to triangular peak of the conductance in subgap
region.

As pointed out by Morosov[15] the gap parameter of a superconductor
in the presence of helical structure may be written as

∆(k, T ) = (u2
k − v2

k)∆(T ) , (6)

where

u2
k − v2

k =

(
(εk − εk+Q)2

(εk − εk+Q)2 + I2S2

)1/2

, (7)

in which I is the exchange interaction integral,S is the average ion spin,εk
is the dispersion telation in the partamagnetic phase and

∆(T ) =
∫ ω

0
dε

∆(T )(1 − 2nk)
ε2 + ∆2(T )

(∫
MFS

dS′

(2π)3
(u2

k′ − v2
k′)2

|∇k′ ε̃k′ |

)
, (8)

where ε̃k is new dispersion relation[15] and nk takes into account the
accupation of the electronic state. The last equation corresponds to
the usual BCS self-consistent gap equation with an effective parameter
λeff(T ) defined as the term in brackets. λeff(T ) depends on the under-
lying magnetic state through the Bogoliubov coefficients and the slope
of the magnetic Fermi surface.

10.3 Results and Discussions
Since all the anamolous magnetic wave vector dependencies come from

the region where Fermi surface intersects the Bragg planes, the difference
∆λ(T ) = λ − λeff(T ) between the actual electron-phonon interaction λ
and its effective value, we can expand quantities in terms of IS/εF . Using
the results of band structure calculations[11] for borocarbide compounds
the difference ∆λ(T ) is estimated by Amici, Thalmeier, and Fulde[20]
as ∆λ(T = 0)/λ = 0.12. This result has been employed in the explana-
tion of the main anomaly (reentrant behavior) of the upper critical field
Hc2(T ).

The experimental data for HoNi2B2C/Ag junctions show[13] insensi-
tivity of the shape of GNS(V ) curve to the orientation of the contact
plane with respect to the crystal axis. This fact confirms the isotropic
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character of the electronic structure of these compounds. Thus, the
possibility of d-wave or p-wave gap parameter in helical superconduc-
tors is elimintated. Evaluation of the shape of the GNS(V ) curve for
an NS junction by changing the parameter Z is analyzed by Blonder,
Tinkham, and Klapwijk.[6] It is clear that the subgap plateau at Z = 0
transforms to two peaks at ±∆ when the barrier height is increased.
For the HoNi2B2C/Ag contact at T < 5 K, where helicoidal structure
transforms into the antiferromagnetic phase, a double-peak structure is
obtained [13].

However, in the temperature region 5 < T < 8, 1 K, or equivalently
∆T/T ∼ 3/8 ≈ 0.4, gapless behavior is observed (we remark that the
corresponding value of the same parameter in ErNi2B2C compound [9] is
about ∼ 0.2). In our opinion, the broadening character and the gapless
behavior are related by the partial suppression of the order parameter
in the presence of helical structure. As mentioned by Amici,Thalmeier,
and Fulde[20] reduction of ∆λ/λ ∼ 0, 12 is not sufficient for the total
elimination of superconductivity and transition to the normal state. On
the other hand, in calculating the GNS(V ) curve using Eq. (1), we must
take into account an additional reduction factor of u2

k−v2
k. Because this

latter factor is freater than unity, when averaged over the Fermi surface,
we obtain an additional suppression of the gap parameter.

Thus, the broadening character of gapless behavior in GNS(V ) curve
at temperatures close to Tc for HoNi2B2C/Ag junctions can be explained
by the suppression of the gap parameter. Total suppression does not oc-
cur because the experiments of Rybaltchenko et al.[13] was conducted
for a higly pure Ho compound. It follows from the experimental data
[12] (resistive measurements) that in the region where helicoidal struc-
ture exists we have small (but not zero) gap parameter. As shown in [15]
nonmagnetic impurities playes the important role in suppressing super-
conductivity in systems with helical magnetic structure. To put another
way, due to the helical magnetic structure developing Andreev double-
maximum structure is “delayed” in comparision with other magnetic
borocarbides.
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AB INITIO CALCULATIONS OF THE
OPTICAL AND MAGNETO-OPTICAL
PROPERTIES OF MODERATELY
CORRELATED SYSTEMS: ACCOUNTING
FOR CORRELATION EFFECTS

A. Perlov, S. Chadov, H. Ebert
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Abstract The influence of dynamical correlation effects on the magneto-optical
properties of ferromagnetic Fe and Ni has been investigated. In addi-
tion the temperature dependence of the self-energy and its influence on
the DOS and optical conductivity is considered. Magneto-optical prop-
erties were calculated on the basis of the one-particle Green’s function,
which was obtained from the DMFT-SPTF procedure. It is shown that
dynamical correlations play a rather important role in weakly correlated
Fe and substantially change the spectra for moderately correlated Ni.
Magneto-optical properties obtained for both systems are found in bet-
ter agreement with experiment than by conventional LDA calculations.

Keywords: Dynamical correlations, DMFT, magneto-optics, self-energy.

11.1 Introduction
Much information on the electronic structure of magnetic solids is

gained by optical and magneto-optical measurements, being useful tools
for analyzing the dispersion of (quasi-particle) bands. However, mea-
sured optical and magneto-optical spectra can hardly be interpreted
without accompanying theoretical calculations. For this purpose one
in general has to solve a corresponding many-electron problem, which
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is impossible without the use of more or less severe approximations.
For materials where the kinetic energy of the electrons is more impor-
tant than the Coulomb interactions, the most successful first principles
method is the Local (Spin-) Density Approximation (L(S)DA) to the
Density Functional theory (DFT) [1], where the many-body problem is
mapped onto a non-interacting system with a one-electron exchange-
correlation potential approximated by that of the homogeneous electron
gas. For the last two decades ab initio calculations of the optical and
magneto-optical properties of solids based on this approximation yielded
a good basis for such an interpretation, often leading to a quantitative
agreement between theoretical and experimental spectra. The situation
is very different when we consider more strongly correlated materials,
(systems containing f and d electrons) since in all the calculations the
LDA eigen-energies are implicitly interpreted to be the one-particle exci-
tation energies of the system. It is well known that there are two possible
sources of error connected with that approach: Firstly, the LDA provides
only an approximate expression for the (local) exchange-correlation po-
tential. Secondly, even with the exact exchange-correlation potential at
hand, one is left with the problem that there is no known correspondence
between the Kohn-Sham eigen-energies and the one-particle excitation
energies [2–5].

For an in principle exact description of the excitation energies the
non-local self-energy has to be considered. This, however, constitutes a
many-body problem. Therefore, DFT-LDA calculations must be supple-
mented by many-body methods to arrive at a realistic description of the
one-particle excitations in correlated systems. To give an example, let
us mention the GW approximation [6] which is well suited for the case of
insulators and semi-conductors and has also been applied successfully to
transition metals [6–9]. Another approach is to consider Hubbard-type
models where those Coulomb-interaction terms are included explicitly
that are assumed to be treated insufficiently within DFT-LDA. Already
the simplest Hartree-Fock like realization of such an approach called
LDA+U [10] scheme allowed to improve considerably the description of
the optical and magneto-optical spectra of strongly correlated systems
(mostly containing rare earths elements [11, 12]). The main advantage of
the LDA+U scheme is the energy independence of the self-energy which
allows to use only slightly modified standard band structure methods
for calculating optical and magneto-optical spectra. On the other hand
the scheme works rather good only for extremely correlated systems,
where Coulomb interactions (U) prevail considerably over the kinetic en-
ergy (bandwidth W). For moderately correlated systems (U≈W) which
applies for most 3d and 5f elements and their compounds one has to
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take into account a non-Hermitian energy dependent self-energy to get
a reasonable description of the electronic structure. Nowadays there are
several approaches available to deal with this situation. The most ad-
vanced one is the Dynamical Mean-Field Theory (DMFT) [13]. DMFT
is a successful approach to investigate strongly correlated systems with
local Coulomb interactions. It uses the band structure results calculated,
for example, within LDA approximation, as input and then missing elec-
tronic correlations are introduced by mapping the lattice problem onto
an effective single-site problem which is equivalent to an Anderson im-
purity model [14]. Due to this equivalence a variety of approximative
techniques have been used to solve the DMFT equations, such as Iter-
ated Perturbation Theory (IPT) [13, 15], Non-Crossing Approximation
(NCA) [16, 17], numerical techniques like Quantum Monte Carlo sim-
ulations (QMC) [18], Exact Diagonalization (ED) [15, 19], Numerical
Renormalization Group (NRG) [20], or Fluctuation Exchange (FLEX)
[21–23]. The DMFT maps lattice models onto quantum impurity models
subject to a self-consistency condition in such a way that the many-body
problem for the crystal splits into a single-particle impurity problem and
a many-body problem of an effective atom. In fact, the DMFT, due
to numerical and analytical techniques developed to solve the effective
impurity problem [13], is a very efficient and extensively used approxi-
mation for energy-dependent self energy Σ(ω). At present LDA+DMFT
is the only available ab initio computational technique which is able to
treat correlated electronic systems close to a Mott-Hubbard MIT (Metal-
Insulator Transition), heavy fermions and f -electron systems.

Concerning the calculation of the optical spectra we have to face the
following problem: one particle wave functions are not defined any more
and the formalism has to applied in the Green function representation.
Such a representation has already been derived [24] and successfully
applied for calculations in the framework of Korringa-Kohn-Rostoker
(KKR) Green-function method for LSDA calculations. The only draw-
back of such an approach is that it is highly demanding as to both
computational resources and computational time.

In this paper we propose a simplified way to calculate optical and
magneto-optical properties of solids in the Green function representation
based on variational methods of band structure calculations.

The paper is organized as following: in section 2 the formalism for
Green’s function calculations of optical and magneto-optical properties
that account for many-body effects through an effective self-energy is
presented. Then, the DMFT-SPTF method for the calculation of the
self-energy is considered. In section 3 the obtained results of our cal-



164 Optical and Magneto-Optical Properties of Moderately Correlated Systems

culations for Fe and Ni are discussed and compared with experimental
ones. The last section 4 contains the conclusion and an outlook.

11.2 Green’s function calculations of the
conductivity tensor

Optical properties of solids are conventionally described in terms of
either the dielectric function or the optical conductivity tensor which are
connected via the simple relationship:

σαβ(ω) = − iω

4π
(εαβ(ω) − δαβ) . (1)

The optical conductivity is connected directly to the other optical prop-
erties. For example, the Kerr rotation θK(ω) and so-called Kerr ellip-
ticity εK(ω) for small angles and | εxy |�| εxx | can be calculated using
the expression [25]:

θK(ω) + iεK(ω) =
− σxy(ω)

σxx(ω)
[
1 + 4π

ω σxx(ω)
]1/2

. (2)

The reflectivity coefficient r is given by

r =
(n − 1)2 + k2

(n + 1)2 + k2
(3)

with n and k being the components of the complex refractive index,
namely refractive and absorptive indices, respectively. They are con-
nected to the dielectric function via:

n + ik = (εxx + iεxy)1/2 . (4)

Microscopic calculations of the optical conductivity tensor are based
on the Kubo linear response formalism [26]:

σαβ(ω) = − 1
h̄ωV

∫ 0

−∞
dτe−i(ω+iη)τ 〈 [Jβ(τ), Jα(0)] 〉 (5)

involving the expectation value of the correlator of the electric current
operator Jα(τ). In the framework of the quasiparticle description of the
excitation spectra of solids the formula can be rewritten in the spirit
of the Greenwood approach and making use of the one-particle Green
function G(E):

σαβ(ω) =
ih̄

π2V

∫ ∞

−∞
dE

∫ ∞

−∞
dE′f(E − µ)f(µ − E′)
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[
Tr

{
ĵα�G(E′)ĵβ �G(E)

}
(E′ − E + iη)(h̄ω + E − E′ + iη)

+

Tr
{
ĵβ�G(E′)ĵα�G(E)

}
(E′ − E + iη)(h̄ω + E′ − E + iη)

]
, (6)

where �G(E) stands for the anti-Hermitian part of the Green’s function,
f(E) is the Fermi function and V is the volume of a sample. Taking the
zero temperature limit and making use of the analytical properties of
the Green’s function one can get a simpler expression for the absorptive
(anti-Hermitian) part of the conductivity tensor:

σ
(1)
αβ(ω) =

1
πω

∫ EF

EF−ω
dE tr

[
ĵα�G(E)ĵβ�G(E + h̄ω)

]
. (7)

The dispersive part of σαβ(ω) is connected to the absorptive one via
a Kramers-Kronig relationship.

The central quantity entering expression Eq.(7) is the one-particle
Green’s function defined as a solution of the equation:

[Ĥ0 + Σ̂(E) − E]Ĝ(E) = Î , (8)

where Ĥ0 is a one-particle Hamiltonian including the kinetic energy,
the electron-ion Coulomb interaction and the Hartree potential, while
the self-energy Σ̂(E) describes all static and dynamic effects of electron-
electron exchange and correlations. The L(S)DA introduces the self-
energy as a local, energy independent exchange-correlation potential
Vxc(r). As the introduction of such an additional potential does not
change the properties of Ĥ0 we will incorporate this potential to ĤLDA

and subtract this term from the self-energy operator. This means that
the self energy Σ used in the following is meant to describe exchange
and correlation effects not accounted for within LSDA.

With a choice of the complete basis set {|i〉} the Green’s function can
be represented as:

G(E) =
∑
ij

|i〉Gij(E)〈j| , (9)

with the Green’s matrix Gij being defined as

Gij(E) =
[
〈i|Ĥ|j〉 − E〈i|j〉 − 〈i|Σ̂(E)|j〉

]−1
. (10)

Dealing with crystals one can make use of Bloch’s theorem when choosing
basic functions |ik〉. This leads to the k-dependent Green’s function
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matrix

Gk
ij(E) = [Hk

ij − EOk
ij − Σk

ij(E)]−1 . (11)

Introducing the anti-Hermitian part of the Green’s function matrix as

Gk
ij(E) =

i

2
[Gk

ij(E) − Gk
ji(E)] (12)

and taking into account the above mentioned translational symmetry
we obtain the following expression for the absorptive part of the optical
conductivity:

σabs
αβ

=
1

πω

∫ EF

EF−h̄ω
dE

∫
d3k

∑
ij

J α
ij (k, E)J β

ji(k, E + h̄ω) (13)

with

J α
ij (k, E) =

∑
n

Gk
in(E)〈nk|ĵα|jk〉 (14)

The efficiency and accuracy of the approach is determined by the
choice of |ik〉. One of the computationally most efficient variational
methods is the Linear Muffin-Tin Orbitals method [27] which allows one
to get a rather accurate description of the valence/conduction band in
the range of about 1 Ry, which is enough for the calculations of the
optical spectra (h̄ω < 6 − 8 eV). This method has been used in the
present work. A detailed description of the application of the above
sketched approach in the framework of LMTO can be found elsewhere
[28].

Calculation of the self-energy
The key point for accounting of many-body correlations in the present

approach is the choice of approximation for the self-energy. As it was
discussed in the Introduction one of the most elaborated modern ap-
proximation is DMFT.

For the present work we have chosen one of the most computationally
efficient variants of DMFT: Spin polarized T -matrix plus fluctuation
exchange (SPTF) approximation [23], which is based on the general
many-body Hamiltonian in the LDA+U scheme:

H = Ht + HU

Ht =
∑
λλ′σ

tλλ′c+
λσcλ′σ

HU =
1
2

∑
{λi}σσ′

〈
λ1λ2 |v|λ′

1λ
′
2

〉
c+
λ1σc+

λ2σ′cλ′
2σ′cλ′

1σ , (15)



Green’s function calculations of the conductivity tensor 167

where λ = im are the site number (i) and orbital (m) quantum numbers,
σ =↑, ↓ is the spin projection, c+, c are the Fermion creation and annihi-
lation operators, Ht is the effective single-particle Hamiltonian from the
LDA, corrected for the double-counting of average interactions among
correlated electrons as it will be described below. The matrix elements
of the screened Coulomb potential are defined in the standard way

〈12 |v| 34〉 =
∫

drdr′ψ∗
1(r)ψ

∗
2(r

′)v
(
r − r′

)
ψ3(r)ψ4(r′), (16)

where we define for briefness λ1 ≡ 1 etc. A general SPTF scheme has
been presented recently [23]. For d electrons in cubic structures where
the one-site Green function is diagonal in orbital indices the general
formalism can be simplified. First, the basic equation for the T -matrix
which replaces the effective potential in the SPTF approach reads〈

13
∣∣∣Tσσ′

(iΩ)
∣∣∣ 24

〉
= 〈13 |v| 24〉 1

β

∑
ω

∑
56

〈13 |v| 56〉 ×

Gσ
5 (iω) Gσ′

6 (iΩ − iω)
〈
56

∣∣∣Tσσ′
(iΩ)

∣∣∣ 24
〉

, (17)

where ω = (2n + 1)πT are the Matsubara frequencies for temperature
T ≡ β−1 (n = 0,±1, ...).

