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Preface

These two volumes provide an up-to-date account of the mathematics and
numerical modelling that underpins weather forecasting, climate change sim-
ulations, dynamical meteorology and oceanography. The articles are a com-
bination of teaching/review material and present results from contemporary
research. The subject matter will be of interest to mathematicians and meteo-
rologists, from graduate students to experts in the field. The articles have been
written with the intention of providing accessible, interdisciplinary, accounts.
The Introduction, which appears in both volumes, provides a guide to, and
a perspective on, the subject matter and contents, and draws some tentative
conclusions about the possible directions for future research.

The volumes are the result of the stimulus provided by the programme on
The Mathematics of Atmosphere and Ocean Dynamics held at the Isaac New-
ton Institute for Mathematical Sciences in 1996, together with a follow-up
meeting there in December 1997. The mathematical, scientific and compu-
tational challenge behind weather forecasting is why should we be able to
forecast at all when the dynamical equations, the heat/moisture processes,
and the billions of arithmetical calculations on 10–100 million unknowns in-
volved in global forecasting each have associated instabilities and the potential
for chaos? The overarching idea was to identify the stabilising principles and
represent them effectively in mathematics that would lead to successful and
efficient computation. Certain geometrical ideas are found to characterise the
essential controlling physical principles, and the interplay of geometry and
analysis makes for interesting new mathematics and helps to explain why
computation of useful information becomes possible in the presence of chaos.

For obvious reasons, with over four years having elapsed since the conclu-
sion of the original Programme, the subject matter has advanced as a result
of work undertaken in the intervening period, both exploring ideas that were
originally conceived in the Programme and developing new approaches. This
has enabled new directions to be explored and this is reflected in the con-
tributions. The Editors are indebted to all the contributors for both their
perseverance and patience which has brought the project to fruition. While
bringing the contributions together, we have received valuable help and en-
couragement from a number of people in addition to the support from the Met
Office, Bracknell, and Lincoln College, Oxford. In particular, we would like to
thank Terry Davies, Raymond Hide, Brian Hoskins and Emily Shuckburgh for
reading various articles and providing useful comments. We would also like to
thank Julian Hunt for his unstinting support for the programme from its in-
ception, and John Toland for suggesting a programme on this subject matter
in the first place! Much of the hard work in organizing the Programme was
borne by the staff at the Newton Institute, and we would like to thank them,
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and the Director, Keith Moffatt, for valuable advice and assistance. Finally,
David Tranah of the University Press showed us how to bring it all together.

Both the Programme and the volumes are forward looking, and history
will decide on their success. However, it is with deep sadness that we record
here the tragic passing of our much respected colleague Dr. Rupert Ford of
Imperial College, who fell ill and died in March 2001 at the age of thirty-three.
Although not making a written contribution to these volumes, Rupert was one
of the most active and enthusiastic participants in the Programme itself, and
a tremendous stimulus to us all. He stood astride the several disciplines that
the organizers of the Programme sought to bring together. By the time of
his death he had already published several outstanding contributions toward
solving the problems with which the Programme was concerned. He will be
sorely missed throughout a wide research community and we, the Editors and
contributors, dedicate these volumes to his memory.

Ian Roulstone John Norbury
Met Office University of Oxford



Introduction and Scientific Background

J.C.R. Hunt, J. Norbury and I. Roulstone

Because of the importance and excitement of recent developments in research
on large scale atmosphere-ocean dynamics, in 1996 an intense programme was
held at the Isaac Newton Institute in Cambridge bringing together about 300
scientists from a wide range of specialisms. The articles in these two volumes
consist of reviews, up to date research findings, and challenging statements
about problems for future research. These are based on presentations made
during the programme and more recent developments in the research, result-
ing from the vigorous and continuing interactions between many of the par-
ticipants.

Numerical weather prediction and ocean modelling are successful applica-
tions of mathematical physics and numerical analysis. Their scientific method-
ology is essentially reductionist, because it involves reducing the calculations
of a complex environmental process into constituent parts, each of which can
be understood scientifically and modelled (Hunt 1999). This involves combin-
ing quantitative representation at every point in space and time of physical
processes, governing phase changes, radiation and molecular diffusion, with
the mathematical modelling of fluid mechanics on a wide range of scales from
thousands of kilometres to centimetres. In order that the predictions cover all
the aspects of practical importance, as well as increasing their accuracy year
on year, regular improvements are needed in the models of key processes and
mechanisms; some are well understood such as phase changes and low ampli-
tude waves, but others such as radiation and turbulence can only be approx-
imately parameterised or modelled, using the latest research as it develops.
Once these large systems of mathematical equations and boundary conditions
have been fixed in any particular model, they are then further approximated
by some form of discretisation, so as to be suitable for computation. Addi-
tional mathematical algorithms are introduced for the iterative recalculation
of the equations for the ‘assimilation’ of the observational data as it continu-
ally arrives. Numerical analysis, mathematical and physical compromises are
all necessary in these stages of the development of an accurate and practical
operational system.

Typically 1010–1011 equations have to be calculated in the operations of
national and international meteorological organisations when they produce
their regular forecasts for the global weather. They utilize both the largest
computers in the world and 100 million observations per day which, according
to the World Meteorological Organisation, now cost more than $1 billion per
year. The question of how to optimally incorporate satellite observations of
particular atmospheric features, together with the more traditional ground
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and ship based observations, is one of growing importance both scientifically
and economically. One could say that this effort has ‘paid-off’ because the
errors, which increase with the number of days ahead for the forecasts, have
been steadily decreasing, so that a 3-day forecast today is by many measures
as accurate as a 1-day forecast 20 years ago. Forecasts for up to 7 days are
now regularly issued and found to have useful accuracy on continental scales.
However, to maintain this downward trend in errors, continuing research is
essential.

In the 1980s prediction of global ocean currents began to be developed
based on similar types of mathematical and computational methods, and fluid
mechanics, but the models had to allow for the quite different thermodynamics
and mixing processes of the watermass. Also the boundary conditions of the
oceans at the surface, coasts and ocean floor are obviously different from those
of the atmosphere. Although soundings from ships and buoys are now being
supplemented by satellite borne measurements at the ocean surface, regular
observations for initialising ocean models are only available over limited regions
of the world. Nevertheless useful forecasts for global ocean temperatures and
currents are produced every few days. Furthermore now that these models
are working, it is possible to develop global climate models by coupling the
atmospheric and ocean models together, and then to take up the challenge of
predicting aspects of variability on seasonal timescales and climate change over
the continents, oceans and icecaps for periods of the order of 100 years and
beyond. As the models improve, their spatial discrimination is becoming finer.

On long climatic timescales processes have to be modelled that, on the
shorter timescale of weather or ocean forecasts, either can be neglected, such
as chemical reactions whose effects on weather are only significant over a pe-
riod of months, or can be considered to be fixed boundary conditions, such as
ice-sheets which change relatively slowly. On the climate timescale these other-
wise neglected effects, such as the chemistry of the ozone hole, grow and decay
significantly and affect the whole globe. As J.–L. Lions (1995) has pointed out,
the mathematical properties of the governing equations may be transformed so
substantially by the introduction of certain effects, such as modelling the dy-
namics of ice sheets, that it is no longer possible to prove an existence theorem!
Despite such mathematical doubts, climate change computations converge to
the same equilibrium state even over quite a wide range of initial conditions.
The results for the key parameters, such as global temperature, now agree
with measurements of the global climate taken over the past 150 years within
the natural fluctuations of the system. Governments have accepted the reli-
ability of these models as a basis for their policies to mitigate the effects of
increases over the next century of global temperature and sea level because of
their likely effects on human life and economic activities.

By the end of the nineteenth century, the equations of motion, of thermo-
dynamics, and of transport of moisture, that are the essential components of
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any model for forecasting the weather, had been worked out. However, it was
also clear to those interested in such endeavours, for example Vilhelm Bjerk-
nes (1914) and Lewis Fry Richardson (1922), that the problem of finding and
computing solutions was extremely difficult. Although it was only 30-odd years
between Richardson writing about a ‘mere dream’ of machines capable of per-
forming such tasks and the advent of the first numerical forecasts (Charney,
Fjørtoft and Von Neumann 1950), the intervening years witnessed the cre-
ation of ingenious methods for studying and analysing the atmospheric and
oceanic flows that are still important in the context of weather and climate
forecasting. Examples include fronts, ocean eddies and mid-latitude cyclones
— such as the low pressure systems that cross the Atlantic and bring ‘weather’
to northern Europe.

The key idea behind these advances is to study the solutions of much simpler
dynamical systems, whose solutions stay close for finite, but useful, time in-
tervals, to those of the full fluid and thermodynamic equations. Indeed, much
of modern dynamical meteorology is based on such studies, beginning with
the pioneering work of Rossby (1936, 1940), Charney (1947, 1948) and Eady
(1949). These approximate models usually correspond to some mathematical
asymptotic state in which there is a dominant ‘geostrophic’ balance between
the Coriolis, buoyancy and pressure-gradient forces on fluid particles so that
the effects of acceleration of the particles (in the rotating frame of reference
of the Earth) are relatively small. The asymptotic state arises from the rapid
rotation and strong stratification of the Earth’s atmosphere. Here, geostrophic
balance (at its simplest) means horizontal flow around the pressure contours
(Buys-Ballot’s law), and this is coupled to the changes in the buoyancy force
(hydrostatic balance between the vertical pressure gradient and gravity) in the
vertical. Such approximations to Newton’s second law are commonly referred
to as balanced models. The Navier-Stokes equations for rotating, compressible,
stratified fluid flow together with the equations of state and thermodynam-
ics, commonly known in meteorology as the primitive equations, are the basis
for numerical models used for atmospheric and oceanic predictions, and are
therefore the starting point for the derivation of balanced models.

In the mid to late nineteenth century, classical hydrodynamics centred on
the mathematical theorems of vortex motion, discovered by Helmholtz and
Kelvin. The most notable of these governed the strength (or ‘circulation’),
the movement and the stability of vortices. Vortices persist even when their
surroundings are quite disturbed or turbulent, as one observes by a simple
experiment in one’s bath. Vortices can move dangerously as tornadoes and
swirling tropical storms, and last a long time over hundreds or thousands
of rotation periods. Helmholtz’ and Kelvin’s theorem was formulated for a
barotropic fluid in which the pressure is a function of the density alone, and
therefore is too restrictive to represent air or sea water in motion because of
the lack of thermodynamics.
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Vilhelm Bjerknes in 1897 (Friedman 1989) first made the link between the-
oretical fluid mechanics and meteorology, by generalising the circulation the-
orem to include the usual atmospheric and oceanic situations where vorticity
is generated or destroyed by the variation of buoyancy forces involving tem-
perature changes in the vertical. The application of these results to synoptic
meteorology in the ensuing years is, perhaps, the most important advance in
the subject (Petterssen 1956). However Bjerknes and his son Jakob are more
famous for their observational description in the 1920s of how cyclonic dis-
turbances develop, with converging air flow leading to the formation of fronts
and the triggering of rain bands along the fronts. Through their advocacy and
organisation of rapid international exchange of meteorological measurement,
their ideas featured in public weather forecasts in the 1930s (Friedman 1989).
Qualitative elements of frontal analysis and the further dynamical analysis of
regions of convergence and divergence by Sutcliffe (1947) and his contempo-
raries provided the conceptual basis of practical forecasting until the 1990s.
Rossby (1936, 1940) and Ertel (1942) provided the next important conceptual
development in meteorology and oceanography with the unifying concept of
‘potential vorticity’ (PV). PV is proportional to the vertical component of
the vorticity of a fluid parcel per unit mass, and is approximately conserved
when the effects of friction and external heating are slow compared to the
other changes that are occurring in an air mass as it moves horizontally and
vertically, e.g. over another air mass or mountains. This dynamical insight
about changing meteorological conditions constrained by the conservation of
a scalar quantity was connected to the earlier ideas of geostrophic balance
through the pioneering work of Charney (1947) on quasi-geostrophic theory
and by Kleinschmidt (1950a,b; 1951) on the dynamics of cyclones. However,
exploitation of this new variable (PV) had to wait until the introduction of
super-computers and the greater availability of upper-air data in the 1980s.
The concept of PV has become a useful tool in practical forecasting because
this one scalar field determines (via so-called ‘inversion’) the wind, pressure,
temperature and density fields. This is a conceptual simplification because the
changing weather (or even errors in weather patterns) can be described very
economically (and errors corrected) using this one variable at different levels
(Hoskins, McIntyre and Robertson 1985). The mathematical significance of
potential vorticity conservation is not only that it is a ‘governing’ variable,
but also that its properties reflect the underlying symmetries of the fluid-
dynamical system which, in turn, determine conservation properties in both
the infinite-dimensional, and numerical finite-dimensional, approximate ‘mod-
els’ of such systems.

In recent years a new appreciation has emerged of the central role, in con-
trolling the behaviour of the equations and their solutions, of conservation laws
of dynamical systems. This has been achieved by connecting them with the
intrinsic geometric structure of the underlying equations of motion regarded
as a hamiltonian dynamical system (i.e. one defined by its integral properties
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such as mass, energy, potential vorticity). Recent research in mechanics and
dynamical systems using this powerful concept is often not familiar to those
working in theoretical fluid dynamics, meteorology and oceanography. Mod-
ern hamiltonian mechanics provides a natural framework for understanding
phenomena such as nonlinear stability, integral invariants and constrained dy-
namical systems (such as balanced models), and also for developing improved
numerical schemes that have reduced errors because the schemes reflect the
intrinsic geometrical properties of the analytical equations (Budd and Iserles
1999). The interplay of geometry and analysis will have many applications in
geophysical mechanics; forecasting and climate modelling being prime exam-
ples here. The Newton Institute programme was designed to help advance this
understanding.

The lectures in these volumes explain why simplifications to Newton’s sec-
ond law applied to the complex motions in the atmosphere and oceans are
needed to understand and solve the equations. Since the early work of Runge
(1895), Kutta (1901) and Richardson (1911), mathematical analysis has en-
abled the accuracy of such approximations to be assessed systematically on
what are now large scale computations. However, whereas meteorologists have
sought patterns in the weather for over 300 years, mathematicians have only
recently begun to use geometrical thinking to understand the structure be-
hind the governing equations and their approximate forms. Here constrained
hamiltonian mechanics, transformation groups, and convex analysis are used
to control the potentially chaotic dynamics in the numerical simulations, and
to suggest optimal ways to exploit observational data. Many of the chap-
ters 1 included in these volumes describe studies of the governing systems of
equations, with all their complexities and approximations, although the main
emphasis was on simpler systems whose integral properties and detailed solu-
tions can be derived exactly. The approximations involved in deriving these
idealised systems are controversial and have not always been mathematically
consistent. Recent research, such as Cullen [I, 4], has centred on quantifying
these approximations, by making full use of the latest results from the theory
of stratified, rotating fluid dynamics. This book and its companion show how
geometry and analysis quantify the concepts behind the fluid dynamics, and
thus facilitate new solution strategies.

Any selection of contributions from an extensive subject such as weather
and ocean forecasting necessarily reflects a particular viewpoint concerning
both the historical significance of certain developments and their implications
for future progress. The following brief commentary indicates the viewpoint
taken and supplies a setting for the individual papers. However, the emphasis is
always on large-scale atmosphere and ocean dynamical models that are useful
in predicting changing weather patterns and climatic trends.

1They are designated hereafter by a number in square brackets [ ], with the volume
number first, where needed. Other references are referred to by their date e.g. (1999).
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Introduction to Volume 1—Analytical Methods and Numerical
Models

The article A View of the Equations of Meteorological Dynamics and Various
Approximations by White [1], is a pedagogical introduction to the mathe-
matics of meteorological fluid dynamics, which includes the derivation of the
governing equations from those for the conservation of mass, momentum, ther-
modynamics etc., making further suitable approximations consistent with the
asymptotic regimes to be modelled. White reviews the problem of deriving
simplified balance equations which, as he explains, requires certain assump-
tions. This article has been written for mathematicians and physicists who
desire a compact introduction to the subject rather than the more extensive
treatments to be found in good contemporary textbooks on meteorology. At-
tention is also paid to various recent developments which have received little
exposure outside the research literature yet. The approximated models studied
include the hydrostatic primitive equations, the shallow water equations, the
barotropic vorticity equation, several approximately-geostrophic models and
some acoustically-filtered models which permit buoyancy modes. Conservation
properties and frame invariance are given special emphasis. A straightforward
problem of small-amplitude wave motion in a rotating, stratified, compressible
atmosphere is addressed in detail, with particular attention paid to the occur-
rence or non-occurrence of acoustic, buoyancy and planetary modes in these
models. The concluding section contains a short discussion of basic issues in
numerical model construction.

The motion of a rotating, stratified fluid governed by the hydrostatic prim-
itive equations is studied by Allen et al. [2]. The hydrostatic approximation,
as discussed by White, reflects the high degree of stratification in the at-
mosphere and oceans. Approximate models are derived from the hydrostatic
primitive equations for application to mesoscale oceanographic problems. The
approximations are made within the framework of Hamilton’s principle us-
ing the Euler–Poincaré theorem for ideal continua (see Holm et al. [II, 7]). In
this framework, the resulting eulerian approximate equations satisfy Kelvin’s
theorem, conserve potential vorticity of fluid particles and conserve a volume-
integrated energy. In addition, Allen et al. assess the accuracy of the model
equations through numerical experiments involving a baroclinically unstable
oceanic jet.

Roulstone and Norbury (1994) describe how one particular balanced model,
the so-called semi-geostrophic (SG) equations, can be formulated in a manner
similar to the Euler equations in two dimensions. Balanced evolution, which in
this model entails the complete absence of fast inertia-gravity waves, is gener-
ated by a hamiltonian such that the solution is a sequence of minimum energy
states, in a certain sense. Hoskins and Bretherton (1972) showed that the SG
equations may be expressed in terms of lagrangian conservation laws. Thence
a stable manifold within the dynamical system of the atmosphere is defined by
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using a convexity principle to minimize the energy. An extra advantage of this
principle is that it applies to variables which have discontinuities. Furthermore,
Hoskins and Bretherton (1972) showed that there exists a transformation of
coordinates under which the motion of the fluid parcels is exactly geostrophic.
For this reason such coordinates are sometimes referred to as geostrophic co-
ordinates. Singularities of this differentiable map can be interpreted as fronts.

For a solution to the semi-geostrophic equations on a plane rotating with
constant angular velocity — a so-called f -plane — the Cullen–Norbury–Purser
principle (Cullen et al. 1991) states that at each fixed time, the fluid parti-
cles arrange themselves to minimise energy. Rewriting the equations in terms
of the so-called geostrophic coordinates (Sewell [II,5]), this principle yields a
constrained variational problem (where the constraint evolves with time): at
each fixed time t, minimize the energy over all possible fluid configurations,
given that values of the geostrophic transformation are known on particles.
The minimizer, if it exists and is unique, gives the actual state of the fluid (in
terms of the geostrophic transformation) at time t. Assuming the geostrophic
energy is finite, it has been proved (Douglas 1998) that there is a unique min-
imizer, equal to the gradient of a convex function. In this way, solutions can
be viewed as a sequence of minimum energy states. The set of possible states
is described by a set of rearrangements; the unique minimizer is the monotone
rearrangement (see Brenier 1991).

Douglas [5] presents some mathematical ideas on rearrangements of fluid
volumes that have found application in meteorology, and that promote the
lagrangian viewpoint. An intuitive idea of when two functions are rearrange-
ments is as follows. Let f be a function, defined on a bounded region, such
as temperature or moisture content. Imagine that the bounded region is a
continuum of infinitesimal particles, and suppose that we exchange the parti-
cle positions with each particle retaining its value of f , that is, we conserve
the temperature or moisture on fluid particles. This yields a new function g,
which describes the temperature or moisture at the new locations, which is a
‘rearrangement’ of f . The concept of rearranging a function can be applied to
both scalar and vector valued functions, and Douglas [5] develops the theory
for both cases. Examples are given to illustrate the key ideas. Essentially, re-
arrangements allow us to conserve quantities on fluid masses as the masses are
transported through the atmosphere using a lagrangian rather than eulerian
viewpoint.

We can rewrite the energy minimization problem as a ‘Monge mass transfer
problem’, for which there already exists a significant mathematical theory and
numerical solution procedure. We then find that the monotone rearrangement
is the optimal mapping. Thus, the geostrophic energy-minimising arrangement
of fluid masses can be related to local stability conditions that require convex-
ity of certain pressure (or geopotential) surfaces in the atmosphere. Failure to
satisfy these conditions is usually associated with a breakdown in balance and
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rapid change of atmospheric conditions, including storms. An introduction to
the theory of rearrangements, together with a discussion of their application
to the semi-geostrophic equations, is given by Douglas [5]. An alternative in-
terpretation of this theory based on probability ensembles, considering in what
sense maximum likelihood states are equivalent to the Cullen–Norbury–Purser
principle in semi-geostrophic theory, is given in Baigent and Norbury [6].

Following the seminal work of Vilhelm Bjerknes, the method of numerical
weather prediction (NWP) was first worked out by L.F. Richardson in 1922
(see, for example, Nebeker 1995). He anticipated that sufficient measurement
of data would become available and that computations would become suffi-
ciently fast and comprehensive that the accuracy of weather forecasts should
eventually equal those for the stellar and planetary positions recorded annu-
ally in the Nautical Almanac. This presumption was essentially questioned by
Lorenz (1963), who showed that even much simpler mathematical represen-
tations of fluid flow (3 coupled non-linear, first-order, differential equations)
are intrinsically prone to errors, so that however small their initial value the
magnitudes of errors generally grow. His broad conclusions have had a major
influence on the interpretation of weather forecasts ever since, the first being
that there is much more sensitivity to errors in some states of a system (e.g.
near saddle points in the phase plane) than in others. The second is that errors
can grow exponentially. The latter conclusion has been bowdlerised in much
popular comment as implying that since errors grow rapidly the weather is
so chaotic that it cannot be forecast at all! Reasons why this might not be
true for large scale weather evolution were advanced during the Isaac Newton
Institute programme and have been the basis of significant follow-up work.
First it is necessary to think carefully about what is meant by forecast error.
A new approach to the evaluation of weather forecast error is to decompose
the error into a combination of displacement error and difference in qualitative
features. Douglas [5], and Cullen [4], demonstrate this idea and give a precise
formulation using rearrangements of functions.

Directly or indirectly, the papers in this volume show why useful predic-
tions can be made in the presence of chaos. Cullen [4] explains how the errors
for more complex systems than those considered by Lorenz often grow more
slowly, one of the reasons being that typical atmosphere and ocean weather
events have a localised or vortex nature rather than a wave-like form (Hunt
1999). Other papers (see Arnol’d 1998) show that whether the systems are
simple or complex, whatever their growth rate over the first few days, the er-
rors are limited because the range of possible solutions for small initial errors
tend to be confined within certain ‘basins of attraction’ in the phase planes
of the system. This geometrical interpretation reflects recent mathematical
research in which the results of geometrical analysis of differential systems
leads to a clearer definition of their ‘global’ (in the mathematical sense) prop-
erties. Babin, Mahalov and Nicolaenko [3] give a detailed derivation of the
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errors involved in the balanced dynamics in the different asymptotic regimes
of interest in atmospheric and oceanic dynamics. Babin et al. derive a new
theorem for these error limits, and show how some of the standard approx-
imations based on ‘balance’ and the neglect of the nonlinear time averaged
effects of ‘unbalanced’ motion may be significant — reflecting perhaps the
practical meteorologist’s well known concern with waves on fronts, another
example of further instability.

Weather forecasts are routinely computed for up to 10 days ahead, based
on large quantities of wind, temperature and humidity data that are collected
continuously, at random locations around the globe, and used to modify the
computations. The data are of course insufficient to determine the exact state
of the atmosphere. Since the data are very expensive to obtain there is a
premium on their optimal exploitation. Therefore it is of the highest impor-
tance for numerical weather prediction to identify the dominant processes and
flow features that determine how the large scale weather patterns develop.
By ensuring that the continuous assimilation of data is consistent with these
features the accuracy of the forecasts is greatly increased. Ocean modelling is
beginning to develop similar data assimilation techniques. Cullen [4] explains
how we can think of the atmosphere as evolving close to a dynamical system
with high predictability which both explains the current success of operational
predictions, and suggests that further useful progress can be made by exploit-
ing this closeness more fully in the design of numerical prediction systems.
Furthermore, using the notion of balance, and the associated transformation
theory described by Sewell [II,5], Cullen suggests ways of using the incom-
plete observational data in more efficient ways, by exploiting the information
implicit in the balance conditions to project the data onto the model grid in
ways that respect the prevailing synoptic conditions. Babin et al. [3] provide a
rigorous account of the asymptotic validity of these simpler systems. Cullen [4]
argues that some recent results presented during the programme, from both
atmosphere and ocean models, suggest that it is well worth making efforts
to reduce the generation of spurious solutions arising from model and com-
putational errors. Recent work supports the aim of building better numerical
models that naturally support the desired simpler solutions.

Atmosphere and ocean models include approximate representations of sub
grid scale processes and physical forcing; their best mathematical representa-
tion is not certain. Considerable progress is being made in showing how certain
turbulence mixing processes that have been represented by diffusion-like terms
can better be represented as effective advective transport terms. This could
even affect conclusions about the large scale atmosphere and ocean circulation.
Furthermore this change affects the form of the overall mathematical model,
since these ‘transports’ have to be properly integrated with the rest of the
dynamics. This issue too is discussed in the article by Cullen [4].



xxii Introduction and Scientific Background

Introduction to Volume 2 — Geometric Methods and Models

Salmon (1983, 1985, 1988) pioneered the systematic derivation of balanced
models within the framework of Hamilton’s principle. The rationale is to make
approximations to the lagrangian without disturbing the symmetry properties
of the functional, thereby ensuring that the resulting model retains approx-
imations to the conservation laws of the primitive equations. The derivation
and understanding of balanced models from the hamiltonian point of view
was one of the key themes of the Newton Institute programme. The chapter
Balanced models in geophysical fluid dynamics: hamiltonian formulation, con-
straints and formal stability by Bokhove [1], gives a step by step account of
the basics of hamiltonian mechanics and proceeds to demonstrate how hamil-
tonian formulations of balanced models can be constructed such that fast
inertio-gravity waves can be eliminated by imposing certain constraints.

Most fluid systems, such as the three-dimensional compressible Euler equa-
tions, are too complicated to yield general analytical solutions, and approx-
imation methods are needed to make progress in understanding aspects of
particular flows. Bokhove reviews derivations of approximate or reduced geo-
physical fluid equations which result from combining perturbation methods
with preservation of the variational or hamiltonian structure. Preservation of
this structure ensures that analogues of conservation laws in the original ‘par-
ent’ equations of motion are preserved. Although formal accuracy in terms
of a small parameter may be achieved with conservative asymptotic pertur-
bation methods, asymptotic solutions are expected to diverge on longer time
scales. Nevertheless, perturbation methods combined with preservation of the
variational or hamiltonian structure are hypothesised to be useful in a clima-
tological sense because conservation laws associated with this structure re-
main to constrain the reduced fluid dynamics. Variational and hamiltonian
formulations, perturbative approaches based on ‘slaving’, and several con-
strained variational or hamiltonian approximation approaches are introduced,
beginning with finite-dimensional systems because they facilitate a more suc-
cinct exposition of the essentials. (The more technical mathematical aspects of
infinite-dimensional hamiltonian systems are not considered, see e.g. Marsden
and Ratiu 1994.) The powerful energy-Casimir method which can be used to
derive stability criteria for steady states of (canonical) hamiltonian systems
is introduced and the hamiltonian approximation approaches to various fluid
models starting from the compressible Euler equations and finishing with the
barotropic quasi-geostrophic and higher-order geostrophically balanced equa-
tions is presented. The presentation of fluid examples runs in parallel with the
general finite-dimensional treatment which facilitates a clear understanding of
the methods involved.

An illustration of the concept of balance within the framework of a finite-
dimensional system is provided by Lynch [2]. The linear normal modes of
the atmosphere fall into two categories, the low frequency Rossby waves and
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the high frequency gravity waves. The elastic pendulum is a simple mechan-
ical system having low frequency and high frequency oscillations. Its motion
is governed by four coupled nonlinear ordinary differential equations. Lynch
studies the dynamics of this system, drawing analogies between its behaviour
and that of the atmosphere. The linear normal mode structure of the system
is analysed, the procedure of initialization is described and the existence and
character of the slow manifold is discussed. This allows non-specialists to see,
in a very simple example, what is performed routinely with the enormous
systems of equations in modern numerical weather prediction and why.

Balmforth and Morrison [4] develop a hamiltonian description of shear flow,
including the dynamics of the continuous spectrum. Euler’s equation linearized
about a shear flow equilibrium is solved by means of a novel invertible integral
transform that is a generalization of the Hilbert transform. The integral trans-
form provides a means for describing the dynamics of the continuous spectrum
that is well-known to occur in this system. The results are interpreted in the
context of hamiltonian systems theory, where it is shown that the integral
transform defines a canonical transformation to action-angle variables.

Many balanced models do not support gravity waves, indeed the elimination
of these waves from the solutions is usually the aim in defining an appropriate
balance. Caillol and Zeitlin [3] point out that although internal gravity waves
are not normally associated with ‘weather’ (see also Cullen [I,4]), they play
an important role in energy transport in atmosphere and ocean dynamics. In
[3], Caillol and Zeitlin study statistically steady states of an ensemble of in-
teracting internal gravity waves and the corresponding energy spectra. They
derive a kinetic equation for a system of weakly nonlinear plane-parallel in-
ternal gravity waves in the Boussinesq approximation and solve them to find
stationary energy spectra for wave packets propagating in the direction close
to vertical. The result is a Rayleigh–Jeans energy equipartition solution and
a Kolmogorov-type solution of the form εk ∼ k

−(3/2)
1 k

−(3/2)
3 corresponding to

a constant energy flux through the wave spectrum.
The canonical vortex structures, their interaction and slow evolution, may

be described, in the semi-geostrophic model, by solutions to the non-standard
(Monge mass transfer) optimization problem described by Cullen [I,4] and
Douglas [I,5]. It has been shown, by Chynoweth and Sewell (1989) for exam-
ple, that singularities arise from the convexifications of multivalued Legendre
dual functions, such as the swallowtail, with a typical singular surface being
identified with a weather front. Sewell [5] reviews many aspects of transforma-
tion theory including Legendre duality and other types, and of lift transfor-
mations and canonical transformations. Applications are mentioned in several
branches of mechanics. A straightforward style is adopted, so that the paper
is accessible to a wide readership. Developments in the semi-geostrophic the-
ory of meteorology in the last fifteen years have prompted this review, but
it draws upon earlier work in, for example, plasticity theory, gas dynamics,
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shallow water theory, catastrophe theory, hamiltonian mass-point mechanics,
and the theory of maximum and minimum principles. Singularities need to
be described in transformation theory, and the swallowtail catastrophe is one
such example. The intimate relation between lift transformations and hamilto-
nian structures is described. New exact solutions in a semi-geostrophic central
orbit theory are given and properties of constitutive surfaces in gas dynamics
and shallow water theory are described.

Purser [6] demonstrates that, using transformation theory, one can con-
struct different versions of the semi-geostrophic equations for the purposes of
modelling non-axisymmetric vortices on an f -plane and hemispheric (variable-
f) dynamics. Both formulations retain a Legendre duality — a feature which
is central to the construction of lagrangian finite-element methods. Note also
that McIntyre and Roulstone [8] ask whether higher-order corrections to semi-
geostrophic theory may be constructed while retaining some of the mathemat-
ical features that facilitate the integration of the equations both analytically
and numerically.

For semi-geostrophic theories derived from the hamiltonian principles sug-
gested by Salmon it is known (e.g. Purser and Cullen 1987) that a duality
exists between the physical coordinates and geopotential, on the one hand,
and isentropic geostrophic momentum coordinates and geostrophic Bernoulli
function, on the other hand. The duality is characterized geometrically by
a contact structure as described by Sewell [5]. This enables the idealized bal-
anced dynamics to be represented by horizontal geostrophic motion in the dual
coordinates, while the mapping back to physical space is determined uniquely
by requiring each instantaneous state to be the one of minimum energy with
respect to volume-conserving rearrangements within the physical domain.

Purser [6] shows that the generic contact structure permits the emergence
of topological anomalies during the evolution of discontinuous flows. For both
theoretical and computational reasons it is desirable to seek special forms of
semi-geostrophic dynamics in which the structure of the contact geometry
prohibits such anomalies. Purser proves that this desideratum is equivalent
to the existence of a mapping of geographical position to a euclidean do-
main, combined with some position-dependent additive modification of the
geopotential, which results in the semi-geostrophic theory being manifestly
Legendre-transformable from this alternative representation to its associated
dual variables.

Legendre transformable representations for standard Boussinesq f -plane
semi-geostrophic theory and for the axisymmetric gradient-balance version
used to study the Eliassen vortex are already known and exploited in finite el-
ement algorithms. Here, Purser re-examines two other potentially useful classes
of semi-geostrophic theory: (i) the non-axisymmetric f -plane vortex; (ii) hemi-
spheric (variable-f) semi-geostrophic dynamics. We find that the imposition
of the natural dynamical and geometrical symmetry requirements together
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with the requirement of Legendre-transformability makes the choice of the
f -plane vortex theory unique. Moreover, with modifications to accommodate
sphericity, this special vortex theory supplies what appears to be the most
symmetrical and consistent formulation of variable-f semi-geostrophic theory
on the hemisphere. The Legendre-transformable representations of these theo-
ries appear superficially to violate the original symmetry of rotation about the
vortex axis. But, remarkably, this symmetry is preserved provided the metric
of the new representation is interpreted to be a pseudo-euclidean Minkowski
metric. Rotation-invariance of the dynamical formulation in physical space is
then perceived as a formal Lorentz-invariance in its Legendre-transformable
representation.

Motivated by the remarkable mathematical structure of balanced models
formulated in terms of a variational principle and their use in solving this
class of problems, the last two articles consider more general and more accu-
rate models of balanced atmospheric dynamics. The contributions by Holm,
Marsden and Ratiu [7], and McIntyre and Roulstone [8], present recent devel-
opments in the theory of hamiltonian balanced models. Holm et al. [7] show
how a number of models can be written in Euler–Poincaré form, and they pro-
pose a new modification of the Euler–Boussinesq equations which adaptively
filters high wavenumbers and thereby enhances stability and regularity.

Recent theoretical work has developed the Hamilton’s-principle analogue of
Lie–Poisson hamiltonian systems defined on semidirect products. The main
theoretical results presented in [7] are twofold: (i) Euler–Poincaré equations
(the lagrangian analogue of Lie–Poisson hamiltonian equations) are derived
for a parameter dependent lagrangian from a general variational principle of
Lagrange–d’Alembert type in which variations are constrained; (ii) an abstract
Kelvin–Noether theorem is derived for such systems. By imposing suitable con-
straints on the variations and by using invariance properties of the lagrangian,
as one does for the Euler equations for the rigid body and ideal fluids, Holm et
al. cast several standard eulerian models of geophysical fluid dynamics (GFD)
at various levels of approximation into Euler–Poincaré form and discuss their
corresponding Kelvin–Noether theorems and potential vorticity conservation
laws. The various levels of GFD approximation are related by substituting a
sequence of velocity decompositions and asymptotic expansions into Hamil-
ton’s principle for the Euler equations of a rotating stratified ideal incom-
pressible fluid. They emphasize that the shared properties of this sequence
of approximate ideal GFD models follow directly from their Euler–Poincaré
formulations. New modifications of the Euler–Boussinesq equations and prim-
itive equations are also proposed in which nonlinear dispersion adaptively fil-
ters high wavenumbers and thereby enhances stability and regularity without
compromising either low wavenumber behaviour or geophysical balance.

The final article — epitomising the open-endedness of the Programme and
the ongoing research it has stimulated — describes an unfinished journey, as
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well as presenting background tutorial material. Semigeostrophic theory and
its contact structure and other formal properties are first of all reviewed in the
simplest nontrivial context, f -plane shallow-water dynamics inR2 = {x, y}. A
number of these properties are remarkably simple and elegant, and mathemat-
ically important. The authors ask which of those properties might generalize
to more accurate hamiltonian models of balanced vortex motion. Many of
the properties are intimately associated with the special canonical coordinates
(X, Y ) discovered by Hoskins (1975). The jacobian ∂(X, Y )/∂(x, y) of these
coordinates with respect to the physical space coordinates (x, y) is equal to the
absolute vorticity measured in units of the Coriolis parameter f ; and Hoskins’
transformation (x, y) �→ (X, Y ) is, in a natural sense, part of an explicitly
invertible contact transformation (see also Sewell [5]). The invertibility is asso-
ciated with a symmetric generating function. Unlike the flow in physical space
{x, y}, the flow in the space {X,Y } space is solenoidal, and its streamfunction
Φ(X,Y, t) is obtainable by solving an elliptic Monge–Ampère equation express-
ing ‘potential vorticity invertibility’. There are also certain Legendre duality
and convexity properties, which make the model well-behaved, both mathe-
matically and numerically, even when phenomena like frontal discontinuities
occur (see also Cullen [I,4], Purser [6] and Sewell [5]).

No such canonical coordinates were known in simple analytical form for
any other balanced model until the recent — and to fluid dynamicists very
surprising — discovery by McIntyre and Roulstone (1996) of complex-valued
canonical coordinates (X, Y ) in a certain class of hamiltonian balanced mod-
els, some of which are more accurate than semigeostrophic theory. The general
way in which these models and their canonical coordinates are systematically
derived by constraining an unbalanced ‘parent dynamics’ (hence ‘splitting’
the parent velocity field into two or more different fields) is discussed, fol-
lowing the method of Salmon (1988). The coordinates (X, Y ) are such that
∂(X, Y )/∂(x, y) is still real, and still equal to the absolute vorticity in units of
f . The models include Salmon’s L1 dynamics and a new family of ‘

√
3 models’

that are formally the most accurate possible of this class. The authors pur-
sue the question thus raised: do these new models, or any subset or superset
of them, share significant properties with semigeostrophic theory beyond the
underlying hamiltonian dynamical structure and the special canonical coordi-
nates (X, Y ) and their association with vorticity? The answer seems to be yes
to the extent that the flow in (complex!) (X,Y ) space is solenoidal — so that
a complex streamfunction Φ(X,Y, t) must exist — and that elliptic Monge–
Ampère equations expressing potential vorticity invertibility occur in all the
new models, as well as in semigeostrophic theory. Otherwise, the answer is no.
For instance the transformation (x, y) �→ (X, Y ) is no longer part of a con-
tact transformation. However, the ‘conjugate’ transformation (x, y) �→ (X, Ȳ ),
where Ȳ is the complex conjugate of Y , is, by contrast, part of an explicitly
invertible contact transformation with a symmetric generating function and
a new transformed potential Φ̂(X, Ȳ , t). This fact, discovered by Roubtsov
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and Roulstone (2001), implies connections with hyper-Kähler geometry. The
pair of transformations — taking (x, y) into (X, Y ) and relating to vorticity,
potential vorticity and elliptic Monge–Ampère equations, on the one hand,
and taking (x, y) into (X, Ȳ ) and relating to contact structure on the other
— reveals that the structure underlying the whole picture is just that of a
hyper-Kähler space or manifold, which in turn is part of a twistor space. The
implications of this remain to be explored.

Conclusions

The Newton Institute programme successfully brought together ideas from ge-
ometry, analysis and dynamical systems theory, and showed their many ben-
efits in numerical prediction used for weather forecasting, ocean and climate
modelling. Various papers in these volumes advance the programme; and they
suggest new problems and avenues for research in the theory of constrained
dynamical systems, in particular for strongly stratified and rotating fluid flows
where chaotic dynamics may be minimized.

From the material presented in these volumes we hope to gain new insights
into the important issues surrounding various questions about the descrip-
tion of weather systems, on the large scale in both the atmosphere and the
oceans, described by constrained variational principles. These issues include
‘potential vorticity inversion’ — the relationship between the potential vortic-
ity and the balanced wind and temperature fields as described earlier in this
Introduction — which usually involves solving a nonlinear elliptic problem
(as in semi-geostrophic theory, for example). The convergence and practical
stability of numerical schemes, and the relationship between stability of the
flow and ellipticity of the operators, is far from being completely understood
(for example, see comments in Ziemianski and Thorpe 2000 and also Knox
1997). For instance, Cullen [I,4] conjectures that ‘elliptic PV inversion’ con-
strains the enstrophy cascade, and hence controls the decay of fluid motions
to turbulence. One direction in which work on these issues is proceeding is
demanding more in terms of non-smooth analysis and ideas from rearrange-
ment theory, as well as promoting a lagrangian view of fluid dynamics. Convex
analysis plays a key role in many of the applications discussed here; in fact
for the semi-geostrophic model, convexity, ellipticity and stability are directly
related. From a purely mathematical perspective in terms of the lagrangian
description of infinite-dimensional systems, and from a physical point-of-view
relating to the stability of large-scale flows, convexity appears to limit chaotic
dynamics.

There is increasing evidence to suggest that a major application of the
hamiltonian dynamical aspects would be useful in numerical weather predic-
tion. Numerical models based on Hamilton’s equations pose a challenge to the
numerical analyst working in partial differential equations and to the theorist
who needs to find a hamiltonian formulation of the relevant constrained equa-
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tions of motion and their associated conservation properties. In particular,
balance conditions are an important constraint for the new generation of data
assimilation schemes which seek to minimise cost functions based on the fit
of observations to four-dimensional integral curves of the equations of motion
(Courtier and Talagrand 1990). The new techniques proposed here may there-
fore have a major impact on our ability to provide accurate and appropriately
balanced initial conditions for numerical weather prediction. Such study of
meteorological problems may also promote further insight into the theory of
dynamical systems.

We draw three main conclusions for practical computation from the papers
presented here. First, new approaches are now available for reducing errors
in numerical schemes by considering local integral properties; secondly, the
standard assumptions of geophysical fluid dynamics describing how flows are
in approximate geostrophic balance can be used to reduce significant errors in
certain forecasting situations, especially by making better use of assimilated
data in each application; and thirdly, the growth rate and maximum level of
errors caused by data uncertainty, when analysed using realistic local dynamics
and global dynamics respectively, differ quantitatively and conceptually from
those inferred from Lorenz’s much simpler chaotic systems.

We conclude by noting that the past few years have witnessed a number of
exciting parallel developments in both the mathematical aspects and the phe-
nomenology of stratified, rotating fluid dynamics, with the promise of practi-
cally important spinoffs including improved analyses and prediction of weather
systems. Recent mathematical advances have brought a new geometric view-
point to these problems, in particular a new appreciation of the central role of
potential vorticity and its connection with the symplectic geometric structure
of the underlying equations of motion regarded as a hamiltonian dynamical
system.

Weather forecasting and climate modelling are excellent examples of how
these mathematical advances have practical applications in solving problems
where there is a strong interplay of geometry and physics.
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A View of the Equations of Meteorological
Dynamics and Various Approximations

A.A.White

1 Introduction

One of the attractions of meteorology is its many-faceted character. It invites
study by mathematicians and statisticians as well as by physicists of either
practical or theoretical disposition. Amongst other fields, its concerns border
or overlap those of oceanography, geophysics, environmental science, biological
science, agriculture and human physiology, and impinge on those of economics,
politics and psychology. (Climatology, for present purposes, is counted as part
of meteorology.) Its breadth can lead to a perception that meteorology is a
‘soft’ science. This article focuses on part of the subject’s ‘hard’ core: the
equations governing atmospheric flow, and the approximate forms used by
many numerical modellers and theorists.

A discussion (in section 3) of the basic equations of meteorological dynam-
ics is preceded by a glance at a pre-Newtonian but fundamental subject: fluid
kinematics (section 2). Some of the conservation laws which the basic equa-
tions express or imply are examined in section 4. Subsequent sections deal
with approximate versions of the basic equations. Consistent approximation
is one of the mathematical challenges of meteorology, and the sheer range of
possible (and permissible?) approximations can be a bewildering feature. The
hydrostatic approximation, the hydrostatic primitive equations (HPEs) and
the shallow water equations (SWEs) are considered in section 5. The HPEs
are the basis of many of the numerical models used worldwide in weather
forecasting and for climate simulation, and the SWEs are widely studied as a
testbed for further approximations and for numerical schemes.

We pause in section 6 to discuss various vertical coordinate systems, and
various approximations of Coriolis effects and the Earth’s sphericity beyond
those associated with the HPEs. The geostrophic approximation is considered
in a diagnostic (non-evolutionary) sense in section 7. Atmospheric wave motion
is discussed in linear analytical terms in section 8 – we identify acoustic, gravity
(buoyancy) and Rossby (planetary) waves and note the existence of special
tropical modes.

Approximations of the HPEs which result in the removal of gravity waves as
well as acoustic waves are considered in section 9; the shallow water equations
are a convenient vehicle for most of this discussion. The quasi-geostrophic
model, QG1, is singled out for particular attention in section 10. QG1 is one
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of the coarsest of those models that allow time-evolution of synoptic-scale
weather systems (the ‘Lows’ and ‘Highs’ of the weather forecaster’s chart),
but it succeeds in representing most of the physical content of more quan-
titatively accurate models. Its importance in the conceptual development of
meteorological dynamics can hardly be over-stated.

In section 11 are discussed various models (other than the HPEs) which
allow gravity waves but not acoustic waves. Section 12 gives a brief survey of
issues in numerical modelling for weather forecasting and climate simulation,
and offers some concluding remarks.

The article is based on three lectures given during various phases of the
Isaac Newton Institute programme on Mathematics of Atmosphere and Ocean
Dynamics (December 1994, July 1996, December 1997). Its approach is el-
ementary in so far as Hamiltonian methods are noted only in brief verbal
summary; they are treated at proper length elsewhere in this volume. Much
of the material is mainstream, and is covered in greater depth in the texts
by Lorenz (1967), Phillips (1973), Haltiner and Williams (1981), Gill (1982),
Pedlosky (1987), Lindzen (1990), Carlson (1991), Daley (1991), Holton (1992),
Bluestein (1992), James (1994), Dutton (1995) and Green (1999), amongst oth-
ers. Some new interpretations are presented, however, and later sections deal
increasingly with developments which have not yet reverberated outside the
research literature. Results that are thought to be new include: a bisection the-
orem relating the principal directions of curvature of the height field and the
dilatation axis in geostrophic flow; a geometric solution of an acoustic/gravity
wave dispersion relation; and a fresh perspective on the aptly-named ‘omega
equation’ of QG1. [M.J. Sewell has demonstrated that the first of these results
is an example of a general relationship between a certain pair of tensors associ-
ated with any 2-dimensional, solenoidal vector field; see section 7.2.] Sections
5.5 and 8.2 contain material covered in unpublished course notes by R.W.
Riddaway and J.S.A. Green – notes to which I have been fortunate to have
had access both as student and lecturer.

In mathematical respects, meteorological and oceanographic dynamics have
much in common, and the atmosphere and oceans are closely-interacting sys-
tems, especially on climatological time-scales, but – in the interests of brevity
– this article will refer only incidentally to oceanography and the oceans.

2 Fluid kinematics

Deformability is a key feature of a fluid: except in certain very simple flows,
particles do not retain the fixed relative spatial relationships that are charac-
teristic of a rigid body in motion. Our discussion in this section draws on the
treatments given by Batchelor (1967), Wiin-Nielsen (1973), Ottino (1990) and
Bluestein (1992).

Consider the motion of a fluid in two spatial dimensions relative to Cartesian
axes Oxy; see Figure 1(a). Suppose that the velocity field v = v(x, y, t) =
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Figure 1: (a) Displacement in time ∆t of fluid particles that are in the neighbourhood
of the point P = (x0, y0) at time t = t0. To leading order, the fluid particle which is
at P at t = t0 is displaced to (x0 + u∆t, y0 + v∆t) at t = t0 + ∆t, where u and v (the
components of the flow in the x and y directions) are evaluated at (x0, y0, t0). Also to
leading order, a fluid particle which is at Q = (x0 + δx, y0 + δy) at t = t0 is displaced
to (x0 + ∆x, y0 + ∆y) at t = t0 + ∆t, where ∆x and ∆y are related to u, v and
the spatial derivatives ux, uy, vx, vy at (x0, y0, t0) according to (2.1). As well as the
coordinate system Oxy relative to which u and v are measured, the diagram shows
(at t = t0 + ∆t) the coordinate system O′x′y′ which moves with the flow velocity at
(x0, y0, t0) and is coincident with the Oxy system at t = t0.

(u(x, y, t), v(x, y, t)) varies smoothly in space and time, so that the derivatives
ux, uy, vx, vy are well defined, at least in the neighbourhood of a chosen point
P = (x0, y0) and time t0. If a particle which is at point Q = (x0 + δx, y0 + δy)
at t0 is at (x0 + ∆x, y0 + ∆y) a short time ∆t later, then it follows (from the
definition of velocity as rate of change of position) that:(

∆x
∆y

)
=
(

δx
δy

)
+
(

u
v

)
∆t +

(
ux uy
vx vy

)(
δx
δy

)
∆t. (2.1)

Here u, v and their first derivatives are evaluated at (x0, y0, t0), and higher-
order terms in the Taylor expansion of v about (x0, y0, t0), have been neglected.
The second term on the right side of (2.1) represents translation with the
flow at point P = (x0, y0). Measuring position (δx′, δy′) in a Cartesian system
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Figure 1: (b) Illustrating that the evolution of an initial circle of fluid particles in a
short time ∆t is the sum of a translation, a rotation, a scaling and a deformation.
(c) Showing the effects of deformation on pre-existing gradients of a conserved scalar
C when the stretching axis is respectively perpendicular to and parallel to the gradient
of C.
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O′x′y′ (Figure 1(a)) moving with this translation velocity (i.e. δx′ = ∆x−u∆t,
δy′ = ∆y − v∆t)) gives

δx′ = Aδx,

where

A =
(

1 + ux∆t uy∆t
vx∆t 1 + vy∆t

)
(2.2)

and
δx = (δx, δy) ; δx′ =

(
δx′, δy′

)
.

Define divergence δ, vorticity ζ and deformation components as

δ = ux + vy; ζ = vx − uy;
D1 = ux − vy; D2 = vx + uy.

(2.3)

From (2.2) and (2.3) we get

A = I+ (R+ S+D)∆t, (2.4)

where I is the unit diagonal matrix, and

2R =
(

0 −ζ
ζ 0

)
, 2S = Iδ, 2D =

(
D1 D2

D2 −D1

)
. (2.5)

Also, to first order in ∆t, A can be expressed as the product of three matrices:

A = (I+R∆t)(I+ S∆t)(I+D∆t) + O(∆t2) = R̂ŜD̂+ O(∆t2)

with

R̂ =
(

1 −1
2ζ∆t

1
2ζ∆t 1

)
; Ŝ =

(
1 + 1

2δ∆t
)
I;

D̂ =
(

1 + 1
2D1∆t 1

2D2∆t
1
2D2∆t 1 − 1

2D1∆t

)
.

(2.6)

Consider particles which formed a circle centred on (x0, y0) at time t0; see
Figure 1(b). It is readily shown that the matrices R̂, Ŝ and D̂ correspond
respectively to (infinitesimal) rotation, scaling and deformation of the circle
of particles over the time interval [t0, t0 + ∆t].

The rotation (R̂) is associated with vorticity (ζ), and corresponds to a turn-
ing of the initial circle through an angle 1

2ζ∆t counterclockwise. The scaling
(Ŝ) is associated with divergence (δ); it represents an isotropic change of size
(a uniform magnification or minification) in which the radius of the circle
changes by a factor (1 + 1

2δ∆t).

The deformation (D̂) corresponds to a change of shape: the initial circle
becomes an ellipse. The major axis of the ellipse (the stretching or dilatation
axis) is inclined to the x axis at an angle 1

2 tan−1(D2/D1). If the initial radius
of the circle is chosen as the unit of distance, the semi-major axis of the ellipse
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is 1 + 1
2D∆t, where D2 = D2

1 + D2
2 is the square of the total deformation;

and the semi-minor axis of the ellipse, the contraction axis of the initial circle,
is (1−1

2D∆t). The magnitudes and directions of the major and minor axes
are given by the eigenvalues and eigenvectors of D̂. (The eigenvalues of D
are ±1

2D∆t. Its eigenvectors too are parallel to the axes of stretching and
contraction.) Area is preserved, to order ∆t, during the deformation.

As illustrated in Figure 1(b), the evolution of the initial circle of particles is
(for small ∆t) a combination of (i) translation, (ii) rotation, (iii) scaling, and
(iv) deformation (to an ellipse).

In analytical terms, particle locations in the neighbourhood of (x0, y0) are
transformed into locations in the neighbourhood of (x0 + u∆t, y0 + v∆t) ac-
cording to an infinitesimal general (non-conformal, non-isometric) mapping;
see Klein (1938), p. 105. The details of the mapping are determined by the
first derivatives of u and v in the neighbourhood of (x0, y0).

The matrices R, S and D defined by (2.3) and (2.5) together constitute a
decomposition of the 2D velocity gradient tensor T:

T =
(

ux uy
vx vy

)
(= grad2 v). (2.7)

The quantityR (sometimes called the body spin matrix ) is the skew-symmetric
part of T; S + D is the symmetric part of T (the Eulerian rate of strain ma-
trix ). Vorticity (associated with R) is seen to be essentially a rigid body prop-
erty. Deformation (associated withD) is essentially a non-rigid body property;
the same statement could be made about the divergence (associated with S),
and some authors treat divergence as a special kind of deformation.

For 3D flow u = u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)), the
treatment may be repeated for an initial sphere of particles and 3D velocity
gradient tensor T:

T =

 ux uy uz
vx vy vz
wx wy wz

 (= gradu). (2.8)

The results are similar to those of the 2D case, though more complicated in
analytical terms. The sphere undergoes a translation, a rotation, a scaling
and a deformation to an ellipsoid. The rotation is through an angle 1

2 |Z|∆t
about the direction of Z = curlu (the vorticity vector), and the scaling is
1 + 1

2∆t divu. The deformation is specified by the orientation and magnitude
of the principal axes of the ellipsoid. In general, there is a stretching axis, a
contraction axis and an intermediate axis, which may be an axis of contraction
or stretching; degenerate cases may occur. The components of the deformation
(not given here) determine the orientation and size of the principal axes and
the extents of the stretching and contraction. The spatial relationship of the
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velocity and vorticity vectors to the principal axes of the deformation ellipsoid
will be of general kinematic and dynamic importance.

Tensor considerations obviously enter fluid dynamics at a pre-Newtonian
level. The tensorial character of flow kinematics is evident also on direct phys-
ical grounds from a consideration of the effect of a deformation on a pre-
existing gradient of some conserved scalar field. Figure 1(c) (representing a
2D case) shows that a pre-existing gradient perpendicular to the stretching
axis increases as a consequence of the deformation, whereas a gradient par-
allel to the stretching axis decreases. A pre-existing gradient at 45◦ to the
stretching axis remains unchanged in magnitude. These effects are important
in the formation of fronts – regions of large horizontal gradients of tempera-
ture and other properties – in the atmosphere and oceans [see Hoskins (1982)
and Hewson (1998)]. Tensor considerations also play an important role in the
proper representation of viscous effects, in the analysis of interactions between
eddies and mean flows, and in the parametrization of subgridscale Reynolds
stresses in numerical models; see Williams (1972), Hoskins et al. (1983) and
Adcroft and Marshall (1998). It turns out, however, that vorticity – a vector
quantity – figures more prominently than deformation in the dynamics of me-
teorological flows. Although we shall refer again in this article to deformation,
the bulk of the treatment will involve nothing more complicated than vector
analysis and the manipulation of vector differential operators.

3 Fluid dynamics and thermodynamics

This section gives an elementary account of those equations of thermodynamics
and fluid dynamics from which the future state of the atmosphere may be
forecast, given its present state.

3.1 Local and total time derivatives; advection

Consider some meteorological field I. This field might be a scalar quantity,
such as temperature; or a vector, such as the flow velocity u. Assume that I

is a function of time t and position r in some chosen coordinate frame:

I = I(r, t).

Assume also that I(r, t) is differentiable with respect to each argument. Then
first-order Taylor expansion of I about I(r, t) gives

δI ≡ I(r+ δr, t + δt)−I(r, t) = (δr. grad)I + (∂I/∂t)δt. (3.1)

Equation (3.1) applies to any (infinitesimal) choice of δr, δt. Choose δr to be
the displacement in time δt corresponding to the velocity u of the air currently
at position r. Then δr/δt = u, and (3.1) becomes

DI

Dt
≡ δI

δt
= (u. grad)I +

∂I

∂t
. (3.2)
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The term DI/Dt is the rate of change of I following a parcel of air; it is
known as the total (or material, or substantial, or individual, or Lagrangian)
time derivative of I. The term ∂I/∂t is the local (or Eulerian) time derivative
of I; it is the rate of change of I at a point fixed in the chosen coordinate
frame.

Some important physical laws (such as Newton’s second law of motion) give
information about material time derivatives. The users of weather forecasts
are usually – not always – interested in the consequences of the local rate of
change of I. A Grampian farmer in the highlands of Scotland may wish to
know what the temperature of the air in the neighbourhood of the farm will
be tomorrow, but is unlikely to want to know what the temperature of the air
which is at the farm now will be tomorrow; that body of air may be over the
North Sea by then. Hence the trivial re-expression of (3.2) as

∂I

∂t
=

DI

Dt
− (u. grad)I (3.3)

is of fundamental importance in meteorology. Within its generality, (3.3) ex-
presses the key physical notion that when I is conserved on fluid particles
(DI/Dt = 0) the value of I at a fixed point in our coordinate frame will nev-
ertheless be changing (∂I/∂t �= 0) if fluid having a different value of I is being
brought in, or advected, by the flow (−(u. grad)I �= 0). The term −(u. grad)I
represents the (rate of) advection of I. A vexed issue of terminology will be
side-stepped in this article by using the expression ‘advection term’ to describe
both −(u. grad)I (as in (3.3)) and +(u. grad)I (as in (3.2)).

We now consider how various choices of I, and the application of various
physical laws, lead to expressions for the local rates of change of meteorological
fields. With the needs of our Grampian farmer in mind, we begin by choosing
I = T , the temperature.

3.2 First law of thermodynamics

Suppose that a parcel of air having unit mass, temperature T and (specific)
volume α undergoes a change of (specific) entropy δs. According to the first
law of thermodynamics, the concomitant changes δT and δα of T and α are
related by

cvδT + pδα = Tδs. (3.4)

Here cv is the specific heat at constant volume and p is the pressure of the
parcel of air. Since the first law of thermodynamics applies to the parcel of air
as it moves, it follows from (3.4) that

cv
DT

Dt
+ p

Dα

Dt
= T

Ds

Dt
≡ Q. (3.5)

In meteorology, Q is usually thought of as the total heating rate per unit mass;
strictly, it is the heating rate that would achieve, by reversible processes, the
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same rates of change of T and α as those occurring in the actual irreversible
system (Lorenz 1967, p.14). Equation (3.5) can be written in terms of density
ρ = 1/α as

cv
DT

Dt
− p

ρ2
Dρ

Dt
= Q. (3.6)

In either form, however, the first law of thermodynamics gives only a relation-
ship between the material derivatives of T and a density variable.

3.3 Mass continuity

Information about the material derivative of density, Dρ/Dt (see (3.6)), may
be obtained from mass conservation. The mass within a volume τ (fixed rela-
tive to the chosen coordinate frame) changes only to the extent that there is
net inflow or outflow of mass at the boundary S of the volume. Hence

∂

∂t

∫
τ
ρ dτ = −

∫
S
ρu.dS = −

∫
τ

div ρu dτ (3.7)

by the divergence theorem. Equation (3.7) applies to any volume τ , so the
local equality

∂ρ

∂t
+ div ρu = 0 (3.8)

must hold. Equation (3.8) is a form of the (mass) continuity equation. By
using (3.3), we may deduce an alternative form:

Dρ

Dt
+ ρ divu = 0. (3.9)

3.4 Perfect gas law

Equations (3.6) and (3.9), taken together with (3.3) in the form

∂T

∂t
=

DT

Dt
− (u. grad)T,

enable us to evaluate the local rate of change ∂T/∂t so long as we know the
current values of Q, p, ρ and the flow vector u. The current value of ρ can be
found from observations of p and T by using the perfect gas law in the form

p = ρRT (3.10)

where R is the gas constant per unit mass. Equation (3.10) has no time deriva-
tives. In meteorological parlance, it is a diagnostic equation; equations involv-
ing time derivatives are called prognostic. We have now set up the apparatus
to evaluate, and hence (knowing the current values of T , p and u) to calculate
T at our chosen location at a later time t + δt. If we were content to take δt
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to equal 24 hours, we could calculate an expected value of T at the chosen
location tomorrow. The calculated value would probably be very inaccurate,
and for this reason (and others) the calculation of a 24-hour temperature fore-
cast proceeds in practice by performing a number of time steps δt which are
much shorter than 24 hours. (Typically, the time steps are of the order of 10
minutes.) This process requires values of Q, p, ρ and u at each time step.
Hence we require a prognostic equation for the flow u; in general, we cannot
forecast the temperature accurately for more than (say) an hour ahead with-
out forecasting the flow too. In any case, many users of weather forecasts –
including our Scottish farmer, if there are new lambs on the hill – will want
to know what tomorrow’s wind speed and direction are likely to be.

3.5 Newton’s second law

Newton’s second law of motion relates the inertial acceleration of an element
of air to the net force acting on it. Contributory forces include the pressure
gradient force, gravity, and friction. If (as is usually convenient) velocities
and accelerations are measured relative to the rotating frame of the solid
Earth, Coriolis and centrifugal ‘forces’ must be introduced to allow for the
transformation from inertial to accelerating (rotating) frame; see Stommel
and Moore (1989) and Persson (1998) for discussion.

The Lagrangian rate of change of the velocity u of an element of air, relative
to the rotating Earth, is then given by

Du
DT

= −2Ω× u
Coriolis

− α grad p

Pressure
gradient

− grad Φ
Apparent
gravity

+ F
Friction and all

other forces

. (3.11)

Equation (3.11) is the Navier–Stokes equation for motion and acceleration rela-
tive to the Earth, whose rotation vector isΩ. ‘Apparent gravity’, with potential
function Φ, consists of the contribution (dominant in the atmosphere) of true
Newtonian gravity and the contribution of the centrifugal force −Ω×(Ω×r);
here r is position vector relative to a frame rotating with the Earth, and hav-
ing its origin at the centre of the Earth – see Figure 2. In (3.11) all forces are
expressed per unit mass of air.

Equation (3.11) may be used in conjunction with

∂u
∂t

=
Du
Dt

− (u. grad)u, (3.12)

(the appropriate form of (3.3)) to give an expression for the local rate of change
of u, i.e. ∂u/∂t. The advection term is nonlinear in u ; the pressure gradient
term, α grad p, is also in a certain sense nonlinear (as are the advection terms
which arise from the first law of thermodynamics and the continuity equation).
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Figure 2: The (λ, φ, r) spherical polar system whose origin O is at the centre of the
Earth and which co-rotates with angular velocity Ω. The unit vector triad (i, j,k)
at the generic point P = (λ, φ, r) is also indicated, as are the corresponding zonal,
meridional and radial velocity components u, v and w.

3.6 The full set of forecasting equations

An audit of (3.6), (3.9), (3.10) and (3.11), together with appropriate forms
of (3.3), shows that we have six equations from which p, ρ, T and the three
components of u may be forecast by repeated time-stepping, so long as friction
F and heating rate Q are known. For convenience and future reference we
gather together the relevant equations:

∂u
∂t

= −(u. grad)u− 2Ω× u− α grad p − grad Φ + F (3.13)

cv
∂T

∂t
= −cv(u. grad)T − p

ρ
divu+ Q (3.14)

∂ρ

∂t
= −(u. grad)ρ − ρ divu (3.15)

p = ρRT. (3.16)
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To obtain (3.14) we have used the continuity equation (3.15) for Dρ/Dt.
Numerical techniques are needed for the practical time integration of (3.13)–

(3.16). Hence only finite spatial and temporal resolution is possible. This means
that Q and F include the effects of unresolved motions as well as physical
processes such as radiative flux convergence, latent heat release/uptake and
friction. The difficulties thus introduced are various and profound; see section
12 and Cullen (2002) for further discussion.

In addition to (3.14)–(3.16) and approximations to the components of (3.13),
climate simulation models and many weather prediction models include prog-
nostic equations for the local concentration of water substance in some or all
of its phases. Water substance is a key quantity in practice – not only because
humidity, cloud and precipitation are important meteorologically and climato-
logically – but because its distribution has a central effect on the distribution
of the heating rate Q. We shall not discuss water conservation equations fur-
ther. Neither shall we treat the variations in gas constant R and principal
specific heats cp and cv which accompany variations in the amount of water
substance present; Gill (1982) gives a concise account.

The equations (3.13)–(3-16) may be written in many alternative forms by
using either other equations of the set, or various thermodynamic relations.
One of the most important is an alternative form of the thermodynamic equa-
tion involving the potential temperature θ defined by

θ = T

(
pref
p

)R/cp
. (3.17)

Here pref is a reference pressure (conventionally 1000hPa), cp is the specific
heat at constant pressure and θ is the temperature that an element of air
would have if it were to be brought adiabatically and reversibly to pressure
pref . In terms of θ, (3.14) takes the simpler form

Dθ

Dt
=
(

θ

Tcp

)
Q, (3.18)

upon use of (3.15), (3.16) and the relation cp − cv = R. From (3.18) it is clear
that θ remains constant following an element of air if the motion is adiabatic
(Q = 0). The temperature θ is related to the specific entropy s by ln θ = s/cp.

Potential temperature, a thermodynamic quantity, is conserved in adiabatic
flow. A dynamic/thermodynamic quantity that is conserved in adiabatic, fric-
tionless flow is potential vorticity, which is of central importance in meteorol-
ogy. We discuss potential vorticity in the next section.

A useful alternative form of (3.17) arises if (3.16) is used to eliminate T :

ln θ = lnT +
R

cp
ln
(
pref
p

)
=

1
γ

ln p − ln ρ + constant. (3.19)
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Here γ = cp/cv, and the relation cp − cv = R has again been used.
Equation (3.13) provides three prognostic equations (for the three compo-

nents of u). It is usual to define the vertical direction by ∇Φ, the gradient of
apparent geopotential; this direction, which is known as apparent vertical, is
the direction indicated by a plumbline hanging at rest relative to the Earth.
[Since both apparent gravity and the direction of apparent vertical depend on
the rotation rate of the coordinate frame, which we have chosen to be that
of the Earth, they are both frame-dependent quantities.] Also, the slightly
spheroidal geopotential surfaces are customarily represented by spheres – an
approximation which is amply justified by the smallness (for terrestrial pa-
rameter values) of the centrifugal contribution to apparent gravity; see Gill
(1982) and White (1982). Convenient horizontal coordinates are then latitude
φ and longitude λ; see Figure 2. Isolating the three components of (3.13) is
not straightforward because the unit vectors change direction over the sphere
and so metric (curvature) terms arise. The results are well-known (see Phillips
1973), but we postpone presentation of them until section 4, where conserva-
tion properties will be used to provide a rationalisation.

4 Conservation properties

Equations (3.13), (3.14) and (3.15) express conservation of momentum, ther-
modynamic energy and mass. Other quantities obey other conservation laws,
and all such laws appear in various forms expressing, for example, the budget
of a quantity in a fixed finite or infinitesimal volume (Eulerian form) or in an
identifiable mass of fluid (Lagrangian form). When approximate versions of the
governing equations are being set up, the fate of the conservation properties
is naturally of interest and importance.

In this section we consider mass, total energy and axial angular momentum
conservation, and obtain the components of (3.13) by using conservation argu-
ments. We then derive the material conservation law for potential vorticity –
which is implied by (3.13)–(3.16) but is by no means obvious. A Hamiltonian
treatment which unifies the conservation laws is noted in conclusion.

4.1 Mass conservation

Equation (3.8) is a mass conservation law of Eulerian form. Equation (3.9) is of
Lagrangian form, relating the material derivative of density to the divergence
of the flow u; it can be obtained directly by considering conservation of the
mass ρ δτ of a parcel of air, upon noting that D(δτ)/Dt = divu. A global
mass conservation law can be obtained from (3.7) by taking τ to be the entire
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volume of the atmosphere:

∂

∂t

∫
whole

atmosphere

ρ dτ = −
∫

boundaries

ρu.dS = 0. (4.1)

The second equality assumes there is no net mass transfer into or out of the
atmosphere.

4.2 Total energy conservation

By taking the scalar product of u with (3.13), and using (3.14), one readily
obtains a Lagrangian conservation law for the total energy E per unit mass
(E = 1

2u
2 + Φ + cvT is the sum of the specific kinetic, potential and internal

energy):

ρ
DE

Dt
= −div(pu) + ρ(Q + u.F). (4.2)

Hence
∂

∂t
(ρE) = −div[(ρE + p)u] + ρ(Q + u.F), (4.3)

which is the Eulerian version of (4.2). Since it acts at right angles to u, the
Coriolis force in (3.13) does not figure directly in the energetics. Equation
(4.3) may be regarded as a statement of the conservation of energy; for the
case F = 0, Holton (1992) derives (3.6) from (4.3).

Atmospheric energetics is a large subject; White (1978a) gives an elemen-
tary account. An important issue is the extent to which potential and internal
energy may be converted into flow kinetic energy (12u

2 per unit mass). Avail-
ability in this sense is the subject of continuing study – see Shepherd (1993),
Marquet (1993), Kucharski (1997) and references in these papers.

4.3 Axial angular momentum conservation

The components of (3.13) in the zonal, meridional and vertical directions may
be derived by considering the rates of change of unit vectors over the sphere.
One finds (see Phillips (1973))

Du

Dt
= 2Ωv sinφ − 2Ωw cosφ +

uv tanφ

r
− uw

r
− 1

ρr cosφ
∂p

∂λ
+ Fλ (4.4)

Dv

Dt
= −2Ωu sinφ − u2 tanφ

r
− vw

r
− 1

ρr

∂p

∂φ
+ Fφ (4.5)

Dw

Dt
= +2Ωu cosφ +

(u2 + v2)
r

− 1
ρ

∂p

∂r
+ Fr − g.

(4.6)
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The arrangement of the terms has a purpose, as will be seen in section 4.4. By
multiplying (4.4) by r cosφ, and noting that u = r cosφDλ/Dt, v = rDφ/Dt
and w = Dr/Dt, it follows that

ρ
D

Dt
[(Ωr cosφ + u)r cosφ] = −∂p

∂λ
+ ρFλr cosφ. (4.7)

Equation (4.7) relates the rate of change of the axial component of absolute
angular momentum (per unit mass of air) to the axial components of the
torques acting (see Figure 3(a)); it is a Lagrangian conservation law for axial
angular momentum. Local and global versions are readily derived. The total
axial angular momentum of the atmosphere is by no means constant. Changes
of day-length of milliseconds over a few days are detectable by astronomical
methods and reflect exchange of axial angular momentum between atmosphere
and solid Earth – see Hide et al. (1997). Small changes of the direction of
the Earth’s rotation vector also occur; Barnes et al. (1983) give an account
of the vectorial angular momentum dynamics involved. A notable aspect of
angular momentum conservation is that it determines the frame invariance of
the energy conservation laws (White 1989a).

4.4 Spherical polar components of the equation of motion – a
derivation via conservation

Perhaps the most direct way of obtaining the three spherical polar components
of (3.13) reverses the above argument by using (4.7) to derive (4.4), and then
notes that the Coriolis and metric terms in the components of (3.13) must
disappear when a kinetic energy equation is formed (see (4.2)). We outline the
reasoning. By expanding the material derivative on the left side of (4.7) and
multiplying by 1/ρr cosφ, one readily obtains (4.4). Multiplication by u then
gives

u
Du

Dt
= 2Ωuv sinφ−2Ωuw cosφ+

u2v tanφ

r
− u2w

r
− u

ρr cosφ
∂p

∂λ
+uFλ. (4.8)

Equation (4.8) contains two Coriolis and two metric terms which must can-
cel with corresponding terms in the expressions for vDv/Dt and wDw/Dt.
Hence the meridional (φ) component of (3.13) must contain a Coriolis term
−2Ωu sinφ, and the radial (r) component a Coriolis term +2Ωu cosφ; also,
the meridional component must contain a metric term −(u2/r) tanφ to en-
sure cancellation with +(u2v/r) tanφ in (4.8). The remaining metric term in
(4.8), −u2w/r, must cancel with a term in the expression for wDw/Dt, so
the radial component must contain a term +u2/r. To ensure isotropy with
respect to horizontal flow direction, a term +v2/r must accompany +u2/r
in the radial component. A term −vw/r must then appear in the meridional
component. This reasoning reproduces all the Coriolis and metric terms seen
in (4.4)–(4.6).
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Figure 3: (a) An element of air of mass ρδτ = ρr2 cosφ δλ δφ δr centred (at some
time t) at longitude λ, latitude φ and distance r from the centre of the Earth. If the
net zonal force acting on the element is Xλ, then the net torque about the polar axis
is Xλr cosφ. The axial component of the absolute angular momentum of the element
is δA = ρδτ(Ωr cosφ + u)r cosφ, where u is the zonal component of its velocity
relative to the Earth. Since the mass ρδτ of the element is by definition constant,
equating the rate of change of δA to the net torque gives

ρδτ
D

Dt

{
(Ωr cosφ+ u)r cosφ

}
= Xλ cosφ.

Equation (4.7) then results when Xλ is appropriately expressed as the sum of
contributions from the pressure gradient force and the force F (see (3.11)).
(b) A small cylinder has bases δS which lie within isentropes θ1 and θ1 + δθ, and
generators parallel to grad θ. In the case considered (see text) the motion is assumed
adiabatic, and the cylinder is a material volume.
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4.5 Potential vorticity conservation

Equations (4.2) and (4.7) show that neither the total energy nor the axial
angular momentum is generally conserved following the flow, even if it is fric-
tionless and adiabatic. Axial angular momentum is conserved in this sense in
frictionless flow if the pressure field is independent of longitude, but such ax-
isymmetric flow is rather special. (It can be engineered in laboratory systems –
see Hide and Mason (1975).) Even for axial angular momentum, then, the La-
grangian conservation law might more accurately be called a non-conservation
law.

Since (3.13) contains two gradient terms (albeit one of them multiplied by
α) a reasonable strategy for deriving a Lagrangian conserved quantity is to
take the curl of (3.13). By using

(u. grad)u = grad(u2/2) − u× curlu (4.9)

and various other vector differential identities, one obtains from (3.13):

D

Dt
{Z+ 2Ω}=−(Z+2Ω) divu+[(Z+ 2Ω). grad]u+

1
ρ2

grad ρ×grad p+curlF.

(4.10)
Here Z ≡ curlu is the relative vorticity, and (Z+2Ω) is the absolute vorticity.
Equation (4.10) is the vorticity equation. In spite of its complexity, it is an
important equation, and we have not space to do it justice here; see Batchelor
(1967) and Pedlosky (1987) for detailed treatments.

Suppose there is no motion (u = 0 everywhere) at some instant. If curlF
vanishes when u = 0, which will be the case if F consists entirely of the con-
tribution of (Newtonian) friction, then (4.10) shows that motion will develop
(DZ/Dt �= 0) if the surfaces of constant density and constant pressure do
not coincide. Fluids obeying ρ = ρ(p) are called barotropic; their surfaces of
constant density and constant pressure coincide. Fluids not obeying ρ = ρ(p)
are called baroclinic; their constant density and constant pressure surfaces in-
tersect. We deduce Jeffreys’ theorem (see Hide (1977)): motion must develop,
or already be present, in a baroclinic fluid.

From our perspective of wishing to derive a Lagrangian conserved quantity,
(4.10) might seem to represent several steps backwards. However, if we:

(i) multiply (4.10) by 1/ρ and apply the continuity equation in the form
(3.9);

(ii) use the vector identity, valid for any vector A and scalar S,

A.
D

Dt
(gradS) = A. grad

(
DS

Dt

)
− gradS. [A. grad]u;

(iii) note that ρ can be expressed (via (3.10) and (3.17)) as a function of p
and θ;
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then we find that

ρ
D

Dt

[
(Z+ 2Ω). grad θ

ρ

]
= div

[
(Z+ 2Ω)

Dθ

Dt
+ θ curlF

]
. (4.11)

Hence if (but not only if) the motion is frictionless (F = 0) and adiabatic
(Dθ/Dt = 0) then

DP

Dt
= 0, where P ≡ (Z+ 2Ω). grad θ

ρ
. (4.12)

The quantity P , which is called Ertel’s potential vorticity (Ertel 1942) or
simply EPV, is materially conserved in frictionless, adiabatic flow. The form
of (4.11) implies that any local creation of EPV by heating and friction will
tend to be balanced by destruction elsewhere. Equation (4.11) is a central
result in fluid dynamics, especially rotating fluid dynamics; see Hoskins et al.
(1985), Haynes and McIntyre (1987), Hoskins (1991), Lait (1995) and Viúdez
(1999).

Result (4.12) may be obtained by applying Kelvin’s circulation theorem in
isentropic surfaces (surfaces of constant potential temperature, θ). Kelvin’s
theorem takes the form

D

Dt

∮
C

[u+Ω× r] .dl =
D

Dt

∮
S

curl [u+Ω× r] .dS

=
D

Dt

∮
S

[curlu+ 2Ω] .dS

= −
∮
C

dp

ρ
+
∮
C
F.dl. (4.13)

Here C is any closed loop of material particles and S is any surface bounded
by C. If C lies in an isentropic surface, then ρ is a function of p on C. Hence,
if the motion is frictionless and adiabatic, one can apply (4.13) to a small
material area δS within an isentrope θ = θ1 to obtain

D

Dt

{
([curlu+ 2Ω] . grad θ) δS

| grad θ|
}

= 0. (4.14)

Also, the quantity δM ≡ ρδSδθ/| grad θ| – which is the mass within a right
cylinder having bases δS on isentropes θ1 and θ1 + δθ (see Figure 3(b)) –
remains constant. So δM/δθ may be taken outside the material derivative in
(4.14), and (4.12) is revealed.

4.6 Lagrangian symmetries and conservation properties

In the analytical dynamics of rigid bodies it is well known that conservation
laws correspond to symmetries of the Hamiltonian functional that appears in
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the variational formulation (Noether’s theorem). For example, conservation
of energy corresponds to time-parametrization invariance. Fluid dynamics is
a more complicated problem, partly because of the choice between Eulerian
and Lagrangian descriptions, but the theoretical position is now understood.
Potential vorticity conservation (see (4.12)) corresponds to the symmetry
whereby the Hamiltonian is invariant to the coordinates used to label particles
(Ripa 1981, Salmon 1982). Noether’s theorem offers a systematic method for
deriving consistent approximate models: one approximates the Hamiltonian
(whilst preserving its symmetries) and is then assured that the implied evo-
lution equations reproduce the various conservation laws; see Salmon (1983),
(1988) and Shepherd (1990). Some applications of the method are noted in
section 9.5. Mobbs (1982), Wang (1984) and Sewell (1990) discuss other key
aspects of variational formulations of fluid dynamics.

5 The hydrostatic approximation, the hydrostatic
primitive equations and the shallow water equa-
tions

Jeffreys’ theorem (see section 4.6) shows that motion must occur if the pres-
sure and density surfaces in a fluid are not parallel, and the occurrence of
motion in the atmosphere is evident even to the most casual observer. Never-
theless, on a wide range of time and space scales, the vertical component of
the momentum equation is dominated by the contributions of gravity and the
pressure gradient force; the atmosphere is close to hydrostatic balance. [The
adjective aerostatic would seem more appropriate than hydrostatic, but the lat-
ter is irreversibly established in meteorological usage.] We begin this section
by examining the relationships which exist between the thermodynamic fields
when hydrostatic balance is precise. Having noted elementary static stability
criteria, we then consider how, and under what conditions, we may construct
equations describing the motion of an atmosphere that is close to hydrostatic
balance. We present and discuss the hydrostatic primitive equations (HPEs),
which are widely used in numerical weather prediction and climate simula-
tion, and note the shallow water equations (SWEs), which are widely used as
a testbed in both theory and numerical practice.

5.1 Hydrostatic atmospheres

In the absence of motion and of forcing, the governing equations (3.14)–(3.16)
and (4.4)–(4.6) are satisfied so long as

g +
1
ρ

∂p

∂z
= 0 (5.1)
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and there are no horizontal variations of pressure. Here z is height above mean
sea level; see section 5.4. Equation (5.1) is the hydrostatic equation. Integration
with respect to height gives (since p→0 as z→∞)

p(z) =
∫ ∞

z

ρg dz. (5.2)

The pressure at height z is equal to the ‘weight’ of the air above unit area. By
using the perfect gas law (3.16) it also follows from (5.1) that

p(z) = p(zs) exp
[
−
∫ z
zs

(g/RT ) dz′
]
, (5.3)

where zs is the height of the Earth’s surface above mean sea level. In a hy-
drostatic atmosphere, the pressure field is determined by the variation of tem-
perature with height, and temperature must vary only with height. (Spatial
variations of g are neglected in this simple treatment.)

Knowing T (z), one can find p(z) from (5.3), ρ(z) from the perfect gas equa-
tion (3.16), and θ(z) from (3.17). For illustration and later reference we list
the results obtained in the special case of an isothermal atmosphere (T = T0),
assuming zs = 0, uniform g and p(0) = pref (see (3.17)):

p(z) = p(0) exp {−z/H0} ; H0 = RT0/g (5.4)
ρ(z) = ρ(0) exp {−z/H0} ; ρ(0) = p(0)/RT0 (5.5)
θ(z) = θ(0) exp {+gz/cpT0} ; θ(0) = T0 (5.6)

⇒ N 2 ≡ g

θ

dθ

dz
=

g2

cpT0
. (5.7)

The quantity H0 = RT0/g is called the scale height of the isothermal atmo-
sphere; it is the height over which the pressure and density decrease by a
factor of e. If temperature varies with height – as it does, of course, in the real
atmosphere (see Figure 4(a)) – then (5.4)–(5.7) are not valid. Nevertheless,
substituting an appropriate mean temperature gives a useful measure of the
rate of decrease of pressure and density with height: taking T0 = 250K gives
H0 = 7.4km.

5.2 Static stability and the buoyancy frequency

If a parcel of air is displaced vertically (see Figure 5) it will experience a change
of hydrostatic pressure, with consequent (adiabatic) changes of temperature
and density. From the first law of thermodynamics in the form (3.4), the perfect
gas law (3.16) and the relation cp− cv = R, it follows that the changes and δp
in temperature and pressure of the parcel will be related by

cpδT − αδp = 0 (5.8)
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Figure 4: (a) Temperature variation with height to 90km in the US Standard Atmo-
sphere. Profile consists of straight-line segments, as shown. Arrows span the lowest
and highest mean monthly temperatures obtained for any location, and so indicate
the spatial and temporal variability of monthly means about the standard profile.
After NOAA/NASA/USAF (1976) and Gill (1982).
(b) A broad-brush view of the Northern Hemisphere potential temperature field
θ(φ, z), temporally and longitudinally averaged. Isentropes (contours of constant θ)
are marked every 30K from 270–390K by thin lines; the thick line indicates the
tropopause. After Hoskins (1991).
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Figure 5: A parcel of air displaced vertically a distance δz from its equilibrium
position within a hydrostatic environment.

in adiabatic displacement. Assuming that δp is equal to the change in hydro-
static pressure of the surrounding air over the distance δz (i.e. αδp = −gδz),
(5.8) becomes

cpδT + gδz = 0. (5.9)

The rate (with respect to height) at which the temperature of a parcel of air
decreases on upward displacement or increases on downward displacement is
therefore g/cp (a quantity known as the dry adiabatic lapse rate). An atmo-
sphere at rest will be stable to vertical displacements of parcels if its tem-
perature T (z) decreases less rapidly with respect to height than g/cp, i.e. if
dT/dz ≥ −g/cp. (A parcel of air displaced upwards will then become cooler
than, and hence more dense than, its environment; and a parcel of air displaced
downwards will become warmer than, and hence less dense than, its environ-
ment.) An atmosphere at rest will be unstable to vertical displacements if its
temperature decreases more rapidly than g/cp, i.e. if dT/dz ≤ −g/cp.

Air saturated with water vapour suffers a decrease of temperature smaller
than gδz/cp upon upward displacement because the inevitable cooling brings
about condensation and the release of latent heat (so long as condensation
nuclei are present and prevent supersaturation). We shall not discuss further
this important effect, which is one of the major complications and fascinations
of meteorology; see Gill (1982) and Emanuel (1994) for clear discussion.

The conditions for stability to vertical displacement of unsaturated air are
most easily expressed in terms of the vertical gradient of potential temperature.
Use of (3.17), (5.1) and (5.9) shows that: if ∂θ/∂z > 0, unsaturated air is
stable to vertical displacement; if ∂θ/∂z < 0 it is unstable; if ∂θ/∂z = 0,
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it is neutrally stable. Large positive values of ∂θ/∂z tend to inhibit vertical
motion.

In the Earth’s atmosphere, well away from the surface, the vertical gradi-
ent of potential temperature is generally much greater numerically than the
horizontal gradient; the atmosphere is said to be stratified. (Horizontal gra-
dients are not, of course, negligible; the difference of potential temperature
between different horizontal locations is a key driving agency of the circula-
tion, as Jeffreys’ theorem suggests.) Well away from the Earth’s surface, values
of ∂θ/∂z are typically 4×10−3Km−1 in the troposphere, and about a factor of
4 greater in the stratosphere; see the schematic climatological section shown
in Figure 4(b). Considerable spatial and temporal variations occur, however,
especially in the troposphere. The transition region between the troposphere
and the stratosphere – the tropopause – across which ∂θ/∂z and potential
vorticity both change markedly (see Thuburn and Craig (2000)) tends to act
as a quasi-horizontal lid to motions beneath. Locally, the tropopause exhibits
major variations in height associated with the passage of weather systems (see
Keyser and Shapiro (1986) and Browning and Reynolds (1994)) and a general
decrease with latitude is evident in Figure 4(b), but a typical value is 10km.

The physical significance of the quantity ∂θ/∂z is further illuminated by
considering the vertical displacement of a parcel of air in dynamic terms (Fig-
ure 5). Upon neglecting the (small) metric and Coriolis terms in (4.6) (terms
which vanish if the motion is purely vertical), and assuming again that the
displaced parcel experiences the pressure field p(z) of its surroundings, we find

Dw

Dt
+ g +

1
ρ

dp

dz
= 0. (5.10)

Since dp/dz = −ρg, the second and third terms in (5.10) combine to give
(ρ − ρ)g/ρ. Given p = p(z) and small displacements δz, we have (from (3.16)
and (3.17)): (

ρ − ρ

ρ

)
=
(
T − T

T

)
=
(
θ − θ

θ

)
≈ 1

θ

dθ

dz
δz. (5.11)

But w = D/Dt(δz), so (5.10) becomes

D2

Dt2
δz + N2δz = 0, (5.12)

where N2 = (g/θ) dθ/dz is the buoyancy frequency (also known as the Brunt–
Väisälla frequency). The period of small vertical oscillations in a stable at-
mosphere is thus 2π/N . If N2 < 0, small vertical displacements amplify with
time as exp(Nt); this is consistent with our earlier identification of ∂θ/∂z < 0
as the condition for instability to vertical displacements.
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5.3 The hydrostatic approximation for an atmosphere in mo-
tion

Vertical accelerations in air motions are typically much less than g. Even in the
most violent cumulonimbus circulations one might find ascent rates of at most
10ms−1 being attained in times of order 1000s; then Dw/Dt ∼ 10−2 ms−2,
compared with g ≈ 10 ms−2. In a diagnostic sense, therefore, the hydrostatic
approximation – of assuming hydrostatic balance – is very good indeed.

But this is a näıve view. Our deduced hydrostatic balance mainly reflects
the contributions of pressure and density fields varying only with height, which
are not associated with motion; our analysis in section 5.1 considered the be-
haviour of such precisely hydrostatic states. We enquire to what extent and
under what conditions the hydrostatic approximation applies to the deviations
of all fields from a state of precise static balance: is the hydrostatic approxi-
mation valid when we have subtracted out some background static balance?
To achieve this we write

p = p0(z) + p′(λ, φ, z, t)
ρ = ρ0(z) + ρ′(λ, φ, z, t) with

dp0
dz

= −ρ0g. (5.13)

(The ‘background’ state could be defined by horizontal and temporal aver-
ages of density ρ at each height and of mean sea level pressure.) Given the
decomposition (5.13), the horizontal components (4.4), (4.5) of the momen-
tum equation change only in that p′ replaces p. The vertical component (4.6)
becomes

Dw

Dt
− 2Ωu cosφ −

(
u2 + v2

r

)
+ g

ρ′

ρ
+

1
ρ

∂p′

∂z
= 0.

Our criterion for the validity of the hydrostatic approximation is therefore that
Dw/Dt be small compared with gρ′/ρ or (1/ρ)∂p′/∂z (we neglect the other
terms in this simple treatment; see section 11.3 for a formulation that includes
them). This is a much more testing condition than we had earlier, since typ-
ically |ρ′/ρ| � 1. Supposing the motion to be adiabatic, the thermodynamic
equation gives

Dθ′

Dt
+ w

dθ0
dz

= 0.

Here θ0 = θ0(z) is the potential temperature variation implied by p0(z) and
ρ0(z), and θ′ = θ− θ0. Since, to order of magnitude, (θ′/θ) ∼ (ρ′/ρ) we obtain
the criterion

τ2 � 1
N2

(5.14)

if we assume D/Dt ≈ 1/τ , where τ is a Lagrangian time scale. Perhaps not
surprisingly, our condition (5.14) is that the time-scale of the motion should be
much longer than that of vertical buoyancy oscillations (which are essentially
non-hydrostatic). The hydrostatic approximation is clearly not dynamically
appropriate for an atmosphere that is neutrally stratified (N = 0).
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The argument leading to (5.12) is readily repeated for parcel oscillations
constrained to lie in a plane making an angle α to the horizontal; the resulting
frequency is N sinα. Small values of α are characteristic of motion having its
horizontal space scale L much larger than its vertical space scale H. The often-
quoted condition H � L for the applicability of the hydrostatic approximation
is thus consistent with condition (5.14). However, α may be small even when
L and H are comparable (see Hide and Mason 1975); (5.14) is considered to
be the more fundamental condition for the applicability of the hydrostatic
approximation.

5.4 The traditional approximation, the shallow atmosphere
approximation and the hydrostatic primitive equations

Compared to the dimensions of the Earth (mean radius 6360km) the atmo-
sphere is shallow: consistent with our conclusions in section 5.1, 90% of its
mass lies below 17km. Shallow in this sense it is, but two caveats should be
noted. First, nearly every field varies with height as well as with horizontal
location. For example, winds at 10km are usually markedly different from
those found near the surface, as regards both speed and direction. Second,
the atmosphere is generally not shallow in relation to the Earth’s topography.
Mountains locally attain heights of about 8km above mean sea level, and they
certainly influence the motion and behaviour of the atmosphere to an impor-
tant extent, but there is little tendency for the atmosphere to be divided up
into ‘basins’ in the way that the continents divide the Earth’s seas into ocean
basins, or in the way that high mountains effectively divide the Martian atmo-
sphere (see Hide 1976). [Some local phenomena, for example the East African
Jet (Findlater 1969) and coastal lows in Southern Africa (Gill 1977), do de-
pend on mountain ranges acting as lateral ‘walls’. The effects of mountains
on air flow generally depend on the stratification of the air – as measured by
∂θ/∂z – as well as on the flow itself and the elevation of the mountains. See
Baines (1995).]

With these caveats in mind, it is reasonable to seek a simplification of the
equations of motion which exploits the fact that the atmosphere’s depth is a
small fraction of the Earth’s radius – a shallow atmosphere approximation. We
aim to replace the variable radius r by a mean value a, whilst retaining differ-
entiations with respect to height as ∂/∂z, where z is height above mean sea
level. An implication of this strategy is clear if we re-consider the derivation
of the components of the momentum equation given in section 4.4. The Cori-
olis and metric terms −2Ωw cosφ and −uw/r in (4.4) are lost if we re-define
absolute axial angular momentum per unit mass as

(u + Ωa cosφ)a cosφ (5.15)
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and the material derivative as

D

Dt
=

∂

∂t
+

u

a cosφ
∂

∂λ
+

v

a

∂

∂φ
+ w

∂

∂z
. (5.16)

Pursuit of the argument given in section 4.4 shows that the terms 2Ωu cosφ
and (u2 + v2)/r in the vertical component (4.6) and −vw/r in the meridional
component (4.5) must then be neglected for consistent energetics. The neglect
of the cosφ Coriolis terms – known as the traditional approximation (Eckart
1960) – is less comfortable than neglect of the quadratic metric terms not
involving tanφ, although for many purposes it turns out to be a good ap-
proximation; we shall return to this issue in section 11.3 during a discussion of
acoustically-filtered global models. Accepting that the stated omissions should
accompany the shallow atmosphere approximation, we obtain the hydrostatic
primitive equations as

Du

Dt
= 2Ωv sinφ +

uv tanφ

a
− 1

ρa cosφ
∂p

∂λ
+ Fλ (5.17)

Dv

Dt
= −2Ωu sinφ − u2 tanφ

a
− 1

ρa

∂p

∂φ
+ Fφ (5.18)

g +
1
ρ

∂p

∂z
= 0. (5.19)

The thermodynamic and continuity equations remain

Dθ

Dt
=
(

θ

cpT

)
Q (5.20)

and
Dρ

Dt
= −ρ∇.u (5.21)

but, as in (5.17)–(5.19), D/Dt is defined by (5.16), and

∇.u =
1

a cosφ

[
∂u

∂λ
+

∂

∂φ
(v cosφ)

]
+

∂w

∂z
. (5.22)

In (5.19), g is properly considered constant. The quantity 2Ω sinφ that appears
in (5.17) and (5.18) is usually referred to as the Coriolis parameter and ac-
credited the symbol f . The other Coriolis parameter, 2Ω cosφ, which is absent
from the HPEs, has no universally accepted title.

The axial angular momentum conservation law of the HPEs, readily derived
from (5.17), is

ρ
D

Dt
{(u + Ωa cosφ) a cosφ} = ρFλa cosφ − ∂p

∂λ
. (5.23)

The energy conservation law (Lagrangian form) is

ρ
D

Dt

[
1
2
v2 + gz + cvT

]
= −∇. (pu) + ρ(Q + v.Fh). (5.24)
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Here v is the horizontal flow (the ‘wind’). Equation (5.24) shows that the
vertical motion w does not contribute to the kinetic energy in the HPEs,
but it appears in the pressure–work convergence term −∇. (pu) and in the
definition of D/Dt (see (5.16)). We consider in 5.5 what determines w.

The HPEs’ analogue of potential vorticity conservation is

ρ
D

Dt

{
ξ.∇θ

ρ

}
= ξ.∇

(
Dθ

Dt

)
+ ∇θ.∇ × Fh, (5.25)

where

∇θ =
(

1
a cosφ

∂θ

∂λ
,

1
a

∂θ

∂φ
,
∂θ

∂z

)
≡
(
∇zθ, ∂θ

∂z

)
, (5.26)

and
ξ = 2Ωk sinφ + ∇ × v. (5.27)

Here k is unit vector in the (upward) vertical direction, and

∇ × v ≡
(
−∂v

∂z
,
∂u

∂z
,

1
a cosφ

(
∂v

∂λ
− ∂

∂φ
(u cosφ)

))
. (5.28)

The horizontal component equations (5.17), (5.18) of the HPEs may be written
in vector form as

∂v
∂t

+ ∇z
(
v2

2

)
+ ζk× v + w

∂v
∂z

= −fk× v − 1
ρ
∇zp + Fh. (5.29)

Here ∇z is the horizontal part of ∇, as defined in (5.26), ζ ≡ k.∇ × v is the
vertical component of the relative vorticity, and Fh ≡ (Fλ, Fφ). From (5.29)
may be derived prognostic equations for ζ and ∇z.v, the divergence of the
horizontal flow. Such vorticity, divergence forms are used in some HPE numer-
ical models, particularly Eulerian spectral models (see Hoskins and Simmons
(1975)). The second and third terms on the left side of (5.29) are not precisely
equivalent to (v.∇z)v, which contains a small vertical component when ∇z is
defined as in (5.26); see Côté (1988), Ritchie (1988) and Bates et al. (1990).

5.5 Richardson’s equation

A by-product of the hydrostatic approximation is that the prognostic equation
for w is lost. The implication is not that w = 0, or that w does not vary with
time; rather, w takes that spatial form which maintains hydrostatic equilibrium
as the thermodynamic and horizontal flow fields evolve. A diagnostic equation
for w may be derived in several ways. We use a route which gives physical
insight and an explicit expression for ∂w/∂z, and then note a second-order
differential equation that w obeys. Our treatment follows that of unpublished
Met Office College lecture notes (1981) by R.W. Riddaway; see also Wiin-
Nielsen (1968) and Dutton (1995).
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By writing the HPE continuity equation (5.21) in terms of ∂ρ/∂t and using
the hydrostatic approximation (5.1) one obtains the important relation

∇z. (ρv) +
∂

∂z

(
ρw − 1

g

∂p

∂t

)
= 0. (5.30)

Here, once again, the flow u has been separated into its horizontal part v and
vertical part wk, and ∇z. indicates the horizontal part of the divergence:

∇z. (ρv) =
1

a cosφ

[
∂(ρu)
∂λ

+
∂

∂φ
(ρv cosφ)

]
. (5.31)

Integrating (5.30) over the interval [z,∞] gives

∂p

∂t
= ρgw − g

∫ ∞

z
∇z. (ρv) dz′. (5.32)

Equation (5.32) states simply that the time rate of change of pressure at height
z is equal to the product of g with the rate of convergence of mass into the
column (of unit horizontal cross-section) above z.

In addition to (5.32) we have another equation for ∂p/∂t. Using (5.21) and
(3.10), the thermodynamic equation (3.14) can be written as

Dp

Dt
= −γp∇.u+

ρRQ

cv
. (5.33)

Hence, using (5.19),

∂p

∂t
= −v.∇zp + ρwg − γp∇.u+

ρRQ

cv
. (5.34)

The right sides of (5.32) and (5.34) must be equal; we find that

γp
∂w

∂z
= γp

[
Q

Tcp
− ∇z.v

]
− v.∇zp + g

∫ ∞

z
∇z. (ρv) dz′. (5.35)

Equation (5.35) determines ∂w/∂z at height z in terms of p, ρ, v and Q at
z′ and ρ and v at greater heights; w(z) itself may be obtained by integrating
(5.35) from z = zs upwards, assuming a reasonable lower boundary condition
(such as w = 0 at a flat lower boundary). The explicit expression for w(z) so
obtained is known as Richardson’s equation from its use in the first numeri-
cal weather prediction experiment (Richardson 1922). A different treatment is
necessary if an upper boundary condition is applied at a finite height (Kasa-
hara and Washington 1967).

Differentiation of (5.35) leads to a form that does not contain a vertical
integral:

γ
∂

∂z

{
p

[
∂w

∂z
+ ∇z.v − Q

Tcp

]}
=

∂p

∂z
∇z.v − ∂v

∂z
.∇zp; (5.36)
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[Tapp and White (1976) give an equivalent form in the case Q = 0]. Equation
(5.36), which is unchanged if any upper boundary condition is applied at a
finite height, can be obtained more directly by writing (5.19) as ρg +∂p/∂z =
0, differentiating locally with respect to t, then using (5.21) and (5.33) to
substitute for ∂ρ/∂t and ∂p/∂t, and finally applying (5.19) for ρ.

5.6 The shallow water equations

The HPEs describe the motion of a compressible atmosphere, and allow height
variation of all fields (within the shallow atmosphere approximation, and cri-
terion (5.14)). For both theoretical and numerical testing it is often convenient
to have recourse to a set of equations which does not involve height variations
or compressibility. The shallow water equations (SWEs) are such a set.

Waves on the surface of a non-rotating, incompressible, homogeneous liquid
of mean depth d under the influence of gravity behave differently in the long
and short wave limits (see, for example, Lighthill (1978)). If the wavelength
λ of the surface waves obeys λ � d, then we are close to the deep limit: the
waves are dispersive, particle paths are circles (of exponentially decreasing
radius as one goes deeper into the fluid) and the motion is essentially non-
hydrostatic. But if λ � d, then we are close to the shallow limit: the waves
are non-dispersive, particle paths are horizontal, amplitude is independent of
depth, and the motion is essentially hydrostatic.

