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Preface

Based on this century of experience, it is generally
supposed that a final theory will rest on principles
of symmetry.

Dreams of a Final Theory
Steven Weinberg
1979 Nobel Prize winner

This book introduces homogeneous balls as a new mathematical model for
several areas of physics. It is widely known that the set of all relativistically
admissible velocities is a ball in R3 of radius c, the speed of light. It is also
well known that the state space of a quantum system can be represented
by positive trace-class operators on a Hilbert space that belong to the unit
ball in the trace norm. In relativistic quantum mechanics, the Dirac bispinors
belong to a ball in the space C%. Is there something in common among these
balls? At first glance, they look very different. Certainly, they do not repre-
sent commutative objects, for which the unit ball is a simplex. They cannot
represent a binary algebraic operation, since for such an operation, we need
an order on the space, and there is no order for the first and third examples.
But as we will show, in all of the above situations, either the ball in ques-
tion or its dual is homogeneous. Moreover, there is a triple structure which
is uniquely constructed from either the homogeneity of the domain or the
geometry of the dual ball.

Homogeneous balls could serve as a unifying language for different areas
in physics. For instance, both the ball of relativistically admissible velocities
in Special Relativity and the unit ball of operators on a Hilbert space, which
is the dual of the state space in Quantum Mechanics, are homogeneous balls.
In Special Relativity, the homogeneity of the velocity ball is an expression of
the principle of Special Relativity and not artificially imposed. The surpris-
ing fact that the unit ball of the space of operators is a homogeneous ball
was first discovered and utilized in solving the engineering problems involved
in transatlantic telephone communication. But not much has been done in
physics to take advantage of this structure.

In addition, some aspects of General Relativity may be described by the
methods presented in the book. But in order to describe General Relativity
efficiently, our model must be generalized. This generalization is obtained by
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weakening slightly one of the axioms of the triple product algebraic structure.
At this stage, the generalized model needs to be developed further before it
will be ready for applications.

Recall the definitions of a homogeneous ball and a symmetric domain. Let
D be a domain in a real or complex Banach space. We denote by Aut(D) the
collection of all automorphisms (one-to-one smooth maps) of D. The exact
meaning of “smooth” will vary with the context, but it will always mean
either projective (preserving linear segments), conformal (preserving angles)
or complex analytic. The unit ball D in a Banach space is one example of
a bounded domain. It is called homogeneous if for any two points z,w € D,
there is an automorphism ¢ € Aut(D) such that ¢(z) = w. A domain D is
called symmetric if for any element a € D, there is a symmetry s, € Aut(D)
which fixes only the point a. Any bounded symmetric domain can be realized
as a homogeneous ball in a Banach space.

The theory of bounded symmetric domains as mathematical objects in
their own right is highly developed (see [52], [62], [68] and [69]). However,
these works are written at a high mathematical level and contain no physical
applications.

The current text completely changes this situation. Not only do we de-
velop the theory of homogeneous balls and bounded symmetric domains and
their algebraic structure informally, but also our primary goal is to show
how to construct an appropriate domain to model a given law of physics.
The research physicist, and even the graduate student, can walk away with
both an understanding of these domains and the ability to construct his own
homogeneous balls. After seeing our new methodology applied to Special Rel-
ativity and Quantum Mechanics, the reader should be able to extrapolate our
techniques to his own areas of interest.

In Chapter 1, we show how the principle of relativity leads to a sym-
metry on the space-time continuum. From this symmetry alone, we derive
the Lorentz transformations and show that the set D, of all relativistically
admissible velocities is a homogeneous ball and a bounded symmetric do-
main with respect to the group Aut,(D,) of projective automorphisms. We
derive the formula for Einstein velocity addition and explore its geometric
properties. We study the Lie algebra aut,(D,) and show that relativistic dy-
namics is described by elements of this algebra. This observation provides an
efficient tool for solving relativistic dynamic equations, regardless of initial
conditions. As an example, we obtain explicit solutions for the relativistic
evolution equation for a charged particle in an electric field E, a magnetic
field B and an electromagnetic field £, B in which E and B are parallel.

In Chapter 2, we show that the ball D, of all relativistically admissible
symmetric velocities is a bounded symmetric domain with respect to the
group Aut.(D;) of conformal automorphisms and is a Cartan factor of type
4, called the spin factor. This enables us to express the non-commutativity
and the non-associativity of Einstein velocity addition as well as the non-
transitivity of parallelism among inertial frames in Special Relativity. The
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Lie algebra aut.(D;) is described in terms of the spin triple product. We
describe relativistic evolution using elements of aut.(D,). Utilizing the fact
that the evolution equation for symmetric velocities of a charged particle
in a constant, uniform electromagnetic field E, B, with E - B = 0, becomes
a one-dimensional complex analytic differential equation, we obtain explicit
solutions for this evolution.

In Chapter 3, we study the complex spin factor, which is the complex ex-
tension of the conformal ball from the previous chapter. The natural basis in
this space satisfies a triple product analog of the Canonical Anticommutation
Relations. We derive a spectral decomposition for elements of this factor and
then represent it geometrically. The two types of tripotents (building blocks
of the triple product) determine a duality on this object. This duality is cru-
cial in obtaining different representations of the Lorentz group on the spin
factor. The three-dimensional complex spin factor efficiently represents the
electromagnetic field, and the Lorentz group acts on it by linear operators
defined directly by the triple product. We show that the properties of the
field are related to the algebraic structure of its representation.

The four-dimensional complex spin factor admits several representations
of the Lorentz group. The operators representing the generators of this group
belong to a spin factor of dimension 6. If we use the representation provided
by one type of tripotents, we obtain the usual representation of this group
on four-vectors. These four-vectors form the invariant subspaces of the spin
factor under this representation. If we switch the representation to the second
type, the invariant subspaces are the Dirac bispinors with the proper action
of the Lorentz group on them. This reveals the connection between the spin
1 and the spin 1/2 representations.

In Chapter 4, we study classical homogeneous unit balls of subspaces of
operators on a Hilbert space. Since these operators are not necessarily self-
adjoint, we first study some relevant results for non—self-adjoint operators.
Based on ideas from transmission line theory, we show that such a ball is
a symmetric domain with respect to the analytic automorphisms. Here we
study the connection between the geometric properties of such domains and
their JC*-triple structure.

Chapter 5 consists of general results about homogeneous unit balls,
bounded symmetric domains, and the Jordan triple product associated with
them. Since these domains are homogeneous with respect to the analytic
maps on a complex Banach space, we introduce and study some properties
of such maps. From the study of the Lie group of analytic automorphisms of
a bounded domain and its Lie algebra, we derive the Jordan triple product
associated to the domain. We study the Peirce decomposition (which occurs
also in earlier chapters) on JB*-triples and their duals. We explore how the
geometry inherited by the state space from the measuring process allows
one to define grid bases on the set of observables. This justifies the use of
homogeneous balls and bounded symmetric domains in modeling quantum
mechanical phenomena.
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Chapter 6 includes a complete classification of atomic JB*-triples. We
show how to build convenient bases, called grids, for such spaces. These grids
are constructed from basic elements of the triple structure which may be inter-
preted as compatible observables. These grids span the full non-commutative
object. Our methodology reveals why there are six different fundamental do-
mains (called factors) for the same algebraic structure. This explains how
apparently unrelated models in physics, corresponding to different types of
factors, can have common roots. Furthermore, the mystery of the occurrence
of two exceptional factors of dimensions 16 and 27 is explained.

In this book, the reader will find the answer to the following questions:

1. Does the principle of relativity imply the existence of an invariant speed
and the preservation of an interval? (Answer: Section 1.2 )

2. Why is there time contraction in the transformations from inertial system
K to K', while space contraction is obtained in the transformations from
K’ to K7 (Answer: Section 1.1.4)

3. The relative velocity between two inertial systems can be considered as
a linear map between time displacement and space displacement. What
is the adjoint of this map? (Answer: end of Section 1.2)

4. What geometry is preserved in the transformation of the ball of relativis-
tically admissible velocities from one inertial system to another? (Answer:
Section 1.4)

5. What is the connection between the relativistic dynamic equation and
the Lie algebra of the velocity transformations? (Answer: Section 1.5)

6. If one has found a solution to the relativistic dynamic equation with a
given initial condition, how can one obtain a solution which satisfies a
different initial condition? (Answer: Section 1.5.5)

7. The relativistic evolution equation in the plane is not analytic. How can
it be made analytic? What are the analytic solutions for a constant field
in this case? (Answer: Sections 2.5 and 2.6 )

8. How are the Canonical Anticommutation Relations related to the basis
in a spin factor? (Answer: Section 3.1.2)

9. How can n Canonical Anticommutation Relations be represented in a
space of dimension 2n (and not the usual space of dimension 2™)? (An-
swer: Section 3.1.2)

10. What is the group of automorphisms of the spin factor? (Answer: Section
3.1.3)

11. Why, in quantum mechanics, do we use expressions like a = & + ip, and
Jy = Jp +1Jy? (Answer: Section 3.3.7)

12. How can one represent the transformations of the electromagnetic field
strength as operators of the triple product in the spin factor? (Answer:
Section 3.5.4)

13. How can one represent four-vectors and Dirac bispinors on the same ob-
ject? What is the relationship between these two representations? (An-
swer: Sections 3.5 and 3.6)
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14. How can non-self-adjoint operators produce real numbers (similar to the
eigenvalues of self-adjoint operators) and filtering projections? (Answer:
Section 4.1)

15. Most balls of spaces of operators on a Hilbert space are homogeneous with
respect to analytic maps. How can signal transformations in a lossless
transmission line be used to demonstrate this homogeneity? (Answer:
Section 4.2)

16. How can one derive an algebraic product from the geometry of a bounded
homogeneous domain? (Answer: Section 5.3.5)

17. What is the algebraic non-commutative structure built on geometry
alone? (Answer: Sections 5.3.5 and 5.4)

18. Can the homogeneity of the ball of observables be derived from the ge-
ometry of the state space induced by the measuring process? (Answer:
section 5.7)

19. Why are there exactly six different types of bounded symmetric domains,
or equivalently, JB*-triple factors? (Answer: Section 6.3.1)

20. What is the principle difference between the spin domain and the domains
in spaces of operators? (Answer: Section 6.3)

21. What is the bridge between the classical and the exceptional domains?
(Answer: Sections 6.2.3 and 6.3.7)

For the most part, this book represents the results of more than 30 years
of the author’s research. During this period, the theory of homogeneous,
bounded and unbounded symmetric domains has progressed significantly. We
do not cover here all major topics of this area, but concentrate more on the
aspects that seem currently ripe for physical applications.

I want to thank my research collaborators: Jonathan Arazy, with whom
we started this project during our Ph.D. program, Bernard Russo with whom
we worked together for more than 20 years, Thomas Barton, Truong Dang,
Ari Naimark and Yuriy Gofman. Tzvi Scarr assisted me in writing this book. I
want to thank Alexander Friedman and Hadar Crown for technical assistance.
I want to thank Uziel Sandler, Mark Semon and Alex Gelman for helpful
comments. This work was supported in part by a research grant from the
Jerusalem College of Technology.

The book is dedicated to my wife Rachel, for without her encouragement
over the last 30 years, I would not have been able to achieve the results
presented in the book.

Jerusalem College of Technology Yaakov Friedman
June 2004
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1 Relativity based on symmetry

In this chapter, we will derive the Lorentz transformations without assuming
the constancy of the speed of light. We will use only the principle of special
relativity and the symmetry associated with it. We will see that this princi-
ple allows only Galilean or Lorentz space-time transformations between two
inertial systems. In the case of the Lorentz transformations, we obtain the
conservation of an interval and a certain speed. From known experiments,
this speed is ¢, the speed of light in a vacuum.

The Einstein velocity-addition formula is also obtained. From this, it fol-
lows that the ball of all relativistically admissible velocities is a bounded sym-
metric domain. The Lie algebra of the automorphism group of this domain
consists of the generators of boosts and rotations. The relativistic dynamics
and the dynamics of a charged particle in an electromagnetic field are given
by elements of this Lie algebra.

Our methodology in special relativity is outlined in the following steps,
which we apply to two inertial systems:

Step 1 Choice of the parameters for the purpose of obtaining simpler (ideally,
linear) transformations between the two systems

Step 2 Identification of symmetry in the basic principle of the area of appli-
cation (in this case, the principle of special relativity)

Step 3 Choice of reference frames which preserve the symmetries

Step 4 Choice of inputs and outputs which reflect the description of the sys-
tem

Step 5 Derivation of the explicit form of the symmetry operator

Step 6 Identification of invariants

Step 7 Construction of an appropriate (bounded) symmetric domain for the
area of application

Step 8 Derivation of the equation of evolution based on the algebraic struc-
ture of the Lie algebra of the domain

1.1 Space-time transformation based on relativity

In this section, we derive the space-time transformation between two inertial
systems, using only the isotropy of space and symmetry, both of which follow
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from the principle of relativity. The transformation will be defined uniquely
up to a constant e, which depends only on the process of synchronization of
clocks inside each system. If e = 0, the transformations reduce to Galilean.

1.1.1 Step 1 - Choice of the Parameters

We begin with two “systems”, for example, an airplane flying at 30,000 feet
and an observer standing on the ground. We assume that the airplane is flying
in uniform motion with constant velocity, that there is no turbulence, etc.
Passengers in the airplane feel themselves at rest. When they put their cup of
coffee on the fold-down tray in front of them, it doesn’t slide or move. When
they drop a penny, it falls “straight” to the floor. This is a manifestation
of the principle of special relativity, which states that (Pauli [59], page 4)
“there exists a triply infinite set of reference systems moving rectilinearly
and uniformly relative to one another, in which the phenomena occur in an
identical manner.”

Typically, there are events which are observable from both systems. Lake
Michigan can be observed by both Observer A who is standing on its edge
and also by Observer B who is flying over it (Figure 1.1). Certainly, Observers
A and B will not observe Lake Michigan in the same way. To Observer A,
Lake Michigan is next to him and standing still, while to Observer B, it is
below him and moving. Each observer sets up a system of axes and scales
in order to measure the position in space and time of each event. Imagine
a kingfisher flying above the lake. It swoops down, snatches a fish from the
lake, and takes off again. Let’s take the snatch as our event. Each observer
has a different set of four numbers to describe the location of this event in
space-time. The connection between these two sets of four numbers is the
space-time transformation between the two systems.

Why have we chosen space and time as the parameters with which to
describe events? Why not velocity and time? Why not position and momen-
tum? Why is the space-time description more convenient for transformations
between inertial systems?

The advantage is linearity. Newton’s First Law states that an object moves
with constant velocity if there are no forces acting on it or if the sum of all
forces on it is zero. Such a motion is called free motion and is described by
straight lines in the space-time continuum, as shown in Figure 1.2. Conversely,
any line (except lines with constant ¢) in the space-time continuum represents
free motion. A system is called an inertial system if an object moves with
constant velocity when there are no forces acting on it. By the definition of
an inertial system, free motion will be observed as free motion in any inertial
system. This means that the space-time transformations will map lines to
lines. Thus the space-time description of events leads to linear transforma-
tions. For an example of how the choice of parameters with which to describe
events affects the linearity of the transformations, see Figure 1.3.



1.1 Space-time transformation based on relativity 3

BT

Fig. 1.1. The space-time transformation between two systems is the connection
between the space-time coordinates of the same event (snatches of a fish) observed
and described by two observers in the two systems. Above, Observer A is standing
(at rest) on the edge of Lake Michigan, and Observer B is flying over it with constant
velocity.

We restrict ourself to inertial systems with the same space origin at time
t = 0. By a well-known theorem in mathematics, a transformation between

A 4

Fig. 1.2. Lines in space-time and free motion. Two space coordinates,  and y,
and time are displayed. The line L intersects the plane ¢t = 0 at ro, the position of
an object at time ¢ = 0. The direction of L is given by a vector u = (1,v), where
v is the constant velocity of the object. The line L = {(t,ro + vt) : t € R} is the
world-line of this free motion.
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Fig. 1.3. Two descriptions of free motion for an inertial system K and a system K,
whose acceleration with respect to K is a. (a) In the velocity-time description, the
constant velocity vo in K is represented by a line L = {(t,vo) : t € R} in K and
also by a line L = {(t,vo —at) : t € R} in K,. (b) In the space-time description,
the constant velocity vo in K is represented by a line L = {(¢,ro + vot) : t € R}
in K, while in Ka, it is represented by a parabola (t,ro + vot — 0.5at?) : t € R}.
Hence, the space-time transformation between K and K, cannot be linear.

two vector spaces which maps lines to lines and the origin to the origin is
linear. Thus, the space-time transformation between our two systems is a
linear map. After choosing space axes in each system, we can represent this
transformation by a matrix.