At first, we should take into account the “Hartree” and “Fock” dia-
grams with the replacement of the bare interaction by the T -matrix

Σ(TH)
12,σ (iω) =

1
β

∑
Ω

∑
3σ′

〈
13

∣∣∣Tσσ′
(iΩ)

∣∣∣ 23
〉

Gσ′
3 (iΩ − iω)

Σ(TF)
12,σ (iω) = − 1

β

∑
Ω

∑
3

〈13 |Tσσ (iΩ)| 32〉Gσ
3 (iΩ − iω) .

(18)

Now we rewrite the effective Hamiltonian (15) with the replacement
〈12 |v| 34〉 by

〈
12

∣∣∣Tσσ′ ∣∣∣ 34
〉

in HU. To consider the correlation effects
described due to P-H channel we have to separate density (d) and mag-
netic (m) channels as in Ref.[21]

d12 =
1√
2

(
c+
1↑c2↑ + c+

1↓c2↓
)

m0
12 =

1√
2

(
c+
1↑c2↑ − c+

1↓c2↓
)

m+
12 = c+

1↑c2↓
m−

12 = c+
1↓c2↑ . (19)
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Then the interaction Hamiltonian can be rewritten in the following ma-
trix form

HU =
1
2
Tr

(
D+ ∗ V ‖ ∗ D + m+ ∗ V ⊥

m ∗ m− + m− ∗ V ⊥
m ∗ m+

)
, (20)

where ∗ means the matrix multiplication with respect to the pairs of
orbital indices, e.g.(

V ⊥
m ∗ m+

)
11′

=
∑
34

(
V ⊥

m

)
11′,22′

m+
22′ .

The supervector D is defined as

D =
(
d, m0

)
, D+ =

(
d+

m+
0

)
,

and the effective interactions have the following form:(
V ⊥

m

)
11′,22′

= −
〈
12

∣∣∣T ↑↓
∣∣∣ 2′1′〉

V ‖ =

(
V dd V dm

V md V dd

)

V dd
11′,22′ =

1
2

∑
σσ′

〈
12

∣∣∣Tσσ′∣∣∣ 1′2′〉− 1
2

∑
σ

〈
12 |Tσσ| 2′1′〉

V mm
11′,22′ =

1
2

∑
σσ′

σσ′ 〈12
∣∣∣Tσσ′∣∣∣ 1′2′〉− 1

2

∑
σ

〈
12 |Tσσ| 2′1′〉

V dm
11′,22′ = V md

22′,11′ =
1
2
[
〈
12

∣∣∣T ↑↑
∣∣∣ 1′2′〉−

〈
12

∣∣∣T ↓↓
∣∣∣ 1′2′〉−

〈
12

∣∣∣T ↑↓
∣∣∣ 1′2′〉

+
〈
12

∣∣∣T ↓↑
∣∣∣ 1′2′〉−

〈
12

∣∣∣T ↑↑
∣∣∣ 2′1′〉 +

〈
12

∣∣∣T ↓↓
∣∣∣ 2′1′〉] . (21)

To calculate the particle-hole (P-H) contribution to the electron self-
energy we first have to write the expressions for the generalized suscep-
tibilities, both transverse χ⊥ and longitudinal χ‖. One has

χ+−(iω) =
[
1 + V ⊥

m ∗ Γ↑↓(iω)
]−1 ∗ Γ↑↓(iω) , (22)

where
Γσσ′

12,34 (τ) = −Gσ
2 (τ) Gσ′

1 (−τ) δ23δ14 (23)

is an “empty loop” susceptibility and Γ(iω) is its Fourier transform,
τ is the imaginary time. The corresponding longitudinal susceptibility
matrix has a more complicated form:

χ‖(iω) =
[
1 + V ‖ ∗ χ

‖
0(iω)

]−1 ∗ χ
‖
0(iω), (24)
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and the matrix of the bare longitudinal susceptibility is

χ
‖
0 =

1
2

(
Γ↑↑ + Γ↓↓ Γ↑↑ − Γ↓↓

Γ↑↑ − Γ↓↓ Γ↑↑ + Γ↓↓

)
, (25)

in the dd-, dm0-, m0d-, and m0m0- channels (d, m0 = 1, 2 in the super-
matrix indices). An important feature of these equations is the coupling
of longitudinal magnetic fluctuations and of density fluctuations. It is
not present in the one-band Hubbard model due to the absence of the
interaction of electrons with parallel spins. For this case Eqs. (22) and
(24) coincide with the well-known result of Izuyama et. al. [29].

Now we can write the particle-hole contribution to the self-energy.
Similar to Ref.[22] one has

Σ(ph)
12,σ (τ) =

∑
34,σ′

Wσσ′
13,42 (τ) Gσ′

34 (τ) , (26)

with the P-H fluctuation potential matrix:

Wσσ′
(iω) =

[
W ↑↑ (iω) W⊥ (iω)
W⊥ (iω) W ↓↓ (iω)

]
, (27)

were the spin-dependent effective potentials are defined as

W ↑↑ =
1
2
V ‖ ∗

[
χ‖ − χ

‖
0

]
∗ V ‖

W ↓↓ =
1
2
V ‖ ∗

[
χ̃‖ − χ̃

‖
0

]
∗ V ‖

W ↑↓ = V ⊥
m ∗

[
χ+− − χ+−

0

]
∗ V ⊥

m

W ↓↑ = V ⊥
m ∗

[
χ−+ − χ−+

0

]
∗ V ⊥

m . (28)

Here χ̃‖, χ̃‖
0 differ from χ‖, χ‖

0 by the replacement of Γ↑↑ ⇔ Γ↓↓ in Eq.(25).
We have subtracted the second-order contributions since they have al-
ready been taken into account in Eq.(18).

Our final expression for the self energy is

Σ = Σ(TH) + Σ(TF) + Σ(PH) . (29)

This formulation takes into account accurately spin-polaron effects be-
cause of the interaction with magnetic fluctuations [30, 31], the energy
dependence of the T -matrix which is important for describing the satel-
lite effects in Ni [32], contains exact second-order terms in v and is
rigorous (because of the first term) for almost filled or almost empty
bands.
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Figure 1. The self-energy (a) of Fe for three different temperatures and correspond-
ing densities of states (b) and optical conductivities spectra (c). Full, dashed and
dotted lines correspond to T = 125K , T = 300K and T = 900K , respectively.

Since the LSDA Green’s function already contains the average electron-
electron interaction, in Eqs. (18) and (26) the static part of the self-
energy Σσ(0) is not included, i.e. we have

Σ̃σ(iω) = Σσ(iω) − Σσ(0). (30)

11.3 Results and discussion
The matrix elements of v appearing in Eq.(16) can be calculated in

terms of two parameters - the averaged screened Coulomb interaction
U and exchange interaction J [23]. The screening of the exchange in-
teraction is usually small and the value of J can be calculated directly.
Moreover numeric calculations show that the value of J for all 3d ele-
ments is practically the same and approximately equal to 0.9 eV. This
value has been adopted for all our calculations presented here. At the
same time direct Coulomb interaction undergoes substantional screening
and one has to be extremely careful making the choice for this parameter.
There are some prescription how one can get it within constraint LDA
calculation [2]. However, results obtained in this way depend noticeably
on the choice of the basis functions, way of accounting for hybridization
etc. Nevertheless the order of magnitude coming out from various ap-
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Figure 2. The real part of t2g component of Σ for T = 300K in Fe for various values
of U ; left: spin-up, right: spin-down.

proaches is the same giving the value of U in the range 1–4 eV. In the
present paper we are discussing the influence of the choice of U on the
calculated optical spectra.

Another parameter entering SPTF equations is temperature. For a
moment we are more interested in the low temperature properties while
computationally the higher the tempreture the less computationally de-
manding are the calculations. This is why we decided first to consider
the dependence of the self-energy on the temperature.

In Fig. 1 we show the self-energy obtained for Fe for three different
temperatures as well as corresponding densities of states and optical
conductivities spectra. One can see that despite the differences in Σ are
quite noticeable this leads only to moderate changes in the density of
states and does not affect the optical conductivity.

Much more important for the results is the parameter U . Fig. 2 shows
as an example the real part t2g component of Σ for T = 300K in Fe for
various values of U . Despite the overall shape of the curve is practically
the same the magnitude of the self-energy increasing with increase of U
as it is expected from the analytical expressions. This change in self-
energy leads to corresponding changes in the densities of states especially
noticeable for the minority spin subband. The influence of the choice
of U on the optical properties is even more pronounced (see Fig. 3).
The low energy peak in the diagonal part of the optical conductivity
shifts to the lower energies reaching the experimental position already
for U=1.5 eV. In the high energy part of the spectra large values of U
lead to a structure around 5 eV not seen in experiment.
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Again, the value U=1.5 eV gives also the best description for the
shape of the experimental curve. (Note, that the experimental results
for σ1

xx(ω) are multiplied by a factor of 1.7 to make the comparison more
obvious.) A rather different situation occurs for the off-diagonal part of
the optical conductivity. The low energy peak can be brought to the
proper position only with U=4 eV, at the same time the shape of the
theoretical curves above 2.5 eV has a rather different structure in com-
parison with the experimental one, only crossing the zero axis at the
same energy. However, a direct comparison of calculated σxy data with
experimental ones may be somewhat misleading as experimentally this
quantity cannot be measured directly and is usually obtained from ellip-
sometric measurements and measurements of the Kerr rotation spectra.
Thus in the left panel of the Fig. 3 we show our results for the calculated
polar Kerr rotation spectra in comparison with experimental data. As
one can see again the DMFT calculation with U = 1.5 eV describes the
experimental data in a rather satisfactory way.

If for Fe LSDA calculations already give a reasonable description of the
optical properties and the many-body correlation effects, which improves
only minor details, the situation in Ni is quite different. It is well-known
that LSDA fails to describe the bandwidth for Ni, causing problems in
the theoretical interpretation of all the spectroscopic experiments such
as photoemission, x-ray emission, optics, etc. The main reason for this
is the underestimation of electron-electron correlations which appear to
be relatively strong in this metal. Again, as in the case of Fe, we carried
out calculations with different values of U to find the best description of

Figure 3. Optical conductivity (left: diagonal; middle: off-diagonal) and polar Kerr
rotation (right) spectra in comparison with the experimental data of Fe. Experimental
data for conductivity are taken from Ref. [33, 34]; Kerr rotation spectra - from Ref. [35]
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Figure 4. The real part of t2g self-energy for U = 1.5, 2, 3 eV and corresponding
DOS plots for Ni; left: spin-up, right: spin-down.

Figure 5. Optical conductivity and polar Kerr rotation spectra in comparison with
the experimental data of Ni. Experimental data for conductivity are taken from
Ref. [36, 37]. Kerr rotation spectra - from Ref. [35]

the spectral properties of Ni. In Fig. 4 we show the real part of the t2g

self-energy for U = 1.5, 2, 3 eV as well as corresponding DOS plots.
Despite the changes in the amplitude of the self-energy are huge, all

self-energies lead to rather small changes in the density of states, nar-
rowing somewhat the bandwidth only and developing a low energy tail.
Nevertheless the diagonal part of the conductivity which reflects the con-
volution of the occupied and unoccupied states is much more affected
by the choice of U . The main change can be seen in the position of
high energy peak which is placed by LDA about 1 eV higher in com-
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parison with experiment. Accounting for the correlation effects shifts
this maximum bringing it to the proper position for U = 3 eV. The low
energy part of the spectra does not reflect too much influence of the U
parameter and deviates just slightly from the experimental curve. For
the off-diagonal part of the conductivity an improvement as compared
to LDA is not so pronounced as for the diagonal one, though the spectra
getting closer to experiment. It is worth to note that the actual value
of U doesn’t change the calculated spectrum of ωσ2

xy(ω). But again,
as mentioned in the case of Fe it is worth to compare calculations with
directly measured Kerr rotation spectra presented in Fig. 5. As one can
see, the improvement compared to LSDA results is substantional but
our results are still far from experiment concerning the peak position
both in the infrared and visible parts of the spectra. This disagreement
is apparently coming from the approximation that has been made and
is much more pronounced in the off-diagonal part of conductivity as it is
more sensitive to the details of the electronic structure being the result
of complex interplay of exchange splitting and spin-orbit coupling.

It is still unclear whether the mentioned problems are coming from the
single-site approximation for the self-energy (DMFT) itself or whether
they are reflecting the limitations of the simplified FLEX method of
solving the impurity many-body problem. To find out an answer more
elaborated solvers like QMC have to be used.

11.4 Conclusion and outlook
In the present paper we show a way to account for the particle-particle

correlations in the theoretical description of optical and magneto-optical
properties of the ferromagnetic 3d metals. We show that the dynamical
correlations play an important role even in weakly correlated materials
like Fe and can substantially change the shape of the spectra for moder-
ately correlated Ni. Even a rather simple way of accounting for dynamic
correlation allows to improve theoretical results substantionally though
not giving the perfect agreement with experiment.

Thus to go further one has to use more elaborated technique to ob-
tain the self-energy both within DMFT and beyond (for example, new
DMFT+GW approximation). Work along this line is in progress.
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Abstract Starting from the assumption that ferromagnetically correlated regions
exist in manganites even in the absence of long-range magnetic order,
we construct a model of charge transfer due to the spin-dependent tun-
nelling of charge carriers between such regions. This model allows us
to analyze the temperature and magnetic field dependence of resistiv-
ity, magnetoresistance, and magnetic susceptibility of phase-separated
manganites in the temperature range corresponding to non-metallic be-
havior. The comparison of theoretical and experimental results reveals
the main characteristics of the phase-separated state.

Keywords: manganites, phase separation, spin-dependent tunnelling

12.1 Introduction
Unusual properties and the richness of the phase diagram of mangan-

ites gave rise to a huge number of papers dealing with different aspects
of the physics of these compounds. A special current interest to mangan-
ites is related to the possible existence of various inhomogeneous charge
and spin states such as lattice and magnetic polarons, droplet and stripe
structures, etc. [Dagotto et al., 2001; Nagaev, 2001; Kagan and Kugel,
2001]. Analogous phenomena are well known for many strongly corre-
lated systems where the electron-electron interaction energy is higher
than the kinetic energy. One of the most spectacular manifestations
of such a behavior, i.e. the formation of ferromagnetic (FM) droplets
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(ferrons) was predicted in Ref. [Nagaev, 1967] for low-doped antiferro-
magnetic (AFM) semiconductors. Another example is a formation of
a string (linear trace of frustrated spins) upon the motion of a hole in
an AFM isolator [Bulaevskii et al., 1968]. Both these examples refer
to the so-called electron phase separation, when a single charge carrier
changes locally its electronic environment. In addition to this nanoscale
phase separation, manganites can also exhibit a large-scale phase separa-
tion corresponding to the coexistence of different phases characteristic of
first-order phase transitions (e.g., the transition between AFM and FM
states). An example of this large-scale phase separation is given by the
formation of relatively large FM droplets inside the AFM matrix. These
droplets with linear sizes of about 100-1000 Å were observed in several
experiments, in particular, by neutron diffraction methods in Ref. [Bal-
agurov et al., 2001]. Note also that the attraction between one-electron
ferromagnetic droplets (mediated by either elastic or magneto-dipole
interaction) can result in merging of the ferrons and formation of inter-
mediate to large-scale inhomogeneities [Lorenzana et al., 2001]. There
exist clear experimental indications suggesting that the phase separation
is inherent for both magnetically ordered phases and the paramagnetic
state [Dagotto et al., 2001; Nagaev, 2001; Kagan and Kugel, 2001; Solin
et al., 2003]. Therefore, the formation of inhomogeneous states proved
to be a typical phenomenon for manganites in different parts of their
phase diagram. Moreover, the phase separation should strongly affect
the magnetic and transport properties of manganites.

Phase separation arguments are most often used for the domain of
the existence of antiferromagnetism and especially in the vicinity of a
transition between AFM and FM states. However, as we mentioned ear-
lier, a manganite can be inhomogeneous even in the paramagnetic state
at temperatures exceeding the corresponding phase transition temper-
ature. An analysis of experimental data reveals a substantial similar-
ity in the high-temperature behavior of resistivity, magnetoresistance,
and magnetic susceptibility for various manganites with different low-
temperature states [Babushkina et al., 2003; Fisher et al., 2003; Wagner
et al., 2002; Zhao et al., 2001]. In addition, the magnetoresistance turns
out to be rather large far from the FM-AFM transition and even in the
paramagnetic region. Furthermore, the magnetic susceptibility of man-
ganites is substantially higher than that for typical antiferromagnets.
These experimental data clearly suggest the existence of significant FM
correlations in the high-temperature range.