With this background, consider how the HPE momentum and continuity
equations may be applied to a rotating incompressible, homogeneous fluid
of density ρ̂ bounded by a rigid horizontal surface at z = 0 and having a
free surface at z = h(λ, φ, t). In the shallow limit, the pressure is (plausibly)
hydrostatic, its horizontal gradient is ρ̂g multiplied by the free surface gradient,
and (5.17), (5.18) become

Du

Dt
= 2Ωv sinφ +

uv tanφ

a
− g

a cosφ
∂h

∂λ
+ Fλ (5.37)

Dv

Dt
= −2Ωu sinφ − u2 tanφ

a
− g

a

∂h

∂φ
+ Fφ (5.38)

with
D

Dt
≡ ∂

∂t
+

u

a cosφ
∂

∂λ
+

v

a

∂

∂φ
. (5.39)

If the horizontal velocity components u, v are initially independent of depth,
they will remain so, since the pressure gradient is independent of depth. The
time evolution of h may then be obtained by integrating the continuity equa-
tion (5.21) over the depth h and noting that w(h) = Dh/Dt (and ρ = ρ̂ is
constant): ∫ h

0
∇z.v dz + w(h) = 0 ⇒ Dh

Dt
+ h∇z.v = 0. (5.40)
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Equations (5.37)–(5.40) are the shallow water equations (SWEs); we shall use
them in our account of approximately geostrophic models (section 9). [To avoid
ambiguity, we retain the symbol ∇z for the horizontal part of the ∇ operator –
see (5.26) and (5.31) – although for the SWEs ∇ reduces to ∇z anyway, since
no height variations of u, v or h are involved.]

The SWEs are closed for u, v or h, and have the following conservation
properties (see Salmon (1983) for a Hamiltonian treatment):

Axial angular momentum:
D

Dt
{(u + Ωa cosφ)a cosφ} = Fλa cosφ − g

∂h

∂λ
(5.41)

Energy: h
D

Dt

(
1
2
v2
)

= −ghv.∇zh + hv.Fh (5.42)

Potential vorticity: h
D

Dt

(
ζ + 2Ω sinφ

h

)
= k.∇z × Fh. (5.43)

Here, Fh ≡ (Fλ, Fφ) and ζ is the SWE relative vorticity:

ζ =
1

a cosφ

(
∂v

∂λ
− ∂

∂φ
(u cosφ)

)
. (5.44)

An important limiting case of the SWEs occurs when variations of the depth h
are negligible (we examine in section 8 the conditions under which this occurs).
Then (5.40) becomes

∇z.v = 0 (5.45)

and (5.43) reduces to

D

Dt
(ζ + 2Ω sinφ) = k.∇z × Fh (5.46)

which is the barotropic vorticity equation. The material derivative in (5.46) is
given by (5.39), with v = (u, v) satisfying the non-divergence condition (5.45).
A streamfunction ψ may be introduced for v, whereupon (5.46) becomes a
prognostic equation for ζ = ∇2

zψ in terms of the advection of the absolute
vorticity ∇2

zψ + 2Ω sinφ by the flow v = k× ∇zψ:

∂

∂t
(∇2
zψ) = −(k× ∇zψ).∇z(∇2

zψ + 2Ω sinφ) + k.∇z × Fh. (5.47)

Equation (5.47) determines the time evolution of ψ, given appropriate bound-
ary conditions and a specification of Fh. Studies of (5.47) and close variants
(some of them Cartesian – see section 6.3) have given insight into Rossby waves
(section 8.3), steady flow structures and geostrophic turbulence in rotating flu-
ids; see, for example, Platzman (1968), Hoskins (1973), Rhines (1975), Baines
(1976), Held (1983), Shutts (1983a), McWilliams (1984), Marshall (1984),
White (1990) and Verkley (1993).
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6 Vertical coordinate systems; the ‘f-plane’ and the
‘β-plane’

This section deals with some further aspects of formulation and approximation
that are characteristic of meteorological dynamics. The use of pressure as
vertical coordinate is first discussed, and other choices are noted. The use of
Cartesian geometry and approximate treatments of the spatial variation of the
Coriolis parameter are then briefly considered.

6.1 Use of pressure as vertical coordinate

Any quantity that bears a one-to-one relation to height z may be used as
a vertical coordinate. If the hydrostatic approximation is made, then pres-
sure is certainly such a quantity, since ρ > 0 ensures that ∂p/∂z = −ρg is
everywhere negative. In ‘pressure coordinates’ the independent variables are
(λ, φ, p, t) instead of (λ, φ, z, t), and z becomes a dependent variable. The ma-
terial derivative is

D

Dt
=

∂

∂t
+

u

a cosφ
∂

∂λ
+

v

a

∂

∂φ
+ ω

∂

∂p
. (6.1)

Here ω ≡ Dp/Dt. The horizontal and local time derivatives in (6.1) are taken
at constant pressure (but with distances measured on constant height sur-
faces); u, v are the velocity components in constant height surfaces (not the
components in constant pressure surfaces); and ∂/∂p is taken at constant λ,
φ, t. Equation (6.1) may be derived either from first principles, or from (5.21)
by using the following rules, valid for any well-behaved Q = Q(λ, φ, z, t), with
X = t, λ, φ and then Q = p:

∂Q

∂z
=

∂p

∂z

∂Q

∂p
= −ρg

∂Q

∂p
;

∂Q

∂X

∣∣∣∣
z

=
∂Q

∂X

∣∣∣∣
p

− ∂Q

∂z

∂z

∂X

∣∣∣∣
p

; (6.2)

see Figure 6. The quantity ω ≡ Dp/Dt is often referred to as the pressure-
coordinate ‘vertical velocity’, although, as the material derivative of a scalar,
it is frame-invariant.

The hydrostatic relation (5.19) may be written as

g
∂z

∂p
= −1

ρ
= −RT

p
. (6.3)

The pressure-coordinate versions of (5.17) and (5.18) are

Du

Dt
=
(

2Ω +
u

a cosφ

)
v sinφ − g

a cosφ
∂z

∂λ
+ Fλ (6.4)

Dv

Dt
= −

(
2Ω +

u

a cosφ

)
u sinφ − g

a

∂z

∂φ
+ Fφ, (6.5)
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Figure 6: Transformation of horizontal and local time derivatives between height and
pressure coordinates; X = λ, φ or t. Line AB (parallel to OX) has length δX, line
BC (parallel to Oz) has length δz; pressure p is constant on AC. Let δQRS denote the
difference in Q = Q(λ, φ, z, t) between any points R and S. Then

δQAC = δQAB + δQBC.

Thus
∂Q

∂X

∣∣∣∣
p

δX =
∂Q

∂X

∣∣∣∣
z

δX +
∂Q

∂z
δz

i.e.
∂Q

∂X

∣∣∣∣
p

=
∂Q

∂X

∣∣∣∣
z

+
∂Q

∂z

∂z

∂X

∣∣∣∣
p

in which the nonlinear pressure gradient terms in (5.17), (5.18) have become
linear in the horizontal gradient components (on pressure surfaces) of z.

The thermodynamic equation remains as (5.20), but the material derivative
is expressed as (6.1). A major simplification occurs in the continuity equation
(5.21) [see Sutcliffe (1947) and Eliassen (1949)]. The form (5.30) shows that
hydrostatic balance reduces the continuity equation to non-divergence even in
height coordinates (accepting a suitably redefined vertical velocity). Use of

w =
Dz

Dt
=

∂z

∂t
+

u

a cosφ
∂z

∂λ
+

v

a

∂z

∂φ
+ ω

∂z

∂p
(6.6)

in (5.29), along with (6.2) and the hydrostatic relation, shows that (5.21)
becomes simply

∇p.v +
∂ω

∂p
= 0 (6.7)

in which

∇p.v ≡ 1
a cosφ

(
∂u

∂λ
+

∂

∂φ
(v cosφ)

)
(6.8)
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Equations (6.3)–(6.7) [with (5.20)] are exact transforms of the height coor-
dinate HPEs. Pressure-coordinate forms of the various conservation laws are
readily derived, but will not be given here.

Similar transformations of the height coordinate HPEs may be made using
any suitable function of pressure as vertical coordinate. Frequent choices in-
clude pR/cp (see Hoskins and Bretherton 1972) and ln p (see Holton (1975));
these coordinates are often given the symbols z or Z, and so it is easy to lose
sight of the fact that they are pressured-based coordinates.

6.2 Other choices of vertical coordinate

Given the hydrostatic approximation, pressure coordinates offer at once a sim-
plification and a complication. From the continuity equation (6.7) one can
readily derive a diagnostic equation for the ‘vertical velocity’, ω, in the pres-
sure system:

ω(p) = −
∫ p
0

∇p.v dp. (6.9)

Equation (6.9) is simpler than Richardson’s equation for the usual height-
coordinate vertical velocity, w = Dz/Dt; see section 5.5. The complication is
that the Earth’s surface is generally not a coordinate surface in the pressure
system – even in the absence of topography. The local rate of change of surface
pressure ps = ps(λ, φ, t) can be calculated from (6.9) with p = ps:

∂ps
∂t

=
Dps
Dt

− v.∇ps = −
∫ ps
0

∇p.vdp − v.∇ps. (6.10)

The quantity ∂ps/∂t is known as the surface pressure tendency.
The boundary condition w = 0 at a horizontal surface (z = 0, say) becomes

(from (6.3) and (6.6))

∂z

∂t
+

u

a cosφ
∂z

∂λ
+

v

a

∂z

∂φ
− ω

ρg
= 0 (6.11)

on p = ps. In theoretical analyses, approximations to (6.11) are often resorted
to, and should be carefully justified in each case (see, for example, Haynes and
Shepherd (1989)). A common procedure is to apply ω = 0 on p = p0, where p0
is a horizontal average surface pressure; a more accurate approximation under
certain conditions (see section 10.1) is to retain the local time derivative in
(6.11) and to apply ω = −ρg∂z/∂t at p = p0.

In numerical weather forecasting and climate simulation models it is usual
to adopt a vertical coordinate for which the Earth’s surface is a coordinate
surface. The prototype choice is the sigma coordinate σ = p/ps (Phillips 1957),
for which σ = 1 at the Earth’s surface whether or not topography is present.
The continuity equation (6.8) becomes

∂ps
∂t

+ ∇σ. (psv) +
∂σ̇

∂σ
= 0 (6.12)
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where σ̇ ≡ Dσ/Dt is the σ-coordinate ‘vertical velocity’. Thus (since σ̇ = 0 at
σ = 0 and σ = 1):

∂ps
∂t

= −
∫ 1

0
∇σ. (psv) dσ. (6.13)

The quantity σ̇ may be found by eliminating ∂ps/∂t from (6.12), (6.13), and
integrating over σ:

σ̇ = −
∫ σ
0

∇σ. (psv) dσ′ − σ

∫ 1

0
∇σ. (psv) dσ′; (6.14)

Haltiner and Williams (1981) give further details.
A vertical coordinate that has particular manipulative and conceptual ad-

vantages is potential temperature, θ (Starr 1945; see also Eliassen 1987). It
is a permissible choice so long as no regions of neutrality or static instability
exist (i.e. so long as ∂θ/∂z > 0). The material derivative in θ-coordinates is

D

Dt
=

∂

∂t
+

u

a cosφ
∂

∂λ
+

v

a

∂

∂φ
+ θ̇

∂

∂θ
(6.15)

(with the t, λ and φ derivatives taken at constant θ). In the case of adia-
batic motion (θ̇ = 0) the ∂/∂θ contribution to (6.15) vanishes and advection
is purely 2-dimensional (on surfaces of constant θ). The continuity equation
also takes a quasi–2-dimensional form, and (whether or not the motion is adi-
abatic) the pressure gradient terms in (5.18) and (5.19) become linear in the
horizontal gradients of the quantity M ≡ gz+cpT (known as the Montgomery
potential). A partial similarity to the shallow water equations may be noted,
although the fields described by the SWEs have no vertical variation – see sec-
tion 5.6. Against these (and other) considerable advantages must be weighed
the disadvantage that the Earth’s surface is not a constant θ surface. The
difficulty is not insuperable, however; see Bleck (1984) and Hsu and Arakawa
(1990).

Kasahara (1974) derived forms of the HPEs using a generalised vertical
coordinate s (such that ∂s/∂z �= 0), and some numerical weather prediction
and climate simulation models use so-called hybrid coordinates which behave
like σ near the Earth’s surface but like pressure at high levels (Simmons and
Burridge 1981, Simmons and Strüfing 1983). Hybrid coordinates have been
used that behave like σ near the Earth’s surface, like θ at intermediate levels
and like p at high levels (Zhu et al. 1992, Thuburn 1993).

As we shall see in section 11, the use of pressure and sigma coordinates is
not limited to models in which the hydrostatic approximation is applied. Also,
a vertical coordinate equivalent to hydrostatic pressure has been successfully
used in fully non-hydrostatic models; see Laprise (1992), Bubnová et al. (1995)
and Geleyn and Bubnová (1997).
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6.3 Further geometric and Coriolis approximations

Geometric and Coriolis approximations beyond the shallow atmosphere and
‘traditional’ approximations of section 5.4 are common in meteorology, espe-
cially in theoretical treatments.

For accurate modelling of the global atmosphere it is essential to represent
the sphericity of the Earth and the latitude variation of the Coriolis parameter
f = 2Ω sinφ. In the study of sub-planetary scale phenomena, especially when
quantitatively accurate conclusions are not required, the use of simplified ge-
ometries and coarse treatment of the Coriolis parameter are convenient and
justifiable. For example, if one wishes to model the circulation of a cumulus
cloud, for which time-scales are typically tens of minutes and space scales a
few kilometres, the use of local Cartesian geometry and neglect of Coriolis
effects are entirely reasonable simplifications.

For weather systems having a horizontal space scale of 1000km and a time-
scale of a few days – the so-called synoptic scale – the Coriolis force must be
accounted for, but the latitude variation of f , and spherical geometry, may
be considered unimportant. The use of Cartesian geometry with a constant
Coriolis parameter is a scheme known as the ‘f -plane’. Often, Cartesian ge-
ometry is used, but in differentiated terms the Coriolis parameter is allowed
a linear variation f = f0 + βy, where f0 and β are constants and y is north-
ward distance from the latitude at which f = f0. This scheme is known as a
‘β-plane’: if f0 ∼= ±10−4 s−1, it is a ‘mid-latitude β-plane’; if f0 = 0, it is an
‘equatorial β-plane’. [The latitude variation of the Coriolis parameter is itself
often referred to as ‘the β-effect’.] These approximations are often introduced
in a rather ad hoc fashion in theoretical analyses (though with due regard to
the latitudinal scale of the motion being studied); for critical discussion see
Pedlosky (1987), and for a Hamiltonian approach to the issue, Ripa (1997)
and Graef (1998). We shall treat a particular case in section 8.3.

For illustration and later use (see sections 7–10) we note here how the height-
coordinate HPEs (5.17)–(5.22) are modified in Cartesian ‘β-plane’ form. The
material derivative becomes

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (6.16)

Equations (5.17) and (5.18) are written in vector form as

Dv
Dt

= −fk× v − 1
ρ
∇zp + Fh (6.17)

with ∇z ≡ (∂/∂x, ∂/∂y), Fh ≡ (Fx, Fy) and the metric terms in (5.17), (5.18)
neglected. The 3-dimensional divergence term in the continuity equation (5.21)
is expressed as

∇.u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
. (6.18)
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The Cartesian coordinates x and y may be regarded as x = aλ cosφ0, y =
a(φ − φ0), where φ0 is the central latitude of the ‘β-plane’; we also have f =
f0+βy = 2Ω sinφ0+(2Ω/a)y cosφ0. On an ‘f -plane’, β = 0 and the orientation
of Oxy in the horizontal is immaterial.

7 The geostrophic approximation

During our discussion of hydrostatic balance, the buoyancy frequency N ≡
((g/θ)∂θ/∂z)1/2 emerged in section 5.2 as a key inverse time-scale in a stratified
atmosphere. Another important inverse time-scale, but one having a much
more systematic spatial variation, is the inertial frequency f = 2Ω sinφ. This
is the frequency with which parcels of air may circulate in the horizontal under
the action only of the horizontal component of the Coriolis force. If friction
and horizontal pressure gradients are absent, and the tanφ metric terms and
the latitude variation of f are neglected, then (5.18) and (5.19) give

D2u

Dt2
+ f2u = 0.

The period of these inertial oscillations, 2π/f = π/Ω sinφ, is half the local
pendulum day – i.e. half the period with which a Foucault pendulum will
circulate about the local vertical at latitude φ. See Paldor and Killworth (1988)
and Stommel and Moore (1989) for detailed discussion.

Large-scale motion in the extra-tropical atmosphere, on length scales of
1000km and more and time scales of a day and more (the ‘synoptic scale’ –
as noted in section 6.3), is typified by a quite different balance: the sinφ part
of the Coriolis force is nearly balanced by the horizontal pressure gradient
force. In geostrophic flow, this balance is precise (see (Figure 7(a)), and (6.17)
becomes

−fk× v − 1
ρ
∇zp = 0. (7.1)

Consistent with (7.1), the geostrophic wind vG, is defined as

vG ≡ 1
ρf
k× ∇zp. (7.2)

Other definitions of geostrophic wind are sometimes useful (Blackburn 1985),
and one of them will be used extensively in sections 9 and 10. A definition
which combines geostrophic and hydrostatic balance, and involves the cosφ
parts of the Coriolis force as well as the sinφ parts, has been used by Hide
(1971) and others; see also Shutts (1989).

In (7.1) and (7.2) (as in section 5) k is a unit vector in the upward vertical
direction. The criterion for validity of the geostrophic approximation, v ≈ vG,
is that the acceleration term Dv/Dt in (6.17) should be negligible compared
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(a)

(b)

Figure 7: (a) Illustrating the balance between the horizontal components of the Cori-
olis and pressure gradient forces acting on unit mass of air in (horizontal) geostrophic
flow vG. The diagram is drawn assuming f > 0 (Northern Hemisphere). If f < 0
(Southern Hemisphere) vG would be oppositely directed, given the horizontal pres-
sure gradient ∇zp shown. The quantity k is a unit vector in the upward vertical
direction (perpendicular to the plane of the diagram).
(b) A typical map of mean sea-level pressure; analysed locations of warm, cold and
occluded fronts are also shown. Contour interval 4hPa. From the UK Met. Office’s
Daily Weather Summary. [In land regions the pressure at mean sea-level has been
obtained by a standard extrapolation based on the hydrostatic approximation and
knowledge of the atmosphere’s temperature structure.]



38 White

(c)

Figure 7: (c) A typical 300hPa height map, valid 1200 UTC 11 May 1999. Contour
interval 8 decametres. Data entries indicate the observation density (and use a stan-
dard code). From the European Meteorological Bulletin of the Deutscher Wetterdienst,
Offenbach, by permission.

with the Coriolis term −fk×v. Assuming a horizontal space scale of variation
L, and a horizontal velocity scale V (i.e. the horizontal flow varies by V over
horizontal distance L), then v ≈ vG according to a simple scale analysis if

Ro ≡ V

fL
� 1.

Here Ro is a Rossby number, and it has been assumed that D/Dt ∼ V/L.
Putting V ∼ 10 ms−1, f ∼ 10−4 s−1 and L ∼ 106 m gives Ro ∼ 10−1; this is a
typical value for synoptic-scale weather systems in middle and high latitudes.

We consider in this section various aspects of the geostrophic wind, and the
interesting consequences of combining the geostrophic and hydrostatic approx-
imations – which together account in a diagnostic sense for many synoptic-scale
features of the extra-tropical atmosphere.



The equations of meteorological dynamics and various approximations 39

7.1 Pressure and height signatures

A third possible balance in the horizontal components of the momentum equa-
tion is between the acceleration and the pressure gradient force:

Dv
Dt

= −1
ρ
∇zp. (7.3)

This balance may be achieved in motion systems having a much shorter time
scale than the pendulum day. By applying a scale analysis to (7.3), and assum-
ing again that D/Dt ∼ V/L, we find that such systems will be characterised
by horizontal pressure fluctuations ∆p of magnitude ρV 2 (independent of hor-
izontal scale). On the other hand, geostrophically balanced flow, according to
(7.2), will be characterised by pressure fluctuations ∆pG of magnitude ρfV L.
Hence

∆p

∆pG
∼ V

fL
≡ Ro . (7.4)

The Rossby number, Ro, therefore measures the magnitude of pressure fluctu-
ations due to circulations characterised by (7.3) compared with pressure fluc-
tuations due to geostrophically-balanced circulations characterised by (7.1)
and similar flow speeds V . In other words, the pressure signature of nearly-
geostrophic flows is an order of magnitude greater than that of flows (of similar
strength) characterised by (7.3). To the extent that Ro � 1, a map of (say)
pressure at sea-level, will be dominated by the contributions of geostrophically
balanced flows. Taking ρ ∼ 1kg m−3 and V ∼ 10 ms−1, we find ∆p ∼ 102Pa
= 1hPa for short time-scale circulations. Taking L ∼ 106 m for synoptic-scale
flow gives ∼ 103Pa = 10hPa. Maps of sea-level pressure are therefore expected
to show fluctuations of order 10hPa about a spatial mean, and such fluctu-
ations are indeed observed: see Figure 7(b), which shows a typical sea-level
pressure map.

By use of (6.2), and assuming hydrostatic balance, the definition (7.2) of
geostrophic wind can be written in terms of the gradient of the height h of
pressure surfaces as

vG ≡ g

f
k× ∇ph. (7.5)

Height variations ∆h of a pressure surface associated with geostrophic flow
are thus of order fLVG/g ∼ 102 m (given g ≈ 10 ms−2 and other values as
quoted earlier). Maps of the height of a pressure surface are widely used in
meteorology. Figure 7(c) shows a typical map of the height of the 300hPa
(= 300mb) surface. This surface is roughly 9km above the Earth’s surface,
and Figure 7(c) shows variations of about ±5 × 102 m in its local height;
the flow at 300hPa attains values substantially greater than 10ms−1. Even
with height fluctuations of this magnitude, the 300hPa surface is very gently
sloping: ∆h/L � 10−3.
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The geostrophic wind vG is horizontally divergent on pressure surfaces only
to the extent that the latitude variation of the Coriolis parameter f con-
tributes:

∇p.vG = −βvG
f

,

where (as in section 6.3) β = (2Ω/a) cosφ is the rate at which f increases with
distance northward. Thus ∇p.vG is much smaller than its two constituent
terms if βL/f � 1. In middle and high latitudes this condition reduces to
L/a � 1, which is reasonably well satisfied by motion having a horizontal space
scale of 106 m. In extra-tropical latitudes, the geostrophic wind is therefore
nearly non-divergent on pressure surfaces (given L/a � 1).

7.2 The differential geometry of the height field

According to (7.5), vG is directed parallel to the height contours h = constant
and has magnitude (g/f)|∇ph|. Other differential geometric properties of the
height field are related to other properties of the geostrophic wind field. The
vertical component of the vorticity of vG is

k.∇p × vG =
g

f
∇2
ph +

βuG
f

,

which is dominated by the ∇2
ph term so long as L/a � 1. Thus (g/f)∇2

ph
is a good approximation to the vertical component of the vorticity of the
geostrophic wind if L/a � 1.

A less well-known property of the height field is a relationship between its
principal directions of curvature and the stretching and contraction axes of
the geostrophic flow. Because the height field typically has a slope much less
than 10−3 (see section 7.1), classical expressions for the principal directions of
curvature may be simplified, to a very good approximation.

Consider the height of a pressure surface as a function of horizontal Carte-
sian coordinates on an f -plane: z = h(x, y) with f = f0 = constant. Assume
that h and its first and second derivatives hx, hy, hxx, hxy and hyy are continu-
ous. The projections on the (x, y)-plane of the principal directions of curvature
of a surface specified in Monge form z = h(x, y) are lines having dy/dx given
by(

dy

dx

)2 {
hxy
(
1 + h2y

)− hyyhxhy
}−

(
dy

dx

){
hyy
(
1 + h2x

)− hxx
(
1 + h2y

)}
+hxxhxhy − hxy

(
1 + h2x

)
= 0; (7.6)

see, for example, Bell (1912), p.338. If the second derivatives hxx, hxy, hyy are
of similar order of magnitude and the slopes hx, hy are very small (� 1), then
(7.6) reduces to (

dy

dx

)2
hxy −

(
dy

dx

)
{hyy − hxx} − hxy = 0. (7.7)
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In this approximation of small slope, the horizontal projections of the principal
directions are perpendicular to one another. For 2D flow, the angle θ between
the dilatation axis and the x-axis is given (see section 2) by

tan 2θ =
D2

D1
=

(vx + uy)
(ux − vy)

. (7.8)

In geostrophic flow on an f -plane, u = uG = −(g/f0)hy and v = vG =
(g/f0)hx, and (7.8) becomes

tan 2θ ≡ tan 2θG = −(hxx − hyy)
2hxy

. (7.9)

Choose the axes Oxy such that x lies along the dilatation axis. In this system
θG = 0, and (from (7.9)) hxx = hyy; substitution into (7.7) now shows that
(dy/dx)2 = 1. Hence (given that the height field is characterised by very small
slopes) the dilatation axes and contraction axes of the geostrophic flow on an
f-plane bisect the principal directions of curvature of the corresponding height
field. M.J. Sewell (private communication, 1998) has shown that this result is
an example of a general bisection relationship between the principal axes of
the following two tensors associated with any 2-dimensional, solenoidal vector
field: the symmetric part of its gradient; and the second derivative of its scalar
potential.

7.3 The thermal wind equation

An important result follows by combining the geostrophic relation (7.5) with
the hydrostatic relation (6.3):

−∂vG
∂p

= − g

f
k× ∇p

(
∂h

∂p

)
=

R

fp
k× ∇pT. (7.10)

Hence
∂vG
∂z

=
∂p

∂z

∂vG
∂p

=
g

fT
k× ∇pT =

g

fθ
k× ∇pθ. (7.11)

Thus the vertical shear of the geostrophic wind is at right angles to the tem-
perature gradient on pressure surfaces; see Figure 8(a). Equation (7.10) is the
differential form of the thermal wind equation. Hydrostatic and geostrophic
balance tie the wind and thermodynamic fields together in a specific way that
is one of the key features of synoptic-scale meteorology.

A useful height-integrated form of (7.10) is readily obtainable in terms of
the vertical distance ∆z12 between two pressure surfaces p2 and p1 < p2. From
the hydrostatic approximation (5.1) and the perfect gas law (3.16):

∆z12 =
R

g

∫ p2
p1

T d(ln p). (7.12)
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(a)

(b)

Figure 8: (a) Illustrating the relative orientation (in the horizontal plane) of the shear
of the geostrophic wind in the vertical (∂vG/∂z) and the temperature gradient (∇pT )
on pressure surfaces in the Northern Hemisphere. (In the Southern Hemisphere, the
geostrophic wind shear vector (∂vG/∂z) would be oppositely directed, given the tem-
perature gradient shown.)
(b) Two columns of air having different mean temperatures. Suppose that the hy-
drostatic approximation is applicable and that the pressure at level z = 0 is p0 in
each column, so that the component of geostrophic wind vG perpendicular to the
plane of the paper is zero there. Define the top of each column as the level at which
pressure is p1 (which is less than p0). The top of the warm column, thus defined, is
at a level zwarm greater than that of the top of the cool column zcool (see (7.12)); the
‘thickness’ of the warm column is greater than the ‘thickness’ of the cool column. At
height zcool, the pressure in the warm column is therefore greater than p1; hence, at
this level, a horizontal pressure gradient exists and the geostrophic wind component
perpendicular to the plane of the diagram is non-zero.
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The quantity ∆z12 is known as the ‘thickness’ of the layer between pressures
p2 and p1.

Equation (7.12) shows that the thickness is a measure of the mean temper-
ature of the layer. Charts of thickness, often of the layer between 1000 and
500hPa, are part of the stock-in-trade of the synoptic meteorologist. Along
with appropriate height charts, they show at a glance where warm and cold
air are being advected by the geostrophic wind. From (7.10) and (7.12) we
find

vG(p1) − vG(p2) =
g

f
k× ∇(∆z12). (7.13)

Thus the vector difference in the geostrophic flow between two pressure sur-
faces (at the same horizontal location) bears the same relation to the thickness
contours as the geostrophic wind does to the pressure or height field. This is
readily understood in physical terms; see Figure 8(b).

It is worth noting that the geostrophic wind generally changes its direction
as well as its magnitude with height. From (7.5) and (7.11),

k.
(
vG × ∂vG

∂z

)
=

g2

f2T
k. (∇ph × ∇pT ). (7.14)

Hence the geostrophic wind shear ∂vG/∂z is parallel or anti-parallel to the
geostrophic wind vG only if the height gradient ∇ph is parallel or anti-parallel
to the temperature gradient ∇pT .

In this brief account we have been able to mention only a few of the di-
agnostic results which may be obtained by combining the hydrostatic and
geostrophic relations. This is currently a rather underplayed area of meteo-
rology, but it is well described in older textbooks (see Saucier (1955)). For
forecasting or for the elucidation of forecasts generated numerically (using,
say, the HPEs), a time-dependent picture is required; we consider in section 9
some models which answer this need.

7.4 Other steady, balanced flows

In strictly geostrophic flow, particle accelerations and friction are absent; Cori-
olis and pressure-gradient forces are in precise balance and the flow is rectilin-
ear. Balanced circular motion under the influence of the Coriolis and pressure
gradient forces is readily analysed, and gives what is known as gradient flow.
The balanced circular flow around a centre of low pressure is weaker than the
geostrophic flow implied by the pressure or height field (the contours of which
are circular in this case): the excess of the pressure gradient force over the
Coriolis force supplies the acceleration that is necessary to maintain circular
motion. The balanced circular flow around a centre of high pressure is larger
than the geostrophic flow implied by the pressure or height field: the excess of
the Coriolis force over the pressure gradient force now supplies the acceleration
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necessary to maintain circular motion. A possibly less expected aspect of the
problem is that the supergeostrophic flow around a centre of high pressure has
an upper bound. In plausibility terms, one may argue that the required accel-
eration in circular motion of radius r is |v|2/r, but the Coriolis force varies
only as |v|; hence it is reasonable that a limit exists to the extent to which
the acceleration can be supplied by the Coriolis force. See Holton (1992).

Straight flow in the presence of friction may be analysed by assuming a
tractable relation between the flow and the friction. The customary example
is Ekman’s classical treatment of the case in which F = k∂2v/∂z2; this is
covered in textbooks such as Holton (1992) and Gill (1982). [The assumed
force balance between frictional, pressure-gradient and Coriolis forces is some-
times referred to as geotriptic; see Bannon (1998) and references therein.] The
essential physics may be exposed by considering the case in which friction
is assumed to oppose the flow according to a simple linear law (first used,
according to Eliassen (1984), by Guldberg and Mohn in 1876):

fk× v − fk× vG = −Cv. (7.15)

Hence
fk× vAG = −Cv, (7.16)

where vAG = v−vG is the ageostrophic wind, and vAG is perpendicular to v.
If vG is plotted along the diameter of a circle, v (the actual horizontal wind)
and vAG will meet one another on the circle (see Figure 9); also, |v| < |vG|
and |vAG| < |vG| (given C > 0). A simple calculation gives

v2 =
v2G(

1 + C2

f2

) and tanα ≡ C

f
, (7.17)

where α is the angle between vG and v. Carrying the analysis through for a
quadratic friction law is straightforward. In physical terms, friction reduces
the flow below the geostrophic value (which is not a general property of the
Ekman solution) and directs it towards lower pressure.

8 Atmospheric waves

The nonlinearity of the advection terms in the equations of motion cannot
safely be ignored in quantitative forecasting or simulation of the atmosphere’s
motion. Nevertheless, a knowledge of the small amplitude oscillations and
waves that are possible in a compressible, stratified, rotating atmosphere is
fundamental to an appreciation of meteorological dynamics. The nonlinear
terms sometimes turn out to be less important than a crude analysis might
suggest (see, for example, White (1990)) and they can in any case be regarded
as a forcing agency for the linearised dynamics and thermodynamics (along
with diabatic and frictional sources and sinks). The properties of the possi-
ble wave motions determine how, and how quickly, local disturbances may
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Figure 9: The geostrophic wind vG plotted as the diameter of a circle (centre O).
By definition, v = vG + vAG, where v is the total (horizontal) wind and vAG is the
ageostrophic wind. If v and vG are steady and spatially uniform, and a friction law
F = −cv holds, then v.vAG = 0, and v and vAG meet on the circle of which vG is a
diameter. Equation (7.17) specifies the angle α between vG and v. The diagram has
been drawn assuming f > 0 (Northern Hemisphere) so that high pressure lies to the
right of vG, and v to the left of vG. If f < 0 (Southern Hemisphere) high pressure
lies to the left of vG, and v would lie to the right of vG.

influence distant regions (Lighthill 1978). Their properties also affect the ap-
plication of numerical schemes in weather forecasting and climate simulation
models (Haltiner and Williams 1981). Perhaps most important in our context,
an appreciation of the possible wave motions illuminates the various approxi-
mate formulations – which do not support all modes of oscillation.

In this section we consider small oscillations of a frictionless, adiabatic,
perfect gas atmosphere about an isothermal state of rest relative to the rotating
Earth. Analytical results are readily obtained by use of the f -plane and β-plane
approximations (see section 6.3). Only neutral waves are found because there is
no energy available apart from that initially present in the perturbations. Cases
in which the initial state has available energy because of velocity or horizontal
temperature gradients will not be addressed, although they have played a key
role in setting up the conceptual furniture of meteorological dynamics. For
discussion of relevant instability problems see Drazin and Reid (1981), Gill
(1982), Held (1985), Farrell (1989) and Holton (1992), for example.
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The profiles of pressure, density, potential temperature and buoyancy fre-
quency in an isothermal atmosphere were given in section 5 (equations (5.4)–
(5.7)). Pressure and density decrease exponentially with height, potential tem-
perature increases exponentially with height, and the buoyancy frequency N
is constant. The classical adiabatic sound speed, c0, given by

c0 =
√

γRT0, (8.1)

(where γ = cp/cv), is also independent of height, as is the scale height H0 =
RT0/g. From (3.19), N , H0 and c0 obey a relation that will be used repeatedly
in this and later sections:

N2H0

g
+

gH0

c20
= 1. (8.2)

8.1 Oscillations of an isothermal atmosphere: f-plane case

We begin with some comments on notation. In linearised analyses it is usual
to indicate perturbations from the chosen basic state by primes: I = I0 + I′,
where I is a generic field and I0 its value in the basic state. The equations
obtained after linearization involve only I0 and I′, and the use of primes
to indicate perturbations becomes tedious and redundant. We shall drop the
primes in the linearised equations: in this section, u, v, w, p, ρ and θ are to
be understood as the perturbation velocity components and thermodynamic
quantities. Various combinations of the thermodynamic variables feature in
the linearised equations: ρ/ρ0, p/ρ0 and θ/θ0 (to exercise the notation just
introduced). It is tempting to introduce new symbols for all or some of these
quantities, but we shall resist the temptation: it would lead us into slightly
tidier equations, but their physical content might be obscured. A final issue
is the choice of symbol for the angular frequency of a wave. We shall follow
common usage in mathematical physics, and denote this quantity by ω; our
choice is not to be confused with the use of ω in sections 6 and 9–11 to represent
Dp/Dt (which is common usage in meteorology).

Linearisation of the adiabatic, frictionless, f -plane equations about an iso-
thermal rest state gives:

∂v
∂t

+ f0k× v + ∇z
(

p

ρ0

)
= 0 (8.3)

∂w

∂t
− g

(
θ

θ0

)
+
(

∂

∂z
− N2

g

)(
p

ρ0

)
= 0 (8.4)

∂

∂t

(
ρ

ρ0

)
+ ∇z.v +

1
ρ0

∂

∂z
(ρ0w) = 0 (8.5)

∂

∂t

(
θ

θ0

)
+

N2

g
w = 0 (8.6)

θ

θ0
− 1

c2

(
p

ρ0

)
+

ρ

ρ0
= 0. (8.7)
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Here ∇z ≡
(
∂
∂z ,

∂
∂y

)
. Equation (8.3) is the linearised, frictionless form of

the horizontal momentum equation (6.17). Equations (8.5) and (8.6) are re-
spectively the linearised continuity and (adiabatic) thermodynamic equations.
Equation (8.7) may be obtained by linearising (3.19) and then using (3.10)
and (8.1). Equation (8.4) is the linearised vertical component of the momen-
tum equation [with the shallow atmosphere approximation, use of Cartesian
geometry, z as vertical coordinate and neglect of the Coriolis and metric terms
in (4.6)]; (8.7) has been used to eliminate the perturbation density, and (8.2)
applied.

Elimination of θ/θ0 between (8.4) and (8.6) gives(
∂2

∂t2
+ N2

)
w +

(
∂

∂z
− N2

g

)
∂

∂t

(
p

ρ0

)
= 0. (8.8)

Another relation between w and p/ρ0, obtainable from (8.3) and (8.5)–(8.7),
is

c20

(
∂2

∂t2
+ f20

)(
∂

∂z
− g

c20

)
w +

(
∂2

∂t2
+ f20 − c20∇2

z

)
∂

∂t

(
p

ρ0

)
= 0. (8.9)

An important special solution of (8.8) has w = 0 everywhere, and hence

p

ρ0
∝ exp

[
N2z

g

]
.

If a wave-like form exp{i(kx + ly − ωt)} is assumed, (8.9) then requires that
the angular frequency ω should obey

ω2 = c20(k
2 + l2) + f20 . (8.10)

These horizontally-propagating waves are known as Lamb waves (see Lamb
1932). With them are associated fluctuations of pressure, density and hor-
izontal velocity, but not potential temperature (or vertical velocity). They
are anisotropic in character, being in hydrostatic balance in the vertical, but
having the structure of classical sound waves as regards their horizontal field
variations. Apart from the effect of rotation (f0 �= 0) they are non-dispersive
and have the phase speed of classical sound waves.

Other modes permitted by (8.8) and (8.9) obey a partial differential equation
obtained by eliminating w:[(

∂2

∂t2
+ N2

)
∇2
z +
(

∂2

∂t2
+ f20

)(
∂2

∂z2
− 1

H0

∂

∂z
− 1

c20

∂2

∂t2

)]
∂

∂t

(
p

ρ0

)
= 0.

(8.11)
Wave-like solutions of (8.11) exist in the form

p

ρ0
∝ exp

(
z

2H0

)
exp{i(kx + ly + mz − ωt)}. (8.12)
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These solutions have angular frequencies ω that obey the dispersion equation

ω
(
ω4 − Ω2

aω
2 + Ω2

aΩ
2
g

)
= 0 (8.13)

in which the parameters Ω2
a and Ω2

g are given by

Ω2
a ≡ c20

(
k2 + l2 + m2 +

1
4H2

0

)
+ f20 (8.14)

and

Ω2
aΩ

2
g ≡ N2c20(k

2 + l2) + f20 c
2
0

(
m2 +

1
4H2

0

)
. (8.15)

Equation (8.13), which is obtained by substituting (8.12) into (8.11), has five
solutions. Corresponding to ω = 0 is a geostrophic mode having fv = k ×
∇(p/ρ0), with u, v, p/ρ0 proportional to exp(N 2z/g), ρ ∝ exp(−gz/c20) and
w = θ = 0. The other four solutions consist of two pairs. One pair, having
high frequencies, has

ω2 ≈ Ω2
a = c20

(
k2 + l2 + m2 +

1
4H2

0

)
+ f20 . (8.16)

These are acoustic waves modified by rotation (f0 �= 0) and static compress-
ibility (1/H0 �= 0). Even horizontally-propagating waves (m = 0) of this type
are distinct from the Lamb waves. They are weakly dispersive through the
terms in (8.16) in f20 and 1/4H2

0 . The second pair of solutions, having lower
frequencies (see Gill 1982, p174), has

ω2 ≈ Ω2
g =

N2(k2 + l2) + f20

(
m2 + 1

4H2
0

)
f2
0

c20
+ k2 + l2 + m2 + 1

4H2
0

. (8.17)

These are buoyancy, or gravity waves, modified by rotation and static com-
pressibility; they are often called inertio-gravity waves. Even if f0 = 0, they
are dispersive.

The approximations (8.16) and (8.17) are generally very good in terres-
trial parameter ranges, and are sufficiently accurate for many purposes. Exact
solutions may be obtained by noting that Ω2

a > 4Ω2
g and writing

2Ωg
Ωa

= sin 2ψ. (8.18)

Then
ω = ωn = Ωa sin

(
ψ +

nπ

2

)
, n = 0, 1, 2, 3, (8.19)

and the solutions may be represented graphically, as in Figure 10. From the
quartic bracket of (8.13) it follows that the exact solutions ±ωa, ±ωg obey

ω2
a + ω2

g = Ω2
a; ω2

aω
2
g = Ω2

aΩ
2
g. (8.20)
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Figure 10: Showing the four non-zero solutions of the acoustic/gravity wave dis-
persion equation (8.13). The radius of the circle is the approximate acoustic wave
frequency Ωa given by (8.16), and the angle ψ, which is less than π/4, is given in
terms of Ωa and the approximate gravity wave frequency Ωg (see (8.17)) by (8.18).
The quantities ω0 and ω2 are the exact gravity wave frequencies ±ωg; ω1 and ω3

are the exact acoustic wave frequencies ±ωa. The straight lines COA and DOB are
perpendicular diameters of the circle, and OA subtends ψ with OX. The angle ψ may
be constructed by plotting a chord EF = 4Ωg perpendicular to OX, joining OE, and
bisecting the angle EOX = 2ψ (see (8.18)).

The approximation (8.16) thus overestimates the true sound wave frequency,
while (8.17) underestimates the true gravity wave frequency.

Apart from the introduction of the geostrophic mode having ω = 0, the
presence of rotation does not lead to any new modes of motion. If f0 = 0, a
pair of sound waves and a pair of gravity waves are still found; rotation only
serves to modify their frequencies (and generally to increase dispersion). In
particular, it is noticeable that there are no modes corresponding to inertial
oscillations – see section 7 – whereas the (inertio-) gravity waves can be iden-
tified with buoyancy oscillations (modified by rotation). This reflects the fact
that the pressure field plays a key role in gravity waves but not in pure inertial
oscillations.
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8.2 Filtering approximations in the f-plane problem

The consequences of various approximations and modifications of the equa-
tions of motion may be explored by repeating the above analysis with various
terms omitted. An apt way of doing this [J.S.A. Green, unpublished lecture
notes, Imperial College, 1970; G.J. Haltiner (1971)] is to attach multiplicative
tracer parameters ni to the target terms; then ni = 0 or 1 according as the
associated term is omitted or retained. Our treatment in this section closely
follows Green’s.

Of particular interest are the hydrostatic approximation, in which ∂w/∂t is
omitted from (8.4), and the anelastic approximation, in which ∂ρ/∂t is omitted
from (8.5). Our freedom to omit these terms is not complete, as an examination
of the energy equation implied by (8.3)–(8.7) readily shows. Consider (8.4) and
(8.5) in the forms

n1
∂w

∂t
− g

θ

θ0
+
(

∂

∂z
− n0

N2

g

)
p

ρ0
= 0 (8.4a)

n2
∂

∂t

(
ρ

ρ0

)
+ ∇z.v +

1
ρ0

∂

∂z
(ρ0w) = 0. (8.5a)

A tracer n0 for −(N2/g)(p/ρ0) has been placed in (8.4a). The local energy
conservation law is

∂

∂t

(
1
2
ρ0

(
v2 + n1w

2 +
g2

N2

(
θ

θ0

)2
+

n2
c20

(
p

ρ0

)2))

= −∇z. (pv) − ∂

∂z
(pw) +

N2pw

g
(n0 − n2). (8.21)

When n0 = n1 = n2 = 1, this reduces to a familiar form (see Gill (1982),
p.170); in particular, the term in N2w vanishes. To ensure that we do not
introduce a spurious energy source, we therefore require that n0 take the same
value as n2. In place of (8.4a) we use

n1
∂w

∂t
− g

θ

θ0
+
(

∂

∂z
− n2

N2

g

)
p

ρ0
= 0 (8.4b)

Equations (8.8) and (8.9) become(
n1

∂2

∂t2
+ N2

)
w +

(
∂

∂z
− n2

N2

g

)
∂

∂t

(
p

ρ0

)
= 0. (8.8a)

and

c20

(
∂2

∂t2
+ f20

)(
∂

∂z
+ n2

N2

g
− 1

H0

)
w

+
(
n2

(
∂2

∂t2
+ f20

)
− c20∇2

z

)
∂

∂t

(
p

ρ0

)
= 0. (8.9a)
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The solution having w = 0,
(
p
ρ0

)
�= 0 has vertical structure exp(N2z/g) if

n2 = 1, but [from (8.9a)] ∂/∂t(p/ρ0) = 0 if n2 = 0. The Lamb wave is thus
absent if the term ∂ρ/∂t is omitted from the continuity equation (anelastic
approximation). The Lamb wave is still present (given n2 = 1) if n1 = 0
(hydrostatic approximation).

Elimination of w between (8.8a) and (8.9a) gives[(
n1

∂2

∂t2
+ N2

)
∇2
z +
(

∂2

∂t2
+ f20

)(
∂2

∂z2
− 1

H0

∂

∂z
− n1n2

c20

∂2

∂t2

)]
∂

∂t

(
p

ρ0

)
= 0,

(8.11a)
which reduces to (8.11) if n1 = n2 = 1. We examine the fate of wave-like
solutions of the form (8.12) in the remaining cases.

n1 = 0, n2 = 0 (Hydrostatic, anelastic)

In this case, (8.11a) gives ω = 0 (geostrophic mode) or

ω2 =
N2(k2 + l2) + f20

(
m2 + 1

4H2
0

)
(
m2 + 1

4H2
0

) . (8.22)

There are no sound waves (or Lamb waves) in this case. Equation (8.22) rep-
resents a pair of gravity waves, whose frequencies differ even from those of the
approximate solution (8.17) (section 8.1).

n1 = 0, n2 = 1 (Hydrostatic, elastic) This gives the same results as the previous
case, except that Lamb waves remain.

n1 = 1, n2 = 0 (Non-hydrostatic, anelastic)

Now (8.11a) gives ω = 0 (geostrophic mode), or

ω2 =
N2(k2 + l2) + f20

(
m2 + 1

4H2
0

)
(
k2 + l2 + m2 + 1

4H2
0

) . (8.23)

There are no sound waves (or Lamb waves). Equation (8.23) represents a pair
of gravity waves; in the absence of rotation (f0 = 0), their phase speeds are as
given by Ωg (see (8.17)).

In summary, the anelastic approximation removes sound waves and Lamb
waves and leaves the gravity wave frequencies almost intact. The hydrostatic
approximation removes sound waves but not Lamb waves, and the frequencies
of the remaining gravity waves are noticeably modified.

8.3 Hydrostatic waves in an isothermal atmosphere:
mid-latitude β-plane

The treatment given in sections 8.1 and 8.2 assumed a constant value f0 of
the Coriolis parameter f (as well as Cartesian geometry). Allowing f to vary
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with latitude (y) opens up new possibilities and brings new problems too.
These problems are typical of those that arise when one seeks to approximate
the equations for motion subject to gravity on a rotating sphere. We treat the
variable-f linearised case because it offers a vignette of more complicated cases
as well as revealing an important new type of wave motion. The hydrostatic
approximation will be applied, thus limiting attention to motion having a
frequency much less than the buoyancy frequency N ; wave motion having a
horizontal scale large compared with its vertical scale is of this type.

We consider the linearised equations of motion with, initially, f = f0 + βy,
where f0 and β are constants. In place of (8.3) and (8.4b), we have

∂v
∂t

+ fk× v + ∇z
(

p

ρ0

)
= 0 (8.24)

−g
θ

θ0
+
(

∂

∂z
− n2

N2

g

)
p

ρ0
= 0. (8.25)

The linearised continuity equation (8.5a) – with tracer parameter – remains
unchanged, as does the linearised thermodynamic equation (8.6) and the lin-
earised relation (8.7).

For the equatorial β-plane (f = βy), analysis of (8.5a), (8.6), (8.7), (8.24)
and (8.25) can be carried through without further approximation (Gill 1982);
we shall refer to this case in section 8.5. Analysis of the mid-latitude β-plane
case (f = f0+βy; f0 �= 0) can also be pursued without further approximation,
but unwieldy latitude structure functions arise. Instead of following this route,
we seek to replace f = f0 + βy by constant values, wherever possible in a
consistent way.

From (8.24) we form equations for the time evolution of the (vertical)
relative vorticity ζ ≡ ∂v/∂x − ∂u/∂y and the (horizontal) divergence δ ≡
∂u/∂x + ∂v/∂y:

∂ζ

∂t
+ fδ + βv = 0 (8.26)

∂δ

∂t
− fζ + βu + ∇2

z

(
p

ρ0

)
= 0. (8.27)

With a Helmholtz decomposition of v = (u, v) into rotational/non-divergent,
and divergent/irrotational parts, i.e., v = k× ∇zψ + ∇zχ where ψ and χ are
streamfunction and velocity potential, (8.26) and (8.27) become

∂

∂t
∇2
zψ + f∇2

zχ + β
∂ψ

∂x
+ β

∂χ

∂y
= 0 (8.28)

∂

∂t
∇2
zχ − f∇2

zψ + β
∂χ

∂x
− β

∂ψ

∂y
+ ∇2

z

(
p

ρ0

)
= 0. (8.29)

A näıve application of the β-plane approximation would involve setting f = f0
in (8.28) and (8.29), and then proceeding with f0 (as well as β) constant
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thereafter. Grimshaw (1975) noted that the β-plane approximation, in this
guise, is ill-posed because it does not commute with other operations such as
differentiation with respect to latitude. In the present case we reason instead
that, if we set f = f0 in (8.28) and (8.29), we should also omit the terms
β∂χ/∂y and −β∂ψ/∂y to ensure that the resulting forms

∂

∂t
∇2
zψ + f∇2

zχ + β
∂ψ

∂x
= 0 (8.30)

and
∂

∂t
∇2
zχ − f∇2

zψ + β
∂χ

∂x
+ ∇2

z

(
p

ρ0

)
= 0 (8.31)

imply an acceptable kinetic energy equation. [To obtain a kinetic energy equa-
tion, multiply (8.28) by ψ, multiply (8.29) by χ and add the results. The term
f0(ψ∇2

zχ−χ∇2
zψ) can be written in divergence form as ∇z. (f0ψ∇zχ − χ∇zψ).

The term β(ψ∂χ/∂y−χ∂ψ/∂y), which arises if β∂χ/∂y in (8.28) and −β∂ψ/∂y
in (8.29) are retained, is not of the required divergence form.] The omissions
can also be justified by scale analysis, as follows. We wish to represent the
latitude variation of f in some WKB sense; thus the scale Ly of latitude vari-
ation of the motion must be much less than that of f – i.e. the planetary scale
a which equals the radius of the Earth. Hence (for wave-like motion which is
not evanescent in the horizontal), β∂χ/∂y in (8.28) must be much less than
f∇2

zχ in numerical terms, since β ∼ f/a. Similarly, β∂ψ/∂y in (8.29) must be
much less than f∇2

zψ. [Some published accounts achieve these omissions by
assuming ∂/∂y = 0, which is not the appropriate limit.]

For reasons that will soon be clear, we attach a single tracer parameter (n3)
to both the first and third terms in (8.31):

n3

(
∂

∂t
∇2
zχ + β

∂χ

∂x

)
− f0∇2

zψ + ∇2
z

(
p

ρ0

)
= 0. (8.32)

From (8.5a), (8.6), (8.7) and (8.25) we obtain, after a lengthy calculation
assuming that w does not vanish everywhere,

N2∇2
zχ −

[
∂

∂z

(
∂

∂z
− 1

H0

)
+ n2(1 − n2)

N4

g2

]
∂

∂t

(
p

ρ0

)
= 0. (8.33)

The term in N4/g2 in (8.33) vanishes whether n2 = 0 or 1. From (8.30), (8.32)
and (8.33): {[

n3

(
∂

∂t
∇2
z + β

∂

∂x

)2
+ f20∇4

z

] [
∂

∂z

(
∂

∂z
− 1

H0

)]
∂

∂t

+N2

(
∂

∂t
∇2
z + β

∂

∂x

)
∇4
z

}(
p

ρ0

)
= 0. (8.34)
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Solutions of (8.34) of the form (8.12) obey the dispersion equation[
f20K

4 − n3(βk + ωK2)2
]
ω + (βk + ωK2)N2

(
K4

M2

)
= 0 (8.35)

in which K2 ≡ k2 + l2 (8.36)

and M2 ≡ m2 +
1

4H2
0

. (8.37)

Equation (8.35) is a cubic in ω. We shall not give a detailed analysis of the
general case (n3 = 1): two of the solutions are a pair of (inertio-)gravity waves
modified by the β-effect; the third solution is a lower frequency solution, a
Rossby or planetary wave. When n3 = 0, (8.35) becomes linear in ω; the
gravity waves disappear, but the Rossby wave remains:

ω = − βk[
K2 + (f20 /N2)M2

] . (8.38)

The westward propagation of Rossby waves arises because of the latitude vari-
ation of the Coriolis parameter (the β-effect). For our present purposes, the key
aspect is that gravity waves are ‘filtered’ by omitting the term ∂/∂t

(∇2
zχ
)

=
∂δ/∂t from the divergence equation (8.32) [i.e. n3 = 0], but Rossby waves
remain (Thompson 1956). [Putting n3 = 0 in (8.32) also implies omission
of β∂χ/∂x. Separate treatment of this term unproductively complicates the
analysis.]

Our derivation and discussion has assumed that w �= 0. What about Lamb
waves? If w = 0 everywhere, then (from (8.6)) θ = 0 also, and use of (8.7)
shows that (8.5a) becomes

n2
c20

∂

∂t

(
p

ρ0

)
+ δ = 0. (8.39)

The corresponding vorticity and divergence equations are the same as before
((8.30) and (8.32)). We find, instead of (8.34),{[

n3

(
∂

∂t
∇2
z + β

∂

∂x

)2
+ f20∇4

z

]
n2
c20

∂

∂t
−
(

∂

∂t
∇2
z + β

∂

∂x

)
∇4
z

}(
p

ρ0

)
= 0.

(8.40)
Once again, we obtain a cubic dispersion relation (if (p/ρ0) ∝ exp[i(kx + ly −
ωt)] is assumed). If n3 = 0 we find

ω = − βk[
K2 + n2(f20 /c

2
0)
] . (8.41)

Setting n3 = 0 removes the two (paired) hydrostatic Lamb waves, but leaves
a Rossby mode – known as the Rossby–Lamb or external Rossby mode. This
mode’s frequency (see (8.41)) is then dependent on whether horizontal diver-
gence is retained by setting n2 = 1 or non-divergence is enforced by setting
n2 = 0; see (8.39).
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8.4 Waves on shallow water: mid-latitude β-plane

The above analysis is readily repeated for the shallow water equations on
a mid-latitude β-plane. Appropriate linearization of the β-plane versions of
(5.36), (5.37) and (5.39) gives

∂v
∂t

+ fk× v + ∇z(gh) = 0 (8.42)

∂h

∂t
+ h0∇z.v = 0. (8.43)

Equations (8.42) is of the same form as (8.24), with gh replacing p/ρ0. With
the same approximations and tracer scheme as before, we obtain (8.30) and
(8.32), with gh replacing p/ρ0. Equation (8.43) is much simpler than (8.33).
In place of (8.34) we find{[

n3

(
∂

∂t
∇2
z + β

∂

∂x

)2
+ f20∇4

z

]
∂

∂t
− gh0

(
∂

∂t
∇2
z + β

∂

∂x

)
∇4
z

}
h = 0.

(8.44)
Solutions of (8.44) of the form exp {i(kx + ly − ωt)} have angular frequency
ω which obeys the cubic{

f20K
4 − n3(βk + ωK2)2

}
ω + (βk + ωK2)gh0K4 = 0. (8.45)

Equation (8.45) is the same as (8.35), except gh0 that replaces N2/M2 =
N2/

(
m2 + 1/(4H2

0 )
)
. The quantity dE ≡ N2/g

(
m2 + 1/(4H2

0 )
)

is called the
equivalent depth. Every Rossby wave or (inertio-) gravity wave in an isothermal
atmosphere at rest has the same dispersion relation as a counterpart Rossby or
(inertio-) gravity wave on a shallow layer of incompressible fluid having mean
depth dE. By comparison of (8.40) and (8.44), it is clear that Rossby–Lamb
waves have equivalent depth c20/g = γRT0/g = γH0.

Putting n3 = 0 in (8.45) reduces it to an explicit linear expression for ω:

ω = − βk[
K2 + (f20 /gh0)

] . (8.46)

Gravity waves have been removed by setting n3 = 0, and (8.46) gives the an-
gular frequency of the remaining shallow water Rossby wave (which is an ap-
proximation to the corresponding root of the cubic dispersion equation (8.45)
with n3 = 1). If we omit the term ∂h/∂t from (8.43) then we oblige the flow
to be non-divergent, and the vorticity equation derived from (8.42) is simply(

∂

∂t
∇2
z + β

∂

∂x

)
ψ = 0 (8.47)

with ψ = gh/f0. Waves of the form exp {i(kx + ly − ωt)} have

ω = − βk

K2
. (8.48)
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(Comparison with (8.46) shows that the imposition of non-divergence is valid
if K2 � f20 /gh0.) These are prototypical Rossby waves – non-divergent,
barotropic waves (Rossby 1939). See Hoskins et al. (1985), Durran (1988)
and Holton (1992) for discussion of their mechanism.

The shallow-water equations in spherical polar geometry have been the ve-
hicle of analyses of tidal motion dating back to Laplace (see Lamb (1932)
and Gill (1982)); and the linearised free-wave problem, which subsumes both
equatorial (section 8.5) and mid-latitude cases, was thoroughly studied by
Longuet-Higgins (1968). The mid-latitude β-plane analysis given in this sec-
tion provides a straightforward illustration of the key result that omission of
the ∂δ/∂t term from the divergence equation leads to the removal, or ‘filter-
ing’ of gravity waves, and we have already seen (section 8.3) that the result
extends to the case of an isothermal, compressible atmosphere.

8.5 Tropical modes

If f = βy – the equatorial β-plane case – the linearised problems of sec-
tion 8.3 and 8.4 can be completed without approximation; Gill (1982) gives a
full account. Equatorially trapped modes, which propagate in the equatorial
plane, are found. As well as gravity waves and Rossby waves, two other types
occur: equatorial Kelvin waves, and mixed Rossby-gravity waves. We discuss
the shallow water case (in which the waves propagate in the zonal direction).
Equatorial Kelvin waves are non-dispersive, eastward propagating, and simi-
lar in many ways to the classical Kelvin waves which are permitted in middle
latitudes in the presence of a vertical boundary. They are hybrid, anisotropic
modes, being in geostrophic balance in the meridional direction (perpendicular
to the equator), but having the character of gravity waves as regards the force
balance in the zonal direction (parallel to the equator). Mixed Rossby-gravity
waves behave like Rossby waves in their westward propagating branch, but like
gravity waves in their eastward-propagating branch. Behaviour in the case of
an isothermal, compressible atmosphere (with the hydrostatic approximation
and a basic state of no motion) is similar, but with the possibility of vertical
propagation.

The consequences of omitting the term ∂δ/∂t in the divergence equation are
not obvious a priori because of the special character of some of the tropical
modes. Results depend on which other terms are omitted from the divergence
equation (Gent and McWilliams 1983). Kelvin modes are absent, but one
branch of mixed Rossby-gravity waves remains, and spurious high frequency
modes occur if the term β∂χ/∂x is retained (cf. the pairing of this term with
∂δ/∂t by the tracer parameter n3 in (8.32)). Such spurious modes are also
found on the sphere and on a mid-latitude β-plane if β∂χ/∂x is retained but
∂δ/∂t omitted (Moura 1976, Allen et al. 1990b).
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9 Approximately geostrophic models

There are many dynamical models that are intermediate in accuracy between
the HPEs (section 5) and the diagnostic geostrophic approximation (section
7) and from which inertio-gravity waves have been filtered. Wide-ranging ac-
counts are given by McWilliams and Gent (1980) and Allen and Newberger
(1993); see also Phillips (1963) and Eliassen (1984). In this section we aim not
to review, but to indicate the major types of model and the guiding principles.
We use the shallow water equations (5.37)–(5.40) as a simple vehicle for dis-
cussion of each of the major types except the balance class (section 9.6), for
which the HPEs in pressure coordinates are more appropriate. For simplicity
we shall ignore both heating and friction.

9.1 Planetary geostrophic equations (QG2)

The planetary geostrophic equations were first discussed by Burger (1958),
and are known as QG2 (following Phillips (1963)). In their shallow-water
guise, they replace the horizontal momentum equations (5.37), (5.38) by the
diagnostic geostrophic approximation, and retain time evolution only in the
continuity equation (5.40); v is replaced by the geostrophic wind vG in the
material derivative, and spherical geometry is retained – as is the latitude
variation of f = 2Ω sinφ:

v = vG ≡ g

f
k× ∇zh (9.1)

Dh

DtG
+ h∇z.vG = 0 (9.2)

where
D

DtG
≡ ∂

∂t
+ vG.∇z =

∂

∂t
+

uG
a cosφ

∂

∂λ
+

vG
a

∂

∂φ
. (9.3)

Gravity waves are absent because the implied divergence equation lacks the
term ∂δ/∂t. The vorticity equation is also necessarily diagnostic, and (in the
terminology of vorticity dynamics) represents a balance between planetary
vorticity advection and vortex stretching/compression:

∇z. (fvG) =
vG
a

df

dφ
+ f∇z.vG = 0. (9.4)

By using the continuity equation (9.2), (9.4) can be written

D

DtG

{
2Ωa sinφ

h

}
= 0. (9.5)

Equation (9.5) is a form of the potential vorticity equation in which the con-
tribution of relative vorticity is completely neglected. This is an extreme ap-
proximation, valid to the extent that the omission in (9.4) of relative vorticity
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advection is justified: V/fL � L/a. Since Ro ≡ V/fL � 1 is the condition
for geostrophic motion, it is required that L ∼ a: the horizontal scale of the
(nearly geostrophic) motion must be comparable with the radius of the Earth.

The energy equation of QG2 is

∂

∂t

(
1
2
gh2
)

= −∇z. (gh2vG). (9.6)

Angular momentum conservation is reflected in the meridional component of
(9.1) in the form

D

DtG
(Ωa2 cos2 φ) = −g

∂h

∂λ
. (9.7)

In the context of the shallow water equations, QG2 is of interest mainly in
theoretical rather than practical terms. It is a compact model that exhibits
analogues of the main conservation properties, and is in this respect a fully
consistent approximation; see also section 9.5.

9.2 Quasi-geostrophic model (QG1)

QG1 originated in attempts by various meteorologists in the 1930s and 1940s
to derive equations describing the time-evolution of extra-tropical weather sys-
tems having a horizontal space scale, L, of about 1000km (the ‘synoptic scale’)
and typified by horizontal flow speeds, V , of order 10 ms−1. The term quasi-
geostrophic was suggested by Sutcliffe (1938). For such systems the Rossby
number is of order 10−1, the β-plane approximation is applicable since L � a,
and the use of Cartesian geometry is justified. A 3D version of this important
model will be discussed in section 10. Here we give an outline derivation of the
shallow water version, and describe how it defines both the geostrophic and
ageostrophic parts of the flow.

Suppose that the fluid exhibits variations h′ about its mean depth h0:

h = h(x, y, t) = h0 + h′(x, y, t). (9.8)

Define the geostrophic flow in terms of a mean Coriolis parameter, f0, as

vg ≡ g

f0
k× ∇zh =

g

f0
k× ∇zh′ = k× ∇z

(
gh′

f0

)
. (9.9)

[In (9.9), and throughout this section, ∇z is the Cartesian operator
(∂/∂x, ∂/∂y).] The use of f0, rather than the variable f , in (9.9) is a key
simplifying feature in the subsequent analysis; note that ∇z.vg = 0, so that
the divergent part of the flow is contained in the ageostrophic flow va ≡ v−vg.
(The ageostrophic flow also has a rotational part, as we shall see.) The choice
(9.9) of vg is a good approximation to vG (see (9.1)), given L � a. From (9.9),
the streamfunction, ψ, of the geostrophic flow is

ψ =
gh′

f0
. (9.10)
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The horizontal components of the momentum equation (the SWE form of
(6.17)) may now be written in vector form as

Dv
Dt

+ fk× va + βyk× vg = 0. (9.11)

Since v ≈ vg to the extent that the Rossby number is small, it is reason-
able to replace Dv/Dt in (9.9) by the geostrophically-approximated (but still
nonlinear) quantity

Dvg
Dtg

≡
(

∂

∂t
+ vg.∇z

)
vg. (9.12)

Note that v has been replaced by vg in both the advecting and the advected
flow. The replacement of the advected flow by vg (and the non-divergence of
vg) ensures the absence of gravity waves.

Given L � a, the Coriolis term in (9.11) depending on the ageostrophic
flow may be approximated by f0k × va, so that the latitude variation of the
Coriolis parameter enters only via the term βy associated with the (much
larger) geostrophic flow. Equation (9.11) then becomes

Dvg
Dtg

+ f0k× va + βyk× vg = 0. (9.13)

An equation for the time-evolution of the geostrophic vorticity ζg ≡ (∂vg/∂x−
∂ug/∂y) = ∇2

zψ may be formed from (9.13). Noting the non-divergence of vg,
we find the simple result

D

Dtg

(∇2
zψ + βy

)
= −f0∇z.va. (9.14)

This is the shallow-water QG1 vorticity equation.
Consider the shallow-water continuity equation (5.40) in the Cartesian form

Dh

Dt
+ h∇z.va = 0. (9.15)

Equation (9.15) is replaced by

Dh′

Dtg
+ h0∇z.va = 0. (9.16)

This step involves the same approximation of the material derivative as that
made in the momentum equation to reach (9.13). Also, the term h∇z.va in
(9.15) has been approximated by h0∇z.va, which requires that fluctuations h′

about the mean depth h0 be small, i.e. |h′|/h0 � 1; see (9.18). Elimination of
∇z.va between (9.14) and (9.16), and use of (9.10), then gives

D

Dtg

{
∇2
zψ + βy − f20

gh0
ψ

}
= 0. (9.17)
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Since D/Dtg (see (9.12)) involves only ∂/∂t, ∇z and vg, (9.17) defines the
time-evolution of the geostrophic streamfunction ψ (given suitable initial and
spatial boundary conditions).

Equation (9.17) is the shallow-water QG1 potential vorticity equation. The
advected quantity is readily seen to be an approximation to h0(ζ +f)/h, valid
in the case of small Rossby number and small height deviation |h′|/h0 � 1.
The criterion for the latter may be deduced by simple scale analysis:

h′ ∼ f0V L

g
⇒ h′

h0
∼ f0V L

gh0
.

Hence we require gh0/f0V L � 1, which is equivalent to

R ≡ gh0
V 2

� f0L

V
= Ro−1, (9.18)

the applicability of which depends on the mean depth h0 as well as quantities
already discussed. Taking V = 10 ms−1 and h0 = 10km gives R = 103, while
h0 = 1km gives R = 102; so for a wide range of choices of h0 (9.18) is obeyed
if Ro = 10−1 or greater. Indeed, (9.16) shows that the dynamics reduces to
that of the barotropic vorticity equation (see section 5.6) if gh0/f

2
0L

2 � 1 (a
result also noted in section 8.4).

The derivation of Equation (9.17) depends on f0 being a constant. If f0 had
been a function of y, a conservation law would not have resulted. If h∇z.va in
(9.15) had not been replaced by h0∇z.va in (9.16), a conservation law would
have resulted, but not in terms of a quantity linear in ψ.

Finding the height deviation h′ and geostrophic flow from the streamfunc-
tion ψ, via (9.9) and (9.10), is just a matter of multiplication and spatial
differentiation. The determination of the ageostrophic flow va is more subtle.
Rather than eliminating ∇z.va between (9.14) and (9.16) we may eliminate
the local time derivatives (noting (9.10)). The result is a diagnostic partial
differential equation for ∇zva:(

∇2
z − f20

gh0

)
∇z.va =

f0
gh0

{
(vg.∇z) ∇2

zψ + βvg
}
. (9.19)

The RHS term is known if the streamfunction is known, so (9.19) determines
the irrotational part of va (given appropriate boundary conditions). Equation
(9.19) may also be obtained from (9.17) by algebraic application of (9.10) and
use of (9.16).

The rotational part of va may be determined from an elliptic PDE obtained
by taking the divergence of (9.13):

f0∇2
zψa = ∇z. [(vg.∇z)vg] + βug − βy∇2

zψ, (9.20)

where ψa is the streamfunction of the ageostrophic flow.
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Thus the ageostrophic flow is completely defined in QG1; it is that flow
which is required to maintain geostrophic balance between the geostrophic
flow and height fields as the time-evolution occurs.

An energy equation is readily derived from (9.17):

∂

∂t

{
1
2

[
(∇2
zψ)2 +

f20
gh0

ψ2

]}
= −∇z.

{
1
2

[
(∇2
zψ)2 +

f20
gh0

ψ2

]
vg + f0ψva

}
.

(9.21)
The axial angular momentum balance is governed by the zonal component of
(9.13), which – upon restoring the terms representing geostrophic balance –
may be written as

Dug
Dtg

− f0va − βyvg − f0vg + g
∂h

∂x
= 0.

Hence
D

Dtg

{
ug −

∫
fdy′

}
− f0va = −g

∂h

∂x
. (9.22)

This form allows for the fact that the zonal (x) average of the meridional
geostrophic flow vanishes, so the contribution of the ageostrophic flow must
be represented.

9.3 Models based on formal considerations of accuracy

The derivation of QG1 given in section 9.2 may be formalised by a truncated
Rossby number expansion of the velocity field v. We sketch the procedure, and
note that it can be taken to higher order to generate models of higher formal
accuracy than QG1. For simplicity we consider the f -plane case (β = 0), in
which (9.11) may be written as

v = vg + va =
g

f0
k× ∇zh′ +

1
f0
k× Dv

Dt
. (9.23)

Making v, h′, ∇z and ∂/∂t dimensionless by extracting factors of V , f0V L/g,
1/L and V/L gives:

v = V v̂; h′ = f0
V L

g
ĥ; ∇z =

1
L

∇̂z;
∂

∂t
=

V

L

∂

∂t̂
. (9.24)

The dimensionless velocity v̂, depth deviation ĥ and operators ∇̂z and ∂
∂t̂

are
each assumed to have magnitude of order unity. Equation (9.23) becomes

v̂ = k× ∇̂zh′ + Rok×
(

∂

∂t̂
+ v̂. ∇̂z

)
v̂, (9.25)

where Ro ≡ V/f0L. Equation (9.25) formally expresses the horizontal flow as
the sum of the geostrophic contribution and an ageostrophic flow that is one
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order of magnitude smaller in Rossby number terms. The continuity equation
(9.15) becomes (

∂

∂t̂
+ v̂. ∇̂z

)
ĥ +

(
B
Ro

+ ĥ

)
∇̂z. v̂ = 0, (9.26)

where
B ≡ gh0

f20L
2

= RRo2 . (9.27)

From (9.25), the zeroth-order approximation to v̂ is k×∇̂zh′, which is simply
the dimensionless geostrophic flow v̂g. If B is of order unity, or greater, the
leading order balance in (9.26) is simply B Ro−1 ∇̂z. v̂ = 0; this is consistent
with v̂ = v̂g, since the geostrophic flow is non-divergent.

To find the next order approximation, put

v̂ = v̂g + Ro v̂1 (9.28)

and isolate the coefficient of Ro in (9.25) and the coefficient of Ro0 in (9.26)
– assuming that B = O(1):

v̂1 = k×
(

∂

∂t̂
+ v̂g. ∇̂z

)
v̂g (9.29)

(
∂

∂t̂
+ v̂g. ∇̂z

)
ĥ + B∇̂z. v̂1 = 0. (9.30)

Equations (9.29) and (9.30) are dimensionless forms of the f -plane versions of
(9.13) and (9.16); elimination of v̂1 gives(

∂

∂t̂
+ v̂g. ∇̂z

){
∇2
zĥ − 1

B
ĥ

}
= 0. (9.31)

Equation (9.31) is a dimensionless, f -plane form of the QG1 potential vorticity
equation (9.17).

A second-order approximation may be obtained by putting

v̂ = v̂g + Ro v̂1 + Ro2 v̂2 (9.32)

and isolating the coefficient of Ro2 in (9.25) and the coefficient of Ro in (9.26).
Higher-order approximations may be obtained. A broadly similar procedure
has been used by Allen (1993) to obtain a hierarchy of increasingly accurate
‘iterated geostrophic models’ of 3D stratified flow; Allen and Newberger (1993)
found that the third member of the hierarchy performed very well in numerical
simulations against the (Cartesian) hydrostatic primitive equations.

Power series expansions are a useful way of systematising the derivation of
approximately geostrophic models which happen to conform to a single trun-
cation of the assumed series, and of giving a critical perspective on those that
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do not. Such expansion methods may be suspected of lending a cosmetic veneer
to what is rather crude and restricted scale analysis. In the present case (which
is typical) it has been assumed that the local time-scale is of order L/V , and
that a single velocity scale (V ) describes spatial and temporal variations of the
flow. The method may lead to lengthy equations, especially at higher orders of
accuracy; these may be amenable to numerical solution but not necessarily to
analysis aimed at developing insight into the physical processes involved. The
method is not guaranteed to deliver equations that reproduce conservation
properties at any chosen truncation (although the order Ro truncation in the
above case gives the QG1 model, which does have good conservation proper-
ties). A more subtle aspect of our chosen example is that the deviation height
field h′ has been given special status (Muraki et al. 1999); it has not been
expanded in powers of Ro. Other fields may equally well be granted special
status: in derivations of some of the PV-balance models noted briefly in sec-
tion 9.6 the potential vorticity field is considered as central to the dynamics,
and not expanded in powers of the Rossby number. Pedlosky (1987), section
3.12, expands all variable fields as powers of Ro; see also Pedlosky (1964).

9.4 Semi-geostrophic model: SG

In QG1 the advecting flow is replaced by the geostrophic flow vg wherever it
occurs. QG1 requires for its validity the replacement of f by f0 (i.e. L � a)
and only small deviations of height h from a mean value (as well as small
Rossby number). In order to remove gravity waves, only the advected flow
need be replaced by vg (or some other non-divergent flow) in the horizontal
momentum equation. The semi-geostrophic model (SG) takes advantage of
this situation by retaining advection by the total flow throughout. The shallow
water equations in SG form are

Dvg
Dt

+ f0k× va = 0 (9.33)

Dh

Dt
+ f∇z.va = 0, (9.34)

with
D

Dt
≡
(

∂

∂t
+ v.∇z

)
and vg =

g

f0
k× ∇zh. (9.35)

The f -plane approximation is made, and Cartesian geometry assumed. Within
this framework, the only approximation made in SG is the neglect of the term
Dva/Dt in the horizontal momentum equation. (This implies retention of some
terms or order Ro2 but neglect of others; see Fjørtoft (1962), p.158, and Craig
(1993a).) There is no restriction on the depth h, and no need to divide it into
mean and deviation parts. The definition (9.35) of geostrophic flow vg is the
same as in QG1.
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Equation (9.33) implies the axial angular momentum principle

D

Dt
{ug − f0y} = −g

∂h

∂x
. (9.36)

An energy equation exists in the form

h
D

Dt

{
v2g + gh

}
= −∇z. (gh2va). (9.37)

The prospects for the existence of a potential vorticity conservation analogue
in SG do not at first look bright, since (9.33) involves (v.∇)vg, and such
mixed vector advection terms are notoriously difficult to handle by the usual
differential operator methods. However, following Allen et al. (1990a), consider
the components of (9.33) as linear algebraic expressions for u and v:

u

(
∂ug
∂x

)
− v

(
f0 − ∂ug

∂y

)
= −∂ug

∂t
− f0vg

u

(
f0 +

∂vg
∂x

)
+ v

(
∂vg
∂y

)
= −∂vg

∂t
+ f0ug.

(9.38)

‘Solving’ (9.38) for u and v gives

u =
1

f0ξSG

[(
f0ug − ∂vg

∂t

)(
f0 − ∂ug

∂y

)
−
(
f0vg +

∂ug
∂t

)
∂vg
∂y

]
(9.39)

v =
1

f0ξSG

[(
f0vg +

∂ug
∂t

)(
f0 +

∂vg
∂x

)
+
(
f0ug − ∂vg

∂t

)
∂ug
∂x

]
, (9.40)

in which

f0ξSG ≡
(
f0 +

∂vg
∂x

)(
f0 − ∂ug

∂y

)
+

∂ug
∂x

∂vg
∂y

(9.41)

Now form ∇z. (ξSGv) from (9.39)–(9.41). After some easy algebra and a few
exhilarating cancellations we find that

∂

∂x
(uξSG) +

∂

∂y
(vξSG) = −∂ξSG

∂t
. (9.42)

Hence
D

Dt
ξSG + ξSG

(
∂u

∂x
+

∂v

∂y

)
= 0. (9.43)

From (9.34) and (9.43) the SG potential vorticity equation follows:

D

Dt

(
ξSG
h

)
= 0. (9.44)

The quantity ξSG is the SG absolute vorticity. Its definition (9.41) may be
rewritten as

ξSG = f0 +
∂vg
∂x

− ∂ug
∂y

+
1
f0

∂(ug, vg)
∂(x, y)

= ξg +
1
f0

∂(ug, vg)
∂(x, y)

. (9.45)
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Thus ξSG is the usual geostrophic absolute vorticity, ξg, augmented by a Ja-
cobian term which is small in comparison if the Rossby number is small.

From (9.33) the SG divergence equation may be derived as

∂v
∂x

.∇zug +
∂v
∂y

.∇zvg − f0

(
∂v

∂x
− ∂u

∂y

)
+ g∇2

zh = 0.

To a leading-order approximation (v→ vg) of its nonlinear terms, this implies

ξ ≡ f0 +
∂v

∂x
− ∂u

∂y
= f0 +

∂vg
∂x

− ∂ug
∂y

− 2
f0

∂(ug, vg)
∂(x, y)

. (9.46)

From (9.45) and (9.46), we see that ξSG is a worse approximation to the
absolute vorticity ξ than might have been hoped; ξg is in fact a better approx-
imation to ξ.

Hoskins (1975) made notable advances in a 3D version of SG by transforming
from spatial to geostrophic coordinates:

X = x +
vg
f0

= x +
g

f20

∂z

∂x
; Y = y − ug

f0
= y +

g

f20

∂z

∂y
; Z = z. (9.47)

Then:
DX

Dt
= u +

1
f0

Dvg
Dt

= ug and
DY

Dt
= v − 1

f0

Dug
Dt

= vg,

and it is readily shown that the Jacobian of the transformation from physical
to geostrophic space is none other than the (3D) SG absolute vorticity (divided
by f0). In our 2D context of the shallow water equations, a similar result follows
for the transformation (x, y) → (X,Y ):

∂(X,Y )
∂(x, y)

=
ξSG
f0

. (9.48)

Further, Hoskins showed that the SG potential vorticity equation can be writ-
ten in terms of derivatives of an augmented potential function with respect to
the geostrophic coordinates in a form nearly isomorphic to the QG1 potential
vorticity equation in its usual space-coordinate form.

The SG model has given important insights into the dynamics of weather
systems (in particular, the formation of fronts) and into the status of QG1. It
has also excited interest in other ways, prompting various questions. We have
space only to juxtapose some of the questions and some of the studies that
have addressed them. What is the mathematical significance of the geostrophic
coordinate transformation? [Blumen 1981, Roulstone and Sewell 1997.] Can a
version of SG having a more satisfactory definition of ξSG be derived? [McIn-
tyre and Roulstone 2002.] Can SG be extended to the case of variable Coriolis
parameter? [Shutts 1980, Magnusdottir and Schubert 1991.]
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9.5 Hamiltonian models

Of the nearly geostrophic models so far presented, QG2 is the only one that
succeeds in retaining the conservation properties of the SWEs whilst allowing
latitude variation of both the Coriolis parameter and the mean depth h0. QG2,
however, is applicable only to motion on planetary scales; it is not appropriate
for motion on the synoptic scale of extra-tropical weather systems. Useful
extensions of the SG model have been proposed, but neither of those cited
at the end of section 9.4 represents the true latitude variation of the Coriolis
parameter whilst retaining SG’s accuracy.

QG1, QG2 and SG have each been proposed or derived as sets of approxi-
mate equations that represent more or less heavily approximated versions of
the SWEs. Conservation properties have then been investigated as a sort of
health check. A requirement of good conservation properties is useful in lim-
iting the vast number of conceivable approximations of the SWEs (or HPEs)
which present themselves, but it is unhelpful if none of the candidate models
passes muster.

Salmon (1983), (1988) proposed a systematic method of deriving consis-
tent approximate models; see also Allen and Holm (1996). As noted in section
4.6, the unapproximated equations are equivalent to a variational statement,
and by Noether’s theorem, the symmetries of the Hamiltonian functional in
that variational statement are associated with the conservation properties of
the system. Making the desired approximations in the Hamiltonian then en-
sures that the implied (approximate) equations have consistent conservation
properties.

Salmon (1983) applied this method to the shallow water equations. The
coarsest level of approximation, involving the complete neglect of the velocities
u, v in the Hamiltonian, delivers the planetary geostrophic equations QG2. The
next level, in which u and v are replaced by their geostrophic values, leads to
forms reminiscent of the SG equations, but with further terms. For the f -plane
case, Salmon’s approximate momentum equation reduces to(

∂

∂t
+ v.∇z

)
vg + f0k× va = −(vg.∇z)va − g

h
∇z
(
h2

f0
ζa

)
, (9.49)

where ζa is the relative vorticity of the ageostrophic flow. The right-hand terms
in (9.49), both of which are absent in SG, are of order Ro smaller than the left-
hand terms. Their presence is consistent with the following potential vorticity
conservation and global energy conservation laws:

D

Dt

{
1
h

(
f0 +

∂vg
∂x

− ∂ug
∂y

)}
= 0 (9.50)

and
d

dt

∫ ∫
(v2g + gh)h dx dy = 0. (9.51)
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Allen et al. (1990a) give details of the derivation of (9.50) and (9.51) from
(9.49).

Salmon’s method can be relied upon to give consistent equations, but in the
present case they are not simple or familiar ones. Salmon (1985) showed that
the SG model (section 9.4) may be obtained from an augmented Hamiltonian
whose extra terms are compatible with the formal accuracy of the model. This
demonstration of Hamiltonian structure enabled SG per se to be generalised
to the case of variable f ; see also Purser (1993), (1999).

The variational method has been successfully applied in the derivation of a
number of approximate models of rotating flows having vertical structure: see,
for example, Shutts (1989), Craig (1993b), Roulstone and Brice (1995), Holm
(1996) and Ripa (1997).

9.6 Balance equations

Lorenz (1960) considered how the vorticity and divergence forms of the HPEs
(see section 5.4) might be approximated so as to preserve a global energy
invariant. There is little point in illustrating this important technique in a
shallow water model because applying it delivers only QG1 and SG (Gent and
McWilliams 1982). The reason for this perhaps surprising result is that the
energy integrand in the shallow water system is essentially a cubic quantity
(hv2); in the stratified flow case considered by Lorenz (1960) the integrand in
pressure coordinates is quadratic (v2/2). Perhaps less surprisingly, the reten-
tion of potential vorticity conservation in approximated forms of the vorticity
equation is far easier to achieve in the shallow water case than in the stratified
flow case (in which the potential vorticity is a scalar product of vectors rather
than the absolute vorticity divided by the depth of the fluid). The SWEs
thus exhibit nearly the opposite properties to the HPEs written in pressure
coordinates.

Lorenz’s method depends on dividing the horizontal flow into its rotational
(solenoidal), non-divergent part vψ and its divergent, irrotational part vχ:

v = vψ + vχ = k× ∇pψ + ∇pχ. (9.52)

This Helmholtz decomposition differs from geostrophic/ageostrophic decom-
positions of v, since the geostrophic flow has a non-zero divergence if the
latitude variation of the Coriolis parameter is taken into account (see section
7.1), and the ageostrophic flow in QG1 has a rotational part (see sections 9.2
and 10.1).

Vorticity and divergence equations are obtained by taking k.∇p× and ∇p.
of the p-coordinate version of the HPE horizontal momentum equation (5.29):

∂v
∂t

+ ∇p(v2/2) + ζk× v + ω
∂v
∂p

= −fk× v − g∇pz. (9.53)
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Here ∇p is the (spherical polar) horizontal gradient operator on pressure sur-
faces of height z = z(λ, φ, p, t); ζ = ∇2

pψ is the relative vorticity and δ = ∇2
pχ

is the divergence (both defined in p-coordinate terms). Multiplication of the
two resulting equations respectively by ψ and χ, and use of the identity

F
∂

∂t
∇2
pF = ∇p.

{
F∇p

∂F

∂t

}
− ∂

∂t

{
(∇pF )2

2

}
,

(with F = ψ or χ) then gives equations for the time-evolution of the rotational
and divergent flow specific kinetic energies v2ψ/2 and v2χ/2. The thermody-
namic and continuity equations are then applied to produce a total energy
equation. Associations between groups of terms in the vorticity and divergence
equations which retain total energy conservation are sought. One consistent
approximation of the vorticity and divergence equations which is recognised
in this way (see Haltiner and Williams (1981)) is the pair

∂ζ

∂t
= −vψ.∇p(ζ +f)−∇p. (fvχ)−vχ.∇pζ−ζδ−ω

∂ζ

∂p
−∇pω.∇p

∂ψ

∂p
, (9.54)

∇p.
[
(vψ.∇p)vψ

]− ∇p. (f∇pψ) + g∇2
pz = 0. (9.55)

Equation (9.54) is a nearly complete form of the vorticity equation. Equation
(9.55) is a form of the divergence equation known as the Charney balance
equation. It neglects the term ∂δ/∂t (so gravity waves are absent), several
elements of ∇p.

{
(v.∇p)v + ω∂v/∂p

}
, and ∇p. (fk× ∇pχ).

A further energetically-consistent pair is obtained if the last four terms on
the right side of (9.54) and the first on the left side of (9.55) are omitted:

∂ζ

∂t
= −vψ.∇p(ζ + f) − ∇p. (fvχ), (9.56)

−∇p. (f∇pψ) + g∇2
pz = 0. (9.57)

Equation (9.57) is known as the linear balance equation. The resemblance of
(9.56) and (9.57) to QG1, if the f -plane or β-plane approximations are ap-
plied, is noticeable. However, (9.56) and (9.57) are an energetically consistent
pair (as are (9.54) and (9.55)) even when the latitude variation of f is fully
represented (though potential vorticity conservation is then lost). Energy con-
sistency requires in each case the use of the complete thermodynamic equation,
and the definition of kinetic energy includes only the contribution of the ro-
tational flow. The latter aspect shows that the filtering of gravity waves by
omission of the term ∂δ/∂t from the divergence equation is intimately related
to the absence of divergent flow kinetic energy from the prognostic energy
equation. The same link occurs between the kinetic energy of vertical motion
and the filtering of vertically-propagating sound waves via the hydrostatic
approximation (see equation (5.24) and section 8.2).



The equations of meteorological dynamics and various approximations 69

A variant of the vorticity/divergence equation approach that is more tract-
able in many respects is the use of separate momentum equations for the
rotational flow and for the divergent flow. The divergent flow equation is ren-
dered in diagnostic form in order to eliminate gravity waves. Such a momentum
form of the balance equations which conserves both energy and potential vor-
ticity has been proposed by Allen (1991). This model implies spurious high
frequency modes similar to those noted in section 8.5; they may be controlled
by choosing initial conditions and time integration schemes carefully.

Other workers, especially in recent years, have used what may be called PV-
balance models. These use the PV equation, perhaps in complete (HPE) form,
as a forecasting equation, in conjunction with the Charney balance equation
(9.45), the linear balance equation (9.46) or some variant. Energy conservation
is generally not reproduced, but another quadratic quantity – the potential
enstrophy (PV2) – is conserved in the global average; see Gent and McWilliams
(1984). Models of this type have been constructed and used by Lynch (1989),
Raymond (1992), Warn et al. (1995) and Vallis (1996); an earlier example is
that of Charney (1962). The same rationale underlies the static PV inversions
(see section 10.4) carried out by Davis and Emanuel (1991), Demirtas and
Thorpe (1999) and others.

10 The 3D quasi-geostrophic model QG1

The shallow-water version of QG1 was discussed in section 9.2. Here we fo-
cus on a version applicable to the synoptic-scale, quasi-geostrophic evolution
of a 3-dimensional, perfect gas atmosphere. We begin with an outline deriva-
tion of the model in pressure coordinates, and then note a height-coordinate
version that illuminates various issues, including the status of the so-called
omega equation. Conditions for the applicability of QG1 are then summarised.
In conclusion, we note the frequent occurrence in QG1 of variants of Poisson’s
differential equation, and discuss the application of well-known properties of
these equations, with particular regard to various forms of ‘PV inversion’.
Cartesian geometry will be assumed throughout this section, and, for simplic-
ity, friction and diabatic forcing will be neglected.

10.1 Pressure-coordinate development of QG1

Central to the development of QG1 in pressure coordinates is a hydrostatic ref-
erence state (of no motion) in which all thermodynamic variables, and height
z, are functions of pressure only. The fields themselves are expressed as devi-
ations from the reference state values. For example:

T = Ts(p) + T ′(x, y, p, t) (10.1)
θ = θs(p) + θ′(x, y, p, t) (10.2)
z = zs(p) + z′(x, y, p, t). (10.3)
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From (6.3), hydrostatic balance of the reference state is expressed by

g
dzs
dp

+
RTs
p

= 0. (10.4)

From (6.3), (10.1) and (10.3), the deviations z′ and T ′ obey a similar relation:

g
∂z′

∂p
+

RT ′

p
= 0. (10.5)

The geostrophic wind, vg, is defined as

vg ≡ g

f0
k× ∇pz′ = k× ∇pψ; ψ ≡ gz′

f0
, ∇p ≡

(
∂

∂x

∣∣∣∣
p

,
∂

∂y

∣∣∣∣
p

)
. (10.6)

As in the SWE case (section 9.2), |vg| ≈ |vG| if L � a (recall vG is defined
by (7.2)). From (10.5) and (3.17), the streamfunction ψ = ψ(x, y, p, t) defined
in (10.6) obeys

−∂ψ

∂p
=

RT ′

f0p
=
(

RTs
f0pθs

)
θ′. (10.7)

Differentiating ψ with respect to p thus gives the temperature and potential
temperature deviations multiplied by functions of pressure; horizontal differ-
entiation gives vg via (10.6). In terms of the ageostrophic wind va ≡ v − vg,
the continuity equation becomes

∇p.va +
∂ω

∂p
= 0. (10.8)

Apart from the use of Cartesian geometry, no approximation of the HPE forms
of section 6.1 has been made so far. Approximations are made in the HPE hor-
izontal momentum and thermodynamic equations. Extraction of (10.6) from
(6.17) (in which f = f0 + βy) gives

Dv
Dt

+ fk× va + βyk× vg = 0. (10.9)

As in the shallow water case, consistent with Ro � 1 and L � a, we replace the
horizontal flow v by the geostrophic value vg in the material derivative term in
(10.9), and fk×va by f0k×va. In addition, we neglect the vertical advection
term ω∂v/∂p by comparison with (v.∇)v in Dv/Dt. This is justified if ω̂/p̂ �
V/L (where ω̂ is a typical magnitude of ω and p̂ is a scale of pressure variation
in the vertical), which requires Ri Ro � 1 – see section 10.3. Hence

Dv
Dt

=
(

∂

∂t
+ v.∇p + ω

∂

∂p

)
v→

(
∂

∂t
+ vg.∇p

)
vg ≡ Dvg

Dtg
, (10.10)

and (10.9) is replaced by

Dvg
Dtg

+ f0k× va + βyk× vg = 0. (10.11)
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Equation (10.11) is nonlinear through the geostrophic self-advection term
(vg.∇p)vg; see (10.10). By taking k.∇p× (10.11) and using (10.6) and (10.8),
one obtains, without further approximation:

D

Dtg

(∇2
pψ + βy

)
= f0

∂ω

∂p
, (10.12)

which is the p-coordinate, QG1 vorticity equation.
The p-coordinate form of the thermodynamic equation (5.20) may be writ-

ten (in Cartesian geometry and with Q = 0) as(
∂

∂t
+ v.∇p

)
θ′ + ω

∂

∂p
(θs + θ′) = 0. (10.13)

Approximations are now made in (10.13) that parallel those made in (10.9),
and are justified under the same conditions: ω∂θ′/∂p is neglected compared
with v.∇θ′, and v is replaced by vg. Upon use of (10.7), the QG1 thermody-
namic equation is obtained as

D

Dtg

{
f20
S

∂ψ

∂p

}
+ f0ω = 0, (10.14)

in which
S = S(p) ≡ −RTs

pθs

dθs
dp

. (10.15)

Elimination of ω between (10.12) and (10.14) gives the QG1 potential vorticity
equation:

D

Dtg
{QGPV } = 0 (10.16)

QGPV ≡ ∇2
pψ + βy + f20

∂

∂p

(
1
S

∂ψ

∂p

)
; (10.17)

QGPV is the (p-coordinate) quasi-geostrophic potential vorticity.
Equation (10.16) (with (10.17)) is an approximation to the conservation of

Ertel’s potential vorticity (Bretherton 1966, Green 1970, Kuo 1972). The anal-
ogy is between the conservation laws and not the conserved quantities; Ertel’s
PV is conserved under D/Dt, but QGPV under D/Dtg, although vertical mo-
tion is allowed for in QG1. To indicate this, QGPV is sometimes called the
quasi-geostrophic pseudo potential vorticity (Charney 1971).

Given appropriate initial and spatial boundary conditions, Equation (10.16)
determines the time evolution of the streamfunction, ψ; it is the central prog-
nostic equation of QG1, the ‘signal accomplishment’ of quasi-geostrophic the-
ory (Dutton 1974).

Elimination of the local time derivatives between (10.14) and (10.11) or
(10.12), leads to a diagnostic equation for ω:

S

f0
∇2
pω + f0

∂2ω

∂p2
= G. (10.18)
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The source function G in (10.18), which involves ψ and its spatial derivatives,
may be expressed in many different forms; see Hoskins et al. (1985), Sanders
and Hoskins (1990), Xu (1992), Carroll (1995) and Martin (1999). One of the
most useful is the Q-vector form of Hoskins et al. (1978):

G = −2∇.Q+
f0
S

β
∂vg
∂p

, (10.19)

with

Q ≡ f0
S

(
∂vg
∂p

.∇p
)

∇pψ.

At any time t, we may determine ω from (10.18) and appropriate boundary
conditions. Knowledge of ω enables the divergent part of va to be found from
(10.8) [and appropriate boundary conditions]. The rotational part of va may
be found from the result of taking the divergence of (10.11):

f0∇2
pψa = ∇p. [(vg.∇)vg] + βug − βy∇2

pψ. (10.20)

Here ψa = ψa(x, y, p, t) is the steamfunction of the ageostrophic flow (cf.
(9.20)).

A knowledge of the geostrophic streamfunction ψ = ψ(x, y, p, t) at some
time t thus enables all other variables of the model to be determined at that
time (given appropriate boundary conditions). The relevant equations are:
(10.6) [for vg]; (10.7) [for T ′ and θ′]; (10.18) [for ω]; (10.8) and (10.20) [for the
divergent and rotational parts of va].

An energy equation may be formed by multiplying (10.14) by ∂ψ/∂p, adding
the result to the dot product of ∇pψ and (10.11), and using (10.8):

D

Dtg

{
1
2

(
v2g +

f20
S

(
∂ψ

∂p

)2)}
+ f0

{
∇p. (vaψ) +

∂

∂p
(ωψ)

}
= 0. (10.21)

The boundary condition ω = 0 on p = p0 is often applied in this model –
and, from (10.14), determines a boundary condition on ∂/∂t(∂ψ/∂p). A more
accurate choice is ω = −(f0p0/RT0)∂ψ/∂t on p = p0, which introduces various
interesting features, both to the time evolution and to the energetics; see White
(1978b) and Rõõm (1996).

10.2 QG1 in height coordinates

It is revealing to compare the analysis and results given in section 10.1 with
the development of QG1 in ordinary height coordinates. In this case, all ther-
modynamic variables (including pressure) are represented as deviations from
a hydrostatic reference state that is a function of height z only:

q = q(x, y, z, t) = q0(z) + q′(x, y, z, t), (10.22)
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where q = p, ρ, θ or T and

dp0
dz

= −ρ0g; p0 = ρ0RT0; θ0 = T0

(
pref
po

)R/cp
. (10.23)

Approximations are made in the hydrostatic and continuity equations as well
as in the horizontal momentum and thermodynamic equations. Pedlosky (1964)
gives a power series derivation assuming Ro � 1, B ≡ N2H2/f2L2 ∼ 1,
N2H/g � 1, where

N2 ≡ g

θ0

dθ0
dz

, (10.24)

and L and H are, as usual, horizontal and vertical length scales of the motion.
The third of Pedlosky’s conditions is readily relaxed to N2H/g ∼ 1 in his
derivation; the result is an extended QG1 z-coordinate model which includes
terms that are negligible if N2H/g � 1. It has been referred to variously as
the ‘modified’, ‘non-Doppler’ or ‘deep’ QG1 model (Blumen 1978, White 1982,
Bannon 1989) and is very similar to the formulation originally proposed by
Charney (1948). The geostrophic flow vg is defined as

vg ≡ 1
ρ0f0

k× ∇zp′ = k× ∇zψ; ψ ≡ p′

ρ0f0
, ∇z ≡

(
∂

∂x

∣∣∣∣
z

,
∂

∂y

∣∣∣∣
z

)
. (10.25)

The horizontal momentum, continuity and thermodynamic equations of the
model, as obtained by White (1977), may be written in the forms

Dvg
Dtg

+ f0k× v̂a + βyk× vg = 0 (10.26)

ρ0∇z. v̂a +
∂

∂z
(ρ0ŵ) = 0 (10.27)

D

Dtg

(
∂ψ

∂z

)
+

N2

f0
ŵ = 0, (10.28)

in which
D

Dtg
≡ ∂

∂t
+ vg.∇z (10.29)

and

v̂a ≡ va +
ρ′

ρ0
vg; ŵ ≡ w − f0

g

∂ψ

∂t
; (10.30)

thus v̂a is an extended ageostrophic flow and ŵ an extended vertical velocity.
Given appropriate boundary conditions, (10.26)–(10.30) imply a global en-

ergy equation having a quadratic integrand (Blumen 1978) and Hamiltonian
structure may be demonstrated (Holm and Zeitlin 1998). Equations (10.26)–
(10.30) imply a prognostic equation for (height-coordinate) QGPV and a di-
agnostic equation for the extended vertical velocity ŵ:

D

Dtg
{QGPV } = 0 (10.31)
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QGPV ≡ ∇2
zψ + βy +

f20
ρ0

∂

∂z

(
ρ0
N2

∂ψ

∂z

)
(10.32)

N2

f0
∇2
zŵ + f0

∂

∂z

{
1
ρ0

∂

∂z
(ρ0ŵ)

}
= −2∇z.

[(
∂vg
∂z

.∇z
)
k× vg

]
+ β

∂vg
∂z

. (10.33)

The QGPV equation (10.31) [with (10.32)] is the same in the cases N2H/g � 1
(Pedlosky 1964) and N2H/g ∼ 1 (White 1977). Equation (10.33) is also the
same in both cases, but when N 2H/g � 1 the local time derivative term in
the definition (10.30) of ŵ becomes negligible, so that ŵ reduces to w; and v̂a
also reduces to va when N2H/g � 1.

Various aspects of this ‘non-Doppler’ QG1 model are of interest.

(i) From (10.28) and (10.30), the condition on ψ at a rigid horizontal boundary
(w = 0) is

D

Dtg

(
∂ψ

∂z

)
− N2

g

∂ψ

∂t
= 0. (10.34)

The term in ∂ψ/∂t (which is negligible if N2H/g � 1) allows for the change
of apparent vertical – see section 3.6 – that accompanies a steady zonal frame
translation (Betts and McIlveen 1969, White 1982). Its presence means that
the effect of adding a constant U0 to the zonal flow is not simply to shift the
evolution by U0; hence the epithet non-Doppler (Lindzen 1968). The same
effect is seen in the pressure-coordinate QG1 model if the boundary condition
ω = −(f0p0/RT0)∂ψ/∂t is applied at p = p0 (see section 10.1).

(ii) In terms of w and v̂a, rather than ŵ and v̂a, the continuity equation (10.27)
becomes

∂ρ′

∂t
+ (vg.∇z) ρ′ + ρ0∇z.va +

∂

∂z
(ρ0w) = 0. (10.35)

Equation (10.35), which is equivalent to the continuity equation used by Char-
ney (1948), is not of anelastic form (see sections 8 and 11). When N2H/g � 1,
the terms in ρ′ are negligible, and (10.35) reduces to the anelastic form of Ped-
losky’s (1964) model. The two models give widely different external Rossby
wave phase speeds at planetary scales (White 1978b); those predicted by the
non-Doppler model are in better accord with observation.