1.1.2 Step 2 - Identification of symmetry inherent in principle of
special relativity

Albert Einstein formulated the principle of special relativity ([21], p.25): “If
K is an inertial system, then every other system K’ which moves uniformly
and without rotation relatively to K, is also an inertial system; the laws of
nature are in concordance for all inertial systems.” Observation of the same
event from these two systems defines the space-time transformation between
the systems. By the principle of special relativity, this transformation will
depend only on the choice of the space axes, the measuring devices (consisting
of rods and clocks) and the relative position in time between these systems.
The relative position in time between two inertial systems is described by
their relative velocity. We denote by v the relative velocity of K’ with respect
to K and by v’ the relative velocity of K with respect to K’. If we choose the
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measuring devices in each system to be the same and choose the axes in such
a way that the coordinates of v are equal to the coordinates of v/, then the
space-time transformation S from K to K’ will be equal to the space-time
transformation S’ from K’ to K. Since, in general, S’ = S~!, in this case
we will have S2 = I. Such an operator S is called a symmetry. Thus, the
principle of special relativity implies that with an appropriate choice of axes
and measuring devices, the space-time transformation S between two inertial
systems is a symmetry.

1.1.3 Step 3 - Choice of reference frames

Following Einstein, the space axes in special relativity are chosen as in Figure
1.4. If we assume that the interval ds?® = (cdt)? — dr? is conserved, the

t
K L /

v

Fig. 1.4. The usual Lorentz space-time transformations between two inertial sys-
tems K and K', moving with relative velocity v. The space axes are chosen to be
parallel. The Lorentz transformation L transforms the space-time coordinates (¢, r)
in K of an event to the space-time coordinates (¢',r’) in K’ of the same event.

resulting space-time transformation between systems is called the Lorentz
transformation. In the case v = (v,0,0), the Lorentz transformation L is
given by

tl — 1 (t_ ’U:t)
/) 1 _
:B/ - V1-v2/c? (SD Ut)’ (11)
y=y
2=z

Note that the assumption that the system K’ is moving with velocity v with
respect to the system K implies that system K is moving with velocity —v
with respect to K’. And this apparently minor lack of symmetry means that
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the Lorentz transformation L’ from system K’ to system K will be different
from L. In fact, we have

— 1 !
t=Zmmm '+ &)

2= s (@ o), (1.2)
y=v,
z2=27.

We would like to arrange things so that the two transformations L and
L’ are the same! It certainly would help if K were also moving with velocity
v with respect to system K’.

We will synchronize the two systems by observing events from each system
and comparing the results. System 1 begins with the following configuration.
There is a set of three mutually orthogonal space axes and a system of rods.
In this way, each point in space is associated with a unique vector in R3.
In addition, there is a clock at each point in space, and all of the clocks are
synchronized to each other by some synchronization procedure. System 2 has
the same setup, only we do not assume that the rods of system 1 are identical
to the rods of system 2, nor do we assume that the clock synchronization
procedure in system 2 is the same as that of system 1.

First, we synchronize the origins of the frames. Produce an event Ey at
the origin O of system 1 at time ¢ = 0 on the system 1 clock positioned at O.
This event is observed at some point O’ in system 2, and the system 2 clock
at O shows some value t' = t;. Translate the origin of system 2 to the point
O’ (without rotating). Subtract ¢, from the system 2 clock at O'. Synchronize
all of the system 2 clocks to this clock. This completes the synchronization
of the origins.

Next, we will adjust the z-axis of each system. Note that system 2 is
moving with some (perhaps unknown) constant velocity v with respect to
system 1 and that the origin O’ of system 2 was at the point O of system 1 at
time ¢ = 0. Therefore, the point O’ will always be on the line vt in system 1.
Rotate the axes in system 1 so that the new negative z-axis coincides with the
ray {vt : t > 0}. Similarly, system 1 is moving with some constant velocity
w with respect to system 2, and the origin O of system 1 was at the point
O’ of system 2 at time ¢’ = 0. Therefore, the point O will always be on the
line wt in system 2. Rotate the axes in system 2 so that the new negative
z'-axis coincides with the ray {wt : ¢ > 0}. The two z-axes now coincide as
lines and point in opposite directions. We are finished manipulating the axes
and clocks of system 1 and will henceforth refer to system 1 as the inertial
frame K. However, it still remains to manipulate system 2, as we must adjust
the 3/~ and z’-axes of system 2 to be parallel and oppositely oriented to the
corresponding axes of K.

To adjust the y’-axis of system 2, produce an event E; at the point r =
(0,1,0) of K. This event is observed in system 2 at some point r’. Rotate
the space axes of system 2 around the z’-axis so that r’ will lie in the new
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z'-y’ plane and have a negative ' coordinate yj. After this rotation, the
z-axis of K and the 2’-axis of system 2 will be parallel. We need to make
sure that they have opposite orientations. Produce an event E, at the point
r = (0,0,1) of K. This event is observed in system 2 at some point r’. If
the 2’ coordinate of r’ is positive, reverse the direction of the z’-axis. This
completes the adjustment of the space axes of the two systems. See Figure
1.5.

Fig. 1.5. Two symmetric space reference frames. The relative velocity of the inertial
system K’ with respect to K is v. The coordinates of v in K are equal to the
coordinates (in K') of the relative velocity of the system K with respect to K’.

It remains to redefine the space and time units of system 2 to match those
of K. The new space unit of system 2 is defined to be y; times the previous
space unit. In order to adjust the time unit of system 2, we will measure the
speed |v| of system 2 with respect to K and the speed |v'| of K with respect
to system 2. To calculate |v|, produce an event E3 at O’ at any time ¢ > 0.
This event is observed in K at some point r = (x¢,0,0), and the clock at
this point shows time tg. The relative speed of system 2 with respect to K
is |[v] = |zo|/to. The calculation of |v’| is symmetric. Produce an event E,
at O at any time t > 0. This event is observed in system 2 at some point
r’ = (zp,0,0), and the clock at this point shows time ¢;. The relative speed of
K with respect to system 2 is |v'| = |z{|/t;. Finally, the time unit in system
2 is chosen as |v’|/|v| times the previous unit. With this choice of units, the
speeds |v| and |v'| are equal. System 2 will henceforth be called K.

The transformations from system K to system K’ will now be mathemat-
ically identical to the transformations from system K’ to system K. In other
words, the space-time transformation S from system K to system K’ will be
a symietry operator.

/
The space-time coordinates of K and K’ will be denoted i and ( ﬁ/ >a

respectively. These coordinates will be considered as a 4 X 1 matrix. By the
above synchronization procedure, the frames have the same origin and the



8 1 Relativity based on symmetry

two clocks at each origin are synchronized at time ¢t = 0. Moreover, the space
axes are reversed as in Figure 1.5 . Note that with this choice of axes, the
velocity coordinates of O’ in K are equal to the velocity coordinates of O in
K'. Thus, the transformation is fully symmetric with respect to K and K’
(see Figure 1.6). We will denote the space-time transformation from K to K’

§=5

Fig. 1.6. The time ¢ and two space axes z and y of systems K and K’ are displayed.
With our choice of the axes, the space-time map S from K to K’ is identical to the
space-time map S’ from K’ to K, and, thus, S is a symmetry.

by Sy, since it is a symmetry and depends only on the velocity v between
the systems.

1.1.4 Step 4 - Choice of inputs and outputs

The space-time transformation between two inertial systems can be consid-
ered as a “two-port linear black box” transformation with two inputs and
two outputs. There are two ways to define the inputs and outputs for such a
transformation.

Cascade connection

The first one, called the cascade connection, takes time and space of one of

the systems, say (i) of K, as input, and gives time and space of the second

!
system, say (i,) of K', as output (see Figure 1.7) *

The cascade connection is the one usually used in special relativity.
We represent the linear transformation induced by the cascade connection
by a 4 x 4 matrix F, which we decompose into four block matrix components

E;;, as follows:
Y\ t\ _ ( Eu Erp t
<I") =E (r) o <E21 E22 r/’ (13)

'We use a circle instead of the usual box notation in order that the connection
between any two ports will be displayed inside the box (see Figure 1.8).
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Fig. 1.7. The cascade connection for space-time transformations. The circle rep-
resents a black box. One side has two input ports: the time ¢ and the space r
coordinates of an event in system K. The other side has two output ports: the time
t’ and the space r’ coordinates of the same event in system K’. The linear operators
E;; represent the functional connections between the corresponding ports.

To understand the meaning of the blocks, assume that the system K is the
airplane. Let ¢ be the time between two events (say crossing two lighthouses)
measured by a clock at rest at r = 0 on the airplane. The time difference t' of
the same two events measured by synchronized clocks at the two lighthouses
(in system K', the earth) will be equal to ¢’ = Ejy;it. If we denote the dis-
tance between the lighthouses by r’, then r' = Ext, and Ey; is the so-called
proper velocity of the plane. Generally, the proper velocity u of an object (the
airplane) in an inertial system is the ratio of the space displacement dr in
this system (the earth) divided by the time interval, called the proper time
interval d7, measured by the clock of the object (on the plane). Thus,

_dr

(1.4)

Hybrid connection

The second type of connection, called the hybrid connection, uses time of

one of the systems, say £ of K, and the space coordinates r' of the second
/

system K’, as input, and gives tr as output (see Figure 1.8). Usually we

use relative velocity (not relative proper velocity) to describe the relative
position between inertial systems. To define the relative position of system
K’ with respect to K, we consider an event that occurs at O', corresponding
to r’ = 0, at time ¢, and express its position r in K. If we denote by v the
uniform velocity of system K’ with respect to K, then

r = vt. (1.5)

Note our use of the hybrid connection. In this section we will use the hybrid
connection in order to be consistent with the description of relative position
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Fig. 1.8. The hybrid connection for space-time transformations. The circle repre-
sents a black box. The two input ports are the time t of an event, as measured in
system K, and its space coordinates r’, as measured in system K’. The two output
ports are the time t’ of the same event, calculated in system K', and its space
r coordinates, calculated in K. The linear operators S;; represent the functional
connections between the corresponding ports. For instance, to define the map So;,
we consider an event that occurs at O’, corresponding to input r’ = 0, at time ¢ in
K. Then S2:t represents the space displacement of O’ in K during time ¢, which
is, by definition, the relative velocity v of system K' with respect to system K.

between the systems and because we will be interested later in velocities
(rather than proper velocities).

Thus, for the transformation Sy, we choose the inputs to be the scalar ¢,
the time of the event in K, and the three-dimensional vector r' describing
the position of the event in K’. Then our outputs are the scalar t', the time
of the event in K’, and the three-dimensional vector r describing the position
of the event in K. As above with respect to the cascade connection, here we
also decompose the 4 x 4 matrix Sy into block components:

AN t) _ [ Su S t
(+) =5 ()= (552) (4) a9
(see Figure 1.8).

The transformation between cascade and hybrid connections

Note that the matrices E and Sy describing the space-time transformations
between two inertial systems using the cascade and hybrid connections, re-
spectively, are related by some transformation ¥. To define this transforma-
tion, note that equation (1.3) can be rewritten as a scalar equation

tl = Ellt + E12r (17)
and a vector equation

r = FEo1t + FEaor. (18)
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The matrix Es; is invertible, since from its physical meaning it is one-to-one
and onto. By multiplying (1.8) on the left by E3;}', we get

r=—Ey'Eyt+ Ey'r. (1.9)

Substituting this expression for r into (1.7), we get

t' = (B — BBy By )t + EppE'r. (1.10)
Thus
'\ _ ( Bu — EwEy Ey EjpEx) t
= = 201 ) (1.11)
r ~E5 Ea E;, r
implying that
S11 812\ _ ( Fui— E1EL Ey Ep B
= 12 D22 ) (1.12)
S21 S22 —E5 Ey E,

Define a transformation ¥ by

7 <E11 E12> _ (Eu — B B3 By E12E2_21)

~ _ 1.13
Es By —~E3 By EZ} (113)

This transformation is called the Potapov-Ginzburg transformation. Then,

S11 512) En Epp
=V . 1.14
<521 522 E21 E22 ( )
A symmetric argument shows that
FEy1 Eqg S11 S12
=y . 1.15
(E21 E22) (521 522) (1.15)

It is easy to check that S, is a symmetry (that is, S2 = ) if and only if
E =¥(S,) is a symmetry.

The meaning of the operators in the hybrid connection

We explain now the meaning of the four linear maps Si;. To define the maps
S21 and Sy, consider an event that occurs at O, corresponding to r’ = 0, at
time ¢ in K. Then Sy, (t) expresses the position of this event in X , and Sy (t)
expresses the time of this event in K’. Obviously, Sy; describes the relative
velocity of K’ with respect to K, and

So1(t) = vt, (1.16)

while S1;(t) is the time shown by the clock positioned at O’ of an event
occurring at O’ at time ¢ in K and is given by



12 1 Relativity based on symmetry
Sll(t) =at (117)

for some constant a.

To define the maps S12 and Sz2, we will consider an event occurring at
time ¢t = 0 in K in space position r' in K’. Then S12(r’) will be the time of
this event in K’, and Sa2(r’) will be the position of this event in K. Note
that S12(r’) is also the time difference of two clocks, both positioned at time
t = 0 at r in K’, where the first one was synchronized to the clock at
the common origin of the two systems within the frame K’, and the second
one was synchronized to the clock at the origin within the frame K. Thus
S12 describes the non-simultaneity in K’ of simultaneous events in K with
respect to their space displacement in K’, following from the difference in
synchronization of clocks in K and K’. Since Si2 is a linear map from R3 to
R, it is given by

Su(l‘l) = ETI'/ (118)
for some vector e € R3, where e” denotes the transpose of e. Note that e”r’

is the dot product of e and r’. See Figure 1.9 for the connection between the
time of events in two inertial systems.

er

t

Fig. 1.9. The times ¢ and t of an event at space point r’ in system K’. The
difference in timings is caused both by the difference in the rates of clocks (time
slowdown) in each system and by the different synchronization of the clocks posi-
tioned at different space points.

Finally, the map Sso describes the transformation of the space displace-
ment in K of simultaneous events in K with respect to their space displace-
ment in K’, and it is given by

SQQ(I‘I) = AI‘I (1.19)

for some 3 x 3 matrix A.
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1.1.5 Step 5 - Derivation of the explicit form of the symmetry
operator

Our black box transformation can now be described by a 4 X 4 matrix Sy
with block matrix entries from (1.16), (1.17), (1.18) and (1.19):

(i) = (;’) - (3{1) (J)- (1.20)

If we now interchange the roles of systems K and K', we will get a matrix

St
()-5()-()(). o

But the principle of relativity implies that switching the roles of K and K’
is nonrecognizable. Hence

T
a=d, ef=¢e", v=v', A=A

By combining (1.20) and (1.21), we get S2 = I, implying that S, is a
symmetry operator. Hence,

ael ael 107
(v A) (v A) =\o I)’ (1.22)
where I is the 3 x 3 identity matrix. Equation (1.22) is equivalent to the
following four equations:

a?+efv=1, (1.23)
ael +eTA =07, (1.24)
av+ Av =0, (1.25)
and
vel +A2=1. (1.26)

Note that since space is isotropic and the configuration of our systems
has one unique divergent direction v, the vector e is collinear to v. Thus

e=ev (1.27)

for some constant e. Since the choice of direction of the space coordinate
system in the frame is free, the constant e depends only on |v| and not on



14 1 Relativity based on symmetry

v. Finally, from (1.18) and (1.27), it follows that this constant has units
(length/time)~2.

By using (1.23) and (1.27), we obtain a = £4/1 — e|v|?. To choose the
appropriate sign for «, we use the fact that the transformation is continuous
in v and that for v = 0 we have a = 1. Thus,

a=+/1-elv|2 (1.28)

Note that by use of (1.27), the operator vel acts on an arbitrary vector
u € R3 as follows:

T T vTu 2
ve'u=evv u=elv| —I—P—v = e|v|*Pyu, (1.29)
v

where P, denotes the orthogonal projection onto the direction of v. Now
from (1.26), we get

A? =T —e|v|*?P, = P, + (I - P,).
Using once more the continuity in v, we get
522 =A= —Oth - (I - Pv) (130)

Thus, the space-time transformation between the two inertial frames K and

K'is
(O-5()-( wha)(Q) o

with « defined by (1.28) as a = y/1 — e|v|? (see Figure 1.10).