Here, we start from the assumption that the ferromagnetically corre-
lated regions exist in manganites above the temperatures characterizing
the onset of the long-range magnetic (FM or AFM) ordering. This
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assumption allows us to describe the characteristic features of resis-
tivity, magnetoresistance, and magnetic susceptibility of manganites in
the non-metallic state within the framework of one model. Below, we
base our discussion on the model of conductivity of phase-separated
manganites developed in Ref. [Babushkina et al., 2003; Rakhmanov
et al., 2001; Sboychakov et al., 2002; Sboychakov et al., 2003] and use
experimental data for manganites of different compositions reported
in Ref. [Babushkina et al., 2003; Fisher et al., 2003; Wagner et al.,
2002; Zhao et al., 2001]. Note that in this paper we do not limit our-
selves by consideration of only one-electron magnetic droplets (ferrons)
but rather generalize previously obtained results to the case of arbitrary
number of electrons in ferromagnetically correlated domains.

In Section 2, the temperature dependence of resistivity is analyzed
for the inhomogeneous state with the density of FM-correlated regions
being far from the percolation threshold. In Sections 3 and 4, within
the same assumptions, we discuss the magnetoresistance of manganites
and their magnetic susceptibility, respectively. As a result, it is shown
that the model of inhomogeneous state provides a good description for
the high-temperature behavior of manganites.The comparison of the-
oretical results and experimental data allows us to reveal the general
characteristics of ferromagnetically correlated regions.

12.2 Resistivity
In the analysis of the temperature dependence of resistivity, we will

have in mind the physical picture discussed in the paper [Rakhmanov
et al., 2001]. That is, we consider a non-ferromagnetic insulating ma-
trix with small ferromagnetic droplets embedded in it. Charge transfer
occurs via tunnelling of charge carriers from one droplet to another. A
tunnelling probability depends, strictly speaking, upon applied magnetic
field. We assume that the droplets do not overlap and the whole sys-
tem is far from the percolation threshold. Each droplet can contain k
charge carriers. When a new charge carrier tunnel to a droplet, it en-
counters with the Coulomb repulsion from the carriers already residing
at this droplet. The repulsion energy A is assumed to be relatively large
(A > kBT ). In this case, the main contribution to the conductivity is
related to the processes involving the droplets containing k, k + 1, or
k− 1 carriers. The corresponding expression for the resistivity ρ(T ) has
the form

ρ =
kBT exp(A/2kBT )

128πe2ω0l5kn2
, (1)

where e is the charge of the electron, ω0 determines the characteristic en-
ergy of electrons in a droplet, l is the characteristic tunnelling length, and
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Figure 1. Temperature dependence of the resistivity for (La1−yPry)0.7Ca0.3MnO3

samples [Babushkina et al., 2003]. Squares, triangles, and circles correspond to y = 1
(with 16O → 18O isotope substitution), y = 0.75 (with 16O → 18O isotope substitu-
tion), and y = 0.75 (with 16O), respectively. Solid line is the fit based on Eq. (1).

n is the concentration of ferromagnetic droplets. Expression (1) could be
easily derived by the method described in Ref. [Rakhmanov et al., 2001].
This expression is a straightforward generalization of the correspond-
ing formula for the conductivity obtained for the case of one-electron
droplets [Rakhmanov et al., 2001]. Electrical resistivity (1) exhibits a
thermoactivation behavior where activation energy is equal to one half
of the Coulomb repulsion energy (for details see Ref. [Rakhmanov et al.,
2001]).

Expression (1) provides a fairly good description for the temperature
dependence of the electrical resistivity for various manganites. As an
illustration, in Figs. 1-4, we present experimental ρ(T ) curves for six
different materials. Experimental data are plotted for samples reported
in Ref. [Babushkina et al., 2003; Fisher et al., 2003; Wagner et al., 2002;
Zhao et al., 2001]. The authors of these papers kindly provided us
by the detailed numerical data on their measurements. As it could be
seen from the figures and their captions, the examined samples differ
in their chemical composition, type of crystal structure, magnitude of
electrical resistivity (at fixed temperature, the latter varies for different
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Figure 2. Temperature dependence of the resistivity for Pr0.71Ca0.29MnO3 sam-
ple [Fisher et al., 2003]: experimental data (circles) and theoretical curve (solid line)
based on Eq. (1).

samples by more than two orders of magnitude), and also by their low-
temperature behavior (which is metallic for some samples and insulating
for the others). On the other hand, in the high-temperature range (above
the point of ferromagnetic phase transition), ρ(T ) exhibits a similar
behavior for all the samples, which is well fitted by the relationship
ρ(T ) ∝ T exp(A/2kBT ) (solid lines in the figures).

Based on Eq. (1) and experimental data, one can deduce some quan-
titative characteristics of the phase-separated state. In particular, the
analysis carried out in the papers [Zhao et al., 2001; Zhao et al., 2002]
demonstrated that an accurate estimate for the value of Coulomb en-
ergy A can be found by fitting experimental data and using Eq. (1).
The data represented in Fig. 1-4 suggest that the Coulomb barrier A
can be determined with an accuracy of 2-3% and its value lies in the
narrow range from 3500 to 3700 K (see Table 1). As it was mentioned
in the papers [Zhao et al., 2001; Rakhmanov et al., 2001; Zhao et al.,
2002], the characteristic frequency ω0 in (1) can also vary in a restricted
range of 1013-1014 Hz. This estimate might be derived, for example, from
the uncertainty principle: h̄ω0 ∼ h̄2/2ma2, where a is a characteristic
droplet size, and m is the electron mass. Assuming a ∼ 1 − 2 nm, one



182 Spin-dependent Transport in Phase-Separated Manganites

Figure 3. Temperature dependence of the resistivity for a layered manganite
(La0.4Pr0.6)1.2Sr1.8Mn2O7 [Wagner et al., 2002]: experimental data (circles) and the-
oretical curve (solid line) based on Eq. (1).

obtains the latter estimate. Note also that these values of a droplet size
allow us to find an estimate for the barrier energy A, which is accurate
within the order of magnitude. This energy is of the order of e2/εa, and
substituting permittivity ε ∼ 10, we get a value of A consistent with the
experimental data.

Table 1.

Samples A, K ρ(200 K), Ω·cm l5n2k, cm−1 Data source

(La1−yPry)0.7Ca0.3MnO3 3650 1.25 2 · 105 Fig. 1 a)

Pr0.71Ca0.29MnO3 3500 0.57 3 · 105 Fig. 2 b)

(La0.4Pr0.6)1.2Sr1.8Mn2O7
∗) 3600 1.5 1.5 · 105 Fig. 3 c)

La0.8Mg0.2MnO3 3700 283 1 · 103 Fig. 4 d)

a) [Babushkina et al., 2003]
b) [Fisher et al., 2003]
c) [Wagner et al., 2002]
d) [Zhao et al., 2001]
∗) The chemical formula of this composition can be written as (La0.4Pr0.6)2−2xSr1+2xMn2O7
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Figure 4. Temperature dependence of the resistivity for La0.8Mg0.2MnO3 sample
[Zhao et al., 2001]: experimental data (circles) and theoretical curve (solid line) based
on Eq. (1).

It is rather difficult to estimate the tunnelling length l. However, we
can say that in the domain of the applicability of relationship (1), length l
cannot be much smaller than an interdroplet spacing [Rakhmanov et al.,
2001]. In another situation, the behavior of the resistivity would be
different. In the quasiclassical approximation, the tunnelling length is
of the order of the characteristic size for the wave function provided
the barrier height is comparable with the depth of the potential well.
In our case, the size of the electron wave function is of the order of a
ferron size, while the height of the barrier practically coincides with the
depth of the potential well. The latter naturally follows from the model
of ferron formation [Nagaev, 2001]. Therefore, it seems reasonable to
assume the tunnelling length to be of the same order as a ferron size
(few nanometers), though, generally speaking, it can substantially differ
from a.

It is rather nontrivial task to estimate the concentration n of fer-
rons. In fact, following the papers [Zhao et al., 2001; Zhao et al., 2002],
concentration n could be determined by the dopant concentration x
as n ≈ x/d3. Yet this approach would bring at least two contradic-
tions. First, even under the moderate concentration of divalent element
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x = 0.1 − 0.2 the droplets should overlap giving rise to the continu-
ous metallic and ferromagnetic cluster. However, the material could be
insulating even at larger concentrations (x = 0.5 − 0.6), at least, in a
high-temperature range. Second, as it can be seen from the experimental
data, the relation between a dopant concentration and the conductivity
of manganites is relatively complicated - for some materials changing
x by a factor of two can change resistivity by two orders of magnitude
[Zhao et al., 2001; Zhao et al., 2002], for other materials ρ(x) exhibits
even a nonmonotonic behavior in certain concentration ranges. Note
that these discrepancies are essential not only for our model of phase
separation but also for other models dealing with the properties of man-
ganites (e.g., polaronic models [Ziese and Srinitiwarawong, 1998; Jakob
et al., 1998]). Unfortunately, the authors of the papers [Zhao et al.,
2001; Zhao et al., 2002] do not take into account these considerations
when analyzing their results from the standpoint of the existing theories
of the conductivity in manganites. The natural conclusion is that the
number of carriers, which contribute to the charge transfer processes
does not coincide with the concentration of the divalent dopant x. This
is particularly obvious in the case of charge ordering when some part of
the carriers introduced by doping becomes localized and forms a regular
structure.

Therefore, using expression (1) and experimental data, we are able to
obtain also the value of the combination l5n2k. In Table 1, the values
of Coulomb energy A, resistivity ρ at 200 K and, combination l5n2k
are presented. All estimations were made based on Eq. (1) and the
experimental data of Fig. 1-4. Note that whereas the accuracy of the
estimate for A is about ±50 K, the combination l5n2k could be estimated
only by the order of magnitude (at least, due to the uncertainty in the
values of frequency ω0).

12.3 Magnetoresistance
In the papers [Babushkina et al., 2003; Sboychakov et al., 2002; Sboy-

chakov et al., 2003], it was demonstrated that the model of phase sep-
aration considered here results in a rather specific dependence of the
magnetoresistance MR(T, H) on temperature and magnetic field. At
relatively high temperatures and not very strong magnetic fields, the
expression for the magnetoresistance reads

MR ≈ 5 · 10−3
µ3

BS5N3
efZ2g3J2Ha

(kBT )5
H2, (2)
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Figure 5. Temperature dependence of MR/H2 ratio for (La1−yPry)0.7Ca0.3MnO3

samples [Babushkina et al., 2003]. Squares, triangles, circles, diamonds, and asterisks
correspond to y = 0.75 , y = 0.75 (with 30% of 18O), y = 0.75 (with 16O → 18O
isotope substitution), y = 1, and y = 1 (with 16O → 18O isotope substitution),
respectively. Solid line is the fit based on Eq. (2) (MR ∝ 1/T 5).

where µB is the Bohr magneton, S is the average spin of a manganese
ion, Nef is the number of manganese atoms in a droplet, Z is the num-
ber of nearest neighbors of a manganese ion, g is the Landé factor, J
is the exchange integral of the ferromagnetic interaction, and Ha is the
effective field of magnetic anisotropy of a droplet. The MR ∝ H2/T 5 de-
pendence was observed in the experiments for a number of manganites in
the region of their non-metallic behavior [Babushkina et al., 2003; Fisher
et al., 2003]. The same high-temperature behavior of the magnetoresis-
tance can be obtained by processing the experimental data reported in
Ref. [Wagner et al., 2002; Zhao et al., 2001] (see Figs. 5-8).

The value of S depends on the relative content of a trivalent and a
tetravalent manganese ions and ranges from 3/2 to 2. Below it is as-
sumed that S = 2 for all the estimations. Parameter Z is, in fact,
the number of manganese ions interacting with a conduction electron
placed in a droplet. It is reasonable to assume that Z is of the order
of the number of nearest-neighbor sites around a manganese ion, i.e.
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Figure 6. Temperature dependence of the magnetoresistance for Pr0.71Ca0.29MnO3

sample at H = 2T: experimental data (triangles) [Fisher et al., 2003] and theoretical
curve (solid line) based on Eq. (2).

Z ≈ 6. The Landé factor g is determined from the experimental data.
For manganese, g is usually assumed to be close to its spin value 2. The
exchange integral J characterizes the magnetic interaction between a
conduction electron and the molecular field generated by ferromagneti-
cally correlated spins in a droplet. It is this molecular field that produces

Table 2.

Samples Nef x k Data source

(La1−yPry)0.7Ca0.3MnO3 250 0.3 75 Fig. 5 a)

Pr0.71Ca0.29MnO3 200 0.29 58 Fig. 6 b)

(La0.4Pr0.6)1.2Sr1.8Mn2O7
∗) 250 0.4 100 Fig. 7 c)

La0.8Mg0.2MnO3 265 0.2 53 Fig. 8 d)

a) [Babushkina et al., 2003]
b) [Fisher et al., 2003]
c) [Wagner et al., 2002]
d) [Zhao et al., 2001]
∗) The chemical formula of this composition can be written as (La0.4Pr0.6)2−2xSr1+2xMn2O7
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Figure 7. Temperature dependence of the magnetoresistance for
(La0.4Pr0.6)1.2Sr1.8Mn2O7 sample at H = 1T: experimental data (triangles)
[Wagner et al., 2002] and theoretical curve (solid line) based on Eq. (2).

a ferromagnetic state at low temperatures. Therefore, we can use a well-
known relationship S(S + 1)ZJ/3 = kBTC of the molecular field theory
to evaluate the exchange integral (here TC is the Curie temperature).
The value of TC is determined from the experiment (based on neutron
diffraction or magnetization measurements). For example, in La-Pr-Ca
manganites, it is about 100 − 120 K [Balagurov et al., 2001].

The magnetic anisotropy of manganites related to crystal structure
of these compounds is usually not too high. This implies that the main
contribution to the effective field of a magnetic anisotropy Ha stems
from the shape anisotropy of a droplet and can be evaluated as Ha =
π(1 − 3Ñ)Ms, where Ñ is the demagnetization factor of the droplet
(along the main axis), Ms is the magnetic moment per unit volume of
the droplet. Below we assume a droplet to be sufficiently elongated
(Ñ � 1) and Ms = SgµB/d3. Then Ha ≈ 2 kOe.

The value of Nef is determined by the size of a droplet and it could
be found from the neutron diffraction experiments. However, we are un-
aware of such measurements performed for the systems under discussion
in a wide temperature range. Therefore, Nef is treated here as a fitting
parameter. Hence, using Eq. (2) and the above estimates, we can deter-
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Figure 8. Temperature dependence of the magnetoresistance for La0.8Mg0.2MnO3

sample at H = 1.5T: experimental data (triangles) [Zhao et al., 2001] and theoretical
curve (solid line) based on Eq. (2).

mine the value of Nef from the experimental data on the magnetoresis-
tance (in the range of parameters corresponding to MR ∝ H2/T 5). The
results are summarized in Table 2. In Figs. 5-8, solid curves correspond
to the fitting procedure based on Eq. (2). The value of TC was chosen
to be equal to 120 K.

As a result, the size of the ferromagnetically correlated regions turns
out to be nearly the same at temperatures about 200-300 K for all com-
positions under discussion. The volume of these regions is approximately
equal to that of a ball with 7-8 lattice constants in diameter. It is nat-
ural to assume that within a droplet the number of charge carriers con-
tributing to tunnelling processes equals to the number of dopant atoms.
Hence, we can write that k = Nefx, where x is the atomic percentage of
dopants. The values of x and k are presented in Table 2.

12.4 Magnetic susceptibility
The concentration of droplets can be evaluated based on the mag-

netic susceptibility data, if we assume that the dominant contribution
to the susceptibility comes from the ferromagnetically correlated regions.
At high temperatures (kBT � µBgSNefH, µBgSNefHa), susceptibility
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Figure 9. Temperature dependence of the inverse magnetic susceptibility for
La1−yPry)0.7Ca0.3MnO3 sample at y = 1: experimental data (triangles) [Babushkina
et al., 2003] and theoretical curve (solid line) based on Eq. (3). For the other samples
of this group, the behavior of χ(T ) at high temperatures is rather similar to that
illustrated in this figure (see Ref. [Babushkina et al., 2003]).

χ(T ) can be written as

χ(T ) =
n(µBgSNef)2

3kB(T − Θ)
, (3)

Table 3.

Samples Θ, K n, cm−3 p l, Å Data source

(La1−yPry)0.7Ca0.3MnO3 55 1.8 · 1018 0.03 24 Fig. 9 a)

Pr0.71Ca0.29MnO3 105 6.0 · 1018 0.07 17 Fig. 10 b)

(La0.4Pr0.6)1.2Sr1.8Mn2O7
∗) 255 2.5 · 1018 0.04 19 Fig. 11 c)

La0.8Mg0.2MnO3 150 0.6 · 1018 0.01 14 Fig. 12 d)

a) [Babushkina et al., 2003]
b) [Fisher et al., 2003]
c) [Wagner et al., 2002]
d) [Zhao et al., 2001]
∗) The chemical formula of this composition can be written as (La0.4Pr0.6)2−2xSr1+2xMn2O7
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Figure 10. Temperature dependence of the inverse magnetic susceptibility for
Pr0.71Ca0.29MnO3 sample: experimental data (triangles) [Fisher et al., 2003] and
theoretical curve (solid line) based on Eq. (3). The sample was porous, its density
was assumed to differ by a factor of 0.7 from the theoretical value.

where Θ is the Curie-Weiss constant. The results of the processing of
the experimental data are presented in Table 3. In Figs. 9-12, the solid
curves correspond to the fitting procedure based on Eq. (3). Using these
results, we can also estimate the concentration of ferromagnetic phase
as p = nNefd3. For all the samples, the value of the lattice constant d
was taken to be equal to 3.9 Å. Based on the data of Tables 1-3, it is
also possible to find an estimate for the tunnelling length l.

