


DIFFERENTIAL
EQUATIONS,
BIFURCATIONS, AND
CHAOS IN ECONOMICS





Series on Advances in Mathematics for Applied Sciences - Vol. 68

DIFFERENTIAL
EQUATIONS,
BIFURCATIONS, AND
CHAOS IN ECONOMICS

Wei-Bin Zhang
Ritsumeikan Asia Pacific University, Japan

\{J5 World Scientific
N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • T A I P E I • C H E N N A I



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

DIFFERENTIAL EQUATIONS, BIFURCATIONS, AND CHAOS IN ECONOMICS
Series on Advances in Mathematics for Applied Sciences — Vol. 68

Copyright © 2005 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-256-333-4

Printed in Singapore by B & JO Enterprise



Preface

Application of differential equations to economics is a vast and vibrant
area. Concepts and theorems related to differential equations appear
everywhere in academic journals and textbooks in economics. One can
hardly approach, not to mention digest, the literature of economic
analysis without "sufficient" knowledge of differential equations.
Nevertheless, the subject of applications of differential equations to
economics is not systematically studied. The subject is often treated as a
subsidiary part of (textbooks of) mathematical economics. Due to the
rapid development of differential equations and wide applications of the
theory to economics, there is a need for a systematic treatment of the
subject. This book provides a comprehensive study of applications of
differential equations to dynamic economics. We not only study
analytical methods, but also provide applications of these methods for
solving economic problems.

This book is a unique blend of the theory of differential equations and
its exciting applications to economics. It is mainly concerned with
ordinary differential equations. The book provides not only a
comprehensive introduction to applications of theory of linear (and
linearized) differential equations to economic analysis, but also studies
nonlinear dynamical systems which have been widely applied to
economic analysis in recent years. It provides a comprehensive
introduction to most important concepts and theorems in differential
equations theory in a way that can be understood by anyone who has
basic knowledge of calculus and linear algebra. In addition to traditional
applications of the theory to economic dynamics, it also contains many
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vi Differential Equations, Bifurcations, and Chaos in Economics

recent developments in different fields of economics. It is mainly
concerned with how differential equations can be applied to solve and
provide insights into economic dynamics. We emphasize "skills" for
application.

The book is divided, according to dimensions of dynamic systems,
into three parts. The first part deals with scalar differential equations; the
second part studies planar differential equations; and the third part
introduces higher-dimensional differential equations. Each part consists
of three chapters. The first chapter of each part mainly deals with key
concepts and main mathematical results related to linear (linearized)
differential equations and their applications to economics. The second
chapter mainly studies key concepts and (some of) main mathematical
results related to nonlinear differential equations and their applications to
economics. For illustration, the first two chapters tend to use simple
(simplified) economic systems. The third chapter of each part introduces
"complicated" (in terms of the number of variables and relationships
among variables) economic models, applying the concepts and theorems
from the previous two chapters. Most of the chapters include problems
that help the reader from routine exercises through extensions of the
models. Except conducting mathematical analysis of the economic
models like most standard textbooks on mathematical economics, we use
computer simulation to demonstrate motion of economic systems. A
large fraction of examples in this book are simulated with Mathematica.
Today, more and more researchers and educators are using computer
tools to solve - once seemingly impossible to calculate even three
decades ago - complicated and tedious problems.

The lively pace of research on differential equations and theoretical
and empirical applications of differential equations to economics means
that this book cannot cover all the important applications of differential
equations to economics, not to mention the current development of
differential equations, irrespective of the endeavors to provide a
comprehensive study of the subject.

I would like to thank Editor E H Chionh for effective co-operation. I
completed this book at the Ritsumeikan Asia Pacific University, Japan. I
am grateful to the university's pleasant and co-operative academic
environment. I take great pleasure in expressing my gratitude to my wife,
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Gao Xiao, who has been wonderfully supportive of my efforts in writing
this book in Beppu City, Japan. She also helped me to draw some of the
figures in the book.

W.B. Zhang





Contents

1. Differential Equations in Economics 1
1.1 Differential Equations and Economic Analysis 3
1.2 Overview 8

Part I: Dimension One

2. Scalar Linear Differential Equations 16
2.1 Scalar Linear First-Order Differential Equations 18
2.2 A Few Special Types 26
2.3 Second-Order Linear Differential Equations 36
2.4 Higher-Order Linear Differential Equations 41
2.5 Higher-Order Linear Differential Equations with Constant

Coefficients 45

3. Scalar Nonlinear Differential Equations 53
3.1 Nonlinear Differential Equations 55
3.2 Stability of Equilibrium of Autonomous Equations 63
3.3 Bifurcations 67
3.4 Periodic Solutions 80
3.5 The Energy Balance Method and Periodic Solutions 84
3.6 Estimation of Amplitude and Frequency 88

4. Economic Dynamics with Scalar Differential Equations 92
4.1 The One-Sector Growth (OSG) Model 93
4.2 The OSG Model with the Cobb-Douglas Production Function 102
4.3 The OSG Model with General Utility Functions 105
4.4 Urban Growth with Housing Production I l l
4.5 Endogenous Time in the OSG Model 122

ix



x Differential Equations, Bifurcations, and Chaos in Economics

4.6 The OSG Model with Sexual Division of Labor and Consumption . 130
4.7 The Uzawa Two-Sector Model 140
4.8 Refitting the Uzawa Model within the OSG Framework 142

Part II: Dimension Two

5. Planar Linear Differential Equations 156
5.1 Planar Linear First-Order Homogeneous Differential Equations . . . . 156
5.2 Some Concepts for Qualitative Study 162
5.3 Matrix Exponentials and Reduction to Canonical Forms 164
5.4 Topological Equivalence in Planar Linear Systems 167
5.5 Planar Linear First-Order Nonhomogeneous Differential

Equations 171
5.6 Constant-Coefficients Nonhomogeneous Linear Equations with

Time-Dependent Terms 178

6. Planar Nonlinear Differential Equations 182
6.1 Local Stability and Linearization 182
6.2 Liapunov Functions 199
6.3 Bifurcations in Planar Dynamical Systems 211
6.4 Periodic Solutions and Limit Cycles 216
6.5 The Poincare-Bendixson Theorem 224
6.6 Lienard Systems 229
6.7 The Andronov-Hopf Bifurcations in Planar Systems 233

7. Planar Dynamical Economical Systems 241
7.1 The IS-LM Model 242
7.2 An Optimal Foreign Debt Model 247
7.3 The Simplified Keynesian Business Cycle Model 250
7.4 The Welfare Economy with Unemployment 255
7.5 Regional Growth with Endogenous Time Distribution 266
7.6 Growth with International Trade and Urban Pattern Formation . . . . 275
7.7 A Dynamic Macro Model with Monetary Policy 286
7.8 Economic Growth with Public Services 290
7.9 Endogenous Population Growth in the Ramsey Framework 293
7.10 The Ramsey Model with Endogenous Time 298

Part III: Higher Dimensions

8. Higher-Dimensional Differential Equations 304
8.1 Systems of Linear Differential Equations 304
8.2 Homogeneous Linear Systems with Constant Coefficients 313



Contents xi

8.3 Higher-Order Equations 318
8.4 Diagonalization 322
8.5 The Fundamental Theorem for Linear Systems 325

9. Higher-Dimensional Nonlinear Differential Equations 329
9.1 Local Stability and Linearization 329
9.2 Liapunov Functions 334
9.3 Conservative Systems 340
9.4 Poincare Maps 348
9.5 Center Manifold Theorems 354
9.6 Applying the Center Manifold Theorem and the Liapunov

Theorem to a Simple Planar System 363
9.7 The Hopf Bifurcation Theorem and Its Applications 367
9.8 The Lorenz Equations and Chaos 374

10. Higher-Dimensional Economic Evolution 382
10.1 Tatonnement Price Adjustment Processes 383
10.2 The Three-Country Trade Model with Capital Accumulation 389
10.3 Growth, Trade, and Wealth Distribution Among Groups 395
10.4 A Two-Region Growth Model with Capital and Knowledge 401
10.5 Money and Economic Growth 412
10.6 Limit Cycles and Aperiodic Behavior in the Multi-Sector

Optimal Growth Model 418
10.7 Theoretical Insight into China's Modern Economic

Development 423

11. Epilogue: Economic Evolution with Changeable Speeds and Structures 446

Appendix 455
A. 1 Matrix Theory 455
A.2 Systems of Linear Equations 459
A.3 Properties of Functions and the Implicit Function Theorem 460
A.4 Taylor Expansion and Linearization 464
A.5 Structural Stability 466
A.6 Optimal Control Theory 467

Bibliography 475

Index 483





Chapter 1

Differential Equations in Economics

Applications of differential equations are now used in modeling motion
and change in all areas of science. The theory of differential equations
has become an essential tool of economic analysis particularly since
computer has become commonly available. It would be difficult to
comprehend the contemporary literature of economics if one does not
understand basic concepts (such as bifurcations and chaos) and results of
modern theory of differential equations.

A differential equation expresses the rate of change of the current
state as a function of the current state. A simple illustration of this type
of dependence is changes of the Gross Domestic Product (GDP) over
time. Consider state x of the GDP of the economy. The rate of change of
the GDP is proportional to the current GDP

x{t) = gx{t),

where t stands for time and x{f) the derivative of the function x with
respect to t. The growth rate of the GDP is x/x. If the growth rate g is
given at any time t, the GDP at t is given by solving the differential
equation. The solution is

jc(f) = x{0)e*.

The solution tells that the GDP decays (increases) exponentially in time
when g is negative (positive).

We can explicitly solve the above differential function when g is a
constant. It is reasonable to consider that the growth rate is affected by
many factors, such as the current state of the economic system,
accumulated knowledge of the economy, international environment, and
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2 Differential Equations, Bifurcations, and Chaos in Economics

many other conditions. This means that the growth rate may take on a
complicated form g(x,t). The economic growth is described by

x(t) = g(x(t)M)-
In general, it is not easy to explicitly solve the above function. There

are various established methods of solving different types of differential
equations. This book introduces concepts, theorems, and methods in
differential equation theory which are widely used in contemporary
economic analysis and provides many simple as well as comprehensive
applications to different fields in economics.

This book is mainly concerned with ordinary differential equations.
Ordinary differential equations are differential equations whose solutions
are functions of one independent variable, which we usually denote by /.
The variable t often stands for time, and solution we are looking for,
x(t), usually stands for some economic quantity that changes with time.
Therefore we consider x(t) as a dependent variable. For instance,
x(t) = t2x(t) is an ordinary differential equation. Ordinary differential
equations are classified as autonomous and nonautonomous. The
equation

x(t) = ax(t) + b,

with a and b as parameters is an autonomous differential equation
because the time variable t does not explicitly appear. If the equation
specially involves t, we call the equation nonautonomous or time-
dependent. For instance,

x(t) = x(t) + sint,

is a nonautonomous differential equation. In this book, we often omit
"ordinary", "autonomous", or "nonautonomous" in expression. If an
equation involves derivatives up to and includes the ith derivative, it is
called an ith order differential equation. The equation x(t) = ax{t) + b
with a and b as parameters is a first order autonomous differential
equation. The equation

x = 3x - 2x + 2 ,
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is a second order equation, where the second derivative, x(t), is the
derivative of x(t).l As shown late, the solution is

x(t) = A/' + A2e' + 1,

where Ai and A^ are two constants of integration. The first derivative x is
the only one that can appear in a first order differential equation, but it may
enter in various powers: x, x2, and so on. The highest power attained by
the derivative in the equation is referred to as the degree of the differential
equation. For instance,

3JC2 - 2x + 2 = 0

is a second-degree first-order differential equation.

1.1 Differential Equations and Economic Analysis

This book is a unique blend of the theory of differential equations and
their exciting applications to economics. First, it provides a
comprehensive introduction to most important concepts and theorems in
differential equations theory in a way that can be understood by anyone
who has basic knowledge of calculus and linear algebra. In addition to
traditional applications of the theory to economic dynamics, this book
also contains many recent developments in different fields of economics.
The book is mainly concerned with how differential equations can be
applied to solve and provide insights into economic dynamics. We
emphasize "skills" for application. When applying the theory to
economics, we outline the economic problem to be solved and then
derive differential equation(s) for this problem. These equations are then
analyzed and/or simulated.

Different from most standard textbooks on mathematical economics,
we use computer simulation to demonstrate motion of economic systems.
A large fraction of examples in this book are simulated with
Mathematica. Today, more and more researchers and educators are using
computer tools such as Mathematica to solve - once seemingly

1 The nth derivative of x(t), denoted by *'"'(/), is the derivative of x^"A\t).
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impossible to calculate even three decades ago - complicated and tedious
problems.

This book provides not only a comprehensive introduction to
applications of linear and linearized differential equation theory to
economic analysis, but also studies nonlinear dynamical systems which
have been widely applied to economic analysis only in recent years.
Linearity means that the rule that determines what a piece of a system is
going to do next is not influenced by what it is doing now. The
mathematics of linear systems exhibits a simple geometry. The simplicity
allows us to capture the essence of the problem. Nonlinear dynamics is
concerned with the study of systems whose time evolution equations are
nonlinear. If a parameter that describes a linear system, is changed, the
qualitative nature of the behavior remains the same. But for nonlinear
systems, a small change in a parameter can lead to sudden and dramatic
changes in both the quantitative and qualitative behavior of the system.

Nonlinear dynamical theory reveals how such interactions can bring
about qualitatively new structures and how the whole is related to and
different from its individual components. The study of nonlinear
dynamical theory has been enhanced with developments in computer
technology. A modern computer can explore a far wider class of
phenomena than it could have been imagined even a few decades ago.
The essential ideas about complexity have found wide applications
among a wide range of scientific disciplines, including physics, biology,
ecology, psychology, cognitive science, economics and sociology. Many
complex systems constructed in those scientific areas have been found to
share many common properties. The great variety of applied fields
manifests a possibly unifying methodological factor in the sciences.
Nonlinear theory is bringing scientists closer as they explore common
structures of different systems. It offers scientists a new tool for
exploring and modeling the complexity of nature and society. The new
techniques and concepts provide powerful methods for modeling and
simulating trajectories of sudden and irreversible change in social and
natural systems.

Modern nonlinear theory begins with Poincare who revolutionized
the study of nonlinear differential equations by introducing the
qualitative techniques of geometry and topology rather than strict
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analytic methods to discuss the global properties of solutions of these
systems. He considered it more important to have a global understanding
of the gross behavior of all solutions of the system than the local
behavior of particular, analytically precise solutions. The study of the
dynamic systems was furthered in the Soviet Union, by mathematicians
such as Liapunov, Pontryagin, Andronov, and others. Around 1960, the
study by Smale in the United States, Peixoto in Brazil and Kolmogorov,
Arnol'd and Sinai in the Soviet gave a significant influence on the
development of nonlinear theory. Around 1975, many scientists around
the world were suddenly aware that there is a new kind of motion - now
called chaos - in dynamic systems. The new motion is erratic, but not
simply "quasiperiodic" with a large number of periods.2 What is
surprising is that chaos can occur even in a very simple system.
Scientists were interested in complicated motion of dynamic systems.
But only with the advent of computers, with screens capable of
displaying graphics, have scientists been able to see that many nonlinear
dynamic systems have chaotic solutions.

As demonstrated in this book, nonlinear dynamical theory has found
wide applications in different fields of economics.3 The range of
applications includes many topics, such as catastrophes, bifurcations,
trade cycles, economic chaos, urban pattern formation, sexual division of
labor and economic development, economic growth, values and family
structure, the role of stochastic noise upon socio-economic structures,
fast and slow socio-economic processes, and relationship between
microscopic and macroscopic structures. All these topics cannot be
effectively examined by traditional analytical methods which are
concerned with linearity, stability and static equilibria. Nonlinear
dynamical theory has changed economists' views about evolution. For
instance, the traditional view of the relations between laws and
consequences - between cause and effect - holds that simple rules imply
simple behavior, therefore complicated behavior must arise from

2 In the solar system, the motion traveled around the earth in month, the earth around the
sun in about a year, and Jupiter around the sun in about 11.867 years. Such systems with
multiple incommensurable periods are known as quasiperiodic.
3 For recent applications of nonlinear theory to economics, see Rosser (1991), Zhang (1991,
2005), Lorenz (1993), Puu (2000), and Shone (2002).
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complicated rules. This vision had been held by professional economists
for a long time. But it has been recently challenged due to the
development of nonlinear theory. Nonlinear theory shows how
complicated behavior may arise from simple rules. To illustrate this idea,
we consider the Ueda attractor

x + 2yx + x3 = Fcost.

This is a simple dynamical system. When k = 0.025 and F = 7.5, as
illustrated in Fig. 1.1.1, its behavior are "chaotic". The model with the
specified parameter values does not exhibit any regular or periodic
behavioral pattern. Chaos persists for as long as time passes.

X X
g

—D

Fig. 1.1.1 Chaos of the Ueda attractor.

Another example is the Lorenz equations. The laws that govern the
motion of air molecules and of other physical quantities are well known.
The topic of differential equations is some 300 years old, but nobody
would have thought it possible that differential equations could behave as
chaotically as Edward N. Lorenz found in his experiments. Around 1960,
Lorenz constructed models for numerical weather forecasting. He
showed that deterministic natural laws do not exclude the possibility of
chaos. In other words, determinism and predictability are not equivalent.
In fact, recent chaos theory shows that deterministic chaos can be
identified in much simpler systems than the Lorenz model.

The system of equations (with the parameter values specified) that
Lorenz proposed in 1963 is

x = iolrx + y\
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y = 28x - y - xz,

8
z = --z + xy,

where x, y, and z are time-dependent variables.4 We will come back to
this system later. If we start with an initial state \x0, y0, zo)= (6, 6, 6),
the motion of the system is chaotic, as depicted in Fig. 1.1.2. There are two
sheets in which trajectories spiral outwards. When the distance from the
center of such a spiral becomes larger than some particular threshold, the
motion is ejected from the spiral and is attracted by the other spiral,
where it again begins to spiral out, and the process is repeated. The
motion is not regular. The number of turns that a trajectory spends in one
spiral before it jumps to the other is not specified. It may wind around
one spiral twice, and then three times around the other, then ten times
around the first and so on.

20

Fig. 1.1.2 The dynamics of the Lorenz equations.

Nonlinear dynamical systems are sufficient to determine the behavior
in the sense that solutions of the equations do exist. But it is often

4 A very thorough treatment of the Lorenz equations is given by Sparrow (1982).
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impossible to explicitly write down solutions in algebraic expressions.
Nonlinear economics based on nonlinear dynamical theory attempts to
provide a new vision of economic dynamics: a vision toward the
multiple, the temporal, the unpredictable, and the complex. There is a
tendency to replace simplicity with complexity and specialism with
generality in economic research. The concepts such as totality,
nonlinearity, self-organization, structural changes, order and chaos have
found broad and new meanings by the development of this new science.
According to this new science, economic dynamics are considered to
resemble a turbulent movement of liquid in which varied and relatively
stable forms of current and whirlpools constantly change one another.
These changes consist of dynamic processes of self-organization along
with the spontaneous formation of increasingly subtle and complicated
structures. The accidental nature and the presence of structural changes
like catastrophes and bifurcations, which are characteristic of nonlinear
systems and whose further trajectory is determined by chance, make
dynamics irreversible.

Traditional economists were mainly concerned with regular motion of
the economic systems. Even when they are concerned with economic
dynamics, students are still mostly limited to their investigations of
differential or difference equations to regular solutions (which include
steady states and periodic solutions). In particular, economists were
mainly interested in existence of a unique stable equilibrium. Students
trained in traditional economics tend to imagine that the economic reality
is uniquely determined and will remain invariant over time under "ideal
conditions" of preferences, technology, and institutions. Nevertheless,
common experiences reveal more complicated pictures of economic
reality. Economic structures change even within a single generation.
Economic systems collapse or suddenly grow without any seemingly
apparent signs of structural changes.

1.2 Overview

This book presents the mathematical theory in linear and nonlinear
differential equations and its applications to many fields of economics.
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The book is for economists and scientists of other disciplines who are
concerned with modeling and understanding the time evolution of nonlinear
dynamic economic systems. It is of potential interest to professionals and
graduate students in economics and applied mathematics, as well as
researchers in social sciences with an interest in applications of
differential equations to economic systems.

The book is basically divided into three parts - Part I concerns with
one-dimensional differential equations; Part II concentrates on planar
differential equations; Part III studies higher dimensional dynamical
systems. Each part consists of three chapters - the first chapter is
concentrated on linear systems, the second chapter studies nonlinear
systems, and the third chapter applies concepts and techniques from the
previous two chapters to economic dynamic systems of different schools.

Part I consists of three chapters. Chapter 2 deals with one-
dimensional linear differential equations. Section 2.1 solves one-
dimensional linear first-order differential equations. In Sec. 2.2, we
examine a few special types of first-order equations, which may not be
linear. Using the special structures of the equations, we can explicitly
solve them. The types include separable differential equations, exact
differential equations, and the Bernoulli equation. This section also
examines the most well-known growth model, the Solow model and
provides a few examples of applications. Section 2.3 is concerned with
second-order differential equations. Section 2.4 gives general solutions to
higher-order differential equations with continuous coefficients in time.
Section 2.5 gives general solutions to higher-order differential equations
with constant coefficients.

Chapter 3 is organized as follows. Section 3.1 introduces some
fundamental concepts and theorems, such as equilibrium, trajectory,
solution, periodic solution, existence theorems, and stability, about
nonlinear differential equations. To avoid repetition in later chapters, the
contents of this section are not limited to one dimension; they are valid
for any finite dimensions. Section 3.2 states stability conditions of
equilibria for scalar autonomous equations. We also apply the theory to
two well-known economic models, the Cagan monetary model and the
generalized Solow model with poverty traps. Section 3.3 introduces
bifurcation theory and fundamental results for one-dimensional nonlinear
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systems. We examine saddle-node, transcritical, pitchfork, and cusp
bifurcations. In Sec. 3.4, we demonstrate periodic solutions of one-
dimensional second-order differential equations, using the Van der Pol
equation and the Duffing equation as examples. Section 3.5 illustrates the
energy balance method for examining periodic solutions. Section 3.6
introduces how to estimate amplitude and frequency of the periodic
solutions examined in the previous section.

Chapter 4 applies concepts and theorems from the previous two
chapters to analyze different models in economic model. Although the
economic relations in these models tend to be complicated, we show that
the dynamics of all these models are determined by motion of one-
dimensional differential equations. Section 4.1 examines a one-sector
growth model. As the economic mechanisms of this model will be
applied in some other models in this book, we explain the economic
structure in details. This section also applies the Liapunov theorem to
guarantee global asymptotical stability of the equilibrium. Section 4.2
depicts the one-sector growth model proposed in Sec. 4.1 with
simulation. Section 4.3 examines the one-sector-growth model for
general utility functions. Section 4.4 examines a model of urban
economic growth with housing production. In Sec. 4.5, we examine a
dynamic model to how leisure time and work hours change over time in
association with economic growth. Section 4.6 examines dynamics of
sexual division of labor and consumption in association of modern
economic growth. We illustrate increases of women labor participation
as a "consequence" of economic growth as well as changes of labor
market conditions. Section 4.7 introduces the Uzawa two-sector model.
In Sec. 4.8, we re-examine the Uzawa model with endogenous consumer
behavior. The models of this chapter show the essence of economic
principles in many fields of economics, such as equilibrium economics
(as a stationary state of a dynamic economics), growth theory, urban
economics, and gender economics. The basic ideas and conclusions of
this chapter require some books to explain, if that is possible. This also
proves power of differential equations theory.

Part II consists of three chapters. Chapter 5 studies planar linear
differential equations. Section 5.1 gives general solutions to planar linear
first-order homogeneous differential equations. We also depict phase
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portraits of typical orbits of the planar systems. Section 5.2 introduces
some concepts, such as positive orbit, negative orbit, orbit, limit set, and
invariant set, for qualitative study. Section 5.3 shows how to calculate
matrix exponentials and to reduce planar differential equations to the
canonical forms. In Sec. 5.4, we introduce the concept of topological
equivalence of planar linear systems and classify the planar linear
homogeneous differential equations according to the concept. Section 5.5
studies planar linear first-order non-homogeneous differential equations.
This section examines dynamic behavior of some typical economic
models, such as the competitive equilibrium model, the Cournot duopoly
model with constant marginal costs, the Cournot duopoly model with
increasing marginal costs, the Cagan model with sluggish wages. Section
5.6 solves some types of constant-coefficient linear equations with time-
dependent terms.

Chapter 6 deals with nonlinear planar differential equations. Section
6.1 carries out local analysis and provides conditions for validity of
linearization. We also provide relations between linear systems and
almost linear systems with regard to dynamic qualitative properties. This
section examines dynamic properties of some frequently-applied
economic models, such as the competitive equilibrium model, the
Walrasian-Marshallian adjustment process, the Tobin-Blanchard model,
and the Ramsey model. Section 6.2 introduces the Liapunov methods for
stability analysis. In Sec. 6.3, we study some typical types of bifurcations
of planar differential equations. Section 6.4 demonstrates motion of
periodic solutions of some nonlinear planar systems. Section 6.5
introduces the Poincare-Bendixon Theorem and applies the theorem to
the Kaldor model to identify the existence of business cycles. Section 6.6
states Lienard's Theorem, which provides conditions for the existence
and uniqueness of limit cycle in the Lienard system. Section 6.7 studies
one of most frequently applied theorems in nonlinear economics, the
Andronov-Hopf Bifurcation Theorem and its applications in the study of
business cycles.

Chapter 7 applies the concepts and theorems related to two-
dimensional differential equations to various economic issues. Section
7.1 introduces the IS-LM model, one of the basic models in
contemporary macroeconomics and examines its dynamic properties.
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Section 7.2 examines an optimal foreign debt model, maximizing the
life-time utility with borrowing. In Sec. 7.3, we consider a dynamic
economic system whose construction is influenced by Keynes' General
Theory. Applying the Hopf bifurcation theorem, we demonstrate the
existence of limit cycles in a simplified version of the Keynesian
business model. Section 7.4 examines dynamics of unemployment within
the framework of growth theory. In particular, we simulate the model to
demonstrate how unemployment is affected by work amenity and
unemployment policy. In Sec. 7.5, we establish a two-regional growth
model with endogenous time distribution. We examine some dynamic
properties of the dynamic systems. Section 7.6 models international trade
with endogenous urban model formation. We show how spatial
structures evolve in association of global growth and trade. In Sec. 7.7,
we introduce a short-run dynamic macro model, which combines the
conventional IS-LM model and Phillips curve. We also illustrate
dynamics of the model under different financial policies. Section 7.8
introduces a growth model with public inputs. The public sector is
treated as an endogenous part of the economic system. The system
exhibits different dynamic properties examined in the previous two
chapters.

Chapter 8 studies higher-dimensional differential equations. Section
8.1 provides general solutions to systems of linear differential equations.
Section 8.2 examines homogeneous linear systems with constant
coefficients. Section 8.3 solves higher-order homogeneous linear
differential equations. Section 8.4 introduces diagonalization and
introduces concepts of stable and unstable subspaces of the linear
systems. Section 8.5 studies the Fundamental Theorem for linear systems
and provides a general procedure of solving linear equations.

Chapter 9 deals with higher dimensional nonlinear differential
equations. Section 9.1 studies local stability and validity of linearization.
Section 9.2 introduces the Liapunov methods and studies Hamiltonian
systems. In Sec. 9.3, we examine differences between conservative and
dissipative systems. We examine the Goodwin model in detail. Section
9.4 defines the Poincare maps. In Sec. 9.5, we introduce center manifold
theorems. Section 9.6 applies the center manifold theorem and Liapunov
theorem to a simple planar system. In Sec. 9.7, we introduce the Hopf
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bifurcation theorem in higher dimensional cases and apply it to a
predator-prey model. Section 9.8 simulates the Loren equations,
demonstrating chaotic motion of deterministic dynamical systems.

Chapter 10 applies the mathematical concepts and theorems of higher
differential equations introduced in the previous two chapters to
differential economic models. Section 10.1 examines some tatonnement
price adjustment processes, mainly applying the Liapunov methods.
Section 10.2 studies a three-country international trade model with
endogenous global economic growth. Section 10.3 extends the trade
model of the previous section by examining impacts of global economic
group on different groups of people not only among countries but also
within countries. We provide insights into complexity of international
trade upon different people. Section 10.4 examines an two-region growth
model with endogenous capital and knowledge. Different from the trade
model where international migration is not allowed, people freely move
among regions within the interregional modeling framework. Section
10.5 introduces money into the growth model. We demonstrate the
existence of business cycles in the model, applying the Hopf bifurcation
theorem. Section 10.6 guarantees the existence of limit cycles and
aperiodic behavior in the traditional multi-sector optimal growth model,
an extension of the Ramsey growth model. Section 10.7 proposes a
dynamic model with interactions among economic growth, human
capital accumulation, and opening policy to provide insights into the
historical processes of Chinese modernization. Analysis of behavior of
this model requires almost all techniques introduced in this book.

As concluding remarks to this book, we address two important issues
which have been rarely studied in depth in economic dynamical analysis,
changeable speeds and economic structures. The understanding of these
two issues are essential for appreciating validity and limitations of
different economic models in the literature, but should also play a
guarding role in developing general economic theories. We also include
an appendix. App. A.I introduces matrix theory. App. A.2 shows how to
solve linear equations, based on matrix theory. App. A.3 defines some
basic concepts in study of functions and states the Implicit Function
Theorem. App. A.4 gives a general expression of the Taylor Expansion.
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App. A.5 briefly mentions a few concepts related to structural stability.
App. A.6 introduces optimal control theory.



Parti

Dimension One



Chapter 2

Scalar Linear Differential Equations

Consider a consumer of a bank. Let her money in the bank be x(t). If
interest is continuously compounded at an annual rate a, then the
differential equation

x{t) = ax(t),

describes the amount of money in the bank account over time. Here, x{t)
stands for the derivative of the function x\t) with respect to the variable
t. It should be noted that the derivative is also represented by dx(t)l dt
or *'(/)

The solution of this equation is x(t) = xi^e"' - the bank account
grows exponentially without bound if the size of the original deposit,
x(o), is positive. This same equation models the dynamics of the
population with a constant percent rate of growth a. The assumption of a
constant a is referred to as Malthus's law, and the corresponding
equation x(t) = ax(t) as the Malthus equation. The solution says that if a
society follows Malthus's law (with a positive a ), then its population
will grow exponentially without bound. The society may suffer from
poverty due to over population if its economic growth fails to meet the
basic need of the rapidly increasing population.

The equation, x(t) = ax(t), has infinitely many solutions, each of the
form x(t)=Aeal, for a constant real number A. At t, we determine
A = x(o). The number x0 = x(o) is called the initial value of the
function x. An initial value problem often consists of a differential
equation together with enough initial values to specify a single solution.
Hence, we say that the solution of the initial problem

x{t) = ax{t), x0=x{0),

16
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is x(t) = xoe
al. Figure 2.0.1 shows the family of solutions of differential

equations for various initial values x0 with a < 0 and a > 0. Each
choice of initial value x0 determines a curve. This picture is called flow
of the differential equation. The flow, (p(t,xo\ of an autonomous
differential equation is the function of time t and initial value JC0, which
represents the set of solutions. Thus (p(t,x0) is the value at time t of the
solution with initial value x0.

x x

(a) a < 0; exponential decay (b) a > 0; exponential growth

Fig. 2.0.1 Solutions of x = ax with varied initial values.

The differential equation

x{t) = ax{t),

contains a single dependent variable. An economic system often contains
many dependent variables, such as outputs, capital stocks, money, and
prices. The dimension of differential equations refers to the number of
dependent variables in the system. In this section, there is one variable,
which is a function of the independent variable t. If the derivative of the
variable x(t), denoted by x(t), dx(t)/dt, or x'(t), is linear in x, we say
that it is a linear differential equation.

This chapter is concerned with one-dimensional linear differential
equations. Section 2.1 solves one-dimensional linear first-order
differential equations. In Sec. 2.2, we examine a few special types of
first-order equations, which may not be linear. Using the special
structures of the equations, we can explicitly solve them. The types
include separable differential equations, exact differential equations, and
the Bernoulli equation. This section also examines the most well-known
growth model, the Solow model and provides a few examples of
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applications. Section 2.3 is concerned with second-order differential
equations. Section 2.4 gives general solutions to higher-order differential
equations with continuous coefficients in time. Section 2.5 gives general
solutions to higher-order differential equations with constant coefficients.

2.1 Scalar Linear First-Order Differential Equations

This section studies linear first-order differential equations, generally
expressed as

x + u{t)x = w{t), (2.1.1)

where u(t) and w(t) are functions of t.

The homogeneous case with constant coefficient and constant term
First, we examine the homogeneous case of Eq. (2.1.1) when u(t) = a
and w(t) = 0. The solution of

x + ax = 0, (2.1.2)

is x(t) - Ae'al, where A is an arbitrary constant. We have just examined
this case in the previous section.

Example The Harrod-Domar model.'
The system is built on the hypothesis that any change in the rate of
investment per year I(t) will affect the aggregate demand and
productivity of the economy. The demand effect of a change in I(t)
operates through the multiplier process. An increase in I(t) will raise the
rate of income flow per year 7(0 by a multiple of the increment in I(t).
The agents regularly set aside some fairly predictable portion of its
output for the purpose of capital accumulation. Since there is a single
good, no question of changes in relative price can arise, nor can any
questions of capital composition. Let us denote s a constant fraction of
the total output flow that is saved and set aside to be added to the capital
stock. For a predetermined s, the multiplier is a = \ls.

1 See Domar (1946) and Harrod (1948).



Scalar Linear Differential Equations 19

As 7(0 is the only expenditure flow that influences the rate of
income flow, we have

Y(t) = i{t)ls.

The capacity effect of investment is reflected by the change in the rate of
potential output the economy is capable of producing. The capacity-
capital ratio is defined by p = K(t)l K(t), where K(t) stands for
capacity or potential output flow and p represents a (predetermined)
constant capacity-capital ratio. The above equation implies that with a
capital stock K(t) the economy is potentially capable of producing an
annual product K. Taking derivatives of K{t) = pK(t) with respect to t
yields

k = pK = pi.

Here, equilibrium is defined as a situation, in which productive capacity
is fully utilized, i.e., Y(t) = tc(t). If we start initially from equilibrium,
the requirement means the balancing of the respective changes in
capacity and in aggregate demand; that is, Y(t) = k(t). The question is
what kind of time path of investment l(t) will keep the economy in
equilibrium at all times. To answer this question, insert equations
Y(t) = I{t)ls and k = I into Y(t) = k(f) to get

/ = spl.

Therefore, the required path is given by the following solution of the
above differential equation

/(/) = /(OK',
where 7(0) is the initial rate of investment. This implies that to maintain
the balance between capacity and demand over time, the rate of
investment flow must grow precisely at the exponential rate of ps.
Substituting 7(0 = 7(0)e"" into k(t) = l(t) yields K = I(0)e/".

It is easy to check that the following function

K{t) = ^e»+K(0)-l{0),
ps

satisfies the above equation with initial capital stock K(O). AS
7(0 = pK(t), we have
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Y(t) = Me-' + P(K(0)-l(0)).
s

We depict a solution to the system as in Fig. 2.1.1 for the following
specified values of the parameters: p = 0.5, s = 0.2, with given initial
values of K and /.

I,K,Y

Fig. 2.1.1 The solution to the Harrod-Domar model.

The nonhomogeneous case with constant coefficient and constant term
A nonhomogeneous linear different equation with constant coefficient is
generally given by

x + ax = b, b±0. (2.1.3)

In the case of a = 0, the solution is

x(t) = bt + A,

where A is an arbitrary constant. In the case of a & 0, the solution with
known initial state x(o) is

4/)=U)-£y-+*.
V a) a

Definition 2.1.1 A constant solution of the autonomous differential
equation x{t) = f(x) is called an equilibrium of the equation.
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It should be noted that this definition is also valid for nonlinear and
higher dimensional problems. An equilibrium is a solution of f(x) - 0.
For x(t) - ax(t), the origin is an equilibrium solution. Evidently,
x = bla is a solution to Eq. (2.1.3). It is an equilibrium point of the
system.

Example We now consider dynamics of price of a single commodity.
Suppose that the demand and supply functions for the commodity are

Qd = ax- bxP, Qs=-a2+ b2P, ap b, > 0 , (2.1.4)

where Qd and Qs are respectively the demand and supply for price P
and a} and bj are parameters. The market is in equilibrium when the
demand equals supply, Qd - Qs. It is straightforward to show that if the
price is

p* ^ax+a2

bl+b2'

then the market is in equilibrium. Nevertheless, when the actual price
deviates from P', then either the demand exceeds the supply or the
supply exceeds the demand. We consider that in market price changes
according to the relative strength of the demand and supply forces. For
simplicity, assume that the rate of price changes with regard to time at t
is proportional to the excess demand, Qd - Qs, that is

P(l) = ™(QAt)-QM)\ m>o.
Substituting Eqs. (2.1.4) into the above equation yields

P(t) + m{bx +b2)P= m(ax + a2). (2.1.5)

This equation belongs to the type given by Eq. (2.1.3). Hence, its
solution is

p(t) = (p(0) - P' ]e-m" +P', mo=m(a2+b2)>O. (2.1.6)

As Wp is positive, we conclude that as t —> + °°, P{t) —> P*
(because \P(o) - P* )e'm<> —> 0 ). In the long term, the market mechanism
will lead the market dynamics to its equilibrium position. Figure 2.1.2
depicts the price dynamics with different initial conditions. We see that if
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the initial price is above the equilibrium level, it decreases over time, and
vice versa.

P

equilibrium """— —

_ / _ t

Fig. 2.1.2 Convergence towards the equilibrium price.

Example A simple expenditure model.
Consider a macroeconomic model for an open economy where prices are
assumed constant. Expenditure, E(t), is the sum of consumption
expenditure, C(t), investment expenditure, l(t), government
expenditure, G, and expenditure on net exports, NX(t) (which is the
difference between exports, X, and imports, M(t), i.e., NX = X - M).
We have

E = C + I + G + NX.

Assume the following relations among the economic variables

C = a + bYd{t), a > 0, 0 < b < 1,

Y" = Y - T,

T{t) = T0-TY, T0>0, 0 < T < 1 ,

/ = /„ + jY, /0, j > 0,

M = M0 +mY, 0<w<l , (2.1.7)
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where Yd is the disposable income and T the net taxes. We assume that
national income, Y(t), adjusts continuously over time in response to the
excess demand in the goods market, specified in the following way

Y = a{E-Y\ <T>0.

Substituting Eqs. (2.1.7) into the above equation yields

Y = oA - cr[l - b{l -T)-J + m]Y,

where A is the sum of all autonomous expenditures

A = a-bTQ+ Ia+G + X -M0(>0).

The stability condition is straightforward.

Example The spread of disease.
The first application of differential equations to the study of epidemics
and contagious disease was made by Daniel Bernoulli in 1760. His line
of thought is illustrated by the following model.

The disease in question is smallpox. The disease is contagious, but
confers completely immunity on anyone who has caught it and recovered.
It is this last characteristic that makes vaccination so effective and finally
made it possible to eradicate the disease. The Kangxi emperor (1654-
1722), known as one of the greatest Chinese emperors in history, was
chosen as the emperor in 1662 mainly because the boy had survived
smallpox which was spreading in Peking at that time.

Bernoulli starts with a population of people at time / = 0. Suppose
that at time / there are x(t) people alive and y(t) people who are alive
and have not yet had smallpox. The model is

x = - aby - d(t)x,

y = -ay-d(t)y,
where a is the rate that the y -population are susceptible to the disease,
b (0 < b < 1) is the fraction of the y -population who get the disease and
do not recover, and d(t) is the death rate from all other diseases.
Multiplying the first equation by y(t) and the second by x(t) and
subtracting, we obtain

yx - xy = - aby2 + axy.
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This equation can be rewritten as

dixly) . x
—^—^- = -ab + a—,

dt y

Thus the ratio z = xly satisfies the linear equation
i = - ab + az.

The solution to the problem with an initial value z(o) = 1 is

z = b + {l-b)e°'.

Bernoulli estimated a-b = 1/8. After studying mortality tables,

Bernoulli recommended vaccination.

The general case
Consider the general case

x + u(t)x = w(t),

where u{t) and w(t) are functions of t. The solution of this equation is
/ \ - \udt{ r \udt \

x(t) = e J \A+ jwe1 dt ,
where A is an arbitrary constant.

Example For x + 2tx = At, we solve

*(/) = e HA + \4tJ'"" dt) = e-
2'2 (̂  + |4te2'2 *)

= Ae2'2 + 1.

In particular, in the homogeneous case, i.e., w = 0, Eq. (2.1.1) becomes

x + u{t)x = 0.

The solution of the equation is

x(t) = Ae] .

By this formula, for example, we solve x + t2x = 0 as

x(t) = A e l = A e " .
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Exercise 2.1
1 According to Domar,2 assume that income Y(t) grows at a constant

rate r. To maintain full employment, the budget deficit, D[t), changes

in proportion a to Y(t), i.e., b(t) = aY(t). Show that

Y{t) [Yo r) r'

2 Find solutions of the differential equations
(a) *(/)+*(*)= 4, x(0) = 0;
(b) x(t) + 3x(t)=2, x(0) = 4 .

3 Suppose that the demand and supply functions for the commodity are

Qd = a, - bxP + OP,

Q,=-a2+b2P, aJtbj>0,

where Qd and Qs are respectively the demand and supply for price P and
a}, bj, and 6 are parameters. Suppose

P(t) = rn{Qd(t)-QXt)\ m > 0 .

(i) Find the time path P(t) and the equilibrium price P*. (ii) What
restriction on the parameter 6 would ensure that as t —> + » ,
P{t) -> P\

4 Solve
(i) i + 2£c = 0;x(0) = 2;

(ii) x + 6tx = 5t2;x(0) = 6.

5 Solve the following Keynesian Cross Model and discuss the value of
the income Y(t) as / ->+«>:

Y(t)=r(D(t)-Y(t)), y>0,

in which y is a parameter and the aggregate demand D(t) is given by

2 Domar (1944).
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D=C+I+G.

Consumption C(t), investment l(t), and the level of government

spending G[t) are respectively given by: (1) the consumption function,

C{t) = C0+cY{t\l>c>0;

(2) the exogenous investment, /(/) = 7; and (3) the exogenous

government expending, G(t)= G, where Co, c, I, and G are constant.

2.2 A Few Special Types

This section solves a few special types of differential equations.

Separable differential equations
An ordinary differential equation that can be written in the form

x{t) = M{t)N(x),

is called a separable differential equation. This equation can be solved
by integrating

f—Uofr = \M(t)dt.

Example Solve x(t) -tx - At. Multiplying both sides by dt and
l/(x - 4) and then integrating, we get

ln|x-4| = y + C,

where C is an arbitrary constant.

Example Solve the equation ltdx + xdt = 0. Dividing the equation by
tx yields

2 J 1
— d x - - d t .

x t

Integrating both sides, we have ln(ytm )=c. Hence, the general solution
is x = Cfm.
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Example Consider the initial value problem

x = x2, x{o) = xo.

The problem has a solution

1 - V

The function, x2, is "well-behaved", but the solution is defined on the
interval ( - « , \/x0) for x0 > 0, on (-«>, + °°) for x0 = 0, and
(l/x0,+ooj for JC0 < 0. The importance of this example is that the
solution is not always defined on all of R and the interval of definition
of the solution varies with the initial condition. Furthermore, the solution
becomes unbounded as t approaches l/x0.

Example Consider

x = x2, x(0) = x0, with;c>0.

A solution is x(t) = (/ + 2-yfx0 J/4. If xQ = 0, then there is also the
solution which is identically zero for all t. Therefore, this initial value
problem does not have a unique solution through x0 at zero.