<& <.

Fig. 1.10. The hybrid connection for space-time transformations. The circle rep-
resents a black box. The two input ports are the time ¢ of an event, as measured in
system K, and its space coordinates r’, as measured in system K’. The two output
ports are the time t' of the same event, calculated in system K’, and its space r
coordinates, calculated in K. The explicit form of the linear operators representing
the functional connections between the corresponding ports is shown.
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If we choose v = (v,0,0) and write r = (z,y, 2) and v’ = (z/,9/, 2}, then
the above matrix becomes

aev 0 O
v—a 0 0

Sy = 00 -1 0 (1.32)
00 0 -1

To compare this result with the usual space-time transformations in spe-

cial relativity, we have to recalculate our result for the cascade connection.
!

To obtain (f.,) as a function of (i), we use the map ¥ from (1.15) and

obtain

(£)=w6a ()= (s _p Zor-py) (1), 0

where v(v) = 1/4/1 — |v|?/c2. This defines an explicit form for the operators
of the space-time transformations using the cascade connection (see Figure
1.11). For the particular case v = (v,0,0), we get

Fig. 1.11. The cascade connection for space-time transformations. The circle rep-
resents a black box. The two input ports are the time ¢ of an event and its space
coordinates r , as measured in system K, and the two output ports are the time ¢’ of
the same event and its space r’ coordinates, calculated in system K'. The explicit
form of the linear operators representing the functional connections between the
corresponding ports is shown.

t' =(v)(t - eva),
! = 2(v)(vt ~ ),
Yy ==Yy

2=z,

(1.34)

which are the usual Lorentz transformations (with space reversal) when
e =1/c2 If e = 0, then a = 1, and the transformations are the Galilean
transformations.



16 1 Relativity based on symmetry

1.2 Step 6 - Identification of invariants

In this section and the two which follow, we will show that the principle of
relativity alone implies that an interval is conserved, that the ball D, of all
relativistically admissible velocities is conserved and that D, is a bounded
symmetric domain with respect to the projective maps. The symmetry of
this ball, resulting from the above space-time transformations, determines
the so-called symmetric velocity.

1.2.1 Eigenvectors of S,

As mentioned above, the space-time transformation between the systems K
and K’ is a symmetry transformation. Such a symmetry is a reflection with
respect to the set of fixed points. We now want to determine the events fixed
by Sy, meaning that in both systems the event will have the same coordinates.
It follows from (1.31) that such an event must satisfy

(tf,> - (5/) N (3 —aP, iv(q;_pv)) (i) (1.35)

This can be rewritten as
t = at + e(v|r’) (1.36)
and
' =vt—(aP, + (I - P))r'’. (1.37)

By multiplying the previous equation by (I — Py), we get (I — Py)r’ = 0.
Hence, (1 + a)r’ = vt, implying that

r v r
S =L == (1.38)
Note that if (¢, r’) satisfies (1.38), then by use of (1.28), it also satisfies (1.36).
The meaning of this is that all of the events fixed by the transformation Sy
lie on a straight world-line through the origin of both frames at time ¢ = 0,
moving with velocity wy defined by (1.38) in both frames (see Figures 1.13
and 1.14).

The velocity wy will be called the symmetric velocity between the systems
K and K'. Note that w; is equal to its hybrid velocity 1’ /¢, defined above as
the space displacement measured in one inertial frame divided by the time
interval measured in the second frame.

In addition to the mathematical meaning of the symmetric velocity, we
can give it the following physical interpretation. Place two objects of equal
mass (test masses) at the origin of each inertial system. The center of mass
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¥

Fig. 1.12. The symmetric velocity £w; is the velocity of each system with respect
to their center, while v is the velocity of one system with respect to the other.

of the two objects will be called the center of the two inertial systems. The
symmetric velocity is the velocity of each system with respect to the center
of the systems (see Figure 1.12).

Let us now find the events represented by j, , with r’ in the direction

of v, which are the —1 eigenvectors of Sy. By modifying equations (1.35),
(1.36) and (1.37) accordingly, we get

=——= ; = W_q. (1.39)

The relative position of the 1 and —1 eigenvectors of S, differs for the two
cases o < 1, which by (1.28) corresponds to e > 0, and « > 1, corresponding
to e < 0. In Figure 1.13, we show the position of the eigenspaces in the case
a < 1, and in Figure 1.14, we show the position of the eigenspaces in the case
a> 1.

1.2.2 Unique speed and interval conservation

The symmetry Sy becomes an isometry if we introduce an appropriate inner
product. Under this inner product, the 1 and —1 eigenvectors of S, will
be orthogonal. Figure 1.15 shows the action of a general symmetry S in
two cases: (a) when the eigenspaces are not orthogonal and (b) when the
eigenspaces are orthogonal. Only in the second case are the lengths of intervals
preserved.

The new inner product is obtained by leaving the inner product of the
space components unchanged and introducing an appropriate weight u for
the time component. This change of time scale maps t — ut and velocity
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1 t
r=wit
r=w_it r=vt
V;_l 0 W1 \; r’

Fig. 1.13. Eigenspaces of the symmetry if o« < 1. A two-dimensional section of
space-time is presented: the time direction and one dimension of space, in the
direction of v. In this case, by changing the scale of the time ¢, we could make the
world-lines corresponding to velocities w1 and w_; orthogonal.

3

t
1
r=wit
r=vt r=w-_t
0 w1 v w_.1 T

Fig. 1.14. Eigenspaces of the symmetry if a > 1. A two-dimensional section of
space-time is presented: the time direction and one dimension of space, in the
direction of v. In this case, by changing the scale of the time ¢, we cannot make
the world-lines corresponding to velocities w1 and w_; orthogonal, since the angle
between them will always be less than 90°.

w — w/u. Thus wt is unchanged. The orthogonality of the eigenvectors
means that

()1 (W =02 + -y =0 (1.40)

Wlt W_1t
By use of (1.38), (1.39) and (1.28), this becomes

2 ‘V|2 2 |V|2 2 1
u+(1+a)(a—1) 'u+o¢2—1 ke 0 (1.41)

If e > 0, corresponding to a < 1, the orthogonality of the 1 and —1
eigenvectors of Sy is achieved (see Figure 1.13) by setting
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W, W
A A
W,
B /y /
/ 1B
(@)
W w,
A A
W, W,
B ‘y T B
(b)

Fig. 1.15. The action of a general symmetry S for two cases. (a) the 1-eigenspace
w1 and the —l-eigenspace w_; are not orthogonal. (b) these eigenspaces are or-
thogonal. Only in the second case is the length of an interval [A,B] preserved.

p=—. (1.42)

In this case, Sy becomes an isometry with respect to the inner product with
weight u, implying that

() +I'[2 = (ut')? + |, (1.43)
or, equivalently,
(ut')? — e[ = (ut)® — ||, (1.44)

The previous equation implies that our space-time transformation from
K to K' conserves the relativistic interval

ds® = (udt)? — |dr?, (1.45)

with p defined by (1.42). See Figure 1.16 for the meaning of the interval.

In particular, the transformation S, maps zero interval world-lines to zero
interval world-lines. Since zero interval world-lines correspond to uniform
motion with unique speed p, for any relativistic space-time transformation
between two inertial systems with e > 0, there is a speed x defined by (1.42)
which is conserved. Obviously, the cone ds? > 0, corresponding to the positive
Lorentz cone, is also preserved under this transformation.
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t

tB A

At

L7 (R,

Fig. 1.16. The meaning of the relativistic interval. Two events are depicted: A,
with space-time coordinates (t4,r4), and B, with space-time coordinates (¢g,rs)
in system K. An inertial system K is chosen with the space origin at ra at time
ta and at rp at time tp. The relative velocity of K with respect to K is v = (rg —
ra)/(tp —ta) = Ar/At. The time of event A in K is )4, and the time of event B is
t’5. The interval between the events A and B is ds® = (u(ts—t4))? = (uAt)?—|Ar|>.
If conservation of the speed of light is assumed, then u = c.

Let us now show that e = e, is independent of the relative velocity v
between the frames K and K’. To do this, consider Figure 1.17, in which two
intermediate inertial systems K and K’ have been added to the configuration
of Figure 1.5.

Note that the systems K and K’ are simply space-reversed, and thus the
transformation between them is S = Sy. The space-time transformation Sy
can now be decomposed as follows:

Swl S fayd Sw1

KI

K K K’

and, hence,
Sy = Sw, SSw, - (1.46)

From our discussion, we know that the speed u = 1/,/éw, is preserved by
Sw;, and, since S preserves every speed, it follows that S, also preserves this
speed, implying that e, = ey, . By a standard argument, this implies that e
is independent of v.

Several experiments at the end of the 19th century showed that the speed
of light is the same in all inertial systems. Thus

1

p=c and e= 3

where c is the speed of light in a vacuum, and we have shown that the space-
time transformations between two inertial systems are the Lorentz transfor-
mations.
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K
Z
K Y
VA 18] X
X v
K’ b X'
, NS 2 I
X o' K A
YV

ZI

Fig. 1.17. The inertial systems K and K’ are introduced between systems K and
K'. The origin O is at the center of the systems K and K’. The system K is
space-reversed to K, and K’ is space-reversed to K.

Note that the operator Sy becomes self-adjoint with respect to the inner
product defined by (1.40) with u = c. Moreover, we can now calculate the
adjoint of the relative velocity v as a linear operator from time ¢ to space
displacement r. Since

(v|r)t = (vt|r) = {t|v*r) = ptv*r,

we get
V(£) = 5 (vlr) = e{vlr) = & = Sia(r).

This shows that the adjoint to the relative velocity between two inertial sys-
tems K’ and K is the operator that describes the non-simultaneity in K’ of
simultaneous events in K displaced at a distance r.

Theoretically, there is also the possibility that e = 0. In this case, the
space-time transformations defined by (1.31) become the Galilean transfor-
mations. In the next section, we will show that the case e < 0 leads to phys-
ically absurd results, leaving only two possibilities for relativistic space-time
transformations: the Galilean and Lorentz transformations.

1.3 Relativistic velocity addition

We begin this section by deriving a general formula for relativistic velocity
addition. Using this formula, we then show that e < 0 leads to physically
absurd results. Thus, we will assume that e > 0, implying that the space-time
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transformations between the inertial systems are the Lorentz transformations.
In this case, the velocity addition coincides with the well-known Einstein
velocity addition. We will study the mathematical properties of this velocity
addition and its effect on the ball D, of relativistically admissible velocities.
We end the section by showing that the symmetric velocity is the relativistic
half of its corresponding velocity.

1.3.1 General formula for velocity addition

In special relativity, the addition of two velocities v and w is defined as
follows. Let K; and K3 be two inertial systems, with space axes parallel (not
reversed), where the relative velocity of K> with respect to K3 is v. Consider
an object moving with uniform velocity u in K5. If this object is observed in
K1, it is moving with uniform velocity v @ u, called the relativistic sum of
the velocities v and u (see Figure 1.18).

Fig. 1.18. The velocity addition v & u is the velocity in K3 of an object moving
with uniform velocity u in K5, where K2 moves relative to K; with velocity v and
the space axes of the two systems are parallel (not reversed).

To derive an explicit formula for the velocity addition, we will associate
with our moving object an inertial system K3 with axes parallel to the axes
of K. The following diagram (Figure 1.19), showing the hybrid connection
between these three systems, will be used to derive the above-mentioned
formula. From (1.31), with sign modification due to non-reversal of space
frames, it follows that the operators in this diagram are

a1 =+1—¢€|v[?, az=+/1-c¢lul?, (1.47)

ey =—evl, ey=—eu’, (1.48)

Ay =P, +I1-P, (1.49)

and
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7]

<
K

Fig. 1.19. Three inertial systems K, K7 and K3. The system K; is moving par-
allel to K3, and K> is moving parallel to K3. The circles represent two space-time
transformations: Sy from K3 to Ky and Sy from K> to K3. The ports B; and D,
are inputs to Sy, the ports By and D; are outputs of Sy, the ports Bz and Dy are
inputs to Su, and the ports B4 and D3 are outputs of Sy. The operators inside the
transformations are similar to the ones in Figure 1.10, page 14.

Ay =asPy+1- P, (1.50)

To define the velocity addition v & u, we use inputs r”” = 0 at port Dy
and At at port B;. The output at port D; will be (v & u)At. This output is
combined from the following passes through the diagram:

B, — D,

By — By — B3 — D3 — Dy — Dy,

By — By — B3 — D3 — Dy — By — B3 — D3 — Dy — Dy,
and so on.

By substituting the transformations for these passes and using the formula
for the sum of a geometric series, we get

(VO u)At = vAE + Ajua; At + Ajuejuon At + Ajuejuejuay At + - - -

= vAt+ Aju(l — equ) o At,
or
(veu)At = vAt + Aju(l + e(v|u)) oy At. (1.51)
Using (1.47), (1.48) and (1.49), we get the velocity-addition formula

u

vou=v+ (P tall - R)) e

where a = /1 —e|v|2.

Note that in (1.51), the second velocity summand is obtained by the
following three corrections of u. The first correction, described by «;, is due
to the time slowdown of the clocks in K, with respect to K;. The second
correction, At' — At' + e(v|uAt'), is needed to correct the difference in the
settings of two clocks at a distance uAt’, synchronized in Ky, with the clocks
at the same points synchronized in K;. Finally, the last correction, described
by A;, expresses the space contraction from K3 to K;.

(1.52)
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1.3.2 Non-negativity of e.

Consider now the case when the velocities v and u are parallel. Since, in this
case, u = Pyu and (vju)v = |v|?u, from (1.52) we get

u _ v+u
T+e(vie)  1+e(viu)’

veu=v+(1—e¢v}? (1.53)

If e < 0, this implies that
lv@ul > [v|+ [ul,

and, thus, the magnitude of v & u can become arbitrarily large. For a fixed
v, the length of the vector v @ u in the direction of v, as a function of u, is
shown in Figure 1.20.

150 -

50 -

-100 |

-150

Fig. 1.20. Velocity addition with negative e. In the figure, e = —0.01 and v =
(5,0,0). For small u = (u,0,0), the relativistic sum v @ u is slightly larger then
v+u, but when u approaches 20, the sum goes to infinity, and later it even changes
direction.

This leads to physically absurd results: the sum is not defined for any u
such that (v|u) = —e~!, and for large u, the direction of the sum is opposite
that of each summand. Therefore, we will assume from now that e > 0.

1.3.3 Velocity addition in special relativity

We will assume from now on that e = 1/c?, and, thus, the space-time trans-
formations Sy given by (1.31) become
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t a vT/c? t
(r) - (v —aP,—(I=-P,) ) \r' )’ (1.54)

a=+/1-|v[?/c% (1.55)

In this case, the relativistic addition formula (1.52) becomes

with

1+ (vlu)/c?’

which is known as the Einstein velocity-addition formula.
For some calculations, it is convenient to use a different form for Einstein
velocity-addition. The alternative formula follows from (1.56) by substituting

P,(u) = ﬁu—l‘l}l'zl and o? = 1 — |v|?/c%. With these substitutions, we get

vopu=v+(a®P, + ol - P,)) (1.56)

vVepu= (v+ou+ (viuyv). (1.57)

(1+a)c

The space-time transformations between frames K; and K3 can also be
obtained by use of the diagram in Figure 1.21. However, since the notion

1+ (viju)/c?

Fig. 1.21. Diagram of the connection between systems K; and K3

of parallelism is not transitive in special relativity, the assumption that the
space axes of Ky were chosen to be parallel to those of K; and that the space
axes of K3 were chosen to be parallel to those of K3, does not imply that
the space axes of K3 are paralle]l to those of K. An explicit expression for
the non-transitivity of parallelism in special relativity will be given in section
2.2.4 of Chapter 2, page 64. Thus, the space contraction operator Az and the
vector e; will depend on a rotation which will make the axes of K3 parallel to
the axes of K. Nevertheless, we can calculate the time contraction ag using
the same argument we used for deriving the expression for v &g u, obtaining

— ep1e51 N ﬂ 3 m;
= I——(e—1|_u$ - \/1 e \/1 2 1+ (vju)/e2’ (1.58)

Qg
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1.3.4 Examples of velocity addition

We consider now two special cases of Einstein velocity addition.