12.5 Discussion
To sum up, the analysis performed in the previous sections demon-

strates that a simple model of the electron tunnelling between the fer-
romagnetically correlated regions (FM droplets) provides a possibility
to describe the conductivity and the magnetoresistance data for a wide
class of manganites. The comparison of the theoretical predictions with
the experimental data on the temperature dependence of the resistiv-
ity, magnetoresistance, and magnetic susceptibility enables us to reveal
various characteristics of the phase-separated state such as the size of
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Figure 11. Temperature dependence of the inverse magnetic susceptibility for the
sample of (La0.4Pr0.6)1.2Sr1.8Mn2O7layered manganite: experimental data (triangles)
[Wagner et al., 2002] and theoretical curve (solid line) based on Eq. (3).

FM droplets, their density, the number of electrons in a droplet and also
to estimate the characteristic tunnelling length of the charge carriers.
The determined values of parameters appear to be rather reasonable.
Indeed, the characteristic tunnelling length turns out to be of the or-
der of FM droplet size, the concentration of the ferromagnetic phase in
the high-temperature range is substantially smaller than the percolation
threshold and varies from about 1 % to 7 %.

Note also that the droplets contain 50-100 charge carriers, whereas
parameter A deduced from the experimental data is equal by the order
of magnitude to the energy of Coulomb repulsion in a metallic ball of
(7 ÷ 8) d in diameter. The obtained numerical values for the droplet
parameters (characteristic tunnelling barrier, size, and tunnelling length)
are close for manganites with drastically different transport properties.

The large magnitude of the 1/f noise in the temperature range cor-
responding to the insulating state is another characteristic feature of
the phase-separated manganites [Podzorov et al., 2000; Podzorov et al.,
2001]. In the framework of the model of phase separation discussed
here, the following expression for the Hooge constant was derived in the
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Figure 12. Temperature dependence of the inverse magnetic susceptibility for
La0.8Mg0.2MnO3 sample: experimental data (triangles) [Zhao et al., 2001] and theo-
retical curve (solid line) based on Eq. (3).

papers [Rakhmanov et al., 2001; Sboychakov et al., 2002]

αH =
〈δU2〉ωVsω

U2
DC

= 2π2l3 ln2
(

ω̃0

ω

)
, (4)

where 〈δU2〉ω is the spectral density of the voltage fluctuations, Vs is the
volume of a sample, UDC is the applied voltage, and ω̃0 = ω0 exp(A/2kBT ).
Substituting to Eq. (4) the estimated values of the parameters presented
in the tables and in the text, we get αH ≈ 10−16 cm3 at temperatures
100-200 K and frequencies 1-1000 s−1. This value of αH is by 3-5 orders
of magnitude higher than the corresponding values for semiconductors.

Thus, we have a rather consistent scheme describing the transport
properties of manganites under condition that the ferromagnetically cor-
related regions do not form a percolation cluster. Moreover, the pre-
sented approach proves to be valid for a fairly wide range of the dopant
concentrations. However, as it was mentioned above, the relation be-
tween the concentration of ferromagnetic droplets and the doping level
is far from being well understood. If the picture of the phase separation
is believed to be applicable, it becomes obvious that not all electrons
or holes introduced by doping participate in the transport processes.
Below we try to present some qualitative arguments illustrating the pos-
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sible difference in the effective concentration of charge carriers below and
above the transition from paramagnetic to magnetically ordered state.

In the phase diagram of a typical manganite, one would have the
AFM state with FM-phase inclusions in the low-temperature range and
at a low doping level. The transition from AFM to FM phase occurs
upon doping. At high temperatures, manganites are in the paramagnetic
(PM) state. When the temperature decreases, we observe the transition
from PM to AFM or FM state depending on the doping level.

Let us consider the behavior of such a system in the vicinity of a
triple point. In the AFM phase, radius R of a region which one electron
converts into FM state can be estimated as R = d

(
πt/4JffS2Z

)1/5 [Ka-
gan and Kugel, 2001], where Jff is an AFM interaction constant. For
high-temperature PM phase, a radius RT of a region that one electron
converts into FM state corresponds to the size of the so-called tem-
perature ferron and equals to RT = d (πt/4kBT ln(2S + 1))1/5 [Kagan
and Kugel, 2001]. The critical concentration xc ≈ 0.15 of the over-
lapping of low-temperature ferrons can be derived from the estimate
xc ≈ 3/4π · (d/R)3, while for the high-temperature ferrons it follows
from the estimate δc ≈ 3/4π · (d/RT)3. Substituting the expressions for
the radii of the high- and the low-temperature ferrons to the ratio xc/δc,
we obtain the following estimate for this ratio in the vicinity of the triple
point corresponding to the coexistence of FM, AFM, and PM phases:

xc

δc
∼

[
T ln(2S + 1)

zJffS2

]3/5

∼
[
TC ln(2S + 1)

TN

]3/5

, (5)

where TC and TN are the Curie and the Neel temperatures, respectively.
For the manganites under discussion, we have TC ∼ TN ∼ 120-150 K
and ln(2S + 1) ∼ 1.6 for S = 2, hence δc ≤ xc. The sign of this
inequality is in agreement with experimental data which imply δ ∼ 1 −
7 %. Thus, we do not have a clear explanation of the charge disbalance in
paramagnetic region in spite of the fact that the trend is correctly caught
by our simple estimates. Probably, at x > xc (in real experiments the
concentration x can be as high as 50 %), the residual charge is localized in
the paramagnetic matrix outside the temperature ferrons. The detailed
study of this problem will be presented elsewhere.
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NEW MAGNETIC SEMICONDUCTORS
ON THE BASE OF TLBV I-MEBV I SYSTEMS
(ME-FE, CO, NI, MN; B-S, SE, TE)

E. M. Kerimova, S. N. Mustafaeva, A. I. Jabbarly, G. Sultanov, A.I.
Gasanov, R. N. Kerimov

Institute of Physics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan.

Abstract Fe-Tl, Co-Tl, Ni-Tl, and Mn-Tl chalcogenides are representatives of a
new class of magnetic semiconductors. We propose a methods of syn-
thesizing of TlMeBV I samples and present the results of investigations
of electrical, thermoelectrical and magnetic properties of the prepared
compounds.

Keywords: Chalcogenides, magnetic semiconductors, thermoelectrical and magnetic
properties.

Fe-Tl, Co-Tl, Ni-Tl, and Mn-Tl chalcogenides are representatives of
new class of magnetic semiconductors. Some physical properties of these
compounds were studied earlier in [1-7]. In the present work, we propose
a methods of synthesizing of TlMeBV I samples and present the results
of investigations of electrical, thermoelectrical and magnetic properties
of the prepared compounds.

The synthesis of TlNiS2 was carried out in an ampule evacuated to
pressure 10−3 Pa. The ampule was fabricated from a fused silica tube.
In this case, TlNiS2 samples were prepared through the interaction of
initial elements (Tl, Ni, S) of high -purity grade. In order to prevent
the ampule filled with reactants from explosion, the furnace temperature
was raised to the melting temperature of sulfur (391K) and the ampule
was held at this temperature for 3 h. Then, the furnace temperature was
raised to 1400K at a rate of 100 K/h and the ampule was held at this
temperature for 1.5-2.0 h, after which it was cooled to 300K. Thereafter
the ampule was broken; the alloy contained in it was crushed to powder,
the powder thus prepared was placed in a new ampule, which was then
evacuated to a pressure of 10−3 Pa; and the above process was repeated
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196 New Magnetic Semiconductors on the Base of TlBV I-MeBV I Systems

with subsequent cooling to 600K. At this temperature, the TlNiS2 sam-
ple was annealed for 240 h.
The TlNiS2 samples thus synthesized were subjected to x-ray powder
diffraction analysis on a DRON-3M diffractometer (CuKα radiation, Ni
filter; λα=1.5418Å). The x-ray diffraction patterns were recorded con-
tinuously. The diffraction angles were determined by measuring the in-
tensity peaks. The error in determining the angles of reflections did not
exceed 0,02◦ . For the TlNiS2 sample, 24 diffraction reflections measured
were unambiguously indexed in the hexagonal system with the lattice
parameters: a=12.2754Å; c=19.3178A; z=32; ρ =6.896 g/cm3.

20 diffraction reflections, fixed of TlNiSe2 sample are displayed on the
basis of tetragonal syngony with the lattice parameters: a=10.2015Å;
c=20.8632Å; z=27; ρ=8.692 g/cm3.

Figure 1. Temperature dependence of the thermopower in TlNiS2. The inset shows
the high-temperature branch α(T) on an enlarged scale.

The synthesis regims of TlMnSe2 and TlMnS2 phases have been worked
out. X-ray analysis showed that TlMnS2 is crystallized in tetragonal
structure with elementary cell parameters: a=6.53; c=23.96A; z=8;
ρ=6.71 g/cm3.

Phase relations in TlSe-FeSe system were studied, and the compound
TlFeSe2 was identified. It was established that TlFeSe2 is congruently
melting compound (Tm=903K). TlFeSe2 single crystals were obtained
by Bridgmen - Stokberger method. XRD data indicate that TlFeSe2

crystallizes in the monoclinic structure with lattice parameters: a=12.02Å;
b=5.50Å; c=7.13A ; β=118.52◦.

Phase relations in TlSe-CoSe system were studied too, and the com-
pound TlCoSe2 was identified. It was established that TlCoSe2 is con-
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Figure 2. Dependence of the conductivity of TlNiS2 on (a) 103/T and (b) T−1/4.

gruently melting compound with Tm=650± 10K. XRD data indicate
that TlCoSe2 crystallizes in the hexagonal system with lattice parame-
ters: a=3.747Å; c=22.772Å.

Complete phase diagram of TlTe-FeTe system was studied. It was es-
tablished that liquidus curve of TlTe-FeTe system consist of crystalliza-
tion regions of Tl2Te, TlFeTe2 and FeTe compounds. Simple eutectics
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of (TlTe)0,4(FeTe)0,6 composition is formed between TlFeTe2 and FeTe
compounds. This eutectic is melted at 813K.

The results of the investigations of the electrical and thermoelectric
properties of TlNiS2 samples are as follows. Figure 1 depicts the tem-
perature dependence of the thermopower for TlNiS2 in the temper-
ature range 80-300 K. As the temperature increases from 80 K, the
thermopower increases first moderately and then more rapidly and, at
T=235 K, reaches a maximum (91µV/K). With a further increase in the
temperature, the thermopower sharply decreases from 91 to ˜0.5 µV/K
and then remains nearly constant to room temperature. In fig. 1, the in-
set shows the high-temperature branch of the thermopower on a tenfold
enlarged scale of the ordinate axis. The positive sign of the thermopower
indicates that holes are the majority charge carriers in TlNiS2 .

According to [8], the thermopower of chalcogenide semiconductors in
the case of p-type conduction can be represented in the form:

α(T ) = −k

e

[
∆E

kT
+ γ

]
(1)

where γkT is the mean energy transferred by holes, γ≈1, ∆Å is the
activation energy of conduction, k is the Boltzmann constant, and e is
the elementary charge.

It should be noted that, when the thermopower is not very high (of
the order of k/e=86 µV/K or less), the analysis of the temperature de-
pendence α(T) is more complicated. If the material remains a p-type
semiconductor (as in the case under consideration), small values of the
thermopower can be due to the fact that the activation energy ∆E is of
the order of kT . In order to check the fulfillment of this criterion, we
estimated the activation energy ∆E from the slope of the temperature
dependence of the conductivity for TlNiS2 at T<240K (Fig. 2a). It is ev-
ident from Fig. 2a, that the temperature dependence of the conductivity
has a variable slope.

For this reason, we estimated the activation energy ∆E in the tem-
perature range 160-240K; as a result, the activation energy was found
to be equal to 1.54x10−2eV. For these temperatures, the values of kT
were determined to be (1.38-2.00)x10−2 eV. In other words, the values
of ∆E and kT for TlNiS2 at low temperature are actually of the same
order of magnitude, as is the case with metals. In metals, the current is
transferred by charge carriers in the energy band whose thickness is of
the order of kT in the vicinity of the Fermi energy (EF). According to
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Figure 3. Temperature dependence of conductivity in TlMnS2 .

[8], the thermopower of a metal has the form

α(T ) =
π3

3

(
∂ lnσ

∂E

)
E=EF

(2)

Formula (2) is valid only when êÒ<< ÅF .
As was noted above and shown in Fig. 2a, the dependence of ln σ on

1/T at temperatures T<240K is characterized by a monotonic decrease
in the activation energy with a decrease in the temperature. This be-
havior of the conductivity in TlNiS2 at low temperatures suggests that
charge transfer occurs through the variable-range-hopping mechanism
[8], provided the current is transferred by charge carriers at the states



200 New Magnetic Semiconductors on the Base of TlBV I-MeBV I Systems

Figure 4. Temperature dependence of the conductivity (curve 1) and thermopower
(curve 2) in TlMnSe2 .

localized in the vicinity of the Fermi level. This is also confirmed by the
temperature dependence logσ ˜T−1/4 (Fig. 2b). The slope of this curve
(T0) allowed us to estimate the density of localized states near the Fermi
level from the formula [8]:

NF =
16

T0ka3
(3)

where α is the localization length.
The density of states NF was found to be equal to 9x1020eV−1cm−3 .

The localization length was taken as a=20Å (by analogy with binary sul-
fides of Group III elements [9]). Such a high value of NF is characteristic
of amorphous semiconductors. Therefore, it can be concluded that the
energy-band structure of TlNiS2 is similar to that of amorphous semi-
conductors. We calculated the hopping distance in TlNiS2 according to
the formula

R(T ) =
3
8
a(T0/T )1/4 (4)

As a result, we found that, at T=110K, R≈30Å.
From the expression given in [8],

J =
2

2πR3NF
(5)
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Figure 5. Temperature dependence of conductivity in TlCoS2 .

we estimated the scatter of the trapping states about the Fermi level:
J = 1.97x10−2 eV. As was shown above, the approximate activation
energy of conduction ∆E, which was determined from the dependence
lnσ on 103/T at a low temperatures, is of the same order of magnitude.

In the temperature range 80-110 K, the activation energy of conduc-
tion becomes zero. The activationless conduction also exhibits hopping
nature, which manifests itself in the hopping charge carriers over spa-
tially more distant but energetically more closely located centers without
photon absorption [10].

In contrast to formula (2) for the thermopower of metals, the tem-
perature dependence of α in the region of hopping conduction can be
represented by the relationship [8]

α(T ) = A + BT, (6)

where B is the temperature coefficient for the thermopower. In our
case, the dependence α(T) for TlNiS2 (Fig. 1) is characterized by two
slopes.
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In the temperature range 80-110 K, where TlNiS2 samples possess
activationless hopping conduction (∆Å=0), the slope of the curve α(T)
is equal to 0.13 µV/ K2. At temperatures T> 110 K, when the acti-
vation energy of conduction varies monotonically with temperature, the
temperature coefficient for the thermopower is approximately six times
larger: B = ∂α

∂T = µV/ K2.

Figure 6. Dependence of thermo-e.m.f. on temperature in TlCoS2 .

The extrapolated low- temperature branch α(T) goes through zero,
i.e., A=0 in formula (6). This indicates that, in the temperature range
80-110 K, where the electrical conductivity σ does not depend on T,
the experimental values of α satisfy formula (2) for the thermopower of
metals. In the temperature range 110-240 K, the thermopower obeys re-
lationship (6). The thermopower is determined primarily by the density
of states and, hence, has positive sign in the region of hopping conduc-
tion.

Earlier [1], we showed that similar behavior of α(T) is also observed
in TlFeSe2 ; i.e., under conditions of hopping conduction, the sign of the
thermopower is positive and the temperature dependence α(T) is linear
( α˜T).

It is evident from Figs. 1 and 2 that, at temperatures close to 240 K,
the dependences α(T) and σ(T) exhibit a jump; i.e., the thermopower
sharply decreases, whereas the conductivity increases by more than three
orders of magnitude. In this range of temperatures, the slope of the
curve lnσ (1/T) is estimated at ˜ 1.0eV. Such a sharp increase in the
conductivity σ at the activation energy ∆E =1.0eV can be associated
with the onset of intrinsic conduction. In the case when the current
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is transferred by carriers over states distributed throughout the whole
sample, the parameter γ in formula (1) should be of the order of unity. At
T≈240 K, the thermopower in TlNiS2 sample, which was estimated from
formula (1) at ∆E=1.0eV and γ =1, is more than one order of magnitude
higher than the experimentally observed thermopower. In other words,
the experimental values of α are not as large as those calculated with
the activation energy ∆E obtained from the slope of the curve lnσ(1/T).
Possibly, this deference is caused by the fact that, at high temperatures,
both holes and electrons are involved in conduction. Of course, in this
case, the thermopower α is less tan that calculated from formula (1),
which holds for semiconductors with single-type charge carriers.