(iii) Equation (10.33) is diagnostic for the extended vertical velocity ŵ, and for
the usual vertical velocity w only in the case N2H/g � 1, when ŵ reduces to
w. One might have expected that development of QG1 in height coordinates
would lead to a diagnostic equation for w that was in some way a constrained
version of Richardson’s equation (see section 5.5), but this is not the case.
Further, from (10.23), (10.25) and (10.30) we have:

ŵ ≡ w − f0
g

∂ψ

∂t
= w − 1

ρ0g

∂p′

∂t
= − 1

ρ0g

(
∂p′

∂t
+ w

∂po
∂z

)
≈ − ω

ρ0g
, (10.36)
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since vg.∇zp′ = 0. Hence −ρ0gŵ is an approximation to the pressure-coord-
inate ‘vertical velocity’ ω ≡ Dp/Dt. Clearly, (10.33) is an omega equation,
although it has emerged from a height-coordinate analysis. This result suggests
(as one would hope, though perhaps not expect) that the development of QG1
is essentially independent of the vertical coordinate used. [See Berrisford et al.
(1993) for a development of QG1 in θ-coordinates.]

(iv) From (ii), (iii) and Equation (10.32), we see that compressibility may
be taken into account to varying degrees in QG1 models. By using the p-
coordinate form (section 10.1) we achieve the most complete treatment as
regards the interior equations, but at the expense (in practice) of an ap-
proximate treatment of the boundary conditions at quasi-horizontal surfaces.
Within a z-coordinate framework, formally the same interior accuracy can be
achieved by using the non-Doppler model; and boundary conditions are more
clearly defined. Both models represent the effect of dynamic compressibil-
ity in the continuity equation: in the p-coordinate development the full HPE
form is used, whilst in the non-Doppler model the term Dρ′/Dt is represented
by ∂ρ′/∂t + (vg.∇z)ρ′ (see (10.35)). In addition to dynamic compressibility,
there is also a static compressibility effect (Green 1960): the variation with
height of the reference state density ρ0(z). If this is neglected in (10.32), and
the buoyancy frequency N is assumed independent of height also, then the
pseudo-potential vorticity reduces to

QGPV = ∇2
zψ + βy +

f20
N2

∂2ψ

∂z2
. (10.37)

In this Boussinesq limit, QGPV −βy is simply the 3-dimensional Laplacian of
the stream-function, ψ, if z is scaled by N/f0. A similar simplification occurs
on the left side of (10.33).

10.3 Conditions for validity and application of QG1

A summary of the assumptions made in deriving QG1 may be timely. We
consider the z-coordinate case examined in section 10.2. As before, L and H
are horizontal and vertical length scales over which |v| and |w| change by the
characteristic values V and W respectively.

(a) The central condition is that the Rossby number be small: Ro ≡ V/fL �
1.

(b) The Lagrangian time-scale is assumed to be of order L/V , so that
|Dv/Dt| ∼ V 2/L. Since |(v.∇)v| ∼ V 2/L, the local time scale is as-
sumed to be of order, or greater than, L/V .

(c) L/a ≤ Ro ensures that vg is a good approximation to vG.
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(d) The neglect of vertical advection of momentum and deviation potential
temperature in comparison with the horizontal parts of the advection
requires W/H � V/L. By noting that fractional variations of potential
temperature and pressure in the horizontal are of the same order, one
obtains from scale analysis of the thermodynamic equation (and previous
assumptions) that W/H ∼ (V/L)(Ri Ro)−1, where Ri ≡ N2H2/V 2 is a
Richardson number. Hence it is required that Ri Ro � 1; it is sufficient
that Ri Ro ∼ Ro−1, i.e. that the Burger number B ≡ Ri Ro2 ∼ 1. For
synoptic-scale motion in mid-latitudes we have H ∼ 104 m (the depth
of the troposphere), L ∼ 106 m (the synoptic horizontal scale), N ∼
10−2 s−1, f ∼ 10−4 s−1; thus B ∼ 1.

(e) Fractional variations in pressure in the horizontal are of order fV L/gH =
(V 2/gH) Ro−1, and fractional variations of density in the horizontal
will be of the same order. Hence we require that the Froude number
F ≡ V 2/gH should obey F � Ro, in order that the neglect of horizon-
tal variations of ρ in the definition of vg is to be reasonable; the values
quoted earlier give F∼ 10−3, FRo−1 ∼ 10−2.

(f) Notice that Ri ≡ N2H2/V 2 = (N2H/g)F−1. The importance of the
quantity N2H/g becomes clear from a scale analysis of the continuity
equation using results already obtained: ∂w/∂z ∼ (V/L)(Ri Ro)−1 and
(1/ρ)Dρ′/Dth ∼ (V/L)F Ro−1. Hence dynamic compressibility is impor-
tant if N2H/g ∼ 1. The values quoted at (d) give N2H/g ∼ 10−1, but
motion having a height scale substantially greater than the depth of the
troposphere will give a substantially larger value. Also, N2H0/g = 2/7
for an isothermal, diatomic, perfect gas atmosphere.

Assumptions (a)–(d) obviously appear also in the p-coordinate case. As-
sumptions (e)–(f) are not required for the interior equations in the p-coordinate
case, but they are required for the validity of the usual boundary conditions.
See White (1977) for further discussion of (a)–(f).

Derivation of the conservation properties of QG1 depends on f0 being a
constant, and on N being a function of height only. It is tempting to apply
the model in contexts for which the ranges of variation of f and N are not
small – to treat f0 and N as functions of space and time, for example within
the definition of QGPV (used, perhaps, as the prognostic variable in a numer-
ical model). Such variations, particularly of f , are sometimes allowed on the
understanding that they have small fractional variations over the horizontal
space scale of the motion; see, for example, Kuo (1959), Charney and Stern
(1962) and Pedlosky (1987).

The conservation properties of QG1 are retained if f0 is held constant but
spherical geometry is assumed and βy is replaced (in the definition of QGPV)
by the true planetary vorticity 2Ω sinφ. Such a formulation has been used by
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many authors: see Baer (1970), Simons (1972), Baines and Frederiksen (1978),
Shutts (1983b), Wu and White (1986) and Marshall and Molteni (1993). This
spherical polar version of QG1 is analytically and numerically convenient but
involves coarse approximation of f except in the planetary vorticity term.

If N is allowed to vary horizontally in QG1 in height coordinates (or S
in a pressure coordinate version – see section 10.1), then the global poten-
tial temperature budget is disrupted (Haltiner and Williams 1981). Advection
by the horizontally divergent flow should be retained in this case, with the
consequence that the model ceases to be of QG1 type.

The desire to allow horizontal variations of f and N , and time variations
of the latter, has been a stimulus to development of the more general nearly-
geostrophic models discussed in section 9 (and their 3-dimensional relatives).
Another stimulus has been a desire to remove gravity waves by less invasive
surgery: to make minimal approximations in the momentum equation, and –
ideally – to leave the other equations intact.

10.4 Equations of Poisson type in QG1

Although it retains the nonlinearity of advection by the geostrophic flow,
QG1 yields a number of linear, elliptic partial differential equations. Two-
dimensional Poisson equations arise in the determination of the ageostrophic
flow; see, for example, (10.20). The omega equation ((10.18) in p-coordinates,
(10.33) in z-coordinates) is a 3-dimensional elliptic PDE, the source func-
tion being a function of ψ and its spatial derivatives. If QGPV − βy is re-
garded as known, then, in (10.17) and (10.32), it is the source function in
another 3D Poisson-type equation, in this case for ψ. The QGPV equation
itself ((10.16), (10.31)) can be written as yet another Poisson-type equation
– for the streamfunction tendency ∂ψ/∂t (see, for example, Nielsen-Gammon
and Lefevre 1996). Considering the z-coordinate case, we can write (10.31) as[

∇2
z +

f20
ρ0

∂

∂z

(
ρ0
N2

∂

∂z

)]
∂ψ

∂t
= −vg.∇z

[
∇2
zψ + βy +

f20
ρ0

∂

∂z

(
ρ0
N2

∂ψ

∂z

)]
,

(10.38)
for which the boundary condition at rigid horizontal surfaces is, from (10.34)
and (10.29), the mixed Dirichlet–Neumann form[

∂

∂z
− N2

g

]
∂ψ

∂t
= −(vg.∇z)

∂ψ

∂z
. (10.39)

From classical treatments of Newtonian gravitation, electrostatics, magneto-
statics, steady-state heat conduction and elastic membranes – and, indeed,
fluid dynamics – equations of Poisson type are amongst the most extensively
analysed and best understood in mathematical physics [see Eriksson et al.
(1996), chapter 15, and Batchelor (1967), section 2.4]. All the insights gained
can be used to rationalise the behaviour of the linear, elliptic QG1 problems.
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For example, the total solution for ω or ∂ψ/∂t can be additively attributed to
different regions or elements of the forcing or boundary conditions. This ap-
proach has been applied by Hoskins et al. (1985) and Clough et al. (1992) to the
omega equation, and to the stream-function tendency equation by Hakim et
al. (1996) and Nielsen-Gammon and Lefevre (1996); see also Räisänen (1997).
Such methods offer a rational basis for identifying cause and effect links be-
tween fields of ω or ∂ψ/∂t (the effects) and the relevant source terms (the
causes).

The problem in which (10.38) is inverted for ∂ψ/∂t is conveniently referred
to as prognostic PV inversion, and that in which QGPV −βy is inverted for ψ
as static PV inversion (Hakim et al. 1996). Static PV inversion is of particular
interest. Since QGPV is conserved in the sense that D/Dtg(QGPV ) = 0 [in
the absence of heat sources and friction, the effects of which can be taken into
account if desired] QGPV may be regarded – to use the language of gravitation
or electrostatics – as a ‘mass-like’ or ‘charge-like’ quantity. To the extent that
inverting QGPV − βy for the streamfunction ψ may be achieved, and all
other fields may be calculated from ψ, the analogy of QGPV with mass or
charge becomes even closer. Generalizations of this picture to EPV (with the
hydrostatic approximation) subject to a balance condition such as the Charney
balance equation (see section 9.6) offer a still more compelling view. A gap
in the vision is that there is no unique specification of boundary conditions
that can be justified by physical arguments; the boundary conditions in static
PV inversion are ultimately a matter of choice (Bishop and Thorpe 1994).
[In the current QG1 case, note that (10.39) gives a well-defined boundary
condition on ∂ψ/∂t, but no condition on ψ, at rigid horizontal boundaries.]
Hakim et al. (1996) have noted that some choices of boundary condition violate
regularity requirements; this observation is helpful in providing a constraint
on the choice of boundary conditions, but it is a non-holonomic constraint in
that it does not define a particular choice. Nevertheless, given awareness of the
flexibility in choice of boundary conditions on horizontal surfaces, static PV
inversion, as well as the clearly defined prognostic PV inversion, is useful in the
development of well-founded conceptual models of weather systems and their
behaviour. For a recent application of this type, involving an approximation
to EPV, see Griffiths et al. (2000).

11 Acoustically-filtered models

The HPEs (section 5.4) are not the only 3D meteorological model that lacks
vertically-propagating acoustic waves but supports gravity waves. Some other
acoustically-filtered (or ‘soundproofed’) models are briefly addressed in this
section. Anelastic models are discussed in section 11.1, in section 11.2 we de-
scribe a model which might be seen as an anelastic variant but uses pressure
as vertical coordinate, and section 11.3 discusses application of its technique
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to represent the non-hydrostatic effect of the vertical component of the Cori-
olis force rather than the relative acceleration Dw/Dt. An important non-
hydrostatic model which is not acoustically-filtered, but retains the shallow
atmosphere approximation in spherical geometry, is considered in section 11.4.

11.1 Anelastic models

The linear mode analysis presented in section 8.2 suggests that gravity waves
are more accurately treated when the continuity equation is written in in-
compressible form than when the hydrostatic approximation is applied. Using
an incompressible form of the continuity equation to remove acoustic waves
is therefore an attractive proposition – the more so because Lamb waves are
removed as well as vertically-propagating acoustic waves. A typical anelastic
model uses the continuity equation in the form

∂u

∂x
+

∂v

∂y
+

1
ρ0

∂

∂z
(ρ0w) = 0, (11.1)

in which ρ0 = ρ0(z) is a fixed profile of mean density; see Ogura and Phillips
(1962). The analysis given in section 8.2 also suggests (see (8.21)) that use
of (11.1) should be accompanied by neglect of a certain term in the vertical
component of the momentum equation, and this is usually done. Appropriate
Boussinesq forms of the horizontal components and a form of the thermody-
namic equation complete the model. Application of (11.1) to the three compo-
nents of the momentum equation gives a diagnostic 3D elliptic equation for the
pressure field. The formulation is then similar in many respects to the Navier–
Stokes equations for incompressible flow (Williams 1969), and indeed becomes
equivalent if the height variation ρ0(z) is neglected [as is appropriate if the
vertical scale of the motion is much less than the scale height H0 = RT0/g –
see, for example, Mason and Brown (1999)].

Nonlinear conservation properties are good if ρ0(z) corresponds to certain
simple thermodynamic states, but more general choices require specific inves-
tigation. Bannon (1995) gives a thorough discussion of this and related issues
regarding a number of models of anelastic type.

The meteorological context of the anelastic equations is commonly that of
cumulonimbus-scale convection; then the Coriolis terms are usually neglected
and Cartesian geometry is used. If the hydrostatic approximation is applied,
and Coriolis terms are included, the anelastic model becomes in the geostrophic
limit the height-coordinate QG1 model that is valid when N2H/g � 1; see
section 10.2.



80 White

11.2 Non-hydrostatic convection models using pressure coor-
dinates

Miller (1974) and Miller and Pearce (1974) first proposed and used a pressure
coordinate model to describe non-hydrostatic motion of cumulonimbus scale.
Their model incorporates a reference state in hydrostatic balance and deals
with non-hydrostatic departures from this state.

The horizontal momentum equation is written

Dv
Dt

+ g∇pz′ = Fh′ (11.2)

where z′ is the deviation of the height z of a pressure surface from the reference
state zs(p) which is associated hydrostatically with a temperature profile Ts(p):

z(x, y, p, t) = zs(p) + z′(x, y, p, t) (11.3)

g
dzs
dp

+
RTs
p

= 0. (11.4)

The continuity and thermodynamic equations are applied in the forms

∂u

∂x
+

∂v

∂y
+

∂ω

∂p
= 0 (11.5)

DT

Dt
− ωRT

pcp
=

Q

cp
. (11.6)

Very small terms are neglected in writing (11.2) and (11.5) according to the
criterion g � Dw/Dt. Non-hydrostatic effects are retained in the vertical
component of the momentum equation by applying the approximation

w ≈ − ω

gρs(p)
= −ωRTs

gp
(11.7)

in the vertical acceleration term:

R

g

D

Dt

{
ωTs
p

}
+ g

T ′

Ts
+

g2p

RTs

∂z′

∂p
= 0; (11.8)

see the comment after (11.12), below. In (11.8), T ′ = T − Ts(p). The material
derivative is

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
, (11.9)

with ω ≡ Dp/Dt, and differentiations with respect to t, x and y taken at
constant p.

Miller (1974) justified the model by considering numerical magnitudes of
the (small) terms omitted, and Miller and White (1984) obtained the same
equations via power series expansion. The approximation (11.7), as applied
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in (11.8), has the effect of eliminating vertically-propagating acoustic waves,
and Lamb waves may be eliminated by applying the lower boundary condition
ω = 0 at p = p0. Integration proceeds by time-stepping in conjunction with
solution of a 3D Poisson-like equation for the height deviation z′; it is obtained
by taking ∇p.(11.2), adding (gp/RTs)∂/∂p(11.8), and applying (11.5). The
model gives analogues of energy and potential vorticity conservation laws, and
is virtually isomorphic to an anelastic model in height coordinates. It has
been used in a range of numerical simulations of cumulonimbus and squall-
line motion; see, for example, Miller (1978) and Brugge and Moncrieff (1985).
Sigma-coordinate forms (which imply Lamb waves) have been used by Xue
and Thorpe (1991) and Miranda and Valente (1997) to model flow over and
around orography.

White (1989b) noted the dependence of the Miller–Pearce model on the ref-
erence state profiles zs(p), Ts(p), and pointed out that the (Cartesian) vertical
component of the momentum equation can be written, without approximation,
as

Dw

Dt
− gp

RT

(
1 +

1
g

Dw

Dt

)(
g
∂z′

∂p
+

RT ′

p

)
= 0. (11.10)

Use of the uncritical approximation g � Dw/Dt, together with

w ≈ − ω

ρg
= −ωRT

gp
, (11.11)

then replaces (11.8) by

R

g

D

Dt

{
ωT

p

}
+ g

T ′

T
+

g2p

RT

∂z′

∂p
= 0, (11.12)

which does not involve the reference state. (Setting T = Ts(p) in (11.12) gives
(11.8).)

Equations (11.2), (11.5) and (11.6), (11.12) constitute a modified Miller–
Pearce model that retains analogues of energy and potential vorticity con-
servation, and implies a diagnostic, Poisson-like equation for z′; Salmon and
Smith (1994) demonstrate its Hamiltonian form. Rõõm (1998) and Rõõm and
Mannik (1999) describe related formulations and compare their linearised be-
haviour.

Economical time integration of the fully non-hydrostatic equations, with
acoustic waves present, may be achieved by using a semi-implicit scheme (Tapp
and White 1976). Such a formulation was the basis of a regional, mesoscale
model used operationally by the UK Met. Office during the 1980s. The use of
semi-implicit methods requires the solution of a 3D Helmholtz-type equation
at each timestep. This illustrates a common situation: a diagnostic elliptic
PDE has to be solved at each timestep whether special numerical methods
are used to handle high frequency modes or whether these modes are filtered
by approximating the governing equations. Lie (1999) gives a survey of non-
hydrostatic models in the context of mesoscale weather forecasting.
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11.3 Acoustically-filtered global models having a full repre-
sentation of the Coriolis force

Miller and Pearce’s method can be used to represent other non-hydrostatic
terms in the vertical component of the momentum balance. White and Brom-
ley (1995) noted that the term −2Ωw cosφ in the zonal component of the
momentum equation (4.4) is not comfortably negligible in tropical, synoptic-
scale flow systems in which diabatic heating is important. To include it requires
the inclusion of other terms and effects, if conservation principles are to be
respected: as discussed in section 5.4, the corresponding term in the vertical
component (4.6) must be kept, the shallow-atmosphere approximation must
be relaxed, and various metric terms retained. [The 2Ω cosφ terms are negli-
gible in adiabatic motion if 2Ω � N ; see Gill (1982), p.449. This condition is
obeyed given 2Ω ∼ 10−4 s−1 and N ∼ 10−2 s−1, but it is clearly not satisfied
as N → 0.]

White and Bromley (1995) proposed a model based on a pseudo-radius
defined as

rs(p) = a +
∫ p0
p

RTs(p′)
p′

dp′, (11.13)

in which p′ is a dummy variable and p0 a mean sea-level pressure. Use of rs(p)
as a vertical coordinate entails no approximation; interpreting rs as distance
from the centre of the Earth does. From (11.13),

Drs
Dt

= −RTs(p)
gp

ω ≡ w̃. (11.14)

This is the approximation to the vertical velocity used in the Miller–Pearce
model (section 11.2). The material derivative is written as

D

Dt
≡ ∂

∂t
+ u. ∇̃, (11.15)

with

u = (u, v, w̃) and ∇̃ =
(

1
rs cosφ

∂

∂λ
,

1
rs

∂

∂φ
,

∂

∂rs

)
. (11.16)

The following pressure-coordinate equations were proposed:

Du

Dt
−
(

2Ω +
u

rs cosφ

)
(v sinφ − w̃ cosφ) +

g

rs cosφ
∂z′

∂λ
= Fλ (11.17)

Dv

Dt
+
(

2Ω +
u

rs cosφ

)
u sinφ +

vw̃

rs
+

g

rs

∂z′

∂φ
= Fφ (11.18)

−2Ωu cosφ −
(
u2 + v2

rs

)
− g

T ′

Ts
+ g

∂z′

∂rs
= 0 (11.19)

∇̃p.v +
1
r2s

∂

∂p
(r2sω) = 0 (11.20)
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Dθ

Dt
=
(

θ

Tcp

)
Q. (11.21)

In the continuity equation (11.20),

∇̃p.v =
1

rs cosφ

{
∂u

∂λ
+

∂

∂φ
(v cosφ)

}
. (11.22)

Some of the terms retained in these equations are typically very small, but
they are needed for the delivery of the following conservation properties:

D

Dt
{(u + Ωrs cosφ) rs cosφ} = Fλrs cosφ − g

∂z′

∂λ
(11.23)

D

Dt

(
1
2
v2 + cpT

)
+ ∇̃p. (vgz) +

1
r2s

∂

∂p
(r2sωgz) = Q + v.Fh (11.24)

ρs
D

Dt

(
Z̃. ∇̃θ

ρs

)
= ∇̃.

[
θ∇̃ × Fh + Z̃

Dθ

Dt

]
. (11.25)

In (11.25),

Z̃ ≡
[
− 1

rs

∂(vrs)
∂r

, 2Ω cosφ +
1
rs

∂

∂rs
(urs),

2Ω sinφ +
1

rs cosφ

(
∂v

∂λ
− ∂

∂φ
(u cosφ)

)]
(11.26)

= 2Ω+ ∇̃ × u (11.27)

and, for any vector A = (Ah, Ar),

∇̃.A = ∇̃p.Ah +
1
r2s

∂

∂rs
(r2sAr). (11.28)

Equations (11.23)–(11.25) are axial angular momentum, energy and potential
vorticity conservation laws; their derivation is eased by noting an isomorphism
with corresponding equations for the motion of an incompressible fluid. Only
the term Dw/Dt (in the vertical component of the momentum equation) is
unrepresented in (11.18)–(11.22). Its inclusion could be achieved by using the
Miller–Pearce technique directly, but at the expense of having to solve an
elliptic 3D PDE for z at each timestep; in the global model as set out above
this is not necessary.

Roulstone and Brice (1995) demonstrated the Hamiltonian structure of iso-
morphs of (11.17)–(11.21), and White and Bromley (1995) derived σ-coord-
inate versions by direct transformation and described an integration strategy.
Versions using another vertical coordinate system form the dynamical basis of
the UK Met. Office’s Unified Model (see Cullen (1993)) which is a gridpoint
numerical model. The presence of the pseudo-radius rs(p) would complicate
implementation of these equations in current spectral numerical models (see
section 12).
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11.4 A non-hydrostatic, global, shallow atmosphere model

As we noted in section 5.4, the HPEs omit the cosφ Coriolis terms and various
metric terms from the components of the momentum equation, and adopt the
shallow-atmosphere approximation throughout. The non-hydrostatic, global,
shallow-atmosphere model used by Tanguay et al. (1990) [see also Müller
(1989)] consists of the HPEs augmented only by the term Dw/Dt in the ver-
tical component of the momentum equation. In place of (5.19), the model
therefore has

Dw

Dt
+ g +

1
ρ

∂p

∂z
= 0, (11.29)

with D/Dt given by the shallow atmosphere form (5.16). The retention of
Dw/Dt in (11.28) appears unjustifiable for a range of mesoscale motion given
that −2Ωu cosφ has been neglected (Draghici 1989), but the model is of theo-
retical interest because of its good conservation properties. The axial angular
momentum conservation law is the HPE form (5.23), the energy conservation
law is the HPE form (5.24) but with specific kinetic energy 1

2(v2 + w2), and
the PV law is of the HPE form (5.25) but with absolute vorticity ξ defined by

ξ ≡
(

1
a

∂w

∂φ
− ∂v

∂z
,
∂u

∂z
− 1

a cosφ
∂w

∂λ
, 2Ω sinφ +

1
a cosφ

[
∂v

∂λ
− ∂

∂φ
(u cosφ)

])
.

(11.30)
Roulstone and Brice (1995) showed that isomorphs of (11.17)–(11.21) arise
when the functional form of the Hamiltonian is modified to exclude the con-
tribution of the vertical motion to the kinetic energy. They showed too that
the HPEs arise if the geometric factors in the Hamiltonian integral (its ‘phase
space’) are also modified. It seems likely that the model of Tanguay et al.
(1990) arises when the geometric factors in the Hamiltonian are modified but
its functional form is left unchanged, and thus that there are two dynamically-
consistent models intermediate in accuracy between the HPEs and the unap-
proximated equations – the model of Tanguay et al. (1990) and the model of
White and Bromley (1995). These suggestions deserve further study.

12 Discussion: dynamical models, numerical
weather prediction and climate simulation

This article has given an account of the basis and nature of many of the app-
roximate models of meteorological dynamics. Here some remarks are offered
on the approximation problem, on the applications of the approximate models,
and on basic issues in the design of numerical models.

A theory of approximation for the equations governing meteorological flows
is not yet fully developed or its rationale agreed upon. The retention of con-
servation properties during the approximation process is an attractive guid-
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ing principle, and if it is given exclusive priority, then the Hamiltonian tech-
nique pioneered by Salmon (1983) offers the best way forward. If a dynamical
model having the desired conservation properties has been derived by other
means, then the demonstration of Hamiltonian structure lends further cre-
dence. Prompted by evidence that Hamiltonian structure does not ensure su-
perior performance in numerical practice (see, for example, Barth et al. (1990)
and Allen and Newberger (1993)) some researchers consider that retention of
all conservation properties should not be the priority. Few consider that con-
servation properties should be disregarded, but opinions differ on which should
be favoured. Traditionally, global energy conservation has received most em-
phasis, but Lagrangian potential vorticity conservation is increasingly seen as
paramount; at the time of writing, some striking results are emerging from
studies of balanced, PV-conserving versions of the SWEs (McIntyre and Nor-
ton 2000).

What are the approximate models used for in meteorology? As we have
noted, the HPEs are the foundation of most of the numerical weather predic-
tion and climate simulation models run by operational and research centres
worldwide, but the use of more accurate models is becoming more widespread.
For example, the UK Met. Office’s Unified Model is based on the acoustically-
filtered equations discussed in section 11.3, and the use of virtually unapprox-
imated forms is planned – the strategy being to use semi-implicit integration
schemes to overcome the restriction to very short time steps which the pres-
ence of acoustic modes would otherwise impose; see Staniforth (2001). A trend
towards the use of formulations more accurate than the HPEs is evident also
in ocean modelling (Marshall et al. 1997). The utility of approximate models
– especially those more heavily approximated than the HPEs – also lies in
the development of a conceptual framework for the analysis of numerically-
generated and observational data. Such a framework is necessary both in gen-
eral scientific terms and to guide the development of better techniques for
assimilating data into numerical models and effecting their time integration.
We shall briefly discuss these aspects.

Analysing and understanding a simplified model is clearly easier than anal-
ysing and understanding a complicated one. Some uses of the barotropic vor-
ticity equation in this respect were noted in section 5.6. In so far as it em-
bodies notions of vorticity and temperature evolution and advection, the QG1
model systematises these concepts of the synoptic meteorologist and weather
forecaster. A more modern view – not necessarily a competing view – is the
PV perspective (Hoskins et al. 1985) which is embodied in QG1 and in some
of the other balanced models discussed in section 9. The articles in Meteo-
rological Applications (1997) elucidate the current interplay of ideas in this
area.

Approximate models also play a major role as apparatus for thought ex-
periments (which may be carried out either analytically or numerically). A
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particularly influential type of thought experiment is the stability analysis: a
steady flow is subject to perturbations at t = 0 and the subsequent evolu-
tion determined by solving linearised forms of the governing equations. Eady’s
baroclinic stability problem (Eady 1949) can be solved analytically in the
QG1 case, and its dominant eigenmodes resemble structures seen in devel-
oping mid-latitude weather systems. A large literature has grown up which
extends Eady’s analysis to more realistic initial steady flows and assumed
external conditions, and explores development into the nonlinear stages us-
ing either analytical or numerical methods (in many cases using less heavily
approximated dynamics); see Hart (1979) and Held and Hoskins (1985) for
reviews. It could be argued that such stability problems, though illuminating,
have been somewhat overemphasised, since one may reasonably enquire how
the real atmosphere could ever reach the supercritical states which may be
chosen for investigation. [Some recent work in this area has focussed on in-
fluences that stabilise flows, and on the hypothesis that the real atmosphere
evolves close to a stability threshold; see Mole and James (1990), Stone and
Nemet (1996), Dong and James (1997), Harnik and Lindzen (1998) and Naka-
mura (1999).] Also, the complete initial value problem is complicated by the
presence of continuous spectrum instabilities as well as normal mode growth
(or decay): many early analyses emphasised the latter at the expense of the
former – see Farrell (1989). This important aspect of the stability problems
reflects the non-self-adjointness of the relevant operators; Held (1985) gives a
lucid account.

As reviewed by Errico (1997), adjoint operator theory has recently found
practical application in ensemble forecasting and data assimilation. Ensemble
methods (see Farrell 1990, Buizza and Palmer 1995, Buizza et al. 1997) aim
to determine the sensitivity of a numerical forecast to its initial conditions.
Since numerical integrations are time-consuming and the number of degrees
of freedom is vast, ways must be found to identify patterns which capture the
main instabilities of the initial flow and hence the sensitivity of the forecast.
One way (of several) is to calculate singular vectors, having defined a suitable
norm to gauge differences between integrations with slightly different initial
conditions. The assimilation of observed data is a key part of the process
of numerical weather prediction; see Daley (1991). The 4D variational tech-
nique (Talagrand and Courtier 1987) minimises a cost function that measures
differences between evolving model values and observations over a chosen as-
similation ‘window’ (typically a few hours). The minimisation is carried out
with respect to fields at the beginning of the window period, and may be sub-
ject to constraints whose nature reflects knowledge of atmospheric behaviour
developed from more heavily approximated dynamical models such as the
semi-geostrophic and quasi-geostrophic forms.

Further examples of the use of knowledge gained from approximate models
are noted in the following brief discussion of numerical model design.
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Because of the nature of the governing equations, any reliable numerical
model of the atmophere must use a finite representation of its fields. That
finite representation may involve field values at a number of chosen points
(the gridpoint method) or fields specified in terms of amplitudes of a number
of chosen functions (the Galerkin method). The Galerkin representation most
frequently chosen for horizontal variations is a spectral representation in terms
of surface spherical harmonics Y mn . (The viability of the technique depends
on the use of finite Fourier transforms and Gaussian integration to handle
product terms; see Hoskins and Simmons (1975), Côté and Staniforth (1988),
Hortal and Simmons (1991) and Temperton et al. (2000).) Almost all mod-
els use the gridpoint method for vertical variations; thus, in global spectral
models, the fields are represented by finite spherical harmonic expansions at
a number of levels (typically 30 or more). There is advantage in using a stag-
gered arrangement in which different fields are held at different levels. Many
models hold the relevant vertical velocities at levels between those at which the
horizontal velocity components and the potential temperature are held. This
‘Lorenz’ arrangement cannot give the most natural and accurate depiction of
thermal wind balance (see section 7.3) and it also leads to the occurrence of
spurious vertical modes (Schneider 1987). Thermal wind balance (Equation
(7.11)) is better represented by holding potential temperature at the inter-
mediate level – the ‘Charney–Phillips’ arrangement. The practical advantage
of the Charney–Phillips arrangement over the Lorenz arrangement has yet
to be demonstrated conclusively, but its theoretical advantage (at least for
geostrophically-balanced motion) is partly an implication of the QG1 model.
Horizontal grid staggering in gridpoint models is an issue of even greater va-
riety; see Adcroft et al. (1999) for a recent discussion.

The spectral method of representing horizontal field variations has the con-
siderable advantage of satisfactorily treating field variations close to coordinate
poles. (Indeed, the ‘triangular truncation’ of the spherical harmonic series gives
an isotropic representation which is independent of the location of the coordi-
nate pole; see Hoskins and Simmons (1975).) Use of a gridpoint representation
on points defined by the intersections of circles of latitude and longitude leads
to numerous difficulties in the vicinity of the poles. Amongst various ways of
coping with these, one of the most obvious and attractive is to use another
distribution of points. Because of the existence of only 5 regular polyhedra in
3D space, a regular distribution of more than 20 points over the surface of a
sphere is not possible. However, a quasi-regular distribution may be achieved
by triangulating an icosahedron and centrally projecting the triangle vertices
onto the circumscribing sphere (Sadourny et al. 1968, Thuburn 1997, Majew-
ski 1998). Alternatively, projections of points on an inscribed cube may be
used (Ranc̆ic̆ et al. 1995, McGregor 1996). Another way of mitigating the pole
problem is to use a subsidiary grid in the vicinity of the geographical poles.
This is a particularly attractive option when it is used in conjunction with
the semi-Lagrangian representation of material derivatives; see Staniforth and
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Côté (1991) and references therein. Regional models can avoid the pole prob-
lem by using a rotated coordinate system whose poles are outside the domain;
another strategy is to use a distribution of gridpoints that covers the sphere,
but has their separation smoothly increasing away from the region of main
interest – see Staniforth (2001).

The gridpoint method is reasonably expected to be better than the spectral
method at representing near-discontinuities such as fronts in the atmosphere.
It also has the advantage of allowing choice in the locations at which the
various fields are held, and generally permitting more freedom – and thus
scope for improvement – via the finite differencing. At present, however, their
superior treatment of the poles makes spectral models at least competitive
with gridpoint models.

Global gridpoint models nowadays have a grid interval of 50km or so in
the horizontal; so systems having a wavelength of less than 100km are not
resolved. Global spectral models are subject to broadly similar restrictions.
Many important scales are therefore not explicitly represented, but their effects
– in terms of heat, moisture and momentum transfers – must be allowed for.
Especially in climate simulation, this problem of subgridscale parametrization
is acute. An understanding of the fluxes carried by, for example, cumulonimbus
systems, and their relation to the resolved flow is crucial for the development of
appropriate parametrizations. Numerical simulation and theoretical analysis
of motion on the relevant scales are the subjects of intense study, and the
formulations described in sections 11.1 and 11.2 are frequently used for this
purpose. Closely related is the problem of the scales that are barely resolved,
and thus poorly treated, by the large-scale model, be it gridpoint or spectral.
For an analysis of this key issue see Lander and Hoskins (1997).

In conclusion, it should be emphasised that meteorological dynamics is not
solely concerned with the equations used for numerical weather forecasting
and climate simulation. A glance at a text on satellite imagery (such as Bader
et al. 1995) – or, indeed, out of a window during most daylight hours – serves
to remind that the atmosphere is populated by flow structures and associated
phenomena. These are naturally the concern of the users of weather forecasts,
and could be said to be the weather itself. An appreciation of the structure
of weather systems and phenomena, as well as of the structure of the gov-
erning equations, should guide the development of numerical models of the
atmosphere and the appraisal of their performance.
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Rõõm, R. 1998. ‘Acoustic filtering in non-hydrostatic pressure coordinate dynamics:
a variational approach’, J. Atmos. Sci. 55 654–668.
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Staniforth, A. and Côté, J. 1991. ‘Semi-Lagrangian integration schemes for atmo-
spheric models – a review’, Mon. Weather Rev. 119 2206–2223.

Starr, V.P. 1945. ‘A quasi-Lagrangian system of hydrodynamical equations’, J. Met.
2 227–237.

Stommel, H.M. and Moore, D.W. 1989. An Introduction to the Coriolis Force. Colum-
bia University Press.

Stone, P.H. and Nemet, B. 1996. ‘Baroclinic adjustment: a comparison between theory,
observation and models’, J. Atmos. Sci. 53 1663–1674.

Sutcliffe, R.C. 1938. ‘On development in the field of barometric pressure’, Q.J.R.
Meteorol. Soc. 64 495–509.

Sutcliffe, R.C. 1947. ‘A contribution to the problem of development’, Q.J.R. Meteorol.
Soc. 73 370–383.

Talagrand, O. and Courtier, P. 1987. ‘Variational assimilation of meteorological ob-
servations with the adjoint vorticity equation. Part 1: Theory’, Q.J.R. Meteorol.
Soc. 113 1311–1328.

Tanguay, M., Robert, A. and Laprise, R. 1990. ‘A semi-implicit semi-Lagrangian fully
compressible regional forecast model’, Mon. Weather Rev. 118 1970–1980.

Tapp, M.C. and White, P.W. 1976. ‘A non-hydrostatic mesoscale model’, Q.J.R.
Meteorol. Soc. 102 277–296.

Temperton, C., Hortal, M. and Simmons, A.J. 2000. ‘A two-time-level semi-Lagrangian
global spectral model’, Q.J.R. Meteorol. Soc. 127 111–127.

Thompson, P.D. 1956. ‘A theory of large-scale disturbances in non-geostrophic flow’,
J. Met. 13 251–261.

Thuburn, J. 1993. ‘Baroclinic-wave life cycles, climate simulations and cross-isentrope
mass flow in a hybrid isentropic coordinate GCM’, Q.J.R. Meteorol. Soc. 119 489–
508.

Thuburn, J. 1997. ‘A PV-based shallow-water model on a hexagonal-icosahedral grid’,
Mon. Weather Rev. 125 2328–2347.

Thuburn, J. and Craig, G.C. 2000. ‘Stratospheric influence on tropopause height: the
radiative constraint’, J. Atmos. Sci. 57 17–28.

Vallis, G.K. 1996. ‘Potential vorticity inversion and balanced equations of motion for
rotating and stratified flows’, Q.J.R. Meteorol. Soc. 122 291–322.

Verkley, W.T.M. 1993. ‘A numerical method for finding form-preserving free solutions
of the barotropic vorticity equation on a sphere’, J. Atmos. Sci. 50 1488–1503.
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Extended-Geostrophic Euler–Poincaré
Models for Mesoscale Oceanographic Flow

J.S. Allen, Darryl D. Holm and P.A. Newberger

1 Introduction

We continue the study of intermediate models (McWilliams and Gent, 1980)
for possible application to mesoscale oceanographic flow fields. Intermediate
models are derived under the assumption that the Rossby number ε is small
and filter out high-frequency gravity-inertial waves. Previous work has involved
intermediate models for flows of homogeneous fluids governed by the f -plane
shallow water equations (SWE) (Allen et al., 1990a,b; Barth et al., 1990; Allen
and Holm, 1996) and for flows of continuously stratified fluids governed by
the hydrostatic primitive equations (PE) (Allen, 1991; Allen, 1993; Allen and
Newberger, 1993; Holm, 1996).

We use a traditional modelling approach of making approximations in Hamil-
ton’s principle. This approach was developed for geophysical fluid dynamics
(GFD) and applied by Salmon (1983, 1985, 1996) to construct approximate
balanced equations by substituting leading order balance relations and asymp-
totic expansions into Hamilton’s principle before taking variations (see also
Allen and Holm, 1996, and Holm, 1996). In the present paper, we use this
approach to derive approximate intermediate models for mesoscale oceano-
graphic flow. For this, we work in the framework of the Euler–Poincaré theo-
rem for ideal continua with advected parameters (Holm, Marsden and Ratiu,
1998a). Euler–Poincaré systems are the Lagrangian analogue of Lie–Poisson
Hamiltonian systems (Holm, Marsden, Ratiu, and Weinstein, 1985, and ref-
erences therein). In this framework, the resulting Eulerian approximate GFD
equations possess a Kelvin–Noether circulation theorem, conserve potential
vorticity on fluid particles and conserve volume integrated energy. In addi-
tion, following the derivations we assess the accuracy of the model equations
through numerical experiments.

Motivation for this study is provided by the seemingly great potential use-
fulness of approximate models derived from Hamilton’s principle and the ap-
parent soundness of this approach. On the other hand, results of numerical
experiments assessing the accuracy of different intermediate models applied to
the SWE (Allen et al, 1990a,b; Barth et al., 1990) demonstrate clearly that, at
moderate values of ε, Salmon’s (1983) HP model and the geostrophic momen-
tum (GM) approximation (Hoskins, 1975) provide disappointingly inaccurate
solutions to the SWE, compared e.g., to those obtained from the balance equa-
tions (BE) (Gent and McWilliams, 1983). This is in spite of the fact that the
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HP and GM models have Hamiltonian structure, whereas the BE for the SWE
do not conserve energy. Thus, possession of Hamiltonian structure is not suf-
ficient in itself to ensure an accurate approximate model. The question arises
of how more accurate approximate models can be derived from Hamilton’s
principle. Allen and Holm (1996) formulated an approximate model for the
SWE by extending Salmon’s (1983) approach and utilizing higher order ap-
proximations in Hamilton’s principle. Allen and Holm (1996) contended that
this extended-geostrophic model should give more accurate solutions than the
HP or GM models.

Here we apply the expansion procedure of Allen and Holm (1996) to derive
extended-geostrophic models for continuously stratified flows governed by the
PE. The initial step involves derivation of an approximate model following a
strategy similar to that of Salmon (1983, 1985, 1996), but utilizing the meth-
ods of Holm, Marsden, and Ratiu (1998a) for deriving the Euler–Poincaré
equations for fluids. We refer to the resulting approximate equations as the L1
model. A second step involves including consistent O(ε) higher order approx-
imations. We refer to the resulting approximate equations in that case as the
L2 model.

The derivation is followed by numerical experiments to assess the accuracy of
L1 and L2 models compared to the PE. The idealized, mesoscale oceanographic
problems utilized in Allen and Newberger (1993) to quantify the accuracy of
different intermediate models are repeated. Thus, we find information not only
on the absolute accuracy of the L1 and L2 models compared to PE solutions,
but also on the relative accuracy compared to other intermediate models.

The outline of this paper is as follows. The Euler–Poincaré equations for
fluids are summarized briefly in section 2 and the derivations of the L1 and
L2 models equations are given in sections 3 and 4, respectively. The solution
procedure for the L1 and L2 models is presented in section 5 and the numerical
experiments are discussed in section 6. The details of the numerical methods
are explained in the appendix. Brief summary comments are given in section 7.

2 Applications of the Euler–Poincaré Theorem in
GFD

Here we recall from Holm et al. (1998a) the statements of the Euler–Poincaré
equations and their associated Kelvin–Noether theorem in the context of con-
tinuum mechanics and approximate models in geophysical fluid dynamics.

The Euler–Poincaré equations for a GFD Lagrangian L[u, D, b ] involve fluid
velocity u, specific entropy b, and density D as functions of three dimensional
space with coordinates x and time t. In vector notation, these equations are
expressed as (Holm et al., 1998a,b; 2002; cf also Holm 1996),

d

dt

1
D

δL

δu
+

1
D

δL

δuj
∇uj +

1
D

δL

δb
∇b − ∇ δL

δD
= 0, (2.1)
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or, equivalently, in ‘curl form’ as

∂

∂t

(
1
D

δL

δu

)
−u× curl

(
1
D

δL

δu

)
+∇

(
u · 1

D

δL

δu
− δL

δD

)
+

1
D

δL

δb
∇b = 0. (2.2)

The Euler–Poincaré system is completed by including the auxiliary equations
for advection of the specific entropy b,

∂b

∂t
+ u · ∇b = 0, (2.3)

and the continuity equation for the density D,

∂D

∂t
+ ∇ · Du = 0. (2.4)

For incompressible flows, one sets D = 1 in the continuity equation, so that
∇ · u = 0. For anelastic flows, one sets D = ρs(z) in the continuity equation
with a prescribed stably stratified reference density profile ρs(z), so that ∇ ·
(ρs(z)u) = 0.

The Euler–Poincaré motion equation in either form (2.1) or (2.2) results in
the Kelvin–Noether circulation theorem,

d

dt

∮
γt(u)

1
D

δL

δu
· dx = −

∮
γt(u)

1
D

δL

δb
∇b · dx, (2.5)

where the curve γt(u) moves with the fluid velocity u. Then, by Stokes’
theorem, the Euler–Poincaré equations generate circulation of the quantity
D−1δL/δu whenever the gradients ∇b and ∇(D−1δL/δb) are not collinear.

Taking the curl of equation (2.2) and using advection of the specific entropy
b and the continuity equation for the density D yields conservation of potential
vorticity on fluid particles, as expressed by

∂q

∂t
+ u · ∇q = 0, where q ≡ 1

D
∇b · curl

(
1
D

δL

δu

)
. (2.6)

Consequently, the following domain integrated quantities are conserved, for
any function Φ,

CΦ =
∫

d 3x D Φ(b, q) , for all Φ . (2.7)

The absence of explicit time dependence in the Lagrangian L [u, D, b ] gives the
conserved domain integrated energy, via Noether’s theorem for time transla-
tion invariance. This energy is easily calculated using the Legendre transform
to be

E [u, D, b ] =
∫

d 3x
(
u · δL

δu

)
− L [u, D, b ] . (2.8)

When the Legendre transform is completed to express E [u, D, b ] as H [m, D, b ]
with m ≡ δL/δu and δH/δm = u, the Euler–Poincaré system (2.1), (2.3) and
(2.4) may be expressed in Hamiltonian form

∂µ

∂t
= {µ,H} , with µ ∈ [m, D, b ] , (2.9)
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and Lie–Poisson bracket given in Euclidean component form by

{F,H}[m, D, b ] = − ∫ d 3x

{
δF

δmi

[
(∂jmi + mj∂i )

δH

δmj
+ (D∂i )

δH

δD

− (b,i )
δH

δb

]
+

δF

δD
(∂jD)

δH

δmj
+

δF

δb
(b,j)

δH

δmj

}
.

(2.10)

The conserved quantities CΦ in (2.7) are then understood in the Lie–Poisson
Hamiltonian formulation (2.9)–(2.10) of the Euler–Poincaré system (2.1)–(2.4)
as Casimirs that commute under the Lie–Poisson bracket (2.10) with any func-
tional of [m, D, b ]. The Casimirs also result via Noether’s theorem from sym-
metry of Hamilton’s principle for the Euler–Poincaré system under the ‘parti-
cle relabelling transformations’ that leave invariant the Lagrangian L[u, D, b ].
From the viewpoint of Noether’s theorem, this particle relabelling symme-
try corresponds to invariance of Hamilton’s principle for the Euler–Poincaré
equations under the transformation from the Lagrangian to the Eulerian fluid
description, by pullback of the right action of the diffeomorphism group on the
configuration space of the Lagrangian fluid parcel positions and their veloci-
ties. For full mathematical details, consult Marsden and Ratiu (1994), Holm
et al. (1998a,b; 2002).

The four properties (2.5)–(2.8) and the Lie–Poisson Hamiltonian formula-
tion (2.9)–(2.10) of the Euler–Poincaré equation (2.1) and its auxiliary equa-
tions (2.3) and (2.4) are desirable elements of approximate models for applica-
tions in geophysical fluid dynamics expressed in the variables [u, D, b ]. Thus,
the Euler–Poincaré theory offers a unified framework in which to derive ap-
proximate GFD models that possess these properties: the Kelvin–Noether cir-
culation theorem, conservation of potential vorticity on fluid particles, and the
Lie–Poisson Hamiltonian formulation with its associated conserved Casimirs
and conserved domain integrated energy. Previous work Holm et al. (1998a,b;
2002) has shown that many useful GFD approximations may be formulated
as Euler–Poincaré equations, whose shared properties thus follow from this
underlying common framework.

3 Derivation of the L1 model equations

We consider the motion of a rotating, continuously stratified fluid governed
by the hydrostatic, Boussinesq, adiabatic, primitive equations and derive an
approximate model for small Rossby number through the use of Hamilton’s
principle.

The primitive equations (PE) in dimensionless variables are

∇3D · u3D = 0 , (3.1a)

ε
Du
Dt

+ f ẑ× u = −∇p, (3.1b)
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0 = −pz − ρ, (3.1c)

Dρ

Dt
= 0, (3.1d)

where
x = (x, y, z) , (3.2a)

u3D = (u, v, εw) , u = (u, v, 0) , (3.2b, c)

∇3D =
( ∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇ =

( ∂

∂x
,
∂

∂y
, 0
)
, (3.2d, e)

D

Dt
=
( ∂

∂t
+ u3D · ∇3D

)
, (3.2f)

and ẑ is the unit vector in the vertical z direction. In this case, ρ replaces
b in (2.3) and we change notation so that ∇3D replaces ∇ and D/Dt (3.2f)
replaces d/dt.

Dimensionless variables are formed using the characteristic values
(L,H0, U0, f0) for, respectively, a horizontal length scale, vertical depth scale,
horizontal velocity, and Coriolis parameter. The Rossby number

ε = U0/f0L . (3.3)

With dimensional variables denoted by primes, we have

(x, y) = (x′, y′)/L , z = z′/H0 , (3.4a, b)

(u, v) = (u′, v′)/U0 , εw = w′L/(U0H0) , (3.4c, d)

t = t′U0/L , f = f ′(x′, y′)/f0 , (3.4e, f)

so that (u, v, εw) are the dimensionless velocity components in the (x, y, z)
directions, t is time, and f = f(x, y) is the dimensionless Coriolis parameter.

The total dimensional density is given by

ρ′T = ρ0 + ρ′(z′) − θ′(x′, t′) , (3.5)

where ρ0 is a constant reference density, ρ′(z′) the basic undisturbed
z′-dependent field, and θ′ the negative of the density fluctuation. We define

ρ(z) = ρ′(z′)/ρC , θ = θ′/ρC , (3.6a, b)

and
ρ = ρ(z) − θ , (3.7)

where ρC = pC/(H0g), pC = ρ0U0fL, and g is the acceleration of gravity. In
addition, we write

ρz = −S(z)/ε , S(z) = N2(z)H2
0/(f20L

2) , (3.8a, b)
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so that
ρz = −S(z)/ε − θz, (3.8c)

where
N 2(z) = −gρ′z′/ρ0 , (3.8d)

is the square of the basic Brunt-Väisälä frequency. Subscripts (x, y, z, t) denote
partial differentiation. Pressure variables p, p and p̃ are defined by nondimen-
sionalizing with pC such that

p = p(z) + p̃ , (3.9)

where
pz = −ρ, ∇p = ∇p̃ . (3.10a, b)

We are interested in the limit of small Rossby number,

ε � 1 , (3.11)

with S = O(1).
From section 2, the PE are Euler–Poincaré equations, with action L given

in dimensionless variables by

L =
∫

dt dx dy dz

{
D

[
u · (R+ εu) − ε

2
|u|2 − ρz

]
− p(D − 1)

}
, (3.12)

where R = R(x, y),R · ẑ = 0, and

curl3 R = f(x, y)ẑ . (3.13)

This may be verified by direct substitution into equation (2.2).
We derive approximate equations for ε � 1 using the Euler–Poincaré frame-

work, by following a procedure similar to that applied by Salmon (1983, 1985,
1996) and Allen and Holm (1996). Thus, for the L1 model we define

u1 = f−1ẑ× ∇φ̃ , (3.14a)

with

φ̃(x, t) = φS(x, y, t) +
0∫
z

dz′ ρ, φ̃z = −ρ , (3.14b, c)

where φS(x, y, t) is a function to be determined, and utilize the following order
O(ε) approximation for the action L,

L1 =
∫

dt dx dy dz

{
D

[
u · (R+ εu1) − ε

2
|u1|2 − ρz

]
− p(D − 1)

}
. (3.15)
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The action L1 has variational derivatives given by

δL1 =
∫

dt dx dy dz
{
D(R+ εu1) · δu

+
[
u · (R+ εu1) − ε

2
|u1|2 − ρz − p

]
δD

+εD(u− u1) · δu1 − Dzδρ − (D − 1)δp
}
.

(3.16)

Defining
a = εDf−1(u− u1), (3.17a)

and using the relations

0∫
−H

dz a·ẑ×∇δφS = −δφS ẑ·curl
( 0∫
−H

dz a
)

+div
[
(

0∫
−H

dz a)×ẑ δφS
]
, (3.17b)

a · ẑ×∇
(∫ 0

z
dz′δρ

)
= −

( 0∫
z

dz′ δρ
)
ẑ ·curla+div

[
a×ẑ

( 0∫
z

dz′ δρ
)]

, (3.17c)

and
0∫

−H
dz b(z)

 0∫
z

dz′ c(z′)

 =
0∫

−H
dz c(z)

 z∫
−H

dz′b(z′)

 , (3.18)

in (3.16) we obtain

δL1 =
∫

dt dx dy dz

{
D(R+ εu1) · δu+

[
u · (R+ εu1) − ε

2
|u1|2 − ρz − p

]
δD

− (D − 1)δp −
[
Dz +

∫ z
−H

dz′ ẑ · curl εDf−1(u− u1)
]
δρ

}

−
∫

dt dx dy δφS ẑ · curl
∫ 0

−H
dz εDf−1(u− u1)

+
∫

dt

∮
C

ds

∫ 0

−H
dz

δφS +
0∫
z

δρ dz′
 εDf−1(u− u1) · ŝ

−
∫

dt dx dy ẑ× ∇H ·
[
εDf−1(u− u1)

∣∣∣∣
z=−H

0∫
−H

dzδρ

]
, (3.19)

where the integral over C is around a vertical wall along the outer boundary
B of the domain in (x, y) and where ŝ = ẑ× n̂ is the unit tangent vector and
n̂ is the unit outward normal vector on that boundary. The boundary integral
over C in (3.19) vanishes provided

(u− u1) · ŝ = 0 on B , (3.20a)
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i.e., that the tangential component of u − u1 is zero on the outer boundary
vertical wall. This condition is directly analogous to that derived in Allen
et al. (1990a) and Allen and Holm (1996) for Salmon’s (1983) model, which
involves an L1 type approximation applied to the shallow water equations. The
boundary integral over (x,y,t) at z = −H in the last term in (3.19) vanishes
provided

ẑ× ∇H · (u− u1) = 0 at z = −H , (3.20b)

which provides an additional boundary condition on (u−u1) at z = −H if H
is variable.

The δp and δφS variations in (3.19) yield, respectively,

D = 1 , (3.21)

and

ẑ · curl
0∫

−H
dz f−1(u− u1) = 0 . (3.22)

In this nondimensional notation, the Euler–Poincaré equation for the fluid
motion generated by L1 is, cf. (2.2),

∂

∂t

(
1
D

δL1

δu

)
− u3D × curl3D

(
1
D

δL1

δu

)

−∇3D

(
δL1

δD
− 1

D

δL1

δu
· u
)

+
1
D

δL1

δρ
∇3D ρ = 0 . (3.23)

The resulting equation, from (3.19) and (3.23), is

ε
∂u1
∂t

− u3D × curl3D (R+ εu1) + ∇3D

(
p +

ε

2
|u1|2

)
+ρẑ− ε2I1∇3D ρ = 0 . (3.24a)

where

I1 = ε−1
z∫

−H
dz′ ẑ · curl f−1(u− u1) . (3.24b)

The approximate equations are given by (3.24), the constraint (3.22), the
equation of continuity,

∇3D · u3D = 0, (3.25)

obtained from the equation (2.4) for D and (3.21), and the equation for the
density (2.3),

Dρ

Dt
=

∂ρ

∂t
+ u3D · ∇3D ρ = 0 . (3.26)

We will refer to (3.24), (3.22), (3.25), and (3.26) as the L1 model equations.
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By equation (2.5) for Euler–Poincaré systems the L1 model possesses the
following Kelvin–Noether circulation theorem,

D

Dt

∮
γt(u3D)

(R+ εu1) · dx = −
∮
γt(u3D)

(z + ε2I1)∇3Dρ · dx , (3.27)

where γt(u3D) moves with the fluid velocity u3D. Then, by Stokes’ theorem,
the L1 equations generate circulation of (R+εu1) whenever ∇3Dρ and ∇3D(z+
ε2I1) are not collinear.

The curl of equation (3.24) together with (3.25) and (3.26) gives conserva-
tion of potential vorticity Q1 on fluid particles, cf. (2.6),

DQ1

Dt
= 0 , (3.28)

where

Q1 = curl3D(R+ εu1) · ∇3Dρ , (3.29a)
= (f ẑ+ ε curl3D u1) · ∇3Dρ . (3.29b)

The L1 model equations also conserve the volume integrated energy E1, given
in the general theory by (2.8), i.e.,

dE1

dt
= 0 , (3.30)

E1 =
∫

dx dy dz

[
ε

2
|u1|2 + ρz

]
. (3.31)

4 Derivation of the L2 model equations

One important objective here is to assess the accuracy of the L1 and L2 model
equations by obtaining numerical solutions to the idealized, mesoscale oceano-
graphic problems utilized in Allen and Newberger (1993). Consequently, for
simplicity in the derivation of the more complex L2 model, we restrict consid-
eration to the idealized conditions utilized for the problems in that study, i.e.,
to an f -plane (f = 1) with a rigid lid and flat bottom (H = 1) and with the
domain periodic in the horizontal (x, y) directions.

For the L2 model we follow Allen and Holm (1996) and include consistent
O(ε) terms in the approximation u2. These O(ε) terms are obtained by itera-
tion of the lowest order geostrophic balance in the PE momentum equations
and involve quasi-geostrophic dynamics (Allen, 1993). The equation for u2 is

u2 = ẑ× ∇φ̃ + αε
{
−J(φ̃,∇φ̃) + ∇

[
L−1 (J(φ̃,Lφ̃)

)]}
, (4.1)

where φ̃ is defined in (3.14b,c) and where

Lφ̃t = [∇2 + ∂z(S−1∂z)]φ̃t = −J(φ̃,Lφ̃), (4.2)
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with inverse
φ̃t = −L−1[J(φ̃,Lφ̃)] , (4.3a)

obtained with boundary conditions

φ̃zt = −J(φ̃, φ̃z) at z = 0,−1 . (4.3b)

The operator J(a, b) = axby − aybx is the Jacobian and Lφ̃ is the quasi-
geostrophic potential vorticity. In (4.1), α is simply an accounting parameter
such that α = 1 for the L2 model and α = 0 for the L1 model.

We utilize the following approximation for the action L,

L2 =
∫

dt dx dy dz

{
D[u · (R+ εu2) − ε

2
|u2|2 − ρz] − p(D − 1)

}
. (4.4)

The action L2 has variational derivatives given by

δL2 =
∫

dt dx dy dz
{
D(R+ εu2) · δu

+
[
u · (R+ εu2) − ε

2
|u2|2 − ρz − p

]
δD

+ εD(u− u2) · δu2 − Dzδρ − (D − 1)δp
}
.

(4.5)

It is convenient to define

εuD = u− u2, uD = (uD, vD, 0) . (4.6)

The variations associated with the term εD(u− u2) · δu2 are

uD · δu2 = uD ·
{
ẑ× ∇δφ̃ − αε[J(δφ̃,∇φ̃) + J(φ̃,∇δφ̃)]

+ αε∇
[
L−1[J(δφ̃,Lφ̃) + J(φ̃,Lδφ̃)]

]}
.

(4.7)

Utilizing the relation (3.17) and integrating by parts we obtain, in a manner
similar to that in section 3.2.2 of Allen and Holm (1996) except that the
operator L is three-dimensional here,∫

dt dx dy dz uD · δu2 =
∫

dt dx dy dz δφ̃

{
−ẑ · curluD

+ αε
[
2J(uD, φ̃x) + 2J(vD, φ̃y) + J(∇ · uD, φ̃)

+ L[J(φ̃,L−1∇ · uD)] − J(Lφ̃,L−1∇ · uD)
]}

,

(4.8)
where the boundary integral terms in (x, y) vanish as a result of periodicity.
The vanishing of the boundary integral terms at z = 0,−1 require

(L−1∇ · uD)z = 0 at z = 0,−1 , (4.9a)
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and imply that in the calculations of L[J(φ̃,L−1∇ · uD)] and Lφ̃,

Jz(φ̃,L−1∇ · uD) = 0 and φ̃z = 0 at z = 0,−1 , (4.9b, c)

respectively. Continued evaluation of (4.8) involves use of (3.18).
The Euler–Poincarè equation for the fluid motion generated by L2 is

∂

∂t

(
1
D

δL2

δu

)
− u3D × curl3D

(
1
D

δL2

δu

)
−∇3D

(
δL2

δD
− 1

D

δL2

δu
· u
)

+
1
D

δL2

δρ
∇3D ρ = 0 .

(4.10)

The resulting equation, from (4.5) and (4.10), is

ε
∂u2
∂t

− u3D × curl3D(R+ εu2) + ∇3D

(
p +

ε

2
|u2|2

)
+ρẑ− ε2I2∇3Dρ = 0,

(4.11a)

where

I2 =
z∫

−1
dz′z̃ · curluD − αε

z∫
−1

dz′
{

2J(uD, φ̃x) + 2J(vD, φ̃y) + J(∇ · uD, φ̃)

+L[J(φ̃,L−1∇ · uD)] − J(Lφ̃,L−1∇ · uD)
}
,

(4.11b)
with constraint, implied by the δφS variation and analogous to (3.22),

I2(z = 0) = 0. (4.12)

The L2 model equations are given by (4.11), (4.12), (3.25) and (3.26). These
equations imply the conservation of potential vorticity Q2 on fluid particles

DQ2

Dt
= 0, (4.13)

where
Q2 = (ẑ+ ε curl3D u2) · ∇3Dρ . (4.14)

The L2 model equations also conserve the volume integrated energy E2, i.e.,

d

dt
E2 = 0, (4.15)

E2 =
∫

dx dy dz

[
ε

2
|u2|2 + ρz

]
. (4.16)
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5 Solution procedure

We describe the solution procedure for the L2 model with f = 1 and H = 1.
The procedure for the L1 model is the same and may be obtained by setting
α = 0. The L2 model equations (3.25), (3.26) and (4.11) are written in the
form:

∇3D · u3D = 0 , (5.1a)

ε
∂u2
∂t

− u× (1 + εζ2)ẑ+ ε2wu2z + ∇
(
p̃ +

ε

2
|u2 |2

)
+ ε2I2∇φz = −εν∇4u2 ,

(5.1b)
p̃z − φz − ε(u− u2) · u2z + εI2(S + εφzz) = 0, (5.1c)

∂

∂t
φz + ∇3D · (u3Dφz) + Sw = 0 , (5.1d)

where the density and pressure fields have been decomposed as in (3.7) and
(3.9) and where φ and ζ2 are defined below.

With (3.7), u2 may be written

u2 = ẑ× ∇φ + αε

{
−J(φ,∇φ)

+∇ [L−1 (J(φ,Lφ) + ν∇6φ
)]− ν∇4∇φ

}
,

(5.2)

where

φ = φS(x, y, t) −
0∫
z

dz′ θ, φz = θ . (5.3a, b)

We include biharmonic momentum diffusion in the horizontal momentum
equations (5.1b) so that it may be used in the numerical finite-difference solu-
tions to provide dissipation at high wave numbers in otherwise nearly inviscid
flows. In addition, we add a consistent diffusion term in u2 (5.2).

We utilize

u = ẑ× ∇ψ + ε∇χ, u2 = ẑ× ∇ψ2 + ε∇χ2 , (5.4a, b)

uD = ẑ× ∇ψD + ∇χD , (5.4c)

so that
ψ = ψ2 + εψD, χ = χ2 + χD . (5.5a, b)

It follows from (5.2) that

ζ2 = ∇2ψ2 = ∇2φ − 2αεJ(φx, φy), (5.6)

∇2χ2 = α
{
−J(φ,∇2φ) + ∇2

[
L−1 (J(φ,Lφ) + ν∇6φ

)]
− ν∇6φ

}
, (5.7)

where
J(φ,Lφ) = J(φ,∇2φ) + {S−1J(φ, φz)}z. (5.8)
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In addition, (4.11b) may be written

I2 = I1 + αεI ′2 , (5.9a)

where

I1 =
z∫

−1
dz′ ∇2ψD, (5.9b)

I ′2 = −
z∫

−1
dz′ {2J(uD, φx) + 2J(vD, φy) + J(∇2χD, φ) + ν∇6χD

+L[J(φ,L−1∇2χD)] − J(Lφ,L−1∇2χD)} . (5.9c)

The constraint (4.12) is
I2(z = 0) = 0. (5.10)

The horizontal momentum equations (5.1b) are replaced by vorticity and
divergence equations formed, respectively, by the operations ẑ ·∇× (5.1b) and
∇ · (5.1b):

∂ζ2
∂t

+ J(ψ, ζ2) + ∇2χ + ε∇ · [w∇ψ2z + ζ2∇χ] + εJ(I2, φz)

+ε2J(w,χ2z) + ν∇4ζ2 = 0 , (5.11)

∇2ψ = ∇2p̃ − ε2J(ψ2x, ψ2y) + ε2
[
−J(ζ2, χ) − J(w,ψ2z) − ∇ · (ζ2∇ψD)

+∇ · (I2∇φz) + ∇2J(ψ2, χ2) + ∇2χ2t + ν∇6χ2
]

+ε3
[
∇ · (w∇χ2z) +

1
2
∇2(|∇χ2|2)

]
. (5.12)

We rewrite (5.1d) as

∂φz
∂t

+ J(ψ, φz) + Sw + ε [∇ · (φz∇χ) + (wφz)z] = 0 , (5.13)

and (5.1a) as
∇2χ + wz = 0 . (5.14)

The L2 model equations now consist of (5.9), (5.10), (5.11), (5.12), (5.13),
(5.14), (5.6), (5.7) and (5.5a,b). The variables are ψ, χ,w, p̃, φ, ψ2, χ2, ψD, χD
and I2. For the L1 model (α = 0), u2 = u1, ψ2 = φ, χ2 = 0, and I2 = I1
(5.9b). Note that if we set ε = 0 in the L2 equations, they reduce to the
quasigeostrophic (QG) approximation (Pedlosky, 1987). To obtain numerical
solutions, we follow a procedure similar to that developed and applied in Allen
and Newberger (1993) for other intermediate models. The procedure is based
on the assumption that ε � 1 and essentially uses the solution of the QG
approximation as the starting point for an iteration scheme. Accordingly, we
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form an equation for a linear approximation to the potential vorticity by elim-
inating wz = −∇2χ between (5.11) and (5.13) and using (5.6):

∂

∂t
[∇2φ + (S−1φz)z] = αε2

∂

∂t
J(φx, φy) − J(ψ, ζ2)

−ε∇ · [w∇ψ2z + ζ2∇χ] − εJ(I2, φz) − ε2J(w,χ2z)

−ν∇4ζ2 −
{
S−1[J(ψ, φz) + ε [∇ · (φz∇χ) + (wφz)z]

]}
z
. (5.15)

We also write (5.11) as

∇2χ = −∂∇2φ

∂t
+ α ε2

∂

∂t
J(φx, φy) − J(ψ, ζ2) − ε∇ · [w∇ψ2z + ζ2∇χ]

−εJ(I2, φz) − ε2J(w,χ2z) − ν∇4ζ2 . (5.16)

We eliminate p̃ by taking the z derivative of (5.12) and substituting for p̃z
from (5.1c). The resulting equation is

∇2G = −2
[
Jz(ψ2x, ψ2y) − αJz(φx, φy)

]
+ ε

{
−Jz(ζ2, χ) − Jz(w,ψ2z)

−∇ · (ζ2∇ψD)z + ∇ · (I2∇φz)z + ∇2
[
∇ψD · ∇ψ2z + J(ψ2z, χD)

−φzzI2 + Jz(ψ2, χ2)
]

+ ∇2χ2zt + ν∇6χ2z

}
+ ε2

{
∇ · (w∇χ2z)z

+∇2
[
∇χD · ∇χ2z + J(ψD, χ2z)

]
+

1
2
∇2(|∇χ2|2)z

}
, (5.17a)

where
G = ψDz + SI2 . (5.17b)

If, for ε � 1, G is obtained from the solution of (5.17a), then ψD may be found
from the solution to

∇2ψD + [S−1ψDz]z = [S−1G − α ε I ′2 ]z, (5.18a)

where (5.9), (5.10), and (5.17b) imply

ψDz = G at z = 0,−1 . (5.18b)

In a domain periodic in (x, y), (5.17a) determines G up to an arbitrary function
of z. That function has no effect on the horizontal derivatives of ψD (or ψ)
needed in the other equations. Thus, to obtain a unique solution for G we
require ∫

dx dy G = 0. (5.18c)

The L2 model equations we solve are finally (5.14), (5.15), (5.16), (5.17),
(5.18), (5.6), (5.7) (5.9) and (5.5a,b). The variables are ψ, χ,w, φ, ψ2, χ2, ψD,
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χD, G, and I2. The numerical finite difference method used to solve this equa-
tion set is described in the appendix. Boundary conditions are

w(z = 0) = w(z = −1) = 0, (5.19)

with periodicity of all variables over the domain in x and y. In the calculations
of χ2 (5.7) and of I2 (5.9) that involve the operators L and L−1, boundary
conditions at z = 0,−1 are obtained from (4.3b) and (4.9a,b,c).

6 Numerical experiments

Numerical solutions to finite-difference approximations to the L1 and L2 mod-
els are obtained for the problems utilized to investigate accuracy of different
intermediate models in Allen and Newberger (1993). The numerical experi-
ments involve initial-value problems for the time-dependent development of
an unstable baroclinic jet on an f -plane. Initial conditions involve a uniform,
vertically-sheared jet with small perturbations. The jet is unstable and de-
velops finite amplitude meanders that grow in time and eventually pinch off
to form detached eddies. The weak jet, basic case, and strong jet numerical
experiments from Allen and Newberger (1993) are repeated here for the L1
and L2 models. The accuracy is assessed by comparison with solutions of the
primitive equations (PE).

The domain is periodic in the horizontal directions (x, y) and is of constant
depth in the vertical direction (z). The finite difference methods are discussed
in the appendix and in Allen and Newberger (1993). All models use the same
variables on the same grid.

Dimensional variables are used for the numerical experiments. The Coriolis
parameter f0 = 9.20 × 10−5 s−1. The total depth HT = 3172 m. The number
of vertical grid cells is 6. The horizontal domain is

0 ≤ x ≤ L(x), 0 ≤ y ≤ L(y) , (6.1a, b)

where the initial jet flow is parallel to the x axis and toward positive x. For
the weak jet experiment, L(x) = 250 km, L(y) = 640 km. For the basic case
and strong jet experiments, L(x) = 250 km, L(y) = 810 m. The horizontal grid
spacing is ∆x = ∆y = 5 km. The horizontal biharmonic diffusion coefficient
ν = 8 × 108 m4 s−1 is chosen to be small so that dissipative processes play a
nearly negligible role in the time-dependent dynamics.

The initial stratification and jet structure are based on observed oceano-
graphic values from the Coastal Transition Zone (CTZ) off Northern Califor-
nia (Kosro et al., 1991; Pierce et al., 1991; Walstad et al., 1991). The Rossby
radius for the first baroclinic vertical mode calculated from the initial strat-
ification is δR1 = 24.6 km. The initial jet has a half-width of LJ = 30 km,
comparable in magnitude to δR1. The experiments are characterized by dif-
ferent velocity magnitudes in the initial basic jet profiles. For the weak jet,
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Figure 1: Contour plots of the ψ1 fields from L2 and L1 as a function of (x, y)
every 20 days from t = 10 to t = 90 days for the basic case experiment. The
distance between tick marks on the axes is 50 km. Positive (negative) values
are contoured by solid (dashed) lines with the zero contour a heavy solid line.
The contour interval is 3000 m2 s−1.

basic case, and strong jet experiments, the maximum initial jet velocities are
0.52 m s−1, 0.90 m s−1, and 1.28 m s−1, respectively. The vertical shear is
such that the corresponding maximum initial jet velocities at 500 m depth are
0.23 m s−1, 0.36 m s−1 and 0.56 m s−1.

The function |ζ(x, y, z, t)|/f0, where ζ = vx−uy, indicates the magnitude of
the local, flow-determined Rossby number. For the weak jet, basic case, and
strong jet experiments, the maximum initial values of |ζ|/f0 are 0.174, 0.287,
and 0.404, respectively. The maximum values reached during the experiment
are larger, 0.264, 0.555, and 1.025, respectively. Thus, the experiments cover a
range of flow regimes characterized by maximum local Rossby numbers | ζ |/f0
that are moderately small (weak jet), moderate (basic case), and O(1).
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Figure 2: Contour plots of the ζ1/f0 fields from L2 and L1 every 20 days from
t = 10 to t = 90 days for the basic case experiment. The contour interval is
0.1 and the zero contour line is omitted. Scaling of axes as in Figure 1.

Quantitative measures of the errors of the L1 and L2 model solutions, com-
pared to PE, are found as a function of time by calculating normalized rms
differences between the corresponding variables from the L1 or L2 model and
from the PE solutions as described in Allen and Newberger (1993). Prior to
comparison with L1 and L2 model results and calculation of errors, the PE
solutions are averaged over an inertial period to eliminate high frequency vari-
ability.

The time-dependent development of the unstable jet flow field in the basic
case experiment is illustrated in Fig. 1 by contour plots of the near-surface
streamfunction fields ψ(x, y, z1, t) = ψ1(x, y, t) where z1 corresponds to the
center of the top grid cell at 50 m depth. Fields from the solutions of the
L2 and the L1 model are shown every 20 days from day 10 to day 90. The
corresponding vorticity fields ζ1/f0 from L2 and L1 are shown in Fig. 2. There
are no discernible visual differences between the L2 and PE fields (see, e.g.,
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Figure 3: The normalized rms errors E for ψ as a function of time from the
QG, GM, LBEM, IG2, L1, IG3, BEM, and L2 models compared to PE for
the weak jet experiment (left) and for the basic case experiment (right).
Note the different scales for the errors in the top and bottom panels. The
type of line representing the errors from each model is consistent for both
experiments.

Fig. 4). The close agreement of the ψ1 and ζ1/f0 fields from the L1 model
with the corresponding fields from the L2 model, and thus with the PE, is
apparent.

The normalized errors for the streamfunction field ψ(x, y, z, t) from the L1
and L2 models relative to PE for the weak jet and basic case experiments are
shown in Fig. 3. Similar error characteristics are found for the other variables.
For comparison, the errors from other intermediate model solutions as re-
ported in Allen and Newberger (1993) are included. The other models are the
quasigeostrophic (QG) equations (Pedlosky, 1987), the geostrophic momentum
(GM) approximation (Hoskins, 1975), the linear BEM model (LBEM) (Allen
and Newberger, 1993), the IG2 and IG3 iterated geostrophic models (Allen,
1993), and the balance equations based on momentum equations BEM model
(Allen, 1991; Holm, 1996).
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Figure 4: Contour plots of the ψ1 and ζ1/f0 fields at day 70 of the basic case
experiment from PE, L2, L1, GM and QG. Contour intervals and scaling of
axes as in Figs. 1 and 2.

The errors are plotted with two different scales. An expanded scale plot is
included at the bottom to show clearly the relative errors of the more accurate
models. In both experiments, the errors from the L1 model are substantially
lower than those from QG, GM or LBEM. That fact is further illustrated by
a comparison of the ψ1 and ζ1/f0 fields at day 70 of the basic case experiment
from PE, L2, L1, GM and QG (Fig. 4). The L2, BEM, and IG3 models give
approximate solutions with generally high accuracy. The balance equations BE
(Gent and McWilliams, 1983) (errors not plotted) also give accurate solutions
comparable to those of BEM. The errors from the new L1 model, however, are
generally relatively small and remain so during the experiments. In the basic
case experiment, the errors from L1 and IG2 are comparable for t < 50 days
with IG2 slightly lower. After day 50, the errors for IG2 become considerably
larger than those from L1. Similar qualitative behavior is found in the weak jet
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Figure 5: The normalized rms errors E for ψ as a function of time from the
L1, IG3, BEM and L2 models compared to PE for the strong jet experiment.
The type of line representing the errors from each model is consistent with
Fig. 3.

experiment. The inviscid IG2 model does not have exact analogues of potential
vorticity conservation on fluid particles or of conservation of volume integrals
of energy (Allen, 1993). The L1 model, of course, does have analogues of these
conservation equations, given in (3.28) and (3.30). It seems possible that the
tendency of the IG2 model errors to increase at large time, while the L1 errors
remain relatively constant, may be related to the differences in the models with
regard to possession of analogue conservation equations for potential vorticity
and energy.

In the basic case experiment the L2 model gives the most accurate approx-
imate solution with errors that remain small for the duration (90 days) of the
experiment. The same characteristic is found in the strong jet, O(1) Rossby
number, experiment (Fig. 5).

It is noteworthy that the L1 model has the smallest errors of any of the
approximate models in Allen and Newberger (1993) that advect a vorticity
of the form ζ1 = ∇2φ. Those models include QG, LBEM, and the linear
balance equations (LBE). All of the more accurate models advect a higher
O(ε) approximation to the vorticity similar to that of L2 or, e.g., of IG2,
where the advected vorticity ζ2 is given by (5.6). From a comparison of the
model errors in Allen and Newberger (1993), it appeared that advection of
vorticity with O(ε) accuracy was a necessary property for an accurate model.
The relatively small errors found with the L1 model do not seem to fit with
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that idea. In the L1 model, the vorticity of the advecting velocities

ζ = ∇2ψ = ∇2φ − ε2J(φx, φy) + O(ε2) , (6.2)

is accurate to O(ε) and that feature may contribute to the relatively small
errors found with L1. Additionally, the requirement in L1 that∫ 0

−1
dz ψ =

∫ 0

−1
dz φ , (6.3)

which follows from the constraint (3.22), i.e., from (5.10) with α = 0, may
provide additional accuracy.

7 Summary comments

The L1 model produces generally accurate approximate solutions for the ideal-
ized, moderate Rossby number, mesoscale oceanographic flow problems exam-
ined in Allen and Newberger (1993). These solutions are not quite as accurate
as those from the BEM or BE models, but are substantially more accurate
than those from GM or QG, and are better for large time than IG2. The L2
model produces extremely accurate approximate solutions, with errors that
are typically smaller than all of the other models evaluated. The relative com-
plexity of the L2 model, however, may inhibit its general applicability. On the
other hand, the results found for L1 are particularly encouraging. The fact
that L1 is capable of producing accurate solutions for moderate Rossby num-
ber mesoscale flows, coupled with the capability of the general L1 model of
section 3 to represent larger-scale flows with horizontally variable f , H, and N2

on gyre scales, provides motivation for further development and application.
In summary, we note that the L1 and L2 models appear to realize some of

the potential anticipated for approximate equations derived from Hamilton’s
principle. The accuracy of the L1 model solutions seems better than expected
based on the asymptotics involved in its derivation. In addition, the errors
from both L1 and L2 remain small as time increases, which may be the desired
consequence of retaining analogue energy and potential vorticity conservation
laws.
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8 Appendix — numerical methods

The numerical finite-difference approximations for the model equations in sec-
tion 4 are discussed in this appendix. For consistency, the difference approxi-
mations are presented here in terms of the dimensionless variables of sections
3, 4, and 5 although the numerical solutions are obtained in corresponding di-
mensional variables. The finite difference grid for the variables (ψ, χ,w, φ) and
the corresponding spatial difference operators are identical to those described
in appendix A of Allen and Newberger (1993). Thus, those definitions are not
repeated here.

The governing equations in difference form, corresponding to (5.14), (5.15),
(5.16), (5.6), (5.7), (5.17) and (5.18) are

δzw + ∇2χ = 0 , (A1)

∇2φt + δz(S−1δẑφt) = RQ + εα2{J(δxφ
x
, δyφ

y)}t, (A2)

∇2χ = −∇2φt + Rζ + εα2{J(δxφ
x
, δyφ

y)}t, (A3)

∇2ψ2 = ∇2φ − 2αεJ(δxφ
x
, δyφ

y), (A4)

∇2χ2 = α{ − J(φ,∇2φ) − ν∇6φ + ∇2L−1(J(φ,Lφ) + ν∇6φ)} , (A5)

∇2G = RG , (A6a)

∇2ψD + δz(S−1δẑψD) = δz[(S−1G) − αεI ′2] , (A6b)

where (5.5) holds and where

RQ = Rζ + RDZθ , (A7a)

Rζ = −J(ψ, ζ2) − ε
[
∇ · [w∇δẑψ2

z + ζ2∇χ]

+J
z(I2, δẑφ)

]
− ε2J(w, δẑχ2)

z − ν∇4ζ2), (A7b)

RDZθ = −δz

{
S−1[J(ψẑ, δẑφ) + ε[∇ · (δẑφ∇χ

ẑ) + δẑ(wδẑφ
z)]
]}

, (A7c)

RG = −2[δẑJ(δxψ
x
2 , δyψ

y
2) − αδẑJ(δxφ

x
, δyφ

y)] + ε

{
−δẑJ(ζ2, χ)

−δẑJ
z(w, δẑψ2) − δẑ∇ · (ζ2∇ψD) + δẑ∇ · (I2∇δẑφ)

z

+∇2
[
∇ψD

z · ∇δẑψ2 + J(δẑψ2, χ
z
D) − δẑ(δẑφI2

z) + δẑ(I2δẑφ)
z
]

+δẑJ(ψ2, χ2) + ∇2δẑχ2t + ν∇6δẑχ2

}
+ ε2

{
δẑ∇ · (w∇δẑχ2

z)

+∇2
[
∇χ̄zD · ∇δẑχ2 + J(ψzD, δẑχ2)

]
+

1
2
∇2δẑ(| ∇χ2 |2)

}
, (A7d)
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and the operator L (4.2) in (A5) is

L ≡ ∇2 + δz(S−1δẑ) . (A7e)

The function

I2(z) = I2(zk+(1/2)) =
z∫

−1
dz′ (∇2ψD + αεδz I

′
2) , (A8a)

where the z integration is calculated as described for w in (A11) of Allen and
Newberger (1993) and

δzI
′
2 = −{2J(uD, δxφ

x) + 2J(vD, δyφ
y)

+J(∇2χD, φ) + ν∇6χD

+L[J(φ,L−1∇2χD)] − J(Lφ,L−1∇2χD)} , (A8b)

where
uD = −δyψ

y
D + δxχ

x
D , vD = δxψ

x
D + δyχ

y
D . (A8c, d)

We advance in time by using the implicit time difference scheme described
for the balance equations (BE) in Allen and Newberger (1993). The equations
(A2) and (A3) are time differenced as

∇2δ
n+ 1

2
t φ + δz(S−1δẑδ

n+ 1
2

t φ) = RQ
n+ 1

2 + RJT n+
1
2 , (A9a)

∇2χn+
1
2 = −∇2δ

n+ 1
2

t φ + Rζ
n+ 1

2 + RJT n+
1
2 , (A9b)

where
RJTn+

1
2 = εα2 δ

n+ 1
2

t J(δxφ
x
, δyφ

y) . (A9c)

Equations (A1), (A4), (A5) and (A6a,b) are assumed to hold at each time
level t = n∆t.

It follows from (A9a,b,c) that

∇2φn+1 + δz(S−1δẑφn+1) = RIQ, (A10a)

∇2χn+1 = RIζ, (A10b)

where

RIQ = ∇2φn + δz(S−1δẑφn) + ∆t RQ
n+ 1

2 + ∆tRJTn+
1
2 , (A11a)

RIζ = −∇2χn + 2[ − ∇2δ
n+ 1

2
t φ + Rζ

n+ 1
2 ] + 2RJTn+

1
2 . (A11b)

In solving (A10a) for φn+1 and (A6b) for ψn+1D , and calculating the L−1

terms in (A5) and (A8b), an expansion in terms of vertical linear normal modes
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is utilized as described in equations (A22) and (A23) in Allen and Newberger
(1993).

With all variables known at t = n∆t and at previous time levels, we solve
(A10a,b), (A3), (A4) and (A6a,b) by iteration. Estimate all variables except
ψ2 and χ2 at t = (n + 1)∆t by extrapolation, e.g., φn+1 = 2φn − φn−1. Solve
(A4) and (A5) for ψn+12 and χn+12 . Use these estimates in the rhs of (A10a) and
(A10b). Solve (A10a) for φn+1. Substitute the new value of φn+1 in the time

derivative term
(
−∇2δ

n+ 1
2

t φ

)
on the rhs of (A10b) and solve (A10b) for χn+1.

Calculate wn+1 from (A1). Using φn+1, calculate ψn+12 from (A4), χn+12 from
(A5) and χn+1D = χn+1 −χn+12 . Approximate χ2t in (A6a) as (χn+12 −χn2 )/∆t.
Substitute in the rhs of (A6a) and solve (A6a) for Gn+1. Calculate δzI

′
2 (A8a)

and the rhs of (A6b) and solve (A6b) for ψn+1D . Return to the step where
(A10a) is solved for φn+1 and substitute the latest values for the variables at
t = (n + 1)∆t in the rhs. Repeat the cycle until convergence is obtained.

At t = 0, φ0 is specified. Initial-values for ψ0
D, χ

0, ψ0
2, χ

0
2 and w0 are found

by an iterative procedure. Estimate ψ0
D = χ0 = w0 = 0. Calculate ψ2 (A4) and

χ2 (A5) which only depend on φ0. Calculate ψ0
D from (A6a,b) with χ2t set to

zero, φ0t from (A2), χ0 from (A3), and w0 from (A1). Repeat the calculations
until convergence for ψ0, χ0, w0, and φ0t is obtained. For the first time step,
estimate φ1 = φ0 + ∆tφ0t , ψ

1
D = ψ0

D, χ
1 = χ0, w1 = w0 and calculate ψ1

2 and
χ12 from (A4) and (A5) using the estimate for φ1 and proceed with the general
implicit time difference scheme.
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Fast Singular Oscillating Limits of
Stably-Stratified 3D Euler and
Navier–Stokes Equations and Ageostrophic
Wave Fronts

A. Babin, A. Mahalov, B. Nicolaenko

1 Introduction

Flows that are stably-stratified or are rotating have certain distinct charac-
teristics which, unlike many flows, vary greatly in their form depending on
how the flows are initiated. The characteristics also change as the flows move
towards their respective equilibrium or quasi-equilibrium states. The initial
effects of rotational and buoyancy forces with time scales 1/f0 and 1/N0, re-
spectively, are to produce internal waves on those time scales and hence to ex-
change energy between distant points in the flow leading to significant changes
in the form of the imposed flow. Here N0 is the Brunt-Väisälä wave frequency
and f0 = 2Ω0 is the Coriolis parameter. The significance of the wave motion
depends on the relative magnitude of the flow’s time scale, T , to the rotational
and buoyancy time scales. The length scales L and geometric shape (especially
the ratio of the vertical to horizontal scale, H/L) of the initial disturbances
are equally significant in determining the anisotropic form of the wave motion
and the orientation of the constrained equilibrium forms, such as the ‘Tay-
lor’ columns parallel to the rotation axis in rotation-dominated regimes, or
the horizontal ‘pancakes’ or fronts characteristic of strong stable stratification
in stratification-dominated regimes with rotation. The main objectives of a
global mathematical study of these flows should be (cf. Cullen [25]):

(a) to identify, understand and quantify the key mechanisms, especially
those dependent on nonlinear and frontal dynamics where numerical
methods and linear analyses provide inaccurate and incomplete solu-
tion, and how they interact with others as the relative strengths of the
rotational and buoyancy forces vary;

(b) the behaviour of the flows as the initial and boundary conditions vary,
for example in the formation of fronts or multiple fronts, and whether
or not they exhibit chaotic behaviour when averaged over timescales of
interest (1/f0 or 1/N0);

(c) to find efficient ways of calculating the flows using asymptotic and com-
putational techniques;
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(d) to assess how local and global errors might build up in approximate
calculations.

The new mathematical approach reviewed here enables novel answers to be
provided to the above questions; they are novel in that they are quite general
and not specific to particular flows. The methods are based on the earlier
theory of one-dimensional nonlinear oscillators (van der Pol, Bogoliubov) and
of splitting the governing equations and the fields that satisfy them, in the case
of three-dimensional unsteady inviscid rotating stratified flows, into quasi-
geostrophic motions (zero horizontal divergence) and ageostrophic motions
with non-zero horizontal divergence and a vertical velocity component that is
a prognostic variable, a concept originated by Charney [20] and explained in
detail by Gill [36] and Pedlosky [63]. The first step in this approach is to express
the velocity as a modulation, varying on a ‘slow’ time scale T , of asymptotically
much higher frequency oscillations, varying on time scales 1/f0 or 1/N0. It is
then found that the nonlinear terms consist mainly of products of oscillatory
functions with different periods. The second step is to average over time scales
that are large compared to 1/f0 or 1/N0, which ensures that only the terms
containing the products of resonant frequencies make a contribution. These
initial disturbances are represented as Fourier series and it is found that only
a restricted infinite series of Fourier coefficients need be evaluated to calculate
these slow nonlinear terms and the ‘slow envelope’ variations of the flow (the
restrictions are to resonant interactions of wave vectors). Thence many other
aspects of the flow on this time scale can be derived, and many of the questions
in (a)–(d) can be addressed. The third step is to separate regular terms in the
averaged equations that depend continuously on parameters from the singular
terms that depend discontinuously on the parameters; these two types should
be treated in a different way.

This approach is quite different from the usual perturbation approach (e.g.
geostrophic theory or rapid distortion theory) when the solution is expressed
as a Taylor expansion or asymptotic expansion. Because these series typically
are divergent with a finite ‘radius of convergence’ (which is usually very small)
they become invalid after a short time. Therefore, unlike the van der Pol aver-
aging method, they are not suitable methods for calculating flows over many
time periods. Since these new methods show that errors in calculation on the
slow time scales are controlled and do not grow, they indicate that errors in
prediction grow more slowly than might be estimated from the initial value
problem or from simple error estimates. A particularly critical problem of
geophysical fluid dynamics that can be analysed using this approach, is the
development of sharp interfaces in rotating stratified flows (see Section 9).
These interfaces are where much of the ‘weather’ and other kinds of mixing
events occur, such as the boundaries of the polar vortex. It is known that such
interfaces can form from initial disturbances (e.g. Hoskins & Bretherton [41])
because of the variation of group speeds of waves of different wave lengths. But
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all the various different ways that fronts can form are not yet well established
because the atmosphere is usually in a metastable state implying it has the
capability of spawning large convective disturbances from smaller ones and
small waves on fronts can grow into larger ones. These events will always be
very difficult to predict, but the consequences of such growing disturbances
in rotating stratified flows should be amenable to better understanding and
analysis; that is the object of this review. One of the major difficulties encoun-
tered in understanding the dynamics of geophysical flows is the influence of
the oscillations generated by rotation and stratification (buoyancy forces).

Very useful and thought provoking multi-scale analyses of rotating/stratified
turbulence are presented in Riley et al. ([66]), Lilly ([49]), McWilliams ([56]).
In particular, they argue that the velocity field of a rotating, stably-stratified
fluid may be regarded as a superposition of waves which are modulated on a
longer turbulence time scale. In our approach, the collective contribution to
the dynamics made by waves is accounted for by rigorous estimates of wave
resonances and quasi-resonances via small divisors analysis. Our theory han-
dles rigorously all 3-wave resonances, but goes much deeper into the structure
of quasi-3-wave resonances and their contributions. This mathematical ap-
proach in the context of geophysical flows was initiated in Babin, Mahalov &
Nicolaenko (henceforth BMN) [5], Mahalov & Marcus [53]. In the context of
symmetric hyperbolic systems, related singular limits have been investigated
by Joly–Metivier–Rauch [43] and Schochet [69]. In Bartello ([16]), the relative
physical importance of different resonances is discussed in depth. From the
rigorous mathematics of such fast singular oscillating limits induced by fast
inertio-gravity waves, we obtain a strong nonlinear interaction theory between
potential vorticity dynamics and waves. Interactions between internal waves
and the vortical (quasi-geostrophic) modes remained as one of the important
questions to be addressed by strong interaction theory (Müller, Holloway et
al., [61]; Warn, [74]; Farge & Sadourny, [29]; Lelong & Riley, [47]).

The governing flow equations for 3D rotating stably-stratified fluids under
the Boussinesq approximation are

∂tU+U · ∇U+ f0e3 ×U = −∇p + ρ1 e3 + ν1∆U+ F, ∇ ·U = 0, (1.1)
∂tρ1 +U · ∇ρ1 = −N2

0U3 + ν2∆ρ1 + F4, (1.2)
U(t, x)|t=0 = U(0, x), ρ1(t, x)|t=0 = ρ1(0, x) (1.3)

where rotation and the mean stratification gradient are aligned parallel to the
vertical axis x3. Here x = (x1, x2, x3),U = (U1, U2, U3) is the velocity field and
ρ1 is the buoyancy variable (relative density variation); N0 is the Brunt-Väisälä
wave frequency for constant stratification and Ω0 is the frequency of back-
ground rotation, f0 = 2Ω0, F = (F1, F2, F3). Eqs. (1.1) and (1.2) are sometimes
called the primitive (non-hydrostatic) equations of geophysical flows. In this
chapter we consider the 3D initial value problem (1.1)–(1.3). We focus on both
the inviscid situation and that with small uniform viscosities, ν1 ≥ 0, ν2 ≥ 0;
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here ν1 and ν2 are the kinematic viscosity and the heat conductivity, respec-
tively; the ratio Pr = ν1/ν2 is known as the Prandtl number. We consider
periodic boundary conditions in a parallepiped [0, 2πa1]× [0, 2πa2]× [0, 2πa3],
as well as stress-free conditions U3 = 0, ∂U1/∂x3 = ∂U2/∂x3 = 0 at x3 = 0,
2πa3 (see [26]). For stress-free conditions one only needs to restrict the Fourier
series to be even in x3 for U1, U2 and odd in x3 for U3, ρ1.

Let Uh be a characteristic horizontal velocity scale. Let H and L be the ver-
tical and horizontal length scales and a = H/L be the aspect ratio parameter.
We define Froude numbers based on horizontal and vertical scales:

Fh = Uh/(LN0) ≡ 1/N, Fv = Uh/(HN0) = Fh/a. (1.4)

The classical Rossby and anisotropic Rossby numbers are defined as follows

Ro = Uh/(f0L) ≡ 1/f, Roa = aRo, a = H/L. (1.5)

In Eqs. (1.4)–(1.5) f = Ro−1 and N = F−1
h are dimensionless rotation and

stratification parameters. The Burger number characterises relative impor-
tance of the effects of rotation and stratification (e.g. McWilliams [56]):

Bu = Ro2a/F2
h ≡ Ro2/F2

v ≡ N2a2/f2 = N2
0 a

2/f20 . (1.6)

Flows with Bu � 1 are rotation-dominated and Bu � 1 corresponds to
stratification-dominated flows. An equivalent measure of the relative impor-
tance of stratification and rotation is the internal radius of deformation Λ,
which compares (stable) density stratification effects with respect to rotation.
The internal (Rossby) radius of deformation Λ is defined as

Λ = N0H/f0, (1.7)

so that Bu = (Λ/L)2. Regimes where Bu is either much greater or much less
than 1 are both important in the atmosphere ([25]). Processes which couple
rotation and stratification, such as baroclinic instability, have Bu = O(1) as a
natural case, [36].

Regimes of geophysical dynamics presenting the global picture for small
Froude or Rossby numbers are shown in Figure 1. In [11] the asymptotic
regimes of geophysical dynamics are described for different Burger number
limits. As the Burger number increases from zero (rotation dominated flows) to
infinity (stratification dominated flows), we demonstrate gradual unfreezing of
energy cascades for ageostrophic (AG) dynamics. In the small Burger number
regime, the process of geostrophic adjustment is inefficient and the inertio-
gravity waves persist. On the other hand, in the Bu = O(1) and the large
Burger number regimes, inertio-gravity waves efficiently cascade to small scales
and are then destroyed by viscosity.

The case where there is strong rotation, but no stratification, is singular,
(Figure 1, vertical axis). We prove in [6], [9] the generalised Taylor–Proudman
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theorem which controls the dynamics, and the flow is characterised by quasi-
2D unsteady Taylor columns interacting with inertial waves ([6], [9]). In this
regime energy cascades for the AG field are frozen in the vertical direction x3
and the AG dynamics is pure phase turbulence ([6], [8]–[10]). In pure phase
turbulence, the amplitudes of the AG modes remain approximately constant
in absolute values; turbulent dynamics are restricted to the phases of the AG
modes. This regime only occurs in limited regions of the atmosphere, though it
can occur in neutrally stratified layers. A similar regime can occur in tropical
cyclones, though here it is due to rapid system rotation.

Next is the regime of strong rotation and weak stratification as shown in
Figure 1. In this regime Bu � 1 and the horizontal length scale L is large
compared with the Rossby radius Λ, L � Λ. This is the appropriate regime
for large scale planetary waves in the extra-tropical atmosphere. In this regime
energy cascades for the AG field are partially frozen in the vertical direction
x3 and the AG dynamics is predominantly phase turbulence. The total field
consists of both geostrophic motion and inertio-gravity oscillations superim-
posed on the geostrophic motion. Geostrophic adjustment is inefficient in this
regime. Observations of the internal structure of the atmosphere show that
there are a lot of persistent ‘quasi-inertia’ oscillations with large horizontal
and small vertical scale and they are also ubiquitous in the ocean ([70], [51]).

As the effects of stratification are increased (see Figure 1) AG cascades in
the vertical x3 become possible. If Bu = O(1), so that the horizontal length
scale is comparable with the Rossby radius, we are considering the synop-
tic scale (e.g. [40]). In the limit of strong rotation and strong stratification,
corresponding to Roa → 0, Fr → 0, but Bu = O(1) ⇔ L ≈ Λ, we estab-
lished splitting between 3D QG (quasi-geostrophic) and the reduced AG field
([7]). Energy cascades are now allowed (unfrozen) for the AG field but they
are restricted to anisotropic families of rays in Fourier space ([12]). Direct
restricted energy cascades of the AG field along rays provide the mechanism
for nonlinear geostrophic adjustment. This is fundamentally different from the
rotation-dominated regimes where AG cascades in x3 are frozen. This nonlin-
ear geostrophic adjustment mechanism is indeed the capacity of the AG dy-
namics for transferring to smaller scales and eventually dissipating its inertio-
gravitational energy (Sadourny, [68]). As shown by Farge & Sadourny, [29]
in the context of rotating shallow-water equations, rotation inhibits nonlin-
ear transfers and confines the inertio-gravity waves to scales larger than the
Rossby deformation radius; therefore, geostrophic adjustment is possible only
for scales smaller than the Rossby deformation radius.

The asymptotic regime Bu � 1, L � Λ holds for sub-synoptic horizon-
tal scales, or most low latitude circulations. We expect a tendency towards
horizontal density surfaces with gravity waves or gravity currents superposed
on them. In the final sections of this chapter we analyse the intermediate
asymptotic regime of strong stratification and weak rotation and we find the
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Figure 1: Geophysical Dynamics: the global picture for small Froude or small
Rossby regimes.

principal term in asymptotics for sub-synoptic horizontal scales L ≈ √
ηΛ,

Bu = (Λ/L)2 = 1/η � 1. Recalling that η ≈ 10−2 at mesoscale, our asymp-
totic analysis captures motions on horizontal scales which are about an order
of magnitude smaller than the Rossby deformation radius.

In this chapter we present an in-depth mathematical investigation of the
fast singular oscillating limits of Eqs. (1.1)–(1.3) as f → ∞, N → ∞, η =
f0/N0 = f/N fixed. In our approach, the collective contribution to the dynam-
ics made by fast ‘inertio-gravity’ waves is accounted for by rigorous estimates
of wave resonances and quasi-resonances via small divisors analysis. We briefly
recall the principle of averaging Eqs. (1.1)–(1.2) over the fast time scales of
inertio-gravity waves. The linear parts of inviscid Eqs. (1.1)–(1.2) written in
dimensionless variables are

∂tU+ fe3 ×U− ρ1e3 = −∇p, ∇ ·U = 0, (1.8)

∂tρ1 + N2U3 = 0. (1.9)
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The mathematical theory of Eqs. (1.8)–(1.9) and the corresponding non-homo-
geneous linear equations has attracted a considerable amount of attention. In
the case of pure rotation Poincaré ([64]) reduced this linear system to one
equation. Sobolev ([72]) studied the corresponding boundary problems for
Eqs. (1.8)–(1.9) (see [2] for a historical review).

We denote by E(Nt) the linear propagator solution to the initial value
problem for (1.8)–(1.9); E(Nt) is in fact a unitary group operator (preserves
all Sobolev norms). The dispersion relation for inertio-gravity waves which are
solutions of Eqs. (1.8)–(1.9) has the form

N2ω2
n = N2 |ň′|2

|ň|2 + f2
ň23
|ň|2 = N2

( |ň′|2
|ň|2 + η2

ň23
|ň|2
)

(1.10)

where ň = (n1/a1, n2/a2, n3/a3), ň′ = (n1/a1, n2/a2, 0), |ň|2 = n21/a
2
1+n22/a

2
2+

n23/a
2
3, |ň′|2 = n21/a

2
1 + n22/a

2
2, η = f/N = f0/N0. Here a1, a2 and a3 denote

aspect ratios of the domain parallepiped. We note that all results in our work
extend to boundary conditions periodic horizontally with zero flux in the ver-
tical direction e3 and no tangential stress on the boundary. One only needs to
restrict Fourier series to be even in x3 for U1, U2 and odd in x3 for U3, ρ1. Such
boundary conditions imply zero tangential stress on the vertical boundary (see
[26]).

We have

ω2
n =

|ň′|2
|ň|2 + η2

ň23
|ň|2 . (1.11)

It follows from (1.10) that the effects of rotation and stratification are not
uniform on scales. In the case |ň′|/|ň3| � 1 gravity waves are fast and inertial
waves are slow. On the other hand, for scales satisfying |ň3|/|ň′| � 1 grav-
ity waves are slow and inertial waves are faster. This non-uniformity of the
effects of rotation and stratification on different scales lies at the very heart
of the nonlinear scale adjustment process described in Section 9. Control of
resonances and quasi-resonances which resolves this non-uniformity can only
be achieved through a careful analysis of small divisors in resonances ([5]–[12],
[14], [15]).