Velocity addition of perpendicular vectors

If the wvelocity u is perpendicular to the velocity v, meaning that
(v|u) = 0, then from (1.57) we have

VO u=v+a,u, (1.59)

where a, = 4/1 — |v|2/c%. In this case, there is no correction for the differ-
ence in synchronization of clocks in the two systems, and there is no space
contraction. The only correction which we have to perform on u is that due

Fig. 1.22. Velocity addition with u perpendicular to v. Note that u®gv # vdgu.

to the slowdown of the clocks in K with respect to the clocks in K;. Note
that here the velocity addition is not commutative, since u@®g v = u+ ayv,
with a,, = /1 —|u|?/c?, and differs from v &g u calculated by (1.59) (see
Figure 1.22). For an expression which quantifies the non-commutativity of
velocity addition, see Section 2.2.2 of Chapter 2, page 62.

Velocity addition of parallel vectors
Consider now the case when u is parallel to v. Let
I, ={ueD,:u=M\v, A€ R},
the set of velocities parallel to v. For any u € I, we use (1.53) to get

v+u

e (1.60)

V@ u=
Note that in this case we have v &g u = u @g v, so the addition is com-
mutative. Moreover, it could be shown that only in this case is the Einstein
velocity addition commutative. Denote the direction of v by j = v/|v|. Then
any u € I, can be written as
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u = ucj, (1.61)

where |u| = |u|/c is the relative length of u with respect to the speed of light.
Now we can rewrite (1.60) as

v+u
1+ vu

vepu= cj. (1.62)
The commutative addition on I, is connected to the usual addition of real

numbers in the following way. Recall that the hyperbolic tangent function is

defined by tanh(z) = (e” —e™®)/(e” + e~ %) (see Figure 1.23) and that

-5 0 5

Fig. 1.23. The hyperbolic tangent tanh function. This function maps the real line
R onto the open interval (—1,1) and often serves as a connecting function between
the addition of the real numbers and the addition of the commutative subspaces of
bounded symmetric domains.

tanha + tanhb
tanh = . 1.
anh(a +b) 1+ tanha tanhb (1.63)
Combining (1.62) with (1.63), we get, for any real numbers a and b,
tanh(a)cj ® g tanh(b)cj = tanh(a + b)cj. (1.64)

By introducing the map ¢ : R — I, defined by ¢(a) = tanh(a)cj, we have
the following commutative diagram:

RxR —— R

¢><¢l l¢

[5233]
I, xI, —— I,

By using this diagram and the fact that ¢~!(u) = tanh™*(ju|/c), the velocity
addition in I, is given by

u®p w = tanh(tanh™!(Ju|/c) + tanh ™! (|w]|/c))cj, (1.65)

for any u,w € I, where j = v/|v|.
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Given an arbitrary u (not necessarily in I), we decompose it as u =
u; + uy, where u; = Pyu € I, and u; = (1 — Py )u. Then, from (1.56), we
have

Vegu= (V ®E 111)+5UQ, (166)

where the constant § = T(VI%IW depends on u;. Consider the disc Ay,
obtained from the intersection of the plane v, = u; (which is perpendicular
to v) with D,. Note that all u ending on Ay, have the same u; component
and differ only in the uy component. Thus, all vectors v@g u end on the disc
Avgpu, (see Figure 1.24).

24 25
s 0 N0y
24 -2
T l '
1 T T T 20
- 2
20, -2 0 v 2 v 2 0 Vx 2
Vy X s y x10°
x 10 (b)

(@)

Fig. 1.24. (a) A set of five uniformly spread discs A; obtained by intersecting the
three-dimensional velocity ball D, of radius ¢ = 3- 108m/s with y — z planes at z =
0,+ 108,42 10%m/s. (b) The images of these A; under the map ¢v(u) = v®r u,
with v = (10%,0,0)m/s. Note that pv(4;) is also a disc in D,, perpendicular to v
and moved in the direction of v. On each disc A;, the map @, acts as multiplication
by a constant in the us component.

The connection between a velocity and its symmetric velocity

As mentioned on page 16, the symmetry S, fixes only the velocity w;. We
want to find the connection between w; and v. From the definition (1.38) of
the symmetric velocity wy of v, we have

, 1.67

e (167

which is a vector in the same direction as v. Thus w; € I, and has length
_ vl :

|wy| = Ry ey (see Figure 1.25).

Note that (v|w;) = |v||w;] and
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,x10"
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1'5 |
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0 1 l 1 ! 1 |

A x10°

Fig. 1.25. The length of the symmetric velocity w1 with respect to the length of
v. For small velocities, the length of the symmetric velocity is approximately half
the length of the corresponding velocity, but for speeds close to the speed of light
3-10%m/s, they are almost the same.

v=wi ++/1—|v|?/c?w;. (1.68)

This implies that

Iv? = 2(v|wi) + w1 |2 = [wi|? — |v[*|w1]?/c?, (1.69)
and
2w |
= 1.
M 14 jwq]%/c? (1.70)

From this, it follows that
v = 2W1
1+ |wyf2/c?

Thus, the symmetric velocity wy is the relativistic half of the velocity v, as
we should expect (see Figure 1.12).

=w; Pg Wi. (171)

1.4 Step 7 - The velocity ball as a bounded symmetric
domain

1.4.1 The symmetry on D,

Recall the definition of a symmetric domain. Let D be a domain in a real or
complex Banach space. We denote by Aut(D) the collection of all automor-
phisms (one-to-one smooth maps) of D. The exact meaning of “smooth” will
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vary with the context, but it will always mean either projective (preserving
linear segments), conformal (preserving angles), or complex analytic. We will
sometimes denote the particular automorphism group under discussion by
Aut, (D), Aut (D) and Aut,(D) in order to indicate the type of smoothness.
A domain D is called symmetric if for any element a € D, there is a symmetry
sq € Aut(D) fixing only the point a. It is easy to show that a domain D is a
symmetric domain if it has a symmetry about one point and is homogeneous
in the sense that for any two points z,w € D, there is an automorphism
¢ € Aut(D) such that ¢(z) = w.
We show now that the set D,, defined by

D,={v: veR: |v|<c} (1.72)

representing all relativistically admissible velocities in an inertial frame K, is
a bounded symmetric domain with respect to the projective automorphisms
of D,. Let a € D, be an arbitrary velocity. We define

v=a®ga. (1.73)

From (1.71), it follows that a is the symmetric velocity of v, and, thus, from
Section 2.1, the line (¢, at) in space-time is fixed by Sy and also by the map
E, = ¥(Sy) defined by (1.33).

The map E, induces a map s, of the velocity ball as follows. Any point
u in the velocity ball D,, can be identified as the intersection of a line L =
{(t,ut) : t € R} through the origin in space-time of K with the plane IT =
{(1,r) € K : r € R} (see Figure 1.26). Let K’ be an inertial system moving

Fig. 1.26. The velocity ball D, in space-time. Time and two dimensions of space
are displayed. The velocity u is the intersection of a line L = {(t,ut) : ¢ € R}
through the origin with the plane IT = {(1,r) € K : r € R}. The segment [AB] in
D, is the intersection of D, with a two-dimensional plane @) through the origin.
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with relative velocity v with respect to K, whose space axes are reversed to
those of K.

Under the space-time transformation F, between systems K and K’, the
line L : (¢t,ut) in K is mapped to a line through the origin in K’. From the
definition of Einstein velocity addition, this line is L' : (¢, (v ®g (—u))t')
in K’ (the minus sign came from the space reversal). We define s,(u) to be
the intersection of this line with the plane IT = {(1,r) € K : r € R}. From
(1.56), the transformation s, is given by

—u

sa(u) = v+ (&®Py + ol — Pv))l———(W’

(1.74)

with o = /1 —|v|?/c?, which is the Einstein velocity sum of the relative
velocity v of the systems with —u (and not u, due to the space reversal). To
visualize s,, decompose the velocity u into u = u; + uy, where u; = Pyu
and uz = (1 — Py)u. Then, from (1.74), we get

sa(u) = (vOg (—uy)) + d(—u2), (1.75)

where the constant § = T\rlauﬁ/? depends only on u;. The first term v &g

(—uy) is depicted in Figure 1.27. The second term represents reversal and
stretching of the component of u perpendicular to v.

x10®

! 1 1 1 I

-3 —2 -1 u, © 1 2 3 x10°

Fig. 1.27. The action of the symmetry sa on velocities u; € D, which are parallel
to a, where a = 10%m/s. Note that only the point a is fixed and the graph intersects
the u axis at v=a®g a.

We will show that s, is a projective map and a symmetry fixing only a.
Note that any segment in D, is obtained from the intersection of D, with
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a two-dimensional plane @ through the origin in space-time. The plane @
is mapped by Ey to a two-dimensional plane in space-time (¢',r’) in K'.
Thus a segment of D, is mapped by s, to a segment, implying that s, is a
projective map. As mentioned on page 16, the symmetry S, fixes only the
line associated with a, the symmetric velocity of v. Therefore s, fixes only a.
By use of (1.74) and the definition of , it is easy to show that sa(sa(u)) = u,
implying that s2 = I, and thus s, is a symmetry.

1.4.2 The group Aut,(D,) of projective automorphisms of D,

We denote by Aut,(D,) the set of all projective automorphisms of the do-
main D,. This set is a group, since the composition of two projective au-
tomorphisms is a projective automorphism, and the inverse of a projective
automorphism (which always exists) is a projective automorphism. Note that
for any a € D, the map @, defined by

pa(u) =adg u, (1.76)

where a®g u is defined by either (1.56) or (1.57), is an element of Aut,(D,).
The fact that ¢, is a projective map follows from the same argument which
showed that s, is projective. It is obvious that for any velocity u € D, in the
system Ko, which is moving parallel to K7 with relative velocity a, there is a
unique corresponding velocity ¢a(u) € D, in K;. Conversely, every velocity
in K, corresponds to a unique velocity in Ky. Thus, the map ¢, : D, — D,
is one-to-one and onto (see Figure 1.28).

Next, we characterize the elements of Aut,(D,). Let ¢ be any projective
automorphism of D,,. Set a = 1/(0) and U = o 4. Then U is a projective
map that maps 0 — 0 and is thus a linear map which can be represented by a
3 x 3 matrix. Since U maps D,, onto itself, it is an isometry and represented by
an orthogonal matrix. Since ¢ = @,U, the group Aut,(D,) of all projective
automorphisms is defined by

Auty(Dy) = {palU :a € D, U € O(3)}. (1.77)
We write @a v instead of paU, and, from (1.57), we have

B 1 (a|lUu)a
vav(W) = Ty @t elut e

)s (1.78)
for u € D,. The group Aut,(D,) is a real Lie group of dimension 6, since
any element of the group is determined by an element a of the 3-dimensional
open ball of radius ¢ in R? and an element U of the 3-dimensional orthogonal
group O(3).

By a one-parameter subgroup g(s) of Aut,(D,), we mean a map g: R —
Autp(Dy), such that for any sy,s2 € R, we have
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Fig. 1.28. The velocity ball transformation ¢a, for a = 10%m/s. On the zero level
we see a two-dimensional section of the velocity ball D, of radius ¢ = 3 - 10®m/s,
with a rectangular grid. On level one we see the image of this ball under the map
®a. One cell of the grid has been darkened along with its image to help visualize
the effect of the transformation. Note how the grid moves in the positive direction
of the v, axis.

g(s1 + s2) = g(s1)g(s2) = g(s2)g(s1). (1.79)

Any physically meaningful evolution generates a one-parameter subgroup of
transformations of the state space of the system. This subgroup is commu-
tative, since the evolution of the system during the time interval s; + s is
independent of the way we partition this interval. Note, however, that the
full group Autp(D,) is not commutative. This means that the set of possible
evolution equations is restricted to those stemming from the commutative
subgroups of Aut,(D,).

For any a € D,, the one-parameter subgroup generated by @, is ob-
tained as follows. Denote the direction of a by j = a/|a] and define
k = tanh™'(|a|/c). For any real s, define b(s) = tanh(sk)cj. Then b(1) = a,
and, from (1.64), it follows that for any real sq, so, we have

b(Sl + 82) = b(sl) ()5 b(52) = b($2) ®r b(sl). (1.80)

We call g(s) = @p(s) the one-parameter subgroup generated by 4. See Figure
1.29 for an example.
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X 108

Fig. 1.29. The effect on a two-dimensional section of D, by the one-parameter
subgroup g(s) generated by the map @a from Figure 1.28, for s = —1,0, 1, 2. One cell
of the grid has been darkened along with its images to help visualize the effect of the
transformation. Note that g(—1) = ¢z = ¢—a,g(0) = I—the identity, g(1) = @a

and g(2) = P2 = Pagpa-

1.4.3 The group Aut,(D,) in two inertial systems

Consider two inertial systems K and K’, with common origins at time ¢ = 0.
Denote by a the relative velocity of system K with respect to K/, and by U
the relative rotation between the axes of K and K’. Then any velocity u € D,
in system K is observed in K’ as u’ = ¢(u) = pav(u) in D). The map ¢
between the velocity balls D,, and D., induces a map between their projective
automorphism groups Aut,(D,) and Aut,(D,,). Given ¢ € Aut,(D,), define

P € Auty(D.,) by
b= ppp L. (1.81)

The map 1;[; is called the conjugate of ¥ with respect to ¢. Thus, the transfor-
mation of the automorphism groups of the velocity balls between two inertial
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systems is given by conjugation, and the following diagram is commutative:

Pa,U
D, =% D!

wl ﬁ

Pa,U
D, 2% D!

1.5 Step 8 - Relativistic dynamics

It is well known that a force generates a velocity change, or acceleration.
There are two types of forces. The first type generates changes in the mag-
nitude of the velocity and can be considered a velocity boost. An example is
the force of an electric field on a charged particle. The second type of force
generates a change in the direction of the velocity — a rotation or, equiva-
lently, acceleration in a direction perpendicular to the velocity of the object.
An example is a magnetic field acting on a moving charge. Thus a force can
be considered as a generator of velocity change. During the time evolution,
the velocity of an object cannot leave the velocity ball D,. Therefore, it is
natural to assume that the generator of a relativistic evolution is an element
of the Lie algebra aut,(D,), which consists of the generators of the group
Autp(D,) generated by velocity addition.

1.5.1 The generators of Aut,(D,)

The elements of a Lie algebra are, by definition, the tangent space of the iden-
tity of the group. To define the elements of aut,(D,), consider differentiable
curves g(s) from a neighborhood I of 0 into Aut,(D,), with g(0) = ¢q 1, the
identity of Aut,(D,). Any such g(s) has the form

9(8) = Pa(s),U(s)> (1.82)

where a : Iy — D, is a differentiable function satisfying a(0) = 0 and U(s) :
Iy — O(3) is differentiable and satisfies U(0) = I. We denote by § the element
of aut,(D,) generated by g(s). For any fixed u € D,, g(s)(u) is a smooth
curve in D,, with g(0) = u, and §(u) is a tangent vector to this line. Thus,
the elements of aut,(D,) are vector fields §(u) on D, defined by

5w = L g(s)w)| _ (1.83)

s=

We now obtain the explicit form of §(u). First, define
E = a/(0), (1.84)

which is a vector in R3, and A = U’(0), which is a 3 x 3 skew-symmetric
matrix (i.e., AT = —A). Combining (1.82) and (1.78), we get
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9(8)(1) = Pa(s),u(s) (W)

_ 1 o)t o (er . BEIT(EWa(s)
= Tt @)U s/ Al T aleUlsu+ =7 ras

where a(s) = /1 — |a(s)|?/c2. A simple calculation shows that

);

a0 =1, Fa(s)|_ =0
Moreover,
: =1
14 (a(s)|U(s)u)/c2ls=0
4 1 .
ds(l + (a(s){U(s)u)/c2) 50 (Elu),
a(s) +a(e)U(spu+ LTS
and
d (a(s)|U(s)u)a(s) B
2 @) + oo+ LM gy,

Thus, by using the formula for the derivative of the product, we get
d
5(w) = —-g(s)(w)| _ =E+Au-c(uB)u.
dS s=0

Since A is skew-symmetric, it has the form

0 a2 a3
—ai2 0 az],
—a13 —agz3 0

az3
and if we let B = | —ay3 |, we have
a2

Au=ux B,
where x denotes the vector product in R3. Thus, the Lie algebra

autp(Dv) = {5}5,3 :E,B¢€ Rs},

(1.85)

(1.86)

(1.87)

(1.88)

(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)
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where ég 5 : D, — R3 is the vector field defined by
bes(W)=E+uxB-c%(ulE)u (1.95)

Note that any d(u) is a polynomial in u of degree less than or equal to
2. (A term f(u) is linear in wif f(u+v) = f(u) + f(v) and f(ku) = kf(u)
for all u,v in the domain of f and all ¥ € R. A term f(u) is quadratic in
u if f(u) = g(u,u) for some bilinear form g(u,v)). Note also that at any
boundary point u, |u| = ¢, of D,, the vector dg g(u) is tangent to D,,. To
see this, note that u x B is perpendicular to u and therefore tangent to D,,.
Moreover, since the projection of E onto the direction of u is ¢=2(u|E)u, the
vector E — ¢=2(u|E)u has zero projection onto the direction of u and is also
tangent to D,. Thus, ég g(u) is tangent to D,. Two examples are shown in
Figures 1.30 and 1.31.

x10% 31

Fig. 1.30. The vector field ¢/m - ég,B on a two-dimensional section of D,, with
g/m = 10°C/kg, E = (2,0,0)V/m and B = 0. Since E is in the positive direction
of the v,-axis, the field tends to move particles in this direction. However, near the
edge of D, the vectors either shrink to zero magnitude or become nearly tangent
to D,, reflecting the fact that the flow generated by this field cannot leave D,,.