Figure 7. Temperature dependence of magnetic susceptibility of TlFeSe2 at H=636
kA/m: 1 - H⊥c-axis ; 2 - H||c-axis of crystal.
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Thus, it was demonstrated that, at low temperatures, when hopping
conduction dominates, the thermopower of TlNiS2 is proportional to the
temperature. As the temperature increases, the charge carriers excited in
the allowed band begin to dominate in conduction and the thermopower
decreases drastically (by a factor of ˜200) and becomes virtually inde-
pendent of the temperature. At high temperatures, small values of the
thermopower are associated with the ambipolarity of conduction, when
the concentrations of holes and electrons involved in conduction are of
almost the same order of magnitude. The absence of sign inversion of the
thermopower indicates that the concentration of holes in TlNiS2 always
exceeds concentration of electrons involved in conduction.

The electric and thermoelectric properties of TlMnSe2 and TlMnS2

were studied. In the temperature range 130÷315K temperature depen-
dence of the conductivity (σ ) of TlMnS2 increases exponentially with
increasing temperature, i.e. σ(T) -dependence had the semiconductor
nature. It was shown that σ(T) -dependence of TlMnS2 consists of
regions with following activation energies: 0.178 and 0.44 eV (Fig. 3).

The temperature dependence of the conductivity of TlMnSe2 had the
metallic nature (Fig. 4). Temperature dependence of the thermoelec-
tromotive force (α) in TlMnSe2 was studied. The thermo-e.m.f. sign
corresponded to the p-type conductivity of TlMnSe2 in the temperature
range 88÷300K (Fig. 4, curve 2). With increasing of temperature from
88 to 300K the value of thermo-e.m.f. in TlMnSe2 was increased from 77
to 200 µ V/K. At T=194 K the anomaly was revealed on the dependence
α (T).

Low- temperature branch of α(T) - dependence in TlMnSe2 had linear
character with extapolation to T=0 according to metallic formula for
thermo-e.m.f. (2).

Temperature dependences of the conductivity and thermo-e.m.f. of
TlCoS2 have been investigated in wide range of temperatures (Fig. 5
and 6). It was established, that TlCoS2 characterized by p-type of
conductivity in 77÷225K temperature interval and at 225K inversion of
thermo -e.m.f. sign takes place. It was shown, that TlCoS2 is ferromag-
netic compound, and TlCoSe2 is ferrimagnetic.

Investigation of the temperature dependence of electrical conductivity
and Hall coefficient of TlFeTe2 shows a band gap in TlFeTe2 of a size
of 0.42 eV. It was shown that scattering of current carriers on acoustic
vibrations of lattice takes place at high temperatures (µ ˜T −3/2 ). Tem-
perature behavior of thermopower. in TlFeTe2 is studied. The concen-
tration (np=6.67.1017 cm−3 ) and effective mass of hole (mp=0.074m0)
are calculated for TlFeTe2 .
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Figure 8. Dependence of magnetic susceptibility of TlFeSe2 on magnetic field at
T=4.2K: 1 - H||c-axis; 2 - H⊥c-axis

By study of the temperature dependence of electrical conductivity of
TlFeSe2, the width of the band gap in TlFeSe2 was established to be
0.68 eV.

Magnetic susceptibility of TlFeSe2 single crystals was investigated
within 4.2-295 K temperature range.

Fig. 7 shows temperature dependence of magnetic susceptibility of
TlFeSe2 single crystal (χ) at magnetic field H=636kA/m when H⊥c -
axis of crystal (curve 1) and H||c (curve 2). From these curves difference
in χ values at H⊥c and H||c and change of temperature behavior of χ
are observed.

Dependence of χ on H at T=4.2 K for TlFeSe2 is illustrated by Fig. 8.
It is seen from Fig. 8 that with increasing of H, values of χ are decreased.

Obtained regularities of temperature and field dependences of mag-
netic susceptibility of TlFeSe2 single crystal show that the magnetic
properties of this crystal are common for antiferromagnetics [11].
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LOCALIZED MAGNETIC POLARITONS
IN THE MAGNETIC SUPERLATTICE
WITH MAGNETIC IMPURITY
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Abstract The magnetic polaritons localized at the magnetic impurity layer in
magnetic superlattice composed of the alternating ferromagnetic and
nonmagnetic layers are investigated in the framework of the electromag-
netic wave theory in the Voigt geometry. The general dispersion rela-
tion for localized magnetic polaritons is derived in the long-wavelength
limit.The dispersion curves and frequency region of the exsistence of the
localized magnetic polaritons for different parameters of the superlat-
tices and magnetic impurities are calculated numerically and analysed.

Keywords: Magnetic polariton, magnetic superlattice, magnetic impurity.

The propertices of the magnetic polaritons in the magnetic multilayer
systems consisting of two and more alternating magnetic or magnetic
/nonmagnetic components have attracted considerable attention dur-
ing the past two decades. Magnetic polaritons, coupled electromagnetic
and spin wave modes, although discussed by many authors in differ-
ent ferro and antiferromagnetic arrangements, are a topic of continu-
ing interest. Bulk and surface spin waves and magnetic polaritons in
magnetic films and superlattices have been studied in the literature [1],
[2], [3],[4][5], [6],[7],[9],[10],[11]. Magnetic polaritons propagating in fi-
nite ferromagnetic/non-magnetic superlattice were considered in [8].The
magnetic polariton modes in metamagnet thin film and in the antifer-
romagnetic films, whose thickness is much larger than the interatomic
distances are investigated in [12],[13],[14]. Spectrum of the magnetic
polaritons localized at the junction between magnetic superlattice and
magnetic material were discussed recently in [15], [16]. The aim of this

207

S. Halilov (ed.), Physics of Spin in Solids: Materials, Methods and Applications, 207–216.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



208 Localized Magnetic Polaritons in the Magnetic Superlattice

paper to extend our previous works [17], [18] on subject, considering the
propagation of the localized magnetic polaritons in ferromagnetic/non-
magnetic superlattice with impurity layer. In such systems one finds
both surface polaritons, in which excitation is localized near the surface,
and guided modes, where excitation has a standing- wave-like character.
In this case the impurity region works as waveguide, because of the
magnetic polaritons propagate freely over the defect layer and damp in
the perpendicular direction on either side of this region.

We consider a geometry in which the film ineterfaces are perpendicular
to the x- axis, whereas the magnetization �M0 and the external magnetic
field �H0 are applied in the z- direction. The surface polaritons propagate
along the y-axis, parallel to the surface of the impurity layer (Voigt ge-
ometry) and perpendicular to the magnetic moments and to the applied
external magnetic field. The impurity layer occupy the region 0¡x¡d, d
being its thickness.The superlattice consists of alternating ferromagnetic
films of thickness d1and nonmagnetic films of thickness d2. The elemen-
tary unit of SL have length L=d1+d2. Here we neglect the dielectric
properties of the magnetic material and ignore the exchange interaction.

We begin our discussion with the determination of the dynamic re-
sponse of the classic ferromagnet. In the long-wavelength limit non-
vanishing components of the frequency-dependent magnetic permeabil-
ity tensors is given by

µxx(ω) = µyy(ω) = µ⊥(ω) = µ(1 +
Ω0Ωm

Ω2
0 − ω2

), (1)

µxy(ω) = −µyx(ω) = iµx(ω) = iµ
ωΩm

Ω2
0 − ω2

. (2)

Here
Ω0 = γH0, Ωm = γ4πM0, (3)

where γ is the gyromagnetic ratio and µ is the high frequency (ω �
Ω0) permeability, caused by the magnetic dipolar excitations other than
the spin wave excitations (i.e. optical magnons).

In order to find the polariton spectra, we use the Maxwell’s curl equa-
tions in the magnetic film. After eliminating the electrical field variable
�E, we obtain the following wave equation:

∇2�h − �∇(�∇�h) − 1
c2

∂2

∂t2
( �h + 4π�m) = 0, (4)
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Figure 1. The dispersion curves of the surface/guided modes of the magnetic po-
laritons for SL (Ni/non) with impurity Fe. Here ω∗ = ω

ΩF ei
m

and k*= ck

ΩF ei
m

.We use

the parameters : d∗
1 = d∗

2 = d∗
3 = d∗

4 = 0.1 and d∗
0 = 0.5.The broken lines denote the

dispersion curves of bulk polaritons in Fe and photon lines.

where c is the light velocity in the vacuum.
We consider only the transverse electric (TE) mode in which �E has

a nontrivial component only in the z direction. Here �h and �m are the
dynamical components of the magnetic field and the magnetization,
respectively and can be written in the form �h,�m ∼ exp(i�k‖�r‖), where
k2
‖=k2

y+k2
z- two-dimensional wave vector (our system is translationally

invariant in the y and z directions). In the Voigt configuration kz=0 and
k‖ = ky = k.

The general solution of the equation 4 can be written in the form:

hi(r, t) = (B+
i (n)eβx

′
+ B−

i (n)e−βx′
)ei(ky−ωt); i = x, y; (5)

x′=x-nL for magnetic film of SL ( L= d1 + d2 ) and

hi(r, t) = (A+
i (n)eαx

′
+ A−

i (n)e−αx′
)ei(ky−ωt); i = x, y; (6)

for the non-magnetic film of SL and in the impurity layer

h
(0)
i (r, t) = (C+

i eβ0x + C−
i e−β0x)ei(ky−ωt); i = x, y. (7)
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The non-trivial solution of Eq. 4 and the divergence condition div
�b = 0 leads to

α2 = k2 − ω2

c2
, (8)

β2
j = k2 − ω2

c2
µ(j)

v , (9)

The parameter β0 is imaginary for guided modes and real for surface
modes . Here µ

(j)
v is called the effective magnetic permeability of the

j–th ferromagnetic medium in the Voigt geometry ( we assume µ
(j)
v = 1

for non-magnetic material) and is defined by

µ(j)
v = µ

(j)
⊥ − µ

(j)2
x

µ
(j)
⊥

, (10)

From the divergence condition div �b=0, we can derive the relation for
the constants B±

x(y) (n) , A±
x(y)(n) and C±

x(y):

Bε
x(n)

Bε
y(n)

= i
ω2

c2
µx(ω) − εkβ

k2 − ω2

c2
µ⊥(ω)

, (11)

Aε
x(n)

Aε
y(n)

= −i
εk

α
, (12)

Cε
x

Cε
y

= i
ω2

c2
µ

(0)
x (ω) − εkβ0

k2 − ω2

c2
µ

(0)
⊥ (ω)

, (13)

here ε = ±.
Applyıing the boundary continuity condition for tangential compo-

nent �h and the normal component �b = �h + 4π�m to the left (x=0) and
right (x=d) boundaries of the impurity layer, we obtain the following
relations between the amplitudes:

B̃+
y B̃−

y = R2C+
y C−

y = R2R1B+
y B−

y = TsB+
y B−

y , (14)

where Ts =R2R1 is the transfer matrix across the impurity layer and
given by the following expression:
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Figure 2. Same as in fig.1, but now for SL(Ni/non) with impurity Gd.

T s
11(22) = Aexp(∓βd)

[
2µ

(0)
⊥ β0µ⊥β cosh(β0d) ± sinh(β0d)(µ(0)

⊥ µ
(0)
v γ+

2µ
(0)
x µxk2 − γ0

γ ((µxk)2 − (µ⊥β)2))

]
,

(15)

Ts
12(21) = ±A exp(∓βd) sinh(β0d)

[
µ

(0)
⊥ µ

(0)
v γ + 2µ(0)

x k(µxk ± µ⊥β)
−γ0

γ (µxk ± µ⊥β)2

]
,

(16)

where A= 1

2µ⊥βµ
(0)
⊥ β0

and the parameters were defined as:

γj = k2 − ω2

c2
µ

(j)
⊥ . (17)

The presence of the impurity layer leads to appearance of localized
magnetic polaritons. In order to have a bounded excitation , we require
that the transverse component of the wavevector is imaginary or com-
plex for superlattice. Only in this case we may find surface magnetic
polaritons in the frequency gaps between the bulk bands.

From the condition of solvability of the equation 14 we can obtain the
following expression:

W1(T s
11 + T s

12W2) − T s
22W2 − T s

21 = 0, (18)
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where the functions W1 = B̃−
y

B̃+
y

and W2 = B−
y

B+
y

.

Applying the boundary conditions for�h and�b to the interface berween
the layers 1 and 2 of the n-th elementary unit of the SL and by using
the Bloch’s theorem , we derive the expression for the functions W1 and
W2 in the following form:

W1 =
exp(−QL) − T11(L)

T12(L)
, (19)

W2 =
exp(−QL) − T−1

11 (L)
T−1

12 (L)
, (20)

where matrix T(L) is the transfer matrix with det T=1 and T−1 is the
inverse of matrix T. The expressions for the elements of the transfer ma-
trix are given in Appendix. The parameter Q is the decay parameter of
the magnetic polaritons in the superlattice describing the waves damp-
ing along the axis of the SL and ( ReQ)−1 > 0 is the penetration depth
of the magnetic polaritons into the superlattice. One can define the de-
cay parameter from the dispersion equation for the damping magnetic
polaritons in ideal superlattice [1],[2],[3]:

cosh(QL) = cosh(βd1) cosh(αd2)

+
[

γ

2αβµ⊥(ω)
+

αµv(ω)
2β

]
sinh(βd1) sinh(αd2) (21)

The equation 18 is the main dispersion relation for localized mag-
netic polaritons. Solving the equation 18 together with 19 and 20 one
can find the relation between the frequencies of the localized magnetic
polaritons and the wavevector. Only those solutions of Eq. 18 for which
the condition Q> 0 are fulfilled describe physical localized magnetic
polaritons. In the magnetostatic limit c→ ∞ , the equation 18 reduces
to the dispersion equation for localized magnetostatic waves.

We now discuss our results for specific cases of the magnetic super-
lattice SL (Ni/ nonmagnet) with impurity layer Fe( µ0M

Fe
0 = 2.16T , g

=2.15; here g denotes the Lande factor and µ0 is the magnetic permeabil-
ity of the vacuum) and Gd (µ0M

Gd
0 = 7.12 T, gGd = 2.17), respectively.

For numerical calculation we have introduced the following dimen-
sionless parameters:

Ω∗
0 = Ω0

ΩFe
m

; ω∗ = ω
ΩFe

m
; k∗ = ck

ΩFe
m

; d∗ = ΩFe
m d
c ;
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We use the following parameters: Ω∗
0 = 2., µ = 1.75, d∗1 = d∗2 = d∗3 =

d∗4 = 0.1 and for Ni (µ0M
Ni
0 = 0.6084 T, gNi = 2.187) Fig.1 shows

the magnetic polariton dispersion curves of the bulk and surface/guided
modes for magnetic impurity with Fe for two directions of the wavevec-
tor. Here the bulk and surface/guided modes frequencies ω∗ = ω

ΩFe
m

are shown as a function of the reduce wavevector k∗ = ck
ΩFe

m
. The bro-

ken lines denote the dispersion curves of bulk polaritons in ferromagnet
system (in this case Fe) and photon lines. As it is seen, there are an
infinite number of spectral branches ω = ωn(k). In the frequency range

ω < ω
(Fe)
⊥ =

[
Ω(Fe)

0 (Ω(Fe)
0 + Ω(Fe)

m )
] 1

2 (ω∗(Fe)
⊥ = 2.45) there are two types

of the magnetic polariton branches. The lower branch of the localized
magnetic polaritons degenerates at the small value k∗ with the group ve-
locity Vg=dω

dk → c , while for large value of the wavevector the group
velocity tends to zero.The lower branch has an asymptotic frequency
ω∗

lim = 2.0212. There is a gap between the lower and upper branches,
which tends to zero with increasing number n. The group velocity of
the upper branches approaches to zero for all values of the wavevec-
tor. The frequencies of the lower and upper branches lie in the region
where the parameter β0(k) is imaginary and α(k) is real and positive.
These modes result from the guided modes of separate impurity layer.
With increasing value k∗ the lower branch ω = ω1(k) passes to the range
where the parameter β0(k) and α(k) both real and positive and the
wave amplitude varies exponentially when one moves from the interface
into the impurity layer. Therefore, with increasing k* the guided mode
fransforms to the surface mode. For k→ ∞ the upper branches come
into the lower branch curve of the bulk mode of the polaritons in an
infinite Fe ω∗ = k∗√

µv
.

As one can see, in the frequency regine ω > ωFe
s , where ω

(i)
s = Ω(i)

0 +
Ω

(i)
m
2 is the Damon-Eshbach wave frequency ( ω∗Fe

s = 2.5) we have SM
branches which start at the photon line at ω∗ = 2.761 and then come
into the upper branch curve of the bulk | e | of the polaritons.