The above two examples demonstrate some of the difficulties in
guaranteeing the existence and uniqueness of differential equations.

We now consider a type of equations which can be transformed to
the separable form. We have

*fc _ M(t,x)
~dt~ N{t,x)'

Suppose that M and N are homogeneous of the same degree.3 This
means that we can rewrite the above function as

dx _ M(l,x/t)
It ~ N(l,x/t) '

Introducing y{t) = x(t)/t transforms the equation to

3 If a function / possesses the property fitx, ty) = t"fix, y) for some real number a.,

then / is said to be a homogeneous function of degree a .
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{dy | M{l,y)
dt y N{l,y) '

This is a separable equation in y and t.

Example We are now concerned with

• &

x2 - t 2 '

Introducing y = xlt transform this equation to

dt y2 -1

The general solution of this separable equation is

/ = l n r 2 + C.

As y(t) = x{t)lt, we have

x2 = (in r2 + c)t2.

Example The square law of military strategy.
Two opposing forces x0 andy0 soldiers, respectively, have a military
encounter in an open field without cover or concealment. Each soldier
can see and fire upon the opposing soldiers without hindrance, like in
old-fashioned naval battles. The soldiers of a given force do not impede
one another, so that if the size of the force is doubled, its effectiveness is
also doubled. The effectiveness of the x force is measured by the rate of
decrease y force and vice versa. If the soldiers of both forces have equal
fighting skill, it is reasonable to establish

x = -ky, y = -he.

The general solution to the problem is

x2-y2= C,

where C is an arbitrary constant. The solution to the initial value
problem is

x2-y2 = x2
0-yl
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A question is that if a smaller force, say y, is annihilated, what is the

size of the larger force, x,, by the end of the battle? The answer is given

by x, = ̂ xl - y\ with y = 0 . The number -J x\ - yl measures the

numerical advantage of the superior force. This is one form of the square
law, proposed by Lanchester in 1916. Figure 2.2.1 shows the dynamics
when k = 0.01, xQ = 135, and y0 = 120.

y

14nt t i I i / / / / / / / S S S

1ZU' t t t * t / / y s y s *y!s *^
IQQV t i t t t t s y j f j f * ^ ^ •*" -^

' r r / z / A x ^ - ^ s'yr *^ ^ *^
OQ' r t r / y > > > ' > ' ^ r \ * - *^ *^ *^

' r f A r y A > > * ' f r " ' "" *^ -^ -*^
cj\ \ f ? * > * • * * *^^^ • * ' "^ •*"' • - r ' •*—

' t t A A > Jt ^r ^£- jr- ^ - ^- ^— ^— ^ —

AT\ ' f / > > > >r ^ r ^- ^- ^- ^- *— ^- ^—
' A > > > . , « ^ ^^ . ^- ^- <_ • - ^ _ ^ _ ^

2Q ' ^ > > -< ^ ^X ^ — - - — - « - - « - —̂ -*— —̂

20 4 0 60 80 100 120 140
Fig. 2.2.1 A process of annihilating the enemy.

Example Find the demand function Q = f(P) if point elasticity is - 1
for all positive P. According to the definition of elasticity, we have

dQ_P_ = -X

dPQ

Separating the variables and integrating, we have Q = cl P.

Exact differential equations
If z = F[x, y) is a function of two variables with continuous first partial
derivatives in a region R of the xy -plane, then its (total) differential is

dz = Fxdx + Fydy.

Now if F(x,y) - C where C is a constant, we have
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Fxdx + Fydy = 0.

In other words, given a one-parameter family of curves F(x, y) = C , we
can generate a first-order differential equation by computing the total
differential. Our problem is to turn the question around. For instance,
given an equation

y2dx + Ixydy = 0,

can we recognize that it is equivalent to the differential d(xy2) = 0?

Definition 2.2.1 A differential expression

M{x,y)dx + N(x,y)dy = 0

is an exact differential in a region R of the xy -plane if it corresponds to
the differential of some function F(x, y). A first-order differential
equation of the form

M{x,y)dx + N{x,y)dy = 0,

is said to be an exact equation if the expression on the left-hand side is
an exact differential.

For instance,

x2yidx + x3y2dy = 0,

is an exact equation because the left-hand side of the equation is an exact
differential,

The following theorem tells when a differential equation,
M{x,y)dx + N(x,y)dy = 0 is exact.

Theorem 2.2.1 Suppose the functions M, N, My, and Nx are
continuous on a connected region Q. Then

M(x,y)dx + N(x, y)dy = 0

is an exact differential equation on Q if and only if

My(x,y) = Nx(x,y),
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on Q.

Proof: First, prove the necessity. If the expression

M{x,y)dx + N{x,y)dy

is exact, there exists some function F(x, y) such that for all x and y in

M(x,y)dx + N(x,y)dy = Fxdx + Fydy.

Therefore

M{x,y) = Fx, N{x,y) = Fy.

We thus have

dy dyydx J dx {dy) dx

The equality of the mixed partials is a consequence of the continuity of
the first partial derivatives of M and N.

We now show the sufficiency part of the theorem. We show that if
My(x,y) = Nx(x,y), we can construct a function F(x,y) such that

FX = M, Fy = N.

To constructF(x,y), we first integrate Fx(x,y)= Af(x,y) with respect to
x and set

F{x,y)= JM{x,y)dx + h{y). (2.2.1)

The function h{y) is the constant of integration. We thus
have Fx - M. We now determine h(y) so that Fy = N. Taking the
partial derivatives on both sides of Eq. (2.2.1) with respect to y yields

Fy{x,y)=JMy(x,y)dx + h'(y).

From this equation and Fy = N we solve

h'iy) = \My{x,y)dx - N{x,y). (2.2.2)

If

\My{x,y)dx-N{x,y)
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is independent of x, then we can integrate the right-hand side of Eq.
(2.2.2) to solve h(y\ Since

j-{JMy{x,y)dx - N{x,y)}= My{x,y)- Nx{*,y) = 0,

we see

JMy{x,y)dx-N{x,y)

is independent of x.

Example Consider

dy _ excosy - 2xy

dx ex s'w.y + x2

It is straightforward to test that this equation is exact if we let

M = ex cosy - 2xy, N = -exsiny - x2.

We calculate

F(x,y) = \M{x,y)dx = j[ex cosy - 2xy)dx

= ex cosy - x2y + h(y).

According to Eq. (2.2.2), we have

h'(y)= | ( - e x s in^ - 2x)dx + (e'sin^ + x2)= 0.

This means that we can use any constant for h(y). Hence,

F{x,y) = excosy-x2y + C1,

where C, is an arbitrary constant. Therefore, the solution is
ex cosy - x2y = C, where C is an arbitrary constant.

For r\x,y)dx + s(x,y)dy = 0, when r (x,y) = sx\x,y) is not held,
sometimes we may transform the original differential equation to the
form M(x,y)dx + N(x,y)dy = 0 which is exact. One method is to
multiply the equation by l(x,y) to create a new equation

Irdx + Isdy = 0.
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If we can find such a function / that (lr)y = (ls)x, then the above
procedure can be applied to solve

Irdx + Isdy-0.

Example Consider

(x2y + y2)dx + (x3 + 2xy)dy = 0 .

This equation is not exact. To transform it into an exact form, we
multiply the equation by l(x,y) = xmy" where m and n are to be
determined.4 The condition of {lr)y = (ls)x is given by

(l + n)x2+my" + (2 + n)xmyi+"

= (3 + m)x2+my" + 2(1 + m)xmyu",

or

(- 2 + n - m)x2+my" +{n- 2m)xmyu" = 0.

If

-2 + n-m = 0, n-2m = 0,

that is, m = 2 and n = 4, the new equation

( x 4 / + x2y6)dx + (*V + 2x3y5)dy = 0 ,

is exact. Check that

is the general solution.

Example Consider

(x2 + y2 + \)dx + (xy + y)dy = 0 .

This equation is not exact. The method with l(x,y) = xmy" does not
work for it. We might try to multiply the equation by a function f(x)
and try to find an / such that (fr)y = (fs)x. The condition \fr)y = \fs\
is

4 This is only one possible form for a try. The concrete form xmy" often does not work.
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/ = (* + l)f.
ax

We have

/ (*) = * + 1 .

The new equation

(x + l)(x2 + y1 + \)dx + {x + \\xy + y)dy = 0

is exact. Check that the general solution is

xA x2y2 x2 x3 y2 „
— + —— + — + — + xy +x + — = C .
4 2 2 3 2

The Bernoulli equation
The following type of nonlinear equations is reducible to the linear form

x{t) + u{t)x{t)=w(t)xm{t), (2.2.3)

where m *• 0,1. Introduce z = x1'1". Then Eq. (2.1.3) is written as

z{t) + {l-m)u{t)z{t)={l-m)Mt).

This belongs to the general type. The solution of this equation is

z(t) = e J \A + (l - wjjwe J dt\.

Example The Solow model.5

We now examine the Solow model. It should be mentioned that mainly
due to this model, Solow obtained the Nobel Prize in economics. We will
explain the economic mechanism of this model in detail in Chap. 3.

When the production function takes the Cobb-Douglas form, the
dynamics of per-capita capital k[t) is governed by

k = 5ka -Sk, Q<s,S,cc<\,

where s, S, and a are parameters. Introducing z = xl'a transforms the
Solow model into

z + (l - a)& = (l - a)s.

5 See Solow (1956) and Swan (1956).
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Its solution is

Substituting z = xx~a into the above solution yields the final solution

We see that as

We depict the Solow model in Fig. 2.2.2. Figure 2.2.2i shows the motion
of k(t) andf(t). It can be seen that the growth rate gradually declines
till the system approaches its long-term equilibrium. Figure 2.2.2ii
depicts the mechanism of determination of the equilibrium. The per
capita capital grows if it is on the left of the equilibrium value because
sf — dk is positive; k{f) declines on the right of the equilibrium value.

k,f Sk ^

/_—k— _2^^h_k
J t sf(k) - Sk^

i) motion of k and f ii) equilibrium determination

Fig. 2.2.2 The Solow growth model.

Exercise 2.2
1 Find solution of 3tx2 dt - 6 sin x eft: - 0.

2 Solve the logistic differential equation N(t) - aN(t)(l - bN(t)), where

a and b are positive parameters and N(t) is the population at time t.

3 Solve x = xcost - tx with x(6) = 1.

4 Solve the following equations



36 Differential Equations, Bifurcations, and Chaos in Economics

(i) (x + tex")dt-tdx = O;

(ii) Ixydx + (x2 + y2)dy = 0.

5 Solve the following equations

(i) (sinx + 3y2ex - 2xy)dx + (6yex - x2)dy = 0, y{o) = 0;

(ii) Ixydx + (x2 + y2)dy = 0, y{l) = 0.

6 Use / = f(y) as an integrating factor to solve

(xy + x)dx + (x2 + x2 - \)dy = 0.

7 Find the demand function Q = f(P) if point elasticity is - k for all
positive P, where k is positive.

8 Given the following production function and parameters for the Solow
growth model

f(k)=Aka, A = 4, a = 0.28, 5 = 0.15, 4 = 0 . 2 , n = 0.03.

(i) Find the equilibrium of the dynamics

k = sAk - (« + Sk )k ;

and (ii) determine whether the equilibrium is stable or unstable.

2.3 Second-Order Linear Differential Equations

We are now concerned with linear second-order differential equations
with constant coefficients and constant term. Such an equation is
generally given as

x{t) + aiX{t) + a2x{t) = b, (2.3.1)

where a,, a2, and b are constants. Corresponding to Eq. (2.3.1), we
define the characteristic equation (or auxiliary equation)

p2+alp + a2=0, (2.3.2)

which has two characteristic roots given by
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_ - q , +A/q,2-4fl2

A , 2 - 2

We now give the solution according to the two roots.

Case 1 (distinct real roots) When a[ > Aa2, the two roots, /?, and p2

are real and distinct. The solution of Eq. (2.3.1) is
x(t) = Afiw + A2e

P2' + xQ(t), where Ax and A^ are constants and

— , a2 * 0,
a2

xo{t) = \—t, a2=0, a{*0, (2.3.3)

h-t\ ai=a2=0.

Example It is straightforward to calculate the solution of

i + .x - 2* = - 10

as

x{t) = V + Afi2' + 5.

If we have two initial conditions, for instance, x(o)~ 12 and x(o) = - 2 ,
then we can determine Ax and A1 with Ax = 4 and A2 = 3. The definite
solution with the two initial conditions is

x(t) = 4e' +3e'2' + 5.

Case 2 (two equal roots) When a] - Aa2, the two roots, /?, and p2 are
equal (to - a, 12). The solution of Eq. (2.3.1) is

x{t) = (Ai+A2ty +xo(t),

where Ax and A2 are constants and xo(t) is defined in Eq. (2.3.3).

Example It is straightforward to calculate the definite solution to

Jc + 6x + 9x = 27, *(0) = 5, x(o) = - 5 ,

as x{t) = (2 + t]e-* + 3.
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Case 3 (complex roots) When a\ < Aa2, the two roots, p{ and p2 are
complex. Let

, „. a, _ Ma2 - a]

The solution of Eq. (2.3.1) is

x(t) = {Al COS J3t + AjSin/?^" + xo(t),

where Al and A^ are constants and xo(t) is defined in Eq. (2.3.3).

Example We directly solve

x + 2x + Ylx = 34 ,

as

x(t) = (4 cos At + A, sin4t)e~' + 2.

Substituting the two initial conditions, x(o) = 3 and JC(O) = 11 into the
above solution yields

4 + 2 = 3 , - 4 + 4 4 = 1 1 .

Hence, Ax=\ and Ai='i. The definite solution is

JC(/) = (cos At + 3sin4/)e"' + 2.

Example We now consider an interaction of inflation and
unemployment.6 Denote the rate of inflation p(t) (which is defined as
PIP, P being the price). The expectations-augmented version of the
Phillips relation assumes the following relationship between the rate of
inflation, the unemployment rate, U(t), and the expected rate of inflation,

p = a-bU + hn, (0<h<\), (2.3.4)

where a, b, and h are parameters. The adaptive expectations
hypothesis establishes a rule of the expected rate of inflation as follows

n = j{p-n\ 0 < y < 1, (2.3.5)

6 The model and its solution are based on Chiang (1984: 535-538).
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which states that if the actual rate of inflation exceeds the expected rate
of inflation, then the expected rate of inflation tends to rise.

Denote the nominal money balance by M and its rate of growth by
m = MIM. The model contains a feedback from inflation to
unemployment

U = -k(m-p), k>0, (2.3.6)

where

m- P = (MIM-PIP),

is the rate of growth of real-money balance. The model consists of three
equations, Eqs. (2.3.4), (2.3.5), and (2.3.6), with three variables, p, U
and n. We now show that the dynamics can be described by a second-
order linear differential equation.

First, substitute Eq. (2.3.4) into Eq. (2.3.5)

* = j(a - bU) + j(h - \)n .

Taking the above equation with respect to t, we have

n = - jbU + j{h - l>r.

Substituting Eq. (2.3.4) into this then results in
ti + (bk + j - jh)n + jbkn = jbkm , (2.3.7)

where we use

n
p= — + n •

j

This equation belongs to the type of Eq. (2.3.1). Hence, we can solve Eq.
(2.3.7). Once we solve n(t), we determine

TC TT a - p + hn
p = - + n, U= ^ .

J b
We depict an interaction between inflation and unemployment with
specified values of the parameters.7

7 We specify: a = 0.9, b = 0.1, h = 0.3, m = 2.9 , j = 1 and k = 0.6.
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U

\ \ \ \ \ \ \ \ \ \ \ \ \ \ -

\ \ \ \ \ \ \ \ \ \ \ \ \ \ >

\ \ \ \ \ \ \ \ \ \ \ \ \ \ -
\ \ \ \ \ \ \ \ \ \ \ \ \ \ -
\ \ \ \ \ \ \ \ \ \ \ \ \ \ •
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ •

\ \ \ \ \ \ \ \ \ \ \ \ \ \ -

\ \ \ \ \ \ \ \ \ \ \ \ \ \ -

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ •

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ •

Fig. 2.3.1 An interaction between inflation and unemployment.

Example Denote w(/) a utility function of wealth. At any wealth level,
x, the Arrow-Pratt measure of absolute risk aversion, //(/), equals
- «"(*)/«'(JC) The function //(/) is the percent rate of change of «' at
x; it is a measure of concavity of the utility function u. We are
interested in utility functions, which have constant risk aversion a. That
is

- i ^ W = a f or M,.k) + au<^ = 0
u'[x)

This belongs to Eq. (2.3.2). The characteristic equation has two roots, 0
and - a. The solution of the differential equation is

u{x) =Ay+ Afi"",

where A^ and A^ are constant.

Exercise 2.3
1 Solve
(a) jc + 4 i + 8x = 2, x(0) = 2, x(o) = 2 ;

(b) x + 5x = 2, 40 ) = 3, i(0) = 5.

2 Let the demand and supply functions for a single commodity be given
by
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Qd(t) = 42-4P{t)-4P{t) + P{t),

a(0=-6+sp(4
where P is the price. We assume that the demand is related to the price
expectations, which are measured by P and P. Assuming market
clearance at any point of time, that is, Qd(t) = Qs{t\ determine the paths
of Pit), Qd{t), and Q,(t) with P(o) = 6 and P{o) = 4.

3 Let the three equations in the model of interactions between inflation
and unemployment be given as follows

p = - - 3U + n,
6

n = -(p-n\

U = -l(m-p).

Determine the differential equation for n and find its general solution.

2.4 Higher-Order Linear Differential Equations

The previous sections solve first- and second-order linear differential
equations. This section examines any «th order linear differential
equations as

aMYn) + «-,(^("-° + - + ao{t)x = h(t). (2.4.1)
Throughout this section, it is assumed that an, an_,,..., a0 and h are

continuous on an interval (a, b) and an is not zero for any t in (a, b). If
h(t) = 0, the system is called homogeneous; otherwise it is called
nonhomogeneous. If h is not zero, the equation

«.(')*W + < U ' ) * M ) + - + ao{t)x = 0, (2.4.2)

is called the corresponding homogeneous equation of Eq. (2.4.1). If
initial conditions on x("'l\ x("~2),..., x' and x for Eq. (2.4.1) are known,
then we call the system an initial value problem.
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Theorem 2.4.1 Suppose an, an_,,..., a0 and h are continuous on an
interval {a, b) containing t0 and an is not zero for any t in {a, b\ Then
the initial value problem has one and only one solution on the interval

It can be shown that the solutions to an «th order homogeneous
linear differential equation (2.4.2) on an interval where an, an_,,..., a0

and h are continuous and an is not zero form a vector space of
dimension n.8 Hence, if we find a set of solutions to the homogeneous
equation that forms a basis for the vector space, then a linear
combination of these solutions is the general solution to Eq. (2.4.2). A set
of n linearly independent solutions, xx, x2,..., xn, each of which is a
solution of an «th order homogeneous linear differential equation (2.4.2)
is called a fundamental set of solutions for the homogeneous equation. If
xp x2,..., xn form a fundamental set of solutions (2.4.2), then the general
solution to Eq. (2.4.2) is given by

xH=±ciXi=xcc, (2.4.3)

where c, are constant, and

xc = [*,, x2,... xn\ c = [cp c2,... cj .

We now show how to judge whether x^t), x2(t),..., xn(t) is linearly
dependent or independent. Suppose that we have n functions
x^t), x2(t), ..., xn(t), each of which has (n - l) derivatives on an interval
(a, b). Consider a linear combination of these functions that is equal to
the zero function

C]xXt) + x2(t) + - + cnxn{t) = 0.

Taking the derivatives of this equation (« -1) times, we obtain a system
of n equations

c . x f ' t y ) + 4 K ' ) + • • • + cd'Kt)=°> *• = o, i, • • • , » - 1 ,
or in the matrix form

8 See Chap. 4 in Peterson and Sochacki (2002).

(a, b,)
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" xSf) x2{t) ••• xn{t) 1 \ c ~

x^{t) x^{t) .'. x^(t)l[cn_
If there is some t in (a, b) for which this system has only the trivial

solution, c = 0, then xt(t), x2(t),..., xn(t) will be linearly independent.
Having such a Ms the same as having a / in {a, b) for which the nxn
matrix in Eq. (2.4.4) is nonsingular. We call the determinant of this nxn
matrix the Wronskian of the functions *,(/), x2(t),..., xn(t), and denote
by

W{xt(t\ x2{t\ •••> *M

That is

w(xMxM-,*M= f f 7 i] •

Lemma 2.4.1 Suppose x^t), x2(t),..., xn(t) are functions each of which
has (n - l) derivatives on an interval (a, b). If the Wronskian of these
functions is nonzero for some t in (a, b), then *,(/), x2(t),..., xn(t) are
linearly independent on (a, b).

Example Consider three functions, e', sin? and cost on (- °o; + 00)1 it
is straightforward to calculate

JF(e',sinf, cosf)=2e'.

Since at t = 0, W * 0, we conclude that e', sin/ and cost on

(- oo, + oo) are linearly independent.

It should be noted that when W = 0 at / = - °°. Lemma 2.4.1
guarantees that if the Wronskian is nonzero for some t , then the
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functions are linearly independent. It does not mean that linearly
independent functions have their Wronskian being nonzero for some t.9

Example We now show that for equation x(3) + x' = 0, 1, cos 2t, sin 2t
is a fundamental set of solutions. Substituting respectively
1, cos 2t, sin It into the equation confirms that they are solutions to
*(3) + x' = 0. Since

W(l, sin 2t, cos2t) = 8,

they indeed form a fundamental set of solutions. Hence the general
solution to x^ + x' = 0 is

c, + c2 cos 2t + c3 sin 2t.

Lemma 2.4.2 Suppose *,(?), x2(t),..., xn{t) are functions each of which
has (n -1) derivatives on an interval (a, b). If the Wronskian of these
functions is zero for some t in (a, b), then xx{t\ x2(t\..., xn(t) are
linearly dependent on (a, b).

Theorem 2.4.2 Suppose that x^t), x2(t),..., xn(t) form a fundamental set

of solutions to Eq. (2.4.2) and that xp(t) is a solution to the

nonhomogeneous system (2.4.1). Then every solution to Eq. (2.4.1) has the
form

n

x = £c;x,. +xp= xcc + xp.
1=1

We call xp(t) a particular solution to the nonhomogeneous system.

Exercise 2.4
1 Find the Wronskian of 1, t,..., t"~l on ( - oo, + oo).

2 Show that e",xer',---, t"~xert are linearly independent on ( - oo, + oo).

9 As shown in Chap. 2 in Peterson and Sochacki (2002), the Wronskian of the two
functions, f(x) = x2 and g(x) = x\x\ is zero for every t, and / and g are linearly

independent on (- °°, + °°).
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2.5 Higher-Order Linear Differential Equations with Constant
Coefficients

This section generalizes the analysis in Sec. 2 to any finite dimension.
When an, an_x,..., aa in

anx
M + an_lx

i"-l) + ... + aox = h(t) (2.5.1)

are constant real numbers, the equation is called a constant coefficient
«th order linear differential equation. To solve this equation, we first find
the general solution to the homogeneous equation

anx
M + all_lx

{"-l) + ... + aox = O. (2.5.2)

To solve this equation, we try solutions of the form of x(t) = e".
Substituting x(t) = e* into Eq. (2.5.2) yields

p{pY = 0,
where

p(p) = W" + an.xp"-x + ... + a0. (2.5.3)

Since e" ± 0, for p{p]ef) = 0 we must have p(p) = 0. We call the
polynomial of degree n and p(p) the characteristic polynomial or
auxiliary polynomial for Eq. (2.5.2) and call the equation

p{p)=o,
the characteristic equation or auxiliary equation. The following theorem
gives necessary and sufficient conditions that all the roots of p{p) = 0
have negative real parts.

Lemma 2.5.1 (The Routh-Hurwitz theorem) Necessary and sufficient
conditions for all the roots of the polynomial equation with real
coefficients

anp" + a^p"-1 + ... + a0 = 0, an>0,

to have negative real parts is given by the simultaneous verification of
the following inequalities

A,. >0, i = l, 2, ••• ,«,

where
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a a a"'1 °""3 a>"5

\=a»-U ^ 2 = ""' " ^ ^ 3 = <*n an-2 « U » - »

0 «-l «-3

a B _ , a ^ a n _ 5 a n _ n ••• 0

an an_2 «n-4 ««-6 "• 0

0 o_i fl
n-3 a.-s "• °

An = 0 0, an-2 «n-4 - 0 •

0 0 «„., an_3 ... 0

0 0 0 0 ••• a0

Example For

a

3p3 + a2p2 + axp + a0 = 0, a3 > 0 ,

the conditions are

a2 aoA, = a2 > 0, A2 = = cr,a2 - aoa3 > 0,

a2 a0 0

A3 = a3 a i ° = ao(aia2 ~ ao«3) > ° -
0 a2 ag

Example Consider

x" - 4x = 0.

The characteristic equation for this equation is

p 3 - 4 / ? = 0.

It has three distinct real roots, 0, 2, and - 2 . The corresponding
solutions e" are e0', e2', and e~2'. The Wronskian of these three
functions is

W(l,e2',e-2l)=-l6.
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Hence, the three solutions are linearly independent. The general solution
to x" - 4x = 0 is

x = c, + c2e
2' + c3e'21.

The above example shows that the functions, ePi' ( / = 1, 2, 3 ),
corresponding to the distinct real roots of the characteristic equation have
nonzero Wronskian and hence are linearly independent. The following
theorem shows that this is true for the general case.

Theorem 2.5.1 If pv p2, •••, pm (m < n) are distinct real roots for the
characteristic equation, p(p) = 0, of Eq. (2.5.2), then e A , en, •••, ePm

are linearly independent solutions of Eq. (2.5.2). If m = n, the general
solution to Eq. (2.5.2) is

Zn Pit

i^>e •

The following theorem shows the case of characteristic equations
with complex roots.

Theorem 2.5.2 If a ± bi are roots of the characteristic equation,
p{p) = 0, of Eq. (2.5.2), then e"'sin bt and eal cosbt are two linearly
independent solutions of the differential equation.

Example Consider

x" + x'-x' + \5x = 0.

The characteristic equation for this equation is

p* + p2 - p + \5 = 0.

As shown below, the cubic equation has three roots, - 3, 1 + 2i, and
1 - 2i. The general solution is therefore

x = c,e~3' + c2e' sin It + c3e' cos It.

We now provide the formula for solving a cubic equation

p* +pp2 +qp + r = 0. (2.5.4)

Under the transformation
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3 3 27

Eq. (2.5.4) becomes

x3 + ax + b = 0.

This equation has three roots

. _ A+B ^(A-B\ i—-x, = A + B, x2, = — ± ^——JV^I,

where

4 27' I 2 J I 2 V J
We can classify the three solutions of the equation,

p1 +/?yO2+gp + r = 0,

according to the value of 5 . In the case of s < 0, the three solutions are
real and distinct; in the case of s = 0, the three solutions are real and at
least two are equal; and in the case of s > 0, one solution is real and the
other two are complex conjugate values.

We now show how to solve the differential equation (2.5.2) when its
characteristic equation has repeated real roots or repeated complex roots.
If the characteristic equation has a repeated root p of multiplicity m,
except e**', we get m-\ additional solutions by multiplying ef* by
t,t2 ,•••, tm~\ Similarly, if a ± bi are roots of the characteristic equation
of multiplicity m, then except eal sin bt and ea> cos bt, we get 2m - 2
additional solutions by multiplying respectively eal sinbt and ealcosbt
by t,t\--,t-\

Example The characteristic polynomial of a constant coefficient
homogeneous linear differential equation is

{p-3Xp-l)2(p2+4p + l3j.

The roots of the characteristic equation are 3, 1, and - 2 ± 3/. The root
1 has multiplicity 2 and the complex roots - 2 ± 3/ have multiplicity
2. This leads to the general solution
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x = cxe" + c2e' + c3te' + cAe'2' sin 3? + c4e'2' cos 3?

+ c5te'2' sin 3/ + c6te'2' cos 3?.

We now examine Eq. (2.5.1) when h(t) is nonzero. We learned how
to solve Eq. (2.5.2). From Theorem 2.3.2, we know that the general
solution to Eq. (2.5.1) can be obtained by adding together the general
solution xH to Eq. (2.5.2) and a particular solution xp of Eq. (2.5.1).
Since we learned how to find xH, we now try to find xp. Here, we
introduce the method of undetermined coefficients for finding the
solution.10 This method is based on the following theorem when h(f)
takes on some special forms.

Theorem 2.5.3 Suppose that p is a root of multiplicity m of the
following characteristic equation

p{p) = o,
of Eq. (2.5.2). Let A: be a nonnegative integer and A and B be constant.
(1) If p is real and h(t) in Eq. (2.5.1) takes the form of Atke", then the
differential equation (2.5.1) has a particular solution of the form

(A/ + AkJ
k-x +••• + AJ + A^)tme** .

(2) If p = a + ib is imaginary and h{t) in Eq. (2.5.1) takes the form of

(^cos^ + 5 s i n ^ ) / V ,

then the differential equation (2.5.1) has a particular solution of the form

[A/ + ••• + Ait + A0)t
meal cos bt +

(B/ + ••• + Axt + A^re"' sin bt.

It should be noted that although this theorem is stated for a root p of
multiplicity m, its conclusions are valid even if m = 0, that is, even if
p is not a root of

p(p) = Q.

10 Refer to Chap. 4 in Peterson and Sochacki (2002) for other methods.
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Example Consider

x' - 2x - 3x = 9t2.

The general solution of x" - 2x - 3x = 0 is

xH = c,e3' + c2e~v.

To find a special solution, try

xp = At2 + Bt + C.

Differentiating this candidate solution and plugging them into the
original equation yields

2A - 4 At -IB- 3At2 - 3Bt - 3C = 9t2.

Since the left- and right-hand sides of this equation are equal for all t,
the coefficients of each power of t must be equal

-3,4 = 9,

- 4 , 4 - 3 5 = 0,

2A-2B-3C = 0.

Hence,

A = -3, 5 = 4, C = ~ .

The general solution is

x = C]e
31 +c2e-" -3t2 +4t-—.

3

Example Solve the initial value problem

x" + 4x =2t + 3 sin 2/ - 3t2e2',

JC(0) = 1,JC/(0) = 0,JC'(0) = - 1 . (2.5.5)

The roots of the characteristic equation are 0 and ± i. Therefore, the
general solution to

x" + 4x' = 0,

is
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xH = c, + c2 cos It + c3 sin It.

We now try to find a special solution to Eq. (2.5.5). According to
Theorem 2.5.3, we incorporate (At + B)t for the 2t term into x ,
Ct cos It + Dt sin It for 3 sin It, and (Et1 + Ft + G)e2' for - 3 f V .
Substituting

xp = (At + B} + Ct cos It + Dt sin2t + (Et2 + Ft + G)e2'

into Eq. (2.5.5) yields

A(2At + B)+(- SCcos2t - 8Dsin2t) + l6Et2e2' +

(16F + 32E)te21 +(\2E + \6F + l6G)e2' =2t + 3sin2? - 3 fV.

Equating the coefficients of the same functions on both sides of the
above equation yields

A=-,B = 0,C = 0,D = - - , E = - ~ , F = -,G = -—.
4 8 16 8 64

We thus obtained the general solution x = xH + xp to Eq. (2.5.5).

Substituting the initial conditions into xH + xp enables one to solve

19 3 3
1 16 2 64 3 64

Exercise 2.5
1 Determine the general solutions to the following differential equations
(i) x"-5x' + 6x'-2x = 0;

(ii) x"+ 4x"-x -4x = 0;

(iii) x{4)+ 2x" + x" = 0;

(iv) x" + 4x"-x -4x = 0;

(v) x" - 2x + 4x = 0.

2 Solve the following initial value problems
(i) x" + 3x" + 2x = 0; x(o) = l, x'(0) = 0, x'(o) = - l ;

(ii) * " - 5*'+ 3JC'+ 9* = 0; x(o) = 0, x'(o) = - 1, *'(o) = l;

(iii) x"-x"-6x' = 0; x(o) = l, JC'(O) = O, x'(o) = 2 .
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3 Solve the following differential equations

(i) xm + 3x" + 2x = 3e';

(ii) x" - 5x" + 3x +9x = 5t2 +sint;

(iii) xm - x - 6x = Ate2'.



Chapter 3

Scalar Nonlinear Differential Equations

We have already discussed some one-dimensional nonlinear differential
equations in the previous chapter. We examined how to solve them, based
on the special structures of these equations. We now use a simple model to
illustrate the importance of nonlinear relations. Section 2.1 examined the
Malthus equation, N(t) = aN(t), where N(t) is the population at time /
and a is a positive parameter. Such a population growth may be valid for a
short time, but as shown in Fig. 2.1.1, it clearly cannot go on forever. There
are limitations of natural resources that prevent population from limitlessly
growing. The logistic growth model, which is defined by

N{t) = aN(tXl-bN{t)),

takes account of checking effects of natural resources upon population
growth. This differential equation is also known as the logistic
differential equation. This equation is nonlinear because of the term
- aN1. It can be solved analytically by separating variables. This
chapter is to introduce some other methods that are geometric in nature
and that can quickly reveal some important qualitative properties of
solutions.

In fact, the logistic differential equation is not proper for describing
interactions between economic growth and population dynamics. From a
long-term perspective, resources are changeable. To analyze how income
affects population growth, Haavelmo suggested the following extension
of Malthus' system1

N{t) = aN(t\l-b-^, a,b>0,

1 See Haavelmo (1954) or Zhang (1991).
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Y = ANe, A>0, O<J3<1, (3.0.1)

in which Y is real output. Substituting

Y(t) = AN(tY

into Eq. (3.0.1) yields

N(t) = N(a-alN
1-<)), (3.0.2)

where ax = abl A. The growth law is a generalization of the familiar
logistic form widely used in biological population and economic
analysis. To simulate the model, we specify the parameters as

a = 0.05, 6 = 0.4, /? = 0.6, A = IA. (3.0.3)

From the initial condition N(Q) = 8, we run the model for 100 years.
Figure 3.0.1 depicts the motion of N(t), Y(t), and the income per capita,
y{t){^Y{t)lN(t)).

N,Y y

18 ^ ^ 2 5
16 J ^ ,
1 4 / 1 S
12 . / 1 - b

10 y ^ 1 \
8 ^ * -—- 0.5 ^ _ v
f""̂  20 40 60 80 100 20 40 60 80 100

a) the population and the total product b) the income per capita
Fig. 3.0.1 The dynamics of a Malthusian economy.

As demonstrated in Fig. 3.0.1, the national product grows over time,
but the income per capita (which is assumed to be the main factor for
determining the level of consumption per capita) first decreases suddenly
but afterwards steadily declines. This book introduces some economic
mechanisms to avoid the decline of living standard - as observed in
modern economic history, population growth may be associated with
improvement in living standard. An obvious way to avoid the dismay
implications of the Malthusian theory is to take account of technological
change. At this initial stage, we specify the exogenous technological
progress

4 ' ) = l-4exp(0.020.
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The productivity grows annually 2 percent. Under Eq. (3.0.3) except
for the value of A , Fig. 3.0.1 shows the motion of the system.
Comparing the two figures, we observe that with 2 percent annual
technological change, the economy dramatically changes over 100 years.
The economy is enlarged and the income per capita grows as the
population grows.

N,Y y

200 7 2 5 I
150 A ' 2 ,
100 / / 1-5 I /

50 ^ ^ ^ ^ 0.5 ^ - Y—^^

20 40 60 80 100 20 40 60 80 100
a) the population and the total product b) the income per capitaFig. 3.0.2 The dynamics of the Malthusian economy with technological change.

3.1 Nonlinear Differential Equations

To avoid repeating concepts and theorems which are also valid for higher
dimensions, this section examines systems of differential equations of
any finite dimension.

Consider a dynamic system

x(t) = f(x{t},a), (3.1.1)

where variables x, functions / , and parameters a

X — [X^, X2, . . . Xn) ,

/ = U./2.-/J,
a = (a,, a2,... aj,

are vectors. We denote the solution of Eq. (3.1.1) by <p{t, x0), where
x0 = x(o). Here, fi(t, x0) is the m-parameter family of mappings:

</>((): = R" ->Rn.

The two relationships, ^(O, xo) = x0 and

0('l+'2.*o)=0('2.0('l.*o)).
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hold. The set of points

{</>{t,xo):-°°<t< + °°} ,

is called the trajectory through x0. The dynamical system (3.1.1) is
(non-)linear if the vector field, f(x;a), is (non-)linear in x. The
examination of the dynamical system usually includes determination of
the equilibrium points, the periodic and quasi-periodic solutions, the
chaotic behavior and the stability.

Definition 3.1.1 An equilibrium point x* of an autonomous system is a

constant solution of Eq. (3.1.1), that is, x' = <pif, x') for all t. In other

words, x is an equilibrium point if fix) = 0.

In general, the equilibrium point may not exist. As shown in Fig.
3.1.1, x = /l(x) has no equilibrium point. If there exists a neighborhood
about an equilibrium point x*, in which there is no other equilibrium
point, then x' is called an isolated equilibrium point. In Fig. 3.1.1,
x = f3(x) has a (unique in this case) isolated equilibrium point. In Fig.
3.1.1, x = f2(x) has nonisolated equilibrium points.

* = /,(*)

\ no equilibrium

h ^

V
Van isolated equilibrium A2

\ / ^ _ x

^/nonisolated equilibria

Fig. 3.1.1 Concepts of equilibrium points for x = f\x).
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Definition 3.1.2 x* is a periodic solution of the autonomous system, if
for all t

4,x)=4 + T,x),
for some minimum period T > 0.

Here, x is not unique since any point lying the periodic solution will
satisfy the conditions. Changing JC* corresponds to changing the time
origin. A periodic solution is isolated if it contains a neighborhood that
possesses no other periodic solution. If the dynamical system is
autonomous, an isolated periodic solution is referred as a limit cycle.

Definition 3.1.3 A quasi-periodic function is one that can be expressed
as a countable sum of periodic functions

where <pt(t) has a minimum period Ti and frequency /?,. =1/7].

Moreover, there exists a finite set of base frequencies ]/?* /?2*,... ,/?* j

such that it is linearly independent and it forms a finite integral base for

fir

There is no commonly accepted definition of chaos. From a practical
point of view, chaos can be defined as bounded steady-state behavior that
is not an equilibrium point, not periodic, and not quasi-periodic. In some
sense, chaos may be defined as "stochastic behavior" in deterministic
systems. The observable behavior of a dynamic system is called
stochastic when the transition of the system from one state to another can
only be given a probabilistic description as happens for truly random
processes. Chaotic motion in continuous-time dynamical systems
requires at least three-dimensional state space.

There are only a few types of differential equations which can be
solved in "closed form", i.e., using elementary functions: the first order
exact, linear, and homogeneous equations; the higher order linear
equations with constant coefficients; the partial differential equations that
are reducible to these by separation of variables. After this, one may find
several methods: advanced theory, approximation of solutions on the
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computer by numerical analysis, and approximation of solutions by
formulas.

Before stating an important theorem, we consider a function / on
R". Let U be an open set in R". The function / on R" is said to be
Lipschitz on U if there exists a constant L such that

\f{x)-f(y}<L\x-y\,

for all x and y in U. The constant L is called a Lipschitz constant for
/ . For instance, the function f(x) = sin* has Lipschitz constant L = \.
The primary fundamental theorem related to differential equations is
known as the Picard-Cauchy-Lipschitz theorem, which is given as
follows.

Theorem 3.1.1 Consider the system of equations

x(t) = f{x(t),t).

Let the functions fj(x,t) satisfy the Lipschitz conditions in their
arguments. Then there exists a unique solution x = <p{t,xQ) in the
neighborhood of t - t0 satisfying initial conditions x0 = x(o). Moreover,
this solution is a continuous function of the initial conditions. If

x{t) = f{x{t\t,a),

where a is a parameter, and each f.(x,t,a) also satisfies a Lipschitz
condition uniformly in a in the neighborhood of a0, and is continuous
in (X, then the same conclusions hold in the neighborhood of aQ.
Moreover, the solution <p(t,xo,a) is a continuous function of a in this
neighborhood.

The uniqueness implies that for a differential equation satisfying a
Lipschitz condition, solutions to an initial value problem do not cross
each other.

Example Consider the following equation2

x{t) = x ( t ) 2 / \ xeR, teR.

2 The example is from Arnold (1978: 14-15).
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Let t0 = 0 and x0 = 0. Both <p(t) = O and <j){t) = {t I if are solutions to
the initial value problem. The function x(t)2n does not satisfy the
Lipschitz condition near the origin.

Theorem 3.1.1 establishes the existence of a unique solution for a
certain neighborhood of t0. This means that the theorem only provides a
local existence theorem.

Example Consider the following equation3

x(t) = x(tf, xe R, te R.

Let t0 = 1 and x0 = 1 . Then <f>(t) = -l/t is the solution to the initial
value problem. On the other hand, the solution of this differential
equation does not exist for t0 - 0. This example illustrates that the
global existence of a solution needs a careful study when one finds a
local solution.

The concept of stability is defined as follows.

Definition 3.1.4 Consider the system

x{t) = f{x{t),t).

The solution <f>(t,x0) defined in [t0, °°] is stable if, for any given e > 0,
there exists 8 > 0 such that if x'o is any given vector satisfying
xQ -xl<S, then the solution 0[t,x'o) with the initial conditions x'o

exists in [t0, °°] and satisfies

\(/>{t,xa)-<t>(t,xl\<e,

for all /> /„ .

The stability defined above is called Lyapunov stability or solution
stability. It says that how small is the permitted deviation measured by
£, there exists a nonzero tolerance, measured by S, in the initial
conditions when the system is activated, allowing it to run satisfactorily.

3 The example is adapted from Takayama (1994: 330-331).
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Example The general solution of x = ax with a < 0 is x(t) = x{^]ea'.
This solution is stable. As

\<t>(t,X())- 0'(t,xo] = \xo ~ xo\e°'

we can choose S = se'"'0 to guarantee the stability of the solution.

Another property of the dynamic system is that a particular solution
may become less stable as time goes on. It is possible that a system's
sensitivity to disturbance might increase indefinitely with time although
it remains technically stable, the symptom being that S(e, t0) decreases
to zero as t0 increases. If a solution is stable for t > t0, and the S of
Definition 3.14 is independent of t0, the solution is uniformly stable on
t > t0. Any stable solutions of an autonomous system are uniformly
stable, since the system is invariant with respect to time transformation.
Another property is asymptotic stability.

Definition 3.1.5 A solution 0(t,xo) of

x(t) = f(x(t),t)

is asymptotically stable if (a) it is stable and (b) there exists ju > 0 such
that if x0 - x'Q < ju, then

\</>{t,xo)-0'(t,xl]^>O, as ;-> + «,.

It is globally asymptotically stable if ju may be chosen arbitrarily large.

Obviously, the solution of x- ax with a < 0 is globally
asymptotically stable.

In Figs. 3.1.2a and 3.1.2b (for a two-dimensional dynamics), the
equilibrium is stable. This means that all solutions that start "sufficiently"
close to the equilibrium stay close to it. It should be noted that the trajectory
of the solution does not have to approach the equilibrium point as
/ -> + °°, as illustrated in Fig. 3.1.2b. If an equilibrium point is
asymptotically stable, trajectories that start "sufficiently close" to it must
not only stay "close" but must eventually approach it as / —> + °°. This is
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the case for the trajectory in Fig. 3.1.2a but not for the one in Fig. 3.1.2b.
Obviously, asymptotic stability is a stronger property than stability.

e equilibrium point

trajectot^-- ^ initial state ^ ^

(a) asymptotic stability (b) stability
Fig. 3.1.2 Stability and asymptotic stability.

Definition 3.1.6 A solution <j)(t,x0) to x(t) = f(x(t),t) is unstable if, for
any given e > 0 sufficiently small and any S > 0 , there is a solution
0'(t,x'o) such that (a) 0 < xo - x'o <S and (b) | ^ , x 0 ) - <Z>*(f,x*)| > e for
some t > t0.