1.5.2 The Lie algebra of Aut,(D,)

To show that the set auty(D,) defined by (1.94) and (1.95) is a Lie algebra,
it remains to check that this set is closed under the Lie bracket. Recall that
the Lie bracket of two vector fields 6 and £ is defined as
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Fig. 1.31. The vector field g¢/m - ég,B on a two-dimensional section of D,, with

g/m = 10°C/kg, E = (2,0,0)V/m and c¢B = (0,0,3)V/m. Here, the addition of a
magnetic field B causes a rotation.

810 = 0 w)eu) — 2 wysu) (1.96)

where u € D, and gf—l(u)g (u) denotes the derivative of § at the point u in
the direction of the vector {(u). Let ég,B and o g be arbitrary elements of
autp(Dy). To show that aut,(D,) is closed under the Lie bracket, we shall

calculate [0g,B, 0 5](u) and show that it has the form (1.95).
Note that

d(ilnl:;B (u)du = du x B = ¢~ 2(du|E)u — ¢ 2(u|E)du. (197)

Thus,

[6E,Bv 5E’§](u) = 5E,I§ (u) x B — c_Q(JE’ﬁ(uNE)u
—0_2(u|E>5E’1~3 (u) — 6E,B (u) X ]§

+¢7%(0m,B(u)|E)u + ¢ (u[E)dg,B(u). (1.98)

Using (1.95), the previous expression becomes a second-degree polynomial
in u, with constant term E x B — E x B, linear term

(ux B) x B - (uxB)xB-c¢2(uE)E + ¢ %(u[E)E, (1.99)
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and quadratic term
—c"2(u x B|E)u + ¢ %(u x B|E)u. (1.100)

By using the identities

(uxﬁ)xB—(uxB)xﬁzux(foB), (1.101)
(u/E)E — (uE)E = u x (E x E) (1.102)

and
(u x BJE) = —(u|E x B), (1.103)

the expression (1.99) can be written as

ux (BxB+c¢%ExE)) (1.104)
and (1.100) as
—c2(u|E x B—E x B)u. (1.105)
Thus, from (1.95), the expression for the Lie bracket in aut,(D,) is

[0r.B,0% 5] = 0« B_ExB, c-2(ExE)-BxB’ (1.106)

an element of aut,(D,).
For example, [0g,0, d0,B] = —0ExB,0 is 0 if and only if E and B are parallel.

1.5.3 The commutation relations for the Lorentz group

We will now use (1.106) to derive the commutation relations for the Lorentz
group. Recall that the Lorentz space-time transformations induce projective
maps of the velocity ball and generate the Lie group Aut,(D,). The genera-
tors of this group are of the form dg g, for E,B € R3, and belong to the Lie
algebra auty(D,) of Aut,(D,). There is a basis for the generators consisting
of the generators of rotations about the z, y, and z-axes and the boosts in
the direction of these axes.

Let i,j and k be unit vectors in the direction of the positive z,y and z
axes, respectively. Then from (1.92) and (1.93) page 36, it follows that do
acts on v like the momentum of rotation about the z-axis. This momentum
is denoted by J;. Thus, we can represent J; as a generator &g ; of a projective
map on the velocity ball D, and denote it by mp(J1), where the subscript p
indicates that it generates a projective map. Similarly, we can represent the
generators of rotation about the other axes, and we have
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7rp(J1) = 50)i, Wp(Jz) = 50,j, Wp(Jg) = 50,1(. (1.107)
From (1.106), it follows that
(80,15 00,5] = do,-ixj = —0o,x- (1.108)

This implies that [7,(J1), 7p(J2)] = —7p(J3) and similarly for the other pairs
of generators. Since the same relations hold for the momentums of rotations
about the axes, we get the first set of commutation relations

[Jl, Jz] = —J3, [J3,J1] = _J2, [Jz,-]3] = —Jl. (1109)

It is obvious that the generator of a boost in the z-direction is a multiple
of & 9, which we denote by Adjo = dxi0. Similarly, the generator of a boost
in the y-direction will be denoted by d5j,0. Then, from (1.106), we get

(63,0, Oxj,0] = 00.c-2a2ix5 = € A% 8o k-

In order to simplify the commutation relations, we will take A = c. This
suggests representing the boosts K, Ko and K3 in the directions z,y and z,
respectively, by

Tp(K1) = bei0, mp(K2) = dcj0, mp(K3) = Geico- (1.110)
From the above discussion, we get

[mp (K1), mp(K2)] = mp(Js), [mp(Ks), mp(K1)] = mp(J2),

[mp(K2), mp(K3)] = mp(J1),
and, for the boosts themselves,
(K1, K2] = J3, [K3,Ki] =Ja, [Ka, K3] = Ji. (1.111)

Direct use of (1.106) leads to the following commutation relations for the
remaining pairs of momentums and boosts

[J1,K1] =0, [J1,Ka] = —K3, [J1, K3] = K3, (1.112)
[J2, K1] = K3, [J2, Ko] =0, [J2, K3] = — K, (1.113)
[J3, K1] = =Ko, [J3,K2] = K3, [J3,K3] =0. (1.114)

The commutation relations (1.109),(1.111),(1.112),(1.113) and (1.114) form
the full set of commutation relations for the generators of the Lorentz group.
The representation 7,, defined by (1.107) and (1.110), is a representation of
this group into the projective maps on the velocity ball D,,.
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1.5.4 Transformation of aut,(D,) between two inertial systems

Consider two inertial systems K and K’, with common origins at time ¢ = 0
and space axes parallel each to other. Denote by a the relative velocity of
system K with respect to K. Let D, be the velocity ball in K, and let D!
be the velocity ball in K'. Let

bgs(u)=E+uxB-c?ulE)u

be an arbitrary element of aut,(D,), generated by some curve g(s) into
Auty(Dy). This curve generates a curve g(s) into Aut,(D)), which, from
(1.81), is

3(s) = pag(s)pst. (1.115)

This curve defines a generator 8, which is an element of aut,(D),) and thus
of the form

S p(0)=FE +u x B — ¢ 2(u’ |E')v. (1.116)

We want to find the relationship between E,B and E’, B'.
To do this, we first rewrite (1.115) as

9(s)a(u) = ag(s)(u) (1.117)
for u € D,. By differentiating this equation with respect to s and substituting
s =0, we get

g _ dpa
BB (pa(w)) = — = (u)dg,B (). (1.118)

Now we have to calculate %‘%(u)du. Using (1.56) and (1.102), we get

dpa _d
El—(u)du = du(a &g u)du

u

d
= E(a+ (@®Py + (I - Pa))W

)du

du 3 u(a|du)/c? )
1+ (afu)/c®  (1+ (alu)/c?)?

= (@2 Pa + oI — Po))(

)du —c %a x (u x du)
(1 + (aju)/c?)?

Substituting these expressions into (1.118) and comparing the terms con-
stant in u (i.e., setting u = 0), we get

= (?Pa+a(l - P) (1.119)
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Spp(a)=E +axB -c*a|E)a=(a?P.+a(l - P))E,
and, hence,
E=(a?Pa+a }(I - P))(E +axB —c?(a|E)a). (1.120)

In the particular case when the relative velocity of system K with respect
to K’ is a = (a,0,0), the previous equation yields

El = /1a
E; = o YE)—aBj), (1.121)
E; = o '(E} +aB)),

where a = /1 — a?/c?. This coincides with the usual formula for the trans-
formation of an electric field from one system to another.

To obtain a similar formula for the transformation of a magnetic field, we
will compare the terms of (1.118) which are linear in u. This leads to

i x B — ¢ alE)u - c 2(U|E)a

= (?Pa+a(l — Pa))(ux B-2c"2(aju)E—c%ax (ux E)), (1.122)
where
1= (a?Pa+a(l - Pa))u (1.123)

is the linear term of @a(u). Assume now that a = (a,0,0). If we choose
u = (0,0, u3), then, comparing the first component in this equation, we get

B, = o }(B), + ¢c2aE}), (1.124)
and for the second component, we get
B; = B;. (1.125)

If we choose u = (0, ug,0), then, comparing the first component of equation
(1.122), we get

B; = o }(B} — ¢ %aE)). (1.126)
This coincides with the usual formula

Bl = Bll7
B, = o (B} +c2aE)), (1.127)
Bz = o }(B}—c2aE))

for the transformation of a magnetic field from one system to another.
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Thus, the elements of aut,(D,) and the electromagnetic field strength
transform between two inertial systems in the same way. We saw earlier that
the space-time transformations between two inertial systems are linear and
preserve the interval. Such transformations preserve the velocity ball D, and
are given by projective maps. So it is natural to ask “What is preserved by
the action of the above transformations on aut,(D,)?”

To answer this question, we combine the two real-valued three-dimensional
vectors E and B describing the elements of aut,(D,) into a complex vector
F. In order that both vectors will have the same units, we will use ¢B in-
stead of B. An element of aut,(D,) will now be described by F' = E + icB
in system K and by F’ = E' + icB’ in system K'. From the formulas (1.121)
and (1.126), we get

E; +icB;
F= E2 + iCBz
E3 + ’iCBg
E] +icB] Fi
= | a (B} +icB) — cBja/c+iEja/c) | = | a~Y(Fy +iFja/c)
a (B} +icBj + cBha/c — iEha/c) a~Y(F} —iFsa/c)

(1.128)
Define the complex quantity F? by F2 = F2 + FZ + F2. By (1.128), we get

F? = (F))?> + o %((Fy + iFja/c)* + (F3 — iFya/c)?) (1.129)

= (F)* + (Fy)* + (F3)* = (F')?, (1.130)

implying that F2 is preserved by the transformation between inertial systems
and is a Lorentz invariant for the electromagnetic field.

1.5.5 Relativistic evolution equation

Evolution described by a relativistic dynamic equation must preserve the
ball D, of all relativistically admissible velocities. As mentioned above, we
consider the force as an element of aut,(D,). The equation of evolution of a
charged particle with charge ¢ and rest-mass mg using the generator ég g €
auty(D,) defined by (1.95) is

)
or
M) - 4 (Bt v(r) x B c2v(n)EWV(r)), (1.131)

dr mo
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where 7 is a real parameter related to time, which turns out to be the proper
time of the particle. We will show that this equation coincides with the known
relativistic equation for the evolution of a charged particle under the Lorentz
force of an electromagnetic field. Let us introduce a new variable F(7) (which
may depend on position and time), representing the Lorentz force acting on
the object, by

F(r)=q(E+v(r) xB), v(r)€ D,. (1.132)

Using the fact that v(7) x B is perpendicular to v(), we can rewrite (1.131)
as

mo - = F — cY{v(7)|F)v(7). (1.133)

Consider an inertial system Ky moving with the same velocity as our
object at time ¢t = 0. We may assume that Newton’s Second Law holds in
K. In other words,

dv
— =F, 1.134
modt() 3 ( )

where to denotes the time in Kj. This implies that F' is the force acting on
our object if the object was at rest in Ko at time ¢t = 0 and 7 = tg is the
proper time of the object. If our object has velocity v at time ¢t = 0, by (1.17)
and (1.55), we have

dr = /1 — |v|?/c3dt. (1.135)
Thus, we can rewrite (1.133) as

~1/28Y

mo(1 — |v|?/c?) i F — ¢ 2(v(t)|F)v(t). (1.136)
Taking the scalar product of this equation with v, we get
mo(1 — IV|2/02)_1/2<VI%%> = (V|F)(1 = [v[*/c?), (1.137)
or
2, .2v-3/2/,1 3V
(V|F) = mo(l — |v|*/c?) (V|E> (1.138)

Finally, from (1.136) we have

_12dv | _
F =mo(1 - |v|?/c?) 1/2E + ¢ Hv|F)v

_1/24v  _ _ dv
= mo(1 — v2/e) 2B (1 — v ey v B
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d(mv)
dt ’

d

= i (mo(1 = V[ V2) =

(1.139)
where m = y(v)mg = mg(1 — |v|?/c?)~1/2. This is the usual relativistic
dynamics formula.

We have shown that the equation of evolution (1.131) with the generator
0g,B defined by (1.95) for a charged particle of rest-mass mg and charge ¢
coincides with the well-known formula

d—(?zq(E+va).

Thus, the flow generated by an electromagnetic field is defined by elements of
the Lie algebra aut,(D, ), which are, in turn, vector field polynomials in v of
degree 2. The linear term of this field comes from the magnetic force, while the
constant and the quadratic terms come from the electric field. The dynamic
equation of evolution in relativistic mechanics is also given by elements of
auty(Dy). This follows from the above discussion if we set B = 0.

For a constant electromagnetic field, the equation of evolution (1.131) with
the generator dg g from the Lie algebra aut,(D,) generates a one-parameter
(commutative) subgroup g(7) of the Lie group Aut,(D,) of projective auto-
morphisms. From (1.77), it follows that

9(7) = Pa(r),u(r) (1.140)

where a(7) is the solution of (1.131) with the initial condition a(0) = 0. From
(1.91), we have

d%g(T)IT:o(v) = Ezq—o(E +v xB—c Y{v|E)v) (1.141)

for any v € D,. We will show now that

v(7) = g(1)(v°) = panU(T)(v?), (1.142)

is a solution of the initial-value problem consisting of the differential equation
(1.131) and the initial condition

v(0) = v°. (1.143)

Since a(0) = 0 and U(0) = I, the initial condition is satisfied. To show
that v(7) satisfies (1.131), note that from (1.79), we have

g(s+7) = g(s)g(7) = g(7)g(s). (1.144)
Thus, from (1.141) and (1.142), we get

() _

N —66)]_ 2gr)v) = (s +7)| (V) = Sgfs 47| _ ()
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d
=—g(s)| v(r)= —q~(E +v(1) x B = ¢ 2(v(7)|E)v(7)). (1.145)
ds s=0 mg

Thus, v(7) solves the initial-value problem. Thus, we have produced a method
for solving the initial-value problem for the relativistic equation with a con-
stant electromagnetic field, given any initial condition.

There is an alternative way to extend Newton’s Second Law to relativity.
Instead of using the hybrid connection, which led us to the bounded do-
main D, of relativistically admissible velocities, we could have used the cas-
cade connection, obtaining the domain of relativistically admissible proper
velocities. Proper velocity was defined in (1.4) as u = dr/dr, where d7 =

1—|v|?/c2dt, so u = v/{/1 —|v|?/c%. The set of all proper velocities is,
therefore, not bounded, and, indeed, it is R3. As a result, a constant vec-
tor field (force) on this set is possible as a generator of evolution. Thus, the
equation

—=F 1.146
o4t (1.146)
makes sense, and, in fact, it coincides with the dynamic equation of relativistic
mechanics (1.139) given by elements of aut,(D,).

1.5.6 Charged particle in a constant uniform electromagnetic field

In this section, we will obtain an explicit description of the motion of a
charged particle of rest-mass mg and charge ¢ in three different constant
electromagnetic fields E, B. In all three cases, we will solve the initial-value
problem (1.131) with initial condition v(0) = v® = (v{,v3,29). The first case
is that of a constant electric field E (B = 0). The second case is that of
a constant magnetic field B (E = 0). The third case is that of a constant
electromagnetic field F, B in which the vectors £ and B are parallel.