For k¡0 it is posible to distinguish two different types of the localized
modes: those, which lie under the limit frequency ω

(Fe)
⊥ and merge into

the lower bulk branch as k∗ → −∞ (guided modes) and other one( high-
frequency SM) , which start at the finite value of the frequency ω = ωc >
ωFe

s on the photon line and then merge into a upper bulk region with
increasing |k∗| . As it is seen, the spectrum of the localized magnetic
polaritons is non-reciprocal with recpect to propagation direction, i.e.
ω(−k) �= ω(k).
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For the case where the impurity layer is Gd, the dispersion curves of
localized magnetic polaritons are shown in fig.2. The behavior of the
surface/guided modes is simular to those found for previous case. It is
essensial that the varying of the impurity material does not change the
frequency range of the lower branch of the localized polaritons (ω∗

lim =
2.0212), whereas the frequency region of the upper guided modes
branches is determined by the physical parameters of the impurity layer.
From the numerical calculations, it is obtained that the asymptotic fre-
quency for upper branches increases with increasing the spontaneous
magnetization of the impurity material.

For completeness, we have also shown in fig. 3 the allowed magnetic
polaritons modes, propagating in the SL( Gd/non) with impurity layer
Fe. Compared with fig.1 , it is easy to see that for k¡0 direction, the
lower branch, which lies under the lower branch of the bulk modes in
infinite ferromagnet (Fe), split into two parts, betwen them lies a forbid-
den wavevector gap. These pure surface modes appear in the restricted
frequency range. Note, that here the guided modes appear also in
the high-frequency region between photon line and upper bulk branch.
Along the k¿0 direction we also see a several curves, starting at k∗ = 0.
Now the lower branch has an asymptotic frequency ω∗ = 1.9027, while
the upper high-frequency branch starts at ω∗ = 3.9519. Here we see a
few pure gueded modes curves and one SM branch which merge into
the lower branch curve of the bulk mode of the polaritons in an infinite
Fe as k→ +∞.The non-reciprocal nature of the localized polaritons is
clearly evident.

Figure 3. The dispersion curves of the surface-guided modes of the magnetic po-
laritons for SL (Gd/non) with impurity Fe .
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Thus, the varying of the magnetic component of SL leads to the vary-
ing of the limiting frequency of the lower branch and starting point of
high-frequency branch of the surface magnetic polaritons.The frequency
region of the exsistence of the guided modes branches of the localized
magnetic polaritons can be changed by varying of the material of the
impurity layer. From the numerical calculations, it is obtained that the
asymptotic frequency for guided upper branches increases with increas-
ing the spontaneous magnetization of the impurity layer.

The most appropriate experimental technique to probe the magnetic
polariton modes is the inelastic light scattering spectroscopy of Raman
and Brillouin type. We hope that our theoretical prediction can be tested
throughout these experimental measurements.
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Appendix
The elements of the transfer matrix appearing in equation 19 are

T11(22) =
1
2
e∓βd1

{
2ch(αd2) ± sh(αd2)

[
γ

αβµ⊥
+

βµv

β

]}
. (22)

T12(21) =
1
2
e∓βd1sh(αd2)

{
± γ

αβµ⊥
∓ α

(µ⊥β ± µxk)2

βµ⊥γ

}
. (23)
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SPIN STABILITY AND LOW-LYING
EXCITATIONS IN SR2RUO4
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Abstract LSDA non-relativistic frozen spin wave calculations reveal the presence
of a non-uniform spin configuration in the ground state of Sr2RuO4,
characterized by a non-vanishing local spin moment on Ru hosts. This is
related to nesting of the essentially two-dimensional Fermi surface. Spin
instability at nesting vectors is manifested as a spin-density wave in the
LSDA. By including the spin-orbit coupling, the magneto-crystalline
anisotropy is estimated to be vanishingly small in spite of the lay-
ered structure of the system. On account of the small anisotropy, it
is speculated that the zero-point fluctuations can destroy the staggered
magnetization in this highly two-dimensional system. The static para-
magnetic susceptibility is found to be slightly anisotropic dominating
within tetragonal basal plane. The paramagnons intrinsically featured
with phasons can tentatively be considered as a vague assessment for
the lower part of excitation spectrum. As possible mediators for the su-
perconductivity, the phasons reflect a specific symmetry of the ground
state spinor: on an atomic scale the spinor symmetry is triplet, but on
the scale of the helix the symmetry is a singlet. The obtained LDA re-
sults show the pure system is on the borderline between paramagnetism
and non-uniform incommensurate antiferromagnetic instability.

Keywords: Spin-density wave, quantum critical fluctuations, spin-orbit coupling,
magnetic anisotropy

15.1 Introduction
Theunconventional superconductor Sr2RuO4 is known to have strong in-

commensurate antiferromagnetic (AFM) fluctuations at q∼ (0.30.30)2π/a
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with the same intensity below and above the critical (superconducting)
point T ∼ 1.5 K [1]. The spin-spin correlation length is of order of 10
Åin the ab-plane, with no correlation between planes, but little is known
about the quasi-particles which mediate the formation of the supercon-
ducting order parameter below TC ∼ 1.4 K. Several attempts have been
made to find out whether the lattice vibrations or/and magnetic fluc-
tuations might be involved in the phenomenon. Replacement of Sr by
essentially smaller cation Ca leads to a transition to a so-called tilted
phase, which is characterized by the Neel AFM ordering and is a Mott
insulator as the end member Ca2RuO4. This is because of orthorhom-
bic distortions caused by the zone-boundary rotational mode, favored
by the larger space made available for rotations by the small Ca ion.
Superconductivity, however, doesn’t survive even a small concentration
of Ca, and this is apparently related to the impurity scattering deteri-
orating the coherent state of charge transportation. Inelastic neutron
scattering [2], shows the Σ3 phonon branch, corresponding to the RuO6

octahedron rotation around c, exhibits a drop near the (0.5 0.5 0) zone
boundary. That is, Sr2RuO4 is close to a rotational instability. On the
other hand, the frequency of the rotational mode depends little on tem-
perature, i.e. there is no sign of mode softening. Flat dispersion along
the (0.5 0.5 ξ) zone boundary shows that there is almost no coupling
between rotational deformations of neighboring layers, thus emphasiz-
ing the 2D-character of the mode. The other rotational mode Σ4 which
may be viewed as a tilting around an axis in ab-plane, does not ex-
hibit any anomalous behavior. The Σ3 mode gets considerably stiffer
with cooling, which cannot fully be explained by thermal contraction.
Neutron-powder diffraction [3] investigation of the thermal expansion
and compressibility of Sr2RuO4 shows that the temperature dependence
of the Ru-O2 apical bond length is linear with no structural anomaly.
No structural anomaly has been found for any other structural param-
eter, providing no evidence for a metal-to-insulator transition within a
wide temperature range. It was theoretically [4] shown earlier, that the
Raman zone-center mode and rotational zone boundary Σ3 mode are
not sensitive to the hydrostatic pressure up to P ≈ 2.4GPa, although
Σ3 undergoes a softening at a specific non-hydrostatic pressure.

The zone-boundary rotational instability manifests also on the sur-
face: low-energy electron diffraction data from Sr2RuO4 indicate that
there is a

√
2 x

√
2 surface reconstruction induced by the freezing of the

soft zone boundary phonon into a static lattice distortion , and compar-
ison with band structure calculation predicts that the resulting surface
is ferromagnetic (FM) [5]. Although, angle-resolved photoemission [6]
shows that the electronic structure of the layered perovskite Sr2RuO4 is
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most readily explained by the surface reconstruction, no direct evidence
of the FM ordering was found.

In the bulk [1], a substantional broadening of the spin fluctuation
with a rate of 10 meV∼ 100TC might be used as indication of p-wave
superconductivity. However, the experiment cannot readily fit any of
the existing theoretical models of superconductivity: multiband theo-
ries predict a resonance of susceptibility, but the experiment shows no
resonance at all. The magnetic form-factor of Ru indicates a rather de-
localized or disordered magnetization density with in-plane correlations.

Recent elastic neutron scattering measurements confirmed the devel-
opment of an incommensurate AFM structure upon partial replacement
of Ru by Ti. Even a small concentration of Ti of ∼ 2 percent makes the
system unstable against building a SDW of sinusoidal type in the ground
state [7] with the same Fermi-surface nesting origin as the peak at the
incommensurate vector in the unsubstituted compound. The spin-spin
correlation length of the excitations determined from the half-width of
spin susceptibility, is comparable to that of the pure compound but is
much shorter than the correlation of the elastic order. The latter number
is about 50 Å and was claimed to correlate with the respective concen-
tration of Ti, which also corresponds to the average distance between
neighbour sites of Ti in the alloy. There is no sign of lattice reconstruc-
tion, which makes the system very attractive for investigation of the
trends associated with quantum critical point behavior of the spin de-
gree of freedom. Altogether, pure strontinum ruthenate seems to have
a strong propensity toward developing a non-uniform magnetic struc-
ture in the ground state on the borderline between a paramagnetic and
incommensurate AFM configuration.

The present paper reports results of DFT-LSDA calculations for the
ground state of bulk Sr2RuO4, which appears to be a SDW of sinusoidal
type with nonrelativistic treatment. Section 15.2 gives the details of the
non-relativistic DFT-LSDA calculations for the ground state of the pure
compound. Formation conditions for spin and orbital moments are the
subject for Section 15.3, where in particular the claim is made that a van-
ishingly small magnetocrystalline anisotropy enables zero-point fluctua-
tions to destroy the staggered magnetizations. Section 15.4 presents rel-
ativistic results for the static magnetic susceptibility, which turns out to
be anisotropic slightly favoring the tetragonal basal plane. Section 15.5
serves as a summary and speculates about a the possible impact on su-
perconductivity of magnetic low-lying excitations of the phason nature.
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15.2 LSDA magnetic ground state
As Sr2RuO4, the longitudinal and transverse spin degrees of freedom

are coupled at equilibrium, but become decoupled under negative pres-
sure or suppressed under positive pressure. Theoretically [8, 9] and ex-
perimentally it is well known that the Fermi surface of strontium ruthen-
ate is strongly influenced by tetragonal crystal fields and is characterized
by considerable nesting. The most prominent nesting takes place along
the [110] direction at approximately [0.3,0.3,0] 2 π/a, and is built from
t2g states with dxz/dyz character centered on Ru sites and p-states of
the planar oxygen (α- and β-sheets). The density of states (DOS) at the
Fermi level derived by different band methods: LAPW, full-potential
LMTO and LMTO-ASA with empty spheres, is about 4.2 st/eV/cell
and large enough to cause a high spin susceptibility. Therefore, keeping
in mind that the itinerant oxygen p-states act as mediators for inter- site
super-exchange interaction, the presence of the incommensurate nesting
suggests the formation of a spin super-structure in the ground state.

Indeed, performing the LSDA calculations with the spin density vector
as a basic functional variable, we find that the variational procedure
yields non-uniform spin configuration as favorable for Sr2RuO4 at the
experimental value for the lattice parameter. Equilibrium positions of
Sr and apical oxygens have been determined by earlier investigation
of the lattice instability and appear to be very close to that obtained
from experiment. Fig. 1 illustrates total energy per formula unit and
magnetization at Ru sites as a function in the space of the ferromagnetic
cones with various pitch angles and momenta along [110] direction in the
first BZ.

The procedure of energy variation over the frozen spin waves of trans-
verse type is rather straightforward within spin-density matrix formalism
as long as spin-orbit coupling is not included. In this case the problem
is formally solvable in the spin-restricted crystal unit cell since the spin
degree is not coupled to the lattice. Yet, a search for the energy mini-
mum in the space of frozen magnons is only relevant if the system can
be described by the Heisenberg Hamiltonian, a condition that is hard to
verify in an itinerant system prior to calculations. The motivation for
the energy variation over the frozen magnons is a statement made by
Lyons and Kaplan in 1960 [10], that the ground state of any Heisenberg
magnetic system with equivalent atoms in the basis is a simple spiral,
given no anisotropy is present; an ordinary FM or the Neel AFM con-
figuration are just a particular cases. In a comprehensive theory, this
simple picture can be distorted due to anisotropy forces, which are usu-
ally of the relativistic nature. To avoid an ambiguity in reading, we will
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Figure 1. Total energy and magnetization MRu on Ru-site as a function of spin
cone wave vector q along [0.5,0.5,0]2π/a and pitch angle θ, at equilibrium, extended
and reduced lattice parameter a = 7.29, a = 7.48, and a = 6.92 Bohr, respec-
tively. There is an energy minimum and respective magnetization maximum at
qN ≈ [0.35, 0.35, 0]2π/a, when the Ru moments are in-plane (Θ = π/2). Stabi-
lization of the AFM helix under negative pressure and suppression of the magnetic
ordering under positive pressure is obvious.
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Figure 2. Density of states at the Fermi level as a function of the lattice parameter a
(units of Bohr), in-plane AFM helix set. Minimum which is at the nesting, corresponds
to the maximum of the Ru-site exchange splitting

label simple spiral as just spiral, and conical spiral as helix. Macroscopi-
cally the former implies an antiferromagnetic spin ordering, whereas the
latter has a ferromagnetic component. To facilitate a reasonable choice
of basic spin variables and investigation of the isotropic exchange part
of system Hamiltonian, the spin-orbit coupling effects will first be ex-
cluded. We will later turn to the relativistic interaction when focusing on
the effects of magneto-crystalline and magnetic susceptibility anisotropy.
As a first approximation to the magnetic part of the system Hamilto-
nian, it is assumed that there is only a single integral spin-density vector
Si = Tr

∫
Vi

n̂(r)dr associated with a volume Vi around each atomic site
i, so that the constrained frozen magnon energy is well characterized by
the spatial distribution of local spin quantization axis ei = Si/Si and
respective eigenvector norm Si of spin density n̂. In the frozen magnon
approximation, a periodic constraint is applied to ei so that the internal
energy E becomes a unique function. In the polar coordinate frame, this
is a function of two angles given as θi = arccos zi · q and φi = q · ri,
with z normal to the plane of spin quantization axis rotation and q a
static magnon vector. Note that the choice of z is arbitrary as long as
no spin-lattice coupling is included. If anisotropy effects are included,
the aligning z along the anisotropy axis would be natural.

Fig. 1 clearly demonstrates the presence of minima on the energy sur-
face E(θ,q) at q ≈ qN and θ = 900. The magnetization Mi = gµBohrSi

shows a maximum for the same spin configuration parameters. There-
fore, the anticipated frozen magnon with q ≈ qN is in fact favored by
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the system. Fig. 1 shows also that the spin ordering is highly sensi-
tive to pressure: the non-uniform spin structure is stabilized by lattice
extention, and conversely the local spin polarization is destroyed by uni-
form contraction of the system. The energy scale of the frozen magnon
grows deeper from -1.0 mRy at equilibrium to -1.6 mRy with a lattice
parameter increase of 3 percent using the paramagnetic energy as a ref-
erence point, and the magnetic moment at the Ru sites is increasing
from 0.8 µBohr to 1.2 µBohr. As is obvious from Fig. 2, DOS at the Fermi
level also reaches its minimum at the same spiral parameters, due to
local polarization which splits the electronic states and lowers the total
DOS. In fact, this minimum is even more pronounced in case of a static
SDW caused by antiferromagnetic ordering, which should be considered
a strong indication that the system will undergo a metal-insulator phase
transition.