The instability is also referred to as Liapunov instability.

Example The general solution of x = ax with a > 0 is x(t) = x(o]eal.
As

\<t>{t,x0)- <t?{t,xl\ = |*o ~ *o | e " ' .

we see that if we can always choose t which satisfies x0 - x*0 e"' > e.
Hence, the equation is unstable.

Definition 3.1.7 A solution 0,('>*o) of a dynamical system, x = f(x, t)
is orbitally stable if, for any given e > 0 there exists S > 0 such that if
|x0 - x'o < 5 then

\^<l>{t,xo)-<p'(ex\<£
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for each t > t0.

The concept of stability and orbital stability should not be confused.
Figure 3.1.3 provides an example. Suppose that C and D are two orbits
of different periods. Although the distance between them remains
bounded for all times, the distance between two points 1 and 2 on the
two orbits can increase in time owing to a phase shift induced by the
difference between periods. Thus state 1 need not be stable, even though
C is orbitally stable.

».

Fig. 3.1.3 Stability of equilibrium and orbital stability.

These definitions for x-f(x,t) are applicable to an autonomous
system, x = f(x).

Definition 3.1.8 A periodic solution of a continuous-time dynamical
system, in a neighborhood of which there are no other periodic solutions,
is called a limit cycle.

Exercise 3.1
1 For the general two-dimensional equation

C M : :)(;;)•
find a Lipschitz constant for the function Ax in terms of a, b, c, and
d.
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3.2 Stability of Equilibrium of Autonomous Equations

From the definitions in the previous section, we see that the stability of
an equilibrium point x* of the scalar differential equation

* = / ( * ) , (3-2.1)

is a local property of the flow near the equilibrium. The following
theorem tells that under certain conditions the stability properties of x
can be determined from the linear approximation of the function / near
x*.

Theorem 3.2.1 Suppose that / is a C1 function and x' is an
equilibrium point of x = f(x), that is, f(x')=0. Suppose also that
/ ' (x*)*0. Then the equilibrium point x' is asymptotically stable if
/ ' (*') < 0, and unstable if /'(x') > 0.

The linear differential equation x = f'(x')x is called the linear
variation equation or the linearization of the vector field x = f(x) about
its equilibrium point x'. Since the equilibrium point x = 0 of
x = f'(x*)x is asymptotically stable if f'\xj< 0 and unstable if
/ '(**)> 0, we see that Theorem 3.2.1 asserts that if / ' (x*)*0, the
stability type of the equilibrium point x' of x = f(x) is the same as the
stability type of the equilibrium point at the origin of its linearized vector
field. It should be noted that the condition f'[x j ^ 0 is important. An
equilibrium point x' of x = f(x) is called a hyperbolic equilibrium if
f'{x')^0. If / '(**)= 0, then x' is called a nonhyperbolic or
degenerate equilibrium point. When an equilibrium is degenerate, then
its stability is determined by higher-terms in the Taylor expansion of the
function f(x) at x''. For instance, the origin is an unstable equilibrium
for x = x2, but it is an asymptotically stable equilibrium for x = - x1.

Example The Cagan monetary model.4

The Cagan model of hyperinflation is described by the pair of equations

m(t) - p(t) = -an{f\ a > 0,

4 Cagan (1956).
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n = y{p-n\ Y > 0,

where m is natural log of the nominal stock of money (M ), p is
natural log of price level (P), and n is the expected rate of inflation. In
this model, output and real interest rate are fixed and wealth effects are
ignored. The first equation describes continuous money market
equilibrium, and the second equation expresses the usual form of the
adaptive hypothesis about the expected rate of inflation. The coefficient

1 dM
(JL ~~ '""" ———

M dn
is interpreted as a semi-elasticity of demand. It measures the percentage
change in the demand for money per percentage point change in the
expected inflation rate. Supposing the nominal money stock remains
constant, from the first equation we obtain, p - an. Substituting the
first equation and p = an into the second equation yields

We conclude that the adjustment of prices is stable if and only if
ay < 1. This relation emphasizes the trade-off between the semi-
elasticity of the demand for money with respect to inflationary
expectations and the rate of adaptation of inflationary expectations. A
highly sensitive demand for money function is compatible with stability
only if inflationary expectations adapt sufficiently slowly to past
inflation rates.

Example Poverty traps generated in the Solow model.
King and Rebelo tried to explain poverty traps with the framework of
neoclassical growth theory by using a utility function in which there is a
subsistence level of per capita consumption and the elasticity of
intertemporal substitution varies over time. 5 The model has two
equilibria - a Solow-type and an unstable steady state at the level of the
capital stock comparable with subsistence consumption.

5 King and Rebelo (1993).
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We now illustrate this approach based on Ros.6 The model starts with
a consumption function

c(t) = {yo-Skk0) + Z(y(t)-co), (3.2.2)

where c(t) and y(t) are respectively per capita consumption and per
capita income at time t, y0 is subsistence income per capita, k0 is the
capital-labor ratio consistent with a subsistence level of income, Sk the
depreciation rate of capital, and £ (0 < £ < 1) is the propensity to
consume out of nonsubsistence income. When income per worker is at
the subsistence level of saving is equal to the depreciation of capital
stock, i.e., y0 - c = Skka. The corresponding saving rate is

M.Mz&L.i.-JL, (3.2.3)
y(?) y{t)

where s0 = 1 - £ > 0, 8' = soyo - 8kk0.Here, s0 is the propensity to
save out of nonsubsistence income. According to the definitions, the
parameter 8' may be either positive or negative. If soyo > 8kka, 8* is
positive, implying that as income rises, the saving rate rises. If
soyo <Skk0, 8* is negative, implying that as income rises, the saving
rate falls. The saving rate is a nonlinear function of the level of income
per capita. The saving rate rises with income per capita if the marginal
propensity to consume out of nonsubsistence income is less than the
average propensity to consume out of subsistence income. Otherwise, the
saving rate tends to fall as income rises above the subsistence level.
Substituting Eq. (3.2.3) into the fundamental equation

k = s(t)y{t)-(n + 8k)k(t)

in & yields

k = sJ(k)-{n + 8k)k-8\ (3.2.4)

in which n is the fixed population growth rate. We call the above model
the generalized Solow model with poverty traps. Check that this model
can yield two equilibria as shown in Fig. 3.2.1 when 8' > 0.

6 Ros (2000: 60-62).



66 Differential Equations, Bifurcations, and Chaos in Economics

saf{k), (S, + ri)k + S'

(Sk + n)k +JS

sof(k ) ^^ j j /^s tab le Solow equilibrium

/ j unstable poverty trap !

1

Fig. 3.2.1 Two equilibrium points with S* > 0.

In the case of S" > 0, the equilibrium at the high- k level is similar to
the steady state in the Solow model. The other is at the subsistence level
of income. This is often referred to as poverty trap, but it is a fortune one
in the sense that it is unstable. The economic system will not stay there
for long. Poverty may not be persistent under proper disturbances from,
for instance, foreign aids and trade. This trap occurs because at low
levels of capital-labor ratio income per capita is scarcely sufficient and
savings fall below depreciation. If an economy is in this type of poverty,
it is easy to start rapid development because once capital-labor ratio is
higher than the level k0, it will grow fast towards the stable equilibrium.
Once it reaches the high level of living standard, it is trapped because
this is a stable state.

The model has only one equilibrium - an unstable poverty when
S* < 0, i.e., soyo < Skk0. This situation occurs that the saving rate is too
low or the subsistence income per capita is too low. If an economy is
characterized by political and social instabilities, then it tends to have a
low saving rate. Under such circumstances, the nation can hardly make
any progress in economic development.
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'<>/(*). (** + «)* + S'

(Sk + n)k.+ 8'

K k
Fig. 3.2.2 A single poverty trap with 5' < 0.

Exercise 3.2
1 Determine the equilibrium points of the following scalar differential
equations and determine their stability:
(a) x = 3*(l - x);

(b) x = 2x2 - x3;

(c) x = x - x3 + 0.2 ;

(d) x = 1 - sin x.

3.3 Bifurcations

Bifurcation theory studies possible changes in the structure of the orbits
of a differential equation depending on parameters. There are two
distinct aspects of bifurcation theory: static and dynamic. Static
bifurcation theory is concerned with the changes that occur in the
structure of the set of zeros of a function as parameters in the function
are varied. In differential equations, the equilibrium solutions are the
zeros of the vector field. Therefore, methods in static bifurcation theory
are directly applicable.
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Dynamic bifurcation theory is concerned with the changes that occur
in the structure of solutions of differential equations as parameters in the
vector field are varied. A change in the qualitative properties could mean
a change in stability of the original system, and thus the system must
assume a state different from the original design. In vague terms, the
values of the parameters where this change takes place are called
bifurcation values. Knowledge of the bifurcation values is necessary for
a complete understanding of the system. Consider the following
differential equation

x = f{x,X), (3.3.1)

where x is defined in some space, A represents a parameter vector, and
/ is a function vector which satisfies certain requirements. There may
exist different types of solutions such as steady solutions, periodic
solutions, sub-harmonic solutions, asymptotically quasi-periodic
solutions, chaos, and so on.

Consider the equilibrium equations f(x, X) - 0. Sometimes,
derivatives of / are required, and it will always be assumed in this
section that / has as many derivatives as necessary if this is not
explicitly stated. We may consider equilibrium states as functions of the
parameters. Usually multiple equilibria may exist for given values of the
parameters. The basic question is to discuss how the equilibrium depends
on the parameters. We now consider some specific examples to illustrate
some of the key ideas from bifurcation theory.7

Example Hyperbolic equilibrium is insensitive.
Consider the linear differential equation

x = A-x = F{x,A), (3.3.2)

where A is a real parameter. For A = 0, we have

x = - x.

We thus refer Eq. (3.3.2) as a perturbation of x = - x. For all values of
A, there is a single hyperbolic equilibrium, which is asymptotically
stable.

7 The examples below in this section are from Sec. 2.1 in Hale and Kocak (1991).
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Before generalizing this example, we need to state the implicit
function theorem. The (static) bifurcation problem is equivalent to the
study of the curves f(x, A) = 0 and their singular points. The main tool
for the proof of the existence is the implicit function theorem, which
holds for vector-valued functions of multiple parameters.8 For a one-
dimensional problem, the theorem is stated as follows.

Lemma 3.3.1 (The implicit function theorem in R1) Let F\x\A0) = 0
and / be C1 in some open neighborhood of \x', A^j. Then if Fx ^ 0 at
(x0, A^\ there exists a, (5 > 0 such that (i) the equation F(x, X) = 0 has
a unique solution x = x(X) with x*-/3<x<x"+P whenever
\A - A^ <S;9 and(ii) xA(A) exists and

XM)--FM*UY
We knew that if / is a C1 function with /(o) = 0 and / ' (o) * 0,

then the stability properties of the equilibrium point 0 of x = f(x) is
determined by the linear approximation of the vector field near 0, that is,
the higher order perturbations in the Taylor expansion of the vector field
do not effect the qualitative structure of the flow near zero. But we did
not discuss what will happen to the system if we make small
perturbations.

To precisely answer this question, consider the perturbed differential
equation

x = F(x, X),

where

F:RxRk^>R; (X,A)\->F(X,A)

is a C1 function satisfying

F(x,0) = /(0), F,(0,0) = / ' ( 0 ) * 0 .

As 0 is a hyperbolic equilibrium point of the differential equation
x = F{x, X) depending at A = 0, then the conditions of the implicit

8 The theorem is referred to App. A. 3.
9 Here, the "norm" is defined by \\AJ = (^U?)"2 .
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function theorem are satisfied. This guarantees that the equation
F(x, A) = 0 may be solved locally as a function of the parameters

A = (4,-.4)-
Furthermore, Fx(x{A),A)*0 for \\A - / l j sufficiently small. The
stability type of the equilibrium x(A) of the perturbed equation is the
same as the stability type of the equilibrium 0 of the unperturbed
equation x = f(x). Thus, the qualitative structure of the flow does not
change near the equilibrium. Consequently, there are no bifurcations in
the neighborhood of the equilibrium. We thus conclude that the flow near
a hyperbolic equilibrium point is insensitive to small perturbations of the
vector field.

Example Saddle-node bifurcation.
The quadratic differential equation

x = x2 + A =F(x,X), (3.3.3)

where A is a real parameter and is a perturbation of x = x2. Note that
the origin is a nonhyperbolic equilibrium point for A = 0. We can easily
determine the flow of Eq. (3.3.3) for all values of the parameter A by
leaving the original parabola f(x, 0) fixed and vertically translating the
*-axis by -A. The resulting flows are depicted in Fig. 3.3.1. For all
A < 0 the system has two equilibrium points. For A = 0, the system has
a unique equilibrium point x = 0. For all A > 0, there is no equilibrium
point. If A is varied, as long as it is negative, the number and the
direction of the orbits remain the same; the only change is the shifting of
the location of the equilibrium points. Similarly, for all positive A there
is only one orbit and its direction is from left to right. However, for
A = 0, regardless of how small an amount A is varied, the number of
orbits changes: there are two equilibrium points for any A < 0, and none
for any A > 0.

For a scalar differential equation x - f(x), the equilibrium points
and the sign of the function f(x) between the equilibria determine the
number of orbits and the direction of the flow on the orbits. We refer to
the number of orbits and the direction of the flow on the orbits as the
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orbit structure of the differential equation or the qualitative structure of
the flow.

F{x,0) = x2

A<0 • \ • 1—* / • 4

* = ° > ^ [ ^ »
A>0 I »

Fig. 3.3.1 Phase portraits of x = x2 + A for several values of A.

Bifurcation theory is to study changes of the qualitative structure of
the flow as parameters are varied. At a given parameter value, a
differential equation is said to have stable orbit structure if the
qualitative structure of the flow does not change for sufficiently small
variations of the parameter. A parameter value for which the flow does
not have stable orbit structure is called a bifurcation value, and the
equation is said to be at a bifurcation point. In the above example, Eq.
(3.3.3) has stable orbit structure for any A * 0, but is at a bifurcation
point for A = 0. The bifurcation that Eq. (3.3.3) undergoes is called
saddle-node bifurcation. This bifurcation has other names such as limit
point, and turning point.

We may depict some of the important dynamic features in
x = F(x, A) depending on a parameter A. This graphical method
consists of drawing curves on (A, x) -plane, where curves depict the
equilibrium points for each of the parameters. A point lies on one of
these curves if and only if F(x, A) - 0. To represent the stability types
of these equilibria, we label stable equilibria with solid curves and
unstable equilibria with dotted curves. The resulting picture is called a
bifurcation diagram. Figure 3.3.2 is the bifurcation diagram for

x - x2 + A .
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x

' I

Fig. 3.3.2 Bifurcation diagram of x = x2 + A.

The system x = A-x2 can be considered in the same way. The
analysis reveals two equilibria appearing for A > 0.

Bifurcation diagrams are not entirely random. Different strata of
bifurcation diagrams in generic systems exhibit similarities in different
applications. To discuss this topic, we have to decide when two
dynamical systems have qualitative similar or equivalent bifurcation
diagrams. Before continuing, we introduce a concept, which defines
"equivalence of two dynamical systems. Let us consider two dynamical
systems

x = f(x,a\ xsR", asRm, (A)

and

y = f(y,a), ysR", /3eRm, (B)

with smooth right-hand sides and the same number of variables and
parameters.

Definition 3.3.1 Dynamical system (A) is called topologically

equivalent to a dynamical system (B) if (i) there exists a

homeomorphism of the parameter space:

p:Rm^Rm,/3 = p{a);

and (ii) there is a parameter-dependent homeomorphism of the phase
space
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ha:R"^R",y = ha{x),

mapping orbits of the system (A) at parameter values a onto orbits of the
system (B) at parameter values /? = p(a), preserving the direction of
time.

By definition, topologically equivalent parameter-dependent systems
have equivalent bifurcation diagrams. A homeomorphism is an invertible
map such that both the map and its inverse are continuous. In the above
definition, we do not require the homeomorphism ha to depend
continuously on a. For this reason, the above definition is sometimes
called weak or {fiber) topological equivalence.

In terms of the topological equivalences, the following theorems
show that the system (3.3.3) is quite a "general" case, irrespective of its
simplicity.10

Lemma 3.3.2 The system

x = A + x2 +o(x>)

is "locally" topologically equivalent near the origin to the system

x = A + x2 +O(x3).

Here, "locally" means that Definition 3.3.1 is modified for local
behavior of the systems.

Theorem 3.3.1 (Topological normal form for the saddle-node
bifurcation) Any generic scalar one-parameter system

x = f(x,A),

having the equilibrium x = 0 with fx(0, 0) = 0 at A = 0, is locally
topologically equivalent near the origin to one of the following normal
forms

y = P±y1.

10 See Sec. 3.2 in Kuznetsov (1998) for the following results related to saddle-node
bifurcations.
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Here, "genetic" means that the system satisfies a number of genericity
conditions. These conditions have the form of inequalities:

N,\f\i = \,-,s,

where each Nf is some algebraic function of certain partial derivatives
of / with respect to x and a evaluated at (x, a) - (0, 0).u

Example Dynamics of labor market.12

Consider a simple partial-analytical model of the labor market. Let Is (w)
and ld(w) be the supply and demand for labor, respectively, which both
depend on the real wage, w. The change in the real wage rate is assumed
to depend on the excess demand for labor in this market, i.e.

w = p(ld{w)-V(w)\ /3>0.

Assume that the demand function is parametrized by ju and let

ld(w,ju) = ju-bw, jU,b>0.

Assume that the labor supply function reflects an inferiority such that it
is bending backwards for high values of w, see Fig. 3.3.3.

Let d2r(w)ldw2 < 0 for any w > 0 and dr(w)ldw<0 for w

greater than a value w0. Introduce

f{w,}i) = ld{W,ti)-V{w).

Let juQ be the value of [i such that f(wo,juo) = 0 and
df /dju(w0, juo) = O. At ju0, the demand and supply functions are tangent.
Hence, the saddle-node bifurcation occurs in this labor market model.

Example Transcritical bifurcation.

Consider the differential equation

x = Ax + x2 =F(x, X). (3.3.4)

The origin is an equilibrium point for all values of A. For A < 0, the
origin is asymptotically stable and there is another equilibrium point
x = -c which is unstable. The parameter value A = 0 is a bifurcation

11 See Sec. 3.2 in Kuznetsov (1998) for the definition.
12 See Lorenz (1993: 88-89).
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value at which the two equilibria coalesce at the origin, which is a
nonhyperbolic unstable equilibrium point. For X > 0, the origin is
unstable and there is another equilibrium point x - - c which is stable.
The bifurcation that Eq. (3.3.4) undergoes is called transcritical
bifurcation. We depict the bifurcation diagram in Fig. 3.3.4.

w

J^>S I" (w, A X /" (w, AiK
1 £/'

Fig. 3.3.3 Demand and supply of labor.

••^

' ^ 2

Fig. 3.3.4 Bifurcation diagram of x = Ax + x2.

Example Hysteresis.
The cubic differential equation used to illustrate hysteresis is

x = -x3 +x + A = F(x, A). (3.3.5)
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For A = 0, the system is x — - *3 + x. It has three equilibrium points,
- 1 , 0, 1 and it has stable orbit structure. The flow continues to have
stable orbit structure for small values of the parameter, - \ < A < \ ,
where Ao = 2/3V3 is the local maximum value and -Ag is the local
minimum value of F(x, 0). For A = Ag or A = -Ao, the equation is at a
bifurcation point. The bifurcation diagram is shown in Fig. 3.3.5. The
bifurcation that Eq. (3.3.5) undergoes is called hysteresis. It should be
noted that the system experiences a jump at two different values of the
parameter. The part in Fig. 3.3.5 that resembles a parallelogram is called
the hysteresis loop.

x

XT
K I
h - ^ ^ 1 x

Fig. 3.3.5 Bifurcation diagram of x = - x3 + x + A.

Example Pitchfork bifurcation.
Consider

x = -x3 +Ax = F(x,A). (3.3.6)

For A = 0, the system is x = - xz. It is easy to confirm that for all
positive A, Eq. (3.3.6) has three equilibria and stable orbit structure. At
A = 0, the equilibria come together at the origin and the system is at a
bifurcation point. For all A < 0, the equation again has stable orbit
structure. The bifurcation that Eq. (3.3.6) undergoes is called pitchfork
bifurcation.
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For this particular example, the pitchfork bifurcation is called
supercritical because the additional equilibrium points which appear at
the bifurcation value occur for the values of the parameter at which the
equilibrium point is unstable. Figure 3.3.6a depicts this supercritical
bifurcation diagram. When the additional equilibria occur for the values
of the parameter at which the original equilibrium point is stable, the
bifurcation is called subcritical. Figure 3.3.6b depicts a subcritical
pitchfork bifurcation with x = x3 + Ax.

x x

. X A

a) supercritical with x = - x3 + Ax b) subcritical with x = x + Ax
Fig. 3.3.6 Pitchfork bifurcations.

Example Cusp bifurcation.
The differential equation is now

x = -x3+dx + c = F(x, d, c), (3.3.7)

where d and c are real parameters. The vector field (3.3.7) is the most
general perturbation of the function - x 3 with lower order terms because
any term involving x2 can always be eliminated by an appropriate
translation of the variable.13 At bifurcation points, a differential equation
must have a multiple equilibrium point, that is, F(x, d, c) = 0 and
Fx(x, d, c) = 0. For the vector field (3.3.7), we have

- x3 + dx + c = 0, - 3x2 + d = 0.

Eliminating x from the above equations yields a cusp

13 For -x1 + a,xz + a2x + a, , introduce x (-> x + a, /3 . The equation is transformed

into the form (3.3.7).
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4d3 = 27c2. (3.3.8)

Figure 3.3.7 depicts the graph of Ad* = 27c2 in the (c, d)-plane. In
each appropriate region of that (c, d) -plane we sketch a graph for the
function F(x, C, d) and indicate the flow determined by Eq. (3.3.7).

d
v 4d3=27c2

^ V ^, c
^r ^^

Fig. 3.3.7 Some representative phase portraits of Eq. (3.3.7).

The full bifurcation diagram of Eq. (3.3.7) in the three-dimensional
(c, d, x) -space can be constructed from the equation

-xi + dx + c = 0,

see Fig. 3.3.8.

Lemma 3.3.3 Suppose that a one-dimensional system

x = f(x, a), x e R, ae R2,

with smooth / , has at a = 0 the equilibrium x = 0, and let the cusp
bifurcation conditions hold

W , ( 0 , 0 ) = 0, a = £ ^ = 0.

Assume that the following genericity conditions are satisfied
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\ A \ •
Fig. 3.3.8 The bifurcation diagram of Eq. (3.3.7).

at (0, O). Then, there are smooth invertible coordinate and parameter
changes transforming the system into

f} = j3l+j32rj±T1
i+0(TJ

4). (3.3.9)

This system with the O[TJ4 ) terms truncated is called the approximate
normal form for the cusp bifurcation. It can be shown that higher-order
terms do not actually change them. This justifies calling

rj = fr+p2r1±r1\ (3.3.10)
the topological normal form for the cusp bifurcation. It can be proved
that Eq. (3.3.9) is locally topologically equivalent near the origin to Eq.
(3.3.10).

Theorem 3.3.2 (Topological normal form for the cusp bifurcation) Any
generic scalar two-parameter system x = f(x, a) having an equilibrium
x - 0 at a = 0 exhibiting the cusp bifurcation is locally topologically
equivalent near the origin to one of the normal forms (3.3.9).
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When an n -dimensional system has a cusp bifurcation, the above
theorem should be applied to the equation on the center manifold (see
Chap. 9).

Exercise 3.3
1 Apply the implicit function theorem to show that there is a unique
solution of the equation

x3 + (l - X)x + A = 0

near (x, A) = (1,-1).

2 Suppose the density of a population, x(t) (> 0), changes according to
the following differential equation

x(t) = kx - ex2 - h,

where all the coefficients, k, c, and h, are positive; k and c measure
the intrinsic growth rate of the population and h is the rate of harvesting.
For a positive initial population density, the population is exterminated if
there is a finite value of t such that q>{t, x0) = 0.

Without finding explicit solutions of the differential equation, show
the following: (i) If 0 < h < k21 Ac, then there is threshold value of the
initial size of the population such that if the initial size is below the
threshold value, then the population is exterminated. On the other hand,
if the initial size is above the threshold value, then the population
approaches an equilibrium point; (ii) If h>fc2/4c, the population is
exterminated regardless of its initial size.

3.4 Periodic Solutions

This section provides some examples of existence of periodic solutions
to differential equations. As the topic is complicated, this section only
provides some simulation results.
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Example The Van der Pol (VdP) equation.14

The VdP equation

x-e(l-x2)x + X = 0, (3.4.1)

has played an important role in the development of nonlinear theory,
because it displays limit cycles. The parameter e is positive and small.
Introduce y = x and the equation is reduced to a first order differential
equation

x = y,

y = e{l - x2)y - x. (3.4.2)

As demonstrated in Fig. 3.4.1, the system exhibits a stable limit cycle
when £ = 1.

As e is increased, the circle becomes increasingly distorted. Figure
3.4.2 shows the limit cycles obtained numerically for e = 1 and e - 3.

The limit cycles for even larger values of £ are generated as in Fig.
3.4.3. As £ becomes larger, the VdP solution x(t) displays so-called
relaxation oscillations. As shown in Fig. 3.4.3, there are fast changes of
x(t) near certain values of t with relatively slowly varying regions in
between. As e is further increased, the slowly varying regions span
longer and longer time intervals.

- 3 ! ! \ \ \ "i I Z 1 ', ', 1 1 Z 1 "i I [ I !
-3 0 x 3

Fig. 3.4.1 The stable limit cycle in the VdP equation (e = 1).

14 The examination is based on Sec. 7.2 in Enns and McGuire (2001).
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8r 1 1

_gL 1 . _
- 2 0 x 2
Fig. 3.4.2 Limit cycles of the VdP equation for e = 1 and e = 3.

~" t 40

J>v II
Fig. 3.4.3 Relaxation oscillations (thin for e = 9 and thick for e = 18 ).

To examine what happens for large e, we rewrite the VdP equation
in the form of

x = e(y- f(x)\

x
y = - - ,

£
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where

We rewrite the above equations in the form of

( y - / W ) f = "?•• (3A3)

For extremely large e, the right-hand side of Eq. (3.4.3) is nearly zero.
In this limit, either y - fix) or dyldx = 0. We plot y - f(x) in dashed
line in Fig. 3.4.4 with £ = 10. The system slowly traverses the f(x)
curve in the sense of the arrows from A to B, jumps horizontally and
quickly from B to C, again slowly moves along the f(x) curve to D,
and then jumps quickly back to A.

x'
1 /--*+T

D 5Sr = = = / A

/ \ y , /

^2/ \ / 2 x

C / ^Tast "^"^B
1 - 1

Fig. 3.4.4 Origin of fast and slow time scales for relaxation oscillations.

Example Duffing's equation.
Consider the forced spring equation, the so-called Duffing equation

x + 2yx + ax + fix3 =Fcos(ox), (3.4.4)

15 The VdP equation (3.3.1) can be obtained by differentiating x = e(y - f(x)) and

plugging y = - xl e into the resulted equation.
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where x(t) is the displacement from equilibrium, y is the damping
coefficient, co the driving frequency, and F (> 0) is the force amplitude.

The Duffing equation is further classified according to the signs and
values of the parameters of a and J3. For a > 0 and f5 > 0, it is known
as the hard spring Duffing equation. A hard spring becomes harder to
stretch for larger displacements from equilibrium. When a > 0 and
P < 0, the equation is referred to as the soft spring Duffing equation.
The two other important categories are nonharmonic ( a - 0 and ft > 0 )
and inverted ( a < 0 and J3 > 0 ) cases. Introducing

y = x, z = t,

we rewrite the Duffing equation as three coupled first-order ODEs with
three state variables

x = y,

y = -2yy - ax - fix1 + Fcos(coz),

i = l.

Figure 3.4.5 shows two plots of the behavior of the Duffing equation
with

a = -\, J3 = l, y = 0.25, x(0) = 0.09, *(o) = O, F = 0.34875 .

The system exhibits a period-two solution as the pattern repeats every
two oscillations when steady-state is achieved. The trajectory in the
right-hand plot has wound onto a closed orbit which appears to cross
itself. In three dimensions real trajectories do not cross. These crossings
are an artifact resulting from the fact that we have projected a three
dimensional phase trajectory onto a two dimensional plane. Figure 3.4.6
demonstrates chaotic behavior when F is increased to F = 0.43. The
pattern has no irregular pattern even if a longer time range is chosen.

3.5 The Energy Balance Method and Periodic Solutions

We now introduce a method to solve an equation of the form

x + eh(x, x) + x - 0
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Fig. 3.4.5 Period-two behavior for the Duffing equation ( F = 0.34875 ).
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Fig. 3.4.6 Period-two behavior for the Duffing equation ( F = 0.43 ).

where e is small.16 Such an equation is close to the equation

x + x-0,

whose phase diagram consists of circles centered on the origin. We now
use this fact to construct approximate solutions to the original equation.

Consider

x + £h{x,x)+x = 0. (3.5.1)

The equation can be rewritten as

x = y,

y = -£h{x,y)-x. (3.5.2)

Assume \e\ « 1 and h{0, 0) = 0. The origin is an equilibrium point.
When e = 0, Eq. (3.5.1) becomes x + x = 0. Its general solution is

16 This and the following sections are based on Sees. 4.1 and 4.2 in Jordan and Smith
(1999).
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x(t) = rcos(t + a),

where r and a are arbitrary constants. Without loss of generality, we
require a > 0 and a = 0. The family of phase paths for x + x = 0 is
given by

x(t) = rcost, y(t) = -rsint, (3.5.3)

which is the family of circles,

x*(t) + /(t) = r\

with period 2n. Introduce the total "energy" E{f) as

E(t) = ±X>(t) + ±y>{t).

Taking derivatives of the total energy with regard to t and Eq. (3.5.2),
we have

E(t) = xx + yy = - yehix, y).

Integrating the above equation from 0 to T yields

E(T)-E(0) = -e)yh(x,y)dt.
o

As we expect x(t) and y(t) to be periodic, E should return to its
original value after one circuit. Hence, we should have

)yh{x,y)dt = 0, (3.5.4)
0

on the limit cycle. Now insert the approximation (3.5.3) into Eq. (3.5.4),
we obtain the approximation equation

In

jh(rcost, -rsint)sintdt = 0. (3.5.5)
0

The solution to Eq. (3.5.5) is denoted as r0. Moreover, the stability of the

cycle can also be determined. Define a function g(r)
In

g(r) = er \h{rcost, -rsmt)smtdt.
o
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On the limit cycle, g(r0) = 0. The stability conditions are that if
g(ro) = 0, then the corresponding limit cycle is stable if g'{ro)< 0 and
unstable if g'(r0) > 0.

Example The VdP equation.
The previous section illustrated periodic behavior of the VdP equation
when £ is large. When e is small, we may approximate periodic
solutions. Comparing Eq. (3.4.1) and Eq. (3.5.1), we find

h{x,y) = -(l-x2)y.

Assuming x(t) ~ rcost, Eq. (3.5.5) becomes
In

J(r2cos2/-l)sin2^ = 0.
o

This leads to r21A - 1 = 0. Hence, the solution is r = 2.
We also have

g(r) = -£f2 j(r2 cos21 - l)sin21 dt = - £r2m — - 1 .

Therefore, g'{r) = - ern{r2 - 2\ As g'(2) = - lern, we conclude that
the cycle is stable when e > 0 and unstable when e < 0.

Fig. 3.5.1 The stable limit cycle of the VdP equation with e = 0.005.
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Exercise 3.5
1 Apply the energy balance method to find the amplitude and stability of
any limit cycles in each of the following equations
(a) x + e(x2 + x2 - l)x + x = 0 ;

(b) 3c + f— - i be + * = 0 ;

(c) x + ei\x\ - \)x + x = 0.

3.6 Estimation of Amplitude and Frequency

We are still concerned with Eq. (3.5.1)

x + eh(x, x) + x = 0.

The equation is also written in the form of Eq. (3.5.2). Introduce polar
coordinates

*(*) - r(t)cose(t), y[t) = r{t)sin0{t).

Using

cos2 d + sin2 6 = 1,

we obtain

r2 =x
2 + y2, tan<9 = —.

x

So we have

rf = xx + yy, r2d = xy - xy .

Substituting Eq. (3.5.2) into the above equations yields

r = -eh(rcosd, rsin#)sin0,

• eh(rcos6, rsinfl)cosfl , .
tf — — 1 . ^J.O.lj

r
The differential equation for the phase paths is

dr ehsinO ,. , » .
— = ; . (j.6.2)
dO I+ ehr-1 cosd



Scalar Nonlinear Differential Equations 89

Suppose that the system contains a limit cycle or one of the curves
constituting a center. Let its time period be T. Then r(t) and d(t) all
have time period T, meaning that r(t0 + T) = r(t0) for every t0. For
very small e\, expanding the right-hand side of Eq. (3.6.2) in power of
£ yields

— = ehsin0 + o(e2)=O{s). (3.6.3)

d0

Integrating this equation from In with respect to 0, we have

r{e)=r0 + O{e),
where r0 = r^Ln\ Integrating dr/d0 = £hsin0 + O\e2) from 0 = 2n to
6 = 0, we get

o

0 = £ jh(rcos0, rsin8)smddd + o(e2),
In

where we use r(o) - r(2n) = 0. Rearrange the above equation
In

jh(r cos 0,r sin 0)sin0dd =O(e).
0

Since the integral on the left does not depend on e, a necessary
condition for the phase path to be closed is

In

jh{rocos0, rosin0)sin0d0 = 0 , (3.6.4)
0

where we use r(0) - r0 + O(e). This equation is used to approximate the
amplitude, r0. Integrating the expression for 0 with respect to t from
2n yields

0 = 2n-t + 0{e).

We substitute this into Eq. (3.6.4) to obtain
2n

J/j(r0cos/, -rosinf)sinfefr = 0. (3.6.5)
0

From Eq. (3.6.1), the period T is approximated by

T = )dt = W = 1 —*°. , , (3.6.6)
0
J I 0 tl + er-1h(rcos0,rsm0)cos0
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where we use the fact that the direction along the path for / increasing is
clockwise and the positive direction for the polar coordinate 9 is
counterclockwise. From r = r0 + 0(e) and Eq. (3.6.6), we approximate
T as

In

T= J[l - &?h(r0 cos6>, r0 sin6>)cos<9 + o(e2)]d0
0

e2"
~2n \h(r0 cos#, r0 sin#)cos#c/#.

ro o

The error is of order e2. The circular frequency of the periodic
oscillation is

n In

Q) = — ~l + [h(r0 cos6>, r0 sin9)cos0d9 , (3.6.7)
T 2w0 0

J

where £ is small.17 Such an equation is close to the equation

x + x = 0,

whose phase diagram consists of circles centered on the origin. We now
use this fact to construct approximate solutions to the original equation.

Example The VdP equation.
Consider Eq. (3.4.1). Equation (3.6.5) is the same as Eq. (3.5.5). The
amplitude is r0 = 2 to order e. By Eq. (3.6.7)

co = 1 + — |(4cos2 B - l\2sinO)cos0d0 = 1.

Hence, the frequency is 1 with error O[e2)

Example Analyze x + sin* = 0. We note

x3

sin x = x .
6

The approximate equation is

17 This and the following sections are based on Sees 4.1 and 4.2 in Jordan and Smith
(1999).
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X + X- — = 0 .
6

Hence, e = -1 /6 and h - x3. Equation (3.6.5) for the amplitude r0

becomes
in

r3 Jcos30sin7<# = 0.
0

The equation is satisfied for all r0. Equation (3.6.7) becomes

co = \ — \rl cos4 Ode.

We have « = l - r o
2 /16 .

Exercise 3.6
1 Obtain an approximation to the amplitude and frequency of the limit
cycle for Rayleigh 's equation

x + e\—— i + j c = O.



Chapter 4

Economic Dynamics with Scalar Differential
Equations

This chapter applies concepts and theorems of the previous two chapters to
analyze different models in economic model. Although the economic
relations in these models tend to be complicated, we show that the
dynamics of all these models are determined by motion of one-dimensional
differential equations. Section 4.1 examines a one-sector growth model. As
the economic mechanisms of this model will be applied to some other
models in this book, we explain the economic structure in details. This
section also applies the Liapunov theorem to guarantee global asymptotical
stability of the equilibrium. Section 4.2 depicts the one-sector growth model
proposed in Sec. 4.1 with simulation. Section 4.3 examines the one-sector-
growth model for general utility functions. Section 4.4 examines a model of
urban economic growth with housing production. In Sec. 4.5, we examine a
dynamic model to see how leisure time and work hours change over time in
association with economic growth. Section 4.6 examines dynamics of
sexual division of labor and consumption in association of modern
economic growth. We illustrate increases of women labor participation as a
"consequence" of economic growth as well as changes of labor market
conditions. Section 4.7 introduces the Uzawa two-sector model. In Sec. 4.8,
we re-examine the Uzawa model with endogenous consumer behavior. The
models of this chapter show the essence of economic principles in many
fields of economics, such as equilibrium economics (as a stationary state of
a dynamic economics), growth theory, urban economics, and gender
economics. The basic ideas and conclusions of this chapter require some
books to explain, if that is possible. This also proves power of differential
equations theory.

92
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4.1 The One-Sector Growth (OSG) Model

We are concerned with an economy of one production sector. The model
proposed in this section is called the OSG model initially constructed by
Zhang.1 Most aspects of our model are similar to the Solow one-sector
growth model. It is assumed that there is only one (durable) good in the
economy under consideration. Households own assets of the economy
and distribute their incomes to consume and save. Production sectors or
firms use inputs such as labor with varied levels of human capital,
different kinds of capital, knowledge and natural resources to produce
material goods or services. Exchanges take place in perfectly competitive
markets. Production sectors sell their product to households or to other
sectors and households sell their labor and assets to production sectors.
Factor markets work well; factors are inelastically supplied and the
available factors are fully utilized at every moment.

Behavior of producers
Let K(t) denote the capital existing at each time / and N(t) the flow of
labor services used at time t for production. The production process is
described by some sufficiently smooth function

F(t) = F{K(t),N(0). (4.1.1)

We assume that F(K(t),N(t)) is neoclassical.2 We assume that the
production function exhibits constant returns to scale. It is
straightforward to check that a linear homogeneous production F(K,N)
has the following properties:

(i) FIN = F{k,\) = f{k),k = KIN;

1 Since some other models in this book are closely related to this model, we will explain
it in details. See Zhang (1999) for further explanations.
2 A production function F(K,N) is called neoclassical if it satisfies the following

conditions: (1) F(K,N) is nonnegative if AT and N are non-negative; (2) F(0,0) = 0;

(3) FK and FN are nonnegative; (4) there exist second partial derivatives of F with

respect to K and iV; (5) the function is homogeneous of degree

one, F(AK,AN) =AF(K,N), for all nonnegative A; (6) the function is strictly quasi-

concave.
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(ii) FK =JF/dK = f'(k)>0;
(iii) FN = f{k) - kf\k) > 0 ; and
(iv) The Euler theorem holds

KFK+NFN=F.

We portray intensive form f{k) of the aggregate production function
in Fig. 4.1.1. As we move out to the right along the production function,
output per worker increases as the capital/labor ratio k(t) rises. The
shape of f(k) in the figure reflects the assumption that there are
diminishing returns to increases in k(t). The increment to output per
worker declines as capital per worker rises. The slope of the production
function becomes flatter from left to right. This means that although
more capital always leads to more output, it does so at a decreasing rate.

K k
Fig.4.1.1 Intensive form of the aggregate production function.

We assume (identically numerous) one production sector. Its goal of
economic production is to maximize its current profit

7l(t) = p(t)F{t) - r{t) K{t) - w(t)N(t),

where p(t) is the price of product, r(t) is the rate of interest, and w(t)
is the wage rate.
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We assume that the output good serves as a medium of exchange and
is taken as numeraire. We thus set

p{t) = \

and measure both wages and rental flows in units of the output good.
Maximizing n with regard to K and N as decision variables yields

r = FK = f\k), w = FN= f(k) - kf(k) . (4.1.2)

Since the production function is homogeneous of degree one, we have

KFK + NFN=F

or rK + wN = F. This result means that the total revenue is used up to
pay all factors of the production. We thus conclude that if the production
function is homogeneous of degree one, the 'adding-up requirement' is
satisfied.

Behavior of consumers
Consumers obtain income

Y = rK + wN = F,

from the interest payment rK and the wage payment wN. We call Y the
current income in the sense that it comes from consumers' daily toils
(payment for human capital) and consumers' current earnings from
ownership of physical capital. The sum of money that consumers are
using for consuming, saving, or transferring are not necessarily equal to
the temporary income because consumers can sell wealth to pay, for
instance, the current consumption if the temporary income is not
sufficient for buying food and touring the country. Retired people may
live not only on the interest payment but also have to spend some of their
wealth. The total value of wealth that consumers can sell to purchase
goods and to save is equal to K(t). The gross disposable income is equal
to

Y' = Y + K.

The gross disposable income is used for saving and consumption and for
paying the depreciation of the wealth.

We assume that consumers pay the depreciation of capital goods
which they own. The total amount is equal to SkK(t) where
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8k (0<Sk< 1) is the depreciation rate of physical capital. At each point
of time, consumers would distribute the total available budget among
saving S(t), consumption of goods C(t), and payment for depreciation
SkK(t). The budget constraint is given by

C{t) + SkK(t) + S(t) = Y\t) = Y{t) + K{t).

Since the consumer has to pay the depreciation SkK(t), we call

Y(t) + K(t) - SkK{t)

the disposable income, which equals the net income minus the
depreciation loss

Y(t) = Y(t) + K(t) - SkK(t)

= rK(t) + w(t)N(t) + SK(t), (4.1.3)

in which

Sm\-St.

In our model, at each point of time, consumers have two variables to
decide. A consumer decides how much to consume and to save.
Consumption and saving exhaust the consumers' disposable personal
income, i.e.

C(t) + S(t) = Y(t). (4.1.4)

We assume that utility level U(t) that the consumers obtain is
dependent on the consumption level C(t) of commodity and the net
saving S(t). We use the Cobb-Douglas utility function to describe
consumers' preferences

U(t) = Ci(t)SiQ), £ / l>0, (4.1.5)

in which £ and A are respectively the propensities to consume goods
and to own wealth. We assume

<f + /l = l

without loss of generality. Maximizing Eq. (4.1.5) subject to Eq. (4.1.3)
yields

C(t) = &(t), S'(t) = AY(t). (4.1.6)

The optimal choice is illustrated in Fig. 4.1.2.
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S

Indifference
I curve

\ \ Optimal choice

; ^v , Budget line

C* C = Y C

Fig. 4.1.2 Optimal choice at time t.

Dynamics in capital-labor ratio
It appears reasonable to consider population as independent of economic
conditions, as a first approximation. Here, we assume that the population
dynamics is exogenously determined in the following way

N{t) = nN{t),

where n is a constant. The change in the households' wealth is equal to
the net saving minus the wealth sold at time t, i.e.

K{t) = S{t)-K{t). (4.1.7)

The above equations determine all the variables,
K(t), C(t), 5(0, N(t), F(t), r(t), w(t), U(t), in the system. We call this
dynamic system (with proper initial conditions) the one-sector growth
(OSG) model. We now rewrite the dynamics in terms of per capita. From
Eq. (4.1.6) and Y{t) = F{t), we have

S(t) = AY(t) = A{F(t) + SK(t)).
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Inserting the above equation into Eq. (4.1.7) yields

K{t) = AF(t) + ASK(t) - Kif) = XFif) - %kK{t), (4.1.8)

where we use

4 + A=l,S = l-St, £k={ + ASk.