Constant electric field E

If the charge is in a constant electric field E, then its motion will be described
by integrating its velocity v(t) with respect to t. We will use the evolution
equation (1.131) to find the velocity of the particle v(7) as a function of
proper time. To do this, we have to solve the equation

dv(r)

Mmoo = g(B = < v(r)[E)v(r), (1147)

with the initial condition
v(0) = v° = (7,03, v3). (1.148)

Let us denote by a(7) the solution of the problem for a(0) = v® = 0. This
implies that
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da(r) _ E
dr lr=o0 N myo '

(1.149)

Without loss of generality, we may choose the axes so that the vector E points
in the direction of the positive z-axis. Set E = (|E|,0,0) and a = (a1, a2, a3).
Then, examining equation (1.147) in each coordinate, we see that

az(7) = a3(1) =0, (1.150)

is a solution of (1.147) with a(0) = 0. Thus, it remains only to find a1 (7).
For a;(7), equation (1.147) becomes

dal( ) qlEl ( 2

= a3(1)), (1.151)
with a1(0) = 0. Separating variables, we obtain
da1(T) _ 4E|
1.1
— 22 = Zma dr, (1.152)
implying that
E
et _odE o (1.153)
c—ay(7) cemy
Define
o 9B (1.154)
cmy
Taking the exponent of both sides, we get
a1(7) = ctanh(£27 + ¢p). (1.155)

From the initial condition a;(0) = 0, it follows that cp = 0 and
a(7) = (ctanh(§27),0,0), (1.156)

with 2 defined by (1.154).
We can define now a one-parameter subgroup

9(T) = Par), (1.157)
where a(7) is given by (1.156). Then, from (1.91) and (1.149), we have

A olena) = eacrbemo¥) = LB VBN (1159

for any v € D,,. As shown in the previous section,
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V(1) = g(1)(v°) = @air) (v°) (1.159)

is the solution of the initial-value problem (1.147) and (1.148). By use of
(1.66), we get

v(1) = a(1) @ v° = (a(r) @g v1) + 6va,
where vi = (12,0,0), vo = (0,09, v3) and

5___oa(m)
T+ Ga(nlvi)/e

Next, define 7o so that
ctanh(27) = v?, (1.160)
which implies that v(v;) = cosh(§279). Then, from (1.64), we get
a(t) ®g vi1 = (ctanh(2(7 + 79)), 0, 0), (1.161)

and, by use of hyperbolic function identities, we get

_ _ oosh(0m0)
~ cosh(2(r + 7)) (1.162)
Thus,
_ ccosh(219)  (sinh(2(1 + 10))
vin) = cosh(£2(7 + 79)) < cosh(£270) ,v3/¢, v§/¢> ) (1.163)

with {2 defined by (1.154) and 7o by (1.160). From this, it follows that

(v(r)) = () A0, (1.164)

The space trajectory r(7) of the particle is obtained by adding the integral
of vdt to its position r(0) at ¢ = 0. Thus

dﬂ—rm%=ATWﬂvWUDm'

¢ ,cosh(£2(T + 79))

= y(v®) (5( cosh({7m0) —1),U37,vgr), (1.165)

which is called hyperbolic motion. The connection between time and proper
time on the trajectory can be found via

T vO
tr) = [ A7) = g sin(2r),
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implying that
2 cosh(f27p)t
7(v)

Substituting this into (1.163), we obtain the solution v(¢) of the initial-value
problem. To find the trajectory r(t) of the particle, substitute (1.166) into
(1.165).

1
7= = sinh™!(

5 ). (1.166)

Constant magnetic field B

Consider now the motion of a charged particle of rest-mass mg and charge ¢
in a constant magnetic field B. The equation of motion for such a particle is
described by the evolution equation (1.131), with E = 0. Hence, the initial-
value problem to be solved is

mo d‘c’l(:) q(v(7) x B), (1.167)

with the initial condition
v(0) = v0 = (2}, vg,23). (1.168)

Without loss of generality, we may choose the axes so that the vector B
points in the direction of the positive z-axis. Set B = (|B|,0,0) and v(7) =
(v1(7),v2(7),v3(7)). Complexify the y-z plane by defining 2(7) = vo(7) +
iv3(7). Define v? and o by

V9 + i) = e (1.169)

Then the initial-value problem (1.167) becomes

modz(:) — _igBJ2(r), -‘%'”—Cllg—) 0. (1.170)
The solution of these equations is
2(7) = e7 M@0y (1) =0, (1.171)
where
w = q|B|/my. (1.172)
This solution can be written as
v(1) = (13,02 cos(wT + a), —v? sin(wr + @)), (1.173)

or, equivalently,
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v(7) = (0], 9 coswr + 3 sinwr, —v) sinwr + v3 coswr). (1.174)

Note that |v(7)| = /(v?)? + (12)2 is constant and y(v(7)) = y(v°), implying
that t = y(v0)r.

Let Rg denote the operator of rotation around the axis through the origin
in the direction b by an angle . This operator can be expressed by an
exponent of the vector field v x b/|b|, which generates the rotation, as

Rg = exp(pJpb), Jb(Vv) =V x b/|b|. (1.175)
If b = i (the direction of the positive z-axis), then the matrix representing
RL is
(7

) 1 0 0
R,=|0cosp —singp | . (1.176)
0 sing cosyp

With this notation, we can express the solution of the initial-value problem
(1.167) and (1.168) as

v(1) = REV® = 0oy (r) (V) = U(T)(¥°), (1.177)

where U(7) = RB. denotes the one-parameter subgroup generated by the
magnetic field.

The space trajectory r(7) of the particle is obtained by adding the integral
of vdt to its position r(0) at ¢t = 0. Thus, from (1.173), we get

(1)~ x(0) = [ vy (v(r))dr

0 0
= y(v") (i, %}1 sin(wt + @), % cos(wT + @)). (1.178)
Switching to t, we obtain
20 W0
r(t) — r(0) = (¥%t, w_ sin(wpt + @), T~ cos(wot + @), (1.179)
0 Wo

where wp = wy~}(v?) and w is defined by (1.172). Thus, a particle in a
constant magnetic field moves with angular velocity wg along a helix whose
axis is in the direction of the magnetic field.

Constant and parallel electric field E and magnetic field B

We consider now the motion of a charged particle of rest-mass mg and charge
¢ in a constant electric field E and magnetic field B in which the vectors E
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and B are parallel. The equation of motion for such a particle is described by

the evolution equation (1.131). Hence, the initial-value problem to be solved

is

dv(r)
dr

with the initial condition

= g(E+v(7) x B — ¢ 2(v(7)|E)v(7)), (1.180)

v(0) = v0 = (19,09, v9). 1.181
1,2

As mentioned at the end of section 1.5.2, page 39, in this case the generator
0g,0 of the electric field and the generator dg B of the magnetic field commute.
This implies that the flows on the velocity ball D, generated by each field
individually also commute. Thus, we can solve the problem separately for each
field and compose the results to obtain the flow generated by the combined
field.

More precisely, without loss of generality, we may choose the axes so
that the vector B points in the direction of the positive z-axis. Then E is
also parallel to the z-axis. The flow generated by E, by (1.159), is given by
v? = @a(r)v0, where a(r) is defined by (1.156), with {2 defined by (1.154).
Similarly, the flow generated by B is given by (1.177) and is v — RE v,
where RB, is defined by (1.176) and w is defined by (1.172). We will show
now that

V(1) = pa(r) (RE,V°) = a(r) &5 (RS V') (1.182)

solves the initial-value problem (1.180)—(1.181).
Obviously, v(7) satisfies the initial condition v(0) = v°. From (1.173),
(1.177) and (1.163), we get

cosh(279) csinh(2(T + 710)) .
) ( cosh(§279) vp cos(wr + a), —v sin(wr + a)>,

(1.183)

where {2 is defined by (1.154), w is defined by (1.172), 1 by (1.160) and v2, o
by (1.169). From this, it follows that

v(r) = cosh(2(r + 70

v(r)) = 2v") 2ot ) (1184

To find the trajectory r(7) of the particle, we need to add to its position
at t = 0 the integral of vdt. By use of (1.165) and (1.178), we get

r(r) — £(0) = /0 v(ryy(v(r))dr
cosh(2(7 + 79)) o7 Vo7

=(v?) (%(m— - 1), ; sin(wT + @), —;— cos(wt + a)) .
(1.185)
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1.6 Notes

Einstein’s original axiomatic derivation [20] of the Lorentz transformations
is based on two assumptions:

— the principle of special relativity,
— the constancy of the speed of light in all inertial frames.

From 1910 until the present, much research has been done to show that the
Lorentz transformations can be derived from weaker assumptions. See, for
example, [63]. A derivation of the Lorentz transformations from the princi-
ple of special relativity and a symmetry based on space-time invariance was
obtained by J. H. Field in [24]. In [66], Y. Terletskii derived the Lorentz trans-
formations from the principle of relativity, isotropy of space and homogeneity
of space and time. He also reversed the space axes to preserve the symmetry.
As was shown by C. Marchal in [54], the Lorentz transformations, up to a
constant, are a direct consequence of the principle of special relativity and
the symmetry of the transformations between two inertial systems.

In [50], A. Lee and T.M. Kalotas showed that the Lorentz transforma-
tions up to an unknown constant are a manifestation of the properties of the
space-time of inertial systems, such as homogeneity of time and isotropy of
space. They derived a relativistic velocity-addition formula and showed that
this constant is non-negative. We have used here their argument to show the
non-negativity of our constant e. In [55], D. Mermin showed that the rela-
tivistic addition law of parallel velocities with some universal constant can
be derived directly from the principle of relativity and assumptions of homo-
geneity, smoothness and symmetry, without making use of the constancy of
the speed of light. From these assumptions, he showed that there is an in-
variant velocity depending on this universal constant. This chapter is based
mainly on ideas which first appeared in [30] and [25] and were developed
further in [28] for special relativity and in [29] for accelerated systems.

The main deviations of the approach in this chapter from the standard
approaches to relativity are

— the formulation of the principle of special relativity as a symmetry,

— the choice of axes to preserve the symmetry,

— the consistency of inputs and outputs for the transformations and the
description of the systems,

— the choice of parameters to simplify the transformations,

— the introduction of a weight on time which makes the eigenvectors of the
symmetry orthogonal (as in the Sturm-Liouville theory), thus leading to
conservation of intervals,

— the use of the algebraic structure of the conserved bounded symmetric

domain to describe the evolution of systems.

The evolution equation (1.131) and the one-parameter group associated
with it was used in the last section to derive an explicit description of the mo-
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tion of particles in a constant, uniform (a) electric, (b) magnetic and (c) par-
allel electric and magnetic fields for any initial conditions. Similar solutions
may be found in [51], pp. 52-57 and [42], pp. 579-592. In the next chapter,
we will obtain an ezplicit solution for the motion of a charged particle in a
constant, uniform electromagnetic field in which F and B are perpendicular.



2 The real spin domain

In the previous chapter, we used the principle of special relativity to obtain
the real bounded symmetric domain D,. This domain is symmetric with
respect to the projective automorphisms and is a domain of type I in the
Cartan classification of bounded symmetric domains. In this chapter, we will
discuss another real domain, called the real spin factor, which is a domain of
type IV in the Cartan classification. The complez spin factor will be studied
in Chapter 3.

We introduce the real spin factor as the ball Dy of symmetric velocities,
defined in Chapter 1, section 1.2.1. We derive a formula for the addition
of symmetric velocities and define an automorphism group based on this
addition. We show that this group is exactly the group Aut.(D;) of conformal
automorphisms of D, and that D, is symmetric with respect to Aut.(D;). We
then show that the elements of the Lie algebra of Aut.(D,) are expressible
in terms of a triple product, which we call the spin triple product.

Next, we show that the relativistic evolution equations of mechanics and
electromagnetism can be written by use of the above Lie algebra. This pro-
duces a new method of solving relativistic dynamic equations. If the motion
has an invariant plane, the equation of evolution for the symmetric velocity
becomes a first-order analytic equation in one complex variable. We apply
this method to the description of the motion of a charged particle in uni-
form, constant and mutually perpendicular electric and magnetic fields. We
find explicit analytic solutions for this problem. We also obtain a conformal
group representation of the Lorentz group.

2.1 Symmetric velocity addition

2.1.1 The meaning of s-velocity and s-velocity addition

In the previous chapter, we defined the symmetric velocity (1.38) and (1.67)
as the velocity of the eigenspace corresponding to the 1-eigenvalue, or the
fixed points, of the relativistic transformations between two inertial systems.
From this point on, we will assume the conservation of the speed of light.
Equation (1.71) shows that the new dynamic variable, symmetric velocity, is
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the relativistic half of the corresponding velocity. The symmetric velocity w;
and its corresponding velocity v are related by
w1 +WwWq 2wy

V=W @ Wi = =
R Tl el T T w2

where @p denotes Einstein velocity addition. Instead of wi, we prefer to
use a unit-free vector w = wy /¢ and call it s-velocity. Thus, the relationship
between an s-velocity w and its corresponding velocity v is given by

_ 2cw
- 1+ |w(?’

where @ denotes the function mapping the s-velocity w to its velocity v.
Conversely, the s-velocity w can be expressed in terms of v by

_ v/c _ B
1+ /1= [v2/@ 147’
where v = 1/4/1 — |[v|?/c? and B = v/c. From this we see that w — 3/2

as B — 0, and w — B as 3 — 1. The set of all relativistically admissible
s-velocities form a unit ball

D,={weR®: |w| <1} (2.3)

v = @(w) (2.1)

w=3"1(v) (2.2)

Recall the physical interpretation of the symmetric velocity. Consider two
inertial systems with relative velocity v between them. Place two objects of
equal mass (test masses) at the origin of each inertial system. The center of
mass of the two objects will be called the center of the two inertial systems.
The symmetric velocity is the velocity of each system with respect to the
center of the systems, and the s-velocity is the unit-free velocity of the systems
with respect to their center (see Figure 2.1).

We will show that the ball of all relativistically admissible s-velocities Dy
is a bounded symmetric domain with respect to the automorphisms generated
by s-velocity addition. To define this addition, we shall consider three inertial
systems Ki, Ko and K3. We choose the space axes of K5 to be parallel to
the axes of K; and the axes of K3 to be parallel to those of K5. Denote
their origins by 01,0y and Os, respectively. Denote by a the s-velocity of
system K» with respect to K3 and by w the s-velocity of system K3 with
respect to K». Then the s-velocity ws of system K3 with respect to K; (i.e.,
the velocity of K3 with respect to the center of systems K; and K3) will be
called the sum of the s-velocities a and w and will be denoted by a®, w (see
Figure 2.2).

2.1.2 Derivation of the s-velocity addition formula

We now calculate the s-velocity sum a @; w. Let us denote by v the relative
velocity of system Ky with respect to K; and by u the relative velocity of
system K3 with respect to K. Then
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7

r

Fig. 2.1. The physical meaning of symmetric velocity. Two inertial systems K and
K’ with relative velocity v between them are viewed from the system connected to
their center. In this system, K and K’ are each moving with velocity +w.

2ca 2cw

=2 u=""_ 2.4
VETTRE YT T e (24)

From the definition of Einstein velocity addition, the relative velocity of sys-
tem K3 with respect to K; is v ®@g u, which, using (2.2), gives

_ (vegu)/c
A 1+ a(vegu)

where a(v) = /1 —|v|?/c? for any velocity v. By (1.57) from page 25, we
have

(2.5)

1 1
vegu= W(v—ka(v)u—i— W(Wu)v), (2.6)
and by (1.58), we have
a(vegpu) = %’ 2.7
implying that
B (v+a(v)u+ m(vm)v)/c
a®:w= 1+ (v|u)/c? + a(v)a(u) (28)
From the definition of o, we have
— |al? — lwl2
o) = 1o o) = T 29

and so
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Fig. 2.2. The sum of s-velocities. Inertial systems Ki,K> and Ks, with origins
01,02 and Os, respectively, had a common origin at time t = 0. The line K2 is
the world-line of the center of the two inertial systems K; and K. Similarly, the
lines K23 and Ki3 represent the world-lines of the centers of the systems Ko, K3
and K1, K3, respectively. The velocity of system K> with respect to system K is v,
and its s-velocity a is the velocity of Ko with respect to Ki2. Similarly, the velocity
of system K3 with respect to system K3 is u, and its s-velocity w is the velocity
of K3 with respect to Ka23. The velocity of system K3 with respect to system K;
is, by definition of Einstein velocity addition, equal to v ®r u. The s-velocity of
K3 with respect to K1, meaning the unit-free velocity of K3 with respect to Kis,
is called the sum of symmetric velocities a and w and is denoted by a ®; w

2 1 1+laf?