To estimate the size of cluster that would be sufficient to reproduce
the nesting featured exchange interaction, the LSDA-derived energy of
the helix θ,q depicted in Fig. 1 was mapped onto a general form bilinear
in terms of spins. That is, a frozen spin wave energy for a Heisenberg
system with a single spin variable per site

Mi = M{sin θ cosqri, sin θ sinqri, cos θ}
has to be

Espiral(θ,q) = −
′∑
ij

JijM
2 sin2 θ cosq(ri − rj)

= E0 + 2
∑
ij

JijM
2 sin2 θ sin2 1

2
q(ri − rj), (1)

which implies that average spin momentum squared 〈Ŝ2
i 〉 should be an

constant of the motion. However, 〈Ŝ2
i 〉 in our system apparently is not a

constant since the magnetization has considerable variation in the space
of helices θ,q. A numerical fit in the form of the Fourier expansion over
the modulation parameter q

M(θ,q) = sin θ
∑

i

(αi sin(qri + βi),

is able to quite accuratly reproduce the magnetization in the phase space,
Fig. 1. A reasonable mapping for the helix energy surface in the same
space has been made in accord with expression (1) for a helix in the
Heisenberg form. An LSDA-derived energy (mRy) expansion at equilib-
rium lattice parameter in terms of modulation vector q = q[110]2π/a,
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where q is varying between 0 and 1/2 within the first Brillouin zone,

Espiral(θ,q)/ sin2 θ = E0 + 2M2
∑
ij

Jij sin2 πq(nij + mij)

≈ E0 + 0.1 sin2 1qπ − 1.2 sin2 2qπ

+0.1 sin2 3qπ + 0.6 sin2 4qπ − 0.5 sin2 5qπ (2)

shows that the largest contribution comes from Ru sites located along
the nesting vector. This is because the terms with even and odd numbers
of πq correspond to the exchange interaction between nearest and next-
nearest Ru sites along qn ∼ [110] chain of Ru, respectively. Obviously
the long-range nesting-imposed RKKY mechanism is responsible for the
spiral ordering with J ≈ −0.25 mRy/µ2

Bohr between next-nearest Ru mo-
ments, whereas the spin modulation along Ru-O-Ru chains, with much
smaller J ≈ 0.02 mRy/µ2

Bohr between nearest Ru moments, is mediated
by super-exchange [11]. Of course, separation of the exchange into these
two mechanisms is more conventional than can be strictly justified, par-
ticularly on account of 〈M̂2

i 〉 not being a constant. On the contrary, a
similar energy expansion for a stretched lattice, middle picture on the
Fig. 1,

Espiral(θ,qn)/ sin2 θ ≈ E0 − 1.1 sin2 1qπ − 3.9 sin2 2qπ

+0.7 sin2 3qπ + 1.0 sin2 4qπ − 0.3 sin2 5qπ (3)

shows that super-exchange, with J ≈ −0.10 mRy/µ2
Bohr, and RKKY

mechanism, with J ≈ −0.33 mRy/µ2
Bohr, have different behaviors with

lattice parameter change. There are two types of spin-spin correlations
〈SiSj〉: 1) the dominant RKKY type correlations on the ξRKKY ∼ q−1

N ∼
3
√

2a ∼ 15 Å distances; 2) essentially weaker ligand-type correlations on
the scale of lattice parameter ξligand ∼ a. With lattice expansion, the Ru
moments grow, a trend which hints at the impurity model and will be the
subject of the next section. Therefore, the energy gain associated with
RKKY interaction is increasing roughly as M2N(EF) with increasing a,
whereas the correlations 〈SiSj〉 remain unchanged. On the other hand,
the energy gain due to the ligand exchange is on the order of −t2/U , with
t as the ligand hopping integral, much smaller than the former but also
more sensitive to the lattice parameter. The super-exchange correlations
follow the increase of M2 but get weaker on account of diminishing t
with lattice expansion, so that it becomes rather obscure to predict the
resultant effect in simple terms of the perturbation. In any case, the
dependence on lattice parameter changes as well as thermodynamics are
dominated by RKKY type of correlations.
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Figure 3. Magnetic moment distribution in body-centered tetragonal layered struc-
ture of Sr2RuO4, with arrows standing for the moments on the Ru sites. Upper
picture stands for transversal spiral with positive helicity. Combination of two spirals
of opposite helicities produces a Spin Density Wave in the LDA ground state, shown
on the lower diagram. Some of Ru atoms are circled to emphasize the direction of
the density modulation vector qN ‖ [110]
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Calculations for a supercell with three Ru ions reveal an SDW slightly
favored over the spiral configuration. Fig. 3 illustrates the distribution
of magnetization for both types of spin ordering. An SDW description
can be facilitated by introduction of two spin momenta per Ru site, one
for a transverse spiral with right helicity as shown on the Fig. 3, and the
other with left helicity, assuming this feature is an intrinsic structure
of spin density matrix. This approach implies a spin-density matrix
consideration on the intra-atomic scale, that is, however, beyond the
present numerical implementation. Therefore, an LSDA evaluation of
SDW is much more challenging, and we could accomplish the problem
only by an appropriate enlargement of the unit cell to fit the nesting
vector. As a result, there are two inequivalent Ru sites, one with M =
0.8µBohr at the equilibrium lattice parameter which is also the amplitude
of spiral moment, and the other two just half of that value and opposite
in orientation, so that the net magnetization is vanishes. This means
that on-site exchange coupling ji,rl between spin moments of spirals with
opposite helicites Mk,r and Mk,l, respectively, is essentially smaller than
inter-site exchange Jij, given that the following interaction model

Esdw = Espiral −
′∑
ij

jij,rlMi,rMj,l −
∑

i

jii,rlMi,rMi,l, (4)

is relevant. In fact, the last terms in eq. 4 which stand for the exchange
interaction between opposite-helicity spirals, are numerically shown to
be just 0.2 of the spiral energy. It is also in accordance with the calcula-
tions to claim that the on-site interaction between spirals is dominant,
since a superposition of only undistorted spirals leads to the formation
of the sinusoidal SDW, and therefore the middle term in Eq. 4 can be
discarded.

15.3 Formation of spin and orbital moments and
pressure dependencies

Now, to better understand the trends under pressure, the mechanism
of spin formation has been analyzed in terms of the Anderson impurity
model [20] instead of the Stoner approach, more common for itinerant
systems. The choice of the framework is motivated by the fact that the
formation of a magnetic moment is mainly due to the exchange self-
energy arising as the Coulomb repulsion between opposite spins rather
than the Stoner-type exchange between parallel spins. It was shown
earlier [21] that the electronic structure of pure strontinum ruthenate
can accurately be reproduced by a tight-binding Hamiltonian which in-
cludes three type of bands, since an almost ideal octahedral crystal field
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Figure 4. Symmetry-resolved partial density of states on Ru site: tetragonal point
symmetry group D4h implies partially (2/3) occupied t2g states split into double-
degenerated eg xz and yz orbitals, and b2g in-plane xy orbital. Shown are also other
irreducible states a1g and b1g with z2 and x2 − y2 symmetries, clustered however far
away from the Fermi level.

splits the d-states of Ru into two groups of states with irreducible rep-
resentation eg for two unoccupied and t2g for three partially occupied
xz, yz and xy orbitals. With a more accurate treatment, the tetragonal
point symmetry group D4h, relevant for tetragonally distorted octahedra
(Jahn-Teller distortion), lifts the degeneracy and implies the following ir-
reducible symmetry split of the Ru d-states: as shown on Fig. 4, partially
occupied t2g states cast upon double-degenerated eg-states, with 1.4 oc-
cupancy per orbital, and single b2g-orbital, with 1.3 electrons. There are
also single orbitals of a1g and b1g symmetry, with 0.95 and 0.8 occupancy
respectively, which are, however far from the Fermi level.

The first two degenerate orbitals constitute quasi-one-dimensional
bands with a width of about 1 eV and nested around the Fermi level,
whereas the third band is two-dimensional and as almost 2 eV broad,
with its xy orbital located 0.5 eV below the Fermi level. Therefore, a
Hartree-Fock Hamiltonian with two degenerate t2g orbitals xz and yz
seems quite relevant for a qualitative description of the moment for-
mation. In this approximation, the condition for moment formation is
formulated in terms of four spin occupation numbers niσ, two σ = +,−
per each orbital i = xz, yz, Coulomb repulsion between opposite-spin
same orbitals U , and “ordinary” exchange interaction between same-

Formation of spin and orbital moments and pressure dependencies
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spin different orbitals J ,

Ĥ = E(
∑
iσ

niσ) +
∑
kσ

εkn̂kσ

+
∑
kσ

vi,k(ĉ+
iσĉkσ + h.c.) + (U − J)

∑
σ

n̂xzσn̂yzσ

+U
∑

i

n̂i+

∑
i

n̂i−. (5)

Here i runs over the orbitals, σ = ± is spin projection, E is the un-
perturbed position of the two t2g levels xz, yz assumed degenerate, εk
stands for dispersion of itinerant electrons other than the two orbitals,
and vi,k symbolizes the hopping between electrons of the orbitals and
the states of the rest. By Hartree-Fock treatment [20], each effective
xz, yz level will be spread out into a virtual band of width δ, so that the
effective Hartree field, for example, for level xz+ becomes

Exz+ = E + U
′∑

iσ

niσ − Jnyz+, (6)

the prime in the sum means all other than xz+, similar for other levels.
If the localized states lie close to the Fermi surface, the condition for the
formation of spin moment reads

(U + J)ηiσ(EF) ≥ 1, (7)

where ηiσ(EF) is the paramagnetic density of states at the Fermi level per
spin/orbital equal for all orbitals of any spin. The occupation numbers
for Ru4+are related to the fact that there are three t2g orbitals equally
filled with 4 electrons, i.e. 2/3 per each orbital and spin. There is an
obvious relation between the relative Hartree field shift of the orbitals
and the band exchange splitting ∆̄xc averaged over the Brillouin zone,
i.e.

∆̄xc ≈ 1
2

∑
i

(Ei− − Ei+) =
1
2
(U + J)δn, (8)

where δn ≡ ∑
i(ni+ − ni−) is the total magnetic moment.

The magnitude of the exchange integral J on Ru site has been esti-
mated to be around 1.0 eV and is practically insensitive to the Coulomb
screening effects due to the short-range character of the exchange in-
teraction. On account of ∆̄xc ∼ 1 eV, vz. Fig. 5, and δn ∼ 0.8, one
obtains for the Coulomb opposite-spin repulsion parameter U ∼ 1.5 eV
at equilibrium lattice parameter, which grows with lattice expansion. In



229

Sr2RuO4, Q=[0,0,0], a=7.29 Bohr

-3

-2

-1

0

1

2

3

E
ne

rg
y

(e
V

)

Γ Z c d aX Γ 0 5 10 15

Sr2RuO4, Q=[0.3,0.3,0], a=7.29 Bohr

-3

-2

-1

0

1

2

3

E
ne

rg
y

(e
V

)

Γ Z c d aX Γ 0 5 10

Sr2RuO4, Q=[0,0,0]

a=7.29 Bohr

Ru,l=2,spin=1
Ru,l=2,spin=2
O,l=1,spin=1
O,l=1,spin=2

-6 -5 -4 -3 -2 -1 0 1 2 3
Energy, eV

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

of
S

ta
te

s,
st

/e
V

Sr2RuO4, Q=[0.3,0.3,0]

a=7.29 Bohr

Ru,l=2,spin=1
Ru,l=2,spin=2
O,l=1,spin=1
O,l=1,spin=2

-6 -5 -4 -3 -2 -1 0 1 2 3
Energy, eV

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

of
S

ta
te

s,
st

/e
V

Figure 5. Sr2RuO4, electronic structure and projected density of states for spin-
restricted and simple spiral configurations, at equilibrium lattice parameter a = 7.29
Bohr. Orbitals mostly contributing to the states shaping the nesting of the Fermi
surface and causing the local magnetization are mostly of xz and yz angular character,
with total occupation of nearly 2.8 electrons per Ru site. The broader states built
out of in-plane Ru xy orbitals are occupied by 1.3 electrons.

Formation of spin and orbital moments and pressure dependencies
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contrast, U becomes smaller under positive pressure due to an increase
in Coulomb screening, which leads to a magnetization collapse with only
a 3% reduction of the lattice constant. The spin moment formation con-
dition given by Eq. (7) at the same time reads (U + J)ηiσ(EF) ∼ 1.65
since of ηiσ(EF) ≈ 0.65 st/eV/spin, which is large enough to satisfy the
condition given by Eq. (7) and the exchange splitting if not the effects
of quantum fluctuations.

Formation of a local orbital moment requires, along with the spin
moment formation, a certain local symmetry imposed by electrostatic
crystal fields and relativistic coupling between spin and orbital moments.
The latter is always present in relativistic considerations, whereas the
crystal-field effect has to be strong enough in order for the Hartree fields
Ei+ for the two orbitally degenerate states to differ.

The origin of the orbital polarization can easily be traced out in terms
of double-group symmetry classification for irreducible representation.
Notice that by non-relativistic consideration the basis orbitals have the
following spin-angular part

| φ1s〉 ∼ i√
2
(Y2,+1 + Y2,−1)χ̂s,

| φ2s〉 ∼ 1√
2
(Y2,+1 − Y2,−1)χ̂s,

with χ̂ as the Pauli spinors, which leads to vanishing orbital momentum
because of L̂zYlm = mYlm and orbital degeneracy ε1s = ε2s′ . Eigenvalues
εn=1,2s(k) in the periodic crystal will have similar degeneracy. In the
presence of spin-orbit coupling ĥso,

the degeneracy in general will be lifted everywhere except perhaps at
some high-symmetry points in the Brillouin zone. By construction of
single-particle eigenvectors from Bloch combinations of the orbitals, the
respective eigenvalues can in lowest perturbation order, easily be shown
to be split at every k-point

ε̄ns(k) = ε(+) + s
√

ε2(−) + ξ2, (9)

where the spin-orbit coupling parameter ξ2 =| 〈ψ1slzψ2s |〉2+ | 〈ψ1+l+ψ2−〉 |2,
and ε(+), ε(−) stand for half-sum and half-difference of the non-relativistic
bands εns, respectively. Thus, electrostatic crystal fields and the spin-
orbit coupling split the energy levels

ε̄ns ≈ ε + s | ξ | (10)

at general k-point, with s = ± (not a spin index anymore) and ξ =
〈φ1sl̂zφ2s′〉 since 〈l̂±〉 is vanishing on the Ru sites. The corresponding
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eigenvectors in the lowest order of perturbation theory are

| kns〉 =
∑
is′

αis′
ns(k) | φis′〉, (11)

which for the angular part implies

| k1s〉 ∼ Y2,+1χ̂s,

| k2s〉 ∼ Y2,−1χ̂s,

since αis is either one or zero if no magnetic field or exchange splitting
is present. More formally this result could be obtained within double-
group classification when the wave function is to be expanded in terms of
4 basic functions corresponding to ∆5

6 and ∆5
7 irreducible representations

of C4v group [22].
By expanding the field operators in terms of the is-orbitals ψ̂ =∑
ns,is′ α

is′
ns(k) | kis′〉ĉns(k), one easily verifies that the projection of

the net orbital momentum 〈L̂〉ζ ≡ êζ〈ψ̂ | l | ψ̂〉 along spin quantization
direction êζ will be different from zero only if the spin degeneracy of
each state is lifted. Then, in the lowest order of the perturbation theory
in spin-orbit coupling [23–25]

〈L̂〉ζ ≈ −4ξ
∑

1234,σ

A(12, 34, σσ)〈1σ | êζl | 2σ〉〈3σ | σl | 4σ〉

≡ êζ(〈L〉+ + 〈L〉−), (12)

where the matrix element

A(12, 34, σσ′) ≡
∫

ε<EF <ε′

dεdε′

ε − ε′
∑
k

n12,σ(k, ε)n34,σ′(k, ε′)

is determined through the density of states nii′,σ =
∑

n aiσ∗ai′σδ(ε −
εnσ(k)) with non-relativistic eigenenergies εnσ(k) and expansion coeffi-
cients ai′σ, and remains unchanged for any orientation of the spin quan-
tization axis. The orbital moment 〈L̂〉ζ depends on the difference of
the Hartree field for the same-spin states (crystal-field splitting), the
amount of spin-orbit splitting | ξ |, which is about 0.15 eV for the Ru
4d-orbitals, as well as the orbital-projected spin and particle DOS. At
the same time, the magneto-crystalline energy

δE ≈ −1
4
ξêζ(〈L〉+ − 〈L〉−) + (spin − flip terms), (13)

is related to the difference between same orbital moment spin-
components, given that the spin-flip effects are small. The angular de-
pendence is given by 〈iσ | lσ | i′σ〉 only, which in case of uniaxial sym-
metry is simply K0 + K1 sin2 θ. This specifically means that the same

Formation of spin and orbital moments and pressure dependencies
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Table 1. SDW configuration: magnetization, spin Sζ and orbital Lζ contributions at
different orientation of the spin quantization axis êζ , in units of µBohr. Oei and Oai

refer to oxygens equatorial and apical in respect to Ru1 and Ru2, respectively.

Atom êζ ||[001] êζ ||[010] êζ ||[110]
Sζ Lζ Sζ Lζ Sζ Lζ

Ru1 +0.832 +0.007 +0.746 +0.013 +0.748 +0.019

Ru2 -0.393 -0.010 -0.393 -0.002 -0.400 -0.000

Oe1 +0.032 +0.002 +0.025 +0.001 +0.024 +0.002

Oe2 -0.053 -0.003 -0.055 -0.003 -0.055 -0.002

Oa1 +0.042 +0.005 +0.042 +0.004 +0.042 +0.003

Oa2 -0.023 -0.003 -0.022 -0.002 -0.022 -0.002

matrix elements are present at any orientation of spin quantization axis.
From the formulas given by Eqs. 12 and 13, it is easy to project a sim-
ilar scaling of orbital momentum and energy if the shell is more than
half-filled [24], since the orbital polarization of spin-majority states has
to vanish. Our LSDA-DFT calculations find an opposite orientational
trend, which is obviously related to the effects of hybridization between
opposite-spin states. Notwithstanding a remarkable spin anisotropy with
data collected in the Table 1, the energy shows practically no depen-
dence on the orientation of the quantization axis. The in and out of
plane difference is less than 0.01mRy, whereas the spin moment shows
considerable out of plane enhancement. We will use this fact to illustrate
the destructive role of quantum spin fluctuations on long-range ordering.
Note also that it follows from Eq. 12, considering only two orbitals would
give K0 = K1. This would imply a factor of two difference polarization
of a factor of two between in-plane and out-of-plane orientation of the
spin quantization axis, which only qualitatively correlates with the num-
bers from the Table 1, which includes hybridization effects between all
orbitals. Therefore, there is only limited legitimacy for the two-orbital
model by interpretation of the orbital moment formation.