As k{t) = Kit)/Nit), we have

Nit) N(t){N(t)) Nit)

SetEq. (4.1.8) in Eq. (4.1.9)

kit) = #(*(/)) - (& + n)kit) . (4.1.10)

The function /(&) has the properties: / (0) = 0, f\k) > 0 if k is
nonnegative. It can be seen that once the capital per capita kit) is
determined, all the variables in the system, such as K, F, Y, C, w, r
and U can be calculated accordingly. We now examine some properties
of Eq. (4.1.10).

The existence of a stable steady state
We now show that the economy will eventually arrive a steady
state/equilibrium - a situation in which output per worker
yit)i=Yit)INit)) , consumption per worker c(r) (= C(0 / Nit)), and
capital stock per worker kit) don't change over time.

Theorem 4.1.1 (The existence of a unique equilibrium and the stability)
If S and X satisfy

0<^^-<f\0), (4.1.11)
A

then there exists a unique positive value k* for Eq. (4.1.10) such that
Afik') = (4 + n)k*. The equilibrium point k' is asymptotically stable
in the region k > 0.

Proof: We introduce function

O(*) = # ( * ) - & ,

where S = E, + X5k + n. For any K > 0, by continuity we have

(4.1.9)
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O = F(K,O) = KlimN^y^,?j.

Hence, we have

This guarantees that for any 8/A>0 there exists kl such that
f(k)/k < 8 IA for all k > k\ On the other hand

Hence, there exists k2 > 0 such that f(k)lk > 81A for 0 < k < k2,
which means <!>(£) > 0 for 0 < k < k2. Since <&(&) is continuous, the
intermediate value theorem guarantees that there exists at least one point
k' > 0 such that f(k')/k' > 81 A, i.e., O(yt') = 0.

Let there be more than one positive solution and let k' > 0 denote the
one with minimum value. First, we note

O' = Af'(k) - 8 , f'(k) > 0, ®"(k) = Af" < 0, <D(0) = 0,

<D'(0)>0.

Since 0(0) = 0 and O(&*) = 0, there exists k \ 0<k" <k' such
that <&'(k°) = 0. It is trivial to check that

$(*•) = O'(**) = 0.

This implies (FN - ) / - kf - 0 which is impossible. Hence, we
have £° < k' and Of(**) < 0. Because ®"(k) < 0 and &(k°) = 0, we
have <&'(*) < 0 for any k° < k' < k. Since O(A;*) = 0 and ®'(k) < 0
for any k > k', we conclude that it is impossible to find such a A:, > k'
at which <!>(&,) = 0. This means that the system has a unique
equilibrium.

We now confirm that the equilibrium is stable. The equilibrium point
of the system is asymptotically stable if for any admissible initial point
kQ the solution y/(t;tQ) to 11 = Af - 8k satisfies

l im^. ?/(/;*„) =k'.
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The asymptotical stability can be proved by applying the Liapunov
theorem. Define the Liapunov function

V(x) = \x\,

where x = k - k' and k* is the equilibrium value. We have V{x) > 0
and V(x) = 0 iff x - 0. Since

V = sgn(x)k = sgn(xj{Af(k) - Sc}\K_ I * * * 0 '
I— U II X — u .

Hence, the equilibrium k = k* is globally asymptotically stable.

The economic development can be described as follows. In the long
run the economy will always converge smoothly to the unique
equilibrium capital/labor ratio from any positive starting point.
Moreover, along the balanced growth path, capital expands at the same
rate as the population growth rate plus depreciation rate of capital. The
importance of this model lies in the fact that it supplies a very simple
consistent system to simultaneously determine all significant variables -
labor and capital inputs to production, outputs, saving, consumption,
investment - in economic development. Irrespective of its oversimplified
assumptions about production function, saving and investment behavior,
the role of monetary variables and so on, it is a powerful tool since it
gives us a logical framework to analyze some aspects of economic
development.

When the economy reaches the stationary capital intensity, capital per
capita will remain the same as time passes, but the stock of capital K(t)
remains growing infinitely at the same predetermined rate as the labor
force n. The sustainable growth rate of the model is exogenously given
by «. This can be confirmed by

K(t) = kNoe"', F(t) = f(k)Noe"', C{t) = c(k)Noe"'.

We now formally describe the properties of the dynamic system.
We have examined the dynamic properties of the OSG model. It has a

long-run steady state at which growth rate of per capita consumption is
zero. We now examine 'transitional dynamics' — a time-dependent
process of how per capita income converges toward its long-run steady
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state. Dividing Eq. (4.1.10) by k(t), we obtain growth rate gk(t) of per
capita capital as

&(O.M.:£te0Lfc+ll).
£ t w k{t) k(t) v* ;

Here, gk(t) stands for growth rate of per capita capital at time t. The
above equation says that the growth rate of per capita capital equals the
difference between two terms, Xf Ik and £j + n, which we plot against
k in Fig. 4.1.3. The first curve is a downward-sloping curve and the
second term is a horizontal line. The vertical distance between the curve
and the line equals the growth rate of per capita capital. As shown before,
there is a unique equilibrium. The figure shows that to the left of the
steady state, the curve lives above the line. Hence, the growth rate is
positive and k increases over time. As k rises, the growth rate declines.
Finally, k reaches k' as the growth rate becomes zero. An analogous
argument demonstrates that if the system starts from the right of the
steady state, the growth rate is negative. As k declines, the growth rate
rises and finally becomes zero.

\

negative growth rate

, , \ & +"

>v positive growth rate

=—k
Fig. 4.1.3 Dynamics of growth rate in the OSG model.

Exercise 4.1
1 If the production function is taken on the Cobb-Douglas form

F(t) = Aem'KaNfi,
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where m is the rate of technical progress and A is a constant. Introduce
ratio of capital and effective labor as follows

£( O s_^)_.
A(t)N(t)

Show that the capital accumulation equation corresponding to Eq.
(4.1.10) becomes

kt) = M{t)a -{Zk+n + m)k{t).

Also find the equilibrium and stability conditions of the OSG model with
exogenous technology.

4.2 The OSG Model with the Cobb-Douglas Production Function

This section solves the OSG model when the production function is
taken on the Cobb-Douglas production function

F(i) = AK(t)aN(tY, a,/3>0, a + J3 = 1, (4.2.1)

where A is a number measuring overall productivity, and a and fi are
parameters. The parameter A is often referred to as total factor
productivity or simply productivity. We summarize the OSG model in
per capita terms under Eq. (4.2.1)

f = Aka, r = aAk-p, w = PAka,

c = %(Aka + Sk\ s = A(Aka + Sk\

kp
s=A-<!;S—, (4.2.2)

A
k = AAka - (^ + n)k. (4.2.3)

We now simulate this model, specifying the parameters as

a = 0.3, « = 0.015, A = 0.55, ^ = 0 . 0 1 5 .

The population grows at annual growth rate of 1.5 percent and capital
depreciates at rate of 1.5 percent. The propensity to own wealth is 0.55,
which may be unreasonably low for a rich economy. We will discuss
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possible change of X later on. We don't consider any technological
change here and specify A = \. The parameter a is set at 0.3. With
initial conditions of k(0) = 0.7, we run the dynamics of the economy for
25 years. Figure 4.1.1a describes the dynamics of per-capita capital and
per-capita income. The per-capita capital and per-capita income exhibit
similar pattern of growth - in initial stages they grow very rapidly. The
growth rates of these two variables are demonstrated in Fig. 4.2.1c. As
the per-capita consumption and saving are positively proportionally
related to the per-capita capital and per-capita income, they grow in the
same pattern k{t) and y{t), as demonstrated in Fig. 4.2.1b. The wage

rate grows not rapidly even during the initial stage of fast economic
growth and it becomes stationary after a few years. Similarly but in the
opposite direction, the rate of interest declines in the initial years but
becomes stationary soon.

k,f c, s

1.2 k ^ 1-3

1.1 / f X-2 / ^

J^— t 1-1 / c
o.9s] 5 10 15 20 25

 0 9 v \ < V is " i r ^ t

0-8 / 0.8 /

0.7 f 0 . 7 '

a) the wealth and output b) the levels of consumption and saving

gk,gy r ,w

°-°8 \ 0 .7 / - -^
°-06 I \ 0.6
0.04 W \ o.5
0.02 \\efc 0.4 r

^ . t - ^ - ^ . ' • t
5 10 15 20 25 5 10 15 20 25

c) growth rates of k{t) and y(t) d) the rate of interest and wage rate
Fig. 4.2.1 The dynamics of the OSG model with a = 0.3.

We describe the dynamics of the model with the help of computer. In
fact, we can analytically solve all the variables. Equaion (4.2.3) is a
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Bernoulli equation in the variable k(t). Inserting z(t) = kp{t) into Eq.
(4.2.3) yields

z + (1 - «X& + n)z = (1 - a)AA, (4.2.4)

which is a standard first-order linear differential equation. The solution is
given by

z(t) = [z(0) - -*LV«ft+ " + - 2 L . (4.2.5)

Substituting z(0 = ^ ( O back to Eq. (4.2.5), we obtain

kfi(t) = (k\0)--^-)e'^ + ")l + - ^ - , (4.2.6)

where £(0) is the initial value of the capital-labor ratio k(t). This
solution is what determines the time path of k(t). Once we know k(t),
all the other points are explicitly determined at any point of time.

As t —> + °<>, the exponential expression will approach zero.
Consequently, letting t —> + °° yields the unique steady-state capital
ratio

*'=M f̂. (4.2.7)
The capital-labor ratio will approach a constant as its equilibrium value.
This steady state, as shown in the preceding section, varies directly with
the propensity to save X, the technology A, and inversely with the
propensity to consume £, the population growth rate n, and the capital
depreciation rate Sk.

We mentioned that a rise in the propensity to own wealth may either
increase or reduce consumption. We now simulate the model to
demonstrate how the equilibrium values of y and c vary as the
propensity to own wealth changes. We specify the parameters as follows

a = 0.3, n = 0.015, Sk = 0.03, A = 0.8.

Using

y = Aka, c = %(Aka + Sk\ s = x[Aka + Sk\ y = c + s,
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we depict how c, s, y and y vary as A changes for A e [0.01, 0.99].
The consumption per capita increases as A rises until A reaches
0.5628; after A = 0.5628, the consumption per capita falls as A rises.
The simulation shows that from the long-run perspective, it is desirable
to have a 'proper' propensity to own wealth. The saving per capita, the
current income, and the disposable income rise as A rises. A national
economy may definitely become rich in this model by increasing the
propensity to own wealth. If an economy 'over-saves', its income rises
but consumption falls.

c, s, y, y

the disposable income /
2 /

/ s

1.5 s^ /

, , , , A
0.3 0.4 0.5 0.6 0.7 0.8

Fig. 4.2.2 The propensity to own wealth and the equilibrium values.

4.3 The OSG Model with General Utility Functions

A straightforward way to generalize the Cobb-Douglas utility function is
to express U(t) in a general form

U(t) = U(C(t),S(t);K(t),Y(t),t),

where C(t) and S(t) are variables that consumers decide and K(t),
Y(t), and t are given parameters that may affect utility.

In the above formula, for instance, we may use t to express the age
of the consumer. The age of the consumer is a key factor in affecting
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consumption in the life cycle theory. When we study a special individual
or a certain age group, this parameter is significant for examining
behavior pattern.

The consumer is to choose his most preferred bundle (c(t), s(t)) of
consumption and saving under his budget constraint. The utility
maximizing problem at any time is defined by

Max U(c,s), s.t. c(t) + s(t) < y{t) • (4-3.1)
c,s SO

The following theorem holds.

Theorem 4.3.1 Let U(c,s): /?+
2 -> R1 be a C function that satisfies the

monotonicity assumption, which says that dU/dc >0 and dU Ids > 0
for each (c, s) satisfying the constraint set in Eq. (4.3.1). Suppose that
{c*,s) maximizes U on the constraint set. Then, there is a scalar
X > 0 such that

— (c,s)<A,—{c,s)<A.

We have dUldc = 'X if c * 0 and dU/ds = T if s* * 0. If both
c > 0 and s" > 0, then

— - { c , s ) = A , — - { c , s ) = A .
dc as

The budget constraint is binding,

c + s - y.

Conversely, suppose that U is a C1 function which satisfies the
monotonicity assumption and that {c',s*)>0 satisfies the budget set
and the first order conditions

— - — - J
dc ds

If U is C2 and if

0 1 1

^ | = 1 Ua Ua =2Ucs-Ucc-Uss>0,

1 Usc Uss
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then (c\ s') is a strict local solution to the utility maximization problem.
If U is quasiconcave and V£/(c, s) for all (c, s) * (c\ s*), then (c*, s)
is a global solution to the problem.

The proof of this proposition and other general properties of the
problem can be found in advanced textbooks on microeconomics.3

We now specify some properties of U to obtain explicit conclusions.
We require U to be a C2 function, and satisfy Uc > 0, Us > 0 for any
(c, s) > 0. Construct the Lagrangian

L(c,s,I) = U(c,s) + J(y - c - s).

The first-order condition for maximization is

Uc=Us=A, y-c-s = 0. (4.3.2)

The bordered Hessian for the problem is

0 1 1

| ^ | = 1 Ua Ucs =2UCS-Ucc-Uss.

i uK uss

The second-order condition tells that given a stationary value of the
first-order condition, a positive \H\ is sufficient to establish it as a
relative maximum of U. It is known that the bordered Hessian is
identical with the endogenous-variable Jacobian. Hence, if H is not
equal to zero, we can directly apply the implicit function theorem to the
problem. That is, the first-order condition has a solution as C1 functions
of the disposable income y. Taking the derivatives of Eqs. (4.3.2) with
respect to y, we have

CC i* CS I * SC 1* SS 1* "

ay ay ay ay

cfc ds

dy dy

We solve these functions

ds _ USC~UCC

$ 2UCS-USS-UCC'

3 see Mas-Colell, et al. (1995).
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dc _ USC~USS

dy 2Ucs-uss-uJ
We see that 0<ds/dy < l and Q<dcldy < l in the case of

Usc > 0 under the second-order condition of maximization. We denote
an optimal solution as function of the disposable income

(c(t),S(t)) = {c(y(t)),S(y(t)).

The vector (c(y(t)), s(y(t)) is known as the Walrasian (or ordinary
or market) demand function, when it is single-valued for all positive
disposable income.

The capital accumulation equation for general utility function is given
by

K{t) = s{y(t))N(t)-K(t). (4.3.3)

Inserting

k{t) = ^ - - nkif),
N(t) '

into Eq. (4.3.3) yields

k\t) = s(y(k))-{\ + n)k(t), (4.3.4)

where

y{k(t)) = j ^ = f{k(t))+dk(t).

In a stationary state

s{y(k)) = {l + n)k. (4.3.5)

We now show that this equation has a unique solution. Define

* ( * ) = T ^ 4 - - 1 , * > 0 . (4.3.6)
(1 + n)k

When k is approaching zero, y (= f(k) + 3c) is also approaching zero,
and hence s(y) is coming near zero. As 0 < s'(y) < 1 and f'(k) —> °° as
Jt-»O,

to-^.'WyW)+ *>>!. (4.3.7)
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When k is approaching positive infinity, y tends to positive infinity. As
0 < s\y) < 1 and f'(k) -> 0 as k —> + °°, we have

l i m_g) .'(+-*ri+-)**)<u
k->+~(\ + n)k (l + «)

Taking derivatives of Eq. (4.3.6) with respect to k yield

d® Js'(y)k{f'(k) + 5) 1 5(j))
dfc [_ j(j>) J ( l + «)A:2

We now show that d$>/dk<0 for k > 0. To prove this, we use
dsldy <1 and the inequality f'(k) < f(k)/ k (which also guarantees
w > 0). By Eq. (4.3.5) and the definition of y, we have

s'(y)k{f(k) + s) c 5'CP)(A*) + Sk)

(l + «>(j)) (1 + n)s{y)

(1 + n)s(y)

where we use s'(y) < 1 and yls(y) < 1 to guarantee the right inequality.
We thus conclude cfi>/dk<0 for k > 0. The equation, O(£) = 0 for
k > 0 has a unique solution because of Eqs. (4.3.7) and (4.3.8), and
d<£>/dk<0. We now demonstrate that the unique stationary state is
stable.

For the steady state to be stable, the following conditions must prevail

d[s{y(k))-{l + n)k]

dk

= s'(ylf'(k) + S)-(l + n)<0. (4.3.9)

From the equilibrium condition and inequalities (4.3.7), we have

s'(yXf'(k) + S ) _ s ' ( y ) k ( f ' ( k ) + S ) < l

1 + n s'(y)

Accordingly, the inequality (4.3.8) is satisfied. We see that the
conclusions for the Cobb-Douglas production and utility functions are
also similarly held for more general production functions and utility
functions. Summarizing the discussions, we obtain the following theorem.

(4.3.8)

(4.3.10)
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Theorem 4.3.1 Given a production function that is 'neoclassical' and a
utility function that is a C2 function, and satisfies Uc > 0, Us > 0 for
any (c(t), s(t)) > 0. Let the bordered Hessian be positive for any
nonnegative (c(t), s(t)). Then the capital-labor ratio converges
monotonically to a unique positive steady state. The unique stationary
state is stable.

The stability guaranteed above is local. We now show that if s(y) is
concave in y, then the system is globally stable. Because of

d2c = d2s
dy2 " dy1

by equation

, dc ds

dy dy

concavity of s implies convexity of c. From the first-order conditions, it
is straightforward to give that conditions under which s is concave, we
omit the expression because we lack a clear economic interpretation.

Asymptotical stability can be proved by applying Liapunov's
theorem. Define the Liapunov function

V{x(t)) = x(t)2,

where x(t) = k(t) - k' and k' is the equilibrium value. We have
V(x)>0 and V(x) = 0 iff x = 0. Differentiation of V(x(t)) with
respect to t gives

V = 2xk = 2x{s{y(k)) - (l + n)k}

= 2x{s{y{k' + x)) - (l + n\k' + x)},

where we use Eq. (4.3.3). By concavity of f(x + k*)

f(k*+x)<f(k') + xf'(k').

According to its definition, y{k) is also concave in k. Hence,

y{k' + x)< y{k") + xy\k*) .

Since ds/dy > 0, we have

V < 2x{s(y(k') + xy'(k'))-{l + n^k* + x)}.
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Concavity of s(y) estimates

V < 2x{s(y) + xy'(k')s'{y) - (l + nfk' + x)}.

The equilibrium condition (4.3.4) rewrites the above inequality

By the inequality (4.3.9), we conclude dV/dt<0 if x * 0 and
dVIdt = 0 at x = 0. Hence, the equilibrium k = k* is asymptotically
stable.

4.4 Urban Growth with Housing Production4

We consider an isolated system. The population is homogeneous. The
households achieve the same utility level regardless of where they are
located. All the markets are competitive. The system is geographically
linear and consists of two parts - the CBD and the residential area. The
isolated state consists of a finite strip of land extending from a fixed
central business district (CBD) with constant unit width. All economic
activities are concentrated in the CBD. The households occupy the
residential area. The CBD is located at the left end of the linear territory,
as illustrated in Fig. 4.4.1. As we can get similar conclusions if we locate
the CBD at the center of the linear system, the special location will not
essentially affect our discussion.

The system consists of two, industrial and housing, sectors. The
industrial production is similar to that in the OSG model. The housing
production is similar to that in the Muth model.5 Housing is supplied
with combination of capital and land. We select industrial good to serve
as numeraire. We now describe the economic model of the isolated state.
To describe the industrial sector, we introduce

4 The urban model is based on Chap. 2 in Zhang (2002). The model may be extended
with different urban elements (e.g., Arnott, 1979, Brueckner and Rabenau, 1981, Miyao,
1981, Wang, 1993). The literature on urban dynamics is referred to Zhang (2002).
5 Muth (1973).
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Residential area:

5" 5_ g transportation, lot size
2. g 2 consumption and savings
** •* *" residential location

4- C B D »L L »

Fig. 4.4.1 Economic geography of the isolated state.

N = the fixed population;
Kt (t) = the capital stocks employed by the industrial

sector at time t;
w(t) and r(t) = the wage rate and the rate of interest,
F{t) and C{t) = the output of the industrial sector and the total

consumption of the commodity;
L = the fixed (territory) length of the isolated

state;
O) = the distance from the CBD to a point in the

residential area;
R(Q), i) and Rh{co,t) = land rent and housing rent per household at

location 0);
k(co, t) = capital stocks owned by the household at

location a>;
c(co, t) and y(co, t) = the consumption and the net income of the

household at location co, respectively;
n(co, t) and Lh{co, t) = the residential density and the lot size of the

household at location co;
Kh{t) = the capital stocks employed by the housing

sector; and
K(t) = the total capital stock of the economy.
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We assume that industrial production is carried out by combination of
capital and labor force in the form of

F{t) = K?N*1, a + fi = l, a,j3>0, (4.4.1)

where a and /? are parameters. The marginal conditions for profit
maximization are given by

aF PF ...
r = , w = £—. (4.4.2)

Housing is produced with land and non-land inputs. Let us denote
ch{(O,t) housing service received by the household at location (ti. We
specify the housing service production function

ch{(o,t) = Las{co,tyh>{co,t), ah+Ph=\, ah,/3h>0, (4.4.3)

where kh{o), f) is the input level of capital per household at location co.
The marginal conditions are given by

r = «^A; R=M&L, 0<co<L. (4.4.4)
K Lh

According to the definitions of Lh and n, we have

n(co, t) = —^—r, 0<co<L. (4.4.5)
Lh{0), t)

The relationship between kh{co, t) and Kh(t) is given by

Kh{t)=\n{co,t)kh{co,t)do). (4.4.6)
0

To define net income, we now specify land ownership. For simplicity,
we assume the public ownership, which means that the revenue from
land is equally shared among the population. The total land revenue is
given by

_ L

R(t)= JR{cu, t)dco.
0

The income from land per household is given by

_/ x R~(t)
w
 N
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The current income y(co, t) of the household at location co consists
of three parts: the wage income, the income from land ownership and the
interest payment for the household's capital stocks. That is

yico, t) = rk{co, t) + w(t) + r(t). (4.4.7)

The gross disposable income is

y{co, t) = y(o), t) + k{o), t).

Many previous models of residential location theory are developed with
regard to rent theory since Alonso's seminal work.6 In this approach
residential location is modeled on the basis of the utility function.
Location choice is closely related to the existence and quality of such
physical environmental attributes as open space and noise pollution as
well as social environmental quality. Basically following this approach,
we assume that utility level U of the household at location co is
dependent on the temporary consumption level c(co, t), housing
conditions ch(co, t), the leisure time Th(co, t), the amenity E(co, t), and
the saving S(co, t) as

u(co,t) = ETh
aclc'JhS\ a,£,rj,A>0, (4.4.8)

where E(CO, t) and Th{co, i) are specified as

E{co) = - / V , r » = To~ V(0> /".' M,v,T0>0. (4.4.9)

The function E{CO, t) implies that the amenity level at location CO is
determined by the residential density at the location. The function
Th(o), t) means that the leisure time is equal to the total available time To

minus the traveling time va) from the CBD to the dwelling site. As the
population is homogeneous, we will have

U{o\, t) = U(o)2, t), 0 < o\, w2 < L .

The budget constraint is given by

c{a), t) + Rh{co, t)ch{(0, t) + S{co, t) + 8kk{co, t) = y{co, t),

where Sk is the rate of capital depreciation. Maximizing U subject to
the budget constraint yields

6Alonso(1964).
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Rh(a))ch(co) = ripy(ca\ c(co) = ^py{co\

S(co) = Apy(co), (4.4.10)

where

y{co) = y{co)-8kk{co\ P = , + ^ •

According to the definition of S\co, t), the capital accumulation for
the household at location 0) is given by

k{co) = S{co) - k{co), 0<co<L.

Substituting S{co, t) into Eqs. (4.4.10) into the above equation yields

k{co) = sy(co) - Sk(co), 0<co<L, (4.4.11)

where

s = Ap, S = Sk+(£ + rj)p0, po=(l-Sk)p.

As the state is isolated, the total population is distributed over the whole
urban area. The population constraint is given by

L

jn{o),t)dco = N. (4.4.12)
0

Similarly, the consumption constraint is given by
L

\n{co, t)c(co, t)dco = C(t), (4.4.13)

0

We also have

S(t) + C(t) = F(t), (4.4.14)
where

L

S(t) = j{s(o}) - k(co) + Skk{a))}n(co)dco .

0

The assumption that capital is always fully employed is given by:

Kt+Kh=K, (4.4.15)

L

\k{co)n{a))dcQ = K{t). (4.4.16)
0
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We have thus built the dynamic growth model with endogenous
spatial distribution of wealth, consumption and population, capital
accumulation and residential location. The system has 13 space-time-
dependent variables, k, c, ch,kh,Lh, S, n, E, Th, U, Rh, R, and y, and
10 time-dependent variables, F, Kn Kh, K, C, w, r, S, R, and F.
The system contains 23 independent equations.

Before examining the dynamic properties of the system, we show that
the dynamics can be described by the motion of a single variable K(t).
Multiplying Eq. (4.4.11) by n(co, t) and then integrating the resulted
equation from 0 to L with respect to (0 yields:

K = sY-SK, (4.4.17)

where
_ L

Y = jy(o))n(o))dco .
o

We now show that Y(t) can be expressed as a function of K(t).
Multiplying all the equations in Eqs. (4.4.10) by nip, t) and then
integrating the resulted equations from 0 to L with respect to CD, we
obtain

^ = T}pY+TipQK, C=fyY + fy0K,

S=ApY+Ap0K, (4.4.18)

where we use chRh = rkhl ah in Eqs. (4.4.4). Substituting S and C from
Eqs. (4.4.18) into Eq. (4.4.14) yields

(Z + A)pY-mK = F. (4.4.19)

From r = aFIKi and rKhlah = rjpY + T]POK, we have

— h — = ?jpY + rjp0K.
ahKj

Substituting

Y = J?p0K + F

Pit + X)
obtained from Eq. (4.4.19) into the above equation yields
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where we use Kh = K — Kt and

ah g + A

We now show that for any given K > 0,

has a unique solution for 0 < AT,. < K. As Q(o) > 0, Q,(K) < 0 and
dQ.1 dKj < 0, we see that &(.£,) = 0 has a unique solution as a function
of K. Let us represent this unique relationship by: Kt(t) - A(K(t)).
From Eq. (4.4.20), we have

^ = 7 ^ A , > 0 . (4.4.21)
dK (J3KIahA + A)aK

That is, an increase in the total capital stock will always increase the
capital stocks employed in the industrial production. From Kt = A(K)
and Kh = K - Kt, we see that the capital stocks, Kt and Kh, employed
by the industrial and housing sectors are uniquely determined as
functions of the total capital stocks K at any point of time. From
Kh= K - Kt and Eq. (4.4.21), we have the impact of changes in K on
Kh as follows

aK\ J-— + A —*- = -i-— + aAK - AA.
[ahA ) dK ahA

= \ — -A)/3K + A(K-A)>0,

where we use K > A and

ahA pNeAa{£ + X)

From F = AaNf>, F is a unique function of K. Substituting

f _ t]pQK + F(A)

(4.4.20)
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into Eq. (4.4.17), we have

K = S'F{A{K)} - S'K, (4.4.22)

where

5*S(FT^>0' **=*-W>o.
At any point of time, the dynamic equation (4.4.22) determines the

value of the total capital stocks K. We can show that all the other
variables are uniquely determined as a function of K and co
( 0 < < y < L ) a t any point of time.

Proposition 4.4.1 For any given (positive) level of the total capital
stocks K(f) at any point of time, all the other variables in the system are
uniquely determined as functions of K(t) and co ( 0 < co< L). The
dynamics of K(t) is given by Eq. (4.4.22).

Proof: We already uniquely determined Kn Kh and F as functions of
K. The rate of the interest rate r and the wage rate w are uniquely
determined by Eqs. (4.4.2). From Eqs. (4.4.4) and (4.4.5), we have
n(co)kh(a)) = ahR(co)/fihr. Substituting this into Eqs. (4.4.6), we have
R - /3hrKh/ah where r and Kh are functions of K. We directly have:
r = RIN. From Eq. (4.4.7), we see that y{co) is a known function of K
and k(co) (as r, w and r are functions of K). We determine k(a>) as a
function of K. We can get c{o)), S{co) and ch(a))Rh(ct)) directly from
Eqs. (4.4.10). We obtain S and kh(co) from Eqs. (4.4.14) and
K - ahch^h^r fr°m Eqs. (4.4.4), respectively.

We now have five space-time dependent variables, Lh, n, ch, Rh,
and R, to determine. From Eqs. (4.4.10), we see that c, chRh and S are
known functions of K. Substituting Eqs. (4.4.10) into U{co) in Eq.
(4.4.8), it is obvious to see that we may have U(co) in the form of

U{(0'K)- Rl{co,KY

where f(co, K) is a function of co and K. On the other hand,
substituting ch = La

h"k^ into r = ahRhchlkh, we have
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rna"ka
h

h

where r and kh are given functions of CO and K. Substituting Rh into
U{co, K) and then using U(co) = u(o), we have

/(o,*)J k ;

Hence, if we can determine n(0, K) as a function of K, then «(<y) is
given. Substituting n(co, K.) in the above equation into the population
constrain equation (4.4.12), we can explicitly get «(0, K) as a function
of K. From Lh=\ln, ch=La

h
Htfh, r = ahRhchlkh and

R = PhRhchlLh, we directly get Lh, ch, Rh and R as functions of <y
<m&K.

We can thus explicitly determine the motion of the system over time
and space. It should be remarked that the result that the dynamics can be
explicitly given in the simple form as Eq. (4.4.22) is important. This
makes it possible to explicitly determine stability of the system.

We now examine problems of equilibrium and stability. From Eq.
(4.4.22), equilibrium is determined as a solution of the following
equation

S'F{A(K)}= S'K. (4.4.23)

From Eq. (4.4.20), we have

AAa

K = aK'lak-npJptiH£ + X) • ( 4 A 2 4 )

Substituting Eq. (4.4.24) into Eq. (4.4.23) yields
-il/>S

A = [ah{S'A/s'+m/p({ + A)\\ N> ( 4 A 2 5 )

where we use F = AaNfi. Substituting Eq. (4.4.25) into Eq. (4.4.24), we
directly determine K as a function of the parameters in the system. That
is, the dynamic system has a unique equilibrium. From
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d(s*F - S'K) = d(s'F) _ s. = _ PS'K
dK dK /3K + ahAA < '

where we use s*F = S'K and Eq. (4.4.21), we see that the unique
equilibrium is stable.

We now determine equilibrium values of the other variables. The
capital employed by the industrial sector is given by: K, = A. From Eqs.
(4.4.1), (4.4.2) and (4.4.15), we directly get F, w, r and Kh. From Eq.
(4.4.17), we have Y = SK/s. Substituting this into Eqs. (4.4.18), we
have

C = - £ S=SkK.

We also have

cch N

From Eq. (4.4.11), we have y -6k Is. Substituting Eq. (4.4.7) into this
equation yields

sW
k = ir—' <4 A 2 6 )

o - srwhere

Wmw+- = ft-A + WK,F (4A27)

ahNin which we use Eqs. (4.4.2). From y = Skls and Eqs. (4.4.10), we
obtain

c A = y > c = < | , S = 8kk. (4.4.28)

From Eqs. (4.4.4), we have

u _ aHCA
Kh - .

r
Substituting chRh from Eqs. (4.4.28) into this equation yields

kh=?A (4.4.29)
Ar
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Substituting Eq. (4.4.29) into U{co) and then using U(o) = U(co), we
have

* » \E(co)T{cofXn

Rh{0) [E(0)T(0Yj •

Substituting ch - La
h
hkfh into kh = ahchRhlr, we have

Rh ~ •

a*
Substituting this equation and Eq. (4.4.29) into Rh(co)/Rh(o) in the
above equation, we have

n(co) = n(0} 1 - — , 0 < co < L , (4.4.30)

where we use Eqs. (4.4.9) and B = cr/(ahTj + ju) > 0. From the above
equation, we can analyze how the amenity parameter, the available time,
the housing technology parameter, the traveling speed parameter and the
propensity to use leisure time affect the residential density distribution. It
can be seen that ^(fij) and n\co) are decreasing functions of the distance
co. Substituting Eq. (4.4.30) into Eq. (4.4.12), we have

W To-(l-vL/Tor
BTQ'

where we use Eq. (4.4.26). We thus obtained n(co). Here, we require the
following inequality:

vL<T0.

That is, the household's available time is more than that needed from
traveling from the CBD to the boundary of the economic system. We get
Lh,Rh,R and ch, respectively, by Eq. (4.4.5), Rh - rnahk"h Iah, Eqs.
(4.4.4) and (4.4.3). We have thus explicitly solved all the variables in the
dynamic system with endogenous economic geography. Summarizing
the above discussion, we have the following proposition.

Proposition 4.4.2 The dynamic system has a unique stable equilibrium.
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On the basis of Eq. (4.4.22), we can illustrate the unique equilibrium
and its stability as in Fig. 4.4.2. It can be seen that the macrodynamic
aspects of the model are quite similar to the Solow model. In the
remainder of this study, we examine effects of changes in some
parameters on the economic growth and geography.

F
^ S'F

*-- • L« •
K' K

Fig. 4.4.2 Urban growth and the steady state.

4.5 Endogenous Time in the OSG Model

In most parts of the world the value of their time is very low. Work is
hard, wage rate is low, life is harsh. In a few advanced economies, the
value of the time is high. As recorded in Schultz, real wages measured in
terms of the cost of food are changeable over history, as illustrated in
Table 4.5.1.7 Schultz explained that "The high price of human time is a
clue to many puzzles. These puzzles include the shift in institutional
support from the rights of property to that of human rights, the decline in
fertility, the increasing dependence of economic growth on value added
by labor relative to that added by materials, the increases in labor's share
of national income, the decline in hours worked, and the high rate at
which human capital increases.8"

7 Source: Schultz (1993: 83).
8 Schultz (1993: 84).
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This section proposes a dynamic interdependence of economic
growth, consumption and time allocation on the basis of the one-sector
growth model developed in Sec. 4.1. This section is a simplified version
of the dynamic trade model with time distribution proposed by Zhang in
1995.9

Table 4.5.1 An illustration of evolution of time values

2 weeks of wages in bushels
^ ^ ^ ^ _ _ ^ ^ ^ ^ ^ _ _ ^ ^ ^ ^ _ ^ ^ ^ _ _ _ ^ _ of wheat

limeofRicaido (1817) England 1
Marshall's lime (1890) United States 20
Fighty ycan> later (1970) United States 300
India field laboici in 1970 2

The production aspects of the economic system are similar to the one-
sector growth model. The parameters, N, Sk, g, A, variables, K{t),
F(t), S(t), C{t), r(t) and w(t), are defined the same as in Sec. 4.1.
We introduce two variables T(t) and Th(t) to stand for the working time
and leisure time of each worker. We assume that labor and capital are
always fully employed. The total labor force N*(t) is given by

N'(t) = T(t)N.

Here, we omit any other possible impact of working time on
productivity. The production function of the economy is specified as
F = AKaN'P, a + j3 = 1. Before simulation, let A = \. The marginal
conditions are given by

aF PF ... ..
r = - , w = - . (4.5.1)

The current income Y consists of the wage income and payment
interest for its capital, i.e.

Y = rK + wTN.

By Eqs. (4.5.1), we have Y(t) = F{t). The gross disposable income is
Y'(t) = Y(t) + K{t). As in Sec. 4.1, the budget constraint is

C + 8kK + S = Y' = rK + wTN + K .

9
 Zhang (1995).
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The time constraint requires that the amounts of time allocated to
each specific use add up to the time available

T(t) + Th(t) = T0.

Substituting this equation into the above budget constrain yields

C + wThN + S = Y,

where

Y = rK + wT0N + SK, S = \-Sk.

We assume that at each point of time consumers' preferences over
leisure time, consumption and saving can be represented by the
following utility function

U(t) = Th°{t)Ct(t)S\t), a,£,A>0,

where a is called propensity to use leisure time, g, propensity to
consume, and A, propensity to own wealth. Consumers' problem is to
choose current consumption, leisure, and saving in such a way that utility
levels are maximized. Maximizing U(t) subject to the budget constraints
yields

wThN = apY, C = fyY, S = ApY, (4.5.2)

where

O =
H (T + £ + A

The change in the households' wealth is equal to the net saving minus
the wealth sold at time /, i.e. K = S - K. By Eqs. (4.5.2), K(t) evolves
according to

K = AY - K.

We have built the dynamic model. The dynamics consist of one-
dimensional differential equation for K(t).

In order to analyze the properties of the dynamic system, it is
necessary to express the dynamics in terms of one variable at any point
of time. From K(i) = AY(t) - K(t) and the definition of Y(t), it is
sufficient to express T{t) or Th(t) as function of K(t). To show this,
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first we substitute r(t) = aF{i)lK(t) and w{t) = [}F{i)l N\f) into
Th(t) = aY(t)lw(t)N in Eqs. (4.5.1). We get

0NTh pT,N ^aN' { sN'

apK K K F '

where the definition of Y{t) is used. From the definition of TV* and
T + Th =T0, we have

N'(t) = {T(t)-T0)N.

Substituting N* = (T - T0)N into the above equation yields

*(7») - (To ~ Th)
a ^ - ^ - + M = 0 , (4.5.3)

A A A
where we use F = AK"N' and a=fi/ap + a>\. It is
straightforward to show that for any K{t) > 0 , the equation <&(rA(/)) = 0
has a unique solution for 0 < Th(t) < To. That is, we can consider Th{t)
as a unique function of K(t). We thus obtain the following lemma.

Lemma 4.5.1 The dynamics are given by the following differential
equation

K = AY-K = AY -(\-SA)K,

where Y is a function only of K. The variables are uniquely determined
as functions of K(t) at any point of time by the following procedure: Th

by Eq. (4.5.3) -> T = T0-Th -» N' =TN -» F = AKaN'P -»
r = aF/K and w =/3FIN' -» 7 = 7 + ̂  -> C and 5 by Eqs.
(4.5.2).

Proposition 4.5.1 The dynamic system has a unique stable equilibrium.
The variable K is given as below. All the other variables are given by
the procedure given by Lemma 4.5.1.

Proof: We now show that the system has a unique equilibrium. First,
from w = PFITN, wNTh = opY, and XY = K, we get

(4.5.4)
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Substituting AY = K into C and S in Eqs. (4.5.1) yields C = <*K/A
and S = 8kK. Substituting these equations into

F=C+S-K+ SkK,

we get F = AK, where A = £ I A. From Eq. (4.5.4) and F = AK

With this equation and T + Th = To, we solve the equilibrium time
distribution

T = JML_ = cfT0

* + %k'
 h * + ffk-

By F = AK and F = KaN'fi', we directly solve

K=TN

3}"'
By the procedure given in Lemma 4.5.1, we explicitly solve all the
variables as functions of K. We thus found the unique equilibrium of the
dynamic system.

To show that the unique equilibrium is stable, we calculate the
derivative of the left-hand side of K = ApY - K with respect to K. If
the derivative evaluated at the equilibrium is negative (positive), then the
equilibrium is stable (unstable). By r = aF IK, w = 0FIN' and the
definition of Y(t), we get

Y = t%£ + aF + 3C,
T

where T is a function of Th. We have

—^J- = An + Ap 1.
dK dT dK dK

This equation holds at any state. In equilibrium, we have

, dY . (pT. \PpAF A

Ap 1 = - ^—^ + a \—— < 0,
HdK [T J K

where we use ApY = K. We also have
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Xv~— = - aj3ApT>'F dT
V dT dK ~ T2 dK'

By Eq. (4.5.3), we have

*L = W <0

dK {SaK + (a + j3/cxp)F}

Using the above equations in equilibrium, we have
d(Apf - K) _ aj82SApThF pTJT + a

dK {SaK + {a + p/crp)F}T K

{Sa + (a + piap){\ + pTk IT)F I K}j3pAF ^ Q

SaK + (a + PIop)F

where we use a + /? = 1 and T + Th = To.

For simulation, we specify the following parameters

A = 0.5, N = l, To = 24, a = 0.3, Sk = 0.03, X = 0.25, a = 0.40.

With the initial condition of T(o) = 12, we simulate the motion of
T{t), K(t), Y(t), C(t), and w(t) with period of 10 years. Figure 4.5.1
depicts the motion of these variables during the given period. Figure
4.5.1a shows that work time declines as time passes. In the initial state,
half of the total time is spent on working. Workers gradually reduce
work hours. Figure 4.5.1b shows that capital stock increases over time.
The two plots show that capital accumulation moves in the same
direction as leisure changes. As capital stock increases, the current
income and the consumption rise. As capital stock increases, time value
declines. Figure 4.5.1c demonstrates that the consumption and the
current income rise rapidly in the initial period but the growth rates
decline as the system approaches equilibrium. Figure 4.5.Id predicts that
as work time declines, the wage rate declines.

We now examine impact of changes on dynamic processes of the
system. First, we examine the case that all the parameters, except p, are
the same as in Fig. 4.5.1. We reduce the propensity to enjoy time from
0.40 to 0.35. The simulation results are demonstrated in Fig. 4.5.2. The
solid lines in Fig. 4.5.2 are the same as in Fig.6.3.1, representing the
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values of the corresponding variables when a = 0.40; the dashing lines
in Fig. 4.5.2 represent the new values of the variables when a = 0.35.
Figure 4.5.2a shows that as the propensity to enjoy leisure falls, work
time increases from the initial time rather than declines as in the old
situation with a = 0.40. Figure 4.5.2b demonstrates that as work time
rises, the wealth declines as time passes. Although the wealth declines as
time passes in the case of a = 0.35, the wealth in case a = 0.35 is more
than the wealth a - 0.40 at each point of time. The reason is that as the
propensity to enjoy time falls, the propensity to consume rises (as we fix
the propensity to own wealth). As shown in Fig. 4.5.2c, both the
consumption and the current income fall as time passes. In Fig. 4.5.2d,
we see that the wage rate converges in the long term; but in the initial
period, the wage rate in the new case declines as time passes.

T K

. . q \ 2 4"" 6 8 10 t 0.8 ^ - - - —
\ 0.7 „/

11.8 \ 0.6 Y
11.7 VT 0.5 /
11.6 \ 0.4 /
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c) the income and consumption d) the wage rate and rate of interest
Fig. 4.5.1 Simulating the OSG model with endogenous time.

We examine the case that all the parameters, except A, are the same
as in Fig. 4.5.1. We consider that the total productivity rises from 0.50
to 0.60. The simulation results are demonstrated in Fig. 4.5.3. The solid
lines in Fig. 4.5.3 are the same as in Fig. 6.3.1, representing the values of
the corresponding variables when A = 0.50; the dashing lines in Fig.
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4.5.3 represent the new values of the variables when A = 0.60. We can
similarly interpret the new dynamics as we interpreted Fig. 4.5.2.
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Fig. 4.5.2 As the propensity to enjoy leisure a declines from 0.40 to 0.35.
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Fig. 4.5.3 As the productivity A increases from 0.5 to 0.6.
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It should be noted that another way to explore evolution of time
distribution is to consider possibility of value change as an endogenous
process of economic evolution. For instance, we may generally propose
that the propensity to own capital and the propensity to enjoy time are
related to the wealth and current income as

A{t) = <t>{K,Y\ (j{t) = <p{K,Y),

where <1>{K,Y) and <p{K,Y) are proper functions of K(t) and Y(t). The
two functions, <p{K,Y) and <P(K,Y), may be taken on different forms
because taste changes vary among individuals. Specifying taste change
patterns, we can simulate the model.

4.6 The OSG Model with Sexual Division of Labor and
Consumption

This section is concerned with another type of economic evolution with
group differences. Different from the previous sections, we classify
population into two groups based on gender. For simplicity, we are only
concerned with an ideal — a very simple case — when each woman has
only one husband and every adult must be married.