After applying the Leray projection on divergence-free vector fields, we in-
troduce the linear propagator directly into the nonlinearity in the dimension-
less version of (1.1)–(1.2) using the change of variables (van der Pol transfor-
mation)

U†(t) = E(−Nt)u†(t), (1.12)

where U† = (U1, U2, U3, ρ1) is the ‘fast’ field variable,; and u† the ‘slow’
Poincaré variable, after factorization via the fast oscillating (N � 1) prop-
agator E(Nt). We define

B(U†,U†) = (−P(U · ∇U),−U · ∇U4), U† = (U, U4) = (U, ρ) (1.13)
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where P is the Leray projection on divergence-free vector fields. For ν1 =
ν2 = 0, the ‘primitive’ Euler–Boussinesq equations (1.1)–(1.2), written in the
Poincaré variables u†, have the form

∂tu† = Bp(Nt,u†, u†),

Bp(Nt,u†,u†) = E(Nt)B(E(−Nt)u†, E(−Nt)u†),
(1.14)

where Bp is now an explicitly fast oscillating, non-autonomous operator in the
‘slow’ variable u†. Equations (1.14) are explicitly time-dependent with rapidly
varying coefficients. This is a problem of fast singular oscillating limits for a
non-local hyperbolic system. Analogous problems are found in nonlinear geo-
metric optics ([43]). The following equations describing asymptotic dynamics
are associated with Eqs. (1.14) (BMN [7], [9], [14], [15]):

∂tw = B̃(w, w), (1.15)

where the limit resonant operator B̃ in (1.15) is defined as

(B̃(u,v), z) = lim
T→∞

1
T

∫ T
0

(Bp(Ns,u,v), z) ds

= lim
N→∞

1
T

∫ T
0

(Bp(Ns,u,v), z) ds

(1.16)

where u, v and z denote generic time-independent vector-functions; that is, we
are averaging over the fast oscillations and keeping u, v and z adiabatically
frozen in Eqs. (1.16).

Clearly, when represented in Fourier modes in the limit N → +∞, η = f/N
fixed, the right-hand side of (1.15) will be determined by resonances ±ω′

k±ω′
m±

ω′
n = 0 within terms of the type exp(iN(±ω′

k ± ω′
m ± ω′

n)t), see (1.10)–(1.14).
Here ω′

n = 0 for QG modes and ω′
n = ωn is given by (1.11) for AG modes

(similarly, ωk and ωm). With ωn being the normalised spectral frequencies of
inertio-gravity waves given by (1.11), the dependence of resonances

Dl(k,m, n) = ±ω′
k(a1, a2, a3, η) ± ω′

m(a1, a2, a3, η) ± ω′
n(a1, a2, a3, η) = 0,

(1.17)
where l = 1, . . . , 8 (eight combinations of + and − signs), and quasi-resonances

Dl(k,m, n) = ±ω′
k(a1, a2, a3, η) ± ω′

m(a1, a2, a3, η) ± ω′
n(a1, a2, a3, η) = δ,

(1.18)
on the parameters of the problem a1, a2, a3 and η, and the algebraic geometry
of this non-standard small divisor problem, are the basis of our analysis of
fast singular oscillating limits for 3D primitive equations. In Eq. (1.18), δ =
0 for exact resonances and is a small parameter for quasi-resonances ([1]).
No resonances and quasi-resonances are neglected in our analysis but rather
weights are assigned to them according to their importance. The concept of
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quasi-resonance goes back to Poincaré. In the limit N → +∞, η = f/N
fixed, our mathematical theory handles rigorously all resonances including 3-
waves fast-fast-fast resonances and estimates the contribution of 3-wave quasi-
resonances ([7]–[15]).

In earlier papers, an approach based on choosing special sets of ‘prepared’
initial data with infinite codimension was used in Bourgeois & Beale [18] and
Chemin [21] to obtain long time existence, but it effectively filters out the
nonlinear interactions between inertio-gravity waves and the QG (potential
vorticity) fields. The first results on the global regularity of 3D Euler and
Navier–Stokes systems (1.1)–(1.3) for general ‘unprepared’ initial data were
obtained in BMN [5], [6], [9]. The first results on regularity in the context of
geophysical flows with both rotation and stratification were obtained in BMN
[7], [12]. Revealed in these papers was the crucial role of the parameters η,
θ2 = 1/a22 and θ3 = 1/a23 for the properties of the dynamics (we set a1 = 1 using
a simple rescaling; in the general case one has to put θ2 = a21/a

2
2, θ3 = a21/a

2
3).

Our conditions on smoothness of initial data and forcing term were later
relaxed in BMN [9], Avrin et al. [3] and Gallagher [31], [32], [33] (the ‘212 -
dimensional’ nonlinear limit equations for 3 wave resonances were not consid-
ered). In this chapter, we remove restrictions to non-resonant domains (non-
resonant parameters θ2, θ3) as well as to the smoothness conditions of [31],
[32], [33]. For the viscous case with both ν1, and ν2 > 0, we demonstrate the
global existence for infinite times for all values of η, a1, a2, a3, without any
restrictions (including all 3-wave resonances, [14] and [15]). We also relax (in
the viscous case) conditions on the time behaviour of the forcing term F†(t);
in contrast to [7], [9] and [31], [32], [33], no conditions are imposed here on
∂tF†. For the viscous case, our smoothness conditions for global regularity are
now the same as those for local regularity theorems.

Indeed, in regularity theorems we impose only an integral regularity condi-
tion on the forcing term F† = (F, F4):

sup
T

∫ T+1
T

‖F†‖2α−1dt ≤ M2
αF , (1.19)

with α ≥ 3/4. We do not impose (in contrast to Gallagher [31], [32], [33])
conditions on L∞ norms of F†(t). Note also that Gallagher [31], [33] assumes
that F† ∈ L2(R+, H0) which implies that

∫∞
T ‖F†‖0dt → 0 as T → ∞; that

is, F†(t) decays. We do not assume any decay of F†(t). We also consider the
case when the kinematic viscosity ν1 > 0 but ν2 = 0; in this case we prove
regularity on arbitrary large (but finite) interval when α ≥ 1.

In BMN [6], [9], [7] and here in Section 3 we obtain strong convergence
results with uniform error estimates in η, θ1, θ2, θ3 on parameter sets of full
Lebesgue measure and with initial data being in the Sobolev space H8 1

2
uni-

formly in ν1, ν2 ≥ 0. They cover the physically relevant case of huge atmo-
spheric Reynolds numbers. This is in contrast with the work of Embid and
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Majda [28] where, following general theorems of Schochet [69], they state a
pointwise convergence theorem on a small time interval [0, T ] for every value
of η, a2, a3 without explicit estimate of error; in fact, as is proven in BMN [9],
[10], it is impossible to obtain explicit, uniform estimates if one does not delete
almost-resonant sets of parameters. The limit equations are totally disconti-
nous in the Burger-like parameter η. No standard averaging theorems such as
in Schochet [69] can handle our infinite time existence Theorems 1.1 and 1.2.

Following Métais and Herring [59] we introduce a change of variables ρ1 =
Nρ and combine the velocity and buoyancy variables into one variable U† =
(U, ρ) after which Eqs. (1.1)–(1.2) written in dimensionless variables take the
more symmetric form:

∂tU† +U · ∇U† = −∇†p − NMU† + ν∆U† + F†, ∇ ·U = 0

U†(t, x)|t=0 = U†(0, x)
(1.20)

where ∇†p = (∇p, 0),F† = (F, F4) (where F4 is rescaled),

M = (S+ ηR), η = f/N,

R =

(
J 0

0 0

)
, S =

(
0 0
0 J

)
, J =

(
0 −1
1 0

)
,

(1.21)

where ν = diag(ν1, ν1, ν1, ν2) is the viscosity matrix, η being fixed.
There are three foremost issues with the analysis of (1.20) for large parame-

ters N and f . First, the nature of the limit asymptotic equations as N → +∞
and the regularity of their solutions (‘212 -dimensional’ Navier–Stokes primi-
tive equations). Second, the convergence of solutions of (1.20) to those of the
limit equations; and, finally, bootstrapping from an analysis of the first two
questions, the infinite time regularity of solutions of (1.20) for N large but
finite.

The proof of the global regularity of the 3D primitive Navier–Stokes equa-
tions (1.20) for resonant domains presented in this chapter (Sections 6 and 7)
relies on the global regularity of the ‘212 -dimensional’ limit nonlinear ‘prim-
itive’ Navier–Stokes equations and techniques for convergence theorems as
N → ∞ developed in [7], [9], [3], [13]. The technique of bootstrapping reg-
ularity of solutions of the 3D Navier–Stokes equations by perturbation from
limit equations has been done in various contexts, for example, thin domains,
[65], and helical flows, [52]. In these previous works, the limit equations are
2D Navier–Stokes equations for which global regularity is well known. In the
present work, the limit equations are genuinely three-dimensional depending
on all three variables x1, x2 and x3 but with restricted wave-number inter-
actions in the nonlinear term. The existence and regularity theory for those
limit equations is non-trivial.

In [14], we demonstrated the global regularity of Eqs. (1.20) in the pure ro-
tation case (N = 0, ρ1 = 0) for large Coriolis parameters f including the case
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of 3-wave resonances with the ‘21
2 -dimensional’ limit equations. In Sections 6

and 7 below we extend the results of [14] to the full primitive 3D equations
(1.20) (N �= 0). Our main mathematical result is the uniform existence in
infinite time of regular strong solutions of Eqs. (1.20) for large but finite strat-
ification parameters N . This result holds for all domain parameters a1, a2, a3
including the case of domains with 3-wave resonances for inertio-gravity waves;
such resonances yield strongly nonlinear ‘212 -dimensional’ limit equations. The
global existence is proven using techniques of Littlewood–Paley dyadic decom-
position. The smoothness conditions we need are like those in standard local
regularity theorems and do not include the technical smoothness conditions of
BMN [7], [12]. All restrictions on the domain parameters are also removed.

In this chapter we prove the following main theorems: the Sobolev spaces
Hα of periodic functions with zero mean are defined in Eqs. (2.1)–(2.2).

Theorem 1.1 Let η = f/N and the domain parameters a1, a2, a3 be fixed
but arbitrary. Let ν1, ν2 > 0, ν = min(ν1, ν2) and the condition (1.19) on
the force F†(t, x) be satisfied. Let ‖U†(0)‖α ≤ Mα where α > 3/4. Then for
N ≥ N1(Mα,MαF , ν, a1, a2, a3), solutions of the 3D Navier–Stokes ‘primitive’
Eqs. (1.20) are regular for all t ≥ 0, and ‖U†(t)‖α ≤ M ′

α(Mα,MαF , ν, a1, a2, a3)
for all t ≥ 0.

Theorem 1.2 Let η = f/N and the domain parameters a1, a2, a3 be fixed but
arbitrary. Let ν1, ν2 > 0, ν = min(ν1, ν2), α > 3/4 and the condition (1.19) on
the force be satisfied. Let ||U†(0)||0 ≤ M0, T̂ = T̂ (M0,MαF , ν). Then for every
N ≥ N ′(a1, a2, a3, ν,MαF ), N ′ independent of M0 and for every weak solu-
tion U†(t, x1, x2, x3) of the three-dimensional ‘primitive’ Navier–Stokes equa-
tions (1.20) defined on [0, T̂ ] which satisfies the classical energy estimates on
[0, T̂ ], the following holds: U†(t, x1, x2, x3) can be extended to 0 < t < +∞
and it is regular for every t : T̂ ≤ t < +∞; U†(t, x1, x2, x3) belongs to Hα and
||U†(t, x1, x2, x3)||α ≤ C1(a1, a2, a3,MαF , ν) for every t ≥ T̂ . If F† is indepen-
dent of t then there exists a global attractor for the three-dimensional primitive
Navier–Stokes equations (1.20) bounded in Hα; such an attractor has a finite
fractal dimension and attracts every weak Leray solution as t → +∞.

Remark 1.1 In the pure rotation case [14] only the condition α > 1/2 is
imposed on the force and the initial data. Here the condition α > 3/4 is
restricted only by the minimal regularity results for the viscous QG equations,
see Section 4 below.

For the inviscid primitive Euler–Boussinesq Eqs. (1.20), we show in Section
8 that global regularity holds not simply for almost all values of the parameters
η, a2, a3 (as is stated in [31], [32], [33]), but for triplets η, a2, a3 which do not
belong to an explicitly described strictly resonant set. Specifically, (η, a2, a3)
do not belong to Θ∗ =

⋃
k,mΘ∗

k,m in the three-dimensional parameter space



Fast singular oscillating limits 137

(η, θ2, θ3) where k,m are integer wave vectors and Θ∗
k,m is, for every k, m,

a smooth analytic surface with equation η = η∗k,m(θ2, θ3) where (θ2, θ3) =
(1/a22, 1/a

2
3). Thus global regularity holds for all a2, a3 (all domains) provided

that η /∈ Θ∗(θ2, θ3). The small divisor problem for the fast oscillating limits of
Eqs. (1.1)–(1.2) is not of the simple type ±|k| ± |m| ± |n| = 0, such as in [43]
and [69].

Now we describe the structure of the limit resonant equations which will be
derived in Sections 2 and 3. From now on we are going to restrict ourselves to η
bounded, including η � 1. The case of strong rotation and weak stratification
η � 1 must be treated separately and will be published elsewhere. The case
η = ∞ (f → ∞, N = 0) was the subject of our papers on pure fast rotating
limit without stratification ([5]–[10], [14]).

For all parameters a1, a2 and a3 and all values of the parameter η = f/N
in the limit resonant equations (1.15), the total velocity w splits into the QG
field wQG(t) satisfying the 3D QG equations

∂twQG = B0(wQG,wQG) + νQG∆wQG + FQG, (1.22)

and the AG components satisfying equations of the type:

∂twAG = B2(wQG,wAG) +B3(wAG,wAG) + νAG∆wAG + FAG; (1.23)

here νQG(ν1, ν2) and νAG(ν1, ν2) are in general non-local zeroth-order pseudo-
differential operators, whenever ν1 �= ν2 (see [12]).

Eq. (1.22) results from the ‘slow’ (wQG,wQG,wQG) triads as well as all
resonant (wAG,wAG,wQG) triads (the contribution of the latter is exactly
zero in the limit, hence the operator splitting). The AG limit Eq. (1.23) is
derived from both resonant (wAG,wQG,wAG) and (wQG,wAG,wAG) triads
as well as the 3-wave resonances (wAG,wAG,wAG). Notice that the slow-fast-
slow (wQG,wAG,wQG) triads are not resonant to the lowest order in 1/N and
appear only at the next order in 1/N via 4-wave resonances (see also [16]). For
any given parameters a1, a2 and a3 there is only a rare non-dense discrete set
{ηj}∞j=1 such that only for η = ηj there are 3-wave fast-fast-fast resonances;
in particular, there is a whole interval of η centered at η = f/N = 1 where
there are no 3-wave resonances. Even in the context of η equals resonant ηj,
we demonstrate that the operator B3 in (1.23) generally induces only a finite-
dimensional dynamical system (hence no energy cascades; energy cascades
in (1.23) are controlled by B2).

The quasigeostrophic equations in the inviscid case have a global regular
solution according to Bourgeois & Beale [18]; this is also so if ν1 > 0, according
to a theorem we prove in Section 4. Note that the nonlinear operator B3

depends discontinuously on the parameters η, θ2, θ3; it is non-zero only on a
set of measure zero, namely the set Θ∗(θ2, θ3) (see the proof in BMN [9] for
the similar pure rotating case). In BMN [6], [7], [9] and in Section 3 below,
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it is shown that if one deletes a resonant set Θ∗ of parameters η, θ2, θ3, then
B3(wAG,wAG) = 0 and only ‘catalytic’ interactions described by the operator
B2(wQG,wAG) linear in wAG, rule AG dynamics:

∂twAG = B2(wQG,wAG) + νAG∆wAG + FAG, (1.24)

where wQG(t) is a solution of the 3D QG equations. Here, we refine this result
in proving that only the parameter η need not be resonant (Section 3). The
reduction to (1.24) holds for all values of the parameter η except a non-dense
set of discrete values {ηj}∞j=1 (η �= ηj). We prove here that this linear system
(1.24) has a global smooth solution even when νAG = 0, provided wQG is
smooth enough (Section 5).

Further, for all η and all a3 when a22 is irrational, B2(wQG,wAG) splits in
Fourier space into uncoupled, restricted interaction operators on 4-ray families
in Fourier space, where λ is any rational number [11], [12]: m1

m2

m3

 = λ

 ±1 0 0
0 ±1 0
0 0 ±1

  n1
n2
n3

 . (1.25)

In Eq. (1.24) direct cascades of energy are allowed for wAG through
B2(wQG,wAG). The fact that ‘catalytic’ fast-fast-slow interactions between
the QG modes and two AG modes dominate the AG dynamics is confirmed
by numerical simulations. Bartello, [16], shows that resonant 3-wave interac-
tions are of secondary importance in the overall picture of interactions when
both rotation and stratification are present. They do not lead to slow-fast
energy exchange and are difficult to resonate. An interaction is ‘catalytic’ in
that it does not influence slow modes, but serves to transfer fast AG energy
downscale. In our work, non-resonant fast-slow-slow interactions appear at the
next order in Roa or 1/N at Bu = O(1), and contribute to the feedback of
the AG field onto the QG one. Our resonance theory lets us treat them in a
systematic way as a next order term.

For such resonant values of the parameter η and/or the aspect ratios a1, a2,
a3 for which there do exist fast-fast-fast 3-wave resonances, we demonstrate
in Section 6 that the limiting ‘212 -dimensional’ Navier–Stokes equations (1.23)
do have global regular solutions on infinite time intervals, through non-trivial
estimates of B3(wAG,wAG) in Eq. (1.23). This implies the global existence on
infinite time intervals of regular solutions to the 3D Navier–Stokes primitive
equations of geophysics (1.1)–(1.2) for small Froude and/or Rossby numbers
(Section 7).

In this chapter we use the Craya–Fourier cyclic basis for representing phys-
ical fields. It is convenient to change variables so that the primitive physical
variables U, ρ1 are replaced by three new variables w = (w0, w1, w2), one
of which, w0, is effectively the potential vorticity q̃. The second variable, w1,
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is the divergent velocity potential χ = (−∆h)−1∂U3/∂x3. The third compo-
nent, w2, is related in a simple way to the vertical motion or omega equation
(e.g. [40], [34], [35]). Up to a normalization, w2 is precisely the geostrophic de-
parture/thermal wind imbalance −∇2

h(buoyancy)+f ∂
∂x3

(vertical vorticity). It
characterises imbalance in the vertical motion or omega equation. This change
of variables requires constant f and N . However, the projection can be gen-
eralised. In certain cases it is possible to use this projection with f and N
allowed to vary. This gives the so-called ‘implicit normal mode’ introduced by
Temperton ([25]). We refer to [25] for additional discussion of the Craya basis.

This article is organised as follows. In Section 2 we recast the primitive
equations in the Craya cyclic basis and present the limit resonant equations.
In Section 3, we investigate in depth resonances and quasi-resonances for both
3-waves and 2-waves. We also describe the uniform, in η, a1, a2, a3, convergence
results. These results require much less differentiability than those in BMN [7].
In fact, the approach of BMN [7] can be applied to the case η ≥ 0; here in
the case 1/η0 ≤ η ≤ η0 with fixed η0 > 1, we obtain better and simpler
estimates of small divisors which result in milder smoothness restrictions: now
only six derivatives on initial data are required for the uniform (in η, a1, a2,
a3) convergence results to the 3D QG component, with arbitrarily large AG
initial data.

In Section 4, we give regularity properties of the 3DQG equations with non-
local limit operators νQG > 0 (these are resonant limits whenever both ν1,
ν2 > 0); we also consider the partially inviscid case ν2 = 0, νQG ≥ 0 where
now the limit operator νQG is only non-negative. In Section 5, we study the
‘catalytic’ AG equations and establish their regularity in Hs, s ≥ 0, in the
inviscid case. For s > 0, this is not trivial, as only the energy is conserved (L2

norm). Although the inviscid AG equations (1.24) with νAG = 0, are linear,
their coefficients involve the time-dependent wQG(t) and the solutions need
not be bounded globally for all times in Hs norms, s ≥ 1; their properties are
very different from the pure rotating Euler case, contrary to the assertion of
[32].

In Section 6 we demonstrate the global existence of strong solutions of the
limit Navier–Stokes equations (ν1 > 0, ν2 > 0) for all domain aspect ratios and
all small Froude and Rossby numbers, including the case of 3-wave resonances
which yield nonlinear ‘212 -dimensional’ limit equations. In Section 7, we give
new regularity and existence theorems for all times of the viscous primitive
equations of geophysics with ‘unprepared’ initial data in Hα, α ≥ 3/4, includ-
ing all 3-wave resonances. We establish the regularization of Leray’s classical
weak solutions, for N and f finite, albeit large enough. In Section 8, we estab-
lish arbitrarily long-time existence results for the inviscid Euler–Boussinesq
equations with initial conditions in Hα, α > 5/2, again with arbitrarily large
‘unprepared’ AG initial data, but excluding the case of 3-wave resonances.



140 Babin et al.

In Section 9 we present our most important physical results on the nonlin-
ear dynamics of strongly stratified weakly rotating flows; we describe classes of
nonlinear anisotropic AG baroclinic waves which are generated by the strong
nonlinear interactions between the QG modes and inertio-gravity waves. In
the asymptotic regime of strong stratification and weak rotation we show how
switching on weak rotation triggers frontogenesis. The mechanism of front for-
mation is contraction in the horizontal dimension balanced by vertical shearing
through coupling of large horizontal and small vertical scales by weak rota-
tion. Vertical slanting of these fronts is proportional to

√
η where η is the

ratio of Coriolis and Brunt-Väisälä parameters. These fronts select slow baro-
clinic waves through the nonlinear adjustment of the horizontal to vertical
scale by weak rotation, and are the envelope of inertio-gravity waves. Math-
ematically, this is generated by asymptotic hyperbolic systems describing the
strong nonlinear interactions between waves and potential vorticity dynamics.
This frontogenesis yields vertical ‘glueing’ of pancake dynamics, in contrast to
the independent dynamics of horizontal layers in strongly-stratified turbulence
without rotation.

2 The limit resonant equations in the Craya–Fourier
basis

In this section we present the limit asymptotic resonant equations in the Craya
basis. The Craya basis was originally introduced in [24].

We use Fourier series expansions for fields

U†(x) = (U1(x), U2(x), U3(x), ρ(x)), x = (x1, x2, x3) :

U†(x) =
∑
n

exp(i(n1x1 + n2x2/a2 + n3x3/a3))U†
n =

∑
n

exp(iň · x)U†
n (2.1)

where U†
n are the (4-component) Fourier coefficients, [n1, n2, n3] ∈ Z3, ň =

[n1, n2/a2, n3/a3] are wavenumbers (a1 = 1). We introduce the space of func-
tions Hs with the norm defined on Fourier coefficients U†

n as follows (where
|ň| = (n21 + n22/a

2
2 + n23/a

2
3)
1/2):

||U†||2Hs
=
∑
n

|ň|2s|U†
n|2. (2.2)

We assume that all functions have zero average over the periodic parallepiped.
Stress-free boundary conditions at x3 = 0, 2πa3 correspond to U1, U2 even in
x3 and U3, ρ odd in x3. Sobolev spaces are restricted to such functions. Here,
Rn, Sn will denote the action of the operators R and S defined in (1.21) on
nth Fourier component, ηRn + Sn =Mn.
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We take into account the divergence-free condition by applying the Helm-
holtz–Leray projection Pd onto divergence-free vector fields. The matrix
(PdMPd)n is a real skew-symmetric matrix; the corresponding operator re-
stricted to the 3D subspace of divergence-free vectors U†

n has one zero eigen-
value and two complex conjugate eigenvalues ±iωn �= 0. We introduce the
divergence-free vectors (2.4) which form a real cyclic basis for it:

PdnMq0n = 0, PdnMq1n = −ωnq2n, PdnMq2n = ωnq1n, (2.3)

where Pdnqjn = qjn,

q0n =
1
ωn

(φnp0n + ηξnp2n), q1n = p1n, q2n =
1
ωn

(φnp2n − ηξnp0n). (2.4)

Here p0n, p1n, p2n form an orthonormal basis of the divergence-free subspace
for nth Fourier mode; the pjn are the Craya basis for the purely stratified
problem, already used by Riley et al. [66]:

p0n =
[
− ň2

|ň′| ,
n1
|ň′| , 0, 0

]
, p1n =

[
n1 ň3
|ň| |ň′| ,

ň2 ň3
|ň| |ň′| ,

−n21 − ň22
|ň| |ň′| , 0

]
,

p2n = e4 = [ 0, 0, 0, 1 ].
(2.5)

The eigenvalues ±iωn are given by

ωn =
√

φ2n + η2ξ2n, ξn =
ň3
|ň| , φn =

|ň′|
|ň| , η = f/N, (2.6)

where |ň|2 = n21 + n22/a
2
2 + n23/a

2
3, |ň′|2 = n21 + n22/a

2
2. We consider the case

when the ratio η = f/N is bounded by a finite η0 > 1:

1/η0 ≤ η = f/N ≤ η0, (2.7)

1/η0 ≤ min(1, η) ≤ ωn ≤ max(1, η) ≤ η0. (2.8)

In the case n1 = n2 = 0 (corresponding to taking horizontal averages) we
choose the basis which is obtained from (2.4) by setting n1 = n2 �= 0 and
taking n1 → 0. In particular, when n1 = n2 = 0, we obtain ωn = η and the
eigenvectors are

q0n = (0, 0, 0, 1), q1n =
(

1√
2
,

1√
2
, 0, 0

)
, q2n =

(
1√
2
,− 1√

2
, 0, 0

)
, (2.9)

where n = (0, 0, n3) denotes wavenumbers for which n1 = n2 = 0.
Any arbitrary divergence-free vector field U†

n can be written as

U†
n = V 0

n q0n + V 1
n q1n + V 2

n q2n. (2.10)
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We shall use the variables V to denote the vector of coefficients corresponding
to U†

n: Vn = [V 0
n , V

1
n , V

2
n ] = [V 0

n ,V
′
n], V′

n = [V 1
n , V

2
n ]. Note that the relation

between the U† and V variables is given by

V 0
n = U†

n · q0n, V 1
n = U†

n · q1n, V 2
n = U†

n · q2n. (2.11)

Clearly, V 0
n
∗ = −V 0−n and V i∗n = V i−n, i = 1, 2, for real U(x) and ρ(x). We

denote by ΠQG
n the projection onto q0n and call it as usual the QG mode:

ΠQGU†(x) =
∑
n

V 0
n q0ne

iň·x, ΠQG
n U

†
n = V 0

n q0n.

The projection onto the 2D subspace corresponding to ±iωn is denoted by
ΠAG and defines the AG component:

ΠAG
n U

†
n = V 1

n q1n + V 2
n q2n.

The case when η → 0 or η → ∞ was discussed in BMN [7]; detailed math-
ematical consideration of this can be done along the lines of that paper and
BMN [9], but requires additional non-trivial considerations; in particular the
structure of resonant sets and smoothness conditions are different from those
imposed here.

Eqs. (1.20) in Fourier representation in the V variables can be written in
the cyclic basis (2.4) as

∂tV
i3
n = −i

∑
k+m=n,i1,i2

Qi1i2i3kmn V i1k V i2m − Nωn(M ′
nVn)

i3 − (ν̂|ň|2Vn)i3 + F i3n , (2.12)

where i1, i2, i3 = 0, 1, 2, M ′ is the matrix M in the V variables given by (2.13);
ν̂ is the viscosity matrix ν in the V -basis. Here J, M′

n are given by

M′
n =

 0 0 0
0 0 −1
0 1 0

 , J =
(

0 −1
1 0

)
, (2.13)

ν̂ =
1
ω2
n

 ν1φ
2
n + η2ξ2nν2 0 (ν1 − ν2)ηξnφn

0 ν1ω
2
n 0

(ν1 − ν2)ηξnφn 0 ν2φ
2
n + η2ξ2nν1

 . (2.14)

The coefficients Qi1i2i3kmn are determined from the equations using (2.4), see
BMN[12]:

Qi1i2i3kmn = (qi1k · m)(qi2m · qi3n). (2.15)
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We use the following notation for the skew-symmetric product: n′ ∧ m′ ≡
n1m2 − n2m1. To save space, we only give formulas for 0-wave interactions;
see BMN [12] for general coefficients:

Q000
kmn =

ωm|m̌| ň′ ∧ m̌′

ωkωn|ǩ||ň| , (2.16)

when n = k + m; clearly |Qi1i2i3kmn | ≤ |m̌|. Into Eq. (2.12),

∂tVn + NωnM′
nVn = (B(V,V))n − AnVn + Fn, An = ν̂|ň|2, (2.17)

we introduce the change of variables

V = E(−Nt)v, Vn = exp(−NωnM′
nt)vn, (2.18)

where v = [v0, v1, v2] and M′ is defined by (2.13). The action of the linear
propagator on the Fourier components E(Nt) can be written in the V variables
in the Craya cyclic basis as

E(Nt)[V 0,V′]n = exp(NωntM′
n)[V 0,V′]n = [V 0, exp(NωntJ)V′]. (2.19)

Obviously, E(Nt) represents vector rotation in the V 1–V 2-plane; the orthog-
onal V 0 component (called QG) along the axis of rotation is not affected. To
save space, we always write Vn = [V 0,V′]n as a row, understanding that it is
a column in the matrix multiplication. Eq. (2.17), written in the v variables,
has the form

∂tv = Bp(Nt,v,v) −E(Nt)AE(−Nt)v+ FQG +E(Nt)FAG,(2.20)
Bp(Nt,v,v) = E(Nt)B(E(−Nt)v,E(−Nt)v), (2.21)

where F† = FQG + FAG in the Craya basis and A is the non-local operator
such that An = ν̂|ň|2. Eq. (2.20) is explicitly time-dependent with rapidly
varying coefficients. The corresponding equations for Fourier coefficients have
the form:

∂tv
i3
n =

∑
n=k+m,i1,i2

Q̃i1,i2,i3kmn vi1k vi2m

+
∑

n=k+m,i1,i2

Q̂i1,i2,i3kmn (Nt)vi1k vi2m − Ãnv
i3
n − Ân(Nt)vi3n

+FQG,n +En(Nt)FAG,n (2.22)

where the first sum consists of resonant terms. In the second sum every matrix
element Q̂i1,i2,i3kmn (Nt) of the non-resonant part, as well as Ân(Nt), equals a
sum of terms of the form C exp(±iD,Nt) with D, �= 0. Generally, D, =
±ω′

n ± ω′
m ± ω′

k, M = 1, . . . , 8, where either ω′
n = ωn or ω′

n = 0. When D, = 0
we call these interactions resonant, and when D, �= 0, the interactions are
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non-resonant; see BMN [9] for more details. When all three ω′
n, ω

′
m, ω′

k are
non-zero we have strict 3-wave resonances; when exactly two of ω′

n, ω
′
m, ω′

k are
non-zero we have 2-wave resonances; when exactly one of ω′

n, ω
′
m, ω′

k is non-
zero we have 1-wave resonances. We have shown in BMN [7], [12] that for all
but a countable non-dense set of η, all 3-wave interactions are non-resonant
and thus do not contribute to the limit equations; see Section 3 for details.

The resonant contribution Ãn from the viscous term does not coincide with
the original operator ν̂∆ since ν̂ does not commute with M . Simple compu-
tation gives the resonant terms. Let ν1 and ν2 be the kinematic viscosity and
the heat conductivity, respectively. We have, in the V -basis

exp(P dM ′P dNt)ν̂ exp(−P dM ′P dNt) = diag(νQG(n), νAG(n), νAG(n))
+�(2Nωnt), (2.23)

where all elements of the non-resonant matrix � include factors exp(±i2Nωnt);
ν̂ is given by (2.14). Thus we obtain the diagonal non-resonant matrix ν̃(n) =
diag(νQG(n), νAG(n), νAG(n)) in terms of the QG and AG viscosities νQG and
νAG given by (see BMN [12])

νQG(n) = ν2 + (ν1 − ν2)
|ň′|2

|ň′|2 + η2ň23
,

νAG(n) = ν1 + (ν2 − ν1)
|ň′|2

|ň′|2 + η2ň23

(2.24)

where η = f/N , |ň′|2 = n21 + n22/a
2
2, ň3 = n3/a3. Clearly

νQG(n) = ν1
|ň′|2

|ň′|2 + η2ň23
+ ν2

η2ň23
|ň′|2 + η2ň23

= ν1
φ2n
ω2
n

+ ν2
η2ξ2n
ω2
n

, (2.25)

ν = min(ν1, ν2) ≤ νQG(n) ≤ max(ν1, ν2) (2.26)

and the same inequality holds for νAG(n).
The following equations describe the reduced dynamics which are obtained

by annihilating all terms in (2.22) that contain fast oscillating factors:

∂tw = B̃(w,w) − Ãw + F̃, (2.27)

where Ã = −ν̃∆ and where ν̃ is the non-local linear matrix operator with
symbol ν̃(n) (when F depends on Nt, the limit equations may include F̃1-
and F̃2-resonant components). Clearly, when represented in Fourier modes,
the operator B̃ on the right-hand side of (2.27) has coefficients Q̃i1,i2,i3kmn in
(2.22) and the resonant reduced equations are

∂tw
i3
n =

∑
n=k+m,i1,i2

Q̃i1,i2,i3kmn wi1k w
i2
m − Ãnw

i3
n + F̃ i3n , (2.28)
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where Ãn = ν̃(n)ň2 and the summation is over resonant terms. In Eq. (2.28)
F̃ i3n = F̃QG,n for i3 = 0 and F̃ i3n in the appropriate component of F̃AG,n for
i3 = 1, 2. Projecting Eq. (2.28) on the QG mode (with i3 = 0) and projecting
to the AG subspace we obtain separately the equations for the QG and AG
components. In this article we usually consider the case FAG non-resonant.

We note that projection of (2.27) onto the QG mode (which corresponds
to zero eigenvalue of the linear problem) leads to the additional constraint
ω′
n = 0. Then the conditions ±ω′

k ± ω′
m ± ω′

n = 0 and ω′
n = 0 reduce to 2-

wave interactions ωk = ωm. For η �= 1 the condition ωk = ωm is equivalent
to |ǩ′|/|ǩ| = |m̌′|/|m̌| (equivalently, φk = φm – see (2.6)). Clearly, reduced
equations (2.27) projected onto the QG mode involve only the coefficients
Qi1i2i3kmn with i3 = 0 (n = k+m). One trivial solution of ω′

k = ω′
m is ω′

k = ω′
m = 0

which corresponds to the QG coefficient Q000
kmn. An important observation is

that other terms involving the coefficients Qi1i20kmn (i1 �= 0 or i2 �= 0) in (2.27)
are annihilated for all n, m when the resonance condition φk = φm is used
(see BMN [7], [12]). Therefore the quasigeostrophic component of the resonant
equations (2.27) completely decouples. This fact was proved in BMN [7], [12]
by direct computation and also by Embid & Majda [28] using Ertel’s theorem.

The QG equation (1.22) is given by

∂tw
0
n = B0(w0, w0)n − ÃQG

n w0
n + F̃QG,n,

B0(w0, w0)n = −i
∑
k+m=n

Q000
kmnw

0
kw

0
m.

(2.29)

We introduce variables q̃, ŨQG, Ψ̃0 (QG potential, velocity and stream func-
tion):

q̃m = ωm|m̌|w0
m, Ũk = [−k2/a2, k1, 0, 0]Ψ̃0

k, Ψ̃0
k =

q̃k

(ω2
k|ǩ|2)

. (2.30)

Recalling that ω2
k|ǩ|2 = |ǩ′|2 + η2ǩ23 , η = f/N , we have the familiar formula

which relates Ψ̃0 and q̃ in physical space:

−(∇2
h + η2∂23)Ψ̃0 = q̃. (2.31)

Using (2.30), Eq. (2.29) can be written in the form

∂tq̃n = −i
∑
k+m=n

(Ũk · m)q̃m − ÃQG
n q̃n + ωn|ň|F 0

n (2.32)

where F 0
n = FQG,n in the Craya basis. The field q̃(t, x) obeys in physical

space the 3D QG equations (see [18] for the inviscid case) where the vis-
cous dissipation operator ÃQG is a linear pseudo-differential operator which
in Fourier representation is multiplication by ÃQG

n = νQG(n)|n|2, with νQG(n)
given by (2.24).
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Thus, in the asymptotic limit equations (2.27) with w = (w0, w1, w2) splits
into the limit QG field w0(t) = wQG satisfying (1.22), which is uncoupled from
wAG to the lowest order, and into the AG component wAG = (w1, w2), which
satisfies in general equations of the type

∂twAG = B2(wQG(t),wAG) +B3(wAG,wAG) − ÃAGwAG + F̃AG. (2.33)

In Fourier representation this is

∂twi3AG,n =
∑

k +m = n, i1, i2;
±ω′

k ± ω′
m ± ω′

n = 0

Q̃i1i2i3kmn wi1k wi2m − νAG(n)|ň|2wi3n + F̃ i3AG,n, (2.34)

where i3 �= 0; i1, i2 = 0, 1, 2. These are the ‘21
2 -dimensional’ resonant equations

in the Craya basis for the AG component wAG = (w1, w2). In (2.34), the
catalytic operator B2 corresponds to either i1 = 0 or i2 = 0, and ωm = ωn or
ωk = ωn.

Eqs. (2.34) for wAG without 3-wave interactions (that is, where either i1 = 0
or i2 = 0) always include two invariant subsystems: the first consists of modes
with n3 = 0 (it corresponds to invariance with respect to vertical averag-
ing). This follows from the condition for 2-wave resonances ωm = ωn which
is equivalent to |m3|/|m̌| = |n3|/|ň|; therefore n3 = 0 implies m3 = 0. The
second subsystem corresponds to n1 = n2 = 0 since the condition for 2-wave
resonances ωm = ωn is equivalent to |m̌′|/|m̌| = |ň′|/|ň| and n′ = 0 implies
m′ = 0 (horizontal averaging). In [12] it was shown that horizontally-averaged
velocity and density are adiabatic invariants of 3D primitive equations in the
strongly-stratified limit in the absence of rotation (they are exactly conserved
by the asymptotic limit equations). Note that horizontally-averaged density is
still an adiabatic invariant for the case with rotation, η �= 0 ([12]), as long as
Bu �= 0.

3 Small divisors and uniform convergence results

In this section we detail the algebraic structure of resonant and quasi-resonant
sets and present new regularity and strong uniform (in η, a2, a3) convergence
results for the limit resonant equations. The uniform convergence results are
substantial improvements over the corresponding ones in BMN [7] in that much
less regularity is required for the initial data, with the Sobolev space H17/2

being the worst and H4 being the best case. Since 3-wave interactions in (2.33)
discontinously depend on η, any strong convergence of AG-components on a
fat set of η, uniform in the parameter η, can only be to equations (1.24) (see the
discussion of uniform convergence in BMN [9]). Uniform error estimates cannot
circumvent control of small divisors and sharp estimates of both near 3-wave
and near 2-wave resonances. Here we investigate the density and probability
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of both 3-wave and 2-wave resonances as functions of η and two geometric
parameters a2, a3 (with a1 = 1).

We recall some facts on the geometry of resonances (see [13]). We denote

η = f/N, θ1 = 1/a21, θ2 = 1/a22, θ3 = 1/a23. (3.1)

Let K denote the set of resonant wavenumbers k, m, n for given η, a1, a2, a3:

K = {(k,m, n) : ±ω′
k ± ω′

m ± ω′
n = 0}, (3.2)

where ω′
n = 0 for QG modes and ω′

n = ωn for AG modes and similarly for k
and m.

For non-generic values of these parameters, the limit inviscid equations for
the AG field wAG are nonlinear; for i3 �= 0,

∂twAG = B2(wQG(t),wAG) +B3(wAG,wAG); (3.3)

B3(wAG,wAG)i3n =
∑

(k, m) ∈ K∗

k +m+ n = 0
i1, i2 = 1 or 2

Q̃i1,i2,i3kmn wi1k w
i2
m;

we may easily computer B3 in the Craya cyclic basis; we give no detials here
for the sakes of conciseness. For B3, the domain of summation K∗ (3-wave
resonances) (k,m) ∈ K∗ is defined by the condition ±ωn ± ωm ± ωk = 0
where each ωn, ωm, ωk �= 0 depends on (η, 1/a22, 1/a

2
3) = (η, θ2, θ3); that is

K∗ = K∗(η, θ2, θ3). For every fixed θ2 = 1/a22 and θ3 = 1/a23, the summation
set K∗(η, θ2, θ3) is not empty when η ∈ Θ∗(θ2, θ3); the singular set Θ∗(θ2, θ3) is
very thin, indeed it is countable. We call it a strict 3-wave resonant set. When
η ∈ Θ∗(θ2, θ3) is strictly resonant, B3 is non-zero and depends strongly on
η; the sets K∗(η, θ2, θ3) with different, but nearby, η do not intersect (a non-
trivial result from the study of the small divisor problem, cf. [13]). This implies
that the operator B3 depends on resonant η discontinuously at every point
η ∈ Θ∗(θ2, θ3) that is a point of discontinuity of the operator B3. Since B3 is
not zero, solutions of the limit system with general initial data discontinuously
depend on η as well. The solutions of the original rotating Euler–Boussinesq
equations depend on η continuously (on a small time interval [0, T1]), uniform
in η, a2, a3. When (k,m, n) /∈ K∗ (i.e. η /∈ Θ∗), only the catalytic operator B2

is present. We refer to [11], [12] and [13] for an extensive study of the analytic
form and properties of B2; see also Section 5.

The uniform estimates of convergence following BMN[9] are reduced to the
small divisor estimates. The case η = 1 is very special. It is much simpler, but
requires separate considerations since ωn = 1, for all n in this case; when 1/9 <
η < 9 3-wave resonances are absent and small divisors for 3-wave resonances
are very well estimated, but estimates for 2-wave resonances become worse as
η → 1; therefore we assume |1 − η| ≥ c0 > 0.
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For η ∈/ Θ∗, Eqs. (3.3) reduces to the linear equations for catalytic inter-
actions. Eqs. (3.3) strongly depend on θ2 = 1/a22, since the 2-wave resonance
condition ωm = ωn is equivalent to |m̌′|/|m3| = |ň′|/|n3| which is in turn
equivalent to the equation

(m2
3n

2
2 − n23m

2
2)θ2 + (m2

3n
2
1 − n23m

2
1) = 0 (3.4)

which for irrational θ2 = 1/a22 implies m2
3n

2
1 − n23m

2
1 = 0, m2

3n
2
2 − n23m

2
2 =

0 (clearly these two relations imply ωm − ωn = 0). Therefore, the vectors
(|m1|, |m2|, |m3|) and (|n1|, |n2|, |n3|) are colinear, hence for every irrational
θ2, we find B2 splits in Fourier space into uncoupled, restricted interaction
operators on 4-ray families as in (1.25). For every resonant rational point θ2 ∈
Θ∗
2, the term B2 includes more interactions (much larger, but finite number

of Fourier rays), so indeed rational θ2 are also points of discontinuity for B2

and further contribute to the non-uniformity of convergence. An important
observation is that 2-wave resonances are controlled by θ2 only, not by η or
a3. This follows from the fact that ωm = ωn implies |m3|/|m̌′| = |n3|/|ň′|.
In contrast, 3-wave resonances are controlled by η uniformly in θ2 and θ3;
although strict resonant values η = Θ∗(θ2, θ3) depend on θ2 and θ3, we prove
below that the estimate of the measure of almost resonant η does not depend
on θ2 and is uniform in θ3.

We first describe the set Θ∗(θ2, θ3) of strict 3-wave resonances. Recall that
Dl is given by (1.17)–(1.18) where ω′

k, ω
′
m, ω′

n �= 0 for strict 3-wave resonances.

Lemma 3.1 For every a2, a3, k,m there exists at most two positive roots
η±(θ2, θ3, k,m) of the equation ±ωn ± ωm ± ωk = 0, every root analytically
depends on θ2, θ3.

Definition 3.1 We put Θ∗(θ2, θ3, k,m) = η+(θ2, θ3, k,m)
⋃

η−(θ2, θ3, k,m)
and Θ∗(θ2, θ3) =

⋃
k,mΘ∗(θ2, θ3, k,m).

Proof of Lemma 3.1. Consider the case D,(k,m, n) = (ωk + ωn − ωm). Other
cases are treated in a similar way. We have the identity

1
(ωk + ωn − ωm)

=
(ωk + ωm + ωn)(−ωk + ωm + ωn)(−ωn + ωm + ωk)

(ωk + ωm + ωn)(ωk − ωm + ωn)(−ωk + ωm + ωn)(ωk + ωm − ωn)
.

The denominator is −P = ((ωk)2 + (ωm)2 − (ωn)2)2 − 4(ωk)2(ωm)2. It is a
polynomial of degree 2 of λ = η2. We write ωk in the form (see Eq. (2.6))

ωk =
√

χk + λ(1 − χk), χk =
|ǩ′|2
|ǩ|2 = φ2k, 1 − χk = ξ2k.
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With λ = η2, the polynomial takes the form P = P2λ
2 + P1λ + P0, where

P2 = χ2k + χ2m + χ2n − 2χkχn − 2χkχm − 2χmχn − 3 + 2(χk + χm + χn)
P1 = −2(χ2k + χ2m + χ2n − 2χkχn − 2χkχm − 2χmχn + χk + χm + χn)

= −[(χk − χn)2 + (χm − χn)2 + (χk − χm)2] − χk(1 − χk)
−χm(1 − χm) − χn(1 − χn)

< 0;
P0 = χ2k + χ2m + χ2n − 2χkχn − 2χkχm − 2χmχn.

The discriminant ∆P of the quadratic polynomial satisfies the symmetric for-
mula

∆P = P 2
1 − 4P2P0 = 8[(χk − χn)2 + (χm − χn)2 + (χk − χm)2] ≥ 0.

We are interested in resonant values of λ that are solutions of the equation
P (λ) = 0. There are no more than two solutions λ±(k,m). Clearly, only pos-
itive solutions λ± satisfy the constraint λ = η2; with η∗ = +

√
λ±, whenever

λ± > 0.
We also investigate quasi-3-wave resonances. For this, take a small neigh-

borhood of λ±(k,m) (quasiresonant η), defined by

P (λ) = δ,

with a small δ. Using the quadratic formula we easily obtain the derivative at
δ = 0: ∣∣∣∣dλdδ

∣∣∣∣ =
1√
∆P

=
1√

8[(χk − χn)2 + (χm − χn)2 + (χk − χm)2]
.

Since ω2
k − ω2

m = (1 − λ)(χk − χm), we can rewrite this formula as∣∣∣∣dλdδ
∣∣∣∣ =

|1 − λ|√
8[(ω2

k − ω2
n)2 + (ω2

m − ω2
n)2 + (ω2

k − ω2
m)2]

.

Now we are interested in estimating (ωk + ωn − ωm)−1 = D,(k,m, n)−1. We
consider for given η two cases:

Case I. Let |ωn − ωm| ≤ |ωk|/2; then

1
|ωk + ωn − ωm| ≤ 2

|ωk| ≤ 2η0

and in this case the divisor is not small.

Case II. Let |ωn − ωm| ≥ |ωk|/2; then

|ω2
n − ω2

m| ≥ |ωk|(|ωn| + |ωm|)
2

≥ |ωk||ωm|
2

,



150 Babin et al.

and we have the estimate∣∣∣∣dλdδ
∣∣∣∣ =

1√
∆P

≤ |1 − λ|√
2|ωk||ωm| ≤ (1 + η20)η20√

2
, (3.5)

and this estimate implies that every root λ± (θ2, θ3, k,m) belongs to an ana-
lytic surface. This also implies that both solutions η∗(θ2, θ3) are on a smooth
analytic surface Θ∗

k,m which consists of either one or two separate sheets (in
the latter case, we still denote them by Θ∗

k,m).

Definition 3.2 For a given measure µ3, and for a given summable sequence
ζκ ≥ 0 (here κ is upper index), with

∑
κ ζ
κ ≤ 1, κ = (k,m), define the 3-wave

quasi-resonant set Θµ3
3 (θ2, θ3) as

Θµ3
3 =

⋃
κ

{η : 2|η − η∗(κ, θ2, θ3)| < µ3ζ
κ}. (3.6)

Obviously, the Lebesgue measure

meas(Θµ3
3 (θ2, θ3)) ≤ µ3, for all θ2, θ3.

We now use (3.5) and find an appropriate choice of ζκ to estimate the small
divisor D,(k,m, n) for θ2, θ3 in the complement of the quasi-resonant set Θµ3

3

of given measure µ3. From Definition 3.2:

1
|η − η∗| ≤ 2

µ3ζκ
if (θ2, θ3) /∈ Θµ3

3 . (3.7)

Following the notation of Lemma 3.1,

D−1
, (k,m, n) =

∏
q 
=,

Dq(k,m, n)
P (λ)

.

For a given k, m, θ2, θ3, the quasi-resonant set is implicitly defined by the
small neighbourhood of λ∗(k,m, θ2, θ3) defined by:

P (λ) ≤ δ, δ small.

Outside such a quasi-resonant neighborhood we have

D−1
, ≤ 27η30

δ
.

With the help of (3.5), we have for δ � 1:

δ ∼
∣∣∣∣dλdδ
∣∣∣∣−1|λ − λ∗| ∼ 2

∣∣∣∣dλdδ
∣∣∣∣−1η∗|η − η∗|
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and

D−1
, ≤ 27η50(1 + η20)√

8|η − η∗||ωk||ωm|
and similar expressions for other 3-wave resonances. With (3.7) either D−1

, ≤
2η0 or

D−1
, ≤ 27η50(1 + η20)√

2µ3ζκ|ωk||ωm| if θ2, θ3 /∈ Θµ3
3 . (3.8)

We fix the sequence ζκ as follows:

ζκ =
ζκ3
ζ∗3

, ζκ3 = |k3|−1−ε0 |m3|−1−ε0 |m̌′|−2−ε0 , |ǩ′|−2−ε0 ,

ζ∗3 =
∑
κ

ζκ3 , ε0 > 0.
(3.9)

In this definition, 0 to any negative power is set equal to 1.

Theorem 3.1 Let ε0 > 0, and the sequence ζκ defined by (3.9); then for every
η, θ2, θ3, η /∈ Θµ3

3 (θ2, θ3), we have D,(k,m, n) �= 0 for all M, k, m, n, k+m = n
and

|D,(k,m, n)|−1 ≤ max
(
C3

µ3
a2+2ε03 (|ǩ||m̌|)3+2ε0 , 2η0

)
(3.10)

where C3 = C3(η0, ε0).

Proof. Simply compound estimate (3.8) with

1
ωkωm

≤ η20a
2
3

|ǩ|
|k3|

|m̌|
|m3| .

We now focus on 2-wave resonances. Consider the case ωk = ωm, equiva-
lently |ǩ′|

|k3| = |m̌′|
|m3| . Since n = k + m, (3.4) is equivalent to

(m2
3k

2
2 − k23m

2
2)θ2 + m2

3k
2
1 − k23m

2
1 = 0. (3.11)

Strict 2-wave resonant θ2 are possible only when θ2 is rational; we denote the
solutions of the equation (3.11) (that is strict 2-wave resonant θ2) by θ∗2(k,m).
For given summable sequences ζκ2 with

∑
κ ζ
κ
2 ≤ 1, and κ from the union of

three sets κ = (k,m) or κ = (k, n) or κ = (m,n), we introduce strict 2-wave
resonant sets Θ∗

2 and almost 2-wave resonant sets Θµ2
2 by

Θ∗
2 =

⋃
κ

θ∗2(κ), Θµ2
2 =

⋃
κ

{θ2 : 2|θ2 − θ∗2(κ)| < µ2ζ
κ
2 }, Θ0

2 =
⋂
µ2

Θµ2
2 . (3.12)
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Clearly, meas(Θµ2
2 ) ≤ µ2. We choose here with ε1 = ε2 = ε0 > 0 for κ =

(k,m) /∈ Θ∗
2

ζκ2 =
|m2

3k
2
2 − k23m

2
2|−1−ε2 |k1m1|−1−ε1
(3C ′

4)
, (3.13)

C ′
4 =

∑
κ

|m2
3k

2
2 − k23m

2
2|−1−ε2 |k1m1|−1−ε1 (3.14)

for κ such that k3m3n3 �= 0; we sum over such k,m that |m2
3k

2
2 − k23m

2
2| �= 0,

and similarly with the same C ′
4 for κ = (k, n), κ = (m,n).

Theorem 3.2 Let ε0 > 0, µ2 > 0, D, (k,m, n) �= 0, and Θµ2
2 (almost resonant

parameter set) with the Lebesgue measure ≤ µ2 be defined in (3.12). Then for
every θ2 /∈ Θµ2

2

1
|ωk ± ωm| ≤ C4(a3)2+2ε0

µ2
|ǩ|3+3ε0 |m̌|3+3ε0 , (3.15)

when ωn = 0, ωk ± ωm �= 0. Moreover

1
|ωn ± ωm| ≤ C4(a3)2+2ε0

µ2
|ǩ|1+ε0(|ǩ|2+2ε0 + |m̌|2+2ε0)|m̌|3+3ε0 , (3.16)

when ωk = 0, ωn ± ωm �= 0; the same estimate holds for |ωk ± ωn|, when
ωm = 0, ωk ± ωn �= 0. In the above, k3m3n3 �= 0; C4 depends only on ε0 and
η0.

Remark 3.1 Better estimates hold if k3m3n3 = 0.

Proof of Theorem 3.2. For ωn = 0 (the two other cases are similar) we obtain,
using ω2

k = (1 − η2)φ2k + η2 in the case where ± is − (the + case is trivial):

1
|Dl(k,m, n)| =

1
|ωk − ωm| =

|ωk + ωm|
|ω2
k − ω2

m| =
|ωk + ωm|

|(1 − η2)(φ2k − φ2m)|

=
|m̌|2|ň|2|ωk + ωm|

|(1 − η2)θ3((m2
3k

2
2 − k23m

2
2)θ2 + m2

3k
2
1 − k23m

2
1)|

≤ 2η0|m̌|2|ň|2∣∣∣∣(1 − η2)θ3(m2
3k

2
2 − k23m

2
2)
(
θ2 +

(m2
3k

2
1−k23m2

1)

(m2
3k

2
2−k23m2

2)

)∣∣∣∣ , (3.17)

in the case when (m2
3k

2
2−k23m

2
2) �= 0; when |m2

3k
2
2−k23m

2
2| = 0, m2

3k
2
1−k23m

2
1 �= 0

since ωm−ωk �= 0, so |m2
3k

2
1−k23m

2
1| ≥ 1 and the estimate of 1/|Dl(k,m, n)| ≤

C|m|2|n|2 is trivial. By the definition of Θµ2
2∣∣∣∣θ2 + (m2

3k
2
1 − k23m

2
1)

(m2
3k

2
2 − k23m

2
2)

∣∣∣∣ ≥ µ2
2

|m2
3k

2
2 − k23m

2
2|−1−ε2 |k1m1|−1−ε1
3C ′

4

,
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for θ2 outside the set Θµ2
2 . Therefore

|D,|−1 ≤ 2η0a23
|1 − η2|

6C ′
4

µ2
|m̌|2 |ň|2 |k1m1|1+ε1 |m2

3k
2
2 − k23m

2
2|ε2

≤ C4a
2+2ε
3 µ2|ǩ|3+3ε0 |m̌|3+3ε0 . (3.18)

A similar proof may be carried over for ωk = ωn and ωm = ωn; estimates are
worse, as one needs |n| ≤ |k| + |m|.

The main uniform convergence result of this section (Theorem 3.3) shows
that the convergence is uniform and the error is of order (1/µ2 + 1/µ3)/N
when θ2 �∈ Θµ2

2 , η /∈ Θµ3
3 (θ2, θ3), with the Lebesgue measure meas(Θµ3

3 ) ≤ µ3,
meas(Θµ2

2 ) ≤ µ2 with µ2, µ3 arbitrarily small. Here Θµ3
3 and Θµ2

2 are the sets
of near resonant 3-waves and 2-waves, and || · ||α designates the norm in the
Sobolev space Hα.

Theorem 3.3 Let 0 ≤ ν1, ν2 ≤ 1 (including ν1 = ν2 = 0), η �∈ Θµ3
3 (θ2),

θ2 �∈ Θµ2
2 . Let α > 3/2, σ − α > 7, M0σ > 0, µ2, µ3 ≤ 1. Let ||U†(0)||σ ≤

M0σ. Let U†(t) be an exact solution of the 3D Euler–Boussinesq equations.
Let WQG(t) be the solution to the QG equations (1.22), (2.29)–(2.32) with
initial data ΠQGU†(0), and wAG(t) the solution to the limit AG equations on
the 4-rays (1.25) with initial data ΠAGU†(0). Let E(Nt) be the inertio-gravity
waves linear propagator. Then for 0 ≤ t ≤ T1

||U†(t) −WQG(t) −E(−Nt)wAG(t)||α ≤
Ca23

(
1
µ2

+ 1
µ3

)
N

, (3.19)

where T1 depends on only on M0σ; C depends only on M0σ, α, η0.

Theorem 3.4 For ΠQGU†(t) −WQG(t), under the same conditions as in
Theorem 3.3, but with the weaker smoothness σ−α > 5 we have the estimate,
for both inviscid and viscous cases:

||ΠQGU†(t) −WQG(t)||α ≤ Ca23
Nµ2

. (3.20)

The same estimates hold for

‖U†(t) −WQG(t) −E(−Nt)wAG(t)‖α,

but with σ − α > 4; here U† designates vertical averaging.

Proofs of Theorems 3.3 and 3.4 are similar to those given in [9], together
with estimates for wQG in the next Section 4 and wAG in Section 5.
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Remark 3.2 For the full error, the above requires smoothness of initial data
in H17/2. For the convergence of the QG component, only H13/2. This is a
substantial improvement over the previous estimates in BMN [6] and [7]. The
uniform convergence under the H11/2 smoothness for the vertically averaged
fields is rather remarkable, as it involves both the QG and the AG components.
It clearly shows that the dynamical Taylor–Proudman theorem established in
BMN [6], [9], has a modified version for the Bu = O(1) case, coupling the QG
and AG components. In Theorems 3.3 and 3.4, the measures µ2 and µ3 are
equal to the measures of the excluded sets of θ2 = 1/a22 and η.

4 3D quasigeostrophic equations

In this section we study the quasigeostrophic Eqs. (1.22). We recall the struc-
ture of the 3D QG equations. We introduce variables q̃, Ũ (also called UQG),
Ψ̃0 (QG potential, velocity and stream function)

q̃m = ωm|m̌|w0
m, Ũk =

[−k2
a2

, k1, 0, 0
]

Ψ̃0
k, Ψ̃0

k =
q̃k

ω2
k|ǩ|2

. (4.1)

Recalling that ω2
k|ǩ|2 = |ǩ′|2+η2ǩ23, η = f/N , we find a familiar formula which

relates Ψ̃0 and q̃ in physical space

−(∇2
h + η2∂23)Ψ̃0 = q̃. (4.2)

Using (4.1), Eq. (1.22) is written in the form

∂tq̃n = −i
∑
k+m=n

(Ũk · m)q̃m − ÃQG,nq̃n + F̃0n. (4.3)

In physical space q̃(t, x) obeys the 3D QG equations (see Bourgeois & Beale,
[18], for the inviscid case)

∂tq̃ = B̃0(q̃, q̃) − ÃQGq̃ + F̃0, B̃0(q̃, q̃) = −Ũ · ∇hq̃, (4.4)

where ÃQG is a linear pseudo-differential operator which in Fourier represen-
tation is multiplication by AQG,n = νQG(n)|n|2, with νQG(n) given by (2.24).
For Fourier coefficients (4.4) becomes

∂tq̃n = −i
∑
k+m=n

q̃kq̃m
ǩ′ ∧ m̌′

ω2
k|ǩ|2

− νQG(n)|ň|2q̃n + F̃0n, F̃0n = F 0
n |ň|ωn (4.5)

where F 0
n = FQG,n in the Craya basis. We note that the coefficients in Eq. (4.5)

are skew-symmetric in m,n when replacing n by −n and k+m+n = 0. Local
existence of regular solutions of (4.4) can be proved in a standard way as for
3D Navier–Stokes equations. When the kinematic viscosity ν1 is positive, we
obtain the global existence of regular solutions of (4.4):
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Theorem 4.1 Let ν1 > 0, ν2 ≥ 0 (F̃0 = 0 when ν2 = 0). Let T ∗ > 0 be
arbitrarily large, so that (1.19) holds for T < T ∗−1, and let s = α−1 ≥ 0. Then
there exists a solution q̃(t) of the quasigeostrophic equations which belongs to
Hs for 0 ≤ t < T ∗; this solution is unique, ||q̃(t)||s ≤ Ms, 0 ≤ t ≤ T ∗. If
ν1 > 0, ν2 > 0, α ≥ 3/4, the statement holds with T ∗ = +∞ and

||q̃(t)||s ≤ M1F for all t ≥ 0 (4.6)

where M1F depends on ν,M0F , ||q̃(0)||s. The equation has the following smooth-
ing property: if q̃(0) ∈ H0 then q̃(t) ∈ Hα for t > 0.

Proof. The proof is similar to the proof of the regularity of a 2D Navier–Stokes
system in stream-function representation. For simplicity, we give a formal proof
assuming all functions are smooth. All estimates can be justified in a standard
way using Galerkin approximations. First, multiplying (4.4) by q̃ and integrat-
ing in x we obtain

∂t||q̃(t)||20 + 2(ÃQGq̃, q̃) = 2(F̃0, q̃). (4.7)

Note that ÃQG is a positive second-order pseudo-differential operator which
commutes with ∆; one easily obtains in Fourier representation, for every s,

|(ÃQGu, (−∆)su)| ≥ c(ν1||∇hu||2s + ν2||∂3u||2s) (4.8)

with c = 1/η20 and ∇hu = (∂1u, ∂2u). Therefore

∂t||q̃(t)||2 + cν1||∇hq̃||20 + cν2||∂3q̃||20 ≤ ν−11 ||F̃0||20. (4.9)

This implies the estimates

||q̃(t)||20 ≤ (cν1)−2||F̃0||20 + ||q̃(0)||20e−cν1t, (4.10)∫ T
0

ν1||∇hq̃(t)||20dt ≤ C0Tν−11 ||F̃0||20 + ||q̃(0)||2. (4.11)

Now we prove that the solution remains in Hs for all t ≥ 0.
We give the proof for 0 < s < 2; the general case is quite similar, see

BMN[9] for an analagous situation. We have to obtain an estimate of ||q̃(t)||s.
Multiplying (4.5) by |n|2sq̃∗n(t) = |n|2sq̃−n(t) and summing in n we obtain

∂t||q̃(t)||2s + ν1||∇hq̃||2s ≤ |(B̃0(Ũ, q̃(t)), (−∆)sq̃(t))| + ν−1||F̃0||20. (4.12)

We have

|(B̃0(q̃(t), q̃(t)), (−∆)sq̃(t))| =

∣∣∣∣∣ ∑
k+m+n=0

Q̃000
kmnq̃k(t)q̃mq̃n|ň|2s

∣∣∣∣∣ .
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Note that when s ≥ 0

| |m̌ + ǩ|s − |m̌|s| ≤ C(|ǩ|s + |ǩ||m̌|s−1) (4.13)

with C depending only on s. By skew-symmetry of Q̃000
kmn = (n′ ∧m′)/(ω2

k|ǩ|2)
in n,m, we have ∑

k+m+n=0

Q̃000
kmnq̃k(t)q̃mq̃n|ň|s|m̌|s = 0,

and we obtain

|(B̃0(q̃(t), q̃(t)), (−∆)sq̃(t))| ≤ C
∑

k+m+n=0

|ǩ′| |ǩ|−2+s |m̌′||q̃k| |q̃m| |q̃n| |ň|s.

Since the sum above represents a scalar product in L2 of a convolution of
functions Zk, Z

′
m with coefficients Zk = |ǩ′| |ǩ|−2+s|q̃k| and Z ′

m = |m̌′| |q̃m|,
with a function Z ′, Z ′

n = |q̃n| |ň|s, and which by Parseval’s equality equals an
integral of the product ZZ ′Z ′(x), we obtain

|(B̃0(q̃, q̃), (−∆)sq̃)| ≤ C1||Z ′||Lp1
||Z||Lp2

||Z ′||Lp3
(4.14)

when 1/p1 + 1/p2 + 1/p3 = 1. Using Sobolev’s embedding theorem we obtain

|(B̃0(Ũ, q̃), (−∆)q̃)| ≤ C ′
1||Z||s1 ||Z ′||s2 ||Z ′||s3 (4.15)

with −3/p1 ≤ s1 − 3/2, −3/p2 ≤ s2 − 3/2, −3/p3 ≤ s3 − 3/2. We use the
definition of Z,Z ′, Z ′ to obtain estimates in terms of Sobolev norms of q̃. We
take p1 = ∞ when s < 1/2, p2 = p3 = 2,

|(B̃0(Ũ, q̃), (−∆)q̃)| ≤ C2||∇hq̃||20 ||q̃||s, (4.16)
∂t||q̃(t)||2s + cν1||∇hq̃||2s ≤ C2ν

−1
1 ||∇hq̃||20 ||q̃||2s + ν−1||F̃0||2. (4.17)

When s ≥ 1/2 we take s1 + s − 2 > 0

|(B̃0(q̃(t), q̃), (−∆)q̃)| ≤ C2||∇hq̃||s1+s−2 ||∇hq̃||s2 ||q̃||s3+s. (4.18)

We take s2 = s, s3 = 0; we have 1/p2 = 1/2 − s/3, p3 = 2. So 1/p3 = s/3.
These conditions make sense if s < 3/2. Since s1 + s2 + s3 ≥ 3/2, s1 = 3/2 − s
and s1 + s − 2 = −1/2, we have

∂t||q̃(t)||2s + cν1||∇hq̃||2s + cν1||∂3q̃||2s ≤ C2ν
−1
1 ||∇hq̃||20||q̃||2s + ν−1||F̃0||2,(4.19)

by (4.11), and, using Gronwall’s inequality, we deduce the boundedness of
||q̃(t)||s on [0, T ] for any T .

To obtain smoothing, one has to multiply by t(−∆)sq and make estimates
as before; see the similar situation in BMN [9]. From (4.10) we deduce bound-
edness for all t ≥ 0 in Hs, using smoothing as in [9].



Fast singular oscillating limits 157

When 3/4 ≤ α < 1 we introduce the auxiliary function g(t) which is a
solution of a linear equation

∂tg = −ÃQGg + F̃0, g(0) = q̃(0). (4.20)

This solution satisfies the estimate

||g(t)||2α−1 ≤ C ′
1,

∫ T
0

||g(t)||2αdt ≤ C ′
1(1 + T ). (4.21)

We put q̃(t) = g + q̂(t). This function satisfies

∂tq̂ = B̃0(g, q̂) + B̃0(q̂, g) + B̃0(q̂, q̂) − AQGq̂ + F̂0, F̂0 = B̃0(g, g). (4.22)

One can easily check that F̂0 satisfies (1.19) with α = 0. Making estimates
with α = 0 similar to the above, we deduce

∂t||q̂(t)||20 ≤ Cν−1||F̂0||2−1 + C1||g(t)||23/4||q̂(t)||20. (4.23)

Therefore ||q̂(t)||20 is bounded for bounded t, and so is ||q̃(t)||2α−1, 0 ≤ t ≤ T0.
To prove uniform boundedness for all t ≥ 0 we note first that in (2.29) the
coefficient Q000

kmn is skew-symmetric in k, n (see (2.16)). This implies, similarly
to (4.9),

||w0(t)||20 ≤ (cν1)−2||F0||2−1 + ||w0(0)||20e−cνt,∫ T+1
T

ν||w0(t)||21dt ≤ C0ν
−1||F0||2−1 + ||w0(0)||2.

(4.24)

Thanks to (1.19) this implies that on every interval [T, T + 1] there exists a
point t0 at which ||q̃(t0)||2α−1 ≤ ||q̃(t0)||20 ≤ ||w0(t0)||21 ≤ Ĉ , where Ĉ depends
only on M0F and ||q̃||s. Now we change t for t− t0 and use the boundedness of
||q̃(t)||2α−1 on a finite interval [0, 2]; since [1, 2] includes another point t′0 such
that ||w0(t′0)||21 ≤ Ĉ, this implies uniform boundedness of ||q̃(t)||2α−1. This
implies the statement of the theorem.

Note that, since q̃n = w0
n|n|ωn, Theorem 4.1 gives existence for w0 ∈ Hα,

α ≥ 1. In the case ν1 = ν2 = 0, the global regularity in Hs with any s > 5/2
follows from Bourgeois & Beale [18]. In fact condition s ≥ 3 is imposed in [18],
but one obtains the case s > 5/2 from the proof similar to that in [18] by
continuity.

5 Ageostrophic catalytic equations

In this section we investigate regularity of the ‘catalytic’ AG equations (1.24).
We assume for simplicity that the horizontally-averaged buoyancy is zero in
the reduced equations. The fact that this quantity is an adiabatic invariant
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(see [12]) allows us to do that. In general, we will have phase corrections
associated with the buoyancy time scale as described in [12]. The ‘catalytic’
system for wn = (w0

n, w
′
n), w

′
n = (w1

n, w
2
n) consists of the equations for w0

n and
the following equations for w′

n

∂tw′
n = −

∑
φm = φn

k +m = n

Ψ̃0
k(t)(Dmn(η)I− Gmn(η)J)w′

m − AAG,nw′
n (5.1)

where

I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
, (5.2)

Dmn(η) = 2(ň′ ∧ m̌′)
(

ň3m̌3ň
′ · m̌′

|m̌′| |ň′| |m̌| |ň|
(

1 +
η2

ω2
n

)
+

|ň′|4 − η2ň43
|ň|4ω2

n

)
,

Gmn(η) = η
3ň3m̌3(ň′ ∧ m̌′)2 + ((ň × m̌) · m̌⊥)((ň × m̌) · ň⊥)

|m̌′| |m̌| |ň′| |ň|ωn .

(5.3)

Here m̌⊥ = (−m̌2, m̌1, 0), ň⊥ = (−ň2, ň1, 0), ň′ ∧ m̌′ = ň1m̌2− ň2m̌1, ň× m̌ =
(ň2m̌3 − ň3m̌2, ň3m̌1 − ň1m̌3, ň1m̌2 − ň2m̌1) and Ψ̃0(t) is the QG stream-
function. Eqs. (5.3) are obtained from formulas presented in [12] with the help
of resonant conditions φm = φn.

Now we state a theorem on existence and regularity of solutions of the
AG system (5.1)–(5.3). The proof is needed since energy is only conserved
(when ν = 0) for this equation with general Ψ̃0(t); higher Sobolev norms || · ||s
generally are not preserved. One has to use the special structure of the AG
system to obtain the following theorem on well-posedness.

Theorem 5.1 Let ν1 ≥ 0, ν2 ≥ 0, s ≥ 1, 0 < δ � 1. Let
∫ T
0 [||q̃(t)||3/2+δ +

||q̃(t)||s−3/2]dt ≤ C, 0 ≤ t ≤ T ; w′(0) ∈ Hs. Then there exists a unique regular
solution w′(t), 0 ≤ t < T of the AG equation (5.1) which belongs to Hs for
0 ≤ t ≤ T .

Proof. First we consider the case ν1 ≥ 0, ν2 ≥ 0 and obtain results uniformly
in 1 ≥ ν1 ≥ 0, 1 ≥ ν2 ≥ 0; to save space we set ν1 = 0, ν2 = 0. Approximate
solutions can be obtained by truncating the Fourier series, so to prove existence
of the system we have to obtain a priori estimates. We obtain them formally
for the full system; the truncated case is similar. Multiplying by |ň|2s(w′

n)∗

and using that, for real fields (w′
n)∗ = w′−n, we obtain

1/2∂t|w′
n|2|ň|2s =

∑
φm = φn

k +m+ n = 0

Ψ̃0
k(t)(DmnI− GmnJ)w′

m ·w′
n|ň|2s. (5.4)
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We have |ň|2s = |ň|s|m̌|s+Rkmn, with Rkmn = |ň|s(|ň|s− |m̌|s) and |Rkmn| ≤
C(s)(|m̌|s−1|ǩ| + |ǩ|s)|ň|s). Note that Gmn = Gnm, Dmn = −Dnm, J = −J∗.
Therefore the following sum is skew-symmetric with respect to interchange of
n,m and so equals zero:∑

φm = φn

k +m+ n = 0

Ψ̃0
k(t)(DmnI− GmnJ)w′

m ·w′
n|m̌|s|ň|s = 0. (5.5)

Since k + n + m = 0 we have ň′ ∧ m̌′ = −ǩ′ ∧ m̌′, ň ∧ m̌ = −ǩ ∧ m̌. Therefore
by Eqs. (5.1)–(5.3) we have

|Dmn| ≤ 8|ǩ| |m̌|, |Gmn| ≤ 4η|ǩ| |m̌|,

∣∣∣∣∣∣∣∣∣∣
∑

φm = φn

k +m+ n = 0

Ψ̃0
k(t)(DmnI− GmnJ)w′

m ·w′
n(Rmnk)

∣∣∣∣∣∣∣∣∣∣
≤ C

∑
φm = φn

k +m+ n = 0

|Ψ̃0
k(t)||ǩ| |m̌| |ň|s|w′

m||w′
n||Rmnk|

≤ C ′

 ∑
k +m+ n = 0

|Ψ̃0
k(t)||ǩ|2 |m̌|s |ň|s|w′

m| |w′
n|

+
∑

k +m+ n = 0

|Ψ̃0
k(t)| |ǩ|s |m̌| |ň|s|w′

m| |w′
n|

 . (5.6)

In the above sums we do not include k = 0, m = 0, n = 0 since corresponding
coefficients are zero according to zero average condition. Therefore, estimating
the convolutions in a standard way we obtain∑
n

∑
φm = φn

k +m+ n = 0

|Ψ̃0
k(t)||w′

m||w′
n| |ǩ|2 |m̌|s |ň|s ≤

∑
n

|w′
n|2|ň|2s

∑
k

|Ψ̃0
k(t)| |ǩ|2

≤ C||w′||2s ||q̃||3/2+δ; (5.7)

We can estimate the second sum in (5.6) as in Theorem 4.1:∑
n

∑
φm = φn

k +m+ n = 0

|Ψ̃0
k(t)| |w′

m| |w′
n| |m̌| |ǩ|s |ň|s ≤ C||w′||2s ||q̃||s−3/2+δ, (5.8)
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1
2
∂t||w′||2s ≤ C1[ ||q̃0(t)||3/2+δ + ||q̃||s−3/2+δ] ||w′||2s. (5.9)

Using Gronwall’s inequality we obtain the estimate

||w′(T )||2s ≤ C2 exp
(∫

0≤t≤T
[ ||q̃(t)||3/2+δ + ||q̃||s−3/2+δ] dt

)
, (5.10)

and using this one easily obtains the existence of a solution w′(t) of (5.1).

Theorem 5.2 Let ν1 > 0, ν2 > 0, s ≥ 0, let
∫ T+1
T [||q̃(t)||40 + ||q̃||s−3/2+δ]dt ≤

M2F , for all T ≥ 0, w′(0) ∈ Hs. Then there exists a unique regular solution
w′(t), 0 ≤ t < T of the AG equation (5.1) which belongs to Hs and

||w′(t)||s ≤ Ms, for all t ≥ 0 (5.11)

where Ms depends on ν,M2F , ||w′(0)||s.

Proof. The case ν1 > 0, ν2 > 0 is similar to Theorem 5.1; now instead of (5.9)
we derive the estimate

1
2
∂t||w′||2s + ν||w′||2s+1 ≤ C2[ ||q̃||40 + ||q̃||s−3/2+δ] ||w′||2s +

ν||w′||2s+1
2

. (5.12)

This inequality implies

||w′(T )||2s ≤ C ′
2||w′(0)||2s exp

(∫
0≤t≤T

2C2 [ ||q̃||40 + ||q̃||s−3/2+δ] dt
)

. (5.13)

To obtain (5.12) we use instead of (5.7) the following estimates∑
n

∑
φm = φn

k +m+ n = 0

|Ψ̃0
k(t)| |w′

m| |w′
n| |k|2 |m|s |n|s ≤ C||w′||s+3/4 ||w′||s+3/4 ||q̃||0;(5.14)

and for 1/2 ≤ s ≤ 3/2 (the case s ≥ 3/2 is simpler) instead of (5.8) we have∑
n

∑
φm = φn

k +m+ n = 0

|Ψ̃0
k(t)| |w′

m| |w′
n| |m| |k|s |n|s ≤ C||w′||s+1 ||w′||s ||q̃||s−3/2. (5.15)

We have also

||w′(T )||20 − ||w′(0)||20 + ν

∫ T
0

||w′(T )||21dt ≤ 0.

This implies uniform boundedness of ||w′(t)||0. To prove boundedness in H1 for
t ≥ 0, we use boundedness of the solution in H0 and, for t ≥ 1, the smoothing
argument based on multiplication by t(−∆)w′ similar to that given in BMN[9],
and similarly for boundedness in Hs. Theorem 5.2 is proved.
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6 Global regularity of the limit 21
2D resonant equa-

tions

In this section and in Section 7 we remove all restrictions to non-resonant
domains (any parameters θ2, θ3) as well as restrictions to non-resonant η =
f/N . We treat the case of quadratic resonant operators for the asymptotic
limit equations (B3 �= 0 in Eq. (1.23)). From this, in Section 7, we give the
most general theorems on existence of strong solutions on infinite time intervals
for the 3D Navier–Stokes primitive equations of geophysics in regimes of small
Rossby and/or Froude numbers.

The limit resonant operator B̃ defined in (1.16) inherits properties of the
operator B. This statement follows from the following

Lemma 6.1 Let (u,v, z) ∈ H3/4 ×H3/4 ×H1 given in the Craya basis. Then(
B̃(u,v), z

)
= lim
N→∞

1
T

∫ T
0

(Bp(Ns,u,v), z)ds. (6.1)

Here u, v and z denote generic time-independent vectors in the Craya basis,
[24]; Bp is the non-autonomous oscillating operator defined in (1.14). From
now on, we shall omit the index p in B(Nt,u,v).

Proof. We introduce projections πR on the finite-dimensional subspace of
Fourier modes with |n| ≤ R. We fix (u,v, z) ∈ H3/4 × H3/4 × H1. We put
uR = πRu and similarly for v and z. Clearly,

(B(Nt,u,v), z) − (B̃(u,v), z) = [(B(Nt,u,v), z) − (B(Nt,uR,vR), zR)]
+[(B(Nt,uR,vR), zR) − (B̃(uR,vR), zR)]
+[(B̃(uR,vR), zR) − (B̃(u,v), z].

The operators B and B̃ are continuous on H3/4 ×H3/4 ×H1. Moreover, since
the unitary Poincaré propagator E(Nt) preserves all Sobolev norms, the oper-
ator B(Nt,u,v) is continuous uniformly in Nt. Therefore, the first and third
brackets on the right-hand side tend to zero as R → ∞. Let ε > 0; we find an
R such that the absolute values of the first and third brackets are less than ε.

After that we consider the second bracket

[(B(Nt,uR,vR),wR) − (B̃(uR,vR),wR)] = (B(Nt,uR,vR) − B̃(uR,vR),wR)
= (Bosc(Nt,uR,vR),wR).

Since Bosc contains only non-resonant terms, we obtain, after integrating by
parts as in [9], that

1
T

∫ T
0

(Bosc(Ns,uR,vR),wR)ds = O(1/N) → 0 as N → ∞.

Therefore, the integrals of all three brackets are less than ε when N is large,
and the lemma is proven.
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Corollary 6.1 Let σ ≥ 1 and w be the Craya vector variable, w = (w0, w1, w2)
(w0 corresponds to QG modes and w1, w2 correspond to AG modes). Then(

B̃(w, (−∆)σ/2w), (−∆)σ/2w
)

= 0. (6.2)

Proof. From Lemma 6.1, it suffices to prove the similar identity for the general
operator B(Nt,v,v) in Eqs. (2.20)–(2.22) for the non-averaged Eqs. (2.22)
written in Fourier space in the Craya basis. Using Eqs. (2.15)

(B(Nt,v, (−∆)σ/2v), (−∆)σ/2v)

=
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)NtQi1i2i3kmn vi1k vi2m |m̌|σ |ň|σ vi3n

=
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)Nt (qi1k · m̌)(qi2m · qi3n) |m̌|σ |ň|σ vi1k vi2m vi3n

=
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)Nt (qi1k · ň) (qi3n · qi2m) |m̌|σ |ň|σ vi1k vi2m vi3n

−
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)Nt (qi1k · (ǩ + m̌)) (qi3n · qi2m) |m̌|σ |ň|σ vi1k vi2m vi3n

−
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)Nt (qi1k · m̌) (qi3n · qi2m) |m̌|σ |ň|σ vi1k vi2m vi3n

= −(B(Nt,v, (−∆)σ/2v), (−∆)σ/2v),

where in the above sum we interchanged indices m and n, i2 and i3 and used the
divergence-free condition ǩ · qi1k = 0. Here cl are absolute constants indexed
by i1, i2, i3 with values ±1/8 (cf. Eqs. (2.19), (2.20)). We use (E(Nt))∗ =
E(−Nt) to ensure symmetry of the terms (E(−Nt)v)m and (E(−Nt)v)n.
Then from (6.3) we have

(B(Nt,v, (−∆)σ/2v), (−∆)σ/2v) = 0 (6.3)

Eqs. (6.2) follow from (6.3) and Lemma 6.1.
We follow with the estimate for the resonant operator B̃(w,w) in the Craya

basis:
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Corollary 6.2 Let σ ≥ 1 and w be the Craya vector variable. Then

|(B̃(w,w), (−∆)w)| ≤ CB̃

∑
k +m+ n = 0,

±ω′
k ± ω′

m ± ω′
n = 0

|ǩ| |wk| |m̌| |wm| |ň| |wn|. (6.4)

Proof. Recall that the Craya basis vectors q are normalised with norm 1. We
first prove such an estimate for the non-resonant general operator B(Nt,v,v)
for every fixed t. We have

(B(Nt,v,v), (−∆)v)

=
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)Nt (qi1k · m̌) (qi2m · qi3n) |ň|2 vi1k vi2m vi3n (6.5)

=
∑

k +m+ n = 0;
i1, i2, i3;

l = 1, . . . , 8

cle
iDl(k,m,n)Nt (qi1k · m̌) (qi2m · qi3n) |ň| (|ň| − |m̌|)vi1k vi2m vi3n .(6.6)

Note that | |ň| − |m̌| | = | |ǩ + m̌| − |m̌| | ≤ 7|ǩ|, yielding

|(B(Nt,v,v), (−∆)v)| ≤ CB
∑

k+m+n=0

|ǩ| |vk| |m̌| |vm| |ň| |vn|. (6.7)

The same estimate follows for B̃(w,w), from the skew-symmetry Corollary
6.1 and from averaging Eqs. (6.5); this only further restricts the k,m, n inter-
actions to the set

±ω′
k ± ω′

m ± ω′
n = 0, (6.8)

where ω′
n = 0 for QG modes and ω′

n = ωn for AG modes, and similarly for k,m.
In Eqs. (2.22), the resonant operators Q̃i1i2i3kmn are first-order Fourier integral
operators. For B̃(w,w) we obtain

|(B̃(w,w), (−∆)w)| ≤ CB̃

∑
k +m+ n = 0,

±ω′
k ± ω′

m ± ω′
n = 0

|ǩ| |wk| |m̌| |wm| |ň| |wn|. (6.9)

Remark 6.1 Since wAG is orthogonal to wQG (orthogonality of the q’s) we
also have (

B3(wAG, (−∆)σ/2wAG), (−∆)σ/2wAG

)
= 0 (6.10)

and the estimate (6.9) holds for |(B2(wQG,wAG)+B3(wAG,wAG), (−∆)wAG)|.
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Remark 6.2 The above estimate will be used together with the Lemma 6.2
on restricted convolutions to obtain global regularity in H1 for Eqs. (2.27)–
(2.28).

In this section we present new estimates for the nonlinear ‘21
2 -dimensional’

operator B3 which ensure global existence of strong solutions of the limit
AG viscous equations (2.33)–(2.34) and, consequently, Eqs. (2.27)–(2.28) for
all domain parameters. The following theorem which will be proved below
provides the main estimate for the resonant operator B3 for the ‘worst’ case
of all interactions on the ‘2 1

2 -dimensional’ interaction manifold K∗ defined in
Section 3.

Theorem 6.1 Let wAG(x1, x2, x3) ∈ H2 (the Sobolev space of periodic vector
fields with zero mean). Then the following estimate holds

|(B3(wAG,wAG), (−∆)wAG)| ≤ CIII||wAG||2 ||wAG||21, (6.11)

where CIII is some constant.

Remark 6.3 Estimate (6.11) is of the same type as the classical estimate of
Ladyzhenskaya [46] in the 2D case with Dirichlet boundary conditions. For
the periodic boundary conditions in 2D it is well-known that the analogue of
the left-hand side of (6.11) is identically zero ([23]). Of course, in (6.11) the
divergence-free vector field wAG(x1, x2, x3) and the Sobolev spaces Hα are 3D
with space variables x1, x2 and x3.

From the estimate (6.11) we immediately obtain the following theorem in a
standard way (cf. [4], [23], [73]) (note that if the force F†(t, x) in the original
equation does not depend on N and f , then F̃AG = 0).

Theorem 6.2 Let ν1, ν2 > 0, ν = min(ν1, ν2), ||wAG(0)||α ≤ Mα, 1 ≥ α >
3/4; F̃AG satisfies with α = 1:

sup
T

∫ T+1
T

||F̃AG||2α−1dt ≤ M2
αF . (6.12)

Then there exists a unique regular solution wAG(t) of the ‘212-dimensional’
primitive Navier–Stokes Eqs. (2.33)–(2.34),

||wAG(t)||1 ≤ M ′
1(ν,M1F ,Mα, a1, a2, a3)

for all t ≥ 0.

Proof. A local regular solution to the ‘21
2 -dimensional’ equations (2.33)–(2.34)

exists on a small interval of time 0 ≤ t ≤ t1 (see BMN [9]) and belongs to H1

for 0 < t < t1 thanks to the smoothing property which follows from

νAG
2

∫ t
0

||wAG||21+γdτ + ||wAG(t)||2γ ≤ C(t), 0 ≤ t < t1. (6.13)
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Therefore, it is sufficient to consider γ = 1.
Multiplying Eqs. (2.33) for wAG by (−∆)wAG we obtain

∂t||wAG||21 = −2νAG||wAG||22 + 2 (B3(wAG,wAG), (−∆)wAG)

+2 (B2(wQG,wAG), (−∆)wAG) + 2
(
F̃
AG

, (−∆)wAG

)
. (6.14)

For the 3-wave resonant operator B3(wAG,wAG) we have from Theorem 6.1

|(B3(wAG,wAG), (−∆)wAG)| ≤ CIII||wAG||2 ||wAG||21. (6.15)

We have according to [13]

|(B2(wQG,wAG), (−∆)wAG)| ≤ CII||ŨQG||1 ||wAG||21 (6.16)

where the QG velocity ŨQG was defined in Eqs. (4.1), and where CII is some
constant. Estimates for the viscous QG equation are derived in [13]. Using the
above estimate, a standard Gronwall inequality yields the estimate in H1 for
all t ≥ 0, and uniqueness of the solutions wAG follows in a standard way (cf.
[23], [73]). Theorem 6.2 is proved.

Remark 6.4 Using Theorems 6.1 and 6.2 one can develop regularity theory
for solutions of ‘212 -dimensional’ Navier–Stokes equations in Hγ , γ > 1 spaces.
This is done in a way similar to the well-known higher regularity theory for
sufficiently regular solutions of the 3D Navier–Stokes equations (see Temam
[73]).

Now we prove Theorem 6.1; the proof is based on the following lemma on
restricted convolutions. Here without loss of generality we assume θ1 = θ2 =
θ3 = 1.

Lemma 6.2 (Lemma on Restricted Convolutions) Let χ(k,m, n) be the
characteristic function of some set K∗ in (Z3)3 such that

χ(k,m, n) = χ(m, k, n) = χ(k, n,m)

is symmetric. Let α ≥ 0, β, be fixed and

sup
n

∑
k:k+m+n=0, k∈Σi

χ(k,m, n)|k|−α ≤ C02iβ (6.17)

for every i = 0, 1, 2, . . . , where

Σi =
{
k = (k1, k2, k3) | 2i ≤ |k| < 2i+1, |k| =

√
k21 + k22 + k23

}
. (6.18)
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Then for any sequence un with u(0,0,0) = 0∑
k+m+n=0

|uk| |um| |un|χ(k,m, n)

≤ C

(∑
n

|n|β|un|2
)1/2(∑

k

|k|α|uk|2
)1/2(∑

m

|um|2
)1/2

(6.19)

where C = 6
√

2C0.

Proof. Let α ≥ 0. We first give the proof for β ≥ 0. Since the left sum in
Eq. (6.19) is symmetric with respect to k,m, n, we have∑
k+m+n=0

|ukumun|χ(k,m, n) ≤ 6
∑

k +m+ n = 0,
|n| ≥ |k| ≥ |m|

|ukumun|χ(k,m, n), (6.20)

and it is sufficient to take k,m, n such that |n| ≥ |k| ≥ |m|. After that, we
apply the Littlewood–Paley technique of dyadic decomposition (Stein [71]).
We estimate

S =
∑

k +m+ n = 0,
|n| ≥ |k| ≥ |m|

|ukumun|χ(k,m, n)

=
∑
i

∑
n

|un|
∑

k∈Σi,|n|≥|k|≥|m|
|uku−k−n|χ(k,−k − n, n).

Since |n| ≥ |k| ≥ |m| and k+m+n = 0, we have 2|k| ≥ |n| ≥ |k|. Therefore,

S ≤
∑
i

∑
n∈Σi∪Σi+1

|un|
∑
k∈Σi

|uku−k−n|χ(k,−k − n, n)

≤
∑
i

∑
n∈Σi∪Σi+1

|un|
∑
k∈Σi

|uku−k−n|2|k|α


1
2
∑
k∈Σi

|k|−αχ(k,−k − n, n)


1
2

≤
∑
i

 ∑
n∈Σi∪Σi+1

|un|2


1
2
 ∑
n∈Σi∪Σi+1

∑
k∈Σi

|uku−k−n|2 |k|α


1
2

× sup
n

∑
k∈Σi

|k|−α χ(k,−k − n, n)


1
2

≤C
1
2
0

∑
i

 ∑
n∈Σi∪Σi+1

|un|2


1
2
 ∑
n∈Σi∪Σi+1

∑
k∈Σi

|uku−k−n|2|k|α


1
2

2βi/2
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≤C
1/2
0

∑
i

 ∑
n∈Σi∪Σi+1

|un|22βi


1
2
∑
m

∑
k∈Σi

|ukum|2|k|α


1
2

≤C
1/2
0

∑
i

 ∑
n∈Σi∪Σi+1

|un|22βi


1
2
∑
k∈Σi

|uk|2|k|α


1
2(∑

m

|um|2
)1

2

.

Therefore,

S ≤ C
1/2
0

∑
i

 ∑
n∈Σi∪Σi+1

|n|β |un|2


1
2
∑
k∈Σi

|uk|2|k|α


1
2(∑

m

|um|2
)1/2

≤ C
1/2
0

∑
i

∑
n∈Σi∪Σi+1

|n|β |un|2


1
2
∑

i

∑
k∈Σi

|uk|2|k|α


1
2(∑

m

|um|2
)1/2

≤ (2C0)1/2
(∑
n

|n|β|un|2
)1

2
(∑
k

|k|α|uk|2
)1

2
(∑
m

|um|2
)1

2

.

Considering in the same manner other permutations of |k|, |m| and |n|, we
obtain (6.19) with C = 6

√
2C0. The proof extends to β < 0 with a different

constant C.
We note that one obtains similar results for general θ1, θ2, θ3 bounded away

from 0 and +∞. In that case the constants depend on θ1, θ2, θ3.

Proof of Theorem 6.1. From Corollary 6.2 we obtain the following inequality

|(B3(wAG,wAG), (−∆)wAG)|
≤ c′

∑
k+m+n=0

|ǩ| |wAG,k| |m̌| |wAG,m| |ň| |wAG,n|χ(k,m, n).(6.21)

Here χ(k,m,−n) is the characteristic function of the resonant set K∗ of strict
3-wave resonances:

±ωk ± ωm ± ωn = 0, ωkωmωn �= 0. (6.22)

This set lies in the manifold of solutions of a polynomial equation P (k,m, n) =
0. Indeed, we have the identity

1
ωk + ωn − ωm

=
(ωk + ωm + ωn)(−ωk + ωm + ωn)(−ωn + ωm + ωk)

(ωk + ωm + ωn)(ωk − ωm + ωn)(−ωk + ωm + ωn)(ωk + ωm − ωn)
.

The denominator is −P = ((ωk)2 + (ωm)2 − (ωn)2)2 − 4(ωk)2(ωm)2. Thus P
is a polynomial of degree 2 of λ = η2. We write ωk in the form (see Eq. (2.6))

ωk =
√

χk + λ(1 − χk), χk =
|ǩ′|2
|ǩ|2 = φ2k, 1 − χk = ξ2k.
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The polynomial takes the form (with λ = η2) P = P2λ
2 + P1λ + P0, where

P2 = χ2k + χ2m + χ2n − 2χkχn − 2χkχm − 2χmχn − 3 + 2(χk + χm + χn);
P1 = −2(χ2k + χ2m + χ2n − 2χkχn − 2χkχm − 2χmχn + χk + χm + χn)
P0 = χ2k + χ2m + χ2n − 2χkχn − 2χkχm − 2χmχn.

Instead of considering P as a polynomial in η2, we renormalise it as

Π(k,m, n) = |ǩ|4 |m̌|4 |ň|4 P (k,m, n), (6.23)

where Π is a homogeneous polynomial of degree 12 in the variables k,m, n,
and η is considered as a parameter. For a given η, θ1, θ2, θ3, Π(k,m, n) = 0
is equivalent to (k,m, n) ∈ K∗ (vice versa, fixing k,m, n as parameters, and
solving for η as a function of θ1 = 1, θ2, θ3 defines the singular values of η ∈
Θ∗
3(θ2, θ3)). It follows that for fixed η, θ2, θ3, Π(k,−k−n,−n) is a polynomial

of degree at most 8 in k3. The leading power in k83 is:

−k83
(|n′|2 + η2n23

) (
3η2n23 + (4η2 − 1)|n′|2) , (6.24)

where m was eliminated via m = −k−n. If this leading term is not zero, there
are at most 8 k3 satisfying Π(k,−m−n,−n) = 0 for given k1, k2, n; this holds
provided that

3η2n23 + (4η2 − 1)|n′|2 �= 0. (6.25)

Note that if n′ = 0, the condition (6.25) is trivially satisfied as n �= 0. Also,
the condition is satisfied whenever 4η2 − 1 ≥ 0. If the condition (6.25) is not
satisfied, i.e. if n belongs to the manifold

3η2n23 + (4η2 − 1)|n′|2 = 0, n′ �= 0, (6.26)

then we must verify that the polynomial Π is not identically null. This is not
trivial, as one verifies that the coefficient of k73 is null under the condition
(6.26). Under the latter condition the coefficient of k63 reduces to

k63
|n′|4
η2

(
−4η4

1 − 4η2

η2
|n′|2 +

8
9

(η2 − 1)3

η2
(|m′|2 + |k′|2)

)
, (6.27)

which is strictly negative whenever 0 < η2 ≤ 1/4 and n′ �= 0. Therefore, the
polynomial Π(k3) does not vanish for any value of admissible parameters, for
fixed k1, k2, n. Then there are at most 8 k3 satisfying χ(k,−k − n,−n) = 0.

Now we estimate the sum in (6.17) with α = 1 as follows∑
2i≤|k|<2i+1

(
k21 + k22 + k23

)−1/2
χ(k,−k − n, n) ≤ 8 + 8

∑
0<|k′|<2i+1

(
k21 + k22

)−1/2
≤ C02i,
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where C0 is an absolute constant; i = 0, 1, 2, . . . . The first 8 on the right-hand
side of the above inequality accounts for k′ = 0. Therefore, the inequality (6.17)
holds with α = β = 1. Let vk = |k||wAG,k| and similarly for m and n. Since
||v||1/2 = ||wAG||3/2, ||v||0 = ||wAG||1, Eqs. (6.19)–(6.21) imply

|(B3(wAG,wAG), (−∆)wAG)| ≤ c′
∑

k+m+n=0

|vk| |vm| |vn|χ(k,m, n)

≤ c′C||v||21/2 ||v||0
= c′C||wAG||1 ||wAG||23/2. (6.28)

Applying the interpolation inequality ||wAG||23/2 ≤ const||wAG||1 ||wAG||2 we
obtain from (6.28) the estimate (6.11) (where the constant depends on a1, a2, a3
in general case). This concludes the proof of Theorem 6.1.

We note that the operator B3 is a bilinear convolution-type operator with
the domain of summation K∗ given by (6.22). The estimate (6.11) for B3 is for
the ‘worst case’ of all interactions on the ‘212 -dimensional’ interaction manifold
K∗.

7 Infinite time regularity of the 3D Navier–Stokes
primitive equations of geophysics for finite large
N

In this section we establish the global existence and regularity of solutions
of Eqs. (1.1)–(1.3) (equivalently, Eqs. (1.20)) for N large enough, including
the case of all 3-wave resonances, where B3(wAG,wAG) is present in the limit
equations (1.23). The proof of global regularity of the 3D ‘primitive’ Navier–
Stokes equations (1.1)–(1.3) for resonant domains presented in this section
relies on the global regularity of the ‘21

2 -dimensional’-limit nonlinear Navier–
Stokes equations (1.23), (2.33), (2.34) and techniques for convergence theorems
as N → ∞ developed in [9], [3], [13]. We impose in our regularity theorems
only an integral regularity condition on the forcing term F† of the type

sup
T

∫ T+1
T

‖F†‖2α−1dt ≤ M2
αF (7.1)

where α > 3/4.
In BMN [9], [6], [13] we proved the regularity of solutions for smooth enough

initial data U†(0) and forcing term F† for almost all aspect ratios (no strict 3-
wave resonances were allowed in regularity theorems). Now, following Avrin &
BMN [3] we relax the smoothness conditions on U†(0, x) and F†(t, x) using a
simple argument based on our previous results on equations with smooth data
and approximating the data by smooth functions. In fact, we show that we can
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extend our previous results with very smooth initial data and forcing terms to
the non-smooth case by continuity. First, we replaceU†(0) and F† respectively
by smooth initial data U†

s(0) ∈ Hσ and force F†
s(t) with F†

s(t) ∈ Hσ, ∂tF
†
s(t) ∈

Hσ, σ > α + 2, which are close to U†(0) and F†. Our approximation of initial
data is thus

‖U†(0) −U†
s(0)‖α ≤ ε. (7.2)

Further, we assume that F† is approximated by F†
s. We denote F′ = F† − F†

s

and assume

sup
T

∫ T+1
T

‖F′‖2α−1dt ≤ ε2 (7.3)

with α > 3/4.

Of course norms in Hσ, σ > α + 2, of approximations U†
s(0), F†

s and ∂t F†
s

tend to infinity as ε → 0, but they are bounded for every non-zero ε. Using
results of [9] we will find a solution U†

s(t) of (1.1)–(1.2) with mollified data
which satisfies ε-independent estimates in Hα for large N (see Theorem 7.2
below). The solutions U†

s, U† satisfy equations of the form

∂tU†(t) = B(U†,U†) + ν∆U− NP†MP†U† + F†

∂tU
†
s(t) = B(U†

s,U
†
s) + ν∆U†

s − NP†MP†U†
s + F†

s

(7.4)

with the same bilinear operator B and different (but close) initial data. In the
above equations ν = diag(ν1, ν1, ν1, ν2) is the viscosity matrix, P† = (P, Id)
where P is the Leray projection operator. The difference Ξ(t) = U†(t)−U†

s(t)
satisfies the equation

∂tΞ(t) = B(Ξ,U†
s) +B(U†

s,Ξ) +B(Ξ,Ξ) + ν∆Ξ− NP†MP†Ξ+ F′,

Ξ(0) = U†(0) −U†
s(0)

(7.5)

with a small forcing term F′ = F† − F†
s, and small initial data Ξ(0).