The sign of the projection is obviously a matter of the local occupation
(3-rd Hund’s rule) and in accord with the Eq. (12) the exchange-caused
〈l̂z〉 will be pointed in the direction of spin moment, which is common
for orbitals with greater than half-filling. On the other hand, for the
numbers for orbital occupation and spin magnetization caused by an
external magnetic field, l̄z is pointed against the spin vector, since all
orbitals will now be involved in the magnetic response, with an effective
occupation less than half-filling for Ru4+. ion.

Variation of the volume causes a certain trend in the amplitude and
stability of the spiral configuration. As illustrated in Fig. 6, there is
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Figure 6. Sr2RuO4, projected density of states for spin-restricted and simple spiral
configurations, at extended and reduced lattice parameters a = 7.49 and a = 6.92
Bohr, respectively. Local magnetization develops obviously in accord with the ampli-
tude of pd overlap between cations and anions, what particularly leads to a collapse
of magnetism at the lattice contraction.

Formation of spin and orbital moments and pressure dependencies
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obviously a higher paramagnetic density of states ησ(EF) = 1.8 st/eV
with lattice expansion of 3%, which in accord with the Eq. (7) facilitates
spin formation with an increase of the moment M = 1.0µBohr. With
lattice compression of the same amount, the increased hopping between
Ru and O ions leads to a diminishment of the DOS, and the condition
of Eq. (7) is no longer fulfilled.

That the system is close to a metal-insulator transition caused by
the formation of AFM spin ordering, is clearly seen from Fig. 7, where
the electronic structure of an SDW configuration is plotted along with
the spin- and atom-projected DOS at equilibrium and expanded lattice
parameter.

The AFM gap itself is driven by the aforementioned local magnetic
moment formation mechanism and the long-range nesting-imposed oscil-
lating exchange interaction. As the spin configuration is stabilized due
to covalency reduction between Ru orbitals and oxygen orbitals through
expansion of the crystal, all three Ru xz, yz and xy orbitals become more
involved in hybridization with each other as a result of the weakening of
the octahedral crystal field effect and therefore less distinguishible from
each other. Therefore, by lattice expansion the occupation of the three
Ru orbitals approaches half-filling (4 electrons per entire t2g-subshell),
causing the Ru orbitals to split symmetrically around the Fermi level,
due to the exchange interaction.

Of course, the amplitude of orbital polarization is still to be verified
by more accurate numerical calculations, which indeed confirm the sit-
uation. The calculations of magneto-crystalline Ising-type anisotropy
have been probed for the pure system with an SDW in the ground state
at several lattice parameters. The magnitude of the uni-axial anisotropy
amounts to less than 0.01 mRy per Ru unit at equilibrium, which is
rather small on account of the tetragonal symmetry of the crystal. Note
that, in the case of tetragonal symmetry, the effect must be of second
order in spin-orbit coupling, i.e. of the order of 0.1 mRy provided the
second Hund’s rule is fulfilled. But this is not the case, as we already
deduced on the basis of the impurity model. The situation changes only
slightly with variation of the lattice parameter around the equilibrium:
while remaining in the area of tetragonal elongation of the octahedra,
the spin alignment starts to stabilize by increased anisotropy energy only
with considerable lattice expansion of 3%. This behavior shows that
the quenching of the orbital moment is a characteristic feature of ideal
strontium ruthenate within a range of tetragonal-symmetry-conserving
lattice distortion around the equilibrium. Upon octahedral rotation,
orthorhombic crystal fields will likely enhance the spin and orbital po-
larization. Although considered speculation, this dependence of orbital
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Figure 7. Sr2RuO4, electronic structure and projected density of states for spin-
density wave configuration (ground state), for equilibrium lattice with a = 7.29 Bohr
and extended lattice with a = 7.49 Bohr. The most prominent feature is the opening
of the gap on the density of states at the Fermi level, what gives evidence for an
AFM-caused metal-insulator trend in the pure compound.

Formation of spin and orbital moments and pressure dependencies
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polarization on tetragonal strain can at least partially be used to explain
why the moments induced by Ti4+ on the Ru sites exhibit strong Ising
anisotropy in the experiment [28]. Of course, by partial replacement of
Ru by Ti the octahedral distortion is actually a local effect and can’t
properly be simulated by a simple uniform lattice expansion or com-
pression as used in our attempt to describe the respective trend in the
formation of the orbital moment.

The vanishing value for the anisotropy at equilibrium is certainly cru-
cial for the formation of the magnetic moment since zero-point spin
fluctuations will now destabilize the ground state SDW in the absence
of a mechanism for pinning the orientation of local moments. This effect
of renormalization of the local spin momentum by quantum fluctuations
was considered in detail for 2D antiferromagnetic Heisenberg systems on
the basis of a 1/S spin expansion, see e.g. [26, 27], and it was asserted,
though speculatively, that if the “trial” spin is small enough and there is
no anisotropy then the staggered magnetization can be destroyed com-
pletely. There are rigorous results [29] which show that at T = 0 there
is long-range order for spin moments S ≥ 1. There is growing evidence
that in case of the 2D Heisenberg antiferromagnet the critical value for
the spin momentum below which the staggered magnetization vanishes
is around physically accessible Sc ∼ 1/2 within the model. In our case
with an SDW in the ground state, and the hydrodynamic description as
a more appropriate model, this value shoud be even less. The largest
spin moment on the Ru site 0.4 is less than the Heisenberg critical value
and most likely will collapse in presence of quantum fluctuations.

15.4 Anisotropy of static magnetic susceptibility
We also checked the magnitude of the paramagnetic static spin sus-

ceptibility, which is related to the DOS at the Fermi level, and found
reasonable agreement with the available experimental data, obtained
from neutron scattering. For an applied magnetic field of H = 1 T,
the calculated induced total spin moment per unit cell turns out to be
Mind = 1.15 × 10−3µBohr, which corresponds to χisotr(q = 0, ω = 0) ≈
1.15×10−3[µBohr/T ] = 6.64×10−4emu/mol for the isotropic susceptibil-
ity. This theoretical value for the non-relativistic and therefore spatially
isotropic χ correlates well with experimental values which are in the
range of 5.29 × 10−4 − 9.0 × 10−4 emu/mol [12, 13]. Given that the
susceptibility is proportional to the DOS at the Fermi level, this seems
to have a reasonable magnitude. Therefore, the observed effect of local
spin polarization is obviously imposed not by the high value of the DOS,
which otherwise would be an artifact had the DOS been overestimated in
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Table 2. Static paramagnetic susceptibility χ(ω = 0,q = 0) in units of 10−4µBohr/T,
determined as a response to an external magnetic field applied along [001], [010], and
[110] axis. The shown are partial spin χS and orbital χL contributions from Ru
and oxygens. Oe1,e2 and Oap stand for oxygens equatorial and apical in respect to
Ru, respectively. For symmetry reason, the equatorial oxygens are different only at
H ‖ [010].

Atom H||[001] H||[010] H||[110]
χS χL χS χL χS χL

Ru +8.3 -0.2 +10.0 -0.9 +10.0. -0.9

Oe1 +1.3 +0.1 +1.6 +0.1 +1.7 -0.2

Oe2 +1.3 +0.1 +1.7 -0.4 +1.7 -0.2

Oap +0.2 0.0 +0.2 0.0 +0.2 0.0

Sr +0.2 0.0 +0.2 0.0 +0.2 0.0

calculations, but rather by the Ru on-site exchange enhancement, which
is responsible for the first Hund’s rule.

Inclusion of spin-orbit coupling causes a double anisotropy effect.
First, there is a very modest magneto-crystalline anisotropy of about
less than 0.01 mRy as mentioned above. Second, the static paramag-
netic longitudinal susceptibility also gains a small anisotropy χab(q ∼
0)/χc(q ∼ 0) ∼ 1.09 at vanishing q vectors. This means the amplitude
of spin fluctuations is slightly enhanced within the plane. The partial
spin and orbital contributions, to the total magnetic susceptibility, re-
solved also in consituents of octahedron, is given in Table 2 (numbers
are rounded). For symmetry reasons, equatorial oxygens along [100]-
and [010]-bonds with Ru labeled as Oe1 and Oe2 respectively, are not
equivalent at H ‖ [010].

Note from Table 2 that there is considerable orbital polarization of the
equatorial oxygen ions in the presence of an external field, which makes
the Ru ions orbitally polarized against the local spin moment, no matter
what the orientation of the field. On the other hand, apical oxygens and
Sr have very low magnetic polarizability, which again justifies the 2D-
character of the Fermi system and particularly makes the inter-planar
exchange coupling immaterial. This fact also indicates that incorpora-
tion of orbitals on both cation and anion sites in any analytical model
of spin susceptibility is mandatory in the perovskite. This could explain
the unrealistically large anisotropy [14] of the magnetic susceptibility
obtained within an RPA-designed two-band Hubbard model similar to
the one used above. The two-band model seems, however, quite ade-
quate for a qualitative discussion of the orientational effect, since in the
case of spontaneous polarization, oxygens are practically uninvolved in
the low-energy angular momentum dynamics.
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To reflect the aforementioned effects of anisotropy, the following for-
mula

M = χ‖H‖ + [χ⊥ + κ(h⊥,xh⊥,y)2]H⊥ (14)

can be used to adequately describe the basal-plane anisotropy of mag-
netic response with local C4v symmetry and uniaxial anisotropy along
c-axis. The notations used are: ‖, ⊥ stand for components paral-
lel/perpendicular to c-axis, e.g. external field H = H‖ + H⊥, and in-
plane unit-vector h⊥ ≡ H⊥/H⊥. Thus

M = χ‖H, H ‖ c,

M = χ⊥H, H ‖ [100],

M = (χ⊥ +
1
4
κ)H, H ‖ [110],

(15)

the latter set is the most favorite for polarization, apparently because of
the spin-orbit interaction causing most of the charge transfer between
cations and anions when the field is along [110]. The induced orbital and
spin moments on Ru sites are antiparallel, an expected result in view of
the fact that the entire Ru+4 d-shell is less than half-filled. This obser-
vation is in contrast to the prediction of the two-orbital model discussed
above in accord with which the orbital L and spin S moments would
be expected to be collinear since the 2/3 occupation of the orbitals is
clearly above the half. In fact, L and S are collinear by spontaneous spin
polarization of Ru ions in the incommensurate SDW phase, which shows
that the on-site exchange field responsible for the respective spontaneous
splitting is contained mainly within the two considered Ru orbitals as
having the highest Coulomb repulsion U between the same spins. When
a uniform external field is applied, the Zeeman interaction acts on all
sites and all orbitals, thus involving the entire d-shell on the Ru+4 sites
with effective occupation of about 4 electrons (less than half-filling), as
mentioned above. In this case the orbital polarization has to adopt the
minimum total moment J =| S − L | within the manifold of the Lande
levels of the given L, S multiplet. By selectively switching on spin-orbit
coupling parameter on various ions it is established that the dominant
relativistic effect comes from the d-orbitals of Ru, also the polarizing the
neighbour equatorial oxygens. The polarizability on the sites of apical
oxygens and adjacent ions of Sr+2 is vanishingly small, presumably as a
result of complete ‘undressing’ of the Sr ions.

The following ratios for the susceptibility components

χ⊥ ≈ 1.09χ‖,
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1
4
κ ≈ 0.01χ‖, (16)

complete the anisotropy mapping of the magnetic susceptibility at zero
wave vector. So far we have discussed the anisotropy found for static
χ at zero wave vector, particularly emphasizing stronger ferromagnetic
fluctuations within the ab-plane. Since the anisotropy of χ is closely
related to anisotropy of 〈lz〉ζ the same magnitude of anisotropy would
be expected for finite q as well. From the above discussion of the orien-
tational dependence in Sec. 15.4, it is clear that the effect of the energy
denominator which doesn’t depend on the orientation of spin quantiza-
tion axis (external magnetic field), will affect the susceptibility at the
nesting vector leading to an enhancement of both longitudinal χzz and
transversal χ+− components in rather similar way. This conclusion is
in contradiction to the earlier prediction [14] that χ+− has no features
related to the Fermi surface nesting whereas χzz does. Apparently only
matrix elements of l̂z are contributing to magnetic susceptibility within
the two-orbital model, and they do that at any orientation of êζ. For
wave vectors around the nesting qN, both paramagnetic longitudinal
and transverse components are expected to be enhanced, with a rather
modest level of anisotropy, since this is solely an effect of the energy
denominator.

15.5 Summary: possible magnetic low-lying
excitations and impact upon
superconductivity

The presence of a SDW ground state, although suppressed by zero-
point fluctuations as mentioned above, raises questions about specific
magnetic low-lying excitations, a somewhat general concern that might
have some interesting consequences for the observables. Establishment
of magnetic type low-lying excitations becomes even more intriguing
with reference to potential mediators of superconducting pairing since
earlier lattice dynamics investigation [4] shows no sign of phonon mode
softening.

We have demonstrated that there is a certain trend toward the for-
mation of a spin-density wave already in pure stronthium ruthenate. On
the other hand, in view of the immaterial magneto-crystalline anisotropy
the quantum spin fluctuations are most likely to destroy the staggered
magnetization density. Yet, the magnetic susceptibility is expected to
be structured by a type of low-lying magnetic excitations, which in spin-
wave approximation, can be considered as phasons with limited life-time.
The latter type of excitations is characteristic of a simple helix in the



240 Spin Stability and Low-Lying Excitations in Sr2RuO4

ground state. The problem was first considered some time ago [17, 18]
within a Heisenberg model and recently within LSDA [19] in conjunc-
tion with the heavy rare earth metals, where the ground and meta-stable
states are vary from ordinary FM through the AFM helix and FM cone.
The dispersion of phasons, like antiferromagnetic magnons, is linear in
wave vector and has no gap, since in presence of incommensurate spin
modulation the azimuthal phase is averaged out from the total energy.
The phasons exemplify the Goldstone mode as a result of spontaneous
symmetry breaking in the system.

There is the question of whether the phasons, perhaps better termed
para-phasons, might be involved in the superconductivity. If they are,
then the classification in terms of singlet or triplet would be unnecessary,
since on atomic scale the spinor symmetry is triplet, but on the scale
of the helix the symmetry is a singlet. Although, as argued above, a
vanishingly small magnetocrystalline anisotropy on the Ru sites cannot
stabilize the long range order in the presence of zero-point spin motion,
the latter itself has to reflect the symmetry of incommensurate helical
superstructure or spin-density wave.

Since the observation of a temperature-independent spin susceptibil-
ity deep into the superconducting state has been used to justify a time-
reversal symmetry breaking triplet order parameter within Cooper pair-
ing formalism, a detailed analysis shows that the “chiral” vector order
developed for 3He is also relevant for the crystal in question (see Ref. [30]
for a thorough discussion of this and related problems). Here we restrict
ourselves to a brief discussion of possible complications of our results for
the triplet pairing models.

Similar to the B phase of 3He, broken symmetry in the unconven-
tional superconductor Sr2RuO4 governs the relative orientation of spin
and orbital momentum. The on-site exchange on Ru sites seems to be
strong enough to produce local ferromagnetic fluctuations of spin density,
correlated in helical or spin-density wave structure by the RKKY-type
interaction, which is a clear manifestation of the crystalline structure.
On the other hand, the relativistic interaction is large enough to keep
spin and orbital moments together up to 1000 K, but the vanishingly
small anisotropy decouples the entire set of spin-orbit pairs from certain
directions in the crystal. Therefore the superconducting order parameter
seems similar to the one in the B phase of 3He, but modulated spatially
as a helical or spin-density wave order parameter. Here we want to
emphasize once again, that the magnitude of spin-orbit coupling alone
cannot determine the anisotropy of the order parameter. Instead, the
SO effect has to be combined with the subtle effects of crystal field and
state occupation, which in our particular case leads to the vanishingly
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small anisotropy of magnetic fluctuations. Note also, as a support for
our finding, that there is so far no experimental proof that the vector
order parameter is pinned along a certain direction in the crystal.

Clearly, this observation based on the exchange structure of the spin
interaction, has to be complemented by the anisotropy mapping of the
magnetic susceptibility which is particularly suited to the liquid 3He B
phase model of superfluidity for the tetragonal crystalline structure of
strontium ruthenate. By giving a credit to LSDA calculations, we have
to admit that the zero wave-vector spin fluctuations are at maximum
within the plane of the essentially 2D Fermi system along the [110 ]
Ru-chain resembling the A phase of 3He, and strong enhancement of
fluctuations at the Fermi surface nesting vector with rotationally broken
symmetry as in the 3He B phase due to the vanishingly small orienta-
tional anisotropy in that case.
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