Dynamic interactions between economic growth and sexual division
of labor and consumption have caused attention of economists. Yet there
are only a few theoretical economic models which explicitly take account
of these interactions within a compact framework. Over the years there
have been a number of attempts to modify the neoclassical consumer
theory to deal with economic issues about endogenous labor supply,
family structure, working hours and the valuation of traveling time.10 It
has been argued that the increasing returns from human capital
accumulation represent a powerful force creating a division of labor in
the allocation of time between the male and female population.11 There
are studies on the relationship between economic growth and the family
distribution of income.12 There are studies of the female labor supply.

10 See Becker (1976), Chiappori (1988, 1992), Folbre (1986), Mills and Hamilton (1985),
Ashenfelter and Layard (1992).
11 Refer to Becker (1985).
12 The topic is referred to Fei, Ranis, and Kuo (1978).
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Women choose levels of market time on the basis of wage rates and
incomes. Lifetime variations in costs and opportunities - due to children,
unemployment of the spouse, and general business cycle variations -
influence the timing of female labor participation.13 There are studies on
the relationship between home production and non-home production and
time distribution. Possible sexual discrimination in labor markets has
attracted much attention from economists.14 The gains from marriage
may be reduced as people become rich and educated. The growth in the
female population's earning power may raise the forgone value of their
time spent at child care, education and other household activities, which
may reduce the demand for children and encourage a substitution away
from parental activities. Divorce rates, fertility, and labor participation
rates may interact in much more complicated ways. Decision making
about on family size is extremely complicated. 15 Irrespective of
numerous studies on the complexity of the family as a subsystem of
economic production, family economics - swept into a pile labeled
economic demography or labor economics - is often relegated to a
somewhat obscure corner of the mainstream studies of economic growth
and development.

In Sec. 3.3, we extended the one-sector growth model to include time
distribution. This section synthesizes these two growth models with
home capital and time distribution into a single framework with the
dynamic interdependence of sexual division of labor and consumption.16

We consider an economic system similarly to the one-sector growth
model proposed before. We assume the same family structure. Each
family consists of four members - father, mother, son, and daughter. The
total population is equal to 4N. There is division of labor in the family.
The children consume goods and accumulate knowledge through
education. The parents have to do home work and find job for the
family's living. The father and mother may either do home work or do
business. The working time of the father and the mother may be
different. We assume that working time of the two adults is determined

13 See Mincer (1962), Smith (1977), and Heckman and Macurdy (1980).
14 Lancaster (1966, 1971), Becker (1957), Cain (1986), and Lazear and Rosen (1990).
15 See Becker (1976), and Weiss and Willis (1985).
16 The model in this section is based on Zhang (1993c, 1999: Chap. 9).



132 Differential Equations, Bifurcations, and Chaos in Economics

by maximizing the family's utility function subject to the family and the
available time constraints. We omit any possibility of divorce. We
assume that the young people get educated before they get married and
join labor market and the husband and the wife pass away at the same
time. When the parents pass away, the son and the daughter respectively
find their marriage partner and get married. The property left by the
parents is shared equally by the two children. The children are educated
so that they have the same level of human capital as their parents when
they get married. When a new family is formed, the young couple join
the labor market and have two children. As all the families are identical,
the family structure is invariant over time under these assumptions.

We assume that labor markets are competitive. The total labor input
N*(t) at time t is defined by

N\t)=N1{t) + N2{t), Nj{t) = zJTJ{t)N,

where Tx{t) and T2(t) are respectively the husband's and the wife's
working time and z, and z2 are the levels of human capital at work of
the husband and the wife, respectively. We specify production function
of the economy

F(t) = K?{t)aN'fl{t), a + fi = \,

where F(t) is the output level at time t, Kt(t) is the level of capital
input, and a and /3 are parameters. The marginal conditions are given
by

oF fk.F

where r(t) is the rate of interest and w,(/) and w2(t) are respectively the

wage rates per unity of working time of the husband and the wife. From
Eqs. (4.6.1), the ratio of the wage rates per unity of time between the
husband and the wife is given by wl(t)/w2(t) = z1/z2. The ratio is
independent of capital stock and production scale and only dependent on
the ratio of human capital. If z, I z2 = 1, the husband and the wife have
the identical wage rate per unit of time. The current income Y(t) of each

family consists of the wage incomes and the interest payment for the
family's capital. The current income at any point of time is given by

(4.6.1)
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Y = rK + w^N + w2T2N.

Let us denote To the husband's and the wife's total available time. The
total available working time for any sex is distributed between leisure
time and working time. The time constraint requires that the amounts of
time allocated to each specific use add up to the time available

Tj(t) + Thj{t) = T0, 7 = 1 , 2 ,

where Thl(t) and Th2(t) are the husband's and the wife's leisure time,
respectively. We assume that the family's utility level is dependent on
the husband's leisure time, TH(t), the wife's leisure time, Th2(t), the
level of consumption, C(t), home capital, Kh(t), and the family's net
wealth. We specify a typical family's utility function as follows

U(t) = Th1X2
2C"K^SA, ai,a2,^t},A>0,

in which a^a2,^,T] and A are positive parameters. We call
<7,, a2, £, t], and A, respectively, the family's propensities to use the
husband's leisure time, to use the wife's leisure time, to consume goods,
to utilize endurable goods, and to hold wealth. Each family makes
decision on the 7 variables, Tj(t), Thj{t), {j = 1, 2), Kh(t), C(t), and
S(t) at any point of time.

Since a family consists of several members and each member has
his/her own utility function, the family's behavior should be analyzed as
the result of all members' rational decisions. The "collective utility
function" should be analyzed within a framework which explicitly takes
accounts of interactions within the family's members.17 We might treat
these issues, applying game theory. At this initial stage, we simplify the
issues by assuming the existence of a family utility function.

The gross disposable income is

r(t)mY(t)+K(t).

The financial budget constraint is given by

rKh+SkK + C + S = Y'.

Substituting T. + ThJ = To into the above constraint, we get

17 See Becker (1976), Heckman and Macurdy (1980), and Chiappori (1988).
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rKh+C + S + w,TMN + w2Th2N = Y,

where

Y = rK + w,TaN + w2T0N + SK(t), S = l-Sk.

Each family maximizes U(t) subject to the above budget constraint.
The optimal problem has the following unique solution

no Y ~

WjN

S = pAY, j = l, 2, (4.6.2)

where

p = .
<T,+cr2+^ + ^ + A

Substituting S in Eqs. (4.6.2) into the capital accumulation equation
K = S -K yields

K = pXY - K. (4.6.3)

The condition that the total capital stocks K is fully employed at
each point of time is expressed by

Kt(t) + Kh{t) = K{t).

We have thus built the model. The system has 16 variables, K,
Kn Kh, N', F, Y, C, S, U, R, wp ThJ, and 7} (j = 1, 2). It
contains the same number of independent equations. We now examine
properties of the dynamic system.

First, substituting K, + Kh = K, Tj+ThJ=TQ, and the marginal
conditions (4.6.1) into the definition of Y, we get

Y-rKh-WlTihN-W2T2hN = F + SK.

As

Y-rKh-wxTuN-w2T2hN = C + S,

we have

C + S = F + SK.



Economic Dynamics with Scalar Differential Equations 135

Substituting C = pgY and S = pAY from Eqs. (4.6.2) into the above
equation yields

Y = ^ ^ . (4-6.4)

Substituting r and w; from Eqs. (4.6.1) into

y - rKh - w,TlhN - w2T2hN = F + SK,

we get

[K, N' )
where z = z, + z2. By this equation and Eqs. (4.6.4)

{ * + * ? £ . _ - l } ^ , , (4.6.5)
[ ^ AT {€ + X)p\K

where

_ <?(^ + ^2 + >y)
# + A '

By Kh = prjY/r in Eqs. (4.6.2) and r = aFIKt in Eqs. (4.6.1), we have

pr)Kt '

By this equation, Eq. (4.6.4) and Kh = K - Kt, we obtain

., = X

(^/^-^-l)^

where

_ {j + X)a

Substituting Eq. (4.6.6) into Eq. (4.6.5) yields

aK ^ feTJtKfj^KIK, - 4 - 1)"' 1
' ; K, SK (£ + A)p

(4.6.6)
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_MK,-A,-T>.mlitJ£_>Ki>0_ (46J)

It is straightforward to check

J____L = + OO) O(O) = - O O ,

<iO _ (crx + cr2)aK_____ _ _ +

(cdl+a + fiA]K/Ki)fizT0NKr(KfUK/K, -4-1)"" ' ( }

The equation <£>(.£,) = 0 has a unique solution in the interval of

-&->K,>O.
1 + 4

This implies that for any given positive K(t) at any point of time K,(t)
is uniquely determined as a function of K(t). Summarizing the above
discussion, we have the following lemma.

Lemma 4.6.1 For any given positive K(t) at any point of time, the
other variables in the system are uniquely determined as functions of
K(t) by the following procedure: Kt by Eq. (4.6.7) -> Kh = K - K, ->
If by Eq. (4.6.6) -> F = K^N'P -» r, wJt j = 1, 2, by Eqs. (4.6.1) ->
Y by Eq. (4.6.4) -> C, S and T} by Eq. (4.6.2) -> Thj =Ta- T}.

By the above lemma and Eq. (4.6.3), we conclude that the dynamics
of the system are given by the following differential equation

K = pAY(K) - K, (4.6.9)

in which Y(K) is a unique function of K. From Eq. (4.6.9), we
determine K(t) at each point of time. Then, by Lemma 4.6.1 we solve
the values of the other variables in the system at any point of time.

In equilibrium, pAY = K. From the equilibrium equation and
Y = aKhF I prjK^ we solve
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CCKhK"N'P _ K

T}Kt " A '

Substituting Eq. (4.6.6) into this equation and using Kh = K-K,, we
obtain

K^p.K, Kh=?f£, (4.6.10)

where

Substituting Kj from Eqs. (4.6.10) into Eq. (4.6.7) yields

Equation (4.6.11) gives a unique equilibrium value of K. By Lemma 3.1,
we directly determine the unique equilibrium values of the other
variables. To determine stability, we take derivatives of the left-side of
Eq. (4.6.9) to get

fi+ly^Y-K)=^dKL+^dN:_i_
U ) dK K, dK N dK A

in which we use Eq. (4.6.4), F = K"N"P and

d^dK^ = _ i\ + Xl){AlK-A,Ki-KiY
ipzTaN (g-, + CT2)a

BK, dK S
xieKaip AKi '

P dN* _ {(K/K,)dK, /dK - 1}^ 1 a dKt

N' dK ~ AlK-AlKi-Ki
 + ~K ~K~~dK'

which dbldKt > 0 is given by Eqs. (4.6.8), and Eqs. (4.6.7) and (4.6.6)
are used. As we explicitly solved the equilibrium values of the variables,
it is easy to calculate the left-hand side of Eq. (4.6.12). Summarizing the
above discussion, we obtain the following proposition.

(4.6.11)

(4.6.12)
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Proposition 4.6.1 The dynamic system has a unique equilibrium. The
equilibrium is stable (unstable) if the left-hand side of Eq. (4.6.12) is
negative (positive).

We now examine how the equilibrium values of variables are related
to parameters. First, we examine how woman's human capital level
affects the time distribution of the husband and wife. With z2 to change,
we specify the other parameters as follows

a = 0.3, 8k = 0.03, A = 0,5, ax = 0.36, a2 = 0.43, £ = 0.3,

rj = 0.3, 70 = 24, N = 1, z, = 0.7. (4.6.13)

Figure 4.6.1 shows how man and woman's working hours vary as
woman's human capital changes. For the fixed preferences, from Fig.
4.6.1a we observe that as woman's human capital rises for
z2 G [0.5, 0.9], man's working time declines and woman's working time
rises. Their working hours become equal only when the wife
accumulates more human capital than the husband because we have
assumed that the wife makes more contributions to family life than the
husband if they spend the same hours at home. Figure 4.6.1b shows that
as woman's human capital rises, her wage rate increases.

We now examine the impact of woman's propensity to stay at home
on the equilibrium. Except o2 and z2, we specify the parameters as in
(4.6.13). Let z2 =0.6 and a2 varies within a2 e [0.2, 0.6} As woman
increasingly prefers staying at home, woman's work time declines but
man's work time increases. As demonstrated in Fig. 4.6.2b, both man
and woman's wage rates decline as woman's preference to stay at home
becomes stronger.

Combining Figs. 4.6.1 and 4.6.2, we illustrate how man and woman's
working hours vary with a2 and z2. We observe that even when man's
human capital and time preference remain invariant, man's working
hours vary as woman's human capital and time preference change.
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Fig. 4.6.3 The work hours and cr2 and z2.

Fig. The impact of woman’s propensity to stay at home.

Fig. 4.6.1 The impact of woman’s human capital.
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4.7 The Uzawa Two-Sector Model

In Uzawa's two-sector growth model,18 it is assumed that consumption
and capital goods are different commodities, which are produced in two
distinct sectors. Labor is homogeneous and labor grows at an
exogenously given exponential rate n. There is only one malleable
capital good, which can be used as an input in both sectors in the
economy. Capital depreciates at a constant exponential rate 8k, which is
independent of the manner of use. The production functions are given by

Yj=FJ.(KJ,NJ), 7 = 1,2,

where Y} are the output of sector j , Kj and AT are respectively the
capital and labor used in sector j , Fj the production functions, the
subscripts 1 and 2 denote the capital good sector and the consumption
good sector. Assume Fj to be neoclassical. We have y} = fj(kj) where
y. = YJ/NJ, kj = KJ/NJ, fj' > 0, / / ' < 0, j = 1, 2. It is assumed that
the usual static efficiency conditions of pure competition hold at any
time. This requirement means that the wages wp and the wage-rental
ratio w'j in the two sectors are equal: w = w, = w2, w' = w* - w'2. We
have w' = f}l'/y' - ky As full employment of labor and capital is
assumed, we have

K,+K2=K, Nt+ N2=N,

which can be rewritten in the form of

«,£, + n2k2 = k,

where ny s NjlN, j = 1,2. The gross saving propensities - both

average and marginal - from wage incomes and profits are nonnegative
constants denoted respectively by sw and sr. Thus, if the two
propensities are equal (to s), the consumption is equal to a constant
fraction 1 - s of the gross national product. If we denote the rental rate
of the two sectors by r, then the total gross saving in the economy is

18 The model was proposed by Uzawa (1961). Since its publication, the model has
extended and generalized in different ways, see Hahn (1965), Takayama (1965), Zhang
(1999). In particular, Solow (1961) made some important comments on the economic
mechanism of the model; Sato (1965) provided some further analysis of stability
properties of the model.
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equal to s/K + swwN. As the investment in the economy comes from
the production of new capital and saving is always equal to investment,
we have

PJX =srrK + swwN,

where P^t) is the price of new capital. As F1K(t) = r(t)/P{(t), the above
equation becomes

«,/;(*>)=/I'M+ v 4
As

K = Y{ - SkK ,

we have

k^f,'(srk + sy)-{n + Sk)k. (4.7.1)

Under certain conditions, the dynamic system is 'causal'. If we
assume that the conditions are satisfied, then the right-hand side of Eq.
(4.7.1) can be written as a function of k

k{t) = H(k) = kh(k).

The functional form of h is referred to Burmeister and Dobell.19 Let us
denote the 'extended Jacobian' by J and define two numbers a and b
as

a = max l i m ^ A - fc, I j = 1, 2 L

b = mm Km, J A _ * 1 y = 1, 21.

Then the following theorems hold.

Theorem 4.7.1 (Local stability) Let k' be any root of h = 0. If
swl(n + Sk) is not larger than kl f^{kx) or sr/(n + 8k) is not less than
kl f\(K)> m e n m e equilibrium is locally stable.

19 See Burmeister and Dobell (1970).
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Theorem 4.7.2 (Uniqueness and Stability) If any of the following
conditions are satisfied for all a < w* < b, then it is proved that any
equilibrium of the dynamic system is unique and stable: (i) sr is not less
than sw, while &, is not larger than k2; (ii) the wage elasticity of capital
intensity (w* Ik)dk Idw* is not less than unity; (iii) The substitution
elasticity of the consumption sector is not less than unity; (iv) sr = 1 and
J > 0; (v) sw = 0 and J > 0, in which all functions and variables are
evaluated at the equilibrium of the system.

It should be mentioned that even if all the conditions (i)-(v) are
violated, it is still possible to find a unique and balanced growth path,
and unstable balanced growth paths may exist.

4.8 Refitting the Uzawa Model within the OSG Framework20

Output of the capital sector goes entirely to investment and that of the
consumption sector entirely to consumption. Labor is homogeneous and
labor grows at an exogenously given exponential rate n. Capital
depreciates at a constant exponential rate Sk, which is independent of
the manner of use. The production functions are given by

FJ-FJKNJI j = i,s,

where Fj(t) are the output of sector j , Kj(t) and Nj(t) are respectively
the capital and labor used in sector j , Fj(t) the production functions,
the subscripts i and s denote the capital good sector and the
consumption good sector, respectively. Assume Fj(t) to be neoclassical.
We have

yjmlL, k j i t ) ^ , / ; : ( * > o , / ; ( * , . ) < o , j = us.
IS j IS j

The marginal conditions are

20 This section is based on Zhang (1996a, 1999).
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r = f'Ak) = pf'Xk,\

* = M- *,/(*,)=pi/M- KifVXK% c4-8-1)
where p(t) is the price of consumption good and price of new capital is
always equal to 1.

As full employment of labor and capital is assumed, we have

K,+KS=K, N,+N,=N,

which can be rewritten in the form of

«i*/ + « A = k, n,+n,=l, (4.8.2)

where

k = —, n,=—-, j=i, s .
N ' N

The current income Y is given by

Y = rK + wN = F, + pFs.

The consumer problem is defined by

Maximize U = C*S\ s.t: pC + S = Y = Y + 5K,

where £ + A = 1, £, X > 0. The optimal solution is

C ( 0 = - ^ T ^ , S(t) = AY(t). (4.8.3)

Capital accumulates according to

K = AY-K = AY-(l-SX)K. (4.8.4)

As consumption good cannot be saved, we always have

C = FS. (4.8.5)

As the investment in the economy comes from the production of new
capital and saving is always equal to investment, we have

S-K + SkK = Fi.

It can be shown that this equation is redundant.
First, we have to describe the dynamics in terms of a single variable.

Substituting k(t) = K(t)/N(t) with N(t) = nN(t) into Eq. (4.8.4) yields
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k'=Ay-(l + n)k = Ay-{l + n- SA)k, (4.8.6)

where

y=L = y + Sk, y-jj = nlf,{k,)+n,fl{k,).

Equations (4.8.3) yield

c = ^ , s = Ay,
P

where c(t) = C(t)/N(t) and s(t) = S(t)/ N(t). From these equations
and S - SK - F, and C = Fs, we have

,lj>-<& = «./(£,.), & = pn,fXK)- (4-8.7)

From r{t) = f'i{kl) = pfs{ks) in Eqs. (4.8.1), we get

p~fM-
Substituting the above equation into

/(*,)-*,/•(*,)= p(fAK)-Kfs{K))
from Eqs. (4.8.1) yields

%&)=-=M-k<=7ir)-k^w^- (4-8-8)
r fAK) fs\K)The function ^(A:,.) has the following properties:

Y,(0) = 0, Yf(*f)>0 for ifcf > 0, %{k) = - f i ^ / ^ > Q .
The function YJ(fcJ) has the same properties in ks. We see that for any

given kt > 0, Eqs. (4.8.8) determines ks > 0 as a unique function of A:,,

denoted by

k,=n{k,).
We have Q' > 0.

By Eqs. (4.8.2) and ks = Q^,), we have

«,(*,-Q,(*,)) + a,(*,) = *•

That is
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n,-A,[k,kl) k_Q^y

nf = 1 - n - A,(*,*,) = ^ ~ * . (4.8.9)

We can thus solve «,. and ^ as functions of k and &,.. By Eqs. (4.8.7)

and p = fi{kj)l fs{ks), we solve

K{Kk,)fs{K) _ff(Qfc)) f4810)
A,(*,*,)y;(*l)+* #(*,)

Equation (4.8.10) contains only two variables, k and &(. Assume
that this equation determines k. as a function of & , i.e., kt - A[k). From
the procedure to obtain Eq. (4.8.10), we can express any variable in the
dynamic system as a function only of k. In particular, since y{t) is a
function of k(t), we can determine the dynamics by a one-dimensional
differential equation

* = Ay(k) - (l + n - SX)k . (4.8.11)

As further analysis would not provide results with easy interpretations,
we examine behavior of the two-sector model with Cobb-Douglas
production functions

Fj = AjKj'N*, a, + fij = 1, ap /?, > 0.

We thus have

r = ?£ = ?fL, w = j3ifi= PsPfs, /,. = Afi . (4.8.12)

By Eqs. (4.8.8), we immediately get

ks{t) = ak,(t),

where

<*,P.
The capital-labor ratios are proportional. The parameter a is not related
to the productivity parameters. Figure 4.8.1 shows how a varies as a
function of as (0.1 < as < 0.9) and «,. (0.1 < «,. < 0.9).
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Fig. 4.8.1 a varies as a function of as and or,.

By ks = aki and fiji = Pspfs, we solve

p'^I,kr"- (4813)

If «,. = ces, then the price is constant, p = Ai/As. The price of
consumption good rises in productivity of the capital sector but falls in
productivity of the consumption sector. In the remainder of this section,
we require ai ^ as. If the equality holds, then labor distribution is
invariant in time.

Corresponding to Eqs. (4.8.9), we have

Out, K K ~~* K; , . . ..

*, = , ' A, , «s=7 ±~- (4.8.14)

By Eq. (4.8.10), we solve

k= i ki—s-r, (4.8.15)

4,(1+V)
where we use Eqs. (4.8.13) and (4.8.3) and

A ml±MJLL A^^-^IA.
* a + wte* \ + Wte'
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By Eqs. (4.8.14) and (4.8.15) and according to the definitions of A

and 4>» w e f"in(i

_ 0,A 10£ - aSkf1 /A, _ a + ceSkf' I A.
"'~ a + fiA/fe ~ a + ftA/frf

Hence, for n(t) to satisfy 1 > n.(t) > 0, it is sufficient to have

• \aSPA)
By Eqs. (4.8.7),

Aj> = /!,/,(*! )+<*•

Substituting this equation into Eq. (4.8.6) yields

k = nifi{ki)-Sok,

where

S0=l + n-S>0.

With fj = Ajk°!J and Eqs. (4.8.14) and (4.8.15), we find

*(*, )k\ = K - l K - (So - aa»A,A)k?>, (4.8.16)

where

mi)-[\ + Akf' p -° ' a°-(a-lY

Lemma 4.8.1 The dynamics of the two-sector model follows Eq.
(4.8.16). For given value of k^t) at any point of time, the other variables
are determined by the following procedure: k(t) by Eq. (4.8.15) —•
ifc,(0 = c*,(0 -» n,{t) and n,{t) by Eqs. (4.8.14) -» r{t), w{t), and
fj(t\j = i,s by Eqs. (4.8.12) - p(t) by Eq. (4.8.13) -»
N{t) = n(t)N - Kj(t) = kl{t)Nj{t) -> Fj(t) = f](t)Nj{t) -
Y(t) = F,{t) +p(t)Fg(t) - Y(t) = Y(t) + SK(t) - C(t) = {Y(t) -*

Once we determine kt(t\ we solve all the variables. The unique
equilibrium is
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. , - , - ' ^ 1 • (4.8.17)

To demonstrate kt to be a positive solution, we examine two terms
(«4, - l)a0 and (So - aa^A). As shown in Fig. 4.8.2, a may be
either larger or smaller than unity. In the case of a > (<) 1, according to
their definitions, a0 > (<) 0, A < (>) 0, and 4> < (>) 1. We conclude

This guarantees a unique positive solution as well as stability of the
equilibrium. The system is stable because

dic\ =_(S0- aa^A)^ < Q

We now show that for k' > 0, 0 < n\ < 1. By Eqs. (4.8.15) and
(4.8.17), we have

. = ak,-k = (atp-l) ô
' (tf-l>, {a- l)A0{S0+S/{\ + fiA/frt))'

As

0<fo+*/(l + /?lA//tf))<1>

K - l ) _ ^ / ^ <t
0 < ( a - l ) 4 . " l + / ^ / ^ '

we guaranteed 0 < «* < 1.

Theorem 4.8.1 The dynamic system has a unique stable equilibrium.

It is straightforward to examine the impact of changes in parameter
values on the equilibrium structure. Finally, we specify the parameter
values as follows

a, = 0.45, as = 0.35, n = 0.01, 8k = 0.05,

A = 0.65, 4 = 1 . 1 , 4 = 0 . 9 .
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We note that the productivity of the capital good sector is higher than
that of the consumption good sector; the value of the capital good
sector's a is also higher than that of the consumption good sector. We
simulate the motion of the economic system over 15 years with
kt(0) = 1.2. The equilibrium value of k' is 2.376. Figure 4.8.3a shows
the growth of the per-worker input in the two sectors and per-capita
wealth. These variables experience dramatic growth during the study
period. Figure 4.8.3b shows the growth of the per-worker output levels of
the two sectors. The growth rate of per-worker output the capital good
sector is about 75 percent over 15 years; the growth rate of per-worker
output of the consumption good sector is about 50 percent. Figure 4.8.3c
describes the motion of the labor distribution and the output ratio
between the two sectors. It can be seen that the ratio steadily falls over
the study period. The labor participation rate in the capital good sector of
the total labor force also declines steadily over the study period. The
consumption good sector absorbs more and more labor force. Figure
4.8.3d shows how the price, the real wage rate, and the rate of interest
change over time. The price of consumption good (in comparison to
capital good) rises over the period. The real wage rate increases; the rate
of interest falls during the study period. Figure 4.8.3e demonstrates the
current income per capita and consumption per capita. Although the two
variables increase over the study period, the consumption per capita
grows faster than the current income per capita. Figure 3.3.3f depicts the
dynamics of the shares of the two sectors in the GNP. The share of the
capital good sector, denoted by yi = FJY falls, and that of consumption
good sector, denoted by ys = pFs IY, rises.

It appears that the share of the capital good sector falls too rapidly.
One reason is that we neglect capital goods, such as TVs, cars, videos,
boats, houses, computers, washing machines, clothes, carpets, paintings,
radios, used by households. It should be noted that it is possible to make
the model more suitable for national data. One method is to introduce
proper — either endogenously or exogenously — technological changes.
The two sectors may experience different paths of technological changes.
The other method is to make preference changeable over time.
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Fig. 4.8.3 Simulating the two-sector model.

We now examine impact of changes on dynamic processes of the
system. First, we examine the case that all the parameters, except A, are
the same as in Fig. 4.8.3. We reduce the propensity to own wealth from
0.65 to 0.60. The simulation results are demonstrated in Fig. 3.3.4. The
solid lines in Fig. 4.8.4 are the same as in Fig. 4.8.3, representing the
values of the corresponding variables when X = 0.65; the dashing lines
in Fig. 4.8.4 represent the new values of the variables when X = 0.60.
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As the propensity to own wealth declines, the per-worker inputs of the
two sectors and wealth per capita fall as shown in Fig. 4.8.4a. Figure
4.8.4b shows that the per-worker output levels of the two sectors fall.
The labor participation ratio in the capital good sector and the output
ratio of the capital good sector and the consumption good sector fall, as
illustrated in Fig. 4.8.4c. Figure 4.8.4d shows that the price of
consumption good falls, the wage rate declines, and the rate of interest
rises. From Fig. 4.8.4e, we observe that both the current income and
consumption rise as the propensity to save falls. Figure 4.8.4f
demonstrates that the share of output of the capital good sector in the
GNP falls, and that of the consumption good sector rises.

3 - 5 / ^ ^ ^ 1.8 / ^ \
3 /^s^====^ 1*6 /̂ "~"

^ 2 4 6 8 10 12 14 t 0.8 V** e T l O 12 lrff t
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0.3 <^V 0 . 8 / ^

< ^ ' ~
r, „, \ «ft ^q}-|p cutxut ratio 0.6

o.i " ^ : r ^ ^ ^ ^ ^ . 0;2 ̂ — ^ ~ - ^

2 4 6 8 10 12 14 2 4 6 8 10 12 14

c) the labor distribution and the output ratio d) the price, interest rate, and wage rate
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r 2 4 6 8 10 12 14

e) the income and consumption per capita f) the share of the outputs in GNP
Fig. 4.8.4 As A declines from 0.65 (with the solid lines) to 0.60 (the dashing lines).

Figure 4.8.4e shows that as the propensity to save falls, consumption
will increase until the system reaches the equilibrium. This situation may
not occur under other circumstances. For instance, Fig. 4.8.5 portrays the
case that when X falls from 0.65 to 0.40 (with all the other parameters
fixed), we find that after it rises two years (in comparison to the value
before) consumption level begins to fall.

We now examine the case that all the parameters, except A,, are the
same as in Fig. 4.8.3. We increase the productivity of the capital good
sector from 1.1 to 1.4. The simulation results are demonstrated in Fig.
3.3.6. The solid lines in Fig. 4.8.6 are the same as in Fig. 4.8.3,
representing the values of the corresponding variables when Ai =1.1;
the dashing lines in Fig. 4.8.6 represent the new values of the variables
when At = 1.4. As the productivity rises, the per-worker inputs of the
two sectors and wealth per capita increase as shown in Fig. 4.8.6a. Figure
4.8.6b shows that the per-worker output levels of the two sectors rise.
The labor participation ratio in the capital good sector and the output
ratio of the capital good sector and the consumption good sector become
higher, as illustrated in Fig. 4.8.6c. Figure 4.8.6d shows that the price of
consumption good, the wage rate rise, and the rate of interest rise. From
Fig. 4.8.6e, we observe that both the current income and consumption
rise as the productivity rises. Figure 4.8.6f demonstrates that the share of
output of the capital good sector in the GNP rises, and that of the
consumption good sector falls.
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Part II

Dimension Two



Chapter 5

Planar Linear Differential Equations

This chapter studies planar linear differential equations. Section 5.1 gives
general solutions to planar linear first-order homogeneous differential
equations. We also depict phase portraits of typical orbits of the planar
systems. Section 5.2 introduces some concepts, such as positive orbit,
negative orbit, orbit, limit set, and invariant set, for qualitative study.
Section 5.3 shows how to calculate matrix exponentials and to reduce
planar differential equations to the canonical forms. In Sec. 4, we
introduce the concept of topological equivalence of planar linear systems
and classify the planar linear homogeneous differential equations
according to the concept. Section 5.5 studies planar linear first-order
non-homogeneous differential equations. This section examines dynamic
behavior of some typical economic models, such as the competitive
equilibrium model, the Cournot duopoly model with constant marginal
costs, the Cournot duopoly model with increasing marginal costs, the
Cagan model with sluggish wages. Section 5.6 solves some types of
constant-coefficient linear equations with time-dependent terms.

5.1 Planar Linear First-Order Homogeneous Differential Equations

We now consider a system of two linear first-order homogeneous
differential equations

xi{t) = anxl{t) + a n x 2 { t ) , i = l , 2 ,

where atj are parameters and xt(t) are variables. In vector notation, the
equations are written as

x{t)=Ax{t), (5.1.1)

156
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where x(t) is the vector and A is the matrix '

To solve the system, we attempt a solution of the form x(t) = Ce**
where C is a vector C = [c, c2f and /? is a scalar. Substituting
x(t) = Ce^ into x(f) = Ax(t) yields

We see that a nontrivial solution to this equation for a given p is an
eigenvector and p is the corresponding eigenvalue. A necessary
condition for C to be a nonzero to AC = pC is Det(A - pl) = 0, that
is

yO2 - yO7>v4 + £>e^ = 0, (5.1.2)

which has either two real roots and a pair of complex conjugate roots.
Here

TrA = an+a22, DetA = aua22 - a2]an .

The following lemma is held for Eq. (5.1.2).

Lemma 5.1.1 The eigenvalues px and /?2of A satisfy Re<ry. < 0 if and
only if

pxp2 = DetA > 0 , /?, + p2 = TrA < 0 .

They are pure imaginary if and only if the trace is zero. Moreover,
/?, < 0 < p2 (or p2 < 0 < /?,) if and only if DetA < 0 .

We now consider the case that A is nonsingular and its eigenvalues
/?, and p2 are distinct. In this case, the corresponding eigenvectors C,
and C2 are linearly independent vectors in R2. We solve Cy by
ACj = PjCj. We thus obtain two special solutions C^1' to Eq. (5.1.1).
It is straightforward to check that a linear combination of C^9'1 is also a

1 App. A. 1 introduces some elementary concepts, such as eigenvalues and eigenvectors,
and basic theorems in linear algebra and matrix theory. See also Gilbert and Gilbert
(1995), Berman and Plemons (1979), and Peterson and Sochachi (2002).
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solution to Eq. (5.1.1). We have the general solution to Eq. (5.1.1) as
follows2

x{t) = axe
PlCx + a2e

P2C2, (5.1.3)

where a, and a2 are scalars uniquely determined by the initial condition
*(0) by

cn ^Ja.lJxXoJ
fix C22±«2j Ufa). '

Example Consider a linear second-order equation

y + y = o.

Setting xl = y and x2 - y, we see that the original equation is
transformed to the system of linear first-order equations

'^"Ll"0 l]\Xi~
A J h °JU. '

The two eigenvalues and eigenvectors are given by pl2 = ±1,
C, = [l if and C2 = [l - i f respectively. Hence, the solution is

We thus solve

y = xx = axe' + a2e~'.

We now consider the case that the two eigenvalues are a pair of
complex conjugate roots

where <J and ^ (^ 0 assumed) are real.3 For the solution x(f) to be real,

we have x(t) = x(t) where the bar indicates complex conjugation.

As

2 Remark: every vector in R2 can be written as a linear combination of two independent
vectors.
3 The condition 9 * 0 guarantees distinct roots of the characteristic equation.
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eA,2' = e«e±i* _ e « ( c o s ^ + , - c o s ^ ) >

the condition x(t) = x(t) (where x(f) = Qr,eAC1 + o r ^ C , ) yields

2e2ia(Bx-B2)=Bx-B2,

where 5,. s a.C,. For the above equation to hold, we have 5, = B2.
Using these relations, we have

x(t) = ePlBx + ep2B2 = ea (bx cos ft + b2 sin <pt), (5.1.4)

where bx = 5, + 52 and 62 s /(52 - 5,).

Example Consider

"i,l = [0 lp,"
_ij [-1 oJU/

The two eigenvalues and eigenvectors are given respectively by
A . 2 = ± i , C 1 = [ l i ] r , C 2 = [ l - i f .

Hence,

^=o i [ l if, B2=a2[l -if.

For 5, = B2 to hold, we have a = or, = «2. The solution is

"*,(/)] r2orl f 0 1 .
/ v = COSCT + s i n w .

x2{t)\ I 0 J L2 G rJ

When 4̂ is nonsingular, A has two distinct eigenvalues and the
system x(t) = Ax has a unique equilibrium at the origin. We now discuss
under what conditions the origin is stable or unstable. In the case that /?,
and p2 are real and negative, from Eq. (5.1.3) we see that x(t)—> 0 as
/—>«>, irrespective of initial conditions. This means that the origin is
globally asymptotically. Similarly, if /?, and p2 are real and positive,
x(t) —> °° as t —> °°, irrespective of initial conditions. The origin repels
all orbits and is unstable.

When the eigenvalues are complex with/?, 2 = a ± <*', its solution is
given by

x(t) = ea (bx cos <* + b2 sin <pt).
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We see that if a > (<) 0, the origin is unstable (stable). If a = 0, the
solution is bounded. The orbits

x\t) = bx cos0f + b2 sin^f,

are actually closed. For each different x(o), there is a corresponding
closed orbits (called a cycle) passing through this point. None of cycles
intersect each other. We are left with the last possibility for distinct
eigenvalues, px < 0 < p2. The origin is unstable. The equilibrium in this
case is called a saddle. Figure 5.1.1 illustrates dynamics of the four cases
we have discussed. The intersection of the two lines is the equilibrium
point. Here, we neglect other cases, such as one or two eigenvalues being
equal to zero.4 In the JC,-JC2 -plane, time does not explicitly appear. To
compensate for the loss of time parametrization in orbits, we insert
arrows to indicate the direction in which the solution is changing as time
passes. The flow of a differential equation is then drawn as the collection
of all its orbits together with the direction arrows; the resulting picture is
called the phase portrait of the differential equation.

For x = Ax, after a long time, each individual trajectory exhibits one
of only three types of behavior. As / —> + °°, each trajectory either
approaches infinity, or approaches the equilibrium point x = 0,5 or
repeatedly traverses a closed curve surrounding the equilibrium point.
We observe that if the eigenvalues are real and negative or complex with
negative real part, all trajectories approach the equilibrium point x - 0
as t —> + °°. The original is either a nodal or a spiral sink. If the
eigenvalues are pure imaginary, all trajectories remain bounded but do
not approach the equilibrium point as t —> + °°. The origin is a center. If
at least one of the eigenvalues is positive or if the eigenvalues have
positive real part, some trajectory, and possibly all trajectories except
x = 0 tend to infinity as t —> + °°. The origin is either a nodal source, a
spiral source, or a saddle point. Table 5.1.1 summarizes the stability
properties of the equilibrium.6

4SeeBritton(1986).
5 Here, we require det A * 0 , which guarantees a unique equilibrium solution x = 0 .
6 See Boyce and Diprima (2001: 468).
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Fig. 5.1.1 Phase portraits of typical orbits of x(t) = A^^xif).7

Theorem 5.1.1 The equilibrium point x = o of the dynamic system

x = A2x2x, det A & 0 ,

is asymptotically stable if the eigenvalues p, and p2 are real and
negative or have negative real part; stable, but not asymptotically stable
if/?, and p2 are pure imaginary; unstable if/?, and p2 are real and either
is positive, or if they have positive real part.

Exercise 5.1
1 Prove Lemma 5.1.1.

7 The matrices A for (i), (ii), (iii), and (iv) are respectively
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Table 5.1.1 Stability properties of x = A^2x with &&\A * 0.

Eigenvalues Type of equilibrium Stability

yOj > p2 > 0 Node Unstable

/O, < p2 < 0 Node Asymptotically stable

/?, < 0 < p2 Saddle point Unstable

/?, = p2 > 0 Proper or improper node Unstable

/?, = p2 < 0 Proper or improper node Asymptotically stable

/?, 2 = <J ± 10 Spiral point

<T > 0 Unstable

CT < 0 Asymptotically stable

pl2 = i<p Center Stable

5.2 Some Concepts for Qualitative Study

We have used some concepts, such as phase portrait without explanation.
We now define a few concepts for qualitative study.

Consider an initial-value problem8

Xj=fM,x2), 7 = 1 , 2 . (5.2.1)

The corresponding initial-value problem is
xj = /,(*!> xz\ J ~ !> 2> *(O = ô • (5.2.2)

For convenience, choose /„ = 0. If / = (/j, / 2 ) is a C1 function,
then for any xQ e R2, there is an interval IXo ={aH, PH) containing
/„ = 0 and a unique solution <p{t, *0)of the initial problem defined for all
f e IH, satisfying the initial condition p(Q, xo) = x0.

We now examine Eqs. (5.2.1) and its flow (p{t, x0) from a
geometrical point of view. At each point of the (t, x)— space, the right-
hand side of Eqs. (5.2.1) gives a value of the derivative dxldt, which
can be considered as the slope of a line segment at that point. The
collection of all such line segments is called the direction field of the
differential equations (5.2.1). Since the function / is independent of t,
on any line parallel to the t -axis the segments of the direction field all

8 This section is mostly referred to Sec. 7.2 in Hale and Kocak (1991).
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have the same slope. It is thus natural to consider the projections of the
direction field and the trajectories of Eqs. (5.2.1) onto the (*,, x2)-plane.
We can assign to the point x the directed line segment from x to
x + f(x). The collection of all such vectors is called the vector field
generated by Eqs. (5.2.1) or simply the vector field / . Projections of
trajectories onto the (x,, x2)-plane are called orbit. We now define orbits.

Definition 5.2.1 The positive orbit y+(x0), negative orbit Y~(x0), and
orbit y(x0) are defined, respectively, as the following subsets of

r+(*0)= rU At,xo\
' eL°.A0)

r'(xo)= ,U Mt,x0),

v(xo)= , U Mt,x0).

The simplest of orbits is an equilibrium point. In planar systems there
can be another orbit of special interest, called a periodic orbit, which has
no counterpart among the scalar autonomous differential equations.

Definition 5.2.2 A solution <p(t, x0) of x = f(x) is called aperiodic
solution of period T, with T > 0, if (p(t + T,xo) = <p(t, xa) for all
t G R. The minimum period T is that period with the property that
(p(t, xo)±xo for 0 < / < T. The orbit

v(xQ) = {<p{t,x0),teR},

of a periodic solution <p(t, x0) with period T is said to be a periodic
orbit (also closed orbit) of period T.

To compensate for the loss of time parametrization in orbits, on the
orbit y(x0) we insert arrows to indicate the direction in which <p(t, x0) is
changing as t increases. The flow of a differential equation is drawn as
the collection of all its orbits together with the direction arrows; the
resulting picture is called the phase portrait of the differential equation.

To examine asymptotic behavior of the system, we define limit point
of orbits.
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Definition 5.2.3 A point y is an co- limit point of the orbit y(x0) if
there exists a sequence ty with tj —> 0Xo as j -» °° such that
<p[tj, *„)-> y as j —> oo. That is, >> is an co-limit point of the orbit
y(x0) if, for any e > 0, there is a ^(f) such that jy - <p(t(e), JCO| < e.
The set of all 6J-limit points of the orbit J (̂JC0) is called the co-limit set
of /(JC0) and is denoted by co(xg).

An equivalent definition of co(x0) is

4xo)=r\r+{<p{T,xoj).

The concept of the a-limit set of y(jc0) can be defined similarly by
reversing the direction of time. A point y is an co-limit point of the orbit
y(x0) if there exists a sequence tj with /y —»«Xo as j -> °° such that
#T;> ^o) ~^ y a s j ^ °°- The geometric definition of a(x0) is

a{xo)=ny-{<p{T,xo)).

Definition 5.2.4 An invariant set of a dynamic system

x = f{x),(x,t)eRnxR,

is a subset of S c R" such that ^ e S implies <j>{t, xo)e S.

Clearly, an invariant set S consists of orbits of the dynamical system.

5.3 Matrix Exponentials and Reduction to Canonical Forms

The flow of the scalar linear differential equation x = ax, is given by the
exponential function

(p(t,x0)=e°'x0.

To obtain an analogous formula for the flow of linear multi-dimensional
systems, we need the concept of the matrix exponential.

Definition 5.3.1 Let A be an nxn matrix. Then for te R
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For f = O,e"° =/„„,.

Lemma 5.3.1 Let A be an nxn matrix. Then for te R

—eA'=AeAl.
dt

For an nxn matrix A, eAl is an nxn matrix which can be
computed in terms of the eigenvalues and eigenvectors of A.

Lemma 5.3.2 If P and T are linear transformations on R" and
S = PTP'\ then es = PeTP'\ If PT = TP, then es+T = eseT.

Applying this lemma, we obtain that if P'XAP = diag\pj\ then
eAl = Pdiaglpj^-1. If A is invertible, then (eA)~l = e~A. If

'a -b
A= u

b a
then

("cos b -sin b
e = e

sin 6 cos b

If

then

We can now compute the matrix e'4' for any 2x2 matrix A

Theorem 5.3.1 Let A be a 2x2 matrix with real entries. Then, there
exists a real invertible 2x2 matrix such that the matrix B - P'lAP has

one of the following forms in Jordan normal form:
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[p. Ol \p 0] [a -b
B = 0 n ' B = O ' S = A • ( 5 3 1 >

From the above discussions, we calculate these matrix exponentials
as

L 0 e*'\ [0 lj

„, t[ cos bt -sin 6/1
efi '=e°' . , L . (5.3.2)

|_smo/ cosbt J
It is known that the solution to

x = Bx with JC(O) - x0,

is

x{t) = eBlx0.