Theorem 7.1 Let α > 3/4, ν1, ν2 > 0, T0 > 0. Let (7.2)–(7.3) hold and

‖U†
s(t)‖α ≤ Ms,α, 0 ≤ t ≤ T0, ν

∫ T0
0

‖U†
s(t)‖2α+1 ≤ M2

s,α; (7.6)

let ε ≤ ε0, where ε0 depends on Ms,α,α, ν, T0. Then a regular solution Ξ of
Eqs. (7.5) exists and

‖Ξ(t)‖α ≤ C0ε, 0 ≤ t ≤ T0; ν

∫ T0

0
‖Ξ(t)‖2α+1 ≤ C2

0ε
2. (7.7)

where C0 depends on Ms,α, α, ν; ν = min(ν1, ν2).
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Proof. Multiplying (7.5) by 2(−∆)αΞ we obtain, using, from Lemma 7.1 below,
Eqs. (7.12)–(7.14),

∂t‖Ξ(t)‖2α + 2ν‖Ξ(t)‖21+α
≤ C‖Ξ(t)‖2−δ1+α ‖Ξ(t)‖1+δα + C‖U†

0(t) ‖1+α‖ Ξ(t)‖1+α ‖Ξ(t)‖α
+2‖F′‖α−1‖ Ξ(t)‖1+α

where δ > 0 when α > 1/2. This equation implies

∂t‖Ξ(t)‖2α + ν‖Ξ(t)‖2α+1 ≤ C1‖Ξ(t)‖2/δ+2α

+C2‖Ξ(t)‖2α ‖U†
0(t)‖2α+1 + C3||F′||2α−1,

(7.8)

where C1, C2, C3 depend on ν, M0α and F′ = F†(t) − F†
0(t).

We have ‖Ξ(t)‖2α ≤ y(t), where y(t) is a solution of

y(t) = C1

∫ t
0

y1/δ+1dt + C2

∫ t
0

h(t)ydt + ε2(C3 + 1), (7.9)

where h(t) = ||U†
0(t)||2α+1. The solution of the corresponding differential equa-

tion ∂ty = C1y
1/δ+1 + C2h(t)y, y(0) = ε2(C3 + 1), has a large interval of

existence when ε → 0, this solution being close to zero on a fixed interval
[0, T0]. Using the generalised Gronwall lemma we obtain the statement of the
theorem.

We rely on techniques from BMN[9], a substantial difference being that one
has to use the following inequalities which replace Lemma 4.3 and Lemma 4.3′

of BMN[9].

Lemma 7.1 LetX ⊂ (Z9\{0})×{1, . . . , 8}= ((Z3k×Z3m×Z3n)\{0})×{1, . . . , 8}
be a set, Qkmn be a bilinear function from C3 ×C3 to C3 which depends on
(k,m, n) ∈ Z9 and on l = 1, . . . , 8, and satisfies, for n = k + m,

|Qkmn,l(uk,vm)| ≤ CQ|m̌| |uk| |vm|. (7.10)

Let

(BQ(u,v))n =
∑

k +m = n,
(k, m, n, l) ∈ X

Qkmn,l(uk,vm). (7.11)

Let α ≥ 0. Then with C8 = C8(α) we have

|(BQ(u,v)), (−∆)αw)| ≤ CQC8||w||α+1
[||u||1/2 ||v||α+1||u||α+1/2 ||v||1

]
≤ ν

||w||2α+1
8

+ C[||u||2σ ||v||2σ]/ν, (7.12)



172 Babin et al.

with arbitrary ν > 0 when σ ≥ max(α + 1, 1). Moreover, if 0 ≤ α < 3/2,

|(BQ(u,v)), (−∆)αw)| ≤ CQC8||w||α+1||u||3/4+α/2 ||v||3/4+α/2
≤ ν

||w||2α+1
8

+ C

(
1
ν

)
||u||23/4+α/2 ||v||23/4+α/2.

(7.13)

If 0 ≤ α < 3/2, ε � 1, we have

|(BQ(v,w)), (−∆)αw)| ≤ CQC7||w||α+1 ||w||1+α−ε ||v||1/2+ε
≤ ν

||w||2α+1
8

+ Cν1−2/ε||u||2/ε
1/2+ε

||w||2α.
(7.14)

Proof. The proof uses Sobolev’s embedding theorem and Holder’s inequality
as in the proof of Theorem 4.1. We also use |m| ≤ |k| + |n| in the proof of
(7.14).

Remark 7.1 In BMN [9] we used Lemma 4.3′ instead of (7.14), which gives
inequality

|(B(v,u),Aσu)| ≤ CB(ν)||v||σ ||u||2σ (7.15)

for σ > 5/2 in the 3D case. In the 2D case in [9], the reference to Lemma 4.3′ in
particular to inequality (7.15) with σ > 3/2 was incorrect, when 2 ≥ σ > 3/2;
in the proofs in [9], (7.15) was not in fact used, but rather the following
inequality, with arbitrary small δ > 0:

|(B(v,u),Aσu)| ≤ CB(ν)||v||2+δ ||u||2σ. (7.16)

We now give a proof of the existence for all times for the primitive equa-
tions (1.20) in the viscous case ν1, ν2 > 0, with smooth initial data and forces.
We sketch the existence theorem for Eqs. (1.1)–(1.3) with smooth in Hσ initial
data extending the results of [13] to cover the 3-wave resonance operator.

Theorem 7.2 Let η = f/N and the domain parameters a1, a2 and a3 be
arbitrary and fixed; let α > 3/4, ν1, ν2 > 0, σ > α + 2, T0 > 0 and let Us(t)
be a solution of (1.20) with smooth initial data and forcing term such that

‖U†
s(0)‖α ≤ Mα, sup

T

∫ T+1
T

‖F†
s‖2α−1dt ≤ (MαF )2; (7.17)

‖U†
s(0)‖σ ≤ MσF , sup

T

∫ T+1
T

‖F†‖2σ−1 dt ≤ (MσF )2,

supT

∫ T+1
T

‖∂tF†
s‖2σ dt ≤ (MσF )2.

(7.18)
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Then for every N ≥ N0(Mα,MαF ,MσF , ν, a1, a2, a3), there exists a unique
solution U†

s(t) to Eqs. (1.20) for 0 ≤ t ≤ T0 such that

‖U†
s(t)‖α ≤ M ′

α, 0 ≤ t ≤ T0, (7.19)

ν

∫ T0
0

‖U†
s(t)‖2α+1dt ≤ (M ′

α)2, (7.20)

where M ′
α depends only on Mα, MαF , ν, a1, a2, a3 and T0; and ν = min(ν1, ν2).

Proof. The proof is similar to that of Theorem 8.2 given in BMN [9] for the 3D
rotating Euler and Navier–Stokes system with ν ≥ 0 and the proof of Theorem
5.2 in [14]. Since the proofs are based on energy estimates, one can almost liter-
ally repeat the proof, with obvious modifications, for the primitive equations.
Note that solutions w of the 2D3C (two-dimensional, three-component) Euler
equations are replaced now by UQG and solutions w⊥ of the 21

2D equations
in [14] are replaced by UAG, the large parameter Ω being replaced by a large
parameter N . We also use our new Theorem 6.2 which yields global regularity
of wAG for all values of parameters, including 3-wave resonances.

We have now, according to Theorems 4.1, 5.2 and 6.2, solutions of the limit
QG and AG equations bounded for T0 ≥ t ≥ 0 in Hα by Mα for α ≥ 3/4.

The only essential difference in proofs is that now thanks to the condition
ν > 0 we can replace the condition α > 3/2 imposed in BMN [9] by α > 1/2
(we can do it everywhere, but for global existence of solutions of QG equations
we need α ≥ 3/4, according to Theorem 4.1). Note that (7.19) follows from
the estimate (6.11) of BMN [9] of the difference between the solution v(t) of
(2.20) and the solution w(t) of the limit equations (2.27)–(2.28); this estimate
now takes the form

||v(t) −w(t)||α ≤ δ(N) for all t ∈ [0, Tσ], (7.21)

where δ(N) → 0 as N → ∞. Here Tσ is the classical local time existence of
Eqs. (1.20) with smooth initial data in Hσ. The estimate (7.21) follows from
(8.14) of BMN [9] which here takes the form

||U†(t)||α ≤ ||U† −WQG −E(−Nt)wAG||α + ||WQG +E(−Nt)wAG||α
≤ 2M0

α

≤ M ′
α/4, 0 ≤ t ≤ T. (7.22)

Here α > 1/2; this estimate holds as long as ||wQG||α and ||wAG||α are
bounded; they are so, from Theorems 4.1, 5.1, 5.2 and 6.2, if α ≥ 3/4. Here
wQG,wAG are solutions of the reduced QG–AG equations, with initial data
ΠQGU†(0), ΠAGU†(0) and WAG = E(−Nt)wAG. Inequality (7.22) follows
from estimation of the error term ŷ in (6.14) of BMN [9]. We sketch the error
estimate below.
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We recall the following notation adopted from [9]: v̂ = πRv, ŵ = πRw where
v now stands for the Craya representation of the exact solution in Poincaré’s
slow variable, Eq. (2.18), whereas w is the corresponding one for the limit
equations. Here πRv is the projection of vn onto the Fourier modes with
|ň| ≤ R (similarly πRw). The truncated fields v̂ and ŵ satisfy the equations
of the same form as v and w but with the extra forcing term

gtr = πR [B(Nt,v,v− πRv) +B(Nt,v− πRv, v̂)] ,

g̃tr = πR

[
B̃(v,v− πRv) + B̃(v− πRv, v̂)

]
.

(7.23)

Now we define r̂ = v̂− ŵ; we rewrite the non-resonant terms in Eqs. (2.22) in
the form (∂tr̂1n + ĝ1n)/N where

r̂1n = −i
∑

n.r.,l,k+m=n

eiNDl(k,m,n)t
Qkmn,l(v̂k, v̂m)
Dl(k,m, n)

− 1
ωn
J exp(NωnJt)FAGn − �n(2Nωnt)v̂n

2ωn
, (7.24)

ĝ1n = i
∑

n.r.,l,k+m=n

eiNDl(k,m,n)t
(Qkmn,l(∂tv̂k, v̂m) + +Qkmn,l(v̂, ∂tv̂m))

Dl(k,m, n)

+
1
ωn
J exp(NωnJt)∂tFAGn − �n(2Nωnt)∂tv̂n

2ωn
(7.25)

where n.r. stands for non-resonant terms and �(2Nωnt) is defined in equa-
tion (2.23). Recall the definition of ν = min(ν1, ν2) and Ã given by (2.27). We
can rewrite the equation for the truncated r̂:

∂tr̂+ Ãr̂+ L(v̂, ŵ)r̂ =
ĝ1

N
+

∂tr̂1
N

+ gtr − g̃tr, r̂(0) = 0, (7.26)

with L(v̂, ŵ)r̂ defined as

L(v̂, ŵ)r̂ = −(B̃(v̂, r̂) + B̃(r̂, ŵ)). (7.27)

We denote ŷ = r̂− r̂1/N and obtain

∂tŷ+ L(v,w)ŷ+ Ãŷ =
Ĝ
N

+ gtr − g̃tr, ŷ(0) = − r̂1(0)
N

, (7.28)

Ĝ = ĝ1 − L(v,w)r̂1 − Ãr̂1. (7.29)

To estimate 1/|Dl(k,m, n)|, k,m, n /∈ K in Eq. (7.24), we use the elementary
estimate 1/|Dl(k,m, n)| ≤ C0(R) for |ǩ|, |m̌|, |ň| ≤ R. Since v̂ = ŵ+ ŷ+ r̂1/N
it is sufficient to establish that ||ŷ||α ≤ δ(N).
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The estimate (7.22) follows in a similar way to (6.13) and (6.14) in [9] from
the differential inequality

∂t||ŷ||2α + ν||ŷ||2α+1
≤ C(Mσ, ν)||ŷ||2α +

ν||ŷ||2α+1
2

+ +
||Ĝ||2α
N2

+ 2||gtr||2α + 2||g̃tr||2α,
||ŷ(0)||α =

||r̂1(0)||α
N

.

(7.30)

Here the truncation error terms satisfy the estimate

||gtr||2α + ||g̃tr||2α ≤ C2M4
σC0(R)R2(α+1−σ), 0 ≤ t ≤ Tσ, (7.31)

with arbitrary truncation parameter R; this estimate is true for any value of
α including α ≥ 1/2. We also have the estimate

||Ĝ||α + ||r̂1||α ≤ CRα+2C0(R)C(Mσ)
N

, 0 ≤ t ≤ Tσ.

Here one can take α > 1/2 since one can use estimates of solutions in a
smooth space Hσ and we take here σ > α + 2 (compared with σ > α + 1 as
was done in BMN [9]). The term C(Mσ, ν)||ŷ||2α+ν||ŷ||2α+1/2 is obtained from
Lemma 7.1. To obtain estimate (7.30) from (7.28) we multiply the latter by
(−∆)αy and apply Lemma 7.1 instead of Lemma 4.3 and Lemma 4.3′ of BMN
[9]. Taking into account the remarks given, one can follow the proof of Theorem
8.2 in BMN [9] to obtain the statement of Theorem 7.2 by bootstraping from
[0, Tσ] to [0, T0]. The theorem is proved.

We now conclude with the existence and regularity theorem for less smooth
U†(0) and F†, by bootstrapping local existence with the help of Theorems 7.1
and 7.2.

Theorem 7.3 Let η = f/N and the domain parameters a1, a2, a3 be fixed
but arbitrary. Let ν1, ν2 > 0, ν = min(ν1, ν2), α > 3/4, and let the condition
(7.1) on the force F(t, x) hold. Let

‖U†(0)‖α ≤ M̃α,

and N be large: N ≥ N1(M̃α,MαF , ν, a1, a2, a3). Then solutions of the 3D
primitive Navier–Stokes system (1.1)–(1.3) are regular for all t ≥ 0, and

‖U†(t)‖α ≤ M̃ ′
α for all t ≥ 0.

Proof. We have a regular solutionU†(t)∈Hα with ||U†(t)||α≤Mα(M̃α,MαF , ν)
on a small time interval [0, Tα], Tα = Tα(M̃α,MαF , ν). We consider the case
3/4 < α ≤ 1. We have the energy estimate for regular solutions:

||U†(t)||0 ≤ M0(M̃α,MαF , ν) for all t ≥ 0 (7.32)
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ν

∫ T+τ
T

||U†(t)||21 ≤ M2
0 for all T ≥ 0; 0 ≤ τ ≤ 1, (7.33)

where ν = min(ν1, ν2).

Remark 7.2 Uniform boundedness of the energy for the condition (7.1) on
F(t, x) follows from the usual Gronwall inequality estimate:

||U†(t)||20 ≤ ||U†(0)||20 e−νλ1t +
1

νλα1

∫ t
0

e−νλ1(t−s)||F†(s)||2α−1ds, (7.34)

and

||U†(t)||20 ≤ ||U†(0)||20 e−νλ1t +
M2
αF

νλα1

1
1 − e−νλ1

, (7.35)

whence

M2
0 = C2

αM̃
2
α + M2

αF

(
1 +

1
νλα1 (1 − e−νλ1)

)
. (7.36)

Here Cα is an embedding constant from H0 to Hα and λ1 is the first eigenvalue
of the Stokes operator.

For every t ≥ τ , Eq. (7.33) implies that on every interval [t− τ, t] including
t = τ , we have a point t∗ for which:

||U†(t∗)||1 ≤ M0√
ντ

.

From now on, we choose τ = Tα, the local existence time defined above. For
every t ≥ Tα, we take U†(t∗) as new initial data, with t − Tα ≤ t∗ ≤ t. To
prove that the solution is uniformly bounded in Hα for all t ≥ Tα, it suffices to
derive a uniform bound for t ∈ [t∗, t∗ +Tα], with the help of Theorems 7.1 and
7.2: in both theorems we set T0 = Tα. At t = t∗, the initial condition (7.17) of
Theorem 5.2 becomes

Mα = Cα,1
M0√
νTα

, (7.37)

with Cα,1 an embedding constant from Hα to H1.
Approximating the force F†(t), ∂tF†(t) and the initial dataU†(t∗) by smooth

functions F†
s(t), ∂tF

†
s(t), U

†
s(t∗) in Hα we obtain

‖Ξ(t∗)‖α = ||U†(t∗) −U†
s(t

∗)||α ≤ ε, ‖Ξ(t∗)‖σ ≤ Mε.

Moreover, the inequality (7.3) holds and, with F′ = F† − F†
s, we get

||F′(t)||σ ≤ Mε, ||∂tF′(t)||σ ≤ Mε, t∗ ≤ t ≤ t∗ + Tα, (7.38)
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where Mε depends on Mα, MαF and ε only; of course, Mα in (7.37) depends
on the original M̃α, and MαF , ν, a1, a2, a3. We choose ε so small that we have,
by Theorem 7.1 (where MσF is replaced by MαF ), a regular solution Ξ(t) on
[t∗, t∗+Tα] which is bounded in Hα by 1 when the initial data are in Hα. After
that we consider the Navier–Stokes equations with smooth initial data U†

s(t∗)
and force Fs which satisfy (7.18) for t∗ ≤ t ≤ t∗ + Tα.

The Hσ-norms of these smooth functions are bounded by (a possibly large)
constant Mε depending on this fixed ε and Mα (hence M̃α) and MαF . After
that we choose N ≥ N1(ε,Mα,MαF ) so large that we have (7.19) and (7.20)
for solutions U†

s(t) of equations with smooth data. By (7.19) and (7.7) with
C0ε ≤ 1 we have ||U†(t)||α ≤ ||U†

s(t)||α + ||U†(t) −U†
s(t)||α ≤ M ′

α + 1 with
M ′
α = M ′

α(M̃α,MαF , ν, a1, a2, a3). Setting M̃ ′
α = max(Mα,M

′
α + 1) completes

the proof of boundedness of U†(t) in Hα for all t ≥ 0. We also have

ν

∫ T+1
T

‖U†(t)‖2α+1dt ≤ (M ′′
α)2 (7.39)

for every T ≥ 0 and 3/4 < α ≤ 1. To extend the above to the case α > 1 we use
uniform-in-t boundedness in H1 already proven and then apply the smoothing
property for solutions of Navier–Stokes equations (see Theorem 8.2 in [9]) and
obtain that the solutions are bounded for t ≥ t∗ > 0 in Hα α > 1; we get the
statement of Theorem 7.3 in this case as well. Theorem 7.3 is proved.

Finally, as in [9], we obtain regularity for all large enough times for weak
solutions of the 3D ‘primitive’ Navier–Stokes equations (1.1)–(1.3) with a force
F†(t). This theorem describes the situation when N is fixed, and large enough
(depending only on the magnitude of F†(t) and independent of the initial
data). The situation is that of non-smooth and arbitrary large initial data in
H0. Then weak Leray solutions U†(t) always exist (with a possible blow-up
in H1 at some values of t < t∗, see [19]); here we show that blow-up cannot
happen if t is large.

Theorem 7.4 Let η = f/N and the domain parameters a1, a2, a3 be fixed but
arbitrary. Let ν1, ν2 > 0, ν = min(ν1, ν2), α > 3/4 and the condition (1.19)
on the force be satisfied. Let ||U†(0)||0 ≤ M0, T̂ = T̂ (M0,MαF , ν). Then for
every N ≥ N ′(a1, a2, a3, ν,MαF ), N ′ independent of M0, and for every weak
solution U†(t, x1, x2, x3) of the 3D ‘primitive’ Navier–Stokes equations (1.20)
defined on [0, T̂ ] which satisfies the classical energy estimates on [0, T̂ ], the
following holds: U†(t, x1, x2, x3) can be extended to 0 < t < +∞ and is reg-
ular for every t : T̂ ≤ t < +∞; it belongs to Hα and ||U†(t, x1, x2, x3)||α ≤
C1(a1, a2, a3,MαF , ν) for every t ≥ T̂ where MαF is the Hα-norm of F†. If
F† is independent of t then there exists a global attractor for the 3D primitive
Navier–Stokes equations of geophysics (1.1)–(1.3) bounded in Hα; such an att-
ractor has a finite fractal dimension and attracts every weak Leray solution as
t → +∞.
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8 Regularity results for inviscid case

Now we give inviscid versions of the above theorems from Section 7, valid only
when there are no 3-wave resonances. We again consider (7.5), now ν1 = ν2 =
0, F† = F†

0 = 0.

Theorem 8.1 Let α > 5/2, ν = 0, F† = 0, η /∈ Θ∗(θ2, θ3), Ξ(t) = U†(t) −
U†

0(t), and

‖U†
0(t)‖α+1 ≤ M0, 0 ≤ t ≤ T ; ||Ξ(0)||α ≤ ε. (8.1)

Let ε ≤ ε0. Then a regular Ξ(t) exists and ‖Ξ(t)‖α ≤ 3ε, 0 ≤ t ≤ Tg, where
Tg = 2/(C1M0).

Proof. The proof is similar to that of Theorem 7.1. Multiplying the inviscid
form of (7.5) by 2(−∆)αΞ we now obtain by using Lemma 4.3′ of BMN [9] in
the 3D case:

∂t‖Ξ(t)‖2α ≤ C1‖U†
0(t)‖α+1 ‖Ξ(t)‖2α + C2‖Ξ(t)‖3α. (8.2)

This implies

∂t‖Ξ(t)‖2α ≤ C2‖Ξ(t)‖3α + C1M0‖Ξ(t)‖2α, ‖Ξ(0)‖α ≤ ε (8.3)

where C1 and C2 depend on α. We easily obtain an inequality similar to (7.8)
and (7.9): specifically, setting z(t) = ||Ξ(t)||α, we have

z(t)
z(t) + C̃M0

≤ z(0)
z(0) + C̃M0

exp
(
C1M0t

2

)
(8.4)

with C̃ = C1/C2. Then for 0 ≤ t ≤ Tg, where Tg = 2/(C1M0), we obtain
z(t) ≤ 3ε for small enough ε. Note that we cannot bound Ξ(t) on an arbitrary
[0, T ], as the above estimate for z(t) blows-up at

Tb =
2

C1M0
log

(
1 +

C̃M0

z(0)

)
.

Theorem 8.2 Let α > 5/2, ν1 = ν2 = 0, σ > α + 3, η /∈ Θ∗(θ2, θ3) and

‖U†
0(0)‖σ ≤ Mσ, ‖ U†

0(0)‖α ≤ Mα. (8.5)

Let the solution wQG(t) of the 3D QG system be bounded in Hα for 0 ≤ t ≤ T ;
let N ≥ N0(Mα,Mσ, T, a1, a2, a3). Then

‖U†
0(t)‖α ≤ M ′

α, (8.6)

for 0 ≤ t ≤ T where M ′
α depends only on Mα, T, a1, a2, a3.
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Proof. In the proof of Theorem 8.1 in BMN [9] it is shown that the estimate
(8.6) follows from (8.6) of BMN [9]. One has to replace global regularity of the
2D Euler equation by global regularity of inviscid 3D QG equations (regularity
for the QG equation is proved in Bourgeois & Beale, [18], for α ≥ 3, but the
same proof works for α > 5/2); one also has to replace global regularity of the
extended rotating Euler equations by global regularity of the ‘catalytic’ AG
equations (Theorem 5.1). Now one also can use a theorem similar to Theorem
8.1.

Theorem 8.3 Let α > 5/2, ν1 = ν2 = 0, η /∈ Θ∗(θ2, θ3), F† = 0,

‖U†(0)‖α ≤ Mα; (8.7)

let T > 0, N ≥ N∗(Mα, T, a1, a2, a3). Then solution of the inviscid primitive
system is regular for t ≤ T :

‖U†(t)‖α ≤ M ′
α + 1, 0 ≤ t ≤ T. (8.8)

Proof. Solutions of the limit equations are bounded for all 0 ≤ t ≤ T in Hα
by Mα. The bound for 3D QG equation is proved in Bourgeois & Beale, [18],
for α ≥ 3, but the same proof works for α > 5/2. After that we proceed as
in the proof of Theorem 7.2, but now from the very beginning we restrict
all considerations to a fixed interval [0, T ] and do not use any smoothing
arguments involving ν > 0. The major difference is the lack of existence of a
time t∗ where the H1-norm is bounded. One must find ε small enough so that
3nε ≤ 1 where n = T/Tg, and where Tg is defined in Theorem 8.1. This is
clearly satisfied if

T (log 3)C1||U†
0||α+1 ≤ 2 log(1/ε), (8.9)

which restricts ε, given T and ||U†
0||α+1. Technically, one needs Theorem 8.2

with both α and α+1 estimates so that ||U†
0||α+1 ≤ M ′

α+1 on [0, T ], T arbitrary
large. However, M ′

α+1 appears only in the inequality 3nε ≤ 1 and does not
appear in the final statement of Theorem 8.3.

Now we give a uniform theorem on regularity; such theorem requires more
smoothness of initial data. It improves the result of BMN [7] using more pre-
cise small divisors estimates given in Section 3, where µ2 (respectively, µ3)
denote the measures of the sets of quasi-2-waves (respectively, quasi-3-waves)
resonances.

Theorem 8.4 Let η /∈ Θµ3
3 (θ2, θ3), θ2 �∈ Θµ2

2 . Let ν1 = ν2 = 0. Let σ >
19/2, and Mσ > 0, let T ∗ > 0 be arbitrarily large. Then there exists N∗ =
N∗(Mσ, T

∗, µ3, µ2) such that for ||U†(0)||σ ≤ Mσ and N ≥ N∗, there exists a
unique regular solutionU†(t) of the 3D Euler primitive equations which belongs
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to Hσ for 0 ≤ t ≤ T ∗. For Mσ fixed, T ∗ → +∞ as N∗ → +∞ with explicit
uniform dependence of T ∗ on Mσ, µ3, µ2, N∗. Simultaneously, we can take an
arbitrarily large (but bounded) set of initial data: Mσ → +∞ if N∗ → +∞,
for fixed T ∗.

The proof is similar to the proof of Theorem 6.2 in BMN [9], [7], and relies
on Theorems 3.3, 3.4 above.

9 Baroclinic wave dynamics and AG wave fronts

In this section we further analyse the 3D Euler–Boussinesq equations for
Bu = O(1) flows and in the asymptotic regime of strong stratification and
weak rotation. In Section 9.1 we describe classes of nonlinear anisotropic AG
baroclinic waves which are generated by the strong nonlinear interactions be-
tween the QG modes and inertio-gravity waves. The problem that we study
in Section 9.2 is the initial stage of scale adjustment of strongly stratified
turbulence to geostrophic turbulence.

For intermediate scales of motion, rotation is present but not dominant, so
that the Rossby number is neither very large nor very small. Such systems
have not been investigated by turbulence closure models (Lilly, [49]). In the
asymptotic regime of strong stratification and weak rotation (no hydrostatic
assumption) we show how switching on weak rotation triggers AG fronts. Ver-
tical slanting of these fronts is proportional to

√
η, where η is the ratio of the

Coriolis and Brunt-Väisälä parameters. These slowly moving fronts select the
slowest baroclinic waves through adjustment of the horizontal to vertical scale
through rotation, and are the envelope of inertio-gravity waves. The fronts ef-
fectively balance the frequencies of baroclinic waves uniformly to O(

√
η). This

frontogenesis yields the vertical ‘glueing’ of pancake dynamics by weak rota-
tion. The mechanism of its formation is contraction in horizontal dimension
balanced by vertical stretching. This agrees with the conclusions of Hoskins
& Bretherton ([41]) and Hoskins ([42]), that the vertical deformation field is
crucial in the dynamics of frontal systems, as it balances strong horizontal
density gradients. In their study of atmospheric frontogenesis models, smaller
scale AG motions embedded in the baroclinic flow lead to the rapid formation
of a front. It has been recognised that the evolution of baroclinic waves provide
the dynamical environment for upper-level frontogenesis at the tropopause and
lower stratosphere (Keyser & Shapiro, [45]).

The importance of even weak rotation on mesoscale flows and its fundamen-
tal role in the scale adjustment process is emphasised in Newley, Pearson &
Hunt (henceforth NPH) ([62]) and Rotunno ([67]). This is a singular pertur-
bation problem where weak Coriolis accelerations may have large effects on
long horizontal scales. The latter are coupled to small vertical scales by rota-
tion. Such singular perturbation effects can be treated using our asymptotic
analysis which is based on careful studies of resonances and quasi-resonances.
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9.1 Baroclinic wave dynamics

The limit catalytic resonant equations (5.1) (for N → +∞, η = f/N fixed)
for the AG field w′

n = (w1
n, w

2
n) include w1

m, w2
m and the already found QG

component w0
k(t). In this section we analyse inviscid Eqs. (5.1), AAG = 0.

We recall that

ω2
m =

|m̌′|2
|m̌|2 + η2

m̌2
3

|m̌|2 = η2 + (1 − η2)
|m̌′|2
|m̌|2

(with a similar expression for ω2
n) and, therefore, the resonance condition ωm =

ωn is equivalent to the condition |m̌′|
|m̌| = |ň′|

|ň| (or φm = φn) and |m̌3|
|m̌| = |ň3|

|ň| or

|ξm| = |ξn|, see (2.6). These conditions can be written as |m̌′|
|m̌3| = |ň′|

|ň3| and they
define resonant rays on cones in Fourier space:

1
m2

3

(
m2

1

a21
+

m2
2

a22

)
=

1
n23

(
n21
a21

+
n22
a22

)
. (9.1)

We can further simplify the resonant rays on the cone (9.1) (although, this
is not strictly necessary for the following considerations and will be lifted in
the last part of Section 9.2): for all domain aspect ratios a1, a3 and for all
a2 �= a2(j), j = 1, 2, . . ., B2(wQG,wAG) in (5.1) (note wQG ≡ w0 and wAG ≡
w′) splits in Fourier space into uncoupled, restricted interaction operators
on 4-ray families given by Eqs. (1.25). This is obtained by further reducing
the resonances ωm = ωn to a2 �= {a2(j)} and Eq. (9.1) reduces to m1/n1 =
±λ, m2/n2 = ±λ, m3/n3 = ±λ, with λ rational. Then m and n are related
by (1.25).

Four fundamental rays describing interactions in reduced equations (5.1)
are defined by choosing the minimal length integer vector l = (l1, l2, l3) along
a resonant ray. Then

R++ = {γl1, γl2, γl3}, R−− = {−γl1,−γl2, γl3},
R−+ = {−γl1, γl2, γl3}, R+− = {γl1,−γl2, γl3}.

(9.2)

Here R−+ and R+− are the ‘polarised’ pair relative to R++. It follows from (5.3)
that the coefficients Dmn(η) and Gmn(η) are identically zero if both n and m
are on the same ray since ň×m̌ = 0 and ň′∧m̌′ = 0 in this case. We note that
Dmn(η) = 0 if m lies on the rays R−− and R++ relative to n (since n′∧m′ = 0
in this case). Thus Dmn(η) impacts on the AG dynamics only through the
‘polarised rays’ R−+ and R+−.

Suppose that on R++ we have n = (γ1l1, γ1l2, γ1l3) fixed, where γ1 is any
integer (positive or negative), and consider four different cases (m ∈ R++,
m ∈ R−−, m ∈ R+−, m ∈ R−+). Then we have, for any positive or negative
integer γ2:

m = m++ = γ2(l1, l2, l3) on R++, m = m−− = γ2(−l1,−l2, l3) on R−−
m = m−+ = γ2(−l1, l2, l3) on R−+, m = m+− = γ2(l1,−l2, l3) on R+−,

(9.3)
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and with λ = γ2/γ1 the vectors m and n are related by Eqs. (1.25). The
operators D and G given by (5.3) reduce to the following expressions on the
rays:

Dm++n(η) = Dm−−n(η) = Gm++n(η) = 0,

Gm−−n(η) = −4λη
|ň′|
|ň|

|ň′|ň23√
|ň′|2 + η2ň23

,

Gm−+n(η) = 4λη
ň21ň

2
3(3ň

2
2 − ň21)

|ň′|2|ň|
√

|ň′|2 + η2ň23
,

Gm+−n(η) = 4λη
ň22ň

2
3(3ň

2
1 − ň22)

|ň′|2|ň|
√

|ň′|2 + η2ň23
,

Dm−+n(η) =

4λň1ň2

( |ň′|2
|ň|2 − η2ň23

|ň′|2 + η2ň23
+

ň23(−ň21 + ň22)
|ň′|2

(
1

|ň|2 +
η2

|ň′|2 + η2ň23

))
,

Dm+−n(η) =

−4λň1ň2

( |ň′|2
|ň|2 − η2ň23

|ň′|2 + η2ň23
+

ň23(ň
2
1 − ň22)

|ň′|2
(

1
|ň|2 +

η2

|ň′|2 + η2ň23

))
.

(9.4)

Our notation in (9.4) is understood as follows. For example, Gm−−n(η) simply
means that we evaluate Gmn for fixed n = (n1, n2, n3) = (γ1l1, γ1l2, γ1l3) and
m ≡ m−− ∈ R−−. Since m ∈ R−−, we have m = (−γ2l1,−γ2l2, γ2l3) for some
γ2. Then |m|

|n| =
∣∣∣γ2γ1 ∣∣∣ = |λ|, k = n − m = ((1 + λ)n1, (1 + λ)n2, (1 − λ)n3).

Eqs. (5.1) describing interactions on four polarised rays (1.25) have the
following form, since self-interactions are zero:

∂tw′
n = −

∑
γ2

Ψ̃0
k(t)(Dm−−n(η)I− Gm−−n(η)J)w′

m−−

−
∑
γ2

Ψ̃0
k(t)(Dm+−n(η)I− Gm+−n(η)J)w′

m+−

−
∑
γ2

Ψ̃0
k(t)(Dm−+n(η)I− Gm−+n(η)J)w′

m−+

where n = (γ1l1, γ1l2, γ1l3), λ = γ2/γ1, k = n−m. Eqs. (9.5) are obtained after
substitution of (5.2) in (5.1). Here m−− ∈ R−−, m+− ∈ R+−, m−+ ∈ R−+.
Thus m−− = (−γ2l1,−γ2l2, γ2l3) = (−λn1,−λn2, λn3) with similar expres-
sions for m+− and m−+. Furthermore, Dm−−n(η) = 0. Only the polarised
rays see interactions between D and G operators.

There exist special time-independent solutions of the QG equations which
have only one non-zero Fourier mode Ψ̃0

±k0 (Ψ̃k = 0 for k �= ±k0). We call such
solutions monochromatic. Now we consider special cases for monochromatic
steady Ψ̃0 for which Eqs. (9.5) for the AG field w′ can be solved explicitly:
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(1) Ψ̃0 coupling rays R++ and R−−;

(2) Ψ̃0 coupling rays R++ and R−+;

(3) Ψ̃0 coupling rays R++ and R+−.

First, suppose that Ψ̃0
k is independent of t and monochromatic so that Ψ̃0

k =
Ψ̃0
k0

, k0 = ((1 + λ0)n1, (1 + λ0)n2, (1 − λ0)n3), for some λ0, and its com-
plex conjugate are the only two non-zero modes. This special choice of Ψ̃0

k

reduces interactions in (9.5) to a single term on one ray R−−. Recalling that
Dm−−n(η) = 0, we have from Eqs. (9.5)

∂tw′
n = Ψ̃0

k0Gm−−n(η)Jw′
m−− (9.5)

where m−− = (−λ0n1,−λ0n2, λ0n3), k0 = ((1 +λ0)n1, (1 +λ0)n2, (1−λ0)n3).
An equation for w′

m−− is obtained similarly. Only one term remains in the
summation in (9.5) and it reduces to

∂tw′
m−− = Ψ̃0

−k0Gm−−n(η)Jw′
n. (9.6)

Then Eqs. (9.5) reduce to a system of coupled 1-rays R++ and R−− equa-
tions (9.5)–(9.6). Using the properties Ψ̃0

−k0 = (Ψ̃0
k0

)∗ and J2 = −I, we have
from (9.5)–(9.6)

∂2

∂t2
w′
n = −|Gm−−n|2|Ψ̃0

k0 |2w′
n. (9.7)

Eqs. (9.7) describe baroclinic wave propagation coupled with a QG state given
by the monochromatic streamfunction Ψ̃0

k0
. Since

|Gm−−n| = 4|λ0|η |ň′|
|ň|

|ň′|ň23√
|ň′|2 + η2ň23

by (9.4) their dispersion relation is found from (9.7) as

θ−−
n,G = |Gm−−n||Ψ̃0

k0 | = 4|λ0| η |ň′|
|ň|

|ň′|ň23√
|ň′|2 + η2ň23

|Ψ̃0
k0 | (9.8)

where k0 = ((1 + λ0)n1, (1 + λ0)n2, (1 − λ0)n3). Because of the special choice
of the monochromatic QG potential, no baroclinic waves are excited on the
polarised rays R−+ and R+−, and the θ−−

n,G waves correspond to pure rotation
effects via the shearing operators G. They switch on as η �= 0.

Now suppose that Ψ̃0 is independent of t and monochromatic, so that Ψ̃0
k0

with k0 = ((1 + λ0)n1, (1 − λ0)n2, (1 − λ0)n3), and its complex conjugate are
the only two non-zero modes. Then from Eqs. (9.5) we obtain a system of
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coupled equations for modes w′
n and w′

m−+
belonging to the ray R++ and the

polarised ray R−+, respectively:

∂tw′
n = −Ψ̃0

k0
(Dm−+n(η)I− Gm−+n(η)J)w′

m−+
,

∂tw′
m−+

= Ψ̃0
−k0(Dm−+n(η)I+ Gm−+n(η)J)w′

n

(9.9)

where m−+ = (−λ0n1, λ0n2, λ0n3) and the coefficients D and G are given
by (9.4). We have (αI−βJ)(αI+βJ) = (α2 +β2)I since J2 = −I. Using again
Ψ̃0

−k0 = (Ψ̃0
k0

)∗, Eqs. (9.9) imply

∂2

∂t2
w′
n = −((θ−+n,D)2 + (θ−+n,G)2)w′

n,

(θ−+n,D)2 = D2
m−+n|Ψ̃0

k0 |2, (θ−+n,G)2 = G2
m−+n|Ψ̃0

k0 |2,
(9.10)

where k0 = ((1 + λ0)n1, (1 − λ0)n2, (1 − λ0)n3), m−+ = (−λ0n1, λ0n2, λ0n3).
Eqs. (9.10) describe baroclinic wave propagation on R++, R−+, coupled with
a QG state given by the monochromatic streamfunction Ψ̃0

k0
. Because of the

special choice of the QG potential, no baroclinic waves are excited on R−− or
R+−. A dispersion relation is obtained from (9.10) and is given by

θ−+n,DG =
√

(θ−+n,D)2 + (θ−+n,G)2. (9.11)

Finally, choosing a monochromatic Ψ̃0
k0

with

k0 = ((1 − λ0)n1, (1 + λ0)n2, (1 − λ0)n3)

in (9.5) will only excite AG dynamics on R++ and the polarised ray R+−;
there

θ+−
n,DG =

√
D2
m+−n + G2

m+−n|Ψ̃0
k0 | =

√
(θ+−
n,D)2 + (θ+−

n,G)2, (9.12)

where θ+−
n,D = |Ψ̃0

k0
| |Dm+−n| and

θ+−
n,G = 4|λ0| |η| |Ψ̃0

k0 |
ň22

|ň′|2
ň23
|ň|

|3ň21 − ň22|√
|ň′|2 + η2ň23

. (9.13)

Notice that for η = 0, both θ+−
n,G and θ−+n,G are null. The baroclinic waves (9.11)-

(9.12) then reduce to ‘horizontal’ waves of frequencies

θ−+n,D|η=0 = 4|λ0| |Ψ̃0
k0 | |ň1ň2|

∣∣∣∣ |ň′|2
|ň|2 +

ň23(−ň21 + ň22)
|ň|2|ň′|2

∣∣∣∣ ,
θ+−
n,D|η=0 = 4|λ0| |Ψ̃0

k0 | |ň1ň2|
∣∣∣∣ |ň′|2
|ň|2 +

ň23(ň
2
1 − ň22)

|ň|2|ň′|2
∣∣∣∣ . (9.14)

In some sense the above baroclinic waves θ+−
n,DG and θ−+n,DG are the continuation

of the AG horizontally propagating gravity waves of the pure stratified case;
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switching on η > 0 couples the wave dynamics of both w1 and w2 through in-
teractions of both operators D(η) and G(η). One can repeat the above analysis
with time independent stream functions of the form Ψ̃0 = Ψ̃0(s1x1+s2x2, x3),
where Ψ̃0 is an arbitrary function (they are exact steady state solutions of
3DQG equations for arbitrary s1 and s2). In this case the dynamics for each
Fourier component of Ψ̃0 decouples into wave problems described above which
can be solved independently.

In the general case (no restrictions whatsoever on Ψ̃0 and arbitrary η =
f/N), the dynamics of baroclinic field along any given ‘beam’ of rays will
fully couple four systems of the type (9.5) on R++, R−−, R+−, R−+. Techni-
cally, these are coupled non-local hyperbolic systems in the variables t and λ
(= γ2/γ1). What makes them unusual is the extreme variability of the coeffi-
cients Ψ̃0

k. Wave frequencies such as θ−−
n,G, θ+−

n,G, θ−+n,G, θ+−
n,DG and θ−+n,DG become

incommensurably mixed. The dynamics of the total baroclinic field that is
obtained from a full spectrum of Ψ̃0

k can be very complex.

9.2 Genesis of fronts in the regime of strong stratification and
weak rotation

In this section we analyse the intermediate asymptotic regime of strong strat-
ification and weak rotation. It will be shown that the effect of weak rotation is
to couple large horizontal and small vertical scales leading to vertically slanted
AG wave fronts.

For η = 0 (no rotation) the splitting (1.22)–(1.23), (5.1) is also valid (see
[12]). In this pure stratified case Eqs. (1.22) coincide with the familiar quasi-
2D Euler systems which can be seen by introducing variables q̃ and UQ2D

(quasi-2D potential and velocity):

q̃m = i|m̌′|w0
m, m �= m and UQ2D,k = −i[−ǩ2, ǩ1, 0, 0]

q̃k

|ǩ′|2 , k �= k. (9.15)

In this notation (1.22) is written in the form of the 2D Euler equations which
depend on x3 as a parameter:

∂tq̃n = −i
∑
k+m=n

(
(UQ2D,k +UQ2D,k) · m̌

)
q̃m, (9.16)

with

∂tUQ2D,n = 0. (9.17)

To derive (9.17), we have used Q000
kmn(0) = 0, Q000

kmn(0) = 0 and the appropri-
ate limit for Q000

kmn
(0). Then in physical space the velocity UQ2D(t, x1, x2, x3)

satisfies the quasi-2D Euler systems

∂tUQ2D + (UQ2D +UQ2D) · ∇hUQ2D = −∇hp̃, ∇h ·UQ2D = 0 (9.18)
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which depends on x3 as a parameter, ∇h = [∂1, ∂2]. In Eqs. (9.18) UQ2D

denotes horizontally-averaged velocity which is an adiabatic invariant of the 3D
Boussinesq equations in the strongly stratified limit in the absence of rotation
as shown in [12]. Note that ρ(x3) is still an adiabatic invariant for the case
η = 0.

It follows from (5.3) that for η = 0 (no rotation) Gmn(0) = 0 and Dmn(0)
reduces to

Dmn(0) = (ň′ ∧ m̌′)
2(ň3m̌3ň

′ · m̌′ + |m̌′|2|ň′|2)
|m̌′||ň′||m̌||ň| . (9.19)

In the non-rotating case (η = 0) the AG dynamics is described by Dmn(0)I
in (5.1), since Gmn(0) = 0 by (5.3).

In the purely stratified regime (η = 0, Bu = +∞), the QG flow degener-
ates into quasi-2D flows parametrised in x3: Eqs. (9.18). Without viscosity,
there is no bound on vertical shearing associated with the dynamics of 3D2C
(3-dimensional, 2-component) decoupled pancakes (parametrised in x3) with
different pressures at every level; this leads to unbalanced dynamics at the
lowest order. There is no saturation of the exponential build-up of vertical en-
strophy (in small vertical scales) for the AG dynamics as the latter is coupled
to the quasi–2D-field through ∂U1

Q2D/∂x3, ∂U2
Q2D/∂x3. The major problem

is lack of boundedness of vertical shearing in quasi-2D equations (see [49]).
Of course, control of vertical shearing can be achieved trivially by introduc-
ing vertical viscosity; however, this corresponds to a non-physical laboratory
set-up rather than the real atmosphere, or a poorly-resolved in the vertical
x3-scale numerical model.

In such a purely stratified context (η = 0), the 4-ray AG dynamics Eqs. (9.5)
reduce to

∂tw′
n = −

∑
γ2

Ψ̃0
k(t)Dm+−n(0)Iw′

m+− −
∑
γ2

Ψ̃0
k(t)Dm−+n(0)Iw′

m−+
, (9.20)

with uncoupling of w1 and w2; there are only interactions between the po-
larised rays R−+, R+− on the right-hand side of Eqs. (9.20) (recall that
Dm−−n(η) = 0). For η = 0 the operators D and G given by Eqs. (9.4) be-
come

Gm++n(0) = Gm−−n(0) = Gm−+n(0) = Gm+−n(0) = 0,

Dm−+n(0) = 4λň1ň2

( |ň′|2
|ň|2 +

ň23(−ň21 + ň22)
|ň|2|ň′|2

)
,

Dm+−n(0) = −4λň1ň2

( |ň′|2
|ň|2 +

ň23(ň
2
1 − ň22)

|ň|2|ň′|2
)

.

(9.21)

A key role in readjusting these purely stratified pancake dynamics is played by
weak rotation, η = f/N � 1 but fixed (say O(10−2)). This can be immediately



Fast singular oscillating limits 187

inferred from the frequencies of inertio-gravity waves. Strong vertical shearing
on small vertical scales can excite inertial Poincaré waves which can balance
gravity waves: this is exactly the balance between a spectral Froude number
(N |ň′|/|ň|)−1 and a spectral anisotropic Rossby number (f |ň3|/|ň|)−1. An ap-
proach such as in [28] and [55], which treats rotation scales as uniformly slow
(‘only large scale horizontal rotation’), misses this readjustment mechanism.
Rotation does impact on small vertical scales. Of course, weak rotation does
control (bound) the vertical shearing of the quasi-2D3C flow through conser-
vation of the QG potential q̃: ∂t

∑
n |q̃n(t)|2 = 0, where q̃n = (|ň′|2 + η2ň23)Ψ̃

0
n.

As shown in [11] and here, weak rotation regularises vertical shearing and lets
us control (bound) AG vertical scales for all times; this is especially important
for regimes where the local Richardson number is small enough to generate
Kelvin–Helmholtz instabilities. There is no need to resort to vertical viscosity
as the principal stabilising mechanism (Reynolds number Re ∼ 1010 − 1012 in
atmospheric flows).

The effect of weak rotation is to trigger interactions between the polarised
pairs of rays R−+, R+− and the ray R−− through the O(η) operators G(η)
given by Eqs. (9.4). It also follows from (9.4) that for η �= 0

Dm−+n(η) =

4λň1ň2

( |ň′|2
|ň|2 − η2ň23

|ň′|2 + η2ň23
+

ň23(−ň21 + ň22)
|ň′|2

(
1

|ň|2 +
η2

|ň′|2 + η2ň23

))
,

Dm+−n(η) =

−4λň1ň2

( |ň′|2
|ň|2 − η2ň23

|ň′|2 + η2ň23
+

ň23(ň
2
1 − ň22)

|ň′|2
(

1
|ň|2 +

η2

|ň′|2 + η2ň23

))
.

(9.22)

In our search for hyperbolic fronts in Eqs. (9.5), we look for quasi-standing,
slow-moving waves along special 4-ray bundles: such fronts are not disconti-
nuities but rather correspond to strong gradients (shearing) of the field. The
above discussion of monochromatic waves shows that in general the wave fre-
quencies do couple the operators G(η) and D(η), Eqs. (9.11)–(9.12). Only in
the special case where D(η) does not contribute to the wave dispersion law
can we expect to get slow-moving waves of frequency O(η), since only G(η)
is O(η); see Eqs. (9.4) and (9.8). For η = 0 the coefficients Dm−+n(0) and
Dm+−n(0) are given by (9.21) with the corresponding wave frequencies given
by (9.14). These are stratified AG waves propagating horizontally. Their fre-
quencies depend on the vertical variability of Ψ̃0. Even weak rotation triggers
interactions between the polarised pairs of rays R−+, R+− and the ray R−−
through the O(η) operators G(η) in Eqs. (9.4). From Eqs. (9.8) and (9.13), the
natural frequencies θ−−

n,G, θ+−
n,G, θ−+n,G are O(η); whereas θ−+n,D (resp. θ−+n,DG) and

θ+−
n,D (resp. θ+−

n,DG) are all O(1) on polarised rays R−+, R+−. Apparently, ‘hor-
izontal’ waves associated to Dm−+n(0) through θ−+n,DG and θ+−

n,DG still seem to
dominate wave dynamics. However, there is one remarkable set of wave vectors
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given by ň21 = ň22 and the vertical slanting condition (9.24) which do generate
much slower frequencies on the polarised rays; specifically those which anni-
hilate Dm−+n(η) and Dm+−n(η), given by (9.4), and reduce θ+−

n,DG, θ−+n,DG to
θ+−
n,DG = θ+−

n,G, θ−+n,DG = θ−+n,G. Up to terms of order
√
η these are now standing

waves.
Following these remarks, we search for more general solutions of (9.5), with-

out any restriction on the turbulent streamfunction Ψ̃0(t). We look for special
4-ray bundles such that the symbols Dm+−n(η) and Dm−+n(η) of the hyper-
bolic system (9.5) are both null (recall that Dm−−n(η) = 0 and G(η) is O(η)).
Careful inspection of (9.22) show that this can be achieved with the charac-
teristic conditions ň21 = ň22 and

|ň′|2
|ň|2 =

η2ň23
|ň′|2 + η2ň23

; (9.23)

these conditions annihilate Dm−+n(η) and Dm+−n(η) in (9.22). Eq. (9.23) is
equivalent to |ň′|4 + η2ň23|ň′|2 = η2(ň43 + ň23|ň′|2) and to |ň′|4 = η2ň43. This
defines a family of cones with a special vertical direction for the family of
resonant rays:

ň23
|ň′|2 =

1
η

⇔ |ň′|
|ň3| =

√
η. (9.24)

These are indeed families of wave fronts generated by weak rotation. For
η = 0, the wave-front vector is strictly vertical and this is the limit of purely-
horizontal AG-stratified wave propagation (but with frequency O(1)). For
η > 0, η � 1, the wave-front vector is strongly vertically slanted and the
front is nearly horizontal. As η increases the front becomes oblique. Up to
terms of order

√
η (rather than η as shown below; see Eqs. (9.26)–(9.27)) this

leads to equations describing zero-frequency standing waves in the envelope
equations for the AG field. Note that the horizontal characteristic condition
ň21− ň22 = 0 (which annihilates the second term in (9.22)) is strictly equivalent
to ň′ ·m̌′

+− = ň′ ·m̌′−+ = 0 for the polarised rays (which annihilates ň3m̌3ň
′ ·m̌′

in (5.3)). These conditions are intrinsic in terms of the horizontal rotation of
the computational box. In practice, given a horizontal front propagation vec-
tor, the computational box must be adjusted to fit the horizontal orientation
of the front vector.

The rigorous justification of (9.24) involves four coupled hyperbolic equa-
tions of the type (9.5) on R++, R−−, R+−, R−+ with general time-dependent
Ψ̃0
k(t) (recall that Dm−−n(η) ≡ 0). Conditions (9.24) ensure that the right-

hand side of (9.5) is uniformly of order O(
√
η) for small η (weak rotation).

This leads to equations describing slowly-moving AG wave fronts. A sketch
of the rigorous proof in the general Ψ̃0

k(t) context goes as follows. The front
condition (9.24) is equivalent to setting

Dm−+n(η) = Dm+−n(η) = 0 (9.25)
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in (9.4) (characteristic equations for the hyperbolic operators restricted to
D(η) on the polarised rays). However, the wave interactions generated by the
shearing operators G(η) perturb these exact standing wave fronts and must
be estimated together with the front condition (9.24). Using ηň23 = |ň′|2, we
find that:

Gm−−n(η) = −4λη3/2

1 + η
ň23 = −4λη1/2

1 + η
|ň′|2,

Gm−+n(η) = Gm+−n(η) =
8λη1/2

1 + η

ň21ň
2
2

|ň′|2 ,
(9.26)

and the D(η) operators disappear in the rays equations (9.5) on the fronts
provided that ň21 − ň22 = 0 and (9.24) are exactly satisfied. In practice, these
are approximately satisfied and we must estimate the error in D(η). On the
front, the G-waves contribute frequencies of order

√
η. This must be compatible

with Eqs. (9.25) and the contribution of D(η) near the characteristics (9.24),
where (9.25) is satisfied up to an arbitrary small error. We find

Dm−+n(η) =
4λň1ň2(|ň′|4 − η2ň43)

|ň|2(|ň′|2 + η2ň23)
=

16λ
√
η

(1 + η)2
ň1ň2

{ |ň′|
|ň3| − √

η

}
. (9.27)

Setting ε = |ň′|
|ň3| −

√
η and noting that λ|ň′|2 = |m̌′||ň′| and λň1ň2 = m̌1ň2 =

m̌2ň1 on the rays, we conclude that the condition ε = O(η) (or ε = o(η))
ensures that the front is nearly standing, propagating with a slow frequency
O(

√
η) on large horizontal scales. The front balances all wave frequencies to

O(
√
η). Similarly, the contribution of Dm−+n(η) where ň22 − ň21 = Q is

Dm−+n(η) =
4λň1ň2
|ň′|2 Q (9.28)

so that it suffices to take Q = O(η3/2).
We now present equations for wave fronts in pseudo-physical space. For

cones satisfying the condition (9.24) we have η2/ω2
n = η and the coefficients

D(η) and G(η) given by (5.3) become

Dmn(η) =
2(1 + η)(ň′ ∧ m̌′)(ň′ · m̌′)(ň3m̌3)

|m̌′||ň′||m̌||ň| ,

Gmn(η) =
√
η

3ň3m̌3(ň′ ∧ m̌′)2 + ((ň × m̌) · m̌⊥)((ň × m̌) · ň⊥)
|m̌′||ň′||m̌||ň| .

(9.29)

For the wave front dynamics described above, the coefficient D(η) is annihi-
lated by the condition ň′ · m̌′

+− = ň′ · m̌′−+ = 0 for the polarised rays. For the
coefficients Gmn(η), we obtain on the polarised rays (n = m++)

Gm−−n(η) = −4γ1γ2
√
η

1 + η
|ľ′|2, Gm−+n(η) =

2γ1γ2
√
η

1 + η
|ľ′|2,

Gm+−n(η) =
2γ1γ2

√
η

1 + η
|ľ′|2.

(9.30)
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We define direction vectors (ľ ≡ ľ++):

ľ++ = (ľ1, ľ2, ľ3), ľ+− = (ľ1,−ľ2, ľ3),

ľ−+ = (−ľ1, ľ2, ľ3), ľ−− = (−ľ1,−ľ2, ľ3).
(9.31)

After substitution of the coefficients (9.30) in Eqs. (9.5) we obtain

∂tw′
γ1l++

=
2
√
η

1 + η
|ľ′|2γ1

∑
γ2

Ψ̃0
k(t)γ2J(−2w′

γ2l−− +w′
γ2l−+

+w′
γ2l+−),

J =
(

0 −1
1 0

)
.

(9.32)

In Eqs. (9.32) it is understood that k = n−m where n = γ1l++ and m = γ2l−−,
m = γ2l+− or m = γ2l−+.

We introduce averaging for the AG field w′ = (w1, w2) in the phase planes
orthogonal to the direction vectors ľ++, ľ+−, ľ−+ and ľ−− (averaging across
the front). For example, averaging across ľ++ is defined as

w′
++ =

∫
x:ľ++·x=0

w′(t, x) dx, (9.33)

where ľ++ · x = ľ · x = ľ1x1 + ľ2x2 + ľ3x3 = 0 is the plane (in physical space)
orthogonal to the front vector ľ = ľ++ = (ľ1, ľ2, ľ3). It is easily seen that the
Fourier transform ofw′

++ (in physical space) isw′
n restricted to the ray R++ in

Fourier space. Similarly, we define w′
+−, w′−+ and w′−−. For instance, w′

+− is
the physical field w′ averaged over the plane orthogonal to ľ+− and its Fourier
transform is w′

n+− restricted to the Fourier ray R+−. Here it is understood
that Fourier series defined by the lattice vector ľ++ are used in the definition
of w′

++ (similarly, for w′
+−, w′−+ and w′−−):

w′
++ =

∑
γ1

eiγ1(ľ++·x)w′
γ1l++

, s++ = ľ++ · x,

∂w′
++

∂s++
=
∑
γ1

iγ1e
iγ1(ľ++·x)w′

γ1l++
.

(9.34)

Eqs. (9.32) are in pseudo-convolution form. Multiplying these equations by
eiγ1(l++·x) and summing over γ1, we obtain equations in pseudo-physical space.
Then equations for the AG wave front coupling four fields w′

++, w′
+−, w′−+

and w′−− have the following form in physical space

∂w′
++

∂τ
= |ľ′|2 J ∂

∂s++

(
Ψ̃0(t, x)

(
2
∂w′−−
∂s−− − ∂w′−+

∂s−+
− ∂w′

+−
∂s+−

))
,

∂w′−−
∂τ

= |ľ′|2 J ∂

∂s−−

(
Ψ̃0(t, x)

(
2
∂w′

++

∂s++
− ∂w′−+

∂s−+
− ∂w′

+−
∂s+−

))
,

∂w′
+−

∂τ
= |ľ′|2 J ∂

∂s+−

(
Ψ̃0(t, x)

(
2
∂w′−+
∂s−+

− ∂w′
++

∂s++
− ∂w′−−

∂s−−

))
,

∂w′−+
∂τ

= |ľ′|2 J ∂

∂s−+

(
Ψ̃0(t, x)

(
2
∂w′

+−
∂s+− − ∂w′

++

∂s++
− ∂w′−−

∂s−−

))
,

(9.35)
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where τ = 2
√
η

1+η t is a slow time (recall that the parameter η is small in the
regime considered in this section).

In Eqs. (9.35) ∂
∂s++ is the directional derivative along the ray l++ after

averaging in the phase plane l++ · x = 0 (the ∂
∂s++ operator is defined by

multiplication by iγ1 in Fourier space). Similarly ∂
∂s+− , ∂

∂s−+ and ∂
∂s−− are

directional derivatives along the rays l+−, l−+ and l−− after averaging in
the phase planes l+− · x = 0, l−+ · x = 0 and l−− · x = 0, respectively.
Eqs. (9.35) form a stochastic hyperbolic system of coupled wave equations.
These AG equations are for ageostrophic fields w1, which is the divergent
velocity potential, and w2, which is the geostrophic departure (thermal wind
imbalance) variable. This is a hyperbolic system of conservation laws, as the
sum of the energy of the w′ is conserved in (9.35).

We now consider an important special class of solutions of (5.1) which cor-
responds to similar hyperbolic wave fronts on a cone with the front condi-
tion (9.24) for η �= 0, but η � 1. The only difference is that the condition
ň21 = ň22 is not required in this case and our considerations are valid for all
rays, not just in the context of Eqs. (1.25). This branch of solution originates
from a single horizontal layer for η = 0 leading to the formation of a vertically-
slanted AG wave front for η �= 0. We recall that for η = 0 the dynamics of
quasi-2D equations (9.18) is independent in every horizontal layer. An impor-
tant property of the inviscid Eqs. (1.22), (2.32), is that when η > 0 they admit
exact solutions in the potential vorticity q̃ which are delta-functions δ(x3) in
x3. These solutions correspond to a single horizontal layer located at x3 = 0
(potential vorticity anomaly). That means that the Fourier transform of q̃ does
not depend on n3: q̃(n1, n2) = q̃(n1, n2, n3). For this special single-layer class
of initial data, the inviscid Eqs. (1.22) can be written in the form:

∂tq̃(n1, n2) = −
∑
k′

∑
k3

ǩ′ ∧ m̌′

|ǩ′|2 + η2ǩ23

 q̃(k1, k2)q̃(n1 − k1, n2 − k2)

= −
∑
k′

(ǩ′ ∧ m̌′)S
(
|k′|2, η

2

a23

)
q̃(k1, k2)q̃(n1 − k1, n2 − k2), (9.36)

where the relation q̃k = ωk|ǩ|w0
k was used and the function S(|k′|2, η2/a23) is

defined by

S

(
|k′|2, η

2

a23

)
=
∑
k3

1
|ǩ′|2 + η2k23/a

2
3

. (9.37)

As above, Ψ̃0 is related to q̃ by Ψ̃0(k1, k2, k3) = q̃(k1, k2)/(|ǩ′|2 + η2ǩ23) (in
physical space, −

(
∇2
h + η2 ∂

2

∂x23

)
Ψ̃0 = q̃). Then we have

Ψ̃0(k) =
q̃(k1, k2)

|ǩ′|2 + η2ǩ23
=

q̃(k1, k2)
|ǩ′|2

(
1 − η2ǩ23

|ǩ′|2 + η2ǩ23

)
. (9.38)
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The second term in the last parenthesis in (9.38) is small for scales satisfying
ηǩ23/|ǩ′|2 = O(1). In particular, for scales exactly satisfying the front condi-
tion (9.24) one has

η2ǩ23
|ǩ′|2 + η2ǩ23

=
η

1 + η
.

It follows from (9.38) that for such scales Ψ̃0(k) is independent of k3 up to
terms of order η: Ψ̃0(k) = Ψ̃0(k1, k2) + O(η), Ψ̃0(k1, k2) = q̃(k1, k2)/|k′|2.

In Eqs. (5.1) we split Fourier coefficients w′
n of a general AG field into the

sum of fields w′even
n1,n2,n3

and w′odd
n1,n2,n3

, even and odd in n3respectively. We have
w′even
n1,n2,n3

= w′even
n1,n2,−n3

. Note that such a splitting for w′ is generally true
for (5.1) provided that Ψ̃0(n1, n2,−n3) = Ψ̃0(n1, n2, n3). Since all coefficients
in (5.1) are invariant under simultaneous change of sign of n3, k3,m3 even
and odd components separately satisfy this linear equation up to terms O(η).
Below we show that the even AG field contains a slow-varying component
which corresponds to vertically slanted fronts. We consider the case of small
η and recall that the coefficients Gmn(η) are of order O(η) (Gmn(0) = 0) in
(5.1). Collecting the terms with m3 and −m3 in inviscid Eqs.(5.1), we obtain

∂tweven
′

n =

−
∑

φm = φn

k +m = n

Ψ̃0
k(t)(D

even
mn (η)I− Geven

mn (η)J)w′even
m

+
∑

φm = φn

k +m = n

(Ψ̃0
n1−m1,n2−m2,n3−m3

(t) − Ψ̃0
n1−m1,n2−m2,n3+m3

(t))

×(Dodd
mn (η)I− Godd

mn (η)J)w′even
m . (9.39)

It follows from (9.38) that the second term in (9.39) is small for small η and
it is identically zero if Ψ̃0

k is independent of k3. Thus, cancelling odd terms in
m3, we derive from (5.3)

Deven
mn (η) = Dm′,m3,n(η) + Dm′,−m3,n(η) =

4(ň′ ∧ m̌′)(|ň′|4 − η2ň43)
|ň|2(|ň′|2 + η2ň23)

. (9.40)

Similarly, using resonant relations, we find that

Geven
mn (η) = Gm′,m3,n(η) + Gm′,−m3,n(η) =

4η(m̌′ · ň′)ň23
|ň|
√

|ň′|2 + η2ň23
. (9.41)

Clearly, the operator Deven
mn (η) = 0, if η = |ň′|2/|ň3|2, which gives again the

condition for the slow-moving (velocity O(η)) AG wave fronts. Thus, we again
obtain the wave front relation (9.24). If η = |ň′|2/|ň3|2 then the coefficient
Geven
mn becomes

Geven
mn (η) =

4
√
η

η + 1
(ň′ · m̌′). (9.42)
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Cancelling the odd terms in (9.39) gives an error of order η/(1 + η) on the
wave front.

This analysis shows that a single horizontal layer bifurcates to vertically-
slanted fronts (with the magnitude of the angle depending only on η) for the
AG component, without the constraint ň21 = ň22, and for all rays.

It follows from (9.42) that the wave front cone principal term in Eqs. (9.39)
has the form

∂tw′even
n =

4
√
η

1 + η

∑
k′+m′=n′

(ň′ · m̌′)Ψ̃0
k(t)J)w′even

m (9.43)

where w′even
n = w′even(ň1, ň2,±|ň′|/√η) and where Ψ̃0

k(t) is a streamfunction
for a singular potential vorticity sheet located at x3 = 0. It is obtained from
q̃ using Eqs. (9.36)–(9.38). Eqs. (9.43) can be written in physical space for
w′ = w′even as follows:

∂w′

∂τ
= −divh

(
Ψ̃0(t, x)J∇hw′

)
(9.44)

where τ = 4
√
η

1+η t is again slow time. In Eqs. (9.44) divh and ∇h are dif-
ferential operators in x1 and x2 applied to every component (e.g. ∇hw′ =
(∇hw1,∇hw2)). Solutions of Eqs. (9.44) in fact give us w′(ň1, ň2,±|ň′|/√η)
where, for fixed horizontal wavenumbers ň1 and ň2, the vertical wavenumber
ň3 is found from the cone equation (9.24) for fixed η (here we assume that
w′(ň1, ň2, ň3) = w′(ň1, ň2,−ň3)).

The relation 1√
η = |ň3|

|ň′| given by (9.24) implies that vertical slanting of the
wave-front vector is proportional to 1/

√
η for small η. This relation links ver-

tical shear, horizontal gradients and rotation (via the parameter η = f/N =
f0/N0 which is approximately 10−2 at mid-latitudes). The front orientation in
the horizontal plane depends on the initial conditions of the AG field. Other
effects breaking horizontal isotropy include β term effects (see [10] in the con-
text of rotating shallow-water equations where β terms induce linear fast-fast
resonances impacting on to the AG field).

Across the front, there are sharp gradients of the buoyancy variable ρ and
the velocity component U3. From the perspective of Lilly’s pancake dynam-
ics ([49]), the fronts appear as vertically-curved sharp pancake edges that
‘slow-down’ the unrestrained horizontal propagation: this is effectively ver-
tical glueing of the pancakes by rotation. The vertical and horizontal scales
readjust, leading to an effective decrease of the Burger number from

√
Bu � 1

to
√

Bu = H/Lη. An approach such as in Embid & Majda ([28]) and Majda
& Grote ([55]) which treats rotation scales as uniformly slow (‘only large scale
horizontal rotation’) misses this readjustment mechanism. Rotation impacts
on small vertical scales. We predict a definite change in the nature of AG
dynamics under the impact of weak rotation in this problem. Mathematically,
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our AG reduced-asymptotic equations change from parabolic to hyperbolic
type when switching on η �= 0. The wave fronts that we construct saturate
local Kelvin–Helmholtz instabilities (for the local fluctuating AG field) with
small Richardson numbers (strong shearing) through adjustment of vertical
and horizontal scales on the slanted fronts.

We conclude with a discussion of viscosity on this frontogenesis. It has been
argued (Majda & Grote, 1997) that vertical viscosity is the only mechanism
of relevance for saturation of vertical shear in strongly stratified pancake dy-
namics with uniformly slow rotation. Below we establish for large realistic
Reynolds numbers that viscosity has an impact next to nil on front dynamics
on large horizontal scales. Only for a Reynolds number (to be defined below)
smaller than 103 does viscosity wash out frontogenesis. Moreover, our wave
fronts handle the context of locally unstable small Richardson numbers, for
the fluctuating AG velocities.

As the G-waves are primarily responsible for the slow O(
√
η) motion of the

front, we look for the impact of viscosity ν on θ−−
n,G (see Eq. (9.8) for example).

Other cases can be similarly treated. One finds that the wave is damped and
its frequency shifted as

R−−
n,G = i

ν

2
(
(λ0)2 + 1

) |ň|2 ± 1
2

(
4|θ−−
n,G|2 − ν2(1 − (λ0)2)2|ň|4

)1/2
. (9.45)

Note that (λ0)2|n|2 = |m−−|2, and k0 = n−m−− in Ψ̃0
k0

. Hence λ0 = O(1) cor-
responds to large horizontal scales k′0 = (1+λ0)n′ for the QG coefficient Ψ̃0

k0
, as

long as |n′| = O(1). In this large scale context, the damping ν
2 (|m−−|2 + |n|2)

is evanescent in the atmosphere. Now the viscosity will affect the original fre-
quencies θ−−

n,G only at critical damping:

2θ−−
n,G ∼ ν

∣∣1 − (λ0)2
∣∣ |ň|2. (9.46)

Using the relation ηň23 = |ň′|2 on the front, this is shown to be equivalent to

8λ0
|(λ0)2 − 1| ∼ ν

|Ψ̃0
k0

|
(1 + η)2

η3/2
. (9.47)

This formula can be considered as an instantaneous critical damping condition
for an adiabatically frozen |Ψ̃0

k0
|. For a QG regime dominated by large scale

structures and strong inverse cascades at typical large scales ∼ k0, |Ψ̃0
k0

| ∼
LQGUQG and the ratio 〈|Ψ̃0

k0
|〉/ν can define an effective Reynolds number for

the large scale dominated QG dynamics:

ReQG =
〈|Ψ̃0

k0
|〉

ν
. (9.48)

The condition (9.47) for critical damping of the G-wave by viscosity becomes

8λ0

|(λ0)2 − 1| ∼ η−3/2

ReQG
. (9.49)
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For 1 < λ0 < 10, |ň′| = O(1), |m̌′| = |λ0ň′| = O(1), η−3/2 ∼ 103 this requires
ReQG ≤ 103 for critical damping of the wave front on large horizontal scales.
This is not satisfied in the atmosphere. The frontogenesis is not impacted
by viscosity on large horizontal scales, at large atmospheric QG Reynolds
numbers. Of course formula (9.49) confirms the obvious fact that at small
horizontal scales and large wave frequencies, viscous damping prevails. The
exact nature of baroclinic wave turbulence must involve the derivation of an
effective viscosity for the stochastic hyperbolic systems on the resonant rays,
Eqs. (9.5), with time- and space- dependent coefficients Ψ̃0. The in-depth study
of these stochastic wave systems on resonant rays and their correlation with
QG turbulence are the focus of our continuing investigations.

Our asymptotic theory presented in this section quantitatively describe
anisotropy in AG wave turbulence with strong AG energy cascades along the
front direction: this can be checked against experimental measurements pro-
vided that the latter distinguish between wave turbulence and the ambient
potential vorticity turbulence. That the impact of rotation triggers mecha-
nisms which allow an internal adjustment of horizontal scales has been already
demonstrated in Rotunno ([67]) and NPH ([62]), in a linear theory. Internal
radii of deformation determine the horizontal extent of motion and circulation;
they are not resolved accurately by the usual numerical models with coarse
gridding in the vertical direction. Current numerical models smear out sharp
vertical gradients especially with ad hoc vertical eddy viscosities. Paradox-
ically, they should be benchmarked against our exact asymptotic dynamics
to gauge for resolution of vertical stiffness. Any balanced/unbalanced model
and/or any DNS must resolve the hierarchy of time scales: 1/N � t � τ =
2
√
η

1+η t, η � 1 which rule the formation of slow AG energy cascades, as demon-
srated in this section. With realistic potential vorticity configurations, the
direct numerical simulations of our non-stiff nonlinear asymptotic limit equa-
tions for the AG wave fronts should be compared with actual experiments
on frontal dynamics provided that the latter are unconstrained by boundaries
and beyond small Reynolds numbers.

Acknowledgements

The authors wish to thank for their support the AFOSR (grant F49620–96–0–
0165) and the ASU Center for Environmental Fluid Dynamics. The hospitality
of the Newton Institute (Cambridge) under the special programme Mathemat-
ics of Atmosphere and Ocean Dynamics is gratefully acknowledged as well as
the hospitality of the Ecoles Normales of Paris and Cachan. We would like to
thank Professors V.I. Arnold, C.W. Bardos, P. Bartello, Y. Brenier, M.J.P.
Cullen, M. Farge, C. Foias, F. Golse, J.C.R. Hunt and H.K. Moffatt for very
useful discussions.



196 Babin et al.

References

[1] V.I. Arnold (1965), Small denominators. I. Mappings of the circumference
onto itself, Amer. Math. Soc. Transl. Ser. 2, 46, 213–284.

[2] V.I. Arnold and B.A. Khesin (1997), Topological Methods in Hydrody-
namics, Applied Mathematical Sciences, 125, Springer.

[3] J. Avrin, A. Babin, A. Mahalov and B. Nicolaenko (1999), On regularity
of solutions of 3D Navier–Stokes equations, Applicable Analysis, 71, 197–
214.

[4] A.V. Babin and M.I. Vishik (1992), Attractors of Evolution Equations,
North-Holland.

[5] A. Babin, A. Mahalov, and B. Nicolaenko (1995), Long-time aver-
aged Euler and Navier–Stokes equations for rotating fluids, In Structure
and Dynamics of Nonlinear Waves in Fluids, 1994 IUTAM Conference,
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[39] J.R. Herring and O. Métais (1989), Numerical experiments in forced
stably-stratified turbulence, J. Fluid Mech., 202, 97.

[40] J.R. Holton (1992), An Introduction to Dynamic Meteorology, Academic
Press.

[41] B.J. Hoskins and F.P. Bretherton (1972), Atmospheric frontogenesis mod-
els: Mathematical formulation and solution, J. Atm. Sci., 29, 11–37.

[42] B.J. Hoskins (1982), The mathematical theory of frontogenesis, Annu.
Rev. of Fluid Mech., 14, 131–151.



Fast singular oscillating limits 199

[43] J.L. Joly, G. Métivier and J. Rauch (1993), Generic rigorous asymptotic
expansions for weakly nonlinear multidimensional oscillatory waves, Duke
Math. J. 70, 373–404. See more references in bibliography of BMN [9].

[44] D.A. Jones, A. Mahalov and B. Nicolaenko (1998), A numerical study of
an operator splitting method for rotating flows with large ageostrophic
initial data, Theor. and Comp. Fluid Dyn., 13 (2), 143–159.

[45] D. Keyser and M.A. Shapiro (1986), A review of the structure and dynam-
ics of upper-level frontal zones, Monthly Weather Review, 114, 452–499.

[46] O.A. Ladyzhenskaya (1969), The Mathematical Theory of Viscous Incom-
pressible Flow, 2nd ed., Gordon and Breach.

[47] M.-P. Lelong and J. Riley (1991), Internal wave-vortical mode interactions
in strongly stratified flows, J. Fluid Mech., 232, 1–19.

[48] M. Lesieur (1987), Turbulence in Fluids, Martinus Nijhoff Publishers.

[49] D.K. Lilly (1983), Stratified turbulence and the mesoscale variability of
the atmosphere, J. Atm. Sc., 40, 749.

[50] J.L. Lions, R. Temam and S. Wang, Geostrophic asymptotics of the prim-
itive equations of the atmosphere, Topological Methods in Nonlinear Anal-
ysis, 4, (1994), 253–287, special issue dedicated to J. Leray.

[51] L.R.M. Maas and J.J.M. van Haren (1987), Observations on the vertical
structure of tidal and inertial currents in central North Sea, J. Mar. Res.,
45, 293–318.

[52] A. Mahalov, S. Leibovich and E.S. Titi (1990), Invariant helical subspaces
for the Navier–Stokes Equations, Arch. for Rational Mech. and Anal., 112
(3), 193–222.

[53] A. Mahalov and P.S. Marcus (1995), Long-time averaged rotating shallow-
water equations, Proc. of the First Asian Computational Fluid Dynamics
Conference, eds. W.H. Hui, Y.-K. Kwok and J.R. Chasnov, vol. 3, 1227–
1230, Hong Kong University of Science and Technology.

[54] A. Mahalov and Y. Zhou (1996), Analytical and phenomenological studies
of rotating turbulence, Phys. of Fluids, 8 (8), 2138–2152.

[55] A.J. Majda and M.J. Grote (1997) Model dynamics and vertical collapse
in decaying strongly stratified flows, Phys. Fluids, 9 (10), 2932–2940.

[56] J.C. McWilliams (1985), A note on a uniformly valid model spanning
the regimes of geostrophic and isotropic stratified turbulence: balanced
turbulence, J. Atm. Sci., 42, 1773–1774.



200 Babin et al.

[57] J.C. McWilliams and P.R. Gent (1980), Intermediate models of planetary
circulations in the atmosphere and ocean, J. Atm. Sci., 37, 1657–1678.

[58] J.C. McWilliams, J.B. Weiss and I. Yavneh (1994), Anisotropy and co-
herent vortex structures in planetary turbulence, Science, 264, 410–413.
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New Mathematical Developments in
Atmosphere and Ocean Dynamics, and their
Application to Computer Simulations

M.J.P. Cullen

1 Introduction

This chapter reviews new developments in the mathematical theory of the
partial differential equations which govern the large scale behaviour of the
atmosphere and ocean. It then discusses how these can be applied to the mod-
els which are used to predict weather and climate, and to define the initial
state of the atmosphere or ocean from limited observations. Particular top-
ics include: (i) the use of Lagrangian conservation properties in establishing
the existence of solutions to, and properties of, simpler equations which de-
scribe the atmosphere and ocean in the limits of rapid rotation and/or strong
stratification; (ii) demonstrations that the complete equations can be proved
to have solutions close to those of the simpler equations in these asymptotic
limits; and (iii) how the statistical effect of small scale motions interacts with
the large scale solutions. It is demonstrated how these techniques can be ex-
ploited in the design of computer models suitable for operational applications,
including numerical methods for representing the resolved dynamics and the
coupling of sub-grid models to the resolved dynamics. The latter is particu-
larly important where moisture has a strong influence on the dynamics. These
techniques can also be used to exploit observed data more fully by improving
the design of data assimilation systems. In particular, they can also be used
to refine estimates of error growth. These are important in data assimilation,
where model errors have to be allowed for and corrected, and in predictability
studies.

Weather forecasting and climate modelling have advanced tremendously
since the pioneering studies of Richardson (1922) and Charney, Fjortoft and
von Neumann (1950) first proposed that it was possible to simulate and predict
the behaviour of the ocean and the atmosphere by direct computer solution of
the classical equations of dynamics and thermodynamics. Since then, comput-
ers have been developed which can run operational forecast programmes at
1011 floating point operations per second, and much faster in research mode,
enabling real time forecasts of the global atmosphere to be made in a few
minutes per simulated day on a grid of points about 40 km apart in the hori-
zontal and 500 m apart in the vertical. While in the early days of atmosphere
and ocean modelling, lack of computer power was clearly the main limiting
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factor in the quality of the simulations, it is now becoming clear that greater
scientific knowledge of the phenomena being simulated should also be ex-
ploited in the design of the computer models. Similarly, it is necessary to
exploit to the maximum the information contained in routine operational ob-
servations of the atmosphere and ocean, since the cost of such observations
is increasing and the maintenance of even the current level of observations is
difficult.

It was therefore timely to hold a six month study programme at the Isaac
Newton Institute for Mathematical Sciences in Cambridge to review and dis-
cuss the knowledge that mathematicians could bring to bear on meteorologi-
cal and oceanographic problems, and to advertise to mathematicians the wide
scope for quite rigorous studies of atmosphere and ocean dynamics. This chap-
ter summarises some of the material presented, discussed, and developed both
during and following the programme.

2 Flow regimes in the atmosphere and ocean

We start from the basic equations for the dynamics and thermodynamics of
an ideal fluid. We write them in the form used by Shutts and Cullen (1987).
These are fully compressible, and allow the axis of rotation not to be parallel
to the gravitational force. We use Cartesian coordinates to simplify the presen-
tation, but the inclusion of the general direction of the axis of rotation allows
immediate application of the results in spherical geometry. The equations are
as follows:

Dv
Dt

+ 2Ω × v + ∇Φ + α∇p = ν∇2v

Dα

Dt
= α∇.v (2.1)

Cv
DT

Dt
+ p

Dα

Dt
= κ∇2T

pα = RT

where v is the wind velocity vector, α the specific volume (or inverse density),
p the pressure, Cv the specific heat at constant volume and T the tempera-
ture; Ω is the rotation vector, and ∇Φ a specified geopotential force, repre-
senting gravitational and centrifugal forces; ν, κ represent molecular viscosity
and thermal conductivity. The temperature equation can be replaced by the
equation

Dθ

Dt
= κ∇2T (2.2)

where θ is the ‘potential temperature’, which is a function of the entropy and
proportional to pαγ , where γ is the ratio of specific heats. The effect of moisture
would be included as a source term in equation (2.2), together with a small
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modification to the equation of state and extra equations for the conservation
of water substance and the conversion of water between vapour and liquid or
solid states.

In the atmospheric context, it is most useful to consider periodic boundary
conditions in x, y and a lower boundary in z, with no normal flow across the
lower boundary. At the upper boundary we have p → 0 as z → ∞.

The equivalent equations for the ocean are similar, but it is usually sufficient
to use incompressible equations. The effect of salinity on the buoyancy has to
be included.

Dv
Dt

+ 2Ω × v + ∇Φ + α∇p = ν∇2v

∇.v = 0
DT

Dt
= κ∇2T (2.3)

DS

Dt
= σ∇2S

α = α(S, T ).

Here, S represents the salinity and σ its diffusivity. The appropriate boundary
conditions are to have a basin Γ with depth h(x, y) and rigid boundaries.
There is no normal flow on all boundaries except the upper boundary which is
a free surface z = η(x, y) " 0 on which the pressure is a constant small value
(representing the atmospheric pressure).

Energy conservation for the inviscid (ν = κ = 0) form of (2.1) is expressed
as

E =
∫
Γ

{
1
2
|v|2 + Φ + CvT

}
α−1dτ = a constant (2.4)

where Γ indicates the volume of integration. For the inviscid form of (2.3) we
have

E =
∫
Γ

{
1
2
|v|2 + Φ

}
α−1dτ = a constant. (2.5)

These equations describe the complete motion of the atmosphere and ocean.
When used for weather and climate forecasting, they have to be averaged in
space and time to make computer solution practical. The averaging scale needs
to at least twice the smallest affordable grid size in order to prevent exces-
sive numerical errors. In the atmosphere, the length scale equivalent to unit
Reynolds number for typical flow speeds is about 10−6 m, and in the ocean
10−5 m. Accurate direct solutions require this scale to be resolved. High resolu-
tion global atmospheric models use an averaging scale of at least 50 km in the
horizontal and about 1 km in the vertical, less near the Earth’s surface. Mod-
els used for limited area forecasting have much shorter averaging scales, down
to around 1 km. In the ocean, the highest resolution global models currently
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Figure 1: Summary components of wavenumber spectra of potential tempera-
ture and zonal and meridional velocity, composited from three groups of flight
segments of different lengths. The 3 types of symbol show results from each
group. The straight lines indicate slopes of −3 and −5/3. The meridional wind
spectra are shifted one decade to the right and the potential temperature spec-
tra are shifted two decades to the right (after Gage and Nastrom, 1985).

used have an averaging scale of about 25 km in the horizontal. The resolutions
used in practice are thus short by a factor of 109–1011 of those that would be
required for accurate solutions. Success in practice depends on being able to
define the effect of unresolved motions in terms of the resolved motions, i.e.
correct sub-grid modelling (see Pielke (1984) for a review applied to weather
forecasting models). This would be much easier if there was a ‘spectral gap’,
i.e. a range of scales where the energy in atmospheric motions was much less
than in larger or smaller scales. Observational evidence (Figure 1) shows a
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Figure 2: Vertical displacement spectrum Sξ(k1) about the 12◦ isotherm in the
MODE area. Power law slopes of the from k−q1 are also shown for comparison
(after Katz (1975), c© American Geophysical Union).

gradual change in spectral slope from k−3 at large scales to k−5/3 at small
scales, but no gaps. There will however be a minimum in the enstrophy (mean
squared vorticity) spectrum associated with this change in slope. In the ocean
there is similarly no sign of a spectral gap between wavelengths of 0.1 and
100 km (Figure 2).

The effect of this averaging for the atmosphere is illustrated in Figure 3.
This shows the typical space (l) and time (T ) scales associated with different
atmospheric phenomena. The line given by T = l2/3 associated with the en-
ergy spectrum k−5/3 is plotted along the diagonal. The phenomena occurring
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Figure 3: Typical space and time scales of atmospheric phenomena (following
Smagorinsky 1974).

along this diagonal are those traditionally associated with ‘weather’. Other
motions such as internal gravity waves are elsewhere on the diagram. Figure
3 illustrates that there is a difficulty associated with simply averaging the
equations in space and time, in that any choice of averaging scale will cut
across the peak scales of some phenomena, resulting in them being partly
resolved and thus inaccurately represented. If the averaging scale is reduced,
then these phenomena may be well predicted, but a new set will become partly
resolved. We can also see this from atmospheric observations. Figure 5 shows
two satellite pictures for a similar time. The first covers the North Atlantic
and Western Europe. It shows large scale organised phenomena, such as the
waving cloud bands extending south-westwards into the Atlantic from Ireland,
and regions of highly structured small scale flows, such as south of Iceland. If
we zoom in on the United Kingdom, new phenomena become visible, such as
the small scale wave train running south-west to north-east across the centre
of the British Isles.

The time-scales of typical ocean surface phenomena are illustrated in Fig-
ure 4. There is an equally complex mix of phenomena affecting the internal
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Figure 4: Schematic energy spectrum of ocean surface variability, show-
ing the different types of wave. I.P. denotes the inertial period, defined as
π/(2Ω| sinφ|), where Ω is the magnitude of the Earth’s rotation vector and φ
is the latitude. The diagram illustrates latitude ±20◦ where I.P. = 35 hours.
After LeBlond and Mysak (1978).

ocean structure. Though there is a spectral gap for periods of around 1 hour
in surface phenomena, Figure 2 shows that there is no evidence for any such
gap in the time-scales of the ocean interior.

There is thus a need to choose averaging scales which make sense in terms
of phenomena to be simulated. Having done this, it is necessary to ensure
that the equations, with the sub-grid model, have solutions which respect this
scale. This will usually mean that they stay smooth on the averaging scale in
both space and time. Mathematical results are therefore required to prove that
this is so for a given sub-grid formulation. Practical success in this approach
requires a clear separation in terms of space and time scale between phenomena
that will be simulated and those that will be excluded. The numerical solution
should use a resolution significantly finer than the averaging scale, to ensure
that the model is integrated accurately.

An alternative approach, which avoids the problem of scale separation to
some extent, is to choose a ‘sub grid model’ which restricts the solutions to
specific phenomena, though not requiring smoothness on specific scales. This
allows treatment of phenomena such as fronts, which have a small space scale
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Figure 5: (a) METEOSAT visible picture of the North Atlantic and Europe
for 1500 UTC on 13 March 1995. (b) High resolution visible picture of Western
Europe for 1315 UTC on 13 March 1995.

in one direction, but have a large scale in other directions. An illustration
of this is given in Figure 6, which shows a time series of wind speed. There
is a lot of small time-scale variability, but a large jump in mean values at
1500EDST which is almost as rapid as the oscillations, but represents a large
scale ‘coherent’ change. Modelling the rapid, but coherent, changes while ex-
cluding the oscillations can be achieved by ‘reduced’ systems of equations,
which have a simpler set of solutions than the full equations, only describing
the phenomena desired. Success in this type of modelling depends on show-
ing that the interaction between resolved and unresolved phenomena is weak.
This can be achieved by the geometry of the flow, as well as by scale separa-
tion.

One effect of the latter approach is that it is necessary to exclude atmo-
spheric or oceanic states which in reality would be unstable to motions not
permitted by the reduced equations. These are likely to include, for instance,
states which are statically unstable. In the horizontal, inertial stability is often
required. Knox (1997) reviews this issue for a wide set of ‘reduced’ equations.
We can therefore assess the usefulness of the reduced equations by studying
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Figure 5: Continued.

Figure 6: Anemograph for Bellambi point (Australia) on 26 December 1996
(wind speed in knots). (The solid smooth line is a model forecast.) After Batt
and Leslie (1998).
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Figure 7: Frequency histogram of inertial stability deduced from automated
aircraft reports between 30N and 30S using dates between June 1992 and
June 1993. The parameter β plotted is defined as 1 + f−1ζ, where ζ is the
relative vorticity. Inertial stability requires β > −1. Only reliable estimates
are plotted; sometimes there is more than one for the same flight.

how widespread such unstable states are in atmospheric or oceanic observa-
tions. An example from such a study is shown in Figure 7, due to Veitch and
Mawson (1993), showing automated aircraft wind data from cases between 30N
and 30S where the aircraft track crossed regions of straight flow at close to a
right angle. The observations are typically 80 km apart. The inertial stability
condition is most likely to be violated in low latitudes, because the time-scale
of inertial instability is (2Ω sinφ)−1, where φ is the latitude. This is of the
order of 1 day at 5 degrees from the equator. It was found that in only 5 out
of 121 cases was the inertial stability condition violated, suggesting that those
reduced systems of equations which require inertial stability may be useful at
this horizontal scale even in low latitudes.

2.1 Definition of asymptotic regimes

We define the most important asymptotic regimes in the atmosphere and ocean
that we will be considering in terms of the following parameters.

Ro = U/fL Rossby number
Fr = U/NH Froude number
B = Ro/Fr Burger number (2.6)
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Ma = U/c Mach number
A = H/L aspect ratio

where L,H are horizontal and vertical length scales, U is a horizontal velocity
scale, f is the Coriolis parameter, N the Brunt-Väisälla frequency, and c the
speed of sound. For weather systems in the atmosphere, typical values are
L = 10–104 km, H = 1–10 km, U = 1–100 m s−1, f = 0–10−4 s−1, g = 10 m s−2,
N ≥ 10−1 s−1, and c = 300 m s−1. In the ocean U = 0.1–1 m s−1. We will use
T for the time scale. A systematic scale analysis of the governing equations
in terms of these parameters is set out, for instance, in Holton (1992). The
approximations made in the various regimes were discussed in more detail in
the chapter by White earlier in this volume. We summarise only the main
points here.

The asymptotic regimes relevant to weather systems and large scale ocean
circulations are characterised by long time scales, and thus balances between
the forces occurring in (2.1) and (2.3). As discussed by Bartello and Thomas
(1996), for instance, there is an issue as to whether the Eulerian or Lagrangian
time scale is greater. In the absence of geographically fixed forcing, such as
mountains, their arguments suggest that the Lagrangian time scale is greater,
especially in regimes where the k−3 spectrum holds. If this is so, we have
T = L/U , where L is treated as a length scale along trajectories. Other length
scales may be shorter.

The horizontal extent of the atmosphere and ocean are much greater than
the vertical extent, allowing the existence of flow regimes with very small as-
pect ratio. To allow these to be identified, we write (2.1) in terms of horizontal
and vertical components of momentum, where the direction ∇Φ is defined as
vertical. Let W be a vertical velocity scale, then T = H/W . In the atmo-
spheric case, the vertical variations of the thermodynamic quantities p, θ, α
are large. Assume these quantities have background scales p0, θ0, α0, related
by the equation of state, and scales of horizontal spatial variations p′, θ′, α′. In
the vertical momentum equation, we expect the vertical particle acceleration
Dw/Dt to be much less than g. It is therefore appropriate to subtract a state
of rest, depending only on the vertical, from the equations, as discussed in
the chapter by White earlier in this volume. This is given by values p, α, θ
satisfying

pαγ = R0θ
γ (2.7)

∂Φ
∂z

+ α
∂p

∂z
= 0

where the first equation is the equation of state rewritten in terms of potential
temperature with R0 a modified gas constant.

Therefore, the vertical pressure gradient term has to be of a size comparable
to g, so ∂p

∂z is of order gα−1
0 . The equation of state then allows us to estimate
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∂α
∂z and ∂θ

∂z . Observed large scale atmospheric flows have large variability in
∂θ
∂z , including regions where it is zero. It is thus appropriate to estimate ∂α

∂z

to balance ∂p∂z ; with ∂θ
∂z assumed smaller in magnitude than either. This gives

∂α
∂z " gαγ−10 /(γp0) = gαγ0/c

2. Similarly, linearising the first equation of (2.7)
with θ held fixed gives p′ = c2α′.

Subtracting this state from equations (2.1) and (2.2), using primes to denote
perturbations from the rest state gives:

Dvh
Dt

+2(Ω × (vh, w))h + α∇hp′ = ν∇2vh

UT−1 (fU, fW ) c2α0α
′L−1

Dw

Dt
+2(Ω × (u, w))z +

α′

ᾱ

∂Φ
∂z

+ α
∂p′

∂z
= ν∇2w

WT−1 (fU, fW ) g
α′

α
c2α0α

′H−1

∂α

∂t
+(v.∇α)h + w

∂α

∂z
= α∇.v (2.8)

α′T−1 α0UL−1 wgα−γ
0 /c2

∂θ

∂t
+(v.∇θ)h + w

∂θ

∂z
= κ∇2T

θ′T−1 α0UL−1 wN2θ0/g

pαγ − p̄ᾱγ = R0θ
′.

Subscript h indicates horizontal components of vectors, subscript z the vertical
component.

We first identify a scaling associated with low Mach number. If we assume
that U = L/T and that the horizontal acceleration is of similar size to the
horizontal pressure gradient, taking the divergence of the momentum equation
gives ∇.v ∼ c2α0α

′L−2T , so that the ratio of ∂α∂t to α∇.v is L2T−2c−2 =
U2/c2 = Ma2. The continuity equation thus requires the local divergence to
be small. In the atmosphere, the appropriate approximate continuity equation
and boundary conditions are given by the ‘anelastic’ approximation

∇.α−1v = 0 (2.9)
α−1w = 0 at z = 0,∞.

Similar equations apply in the ocean.
Define the Brunt-Väisälla frequency N by

N2 =
g

θ

∂θ

∂z
. (2.10)

We can use (2.7) and a number of manipulations to give

α′

ᾱ

∂Φ
∂z

+ α
∂p′

∂z
=

θ′

θ̄

∂Φ
∂z

+ α
∂p′

∂z
. (2.11)
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Use the thermodynamic equation to estimate

w ∼ gθ′T−1

N2θ0
.

If the time-scale T � N2, and f−1 � N2, then the dominant terms in the
vertical momentum equation are

α′

α

∂Φ
∂z

+ α
∂p′

∂z
= 0, (2.12)

representing hydrostatic balance. Using (2.9), we can set U/L = W/H, so that
W = UA.

We now consider regimes where, additionally, either the Rossby number or
the Froude number is small. Small Rossby numbers are associated with rapid
rotation, and small Froude numbers with strong stratification. We classify
these regimes according to the Burger number, (2.6), as illustrated in Figure
8. We treat the analysis of the flow in each regime separately. It is also useful
to consider the horizontal scale as a function of Burger number with H, f and
N2 fixed, so that

L = (NH)/(fB). (2.13)

If there is rotation, but no stratification, then B = 0. In the atmospheric
case, this corresponds to uniform potential temperature θ0. The assumption
of small Ro gives geostrophic balance, which using the hydrostatic relation
(2.12) as well can be written:

2Ω × v + ∇Φ + α∇p = 0. (2.14)

The condition θ = θ0 means that α is a function of p, so that α∇p can be
written as a gradient. Using (2.9) and (2.14), we derive the generalized Taylor–
Proudman theorem that v does not vary in the direction of Ω. Thus the flow
becomes 2-dimensional, with no component along the axis of rotation. In the
atmosphere, this regime only occurs in limited regions, though it can occur in
neutrally stratified layers (for instance observations of Karman vortex wakes
behind islands or, probably, the vortex downstream of Greenland in Fig 5(a)).
A similar regime occurs in tropical cyclones, though here it is due to rapid
system rotation.

If the rotation is much stronger than the stratification, then B � 1 and the
horizontal length scale is large compared with the Rossby radius NH/f . This is
the appropriate regime for the large scale planetary waves in the extra-tropical
atmosphere. However, the geometry of the atmosphere as a thin layer on a
spherical surface requires that such motions are horizontal, and not normal to
the axis of rotation. In this situation it is appropriate to modify the problem
(2.8) by making the ‘shallow atmosphere’ approximation (see chapter by White
earlier in this volume). Write the vertical component of the rotation vector
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Figure 8: Definition of main asymptotic regimes in the atmosphere and ocean
presented as plot against Froude number Fr and ‘anisotropic’ Rossby number
Roa = Ro/A, where A is the aspect ratio H/L. QG refers to balanced motion,
and AG to inertio-gravity waves.

as f k̂, where f = 2Ω sinφ and φ is the latitude, and write ∇Φ = (0, 0, g).
The other components of the rotation vector are neglected. If, in addition, we
neglect the small molecular viscosity and thermal conductivity, the equations
then become

Dvh
Dt

+ (−fv, fu) + α∇hp = 0

g + α
∂p

∂z
= 0

∇.α−1v = 0 (2.15)
∂θ

∂t
+ (u.∇θ)h + w

∂θ

∂z
= 0.

The geostrophic relation (2.14) becomes

(−fv, fu) + α∇hp = 0 (2.16)
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Combining the geostrophic relation, (2.16), with the continuity equation (2.9)
shows that the horizontal velocity is independent of z if θ is uniform. The
vertical scale of such flows, H, will thus tend to be the scale height of the
atmosphere H0 (around 10 km). This regime is thus only robust for horizontal
scales large compared with NH0/f . A typical value of this in the middle
latitude troposphere is 1000 km.

The condition B = O(1), so that the horizontal length scale is comparable
with the Rossby radius, and Ro " Fr � 1 is the natural scaling for ‘synoptic’
motions in the atmosphere and ocean. For instance, as shown in Gill (1982
chapter 13), it is the natural scale for the baroclinic waves which form the
essential dynamics of developing weather systems.

Non-rotating, stratified flow corresponds to B = ∞. The first equation of
(2.15) becomes

Dvh
Dt

+ α∇hp = 0 (2.17)

and the two terms must balance. Standard manipulations can then be used
to show that W " FrUH/L, so that, if Fr � 1, the flow is approximately
horizontally non-divergent. The large scale balance condition is simply ∇hp =
0, so that there is no flow. The natural solutions will have horizontal density
surfaces with gravity waves or gravity currents superposed on them.

If B � 1 we are considering sub-synoptic horizontal scales, or most low
latitude circulations. As in the case B = ∞, the flow will be approximately
horizontally non-divergent, and the vertical velocity will be small. There will
therefore be a tendency for variables to become uncoupled in the vertical and
the vertical scale to reduce, destroying the condition B � 1. There are thus
doubts about the sustainability of such a regime.

The best example of such a regime is given by the shallow water equations
with a large equivalent depth h. These equations can be obtained by averaging
(2.15) over the depth of the atmosphere. The Froude number is then U/

√
(gh),

and the condition B � 1 is satisfied for mid-latitude values of f and param-
eters appropriate for the depth averaged atmosphere if L � 3 × 106 m. This
is smaller than typical deep atmospheric circulations. In low latitudes, this
becomes L � 3 × 107 m, which is almost always satisfied. Since there is a
single layer of fluid, the vertical scale cannot be reduced and the regime will
be sustained. The shallow water equations are widely regarded as a useful
model for the depth averaged behaviour of the atmosphere and ocean. A sim-
ilar argument holds for a fluid with a small number of deep homogeneous
layers with significantly different density, which can be described by a set of
shallow water equations. Such models have been widely used for understand-
ing the development of weather systems, but their accuracy in describing the
more continuously stratified flows that occur in the real atmosphere is not
known.
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There are many other important asymptotic regimes in meteorology and
oceanography. We refer to the books by Holton and Gill for a more compre-
hensive introduction.

3 Lagrangian analysis of the governing equations

There is an extensive literature analysing solutions of (2.1) relevant to meteo-
rology and of (2.3) relevant to oceanography, e.g. Gill (1982), based primarily
on linearisation of the governing equations. In this chapter, we emphasise
nonlinear analysis. The main nonlinearities in equations (2.1) and (2.3) are
associated with the advection operator D/Dt. The effect of the advection op-
erator is to perform a ‘rearrangement’ of the quantity being advected. The
mathematical definitions and properties of rearrangements are discussed in
the chapter by Douglas earlier in this volume. Here we recall the basic defi-
nitions and show how they can be used to discuss the solutions of (2.1) and
(2.3). Note that the concepts are simpler if the rearrangements are volume-
preserving, rather than mass-preserving. This will be the case in the ocean,
and is a good approximation for large scale flows in the atmosphere if the
volume is defined in terms of a stretched vertical coordinate which allows for
a basic state vertical density variation.

3.1 Basic definitions

We first recall the basic definition of a rearrangement of a scalar-valued func-
tion given in the chapter by Douglas:

Let f, g : Ω → R, where Ω is a bounded subset of R
n, be two non-negative

integrable functions, that is
∫
Ω f(x)dx < ∞,

∫
Ω g(x)dx < ∞. We say f is a

rearrangement of g if∫
Ω

(f(x) − α)+dx =
∫
Ω

(g(x) − α)+dx (3.1)

for each α > 0, where h+ denotes the non-negative part of the function h.
Douglas gives the natural extension of this definition to vector-valued func-
tions. Essentially, any two functions are rearrangements if they take any given
set of values on sets of the same size. Unless f is constant, there is more than
one rearrangement of f . We write R(f) for the set of all functions which are
rearrangements of f .