= 2.1
T¥aP 1taM) 2 (2.10)

1+a(v)=

Substituting these expressions into (2.8), we obtain

2ca 1——|a|2 2cw 1+|a| 4(a[w
(THar + TRl WP T~ 2 (TR Toap)/¢

4(a|w) 1-|a]? 1—|w|?
1+ Tepy e e Hiwe

ad,w=

_ (1+|w|>+2(a| w))a+ (1 - |a*)w
1+ |a|?2|w]? + 2(a | w)

(2.11)

Thus, we obtain the s-velocity-addition formula
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(4w +2(alw)a+ (1-|aP)w
a0 W= 15 a2 WP + 2(a | w) '

(2.12)

It is sometimes useful to express the Einstein velocity addition v &g u in
terms of the addition of their corresponding s-velocities. From (2.2) and the
definition of s-velocity addition, it follows that for any two velocities v and
u, we have

vopu=98d 1(v) @, 71 (u)). (2.13)

2.1.3 S-velocity addition on the complex plane

To understand (2.12), note that a @, w is a linear combination of a and w
and therefore belongs to the plane I generated by a and w. We introduce
a complex structure on I7 in such a way that the disk A = D, NIT is
homeomorphic to the unit disc |2| < 1. Denote by a the complex number
corresponding to the vector a and by w the complex number corresponding
to the vector w. It is known that

aw + aw

Re(a | w) = 5

, |w|? = wiw, (2.14)

where the bar denotes complex conjugation. Substituting this into (2.12), we
get

(1+ww+aw+aw)a+ (1 -a@)w  (a4+w)(l+aw) a+w
1+ a@w® + aw + aw  (L+aw)(l+aw)  1+aw’
(2.15)

aP;w=

which is the well-known Mobius transformation of the complex unit disk.
Thus, s-velocity addition is a generalization of the M&bius addition of com-
plex numbers (see Figure 2.3). Note that formula (2.15) does not depend on
the choice of the complexification of the disk A = D, N II . For if we map a
to ea (instead of to a) and w to e*®w (instead of to w), then

0 » eiq + eify ¢i®q + ety
e"adse’w= =

— if
= oty ~  1taw =e"(a @5 w). (2.16)

Note that (2.12) has meaning not only for vectors in R3, but also for
vectors in R™, for arbitrary n. If we define

Dr={weR": |w|<1}, (2.17)

then from the connection of s-velocity addition and the M6bius transforma-
tion, it follows that if a and w belong to D7, then the sum a @, w, defined
by (2.12), also belongs to D.
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Fig. 2.3. Symmetric velocity addition a @, w for a = 0.4. The lower circle in the
figure is the unit disc of the complex plane, representing a two-dimensional section
of the s-velocity ball D,. The upper circle is the image of the lower circle under
the transformation w — l’fgfu Each circle is enhanced with a grid to highlight
the effect of this transformation. Notice how a typical square of the lower grid is
deformed and changes in size under the transformation.

2.2 Projective and conformal commutativity and
associativity

2.2.1 Non-commutativity of s-velocity addition

Let a and w be two arbitrary complex numbers in the unit disc of the complex
plane. If we switch the roles of ¢ and w in a B, w = ﬁ%, the numerator will
remain the same, but the denominator will transform to its conjugate and
hence will not be the same unless @w is real. But Gw is real if and only if a
and w are parallel. Thus a @, w is equal to w @, a if and only if the vectors
a and w are parallel. In this case, a @s; w = (ca ®g cw)/c, implying that
for parallel vectors, Einstein and symmetric velocity addition coincide up to
scaling.
Observe that, in general,

at+w l+aw w+a

= = . = 2.1
ad,w 120 - 173w 1+ao (w @ a), (2.18)
where
1+ aw
A= 1+aw’ (219)

Since |A| = 1, we have A = €*# for some angle (3. Hence,

a®s w=eP(wa; a). (2.20)
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From the definition of A, we have
1+aw
1+aw

B = arg A = arg( ) = —2arg(l + aw). (2.21)

So arg(1 + aw) = —(/2, or
_Im(1 +aw)
Re(l +aw)’

For the next step, notice that the complex number 1 + @w is independent
of the complexification, for if a — e?a and w — e*®w, then

tan(5/2) =

60— i6

e Yaew = aw.

So we choose a complexification in which a is real and positive. Let 6 be
the angle from a to w, or, equivalently, the angle between the corresponding
symmetric velocities a and w. Then ’

Im(l+aw)  alm(w)

tan(8/2) = - Re(1+aw) 1+ aRe(w)
_ alw|sind la| |w|sin 6
14+alw|cosd  1+]a||w|cosh’ (222)

Thus, the non-commutativity of the addition of two symmetric velocities
a and w is given by an operator of rotation by an angle 3, defined by (2.22),
in the plane IT (generated by a and w) with respect to the axis through
the origin in the direction a x w, which is perpendicular to II (see Figure
2.4). This operator was called the gyration operator by A.A. Ungar [67] and
denoted gyr[a, w]. For the Mobius addition in the complex plane, the gyration
operator is multiplication by the number 4. Thus, (2.20) can be written as

a®, w=eP(wd, a) = gyr,fa, w](w S, a), (2.23)
where
1+aw
gyrelo, w] = oo —. (2.24)

Recall that in Chapter 1, page 50, we introduced a rotation operator RE,
denoting rotation around the axis through the origin in the direction b by
an angle . By use of this operator, we can express the gyration operator as

gyr.[a, w] = R*™, (2.25)

where 8 is defined by (2.22). The gyration operator expresses the non-
commutativity of addition in D;:

ad,w = gyr.la, w|(w ®; a). (2.26)

See Figure 2.4(a). We will follow [67] and call equation (2.26) the commutative
law for conformal geometry.
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Fig. 2.4. The non-commutativity of s-velocity and Einstein velocity additions. (a)
Two s-velocities a = 0.4 and w = 0.1 + 70.85. The sum a &, w = 0.676 + 70.596,
while the sum w ®;s a = 0.193 + 70.88. The angle 8 is the angle between a and w,
while 8 is the angle between a®sw and w®sa. The two angles are related by (2.22).
The two sums a @, w and w ®, a have the same length, and a ®s w = e (w s a) =
gyrla, w](w @s a). (b) The two velocities v = (2.07,0,0)10%m/s, corresponding to
s-velocity a, and u = (0.35,2.94, 0)10%m/s, corresponding to w. The sum v@®ru =
(2.24,1.98,0)10%m/s, while the sum u ®g v = (0.64,2.91,0)10°m/s. The angle ¢
is the angle between v and u, while 3 is the angle between v &g u and u $g v.
The two angles are related by (2.30). The two sums have the same length, and
v@Eeu=gyr,[v,ul(udg v).

2.2.2 Non-commutativity of Einstein velocity addition

Using the map @ defined by (2.2), connecting a velocity and its s-velocity, and
formula (2.13), connecting Einstein velocity addition and s-velocity addition,
we can apply (2.26) to express the non-commutativity of Einstein velocity
addition. For any two velocities v and u, we have

B(v & u) = $(v) ®s B(u) = gyr [B(v), D(u)|(2(u) &, B(V))

= gyr [®(v), P(u)|P(u BE V). (2.27)

The map & and the operator gyr,[P(v), P(u)] commute because P is a radial
function and gyr,[®(v), #(u)] is a rotation. Thus,

&(v &g u) = &(gyr.[8(v), P(u)|(u B Vv)). (2.28)
We define the projective gyration operator by
gyr,[v, u] = gyr [#(v), P(u)]. (2.29)

This operator is a rotation in the plane IT generated by v and u by an angle
(3 defined by
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[2(v)| |®(u)| sin 6

= 2.30
tan(8/2) = ~ T 16 (w) [B(w)] cos’ (2:30)

where @ is the angle between v and u. Thus,
gyry[v,u] = R, (2.31)

From (2.28), we get the commutative law for Einstein velocity addition, which
is also called the commutative law of projective geometry:

v®gu=gyrylv,u(udgv), (2.32)
(see Figure 2.4 (b)).

2.2.3 Non-associativity of s-velocity and Einstein velocity addition

Now we want to derive the analogs of (2.26) and (2.32) for the associative
law. For s-velocity addition, this means finding the connection between a @
(b ®; w) and (a @, b) @; w for any s-velocities a,b and w. Let IT be the
plane generated by a and b, and assume first that w € IT. Complexify IT
and observe that

btw

b+w)_ 0+ 13w atabw+b+w

a®s (b®sw)=ad, (

L+bo’  1+a2  1+bw+ab+aw
+b |, 1+ab b 4 l+ab b
B la_l_ab—{—-%’w_ Iai%_b-i_l-}-%bw _(a@ b) Ds 1+—abw (2 33)
= 245 - @t+b 14ab,,, s ab .
I+ 1+ 55w e

Using the definition of the gyration operator (2.23), we can rewrite this as
a®, (b®s w) = (a s b) B gyr.[a, bjw. (2.34)
Returning to the s-velocities and using (2.25), we get
a®, (bd, w) =(ad, b) ®; gyr,[a, blw, (2.35)

for any w € II. As we will see in the next section, the map w — a ®, w,
for any fixed a, is a conformal map on D,. This implies that both sides of
(2.35) are conformal maps in w of the unit ball D, € R3, which coincide on
the intersection of the ball with the plane II. By a uniqueness theorem for
conformal maps, they must agree for any w € D,. Equation (2.35) is called
the associative law for s-velocities.

Turning to Einstein velocity addition, let d, v and u be any three veloci-
ties. Using (2.35), (2.13) and (2.29), we get

d &g (vOru) = (d ©g v) ®F gyr,[d, v]u. (2.36)

This is the associativity law for Einstein velocity addition.
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2.2.4 Expression for the non-transitivity of parallel translation

Formula (2.36) can be interpreted as the correction of non-transitivity of par-
allel translation between inertial systems. It is well known that if an inertial
system Ko moves parallel to system K; with relative velocity d, and system
K3 moves parallel to system K, with relative velocity v, then, if d is not
collinear to v, the system K3 does not move parallel to system K;. How
can we measure the non-parallelism between K; and K3? Note that if an
object is moving with uniform velocity u in system Kj, its velocity in Ko
will be v @ u, and in system Kj, its velocity will be d ®g (v @ g u). Define
a space frame K3 moving together with system K3 but parallel to K;. In
this frame, let the velocity of our object be T. Since the system K3 moves
parallel to K with relative velocity d @ v, the object’s velocity in system
K; is (d ®g v) &g U. Now from (2.36), it follows that

u = gyr,[d, v]u, (2.37)

implying that the operator gyr,[d, v}, which is a rotation operator, corrects
for the non-parallelism of systems K; and K.

2.3 The Lie group Aut.(D,)

In this section, we will show that the group generated by s-velocity addition
is the conformal group on D;.

2.3.1 The automorphisms of D, generated by s-velocity addition

Given an s-velocity a € Dy, we define a map 1, by

1+ w2 +2 1 [af?
Ya(w) = 2@, w = 1] 1|++|a‘<2"°|‘v!,lv2v>£;(lw>lal v, (2.38)

The transformation ¢, (w) is shown in Figure 2.3. This formula is somewhat
simpler in spherical coordinates (r,8, ). We choose the orientation so that
a is on the positive part of the z-axis and thus has coordinates (|a|,0,0) =
(a,0,0). Let the coordinates of w be (r, 8, ). Then, in the complexified plane
IT generated by a and w, a represents a and re® represents w. By (2.15),
Ya(w) is represented by

a+ re®

1[1a(w) = m (239)
If we denote the spherical coordinates of 1¥,(w) by (7,6, ¢’), then
i0 a
T 7", | 17::0 :;ia

val 0 ]=0]= arg(%;_g;) . (2.40)
@ ¢ @
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Since the transformation 1, acts on the disc A = D, N IT like the Mobius
transformation (2.15) on A, 1, is one-to-one and onto Ds. The inverse (1) ™!
is the map v _a, where ¥_,(w) = (—a) & w. To show that 3, is conformal,
we have to show that its derivative %“Lj(w) is a multiple of an isometry.

2.3.2 The derivative of v,

To calculate the derivative %’\%(w)dw of the map 1, at w in the direction
dw, we decompose dw = dw; + dwg, where dw; belongs to the plane IT
generated by a and w and dw, is perpendicular to IT (see Figure 2.5). We

Fig. 2.5. The action of the map %’é}(w)dw. The vector dw is decomposed as
dwi + dws, where dw; belongs to the plane II generated by a and w and dwa
is perpendicular to II. The map rotates dwi in the plane IT by an angle 8 and

multiplies it by a constant § = I(;—;gf-ul—;;[, while dwg is only multiplied by §.

complexify the plane IT and replace the vectors a,w and dw; with their
corresponding complex numbers a, w and dw;. Then, from (2.15), we get

i
dw

_dwni(l+aw) - (a+wjadw; _ 1- |“|22dw1, (2.41)

(w)dwr (1 +aw)? 1+ aw)

which shows that %’%(w)dwl is a rotation in the plane IT by an angle 3,
which is the argument of the complex number 1/(1+@w)?, and multiplies its
length by

1 — |a|? 1-lal?
6= = : 2.42
T aw? = T ePul + 20 [w) (242)
Since
1 _
8 = arg m =-2 arg(l + aw), (243)
equation (2.21) and (2.24) imply that € = gyr_[a,w]. Thus,
d
W )y = 6 gy, o, wldun. (2.44)
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Figure 2.6 shows the value of %jj}u(w)O.Z for any w € D,. Note how the
angle of rotation 8 and the multiplication factor J change for different values
of w.

-1

Re(w)

Fig. 2.6. The value of d—ﬁ%(w)OQ for different w. The bright arrows represent
u = 0.2 before application of the derivative %A(w), while the dark arrow is its
image %(w)u. The length-stretching coefficient & decreases in the direction of
a = 0.4 and depends mainly on Re(w). The angle of rotation 3 is zero for real
w and depends mainly on Im(w). Compare these results with the stretching and
rotation of the squares of the grid under o.4 in Figure 2.3.

For the action of the derivative on dws, note that (dwylw) = 0 and
(dws|a) = 0. Then, from (2.38), we get
da (1- laf*)dw,

aw VIV = T o w) O (245)

which is multiplication by the same constant as in (2.42). Thus,
@a
dw
is a rotation with respect to the line perpendicular to the plane IT generated

by a and w by an angle 3 defined by (2.43) followed by multiplication by the
constant § of (2.42). This implies that the map 1, is conformal.

(w) = dgyr.[a, w]
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We can define the map 1, on D? by use of (2.38). The argument above
shows that here also %%!(w) is a rotation and multiplication by § in I and
multiplication by ¢ in the subspace perpendicular to II. Thus, v, is conformal
in this case as well.

2.3.3 The description of Aut.(D;)

We denote by Aut.(D;) the set of all conformal automorphisms of the domain
D,. This set is a group, since composition of two conformal automorphisms
is a conformal automorphism, and the inverse (which always exists) is a
conformal automorphism. As we have shown in the previous section, for any
a € Dy, the map v, defined by (2.38) is conformal and, thus, an element of
Aut.(Dy).

Next, we characterize the elements of Aut.(Ds). Let ¢ be any conformal
automorphism of D;. Set a = 1)(0) and U = ;4. Then U is a conformal
map that maps 0 — 0 and is thus a linear map which can be represented by
a 3 x 3 matrix. Since U maps D; onto itself, it is an isometry and is repre-
sented by an orthogonal matrix. Since ¥ = ¥aU, the group of all conformal
automorphisms Aut.(D;) is defined by

Aut. (D) = {¢paU : a € Ds, U € O(3)}. (2.46)
We write 1,y instead of 1,U. From (2.38), we have

(1+|w2+2(a|Uw))a+ (1 —|a?)Uw

Ya,u(W) = 1+ [a]2|w]2 + 2(a | Uw) ’

(2.47)

for w € D,.