From Eqs. (5.3.2), we can immediately solve x = Bx for B to take
any matrix form of Eqs. (5.3.2).

For x = Ax which A is not in the Jordan normal form, we introduce
x = Py. We thus have

y = P'xAPy = By ,

where B is in Jordan normal form. We can explicitly solve y. Hence,
we solve x = Ax by x - Py.

Exercise 5.3
1 Compute the exponentials of the following matrices

(i) [i J
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"2 - 1 "

2 Compute the exponentials of the following matrices

"1 0 0]
(i) 0 2 0 ;

0 0 3

"1 0 0'

(ii) 0 2 1 ;

0 0 3

"1 0 0"

(iii) 1 2 0 .

0 1 3

3 Find 2 x 2 matrices A and B such that eA+B = e V .

4 Solve x = Bx for

p. Ol f>o 0l \a -b
B= ' , B= H , B=

0 p2] [0 p\ [b a

5.4 Topological Equivalence in Planar Linear Systems

Two flows can be considered qualitatively equivalent if they have the
same orbit structure, that is, if they have equal number of orbits and the
directions of flows on the corresponding orbits are the same. We begin
examining qualitative equivalence in linear systems with a precise
definition of the equivalence.

Definition 5.4.1 Two planar linear systems x = Ax and x - Bx are said
to be topologically equivalent if there is a homeomorphism

h: R2 -> J R 2
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of the plane, that is, h is continuous with continuous inverse, that maps
the orbits of x = Ax onto the orbits of x = Bx and preserves the sense of
direction of time.

Since we are now concerned with the flows of planar linear systems,
it is convenient to recast this definition in a somehow more quantitative
form by mapping one flow to the other, that is

h(eAlx) = e»h{x), (5.4.1)

for every te R and x€ R2. A homeomorphism h satisfying Eq. (5.4.1)
is a bit more special than the one required in the definition.

Theorem 5.4.1 Suppose that the eigenvalues of two 2x2 matrices A
and B have nonzero parts. Then the two linear systems x = Ax and
x = Bx are topologically equivalent if and only if A and B have the
same number of eigenvalues with negative (and hence positive) real parts.
Consequently, up to topological equivalence, there are three equivalence
classes of hyperbolic planar linear systems with, for example, the
following representatives

f-1 0\
(i) : two negative eigenvalues;

(l Q\
(ii) : two positive eigenvalues;

(i <n
(iii) : one negative and one positive eigenvalues.

From the topological viewpoint, there are only three cases of planar
hyperbolic linear systems and they are determined solely by the signs of
the real parts of the eigenvalues. It should be noted that a stable spiral
and a stable node are topologically equivalent. When we study the
qualitative features of planar linear systems, it is proper to use terms such
as a hyperbolic source, a hyperbolic sink, and a hyperbolic saddle.
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Theorem 5.4.2 Suppose that the eigenvalues of 2x2 matrix A have at
least one eigenvalue with zero real part, then the planar linear system

x = Ax

is topologically equivalent to precisely one of the following five linear
systems

(0 0)
(i) : the zero matrix;

(ii) : one negative and one zero eigenvalues;

(iii) : one positive and one zero eigenvalues;

(o n
(vi) : two zero eigenvalues but one eigenvector;

(0 \\
(v) : two purely imaginary eigenvalues.

Figure 5.4.1 depicts phase portraits of the representatives of three

hyperbolic and five nonhyperbolic linear systems. Formal proofs of the

above two theorems are intricate.9

x2 x2

to' -,) (o -,)
9 See Chap. 8 in Hale and Ko9ak (1991).
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x2 x2

J K.
p o^ fo ô

x2 x2

— • « — —4 • —
— • ^ —4 • —

• - 4 < • •
— » <— xi ; » î

—» ^— —* •—

f"1 °1 f1 °1
to oj [o o)

x-i x2

—> > >»> • • • • — —I—f j—j

Fig. 5.4.1 Phase portrait of topological equivalence classes of planar linear systems.
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Exercise 5.4
1 Show that the following two linear systems x = Ax are topologically

equivalent

[ 0 2

5.5 Planar Linear First-Order Nonhomogeneous Differential
Equations

We now concerned with

x{t)=A2x2x{t) + b2xl, (5-5.1)

where b * 0. Assume A is nonsingular and b is a constant vector,
define y\t) by

y{t) = x{t)+A-%.

Then Eq. (5.5.1) can be written as

y(t)= A^yif),

which has exactly the same form as Eq. (5.1.1). Since the behavior of the
solution for Eq. (5.5.1) can be completely described by that of

y(t) = 4x2.v(0 v i a

x{t) = y{t)-A-%

it is sufficient to study Eq. (5.1.1).

Example The competitive equilibrium and its stability.
Consider a competitive market composed of three commoditiesXo, X{,
and X2 with prices Po, P^, and P2, respectively. Demand and supply
functions of each commodity are related to the prices of the three
commodities. Excess demand function of each commodity is denoted by
E,(P0, Pt,P2\ We assume E. is homogeneous of degree zero and the
market satisfies Walras's law. The homogeneity allows us to choose a
commodity as numeraire
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E, = E,{P0, Plt P2) = E,(l, Pl, p 2 ) , i = 0 ,1 , 2 ,

where pi = P, IPo, i = 1, 2. Walras's law implies

tw, >
or

E0+PiEi+p2E2=0. (5.5.2)

This condition implies that we discuss market equilibrium and its
stability solely in terms of commodities 1 and 2, neglecting commodity
0.

Suppose that prices change in proportion to their excess demand. That
is

p, = kftfa, p2), k i > 0 , i = l , 2 . (5.5.3)
We specify

fc, = 2, k2 = 3, Ei = 3 - 16 + 3p2, E2 = 16 + 4/?, - 8p2.

The price dynamics are

A = 2 ( 3 - 6 / ' 1 +3/?2),

/>2=3(l6 + 4 A - 8 / > J

The system has a unique stable equilibrium (/?,*, joj) = (2, 3).
We simulate the model with (p, (o), p2 (o)) = (3.8, l).

^ ^ ^ ^ ^ ^ ^ * / * ' " • ^ -̂ ^^*^^
v * v » \ \ ' / ' *^<^\ -» •» -^ •»

». V V «. V ^ J^^^~* > » > . > > . > • «

•- - J>^* A v v ^ V v v > * v x

^•^--^^V • < / k V v V>k <, v v v \
z . - ^ / 4 A \ v v v v \ v \ y \ X

,• < ^ t / i k v v v v ^ ^ v v v x
i .• * t / i v \ \ \ \ \ \ \ X X \
1 . t i/i i v v > v v \ X X X \

. i. /i. A . v v ,\ \ y , \ \. \ , \ \ \P\

1 2 3 4 5
Fig. 5.5.1 The competitive equilibrium and its stability.
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Example The Cournot duopoly model with constant marginal costs.
Consider a Cournot duopoly, in which the two firms produce the same
product and face constant marginal costs cx and c2. The market price
P{t) is a function of the total quantity of output produced Q\t), that is

P{t) = ao-axQ{t\ a o , a , > O .

Each firm wishes to maximize its profits but must adjust towards the
profit maximizing output. At t, firm i 's profit ntif) is given by

*k)=QiWt)-cQk\ ct>o,
where Qt is firm / 's output. Note that

In making its production plans, each firm assumes the other will hold its
output level unchanged. It is straightforward to show that the following
solution Qt maximizes #)(/)

a(t) = A,-QQ, i,j = l,2,i*j, (5.5.4)

where

A - a < > ~ c-

Assume that each firm adjusts its output Q,{f) towards Qt (t) in the
following way

Substituting Eqs. (5.5.4) into the above equations yields

e j UJ U 4 L-A/2 - A } (5-5-5)
The system has a unique positive equilibrium

, _ 2 ( 2 4 -A2)

^ ~ 3

. _2{2A2-Al)
Q2 I '
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if 2AX > A2 > AJ2. As

Tr(A) - -/?, - A < 0, Det(^) = 3 # £ /4,

A = Tr(A)2 - DetU) = (fl - J32)
2 + fifr > 0,

we see that the equilibrium is stable and the approach to it will not be
cyclical (since the positive discriminant means that the roots are real).
The phase diagram is given as in Fig. 5.5.2.

Qi

j \ G l

a* a=o
Fig. 5.5.2 The Cournot duopoly with constant marginal costs.

For illustration, take /?, = /?2 = /5, a0 =9 , a, = 1, and c, = c2 = 3 .
The system becomes

_4j L-/?/2 -p I f i j Lŝ J-
The solution is
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Q 2 ( t ) = 2 + [ Q ^ - 2 y ^ ~ fe0 - Q 2 0 ) ^ .

As / —> °°, the solution approaches the equilibrium point (2, 2).

Example The Cournot duopoly model with increasing marginal costs.
Different from the previous example, we now consider that the total cost
functions are specified as 3g,2(0> where Qt is firm / 's output. The
marginal costs, 6Qt, are not constant. The market price P(t) is a
function of the total quantity of output produced Q(t) is specified as

P(t) = 9-Q{t),

where

Each firm wishes to maximize its profits but must adjust towards the
profit maximizing output. At t, firm i 's profit nfo) is given by

x,{t) = Q,{t)P(t) -3Q,2(0.

In making its production plans, each firm assumes the other will hold
its output level unchanged. It is straightforward to show that the
following solution Qt maximizes n.(t)

Q, (>) = 7 - ^ r » i. J = 1, 2, i*j. (5.5.6)
o o

Assume that each firm adjusts its output Q^i) towards Qt (t) in the
following way

Q=rta -Q\ A>O-
Substituting Eqs. (5.5.6) into the above equations yields

" a i r -A -A/8|0i + r9^/8"
Q2\ L-A/8 -A Ifi2J L9A/8."

The system has a unique positive equilibrium (l, l). We calculate

Tr(A) = -fi-/32<0, Det(̂ ) = Qfrfr < 0,
64
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A = (A-A)*+^f >o.
lo

The equilibrium is stable. For illustration, take fix = /?2 = /?. The
solution is

a «=i + (^±£» - 1 ^ " + fe. - e 2 0 ) ^ ,

As demonstrated in Fig. 5.5.3, the solution approaches the equilibrium
point (l , l) .

Qi Q2 = o

i i \ t r i* t f / s s s s s s ' * '

. \ \ \\ 1 t t ¥ S S / S S S S ^
^ • i ^ \ » r r r r ? s ^ ^ ^ ^ *" ^ *^

i 1 V t t f /> / J ^ V y *• »s »^
/j I 1 I r r r Z^^^* * * • « ' • * ' • * ' ' • * • ' '

i 1 T\ r ^ ^ ^ ^ » x r *• * jr ^ ^ *-•

\ \ T\ f ^ ^ ^ * * * ' * - * • * ' **• **- +~-

I - * . V J t > * A ^ * * - ^ - ^ - 4 - ^ — ^ —

1 2 3 4 5
Fig. 5.5.3 The Cournot model with increasing marginal costs.

Example The Cagan model with sluggish wages.10

The Cagan model with sluggish wages is

M-P(t) = ajif)-a2P, ax,a2>0,

Y = c + {l - 0)N{t), O<0<\,

W{t)-P = a-6N, W = Y(N-N\ y>0,

where

10 The model is based on Sect. 7.2 in Turnovsky (2000).
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Y = output;
N = employment;
N = the full employment (exogenous);
P = price level;
M = the (fixed) nominal money stock; and
W = wage rate.

The first equation describes money market equilibrium under the
perfect foresight assumption that the anticipated rate of inflation is equal
to the actual rate of inflation. The second equation is a production
function. The third equation describes the demand for labor as the
corresponding marginal production condition. The last equation says that
money wages evolves in accordance with the Phillips curve. The system
can be reduced to the following pair of differential equations in W and
P

r-i \-L £ lr -, \ Y\--N\W]= ° e \W]+ y° )
p 1 p a.c M '

a2 ] \_cc2 a2

where

a\ 6 )

It can be shown that the determinant of the matrix is equal to
-y/0a2 < 0, which implies that the two eigenvalues are of opposite
signs. We thus conclude that the equilibrium point is a saddle point.

Exercise 5.5
1 Find equilibrium of the following dynamic version of the IS-LM
model and discuss its stability:

Y(t) = r(D(t)-Y(t)), r>o,

r{t) = T](L{t)-M\ Tj>0,
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in which y and r) are parameters, Y(t) is income, r(t) is the interest
rate, L(t) is the demand for money, M is the fixed level of money
supply. Here, the aggregate demand D(t) is given by D = C + I +G . In
the model, consumption C(t), investment l(t\ and the level of
government spending G(t\ the demand for money, are respectively
given by: (1) the consumption function,

C{t) = C0+cY{t),l>c>0;

(2) the investment function,

l{t) = I0+vY-Sr,

where 1 > v > 0 and S > 0; (3) the exogenous government expending,
G(t) = G; and (4) the money demand function,

L = L0-/3r + aY,

where a, /3 > 0, where Co, c, v, S, a, and G are constant.

2 Re-examine the model of interaction of inflation and unemployment in
the previous chapter. The expectations-augmented version of the Phillips
relation is: p = a - bU + hn ( 0 < h < 1 ), where a, b, and h are

parameters, p(t) is the rate of inflation, U\f) the unemployment rate,

and 7t(t) is the expected rate of inflation. We also have

n = j[p-n\ 0 < y < l ,

U = -k{m- p), k> 0,

where M is the nominal money and m = MIM its rate of growth.

3 Solve the Cournot model with constant marginal costs c, = c2 = 4 and

a = fiM - a \ A > o , i = i,2.

5.6 Constant-Coefficients Nonhomogeneous Linear Equations with
Time-Dependent Terms

This section deals with the nonhomogeneous differential equations
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_x2j \an a21\\_x2\ \h2(f)_

That is,

x = Ax + h(t).

We explained how to solve the equation when h(t) is constant. We now
solve the problem when h(t) takes on different forms. We now solve the
question of finding a particular solution xp(t) to the nonhomogeneous
equation.

First, we apply the method of undetermined coefficients. This method
is appropriate when the entries of h{t) are linear combinations of
functions of the form fV*. These include polynomials, plain
exponentials, and functions such as /* sin cot and tk cos cot.'' When h{f)
is of the formpif^"', where p(t) is a vector of polynomial functions. In
that case, try setting x(t) = qytje"' where q{t) is an unknown vector of
polynomial functions of the same degree as p(t).

Example Solve the differential equation

_x2\ [5 4l*2J |_1_

The solution to x = Ax is

'Xl] = C e > ' \ l ] + C e - ' \ 1 '

Try substituting

_x2\ [a2_

into the nonhomogeneous equation. We find a, = 1 / 3 and a2 = - 4 / 3 .
The final solution is

•'WpWf'M1'3"-
_x2j [-5] 2 |_—lj [-4/3_

11 Note: sin cot = (eM - e"")l2i and cos a* = (e'°" + e~"")l2 .

(5.6.1)



h

The method of undetermined coefficients does not always work. To
see why, assume the driving term h(t) is of the form Geal, where G is a
constant vector. Then, if we substitute x = Qea> into Eqs. (5.6.1), we find
the following equation

aQeal = AQeal + Geal,

which leads to {al - A)Q = G. This linear equation is solvable only if
the matrix (al - A) is invertible. The inverse only exists if a is not an
eigenvalue of A. The phenomenon in which the driving term includes
eat for some eigenvalue a of the matrix A is called resonance. If a is
an eigenvalue of A, instead of trying a solution of the form Qeat, we try
a solution of the form P(t]eal, with P(t) a vector of polynomials of
degree equal to the multiplicity of a as a root of the characteristic
polynomial of A.

Example Solve the differential equation

The solution to x = Ax is

^VcyrM+c^-T1.
x2j [_— 5 J | _ - 1

As - 1 is an eigenvalue of A, we substitute

UJ K + vJ
into the nonhomogeneous equation. We find the final solution

'*• - <y[' W [ ' 1+.-{-'-1/4+"4".
_x2\ ' | _ - 5 J 2 |_—ij [ c - t I AIt looks as if this solution depends on three arbitrary constants, but c and

C
2 play the same role.

There is an explicit formula for solving nonhomogeneous equations.
The formula is called variation of parameters.
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Theorem 5.6.1 The solution to

x = Ax + h{t)

with x(to) = *o *s

x(t) = e{'-'°)Ax0 + \e{-s)Ah{s)ds. (5.6.2)
'0

To prove Theorem 5.6.1, introduce

y{t) = e-*'x{t).

Differentiate y(t) = e~A'x(t) with respect to t

y = e'A'x - Ay.

Substituting x = Ax + h into the above equation, we obtain

y = eA'h.

We integrate the above equation

y(t) = C+ je'Ash(s)ds. (5.6.3)
'0

As y(t0) = e'Al"x0, we determine

C = e-A'"x0.

Inserting C = e'A'°x0 and y = e'A'x into Eq. (5.6.3) yields Eq. (5.6.2).

Exercise 5.6
1 Solve the following differential equation

M.r-2 -'P'lJ ° ".
UJ L5 4JUJ K + W .

2 Suppose that A is a constant square matrix. The linear system
y = - yA, where y is a row vector, is called the adjoint equation for
x = Ax. Show that (i) the flow (p{t, ya) of the adjoint equation is given
by <p(t,yo)=yQe-AI; (ii) <p{t, yo)fi{t, x0) = yoxo for all tsR, where
0(f, x0) is the flow of x = Ax.



Chapter 6

Planar Nonlinear Differential Equations

The previous chapter dealt with planar linear differential equations and
their applications to economic analysis. This chapter deals with nonlinear
planar differential equations. Section 6.1 carries out local analysis and
provides conditions for validity of linearization. We also provide
relations between linear systems and almost linear systems with regard to
dynamic qualitative properties. This section examines dynamic
properties of some frequently-applied economic models, such as the
competitive equilibrium model, the Walrasian-Marshallian adjustment
process, the Tobin-Blanchard model, and the Ramsey model. Section 6.2
introduces the Liapunov methods for stability analysis. In Sec. 6.3, we
study some typical types of bifurcations of planar differential equations.
Section 6.4 demonstrates motion of periodic solutions of some nonlinear
planar systems. Section 6.5 introduces the Poincare-Bendixon Theorem
and applies the theorem to the Kaldor model to identify the existence of
business cycles. Section 6.6 states Lienard's Theorem, which provides
conditions for the existence and uniqueness of limit cycle in the Lienard
system. Section 6.7 studies one of most frequently applied theorems in
nonlinear economics, the Andronov-Hopf bifurcation theorem and its
applications in the study of business cycles.

6.1 Local Stability and Linearization

Consider

Xj — J| [Xl, X2 ) — — 4Xj + X\X2,

x2 — j2\Xit ^ 2 / ~ ^x2 — X\X2.

182
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The system has two equilibria (0, 0) and (2, 8). The linearized system at
(2, 8) is

w, = - 8«, + 2M2,

u2 =-8w,,

where we use

M, = xl - 2, u2 = x2 - 8 .

The solution to this linear system is

u1=({c2-4c1)-4c2ty,

u2=- 8(c, + c/^'.

As t -» + oo, we have w, -» 0 and w2 -» 0. This implies that if the
initial state is sufficiently close to (2, 8), the solution to the initial
problem will approach (2, 8) as t -> + oo.

Similarly, the linearized system at (0, 0) is

«, =0,

u2 = 2w2.

The solution to this linear system is w, = c, and u2 = c2e
2'. We see that if

an initial state is close to the origin, then the solution will be infinite as
t -> + oo.

We now consider a general autonomous system of the form

*.(/) = /,.(*„*,), y = l , 2 , (6.1.1)

where fj(x1,x2) are smooth functions. Denote

x = (xi,xj, f = {fx,fj.
For this system, a point x is called an equilibrium point (also critical
point, steady state solution, etc.) if f(x) = 0. Suppose x' is a unique
equilibrium of Eqs. (6.1.1). Introduce

X(t) = x(t)-x.

From the Taylor theorem for functions of two variables,1 we know

1 The Taylor series is referred to as App. A.4.
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.7=1,2, (6.1.2)

where gj(x) are higher order terms and

^ 3 - > 0 as ||x|->0,
IWI

where

II ;rll - I Y2 4- Y2

\\A\\ = V A i + A2 •

Using x = X and f(x') = 0, Eqs. (6.1.1) can be expressed in vector
form as

X = AX + g{x), (6.1.3)

where the matrix A (= (<?///3*/)2x2) is t n e Jacobian matrix of / at JC*.
The linear system

X = AX, (6.1.4)

is called the linearized system of Eqs. (6.1.1). When

^ O a s ^ + co,

we call the system Eqs. (6.1.3) an almost linear system.
Since the nonlinear term g(x) is small compared to the linear term

AX when X is small, it is reasonable to hope that the trajectories of the
linearized system are good approximations to those of the nonlinear
system, at least near the origin. The following theorem summarizes the
relations between Eqs. (6.1.1) and its linearized system x - Ax.

Theorem 6.1.1 Let p{ and p2 be the eigenvalues of the linear system
x = A2xlx corresponding to the almost linear system (6.1.3). Then the
type and stability of the critical point (0, 0) of the linear system and Eq.
(6.1.3) are shown in Table 6.I.I.2

2 See Boyce and Diprima (2001: 484).
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Table 6.1.1 Relations between linear and almost linear systems.

Linear system Almost linear system
Eigenvalues Type of CP Stability Type of CP Stability

/>, > p2 > 0 Node Unstable Node Unstable

/?, < p2 < 0 Node AS N AS

/?, < 0 < p2 SP Unstable SP Unstable

P\ ~ Pi > 0 P N Unstable Node or SP Unstable

/?, = p2 < 0 PN AS Node or SP AS

pU2 = a±i</> SP SP

a > 0 Unstable Unstable

a < 0 AS AS

/?, 2 = ifi Center Stable Center or SP Indeterminate

Note: AS, asymptotically stable; CP, critical point;
PN, proper or improper node; SP, spiral point/focus.

Moreover, a stable node or focus is called a sink of the linear system
and an unstable node or focus is called a source. We see that the
trajectories of the linear system are good approximations to those of the
nonlinear system in most cases. In two sensitive cases, pU2 = i</> and
P\ = Pi-, types of critical points of the two systems may differ. The
theorem tells that in many cases, the type and stability of the critical
point of the nonlinear system can be determined from a study of the
much simpler linear system. It should be noted that even if the critical
point is of the same type as that of the linear system, the trajectories of
the almost linear system may be considerably different in appearance
from those of the corresponding system, except very near the critical
point.3 If one is concerned with actual paths of economic evolution, this
implies that trajectories of the linearized system have to be interpreted
with great caution as the reality following a nonlinear system may be far
from equilibrium.

It can be shown that the slopes at which trajectories "enter" or "leave" the critical point
are given correctly by the linear system.
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Example Consider the following model for competing species

X\ = XlV ~ X \ ~ X2j'

x2 = JC2(0.75 - x2 - 0.5x,). (6.1.5)

The system (6.1.5) has four equilibrium points, (0, 0), (o, 0.75), (l, 0),
and (0.5, 0.5) At any of the first three points, one or both species are
extinct; only the last corresponds to the long-term survival of both
species.

At (0, 0), the corresponding linear system is

"x,l = p o Jx;
X2\ [0 0.15\[X2_'

The two eigenvalues and eigenvectors are respectively given
by/?, 2 = 1, 0.75, C, = [l Oj and C2 = [0 l]7. Hence, the solution is

X2\ ' |_0j L1

Thus the origin is an unstable node of both the linear system and the
nonlinear system (6.1.5). In similar way, we can show that (0, 0.75) is a
saddle point and is an unstable critical point of the linear system and of
the nonlinear system; (l, 0) is a saddle point and is an unstable critical
point of the linear system and of the nonlinear system; and (0.5, 0.5) is
an asymptotically stable node of the linear system and of the nonlinear
system. Please check these conclusions.

Example Consider

fxAJl OYxAf -x\-x,x2 \
\x2) 1,0 0.5JUJ l-0.75x,;t2-0.25x2

2J
The system has four equilibrium points

(0,0), (0,2), (1,0), (0.5,0.5).

The origin is an isolated equilibrium. To show that near the origin the
system is an almost linear system, introduce

xx - rcosO, x2 = rsind .
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Then lljcll = r. We have

1 L = ~*i " *>*2 = -r(cos2fl + cosflsinfl)-> 0, as r -> 0,

W r

g2 -0.75x,x2 - 0 . 2 5 * 2

FT
- -r(o.75cos<9sin<9 + sin2 ff)->0, as r -> 0.

We conclude that the system is almost linear near the origin.

Example Consider

x2 = - x2 - 2sinx,.

At any equilibrium, we have

A-\ ° '1 .
-2cosx -1 .

L -1 x=x

The origin is an equilibrium. At (0, 0), We have: DetA = 2 > 0 and
TrA = - 1 < 0. Hence, the origin is locally asymptotically stable for the
linearized system. At another equilibrium (0, n), DetA = -2<0 and
TrA = -1 < 0, we conclude that the equilibrium (0, n) is an unstable
saddle equilibrium for the linearized system.

Example Rapoport's model for the arms race.
We now consider a model of arms race between two nations. We
measure the competition with money expenditures, denoted by x, (?) and
x2(t), by nations in their defence budgets.

In his survey of the defence budgets of France, Germany, Russia and
the Austria-Hungaria empire for the pre-World War I years (1909-1913),
Richardson found that the defence budgets of Group 1 (France and
Russia) and Group 2 (Germany and Austria-Hungary) could be
mathematically described by the relations that the rate at which the arms
budget xx(t) of Group 1 increased was proportional to that x2(t) of
Group 2 and vice versa,
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X| — ^1-^2 » **2 — 2^1 '

where ax and a2 are positive parameters.4 This simple model did not fit
the reality as time passes. Rapoport introduced the following model5

x, = -m,x, + a,x2 + bxx\,

x2 = -m2x2 + a2xx + b2x\,

where all the parameters are positive and the decay terms, -mfx,, reflect
the pressure within nations to reduce the defence budget and spent the
money on non-defence items. Figure 6.1.1 shows the behavior of xx(t)
and x2(t) for a particular choice of parameters and initial values

7M, = 0.5, a, = 1, 6, = 0.02, m2 = 0.4, a2 = 0.1, b2 = 0.05,

*o = 0.8, y0 = 0.9 .

1.5i.. ....______

^^ i ' / ]
....-••••-•" 1 I- s t a r t , ' ' I

\ " ~ ••-•-••eL-sj- ^ ' ' >j f

1 t 2 5 ^ ^ I xl /L5

50 l c i

Fig. 6.1.1 The armies of two warring countries.

4 See Richardson (1960). In fact, Richardson obtained a reasonable fit to the total budget

expenditure of both groups by taking at=a2= a, under which xx+x2= ce"''. See also

Enns and McGuire (2001: 66-68).
5 See Rapoport (1960).
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The two countries in war build their armies as follows

i, = ax, - px,x2,

x2 = (l + a)x2 - ypxxx2,

in which Xj(t) is country j 's number of individuals in the army, the
coefficients a, ft and y are positive. Equilibrium points are given by

ccc, - fixtx2 = 0,

(l + a)x2 - ypxxx2 = 0.

The system has two equilibrium points

r\ . X\ — X2 — U ,

(l + a) a

It is straightforward to check that the equilibrium point Pt is an
unstable nodal point; and P2 is a saddle point. We specify the coefficient
values as

a = 6, y =1.2, £ = —^—.
3000

Figure 6.1.2 shows the phase portrait of the equations. The trajectories
show that country 1 wins out in one case and country 2 in the other.

Example The competitive equilibrium and its stability re-examined.

We consider the competitive equilibrium problem as the example in Sec.

5.2. As in Eqs. (5.2.3), the price dynamics are given by

p , = £ , £ , . ( A , P2\ k,>0,i = l,2. (6.1.6)

We examined the system with linear excess demand functions and
specified values of the parameters. We now examine the properties of the
system when E^, p2) are not specified. Suppose the system has a

unique equilibrium and denote the equilibrium by (/?,*, p'2j. The Jacobian
at the equilibrium is



190 Differential Equations, Bifurcations, and Chaos in Economics

30000f] I i \ ^ \ U w r ^ " / /

20000 ' ' " \ " 1 \ \ \ ^ y V * J 1 / /

-i: 'U^UUt
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0 10000 xi 20000 30000

Fig. 6.1.2 Phase portrait plot of the armies of two warring countries.

_K2L2l K2L22where Er = dEj I dpj. Hence

TrJ = k,En + k2E22, DetA = k,k2{EuEn - E2]En).

For the real parts of the two eigenvalues to be negative, we should have
DetA > 0 and TrA < 0. These conditions are satisfied if Eu < 0 and
EUE22 > EnEn. We now show that the gross substitutability guarantees
stability. Assume that commodities 1 and 2 are gross substitutes. This
assumption implies

EH<0, E,j>0, i*j. (6.1.7)

We further require that commodities 0 and 1, and commodities 0
and 2 are gross substitutes. This means Em > 0 and E02 > 0.
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Remember that we required E^, Pu P2) to be homogeneous of degree
zero. According to the definition, we have

E,{xP0, xPlt xP2) = £,(/>, Plt Pt).

Take derivatives of

Ei{xP0,xP1,xP1) = Ei{P0,Pl,P2)

with regard to x for i = 1, 2, and then set x - 1

Em + /?,£,, + p2El2 = 0, / = 1, 2 . (6.1.8)

As Ei0 > 0, Eqs. (6.1.8) yield

ElL<-E±i
 £2i > Pi

Ell A ' ^22 P\ '

where we use Eqs. (6.1.7). We thus have

(DetJ =) £u£22 - £21£12 > 0 .

We thus conclude that under the assumption of gross substitutability,
the system is stable. As demonstrated in Chap. 10, the equilibrium is
globally stable.

Example The Walrasian-Marshallian adjustment process.6

Consider a one-input/one-output economy where a commodity Y is
produced solely by means of labor L with a smooth production function
Y - f(L) (whose reverse is denoted by L - L(y)). Suppose demand for
the produced commodity can be represented by a smooth function
d = d[p, Ls, w,) with dd/dp < 0, p denoting the price and w (- 1)
the nominal wage rate. Profits n are given by

n = pf(L) - wL.

Households' initial endowments consist of labor only, and labor supply
If can be derived from the above demand function by means of
Walras's Law pd = If + n. Owing to this relation, we can neglect the
labor market in later analysis. The market equilibrium is expressed as

d{p,L(r))=r>o,
L'(Y')=p'>0. (6.1.9)

6 This section is based on Chap. 3 in Flaschel, Franke, and Semmler (1997).
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The conditions imply that demand equals supply and prices equal
marginal wage costs. Assume that L"(Y) > 0 for the second derivative of
the cost function L(Y) at least in a neighborhood of Y'. Out of
equilibrium, the following type of the tatonnement adjustment process is
suggested by Mas-Colell7

Y = flT\p-L'(Y)\ (6.1.10)

where fip > 0 and PY > 0 are parameters. Prices are adjusted in the
direction of the excess demand on the market for goods and goods supply
is adjusted following the discrepancy between the current price for the
goods and the marginal wage costs of producing the current supplies.
The Jacobian J at the equilibrium point

J-\P' °P* "M
L0 ftrh -L'\'

where we use dY - dn7z'{L)L'(Y) = 0 at the profit-maximization point.
We are concerned only with the case of \j\ * 0. Local asymptotic
stability is guaranteed if either dp < 0 or L" > 0.

Example Tobin-Blanchard model.8

Let q(t) denote the market value of equities as a ratio of the replacement
cost.9 Suppose aggregate expenditure, e(t), is a function of income, y(t),
the market value of equities, q(t), real (fixed) government expenditure,
g, as follows

7 Mas-Colell (1986: 53). Such a process of a proportional control of prices as well
quantities was related to the works of Walras by, for instance, Morishima (1959, 1977),
and Goodwin (1953,1989), and Walker (1987).
8 See Sec. 2 in Obsfeld and Rogoff (1999) and Sec. 10.8 in Shone (2002). The link
between stock market behavior and income and interest rates was suggested by Tobin
(1969).
9 The variable q can be understood as follows. If all future returns ( R ) are equal and are
discounted at the interest rate r, then the present value of equities ( V ) is equal to R/r.

On the other hand, firms will invest until the replacement cost of any outstanding capital
stock ( RC) is equal to the return on investment (R/p, where p is the marginal
efficiency of capital. Hence, q = VIRC = plr. In the long term, r = p, i.e., q = 1. See
Stevenson, Muscatelli and Gregory (1988: 156-59) for further explanation.
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e = axy{f) + a2q(t) + g, 0 < a, < 1, a2 > 0.

The goods market adjusts with reaction coefficient a > 0 as

y = a{e - y).

The money market is assumed to adjust instantaneously, which implies
that the demand for real money balances is equal to the real money
balances. That is

ky(t)-ur(t) = m0.

Suppose that bonds and equities perfect substitutes. Hence, the rate of
interest on bonds and the yield on equities should be equal

Jt\ _ M O + <K0

where b^y{i) is the firms' profits and q(t) is the capital gains. It is
straightforward to demonstrate that the dynamics of the system which are
given by the above four equations are reduced to two nonlinear
nonhomogeneous differential equations

y = a{ax - \)y + oa2q + og,

l « J "
It can be shown that the system has a unique equilibrium point and it

is a saddle point. For instance, specify the parameter values as

a, = 0.8, a2 = 0.2, g = 7, p = 2, m0 = 8, k = 0.25,

« = 0.2, 6, =0 .1 .

The equilibrium point is

{y',q)= (35.76, 0.76).

The Jacobian is

F-0.4 0.4"

~[0.85 4.7

The two eigenvalues are respectively 4.7658 and -0.4658. Hence,
the equilibrium point is a saddle point.
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Example The Ramsey growth model.
We assume a one-sector economy in which 1 unit of output can be used
to generate 1 unit of household consumption, or 1 unit of additional
capital. Each household consists of one or more adults who are employed
in the competitive labor market and receive wages for providing labor
services. A household is imagined as an immortal extended family. The
households receive interest income on assets, purchase goods for
consumption and save by accumulating additional assets. Each
household maximizes utility and incorporates a budget constraint over an
infinite horizon. Denote C(t) the total consumption at time t and
c{t) = C(t)l N{t) is consumption per worker. It is assumed that the labor
market clears at any point of time and each adult supplies 1 unit of labor
services per unit of time. Households take the net rate of return r(t) on
assets and the wage rate w(t) paid per unit of labor services as given in
the competitive markets. Let K(t) denote the capital existing at each
time t and N(t) the flow of labor services used at time / for production.
The extended family is assumed to grow at an exogenously given rate n.
Let the number of adults at time 0 be unity, the family size at time t is
N[f) = e"'. Each member supplies one unit of labor per unit time,
without disutility.

We assume that production function F(K(t),N(t)) is neoclassical.10

The marginal conditions are

r = FK = f'(k), w = FN= f(k) - kf\k),

where k = KlN. The household's preferences are expressed by an
instantaneous utility function u(c(t)\ where c(t) is the flow of
consumption per person, and a discount rate for utility, denoted by p

u(c) = c{t)' "~l, 9 > 0 . (6.1.11)
1 — if

Assume that each household maximizes utility U as given by
00

U - Jw(c(0KV*c#, c(t) > 0, t > 0.
0

10 See Sec. 4.1.
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The household makes the decision subject to a lifetime budget
constraint. We denote the net assets per household by k{t) which is
measured in units of consumables. The total income at each point of time
is equal to w + rk. The flow budget constraint for the household is

k'=w + rk-c-nk = f-c-nk. (6.1.12)

The equation means that the change rate of assets per person is equal to
per capita income minus per capita consumption and the term, nk. It is
assumed that the credit market imposes a constraint of borrowing, the
present value of assets must be asymptotically nonnegative, that is

lim,^[k(t)exp{-)(p-n)dv}] > 0.
0

The present-value Hamiltonian is given by11

J = u{c)e-(p-n)l + X(w + rk-c- nk),

where X is the present-value shadow price of income. The first-order
conditions are

— = 0^X=u'e-{p-n)',
dc

dX dJ dX .-r
— = - — => — = -(p- n)X. (6.1.13)

dt di dtThe transversality condition is given by

\im[X{t)k(J)} = 0.
By Eqs. (6.1.13), we can derive

r = p - — --— . (6.1.14)
u \c dt J

This equation says that households choose consumption so as to
equate the rate of return r to the rate of time preference p plus the rate
of decrease of the marginal utility of consumption «' due to growing per
capita consumption c. Inserting Eq. (6.1.11) into Eq. (6.1.14) yields

11 Appendix A.6 introduces optimal control theory.
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; ( O = r ^ c ( O = A*i^C(O. (6.u5)

The trajectory of the economy is determined by Eqs. (6.1.12) and
(6.1.15). The phase diagram in c(t) and k(t) is as shown in Fig. 6.1.3.
Along the vertical line defined by

/'(**) = />,

change rate of the consumption per capita is equal to zero, i.e., c(t) = 0.
The consumption per capita increases to the left of the curve and falls to
the right. Along the locus defined by,

c(0 = /(0-«*(0,
change rate of the capital-labor ratio equals zero. The capital-labor ratio
falls above the curve and increases below it. With the requirement p > n
(without which the utility becomes unbounded along feasible paths), the
intersection of the two curves determines a unique steady state.

c(t)

L. L k(t)
k

Fig. 6.1.3 The dynamics of the Ramsey model.
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Local stability of the c-k system is determined by the characteristic
roots of the following matrix of the coefficients of k(t) and c(t)
equations linearized around the equilibrium point

8k die r r, ,-i
— — / - n -1

j = 8k 8c - f»rJ dc_ dt_ ^ - o •

_8k 8c\

We have

tr(y) = / ' - n = p - n > 0, M = ^ - < 0 . (6.1.16)
6

Therefore, the characteristic equation is

f - tr(7)^ + \j\ = 0.
Inserting Eq. (6.1.16) into the above equation yields

V

^0 Jp-n)±J{p-nf-*f"cie

The characteristic roots are real and opposite in sign. The equilibrium
point is a saddle point.

Exercise 6.1
1 Consider the model

x + ax + bx3 =0,

in which a is positive and b can be positive or negative. Determine the
equilibrium and analyze stability of the linearized system.

2 Do a phase plane analysis of the equation in the previous exercise.
Compare to the results on stability obtained by linearization.

3 For the following questions, verify that (0, 0) is a critical point, show
that the system is almost linear, and discuss the type and stability of
(0, 0) by examining the corresponding linear system
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(b) k\ = - x, + x2 + 2xxx2, x2 = - 4x, - x2 + x* - x\ ;

(c) xx - (l + ;c,)sin;t2, x2 = 1 - A:, - x2 cosx2.

4 For the following problems, (1) determine all critical points; (2) find
the corresponding linear system near each critical point; (3) find
eigenvalues of each linear system; (4) what conclusions can you draw
about the nonlinear system from the eigenvalues.

(a) j , = (2 + x, \x2 - * , ) , x2 = (4 - x,Xxi + * 2 ) ;

(b) x, = l - x 2 , JC2 =x,2 -x\.

5 For the following model of two competing species

x\ ~ xvPw ~ anx\ ~ a\2x2j>

Xi =^(«20 ~ a 2 ^ - a22^2)>

where atj > 0 for all i and j . Discuss possible qualitative behavior of
the system.

6 Discuss local stability of the following Keynesian adjustment process

p = /3p[d{p,L{Y))-Y\

Y = fir\p-L'{Y)\

in which the parameters, variables, and functions are defined the same as
in the Walrasian-Marshallian adjustment process, except that in the
Keynesian procedure, quantities react to quantity discrepancies and
prices to cost-price differentials.

7 We specify the parameter values of the Tobin-Blanchard model as

a, = 0.8, a2 = 0.2, g = 7, p = 2, m0 - 16, k = 0.5,

« = 0.25, bx =0.15.

(a) Show that the system has a unique equilibrium points; and (b) Prove
that the equilibrium point is a saddle point.
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8 Discuss stability conditions of the housing market system12

P = rP- R(h),

h = g{p) - {Sh + n)h,

where

P = real price of a standardized housing unit
rP = operating cost of owning a home (r assumed constant)
R = real rental price
h - HIN = housing per adult, where H is stock of housing and

N adult population
Sh = fixed rate of depreciation of stock of housing

n - NIN = fixed rate of population growth.

The function R\h) (where R' < 0 ) is the inverse of the demand function
for housing {h =)H IN = f{R). The first condition, which may be
rewritten as

rP = R{h) + P,

states that the operating cost of owning a home is equal to the real rental
price plus the price change rate. The second equation results from the
assumption that gross investment (= H + ShH) is an increasing function
of the price of housing, g(p) with g' > 0. That is

H + ShH = gN.

6.2 Liapunov Functions

We showed that the stability of a critical point of an almost linear system
can usually be determined from a study of the corresponding linear
system. Nevertheless, if the critical point is a center of the corresponding
linear system, then no conclusion can be made about the nonlinear
system. It is also important to investigate the basin of an asymptotically
stable critical point, that is, the domain that all solutions starting within
that domain approach the critical point. Since the theory of linearization
is a local theory, it does not address this question. In this section, we

12 The model is proposed by Mankiw and Weil (1989). See also Shone (2002: 358-363).
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discuss another approach, known as Liapunov 's second method or direct
method.n The method determines the stability or instability of a critical
point by constructing a suitable auxiliary function. The technique
provides an estimation of the extent of basin of attraction of a critical
point and it can also be applied to study systems of equations that are not
almost linear.

The theory of Liapunov functions is a global approach toward
determining asymptotic behavior of solutions. The previous theorem of
local stability tells us that in the neighborhood of equilibrium, solution
trajectories are attracted to the equilibrium if the eigenvalues of the linear
part of the equation have negative real part. Basically, the method is a
generalization of two physical principles for conservative systems,
namely, (i) a rest position is stable if the potential energy is a local
minimum, otherwise it is unstable, and (ii) the total energy is a constant
during any motion. The Liapunov function shows that initial values from
a large region converge to an equilibrium point. Let vector

*(0 = (*•('WO),
be a solution of the 2 -dimensional system

Xj = J j \x\ > X2 h J ~ > '

or

x(t) = f{x(t)). (6.2.1)

For a function V{f) of x(f), we measure the time rate of change of
"the energy of the system", V(t), along a solution trajectory of Eq.
(6.2.1) by taking the derivative of V{t) with respect to /

v\x) = L^rxj = X.^r/A*) • (6.2.2)
y=i dxj y=i dxj

The derivative of V(t) can be calculated in terms of the differential
equation itself - the solutions do not explicitly appear in this formula.
This function can be used to determine the stability of equilibria of the
differential equation.

13 The method is referred to as a direct method because no knowledge of the solution of
the system of differential equations is required.
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Definition 6.2.1 Let U be an open subset of R2 containing the origin. A
real-valued C1 function

V-.U^-R; xh->V(x)

is said to be positive definite on U if
(i)F(0) = 0;
(ii) V(x) > 0 for all x e U with x * 0.
A real-valued C1 function V is said to be negative definite if - V is
positive definite.

For instance,

V(xl,x2) = x2 + x\

is positive definite on all of R2, while

is positive definite on only a sufficiently small strip about the x,-strip.
For

V(x\, x2,i)- x2 + x\ - 2axxx2 sin?,

if a < 1, V is positive definite; if \a\ = 1, it is "positive semi-definite";
if a < 1, it is "indefinite".

We note that if V is a positive definite, then V has a minimum at the
origin. If this extreme point of V is isolated, then the surface given by
the following equation

z = V(xl,x2),

representing the graph of V in R3 near the origin has the general shape
of a parabolic mirror pointing upward. Figure 6.2.1 depicts a graph of a
positive definite function near the origin.