When using rearrangement theory to study the properties of an evolving flow
we consider the trajectory mapping that transforms initial positions x(a, 0) of
fluid particles a into positions x(a, t) at a later time. We write this mapping as
ν(0, t). Any conserved particle property q is transported by the flow, so that
q(x(a, t), t) = q(x(a, 0), 0). We write this more concisely as q(t)◦ν(0, t) = q(0).
If the fluid is incompressible it follows that, for any t, q(x, t) is a rearrangement
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of the initial data q(x, 0). This is because for each particle in a given subset U
of the fluid at time t, we can find the original position of the particles at time
zero and the set of these points has the same size as U . It follows that the
trajectory mapping is a measure preserving mapping, the definition of which
we recall from the chapter by Douglas:

Definition A measure preserving mapping from Ω to itself is a mapping ν :
Ω → Ω such that for each (measurable) set U ⊂ Ω, µ({x : ν(x) ∈ U}) = µ(U),
where µ measures the size of the set. We must restrict our definition to sets
where we can measure the size of the set — this excludes some pathological
choices of U . Halmos (1950) shows that this definition is equivalent to requiring
that for every integrable function f ,∫

Ω
f ◦ νdµ =

∫
Ω
fdµ. (3.2)

3.2 Interpretation of partial differential equations using rear-
rangements

The ability to generate rearrangements by measure-preserving mappings sug-
gests that they can be used to give a more general interpretation of partial
differential equations governing incompressible flow. Consider the inviscid form
of equations (2.3). These contain no spatial derivatives except the gradients
of Φ and p, the divergence operator applied to v, and the total derivative op-
erator D

Dt . The value of ∇Φ will be given explicitly, as in (2.15). There is no
explicit evolution equation for p, the incompressibility condition on v makes
up the number of equations.

A natural way to define a generalised solution of (2.3) is through the method
of characteristics. Assume the equations are being solved in a region Γ with
rigid boundary ∂Γ. (Note that, as written, (2.3) has a free surface upper
boundary, which would require the procedure to be generalised.) The con-
dition ∇.v = 0 and boundary conditions v.n = 0 on the boundary ∂Γ are
interpreted as stating that the time evolution of fluid particle positions is a
rearrangement within Γ. Then the trajectory mapping ν(0, t) defined in sec-
tion 3.1 is a measure-preserving mapping for any t. Solution of the equations
depends on showing that there is a unique trajectory map of the fluid over any
time interval (0, t), giving the correct rates of change following fluid particles.
We will see two examples of this in the following subsections.

Important points about this procedure are:

(i) There is no requirement for the position map to be a smooth function of
the initial map. It may be possible to prove that it is smooth in a partic-
ular case. It is thus most useful if there are no spatial derivatives other
than the D

Dt operator. The term ∇p has to be determined implicitly, and
we will give two interpretations of it applicable to non-smooth position
maps in the subsequent sections.
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(ii) Similarly, there is no need for particles initially in contact with the
boundary to stay there. The rigid boundary condition simply requires
all particles to stay inside Γ.

(iii) The rearrangement property is imposed, we seek a solution where x(a, t)
is in R(x(a, 0)) for all t, and do not consider ‘solutions’ outside this space.

(iv) It should be possible to generalise this procedure to compressible equa-
tions or free surface boundary conditions, where we consider the flow
map as performing a ‘mass’ rearrangement.

3.3 Solution of the incompressible equations

We first illustrate the procedure described above with a simplified model prob-
lem which can be derived from (2.1) or (2.3). We will use this problem exten-
sively in the rest of this chapter. Assume the axis of rotation and the gravita-
tional force are in the same direction, setting ∇Φ = (0, 0, g) with g constant.
We write 2Ω = (0, 0, f) and take f as constant. We discuss some aspects of the
case with f variable, as in (2.15), in section 3.5. We make a form of Boussinesq
approximation (Hoskins (1975)), which only incorporates the effect of buoy-
ancy through variations in the gravitational term. In the atmospheric context,
this allows a transformation of the vertical coordinate, allowing the equations
to be written in incompressible form. The derivation is much more straightfor-
ward in the oceanic case from (2.3), see Gill (1982). We also neglect viscosity
and thermal conductivity. Then set

z =

(
1 −
(

p

p0

) γ−1
γ

)
Hs, (3.3)

where Hs = γα0p0
g(γ−1) with α0, p0 defined as in section 2.1. The continuity equa-

tion then becomes
∇.r(z)v = 0, (3.4)

where r is a fixed function. Make the Boussinesq approximation to set ∇.v = 0.
Use Cartesian coordinates (x, y, z), and solve in a finite bounded region Γ, with
boundary ∂Γ. Write the volume element as dτ . The incompressible equations
then become

Dvh
Dt

+ (−fv, fu) + ∇hp′ = 0

Dw

Dt
− gθ/θ0 +

∂p′

∂z
= 0

∇.v = 0 (3.5)

Dθ

Dt
= 0

v.n = 0 on ∂Γ.
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Equation (3.5) includes explicit equations for the evolution of the veloc-
ity components and θ. The perturbation pressure is determined implicitly
by the incompressibility constraint and the boundary conditions. As a first
step to solving (3.5), ignore the pressure gradient term, then (3.5) can be
solved explicitly. Given initial particle positions (x(0), y(0), z(0)) and veloc-
ities (u(0), v(0), w(0)), calculate a trajectory centre (xc, yc) for each particle
as (x(0) + v(0)/f, y(0) − u(0)/f). The particle trajectories consist of circles
around the trajectory centres, together with a uniformly accelerating motion
in the z direction. The solution at time t is then

θ(t) = θ(0)
x(t) = xc + (x(0) − xc) cos(ft) + (y(0) − yc) sin(ft)
y(t) = yc + (y(0) − yc) cos(ft) − (x(0) − xc) sin(ft)

z(t) = z(0) + w(0)t +
1
2
gθ′(0)t2/θ0

u(t) = u(0) cos(ft) + v(0) sin(ft) (3.6)
v(t) = v(0) cos(ft) − u(0) sin(ft)
w(t) = w(0) + gθ′(0)t/θ0.

This solution does not satisfy the continuity equation. Equivalently, the as-
sociated mapping ν(0, t) of initial particle positions x(0) to later positions x(t)
is not measure-preserving. To obtain a solution of (3.5), ν must be projected
onto the set of measure-preserving mappings. If we use the ‘polar factorisation’
theorem of Brenier (1991), we can write

ν = ∇χ ◦ s (3.7)

where χ is a convex function and s a measure-preserving mapping from Γ
to itself. Note that this decomposition only exists under certain restrictions.
Burton and Douglas (1998) have reduced these restrictions compared with
those required by Brenier (and have conjectured existence for every integrable
function). They show that s is as close to ν in L2 as any other measure-
preserving mapping Γ → Γ; moreover Douglas and McCann (unpublished
note) have demonstrated that all closest measure-preserving mappings arise
from a polar factorisation. Thus, when the factorisation is unique, we can talk
about the L2-projection onto the set of measure-preserving mappings. If ν is
non-degenerate, that is it maps no set of positive measure to a set of zero size,
the polar factorisation is unique, and we can write s = ∇χ∗◦ν, where χ∗ is the
Legendre-Fenchel conjugate convex function of χ. In order to obtain a solution
of (3.5), s must be identified with a continuous trajectory linking initial and
final particle positions. Given initial particle positions x0, we can seek solutions
by splitting the time interval (0, t) into n equal parts 0 = t0 < t1 < ··· < tn = t.
Now find the particle mapping ν(0, t1) using (3.6), and project onto the set of
measure-preserving mappings as described above to obtain s(0, t1). Starting



Mathematical developments in atmosphere and ocean dynamics 221

at positions given by s(0, t1)x0, we find the particle mapping to time t2 and
project this mapping onto the set of measure-preserving mappings to obtain
s(t1, t2). Continue in this way, building a ‘discrete trajectory mapping’ sn. If it
can be proved that the sequence (sn) converges (in a suitable sense) as n → ∞,
then we call the result a generalised solution of (3.5).

A proof of this type has not yet been achieved, though such a procedure
underlies many standard and successful numerical methods. However, some
remarks can be made about what results may be possible. The two-dimensional
version of equations (3.5) is known to have solutions which stay as regular as
the initial data, Kato and Ponce (1986). Consider a single step of the iteration
procedure set out above:

(i) Given initial particle positions x0, calculate estimates of particle posi-
tions at time t1 using (3.6). Write the solutions as ν(0, t1)x0. Since v0
satisfies the continuity equation and boundary condition, we have

detDx(ν(0, t1)x0) = 1 + O((t/n)2) ≡ ρ(ν(0, t1)), (3.8)

where Dx(ν(0, t1)x0) denotes the Jacobian matrix.

(ii) Project this onto a measure preserving mapping s(0, t1) using the polar
factorisation.

Equation (3.8) states that |ρ − 1| ≤ C((t/n)2) where C is a bound on the
velocity gradients. If v ∈ W1,∞, then ρ is bounded away from 0 and ∞ for
sufficiently large n. Caffarelli (1996) shows (in two dimensions with smooth
boundaries) that this would imply that s and ∇χ∗ are one derivative smoother
than ρ, while (3.8) shows that ρ is one derivative less smooth than ν(0, t1). (3.6)
shows that ν(0, t1) is as smooth as v. More recent work suggests that these
results are true in three dimensions if the boundary conditions are periodic.
Hence the solution will be as smooth as the initial data if the bound on the
velocity gradients can be maintained. In two dimensions, this follows from
vorticity conservation, Gerard (1992).

In the 3-dimensional problem, there is no known way of maintaining a bound
on the velocity gradients. However, the solution procedure can still be followed
through in a formal sense if v is bounded. The projection onto a measure
preserving mapping will not be unique, but it would be possible to choose the
member of the family of possible projections which minimised a suitable norm
of s(0, t1). The difficulty now is to maintain the bound on v as the number of
time intervals n tends to infinity. This requires ‖ ∇χ∗(ti, ti+1) ‖≤ C(t/n)2 in
a suitable norm, with C independent of n.

If the above results can be achieved, s will be identified with a continuous
trajectory and particle positions will vary smoothly in time. This is a minimum
requirement for the solution to make physical sense. However, even if this can
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be achieved, the discussion above suggests that the resulting velocity field may
not vary smoothly in space. This gives some plausibility to the idea that typical
length scales along trajectories may be greater than length scales in other
directions and is consistent with the results of Bartello and Thomas quoted
above which were based on Fourier expansions. A velocity field of bounded
variation can be consistent with the −5/3 power spectrum if discontinuities
are present, but intermittent.

Brenier (1991) discusses the relation between this procedure and a solution
procedure relying on the Helmholz decomposition of a general velocity field
into an incompressible velocity field and the gradient of a scalar. This de-
composition is the linearisation of the polar decomposition about the identity
map. Though the polar decomposition uses a convex potential, there is no
convexity implied of the scalar in the Helmholz decomposition, and thus no
implied restriction on the form of the pressure in the solution of (3.5).

3.4 Extremisation with respect to rearrangements

The scale analysis of section 2 highlighted the importance of the geostrophic
and hydrostatic relations (2.14). We now show how (2.14) can be derived by
a variational argument based on rearrangements, following Shutts and Cullen
(1987) and Cullen et al. (1991). The energy associated with solutions of (2.1)
is given by (2.4). We seek to minimise this with respect to fluid displacements
Ξ = (ξ, η, ζ) which satisfy the boundary conditions, with changes to the flow
variables being given by

δv = −2Ω × Ξ
CvδT + pδα = 0

δα = α∇.Ξ (3.9)
δΦ = Ξ.∇Φ.

These changes are consistent with the evolution equations (2.1) apart from
the ‘freezing’ of the pressure gradient ∇p. Shutts and Cullen show that the
geostrophic and hydrostatic relations (2.14) are the condition for the energy
to be stationary with respect to (3.9). The condition for a minimum is that

δ2E = Ξ.Λ.Ξ ≥ 0 (3.10)

where
Λij = 2|Ω|∂Mi

∂xj
− α

∂lnθ
∂xi

∂p

∂xj
(3.11)

and M = 2|Ω|(x− (Ω̂.x)Ω̂) − Ω̂ × v. Shutts and Cullen show that this corre-
sponds to the condition for a fluid parcel to be stable against displacements
in a ‘frozen’ pressure field. (3.10) implies the condition

det Λ ≥ 0. (3.12)
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The physical justification for this is the natural model of a stable steady state
being an energy minimising state. Increased energy corresponds to oscillations
about the steady state. If the basic state is time-dependent, but the time-scale
is much greater than the period of the oscillations about the stable state, then
the argument should remain accurate. In this example, the oscillations all have
a frequency greater than 2Ω, so that the argument requires the geostrophic
and hydrostatic basic state to evolve on a time scale much slower than this.
If the time scales become comparable, the procedure can still be carried out,
but will not give useful results.

States which are stationary points of the energy, but not minima, are un-
stable to motions with a growth rate greater than (2Ω)−1. The evolution will
then not be usefully described by oscillations about such a state. However,
it is possible that the instability will be released quickly, so that there is a
transition on a time-scale less than (2Ω)−1 to a state close to a minimum en-
ergy state. For this to happen, the motions which achieve this transition must
either allow energy loss, or else not satisfy (3.9). In practice, both are likely.

To illustrate the methods further, we use the simplified model problem (3.5)
introduced in the previous subsection. The conserved energy for these equa-
tions, where we write θ for θ′ henceforth, is

E =
∫
Γ

{
1
2

(u2 + v2 + w2) − gθz/θ0

}
dτ. (3.13)

Shutts and Cullen show that if we minimise the energy subject to displace-
ments satisfying

δv = −fk× ξ

δθ = 0 (3.14)
∇.Ξ = 0
Ξ.n = 0 on ∂Γ

then the condition for the energy to be stationary is geostrophic and hydro-
static balance in the form

(fv,−fu, gθ/θ0) = ∇s (3.15)

for some scalar s. (3.15) still holds if f is not constant, but subsequent deriva-
tions do not. The necessary reformulations are discussed in the next subsection.
The condition for a minimum is that the matrix Q whose components are

Qi,j =
∂2S

∂xi∂xj
(3.16)

S = f−2s +
1
2

(x2 + y2) (3.17)
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Figure 9: Construction of a convex polyhedral surface P (x, z) from faces with
given gradients (Xi, Zi) = (Mi, θi) and areas.

is positive definite. Define

X = x + f−1v
Y = y − f−1u (3.18)
Z = gθ/f2θ0

X = (X,Y, Z).

(3.15) shows that
(X,Y, Z) = ∇S. (3.19)

Equation (3.14) thus implies δX = δY = δZ = 0. The solution of the minimi-
sation problem can be interpreted geometrically as finding a convex surface S
whose gradients X take prescribed ranges of values on sets of specified mea-
sure. The condition that (3.16) is positive definite is equivalent to convexity
of S. A simple example is the problem of finding a polyhedral surface with
faces with specified gradients and areas (Figure 9), corresponding to choosing
piecewise constant values of (X,Y, Z) in (3.18). A proof that this construction
is possible for any finite set of values is given in Cullen and Purser (1984). A
more general set of such results on constructing polyhedral surfaces is given
by Pogorelov (1973).
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In general, we can specify the problem as to find S(x, y, z) over a specified
region Γ in (x, y, z) given that X = ∇S satisfies (implicitly), for given ρ,

ρ = det
∂(x, y, z)
∂(X,Y, Z)

(3.20)∫
R3

ρdX = µ(Γ)

where µ(Γ) is the volume of Γ. The proof that this problem can be solved is
a result of theorem 1.1 of Brenier (1991), subsequently extended by McCann
(1995), which shows that a general mapping f from a bounded subset of R

n

to R
n has a unique rearrangement equal to the gradient of a convex function.

In particular it should be noted that S can have discontinuous gradients, even
when ρ is a smooth function. Cullen and Purser proposed this as a simple
model of atmospheric fronts. Extension of this identification of the problem
to periodic domains and shallow water models is given in Cullen and Purser
(1989). A fuller discussion of these analytical results is given in the chapter by
Douglas earlier in this volume.

3.5 Relation to the Monge–Ampère equation and Monge mass
transport problem

Cullen and Purser (1989) showed that (3.19) has a dual form for R(X) dual
to S(x)

(x, y, z) = ∇XR (3.21)
R = x.X− S.

This results from the identification of the transformation from x to X as a
Legendre transformation (see the chapter by Sewell). Using this, (3.20) be-
comes

ρ = det
∂2R

∂(X,Y, Z)2
. (3.22)

This is a Monge–Ampère equation. Brenier (1991) shows that his ‘polar factor-
ization theorem’ is equivalent to an existence proof for a generalised solution
of (3.22), subject to the compatibility and boundary conditions∫

R3

ρdX = µ(Γ) (3.23)

∇R ∈ Γ.

(See the chapter by Douglas earlier in this volume for a more complete deriva-
tion of the duality structure and its consequences.) The theory of this problem,
sometimes called the ‘assignment problem’ when it arises in other contexts,
has been taken much further, see Caffarelli (1996).
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Our previous work has assumed the existence of a (unique) minimum energy
state (under variations (3.14)). If the vertical contribution to the kinetic energy
is ignored (it is not varied under (3.14)), the energy (3.13) can be written
as

E = f2
∫
Γ

{
1
2

((x − X)2 + (y − Y )2) − zZ

}
dτ. (3.24)

We noted earlier that variations (3.14) are those which conserveX on particles,
and satisfy conservation of mass. Such variations are described by R(X0), for
some prescribed X0. We demonstrate that (3.24) has a unique minimiser rela-
tive to this set. Noting that

∫
Γ(z2 + Z2)dτ is conserved under rearrangements

of X, we can study the equivalent problem of minimising

E =
1
2
f2
∫
Γ
{|X(x) − x|2}dτ (3.25)

for all X ∈ R(X0). This may be rewritten as a Monge mass transport problem
as follows. Define ν(B) = µ(X−1

0 (B)) for all subsets B of R
3 which are suffi-

ciently well behaved. Then the set of measure preserving mappings between
(Γ, µ) and (R3, ν) is exactly R(X0). The minimiser of (3.25) can be written as

infs∈R(X0)

∫
Γ
c(x, s(x))dµ (3.26)

where the cost function c : R
3 × R

3 → R is defined by c(x,y) = |x − y|2.
Gangbo and McCann (1996) showed that the infimum in (3.26) is uniquely
attained by a measure-preserving mapping equal to the gradient of a convex
function. They also discuss conditions under which these problems can be
solved for a more general cost function. This justifies our earlier claim.

Cullen and Douglas (1998) show that the energy minimisation argument
described above can be used to define the geostrophic transformation (by
identifying the convex function appropriately), and then demonstrate that a
more general form of this problem can be used to extend the theory to the
surface of a sphere S2. Assume that (x, y) and (X,Y ) represent coordinates on
the spherical surface, and z and Z represent coordinates normal to the surface.
The Coriolis parameter f is now equal to 2Ω sinφ, where φ is the latitude.
Let gij denote the metric for S2. Define ĝij = f2gij, a conformal rescaling
of the metric for f > 0. Let S+ denote the upper hemisphere excluding the
equator, and write Ŝ+ for the conformal rescaling of S+. The pair (Ŝ+, ĝij) is
a Riemannian manifold. Let d̂ be the Riemannian distance induced on Ŝ+ by
ĝij . Let µ̂ be surface area on a closed set N̂ ⊂ Ŝ+. Then, given a prescribed
X0 : Ŝ+ → N̂ , define ν̂(B) = µ̂(X−1

0 (B̂)) for well behaved sets B ⊂ Ŝ+. By
analogy with the constant rotation case, we minimise the energy over R(X0),
(extending the definition of rearrangement in the obvious way). Cullen and
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Douglas (1998) show that this energy can be written as

E =
1
2

∫
Ŝ+

d̂(x,X(x))2dµ̂(x). (3.27)

We can rewrite the energy minimisation problem in mass transport form by
noting that the set of measure preserving mappings from (Ŝ+, µ̂) to (Ŝ+, ν̂) is
exactly R(X0). Then the minimiser of (3.27) becomes

infs∈R(X0)
1
2

∫
Ŝ+

d̂(x, s(x))2dµ̂(x). (3.28)

McCann (2001) has proved that this problem admits a unique minimiser if all
pairs of points in N̂ are linked by a minimal geodesic. We define a transforma-
tion X̂ to be this unique minimiser. Note that this generalisation is different
from the theories discussed in the chapter by Purser.

3.6 Rearrangements and mixing

The energy minimisation problem of section 3.5 is a case where the problem
of minimising a functional with respect to rearrangements of functions can be
solved uniquely. However, such results are difficult to prove because the set of
rearrangements of a given function is not compact, except in the trivial case
of a constant function. There can be infinite sequences of rearrangements of a
given function which do not converge to a limit which is a rearrangement. An
example of this is a sequence of arbitrarily fine-grained rearrangements. Let
f0 : [0, 1] → R be defined by

f0(x) =
{

0 if x ∈ [0, 1/2],
1 if x ∈ [1/2, 1],

(3.29)

Define, for n ∈ Z,

fn(x) =


0 if x = 0,
0 if x ∈ (m/n, (2m + 1)/2n],
1 if x ∈ ((2m + 1)/2n, (m + 1)/n],

(3.30)

where m = 0, 1, . . . , n − 1. The functions f3 and f8 are illustrated in Figure
10. For each n ∈ Z, fn is equal to zero on a set of length 1/2, and equal to 1
on a set of length 1/2, therefore fn is a rearrangement of f0 for each n ∈ Z.
However, given any g ∈ L2(0, 1), it may be shown that

∫ 1
0 fngdx → 1

2

∫ 1
0 gdx

as n → ∞, that is, fn converges weakly to the constant function with value
1/2, which is not a rearrangement of f0.

In applications where we need to take limits and thus ensure that we work
with a compact set, we can use the weak closure of the set of rearrangements
of a given function. This is the smallest weakly compact set that contains
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Figure 10: The rearrangements f3 = f3(x) and f8 = f8(x) defined by equation
(3.30) of the function f0 = f0(x) defined by equation (3.29).

the set of rearrangements, and thus contains all the weak limits of sequences
of rearrangements. Douglas (1994) gave the following characterisation for a
non-negative square-integrable function f0;

conv R(f0) =
{
f ≥ 0 |

∫
Ω

(f − α)+dµ ≤
∫
Ω

(f0 − α)+dµ

for each α > 0,
∫
Ω
fdµ =

∫
Ω
f0dµ

}
(3.31)

where the + subscript denotes taking the positive part of the function. If
we define f0 as in (3.29) it can be shown that any integrable function ϕ :
[0, 1] → R satisfying 0 ≤ ϕ(x) ≤ 1 for each x ∈ [0, 1], and

∫ 1
0 ϕdµ =

1/2, belongs to conv R(f0). This illustrates that conv R(f0) may be a large
class of functions, in particular it includes the constant value 1/2 which is
certainly not a rearrangement of f0. In general, all rearrangements are in-
cluded, as are functions derived by smoothing a rearrangement while preserv-
ing the value of the integral. The limit of a sequence of fine grained rear-
rangements will be a smoothed ‘average’ function. Physically, including these
limit functions can be thought of as allowing for a small but finite viscos-
ity.
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4 Basic equations of motion and approximation by
balanced models

Equations (2.1) and (2.3) describe all possible motions of the atmosphere and
ocean. In order to understand large scale weather systems, and equivalent
ocean circulations, a generic approach is:

(i) Identify an asymptotic regime, and thus small parameter, corresponding
to the flows of interest.

(ii) Identify a system of equations, based on scale analysis, that is appropri-
ate to that regime. We refer to this as a ‘reduced’ system.

(iii) Prove that this system has solutions, which only contain the flows of
interest.

(iv) Prove that the solutions of the full equations stay close to that of the
‘reduced’ system in some norm. The estimate will depend on the small
parameter used in the original asymptotic analysis.

This is the approach followed in the chapter by Babin et al. They used
it to extend existence results for reduced systems to those for the full fluid
equations. Note that it is very difficult to show how a simple solution can stay
close to a complicated one, while the converse as in step (iv) may be much
more practicable. This procedure has been used, for instance, to show that
in appropriate regimes, solutions of the 3-dimensional Euler equations stay
close to those of the 2-dimensional Euler equations, which are known to be
well behaved. One method of doing this is discussed by Babin et al., another
approach is described by Marsden et al. (1995).

In applications to weather and climate forecasting, it is also important to
recognise situations in which the total flow is not well approximated by a
reduced system, but the interactions between the motions described by the
reduced system and other motions are weak. Such a situation arises in the
internal structure of the ocean. This contains large internal gravity waves,
Garrett and Munk (1979), which can be shown to couple weakly to the large
scale geostrophic circulation, e.g. Gjaja and Holm (1996). We can describe
this situation as follows. Let M be the solution space of equations (2.1) or
(2.3). Let M0 be the subspace of M which contains solutions of a reduced
system of equations. Define a projection P which maps M to M0. Represent
the solution of (2.1) or (2.3) as U(t) and that of a reduced system as u(t).
Then, as shown in Figure 11, if we initialise the reduced model with data
u(0) = PU(0), the effective forecast error of the reduced system at time t is
u(t)−PU(t). This may be much smaller than u(t)−U(t), and it is important
to estimate it.
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Figure 11: Illustration of the comparison between the error of a prediction u(t)
using a reduced set of equations, and the projection P of the exact solution
U(t) onto a state consistent with the reduced system.

We illustrate in the following subsections the approach to constructing re-
duced systems using semi-geostrophic theory. The chapters by Holm et al.,
Bokhove, McIntyre and Roulstone, and Allen et al. describe alternative ap-
proaches. The chapter by Baigent and Norbury describes an alternative ap-
proach to the semi-geostrophic definition using maximum entropy ideas.

4.1 Approximation by balanced states

We show how a particular reduced system can be defined as a sequence of
‘balanced’ states. A balanced state is defined for this purpose as a state which
is in geostrophic and hydrostatic balance, and is statically and inertially stable
(so satisfies (3.19) with S convex). As shown in section 2, this is the natural
lowest order approximation for small Rossby number. A similar analysis is
possible for axisymmetric states (Shutts et al. (1988)).

In order to allow a more complete analysis, we start from the simplified
problem (3.5), rather than the original equations (2.1) or (2.3). This avoids
the complications caused by compressibility. The procedure is set out in more
detail in Cullen (2000). Given a general solution of (3.5), we wish to show
how it can be approximated by balanced states in the above sense. For such
a solution, calculate X = (X,Y, Z) using (3.18). Define a projection Π of a
general state onto a balanced state by minimising the energy subject to particle
displacements satisfying (3.14), as discussed in section 3.5. This gives a state

Π(X,Y, Z) = (Xb, Yb, Zb) (4.1)
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satisfying (3.19) with (Xb, Yb, Zb) = (x + f−1vb, y − f−1ub, gθb/f2θ0) and S
convex. Write the minimising displacement as Ξ ≡ (ξ, η, ζ). Since X is pre-
served on particles by (3.14), we have Xb(x + Ξ) = X(x). Following (3.13),
the energy associated with this state is

e =
∫
Γ

{
1
2

(u2b + v2b ) − gθbz/θ0

}
dτ. (4.2)

Preservation of X under the displacement also means that

∂(x, y, z)
∂(X,Y, Z)

=
∂(xb, yb, zb)
∂(Xb, Yb, Zb)

. (4.3)

If we define the potential vorticity Q of a general state to be ∂(X,Y,Z)∂(x,y,z) , then Q

is preserved by the projection if it is regarded as a function of (X,Y, Z). Note
that smooth solutions of (3.5) preserve the ‘Ertel’ potential vorticity

q = (f + ζ).∇θ (4.4)

on particles, where ζ = ∇ × u. Q and q agree to first order in ζ/f . Other
choices of Π which are based on preserving (4.4) or closer approximations
to it are discussed in the chapters by McIntyre and Roulstone, Holm et al.
and Allen et al. They all provide a generalisation of normal mode projections,
which depend on decomposing general fields into a geostrophic and hydrostatic
basic state with linear unbalanced waves superposed on it, see Daley (1997).
The latter require linearisation of the governing equations about a uniform
reference state at rest.

The evolution equations (3.5) can be written as evolution equations for
X = (X,Y, Z):

DX
Dt

+ f−1k× ∇p′ = 0

Dw

Dt
+

∂p′

∂z
= gθ/θ0 (4.5)

Dα

Dt
= 0

v.n = 0 on ∂Γ.

Here the continuity equation has been written in Lagrangian form in terms of
the specific volume α. Imagine that we have computed a solution of (4.5), with
particle positions x(t), and particle values X(t). At each time t, we project to
the minimum energy state using (4.1). This involves displacing the particles to
x(t) + Ξ(t) while preserving their values of X,Y and Z. Write D

∗
Dt to express a

derivative following the ‘minimum energy’ particle positions x+Ξ, and write
the ‘velocity’ that achieves this as V = (U, V,W ), so V = D

Dt(x + Ξ) and
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D∗
Dt ≡ ∂

∂t +V ·∇. Then the equations expressing the evolution of this balanced
state are

D∗Xb

Dt
+ (f−1k× ∇p′)∗ = 0

D∗α
Dt

= 0 (4.6)

(Xb, Yb, Zb) = ∇S.

Here (f−1k×∇p′)∗(x+ Ξ) ≡ f−1k×∇p′(x). This means that (4.6) cannot be
solved without prior knowledge of the solution of (4.5). (∇p′)∗ is not in general
the gradient of a scalar. The second equation in (4.6) implies ∇.V = 0. The
boundary conditions on (3.14) imply that V.n = 0 on ∂Γ. The solution of
(4.6) has the same ‘balanced potential vorticity’ Q as (4.5) if Q is regarded
as a function of X. However, Q is not conserved on particles under (4.5) and
therefore not under (4.6) either.

The evolution of e can be calculated by first rewriting (4.6) in terms of the
original variables

D∗

Dt
(ub, vb) + (−fV, fU) + (∇hp′)∗ = 0

D∗

Dt
≡ ∂

∂t
+V · ∇

D∗θb
Dt

= 0 (4.7)

D∗α
Dt

= 0

(fvb,−fub, gθb/θ0) = ∇s.

Here s = S − 1
2f

2(x2 + y2). Multiply the first of these equations by (ub, vb)
and the third by z and add. Using W = D∗z

Dt , and the fact that V.∇s =
fUvb − fV ub + gWθ/θ0 integrates to zero because ∇.V = 0, we find that

D∗e
Dt

= −
∫
Γ
(ub, vb, 0).(∇hp′)∗dτ. (4.8)

This is zero if (∇hp′)∗ can be written as ∇hπ for some scalar π, because
∇.(ub, vb, 0) = 0. For flows close to balance, so that |Ξ| is small, we can write

(∇hp′)∗ = ∇hp′ − Ξ · ∇(∇p′) + O(|Ξ|2). (4.9)

Using (4.9), the condition that (∇hp′)∗ = ∇hπ becomes

∂ξ

∂y

∂2p′

∂x2
+

∂η

∂y

∂2p′

∂x∂y
− ∂ξ

∂x

∂2p′

∂y∂x
− ∂η

∂x

∂2p′

∂y2
= 0. (4.10)
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This is satisfied for flows independent of one horizontal coordinate. It is of
interest to seek other cases where (4.10) is either zero, or smaller than would
be expected from general estimates. In such cases ∂e

∂t will be small, and if
E − e is initially small, it will only grow slowly, so that the flow stays close
to balance. In the general case, (4.8) and (4.9) allow E − e to be estimated in
terms of Ξ and p′. We will exploit this in the next subsection.

4.2 Approximation of evolution by a reduced set of equations

We now illustrate how a reduced set of equations can be constructed, which
only uses knowledge of balanced states, and how estimates of the difference
between the solution of a reduced system and the full system can be made.

A reduced set of equations for predicting the evolution of a balanced state,
approximating the real state of the atmosphere, can be obtained by replacing
the term (f−2k×∇p′)∗ in (4.6) by a term calculated directly from the balanced
state variables. The geostrophic and hydrostatic pressure in the balanced state
is given by (3.15) as s. In order to calculate (∇p′)∗ from the balanced variables,
we first need to estimate the true pressure p′ from s, and then estimate (∇p′)∗

from (4.9). However, the latter estimate depends on Ξ, which is arbitrary and
unrelated to the balanced state. It can only be estimated by first estimating
the energy difference E−e between the true state and the balanced state, and
then using (3.10) to estimate Ξ. We illustrate two estimates, appropriate for
different asymptotic regimes.

Consider first the case Ro ≤ O(1), B = NH/fL � 1 which implies Fr � 1.
As discussed in section 2, we then have W/H � U/L and hydrostatic balance
which for equations (3.5) means ∂p′

∂z = gθ/θ0. The definition of N2, (2.10),
means that g/θ0

∂θ
∂z � (fL/H)2, so that there is a large vertical variation of

θ. First calculate what vertical θ conserving displacement is needed to change
the pressure, assumed hydrostatic, from p′ to s. This requires a change of
θ of magnitude (p′ − s)θ0/(gH) and thus a vertical displacement of magni-
tude (p′ − s)θ0/(gH ∂θ

∂z ) = (p′ − s)/(N2H). The condition ∇ · Ξ = 0 means
that the associated horizontal displacements will have to be of magnitude
L(p′ − s)/(N2H2). Condition (3.14) then shows that the horizontal veloc-
ity components will be changed by an amount δu " fL(p′ − s)/(N2H2). If,
instead, the horizontal velocity components were changed by a horizontal dis-
placement so as to be in geostrophic balance with the exact pressure p, the
change required would be (p′ − s)/(fL) " B2δu, which is larger by the factor
B2. Therefore, in this regime, the projection Π will change the pressure field to
match the horizontal velocity components, rather than vice versa. This is con-
sistent with geostrophic adjustment theory, see Haltiner and Williams (1980).
In particular it will preserve the horizontal non-divergent velocity components
to O(B−2).
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We can therefore estimate p′ to O(B−2) by assuming k̂.∇ × (u, v, 0) =
k̂.∇ × (ub, vb, 0), where k̂ = (0, 0, 1). We write U for the fluid trajectory
ẋ which will be determined by the balance condition (4.12). This is to be
distinguished from the trajectory V defined diagnostically from the solution
of (4.5). The reduced equations then take the form

D

Dt
(ub, vb) + (−fV, fU) + ∇hπ = 0

D

Dt
≡ ∂

∂t
+U · ∇

Dθ

Dt
= 0 (4.11)

Dα

Dt
= 0

(fvb,−fub, gθ/θ0) = ∇s.

Substituting k̂.∇ × (u, v, 0) = k̂.∇ × (ub, vb, 0), and enforcing consistency be-
tween (3.5) and (4.11), gives

k̂.∇ × (U.∇ub) + k̂.∇ × (−fV, fU, 0) = k̂.∇ × (ub.∇ub). (4.12)

We determine π by the condition ∇h.(ub, vb, 0) = 0, which follows from the
last equation of (4.11), which with (4.12), forms the appropriate reduced set
of equations. Since the pressure gradient term is approximated by the gradient
of a scalar, these equations conserve the balanced energy e as defined by (4.2).
In the special case where the initial data for (3.5) satisfies ∇.(u, v, 0) = 0 and
has θ = θ(z) only, (4.11) reproduces the solution of (3.5) exactly.

The argument above also shows that in the case B � 1, the projection
preserves the pressure field to O(B2). In this case, we simply set π = s, so
that the appropriate set of reduced equations is

D

Dt
(ub, vb) + (−fV, fU) + ∇hs = 0

D

Dt
≡ ∂

∂t
+U · ∇

Dθ

Dt
= 0 (4.13)

Dα

Dt
= 0

(fvb,−fub, gθ/θ0) = ∇s.

These are precisely the semi-geostrophic equations studied by Cullen et al.
(1987), Cullen and Purser (1989), Cullen et al. (1991) and many others.
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This analysis suggests that the semi-geostrophic model is a good model
of balanced flow if B � 1, but (4.11) is superior if B � 1, and is exact
in the special case of non-divergent flow with stratification independent of
the horizontal coordinates. This is consistent with results in the literature.
The case B � 1 corresponds to most published integrations with the shallow
water equations. Allen et al. (1990) and others have shown that the semi-
geostrophic model is not very accurate in such cases, and a number of other
reduced models are better. The chapter by McIntyre and Roulstone shows
how the replacement of the pressure gradient by an approximation is a generic
method of constructing reduced systems of equations.

As shown in the previous subsection, a complete estimate of the difference
between the solution of the full equations and reduced equations also requires
an estimate of the magnitude of the displacements Ξ. This can be deduced
from the energy difference E − e. Using (3.10), we obtain

E − e ≥
∫
Γ
λmin|ξ|2dτ (4.14)

where λmin is the smallest eigenvalue of Λ as defined by (3.11). We then have
to estimate E − e in terms of Ξ and p′. Estimates of p′ can be obtained in
principle from estimates of s and ub as in the derivation of (4.11) and (4.13).
Estimates of s have to be obtained from an existence theory for the chosen
reduced system of equations. This programme of work has not yet been carried
through.

4.3 Existence of solutions to reduced equations

In this subsection we discuss the properties of the solutions of the two char-
acteristic reduced systems (4.13) and (4.11). Equations (4.13) can be written
in terms of X variables as

DX
Dt

+ f−1k× ∇s = 0

Dα

Dt
= 0 (4.15)

(X,Y, Z) = ∇S.

Using (3.16) and (3.19), the last term in the first equation of (4.15) has
components

f−1
(
−∂s

∂y
,
∂s

∂x
, 0
)

= (y − Y,X − x, 0). (4.16)

It was shown by Cullen and Purser (1989) that ρ as defined by (3.20) is
conserved under (4.15) following fluid particles. We can thus rewrite equations
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(4.15) and 4.16), using (3.21) and (3.22), as

Dρ

Dt
= 0

D

Dt
≡ ∂

∂t
+V.∇X

V = (y − Y,X − x, 0) (4.17)

(x, y, z) = ∇XR

ρ = det
∂2R

∂(X,Y, Z)2
.

These equations are to be solved in X coordinates for all X ∈ R
3, with bound-

ary condition
x = ∇XR ∈ Γ. (4.18)

Equations (4.17) and (4.18) can be interpreted as describing a motion of par-
ticles in (X,Y, Z) space, with velocity V = (y − Y,X − x, 0), conserving ρ.
The solution procedure is therefore as follows. Given ρ(X,Y, Z) as defined
by (3.20), satisfying the compatibility conditions ρ ≥ 0,

∫
ρ = µ(Γ), use the

solution procedure discussed in section 3.5 to find a convex R(X,Y, Z). This
gives x as a function of X, and allows V to be computed. The solution can
then be advanced in time. Further details are given in Cullen and Purser
(1989).

The ‘velocity’Vmakes sense provided R is differentiable. The derivative of a
convex function, however, may be multi-valued. If so, further work is required
to allow the evolution equations (4.15) to make sense. Proving good behaviour
of such ‘transport’ equations requires one of the two following properties to
hold (Brenier, private communication). Either

|V(t,X) −V(t, X̃)| ≤ C(t)η(|X− X̃|) (4.19)

where C ∈ L1
loc(R

+) and
∫ 1
0
ds
η(s) = ∞; this is Cauchy-Lipschitz theory with

Osgood’s condition (see Gerard (1992)). Or∫
|X|≤R

|∇V(t,X)|dx ≤ CR(t),∀R < ∞ with CR ∈ L1
loc(R

+). (4.20)

This corresponds to the limiting case of the transport theory of DiPerna and
Lions (1989). Benamou and Brenier (1998) have shown that weak solutions of
(4.15) exist for initial data in Lp(R3) for p > 3. For the periodic problem in
two dimensions, the results of Caffarelli (1996) suggest that strong solutions
may exist, since regularity of ρ can then be used to prove that R has two more
derivatives than ρ. Cullen and Gangbo (2001) prove that weak solutions of
the 2-dimensional shallow water version of (4.15) exist in L∞((0, T );Lr(R2))
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for initial data in Lr(B), where r > 1 and B is an open bounded ball in
R
2.
Now consider equations (4.11). These can be written in terms of X, giving

equations similar to (4.15) apart from the replacement of the last terms in the
first equation by f−1k × ∇π. This equation no longer conserves ρ following
particles, since in general ∇π cannot be written as a gradient in X space. It
will, however, satisfy conservation of a form of potential vorticity closer to
(4.4). In the case w = 0, the first equation of (4.11) is exactly the equation
for the evolution of 2-dimensional incompressible flow. The theory for these
equations is well established, giving existence and regularity under suitable
conditions for infinite time, see e.g. Kato and Ponce (1986). In the special case
where θ is a function of z only and ub a function of (x, y) only, the solution of
(4.11) satisfies w = 0 and so exists for all time, and is also a solution of (3.5).
In general, it is necessary to control w, as in the work of Babin et al. (1996)
and Marsden et al. (1995). In the other special case where (4.11) is vertically
averaged, to give a reduced form of the shallow water equations, there is a
good chance that ∇h.v can be controlled and a theory obtained based on the
results for the case ∇h.v = 0. See the chapter by Babin et al., Babin et al.
(1997) or Embid and Majda (1996).

4.4 Calculation of solutions to reduced equations

We illustrate first a solution procedure for equations (4.13). Write them in the
form

Q

 U
V
W

+
∂

∂t
∇s = H

∇.U = 0 (4.21)
(fvb,−fub, gθ/θ0) = ∇s

where

Q =

 fvbx + f2 fvby fvbz
−fubx f2 − fuby −fubz
gθx/θ0 gθy/θ0 gθz/θ0

 (4.22)

and

H =

 f2ub
f2vb

0

 . (4.23)

This formulation is essentially due to Schubert (1985). Equations (4.11) take
a similar form, with (4.23) replaced by

H =

 −f ∂π∂y

f ∂π∂x
0

 . (4.24)
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Either of these equations can be solved by forming a single equation for ∂∇s∂t :

∇.Q−1 ∂

∂t
∇s = ∇.Q−1H (4.25)(

Q−1 ∂

∂t
∇s

)
n

= (Q−1H)n on ∂Γ.

These form an elliptic equation for ∂∇s
∂t if Q has no negative eigenvalues.

For the semi-geostrophic equations, Shutts and Cullen (1987) show that Q is
exactly the matrix that appears in (3.16), and negative eigenvalues correspond
to unstable states not describable by semi-geostrophic theory. The existence
results discussed in the previous subsection all prove existence of solutions
with non-negative eigenvalues.

4.5 Generic forms of reduced equations

Equations (4.17) are an example of a generic form of reduced equations for
large scale atmospheric and oceanic flow which take the form

Dq

Dt
= 0

D

Dt
≡ ∂

∂t
+V.∇ (4.26)

H(V, θ) = q

where q is a form of potential vorticity such as in (4.3) or (4.4). Here H contains
an elliptic operator which allows all the other fields to be derived from q. In the
case of (4.17), this is the Monge–Ampère equation for R, and the calculation
of V from R. Boundary conditions have to be chosen to allow solution of the
elliptic problem. (4.18) are the appropriate conditions for (4.17), and do not
imply any physical restriction other then no flow through rigid boundaries.
Other examples where the Ertel form of potential vorticity (4.4) is used are
given in the chapters by Allen et al., Holm et al., and Roulstone and McIntyre.
Boundary conditions are more of an issue in these cases.

The conservation law Dθ
Dt = 0 is implied by (4.26). The statement is often

then made that potential vorticity is advected quasi-2-dimensionally along θ
surfaces. However, this ignores the nontrivial motion of the θ surfaces them-
selves, and may be misleading. In particular, the θ surfaces will usually inter-
sect the lower and, in the ocean, upper boundary at positions which change
in time.

This formulation is very convenient for proving existence of solutions, as
shown in section 4.3. However, it also allows information about the properties
of the solution to be deduced. The conservation of potential vorticity makes
the equations similar to the equations for 2-dimensional incompressible flow,
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which conserve vorticity. The equations for 3-dimensional incompressible flow
do not conserve any vorticity-like quantity. Hence the large scale flow of the
atmosphere and ocean is often described in terms of 2-dimensional turbulence,
e.g. Leith (1983).

Equations (4.26) also allow deductions about the sensitivity of the solutions
to small perturbations. If the fluid is displaced by a field Ξ, retaining potential
vorticity conservation, then we have

H(V + δV, θ + δθ) = q − Ξ.∇q. (4.27)

Subtracting the final equation of (4.26) from (4.27) and linearising gives
Ĥ(δV, δθ) = −Ξ.∇q. This can be solved for (δV, δθ) in terms of Ξ. The key
quantities will be the eigenfunctions and eigenvalues of Ĥ−1. Small eigenvalues
will result in large sensitivity of the solutions to perturbations in the direc-
tion of the associated eigenfunction, unless Ξ.∇q happens to be small. These
properties are exploited in section 8.5.

The most useful reduced systems of the form (4.26) also conserve energy.
Both (4.11) and (4.13) conserve the balanced energy e. As discussed in the
chapters by Holm et al., Bokhove, and Roulstone and McIntyre, such systems
can often be written in Hamiltonian form, with the potential vorticity equa-
tion expressing the Liouville theorem or conservation of symplectic structure.
Where the conserved potential vorticity takes the form (4.3), the conservation
law is clearly seen as a conservation of phase space volume, with X being the
phase space coordinates.

5 Sub-grid models and their interaction with re-
solved dynamics

5.1 Introduction

Equations (2.1) and (2.3) have to be solved in practical applications with a
sub-grid model which expresses the effects of unresolved motions. It is also
necessary to include forcing terms. In the atmosphere the effects of phase
changes of water are particularly important. This section is primarily written
from an atmospheric viewpoint, though the purely dynamical aspects apply to
the ocean as well. In the ocean, the effects of salinity have also to be included
in the sub-grid model.

The sub-grid model in operational atmospheric models includes

(a) Actual forcing terms, such as radiative heating.

(b) Explicit terms describing phase changes of water.

(c) Interactions with the lower boundary.
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(d) Averaged effects of sub-grid dynamics.

A generalisation of (3.5) to include these effects can be written

Duh
Dt

+ (−fv, fu) + ∇hp′ = (Fu, Fv)

Dw

Dt
− gθ/θ0 +

∂p′

∂z
= 0

∇.v = 0 (5.1)
Dθ

Dt
= Fh + H − LP + Sh

Dr

Dt
= Fr + P + Sr

v.n = 0 on ∂Γ.

Here r represents the water vapour content, (Fu, Fv, Fh, Fr) represent sub-
grid increments to (u, v, θ, r) respectively. Sh, Sr are source terms for heat
and moisture at the lower boundary. H is a source term for heat in the free
atmosphere (typically radiation). P is a source/sink term for water vapour,
resulting in a term LP in the thermodynamic equation where L is the latent
heat. We only consider very simple versions of these terms, ignoring such issues
as the difference between condensed water and ice.

If equations (3.5) were being solved exactly, only the source terms would
have to be included and (Fu, Fv, Fh, Fr) could be omitted. The viscous and
conduction terms from (2.1) and (2.3) would then be resolved and have to be
included. In the realistic situation where the equations have to be averaged in
space and time before being solved, it is of interest to study how the sub-grid
model interacts with the larger scale dynamics. One way of doing this is to
include the same effects in a reduced set of equations, and study the effect on
the solutions. Observations and computations both show that reduced systems
of equations can be quite accurate in describing weather systems even where
there are strong effects due to latent heat release and there are significant
regions of instability, such as in the mesoscale convective systems which are
common over continents in summer. A recent such study is described by Olsson
and Cotton (1997). Similarly, observations show that, if a simple boundary
layer model is incorporated in the reduced dynamics, the interactions of fronts
with the atmospheric boundary layer can be described well, e.g. Ostdiek and
Blumen (1997).

5.2 Effect on energy minimisation

Geostrophic and hydrostatic balance can be generalised for equation (5.1) to

(−fv, fu) + ∇hp′ = (Fu, Fv) (5.2)

−gθ/θ0 +
∂p′

∂z
= 0.
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The first equation in (5.2) is sometimes called ‘geotriptic’ balance (Johnson
(1966)), and we will use this term forthwith. If (Fu, Fv) can be linearised to a
form −cD(u, v), then we can show that (5.2) represents the condition for the
energy (3.13) to be made stationary subject to variations

δv = f(η,−ξ) − cD(ξ, η)
δθ = 0
Ξ = (ξ, η, ζ) (5.3)

∇.Ξ = 0
Ξ.n = 0 on ∂Γ.

With this linearisation of F , the geotriptic and hydrostatic relations (5.2) can
be written

(fv − cDu,−fu − cDv, gθ/θ0) = ∇s. (5.4)

The condition for a minimum is that the matrix Q whose components are

Q =

 fvx − cDux + f2 + c2D fvy − cDuy fvz − cDuz
−fux − cDvx f2 + c2D − fuy − cDvy −fuz − cDvz

gθx/θ0 gθy/θ0 gθz/θ0


(5.5)

is positive definite. Equation (5.5) shows that the effect of the drag term is
to increase the effective stability of the flow and make it easier to satisfy the
condition for energy minimisation. Knox (1997) reviews several studies which
show that sub-grid scale effects lead to modifications of the inertial stability
criteria, and hence allow the existence of regions in the atmosphere that appear
to violate the large scale inertial stability condition.

The further manipulations of section 3.5 and those in section 5.3 can only
be carried out if we assume cD is independent of x and y. This is not very
realistic, though it would be a viable approximation for process studies, where
we study the effect of surface friction on weather systems over a homogeneous
surface (e.g. all ocean, or all pine forest).

5.3 Effect on maintenance of balance in the flow

We seek a reduced system of equations based on equations (5.1). To do this,
we make some simple but qualitatively realistic choices for the various sub-grid
terms. Greater sophistication is obviously possible.

As in the previous subsection, let (Fu, Fv) = −cD(u, v). Set Fh = 0, and
treat Sh as a specified function of position. The moisture source term that
affects the thermodynamic equation depends on the rate of change of the
difference between the saturation vapour pressure and the actual pressure fol-
lowing a fluid particle. This depends strongly on pressure, which has a large
vertical variation. A useful simple approximation is to set LP = w ∂

∂z (θ − θE),
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where θE is the ‘effective’ potential temperature. This should only be used in
saturated regions, where r ≥ rSAT(p). Much more information is given in stan-
dard meteorological textbooks, such as Haltiner and Williams (1980). These
simplifications decouple the moisture variable r from the equations, except at
the boundary between saturated and unsaturated regions. This choice of LP
allows the most important effect of moisture on the large scale dynamics to
be discussed.

We now write down a reduced system of equations analogous to the semi-
geostrophic equations (4.13). In principle, other sets of reduced equations, such
as (4.11), could be used as a starting point. (4.13) can be written

D

Dt
(ub, vb) + f(vb − V,U − ub) = 0

Dθ

Dt
= 0 (5.6)

Dα

Dt
= 0

(fvb,−fub, gθ/θ0) = ∇s.

An extension of these to include the simplified sub-grid terms is

D

Dt
(uc, vc) + f(vc − V,U − uc) = −cD(uc − U, vc − V )

DθE
Dt

= Sh; r ≥ rSAT (5.7)

Dθ

Dt
= Sh; r < rSAT

Dr

Dt
= 0

Dα

Dt
= 0

(fvc − cDuc,−fuc − cDvc, gθ/θ0) = ∇s.

The particular form of the first equation is designed to ensure the drag acts
as a sink of kinetic energy. It can be shown that a term −cD(u2c + v2c ) is added
to the kinetic energy equation. (5.7) can be written in the form (4.21), where
now

Q =

 fvcx − cDucx + f2 + c2D fvcy − cDucy fvz − cDucz
−fucx − cDvcx f2 + c2D − fucy − cDvcy −fucz − cDvcz

gΘx/θ0 gΘy/θ0 gΘz/θ0


(5.8)

H =

 (f2 + c2D)uc
(f2 + c2D)vc

gSh/θ0

 (5.9)
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with Θ = θ if r < rSAT, Θ = θE otherwise. The form of Q given by (5.8)
is a simple generalisation of the form (5.5) which appears in the energy min-
imisation problem. This simple form of equation is not valid at saturation
boundaries.

We can see by comparing (5.8) and (5.9) to (4.21) that the effect of the
sub-grid terms is divided between altering the Q matrix, which determines
the response to the forcing, and altering the forcing itself. Thus friction makes
the model less responsive to forcing, and latent heating makes it more respon-
sive. The friction also contributes to the forcing directly, while latent heating
does not. It is therefore rather misleading to think of latent heating driving
large scale atmospheric circulations, it is better to think of it as changing
the characteristic motions that result. See, for instance, Thorpe and Emanuel
(1985).

By analogy with the solutions of (4.21), we can expect the existence of so-
lutions to (5.7) where the eigenvalues of Q are non-negative. The case where
a region of fluid has zero eigenvalues, corresponding to zero potential vortic-
ity, means that the fluid is well-mixed in one or more of (fvc − cDuc,−fuc −
cDvc, gθ/θ0). An example is a well-mixed boundary layer where θ is indepen-
dent of height. In such situations the implicit transport (U, V,W ) becomes
instantaneous diffusion, which spreads the effect of forcing uniformly through
the well-mixed region. In the boundary layer example, the mixing is immediate
through the depth of the boundary layer, see Cullen et al. (1987).

A particular effect of latent heating is through the effect of saturation bound-
aries, which is not directly treatable in (5.8). If the air is either saturated or
unsaturated everywhere in a region, observations show that negative eigenval-
ues of Q can only be sustained where the forcing is very strong, such as in the
lower layers of the atmosphere over sub-tropical deserts. The approximation
detQ = 0 is quite good in frontal zones with active precipitation, Emanuel
(1983). The initiation of major convective events, such as thunderstorms, is as-
sociated with the rapid transition of a significant mass of air from unsaturated
to saturated, which results in a discontinuous loss of stability.

A simplified model of this process has been constructed by Shutts (1987).
He solved a finite-dimensional version of (5.7) in a vertical cross section with-
out frictional drag. The data was represented by piecewise constant values of
vc + fx, θ and r. All variables were considered as independent of y. The so-
lution procedure described in section 3.5 was used to construct solutions. The
effects of latent heat release were included by carrying out standard parcel
thermodynamic calculations. An iterative procedure was used, first construct-
ing the solution ignoring latent heating, then calculating the latent heating
and solving for new parcel positions. When there is such a discontinuous loss
of stability, the parcels jump in the vertical to a new equilibrium position
and energy is lost. This can be interpreted as there being a mass sink at low
levels and a mass source at high levels, Shutts (1995). The solutions are well-
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defined without including the effects of evaporative cooling, which according
to Emanuel et al. (1994) are needed to make the large scale flow stable. The
convective transport stabilises the atmosphere by redistributing the heating
away from the source region through the jump in the parcel position and the
compensating subsidence of other parcels. The lost energy is assumed to be
converted into unbalanced waves which disperse and dissipate.

This vertical jump corresponds to a mass rearrangement which cannot be
generated by a smooth trajectory, and thus represents a ‘generalised flow’, as
discussed by Brenier (1990). It should be possible to extend the mathematical
theory to cover this case and prove that the above iteration converges. This
would involve characterising the solution of (4.21) with a matrix Q which is
not positive definite as having a solution for (u, v, w) which is a generalised
flow, rather than a continuous velocity field. However, the ‘pressure tendency’
∂s
∂t will remain well-defined and bounded everywhere.

Standard procedures for representing moist convection in operational
weather forecasting models use this type of iteration, applied in the verti-
cal only. The theory discussed above may allow these procedures to be put on
a sound basis. A similar model has been used by Shutts (1987) to discuss the
interaction of balanced flow with orography.

5.4 Maintenance of large scale balances by sub-grid transport

In this subsection we consider a more general approach to representing the
effects of the sub-grid dynamical terms (Fu, Fv, Fh, Fr) in (5.1). This is based
on methods developed for the ocean by Gent and McWilliams (1996). A similar
analysis has been carried out by Buhler and McIntyre (1998).

The sub-grid dynamical terms come from averaging the nonlinear terms in
the basic equations. If we take these to be (3.5), together with a moisture
conservation equation, then

Dvh
Dt

+ (−fv, fu) + ∇hp′ = v.∇vh − v.∇vh
Dw

Dt
− gθ/θ0 +

∂p′

∂z
= v.∇w − v.∇w

∇.v = 0 (5.10)

D

Dt
θ = v.∇θ − v.∇θ

Dr

Dt
= v.∇r − v.∇r

v.n = 0 on ∂Γ
D

Dt
≡ ∂

∂t
+ v.∇.
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The overbar denotes the averaging operator, which can be any form of low
pass filter in space and time. The sub-grid correlation terms are written in
exact form on the right hand sides. It can be considered as a bilinear operator
acting on the prognostic quantities (v, θ, r). Gent and McWilliams propose a
specific way of representing the sub-grid correlations in terms of the averaged
quantities. They first split the operator into antisymmetric and symmetric
parts. The antisymmetric part applied to a single variable φ can always be
written as a pseudo-advectionW.∇φ. If the only nonlinearity in the equations
were a set of terms v.∇φn, for a set of scalars φn, then the antisymmetric part
of the sub-grid model could be written as W.∇φn with the same pseudo-
advection velocity W for each n. As an example of this, consider the case of
2-dimensional motion in hydrostatic balance. Assuming there is no variation
in the y direction, the y momentum and thermodynamic equations from (5.10)
become

D(v + fx)
Dt

= v.∇(v + fx) − v.∇(v + fx)

D

Dt
θ = v.∇θ − v.∇θ (5.11)

Dr

Dt
= v.∇r − v.∇r.

Gent and McWilliams formally do this for general 3-dimensional flow, by
adding or subtracting appropriate terms from each side of the momentum
equations. They thus write (5.10), with the hydrostatic approximation, as

D∗vh
Dt

+ (−fV, fU) + ∇hp′ = ∇.Eh

−gθ/θ0 +
∂p′

∂z
= 0

∇.V = 0 (5.12)

D∗θ
Dt

= 0

D∗r
Dt

= Fr

V.n = 0 on ∂Γ.

They write out the full forms of Eh and Fr in their paper. Here, D∗/Dt rep-
resents advection by a velocity V = v+v′, where v′ is the ‘sub-grid velocity’,
which they choose an explicit formula for in their paper. These equations are
identical to (5.10), apart from the use of hydrostatic balance. The usefulness of
the form (5.12) depends on being able to model Eh in terms of known averaged
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quantities, which will be easier if it can be argued that Eh is small compared
with other terms in the momentum equation. The right hand side of the θ
equation is set to zero because of their assumption that there are no sub-grid
fluxes across isentropic surfaces (isopycnal surfaces in the ocean). The use of
the ‘total’ velocity V in the Coriolis term and the choice that V satisfies the
continuity equation and boundary conditions means that the right hand side
of the momentum equation in (5.12) takes the form of a divergence as shown,
and means that non-acceleration theorems are respected.

We can now make a link between (5.12) and reduced systems of equations
such as (4.13). If Eh is either zero, or can be represented explicitly in terms
of the mean quantities, and the averaging scale is sufficiently large for vh
and θ to be in geostrophic and hydrostatic balance, then (5.12) and (4.13)
become identical, with a forcing term added to the right hand side of the
momentum equation in (4.13). The existence theory for (4.13) shows that V
is uniquely determined. Thus the part of the sub-grid model represented by
the pseudo-advection plays the role of maintaining large scale balance and is
completely determined by the large scale balance requirement. In addition,
the equations can be solved with Eh = 0, in which case exactly the semi-
geostrophic solution is obtained. Since this solution can be discontinuous, it
implies the averaging operator must be a parcel average, rather than an Eu-
lerian average.

The analysis by Buhler and McIntyre (1998) is specifically in terms of La-
grangian averaging. They derive equations of the same form as (5.12) in which
the ‘total’ velocity V is the Lagrangian mean velocity, and the transported
momentum vh is V + p, where p is the ‘pseudo-momentum’ of the waves that
have been filtered out. There is an additional term in the equations repre-
senting the perturbation pressure associated with the waves. If the pertur-
bation pressure is negligible, and the averaging scale can be assumed to be
large enough that the total momentum V + p is in geostrophic balance, then
again (5.12) and (4.13) become identical. The neglect of perturbation pres-
sures was noted in section 3.4 to be the basic assumption made in deriving
the semi-geostrophic equations. This interpretation allows us to give a phys-
ical meaning to the two velocities appearing in the theory, and to connect
the semi-geostrophic equations with a formal averaging of the primitive equa-
tions.

If this type of formulation is used for the moist convectively unstable case
discussed in the previous subsection, then V becomes a generalised flow, and
its effect cannot be represented as simple advection, but as an antisymmetric
operator acting on a full vertical column of values of temperature and moisture.
Similarly, it may be possible to represent the transport in an unstable or well-
mixed boundary layer in this formalism.

The link between the specific reduced system (4.13) and (5.12) is natural
because both are likely to be most accurate when the flow is approximately
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2-dimensional. A similar identification should be possible for systems describ-
ing approximately axisymmetric flows. More generally, Hamiltonian reduced
systems which represent the fluid trajectory separately from the momentum,
such as some of those described in the chapters by McIntyre and Roulstone
and by Holm, can be given a physical interpretation in terms of a Lagrangian
mean velocity that includes sub-grid transport and a transported momentum
that includes a wave component.

The practical implications of this link in designing sub-grid models for op-
erational atmospheric models are discussed in section 7. The physical impli-
cations are also important. For instance, a fundamental part of the general
circulation of the atmosphere is the average ascending motion in the trop-
ics. Much of this represents the overall effect of a large number of individual
convective events, on quite small scales. Emanuel et al. (1994, p.1125) state
that ‘nearly all the upward motion associated with ensemble averaged ascent
must appear as increased mass flux in cumulus clouds’. In this formulation,
the increased upward motion would appear as an increased generalised flow
V.

5.5 Treatment of unstable regions

The previous sections have emphasised the importance of understanding how
the sub-grid model interacts with flows that can be described by a reduced set
of equations. Such equations can typically only describe stable states of the
atmosphere. Observations, however, indicate that, on average, it is possible
to have long-lived unstable regions where there is strong forcing. The best
example is the near-surface layers of the atmosphere over deserts strongly
heated by the sun. This situation can also occur where air is being cooled by
precipitation at a rate too fast for the air to be assumed to remain in a stable
position. This can happen in large scale convective systems. Shutts et al. (1988)
include this effect in a reduced system of equations, but the requirement of
large scale balance is probably unreasonable, and the resulting solution may
exaggerate the effect of the precipitation.

It is simplest to consider the first example. In (5.10), assume that ∂θ
∂z is

negative, then the mean fields are statically unstable and N 2 as given by (2.10)
is negative. The left hand side of (5.10) has solutions which grow exponentially.
Assuming a 2-dimensional wave-like perturbation exp(ωt + i(kx + mz)), the
growth rate is given by

ω =
k

m

√
(−N2). (5.13)

The growth rate is largest on the smallest horizontal scale permitted by
the averaging, and the largest vertical scale permitted by the atmosphere. A
sub-grid model which is correct in the sense of allowing quasi-steady solutions
to persist has to exclude these growing solutions, or reduce the growth rate to
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be comparable to observed time-scales of variability. For example, suppose we
choose a sub-grid model which diffuses in the x direction, where the maximum
growth rate is on the smallest scale. A linearised version of (5.10) with such a
model included is then

∂u

∂t
+

∂p′

∂x
= K

∂2u

∂x2

−gθ/θ0 +
∂p′

∂z
= 0

∂ū

∂x
+

∂w̄

∂z
= 0 (5.14)

∂θ

∂t
+ w

∂θ

∂z
= K

∂2θ

∂x2
.

Assuming solutions proportional to exp(ωt + i(kx + mz)) gives

(ω + k2K)2m2 + k2N2 = 0. (5.15)

This has no growing solutions if K > (
√

(−N2))/mk. If K is chosen to be
greater than this value where m and k are the smallest wave numbers permitted
by the domain, or by the region over which N2 is negative, the sub-grid model
will be consistent with the persistence of the observed unstable region. The
values of diffusion required will typically be large, since it will have to damp
on a time-scale comparable to the growth rate of the instabilities multiplied
by k/m. Following (5.13), the largest value of k/m permitted by the size of the
unstable region corresponds to the maximum growth rate, and must therefore
be used in calculating the damping time-scale required. This diffusion should
only be used in unstable regions of the flow.

5.6 Example of modelling of the response to thermal forcing
by a reduced set of equations

In this subsection we give an example of how the large scale response to at-
mospheric forcing can be described by the solution of a reduced set of equa-
tions with the appropriate forcing terms included. We thus solve (5.7) on the
sphere, with a given heat source in the Northern hemisphere subtropics and
a mountain ridge crossing the equator confining the response to the forcing.
The experiment is described by Mawson and Cullen (1992).

The last equation in (5.7) shows that, outside the boundary layer, ∇hs must
be small near the equator. Differentiating with respect to z shows that ∇hθ
will be small. The total velocity u can be found from (4.21) with (5.8) and
(5.9). If the heating function Sh is localised, a steady solution for u will be
approximately given by

w
∂Θ
∂z

= Sh. (5.16)
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This suggests that there will be ascending motion in the region of the heat
source, with inflow from other regions at low levels to balance it. (5.8) shows
that the largest response in the horizontal wind will be in directions where
f2 + c2D is smallest, Schubert et al. (1991), so that the greatest response will
be from the equatorial side of the heat source above the boundary layer. In
the boundary layer, (5.4) shows that a pressure gradient will be set up parallel
to the inflow.

The experiment includes a mountain ridge crossing the equator to the west
of the region where the heat source is applied. This should have the effect of
confining the inflow towards the heated region, and locally inducing a maxi-
mum cross-equatorial wind on the eastern side of the ridge.

The results are illustrated in Figure 12. This shows the low level wind in-
duced by the heat source. The coastlines are included for illustrative purposes
only. The heat source is centred over Northern India and the mountain ridge
crosses the equator in east Africa. The solutions of (5.7) show a maximum
cross-equatorial flow on the eastern side of the ridge, and a circulation around
the heat source. Solutions of a similar model based directly on (5.1) are also
shown. It is clear that the bulk of the solution is represented by the reduced
equations (5.7), though there are detailed differences. Observations, Findlater
(1969), confirm the existence of a low level jet in the area shown. Thus these
computations and comparisons with observations suggest the value of the var-
ious modelling schemes proposed in this section.

6 Evolutionary properties of atmosphere/ocean cir-
culations

6.1 General remarks

In this section we seek to derive a picture of the large scale dynamics of
the atmosphere or ocean as a dynamical system. The basic circulation is
symmetric about the poles, with higher temperatures at the equator, as a
result of the pole/equator radiation difference. There are permanent asym-
metries in the circulation, which are most likely to be a response to the
asymmetric land-sea and mountain distribution, particularly in the North-
ern hemisphere. The Southern hemispheric circulation is much more sym-
metric. The total circulation also has large transient asymmetries. It is per-
manently unsteady, but with occasional episodes when there are large quasi-
steady circulations. These are called blocking patterns, and can give anomalous
weather over periods from weeks to a few months. Qualitatively, the weather
map looks much the same from day to day (Figure 13). The characteris-
tic scales of weather systems are always essentially the same. Deterministic
prediction is, however, limited to a few life-cycles of the individual weather
systems.
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Figure 12: Forecast wind vectors at surface between longitudes 10◦E and 180◦E
and latitudes 30◦S to 60◦N from idealised simulation of cross-equatorial flow
using (a) equations (5.7), (b) equations (5.1). After Mawson and Cullen (1992).
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It is natural, therefore, to seek a model of the underlying large scale dynam-
ics which has stationary statistics and gives quasi-periodic solutions which can
be continued indefinitely in time. The asymmetries and seasonal variations
would then follow when the boundary conditions and forcing terms were in-
cluded. Existing theory does not achieve this, because no argument has been
found which prevents a systematic generation of small scales in the flow. The
stationary statistics of the observed flow have to be explained by a balance
between forcing and dissipation.

Since the pioneering work of Lorenz (1963), there have been many attempts
to describe the qualitative features of the large scale dynamics discussed above
using low order systems of equations. In this section we, instead, exploit the
property, discussed in section 4, that the solutions to the general equation stay
close to those of a reduced system. As discussed in section 4.5, we use a reduced
system which is Hamiltonian, so in particular has a conserved energy and po-
tential vorticity. The Hamiltonian property means there can be no attractors.

The general method is to exploit the simultaneous conservation of energy,
potential vorticity and potential temperature. We first show that the condition
for the flow to be steady is that it is a stationary point of the energy with
respect to perturbations which simultaneously rearrange the potential vorticity
and potential temperature. This type of condition is a general characterisation
of steady states of Hamiltonian systems, see Abarbanel and Holm (1987). We
then use the principle of Kelvin (Thomson (1910)) to say that stable steady
states correspond to strict maxima or minima of the energy. A typical result
would be that there are only two globally stable steady states associated with a
given potential vorticity and potential temperature distribution, one achieved
by maximising and one achieved by minimising the energy. The actual result
in a particular case will depend on the boundary conditions and physical
restrictions on the permitted rearrangements.

Given an initial distribution of potential vorticity and potential temper-
ature, construct the minimum energy state. If the initial data has greater
energy, the evolution will then remain a fixed distance in energy above this
basic state. A Hamiltonian system has no attractors. Thus if the initial data
represents an unsteady state, it cannot evolve to a steady state or a periodic
solution as these would be attractors. If the initial data is a steady state, it
cannot be guaranteed to be nonlinearly stable unless the energy is equal to a
strictly minimising or maximising value.

More information can be obtained by seeking locally stable states, which
are extrema of the energy with respect to continuous displacements, a subset
of the global rearrangements. These can be used to explain the long-lived
anomalies in atmospheric or oceanic flows. However, a general solution cannot
be attracted to the neighbourhood of such a steady state, as that would make
it an attractor. Non-Hamiltonian forcing terms must be included to make this
happen.
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The other results we discuss concern the preservation of the statistics of
the flow. As shown in section 4.5, the reduced systems of equations commonly
used to describe large scale atmospheric motions have a structure similar to
the equations governing 2-dimensional incompressible flow. The solutions of
the 2-dimensional Euler equations describe ‘2-dimensional turbulence’, Leith
(1983), with a k−3 energy spectrum. Theory and computation indicates that
such flows exhibit a migration of the energy to the largest available scale, and
the enstrophy to the smallest scales, the ‘enstrophy cascade’. It then has to be
argued that the observed preservation of the mean scale of disturbances is due
to the systematic injection of energy at particular scales by non-conservative
effects.

We discuss this behaviour first in terms of bounds on the L2 norm of the
velocity and its gradient. If both these are separately conserved, or bounded
uniformly in time, then the mean scale is also bounded in time. (This argu-
ment was first advanced by Fjortoft (1953) based on energy and enstrophy
conservation.) We also discuss the issue in terms of local estimates of the ve-
locity gradients. Control of these would prevent systematic generation of small
scales even in small regions of the flow, and thus give greater control over the
flow statistics.

6.2 Model equations

Many of the results available can be simply illustrated by the equations for
2-dimensional incompressible flow. These can be written on a region Γ as

Dζ

Dt
= 0

D

Dt
≡ ∂

∂t
+U.∇

U =
(
−∂ψ

∂y
,
∂ψ

∂x

)
(6.1)

ζ = ∇2ψ

U.n = 0 on δΓ.

Burton and McLeod (1991) proved that if the region Γ is a disk, the energy
is maximised by a symmetrical rearrangement of the vorticity ζ which is mono-
tonically increasing with stream-function. The energy can only be minimised,
in general, over the ‘weak closure’ of the rearrangements of vorticity, in the
sense of section 3.6. These results and others are described in the chapter by
Douglas earlier in this volume.

Applications of this type of theory to large scale atmospheric flow requires
inclusion of the variation with latitude of the vorticity associated with the
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Earth’s rotation. The equations for 2-dimensional incompressible flow on a
rotating spherical surface are

D

Dt
(ζ + f) = 0

D

Dt
≡ ∂

∂t
+U.∇ζ

U =
(
−∂ψ

∂y
,
∂ψ

∂x

)
(6.2)

ζ = ∇2ψ

f = 2Ω sinφ

U.n = 0 on ∂Γ.

Solutions of these equations are rearrangements of the initial absolute vortic-
ity ζ + f . The energy is conserved, but depends on the stream-function which
is calculated only from the relative vorticity ζ. The angular momentum is
conserved. The planetary vorticity f is given by 2Ω sinφ, which is a smooth
monotonic function of latitude. The natural conjecture is that the rearrange-
ments of absolute vorticity which extremise the energy are functions of latitude
only, and are monotonically increasing or decreasing with latitude. Only the
minimum energy state, corresponding to the absolute vorticity increasing with
latitude, as f does, is likely to be physically realisable.

The difficulty is again the possibility of ‘mixing’ rearrangements, as dis-
cussed in section 3.6. If the given distribution of ζ + f can be mixed, subject
to angular momentum conservation, to give a distribution equal to f , the
minimum energy reachable will be zero and there will be no non-trivial stable
steady state. It is clear that this cannot happen if the given values of ζ + f do
not cover the full range of values of f . Thus there will be stable steady states
with negative relative vorticity at the North pole, and positive at the South
pole. This corresponds to a basic easterly flow, which is opposite to the ba-
sic westerly flow required to balance the equator-pole temperature difference.
The stability of westerly basic flows against this type of mixing has still to be
examined.

A more complete reduced model is the semi-geostrophic system (4.13). This
can be written as an evolution equation for an inverse potential vorticity in the
form (4.17), (4.18). We first illustrate stability results for it where the solution
region Γ is a channel of width 2D and height H, with periodicity 2L in the x
direction. The evolution equations (4.17) take the form

Dρ

Dt
= 0

D

Dt
≡ ∂

∂t
+ U

∂

∂X
+ V

∂

∂Y
+ W

∂

∂Z



Mathematical developments in atmosphere and ocean dynamics 255

U = f

(
∂R

∂Y
− Y

)
(6.3)

V = f

(
X − ∂R

∂X

)
W = 0.

R is determined from the Monge–Ampère equation (3.22), with ∇RX = (x, y, z),
and the boundary conditions (4.18) become

∂R

∂X
(X,Y, Z) =

∂R

∂X
(X + 2L, Y, Z)

−D ≤ ∂R

∂Y
≤ D (6.4)

0 ≤ ∂R

∂Z
≤ H.

It is convenient to define

Ψ = R − 1
2

(X2 + Y 2) (6.5)

where Ψ acts as a stream-function for the flow defined in (6.3). The prob-
lem is to be solved in (X,Y, Z) space (−L,L) × (−∞,∞) × (−∞,∞). The
compatibility conditions (3.23) for the Monge–Ampère equation become

ρ(X + L, Y, Z) = ρ(X − L, Y, Z) (6.6)∫ L
−L

∫ ∞

−∞

∫ ∞

−∞
ρ dXdY dZ = 4LDH.

We now seek to identify stable steady states. In order to apply Kelvin’s
principle we seek a class of perturbations which is dynamically consistent with
(6.3). We first show that this class can be written as conv Rh(ρ0), defined by

ρ ∈ conv Rh(ρ0) if

{
ρ(., Z) ∈ conv R(ρ0(., Z)) for almost all Z∫
Y ρdX dY dZ =

∫
Y ρ0dXdY dZ.

(6.7)

The first condition restricts the rearrangements of ρ to the (X,Y ) variables
only, and includes the weak limits. This is similar to the space of ‘stratified’ re-
arrangements used by Burton and Nycander (1999). The additional condition
is that the mean Y over the particles cannot be changed. This corresponds to
angular momentum conservation. The latter is implied by the periodic bound-
ary conditions, which mean, using (4.13), that

∫ L
−L vgdx =

∫ L
−L f−1 ∂φ

∂xdx =
0.
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6.3 Steady states

We next demonstrate the characterisation of steady states of the semi-geostro-
phic system in terms of stationary points of the energy with respect to rear-
rangements. The energy for the problem (6.3) is given by (4.2), which can be
rewritten in the form (3.24) as

E =
∫ L
−L

∫ D
−D

∫ H
0

1
2
f2
{

(X − x)2 + (Y − y)2 − zZ

}
dxdydz (6.8)

=
∫ L
−L

∫ ∞

−∞

∫ ∞

−∞

1
2
f2
{

(X − x)2 + (Y − y)2 − zZ

}
ρdXdY dZ.

Given ρ = ρ0(X,Y, Z) satisfying (4.24), seek the conditions under which
δE = 0 for perturbations to ρ satisfying ρ + δρ ∈ R(ρ0). These can be gen-
erated by keeping ρ fixed on particles in X space and perturbing X and Y
with a displacement field χ. The displacement must be non-divergent, so can
be written as (− ∂α

∂Y , ∂α∂X , 0) for an arbitrary function α(X,Y, Z), and must sat-
isfy the periodicity condition so that α(X − L, Y, Z) = α(X + L, Y, Z). The
restriction that the mean Y cannot be changed is automatically enforced by
the periodicity condition. We then have

δE =
∫ L
−L

∫ ∞

−∞

∫ ∞

−∞
f2{(X − x)δX

+ (Y − y)δY − Xδx − Y δy − Zδz}ρdXdY dZ (6.9)

where the integration is taken over particles, so that there is no δρ, and we
have used the invariance of

∫ L
−L
∫ D
−D
∫ H
0 (x2 + y2)dxdydz. Cullen and Purser

(1989) show that solutions of (6.3) minimise the energy at each time instant
in the sense that∫ L

−L

∫ ∞

−∞

∫ ∞

−∞
(−Xδx − Y δy − Zδz)ρdXdY dZ = 0. (6.10)

Substituting the definitions of Ψ and δX gives after some manipulations
L∫

−L

∞∫
−∞

∞∫
−∞

(
∇.

(
αρ

∂Ψ
∂Y

,−αρ
∂Ψ
∂X

)
− α

(
− ∂Ψ

∂X

∂ρ

∂Y
+

∂Ψ
∂Y

∂ρ

∂X

))
dXdY dZ = 0.

(6.11)
Assuming that ρ vanishes at a sufficiently large |Y | and requiring (6.11) to
hold for arbitrary α gives

− ∂Ψ
∂X

∂ρ

∂Y
+

∂Ψ
∂Y

∂ρ

∂X
= 0. (6.12)

This condition is precisely that for the flow to be steady as we can see
from (6.3). Note that the linearity of (6.11) in α means that δE = 0 for a
perturbation obtained as the limit of a sequence of perturbations defined by
displacements αn, and thus for any perturbation to ρ within conv Rh(ρ0).
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6.4 Stable steady states — barotropic case

We next characterise steady states which are stable by requiring the station-
ary point of the energy to be an extremum. It is first clear that the maximum
energy attainable under these conditions is infinite. Generate a rearrangement
by a displacement α = A sin(πkX/L), implying δX = 0, δY = Aπk

L cos
(
πkX
L

)
.

Since |y| < D for all particles, (3.6) shows that E → ∞ as A → ∞. It is there-
fore only meaningful to seek minimum energy states. In the stability problem
for the barotropic vorticity equation, however, the maximum energy state is
well defined. This is because the evolution equation is written in physical space
and so the displacements χ have to be within the physical domain. Therefore
α = 0 on the domain boundaries. This problem was treated by Burton and
McLeod (1991).

We then seek to minimise E for ρ ∈ conv Rh(ρ0). (6.8) shows that the
minimum energy is attained by making the map from (X,Y ) to (x, y) as
close as possible to the identity map x = X, y = Y and maximising the
correlation between z and Z, thus minimising

∫ −zZdXdY dZ. The identity
map corresponds to having ρ = 1 for |Y | ≤ D, 0 ≤ Z ≤ H and ρ = 0 elsewhere.
If we are given data where all the non zero values of ρ are greater than 1, it
can be expected that ‘mixing’ these values with the zero values taken by ρ for
sufficiently large |Y | will allow a zero energy to be obtained.

First consider distributions independent of Z. In general, if the identity
map is in conv Rh(ρ0), the minimum energy will be zero. If the support of
ρ has size greater than 4DL, it is easy to show that the identity map is not
in conv Rh(ρ0) and there will be a non-trivial stable state. If ρ takes values
greater than 1 anywhere, the energy can be reduced by mixing.

This argument shows that the only candidates for a minimum energy state
will be a distribution with ρ1(Y ) ≤ 1 everywhere. Since ρ is an inverse po-
tential vorticity, this condition excludes values of potential vorticity less than
1, which correspond to anticyclonic relative vorticity. This agrees with the
result of Kushner and Shepherd (1995) that there were no stable shear flows
with anticyclonic shear. This argument would also show that no steady states
with anticyclonic relative vorticity were stable in a limited domain with rigid
boundary conditions under semi-geostrophic dynamics. They could be stable
in doubly periodic flows, because there is then no region of ρ = 0 in the (X,Y )
planes to mix with the non-zero values.

6.5 Stable steady states — baroclinic case

When ρ0 depends on Z, let 2LS(Z) be the area over which ρ0(X,Y, Z) is non-
zero for each value of Z. The size of the set for which ρ is non-zero cannot
be reduced. However, zero values can be mixed in to increase the size of the
set to 2D for each Z. If S(Z) ≤ 2D for all Z, then the resulting state has ρ
a function of Z only, and the energy will be the minimum rest state potential
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Figure 14: (a) ρ distribution corresponding to a steady baroclinic shear flow.
(b) The minimum energy rearrangement of this distribution. (c) The minimum
energy configuration for a ρ distribution which cannot be made independent
of Z.

energy. However, if S(Z) > 2D for some Z, this minimum energy state cannot
be reached by an allowable rearrangement of ρ0. In this situation there will
be kinetic energy in the minimum energy state, and thus a nonlinearly stable
flow. The angular momentum constraint is then satisfied by choosing the mean
Y for which ρ1 is non-zero. In general, this flow will depend on Z.

Figure 14(a) shows the distribution of ρ corresponding to a baroclinic shear
flow with U increasing with z. The minimum energy rearrangement in that
case is a flow which has no vertical shear, Figure 14(b). In general, Figure
14(c), the minimum energy state will have vertical shear, but aligned such
that the Z variations of the ρ distribution is minimised. Burton and Nycan-
der (1996) prove a similar result for the 3-dimensional quasi-geostrophic case.
The identification of minimum energy states which are baroclinic allows more
control over possible dynamic evolution, since only the excess energy above
this minimum value is available for transient motion.
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6.6 Locally stable states

The global stability results discussed above require extremisation of the en-
ergy with respect to any rearrangement of the potential vorticity, even if the
rearrangement cannot be generated by a physically reasonable velocity field.
Burton and Nycander (1999) showed that a local patch of anomalous potential
vorticity in a background flow with uniform potential vorticity can be nonlin-
early stable as a maximum energy state of the quasi-geostrophic equations.

Blocking patterns in the atmosphere have a horizontal scale comparable
to the Earth’s radius. Explaining them as local stable steady states requires
inclusion of the variation with latitude of the vorticity associated with the
Earth’s rotation. However, this then allows dispersive Rossby wave solutions,
which makes it difficult to maintain a steady localised perturbation to a zonally
symmetric flow. The simplest type of solution for a finite amplitude steady
state is a Rossby wave superposed on a mean flow which cancels out the wave
speed. A solution of (6.2) with modified boundary conditions which illustrates
this is as follows:

Γ = (−L,L) × (0, D)
f = βy

ζ = A sin
(
πkx

L

)
sin
(
πly

D

)
(6.13)

ψ = − A

π2k2/L2 + π2l2/D2
sin
(
πkx

L

)
sin
(
πly

D

)
− βy

π2k2/L2 + π2l2/D2
.

This is a steady solution for any given k and l. It satisfies the boundary
conditions that ψ and u are periodic in x with period 2L, and v = 0 on y =
0, D. The dispersive nature of Rossby waves means that this type of solution
can only be obtained for monochromatic waves. This has been exploited by
Neven (1994) who constructed a set of localised ‘modon’ steady solutions by
patching together monochromatic solutions.

6.7 Regularity estimates and the enstrophy cascade

The generation of small scales in the enstrophy in 2-dimensional incompress-
ible flow governed by (6.1) or (6.2) can be understood using the analytical
tools which are used to prove existence and regularity of these equations. The
rigorous theory we draw on is set out in Gerard (1992). The equations state
that the absolute vorticity ζ + f is a rearrangement of the initial distribu-
tion. Existence proofs by the standard methods require that the solutions are
contained in a compact set. However, as discussed in section 3.6, the set of
rearrangements is not compact. We therefore have to identify a ‘reachable’
compact subset of the set of rearrangements — rearrangements that can ac-
tually be reached in the time evolution. Given initial absolute vorticity which
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has bounded gradients, we can do this by estimating the rate of growth of the
vorticity gradients. (6.2) implies that

D

Dt
∇(ζ + f) +

(
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)
∇(ζ + f) = 0. (6.14)

This can be written in terms of the stream-function ψ as

D

Dt
∇(ζ + f) +

 − ∂2ψ
∂x∂y

∂2ψ
∂x2

−∂2ψ
∂y2

∂2ψ
∂y∂x

∇(ζ + f) = 0. (6.15)

These equations can be used to estimate the rate of increase of vorticity
gradients, using a bound on the velocity gradients in terms of the vorticity
and its gradients (Gerard (1992),p 424):

‖ ∇U(t) ‖≤ Clog (2+ ‖ ∇(ζ + f)(t) ‖) . (6.16)

Exact definitions of the norms used are given in Gerard. However, they are
essentially maximum norms. The bound is derived from the solution procedure
for the Poisson equation for ψ in terms of ζ. Because of the dependence of the
bound in (6.16) on the vorticity gradients, the estimate of vorticity gradients
obtained from (6.14) allows doubly exponential growth in time. This does not
prevent regularity being proved for all time, but allows the accumulation of
enstrophy at small scales. This can be expressed as a statement that

‖ (∇U)2 ‖≤ C ‖ U2 ‖ (6.17)

where C grows exponentially in time. If the L2 norm is used instead of the
maximum norm, then an estimate of the form (6.17) holds with C independent
of time, but dependent on the domain size. Thus the mean scale of the flow
is bounded, but local regions where small scales are generated are permitted.
This agrees with widespread computational experience.

Now consider the quasi-geostrophic equations. For simplicity, we consider
the shallow water version of these equations, where the depth is close to a
mean value h0, and f is constant. For more details, see the chapter by White
earlier in this volume.

Dq

Dt
= 0

D

Dt
≡ ∂

∂t
+U.∇

U =
(
−∂ψ

∂y
,
∂ψ

∂x

)
(6.18)

q = gh0∇2ψ − f2ψ

U.n = 0 on δΓ.



Mathematical developments in atmosphere and ocean dynamics 261

q is the quasi-geostrophic potential vorticity. In the case L � LR =
√

(gh0)/f ,
(6.18) behaves similarly to the incompressible equations (6.1). In the case
L � LR, the equations become the ‘equivalent barotropic’ equations:

−f2
∂ψ

∂t
+U.∇q = 0

U =
(
−∂ψ

∂y
,
∂ψ

∂x

)
(6.19)

q = gh0∇2ψ − f2ψ

U.n = 0 on δΓ.

Farge and Sadourny (1989) and Larichev and McWilliams (1991) present
results which suggest that the enstrophy cascade is substantially suppressed
in the equivalent barotropic model (6.19) if the initial data satisfies L > LR.
Thus there appears to be a range of scales greater than LR which cannot
really be regarded as turbulent. In the atmosphere, baroclinic development
occurs at the scale L = LR. Energy migrating to larger scales will thus be
in the equivalent barotropic regime, where the shape of the spectrum only
changes slowly in time, with a gradual migration of energy to large scales.
When combined with the intermittent injection of energy at the scale LR, this
is consistent with the observed stationary statistics of weather maps. Motions
on smaller scales than LR dissipate quickly through the enstrophy cascade.
In the ocean, the barotropic mode has a large LR, about 3000 km, but the
internal Rossby radius is only about 30 km. Thus internal oceanic structures,
which often have a scale larger than 30 km, may not behave turbulently either.

Now consider a 2-dimensional version of the semi-geostrophic model, as
expressed by (4.17) and (4.18). As before, these equations describe a sequence
of minimum energy states, where the energy is

E =
1
2
f2
∫
Γ
{(x − X)2 + (y − Y )2}dτ. (6.20)

An equation of the form (6.15) still governs the rate of growth of inverse
potential vorticity gradients. Using (6.5), we obtain

D

Dt
(∇ρ) +

(
− ∂2Ψ
∂X∂Y

∂2Ψ
∂X2

−∂2Ψ
∂Y 2

∂2Ψ
∂Y ∂X

)
∇ρ = 0. (6.21)

The equation that determines Ψ from ρ is a Monge–Ampère equation for R,
followed by addition of the fixed function 1

2(X2 + Y 2) to obtain Ψ. Thus,
in effect, ρ is transported by a convex stream-function. If the flow is steady,
convexity prevents exponential growth of gradients of ρ, except for time periods
short compared with that needed for a particle to make a complete circuit of
a streamline. Only algebraic growth is permitted.
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In general, we can write that the energy minimisation property means that
(6.20) is minimised against area preserving displacements of x for fixed X.
Consider a closed loop S in the fluid, with line element ds. Then we can
cyclically displace x by a distance ds around the loop, which changes the local
value by an amount (dx/ds)ds, giving

δE = f2
∫
S

(x−X) · δx
ds

ds = 0. (6.22)

Writing U = f(y − Y,X − x), (6.22) can be written

δE =
∫
S

δU
ds

· (Uds) = 0. (6.23)

The rate of extension of the loop can be written

d|S|
dt

=
∫
S

δU
ds

· ds = 0. (6.24)

Comparing (6.23) with (6.24) shows that there can be no growth of the line
element coming from the parts with ds correlated with U. Thus the normal
straining mechanism leading to the enstrophy cascade is excluded. Growth
is possible from the parts of the line element uncorrelated with U. This will
normally be algebraic growth only, as in the steady case. Transient exponential
growth is possible if the time evolution changes the velocity field in a way that
the line element does not align to it as it grows.

This argument also excludes the enstrophy cascade in the solutions of more
general reduced systems of equations where the Monge–Ampère equation is
used to generate other fields from the potential vorticity. Some of these systems
are described in the chapter by McIntyre and Roulstone.

7 Applications to numerical model design

7.1 General considerations

We can summarise the results reviewed in the previous subsections that are
important for the design of practical atmospheric numerical models as follows.
Most of the points apply equally to ocean models.

(i) In a given asymptotic regime, the solution of the full equations stays
close to that of an appropriate reduced system (section 4).

(ii) Most useful simple models appropriate for the weather and climate fore-
casting problem can be described in terms of advecting a conserved po-
tential vorticity, from which the other fields can be derived (section 4.5).
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(iii) An accurate representation of potential vorticity conservation is there-
fore needed to give accurate predictions of the adiabatic evolution of the
atmosphere.

(iv) The solution procedure for the full equations needs to respect the link
between the potential vorticity and the other fields in the appropriate
reduced system of equations.

(v) The sub-grid model forms part of the method by which the overall solu-
tion stays close to that of the reduced system. (section 5.4)

(vi) The solution procedure should control the distance by which the solution
departs from that of the reduced system to the theoretically predicted
level.

7.2 Semi-implicit methods and relation to schemes for reduced
equations

We illustrate these points by using (5.1) as the model, thus including the sub-
grid model, but avoiding other complications present in (2.1). A standard algo-
rithm for solving these equations, and for solving (2.1), uses ‘semi-Lagrangian’
methods for advection terms and an implicit scheme for calculating the pres-
sure, Staniforth and Cote (1991). A simple form of such a scheme can be
written as

un+1h = unhd − δt
(

(−fv, fu)n+1 + ∇hp′n+1 − (Fu, Fv)n+1
)

wn+1 = wnd + δt

(
gθn+1/θ0 − ∂p′n+1

∂z

)
∇.vn+1 = 0 (7.1)

θn+1 = θnd + δt
(
F n+1h + H − LP + Sh

)
rn+1 = rnd + δt

(
F n+1r + P + Sr

)
vn+1.n = 0 on ∂Γ.

Superscripts n and n + 1 denote discrete time levels. δt is the time-step. The
calculation is assumed to be performed at discrete grid-points. Suffix d denotes
a value calculated at the ‘departure point’ of a trajectory which finishes at the
grid-point being calculated at the end of the time-step. Values at departure
points have to be obtained by interpolation from the nearest grid-points. In
practice second order time accuracy is used, rather than the first order scheme
written out in (7.1).

In (7.1) the sub-grid terms (Fu, Fv, Fh, Fr) are all computed at time level
n + 1. This is because the momentum terms (Fu, Fv) form part of the lowest
order balance as discussed in section 5.2. The time integration is designed
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so that the lowest order balance will be satisfied at time level n + 1 if the
acceleration terms are zero. It was shown in section 5.5 that the sub-grid term
in Fh has to provide damping on a faster time scale than the growth of any
instability that would be generated by the explicitly resolved dynamics. If
the time-step is long compared with this time scale, as is typically true, then
the sub-grid diffusion has to be calculated using implicit time differencing, so
that the term Fh has to be evaluated at time level n + 1. A similar argument
for moist statically unstable regions shows that the term Fr also has to be
evaluated at time level n + 1.

Equation (5.1) contains equations for the explicit evolution of all the vari-
ables except the pressure. A standard solution procedure is to calculate the
pressure at time level n + 1 by using the condition that the continuity equa-
tion and boundary condition are satisfied at time level n + 1. This is closely
analogous to the analytical solution procedure described in section 3.3. It gives

δt∇2p′n+1 = ∇.und − δt
(∇.(−fv, fu,−gθ/θ0)n+1 − ∇.(Fu, Fv, 0)n+1

)
(7.2)

δt
∂p′

∂n

n+1

= und .n− δt
(
(−fv, fu,−gθ/θ0)n+1.n− (Fu, Fv, 0)n+1.n

)
on ∂Γ.

In order to solve (7.2), we have to make a linearised estimate of all the terms
on the right hand side evaluated at time level n+1. This can be done by using
the reduced set of evolution equations (5.7), which predict the evolution of
∇s = (fvc − cDuc,−fuc − cDvc, gθ/θ0), precisely the terms that are required
apart from Fh. The solution procedure for (5.7) is based on the form (4.21),
with the matrices Q and H given by (5.8) and (5.9). Therefore

(∇s)n+1 = (fvc − cDuc,−fuc − cDvc, gθ/θ0)n+1 (7.3)

= (∇s)n +Hnδt −Qδt

 u
v
w

n+1 .
In order to obtain a single scalar equation for p′n+1, we substitute this into
(7.1) rather than (7.2). This gives equations for the velocity components at
time n + 1 of the form

(I+Qδt2)un+1 = und−δt
(
∇p′n+1 − (fv,−fu, gθ/θ0)n − (Fu, Fv, 0)n −Hnδt

)
.

(7.4)
This can be reduced to a single equation for pn+1 similar to (7.2) by using the
condition ∇.un+1 = 0.

Successful use of this algorithm depends on the ellipticity of the operator
I +Qδt2. If Q has no negative eigenvalues, so that the flow is statically and
inertially stable, this is assured. Otherwise there is a time-step limit

δt2 ≤ 1/λ (7.5)
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where λ is the largest negative eigenvalue of Q. This is a statement that the
time-step must be short enough to resolve the physical instabilities that will
occur for such data. In operational models, this causes a difficulty, because
such regions are small in extent, and it is undesirable to restrict the time-step
for the complete model to that required in the most unstable region. Thus the
sub-grid model should be designed assuming a time as well as space averaging,
and reduce the maximum growth rates of instabilities to be on the time-scale
required, as shown in section 5.5.

If the time-step is large, and the time level used in the implicit calculations
is entirely at time level n + 1, as illustrated in (7.4), then as the time-step
becomes large, the solution of (7.4) tends towards

Qδtun+1 = −
(
∇p′n+1 − (fv,−fu, gθ/θ0)n − (Fu, Fv, 0)n −Hnδt

)
. (7.6)

Imposing the condition ∇.un+1 = 0 gives an equation exactly of the form
(4.25), with the identification p = s. Thus the solution of (7.4) with a long
time-step will tend exactly to the solution of (5.7), in the case where (Fu, Fv) =
−(cDu, cDv). This achieves the aim of a solution of the general equations close
to that of a reduced system if the time averaging scale is large, and also allows
the sub-grid model to be more completely accounted for than in (5.7). Thus
a linearisation of the sub-grid model only has to be included in the definition
of the time tendency of the balanced state, not in that of the balanced state
itself.

The identification of the long time-step solution with the specific semi-
geostrophic reduced system (5.7) is a result of the explicit treatment of the
Du/Dt term by the semi-Lagrangian algorithm. If the trajectory computation
is made implicit, other reduced systems can be obtained as the long time-step
limit. If the implicit calculation is simplified to use only a fixed reference θ
profile which is independent of x and y, the quasi-geostrophic equations are
obtained in the long time-step limit.

A further development of this algorithm would use the ideas of section 5.4
to identify the velocity calculated at time level n + 1 with a total transport
velocityV including sub-grid effects. This would require, for instance, allowing
an implicit correction to be made to the convective mass transport. This can be
achieved by writing the convection scheme as a nonlinear first estimate based
on the values at the beginning of the time-step, together with a linearised
correction.

A scheme based on these principles for the full compressible equations has
been developed, the formulation and tests of various aspects are set out in
Cullen et al. (1997).
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7.3 Potential vorticity conservation

Now consider the accurate treatment of potential vorticity advection by this
algorithm. The potential vorticity det ∂(X,Y,Z)∂(x,y,z) as given by (4.3) is conserved by
the dynamical reduced equations (4.13), though not when the sub-grid model
is included. (X,Y, Z) are given by (3.18). Exact conservation of the potential
vorticity following the motion is not practical using a conventional grid-point
method. Contour dynamics algorithms, which use the potential vorticity as
a variable and advect contours of fixed potential vorticity, can achieve exact
conservation, e.g. Dritschel and Ambaum (1997). It is possible to ensure con-
servation in the trajectory calculation by ensuring that the control volume
associated with the departure points corresponding to each grid-box has the
same problem as the grid-box. This is illustrated in two dimensions in Figure
15. We require in that case

Area(x1d, z1d, x2d, z2d) = (x2 − x1)(z2 − z1). (7.7)

Two ways of achieving this type of conservation are described by Leslie and
Purser (1995) and Lin and Rood (1996). Conservation can also be improved
by using the variables (X,Y, Z) directly in the integration scheme. Noting that
Z is simply proportional to θ, (7.1) becomes

(−Y,X)n+1 = (−Y,X)nd − f−1δt(∇hp′n+1 − (Fu, Fv)n+1)

wn+1 = wnd + δt
(
gθn+1/θ0 − ∂p′n+1

∂z

)
∇.vn+1 = 0 (7.8)

θn+1 = θnd + δt
(
F n+1h + H − LP + Sh

)
rn+1 = rnd + δt

(
Fn+1r + P + Sr

)
vn+1.n = 0 on ∂Γ.

Note that the implicit treatment of the Coriolis term is preserved. A similar
procedure is analysed by Bates et al. (1995), where the implicit treatment of
the Coriolis term is shown to be essential. Conservation is, however, lost in
the interpolation to the departure points. In practice, this interpolation has
to be done to higher order accuracy than the interpolation used in finding the
departure point positions, so may be a less serious source of error. An explicit
form of the semi-Lagrangian scheme which, in effect, uses (X,Y ) as variables
has been developed by Rochas, see Temperton (1997).

Schemes which aim to achieve potential vorticity conservation are examples
of ‘geometric’ integration schemes. Reviews of such schemes are given by Budd
and Iserles (1999).

7.4 Grid design

The first design requirement stated in subsection 7.1 is to respect the fact
that solutions of the full equations stay close to those of appropriate reduced
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Modified semi-Lagrangian method
Preserve the volume in the departure point calculation

z2d z2

z1z1d

x1d
x2d x1 x2

Figure 15: Control volumes for ensuring conservation of potential vorticity
using semi-Lagrangian advection.

systems. It is thus important that other motions, which are not part of the
reduced solution, are not generated purely computationally, and that the nu-
merical method can represent the solution of the reduced system accurately.
If finite difference methods are used to implement the numerical procedure
outlined above, it is important to ensure that the finite difference grid is
suitable for representing the geostrophic and hydrostatic balance that defines
the reduced system. Cullen (1989) describes a set of experiments to estab-
lish the best finite difference strategy for solving the semi-geostrophic system
(4.13).

It is also important to ensure that implicit equations such as (7.4) can
be solved easily in finite difference form. One consideration is the removal
of zero eigenvalues from the discretised version of the Laplacian operator in
(7.4). Another is to remove zero eigenvalues from the discretised version of
Q. It is always necessary to derive the discrete form of (7.4) from discrete
approximations to (7.1). This can result in large stencils for approximating
terms in (7.4), which lead to zero eigenvalues corresponding to ‘checkerboard’
modes, see Haltiner and Williams (1980, p. 149, eq. 5-113).

The optimum grid for solving (7.2) is staggered so that u is a half grid length
from p′ in the x direction, v in the y direction and w in the z direction (Figure
16(a)). The horizontal part of this arrangement is often referred to as the
Arakawa C grid. This leads to the minimum possible stencil for representing
∇2p′. The optimum grid for dealing with the Q term in (7.4) can be deduced
from the optimum grid for solving (4.25). This requires the components of ∇s
to be a half grid-length from s in the appropriate direction. When applied to
(7.4), the requirement is that v is a half grid length from p′ in the x direction,
u in the y direction and θ in the z direction, illustrated in Figure 16(b). The
requirements for positions of u and v are thus contradictory, actual choices
are discussed below. The staggering of θ from p′ in the vertical is known as
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Figure 16: Various arrangements of variables on the grid for solution of (7.4).
(a) Natural staggering to give best stencil for ∇2p. (b) Natural staggering for
representing ∇s. (c) Arakawa B grid. (d) Natural arrangement using D and ζ
as variables. (e) Natural arrangement using u and U as variables.

the ‘Charney–Phillips’ grid. The advantages of this were demonstrated by
Arakawa and Moorthi (1987).