The group Aut.(Ds) is a real Lie group of dimension 6, since any element
of the group is determined by an element a of the 3-dimensional open unit
ball in R3 and an element U of the 3-dimensional orthogonal group O(3).
It is easy to see that D, is a bounded symmetric domain with respect to
the conformal group Aut.(D,). The element S : S(w) = —w of Aut.(D;)
is a symmetry about the origin of the ball, and for any a € D,, the map
Vs € Aut.(D;) satisfies 1,(0) = a.

For the domain D7 with arbitrary n, we can define Aut.(D?) by use of

(2.46), taking a € D? and U € O(n). The dimension of this Lie group is
n(n+1)
—5.

2.4 The Lie Algebra aut.(D,) and the spin triple
product

2.4.1 The generators of Aut.(D,)

The elements of a Lie algebra are, by definition, the tangent space to the iden-
tity of the group. To define the elements of aut.(D;), consider differentiable
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curves g(s) from a neighborhood Iy of zero into Aut.(Ds), with g(0) = 9,1,
the identity of Aut.(D;). Any such g(s) has the form

9(8) = Va(s),U(s)s (2.48)

where a : Iy — D; is a differentiable function satisfying a(0) = 0 and U(s) :
Iy — O(3) is differentiable and satisfies U(0) = I. We denote by £ the element
of aut.(D;) generated by g(s). For any fixed w € Dy, g(s)(w) is a smooth
curve in Dy, with g(0) = w, and £(w) is a tangent vector to this line. Thus,
the elements of aut.(D;s) are vector fields {(w) on D, defined by

£(w) = o)) . (2.49)

We now obtain the explicit form of £(w). First, define b = a’(0), which is

a vector in R®, and A = U’(0), which is a 3 x 3 skew-symmetric matrix (i.e.,
AT = —A). Then

d
£(w) = 75 Va),06) (w)| =

s=0

d (1L +[wP +2(a(s) | U(s)wha(s) + (1 — [a(s)[))U(s)w

ds 1+ |a(s)]?|w|? + 2(a(s) | U(s)w) s=0 (2:50)
Since & |a(s)[?|s=0 =0, we get
§(w) = (1+[w[*)a'(0) + U'(0)w — 2(a'(0) | w)w
= (1+|w]®)b+ Aw — 2(b | w)w. (2.51)
We can rewrite this expression as a polynomial of degree 2 in w:
£(w) =b+ Aw — 2(b | w)w + |w|*b. (2.52)
Thus,
aut.(D;) = {b+ Aw — 2(b | w)w + |w|?b}, (2.53)

where b € R3 and A is a 3 X 3 matrix such that AT = —A.

2.4.2 The triple product and the generators of translations

It will be shown in Chapter 5, section 5.3.4, that the generators of translations
(meaning A = 0) in a bounded symmetric domain are of the form

ép(w) =b— {w,b,w}, (2.54)
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where {w, b, w} is the triple product associated with the bounded symmetric
domain.

Formulas (2.52) and (2.54) indicate that the triple product has to be
defined in such a way that

{w,b,w} = 2(b | w)w — |w|%b. (2.55)

By substituting w = a + ¢ in the previous equation and using the linearity
of the triple product and its symmetry

{a,b,c} = {c,b,a}, (2.56)
we obtain the following definition for the triple product:
{a,b,c} = (a]b)c + (c|b)a — (a|c)b, (2.57)

where a,b,c € R3. This product is called the spin triple product. The
bounded symmetric domain D endowed with the spin triple product is called
the spin factor and is a domain of type IV in Cartan’s classification.

We now derive the complez form of the spin triple product. Complexify
the plane IT generated by the vectors w and b. Let the complex numbers
w and b represent w and b, respectively. Using (2.14), the triple product
{w,b,w} defined by equation (2.55) becomes

{w,b,w} = (b + bw)w — wwb = w?b. (2.58)

Note that this product is complex analytic in w and conjugate linear in b. As
above, by substituting w = a + ¢, we get a complex triple product

{z,b,w} = 2bw, where z,b,w € C, (2.59)

called the complex spin triple product. In the next chapter, we will study the
domain associated with this spin triple product on C™, for arbitrary n.

2.4.3 The triple product and the generators of rotations

The Lie algebra aut.(D,) consists of generators of boosts, described by (2.54)
and (2.55) in terms of the triple product, and generators of rotations. To
describe the generators of rotations on D,, we first choose an orthonormal
basis e;, ez, e3 in R3, the tangent space of D,. For any a,b € R3, define an
operator D(a,b) : R® — R3 by

D(a,b)c = {a, b, c}. (2.60)

Using the definition (2.57) of the spin triple product, the operator D(es,e3)
acts on the basis vectors by
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0, if u=e,
D(ez,e3)(u) = { —e3, if u=ey, (2.61)
ey, if u=e;s,
and its matrix in this basis is
000
me(1))=100 1], (2.62)
0-10

which represents the momentum J; of rotation about the e;-axis. We use the
notation 7, to indicate that . is an element of aut.(D;), the Lie algebra of the
conformal group. Similarly, the operators 7.(J2) = D(es,e;) and 7 (J3) =
D(ej,ez) represent the momentum of rotation about the ey- and es-axes,
respectively.

A general generator of rotation, represented by a 3 x 3 antisymmetric
matrix A, is a linear combination A = By7.(J;) + Bame(J2) + Bsw.(J3). By
introducing the notation

7e(J) = 7e(J1, J2, J3) = (D(eq,e3), D(es, e1), D(er, ez)), (2.63)
the generator of rotation A may be expressed as
Aw = (B - 7.(J))(w) = w x B,

where B = (B, B, B3) € R3. We can now express the elements of the Lie
algebra aut.(D;) in terms of the spin triple product. From (2.52) and (2.55),
it follows that any element ¢ of aut.(D,) has the form

§ = gb,B(w) =b+ (B ' 7l-C(J))(VV) - {w,b,w}

=b+wxB-{w,b,w}, (2.64)

where b, B € R3. See Figures 2.7 and 2.8 for two examples of these vector
fields.

2.4.4 The Lie bracket on aut.(D,).

To show that the set aut.(D;) defined by (2.64) is a Lie algebra, it remains
to check that this set is closed under the Lie bracket. Let &, B and & 5 be

any two elements of aut.(D;). Since these elements are vector fields, the Lie
bracket is defined by

déb,B

dw

d ~
(W) a(W) — 5‘°"3(w>a,,la,(w) (2.65)

[éb,B, &5 gl(W) = -
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Fig. 2.7. The vector field &8, with b = (0.07,0,0) and B = 0, on a two-
dimensional section of the s-velocity ball Ds. Note that this vector field is similar to
the corresponding one for the Lie algebra aut,(D,) of the velocity ball (see Figure
1.30 of Chapter 1).
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-0.8+
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Re(w)
Fig. 2.8. The vector field £, 8 with b = (0.07,0,0) and B = (0,0,0.1), on a two-
dimensional section of the s-velocity ball D,. Note that this vector field is similar to
the corresponding one for the Lie algebra aut,(D,) of the velocity ball (see Figure
1.31) of Chapter 1.

for w € D,, where Lop (4 & =(w) denotes the derivative of &, g at the
dw b,B s

point w in the direction of the vector & g(w). To show that aut.(Ds) is
closed under the Lie bracket, we will calculate [¢p B, &g 5] and show that it

has the form (2.64).
From (2.55) and (2.64), we have
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L0 (o) o =
dw x B — 2(dw|b)w — 2(w[b)dw + 2(dw|w)b. (2.66)
Using the identity
(dw|w)b — (dw|b)w = dw x (b x W), (2.67)
we have
dfl%a—(w)dw =dw X (B+b x 2w) — 2(w|b)dw. (2.68)
Thus,

[éb,B, &5 8](W) = & 5(W) X (B +b x 2w) — 2(w|b)¢; 5(w)

—&b,8(W) X (B+b x 2w) + 2(w|b)ép g(W). (2.69)

Using (2.55) and (2.64), the previous expression becomes a second-degree
polynomial in w, with constant term b X B — b x B and linear term

(wx B)xB— (wxB)xB

+2b x (b x w) — 2b x (b x w) — 2(w|b)b + 2(w|b)b. (2.70)
By using (2.67) and the identity
(wx B) x B—(wxB)xB=wx (B xB), (2.711)
the linear term can be written as
w x (B x B+ 4b x b). (2.72)
The quadratic term can be simplified to
—{w,bxB—bx B,w}. (2.73)
Thus, from (2.69), we have
[’SbyB’fﬁ,ﬁ] = &5 xB—bx B,Bx B+ 4bxb’ (2.74)

an element of aut.(D;).

For arbitrary n, the Lie algebra aut.(D?) of the Lie group Aut.(D7) is
defined by (2.53), where b € R™ and A is an n x n skew-symmetric matrix.
The associated spin triple product is given by (2.57). Also here it can be
shown that aut.(D?) is closed under the Lie bracket.
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2.4.5 The representation of the Lorentz group in aut.(D;)

In section 2.4.3, we defined a representation 7. of the group of rotations into
the Lie algebra aut.(D;) by (2.63), which defines the representation on the
generators Jq, Jo and Js of rotation about the basis vectors e;,e; and e3,
respectively. We want to extend this representation to a representation of
the Lorentz group. To achieve this, we need to find a representation for the
generators K1, Ko and K3 of boosts in the direction of the basis vectors e, e3
and eg, respectively, and to show that they satisfy the commutation relations
of the Lorentz group.

Recall that the Lie algebra of the Lorentz group is the real span of J, Ky,
for k =1,2,3. As we have shown in section 1.5.3, page 39, the generators of
the rotation group satisfy

[J1,J2) = —J3, [J2, J5] = =, [J3, 1] = —Ja, (2.75)

and the remaining commutation relations for the generators of the group are

[J1,K1] =0, [J1,Ks) = —K3, [J1,K3] = K3, (2.76)
[J2, K1] = K3, [J2, K2] =0, [J2, K3] = — K, (2.77)
[J3, K1) = — K3, [J3, K2] = K1, [J3,K3] =0, (2.78)
(K1, Ko] = J3, (K2, K3] = J1, [K3,Ki] = Ja. (2.79)

As defined earlier,

7Tc(!]1) = D(e2,e3) = €O,e1a WC(JZ) = D(e3vel) = €O,e2»

me(J3) = D(e1, €2) = £o,es- (2.80)

Using (2.74), it is easily verified that (2.75) holds. Motivated by the results
of the previous subsection, we define

Te(K1) = €ey /2,00 Te(K2) = €ey2,00 Te(K3) = €eq/2,0- (2.81)

Again using (2.74), one can check that (2.76),(2.77), (2.78) and (2.79) hold.
Thus ., defined by (2.80) and (2.81), is a representation of the Lorentz group
into aut.(Ds).
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2.5 Relativistic dynamic equations on D,

We now derive the relativistic dynamic equation for symmetric velocity as a
new dynamic variable. Suppose w is the symmetric velocity corresponding to
the velocity v. Using the identity v28% = (v — 1)(y + 1) and (2.2), we get

s -1 1+ |wl|?
=—— and y= 2.82
|W| 'Y"‘}"]- an Y 1_|Wl2’ ( 8)
and, thus,
1+ w2 2ew 2ew
= = = my———= 2.83
MV = MorV = Mo [w|2 1+ |w|? moy_ lw|2’ (2.83)
where my is the rest-mass of the object.
Substituting this into the relativistic dynamic equation
F= o —(mv),
we have
d 2cw
F=—my——
it 1 [w]?
1 dw 2w dw
By taking the inner product with w, we obtain
dw 1+ |w|?
(Flw) = 2moc( (2.85)
e T W
By substituting (¥ |w) from (2.85) into (2.84), we obtain
2mge  dw 2w
habd F 2.
TwEd it wRe ™ (2.86)
Multiplying both sides of (2.86) by 1 + |w|?, we get
1+ |w|? dw 5
—— —=F(1 - . .
2moc T— W & (14 |w|*) — 2(F|w)w (2.87)

Using the relation

= /1— [V[2/dt = —Iw (2.88)

1+| |2

we obtain the relativistic dynamic equation for symmetric velocities
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mo‘fj_‘: =F/(2¢) = {w,F/(2c), w} = &r/(20) 0(W), (2.89)

where 7 denotes proper time, the triple product is the spin triple product de-
fined by (2.57), and &g /(2¢) 0 is given by (2.64). Thus, the action of a constant
force F on D; is described by an element & g of aut.(D;), with b = F/(2c)
and B = 0. Since for small velocities w = v/(2c), we have a factor 1/(2c) for
the generator. Note that the flow generated by a constant force on D, will
be conformal.

Next, we will derive the relativistic dynamic equation for the electromag-
netic field for symmetric velocities. Let E denote the strength of the electric
field, and let B denote the strength of the magnetic field. Then, from the for-
mula for the Lorentz force for the electromagnetic field, the dynamic equation
becomes

%(mv) =¢(E+v x B).

By using equation (2.83), we obtain

2ew d 2cw
E+ ——= xB)=—my——— .
1B+ T wp B = M wp (2.90)
1 dw 2w dw
=2 —_— )
M wE @ T A wieE ™
By taking the inner product with w, we get
dw 1+ |w|?
Ew)=2 — W) ———. .
By substituting (4¥|w) from (2.91) into (2.90), we obtain
2mgoc  dw 2cw 2w
Towp at 1B Twp ¥ B i (W) (292)

Multiplying both sides of the previous equation by 1 + |w|? and switching
from dt to dr, the dynamic equation becomes

mocdw/dr = q(E/2 + w x ¢cB — w(w|E) + |w|?E/2), (2.93)

the relativistic dynamic equation for the electromagnetic field.
Using (2.55), this equation becomes

moC dW/d’T = q(E/2 +wxcB- {WaE/za W}) = ng/Z,cB(w)’ (294)

showing that this dynamic equation is given by an element (2.64) of aut.(D;)
if we take b = E/2. Thus, the flow on D, generated by a constant electro-
magnetic field is a one-parameter conformal flow in Aut(D;). By (2.46), this



76 2 The real spin domain

flow is of the form ¥ (), 7). Note that a(7) is the trajectory of the s-velocity
of a particle with zero initial velocity (or s-velocity) under the field. In case,
there is a plane IT which is preserved under the evolution, U(7) is a rotation
with respect to the line perpendicular to II and is uniquely defined by its
action on II.

To obtain the space trajectory r(7) of the particle, we have to add to its
initial position r(0) the integral fOT vdt = f(; v(7)y(v(7))dr. Using (2.1) and
(2.88), we get

£(r) = £(0) + 2¢ /0 ' ITT‘S—()T—)PdT, (2.95)

and the proper velocity of the particle, defined by (1.4), is

u(r) = d‘;l(:) = f",vvvv((?)lz — &(w(r)), (2.96)

with @ defined by (2.1). If we want to use time ¢ as a parameter on the space
trajectory, we have to replace 7 by a function of ¢, which can be defined from
the equation

I LR,
t= /0 (v (r))dr = /0 e D (2.97)

2.6 Perpendicular electric and magnetic fields

2.6.1 General setup of the problem

We will now use equation (2.94) to find an analytic solution for the motion
of an electric charge ¢ in a uniform, constant electromagnetic field E,B in
which the vector B is perpendicular to E. We will assume first that the initial
velocity of the charge is perpendicular to B. In this case, the charge will stay
in the plane II which is perpendicular to B and passes through its initial
position. This follows from the fact that the right side of (2.94) is in IT at
7 =0 and dw/dr belongs to this plane.

We will complexify the plane IT so that the vector E € IT lies on the pos-
itive part of the imaginary axis. We associate to any s-velocity w a complex
vector w = w; +iws, with real wy, we. Note that w is unit-free. The vector E
will be represented by the complex number ¢|E|. In this representation, the
vector w X cB, which is in I7, is equal to ¢|B|(w2 — iw;) = —ic|B|w. By use
of (2.58), the vector {w, E/2, w} is represented by the complex number

{w, E/2,w} = —i(|E|/2)w?. (2.98)

The equation (2.94) of evolution of w(7) now becomes
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dw/dr = ;-n‘i—c(ﬂm /2 ic/Blw + i(|E|/2)w?) = ;‘:r'flu - 2(;%11) +w?).
(2.99)
Rewrite this differential equation as
dw(r)/dr = i2(w(r)? — 2Bw(r) + 1), (2.100)
where the constants are
p=dEL 5_cBl (2.101)

"~ 2myc’ |E| -

Note that we get a first-order complex analytic differential equation, which
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