The following theorem, due to the Russian mathematician Alexander
Mikhailovich Liapunov.

Theorem 6.2.1 (Liapunov)14 Let x' = 0 be an equilibrium point of

* = / ( * ) ,

14 A proof of the theorem is given in Hirsch and Smale (1974).
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Hx1,x2)

%
Fig. 6.2.1 A positive definite function V.

and V be a positive definite C1 function on a neighborhood of 0.

(i) If V < 0 for all x e U - {o}, then 0 is stable,

(ii) If V < 0 for all x e U - {o}, then 0 is asymptotically stable,

(iii) If V > 0 for all x e U - {o}, then 0 is unstable.

Definition 6.2.2 A positive definite function V on an open
neighborhood U of the origin is said to be a Liapunov function for

* = /(*),

if V < 0 for x s U - {0}. When V < 0 for all x e U - {o}, the function
V is called a j /nc/ Liapunov function.

Example By applying the above theorem with

V{xvx2) = x[ +x2
2,

it is straightforward to demonstrate that (0, o) is an asymptotically stable
equilibrium of the following differential equation

Example Consider a model of planar pendulum
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•"•1 = X2>

x2 = - y s i n x , ,

where g and / are positive parameters. The linearization of the
differential equations at the origin has purely imaginary eigenvalues and
the stability type of the equilibrium point at the origin cannot be deduced
from the linear approximation. We introduce

V{Xl,x2) = ±x2
2+£-{l-cosXl).

V is positive definite in a sufficiently small neighborhood of the origin.
Moreover, V = 0. Hence, the origin is stable.

In fact, V = 0 holds for any solution of the pendulum model. This
implies that for any solution

VixMx.it)) =V{Xl(0\x2{0)l
holds. Since V is 2n -periodic in xlt we will confine our analysis to the
vertical strip of the plane with

-n <xx <n.

Due to its periodicity, it is sufficient to take initial data on the x2 -axis.
We now determine the shapes of the curves of

1 ^ + £ ( 1 - 0 0 8 ^ = 1^(0) .

For any x2 (o), the curve defined by the above equation is symmetric
with respect to the xt -axis. Therefore, we need only examine

*2=-J*2
2(0)-^f(l-cosx,). (6-2.3)

With these observations, we can effectively construct the orbits of the
pendulum by considering the values of x2(o). The directions of the orbits
can be inferred from the vector field.

For x2(o) = O, Eq. (6.2.3) gives the equilibrium points i~n, 0),
(0, 0), and (^, 0) For 0 < *2

2(o) <4g/l, the range of x, is an interval of
length longer than In and symmetric about the origin. The curve
defined by Eq. (6.2.3) yields a closed curve on the plane. Since there are
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no equilibrium points on it, this closed curve is a periodic orbit
corresponding to the oscillation of the pendulum about the equilibrium
position (0, 0), see Fig. 6.2.2. For *2

2(o)= 4g/l, the curve defined by
Eq. (6.2.3) is a closed curve. However, on this closed curve, there are
several orbits. In particular, the equilibrium points (- n, 0) and {n, 0)
are on this curve. These equilibria correspond to the vertical position of
the pendulum while the pendulum is "sitting on its head." There are two
other special orbits: one whose a -limit set is (- n, 0) and co -limit set is
(H, 0), the other, which is the reflection of this orbit, whose a-limit set
is {n, 0) and co -limit set is {-n, 0). These special orbits are called
heteroclinic orbits and they correspond to the motions of the pendulum
from one equilibrium point to the other, in infinite time. We give the
precise definition of heteroclinic orbit for future reference.

- P 0 p

Fig. 6.2.2 Phase portraits of the pendulum on the plane.

Definition 6.2.3 An orbit whose a -limit set is an equilibrium point and
co -limit set is another equilibrium point is called a heteroclinic orbit.

If ^ (o ) > 4g/l, then the range of xl is unrestricted and the curve
defined by Eq. (6.2.3) is a 2K -graph over the xx -axis. There is no
equilibrium point on these curves and they correspond to the orbits of the
motion of the pendulum with initial velocity so large that the pendulum
revolves around without end.
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Example Consider the second-order differential equation

x + q(x) = 0,

where the continuous function q satisfies xq(x) > 0 for x * 0,
q(6) = 0. This differential equation can be written as

xj X2,

The total energy of the system

V = ^- + )q{s)ds,
*• 0

serves as a Liapunov function for this system. It is straightforward to
show that the origin is stable.

Example Consider

X\ ~ X2>

x2 - - xl - 2ax2 - x\, a > 0.

The origin is the only equilibrium point and the eigenvalues are
-a ± ib, where b = y l - a1. Hence, the origin is asymptotically stable.
We now apply Liapunov methods to estimate the basic of attraction of
the origin. To put the origin system into the Real Jordan Normal form,
introduce

-a b] b [a 1

Under the above transformation, the original system becomes

yx =-ayx + by2,

y2=-by, -ay2-^-.
o

Define

v{y,yi)^Yyi+yl\
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Then

v = -(yl+yl)-^by\y2.

We now determine the largest subset of R2 containing the origin where
- V is positive definite. To simplify the matter, we search for the largest
such disk. From the symmetry of - V, it is evident that the radius r0 of
the largest circle inside which - V is positive definite must satisfy

r 0
2 - - U « = 0 .

ab

That is,

r0 = 4ab •

Thus, every solution of y{f) with y{0) satisfying |;yo|| < r0 approaches
the origin as / —> oo. The circle of radius r0 becomes an ellipse when
transformed back to the original system. In fact, one can obtain a slightly
larger basin of attraction of the origin.

Consider again the dynamic system

* = 4x2* + g ( 4 x<=R2, (6.2.4)

where A is real and g(x) is of of magnitude smaller than Ax, We now
construct explicit Liapunov functions for the linearized system x = Ax
and show that they also work for the original system. Introduce

'a b
A= , p s TraceA (< 0) , qs DetA > 0 .

c d\

As A is regular, we have

q\_-c a

Theorem 6.2.2 Let (0, 0) be an equilibrium point of Eqs. (6.2.4), where

g(x) = O(||JC||2 j as ||JC|| —> 0 . Then the zero solution of Eqs. (6.2.4) is

asymptotically stable when its linear approximation is asymptotically
stable.
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Proof: Define V(x) - xTKx (where K is a 2x2 constant symmetry
matrix to be determined) and differentiate V with regard to t for Eqs.
(6.2.4)

V = xTKx + xTKx = xT (ATK + KA)x + 2gTKx. (6.2.5)

We now want to determine K such that ATK + KA-- I2x2 and V is
positive definite for p < 0 and q > 0. We now show that there is a
solution to ATK + KA = - I2x2 in the form of

K = m(ATYA-x +nl,

where m and n are constants. Substitute this equation into
ATK + KA = -I2x2

11" 2md + 2naq {nq - m)(b + c)~| _ |~1 0~

q (nq - m)(b + c) 2ma + 2ndq 0 1

This equation is satisfied if m = —ql2p and n--\l2p. Now, it is
straightforward to show

1 c2 + d2 + q -ac-bd

2pq -ac - bd a2 + b2 + q

y _ fa ~ bxif + icxi ~ax2f + i(xi + *2)
2pq

<0, fo rx^O. (6.2.6)

Hence, K is symmetry and V is positive definite. Under K specified in
Eqs. (6.2.6), Eq. (6.2.5) becomes

V = -x2 -x2
2+2gTKx. (6.2.7)

For any p, q, there is clearly a neighborhood of the origin in which the
terms - x2 - x\ predominates, that is to say, where V is negative
definite.

Therefore, V is a strong Liapunov function for the original system for
p < 0, q > 0.
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Theorem 6.2.3 Let (0, 0) be an equilibrium point of Eqs. (6.2.4), where
g(jt) = 0|x||2) as | * | - » 0 . When the eigenvalues of A are different,
nonzero, and at least one has positive real part, the zero solution of Eqs.
(6.2.4) is unstable.

Proof: First consider the case that the two eigenvalues /?, and p2 are
real and different. As the origin is unstable for the linearized system, at
least one eigenvalue is positive. We know that there is a 2x2matrix
invertible C such that C'lAC - diag\pj] = D. Introduce x = CX. Now
Eqs. (6.2.4) are transformed into

X = DX + C'lg(CX). (6.2.8)

Introduce

V{X) = XTD~lX = **- + £-.
A Pi

Then V(x) > 0 at some point in every neighborhood of X = 0 (since
instability requires pl or p2 positive). As

I Pi Pi )

which is positive definite in a small enough neighborhood of the origin,
we see the theorem holds when /?, and p2 are real and different.

Now examine the other case that the two eigenvalues px and p2 are
conjugate complex with positive real part, pl2 = a + ifl, a > 0. In this
case, there exists an invertible matrix G such that

[J3 a J M

Introduce JC = GX and transform Eqs. (6.2.4) into

X = AX + G-lg(GX).

Define V(x) = XTX. The function V is positive definite and
V = 2aXTX is also positive definite. Hence, the origin is unstable.

We conclude this section with an embellishment of the theorem of
Liapunov. The instability part of Theorem 6.2.1 has the deficiency of
considering a full neighborhood of the origin and thus is not applicable to
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equilibria of saddle type. The following Cetaev theorem remedies the
shortcoming.15

Theorem 6.2.4 (Cetaev) Let U be a sufficiently small open
neighborhood of the origin. If there is an open region W and a C1

function V :W —» R with the properties
(i) the origin is a boundary point of W;
(ii) V(x) = 0 for all x on the boundary points of W inside U;

(iii) V(x) > 0 and V{x) > 0 for all x e W n U,
then the origin is an unstable equilibrium point.

Example Instability with Cetaev.
We consider the system of differential equations

X\ X\ ~r X^X^ ,

Xj X2 "i" X^ ,

which has an equilibrium point at the origin. The eigenvalues of the
linearized system at the origin are 0 and - 1 . To determine stability of
the origin, introduce

and the open region

W = {(xi,x2):xl > x2 >-xl}.

Observe that V(x) > 0 for x e W, and V(x) = 0 on the boundary.
Next, we compute the derivative of V along the solutions of the
differential equations above

V(xv x2) = x,4 - x2(xf - x,3) + x\.

In a sufficiently small neighborhood U of the origin, we estimate

V > *,4 - (1 + *fc|x? + x\ = (xl - \x2\J + (1 - s)x2\xf,

15 See Sec. 9.3 in Hale and Kocak (1991).
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where s > 0 is small. It is easy to see that V > 0 for x in a
neighborhood of x = 0 and, in particular, for x e W. Now, the
conditions of the Cetaev Theorem are satisfied and thus the origin is
unstable.

Exercise 6.2
1 Consider

* = y, y = -siny,

for each integer n, the system has a unique equilibrium, {nn, 0). Show
that

V(x,y) = y112 + 1 - cos*,

is a Liapunov function for the equilibria.

2 For the following equation

d2u I \

• j r + ^ o ,
where g(o) = 0, g(w) > 0 for 0 < u < k, and g(u) < 0 for - k < u < 0.
(1) Let

xl=u,

x2-u.

Write the above equation as a system of two differential equations
system and show that JC, = 0 and x2 - 0 is a critical point. (2) Show that

2 *i
F(*P *2) = ~ + Jgfc)«fr. -* < Xl < k'

*• 0

is a strict Liapunov function for (0, 0).

3 Consider the system of equations

X\ ~ X2 ~ X\J \XJ > X2 h

x2 — —xi — x2j [xt, x2),

where / is a real-valued C1 function. Using
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V \X^, X2 ) — Xi + X2 ,

show that if / > 0 in some open neighborhood of the origin, then the
origin is asymptotically stable. What is the stability type of the origin if
/ < 0 in some open neighborhood of the origin?

4 Show that the origin is a stable equilibrium point of (i) and an unstable
equilibrium point of (ii) in the following equations:

Y zz — V — 0 X

T = V A- X X

• 2 3

6.3 Bifurcations in Planar Dynamical Systems

In Chap. 3, we discussed bifurcations in one-dimensional systems. We
now examine bifurcations in planar differential equations. We first show
a few bifurcations, which are essentially the same as those that we have
studied in Sec. 3.3. In this section, it will always be assumed that
functions have as many derivatives as necessary if this is not explicitly
stated.16

Example Saddle-node (fold) bifurcation.
Consider the following product system

i, = X + x\,

x2 = —x2.

The second equation is linear with x2(t) —> 0 as t —> oo. Thus all the
orbits of the system eventually approach xl -axis where the dynamics of
the system are governed by the first equation. However, this first
equation is simply Eq. (3.3.3) in Sec. 3.3. The phase portraits of the flow
of the system for various parameter values are now easy to construct. For
A < 0, there are two equilibrium points. One of these equilibrium points

16 The examples below in this section are from Chap. 7 in Hale and Kocak (1991).
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is a saddle point. The other equilibrium point is a node. At X = 0 the two
equilibria coalesce into one, and for X > 0, the equilibrium point
disappears. We depict vector fields of the system in Fig. 6.3.1.

Fig. 6.3.1 Vector fields of the saddle-node bifurcation.

In fact, there are many planar dynamical systems which are
equivalent to the above example. Consider a planar system

x = f{x,X\ xeR2, XeR. (6.3.1)

Assume that at X = 0 it has the equilibrium at x = 0 with one
eigenvalue /?, = 0 and one eigenvalue p2 < 0. It can be proved that Eq.
(6.3.1) is locally topologically equivalent to the system17

JC, = X + ox2,

x2
 = — x2,

where a = signa - ± 1.

Example Pitchfork bifurcation.
Consider

xx - ~Xxx - x],

x2=-x2. (6.3.2)

As in the previous example, the dynamics of the system are contained
in the first equation, which we have already analyzed in Sec. 3.3. The
vector fields for three values of the parameter are depicted in Fig. 6.3.2.

17 The proof is referred to Sec. 5.2 in Kuznetsov (1998).
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Fig. 6.3.2 Vector fields of the pitchfork bifurcation.

Example Vertical bifurcation.
Consider the following one-parameter perturbation of the harmonic
oscillator

Xj = AXj ~f- X2;

X2 — Xi 1 AX2 j

when A is a parameter. When the parameter satisfies X < 0, we see that
all the solutions spiral clockwise into the origin as t increases. For
X = 0, this is the harmonic oscillator and all the solutions are periodic so
that the origin is a center. Since at this value of the parameter the number
of periodic orbits changes from none to many, we consider X = 0 a
bifurcation point. For X > 0 all solutions spiral out clockwise without
bounds. We depict the vector fields for the vertical bifurcation as in Fig.
6.3.3.

Example The Poincare-Andronov-Hopf bifurcation.
Consider

j , =x2 +x^X-x2
x -x\\

x2 = — JC, + x2 [X — x{ — x2 j,

where X is a parameter.
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Fig. 6.3.3 Vector fields of the vertical bifurcation.

In polar coordinates, the system becomes

r = r(x-r2\

e = -\.
From this system, we see that for X < 0, all solutions spiral

clockwise to the origin with increasing time. When A > 0, the origin
becomes unstable and a periodic orbit of radius r = -[k appears.
Furthermore, all the orbits, except the origin, spiral onto this periodic
orbit. The birth or death of a periodic orbit through a change is the
stability of an equilibrium point known as the Poincare-Andronov-Hopf
bifurcation. We depict the vector fields for the bifurcation in Fig. 6.3.4.

Fig. 6.3.4 Vector fields of the Hopf bifurcation.

Example Homoclinic or saddle-loop bifurcation.
Consider the planar system depending on a real parameter

.Xj — X2,
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JC2 = x, + Xx2 - x2
x. (6.3.3)

For X = 0, the system (6.3.3) is conservative with the first integral

#fe, * ) = !(*?+ *?)+!• •

The equilibrium point at (l, Oj is a center locally surrounded by
concentric periodic orbits. The equilibrium point at the origin, when
viewed locally, is a saddle; when viewed globally, however, one of the
orbits emanating from the origin terminates again at the origin after
going around the other equilibrium. Indeed, the level set

Jf(x,,x2) = 0,

is rather special. It contains the equilibrium at the origin and the orbit
whose a - and co -limit sets are again the origin. Such orbits are called
homoclinic orbits.

Definition 6.3.1 An orbit whose a - and co -limit sets are both the same
equilibrium point is called a homoclinic orbit.

When X * 0, the center is destroyed but the saddle remains. The loop
consisting of the homoclinic orbit and the equilibrium point at the origin
is broken. We illustrate the manner in which the loop breaks depends on
the sign of the parameter in Fig. 6.3.5.

Fig. 6.3.5 Breaking a homoclinic loop bifurcation.
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6.4 Periodic Solutions and Limit Cycles

We now consider possible existence of periodic solutions of second order
autonomous systems

xj{t) = fJ{xi,x2), 7 = 1,2, (6.4.1)

or in the vector form, x = fix). Such solutions satisfy x(t + T) = x(t)
for all / and for some nonnegative constant T called the period. The
corresponding trajectories are closed curves in the phase plane. A special
case of a periodic solution is a critical point, which is periodic with any
period. When we speak of periodic solutions, we exclude this case.

From Chap. 5, we know that a linear autonomous system

X = ^bClX >

has a periodic solution only if the eigenvalues of A are pure imaginary.
The critical point is a center. If the eigenvalues are not pure imaginary,
then the linear system has no periodic solution. Consider the following
nonlinear system

i, = xl(l-x2),

x2 =<ZC2(JC, - l ) . (6.4.2)

Dividing the two equations yields

dxx _ * , ( l -x 2 )
dx2 ox2[xi -1)

The separation method solves the above equation as

G(xv X2) = <T(JC, - In*,) + x2 - \nx2 - A,

where A is a constant. Since G(JC,,JC2) does not change as we move
along a trajectory or solution curve of the equations, these trajectories are
defined by the curves

G(xi,x2)=A

for different values of the constant A. We simulate the dynamics (6.4.2)
with cr = l. We see that x^t) and x2(t) are periodic solutions as the
trajectory is a closed curve.
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We now study another dynamic system to demonstrate another way
in which periodic solutions of nonlinear autonomous systems can occur.

x2

2.5 .--— — • — ^ ^

0.5 ^v ^ _ _ _ _ ^ - - ^ ^

0.5 1 1.5 2 2.5 xx

Fig. 6.4.2 A periodic solution of the system (6.4.2).

Example Consider a nonlinear system

Jiit ~~ Jii\ i J\"y ~~ J*\ \-*M * 1 / '

x2=-xi+ x2- x2\x
2
x + x\). (6.4.3)

The system has only one critical point (0, Oj and it is almost linear in
the neighborhood of the origin. The linearized system near the origin is

"*,] Ti llpf,"
x2\ [-1 i\[x2'

The two eigenvalues are

The origin is thus an unstable spiral point for both the linear system and
the nonlinear system (6.4.3). Any solution that starts near the origin will
spiral away from the origin. Since there are no other critical points, we
might think that all solutions of the nonlinear system spiral out to infinity.
But this is not correct as, demonstrated in Fig. 6.4.3, because far away
from the origin the trajectories are directed inward.

We now analytically show the behavior of the system. We introduce
polar coordinates r and 6
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x1=rcos0, x2=rsin0, (6.4.4)

where X - 0. First, we note that the system (6.4.3) contains the
following relations between x^(t) and x2(t)

^ K N X \ \ \ \ \ X X \ ^ \ \ I I / / / /

^ i i ^ i — i i ^ X \ \ I / / / /
Zr^/////^Z^^\\ 1 / / /
^^// t I / / y^J^^\\ I / /
^ / / / / / i f / / / _ ^ ^ \ \ / / /

'•'//tk^ rz^\ '/si
^W^z^^)})])1//^
/ / / j \w^/////^n
/ / / / f \ \ \ \ \ \ ^ \ t ; ^ ^ ^

_1-5[// / / f 1 \ \ \ \ \ \ \ \ \ \ \ \ \ v
-1.5 0 1.5

Fig. 6.4.3 Phase portraits of the system (6.4.3) near the origin.

x, j , + x2x2 = (xl +x])- (xf +x2j,

Substituting Eqs. (6.4.4) into the above equations yields

rr = r2(l-r2),

6 = -\. (6.4.5)

The critical points of

rr = r2(l - r2),
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are the origin and the point r -1. The latter corresponds to the unit
cycle in the phase plane. From the equation, we see that r > 0 if r < 1,
and r<0 if r > 1. Thus inside the unit circle the trajectories are
directed outward, while outside the unit cycle they are directed inward.
This is illustrated in Fig. 6.4.3. The solution of 0 = - 1 is

0(t) = -t + to,

where t0 is an arbitrary constant. A solution to the system is

r{t) = l,0{t) = -t + to. (6.4.6)

As t increases, a point satisfying Eqs. (6.4.6) moves clockwise around
the unit circle. Thus the nonlinear system has a periodic solution.

When r * 1, solutions of

rr = r
2(\-r2)

are given by integrating

dr , i \ L -2,V"2

J1_r2j = ^ = > K0=(i + <v2') ,
where c0 is an arbitrary constant. Hence, the other solutions, except
r{t) = 1, to Eqs. (6.4.5) are

r(t) = (l + coe-2-y'2, e(t) = -t + t0.

Given the initial conditions r(o) = r0 and #(0) = 0a, we have the solution
satisfying the initial conditions

r(t)={i + (vrt-iy>y'\e(t) = -t + e0.
If r0 < 1, then r —> 1 from the inside as t —> + oo; If r0 > 1, then

r —> 1 from the outside as t -> + oo. Thus in all cases the trajectories
spiral toward the circle r{t) = 1 as t -> + oo. The motion is illustrated in
Fig. 6.4.4.

In this example, the circle r = 1 is a periodic solution. Also, all other
nonclosed trajectories spiral toward it as t -> +oo. In general, a closed
trajectory in the phase plane is called a limit cycle if all other nonclosed
trajectories spiral toward it, either from the inside or from the outside as
t -> +oo. If all trajectories that start near a closed trajectory (both inside
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and outside) spiral toward the closed trajectory as t —» + oo, then the
limit cycle is asymptotically stable. This kind of stability is called orbital
stability as mentioned before. If the trajectories on one side spiral toward
the closed trajectory, while those on the other side spiral away as
7->+oo, then the closed trajectory is said to be semistable. If the
trajectories on both sides of the closed trajectory spiral away as
t —» +00, then the closed trajectory is unstable. If other trajectories
neither approach nor depart from the closed trajectory, then it is called
stable. The periodic solution to Eqs. (6.4.2) belongs to this type.

'•'F^^^^xvT^Ti TTT7
\ \ \ f i r '

-i.5 / / / / I i \ \ \ W W w v w w
-1.5 0 1.5

Xy

Fig. 6.4.4 A limit cycle generated by the system (6.4.4).

Example Semistable limit cycle.
Consider a nonlinear system

Aj JC] \X\ ~r X2 ly Xj 5

x2 - x2\x]
2 + x\ - \J + x,.
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The system contains the following relations between x^t) and x2(t)

Xji, + x2x2 = (x2 + xl\x2
x + x\ - if,

Under the polar coordinate transformation, the above system becomes

rr = r2(r2-if, 6 = 1.

The critical points of

rr = r2(l-r2)

are the origin and the point r = 1. The latter corresponds to the unit
cycle in the phase plane. From the equation, we see that r > 0 for r > 0.
Thus inside the unit circle the trajectories are directed outward, while
outside the unit cycle they wind off on the outside. Figure 6.4.5
illustrates the cycle and two trajectories - one starting inside the cycle
and the other outside the cycle.

2 | \ \ \ \ \ \ \ \ M i l l / / / / / / /
N \ \ \ \ \ \ \ \ M 1 M / / / / / /
\ \ \ \ \ \ \ \ \ \ \ l 1 I / / / / / /

y ^ V . V . ^ ^ X V V ^ ^ N N X 1 f 7 / / / y

^ . ^ ^ ^ ^ ^ . . . , ^ N \ t / / / s,s

-~ - - *- — ̂ - , //J^^~- ^ ^ ^ ^ ' ^ ' f/S y* ̂

, . , 't %{/, ^~ i / / n%\/; / ^ ^ ^
o / v. / / ' n y / i I > i /

/ / /// j ^ ^ ^ - ^ ^ ~Z^^'/ "~ ~ ̂  ~" "~*
^ ^ , , ^ . / / \ \ ^Nf»i=^*>^'^ —* — - ^ >-» "^ -^

s-'s / / / \ \ \ ^ • — - — — — — - . ^ ^ ^ ^

• • / / / / I \ \ \ \ ^ ^ \ X N X N ^ ^
^ ^ / / / / | 1 V \ \ \ \ \ \ W N N N
/ / / / / / / M \ \ \ \ \ \ \ \ \ x \

-2 0 x 2

Fig. 6.4.5. An example of semistable limit cycles.
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Example Multiple nested limit cycles.
Consider a nonlinear system

xx=-x2 + xt(x
2 + *2

2)sin L
W*l + *2 J

^=•^1+ ^ f e + 2̂ )sin , , •

The system contains the following relations between *, (/) and x2 (t)

x,x, + xox, = (x* + xl f sin . ,
^ ^ ' 1 1 1 2

Under the polar coordinate transformation, the above system becomes

rr = r1 sinf- J, 0 = 1.

The critical points of rr = r2 sin(l/r) are the origin and the points

r - 1 / tin, i = 1, 2 , 3 •••.

The latter corresponds to the cycles of radius r = l/rm, which are limit
cycles, unstable for odd n and stable for even n. To establish stability,
introduce

-r^ = nn + h{t)
r(t)

where

h(t)« nn.

Substituting

-T-T = nn + h{t)
r(t)

into r - rsin(l/r) yields

h = - {nn + h)sin(nn + h) = - (nn + h)cos(nn)sin(h).
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When n is even, the above equation becomes

h - - {nn + h)sin(h).

When h is positive (negative), h < (>) 0. Similarly, we can discuss
temporary behavior of h when n is odd. We demonstrated the existence
of multiple limit cycles as in Fig. 6.4.6.

Example The Brusselator model.
A hypothetical set of chemical reactions due to Prigogine and Lefever
leads to the following Brusselator model18

-0.35 } ^ ^ s s ^ - ^ ^ ^

-0.34 0 x 0.35

Fig. 6.4.6. Existence of multiple limit cycles.

x = a - (l + b)x + x2y,

y = bx- x2y,

where x and y are nonnegative and a and b are positive. A stable limit
cycle is demonstrated as in Fig. 6.4.7 with a = 1 and b -3.

18 Prigogine and Lefever (1968). Here, we only provide a simulation result to demonstrate the
existence of limit cycles in the model.
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~ \ x x x x x x x x x x x x x x x x x x
" y\* \ X X X \ X X X X X \ X \ X X X \

y "* / \ X X X X X X X X y X X X X X X X X X
~ V \\ X X X X X X X V X X X X X X X X

4 • •"" x v \ X X x \ x x x \ \ x x x X x x x x
— , •» \ \ x x x x x x x V \ x x x x x x
"*• >"*• \ \ \ x x x x x x x \ » x \ x x v x
~ y \ X \ X \ X \ X \ X \ \ X \ X \ X \

~" ̂ \v \ \ \ \ \ x ^ x \ x \ x\v. x x x \
"" i V *• v x v\x x x x x x x x V x x x x

2 • " \ O ^ " \ \ \ \ X X X X X X X X N X X X X

~~ \ v «sNi" V v x v ^ ^ x x s v ^ ^ \ ^ x ^
* w ^ x > H d \ \ x x x x x x x x \ x x
* \ V x v > - ^ "> A1* ^ x v x ^ x v y \ x x

* V v v v 1; O f U J * \ \ \ x x x x x \ \

Q _ i \ \ \ V X V X V X V X ' V X " V X " V « , ' V X

0 2 4 6 x 8

Fig. 6.4.7 A stable limit cycle in the Brusselator.

Exercise 6.4
1 Show that the following nonlinear system

*> = ~X2 + I *' , t1 " Xl ~ Xl)>

has a stable limit cycle.

2 Show that the following nonlinear system

xx =x2 + xx(xf + x\ - l ) ,

x2=-xi +x1{x1
l + x\ - l ) ,

has an unstable limit cycle.

6.5 The Poincare-Bendixson Theorem

The literature dealing with the existence and properties of limit cycles is
vast. We now introduce a few important aspects of the literature.
Consider
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Xj{t) = f J { x l , x 2 ) , 7 = 1 , 2 . (6.5.1)

Theorem 6.5.1 Let functions f^x) and f2(x) have continuous partial
derivatives in a domain D of R2. A closed trajectory of Eqs. (6.5.1)
must necessarily enclose at least one critical point. If it encloses only one
critical point, the critical point cannot be a saddle point.

Theorem 6.5.2 (Bendixson's negative criterion) Let functions f^x) and
f2(x) have continuous partial derivatives in a simply connected domain
D o f* 2 . 1 9 i f

dxx dx2 '

has the same sign throughout D, then there is no closed trajectory of the
system (6.5.1) lying entirely inD.

The theorem is also called Bendixon 's first theorem. It is often used to
establish the nonexistence of limit cycles of the two-dimensional first
order differential equations.

Example Consider the system (6.4.3) again. We have

ax, 8x2
 v ' 2j v ;

Hence

- ^ + ^ - > 0 ,
dxl dx2

is positive for 0 < r < V2, so there is no closed trajectory in this
circular disk. In fact, we have shown that there is no closed trajectory in
the larger region r < l.This implies that Theorem 6.5.2 may not give the
best possible result. For r > 1/V2,

A simply connected two-dimensional domain is one with no holes. Any closed curve or
surface lying in the domain can be shrunk continuously to a point without passing outside
of the domain.
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dxl dx2

But the theorem is not applicable in this case because this annular region
is not simply connected.

Example Consider

i, = -gx}x2 -axt,

X2 = - 8XiX2 + «*2 >

where Xj > 0, j = 1, 2. To apply the Bendixson's negative criterion, we
calculate

j L + ^2- = -g[xl +x2).oxl ox2

We conclude that dfl/dxi +d/2/dx2 does not change its sign for

Xj > 0, j = 1, 2. Hence, the system has no periodic solutions.

Theorem 6.5.3 (Poincare-Bendixson theorem) Let functions fx{x) and
f2(x) have continuous partial derivatives in a domain D of R2. Let Di

be a bounded subdomain in D, and let C/ be the region that consists of
£>, plus its boundary (all points of Di are in D). Suppose that (7
contains no critical point of the system (6.5.1). If there exists a constant
t0 such that x, = fa(t), x2 = ^2(f) is a solution of (6.5.1) that exists and
stays in U for all t > t0, then either xl = fait), x2 = <p2{t) is a periodic
solution, or xl - 0t(t), x2 =02(t) spirals toward a closed trajectory as
t —> +oo. In either case, the system (6.5.1) has a periodic solution in U.

This theorem is also referred to as the second theorem of Bendixson.
If U does not contain a closed trajectory, then Theorem 6.5.1 shows that
this trajectory must enclose a critical point. However, this critical point
cannot be in U. Thus U cannot be simply connected; it must have a
hole. Although this theorem gives the necessary and sufficient conditions
for the existence of a limit cycle, it is often difficult to apply because it
requires the knowledge of the nature of trajectories. It should be noted
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that the Poincare-Bendixson theorem is restricted to two dimensions.
Analogous theorems in higher dimensions do not exist.

When applying the Poincare-Bendixson theorem, the following
procedure is appropriate to a specific dynamic system in R2: (i) Locate
a fixed point of the dynamic system and examine its stability property;
(ii) If the fixed point is unstable, search for an invariant set W enclosing
the fixed point. When a closed orbit does not coincide with the boundary
of W, the vector field described by the functions /J and f2 must point
into the interior of W. When the fixed point is unstable, trajectories
starting in a neighboring of the fixed point will be repelled from it. The
set U in the theorem can be considered as the subset of W which
consists of W minus a neighbor of the fixed point. We now apply this
procedure to the Kaldor model.

Example Periodic solutions in the Kaldor model.20

The Kaldor model is describe by

Y = a{l(Y, K) - S{Y, K)} = oF{Y,K),

K = l{Y,K)-SK, (6.5.2)

where variables and parameters are defined as

Y and K = output level and capital stock, respectively;
l(Y, K) = investment function (IY > 0, IK < 0);

S(Y, K) = saving function (0 < SY < 1, SK > 0)21;

a and S = a positive adjustment parameter and capital depreciation rate.

20 The original model was proposed by Kaldor (1940, 1957, 1963). Kaldor's contribution
was in conjunction with the work of Kalecki (1937, 1939), who investigated similar
models but concentrated on different aspects of stability. The analysis below is based on
Sec. 2.2 in Lorenz (1993). For the analysis and behavioral interpretations of the model,
see also Chang and Smyth (1971) and Gabisch and Lorenz (1989).
21 The assumption of SK > 0 is not convincing. In Chang and Smyth (1971), it is

assumed SK < 0. As we require

IK-SK< 0,

the different signs do not affect our analytical conclusion.
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Suppose that the system has at least one equilibrium point. The
determinant and trace of the Jacobian at an equilibrium point \Y', K')
are

det J = aFY(lK -S)- aFKIY ,

trJ = aFY +IK-S. (6.5.3)

The determinant must be positive in order to exclude the possibility
of a saddle point. The fixed point is locally stable if the real parts of the
eigenvalues are negative. This is guaranteed if the trace is negative. We
are interested in the case that the fixed point is unstable, which is
guaranteed by

d e t J < 0 , trJ>0.

We now search a compact invariant set W such that the vector field
(6.5.2) points inwards.

K
Y=0

\ w *"! / *~~l

t^^"^ ! ̂  \
L _ : ^J Y

Y' Yf

Fig. 6.5.1 The phase portrait of the Kaldor model.

Along the curve that capital stocks does not change (i.e., K = 0), we
have

dY i«=o IK - S

This implies that the locus of all points in the set

{{Y,K)\K = 0},
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is an upward sloping curve as shown in Fig. 6.5.1. For all K above
(below) the curve for K - 0, investment decreases (increases) because
of IK -S <0.

Along the curve that output does not change (i.e., Y = 0 ), we have

d£ _SY-IY >Q

dY |r=o 1% — SK <

Assume IK - SK < 0. The sign of dK I dY is dependent on the values of
SY and Ir. The difference SY - IY is positive for low as well as for high
levels of income and is negative in the neighborhood of the equilibrium
point. It follows that the curve for Y = 0 is negatively sloped for low and
high values of Y and is positively sloped in a neighborhood of Y'.
Income increases (decreases) for all points below (above) the curve
Y = 0.

The subset

W = {(Y, K)\ 0 < Y < Yx, 0 < K < Kx),

is compact and the vector field points inwards the set on the boundary.
Thus the requirements of the Poincare-Bendixson theorem are satisfied.
Therefore, the Kaldor model exhibits limit cycles.

Exercise 6.5
1 Apply the negative criterion to show no periodic solutions to
a) * , = - * , + x\, x2 = -x\ + x\;

b) •£,=—*,+ 4x2, x2 = — X, - x\;

c) x, =-2x^x'+4\ x2=-2xjx" + x22\

6.6 Lienard Systems

The Poincare-Bendixson theorem can be used to establish the existence
of limit cycles for certain planar systems. But it does not show us how to
determine the exact number of limit cycles of a certain system or class of
systems depending on parameters. This section represents some well-
known results about the uniqueness of limit cycle for the so-called
Lienard system
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x, = x2 -F(x , ) ,

x2=-g(x1\ (6.6.1)

under certain conditions on the functions F and g.22

Theorem 6.6.1 (Lienard's theorem) If F, g e C(i?), and F andg are
odd functions of x,,23

x,g(x,) > 0 for x, * 0, F(0) = 0, F'(fj) < 0,

F has a single positive zero at x, = a, and F increases monotonically
to infinity for x, > a as x, -» oo, then the Lienard system (6.6.1) has
exactly one limit cycle and it is stable.

Under the assumptions of the above theorem, we observe that the
origin is the only critical point of the system (6.6.1); the flow on the
positive x2 - axis is horizontal and to the right, and the flow on the
negative x2 - axis is horizontal and to the left; the flow on the curve
x2 = F(X{ ) is vertical, downward for x, > 0 and upward for x, < 0; the
system is invariant under (x,, *2)h-> (-x,, -x2) and therefore if
(xj(/), x2(tfj describes a trajectory of the system (6.6.1) so does
(-x,(f), -x2(t)). We will apply this theorem to a modified Phillips model
in the next chapter.

Example Consider the Van der Pol equation

x + //(x2 - ljx + x = 0.

Show that for// > 0, the system has a unique limit cycle. The system can
be rewritten as

x + d — -x\+ )x{r)dT = 0 . (6.6.2)
V ^ 7 0

22 T h e sys tem w a s first examined by the French physicis t A . Lienard in 1928. Lienard
studied this system in the equivalent form: x + f(x)x + g'{x)= 0, where f(x)=F'(x).

The VdP equation, x + n\x2 - \)x + x = 0, is a special case. The results about the

Lienard system are referred to Sec. 3.8 in Perko (2000). See also Yeh (1986).
23 A function is even if f(x) = f(-x) and is odd if- f(x) = / ( - x).
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Introduce
t

xl = x, x2 = - \x(r)dT .
0

We rewrite Eq. (6.6.2) as

x2 = - xr (6.6.3)

The system Eqs. (6.6.3) satisfies the conditions of Lienard's Theorem
as

g(x1) = x1, F(xl) = fl^--xi\.

Hence, the system has a unique limit cycle.

The following theorem complements Lienard's Theorem. Lorenz
applies this theorem proved by Levinson and Smith to guarantee the
existence of a unique business cycle in a modified Phillips model.24

Theorem 6.6.3 (Levinson and Smith) The following Lienard system

3c + f(x)x + g(x) = 0

where / = F' has a unique periodic solution if the following conditions
are satisfied: (i) / and g are C1; (ii) There exists, > 0 and x2 > 0 such
that f(x) < 0 for - x1 < x < x2 and f(x) > 0 otherwise; (iii) xg(x) > 0,
x*0; (iv)

)f{x)dx = ±]g{x)dx = oo ;
0 0

and (v)

G{-Xl) = G{x2)

24 The following theorem is proved by Levinson and Smith (1942: 397). For economic
applications to a modified Phillips model (1954), see Chap. 2 in Lorenz (1993).
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where G(x) = Fg(s)ds.

Theorem 6.6.3 (Zhang) 25 Under the assumptions that a < 0 < b,

F, ge Cl(a,b), x,g(x,)>0 for *, * 0, G(JC,)-»OO as x{ -> a if

a - -oo and G(x1) —> «> as *, —> 6 if b = °° (where G(xi) = P g(5)<is),

/(jc,)/g(x,) is monotone increasing on (a, 0)u(0, b) and is not constant

in any neighborhood of xt = 0, it follows that the system (6.6.1) has at

most one limit cycle in the region a < x < b and if it exists is stable.

Example As demonstrated by Perko,26 the quadratic system

i, = -x2(l + x,) + act, + (l + a)x], 0 < a < 1,

has exactly one limit cycle and it is stable. Introduce a new independent
variable r by dz = - (l + xl )dt.
Then, the above system is transformed to a special case of Lienard's
systems

dx, aac, + (l + a)x2. n

—L = x, L-7-j!—r-^-2-, 0 < or < 1,
J T

 2 (l + jc,)

Although it does not satisfy Lienard's Theorem, it satisfies Zhang's
Theorem for x > - 1. It has exactly one limit cycle and is stable.

Theorem 6.6.4 (Zhang)27 If g(x,) = JC,, F e C'(/?), / (x,) is an even

function with exactly two positive a, < a2 with F(a,) > 0 and

25 The theorem is proved in 1958 by the Chinese mathematician, Zhang Zhifen. Lorenz
(1993: 57-60) applies Zhang's result to a simplified Kaldor model. We don't reproduce
Lorenz's applications because they are done under very strong, if not unreasonable,
assumptions from the economic point of view.
26 See Perko (2000: 259).
27 The theorem is proved in 1981 by Zhang (1981).
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F(a2)< 0, and f(xx) (where F(xi)= \f(s)ds) is monotone increasing
0

for *, > a2, it follows that the system (6.6.1) has at most two limit cycles.

Example It can be demonstrated that the Lienard system with

*(*,) = *,, F(*,) = 0 . 3 2 * ? - ^ . + 0.8*,,

has exactly two limit cycles.

Theorem 6.6.5 (Lins, de Melo and Pugh) If g(xx) = xx,

F(xx) = a,*, + a2x\ + a}x
3
x,

and fl,fl3 < 0, then the system (6.6.1) has exactly one limit cycle. It is
stable if ax < 0 and unstable if ax > 0.

Exercise 6.6
1 Show that the functions

F(x\=
xl-^

l J x?+l'

and g{x]) = JC, satisfy the hypotheses of Lienard's Theorem.

6.7 The Andronov-Hopf Bifurcations in Planar Systems

Consider a two-dimensional dynamics including a parameter A that is
allowed to vary

xJ{t) = fj{x],x2,A), 7 = 1 , 2 . (6.7.1)

For each A, suppose there is an isolated equilibrium point
x' = [x'x, x'2) that depends on the choice of X. Denote this dependence by
x'(X). The linearized system has a Jacobian matrix Alx2 that depends on
A. That is
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AU)= &1 5*>

evaluated at x - x'. The two eigenvalues are given by p:(X), i = 1, 2.
We assume that for some suitable range of X values (we may choose
near the origin without affecting the general conclusion), the eigenvalues
are differentiable in X and complex

pl2=a{x)±i/3(x).

The following Andronov-Hopf bifurcation Theorem in R2 guarantees the
existence of limit cycles.

Theorem 6.7.1 (The Andronov-Hopf bifurcation theorem)28 Suppose
that the equilibrium point x"{X) is asymptotically stable for X < 0 and
unstable for X > 0 and that a(o) = 0. If da{o)/dX > 0 and ^(o) * 0
then for all sufficiently small X\, a closed orbit exists for X either
positive or negative. In particular, if x'(0) is locally asymptotically
stable, then there is a stable limit cycle F about x*(x) for all small
X > 0. Moreover, the amplitude of F grows as X increases.

In Theorem 6.7.1, the real parts of the eigenvalues of A(x) cross the
imaginary axis as A, moves past the origin X = 0 from left to right
(since da[0)/dX > 0). In general, it is not readily determined whether or
not the equilibrium x'(0) is locally asymptotically stable since
a(o) = 0 means that the equilibrium at X - 0 is nonhyperbolic, which
precludes any deduction from a knowledge of the linearized system. The
linearized system is neutrally stable about x'(o) since the eigenvalues
are imaginary. The theorem is somewhat ambiguous about the nature of
the cycle.

28 The Androvov-Hopf bifurcation was already studied by Poincare. The systematic study
of the conditions and the proof of the bifurcation theorem was done by Andronov and
Leontovich in the two dimensional case in 1937. The proof of the bifurcation theorem in
the n dimensional case is due to Hopf in 1942. The Andronov-Hopf bifurcation has a
vast literature in mathematics as well as natural and social sciences.
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The critical value of zero for the parameter X is called a Hopf
bifurcation point. It should be noted that x'{x) can always be chosen as
zero as for all X simply by letting z(t) - x(t) - x and rescaling Eqs.
(6.7.1) to

i = g(z, X).

Example The predator-prey model.
We consider the following dynamics of two interacting populations
whose levels at t are jc,(f) and x2(t)

( xA /?x,*2

V. K) a + xt

x =sx\l- -^_

where a, r, s, v, and K are positive parameters. Ignoring the
extinction equilibrium point in which x, = K and x, = 0, there is one
nontrivial rest state defined by

(. x, ^ f3x2

vx, = x 2 , r\l M = _ Z U _ _
1 2 { K) a + xx

Denote this equilibrium point by x\ and x\ which are independent of the
parameter s. The Jacobian matrix of the linearized system at the
equilibrium is

A(X) = {, k , -ft'(a + <\
y ' {{k-x)v x-k y

where X = k - s and

K a + x\2 '

It follows that DeL4(//) is positive, independent of X and
Trace^(A) = X. The equilibrium point is stable for X < 0 and unstable
for X > 0. The eigenvalues p,{X) of A(x) are complex for all \X\ small
enough. At X = 0, Re/?,.(o) = O and Im/?,.(o)*O. We also have the
following results
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dRept{x) _ 1 dTraceAJX) _ 1
dX ~ 2 dX ~1

By the Hopf bifurcation theorem, a limit cycle exists for all \X\ small.