In most atmospheric models using this type of integration scheme, the grid is
chosen to optimise the representation of ∇2p′. However, in ocean models, where
the resolution is often coarser compared with the scales of the motions being
studied, the advantages of the two representations of u and v are more equal,
and a compromise arrangement, the Arakawa ‘B’ grid is used (see Figure 16(c)
and Bryan (1989)). There are two other possible resolutions of the difficulty.
The equivalence of u and v to ∇s only applies to the geostrophic part of the
wind, which has no horizontal divergence. Instead of using u and v as variables,
the horizontal divergence D and vertical component of vorticity ζ can be used.
An ideal arrangement then positions both of these at the same point as p′,
Figure 16(d). This is discussed by Bates et al. (1995). The other possibility is
based on the formulation of section 5.4 where there is an averaged velocity u
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which is different from the total effective transport velocity U. The solution
procedure would be ideal if these are held at the positions shown in Figure
16(e). This arrangement is used by Lin and Rood (1997), where the transport
velocity is calculated at a different time level from the transported variables,
as well as on a different grid.

7.5 Example of implementation

We illustrate some of the above considerations by showing a comparison of
potential vorticity forecasts from two versions of the UK Meteorological Office
atmospheric model. The important features of the integration schemes are
listed below.

Scheme A (Cullen and Davies (1991))

(i) Variables held on Arakawa B grid in horizontal, θ held at same level as
p.

(ii) Explicit time integration.

(iii) Advection using standard two step finite difference scheme with fourth
order accuracy in space.

(iv) Sub-grid model in all equations includes horizontal eddy mixing term.

Scheme B (Cullen et al. (1997))

(i) Variables held on Arakawa C grid in horizontal, Charney–Phillips grid
used in vertical.

(ii) Semi-implicit time integration as discussed above.

(iii) Semi-Lagrangian advection, with monotonic interpolation for thermody-
namic variables, but not for winds.

(iv) No horizontal mixing in sub-grid model.

Scheme B includes several, but not all, of the desirable features discussed
above. Comparative results after 10 days of integration are shown in Figure
17. A latitude–longitude grid with 96 × 72 points was used, with 19 levels in
the vertical. The output is for the level θ = 315K. The potential vorticity
distribution for scheme B shows much greater spatial coherence, even though
the spatial smoothing has been removed from the sub-grid model. This is
consistent with the discussion in section 6.7, and suggests that the design
principles discussed in this section are important.



270 Cullen

Figure 17: 10-day forecasts of potential vorticity at 315K using the Meteoro-
logical Office Unified Model in a climate model configuration and integration
scheme A (right) and the same with integration scheme B (left).

8 Application to data assimilation and predictabil-
ity studies

8.1 Basic data assimilation techniques

Data assimilation is the process of finding a model state which best fits in-
complete or imperfect data. The basic methods used in modern assimilation
systems are reviewed by Daley (1997). We follow his definitions and notation
in this section. The standard theory is developed for assimilation of data into
a defined discrete model. The assumptions made about model behaviour and
error structure are typically quite crude. In this section we show how some of
the dynamical knowledge set out in earlier sections can be brought to bear on
the problem.

8.2 Projection of observed information onto balanced states

Atmospheric observations are usually designed to sample the large scale low
frequency motions associated with weather patterns. In section 4.5 of Da-
ley (1997), it is pointed out that it is necessary to ensure that the data is
projected onto these motions, and is not used to initialise small scale high
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frequency motions which can also be described by the equations. In practice,
it is often necessary to use explicit procedures to damp unwanted high fre-
quency motions, and force the data to be fitted by the low frequency motions,
as illustrated in the chapter by Lynch.

The characterisation of the solution of a set of reduced equations as a se-
quence of minimum energy states described in sections 4.1 and 5.2 can be used
to give a method of explicitly nudging a general state of a model solving equa-
tions (3.5) or (5.1) towards a state of geostrophic or geotriptic and hydrostatic
balance. Given a general state (u, θ, p), not satisfying (5.4), carry out a virtual
displacement Ξ of the fluid defined by

∇2s = ∇.(fv − cDu,−fu − cDv, gθ/θ0)
∂s

∂n
= (fv − cDu,−fu − cDv, gθ/θ0).n on ∂Γ (8.1)

Ξ ≡ (ξ, η, ζ) = α((fv − cDu,−fu − cDv, gθ/θ0) − ∇s).

This ensures that ∇.Ξ = 0 and Ξ.n = 0 on ∂Γ. Use this displacement to
change (u, θ) on particles according to (5.3). Then the change to the balanced
energy (4.2) can be shown to be

δe =
∫
Γ

(−(f2 + c2D)u2 − (f2 + c2D)v2 − (gθ/θ0)2 − (∇s)2
)
dτ (8.2)

which is negative definite. Thus, with suitable choice of α, these displacements
can be applied iteratively to give convergence to an energy minimising state
satisfying (5.2). In practice, the vertical variation of s from (8.1) will be very
close to the hydrostatic value gθ/θ0. Assuming this, the components ξ and η
of the displacement can be calculated explicitly from (8.1), and ζ from the
condition ∇.Ξ = 0. This procedure can be generalised to the free surface case.
In the shallow water case, s is replaced by the fluid depth h, and the first
two equations in (8.1) are not needed. The procedure can also formally be
applied using the full sub-grid terms (Fu, Fv) in (8.1), though convergence
cannot then be proved. The procedure can also be carried out on the sphere
using the proper value of f , convergence is assured by the theorem of McCann
quoted in section 3.5.

It can be shown that this iteration will converge fastest on the scales charac-
terised by high frequency gravity waves. It will thus do a similar job to Lynch’s
digital filter, see the chapter by Lynch, while ensuring that the potential vor-
ticity is preserved on particles.

In order to try and project the observed information more directly onto
the balanced part of the flow, it is convenient to change variables so that
the primitive variables (u, v, θ) are replaced by three new variables, one of
which contains all the balanced information. These are the potential vorticity,
the geostrophic departure, and the horizontal divergence. This will give a
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decomposition of the form

u = u1 + u2 + u3

v = v1 + v2 + v3 (8.3)
θ = θ1 + θ2 + θ3

where components 1, 2 and 3 are derived from the potential vorticity, geostro-
phic departure, and horizontal divergence respectively. An appropriate pro-
jection can be derived by a standard linear normal mode analysis of the hy-
drostatic version of (3.5), as in Bartello (1995). θ has to be linearised about a
basic state θ = Θ(z) and f is assumed constant. The velocities are linearised
about a state of rest. Write the basic state Brunt-Väisälla frequency g

θ0
∂Θ
∂z as

N2. The basic state potential vorticity is f θ0g N
2. The linearised perturbation

potential vorticity is proportional to

q = f
g

θ0

∂θ1
∂z

+ N2

(
∂v1
∂x

− ∂u1
∂y

)
. (8.4)

(u1, v1, θ1) are derived from q by assuming geostrophic and hydrostatic bal-
ance, which take the form

(u1, v1, θ1) =
(
−f−1∂p′

∂y
, f−1∂p′

∂x
,
θ0
g

∂p′

∂z

)
. (8.5)

The derivation of (u1, v1, θ1) is achieved by first substituting (8.5) into (8.4)
to obtain

N2∇2
hp

′ + f2
∂2p′

∂z2
= fq. (8.6)

This is solved for p′, using appropriate boundary conditions, and (u1, v1, θ1)
are then derived from (8.5).

The second variable is chosen to have the same geostrophic departure as the
given fields. The divergence of the geostrophic departure can be written, using
(8.5), as f

(
∂v
∂x − ∂u

∂y

)
− ∇2

hp
′. Using the hydrostatic relation, the condition

that the vertical derivative of the geostrophic departure given by (u2, v2, θ2)
is the same as the original is

f
∂

∂z

(
∂v2
∂x

− ∂u2
∂y

)
− g

θ0
∇2
hθ2 = f

∂

∂z

(
∂v

∂x
− ∂u

∂y

)
− g

θ0
∇2
hθ. (8.7)

We choose the second variable such that the potential vorticity is zero. This
can be done by defining a stream-function Ψ satisfying

f2
∂2

∂z2
∇2
hΨ + N2∇4

hΨ = f
∂

∂z

(
∂v2
∂x

− ∂u2
∂y

)
− g

θ0
∇2
hθ2 (8.8)

and setting

(u2, v2, θ2) =
(
−f

∂2Ψ
∂y∂z

, f
∂2Ψ
∂x∂z

,−∇2
hΨ

∂Θ
∂z

)
. (8.9)
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Substitution of (u2, v2, θ2) into the first equation of (8.4) confirms that this
mode has q = 0. The third variable is the horizontal divergence, which is
represented by a velocity potential χ. We require that (u3, v3) have no vertical
component of vorticity and that θ3 = 0, giving

∇2χ =
∂u3
∂x

+
∂v3
∂y

(8.10)

(u3, v3, θ3) =
(
∂χ

∂x
,
∂χ

∂y
, 0
)

.

The geostrophic departure and horizontal divergence are not normal modes of
the linearisation of equations (3.5). The normal modes can only conveniently
be written in Fourier space, as in Bartello (1995). The form written here is
sometimes called the Craya–Herring cyclic basis. Methods similar to this have
been implemented by Mohebalhojeh and Dritschel (2000).

The projection can be generalised to spherical geometry with ∂Θ
∂z a general

function of z by performing a spherical normal mode analysis, which cannot be
written as a simple analytic procedure in real space. It is also possible to derive
equivalent equations to (8.4), (8.5) and (8.6) directly with f and ∂Θ

∂z allowed to
vary. This gives so-called ‘implicit normal mode’ analysis, Temperton (1989).

We can alternatively use the energy minimisation procedure described above
to decompose a general state. This can be used in spherical geometry or in
limited domains, and does not require any linearisations or restrictions on ∂θ

∂z .
Given general (u, v, θ, p′), use (8.1) to find a balanced state (ub, vb, θb, s), where
s is the geostrophic and hydrostatic pressure, with the same ‘balanced’ poten-
tial vorticity, (4.3), as the original data. The original data can be reconstructed
from (ub, vb, θb, s), given as functions of x, and the integrated displacements
Ξ, also given as functions of x. The latter can be split into two components

Ξ = Ξ1 + Ξ2 = (ξ1, η1, ζ1) + (ξ2, η2, ζ2)
∇hΞ1 = 0, ζ1 = 0 (8.11)
∂η2
∂x

− ∂ξ2
∂y

= 0.

Ξ1 generates the horizontally divergent winds as in (8.10), and Ξ2 generates
the ageostrophic vorticity and temperature changes as in (8.8).

8.3 Initialisation of ageostrophic winds

In sections 4.4 and 5.3, we set out equations for the evolution of balanced states
in the form (4.21). These include an equation for the total velocity u, which
does not satisfy the geostrophic relation, and acts as the response to dynamical
and physical forcing. In section 5.4, it is shown that this total velocity can
be interpreted as including the effect of sub-grid transport. It includes, for
example, the vertical motion balancing radiative heating or cooling. In order
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to analyse or initialise numerical forecasts, it is necessary to calculate this total
velocity in a way which is consistent with the evolution of the balanced state.

The linear decomposition (8.3) of the previous subsection has one compo-
nent (u1, v1, θ1) which describes the geostrophic and hydrostatic part of the
data. If the total velocity u describing the evolution of the balanced state is
decomposed according to (8.3), it will also include components from the other
modes u2,u3. These components can be interpreted as being ‘slaved’ to the
geostrophic state, see Warn et al. (1994). They can be calculated by nonlin-
ear normal mode initialisation, see Daley (1997), or other related methods.
Nonlinear normal mode initialisation, including the physical forcing terms, is
widely used in operational forecast models. The link between this procedure
and solving an equation of the form (4.21) is made by Leith (1980). He shows
that adiabatic nonlinear normal mode initialisation is equivalent to solving the
quasi-geostrophic form of (4.21), with a fixed reference profile replacing the
actual ∂θ/∂z. Use of (4.21) with (5.8) and (5.9) would then correspond to a
variable coefficient generalisation of normal mode initialisation, with physical
forcing included.

It should be noted that a balance assumption is likely to be most accurate
where the ageostrophic circulation required is small, and vice-versa. If forcing
is applied to a state with very small potential vorticity, (4.21) shows that the
ageostrophic circulation required will be large, and possibly quite unrealistic.
The real flow would simply be unbalanced under such conditions. Thus the
obvious natural procedure of finding the balanced state that best fits the
observations, and then calculating the associated total velocity from (4.21), is
likely to be unsafe. The integration scheme (7.4) for the full equations avoids
this problem by solving for (I+Qδt2)u, so that balance is not enforced when
Q has a small eigenvalue. (7.4) should also thus be suitable as an initialisation
scheme. This is consistent with the incremental nudging method of Lorenc et
al. (1991), which effectively trusts the forecast model to initialise the total
velocity field from information about the balanced state.

For the same reason, it is unwise to use the balanced ageostrophic motion
as an error measure or in a cost function. The balanced pressure tendency is
a safe variable to use instead, because the solution procedures discussed in
section 5.3 will ensure that this evolves smoothly in time even when, as in
deep convection, the balance requirement forces discontinuous mass transfers.

Many observations, such as satellite cloud observations, would be most use-
ful as measures of the vertical motion. Using this data requires deducing the
balanced state consistent with a given vertical motion. This is much harder,
and leads to the use of the 4-dimensional variational analysis method discussed
below. The problem can be addressed by perturbing (4.21):

Q′

 u
v
w

+Q

 u′

v′

w′

+
∂

∂t
∇s′ = H′. (8.12)
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Taking the curl of (8.12) gives

∇ ×Q′

 u
v
w

+ ∇ ×Q
 u′

v′

w′

 = ∇ ×H′. (8.13)

If u′ is given, H is given by (5.9) and the radiative forcing is assumed to be
correct, H′ and Q′ represent a correction to the geostrophic flow and can be
written in terms of a scalar s′. (8.13) thus becomes an equation for s′ in terms
of the geostrophic flow and u′.

8.4 The use of Lagrangian methods to optimise the fit between
two meteorological fields

One of the difficult issues in data assimilation is that the differences between
two meteorological fields may not be well expressed in terms of a standard
Eulerian norm such as the L2 norm. This is because, at least away from equa-
torial regions, the evolution of the flow is dominated by advection of potential
vorticity (section 4.5), and thus typical errors are likely to be displacements
of the potential vorticity and hence the other fields derived from them. This is
illustrated in Figures 18 and 19. The root mean square position errors of both
extra-tropical and tropical cyclones grow approximately linearly with fore-
cast time. The L2 error of upper level height (equivalent to pressure) fields,
which are dominated by large-scale and usually well forecast patterns, also
grows fairly linearly with time. However, the L2 error of upper level winds,
which are dominated by smaller scales features, increases most rapidly early
in the forecast period and then saturates. The L2 error of surface pressure,
whose patterns are typically of smaller scale than upper air patterns, behaves
in an intermediate fashion. Hoffman et al. (1995) decomposed forecast errors
of 500 hpa height into displacement errors, amplitude errors, and a residual.
They found that nearly 80 percent of the error in a particular 500 hpa forecast
could be explained as displacement error. The procedures of section 3.1 and
the chapter by Douglas earlier in this volume using rearrangements should
also be applicable to this form of analysis.

Daley (1997) discusses the choice of norm to use in the analysis procedure
in terms of expected distributions of errors. His equation (15) gives the total
cost function to be minimised in the analysis as

J = 0.5{[yo−H(xa)]TR−1[yo−H(xa)] + [xf −xa]T [Pb]−1][xf −xa]}. (8.14)

In (8.14), superscripts a, f , and o refer to the analysis, the first-guess forecast,
and the observations respectively. x represents a model state, and y a set
of observed values. The operator H calculates pseudo-observed values from
forecast fields. The error measure to be used for the observations has to be
related to the expected error structure of the observations, encompassed by the
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Figure 18: Growth of RMS position error with forecast time for extra-tropical
and tropical cyclones in the North Atlantic during 1995.

error covariance matrix R. This is discussed by Daley. The error measure to
be used for the forecast minus analysis term has to be related to the expected
forecast error structure, and so it is in this term that alternative norms such
as measures of displacements could be used. The formulation (8.14) allows for
the use of different norms in measuring observation error and forecast error,
and produces a maximum likelihood estimate.

Hoffman et al. (1995) set out a procedure for minimising (8.14) where dis-
placements are used in calculating the cost function. They also suggest using
a displacement as a control variable in the minimisation, thus setting xa equal
to a displacement applied to xf plus a residual. Given this approach, it is
natural to seek a balanced fit to the data by using an additional displacement
satisfying (5.3) to reduce the energy while preserving the potential vorticity,
thus moving towards a geostrophic and hydrostatic state.

8.5 Sensitivity of model evolution to small perturbations —
applications to data assimilation and ensemble generation

A working assumption for optimising the analysis procedure for numerical
weather prediction is that the best analysis is that which leads to the best
forecast. Therefore it is particularly important to analyse accurately the fea-
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Figure 19: Growth of L2 error of surface pressure (solid), 500 hpa height
(dashed), and 200 hpa wind over the Northern hemisphere with forecast time
during 1995.

tures which could lead to the fastest error growth in the subsequent forecast,
see Courtier (1997). If we use the idea set out in section 4.5 that the atmo-
sphere stays close to an evolution given by advection of potential vorticity,
then information about the sensitive regions can be deduced from a linear
perturbation of (4.26):

∂q′

∂t
+U.∇q′ +U′.∇q = 0 (8.15)

Ĥ(U′, θ′) = q′

where Ĥ is the operator that appears following (4.27). Maximum sensitivity
is likely to occur when U is normal to ∇q and both are large. Then a fixed
perturbation to either will have the largest effect on U.∇q. According to the
principles reviewed in section 6.2, these will be steady states corresponding
to stationary but non-extremal points of the energy under potential vorticity
rearrangements. In a barotropic flow, these are characterised locally by points
where q is non-monotonic as a function of stream-function. The degree of
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500hPa Z 1999-12-24 12h

Figure 20: 500 hpa height over part of the Northern hemisphere at 1200UTC
on 24 December 1999.

sensitivity can be inferred from the energy difference between the actual profile
and that that would be obtained from a local monotone rearrangement of q.
Baroclinic steady flows will additionally correspond to non-extremal points
of the energy if the vertical correlation of the potential vorticity gradient on
isentropic surfaces can be increased. Buizza and Palmer (1995) illustrate a
correlation between sensitive regions and the local value of du/dz, which is a
crude measure of the potential for baroclinic instability. An example of a non-
extremal stationary state is a straight flow with a non-monotonic potential
vorticity gradient across it. Such states preceded the ‘October storm’ which
hit the UK on 16 October 1987, and the ‘French’ storm which hit Paris on
26 December 1999. The pressure field, in effect the stream-function, preceding
the French storm is shown in Figure 20. There is an intense band of strong
winds across the Atlantic. The associated relative vorticity, which dominates
the potential vorticity, has large positive values on the northern edge of the
strip and negative values on the southern edge. Elsewhere it is small. The
north-south profile of potential vorticity is thus highly non-monotonic.

Another contributing factor will be a small eigenvalue of Ĥ−1, which will
give a large U′ for a given q′. If the potential vorticity inversion is given by
(4.21) and (4.25), then (4.25) can be perturbed to give

∇.Q−1 ∂

∂t
∇s′ − ∇.Q−1Q′Q−1 ∂

∂t
∇s =

∇.Q−1H′ − ∇.Q−1Q′Q−1H (8.16)(
Q−1 ∂

∂t
∇s′ − ∇.Q−1Q′Q−1 ∂

∂t
∇s

)
n

=(
Q−1H′ − ∇.Q−1Q′Q−1H

)
n

on ∂Γ.
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It can be seen from these equations that small eigenvalues of the potential
vorticity matrix Q will give the greatest sensitivity. The perturbations are
included as values of Q′ and H′. The way they are spread in space depends
on the structure of the Q−1 matrix. This has been applied in designing data
assimilation systems by stating that the region of influence of an observation
should be isotropic in geostrophic and isentropic coordinates, see Desroziers
and Lafore (1993). The combination of low potential vorticity and a highly
unstable basic state flow was the precursor to both the October storm and the
French storm referred to above, Shutts (1991).

There are two methods commonly used in operational centres of calculating
sensitivity directly from a numerical model solving the evolution equations.
The first is the ‘singular vector’ method. This is expensive to use, and is thus
normally used with either a reduced set of equations or a very low resolution
model. A set of equations for the evolution of a perturbation to the original
forecast is derived by linearising the governing equations. If these take the
form

∂u
∂t

= Nu (8.17)

the ‘tangent linear’ equations for a perturbation to the solution takes the form

∂u′

∂t
= L(t)u′ (8.18)

where the operator L(t) depends on the control forecast. This system is written
in discrete form, when it becomes a matrix equation with time-dependent
coefficients. If this is integrated over a fixed number of time-steps, it generates
a single matrix evolution operator

u′(t) = E(0, t)u′(0). (8.19)

The eigenvalues of E(0, t) are calculated, and that giving the largest growth
of u′ in a suitable norm, usually energy, is chosen. The corresponding eigen-
function gives the structure of the most sensitive perturbation to the initial
state. The procedure is fully described by Buizza and Palmer (1995).

The second method is the ‘error-breeding method’ of Toth and Kalnay
(1993). This consists of finding the structure of the fastest growing pertur-
bation to a given initial state iteratively by integrating a perturbed forecast
for a few hours, calculating the difference from the control forecast, and then
repeating the exercise with an initial perturbation equal to the rescaled fi-
nal perturbation from the previous iteration. This procedure converges to the
mode with the largest Liapunov exponent. It would be interesting to com-
pare the results of both these methods with the dynamically based methods
discussed at the beginning of this subsection.

It remains to be explored whether the areas of maximum sensitivity identi-
fied by the two latter methods can be characterised in terms of properties of
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the potential vorticity distribution. If so, local potential vorticity diagnostics
could be used to change the assumed error in the first guess forecast, and/or to
change the overall weighting of the cost function in (8.14) so that the analysis
procedure is focussed towards doing a good job in critical areas.

8.6 Fitting observations by a model trajectory over a time
interval

As noted above, 4D variational data assimilation is the most promising avenue
for using observations relating to the ageostrophic circulation. In addition,
as discussed by Eyre (1997), it allows use of observations with a high time
frequency, such as data from aircraft, and gives a framework for use of remotely
sensed data which is only indirectly related to the variables predicted directly
by the model. Daley (1997) shows that the theoretical basis for 4DVAR comes
from the need to predict the evolution of model error, and is a compromise
from the more complete method based on the Kalman filter forced by lack
of computer power. However, even the Kalman filter method assumes that
model errors are uncorrelated in time, which is extremely unlikely. The hope
is that more dynamical knowledge can be used to replace these statistical
assumptions.

The standard 4DVAR strategy is to minimise the cost function (8.14) over
a fixed time interval. The output is a model trajectory which satisfies the
(discrete) equations and minimises (8.14). Since the model is deterministic,
the control variables have to be the initial values of the model variables. In
practice, this minimisation has to be done iteratively using the linearisation
(8.18) of the model equations, and their adjoint (see Daley (1997)). A number
of additional possibilities are suggested by the preceding sections:

(a) Use of a model integration scheme based on the principles of section 7
to ensure that the model trajectory stays close to a balanced state. In
particular, use of (7.4) for initialisation, and use in the tangent linear
model (8.18) of the same linearised corrections to the sub-grid model as
are needed for the implicit time integration.

(b) Use of potential vorticity, divergence and geostrophic departure as con-
trol variables, so that more use can be made of dynamical information
in estimating the error structure of the potential vorticity. Overall es-
timates of the statistics of the unbalanced motion can be made by the
methods of section 4.2.

(c) Use of displacement error in calculating the difference between two fore-
cast fields, or between a forecast field and an analysed field derived from
a set of observations. Use of displacements in the iteration to minimise
the cost function, incorporating the energy minimisation method in the
iterative procedure to aid convergence to a near balanced state.
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(d) Use of the potential vorticity matrix in estimating how to spread infor-
mation, or the likely structure of the error matrix.

(e) Use of dynamical estimates of sensitivity in estimating model error, or
in the overall weighting of the cost function to be minimised.

In addition, a basic and well recognised limitation of the current 4DVAR
approach is the need to treat the model as perfect, and hence use the initial
values as control variables. An alternative would be to use the model as a
weak constraint. The simplest way of doing this would be to have a complete
set of model variables as control variables at a number of times during the
assimilation period. This is very expensive and not practical. Courtier (1997)
and Daley (1997) review a number of ways of achieving this in an affordable
way. Griffith and Nichols (1996) provide examples of how to achieve it in a
simple test problem.

9 Summary and conclusions

We have illustrated that considerable insight into the dynamics of the atmo-
sphere and ocean can be obtained by solving ‘reduced’ systems of equations,
and that these solutions can be related to the real flow by rigorously estimat-
ing how close the exact solution stays to the solution of the reduced model.
The approximations made in deriving the reduced equations are regime de-
pendent, and so it is not possible to find a single reduced model that describes
all flows of interest in weather and climate forecasting or ocean modelling.
However, the behaviour of the reduced models gives considerable assistance in
designing integration schemes, sub-grid models, and data assimilation meth-
ods to be used for the more general models using averaged equations which
are employed operationally.

In addition, the properties of the reduced models give considerable under-
standing of the atmosphere and ocean circulation. In particular, they show
why there is a permanent unsteady, but statistically stationary circulation,
show that there can be locally stable states which may persist for extended
periods, and identify regions of maximum instability and thus uncertainty in
how the subsequent evolution will go. They also show that the basic dynam-
ics can be thought of as advection of a scalar, and thus typical forecast error
growth will be linear rather than exponential when measured in a suitable
way.
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Rearrangements of Functions with
Applications to Meteorology and Ideal Fluid
Flow

R.J. Douglas

1 Introduction

This article studies rearrangements of functions, and considers applications
to ideal fluid flow, decomposition of weather forecast error, and a system of
equations which models large scale atmospheric and oceanic flow. We begin
by giving an intuitive idea of when a function is a rearrangement of another
function. Let f be a function defined on a bounded set Ω ⊂ R

n, and imagine
that Ω is a continuum of infinitesimal particles. Suppose we exchange the
particle positions, with each particle retaining its value of f . This yields a
function g, which is a rearrangement of f . This intuitive notion makes sense
whether we attach a scalar or a vector to a particle: the idea of rearranging a
function can be applied to both scalar and vector valued functions. Roughly
speaking, the formal definition of two functions f and g being rearrangements
is that for any given set of values, the set where f takes those values has the
same size as the corresponding set for g. (We give precise definitions in §2 and
§5.)

For a prescribed function f0, we can consider the set of all rearrangements
of f0. Sets of rearrangements of some given function arise naturally in appli-
cations in the following ways:

(i) Suppose we have a quantity q which is conserved following the flow in an
ideal (i.e. incompressible, inviscid) fluid. If we consider a fluid particle, it
may move as the fluid evolves, but it retains the same value of q, and the
particle does not change size (as the flow is incompressible). It follows
that at any two instants of time t1 and t2, q(t1) and q(t2) are rearrange-
ments. (Compare with the intuitive notion of rearrangement above.) In
particular, at any time t, q(t) belongs to the set of rearrangements of
q(0).

(ii) Suppose we know the values of some quantity on fluid particles at some
fixed time t, but do not know the positions of particles, save that they
must satisfy conservation of mass. Then the set of possible configurations
of the quantity are described by elements of a set of rearrangements.

288
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Without further information, the knowledge that some quantity belongs to
a set of rearrangements is of limited utility. However if this is harnessed to a
principle that a particular type of flow results from maximising or minimising
a functional (of the quantity), typically an energy, over all possible config-
urations, we can prove properties of such flows. In §3 we study ideal fluid
flow in a bounded planar domain; vorticity is rearrangement preserved in the
sense of (i). There is a principle that maximising kinetic energy over a set of
rearrangements should yield a steady flow. We review the result that maximis-
ing vorticities have corresponding stream functions such that the equation of
a steady flow is indeed satisfied. We study the semigeostrophic equations, a
standard model for weather front formation, in §6. A vector valued quantity
X, from which we can recover the physical quantities velocity, pressure and
potential temperature, is predicted on particles at some fixed time t. A con-
straint on particles is that the flow is incompressible, so possible configurations
of X are given by elements of a set of rearrangements as described in (ii). The
Cullen–Norbury–Purser principle states that for a solution, the particles are
arranged so that geostrophic energy is minimised. We apply this principle at
each time t, so we have a constrained minimisation problem, where the con-
straint changes with t. We review the result that this principle is well posed,
and identify such stable solutions with an extra constraint on the system of
equations.

This article is organised as follows. Section 2 introduces rearrangements of
scalar valued functions. With reference to simple examples, we give a precise
definition of two functions being rearrangements, introduce inequalities satis-
fied by special rearrangements, consider mappings which relate rearrangements
to each other, and establish properties of the set of rearrangements. Section
3 presents applications of rearrangement theory to ideal fluid dynamics; in
addition to the application mentioned above, we review some related prob-
lems. We discuss a new approach to the evaluation of weather forecast error
in §4; the error in the forecast of some meteorological quantity is split into a
contribution due to displacement, and a part penalising incorrect qualitative
features. The decomposition makes use of the results established in §2. Section
5 reviews properties of rearrangements of vector valued functions; as in §2, the
various concepts are illustrated by straightforward examples. After introduc-
ing the definition of two vector valued functions being rearrangements, and
establishing some equivalent properties, we consider inequalities satisfied by a
special rearrangement. In general vector valued rearrangement theory is less
rich than the scalar valued case. We note the connection between rearrange-
ment inequalities and optimal mass transfer problems. Application of results
in §5 to the semigeostrophic equations is the subject of §6. In addition to the
identification of stable solutions with an extra constraint that we discussed
above, we explain the way in which the semigeostrophic equations model front
formation. We review results that have been proved concerning existence of
solution for these equations, and indicate the work which remains to achieve
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a full existence theory. Note that in this article we restrict attention to the
semigeostrophic equations with constant rotation. The reader is referred to
Cullen and Douglas (1998) for a description of how the methods described in
§6 may be applied to the variable rotation case.

This is far from an exhaustive survey of rearrangements of functions and
their applications. There is an extensive literature on the use of isoperimetric
inequalities, see for example Talenti (1976). Moreover properties of the di-
rectional derivative of the increasing rearrangement (see §2 for the definition
of the increasing rearrangement of a function) are pertinent to the study of
certain differential equations. (See Mossino and Temam 1981.) The reader is
referred to Kawohl (1985) for a survey of applications of rearrangements meth-
ods to partial differential equations. In this article we focus on those applica-
tions studied during the programme Mathematics of Atmosphere and Ocean
Dynamics, held at the Isaac Newton Institute for Mathematical Sciences in
1996.

2 Rearrangements of scalar valued functions

This section is concerned with rearrangements of scalar valued functions. We
introduce the concept via an example in §2.1; we then give a formal definition
and note equivalent properties. Applications of rearrangement theory make use
of inequalities which hold for special rearrangements: in §2.2 we introduce the
increasing and decreasing rearrangements of a function, and discuss inequali-
ties they satisfy. Measure-preserving mappings, which relate rearrangements,
are reviewed in §2.3. We recall the result that any real integrable function on
a bounded interval can be written as the composition of its increasing rear-
rangement with a measure-preserving mapping. In applications we often wish
to maximise or minimise a functional (which typically represents an energy)
over the set of rearrangements of a prescribed function: in §2.4 we establish
properties of this set. A sequence of rearrangements of a prescribed function
may have a (weak) limit which is not a rearrangement: we define an enlarged
set which contains these limits. An extremum of a functional with respect to
this set may or may not be a rearrangement: we illustrate with two simple ex-
amples. Finally in §2.5 we extend the definition of rearrangement to functions
defined on unbounded domains of infinite size.

2.1 Definition and properties of rearrangements of functions

We give a simple example of two scalar functions which are rearrangements of
each other. Let f(x) = x for each x ∈ [0, 1], and let g be defined by

g(x) =
{

1 − 2x if x ∈ [0, 1/2],
2x − 1 if x ∈ [1/2, 1].

(2.1)
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f g

Figure 1: Two rearrangements f and g; the area of the shaded regions is the
same for every α

For each 0 < α < 1,∫ 1

0
(f(x) − α)+dx =

1
2

(1 − α)2 =
∫ 1

0
(g(x) − α)+dx (2.2)

where the subscript + denotes the positive part of the function, that is h+(x) =
max{h(x), 0}. (2.2) says that the area of the region which is bounded above by
the graph of f and bounded below by the line y = α is the same as the area of
the corresponding regions of g. This is illustrated in Figure 1: the total shaded
areas are the same. If α ≥ 1, then

∫ 1
0 (f(x)−α)+dx = 0 =

∫ 1
0 (g(x)−α)+dx, and

if α ≤ 0,
∫ 1
0 (f(x) − α)+dx = −α +

∫ 1
0 f(x)dx = −α +

∫ 1
0 g(x)dx =

∫ 1
0 (g(x) −

α)+dx. Combining the above results,
∫ 1
0 (f(x) −α)+dx =

∫ 1
0 (g(x) −α)+dx for

each real α.
We will use this property to make a precise definition of when f and g

are rearrangements of each other. We follow ideas of Eydeland, Spruck and
Turkington (1990). Let Ω be a bounded subset of R

n, and let µ be a measure
of the size of subsets of Ω. If n = 1, an appropriate choice is length, for n = 2,
area, and for n = 3, volume.

Definition. Let f, g : Ω → R be two integrable functions i.e
∫
Ω |f(x)|dµ(x) <

∞,
∫
Ω |g(x)|dµ(x) < ∞. f is a rearrangement of g if∫

Ω
(f(x) − α)+dµ(x) =

∫
Ω

(g(x) − α)+dµ(x) (2.3)

for every real α.

For most applications, the measure of size we will use is n-dimensional
Lebesgue measure, denoted λn, which coincides with length, area or volume



292 Douglas

when n = 1, 2 or 3. (Note, however, that there are ‘pathological’ sets whose
size we cannot calculate.) In this article we will restrict attention to measures
µ where the size of a set S ⊂ Ω, denoted µ(S), is given by µ(S) =

∫
S hdλn,

for some non-negative integrable function h. (For a fluid flow problem, such a
choice is appropriate if we want the size of the set to be its mass, rather than its
volume.) Clearly the choice of h identically equal to 1 recovers n-dimensional
Lebesgue measure.

There are other properties which are equivalent to the definition of rear-
rangement given above.

Theorem 1 Let Ω ⊂ R
n be a bounded set, and let µ be a measure as above,

that is absolutely continuous with respect to n-dimensional Lebesgue measure.
Let f, g : Ω → R be integrable functions. Then the following are equivalent.
(i) f is a rearrangement of g.
(ii) For every real α,

µ({x : f(x) ≥ α}) = µ({x : g(x) ≥ α}).

(iii) For every (Borel) set B ⊂ R,

µ ({x : f(x) ∈ B}) = µ ({x : g(x) ∈ B}) . (2.4)

(iv) For each continuous function F : R → R,∫
Ω
F (f(x))dµ(x) =

∫
Ω
F (g(x))dµ(x). (2.5)

(Equation (2.5) is understood in the sense that if one of the integrals is finite,
so is the other and they are equal.)

Proof. Follows by the methods of, for example, Douglas (1998). ()
Property (ii) is used as the definition of rearrangement in some of the liter-

ature. (See, for example, Burton 1987.) For f, g : [0, 1] → R we can interpret
(ii) as follows. Intersect the graphs of f and g with the line y = α; for each
function, find the length of that part of the line for which the graph lies on
or above the line. f and g are rearrangements if the two lengths are equal for
every choice of α. For f defined by f(x) = x and g as in (2.1), this length is 0
when α ≥ 1, 1−α for 0 ≤ α ≤ 1, and 1 for α < 0. This is illustrated in Figure
2 for a particular choice of α.

Our intuitive notion of f and g being rearrangements is that for any col-
lection of values, the set where f takes those values has the same size as the
corresponding set for g. This is stated precisely in Theorem 1 (iii); the re-
striction to Borel subsets of R excludes some ‘strange’ sets, and ensures that
we can measure the size of the sets in (2.4). It is immediate from Theorem
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f g

Figure 2: Functions f and g which satisfy Theorem 1 (ii) for every α

1 (iv) that if
∫
Ω |f |pdµ is finite for some p ≥ 1, and g is a rearrangement

of f , then
∫
Ω |f |pdµ =

∫
Ω |g|pdµ. More generally any ‘reasonable’ function F

satisfies (2.5).
We now introduce the concept of the set of rearrangements of a given func-

tion. A function has more than one rearrangement (unless it is constant). For
f : [0, 1] → R defined by f(x) = x, the function g given by (2.1) is a rearrange-
ment of f . A different rearrangement h is defined by h(x) = 1 − x. In general
the set of all the rearrangements of a given function will have infinitely many
elements: as all the members of the set are rearrangements of each other, any
one can be used to identify the set. (Rearrangement is an equivalence relation.)
We write R(f0) to denote the set of rearrangements of a prescribed function
f0.

2.2 Special rearrangements and rearrangement inequalities

In this subsection we identify some special elements of the set of rearrange-
ments of a prescribed function, and review inequalities that they satisfy. Such
inequalities are pertinent to the study of maximising or minimising function-
als (which often represent an energy in physical applications) with respect to
a set of rearrangements; we discuss this in §2.4. Our aim is to introduce re-
sults that we will require for applications in §3 and §4, and to review some
other important rearrangement inequalities; more on this topic can be found
in Alvino, Lions and Trombetti (1989) and Burton (1987).

The first special class of rearrangements we shall consider are monotone
rearrangements defined on a (bounded) interval. Let f(x) = x for each x ∈
[0, 1], and let g be as in (2.1). f is an increasing function, and it can be proved
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that it is the only increasing function which is a rearrangement of g. More
generally, if f0 : [0, 1] → R is an integrable function i.e.

∫ 1
0 |f0(x)|dλ1(x) < ∞,

we can construct an increasing function f∗
0 on [0, 1] by replacing every set {x :

f0(x) ≥ α} by an interval of the same size extending leftwards from 1, i.e. {x :
f∗
0 (x) ≥ α} = [1 − λ1({x : f0 ≥ α}), 1]. It is immediate that f∗

0 ∈ R(f0). Two
increasing rearrangements of f0 can differ only at points of discontinuity, and
there are only countably many such points. It follows that f∗

0 is the (essentially)
unique rearrangement of f0 which is an increasing function; we call f∗

0 the
increasing rearrangement of f0. If Ω ⊂ R

d is equipped with a measure µ such
that µ(Ω) < ∞, and f0 : Ω → R is integrable, the above construction can
be used to define an increasing function f∗

0 on [0, µ(Ω)]; for simplicity we
restrict attention to Ω = [0, 1] with 1-dimensional Lebesgue measure. Using
an analogous construction, we can define the decreasing rearrangement of f0,
which we write f�

0 . It is the (essentially) unique rearrangement of f0 which is
a decreasing function. (See Burton 1987, Lemma 1.) For g as in (2.1), g�(x) =
1 − x.

There are many inequalities involving rearrangements where an extreme
value is obtained by a monotone (i.e. increasing or decreasing) rearrangement;
we consider some fundamental examples. For scalar valued square integrable
functions f, g defined on the unit interval, (that is functions satisfying

∫ 1
0 f2 <

∞,
∫ 1
0 g2 < ∞,) ∫ 1

0
f(x)g(x)dλ1(x) ≤

∫ 1

0
f∗(x)g∗(x)dλ1(x) (2.6)

where f∗, g∗ are the increasing rearrangements of f, g respectively. If we re-
place the increasing rearrangements by decreasing rearrangements the inequal-
ity still holds. Allowing f and g to vary over R(f) and R(g) respectively, which
pairs of functions maximise

∫ 1
0 fg? From our previous statements it is imme-

diate that the pairs (f∗, g∗), (f�, g�) are maximisers; in general there will be
others, where the functions are arranged so that the ‘big values’ of f multiply
‘big values’ of g. If f and g have rearrangements f̃ and g̃ such that f̃ = φ ◦ g̃
for some increasing function φ, then f̃ and g̃ achieve equality in (2.6). If we fix
g, there is a unique rearrangement f̂ ∈ R(f) such that equality holds in (2.6)
if and only if there exists an increasing function φ such that f̂ = φ ◦ g. (The
reader is referred to Burton 1987 for proofs of these assertions.) In particular,
if the sets {x : g(x) = α} have zero size for each α ∈ R,∫ 1

0
f(x)g∗(x)dλ1(x) <

∫ 1

0
f∗
0 (x)g∗(x)dλ1(x) (2.7)

for every rearrangement f of f0 which is not equal to f∗
0 . We can always

find f̃ ∈ R(f0) which maximises
∫ 1
0 fg for fixed g; we prove this in the next

subsection.
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For f and g as above, it follows from (2.6) and Theorem 1 (iv) that{∫ 1

0
|f∗(x) − g∗(x)|2dλ1(x)

}1/2
≤
{∫ 1

0
|f(x) − g(x)|2dλ1(x)

}1/2
. (2.8)

We say that the mapping which takes a function to its increasing rearrange-
ment is non-expansive on the space of square integrable functions (as it does
not increase the L2-norm). For 1 ≤ p < ∞, if we replace 2 by p and 1/2 by 1/p
in (2.8), then the inequality still holds. (See Crowe, Zweibel and Rosenbloom
1986, Corollary 1.) Noting that the left hand side of the inequality is the Lp

norm of f∗ − g∗, and that the right hand side is the Lp norm of f − g, we see
that mapping a function to its increasing rearrangement is non-expansive on
Lp for 1 ≤ p < ∞. More generally it may be shown (by the methods of Lieb
and Loss 1997, Theorem 3.5) that∫ 1

0
J(f∗(x) − g∗(x))dλ1(x) ≤

∫ 1

0
J(f(x) − g(x))dλ1(x)

where J : R → R is a non-negative convex function satisfying J(0) = 0. (All
the above inequalities still hold if we replace increasing rearrangements by
decreasing rearrangements.)

Another important class of rearrangements are the (Schwarz) symmetric
decreasing rearrangements. For an integrable function f defined on a bounded
set Ω in the plane, the Schwarz-symmetrisation f� is formed by replacing
every set {x : f(x) ≥ α} by a disc centred on the origin of the same area. It
follows that f� depends on |x| only, and is a decreasing function of |x|. We can
extend this concept to three (or indeed n) dimensions: replace discs by balls,
and area by volume. For n ≥ 3, f� is usually referred to as the spherically
symmetric rearrangement of f . The analogous inequalities to (2.6) and (2.8)
extend to spherically symmetric rearrangements, that is∫

Ω
f(x)g(x)dλn(x) ≤

∫
B
f�(x)g�(x)dλn(x),{∫

B
|f�(x) − g�(x)|2dλn(x)

}1/2
≤
{∫

Ω
|f(x) − g(x)|2dλn(x)

}1/2
,

where B is a ball (centre the origin) of the same size as Ω. Moreover, for a
non-negative function f defined on a bounded domain in R

n, having square
integrable first order partial derivatives, and vanishing on the boundary of Ω,
the following inequality is satisfied:∫

B
|∇f�(x)|2dλn(x) ≤

∫
Ω
|∇f(x)|2dλn(x).

The set B is as above. (See Brothers and Ziemer 1988 for related inequalities
satisfied by the spherically symmetric rearrangement.)
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In the next subsection we introduce the concept of a measure-preserving
mapping; these maps relate rearrangements to each other. In particular we
will see that any integrable function can be written as the composition of its
increasing rearrangement with a measure-preserving mapping.

2.3 Measure-preserving mappings and polar factorisation of
scalar valued functions

This subsection studies measure-preserving mappings and their relationship
with rearrangements. By way of motivation, we return to our statement in
the introduction that for an incompressible flow, any Lagrangian conserved
quantity is rearrangement preserved. Let t → χ(t, x) be the trajectory of the
fluid particle which is at x initially. For any given subset U of the fluid at
time t, for each particle in U we can find the original position of the particle
at time zero; noting that the flow is incompressible, this set of points has the
same size as U . It follows that the trajectory mapping is a measure-preserving
mapping, the definition of which we give below. Let q be a quantity which is
conserved on fluid particles, and let q0, qt be its values at times 0, t respectively.
Now qt ◦ χ(t, .) = q0, where χ(t, .) is a measure-preserving mapping (and ◦
denotes composition of functions); we see later that this implies qt and q0 are
rearrangements, which justifies the claim made in the introduction.

Essentially a measure-preserving mapping between two sets U, V is a map-
ping which satisfies the following property: given any (measurable) set W ⊂ V ,
the set of points in U which are mapped to W has the same size as W . More
precisely:

Definition Let U ⊂ R
n, V ⊂ R

d, and let µ, ν be measures (of size) on U, V
respectively, with µ(U) = ν(V ). A measure-preserving mapping s : U → V
satisfies µ({x : s(x) ∈ W}) = ν(W ) for each (ν-measurable) set W ⊂ V .
Halmos (1950) shows that this is equivalent to requiring that for every ν-
integrable function f , ∫

U
f ◦ sdµ =

∫
V
fdν. (2.9)

We consider some elementary examples when U = V = [0, 1], and µ and ν
are length. It is easily seen that s1(x) = x for x ∈ [0, 1] is a measure-preserving
mapping. However g as defined in (2.1) is a measure-preserving mapping which
is two to one; it follows that measure-preserving mappings need not be one to
one. Such mappings need not be smooth: let s2 : [0, 1] → [0, 1] be defined by

s2(x) =


x + 1/2 if x ∈ [0, 1/2],
x − 1/2 if x ∈ (1/2, 1),
0 if x = 1.
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Then s2 is a measure-preserving-mapping from [0, 1] to itself that is discon-
tinuous at x = 1/2.

If a measure-preserving mapping s is one to one, and maps measurable sets
to measurable sets, then the inverse of s exists and is also a measure-preserving
mapping. Such an s is called a measure-preserving transformation. We show
that measure-preserving mappings and transformations preserve rearrange-
ments. Let bounded sets Ω ⊂ R

n, Ω′ ⊂ R
d be such that µ(Ω) = ν(Ω′), where ν

and µ are measures satisfying the hypotheses of Theorem 1. Let f, g : Ω → R

be integrable functions satisfying f ∈ R(g), and let s : Ω′ → Ω be a measure-
preserving mapping. Using the notation h−1(S) = {x : h(x) ∈ S}, for each
(Borel) set B ⊂ R we have

ν((f ◦ s)−1(B)) = ν(s−1 ◦ f−1(B)) = µ(f−1(B))
= µ(g−1(B)) = ν(s−1 ◦ g−1(B)) = ν((g ◦ s)−1(B)).

Thus f ◦ s ∈ R(g ◦ s). If s is a measure-preserving transformation, then the
reverse implication holds. Furthermore, if (Ω′, ν) is the same space as (Ω, µ),
then f ◦s ∈ R(f), and in particular, for a quantity q which remains constant on
fluid particles following the motion of an incompressible flow, q(t) ∈ R(q(0)).

If there exists a measure-preserving transformation τ between two measure
spaces (U, µ) and (V, ν), they have the same measure theoretic structure; we
call such spaces isomorphic. It may be shown that bounded sets Ω ⊂ R

n

equipped with measures µ satisfying the hypotheses of Theorem 1 are isomor-
phic to an interval equipped with length (i.e. one-dimensional Lebesgue mea-
sure). We can construct the increasing rearrangement of an integrable function
f : Ω → R by finding (f ◦ τ)∗, where τ : [0, µ(Ω)] → Ω is a measure-preserving
transformation. Moreover we can apply the inequalities of the previous sub-
section to f ◦ τ .

Any other rearrangement may be obtained from the increasing rearrange-
ment by composition with a suitable measure-preserving mapping. Ryff (1970)
proved that for any integrable function f defined on [0, 1], there exists a
measure-preserving mapping s : [0, 1] → [0, 1] such that f = f∗ ◦ s. For inte-
grable functions f defined on Ω as above, we can apply this result to f ◦ τ ,
where τ : [0, µ(Ω)] → Ω is a measure-preserving transformation. The exis-
tence of a measure-preserving mapping s : Ω → [0, µ(Ω)] satisfying f = f ∗ ◦ s
follows easily. The decomposition into the composition of the increasing rear-
rangement with a measure-preserving mapping is called a polar factorisation
of f . The methods of Burton and Douglas (1998) demonstrate that the polar
factorisation is unique (i.e. there does not exist a measure-preserving mapping
t, with t �= s, such that f = f∗ ◦ t,) if and only if f∗ is injective. An immediate
consequence of the existence of a polar factorisation is the following result
(which we stated without proof in the previous subsection):
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Proposition 1 Let Ω, µ be as in Theorem 1. Let f, g : Ω → R be square
integrable functions. Then there exists f̂ ∈ R(f) such that∫

Ω
f̂(x)g(x)dµ(x) =

∫ µ(Ω)
0

f∗(x)g∗(x)dλ1(x)

i.e. supf̃∈R(f)

∫
Ω f̃g is attained by f̂ .

Proof. From the discussion above, g has a polar factorisation g = g∗ ◦ s for
some measure-preserving mapping s : Ω → [0, µ(Ω)]. Define f̂ = f∗ ◦ s. It is
immediate that f̂ ∈ R(f), and∫

Ω
f̂(x)g(x)dµ(x) =

∫
Ω
f∗(s(x))g∗(s(x))dµ(x)

=
∫ µ(Ω)
0

f∗(x)g∗(x)dλ1(x) (2.10)

where (2.10) follows because s is measure-preserving. ()
Note that it is not always possible to obtain one rearrangement from another

by composing with a measure-preserving mapping. If f(x) = x for x ∈ [0, 1],
and g is as in (2.2), no measure-preserving mapping s : [0, 1] → [0, 1] such that
f = g ◦ s exists.

2.4 Maximising or minimising functionals with respect to sets
of rearrangements

We introduced the concept of the set of rearrangements of a prescribed func-
tion in §2.1. In this subsection we study properties of this set, in anticipation of
later applications where we will maximise or minimise a functional over a set
of rearrangements. A conventional approach is to take a maximising sequence
which converges to some limit, and demonstrate that the limit is a maximiser.
However we will show by example that a sequence of rearrangements of a
fixed function (or any subsequence thereof) need not have a limit which is
a rearrangement; in fact this sequence has a (weak) limit which is not a re-
arrangement of the original function. This motivates our study of the closed
convex hull of the set of rearrangements, a set which contains all weak limits of
sequences of rearrangements. We consider two simple examples of extremising
a functional with respect to a set of rearrangements, then with respect to the
closed convex hull of that set. Our examples demonstrate that the extreme
value over the latter set may or may not be attained by a rearrangement.

For Ω and µ as in Theorem 1, we work with square integrable functions
f0 : Ω → R, that is f0 which satisfy

∫
Ω f20 dµ < ∞. Functions in this space

(which we denote L2(Ω, µ)) have a finite ‘energy’, but can have arbitrarily
small scale oscillations: therefore it is a natural setting for a physical problem.
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We define a norm on L2(Ω, µ) by ‖f‖2 = {∫Ω f2dµ}1/2. Elements of this space
are integrable.

We now recall some standard definitions, which will enable us to say whether
a sequence of functions converges to a limit. For more detail see, for example,
Friedman (1982, sections 3.2, 4.10, 4.14).

Definitions. A sequence (fn) ⊂ L2(Ω, µ) converges strongly to f ∈ L2(Ω, µ)
if ‖fn − f‖2 → 0 as n → ∞. A set F ⊂ L2(Ω, µ) is strongly closed if for every
sequence (fn) in F which converges strongly to a f ∈ L2(Ω, µ), say, then the
limit function f is actually in F . The closure of a set F , denoted F , is the
smallest closed set which contains F .

A set F ⊂ L2(Ω, µ) is strongly compact if every sequence in F has a subse-
quence which converges strongly to an element of F . A strongly compact set
is strongly closed.

It is useful to have another notion of convergence and compactness which can
‘ignore’ small scale oscillations, and thus be more realistically applied to phys-
ical data. We give an example. For each n ∈ N, let fn ∈ L2([0, 2π], λ1) be de-
fined by fn(x) = sinnx. The sequence (fn) does not converge in L2([0, 2π], λ1),
nor does any subsequence. However the fn approach the constant function
with value 0 in an averaged sense, as

∫ 2π
0 fng → 0 as n → ∞ for any

g ∈ L2([0, 2π], λ1). We say that fn converges weakly to 0. We give the for-
mal definition.

Definitions. For all positive integers n, let fn ∈ L2(Ω, µ), and further suppose
that f ∈ L2(Ω, µ). We say that fn converges weakly to f if

∫
Ω fng → ∫

Ω fg as
n → ∞ for every g ∈ L2(Ω, µ). Strong convergence implies weak convergence,
but not vice versa.

A set F ⊂ L2(Ω, µ) is weakly (sequentially) closed if the weak limit of every
weakly convergent sequence in F belongs to F . Such sets are strongly closed.

A set F ⊂ L2(Ω) is weakly (sequentially) compact if every sequence in F has
a subsequence converging weakly to an element of F . For any sequence in
F which has a weak limit, the weak limit belongs to F . Strong compactness
implies weak (sequential) compactness.

When minimising a functional over some set, a key property that the set
may possess is convexity. In R

n a set is convex if the line joining any two
points of the set lies in the set. In the context of square integrable functions
we have:

Definition. A set F ⊂ L2(Ω, µ) is convex if for every f, g ∈ F , and λ ∈ [0, 1],
then (1 − λ)f + λg ∈ F . The convex hull of a set F , denoted conv F , is the
smallest convex set which contains F .

If a set is closed and convex, then it is weakly closed.

An element f of a convex set F is an extreme point if it does not lie in the
interior of any line segment in the set; that is if f = (1 − λ)f1 + λf2 for some



300 Douglas

0 1

1
f (x)
3

x
0 1

1
f (x)
6

x

Figure 3: f3 and f6 as defined by (2.12)

f1, f2 ∈ F and λ ∈ (0, 1), then f = f1 = f2. This notion generalises the idea
of a vertex of a convex polyhedron.

We show that the set of rearrangements of a non-negative function f0 ∈
L2(Ω, µ) is (strongly) closed. Let (fn) ⊂ R(f0) be a sequence converging to f ,
say. Then (2.8) yields that for each n ∈ N,

‖f∗
0 − f∗‖2 = ‖f∗

n − f∗‖2 ≤ ‖fn − f‖2.
It follows that ‖f∗

0 − f∗‖2 = 0, that is f∗
0 = f∗. Thus f ∈ R(f0).

However R(f0) is not strongly compact, weakly compact, nor convex unless
f0 is a constant function. For example, there are sequences of rearrangements
which converge weakly to limits which are not rearrangements of the original
function (from which it follows that the set is not weakly compact). Let f0 :
[0, 1] → R be defined by

f0(x) =

{
0 if x ∈ [0, 1/2),
1 if x ∈ [1/2, 1].

(2.11)

Define, for n ∈ N,

fn(x) =


0 if x = 0,
0 if x ∈ (m/n, (2m + 1)/2n],
1 if x ∈ ((2m + 1)/2n, (m + 1)/n].

(2.12)

where m = 0, 1, . . . , n− 1. The functions f3 and f6 are illustrated in Figure 3.
For each n ∈ N, fn is equal to zero on a set of length 1/2, and equal to 1 on
a set of length 1/2, therefore fn ∈ R(f0). However, given any g ∈ L2(0, 1), it
may be shown that

∫
Ω fngdµ → 1/2

∫
Ω gdµ as n → ∞, that is fn converges

weakly to the constant function with value 1/2, which is not a rearrangement
of f0.

This behaviour can make it difficult to maximise or minimise a functional
with respect to a set of rearrangements. It is quite possible that there will



Rearrangements of functions 301

be a sequence of rearrangements giving progressively less energy, for instance,
but the limit function will not be a rearrangement. To compensate for the
lack of compactness (and convexity) we hope to use rearrangement inequali-
ties, such as those described in §2.2, to show the existence of maximisers or
minimisers. Otherwise we can work with the weak closure of the set of rear-
rangements of a given function, the smallest weakly closed set that contains
the set of rearrangements. It is a weakly compact set: we can extract a weakly
convergent subsequence from any extremising sequence, and we may be able
to demonstrate that the limit is an extremum. Given a non–negative function
f0 ∈ L2(Ω), the weak closure is equal to the closed convex hull of the set of
rearrangements. It is immediate that this set is convex, and it may be shown
that its set of extreme points is R(f0). Douglas (1994) gave the following
characterisation

convR(f0) ={
f ≥ 0 :

∫
Ω

(f − α)+dµ ≤
∫
Ω

(f0 − α)+dµ ∀α > 0,
∫
Ω
fdµ =

∫
Ω
f0dµ

}
,

where the + subscript denotes taking the positive part of the function. If
we choose f0 as in (2.11) it can be shown that any integrable function ϕ :
[0, 1] → R satisfying 0 ≤ ϕ(x) ≤ 1 for each x ∈ [0, 1], and

∫ 1
0 ϕdµ = 1/2,

belongs to conv R(f0). This illustrates that conv R(f0) may be a large class
of functions, in particular it includes the constant value 1/2 which is certainly
not a rearrangement of f0. In general, all rearrangements are included, as are
functions derived by smoothing a rearrangement, if the smoothing preserves
the value of the integral, and does not introduce new extreme values.

We conclude this subsection by considering two simple minimisation prob-
lems. Let f0 be as in (2.11). Suppose we minimise

(i)
∫ 1

0
(f(x) − x)2dλ1(x), (ii) −

∫ 1

0
xf(x)dλ1(x)

over f ∈ R(f0), then over f ∈ conv R(f0). Noting that
∫ 1
0 f2 is conserved over

f ∈ R(f0), the maximiser of
∫ 1
0 xf(x) over f ∈ R(f0) will be the minimiser of

(i). Results in §2.2 yield that f0 is the (unique) minimiser, and this gives a value
1/12 for the integral. However the identity function belongs to conv R(f0),
therefore the minimum of (i) with respect to that set will be zero, that is
we obtain a lower value by minimising with respect to the weak closure. The
minimum in (ii) with respect to R(f0) is again attained by f0, giving a value
−3/8. However in this case no lower value may be obtained by minimising
with respect to conv R(f0); indeed it can be shown that f0 is the unique
minimiser.

The difference between these examples follows from the form of the func-
tionals. In the case of (i),

∫
f2 is conserved under rearrangements of f0, but is



302 Douglas

not necessarily conserved when the weak limit is taken. For example, take a
sequence (fn) of rearrangements of f0 which converges weakly to the identity
function id. For each n,

∫ 1
0 f2n = 1/2, but

∫ 1
0 id2 = 1/3. On the other hand,

if (fn) converges weakly to f , then
∫
xfn → ∫

xf as n → ∞. In physical
applications one has to consider whether it is appropriate to extremise with
respect to the set of rearrangements of a given function, or consider a relaxed
formulation, extremising with respect to the weak closure.

2.5 Rearrangements of functions on unbounded domains of
infinite size

In this article we will only study rearrangements of functions defined on
bounded subsets of R

n. However some applications of rearrangement theory
are naturally posed on unbounded sets of infinite size. (See for example Douglas
1994.) The properties listed in Theorem 1 are no longer equivalent for functions
defined on such domains: we illustrate by an example. Let f1, f2 : [0,∞) → R

be defined by

f1(x) =
{

0 if x ∈ [0, 1],
1/x2 if x > 1,

f2(x) =
{

0 if x ∈ [0, 2],
1/(x − 1)2 if x > 2.

Now f1 and f2 satisfy Theorem 1 (i) and (ii), but not (iii) and (iv). We
fix the properties that two functions which are rearrangements satisfy by the
following definition.

Definition. Let Ω be an unbounded subset of R
n of infinite size, that is

λn(Ω) = ∞ where λn denotes n-dimensional Lebesgue measure. Two non-
negative integrable functions f, g : Ω → R are rearrangements if

λn({x : f(x) ≥ α}) = λn({x : g(x) ≥ α})

for every α > 0.
With this definition, f1 and f2 defined above are rearrangements. Roughly

speaking we are imposing the following condition; for any given set of values
not including zero, the set where f takes those values has the same size as
the corresponding set for g. However the value zero may be taken on sets of
different size. (The concept of a decreasing rearrangement makes sense in this
context, but the notion of an increasing rearrangement does not in general.)
The key restriction is to functions f such that λn({x : f(x) ≥ α}) < ∞
for each α > 0. Similar assumptions in the literature are that the functions
vanish at infinity (see Lieb and Loss 1997, §3.2) or that they are rearrange-
able (see Simon 1994). Non-negative integrable functions satisfy these condi-
tions.
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For non-negative, integrable f, g : [0,∞) → R, inequalities (2.6) and (2.8)
still hold, (replacing the unit interval with the half line,) where f∗, g∗ are the
decreasing rearrangements of f, g respectively. (See for example Lieb and Loss
1997, Theorems 3.4 and 3.5.) We note an important rearrangement inequality
for non-negative integrable functions defined on R. The symmetric decreasing
rearrangement of a non-negative integrable function f : R → R is constructed
by moving each set {x : f(x) ≥ α} to an interval of the same size, symmetric
about zero. We denote this function f�. For non-negative integrable functions
f , g and h defined on R, Riesz’s inequality is satisfied:∫ ∞

−∞

∫ ∞

−∞
f(x)g(x − y)h(y)dxdy ≤

∫ ∞

−∞

∫ ∞

−∞
f�(x)g�(x − y)h�(y)dxdy.

Riesz’s inequality has analogues in higher dimensions. (See Lieb and Loss 1997,
Theorem 3.7.) The case when g is the Newtonian potential is of particular
interest for kinetic energy minimisation in fluid mechanics.

3 Application to steady vortices in ideal fluid flow

This section discusses applications of rearrangements of functions to ideal fluid
flow. For an energy functional written in terms of some Lagrangian conserved
quantity, we maximise relative to the set of rearrangements of a prescribed
function; maximisers correspond to special flows. We illustrate this variational
method by a specific example. Vorticity is preserved following an ideal fluid
flow in a bounded planar domain. We show that maximisers of the kinetic
energy yield stream functions which satisfy the equation of a steady flow in
§3.1. Section 3.2 is concerned with demonstrating that maximisers exist. We
review some similar constrained energy maximisation problems in §3.3.

3.1 A variational principle for ideal fluid flow

In this subsection we seek steady flows of an ideal fluid by maximising a
functional over a set of rearrangements. Consider an ideal (i.e. incompressible
and inviscid) fluid of unit density flowing without body forces in a planar
domain Ω bounded by a simple closed curve ∂Ω. The fluid velocity u and
pressure p satisfy the incompressible Euler equations

∂u
∂t

+ u.∇u = −∇p, (3.1)

∇.u = 0.

We impose the boundary condition u.n = 0 on ∂Ω. The vorticity is given by
∇ ∧ u, and it may be written ωk where k is the unit vector perpendicular
to the plane of Ω. Taking the curl of (3.1), we see that the time derivative
following the flow of ω is zero, that is ω is preserved on particles. Moreover
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the flow is incompressible, therefore (as described in §2.3) for each time t we
have ω(t) ∈ R(ω(0)). Noting Theorem 1 (iv), an alternative way to express
this fact is that the infinite family of Casimir integrals

CF =
∫
Ω
F (ω)dλ2

is conserved (for all t), where F is an arbitrary function (which can be approx-
imated by continuous functions). Therefore we are restricted to a particular
isovortical surface, or symplectic leaf. A stream function ψ exists which satisfies

u = (∂ψ/∂y,−∂ψ/∂x)

at each time t; it follows that ω = −+ψ. The boundary condition u.n = 0
implies that ψ is constant on ∂Ω; we can take the constant to be zero. We
determine ψ from ω by solving the boundary value problem

−+ψ = ω in Ω, (3.2)
ψ = 0 on ∂Ω. (3.3)

For a given square integrable function ω, we can find ψ which satisfies (3.2)
and (3.3) in the weak sense. (Roughly speaking this means that ψ is zero on
∂Ω and satisfies ∫

Ω
ψ(−+F )dλ2 =

∫
Ω
ωFdλ2

for every smooth function F which vanishes on ∂Ω. As in the previous section,
λ2 denotes 2-dimensional Lebesgue measure.) Call this function Kω. This
defines a mapping K, which we think of as the inverse of −+ (with zero
Dirichlet boundary conditions).

We seek solutions of
−+ψ = φ ◦ ψ (3.4)

for some stream function ψ, and some function φ, where ◦ denotes composi-
tion. (3.4) is the equation for the stream function of a steady flow; the steady
Euler equation is satisfied with −p = |∇ψ|2/2 + Φ ◦ψ where Φ′ = φ. We max-
imise kinetic energy over a family of flows whose vorticities are rearrangements
of each other; there is a principle that a maximiser should yield a steady flow.
The origins of this idea can be found in the work of Kelvin (1910); the mod-
ern formulation using rearrangements of functions is due to Benjamin (1976).
(However this was in the context of steady vortex rings in three-dimensional
ideal fluid flow - see §3.3 for a discussion of this problem.) The kinetic energy
E of the fluid is given by

E =
1
2

∫
Ω
|u|2dλ2 =

1
2

∫
Ω
|∇ψ|2dλ2 =

1
2

∫
Ω
ωKωdλ2.

We have the following result (due to Burton 1987) which justifies the above
principle.
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Theorem 2 Let ω0 : Ω → R be square integrable (i.e. ω0 ∈ L2(Ω)). Suppose
that ω̄ ∈ R(ω0) is such that E(ω̄) ≥ E(ω) for each ω ∈ R(ω0). Then

−+ψ̄ = φ ◦ ψ̄ (3.5)

for some increasing function φ, where ψ̄ = Kω̄.

Proof. (Sketch only.) It is easily seen that K is a linear operator; it may also
be shown that ∫

Ω
uKvdλ2 =

∫
Ω
vKudλ2 (3.6)

for u, v ∈ L2(Ω), and furthermore that E(ω) > 0 if ω �= 0. Now for ω ∈ R(ω0),
ω �= ω̄,

E(ω̄) ≥ E(ω)

= E(ω − ω̄) +
1
2

∫
Ω
ωKω̄dλ2 +

1
2

∫
Ω
ω̄Kωdλ2 − 1

2

∫
Ω
ω̄Kω̄dλ2(3.7)

= E(ω − ω̄) +
∫
Ω

(ω − ω̄)Kω̄dλ2 + E(ω̄) (3.8)

>

∫
Ω

(ω − ω̄)Kω̄dλ2 + E(ω̄).

By way of explanation, we have used linearity of K and (3.6) to obtain (3.7)
and (3.8) respectively. Writing ψ̄ = Kω̄ we have∫

Ω
ωψ̄dλ2 <

∫
Ω
ω̄ψ̄dλ2

for every ω ∈ R(ω0), ω �= ω̄. Burton (1987, Theorem 5) yields that ω̄ = φ ◦ ψ̄
for some increasing function φ. (This result was discussed in §2.2.) We identify
ω̄ with −+ψ̄ and obtain (3.5). ()

3.2 Existence of steady vortices

In the previous subsection we saw that a maximiser of the kinetic energy with
respect to the set of rearrangements of a given function has a corresponding
stream function which satisfies the equation of a steady flow. We demonstrate
that such maximisers, and hence such steady flows, exist; the fact that E
possesses at least one maximiser relative to R(ω0) is due to Burton (1987,
1989).

Theorem 3 Let ω0 ∈ L2(Ω). Then there exists ω̄ ∈ R(ω0) such that E(ω̄) ≥
E(ω) for every ω ∈ R(ω0).
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Proof. Firstly we note that for ω ∈ R(ω0),

E(ω) ≤ ‖ω‖2‖Kω‖2 ≤ ‖K‖ ‖ω‖22 = ‖K‖ ‖ω0‖22, (3.9)

where ‖.‖2 denotes the L2 norm, and ‖K‖ is the (finite) operator norm of
K : L2(Ω) → L2(Ω). By way of explanation, the first inequality in (3.9)
follows by the Cauchy-Schwarz inequality, and the equality by Theorem 1. It
follows that supω∈R(ω0)E(ω) is finite.

Let (ωn) be a maximising sequence for E relative to the weak closure of the
set of rearrangements of ω0, which we denote R(ω0). (This set, and its prop-
erties, were discussed in §2.4.) R(ω0) is weakly sequentially compact therefore
(ωn) has a subsequence, which we again denote (ωn), which converges weakly
in L2(Ω) to ω̂, say, in R(ω0). The linear operator K : L2(Ω) → L2(Ω) is com-
pact: consequently Kωn → Kω̂ strongly in L2(Ω) as n → ∞. It follows that
E(ωn) → E(ω̂) as n → ∞.

Write Kω̂ = ψ. Proposition 1 yields the existence of ω̄ ∈ R(ω0) such that∫
Ω
ω̄ψdλ2 =

∫ λ2(Ω)
0

ω∗
0ψ

∗dλ1.

Moreover R(ω0) is equal to the closed convex hull of R(ω0), so no larger value
can be obtained by maximising

∫
Ω ωψ over ω ∈ R(ω0): in particular,∫

Ω
ω̄ψdλ2 ≥

∫
Ω
ω̂ψdλ2. (3.10)

Repeating a calculation from the proof of Theorem 2, we have

E(ω̄) ≥
∫
Ω

(ω̄ − ω̂)ψdλ2 + E(ω̂) ≥ E(ω̂),

where the second inequality follows from (3.10). It follows that E(ω̄) ≥ E(ω)
for every ω ∈ R(ω0). ()

An alternative principle could be proposed; minimise the kinetic energy
over a family of vorticities which are rearrangements of each other. If ω0 is
one-signed, then Burton (1989) yields the existence of a unique minimiser ω̄
of E relative to R(ω0) which satisfies ω̄ = φ ◦ Kω̄ for a decreasing function
φ. However Burton and McLeod (1991) demonstrate that if ω0 takes both
positive and negative values, no minimiser of E relative to R(ω0) exists. (For
such ω0, a unique minimiser ω̂ for E relative to R(ω0) does exist; moreover
ω̂ = φ◦Kω̂ for some decreasing φ. Minimisers are characterised in Burton and
McLeod,Theorem 2.1.)

3.3 A survey of some related ideal fluid flow problems

Benjamin (1976) proposed a theory of steady vortex rings in an ideal fluid
involving maximising a functional over a set of rearrangements of a given
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function. We describe his original formulation. Let (r, θ, z) denote cylindrical
coordinates. Consider an axisymmetric three-dimensional ideal fluid flow hav-
ing zero velocity in the θ-direction, and whose far-field behaviour is a uniform
flow in the z-direction. Subject to suitable regularity assumptions, a Stokes
stream function Ψ exists which is related to the velocity u by

u =
(
−1

r

∂Ψ
∂z

, 0,
1
r

∂Ψ
∂r

)
at each time t. The vorticity ∇ × u is solely in the θ-direction; we denote its
magnitude by ω. Define a differential operator L by

L(.) ≡ −1
r

∂

∂r

(
1
r

∂(.)
∂r

)
− 1

r2
∂2(.)
∂z2

.

It may be shown that
LΨ =

ω

r
.

Moreover ξ = ω/r is a Lagrangian conserved quantity; noting that the flow is
incompressible yields that ξ remains a rearrangement of its initial value. The
impulse defined by

I =
∫

R3

ξr2

is also a Lagrangian conserved quantity. We define K to be an inverse operator
for L with suitable asymptotic conditions at infinity. (We omit the precise
details.) The kinetic energy is given by

E =
1
2

∫
R3

|u|2 =
1
2

∫
R3

1
r2

|∇ψ|2 =
1
2

∫
R3

ξKξ

where ψ is the difference between Ψ and the far-field stream function. Ben-
jamin’s proposal was to maximise E over ξ ∈ R(ξ0), where ξ0 is a prescribed
non-negative function, subject to the constraint that I has some given value.
He conjectured that maximisers would yield steady vortex rings. For a max-
imiser ξ, write ψ = Kξ; one seeks to demonstrate that

Lψ = φ ◦ (ψ − λr2/2) (3.11)

where λ is the Lagrange multiplier corresponding to the constraint on the
impulse, and φ is some function. λ represents the far-field velocity. The Stokes
stream function has the form Ψ = ψ − λr2/2.

Recent results have justified Benjamin’s variational approach to some ex-
tent. In view of the symmetry, one works on the half-plane Π = {(r, z) ∈ R

2 :
r > 0}. Burton (1999) has proved the existence of maximisers for a relaxed
formulation of the problem, where ξ is constrained to lie in the weak closure
of the set of rearrangements of ξ0, for a wide class of non-negative functions
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ξ0. If ξ̂ is a maximiser, then an equation corresponding to (3.11) holds. (Note,
however, that the problem is now posed on Π.) The maximisers may be rear-
rangements of ξ0; however this is not always the case. (See Burton 1999.)

Benjamin (1976) also proposed a second variational formulation; in this
case λ > 0, which represents the velocity of the vortex ring relative to the
fluid velocity at infinity, is prescribed. One maximises E − λI over the set of
rearrangements of a given non-negative function. This problem is studied in,
for example, Badiani and Burton (1999).

The strategy of maximising an energy relative to the set of rearrangements
of a given function has been successfully applied to other problems. Nycander
(1995) demonstrated the existence of a localised, stationary, stable vortex in a
background flow of constant shear. The flow was modelled by the incompress-
ible two-dimensional Euler equations. The three-dimensional quasi-geostrophic
equations are a more realistic model of geophysical flows; for such a flow in
an external shear flow, Burton and Nycander (1999) proved the existence of a
vortex having the same properties as in the simpler problem. In this case the
constraint set was a set of stratified rearrangements, that is functions obtained
by rearranging in the plane at each fixed z, where z is the vertical coordinate.
This paper is a good introduction to problems of the type discussed in this
section.

4 Decomposition of weather forecast error using re-
arrangements of functions

In this section we consider an application of rearrangements of functions to
the evaluation of weather forecast error: the problem is how to compare the
forecast of a physical quantity to the values actually observed. We seek a notion
of error which favours what a meteorologist would call a good forecast. In §4.1
we define a forecast error which is composed of a contribution due to differences
in qualitative features between the forecast and the actual distribution, and
a contribution which measures the error due to displacement. To calculate
the latter we need to define what we mean by the length of the shortest
path joining two rearrangements: approaches to this are discussed in §4.2.
Qualitative features error is evaluated by minimising a function over a set of
rearrangements: the minimising rearrangements are characterised in §4.3. In
§4.4 we note limitations in the simple formulation outlined in §4.1: we discuss
a more sophisticated strategy.

4.1 A simple formulation of forecast error decomposition

There have been many attempts to quantify weather forecast error. In this
section we consider a new approach to the problem of evaluating the error of a
forecast quantity compared to the actual distribution. Most weather forecast
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Figure 4: A forecast where the error is predominantly due to displacement.
Picture courtesy of U.K. Meteorological Office Forecast Calibration Alignment
project.
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errors are simply displacements of significant weather in space or time, such
as a rainband arriving a few hours later than expected. Figure 4 is an example
(for real meteorological data) of a forecast which has captured the essential
features of the true distribution as measured by the radar data, but has a
displacement error. Conventional forecast error scores, such as integrating the
square of the difference of the two functions and taking the square root, have
limited use as they reward conservative forecasts. For example a forecast which
is very good except for misplacing the location of a small intense storm by only
a few grid lengths may have a poorer score than one that only forecasts a weak
storm in that area. A more informative assessment of the two forecasts is that
both have some positioning errors, but the latter has failed to capture the
correct qualitative features. Following the pioneering work of Hoffman et al.
(1995), we describe a forecast error which is split into two parts: the error
due to displacement, and the error due to differences in qualitative features.
This measure of error would favour the former forecast in our example above;
moreover the two error values (one corresponding to displacement and one to
difference in qualitative features) would be descriptive of how the forecasts
had failed.

A simple formulation of forecast error decomposition is as follows. Find a dis-
placed version of the forecast which is a best fit to the actual distribution. Use
a conventional forecast error score (such as the L2 difference described above)
to evaluate the error between the displaced forecast and the true distribution:
this value represents the error due to difference in qualitative features. Now
calculate ‘the length of the shortest path’ which connects the forecast and the
displaced forecast (in the space of allowable displacements). This value mea-
sures the displacement error. The total error is a weighted sum of the two.
Figure 5 illustrates the idea of finding a displaced forecast which most closely
matches the true distribution. Essentially we identify similar qualitative fea-
tures in the forecast and actual distribution, and adjust the forecast so that
corresponding features are in the same position.

Consider an important quantity q in weather forecasting which is a function
of spatial variables, e.g. rainfall, and suppose we have a distribution predicted
by a model, and a distribution derived from observations, which we assume to
be the true distribution. Suppose q : Ω → R

d, where Ω ⊂ R
n is bounded. We

will be interested in the cases n = 2 or 3, and as we have rainfall in mind as
the physical quantity, we restrict attention to d = 1 and q non-negative. (Note
however that the idea of forecast error decomposition still makes sense if d > 1:
in this case we work with rearrangements of vector valued functions, which are
described in §5.) Let q1 be the observed (true) distribution, q2 the distribution
predicted by the model. We make the physically reasonable assumption that
q1 and q2 are square integrable.

In a conventional approach the forecast error is ‖q1 − q2‖2 = {∫Ω(q1(x) −
q2(x))2dλn(x)}1/2, where λn denotes n-dimensional Lebesgue measure. (For
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Figure 5: Displacing the forecast to find a best fit to the true distribution.
Picture courtesy of UK Meteorological Office Forecast Calibration Alignment
project.
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n = 2 think of this as area, for n = 3, volume.) In our proposed approach we
split the error as follows:

(i) Find q̂ ∈ R(q2) such that q̂ attains

inf
q∈R(q2)

‖q1 − q‖2. (4.1)

(ii) Calculate the ‘length of the shortest path’ between q2 and q̂ in R(q2). We
discuss approaches to defining this quantity, which we write dist (q2, q̂),
in the next subsection.

Equation(4.1) represents the error due to difference in qualitative features,
whilst dist (q2, q̂) represents the error due to displacement. The total error is
a weighted sum of the two, that is

TE(q1, q2) = (1 − θ) inf
q∈R(q2)

‖q1 − q‖2 + θ inf
q̂∈M

dist (q̂, q2) (4.2)

where 0 < θ < 1, and M denotes the set of q ∈ R(q2) which attain the infimum
in (4.1). θ is chosen so that one component of error does not dominate the
other: to determine a value, one would run a number of test cases.

For our definition of total error to make sense we need to show that (4.1)
is attained by some q̂ ∈ R(q2); we demonstrate that this is the case (and
establish conditions for the minimiser to be unique) in §4.3.

4.2 Approaches to calculating length of a path in the set of
rearrangements

In this subsection we give two possible definitions of the ‘length of the shortest
path’ connecting two rearrangements. Firstly we deal with the question of
what we mean by a path g which links q2 and q̂ in R(q2); we will require that
g : [0, 1] × Ω → R satisfies g(0, .) = q2, g(1, .) = q̂, g(t, .) ∈ R(q2) for each
t ∈ [0, 1], and that g is smooth in some sense. We say that the pair (g, v)
defines a path if it is a solution of

∂g

∂t
+ ∇.(gv) = 0, with ∇.v = 0, (4.3)

subject to
g(0, .) = q2, g(1, .) = q̂.

(We assume the velocity field is sufficiently smooth to apply the transport
theory of Diperna and Lions 1989.) Denote the set of paths by G. The distance
between q2 and q̂ in R(q2) is defined via a Least Action Principle, that is

dist (q2, q̂) = inf
(g,v)∈G

A(g, v), (4.4)
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for some Action integral A = A(g, v). Two possible choices are as follows;

A1(g, v) =
∫ 1

0

∫
Ω
|v(t, x)|2dxdt, (4.5)

A2(g, v) =
∫ 1

0

∫
Ω
g(t, x)|v(t, x)|2dxdt. (4.6)

For a given path, (4.5) penalises the magnitude of the velocity which trans-
ports q2 to q̂: thinking of g(t, .) as a density, (4.6) costs the ‘kinetic energy’
of the transportation. The choice of Action integral will depend on the type
of displacement error one wishes to penalise most heavily; this may vary de-
pending on the requirements of the customer using the forecast. Consider a
patch of Ω which we move using a specified velocity field: if the values on the
patch are high, this will give a bigger value for (4.6) than if the values are low.
In contrast (4.5) is independent of the values we are transporting. Therefore
the choice A = A2 in (4.4) is more suitable for an application where one is
primarily concerned with the position of any heavy rainfall.

If we discard the condition in (4.3) that the velocity is divergence free, Be-
namou and Brenier (1998b) show that (4.4) with A = A2 is a time continuous
formulation of an optimal mass transfer problem. (We discuss optimal mass
transfer problems in §5.3.) They also describe an augmented Lagrangian nu-
merical technique to compute solutions; one could hope to modify this scheme
to calculate (4.4).

4.3 A characterisation of minimising rearrangements

We demonstrate that the formulation of forecast error decomposition given in
§4.1 is well posed: we show that the infimum in (4.1) is attained, and establish a
necessary and sufficient condition for the minimiser to be unique. Next we note
a special case when this condition is always satisfied; then we conjecture the
extent to which minimisers are determined in the general case. There may be
infinitely many minimisers: we give an example. Finally we discuss numerical
computation of the relevant quantities.

We have the following result.

Proposition 2 Let q1, q2 : Ω → R be non-negative square integrable func-
tions, where Ω ⊂ R

n is bounded. Then

(i) there exists q̂ ∈ R(q2) such that q̂ attains infq∈R(q2) ‖q1 − q‖2, and
(ii) q̂ is the unique minimiser of ‖q1 − q‖2 over q ∈ R(q2) if and only if

q̂ = ϕ ◦ q1 for some increasing function ϕ.

Proof. (i) Recall from §2.3 that q1 has a polar factorisation q1 = q∗1 ◦s for some
measure-preserving mapping s : Ω → [0, λn(Ω)], where q∗1 is the increasing
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rearrangement of q1. Let q ∈ R(q2). Now

‖q1 − q‖2 ≥ ‖q∗1 − q∗2‖2 (4.7)
= ‖q∗1 ◦ s − q∗2 ◦ s‖2 (4.8)
= ‖q1 − q∗2 ◦ s‖2.

By way of explanation, (4.7) follows from Crowe, Zweibel and Rosenbloom
(1986, Corollary 1): this inequality was discussed in §2. The alternative char-
acterisation of a measure-preserving mapping given in §2.3 yields (4.8). It
follows that q̂ = q∗2 ◦ s attains infq∈R(q2) ‖q1 − q2‖2.
(ii) From above we see that q̂ attains infq∈R(q2) ‖q1 − q‖2 if and only if ‖q1 −
q̂‖2 = ‖q∗1 −q∗2‖2. Noting from Theorem 1 that the L2 norm is preserved under
rearrangement, it follows that q̂ attains infq∈R(q2) ‖q1 − q‖2 if and only if∫

Ω
q1q̂dλn =

∫ λn(Ω)

0
q∗1q

∗
2dλ1. (4.9)

Burton (1987, Theorems 3 and 5) yields that q̂ is the unique element of R(q2)
where equality holds in (4.9) if and only if q̂ = ϕ ◦ q1 for some increasing
function ϕ. (This result was discussed in §2.) ()
Remark If q1 has no level sets of positive measure, that is the sets Lα = {x ∈
Ω : q1(x) = α} have zero size for each α ∈ R, then we can find an increasing
function ϕ such that ϕ ◦ q1 is a rearrangement of q2. Proposition 2 (ii) yields
that this is the unique minimiser of ‖q1 − q‖2 over q ∈ R(q2).

Conjecture Minimisers of ‖q1 − q‖2 over q ∈ R(q2) are uniquely determined
up to level sets of q1 with positive measure, and when two minimisers are
restricted to any level set of q1 with positive measure, they are rearrangements
on that level set.

We show by example that the minimiser need not be unique. Let q1, q2 :
[−1, 1]2 → R be respectively the actual distribution and forecast of some
meteorological quantity, where

q1(x, y) =


3 if x2 + y2 ≤ 1/16,
2 if 1/16 < x2 + y2 ≤ 9/16,
0 otherwise,

and

q2(x, y) =
{

3 if x2 + y2 ≤ 1/4,
0 otherwise.

Further define

q3(x, y) =
{

3 if x2 + y2 ≤ 1/16, or 6/16 ≤ x2 + y2 ≤ 9/16,
0 otherwise.
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It is easily seen that q3 ∈ R(q2), and moreover

‖q1 − q2‖2 = ‖q1 − q3‖2 = inf
q∈R(q2)

‖q1 − q‖2.

It may be shown that any q̃ ∈ R(q2) which satisfies

{(x, y) : x2 + y2 ≤ 1/16} ⊂ {(x, y) : q̃(x, y) = 3} ⊂ {(x, y) : x2 + y2 ≤ 9/16}
is a minimiser. In fact for most choices of piecewise constant functions q1 and
q2, there will be infinitely many q̃ ∈ R(q2) which attain infq∈R(q2) ‖q1 − q‖2.
We discuss this defect in our formulation in the next subsection.

Finally we note that to calculate (4.1), the proof of Proposition 2 (i) yields
that it suffices to evaluate ‖q∗1 − q∗2‖2. Furthermore if we calculate a polar
factorisation of q1, we have a formula for a rearrangement q̂ of q2 which attains
(4.1). Therefore numerical computation of the relevant quantities consists of
finding increasing rearrangements and polar factorisations.

4.4 Limitations in the proposed strategy, and an alternative
formulation

We begin by highlighting two limitations in the formulation of forecast error
decomposition which we introduced in §4.1: firstly a numerical implementation
may require many computations, and secondly errors in qualitative features
may be penalised as though they were displacement errors. We describe an
alternative formulation which may overcome these difficulties.

As noted in the previous subsection, if we are dealing with piecewise constant
data, there may be infinitely many rearrangements of q2 which attain (4.1).
When we calculate the displacement error, we have to find dist (q2, q̂) for each
minimiser q̂, taking the least value (if such is attained) as the displacement
error. A discretised version of this problem may be computationally expensive.

We illustrate the second difficulty by supposing that we wish to decompose
rainfall forecast error over the United Kingdom. It is possible that q̂, the rear-
rangement of the forecast rainfall q2 which is nearest to the actual distribution
q1, is achieved by rearranging rainfall from a wet area (e.g. Scotland) to a dry
area a long distance away (e.g. the South East of England). This could happen
if the forecast overestimated the extent of a storm in the wet area, and failed
to predict a small amount of rainfall in the dry area. The displacement error
term will be large; however the error is really one of qualitative features. We
can lessen the impact of this problem by restricting the region over which we
perform the forecast error decomposition to those which are ‘meteorologically
similar’.

A possible solution to these difficulties is to minimise the combined quantity
of qualitative difference and displacement error over q ∈ R(q2), that is consider
the problem

inf
q∈R(q2)

{(1 − θ) ‖q1 − q‖2 + θ dist (q, q2)} , (4.10)
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for some 0 < θ < 1. If (4.10) is uniquely attained by q̂ ∈ R(q2), then by evalu-
ating ‖q1 − q̂‖2 and dist (q̂, q2) we recover respectively the difference in quali-
tative features, and displacement error. (Note, however, that these values need
not be the same as the quantities calculated according to the scheme outlined
in §4.1.) If we consider the example in §4.3, then q2 is the unique minimiser
of (4.10), so the above formulation may not suffer from non-uniqueness prob-
lems to the extent the formulation in §4.1 does. Benamou and Brenier (1998b)
discuss how their numerical scheme (mentioned in §4.2) may be adapted to
calculate (4.10).

5 Rearrangements of vector valued functions

The intuitive idea of when two functions are rearrangements given in the in-
troduction (in terms of exchanging values on particles) is equally applicable to
both scalar and vector valued functions. In this section we consider rearrange-
ments of vector valued functions; we seek analogues of the special rearrange-
ments which exist and inequalities which hold in the scalar valued case. We
introduce the concept via an example in §5.1, and state some equivalent formu-
lations. Then we consider the generalisation of the increasing rearrangement,
the monotone rearrangement, in §5.2: this is the unique rearrangement (of a
prescribed vector valued function) equal to the gradient of a convex function.
We can establish an inequality satisfied by the monotone rearrangement by
considering an appropriate class of optimal mass transfer problems: this is dis-
cussed in §5.3. Section 5.4 deals with the regularity of the optimal mappings, in
anticipation of an application to a system of equations in §6. Finally we discuss
the polar factorisation of a vector valued function, that is writing the function
as the composition of its monotone rearrangement with a measure-preserving
mapping. We give conditions for when such a decomposition is known to exist,
and when it is unique, in §5.5.

5.1 Definition and properties of rearrangements of vector val-
ued functions

We introduce the concept of rearrangement of vector valued functions by an
example. Define a function f on the unit square [0, 1] × [0, 1], which we write
[0, 1]2, by

f(x = (x, y)) =
{

(1, 1) if 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1,
(0, 0) otherwise,

(5.1)

and another function g by

g(x = (x, y)) =
{

(0, 0) if 1/8 < y < 7/8,
(1, 1) if y ≤ 1/8 or y ≥ 7/8.
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f g

(0, 0)
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(0, 0)(1, 1) (1, 1)

Figure 6: Functions f and g

f and g are illustrated in Figure 6. Consider the set of points where f takes
the value (1, 1), that is {x ∈ [0, 1]2 : f(x) = (1, 1)}, and the corresponding set
for g, {x ∈ [0, 1]2 : g(x) = (1, 1)}. These sets are equal to [1/2, 1]× [1/2, 1] and
[0, 1]× [0, 1/8]

⋃
[0, 1]× [7/8, 1] respectively, and both have area 1/4. Similarly

the sets {x : f(x) = (0, 0)} and {x : g(x) = (0, 0)} have equal area (of 3/4).
As f and g take no other values, it follows that {x : f(x) ∈ B} has the same
area, or 2–dimensional Lebesgue measure, as {x : g(x) ∈ B} for every (Borel)
set B ⊂ R

2. We will say that two vector valued functions are rearrangements
when this property holds.
More generally we have the following definition.

Definition Let Ω be a bounded set in R
n, and let f, g : Ω → R

d be integrable
functions. Then f and g are rearrangements if

µ ({x : f(x) ∈ B}) = µ ({x : g(x) ∈ B}) (5.2)

for every Borel subset of R
d, where µ is the ‘size’ (or measure) of the set. As

before an appropriate choice of ‘size’ for n = 1,2, or 3 would be length, area
or volume respectively. For the purposes of this article we restrict to measures
that are of the form µ(E) =

∫
E fdλn where f is a non-negative integrable

function, and λn denotes n-dimensional Lebesgue measure. (In the language
of measure theory, µ is absolutely continuous with respect to n-dimensional
Lebesgue measure. There is no need to be so restrictive for the results that
follow; see Douglas 1998 and Burton and Douglas 1998 for appropriate choices
of measure space.) As in the scalar case, the restriction to Borel sets is to
ensure that (5.2) always makes sense.

Definition (5.2) is identical to (2.4) for scalar valued rearrangements, except
that d will now be greater than 1. Other characterisations of two vector valued
functions being rearrangements are given in the following result:
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Theorem 4 Let Ω ⊂ R
n be bounded and let µ be absolutely continuous with

respect to n-dimensional Lebesgue measure. Then, for integrable functions f, g :
Ω → R

d, the following are equivalent.

(i) f is a rearrangement of g.

(ii) For each F ∈ C(Rd) (the set of continuous functions from R
d → R)∫

Ω
F (f(x))dµ(x) =

∫
Ω
F (g(x))dµ(x). (5.3)

((5.3) is understood in the sense that if one of the integrals is finite, then
so is the other and they are equal.)

(iii) For each c ∈ R
d,

µ({x : f(x) ≥ c}) = µ({x : g(x) ≥ c}),

where the inequalities are calculated component by component.

Proof. See Douglas (1998, Theorem 2.2). ()
Brenier (1991) defined rearrangement of vector valued functions via (ii). (He

restricted to a subclass of C(Rd) so that the integrals in (5.3) are guaranteed to
be finite.) Cullen, Norbury and Purser (1991), following Baigent (1988), used
(iii) as a definition; this is a direct extension of the characterisation of scalar
valued rearrangements given in Theorem 1 (ii). We can unify these definitions
as follows: each may be reduced to the requirement that (5.3) holds for each
F : R

d → R in a class of functions U . The different definitions above correspond
to different choices of U . U must be a sufficiently large class so that for each
n ∈ N such that

∫
Ω |f |n is finite, we have

∫
Ω |f |n =

∫
Ω |g|n, where |.| denotes

Euclidean distance on R
d. (We note that the characterisation of scalar valued

rearrangements based on ideas of Eydeland, Spruck and Turkington 1990 can
also be generalised to the vector valued case. See Douglas 1998 for details.)

For an integrable function f , we can define the set of rearrangements of f ,
denoted R(f). We will introduce a special element of this set, the monotone
rearrangement of f , in the next subsection, and demonstrate that the set is
closed (in L1). However in general it is neither convex nor compact in the
space of integrable functions. Consequently when we minimise a functional
with respect to the set of rearrangements of a prescribed integrable function,
we cannot assume that every minimising sequence has a subsequence which
converges to some rearrangement. Instead we use rearrangement inequalities.
(See §6.2.)

A vector valued function f : Ω → R
d may be written in terms of real valued

components fi : Ω → R, where f = (f1, . . . , fd). If f and g are vector valued
functions which are rearrangements then the corresponding components of f
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and g are rearrangements in the scalar valued sense. However it is important
to note that the condition that each component of a vector valued function
f is a rearrangement (in the scalar sense) of the corresponding component of
a vector valued function g, is not sufficient for f to be a rearrangement of g
in the vector valued sense. We give an example. Let f be as in the previous
example, then

f1(x) = f2(x) =
{

1 if x ∈ [1/2, 1] × [1/2, 1],
0 if x �∈ [1/2, 1] × [1/2, 1].

Define

g(x) =


(1, 0) if x ∈ [1/2, 1] × [1/2, 1],
(0, 1) if x ∈ [0, 1/2] × [1/2, 1],
(0, 0) otherwise.

Then g1 = f1 and

g2(x) =
{

1 if x ∈ [0, 1/2] × [1/2, 1],
0 if x �∈ [0, 1/2] × [1/2, 1].

It is easily seen that f1 ∈ R(g1), and f2 ∈ R(g2). However, f �∈ R(g), because
f takes the value (1,1) on a region of area 1/4, while g never takes this value.
Consequently in general we cannot apply scalar valued rearrangement results
to the components of vector valued functions and hope to obtain results about
vector valued rearrangements. Indeed, the theory of rearrangements of vec-
tor valued functions is less rich than that of rearrangements of scalar valued
functions. We will see an example of this in the next subsection.

5.2 Monotone rearrangement of vector valued functions

For a real function f defined on an interval, there is an (essentially) unique
f∗ ∈ R(f) which is an increasing function. (See §2.2.) There is an analogous
rearrangement for vector valued functions. The concept of increasing does
not make sense for vector valued functions, because R

d is not well–ordered
for d ≥ 2. Instead we note that an increasing scalar valued function is the
derivative of a convex function. Replacing derivative with gradient, this is a
property which is well defined for vector valued functions, therefore we seek a
rearrangement of a vector valued function equal to the gradient of a convex
function. Let f be as in (5.1), and define f# : [0, 1]2 → R

2 by

f#(x = (x, y)) =

{
(1, 1) if x + y ≥ 2 − 1√

2
,

(0, 0) otherwise.
(5.4)

f# is easily seen to be a rearrangement of f , and moreover f# = ∇Ψ (at the
points where Ψ is differentiable), where Ψ : [0, 1]2 → R is a convex function
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defined by

Ψ(x = (x, y)) =

{
x + y −

(
2 − 1√

2

)
if x + y ≥ 2 − 1√

2
,

0 otherwise.

It can be shown that f# is the unique rearrangement of f equal to the gradient
of a convex function. To generalise this concept to integrable functions u : Ω ⊂
R
n → R

d, it is clear we require n = d. We have the following result.

Theorem 5 For n = d, let Ω and µ be as in Theorem 4. Suppose u : Ω → R
d

is an integrable function. Then

(i) There exists u# ∈ R(u), such that u# = ∇ψ (at the points of differentia-
bility of ψ), where ψ : R

d → R∪{+∞} is convex. Moreover u# is unique
in the sense that if φ : R

d → R ∪ {+∞} is another convex function, and
∇φ ∈ R(u), then u# = ∇φ almost everywhere.

(ii) If in addition Ω is open and connected with smooth boundary, and µ is
equivalent to d-dimensional Lebesgue measure, then the mapping u → u#

is continuous (in L1(Ω, µ,Rd), the space of integrable functions from
Ω → R

d).

Proof. (i) follows from the main theorem of McCann (1995). (ii) is part of
Brenier (1991, Theorem 1.1). ()

We call u# the monotone rearrangement of u — it is a cyclically monotone
function, that is it satisfies

n∑
i=1

u#(xi).(xi − xi−1) ≥ 0

for (almost) all finite sequences x1, . . . , xn = x0 of points in Ω. (For two points,
this collapses to the usual definition of monotone.)

For functions f as in Theorem 4, with n �= d, we can still define a monotone
rearrangement if we work on a different domain in R

d which has the same
‘size’ as Ω. Let B be the open ball in R

d, centre the origin, such that µ(Ω) =
λd(B), where λd denotes d-dimensional Lebesgue measure. We ‘move Ω onto
B’, and work with the resulting function. There exists a measure-preserving
transformation (see §2.3) τ : (Ω, µ) → (B, λd). The composition of f with
τ satisfies the hypotheses of Theorem 5, and we say that (f ◦ τ)# is the
monotone rearrangement of f . Using this construction we have a simple proof
of the following result.

Proposition 3 Let Ω, µ, and f be as in Theorem 4. Then R(f) is closed (in
L1(Ω, µ,Rd)).
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Proof. Let (fn) ⊂ R(f), and suppose that fn → g in L1(Ω, µ,Rd) as n → ∞.
(Recall that this means that

∫
Ω |fn − g|dµ → 0 as n → ∞, where |.| denotes

Euclidean distance on R
d.) Let B be as above, and for each n ∈ N, let f#n denote

the monotone rearrangement of fn. Then Theorem 5 yields that f#n → g# as
n → ∞, and we note that f#n = f# for each n ∈ N. It follows that g# = f#,
whence g ∈ R(f). ()

Recall from §2 that the increasing rearrangement satisfies the following in-
equalities for two square integrable real valued functions f and g defined on
the unit interval:∫ 1

0
f∗(x)g∗(x)dλ1(x) ≥

∫ 1

0
f(x)g(x)dλ1(x),

‖f∗ − g∗‖2 ≤ ‖f − g‖2,

where h∗ denotes the increasing rearrangement of h, and ‖.‖2 the L2 norm,
that is ‖h‖2 = {∫ 10 |h|2dλ1}1/2. For Ω and µ as in Theorem 5, square integrable
functions u1, u2 : Ω → R

d do not in general satisfy∫
Ω
u#1 (x).u#2 (x)dµ(x) ≥

∫
Ω
u1(x).u2(x)dµ(x), (5.5)

‖u#1 − u#2 ‖2 ≤ ‖u1 − u2‖2.

In the next subsection we show that (5.5) holds in the special case when u2 is
the identity function, and demonstrate that the inequality is strict when u1 �=
u#1 . In fact (5.5) is known to hold when u2 : Ω → Ω is a measure-preserving
mapping. (This result is due to Burton and Douglas 1998, Proposition 2.8.)

5.3 Rearrangement inequalities from optimal mass transfer
problems

In this subsection we prove a rearrangement inequality via a reformulation as
an optimal mass transfer problem. We begin with a brief review of the latter.
The prototype optimal mass transfer problem is the following: given two sets
U, V of equal volume, find the optimal volume-preserving mapping between
them, where optimality is measured against a non-negative cost function c =
c(x, y). One interprets c(x, y) as being the cost per unit mass for transporting
material from x ∈ U to y ∈ V ; the optimal map minimises the total cost
of redistributing the mass of U through V . Optimal mass transfer problems
have a wide range of applications, particularly in economics; in the original
problem of Monge (1781), the question was how best to move a pile of soil to
an excavation, minimising the work done.

We consider a mathematical formulation of such a problem. Let U, V ⊂ R
d

be such that µ(U) = ν(V ), where µ, ν measure ‘size’ on U , V respectively.
(More precisely, let µ and ν be Borel measures.) The set of possible strategies
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for redistributing the mass of U onto V is the set S of measure-preserving
mappings between (U, µ) and (V, ν). The problem of finding a strategy which
minimises the cost becomes the following; is there a measure-preserving map-
ping s which attains

inf
s∈S

∫
U
c(x, s(x))dµ(x), (5.6)

and if so, what is it? This question has been solved for a certain class of cost
functions when µ vanishes on sufficiently small sets; the reader is referred to
the lucid account of Gangbo and McCann (1996) for details. In what follows
we restrict attention to the cost function c(x, y) = |x−y|2/2, where |.| denotes
Euclidean distance.

Suppose we are considering the following minimisation problem:

inf
f∈R(f0)

1
2

∫
Ω
|f(x) − x|2dµ(x), (5.7)

where Ω and µ are as in Theorem 5, and f0 : Ω → R
d is a square integrable

function. Define a measure ν for (Borel) subsets B ⊂ R
d by ν(B) = µ(f−1

0 (B)).
Then ν(B) measures how much of Ω is mapped to the set B. The set of
all measure-preserving mappings S from (Ω, µ) to (Rd, ν) is exactly R(f0),
therefore (5.7) is equivalent to

inf
f∈S

1
2

∫
Ω
|f(x) − x|2dµ(x), (5.8)

which is of the form (5.6). (To link with notation used elsewhere in the liter-
ature, the set S is sometimes referred to as the set of mappings s which push
the measure µ forward to the measure ν, which is denoted s#µ = ν.) We have
the following result.

Theorem 6 Let Ω and µ be as in Theorem 5. Suppose f0 : Ω → R
d is a

square integrable function. Then (5.7) is uniquely attained by f#0 , the mono-
tone rearrangement of f0, or equivalently∫

Ω
f#0 (x).xdµ(x) >

∫
Ω
f(x).xdµ(x) (5.9)

for each f ∈ R(f0)\{f#0 }.

Proof. (5.8) is uniquely attained by f#0 . (See for example Gangbo and Mc-
Cann 1996, Theorem 1.2.) The above discussion yields that (5.7) is uniquely
attained by f#0 . This result is easily seen to be equivalent to (5.9) for every
f ∈ R(f0)\{f#0 }; write |f(x) − x|2 as (f(x) − x).(f(x) − x), multiply out, and
apply Theorem 4. ()

In the special case when Ω is open, connected, and has smooth boundary,
and µ is equivalent to λd, (5.9) can be deduced from Brenier (1991, Theorem
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3.1 and Proposition 3.1 (iii) and (v)). Douglas (1998, Theorem 3.1) showed
this result could also be obtained from Brenier (1991, Theorems 1.1, 1.2 and
Proposition 2.1).

5.4 Regularity of optimal mass transfers

For two subsets U, V ⊂ R
d, we considered the problem of optimally transferring

the mass of (U, µ) to (V, ν) in the previous subsection, where optimality was
measured against the cost function c(x, y) = |x − y|2/2. If there exists some
non-negative integrable function g such that µ(B) =

∫
B gλd for each (Borel)

set B ⊂ R
d (where λd denotes d-dimensional Lebesgue measure), then a unique

optimal mapping exists, and it is equal to the gradient of a convex function.
In this subsection we are interested in the regularity of the optimal mapping;
in §6.6 we study an application of this theory to existence of solutions for
a system of partial differential equations. We repeat some of Evans (1997,
Section 4); however we quote some additional results for d = 2.

Our review will of necessity use technical language; we give a brief guide to
the notation used, and refer the reader to Adams (1975) for more details. For
0 < β < 1, u ∈ Cβ(U) if u is continuous on U , and if there exists γ > 0 such
that for every x, y ∈ U we have

|u(x) − u(y)| ≤ γ|x − y|β. (5.10)

(This is similar to, but weaker than, a Lipschitz condition.) The Hölder space
C1,β(U) consists of C1(U) functions (i.e. continuously differentiable up to the
boundary of U) for which there exists a γ > 0 such that (5.10) holds for every
first order derivative (of the function), and every x, y ∈ U . Replacing state-
ments about first order derivatives with second order derivatives, we define
C2,β(U).

Denote the optimal mapping between (U, µ) and (V, ν) by ∇Ψ, where Ψ
is a convex function. Without further assumptions, little is known about the
regularity of Ψ. We will assume that U and V are bounded, connected, open
sets in R

d; further suppose that there is a non-negative integrable function h
such that ν(B) =

∫
B hλd for each (Borel) subset B of R

d, and that g and h
are bounded above and below, away from zero. If the target set V is not con-
vex, then ∇Ψ can have a singular part: see Caffarelli (1992a) for an example.
However if the target set is convex, then Ψ is strictly convex, and belongs to
C1,α
loc (U) for some 0 < α < 1. (The subscript loc means that the function is C1,α

on all compact subsets of U .) If f and g are smoother functions, then so is Ψ.
Suppose g ∈ Cβ(U) and h ∈ Cβ(V ) for some 0 < β < 1; then Ψ ∈ C2,α

loc (U) for
each 0 < α < β. These interior regularity results are due to Caffarelli (1992a).
If U is convex as well, we obtain regularity up to the boundary. For g and h
bounded away from 0 and +∞ we have Ψ ∈ C1,α(U) for some 0 < α < 1; if
the boundaries of U and V are smooth, and g ∈ Cβ(U) and h ∈ Cβ(V ) for
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0 < β < 1, then Ψ ∈ C2,α(U) for every 0 < α < β. These assertions were
proved (independently) by Urbas (1997) and Caffarelli (1992b, 1996).

For some applications, the hypothesis that both U and V are convex is too
restrictive: see §6.3, 6.6. One might hope to make only the assumptions needed
for the interior regularity theory, and then demonstrate (partial) regularity up
to the boundary. If d ≥ 3 there is a class of counterexamples due to Pogorelov
(1964) which make it difficult to prove further results. However if we restrict
attention to d = 2, and make the additional assumption that the target set
V is strictly convex, then Douglas and McCann (1998) have proved that the
Ψ ∈ C1(U) (so we have C1 regularity up to the boundary). Wolfson (1997)
establishes conditions for the existence of smooth area-preserving mappings
(which coincide with the optimal mapping) between two domains with smooth
boundaries. If the domains satisfy a pseudo-convexity condition, that is if

min
∂U

κ1 + min
∂V

κ2 > 0, (5.11)

where κ1 and κ2 are the minimum curvature values for the curves which com-
prise ∂U and ∂V respectively, then there is a smooth area-preserving mapping
between U and V . Roughly speaking, the pseudo-convexity condition is a joint
convexity condition; if U is a disc (which is ‘as convex as possible’), then (5.11)
may still be satisfied even when V fails to be convex.

5.5 Polar factorisation of vector valued functions

For a real valued integrable function defined on a bounded interval, Ryff (1970)
showed that it could be written as the composition of its increasing rearrange-
ment with a measure-preserving mapping. This decomposition is the polar fac-
torisation introduced in §2.3. Our purpose in this subsection is to extend this
concept to vector valued functions. The monotone rearrangement, introduced
in §5.2, plays the role of the increasing rearrangement. The question we address
is the following: for a given integrable vector valued function u : Ω ⊂ R

d → R
d,

when does a measure-preserving mapping s : Ω → Ω such that u = u#◦s exist,
and when is it unique (i.e. when is it impossible to find a different measure-
preserving mapping t : Ω → Ω such that u = u#◦t)? The expression u = u#◦s
is called a polar factorisation of u; this term was introduced by Brenier (1991).

We begin with a simple example; let f be as (5.1). The monotone rear-
rangement of f , f#, is defined by (5.4). We seek an area-preserving mapping
which maps the set where f takes the value (1, 1) to the set where f# does,
and similarly for (0, 0). Denote the set where f takes the value (1, 1) by A:
the corresponding set for f# by A#. Split the set A\A# into two triangles of
equal size by bisecting with the line x = y; we call the triangle above the line
B1, the one below B2. Denote the part of A#\A above the line x = y by B#

1 ,
the remainder by B#

2 . Figure 7 illustrates this notation. We can map B1 onto
B#
1 by a rotation and a translation - we write τ1 for this map, and τ2 for the
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1/2

1

1/2 1

B1
#

B2

B2

B1

#

Figure 7: Construction of a polar factorisation

analogous map which moves B2 onto B#
2 . Define s : [0, 1]2 → [0, 1]2 by

s(x) =



τ1(x) if x ∈ B1,
τ2(x) if x ∈ B2,

τ−11 (x) if x ∈ B#
1 ,

τ−12 (x) if x ∈ B#
2 ,

x otherwise.

Now s is an area-preserving mapping which satisfies f = f# ◦ s: thus f has
a polar factorisation. (It is easily seen that it is not unique.)

To prove a general result on the existence and uniqueness of polar factori-
sations, we require some definitions and notation.

Definitions. Let µ = λd, and let Ω and u be as in Theorem 5. u is nonde-
generate if u does not map a set of positive size to a set of zero size, or more
precisely if µ({x : u(x) ∈ E}) = 0 for every set E ⊂ R

d of zero Lebesgue
measure. Otherwise u is degenerate.

The function f defined by (5.1) is degenerate: it maps a set of area 1/4 to the
point (1, 1), which has zero area.

u is countably degenerate if we can make u nondegenerate by removing count-
ably many level sets. (Level sets of a function are sets of the form {x : u(x) =
c}.)

If we remove the level sets corresponding to (1, 1) and (0, 0), the function f
defined by (5.1) is nondegenerate: therefore f is countably degenerate.
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A function is almost injective if it is an injective function except possibly on a
set of measure zero. If u is nondegenerate, u# is almost injective (see Burton
and Douglas 1998, Lemma 2.4).

We have the following result on the existence and uniqueness of a polar
factorisation (due to Burton and Douglas 1998).

Theorem 7 Let µ = λd, and let Ω and u be as in Theorem 5. Then

(i) If u is countably degenerate, then u has a polar factorisation u = u# ◦ s,
where s : Ω → Ω is a measure-preserving mapping.

(ii) If u# is almost injective, then the polar factorisation exists and is unique.

From our earlier remarks, (ii) applies to nondegenerate functions. (The fact
that a nondegenerate function has a unique polar factorisation was first estab-
lished by Brenier 1991, Theorem 1.2.) The idea of the proof of (ii) is as follows.
Suppose u# is injective - we show that (u#)−1 ◦ u is a measure-preserving
mapping. To show uniqueness, suppose u = u# ◦ s = u# ◦ t for two measure-
preserving mappings s, t : Ω → Ω; then injectivity of u# implies that s and t
must be equal (except possibly on a set of measure zero). For (i), the essence of
the proof is to map the level sets of positive measure of u to the corresponding
level sets of u#, and apply (ii) to the nondegenerate function which remains
after these sets have been removed.

Can we extend this result? It is easy to see that the polar factorisation
cannot be unique if u has a level set of positive measure. u# has a correspond-
ing level set of positive measure, and we can choose a non-trivial measure-
preserving mapping τ : Ω → Ω which leaves points other than those in the
level set fixed. If u = u#◦s is a polar factorisation of u, then so is u = u#◦(τ◦s):
s is not equal to τ ◦s. If d ≥ 2, even when a function fails to have any level sets
of positive measure, the polar factorisation, if it exists, may not be unique.
(See Burton and Douglas 1998 for an example.) Burton and Douglas (2001)
proved that the polar factorisation is unique if and only if the monotone re-
arrangement is almost injective. (They also introduced a class of integrable
vector-valued functions which do not have polar factorisations.)

Finally we address the following problem: given a square integrable vector
valued function u : Ω ⊂ R

d → R
d, what is the projection of u onto the set of

measure-preserving mappings from Ω to Ω? This question is linked to polar
factorisation by the following proposition.

Proposition 4 Let Ω and µ be as in Theorem 7, and suppose u : Ω → R
d is

square integrable. Then

(i) Measure-preserving mappings s : Ω → Ω which satisfy u = u# ◦ s max-
imise

∫
Ω u(x).s(x)dµ(x) over the set S of measure-preserving mappings

from Ω to Ω.
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(ii) Suppose that u has a polar factorisation. Then every s ∈ S which max-
imises

∫
Ω u(x).s(x)dµ(x) satisfies u = u# ◦ s.

Proof. (i) Burton and Douglas (1998, Proposition 2.8). (ii) Burton and Dou-
glas (2001). ()

We say that a measure-preserving mapping s : Ω → Ω belongs to the projec-
tion of u onto S if it is a closest element of S to u where distance is measured
by the L2-norm i.e. it attains

inf
s∈S

‖u − s‖22 = inf
s∈S

∫
Ω
|u(x) − s(x)|2dµ(x).

In general there will be many ‘closest’ elements of S to u, therefore the pro-
jection will be multi valued. It is easily shown that minimising ‖u − s‖22 over
s ∈ S is equivalent to maximising

∫
Ω u(x).s(x)dµ(x) over s ∈ S. If u has a

polar factorisation, then Proposition 4 says that s is in the projection of u onto
S if and only if s arises from a polar factorisation of u. It follows that if u# is
almost injective, then the projection of u onto S will be unique. In particular
the projection of a nondegenerate function u onto S is single valued. (This
result was first proved by Brenier 1991.)

6 Applications of rearrangements of functions to at-
mospheric and oceanic flow

This section studies the semigeostrophic equations, a model for slowly varying
flows constrained by rotation and stratification. They have, in particular, been
used to study front formation in meteorology. After stating the equations in
§6.1, we show how stable solutions can be interpreted as a sequence of min-
imum geostrophic energy states in §6.2; the energy minimisation is carried
out over a set of rearrangements. At each fixed time t, the minimising rear-
rangement is the gradient of a convex function; as we discuss in §6.3, tracking
singularities of this potential is thought of as weather fronts forming and evolv-
ing. In the special case when the minimising rearrangement is nondegenerate
(see §5.5), we show in §6.4 that we can find the mapping which relates the La-
grangian and Eulerian variables. Retaining the nondegeneracy assumption, in
§6.5 we exploit the so-called duality structure of the semigeostrophic equations
to reformulate the system as a coupled Monge–Ampère/ transport problem.
We discuss existence and uniqueness of solution for this coupled system with
reference to relevant results in the literature in §6.6.

6.1 The semigeostrophic equations

Weather systems and equivalent large scale flows in the ocean can be char-
acterised as slowly varying flows constrained by rotation and stratification.
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A standard model for such flows are the three-dimensional Boussinesq equa-
tions of semigeostrophic theory on an f plane. The derivation and validity of
the semigeostrophic equations are discussed in greater detail elsewhere in this
volume; we note that the system is valid when the timescale for a change in
velocity following a fluid particle is much greater than f−1. (See Shutts and
Cullen 1987.) In particular this is true in the case of front formation in mete-
orology, where the flow is largely parallel to the front. We state the equations
in the form used by Hoskins (1975).

Dug
Dt

− fvag = 0,
Dvg
Dt

+ fuag = 0, (6.1)

Dθ

Dt
= 0, (6.2)

∇.u = 0, (6.3)

∇φ =
(
fvg,−fug,

gθ

θ0

)
(6.4)

where

u ≡ (u, v, w) ≡ ug + uag,
ug ≡ (ug, vg, 0),
D

Dt
≡ ∂

∂t
+ u.∇

The term f is the Coriolis parameter, assumed constant (so we are considering
constant rotation), g is the acceleration due to gravity, θ0 is a reference value
of the potential temperature θ, and φ is a pressure variable. Subscripts g
and ag denote geostrophic and ageostrophic velocity (or wind) components
respectively, where the geostrophic velocity is defined to be the horizontal
component of velocity in balance with the pressure gradient. This definition
is included in equation (6.4), as is the statement of hydrostatic balance.

We solve the equations (for the velocities u, ug, potential temperature θ,
and pressure variable φ) in an open, bounded, connected set Ω ⊂ R

3 which has
smooth boundary, with normal velocity u.n = 0 on ∂Ω. (In the meteorological
literature the equations are sometimes posed on Ω.) For x = (x, y, z) ∈ Ω, by
making the substitution

X ≡ (X,Y, Z) ≡ (x + vg/f, y − ug/f, (g/f2θ0)θ) (6.5)

it is shown in Purser and Cullen (1987) that we may replace (6.1) and (6.2)
by

DX
Dt

= ug.

It is immediate from (6.4) and (6.5) that

X = ∇P where P =
(

φ

f2
+

1
2

(x2 + y2)
)

. (6.6)
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(6.5) is known as the geostrophic transformation and is due to Hoskins (1975).
We think of X as a function of the physical space co-ordinates x. Rewriting

in terms of X and x, we have

DX
Dt

= fJ(X− x) (6.7)

where

J =

 0 −1 0
1 0 0
0 0 0

 .

We now have a system of equations (6.6), (6.7) and (6.3) for unknowns X,
u and φ which we solve on [0, t1) × Ω, for some t1 > 0. We seek solutions in
a restricted class - solutions that are stable in a sense we make precise in the
next subsection.
We introduce the Lagrangian coordinates

X̃(t,x) = X(t, χ(t,x))

where
t → χ(t,x)

is the trajectory of the fluid particle which is at x initially. The Lagrangian
form of (6.6), (6.7) and (6.3) is

X̃(t,x) = ∇P (t, χ(t,x)), (6.8)

∂X̃
∂t

= f(J(X̃− χ)), (6.9)

det Dχ(t,x) = 1, (6.10)

where Dχ denotes the Jacobian matrix of the mapping χ.

6.2 Stable solutions of the semigeostrophic equations as a se-
quence of minimum energy states

Cullen, Norbury and Purser (1991) sought solutions of (6.6), (6.7) and (6.3)
which can be interpreted as a sequence of constrained minimum energy states,
where the constraints evolve with time. They considered solutions obtained
by the following procedure. At each fixed time t, predict X on particles using
(6.7). (In the Lagrangian variables defined above, we predict X̃(t, .) but not
χ(t, .).) Now apply the Cullen–Norbury–Purser principle which states that for
a solution, the particles are arranged to minimise geostrophic energy. We claim
that this determinesX(t, .), (that is a minimiser exists and is unique,) and that
X(t, .) = ∇ψ(t, .) for some convex function ψ(t, .).

For a solution obtained by the Cullen–Norbury–Purser methods we iden-
tify P (t, .) with ψ(t, .) at each time t. Therefore we have a solution of (6.6),
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(6.7) and (6.3) with P (t, .) convex at each time t. Conversely, if we apply the
Cullen–Norbury–Purser methods to a solution of (6.6), (6.7) and (6.3) with
P (t, .) convex at each time t, we obtain the given solution. (Recall that the
monotone rearrangement is essentially unique.) It follows that seeking solu-
tions that can be interpreted as a sequence of (constrained) minimum energy
states is equivalent to solving (6.6), (6.7) and (6.3) with the extra constraint
that P (t, .) is convex at each time t. As convexity corresponds to a minimum
energy principle, we expect such solutions to be stable (in some sense). In
Shutts and Cullen (1987) it is shown that they are stable with respect to
small displacements in a frozen pressure field.

We justify our earlier claim that the Cullen–Norbury–Purser principle is
well posed i.e. demonstrate that an energy minimiser exists and is unique.
The geostrophic energy E is defined as

E =
∫
Ω

1
2
u2g +

1
2
v2g +

gθz

θ0
dλ3(x)

= f2
1
2

∫
Ω
X2(x) + x2 + Y 2(x) + y2dλ3(x) − f2

∫
Ω
x.X(x)dλ3(x),

where λ3 denotes volume (or more precisely 3-dimensional Lebesgue measure).
Suppose one possible state of the fluid at a fixed time t is described by a
function Xt = (Xt, Yt, Zt). (One way to calculate a candidate state of the fluid
would be to solve equation (6.7) on particles, i.e. solve (6.9) for X̃(t, .), and
then assume the particles at time t are in the same configuration that they
are in at time 0.) Values are fixed on particles, but the particles may take
up any configuration (subject to the incompressibility constraint that they
do not change volume), therefore possible states of the fluid are described
by elements of R(Xt). The Cullen–Norbury–Purser principle states that we
should minimise the geostrophic energy over all possible states, therefore we
study the minimisation problem

inf
X∈R(Xt)

E(X), (6.11)

where the energy minimiser (if it exists and is unique) gives the actual state
of the fluid. The following theorem is due to Douglas (1998, Theorem 3.1) (in
which we make an additional physically reasonable assumption which ensures
(6.11) is finite):

Theorem 8 Suppose that Xt ∈ Lp(Ω, λ3,R
3), where 2 ≤ p < ∞. Then (6.11)

is uniquely attained by the monotone rearrangement of Xt, that is the unique
element of R(Xt) equal to the gradient of a convex function.

Proof. Applying Theorem 4 yields that
∫
ΩX2(x)+Y 2(x)dλ3(x) has the same

value for each X ∈ R(Xt): therefore it is sufficient to study

sup
X∈R(Xt)

∫
Ω
x.X(x)dλ3(x). (6.12)
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Theorem 6 yields that (6.12) is uniquely attained by X#
t , the monotone rear-

rangement of Xt. ()
We note that in simple examples equation (6.7) may be easy to solve analyt-

ically, and in such cases the methods of Cullen, Norbury and Purser described
above have been used to calculate solutions to the semigeostrophic equations.
In general, however, this is not the case: to prove the existence of solutions, the
equations are reformulated in X (dual) space as a coupled Monge–Ampère/
transport problem. We describe how this is done in §6.5 and discuss existence
results in this setting in §6.6.

Benamou (1992) interprets the minimum energy principle in the following
way: assume that the configuration of the fluid at each time t is an energy
minimum with respect to permutation of the fluid particles. Recalling from
(6.6) that X = ∇P , and using the methods of Brenier (1991, Proposition 2.1),
it can be shown that P (t, .) must be convex. The approach used here differs
in that we prove that an energy minimiser exists (and is unique), rather than
assuming it exists.

6.3 The semigeostrophic equations as a model for frontogene-
sis

The energy minimisation problem of the previous subsection yielded that sta-
ble solutions of the semigeostrophic equations satisfyX(t, .) = ∇P (t, .) at each
time t for some convex function P (t, .). In this subsection, following (for ex-
ample) Cullen (1983) and Evans (1997, Section 7.3), we interpret singularities
of P (t, .) as weather fronts, that is regions across which there are large vari-
ations in wind and temperature. As time evolves, we track the singularities
of P (t, .); this is thought of as weather fronts forming and moving. This is
the sense in which the semigeostrophic equations are considered a model for
frontogenesis. In this subsection we merely outline this idea, giving references
to some relevant literature.

To study the regularity of P (t, .), we note thatX(t, .) is the unique minimiser
of

inf
X∈R(Xt)

∫
Ω
|X(x) − x|22dλ3(x),

and as described in §5 this may be rewritten as an optimal mass transfer
problem, which has an associated regularity theory. (See §5.4.) For each time
t, define a (Borel) measure νt by νt(B) = λ3(X(t, .))−1(B)) for Borel subsets
B of R

3. The image space of X is known as dual space; νt measures what
volume of physical space is mapped to a given set in dual space. We noted in
§5 that the set of measure-preserving mappings between (Ω, λ3) and (R3, νt)
is exactly R(X(t, .)). Our regularity theory holds in the special case when
νt satisfies some additional properties. For a given t, suppose that X(t, .) is
nondegenerate in the sense of Brenier (1991), that is X(t, .) does not map a
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set of positive volume to a set of zero volume. Then νt(E) is well defined for
Lebesgue measurable subsets of R

3, and moreover νt is absolutely continuous
with respect to Lebesgue measure; the crucial consequence of this is that we
may write νt as

νt(E) =
∫
E
ρ(t,X)dλ3(X)

for Lebesgue measurable subsets E ⊂ R
3, where ρ(t, .) is a non-negative inte-

grable function which we call the pseudo-density. (In the language of measure
theory, ρ(t, .) is the Radon–Nikodym derivative of νt with respect to Lebesgue
measure.) Define the support of ρ(t, .), denoted supp ρ(t, .), to be the smallest
closed subset F ⊂ R

3 such that λ3(Ω) = νt(F ). To study the singularities of
P (t, .), we consider the regularity of ∇P (t, .), the optimal mass transfer from
(Ω, λ3) to (supp ρ(t, .), νt) with respect to the cost c(x,y) = |x− y|2/2.

Recall from §5 that regularity of ∇P (t, .) cannot be guaranteed in the case
where supp ρ(t, .) is not convex. Therefore loss of convexity of supp ρ(t, .) as
time evolves can be seen as a mechanism for introducing singularities of P (t, .).
A computationally appealing example is the following. Suppose Ω is convex,
and let ρ(0, .) be a convex pseudo-density patch, that is 1 on some bounded
convex set and 0 otherwise; now let time evolve. If the geostrophic velocity is
sufficiently regular, we see in §6.5 that ρ(t, .) ∈ R(ρ(0, .)) for each t, therefore
ρ(t, .) will continue to be the characteristic function of some set (i.e. 1 on some
set, 0 elsewhere). However supp ρ(t, .) may lose convexity as time evolves, and
singularities of the optimal mapping may form and move. The author is not
aware of any such numerical computations.

The 2-dimensional semigeostrophic equations, that is (6.1), and the appro-
priate forms of (6.3) and (6.4), are still a physically relevant system in certain
regimes. They can be studied in exactly analogous fashion to the 3-dimensional
equations. As explained in §5, additional regularity results for the optimal
mapping are available when we restrict to two dimensions. In particular we
can interpret Wolfson’s result (1997) on the existence of an area-preserving
diffeomorphism as showing that fronts do not form when the pseudo-density
is a characteristic function, and Ω and supp ρ(t, .) satisfy a ‘joint convexity
condition’. (See §5 for details, but note that if Ω is a ball, and supp ρ(t, .) is
‘nearly convex’, then fronts will not form.) Computations have been performed
for two-dimensional semigeostrophic models: Cullen and Roulstone (1993) nu-
merically simulated the evolution of an unstable wave as it passes through
frontal collapse.

As stated in Evans (1997, Section 7.3), ‘There are extremely interesting
mathematical problems here, which have only in part been studied.’
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6.4 Identification of the trajectory mapping via polar factori-
sation

At each fixed time t, stable solutions (in the sense of §6.2) of the semi-
geostrophic equations satisfyX(t, .) = ∇ψ(t, .) for some convex function ψ(t, .)
which we identify with φ/f2 + (x2 + y2)/2. In this subsection we study the
Lagrangian version of the problem, that is equations (6.8), (6.9) and (6.10),
using the techniques of Benamou and Brenier (1992, 1998a). Our aim is to
find the trajectory mapping χ.

For each t, assume X̃(t, .) is square integrable and nondegenerate (as defined
in §5.5, that is X̃(t, .) does not map a set of positive size to a set of zero size).
Then, for each t, Theorem 7 yields that X̃(t, .) has a unique polar factorisation
into the composition of its monotone rearrangement with a measure-preserving
mapping, that is there exists a convex function ψ(t, .), and a unique measure-
preserving mapping s(t, .) such that

X̃(t, .) = ∇ψ(t, s(t, .)). (6.13)

We identify ψ(t, .) with P (t, .) (as before), and s(t, .) with the trajectory map-
ping χ(t, .) at each fixed time t. For each t, Proposition 4 yields that χ(t, .) is
the projection of X̃(t, .) onto the set of measure-preserving mappings from Ω
to Ω. Denoting this projection mapping by ΠS , (6.9) yields that

∂X̃
∂t

= f(J(Id − ΠS)X̃) (6.14)

where Id denotes the identity map on Ω. Benamou (1992) refers to (6.14) as
the dynamic rearrangement equation.

The nondegeneracy assumption implies that X̃(t, .) has no level sets of posi-
tive measure: this excludes some physically reasonable solutions. As discussed
in §5.5, if X̃(t, .) has at least one level set of positive measure, then the polar
factorisation (6.13) (if such exists) is not unique: hence in this case we can-
not define the trajectory mapping uniquely without further information. A
question of current interest is how to choose the trajectory mapping when the
polar factorisation (6.13) is known to exist but is not unique.

6.5 Reformulation of the semigeostrophic equations as a cou-
pled Monge–Ampère/transport problem

In §6.2 we showed that solutions of the semigeostrophic equations (6.6), (6.7)
and (6.3) which can be interpreted as a sequence of minimum energy states
are those for which P (t, .) is a convex function at each time t. However we
did not address the problem of showing that such solutions exist. Our aim
in this subsection is to rewrite the semigeostrophic equations as a coupled
Monge–Ampère/ transport problem in X (or dual) space; we discuss existence
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of solution for this formulation in the next subsection. We assume that X(t, .)
is nondegenerate for each t, and show that the (Legendre–Fenchel) conjugate
convex function of P (t, .) (which we denote R(t, .)) satisfies a Monge–Ampère
problem in a generalised sense. The right-hand side of the Monge–Ampère
equation is the pseudo-density (at time t). The Monge–Ampère problem re-
places (6.6), the convexity condition and the nondegeneracy assumption. (This
reformulation uses the so-called duality structure of the semigeostrophic equa-
tions.) We can use (6.7) to derive an evolution equation for the pseudo-density;
this yields a coupled system which is a closed form of the semigeostrophic equa-
tions. The advecting velocity is the geostrophic velocity (written in dual space
coordinates); it may be derived from R.

To establish the coupled problem in dual space and to discuss existence
results we need to use technical language: the reader is referred to Friedman
(1982) for a more detailed description of the terms used. We first address the
question of why we reformulate the semigeostrophic equations in dual space,
rather than establish an existence theory in the physical space Ω. To use
the results of Diperna and Lions (1989) to show existence of solution for the
evolution equation (6.7) we require the advecting velocity u(t, .) ∈ W 1,1(Ω)
(or better) at each time t, that is u(t, .) is integrable, and has a derivative in
the sense of integration by parts against smooth functions which vanish on ∂Ω,
which is also integrable. However the convexity of P (t, .) at each time t gives
information about the regularity of ug (via (6.6)) rather than u. To avoid this
difficulty we work in dual space.

The methods of §6.2 yielded X as a function of x at each fixed time t;
now we wish to reformulate the semigeostrophic equations in X variables,
therefore we find a mapping from X to x. For each t, given X(t, .) = ∇P (t, .),
essentially we restrict attention to the case where ∇P (t, .) is injective, so that
we have x(t, .) = (∇P (t, .))−1. For a convex function there is a natural notion
of generalised derivative, the subdifferential: the subdifferential of f at a point
x, which we denote ∂f(x), is the set of hyperplanes to the graph of f at the
point (x, f(x)). A convex function may have ‘kinks’, but it is differentiable at
all other points on the interior of the set where it is finite: the subdifferential
of a convex function f is the singleton set {∇f(x)} for almost every x where
f(x) is finite. Without loss of generality we can choose P (t, .) to be lower
semicontinuous (which, roughly speaking, is a one-sided version of continuity),
and proper, that is P (t, .) never takes the value −∞ and is finite at some point.
We define the (Legendre–Fenchel) conjugate convex function of P (t, .), which
we denote R(t, .), by

R(t,X) = sup{x.X− P (t,x) : x ∈ R
3}. (6.15)

We have the following result.

Proposition 5 Suppose X(t, .) : Ω → R
3 is an integrable function which

satisfies X(t, .) = ∇P (t, .) almost everywhere for some proper lower semicon-
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tinuous convex function P (t, .) : R
3 → R ∪ {+∞}. Then, for almost every

x ∈ Ω,
P (t,x) + R(t,X(t,x)) = x.X(x, t). (6.16)

Moreover if X(t, .) does not map a set of positive size to a set of zero size (i.e.
X(t, .) is nondegenerate), then

x = ∇R(t,X(x, t)) (6.17)

for almost every x ∈ Ω.

Proof. From our remarks above we have that ∂P (t, .)(x) = {X(t,x)} for
almost every x ∈ Ω. Standard convex analysis (see Rockafellar 1970, Theorem
23.5) demonstrates that (6.16) holds for almost every x ∈ Ω. Noting that P (t, .)
is convex, lower semicontinuous and proper, and adopting the notation that
f∗ denotes the conjugate convex function of f , Rockafellar (1970, Theorem
12.2) yields that P ∗∗(t, .) = P (t, .). Rewriting (6.16) we have

R∗(t,x) + R(t,X(t,x)) = x.X(t,x)

for a.e. x ∈ Ω. It follows that x ∈ ∂R(t, .)(X(t,x)) for almost every x ∈ Ω.
If X(t, .) is nondegenerate, then ∂R(t, .)(X(t,x)) = {∇R(t,X(t,x))} for a.e.
x ∈ Ω, and we obtain (6.17). ()

The nondegeneracy assumption ensures that X(t, .) does not map a set
of positive size to the set where R(t, .) is not differentiable, therefore (6.17)
holds. For two points x,y ∈ Ω, x �= y, with X(t,x) = X(t,y) = k, say, the
methods of the above proof yield that x,y ∈ ∂R(t, .)(k), therefore R(t, .) is
not differentiable at k. So if we cannot make ∇P (t, .) injective by ignoring a
set of measure zero, (6.17) is replaced by a differential inclusion. We do not
study this problem in this article; however we note that it is the appropriate
generalisation to the case where we do not assume the (physically unjustified)
nondegeneracy condition.

At each fixed t, if we restrict X(t, .) to Ωt ⊂ Ω, where Ωt is chosen so that
(6.17) holds for every x ∈ Ωt and λ3(Ωt) = λ3(Ω), then X(t, .) is injective on
Ωt. Now we can define the inverse mapping x = x(t,X), and x(t, .) = ∇R(t, .)
on X(Ωt). X(t, .) = ∇P (t, .), (6.16), and x(t, .) = ∇R(t, .) are sometimes
referred to as the duality structure of the semigeostrophic equations. There
is a considerable literature which has identified and exploited this structure
for particular solutions (see for example Cullen and Purser 1984, Chynoweth,
Porter and Sewell 1988).

For each t let νt be the measure introduced in §6.3. X(t, .) is nondegenerate
by assumption, therefore (as discussed in §6.3) νt may be written

νt(E) =
∫
E
ρ(t,X)dλ3(X)
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for every (Lebesgue measurable) subset E of R
3, where (integrable non-nega-

tive) ρ(t, .) is the pseudo-density. In particular at each time t we have the
constraint ∫

R3

ρ(t,X)dλ3(X) =
∫

R3

dνt = λ3(Ω).

Moreover the methods of Burton and Douglas (1998, Lemma 6) yield that
x(t,X) = ∇R(t,X) for νt a.e. X ∈ R

3, or equivalently, for a.e. X ∈ supp ρ(t, .)
(where supp ρ(t, .) is the smallest closed set which contains all the mass of νt).

We rewrite (6.6) using the methods of Brenier (1991). Fixing t, for each
F ∈ Cc(R3) (where Cc(R3) denotes continuous functions with compact support
in R

3) it follows from (6.6) that∫
Ω
F (∇P (t,x))dλ3(x) =

∫
R3

F (X)ρ(t,X)dλ3(X). (6.18)

If we make the substitution X = ∇P (t,x) in the left hand integral of (6.18),
a formal calculation, using the fact that x(t,X) = ∇R(t,X) on supp ρ(t, .),
yields∫

supp ρ(t,.)
F (X)det H(R(t,X))dλ3(X) =

∫
R3

F (X)ρ(t,X)dλ3(X)

for each F ∈ Cc(R3), where H denotes the Hessian matrix. This gives the
following Monge–Ampère problem for each t:

det H(R(t,X)) = ρ(t,X), (6.19)
∇R(t,X) maps the support of ρ(t,X) into Ω.

It follows that (6.18) is a weak formulation of (6.19).
We can use the evolution equation (6.7) to derive the following transport

equation for ρ, which holds in the classical weak sense (see Benamou and
Brenier 1992, 1998a for details):

∂ρ

∂t
+ ∇.(ρU) = 0 (6.20)

where U = f(y − Y,X − x, 0) and ∇ ≡ (∂/∂X, ∂/∂Y, ∂/∂Z). Noting that
x(t, .) = ∇R(t, .) νt a.e. in R

3 for each t, we have

U = f(J(Id − ∇R)) (6.21)

where Id denotes the identity mapping on R
3. The transport equation (6.20) is

coupled to the Monge–Ampère problem (6.18) by (6.15) and (6.21). It follows
from (6.21) that if R is sufficiently smooth, ∇.U = 0. When this holds, the
solution of (6.20) can be viewed as rearranging the initial values of ρ i.e. ρ(t, .)
is a rearrangement of ρ(0, .) for each positive time t.
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6.6 Weak solutions of the semigeostrophic equations

The previous section yielded equations (6.15), (6.18), (6.20) and (6.21) for
unknowns R, P , ρ andU. We discuss existence of solution for the system (6.18)
and (6.20) (which holds in the classical weak sense), coupled by (6.15) and
(6.21), posed on [0, t1) × R

3 for some t1 > 0, with initial condition ρ(0, .) = ρ0
given. The difficulty is showing that U is sufficiently regular to solve the
evolution equation (6.20) in some suitable sense: in view of (6.21), what we
have to show is that given ρ(t, .), the function R(t, .) obtained from (6.18)
and (6.15) is sufficiently smooth. One possible strategy to prove existence of
solutions is to use a fixed point argument. From our earlier assumptions we
have that ρ(t, .) is non-negative and integrable; if we could show that the
solution to the Monge–Ampère problem R(t, .) ∈ W 2,1(R3), then (6.21) yields
that U(t, .) ∈ W 1,1(R3), and we could use the transport theory of Diperna
and Lions (1989) to solve (6.20). The author is not aware of any proof of
this result. Given the additional hypothesis that ρ0 ∈ Lp(R3) for p > 3, and
is compactly supported, Benamou and Brenier (1992, 1998a) proved a result
of weak existence - they showed existence of solutions for an approximate
problem and then passed to the limit. The smoother approximate problem
was obtained by discretising time and mollifying; the fact that a limiting weak
solution exists is reliant on the continuity of the mapping u → u# (where u#

denotes the monotone rearrangement of u). Similar results were obtained by
Otto (1997). The author is not aware of any uniqueness results.

For a given t, let St denote the set of measure-preserving mappings from
(supp ρ(t, .), νt) → (Ω, λ3); it is easily seen that ∇R(t, .) is the optimal map-
ping in St against the cost c(W,Z) = |W − Z|2/2. We can choose the ‘target
set’ Ω convex, so can we use the regularity theory for R(t, .) stated in §5.4 to
prove existence of strong solutions (at least for short times)? This question
is open to the best of the author’s knowledge. For notational convenience we
write Y (t) for the interior of supp ρ(t, .). If we assume that Ω and supp ρ(t, .)
are bounded, convex and have smooth boundaries, Caffarelli (1996) shows that
if ρ(t, .) ∈ Cα(Y (t)) (for some 0 < α < 1), and is bounded above and below,
away from zero, then R(t, .) ∈ C2,α(Y (t)): in this case we have regularity up
to the boundary, and classical transport theory (using characteristics) may be
applied. However the same regularity theory yields P (t, .) ∈ C2,α(Ω); in the
light of §6.3, restricting to solutions where the support of ρ(t, .) is convex and
has smooth boundary is limiting the theory to the case when no fronts form!
If we relax the assumptions to Ω convex, supp ρ(t, .) bounded and connected,
(with the same restrictions on ρ(t, .),) then there is an interior regularity the-
ory due to Caffarelli (1992a). If ρ(t, .) ∈ C1,β(Y (t)) for some 0 < β < 1, then
R(t, .) ∈ C3,α

loc (Y (t)) for each 0 < α < β. The challenge is to demonstrate
regularity up to the boundary (e.g. R(t, .) ∈ C2,α(Y (t))) in this case.

We conclude this section with an observation of Evans (1997). The system
(6.20), (6.21) and (6.19), posed on [0, t1) × Y (t), is similar in structure to the
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vorticity formulation of the 2-dimensional Euler equations:

∂ω

∂t
+ ∇.(ωu) = 0, (6.22)

u =
(
∂ψ

∂y
,−∂ψ

∂x

)
, (6.23)

−∆ψ = ω. (6.24)

Here u is the velocity, ω the vorticity, ψ the streamfunction. For the semi-
geostrophic equations, we have a Monge–Ampère problem rather than (6.24):
roughly speaking, (6.22), (6.23) and (6.24) is a linearisation of (6.20), (6.21)
and (6.19). There is an existence theory (for strong global solutions) for the
2-dimensional Euler equations, (see for example Lions 1996,) so we can hope
that a parallel theory can be developed for the semigeostrophic equations.
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Statistical Methods in Atmospheric
Dynamics: Probability Metrics and
Discrepancy Measures as a means of
defining Balance

Stephen Baigent and John Norbury

1 Introduction

The aim of this chapter is to introduce a probabilistic approach to defining bal-
ance for geophysical flows. Geophysical flows are split into fast and slow com-
ponents where the slow component describes some ‘average’ or ‘macroscopic’
large scale evolution, whereas the fast component describes the more rapid
fluctuations of particle positions on a ‘microscopic’ fine or very local scale. We
will treat the fast variables as random variables and, in the spirit of statis-
tical physics, we will identify fluid microstates as measure-preserving maps,
and fluid macrostates as probability distributions on the set of microstates.
A balanced flow will then be characterised by a particular macrostate (i.e.
probability distribution), which is, in a sense to be defined later, the most
likely for the observed macroscopic properties of the fluid. We will charac-
terise semigeostrophic flow as the most likely evolution of minimum energy
states consistent with the large-scale constraints of the system.

Like many other physical systems, the atmosphere has both fast and slow
dynamics. The slow dynamics describe the macroscopic or averaged evolution
of the air ‘parcels’ (say approximately 10 km by 10 km in the horizontal,
by 100m in the vertical, or more), whereas the fast dynamics describes the
microscopic or fine scale rapid movement of air ‘particles’ (of sizes about 10−
100 m3) that are 108–109× smaller. To the synoptic large scale modeller these
fast microscale motions are mostly irrelevant and a nuisance. First, these (often
unstable) motions do not usually provide information relevant to the large-
scale model; secondly they are often associated with unwanted phenomena,
such as gravity waves; and thirdly they often lead to instabilities that plague
numerical calculations. However, the small scale vertical movement of thermal
energy is a daily process that is necessary in maintaining the large scale vertical
balance represented by the hydrostatic law, and so small-scale motions may,
over longer time-scales, significantly affect the large-scale dynamics.

There has been considerable research into devising models for which these
microscopic features are eliminated. Typically this is achieved in two ways.
First by the reduction of the full model to a lower dimensional system by

342
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projecting the original system onto a lower dimensional manifold. The quasi-
geostrophic [20, 12] and semigeostrophic [13, 24] models are examples of this.
In the second approach, for instance nonlinear normal mode initialisation, the
primitive equations are retained and the initial conditions etc. are filtered in
order to eliminate fast components (see, for example, [18, 2]). The filtering
process actually constitutes projection onto a manifold, which is supposed to
correspond to an invariant manifold of the full model, so that by projecting
initial conditions onto this manifold it is hoped that the evolution remains
on this manifold and the fast components remain eliminated. Usually it is as-
sumed that the invariant manifold is locally attracting, or at least that any
small amount of noise containing a fast component does not grow.

These two approaches may be related, along the lines shown by Leith [17]:
the full model projected onto various iterative approximations to the invariant
slow manifold corresponds to making increasingly higher order Rossby number
approximations to the dynamics. In particular the first iterate corresponds to
the quasigeostrophic approximation, and defines the manifold of geostrophic
balance, where the horizontal pressure forces balance the coriolis forces induced
by the planetary rotation to the accuracy of the basic approximation. In the
vertical direction we have the hydrostatic equation where the vertical pressure
gradient is balanced by the buoyancy force.

Geostrophic balance is obtained from the equations for horizontal momen-
tum in the full model by setting the Rossby number to zero. Both quasi-
and semigeostrophic theories use geostrophic balance as the basic equilibrium
state of the atmosphere at mid-latitudes, around which the actual dynamics
fluctuates. Geostrophic and hydrostatic equilibrium can also be obtained via
the Cullen, Norbury and Purser minimisation principle (CNP) [10], which de-
fines a balanced state in terms of minimisers of an energy functional over a
class of virtual displacements of air parcels that conserve horizontal angular
momentum (and fluid mass) in the rotating system.

In this paper we propose a statistical approach to characterising equilib-
rium or balanced states. We seek to define a basic equilibrium state of the
atmosphere as that state which is statistically most likely, given all the in-
formation we have, such as, for example, the system energy. We develop a
stochastic description for the fast dynamics through a probability distribution
on the set of all fluid particle configurations, and obtain the balanced state as
a mapping from the slow to the fast variables derived from a special, ‘most
likely’ probability distribution on the fluid configurations. We consider an en-
semble of independently evolving replica systems, and define the equilibrium
macrostate at a time t as the most likely probability distribution of system
configurations for the ensemble at time t.

We explore the use of the Kullback–Leibler discrepancy measure to deter-
mine the ‘distance’ of one fluid macrostate from some fixed reference macro-
state, namely that corresponding to uniformly rotating flow, and define a



344 Baigent and Norbury

balanced state to be that macrostate which minimises the Kullback–Leibler
discrepancy measure subject to the known statistics of the system. Note that
this does not involve making approximations in expansions of the dynamical
equations in the Rossby number, although smallness of the Rossby number
is needed to motivate the separated time scales. Furthermore, the constraints
may be time-dependent on the slow time scale, so that non-conservative effects
such as heating and dissipation could easily be included.

We show that the most likely state of a system chosen at random from
the ensemble is geostrophic balance, and this is the state (with probability
one) of all systems in the ensemble when the statistical ‘temperature’ tends
to zero, i.e. defines the ground state of the system. The CNP principle thus
defines the system ground state, and geostrophic balance physically results
from the continual dissipation of energy until the ground state is achieved.
Semigeostrophic flow is an evolution through the set of ground states.

Section road map

We begin in §2 by reviewing the Boussinesq equations for 3D flow on an f -
plane, rescaling and making a special transformation of coordinates to span
phase space with fast and slow variables. Our aim will be to define balanced
manifolds as mappings from the slow to the fast variables.

Next in section §3 we review the CNP minimisation principle and rearrange-
ment theory, and examine how these ideas are applied to define geostrophic
balance. A simple illustrative Lattice model for geostropic balance is discussed
in §4, and problems with defining unique solutions are highlighted. In §5 the
principle is also reformulated as the problem of finding the minimum L2 dis-
tance (or discrepancy) between a given probability distribution and a uniform
distribution, so that geostrophically-balanced flow is that flow which is closest
in this metric to uniformly rotating flow, subject to the applied constraints.
Next in §6 the geostrophic balance manifold is used to derive a quasi-steady
state system known as the semigeostrophic equations.

Motivated by the success of statistical physics in providing a model for
equilibrium thermodynamics, we briefly review in §7 the maximum entropy
principle. This principle is then applied in §8 to define balance for the Boussi-
nesq equations in 3D. A new Lattice model incorporating the MEP for defining
balance is introduced in §9.

Finally, the Appendix outlines some basic convexity theory and related ideas
for Banach spaces that we use in constructing mappings between our phase
space variables and the original physical configuration space variables.
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2 Boussinesq equations for 3D f-plane flow

The starting point for most simple models of the atmosphere is the set of
primitive equations for the inviscid, adiabatic motion of an incompressible fluid
in a rotating frame, the fluid occupying a fixed domain D ⊂ R

3. In addition the
fluid is assumed to be in hydrostatic balance, that is, subject to a gravitational
force −gz, where z is (measured) parallel to the axis of rotation, that causes
the vertical pressure gradient. Potential temperature is taken as given on fluid
particles by defining mass/density conserving coordinates x = (x, y, z) (the
context indicates when x = x(a, t) or x is a coordinate system). The (x, y, z)
are chosen such that Lebesgue measure dµ in this coordinate system is equal
to the mass measure, so that the fluid density is unity. In terms of these
mass coordinates, the fluid occupies a closed, bounded label set L ⊂ R

3 with
dµ(a) = dµ(x) for a ∈ L,x ∈ D. Let the velocity field1 of the fluid at each
label point a ∈ L and time t > 0 be u = (u, v, w), the potential temperature
field be θ, and the geopotential pressure field be φ. The material derivative d/dt
is defined by the rate of change following a particle with velocity u = dx/dt
as

d

dt
=

∂

∂t
+ (u · ∇x). (2.1)

(Here the subscript x indicates the choice of coordinates for the gradient ∇.)
With these definitions, the scaled horizontal force-acceleration equations read,
for x ∈ L, where henceforth we identify the label set L with the initial particle
locations, so that L = D, and t ≥ 0, with no source terms for horizontal
momentum or potential temperature,

du

dt
− fv = −∂φ

∂x
= −f

∂φ̂

∂x
(2.2)

dv

dt
+ fu = −∂φ

∂y
= −f

∂φ̂

∂y
. (2.3)

For simplicity we consider θ constant on particles (no heating or rainfall) so
that

dθ

dt
= 0. (2.4)

For hydrostatic balance in the vertical we have

gθ

θ0
=

∂φ

∂z
= f

∂φ̂

∂z
. (2.5)

Here we have scaled the geopotential by the coriolis parameter f to give a new
potential φ̂ = φ/f .

1At present, we assume that all defined functions lie in some appropriate function space
such that the indicated derivatives exist.
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Finally, since x = (x, y, z) correspond to mass coordinates, we have unit
fluid density and conservation of mass is represented by

div (u, v, w) = 0. (2.6)

The function θ is measured relative to some reference value θ0, g is the gravi-
tational constant, and f is the coriolis rotation parameter (assumed constant).

Since u = dx/dt and f is constant, we can rewrite the equations for hori-
zontal momentum as

d

dt
(u − fy) = −∂φ

∂x
= −f

∂φ̂

∂x
(2.7)

d

dt
(v + fx) = −∂φ

∂y
= −f

∂φ̂

∂y
. (2.8)

Now defining new variables X,Y, Z by

X = x +
1
f
v, Y = y − 1

f
u, Z =

gθ

f2θ0
(2.9)

allows us to rewrite (2.7), (2.8), (2.4) together with (2.9) as

dX

dt
= −∂φ̂

∂y
(x) (2.10)

dY

dt
=

∂φ̂

∂x
(x) (2.11)

dZ

dt
= 0 (2.12)

dx

dt
= f(y − Y (x)) (2.13)

dy

dt
= f(X(x) − x). (2.14)

The vertical motion is implicit through relations (2.5) and (2.6). Since, in prac-
tice with our North Atlantic horizontal space scale and our hourly timescale,
1/f is small, (2.10)–(2.14) is a singular perturbation problem in which X,Y
are the slow variables and x, y are the fast variables which are formally slaved
to the X,Y variables in the 1/f → 0 limit. From (2.13) and (2.14) the hori-
zontal velocity components (dx/dt, dy/dt) are large unless ‖(X,Y )− (x, y)‖ =
O(1/f). Thus if initially (X,Y ) and (x, y) are not close, the air parcels move
very rapidly, on a time scale O(1/f). On the other hand, the X,Y variables
appear to move on an O(1) time scale.

Hence we seek balanced flows where the X,Y components will evolve with
small deviations from a mean slow evolution, whereas the x, y components
will vary around this slow evolution with faster fluctuations. Singular pertur-
bation problems can be treated with approaches based upon the persistence
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of invariant manifolds [28], or time averaging methods of perturbation the-
ory [27]. Usually, modellers [13] define a basic equilibrium state by setting
ε ≡ 1/f = 0 in (2.2) and (2.3) to obtain the zeroth order (in ε) approximation
to the horizontal velocity field:

u0 = −∂φ̂0
∂y

, v0 =
∂φ̂0
∂x

. (2.15)

These are known as the horizontal geostrophic velocities. They are the hori-
zontal velocities for which the horizontal pressure gradient matches the coriolis
force on air parcels. Note also that the geopotential φ̂0 in (2.15) is the zeroth
order approximation of φ̂ in a series expansion in powers of ε. Combining (2.9)
and (2.15) we obtain

X = x +
1
f

∂φ̂0
∂x

, Y = y +
1
f

∂φ̂0
∂y

, (2.16)

together with

Z =
1
f

∂φ̂0
∂z

, (2.17)

which follows from the zeroth order terms of (2.5). Equations (2.16) and (2.17)
can be written concisely using the new potential P0(x) = 1

2(x2 + y2) + 1
f φ̂0(x)

as
X(x) = ∇xP0(x). (2.18)

For ε = 0 this mapping ∇P0 : D → R
3 defines an invariant manifold for equa-

tions (2.10)–(2.14) defined by X = x, Y = y. Note that ∂u0/∂x+ ∂v0/∂y = 0,
so that no vertical motion (∂w0/∂z = 0 implies w0 = 0) is required for
this invariant manifold, and Z ≡ 0 is consistent with equation (2.12). How-
ever, a leading order stratified model could be allowed by having f−1∂φ̂/∂z
tend to Z(z) as ε = f−1 → 0; if the basic motion is horizontal then again
dZ/dt ≡ 0. To establish the persistence or not of this invariant manifold for
small ε = f−1 > 0, one could resort to theories such as Hamiltonian pertur-
bation theory. These approaches are not pursued here; instead we estimate x
(treated as a random variable) from the known statistics, such as the conserved
fluid energy, to establish a nearby model with an invariant manifold.

Note that the energy of the full flow (2.2)–(2.6) is conserved. Forming the
inner product of (2.2), (2.3) and (2.5) with the velocity field u = (u, v, w) we
have (

u
du

dt
+ v

dv

dt

)
+ u · (−fv, fu,−gθ/θ0) = −u · ∇φ (2.19)

1
2

d

dt

(
u2 + v2

)− w
gθ

θ0

(A)
= −div (uφ) (2.20)

d

dt

{
1
2
(
u2 + v2

)− gzθ

θ0

}
(B)
= −div (uφ), (2.21)
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where (A) follows from the incompressibility condition (2.6) and (B) from
(2.4). Integrating this last expression over D and using the zero normal velocity
component boundary condition on ∂D yields

E =
∫
D

{
1
2
(
u2 + v2

)− gzθ

θ0

}
dµ(x) = constant. (2.22)

In the terms of the transformed coordinates (2.9) and the Lagrangian fluid
labels a this energy becomes (using dµ(x) = dµ(a))

E = f2
∫
L

{
1
2
(
(X − x)2 + (Y − y)2

)− zZ

}
dµ(a). (2.23)

For the purposes of the next section on the CNP minimisation principle, we
note that the appended integral

E′ = f2
∫
L

{
1
2
(
(X − x)2 + (Y − y)2 + (Z − z)2

)}
dµ(a) (2.24)

is also conserved by the flow. This follows because (i) Z is materially trans-
ported by particles from (2.4) and (2.17), and (ii) the incompressible fluid is
confined to a fixed domain, so that the integrated Z2 and z2 terms in (2.24)
are also constants during the motion, that is the integrals are conserved by
the flow.

3 The CNP minimisation principle and rearrange-
ments

The CNP minimisation procedure [9, 10, 11] defines geostrophic balance and
semigeostrophic flow in terms of minima of the fluid energy (2.24) over virtual
displacements of fluid particles that conserve the particle horizontal momenta.

When CNP was first introduced in [10], it was shown that for smooth
mass-conserving variations of fluid particles (which are equivalent to smooth
momentum-conserving virtual displacements) the extrema satisfy X = ∇x
P0(x), where P0 is some smooth potential function, thus identifying, via (2.18),
an extreme energy state with geostrophic balance. To ensure stability, the
minimum energy state was chosen, and for such states P0 is convex. The min-
imum energy configuration was used to define the semigeostrophic equations
in geostrophic momentum coordinates:

dX

dt
= f

(
∂R0

∂Y
− Y

)
(3.1)

dY

dt
= f

(
X − ∂R0

∂X

)
(3.2)

dZ

dt
= 0, (3.3)
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where R0(X) := X ·∇P−1
0 (X)−P0(∇P−1

0 (X)) is the Fenchel conjugate of P0
(see also A.4 in the Appendix for a more general definition of the Fenchel con-
jugate). On constant Z surfaces, the semigeostrophic flow (3.1)–(3.3) advects
the semigeostrophic potential vorticity (see, for example, [13])

ρ(X) := detD2R0(X). (3.4)

To see this, we note that, since ∂(x, y, z)/∂(a, b, c) = 1 (which follows from
(2.6)), the Eulerian expression for PV

ρ(X) = detD2R0(X) =
∂(X,Y, Z)
∂(x, y, z)

(3.5)

can be given in Lagrangian terms, on a particle labelled a ∈ D as

ρ(a, t) =
∂(X(a, t), Y (a, t), Z(a, t))

∂(a, b, c)
. (3.6)

To see that this is conserved following the particle, we first note from (2.12)
that Z(a, t) = Z(a, 0) for all t ≥ 0. Therefore we have

∂(X(a, t), Y (a, t), Z(a, t))
∂(a, b, c)

=
∂(X(a, t), Y (a, t), Z(a, t))
∂(X(a, 0), Y (a, 0), Z(a, 0))

×∂(X(a, 0), Y (a, 0), Z(a, 0))
∂(a, b, c)

=
∂(X(a, t), Y (a, t), Z(a, 0))
∂(X(a, 0), Y (a, 0), Z(a, 0))

× ρ(a, 0)

=
∂(X(a, t), Y (a, t))
∂(X(a, 0), Y (a, 0))

× ρ(a, 0)

= ρ(a, 0).

The last line follows from the fact that

r(t) = ∂(X(a, t), Y (a, t))/∂(X(a, 0), Y (a, 0)) = 1,

which follows from r(0) = 1 and

d

dt

∂(X(a, t), Y (a, t))
∂(X(a, 0), Y (a, 0))

=
∂(Ẋ(a, t), Y (a, t))
∂(X(a, 0), Y (a, 0))

+
∂(X(a, t), Ẏ (a, t))
∂(X(a, 0), Y (a, 0))

A=
∂(Ẋ(X, t), Y (X, t))

∂(X,Y )
+

∂(X(X, t), Ẏ (X, t))
∂(X,Y )

=
∂Ẋ

∂X
+

∂Ẏ

∂Y

= f

(
∂2R0

∂X∂Y
− ∂2R0

∂Y ∂X

)
= 0.



350 Baigent and Norbury

Here step ‘A’ follows under the assumption that a �→ X(a, t) is invertible for
each t. The conservation of vorticity represents the consistency of the Eulerian
and Lagrangian descriptions of this field of fluid mechanics.

In order to extend semigeostrophic theory to more realistic flows and incor-
porate frontogenesis, the set of variations is enlarged to include all measure-
preserving maps of the fluid labels onto themselves, whereby the CNP min-
imisation becomes:

CNP Principle

Given X(·) : L → R
3 find

inf
s∈S

∫
L

1
2
|X(a) − s(a)|2 dµ(a), (3.7)

where S is the set of all measure-preserving transformations of L into itself,
i.e.

S = {s : L → L : µ(A) = µ(s−1A) for all Borel A ⊂ L}.
For this extended problem the convex minimisers (when they exist) need not
be smooth, thus allowing for the formation of atmospheric fronts.

In [11] Cullen and Purser treat (3.7) for piecewise constant momenta X,Y
and potential temperature θ in the two-dimensional deformation model [8], for
which there is a single horizontal coordinate plus the vertical coordinate. L
is now an open convex subset of R

2 and {Ui}ni=1 a collection of disjoint open
convex sets such that ∪ni=1Ūi = L̄.

For a given piecewise constant vector-valued function X0 : L → R
2 satisfy-

ing

X0(x) =
{

X i x ∈ Ui
0 otherwise,

(3.8)

Cullen and Purser defined X : L → R
2 to be a rearrangement of X0 if

µ{x | X(x) = Xi} = µ{x | X0(x) = Xi}, (3.9)

and showed that there exists a unique (continuous but not necessarily smooth)
convex function φ : L → R such that the closure of ∇φ(L) is a rearrangement
of X0. To do this, they defined, for a set of arbitrary real numbers {hi}ni=1, a
piecewise linear convex function

φ(x) = max
i

{
xTX i − hi

}
. (3.10)

The function φ defines a convex polyhedron with m(≤ n) faces embedded in
R
3. The m faces have gradients {Xik}mk=1 for some set of integers ik ∈ [1, n],

and the faces project onto open convex sets Eik in L such that ∪mk=1Ēik = D̄.
Cullen and Purser showed that there is a unique set of hi (up to an additive
constant) such that m = n and µ{Eσ(i)} = µ{Ui} for some permutation
σ ∈ Sn, thus defining the optimal solution (3.10).
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4 A lattice model for geostrophic balance

A Lattice problem is studied in Benamou [6] and Baigent [4], whereby L was
approximated by a fixed lattice of points Γ = {a1, . . . ,an} ⊂ R

3, and (3.7)
replaced by

inf
σ∈Sn

n∑
i=1

1
2
|X i − aσ(i)|2, (4.1)

where Sn is the permutation group of order n. Clearly, the infimum in (4.1) is
attained, so ‘inf’ can be replaced by ‘min’. An n-square matrix K = ((kij)) is
doubly stochastic when each kij ≥ 0 and

∑n
i=1 kij = 1 =

∑n
j=1 kij . According

to Birkhoff’s theorem, the n! n-square permutation matrices Pσ = ((δi σ(j)))
(σ ∈ Sn) are the extreme points of the set of doubly stochastic matrices, and
any doubly stochastic matrix K can be written as a convex sum of permutation
matrices Pσ, say

K =
∑
σ∈Sn

pσPσ, (4.2)

where 0 ≤ pσ ≤ 1 for σ ∈ Sn satisfy
∑
σ∈Sn

pσ = 1. Hence, the pσ define a
probability distribution over the set of permutations σ ∈ Sn. This decomposi-
tion of doubly stochastic matrices into a convex sum of permutation matrices
is central to our statistical approach, since it defines a probability distribution
on the set of system configurations σ ∈ Sn, and therefore furnishes an ensemble
interpretation. However it is important to note that, while this decomposition
holds true when n → ∞, it may break down in the uncountable continuum
limit [26], since there are extreme points that do not correspond to nonsingular
measure-preserving maps.

Returning to (4.1), we now follow [4] and convert (4.1) to a Linear Program.
Let cij = 1

2 |Xi − aj|2. Then since any extreme value of a linear function over
a closed convex subset of R

n2
occurs at an extreme point (Theorem 2, [29, p

3]), we may relax (4.1) to

minimise : f(k) =
n∑
i,j=1

kijcij

subject to : k ∈ F = {k |
n∑
i=1

kij = 1 =
n∑
j=1

kij, 0 ≤ kij ≤ 1};
(4.3)

so explicitly,

min
σ∈Sn

n∑
i=1

1
2
|X i − aσ(i)|2 = min

k∈D

n∑
i,j=1

1
2
|Xi − aj |2kij (4.4)

where D is the set of n-square doubly stochastic matrices. In the field of Linear
Programming (4.3) is known as the Optimal Assignment Problem. The corre-
sponding dual canonical maximisation problem can be constructed following
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Trustrum [29, pp 33–34] to obtain

maximise : g(u, v) =
n∑
i=1

ui +
n∑
j=1

vj

subject to : (u, v) ∈ G = {(u1, . . . , un, v1, . . . , vn) ∈ R2n | ui + vj ≤ cij}.
(4.5)

The ui, vj are the Lagrange multipliers for the primal program. The Fun-
damental Duality Theorem (Theorem 3, [29, p 19]) states that if the primal
and dual programs have feasible solutions then they each have optimal so-
lutions and their optimal values are the same. This is easy, as the set of n!
real (bounded) sums {∑ni=1 ciσ(i) | σ ∈ Sn} clearly has a largest element and
therefore the primal has an optimal solution k corresponding to a permuta-
tion matrix Pσ (although this solution may not be unique). A feasible solution
can easily be constructed for the Dual as follows. Let {ui}ni=1 be any set of
real numbers. Define vj = mini{cij − ui}. Then the ui, vj are real numbers
satisfying the constraint ui + vj ≤ cij for all i and j, and therefore are feasi-
ble solutions. Hence we have shown that the optimisation problem (4.1) has
an optimal solution. Next we wish to establish the properties of the optimal
solution.

Trustrum’s canonical equilibrium theorem (Theorem 5,[29, p 23]) then shows
that the optimal solution to the assignment problem satisfies, upon writing
xi = aσ∗(i), where σ∗ is the optimal ordering,

ui + vi = 1
2 |Xi − xi|2 (i = 1, 2, . . . , n),

ui + vj ≤ 1
2 |Xi − xj |2 i �= j.

(4.6)

It is easy to see, after choosing j = σ(i) and then comparing equivalent sums,
that in this ordering

n∑
i=1

XT
i xi ≥

n∑
i=1

XT
i xσ(i), (4.7)

for all σ ∈ Sn not equal to the identity permutation. Hence the Linear Program
(4.3) and its dual (4.5) are equivalent to the optimisation problem (4.1).

Now define two functions φ, ψ : R
3 → R by

φ(x) = max
i

{XT
i x−vi− 1

2
|X i|2}, ψ(X) = max

i
{XTxi−ui− 1

2
|xi|2}, (4.8)

so that φ and ψ are a Legendre transform pair and φ(xi) = ui, ψ(Xi) = vi.
Geometrically, φ (and similarly for ψ) represents a convex polyhedron con-
structed by taking the upper envelope of a set of n planes whose gradients are
Xi and whose intercepts with the vertical coordinate axis are −vi − 1

2 |X|2.
By construction, φ, ψ are continuous, piecewise linear, convex functions, dif-
ferentiable almost everywhere, with

X =
∂φ

∂x
, x =

∂ψ

∂X
(a.e.). (4.9)
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Hence, we have shown that an optimal solution σ∗ ∈ Sn for (4.1) exists, and
that xi = aσ∗(i) = ∇ψ(Xi) where ψ : R

3 → R is a bounded convex function,
differentiable almost everywhere.

Now let us consider the full problem (3.7). Baigent [3] generalised the def-
inition (3.9) of a vector-valued rearrangement of X0 : Ω → R to be any
everywhere-bounded vector-valued function X satisfying

µ{x | X(x) ≥ c} = µ{x | X0(x) ≥ c} ∀c ∈ R
n, (4.10)

and showed that each vector-valued function X lies in an equivalence class
of rearrangements generated by a cyclically monotone rearrangement X∗,
deducing that X∗ could be written as the subdifferential of a proper lower
semicontinuous convex function. Brenier [7] also gave a number of equivalent
definitions for the rearrangement of a vector-valued function and established a
beautiful result (the Polar Factorisation Theorem [7]) showing how any vector-
valued function can be factored into a measure-preserving map composed with
the subgradient of a convex function.

5 CNP and probability metrics

The definition (4.10) of a rearrangement suggests another, more direct link
to probability theory: Two vector-valued functions U ,V are in the same re-
arrangement class if and only if, when viewed as vector random variables,
they have the same probability distribution function, or in other words they
are identically distributed. Not surprisingly, the CNP minimisation principle
appears in the Statistics literature as we now discuss.

In [15] Knott and Smith considered the following problem:

given two probability distributions F and G for random variables
U and V which take values in R

m, what is the joint distribution
function H for (U ,V ) taking values in R

2m which minimises the
expected squared Euclidean distance EH(|U − V |2)?

Thus given a random variable U taking values in R
m with distribution function

F and a second distribution function G, they sought a smooth mapping S :
R
m → R

m defined by U �→ s(U) such that the random variable s(U) has
distribution function G, and which minimises the expectation EF (|U−s(U)|2).
Knott and Smith showed that a smooth minimiser, when it exists, must have
the form s∗ = ∇φ for some smooth convex function φ : R

m → R. Knott and
Smith also make the connection with a certain Monge-Ampère equation. Let
the probability density functions of U ,V be f, g respectively. When m = 2,
and the coordinates are u = (u1, u2), the function ψ : R

2 → R defined by
ψ(u) = 1

2 |u|2 − φ(u), where ∇φ is the minimiser, satisfies the strictly elliptic
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Monge-Ampère equation

ψu1u1ψu2u2 − ψ2
u1u2 =

dF (u1, u2)
dG(ψu1 , ψu2)

=
f(u1, u2)

g(ψu1 , ψu2)
> 0. (5.1)

Rüschendorf and Rachev [25] generalised the ideas of Knott and Smith to
Lp spaces by using a special case of the Monge-Kantorovich problem (MKP)
(for a review, see [23]). Here, given two probability distributions P and Q on
R
k, let M(P,Q) be the set of all joint probability distributions π on R

k × R
k

whose fixed marginals are P and Q, so that

dP (X) =
∫
x∈Rk

dπ(X,x), dQ(x) =
∫
X∈Rk

dπ(X,x). (5.2)

One interpretation of this definition is that P and Q represent the initial and
final distribution of mass and M(P,Q) all possible transfers of mass in P to
Q. In particular M(µ, µ) (with µ Lebesgue measure) corresponds to the set of
doubly stochastic probability measures.

Define the following L2 metric on M(P,Q):

L2
π(P,Q) =

∫
Rk×Rk

|X − x|2 dπ(X,x), (5.3)

and the corresponding minimal probability metric, also known as the L2 Wass-
erstein distance,

σ(P,Q) = inf
π∈M(P,Q)

L2
π(P,Q). (5.4)

The problem can thus be interpreted as carrying out the mass transfer in such
a way as to minimise the ‘total cost’ L2(P,Q). Now suppose that X and x
are random variables with respective probability distributions P and Q, i.e.
X ∼ P , x ∼ Q; then according to [25] we have:

Theorem 1 If
∫

Rk |X|2dP (X) < ∞,
∫

Rk |x|2dQ(x) < ∞ then

1. There exists a solution π of (5.4), or equivalently, there exist random
variables X ∼ P and x ∼ Q with σ(P,Q) =

∫
Rk×Rk |X − x|2 dπ(X,x).

2. Let X ∼ P and x ∼ Q; then (X,x) is a solution of (5.4) if and only if
x ∈ ∂Φ∗(X), where ∂Φ∗ denotes the subdifferential of a proper convex
function Φ∗(X).

At the ‘total cost’ minimum, we have

inf
s has distribution Q

∫
Rk

|X − s(X)|2 dP (X) = (5.5)

inf
π∈M(P,Q)

∫
Rk×Rk

|X − x|2 dπ(X,x).
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Further, with Φ(x) for fixed x ∈ D, the Fenchel conjugate of Φ∗(X),

σ(P,Q) =
∫

Rk

|X − ∂Φ∗(X)|2 dP (X) =
∫

Rk

|x − ∂Φ(x)|2 dQ(x). (5.6)

For example, the choices dP (X) = 1
µ(Ω)

∑n
i=1 µ(Ui)δ(X−Xi) dX and dQ(x) =

dx/µ(L) (where µ is Lebesgue measure) lead to the piecewise constant mo-
mentum model studied by Cullen and Purser. Whereas the choice dP (X) =
1
n

∑
i δ(X−X i) dX and dQ(x) = 1

n

∑
i δ(x−xi) dx leads to the Lattice model

and hence the linear program (4.3).
It can also be shown [15, 7] that at the minimum Φ∗ satisfies the elliptic

Monge-Ampère equation (for D2 the matrix operator of second partial deriva-
tives w.r.t. X):

detD2Φ∗(X) =
p(X)

q(∂Φ∗(X))
> 0 (a.e.), (5.7)

where dQ(x) = q(x) dx and dP (X) = p(X) dX.

6 Applications to semigeostrophic theory

As shown in [7], by an appropriate choice of the mass distributions P and Q
these results can be applied to solve the CNP minimisation problem (3.7). By
(5.6), this is the same as the relaxed problem of finding the minimum distance
over all doubly stochastic measures M(µ, µ):

inf
s∈S

∫
Rk

1
2
|X(a) − s(a)|2 dµ(a) = inf

γ∈M(µ,µ)

∫
D2

1
2
|X(a) − a′|2 dγ(a,a′), (6.1)

with dQ(a) = dµ(a) and P : R
3 → R satisfying, for all continuous f ,∫

R3

f(X) dP (X) =
∫
D
f(X(a)) dµ(a). (6.2)

Equation (6.1) compares with (4.4) in the Lattice model. By Theorem 1, there
exists a proper convex function Φ∗ such that x ∈ ∂Φ∗(X) and for which∫

D2

1
2
|X(a) − x(a)|2 dµ(a) =

∫
D

1
2
|X(a) − (∂Φ∗ ◦ X)(a)|2 dµ(a). (6.3)

Furthermore, there exists a proper convex function Φ(x), the Fenchel conju-
gate of Φ∗(X), such that

X ∈ ∂Φ(x). (6.4)

Defining φ̂0 = f(Φ − 1
2(x2 + y2)) then gives, using the relations (2.9),

u0(x) = f(y − Y (x)) = f

(
y − ∂Φ

∂y

)
,
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and

v0(x) = f(X(x) − x) = f

(
∂Φ
∂x

− x

)
,

the equations for balance (a.e.):

u0 = −∂φ̂0
∂y

, v0 =
∂φ̂0
∂x

,
gθ

θ0
= f

∂φ̂0
∂z

, (6.5)

which agree with horizontal geostrophic balance (2.15) and the zeroth order
approximation to the hydrostatic balance relation (2.5).

On the balance (slow) manifold x = ∇Φ∗(X) (a.e.), and

∂φ̂0
∂x

(x(X)) = f

(
X − ∂Φ∗

∂X

)
,
∂φ̂0
∂y

(x(X)) = f

(
Y − ∂Φ∗

∂Y

)
,

∂φ̂0
∂z

(x(X)) = fZ.

(6.6)

We now return to the original 3D Boussinesq equations (2.10)–(2.14), and write
down the quasi-steady state approximation for these equations, where the fast
variable x is assumed to evolve sufficiently rapidly to steady state that it can
effectively be replaced by its steady state value on the balance manifold. This
filters out the fast dynamics and leaves approximate equations for the slow
dynamics obtained by projecting the full dynamics onto the balance manifold
(see any text on singular perturbation theory, for example, [19]). Hence we
substitute the first two equations in (6.6) into equations (2.10) and (2.11) to
obtain equations for the evolution of the horizontal momentum components
in 3D semigeostrophic flow:

Ẋ = f(y(X) − Y ), Ẏ = f(X − x(X)), (6.7)

to which we add Ż = 0. By construction, these equations evolve on the mani-
fold of geostrophic balance.

At the minimum of (6.1) we have, from (5.7), since q is the uniform distri-
bution,

p(X) = detD2Φ∗(X) (6.8)

which can be shown to correspond with the usual semigeostrophic potential
vorticity ρ(X) (see page 349).

Remark 1 Equations (5.6) and (6.8) show how to define the semi-geostrophic
energy in the Eulerian description. We define Ψ(X) = 1

2 |X − ∂Φ∗(X)|2
so that

1
2
σ(P, µ)(X) =

∫
R3

Ψ(X) dP (X) =
∫

R3

Ψ(X)ρ(X) dµ(X),

which agrees with the form of the energy given in [24].
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Remark 2 The above calculations show that one interpretation of the CNP
minimisation principle for defining semi-geostrophic balance is to find
the density ρ that is closest to a uniform probability density in the L2

metric. In fact, the minimal metric (5.4) can be written in the form

σ(P,Q) =
∫ 1

0
|P−1(α) − Q−1(α)|2 dα, (6.9)

where X ∼ P,x ∼ Q and dQ = dµ, Lebesgue measure (see, for example,
[23]).

Remark 3 Suppose a potential U : L → R is added to the L2
π(P,Q) metric,

and we consider

σU(P,Q) = inf
π∈M(P,Q)

∫
D2

{|X − x|2 + U(x)
}

dπ(X,x). (6.10)

Then the new expression to be minimised can be written as{
Eπ(|X|2) + Eπ(|x|2) + Eπ(U(x))

}− 2Eπ(x · X),

where Eπ(f) =
∫
f dπ (the expectation of f). The bracketed term is

invariant under all π ∈ M(P,Q), but the second term is not. Following
through the proof of Theorem 1 in [25], we see that the addition of U
does not alter the conclusions of Theorem 1; the Fenchel conjugation
duality still holds: ∃ convex Ψ, s.t. x ∈ ∂Ψ(X) and X ∈ ∂Ψ∗(x).

Let us now pause to recap on progress. We relaxed the original CNP minimi-
sation problems (3.7) and (4.1) by a mathematical device, i.e. by transforming
the nonlinear CNP minimisation to a linear program, as expressed by (4.4)
and (6.1). The idea was to introduce doubly stochastic matrices and doubly
stochastic measures (see also [5]). How should we interpret this mathemat-
ical device physically? Is there any physical meaning to the equalities (4.4)
and (6.1) that in hindsight would motivate the relaxation procedure? In the
remainder of the chapter we suggest that an ensemble approach and the ap-
plication of maximum entropy methods provide a framework with which (4.4)
and (6.1) have a physical interpretation.

7 The maximum entropy method

Statistical physics provides a framework for calculating the probability that a
system is in a particular state. An ideal gas in a 5 m3 box contains about 1028

gas molecules, each of which requires 6 coordinates for description. No feasible
experiment can simultaneously measure all the 6× 1028 coordinates necessary
to describe the state of the gas. However, it is possible to give a reasonable and
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very accurate description of the gas in thermodynamic equilibrium by way of
macroscopic variables such as energy, temperature, pressure, etc.

There are several different approaches to classical statistical mechanics, al-
though they share many mathematical similarities, and often lead to the same
results. In one approach, largely due to Boltzmann, particles are classified into
‘bins’. As a specific example, suppose each bin identifies particles of energy Ek,
and that there are nk particles in the kth bin, m bins and N particles in total.
When particles are distributed amongst the bins according to their energies,
we obtain a macrostate {n1, . . . , nm}. A microstate is a particular distribution
of the particles into the m bins that imagines that particles could be distin-
guished. Thus there are many microstates that give rise to a given macrostate
(since in the macrostate the particles are imagined to be indistinguishable).
The number of independent microstates for the macrostate {n1, . . . , nm} is
W = N !/(n1! . . . , nm!). The macrostate must also satisfy

m∑
k=1

nk = N (7.1)

m∑
k=1

nkEk = const.N. (7.2)

In the limit N → ∞, but m remaining fixed, and setting pk = limN→∞ nk/N ,
then

S(p) =
1
N

log W → −
m∑
k=1

pk log pk.

Thus S is proportional to the number of microstates realising the macrostate
{n1, . . . , nm} as N → ∞, now written in terms of the fractions of particles
(the pk’s) in each bin. Boltzmann argued that the most probable distribution,
which he identified as the equilibrium of the particle system, is the macrostate
which maximises S(p) subject to the constraints (7.1) and (7.2) rewritten in
terms of the pk’s (after taking the limit as N → ∞):

m∑
k=1

pk = 1 (7.3)

m∑
k=1

pkEk = const. (7.4)

The maximising macrostate p∗ has the explicit form:

p∗k =
exp(−βEk)∑m
l=1 exp(−βEl)

, (7.5)

where β is a constant which must be determined by satisfying the energy
constraint (7.4). (The conditions for existence and uniqueness of such a β are
given in Theorem 2 below.)
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One of the drawbacks of Boltzmann’s approach here is that it requires the
identification of microstates for a given model, and there appears to be no hard
and fast rule for defining such a microstate. For example, if the particles were
classified according to their temperatures rather than energies, the microstates
would be defined differently.

A somewhat different approach, that nevertheless often leads to identical
mathematics, was put forward by Gibbs. Rather than treating individual sys-
tems, Gibbs considered ensembles consisting of multiple copies of the same
system evolving independently of one another from a random set of initial con-
figurations, and described the statistical properties of the ensemble in terms
of the probabilities of finding a randomly chosen system in a given config-
uration. In this approach, one simply needs to define a configuration space
Ω for all possible configurations ω of an individual system and a probability
distribution p on Ω for which p(ω) is the probability that a randomly chosen
system is in the configuration ω ∈ Ω. For technical reasons, to be discussed
later, we will for now assume that Ω is finite. We let M denote the set of
probability vectors on Ω, i.e. if p ∈ M then p ≥ 0 and

∑
Ω p(ω) = 1. For each

p ∈ M,
∑
ω∈A p(ω) is the fraction of systems in the ensemble whose configu-

rations belong to A. Given a function f : Ω → R and the probability density
p, Ep(f) =

∑
ω∈Ω p(ω)f(ω) will denote the expectation of f .

The statistical entropy of the distribution p is then defined to be

η(p) = −
∑
ω∈Ω

p(ω) log p(ω). (7.6)

Now suppose that we are given the following system moments (that is, expec-
tations of the functions fi):

f̄i = Ep(fi) i = 1, . . . ,m, (7.7)

where the f̄i are known real numbers. According to the maximum entropy
principle, the maximum entropy distribution is any distribution p∗ that max-
imises the statistical entropy η(p) over p ∈ M subject to the statistics (7.7).
It can be shown (e.g. [14]) that all maximisers (they could be nonunique) take
the form

pβ(ω) =
1

Z(β)
exp(−β · f(ω)), (7.8)

where Z(β) =
∑
ω∈Ω exp(−β · f(ω)), f = (f1, . . . , fm), and β = (β1, . . . , βm).

(Here the βi can be identified as the Lagrange multipliers associated with each
constraint in (7.7).) The remaining problem is then to determine the values of
the βi given the numbers f̄i.

For the case m = 1, say where the single known moment is the energy
constraint (and, as already stated, Ω is a finite set)

h̄ = Epβ (h), (7.9)

we have [14, Corollary 1.1.5]
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Theorem 2 If h̄ is a real number and minω∈Ω h(ω) < h̄ < maxω∈Ω h(ω), then
there exists a unique parameter β̄ ∈ R such that the distribution pβ̄ has the
energy Epβ̄ (h) = h̄ and maximises entropy over all distributions with the same
energy h̄.

(Note that here it is important that Ω is finite, so that the extrema of h can
easily be shown to exist.) In fact, we may classify the extreme values of the
energy h over ω ∈ Ω by the limits

lim
β→+∞

Epβ (ω) = min
ω∈Ω

h(ω), lim
β→−∞

Epβ (ω) = max
ω∈Ω

h(ω). (7.10)

Usually T = 1/β̄ is defined as the system temperature, since β̄ is conjugate to
h̄. In this sense, the first limit in (7.10) says that as the system temperature
T ↓ 0 (i.e. β ↑ +∞) the distribution pβ tends to the uniform density (also
known as the ground state) on the set of system configurations {ω ∈ Ω :
h(ω) = minω′∈Ω h(ω′)} (e.g. [14, p6]).

8 Geophysical balance defined by the maximum en-
tropy principle

The first challenge of using the MEP (Maximum Entropy Principle) to define
a balanced state in the 3D Boussinesq equations (2.10)–(2.14) is dealing with
an uncountably infinite configuration space, namely the set S of all measure-
preserving maps of the fluid domain D into itself. To apply the MEP method
we first have to be able to define a probability measure on S. The set S is not
a linear space, but we may identify each s ∈ S with a linear map of L1 into
itself as follows: Let ϕ ∈ L1 and s be a measure-preserving transformation of
D into itself. Then for each A ∈ A (here A is the set of all Borel subsets of
D), consider the finite measure mϕ defined by

mϕ(A) =
∫
A

ϕ(a) dµ(a). (8.1)

Then mϕ ◦ s−1 also defines a finite measure, so that by the Radon-Nikodyn
theorem (see, for example, [16]) there exists an L1 function denoted by Psϕ
which satisfies ∫

A
(Psϕ)(a) dµ(a) =

∫
s−1(A)

ϕ(a′) dµ(a′). (8.2)

The operator Ps : L1 → L1 is known as the Frobenius–Perron operator corre-
sponding to the measure-preserving map s ∈ S (see, for example, [16]). This
operator tells us precisely how a given density transforms under the flow map
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s, and so belongs to the Eulerian picture. The Frobenius–Perron operator Ps
is a bounded linear Markov operator on L1, i.e. Ps ∈ Γ where

Γ = {P : L1 → L1 : ‖Pf‖ = ‖f‖ for allf ≥ 0, f ∈ L1}, (8.3)

and ‖f‖ =
∫ |f(a)| dµ(a). One can show [16, Corollary 3.2.1] that Psf(a) =

f(s−1(a))J−1(a), where J−1(a) = dµ(s−1(a))/dµ(a). Since here s is a µ-
measure preserving map of D onto itself, J−1 ≡ 1 and so Psϕ(a) = ϕ(s−1(a)).
Dual to the Frobenius–Perron operator w.r.t. the standard scalar product
〈·, ·〉 : L1 × L∞ → R defined by 〈f, g〉 =

∫
f(a) g(a) dµ(a), is the Koopman

operator Us : L∞ → L∞ defined as the adjoint of Ps:

〈Psf, g〉 = 〈f, Usg〉,∀f ∈ L1, g ∈ L∞. (8.4)

The Koopman operator satisfies Usg = g ◦ s for all g ∈ L∞2. When s is
measure-preserving, Usg is a rearrangement of g ∈ L∞.

We will define the configuration space Ω of the fluid to be the set P con-
sisting of all Frobenius–Perron operators Ps defined by (8.2) as s ranges over
the set S of all measure-preserving maps of the fluid domain D into itself.
Let conv(A) denote the closed convex hull of a set A, and Ex(A) denote
the extreme points of A. The set K = conv(P) is a closed convex subset
of the space Γ of bounded linear operators of L1 into itself. The work of
Ryff [26] regarding the extremal structure of the weak closure of rearrange-
ments suggests that each extreme point of K must be a Frobenius–Perron
operator. It is known [21] that the extreme points of the convex space Γ
satisfy the multiplicative property, i.e. T ∈ Γ is extreme in Γ if and only if
T (fg) = (Tf)(Tg) for all f, g ∈ L1. Now for f ∈ L1, and Ps the Frobenius–
Perron operator corresponding to some s ∈ S, Psf = f ◦ s−1. Hence if we
also have g ∈ L1, Ps satisfies Ps(fg) = (fg) ◦ s−1 = (f ◦ s−1)(g ◦ s−1) =
(Psf)(Psg). Thus every Frobenius–Perron operator is extreme in K. We are
thus lead to conclude that the Frobenius–Perron operators are the extreme
points of K. This construction allows us to identify the extreme points of
K = conv(P) with fluid configurations, and any point in K formally de-
fines a probability distribution on these fluid configurations for the ensem-
ble.

We now seek an integral representation for a given point in K as the convex
combination of extreme points. Now K is a compact and convex metric space
(since it is a closed subset of Γ, which is compact in the weak operator topol-
ogy), so that by Choquet’s theorem [22] (see also A.5 in the Appendix), for

2Those familiar with differential geometric terminology will have recognised that the
Frobenius–Perron operator is identical to the push forward operator on smooth functions,
whereas the Koopman operator is the corresponding pull back operator. Note that our defi-
nition of the push forward operation on functions here differs from some texts by the factor
J−1.
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each P ∈ K there is a probability measure νP supported on P = Ex(K) such
that for any continuous linear functional L on Γ we have the representation

L(P ) =
∫
Q∈P

L(Q)dνP (Q). (8.5)

In (8.5), νP is a probability measure over the set of configurations P. For
example, when L is the identity, (8.5) gives the decomposition of P as a convex
combination of Frobenius–Perron operators. We let M0 be the set of all such
measures νP as P ranges over K.

We now define the statistical entropy of each ν ∈ M0 relative to the uniform
distribution ν0 ∈ M0 as

η(ν) = −
∫
P

log
(

dν

dν0

)
dν(P ), (8.6)

if the Radon-Nikodym derivative dν
dν0

exists, and η = −∞ otherwise. Suppose
that for ν ∈ M0 we are given the ensemble mean of the continuous energy
functional h : P → R:

h̄ =
∫
P
h(P ) dν(P ). (8.7)

Here h(P ) =
∫
D f2|X(a) − s(a)|2 dµ(a), where s is the measure-preserving

map of D into itself corresponding to the Frobenius–Perron operator P .
The MEP then says that the equilibrium distribution of fluid configurations

is any measure ν∗ ∈ M0 that maximises η(ν) subject to the constraint h(ν) =
h̄.

We now find the conditions for which this maximiser ν∗ exists and is unique.
Rather than appeal to Lagrange multipliers to deal with the constraint (8.7),
we follow the proof for the case where D is finite [14] and apply Jensen’s
inequality (see A.6 in the Appendix). Much of the proof in [14] carries across
from the finite dimensional case. Let Z(β) =

∫
P exp(−βh(P )) dν0(P ). Then

we have, for ν ∈ M0, and β ∈ R+,

η(ν) − βh(ν) = −
∫
P

{
log
(

dν(P )
dν0(P )

)
+ βh(P )

}
dνβ(P )

=
∫
P

{
log
(

exp(−βh(P ))
dν(P )/dν0(P )

)}
dν(P )

≤ log
(∫

P

{
exp(−βh(P ))
dν(P )/dν0(P )

}
dν(P )

)
(8.8)

= log Z(β).

Equality holds only if the integrand of (8.8) is a constant function, and so any
maximiser must take the form dν∗ = exp(−βh)/Z(β) dν0 for some β ∈ R and
then η(ν∗) − βh(ν∗) = log Z(β).
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We turn to the existence of such maximisers, so that we have to show that
there exists a β ∈ R for which h̄ =

∫
P h(P ) dνβ(P ), and η(ν) ≤ η(νβ) for all ν ∈

M0. First note that the function β �→ h(νβ) is a continuous strictly decreas-
ing function of β > 0. Let Θ(β) = h(νβ) =

∫
h(P ) exp(−βh(P ))/Z(β)dν0(P ).

Then since the integrand of Θ is a continuous function of β, so too is Θ.
Furthermore, a straight computation shows that Θ′(β) is minus the vari-
ance of h w.r.t. the probability measure νβ, which shows that Θ is a con-
tinuous decreasing function. We also note that h(P ) is not constant, and
exp(−βh(P ))/Z(β) > 0, which shows that the variance is non-zero and thus
Θ is strictly decreasing in β.

We consider two limiting cases where β → +∞ and β → −∞. We have

h(νβ) =
∫
P
h(P )

exp(−βh(P ))
Z(β)

dν0(P ), (8.9)

and we wish to find the limit of this integral as β → +∞. We note that

0 ≤ (h(P ) − h(Q)) exp[−β(h(P ) − h(Q))] ≤ 1
β

for all P,Q ∈ P such that h(P ) ≥ h(Q). Hence, in particular,

0 ≤
(
h(P ) − inf

Q∈P
h(Q)

)
exp(−βh(P )) ≤ 1

β
exp
(
−β inf

Q∈P
h(Q)

)
,

for all P ∈ P. Dividing by Z(β) and integrating over P ∈ P, we obtain

0 ≤
∫
P

(
h(P ) − inf

Q∈P
h(Q)

)
dνβ ≤ 1

β

exp (−β infQ∈P h(Q))
Z(β)

<
1
β
.

Now let β → +∞ to conclude

lim
β→∞

∫
P
h(P )dνβ = inf

Q∈P
h(Q). (8.10)

In a similar way we can show that

lim
β→−∞

∫
P
h(P )dνβ = sup

Q∈P
h(Q). (8.11)

Notice that the extrema are taken over the set P of Frobenius–Perron opera-
tors, and not their closed convex hull K. This happens because the measure νβ
is supported by P. Finally Theorem 1 (or the CNP) tells us that the infimum
in (8.10) is attained, and a suitable modification of the theorem’s proof with
inf and sup interchanged, and inequalities reversed, gives that the supremum
in (8.11) is also attained.

Hence we have shown the existence of maximum entropy solutions in both
limits as |β| → ∞, and that the function β �→ h(νβ) =

∫
P h(P ) dνβ(P ) is a
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strictly decreasing continuous function of β ∈ R. Hence, by the intermediate
value theorem, there is a unique β̄ such that

∫
P h(P ) dνβ̄(P ) = h̄ provided

that minP∈P h(P ) ≤ h̄ ≤ maxP∈P h(P ). The maximum entropy distribution
for this β̄ is given by

dνβ̄(P ) =
exp(−β̄h(P ))

Z(β̄)
dν0, (8.12)

and the most likely configuration of a system chosen at random from the
ensemble is that configuration of least energy.

9 The MEP lattice model for balance

We will now apply the above ideas to a Lattice model for the flow described
by the Boussinesq equations for 3 dimensional flow summarised by equations
(2.10) to (2.14).

Recall that we are treating the momentum X as a slow variable and the
position x as a fast variable. On the fast timescale, we may assume that
the momenta are fixed, and that the particles rapidly approach, or oscillate
about, an ‘equilibrium’ state. The aim is to find this equilibrium state using
the maximum entropy principle.

The fluid domain D is partitioned into n open domains Di with centroids
ai ∈ R

3, i = 1, . . . , n. Let Γ = {a1, . . . ,an}. We approximate the fluid motion
by allowing permutations of fluid ‘parcels’ amongst these centroids. Let Sn
denote the group of permutations σ which act on the fluid parcels according
to σ ◦ (a1, . . . ,an) = (aσ(1), . . . ,aσ(n)). The set of configurations of the fluid
parcels is thus Ω = Sn.

We will consider an ensemble of these n parcel systems, and seek the proba-
bility distribution of the configurations at equilibrium defined as that distribu-
tion that maximises entropy subject to a fixed ensemble average of the energy.
We define a probability vector p with n! components p(σ) each equal to the
fraction of systems in the ensemble in the state σ ∈ Sn, so that 0 ≤ p(σ) ≤ 1
and

∑
σ p(σ) = 1.

The energy of the fluid in the configuration σ ∈ Sn is h(σ) = f2

2

∑n
i=1 |Xi−

aσ(i)|2. The canonical equilibrium distribution p∗ for the ensemble with mean
energy h̄ is obtained by finding the probability distribution p∗ that maximises
η(p) = −∑σ∈Sn

p(σ) log p(σ) subject to the mean energy h(p) =
∑
σ∈Sn

p(σ)

[
∑n
i=1

f2

2 |Xi − aσ(i)|2] = h̄. By Theorem 2, the unique optimal p∗ is given by
p∗̄
β

where

p∗β(σ) =
1

Z(β)
exp
(
−βf2

2

n∑
i=1

|X i − aσ(i)|2
)
, (9.1)

with Z(β) =
∑
σ′∈Sn

exp(−βf2

2

∑n
i=1 |Xi−aσ′(i)|2) the partition function, and

β̄ the unique real number for which the energy constraint is satisfied.
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We are now in a position to relate the CNP minimisation principle with the
maximum entropy approach. Note that the ensemble mean energy for a (not
necessarily optimal) distribution p is

∑
σ∈Sn

p(σ)h(σ) =
1
2

∑
σ∈Sn

p(σ)
n∑
i=1

|Xi − aσ(i)|2

=
1
2

∑
σ∈Sn

p(σ)
n∑
i,j=1

|Xi − aj |2δj σ(i)

=
1
2

n∑
i,j=1

|X i − aj |2
∑
σ∈Sn

p(σ)δj σ(i)

=
1
2

n∑
i,j=1

|X i − aj |2kij (9.2)

where kij =
∑
σ∈Sn

p(σ)δj σ(i). It is easy to show by summation that∑n
i=1 kij = 1 =

∑n
j=1 kij, i.e. k = ((kij)) is a doubly stochastic matrix, and

that for this finite problem every doubly stochastic matrix can be expanded
in this form.

Now suppose that we take the equilibrium ensemble with distribution p∗̄
β

given by (9.1) and choose a system at random from the ensemble. Then the
most likely state selected, say σ∗, is that state which maximises the equilibrium
distribution p∗̄

β
(σ) over all σ ∈ Sn. Since Z is independent of σ, this is just

the same as finding the configurations σ∗ of minimum energy h(σ∗). In other
words, the most likely state is a solution σ∗ to

n∑
i=1

1
2
|X i − aσ∗(i)|2 = min

σ∈Sn

n∑
i=1

1
2
|X i − aσ(i)|2. (9.3)

Furthermore, we are now in a position to interpret the relaxation process (4.4)
and (6.1). In the light of (9.2), we can rewrite (4.4) as

n∑
i=1

1
2
|Xi − aσ∗(i)|2 = min

k∈D

N∑
i,j=1

1
2
|Xi − aσ(i)|2kij

= min
p∈M

∑
σ∈Sn

pσ

(
n∑
i=1

1
2
|X i − aσ(i)|2

)
.

Thus the relaxation process (4.4) and (6.1) simply says that the minimum
energy is equal to the mean ensemble energy as the statistical temperature
tends to zero, because with probability one, every replica in the ensemble is in
the minimum energy state. This suggests that an appropriate interpretation of
the doubly stochastic measure is as a probability distribution for an ensemble
of identical systems.
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Recall that each energy h(σ) is actually also a function of the momentum X.
Let us now make this explicit by writing h(X, σ) for the energy of configuration
σ when the momenta are X = (X1, . . . ,Xn). The partition function Z will
also depend on X so we will denote it by Z(X, β).

Instead of fixing h̄ and finding the corresponding unique β̄, suppose we fix
β. Then we can calculate (where the differentiation is with β held fixed)

∂ log Z(X, β)
∂Xi

=
1

Z(X, β)
∂Z(X, β)

∂X i

=
1

Z(X, β)

∑
σ

(−βf2) exp(−βh(X, β))
∂h(X, σ)

∂X i

=
1

Z(X, β)

∑
σ

(−βf2) exp(−βh(X, β))(Xi − aσ(i))

= −βf2(Xi − xβi ), (9.4)

where we have defined
xβi =

∑
σ∈Sn

p∗β(σ) ai, (9.5)

which is the expected position of parcel i for the distribution p∗β . Hence we
have the gradient relation:

xβ = ∇φ(X), where φ(X) =
1
2
‖X‖2 +

1
f2β̄

log Z(X, β̄), (9.6)

which should be compared with the first equation in (4.9). Note that here the
function φ is smooth (for finite β), whereas its counterpart in the limit β → ∞
(4.9) is only differentiable almost everywhere.

10 Conclusions

This aim of this chapter was to look at balance from a statistical viewpoint.
Our first angle came from a probabilistic interpretation of the CNP minimi-
sation principle for defining geostrophic balance, in which CNP was directly
related to the construction of a minimal L2 probability metric. Our second
angle stemmed from an application of the maximum entropy principle to the
3D Boussinesq equations for the dry atmosphere written in terms of fast and
slow components. Here the principle was used to derive an ensemble proba-
bility distribution for the fast variables, given data on the slow variables. The
balance manifold was then defined as a mapping from the slow variables (the
geostrophic momenta) to the expected values of the fast variables (the particle
positions). In this second view, the CNP is regained as the statistical temper-
ature of the system tends to zero, where minimising the energy over function
rearrangements is equivalent to finding the system ground state. Our main
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conclusion, therefore, is that geostrophic balance and CNP can be understood
from a statistical viewpoint, and we suggest that there may be advantages in
treating applied problems of rearrangement theory as limiting cases of statis-
tical mechanical problems, particularly when the system has other conserved
integrals in addition to the energy.
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A Appendix

First we recall some definitions (see, for example, [1]). Let V be a Banach
space with norm | · | and dual V ∗, related by the inner product 〈, 〉.

A.1 Semicontinuity

A function f : V → R ∪ {+∞} is lower semicontinuous (l.s.c.) if its epigraph

epi (f) = {(x, r) ∈ V × R : r ≥ f(x)} (A.1)

is a closed set. A function ψ is upper semicontinuous (u.s.c.) if −ψ is l.s.c..

A.2 Convexity

A function f : V → R ∪ {+∞} is convex iff whenever λ ∈ [0, 1] and x, y ∈ V
we have

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

A convex function is proper if f(x) < +∞ for at least one x ∈ V . Similarly, a
function ψ : V → R ∪ {+∞} is concave if −ψ is convex.

The set epi (f) is a non-empty convex set if and only if f is a proper convex
function, and epi (f) is a closed convex set if and only if f is a proper convex
l.s.c. function.

A.3 Subdifferentiation

The subdifferential of a proper convex function f : V → R ∪ {+∞} at the
point x ∈ V is the set

∂f(x) =
{
x∗ ∈ V ∗ : f(x′) ≥ f(x) + 〈x′ − x, x∗〉, ∀x′ ∈ V

}
. (A.2)
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The subdifferential may be empty, but is guaranteed to be non-empty when
f is continuous at x. Note that proper convex functions are continuous where
bounded.

A.4 Fenchel conjugation

The Fenchel conjugate f∗ : V ∗ → R ∪ {+∞} of a function f : V → R ∪ {+∞}
is defined by

f∗(x∗) = sup
x∈V

{〈x, x∗〉 − f(x)} for each x∗ ∈ V ∗. (A.3)

When f is a proper convex function f∗∗ = (f∗)∗ = f .

A.5 Choquet’s Theorem

Theorem 3 (Choquet) Let C be a compact convex metrizable subset of a
locally convex Hausdorff topological vector space Y , and suppose that x ∈ C.
Then there is a probability measure P on (C, Borel subsets of C) such that P
is supported by the set Ex(C) of extreme points of C, and

∫
C fdP = f(x) for

each f ∈ Y ∗.

See for example [22].

A.6 Jensen’s Inequality

Theorem 4 (Jensen’s inequality) Let I ⊂ R be an open interval and as-
sume that ϕ : I → R is convex. If f ∈ L1 takes values in I, then the integral
of ϕ ◦ f is well defined and ϕ

(∫
fdµ
) ≤ ∫ ϕ ◦ fdµ with equality if and only if

f is constant µ-a.e.

See for example [14].

References

[1] J.-P. Aubin and I. Ekeland. Applied Nonlinear Analysis. Wiley-
Interscience, 1984.

[2] F. Baer and J. Tribbia. On complete filtering of gravity modes through
nonlinear initialisation. Mon. Weather Rev., 105:1536–1539, 1977.

[3] S. Baigent. Applications of vector-valued rearrangements to modelling
the weather. Master’s thesis, Oxford University, 1987.

[4] S. Baigent. On the Integration of the Semi-Geostrophic Equations. PhD
thesis, Oxford University, 1995.



Statistical methods in atmospheric dynamics 369

[5] S. A. Baigent and J. Norbury. Two discrete models for semi-geostrophic
dynamics. Physica D, 109:333–342, 1997.

[6] J.-D. Benamou. Transformations conservant la mesure, mécanique des
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