Example The Van der Pol equation is given by

xi = — x 2 ,

x2 = *, - a ^ - - Xx21 a > 0. (6.7.2)

The equilibrium is (0, 0) The Jacobian matrix of the linearized system is
computed to be

40-f° "']•
W [l aX)

It can be seen that the determinant of the matrix is positive for all k, i.e.,
DetAyX) > 0; and the sign of TraceA{A) - aX depends on the sign of
X. For X < 0, the equilibrium is asymptotically stable and it is unstable
for X > 0.

At X - 0, the eigenvalues are imaginary and no judgment about
stability can be made. To further examine its stability, introduce

Along orbits of Eqs. (6.7.2), we have

V = x1xi+x2x2=-ax2
2l^--Xl

When X - 0, V is negative except for x2 = 0. However, the origin is
the only invariant set in which V = 0. Hence, we conclude that V is a
Liapunov function. The origin is asymptotically stable.

The eigenvalues of A(x) are complex for X\ small enough with
Re/?, 2 = aX/2 satisfying

^ W = f >0, Re«,(0) = 0.
dX 2

Also
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Imfli2(A)*0,

we conclude that a stable limit cycle exists about the origin for all A, > 0
small enough. The orbits repelled by the origin rend to the limit cycle.
Just how small X must be is not revealed by the Hopf bifurcation
theorem. But it is known that a stable orbit exists for 0 < X < 1.

Example Apply the Hopf bifurcation theorem to the Kaldor model.
The Kaldor model is described by Eqs. (6.5.2)

Y = a{l{Y,K)-S{Y)} = aF{Y,K),

K = I(Y,K)-6K, (6.7.3)

where the variables and parameters are as in Sec. 6.4 and we neglect
possible impact of wealth on saving.

Suppose that the system has at least one equilibrium point. The
determinant and trace of the Jacobian at an equilibrium point \Y', K)
are

det7 = aFY{lK - S) - aFKIY,

trJ = aFY + IK-S.

If

d e t J > 0 , trJ = 0,

then the Jacobian has two complex conjugate eigenvalues. A Hopf
bifurcation occurs if the complex conjugate roots cross the imaginary
axis. If we choose a as the bifurcation parameter with the bifurcation
value determined by

8 - / „
aa = - .

F
If a > a0, the real parts of the eigenvalues are becoming positive. We
will not provide expressions of the stability conditions as these
complicated expressions provide few new insights.29

29 They are provided in Sec. 3.2 in Lorenz (1993). They can also be calculated according
to the method given by Iooss and Josephy (1980) which is applied to the Keynesian
business model by the author.
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We now state another form of the Andronov-Hopf bifurcation
theorem.

Theorem 6.7.2 (Andronov-Hopf bifurcation theorem) Consider the

system

x = f{x,X), (6.7.4)
where

feCk+'(R2xR\ k>4, f(0,A) = 0.

Suppose that for small \A\ the 2x2 matrix /x'(0, X) has a pair of
complex conjugate eigenvalues

a(X) ± ico{X), CD(X) > 0, a(0) = 0, a'(o) > 0,

then
(i) there is a 8 > 0 and a function A e Ck'l((-S, S), R) such that for
s € (- 5, S) the system

x = f(x,A(e)),

has a periodic solution p(t, f)with period T{E) > 0, also T e C*"1,

l(0)=^(0)=0, 7"(0) = ^ j .

(ii) the origin (x, X) - (0, 0) of the space R" x R has a neighborhood
U (z R" xR that does not contain any periodic orbit of Eqs. (6.7.4) but
those of the family p(t, e), e e (-S, S).
(iii) if the origin x - 0 is a 3 - asymptotically stable (resp. 3 - unstable)
3 - unstable equilibrium of the system

x = f{x,0),

then X{e) > 0 (resp. A,(s) < 0 ) for e * 0, and the periodic solution

pit, E) is asymptotically orbitally stable (resp. unstable).30

Finally, similar to Theorem 3.6.1, we have a theorem for topological

normal form for the Hopf bifurcation.

30 For the concepts of h -asymptotical stability and instability see Chap. 7 in Farkas (1994).
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Theorem 6.7.3 Any "generic" two-dimensional, one-parameter system

x = f(x,X)
at X - 0 has the equilibrium x = 0 with eigenvalues

is locally topologically equivalent near the origin to one of the following
normal forms

It is straightforward to show that the following nonlinear dynamical
system

can be rewritten in the polar form as

r = r(j3- r2]

0 = 1,

which is analyzed before. We can analyze the other case in the similar
way.

Exercise 6.7
1 Applying Theorem 6.7.1 to the following fish harvesting model

N = f(N) - vEN,

E = a(vpEN - cE),

where

N{t) = population level at time / ;

E[t) — a measure of effort expended in fishing;

f(N) = "natural growth" of the population (when/(./V) = rN(l - NIK),
the population growth is called logistical model);

v = a constant per-capita rate;



240 Differential Equations, Bifurcations, and Chaos in Economics

p = price offish ( pvEN is the revenue from the harvest);
c = a constant cost of per unit effort (cE is the total cost);
a - a positive parameter.

Here. It is assumed that f(N) is "well-behaved" and there are two
positive numbers, defined by N (= v/vp) and N where N > N, such
that

^ ^ > 0 , 0<N<N,
N

dN{ N )



Chapter 7

Planar Dynamical Economic Systems

This chapter applies the concepts and theorems related to two-
dimensional differential equations to various economic issues. Section
7.1 introduces the IS-LM model, one of the basic models in
contemporary macroeconomics and examines its dynamic properties.
Section 7.2 examines an optimal foreign debt model, maximizing the
life-time utility with borrowing. In Sec. 7.3, we consider a dynamic
economic system whose construction is influenced by Keynes' General
Theory. Applying the Hopf bifurcation theorem, we demonstrate the
existence of limit cycles in a simplified version of the Keynesian
business model. Section 7.4 examines dynamics of unemployment within
the framework of growth theory. In particular, we simulate the model to
demonstrate how unemployment is affected by work amenity and
unemployment policy. In Sec. 7.5, we establish a two-regional growth
model with endogenous time distribution. We examine some dynamic
properties of the dynamic systems. Section 7.6 models international trade
with endogenous urban model formation. We show how spatial
structures evolve in association of global growth and trade. In Sec. 7.7,
we introduce a short-run dynamic macro model, which combines the
conventional IS-LM model and Phillips curve. We also illustrate
dynamics of the model under different financial policies. Section 7.8
introduces a growth model with public inputs. The public sector is
treated as an endogenous part of the economic system. The system
exhibits different dynamic properties examined in the previous two
chapters.

241
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7.1 The IS-LM Model

The IS-LM model is one of the main models in contemporary
macroeconomics. In its static form, it composes two, IS and LM, curves.
The IS curve denotes an equation for the relationship between real
income and interest rate that leads to equilibrium in the goods market;
while the LM curve for the relationship which leads to equilibrium in the
money market.1 Overall equilibrium is established where both the goods
market and money market achieves equilibrium - a state determined at
the intersection of the two curves.

First study the goods market. Real expenditure is the sum of
consumer expenditure, investment expenditure and government
expenditure. It is assumed that consumption expenditure is positively
related to real income and the investment is positively related to real
income but negatively related nominal interest rate. That is

e(t) = c{y(t)) + i(r(t), y{t)) + g, 0 < cy < 1, ir < 0, iy > 0,

(7.1.1)
where e is real expenditure, c consumption expenditure, y real
income, r nominal interest rate, and g government expenditure.
Demand for real money balances, md(t), is assumed to be positively
related to real income and inversely related to the interest rate. That is

md{t) = l(y,r), ly > 0, lr<0.

The dynamics are in terms of excess demand in the goods market and
excess demand for real money balances, i.e.

y = a{e - y)= a[c(y) + i(r, y)+ g- y\

r = /3{l{y,r)-m0), a,j3>0, (7.1.2)

where we use Eq. (7.1.1) and m0 is fixed supply of real money supply.
The equilibrium in the goods market requires y - 0; that is
c(y) + i(r, y) + g = y. The equilibrium in the money market is obtained
if l{y, r) = m0.

Suppose that the two equations

1 The model is explained in standard textbooks in macroeconomics (e.g., Abel and
Bernanke, 1998, Blanchard, 1997).
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c{y) + i{r, y) + g = y, i{y, r) = m0,

determines an overall equilibrium (y*, r*) Then the Jacobian at the
equilibrium is

We have

TrJ = a(cy + iy-l)+fir,

DefJ = a/3[{cy+iy-l)r-lyir\

We now show that if the IS curve is less steep than the LM curve,
then DetJ > 0. For the IS curve we have

c{y) + i(r, y) + g = y.

Totally differentiating this equation with respect to y and r, we
have the slope of the IS curve

dr _ 1 - cy - iy

dy ir

Similarly, the slope of the IM curve is given by

dr__JJL

ly" T/
If the IS curve is less steep than the LM curve, we have

l ~ C y i ~ i y < ~ i ~ k , + i , - i ) , - v , > ° .
which guarantees DetJ > 0. This is certainly satisfied in the usual case
of a negatively sloped IS curve and a positively sloped LM curve. The
above analysis demonstrates that DetJ > 0 occurs when the two curves
are positively sloped but the IS curve is less steep than the LM curve.
Hence, if the trace is negative in sign, then the equilibrium is stable.

To simulate the model, we specify c(t), i(t) and md{t) as

c{t) = a + b{\-r)y{t),

i(t) = -hr(t) + jy{t),

(7.13)
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md(t) = ky(t)-ur{t),

a,h,j,k,u>0, 0<b,r<\, (7.1.4)

where a, b, T, h, j , k, and u are positive parameters. Here, a is
autonomous expenditure, b marginal propensity to consume, T marginal
rate of tax, h and j are coefficients of investment in response
respectively to r and y. We omit g as it can be technically included in
a. Under Eqs. (7.1.4), Eqs. (7.1.2) become

y = a(a + axy-hr),

r = p{-mo+ky- ur), a,/3>0, (7.1.5)

where

ax = b(l - T) + j - 1,

which may be either positive or negative. The system has a unique
equilibrium point

( ' *\_(ciu + moh OJ/MQ + ak |

ykh- axu ' kh - a^u j

For y* > 0, we should require kh - axu > 0. The Jacobian is

[aa, -ah~\J=U -4 (716)
We have

TrJ = aax - (fa,

DetJ = ap[-uax + kh] > 0.

If a, < 0, then TrJ < 0. The equilibrium is stable. In the case of ax > 0,
if TrJ = aax < (>) pu, the equilibrium point is stable (unstable).

The IS curve is given by

a + axy - hr = 0 .

The slope of this curve is

dr _ a,

~dy~~h'
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The IS curve has either a negative slope (when ax < 0) or a positive
slope (when ax > 0 ). On the other hand, the IM curve is

- m0 + ky - ur = 0.

The slope of the LM curve is positive because

* = *>o.
dy u

Figure 7.1.1 shows that the system has a unique equilibrium when
we specify the parameters and the initial conditions as follows

a = 38, 6 = 0.35, r = 0.3, h = 1.3, j = 0.3, k = 0.25,

i/ = 0.3, mo=S, a = 0.2, £ = 0.4, y0 = 90, r0 = 50. (7.1.7)

As the eigenvalues are equal to -0.09 + 0.14/, the stability is
numerically confirmed.

en LM -curve: r = 0

y / ^ > > > - -^^^ SI • • " * / / / ^ "*"
>. / A > > ^ . ^ ^ ^ ** - » - » - • y ^ -»- -»•

40/ A / >• - > ^ -- - - - - / » * *
r A > /• ^ ^ •* •* •* - - / - -> "• *

_ . i f t / & > ^ - -. - y / - , - , — - ,

u< \ < \ ' ^ ^ C ' y - " "• " ^ •* ^

10" v v " V V^^~» v > \ > > v
'> < v v +• ^^ym^\. 4~~%^\ \ \ \ v
' - - — ' - ' - n' - *• < 4 | ^ ^ k k V V

" • * • — » — " • ' »•' ^— L J > ~—»•—'r ' /• 4 • i ^ t—-W-—k 7

20 40 60 80 100
Fig. 7.1.1 The IS-LM model with stable equilibrium.

Figure 7.1.2 demonstrates instability when we specify the parameters
and the initial conditions as follows

6 = 0.6, 7 = 0.7, a = 0.81, £ = 0.3, y0 = 50, r0 = 20. (7.1.8)
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The values of the parameters missed in (7.1.8) are specified as the same
values of the corresponding parameters in (7.1.7). The eigenvalues are
equal to 0.0036 ± 0.265/ with positive real parts.

r LM — curve :r = 0
6 0 A A , * • * • * • * + - - ,* - •» >» s

/ / A > +• * * __^.^^^^^^™^C2^S^^^^ ^ v

> A '^^&^^^A * / "* > v v"V^V5-ct/rve:>'= 0

20 40 60 80 100 120 140
Fig. 7.1.2 The IS-LM model with unstable equilibrium.

Exercise 7.1
1 Consider the following IS-LM model

e = a + b(l - z)y - hr + jy,

md = ky - ur,

y = a(e- y),

r = p{md -mQ),
with the specified parameter values

a = 5, 6 = 0.75, r = 0.25, h = 0.3, j = 0.4, k = 0.5,

u = 0.3, m0 =10, a = 0.25, fi = 0.4.

(a) Find the equilibrium values of y and r, (b) What are the equations
for the IS and the LM curve? and (c) Discuss the stability.
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7.2 An Optimal Foreign Debt Model

Pitchford proposes an optimal model with foreign debt in a
representative-agent type macroeconomy.2 Treating other income y as
given and assuming that the rate of interest r{t) depends on borrowing to
depend on the level of debt A(t) of the borrower, we can describe the
motion of debt by

A(t) = R(A) + y-c(t), (7.2.1)

where c is consumption and R(A) = r^A)A. It is required

f>0 i f ^ > 0 ,

R'(A) = r'A + r>0, R"<0, R\<0 ifA<0,

[=0 if ,4 = 0.

It is assumed that there exists some (bankruptcy) level A (< 0) of
A at which consumption is forced to zero. This assumption prevents the
agent from borrowing without limit. The optimal problem is to maximize

Max [uicy* dt,
c J

0

subject to Eq. (7.2.1). We require:

Uc(c)>0,Ucc{c)<0,uM = °°-
The Hamiltonian for the problem is

H = U(c) + A{R{A)-c + y).

The necessary conditions are

Hc=Uc-A = 0,

A = pA-HA=pA-R'A.

Taking derivatives of Uc - A = 0 with respect to t yields

uj = X.
Substituting Uccc = A and Uc = A into the above second equation yields

2 Refer Pitchford (1991) for explanation in detail and extensions of the model.
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c = \p-R\A)]jf-. (7.2.2)
cc

Hence, the dynamics is given by Eq. (7.2.1) and Eq. (7.2.2). The
stationary state of the system is determined by

c = R(A) + y,

p = R'(A) = r'A + r. (7.2.3)

In the case of c - 0, c = R(A) + y becomes

r{A,)Ax=-y<0.

We see that Al is negative. The equilibrium value A' of A is given by

p = r'(A')A'+r(A').

As R" < 0, as long as the subjective discount rate p is greater than r(o),
A' we will negative. If p were less than r(o), then A' would be
positive. The phase arrows are given by dA/dc < 0 and dc/dA< 0. The
phase diagram is illustrated in Fig. 7.2. Check that the equilibrium is a
saddle point.

A
c = 0

/ U
1 1 4

A' (0 0)
Fig. 7.2.1 Phase diagram for the model of foreign debt.



Planar Dynamical Economic Systems 249

The figure illustrates the case that the optimal strategy for the
economy is to remain permanently in debt. For instance, if

4>)=o,
then the optimal consumption involves borrowing heavily initially, and
gradually reducing consumption over time to achieve the equilibrium. At
the equilibrium, income is just sufficient to cover interest payments and
maintain a steady consumption level.

Exercise 7.2
1 Consider Forster's model of pollution control3

Max J[U{C) - V{p)YfH dt, s.t.: P = Z{c) - SP,
0

where C(t) and P(t) are respectively consumption and pollution, p is
the subjective discount rate, and S represents the environment's natural
capacity to restore itself. The utility function U and disutility function
V satisfy

Uc>0, Ucc<0, t/c(0) = oo,

F(O) = O, VP>O, VPP>O, UP(O) = °°.

The function Z is defined by

Z{c) = g{c)-h{Y-C)
where g(c) represents the pollution generated by the act of consumption
and h(Y - C) represents the effectiveness of anti-pollution activity with
the activity intensity Y - C. The two functions satisfy

g(0) = 0, gc>0, gcc>0 f o r O O , gc(0) = 0,

*(0) = 0, h'>0, h"<0 for Y - C > 0, *'(()) = + ~ .

Find optimal conditions (in terms of two-dimensional differential
equations with the pollution and costate as variables), illustrate phase
diagram, and discuss stability.

3 See Forster (1977) or Ferguson and Lim (1998).
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7.3 The Simplified Keynesian Business Cycle Model

We now consider a dynamic economic system whose construction is
essentially influenced by Keynes' General Theory. The simplified
Keynesian business model is described by

Y = a{l{Y, R) - S{Y, R)} = aF{Y,R),

R = /3{L{Y,R)-Ls}, (7.3.1)

on which parameters and variables are defined as

Y — output level;
R = rate of interest;
I(Y,R) = investment function (IY > 0, IR < 0);

S(Y,R) = savings function (Sr > 0, SR > 0);

L(Y,R) = total demand function for money (LY > 0, LR < 0);

Ls = the fixed supply of money;

a, P — positive adjustment parameters.

The dynamic system states that if investment is larger than savings,
then output level tends to increase, and vice versa; if the money
demanded is larger than that supplied, the rate of interest tends to
increase. Here, the requirements

IY>0,IR<0,SY>0,SR>0,LY>0,LR<0,
imply that investment is positively related to output level, and negatively
related to rate of interest; an increase in output or rate of interest will
make people save more; more money is demanded if output increases or
rate of interest falls.

The existence of a positive equilibrium [Yo, RQ) determined by the
intersection of l(Y, R.) = S(Y, R) and L(Y,R) = Ls, is assumed. It is
sufficient to limit the discussion to a local domain. Torre first noticed the
existence of business cycles in this system.4 Our examination is based on
the application of the Hopf bifurcation theorem to the model by Zhang.5

4 See Torre (1977).
5 See Zhang (1991:78-81).
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We apply the Hopf bifurcation theorem to identify the existence of
limit cycles. We first find the conditions for the existence of a pair of
purely imaginary eigenvalues and identify the loss of stability of the
equilibrium. Referring to Torre, we know that these conditions are
established if

(Y — S—JLa° F '
rY

FYLR - FRLY > 0, FY > 0, (7.3.2)

hold at (Yo, RQ). AS a is meaningful at any point in R+, there is a value
of the parameter OC such that the first equality in (7.3.2) is valid. As
Fy = Ir - SY, we interpret Fy > 0 as that the marginal investment in
the product is larger than the marginal savings with regard to output.
Further interpretation of (7.3.2) is referred to Torre. The following
theorem identifies the Hopf bifurcation in the system.

Theorem 7.3.1 (The existence of business cycles in the simplified
Keynesian model) Let (7.3.2) hold at (Yo, Rg). Then there exist limit
cycles - Hopf bifucations - around (70, Rg). The critical value of
bifurcation parameter a is «0. The bifurcated cycle of period 2nl (o{e)
is approximately given by

Y{e, t)=Y0 + 2ea0FRcos[^£>] + o(e2]

R{e, t) = R0- 2e{z0 sin[aj(e)t] + a0FR cosfc^)]} + o(e2\

(7.3.3)
where

zo={ao/3{FYLR-FRLy)r,

e is the expansion amplitude parameter, and

a = aa + £2x2 + o(e4\

co(e) = z0+e2CD2+o(eAl (13 A)

where x2 and co2 are parameters. Moreover, if x2 is positive, the
periodic solutions are stable, while if x2 is negative, they are unstable.
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Proof: This theorem is proved by Zhang, applying the bifurcation method
of Iooss and Joseph.6 We now apply this method to approximately
calculate the periodic solutions.

We denote by x small perturbations of a from a0 as follows

x = a - a0.

To write the system in a local form, introduce

Ut(t)=Y(t)-Y0, U2{t) = R{t)-R,.

Substituting this transformation into Eqs. (7.3.1) yields

U = J{xp + N(x, U, U) + 0([/3), (7.3.5)

where U = {U{, U2) and J is the Jacobian at the equilibrium
\OFY OF;

v ; \aLY ccLR\

and N is the quadratic terms of U. The two eigenvalues are

{ / \-> >1/2

l&^fil-^A-^,)} .(7.3.6)
As the conditions (7.3.2) hold at x = 0, we see that there are a pair

of purely imaginary eigenvalues, + iz0. If we denote z(x) the eigenvalue

which equals iz0 at x = 0, then Re[zx(o)] is not equal to zero. Thus the
loss of stability of the equilibrium is guaranteed. We have identified the

conditions for Hopf bifurcations.
To obtain an approximate expression of the periodic solutions, we

calculate the eigenvector X and adjoint eigenvector X' with regard to
Z(JC) from

JX = z{x)X,

JTX' = z{x)X\ (7.3.7)

which satisfy

(x,x') = i,(x,x') = o,

6 See Iooss and Joseph (1980).
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where ( , ) is the product operator in C2. The solution to the above
equations is given by

I" ij3LY '

XJ cc0FR I 2a^F
[-izo-aoFYJ -zo+ ia0FY

 K >
I 2a0z0FY

As X and X are independent, U can be expressed as a
combination of them in the form of

U{t) = a{f)x + a(t)X, (7.3.9)

in which function cr(t) is to be determined. Substituting Eqs. (7.3.9) into
Eqs. (7.3.5), multiplying the resulted equations by X\ and then adding
the equations, we have

& = Z(X)CT + r0a
2 + 2r,|<r|2 + r2a

2, (7.3.10)

where r0 and rx are imaginary numbers. Here, we should not explicitly
give r0 and rv As shown by Iooss and Josephy, the solution to Eq.
(7.3.10) can be constructed by the following series

s(s>e) 1 . \Si(£J
4e)-z0 = | V to, , (7.3.11)

x{e) J "' [ x,
where

a(t) = a(s, e), s = co{s)t, co{o)=z0, x = x{e),

In

e = fexp(- is)cr(s, e)ds.
0

The coefficients of low orders with respect to £ are determined by

x. =(Q. =0 , z = 1 , 3 , - , 2 / 1 - 1 , - ,

crl{s) = exp(is\

, x _ r0 exp(/2j) - 2r, - {r2 /3)exp(- ils)
A)~ iz
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^-z,(0h=2,^-2H'-kl'/3,
Z0

From these equations, we can explicitly solve xt, 0). (i = 1, 2, 3) , ax and
<7 2 .

Define a real number D as

D = -[eMzM}+0{e>)}^,
where

2 V ;

According to the factorization theorem,7 if D is positive, the cycle is
unstable; if D is negative, it is stable. Thus we have proved the stability
conditions in Theorem 7.3.1.

We will not explicitly give the values of rt, Q)n xi and other
parameters because their expressions are too complicated. The behavior
of the system near the equilibrium is illustrated in Fig. 7.3.1. The cycle
size is dependent on the bifurcation parameter. As the parameter is
further away from its critical value, the radius of the cycle becomes
larger.

The rate of interest is sometimes higher than its point equilibrium
value and sometimes lower. Although it may arrive at RQ, the rate of
interest cannot stay there permanently. As soon as it arrives at this
equilibrium value, it tends to move away from it. It is driven by the
nonlinear interdependent forces in the system. From Eqs. (7.3.3), we
have

SR(t) = -a sin[co{e)t] - ^SY{t) + o(e),
FR

where

w 2e w 2e

7
 See Chap. 7 in Iooss and Joseph (1980).
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—r-71 -Jt— •

Fig. 7.3.1 Bifurcated cycles in the Keynesian model.

As SY(t) is a periodic function which is independent of SR(t), we
see that the interactions between the two variables may appear very
complicated over time.

7.4 The Welfare Economy with Unemployment

We are now concerned with dynamics of unemployment in a welfare
economy. The idea is that if society offers a generous welfare for
unemployment, people have incentives to 'remain unemployed' -
earning welfare payments and enjoying leisure. Marx and Keynes
provided different reasons for the existence of unemployment. Neither
Marx nor Keynes was concerned with unemployment issues in welfare
economies in which an unemployed person may be paid 'well'.

We are now concerned with an economic system similar to the OSG
model. Let the population be fixed and denoted by N. Let subscript
indexes, i and u, denote respectively employed and unemployed. We
denote Nt(t) and Nu(t) respectively the number of workers employed
by the production sector and the number of persons unemployed. We
have

NXt) + N,,(t) = N.
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The production function of the economy is specified with the Cobb-
Douglas form

F(t) = Ka{zN.y, a + 0 = 1,

where z is the level of human capital, K(t) is the capital stocks of the
economy and F(t) is the total output at time /. The marginal conditions
are given by

(i-,(0)^(0 (1-.(0)^(0
K{t) | W N,(t)

where r(t) is the rate of interest, w,(t) is the wage rate and r(t) is the
tax rate at time t. Let each unemployed people be paid wu(t) amount of
money by the government at time t. Suppose wu is at least not higher
than the wage rate, i.e., 0 < wu(t)

< w
((0- ^ is assumed that the

unemployment payment rate is related to the wage rate as follows

wo(0 = G7H>, (0> 0 < cr < 1.

Let income per person j be denoted hyyft). The current incomes
are

y]{i) = r{t)kJ{t) + w]{t), j = i,u,

in which kj is the level of capital stocks owned by per person j . Let
5j(t) denote the savings made by per person j at time t. The utility
level that a person j obtains is dependent on eft) and Sj{t)

Uj(t) = Afrit?*,®*', 4j, *•, > 0, j = i,u,

in which the parameters, £, and A,, are person j 's propensities to
consume goods and to own wealth, respectively. In C/y = Ajc/s/, Aj is
the amenity level of person j . We assume A, to be constant.
Maximizing Uj(t) subject to the budget constraint

cJ(t) + sJ(t) = yJ(t) + SkJ(t) = yJ(t)

(where S = 1 - Sk) yields

cj(t) = £jyj(t), sJ(t) = Ajyj(t).

Person j 's capital accumulation is given by k}(t) = Sj(t) - kj(t).
Substituting sJ(i) = Aj(t)yJ(t) into these equations yields
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kj{t) = AjyJ{t)-kj{t), j = i,u. (7.4.1)

The government's budget constraint is

wu{t)Nu(t) = r(t)F{t).

People stop changing their current situation when their utility levels
are the same for either of the two types of life, i.e.

Uu(t) = Ui(t), ifNu(t)>0.

The output is either consumed or invested, i.e.

(c, + s, - k, + £ * > , + (cu +su-ku+ Skku)Nu = F . (7.4.2)

By the definitions, we have

ki{t)Ni{t) + ku{t)Nu{t) = K{t).

We try to find differential equations governing the dynamic system.
Substituting cy = ̂ )yJ and s} = Xjyl into Uu = Ui yields

The disposable personal income of the employed is proportional to

that of the unemployed with a constant ratio. From wuNu - zF,

wu = TDWf, and wt = (l - T)/3FINt, we have

rit) = ) , (7.4.3)

where

0 0B>' N,(t)

Substituting wu = wwj and F = ̂ {zN^ into wuNu = TF yields

mvtNu =zKa(zNi)
/).

From the above equation and kiNi + kuNu = K, we know

Wi(t) = (kl(t) + ku(t)u(t)f^-.

Inserting Eq. (7.4.3) into the above equation yields
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w,(0 = (*,(0 + ku{t)u{t)T- ^ - . (7.4.4)
K + u(t)pr

The wage rate wf(f) is a function of u(t), kt(t) and £,.(/). Inserting

into j>, = 4J>U, we get

(*, - ^ u > + (l - WA)w: = 4 ^ - A:,.), (7.4.5)

where we use wu = wwr The marginal conditions lead to

r a

~^~{ki+kuu)/3'

where

k,N, + kyNu = K,

is applied. Application of the above equation to Eq. (7.4.5) results in

With the above equation and Eq. (7.4.4), we have

<&(«) = O,(«) + S(k, -Aku) = 0, (7.4.6)

where

o (u) = a{kt-Aku) + P{\-WAtki+kuu) „
{O)0 + u\k, + kuuf

We now show that for kt(t) and ku(t), equation O(M) = 0 has
solutions. We note that u{t) is meaningful for 0 < u{t) < + °°. If
kt - /i^u > 0 and 1 - WA > 0, O(w) = 0 has no meaningful solution.
These conditions say that the unemployment payment rate is low, the
amenity level of unemployment is relatively low (in comparison with the
amenity level of work), and the wealth associated with work life style is
relatively high. Life with unemployment is so disagreeable that no one
wants to be at leisure. The opposite case is kt - Aku < 0 and
1 - WA < 0. This situation implies that to work is so loathsome that no
one wants to have a job. Hence, for the problem to have a meaningful
solution, we have to require either of the following two combinations: (i)
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kt - Aku<0 and 1 - aJA > 0 or (ii) kj - Aku>0 and \-WA<0.
Condition (i) says that to work is not to earn a lot of money but to work
is relatively pleasant; condition (ii) says that to work is to enjoy a large
amount of wealth, but to work is also to lose leisure enjoyed in
unemployment. These conditions tell that for co-existence of the two life
styles among the workers, no life style provides everything desirable. For
convenience of discussion, we are concerned with the case of

k,-Aku>0, l-aJA<0.

The other case can be similarly discussed. We have

O(o) = [aik, -Aku)+ A,(l - 3^)]*: V + 6{k, -Aku),

®(+oO) = S(kl-Aku)>0.

The equation has at least one solution in the case of 0(0) < 0. Since
the sign of dO/du is ambiguous, it is possible that the problem has
multiple equilibria.

Once we find a solution, u(t) = u(k:(t), ku(t)\ of O(w) = 0 (as a
function of k,(t) and k,(t)), w e c a n express all the other variables as
functions of k,(t) and k,(t). By the definition of u and Nt + Nu = N,
we solve

1 + M 1 + M

It is straightforward to check that K, F, r, r, wy, yp yp cp ss, Uj
as unique functions of kt(t) and kt(t). We thus conclude that the system
is governed by the two-dimensional differential equations

kj(t) = ^yj{k,(t), ku(t)) - kj(t), j = i,u. (7.4.7)

Since it is difficult to provide a comprehensive analysis of the system,
we omit examining it. In particular, it is complicated to analyze the
dynamics when O(M) = 0 has multiple equilibria. By Eqs. (7.4.1), in
equilibrium, we have

Substituting Ajpj = ky. into c, = ̂ )yj and Sj = Ajpj yields
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c]=
1TL, Sj=kj, j = i,u. (7.4.8)

Substituting Eqs. (7.4.8) into Uj = Ajcfsf and then using
Uu = £/,., we get ku = aki where

In the case of £, = £ , we haveku = k^AJ Au. By Cj = ̂ jkj IA}, the
definitions of yj and yp we get

Wj = (8j - r)kj, j = i,u,

where

By the above equation, ku = akt and wu = rnwn we have

8,-r

In the case of A, = Au, we have UJ = A, I Au. It says that if consumers
have the same propensities in the two life styles, the unemployment
payment rate is equal to the ratio of the levels of amenity-at-work and
amenity-in-leisure. As we assume that amenity levels are invariant, this
requirement is hardly satisfied. We neglect this case by requiring
At & Au. In general, it is reasonable to assume that A, and Au are
dependent on wage rates and unemployment policy. For instance, when
wage rate becomes higher, it is reasonable to expect that At becomes
higher (with 4, being kept constant).

By m = a{Su - r)/(S, - r), we solve

r=aS'~a6'. (7.4.9)
a - w

The following two cases guarantee r > 0, Su> r, and S( > r

Case 1: aim > St I Su > 1 or
Case2: aim <dil6u < 1.
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In case 1, we have^ < Xu. That is, the consumer in leisure has a
higher level of the propensity to hold wealth than the consumer at work.
For convenience of discussion, let Sk = 0. The condition of
alm> 5,ldu in case 1 becomes

We see that the ratio A, lmAu has to be large in the case of A, < ku.
Otherwise, the problem has no meaningful solution. In the remainder of
this section, we are only concerned with case 1.

Assumption 7.4.1 In the remainder of this section, we assume
aim > Si/Su > 1.

Under Assumption 7.4.1, r > 0, 8U > r and dl > r are guaranteed.
We solve r by

r = aSE_-wSL

a — tu

We now solve the other variables. By wi = (1 - t)pF I Nn

wu = mWi, and wuNu = •zF, we get

N, (1 - T)PTU '

By this equation and iV,. + Nu = N, we have

_ _ M _ . *
/3UT + T/(\-T) fiar(\-T) + r v '

Substituting Eqs. (7.4.8) into Eq. (7.4.2) yields

S,K, +SUKU=F,

where

Kj =kjNj, j = i,u.

By

SiKi+SuKu=F,F = -^— Ki+KU=K,
a(l - r)
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we solve

_Si-rla{\-r)
« f K >

o
^ = -J .+W«(l-r)^ ( 7 4 n )

where

^-^-*.=y-|->0.

By F = rA7a(l - r) and F = Ka(zNy, we have

By Wj. = (S, - r)klt wi = (1 - r)fiF/N, and F = rK/a(l- T), we have

Substituting Kt in Eqs. (7.4.11) and Eq. (7.4.9) into this equation yields

_^ = _0S_+a8jL>() ( 7 4 1 2 )
1 - r ( ^ - r ) r

By Eqs. (7.4.9) and (7.4.12), we can show that 1/(1 - r) > 1 holds if

Since a + jBm/a <l and <5]/<5'u>l by Assumption 7.4.1, we see
that (« + J3mIa){5i ISU)>\ may not be guaranteed by Assumption 7.4.1.
For 1/(1 - r) > 1, it is necessary to require

(« + Pmldtft >SU.

From (a + Pxnla\8i ISU)>\ and Assumption 7.4.1, we get

(1 - r)a y a Ss )a

(1 - t)a ace
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By the above equations and Eqs. (7.4.11), we have Ku > 0 and
Kt > 0. Summarizing the discussion in this section, we have the
following proposition.

Proposition 7.4.1 If Assumption 7.4.1 and

are satisfied, then the dynamic system has a unique equilibrium. We
solve the equilibrium values of the variables by the following procedure:
r by Eq. (7.4.9) -> r by Eq. (7.4.12) -> Njy j = i, u, by Eqs. (7.4.10)
-> K = zNt{a(l - t)/r}vfl -> F = Ka(zN^ -» w, = (1 - T)J3F IN, ->
wu = mvi —> A"y by Eqs. (7.4.11) —> A:y = KjlNj —> c,. and 5y by Eqs.
(7.4.8) ^ 7 y = Cj + S] -> C/y - ^ ^ .

We specify the parameter values as

a = 0.3, A = 4-= 1.1, A. =0.6, A =0.75, tf = 1, z = 12.

(7.4.13)
The population is unity (equaling 0.1 billion) and the level of human

capital is fixed at 12. The consumers, who are unemployed, have a
higher propensity to own wealth higher than these consumers, who are
employed. The ratio of the amenities is larger than unity. Figure 7.4.1
demonstrates how the economy is affected by the unemployment policy
under (7.4.13). The unemployment payment rate is between 40 percent
to 65 percent. It can be shown that when the parameter lies beyond

0.4 < m < 0.65,

the system does not have a meaningful solution under (7.4.13). As the
figure demonstrates, the unemployment rate rises as the unemployment
policy is 'improved'. In association with the rise in unemployment rate,
the tax rate is also increased. As m rises, the national income, the total
wealth, and the total consumption fall. The wage rate falls, and the rate
of interest decreases slightly. The wealth, income, and consumption per
capital all fall for the workers and the unemployed.
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NJN,z K,C,F

The unatplpytrEnt /fafe ^5 ^ ^ \ ^

0.2 ^ ^ ^ ^ ^ ^ t a x r a t e ^ ^S5=5**=^ \

^ <M5 0.5 0.55 0.6 0.65 0.45 0.5 0.55 0.6 0 .65"

r,w,,wu ki,ku,yi,yu,ci,cu

8 ^ ~ " ^ \ 20 ^~~~^^gi

0.45 0.5 0.55 0.6 0.65 0.45 0.5 0.55 0.6 0.65^
Fig.7.4.1 The equilibrium values and the unemployment policy, 0.4 < a < 0.65.

We now fix m - 0.45 and still accept (7.4.13), except for the value
of A. We consider that A change from 0.76 to 1.2. The simulation
results are shown in Fig. 7.4.2. As the job amenity is improved - such as
working conditions and social respect for work are changed, the
unemployment rate and the tax rate decline. The national product, the
total wealth, and the total consumption are increased. It should be noted
that the change rate is reasonably low if we limit the discussion to the
domain 1.0 < A < 1.2. The national output, the total capital, and the total
capital are increased. The rate of interest slightly rises, and the wage
rates increase.

We now examine effects of change in the workers' propensity to
save. We fix tu = 0.45 and still accept (7.4.13), except for the value of
Ar We assume Xi to change from 0.39 to 6.1. The simulation results are
shown in Fig. 7.4.3. As the propensity to own wealth rises, the
unemployment rate and tax rate fall. The national output, the total capital,
and the total capital are increased. The rate of interest slightly rises, and
the wage rates increase.



Planar Dynamical Economic Systems 265

NJN,r K,C,F

\ \ 0.8 ^^fc'

\The\unetplqyir ait rate K/^ • " ^________-

The tax r a t ^ o ^ ^ - ^ / \ s r ^ 5

0.8 0.9 1.1 1.2 0.8 0.9 1.1 1.2

s*^ 20 ^^•

T —r J^ ^ ^ ^
0.8 0.9 1.1 1.2 0.8 0.9 1.1 1.2

Fig. 7.4.2 The equilibrium values and the amenities, 0.76 < A < 1.2.

NJN,T K,C,F

0.8 \ s , ^e^uienplcimait rate - 5 ^ ^

0.2 The tax r^tfiN, 5 ^^^^^^^^'^

0.45 0.5 0.55 0.6 ̂  0.45 0.5 0.55 0.6*>

r,witwu ki,ku,yi,yu,ci,cu

10 ^ 25 Joi,

8 jxy^ 20 / H /

0.45 0.5 0.55 0.6 ' 0.45 0.5 0.55 0.6 '
Fig. 7.4.3 The equilibrium and the worker' propensity to own wealth, 0.39 < A, < 0.61.
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7.5 Regional Growth with Endogenous Time Distribution

We consider an economic system which consists of two regions, indexed
by 1 and 2, respectively.8 The two regions' product is qualitatively
homogeneous and is either consumed or invested. We assume a
homogeneous population. A person is free to choose where he works and
where he lives. We assume that any person chooses the same region
where he works and lives. Each region has fixed land. It is assumed that
land quality, climates and environment are homogeneous within each
region, but climates and environment may be different between the two
regions. The land is used only for housing. We select commodity to serve
as numeraire, with all the other prices being measured relative to its
price.

N = the fixed population of the economy;
Lj = t h e fixed ter r i tory size o f r eg ion j , j = 1,2;
K(t) = total capital stocks of the economy at time t;
Fj(t) = output levels of region j's industrial sector at time t;
Kj(t) = capital stocks employed by region j's production sector;
Nj{t) = labor force employed by region j's production sector;
c.(t) = per capita's consumption level of commodity in region j ;
Sj(t) = net savings of per capita in region j ;
lj\t) = lot size per capita in region j ;
Tj\t) = working time in region j ;
Tj(t) = leisure time in region j ;
yit) = net income per capita in region j ;
r\t) = rate of interest;
w (t) = region j's wage rate per unity of working time;
Rj(t) = region j's land rent.

We specify the production functions of the two regions as follows

Ffy) = K^ZjTjNjf, a,j3>0, a + fi = l j = \,2, (7.5.1)

8 This section is based on Chap. 3 in Zhang (2003).
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in which z. are working efficiency index of region y 's labor force and
ZJTJNJ is region j 's total efficient labor force. We require z; to be
constant and z, > z2. The marginal conditions are given by

aF. PF.
r = — « - , w, = -*-^-, j = l,2. (7.5.2)

Kj J TJNJ J V '

Suppose that each worker owns LJN amount of land in region 1
and L2/N in region 2 and it is impossible to sell land but it is free to
rent one's own land to others. The land revenue, Ro, per worker is given
by

*. = L A +
N

L2*2 • (7-5.3)

If we denote kj(t) capital stocks owned by per capita in region j ,
the interest payment per capita is given by r(t)kj(t). Under the specified
land ownership, the current income per capita, y^t), in region j
consists of the wage income, Tj(t)wj(t), land revenue, /?<,, and interest
payment r{t)kj(t\ i.e.

yj=TjWj+rkj+R0. (7.5.4)

A typical person's utility level, Uj(t), in region j is dependent on
the leisure time, Tj{t\ lot size, lj(t), consumption level, Cj(t), of
community, and the net savings, Sj (t) in the following way

UJ = AJTN 1J"C/S/ ' <r,n,£,A>0, a + rj + <* + A = l ,(7.5.5)

in which a, t], £ and X are respectively the household's propensity to
use leisure time, to utilize lot size, to consume the commodity, and to
hold wealth, and A} is region j's amenity level. Let To denote the total
available time. The time constraint requires that the amounts of time
allocated to each specific use add up to the time available

Tj+T}=T0, 7 = 1 , 2 . (7.5.6)

The budget constraints are given by

h R j + CJ + SJ = Vj> J = l > 2 > (7-5-7)

where the disposable income

h = y>+ K- - s*kj'
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where Sk is the fixed depreciation rate of physical capital. By Eqs.
(7.5.4) and (7.5.6), we rewrite Eqs. (7.5.7) as follows

IJRJ + Cj + Sj + 7 > . = R0+ 7 > , + rk, + (l - Sk)kp j = 1, 2.

(7.5.8)
A typical person maximizes the person's utility subject to the budget

constrain. The optimal solution is

TJ
hwj=o&J, ijR^rfilj, Cj=$lj, s^ASij,

7 = 1 , 2 , (7.5.9)

where

Sij=R0+ T0Wj + rkj +dkj, d = \-Sk.

According to the definitions of &, and sjt the capital accumulation of a
typical person in region j is given by

kj^Sj-kj.

Substituting Sj in Eqs. (7.5.9) into these two equations yields

kJ=AQJ-kJ, 7 = 1,2. (7.5.10)

As households are freely mobile between the two regions, they should
have the same level of the utility, irrespective of where they live. That is

U,{t) = U2{t). (7.5.11)

By the definitions of K, kj and Nj

K = klNl+k2N2. (7.5.12)

The assumption that labor force, capital stocks and land are fully
employed is represented by

AT, + N2 = N, K,+K2= K, /.iV. =LJt j = 1, 2. (7.5.13)

We have thus built the model. The system has 29 variables, Njt Kjf

Fr Cj, Sj, kr 1], Tj,Tjh, yp UJt wp Rj (7 = 1,2), K, r and R,.
We now examine conditions for the existence of equilibria of the
dynamic system.

We are now concerned with the conditions for existence of economic
equilibria. By Eqs. (7.5.10), at equilibrium we have
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/£* ,=£ , , .7=1,2. (7.5.14)

Substituting Eqs. (7.5.14) into Eqs. (7.5.9) yields

7 = 1 , 2 . (7.5.15)

Substituting Eqs. (7.5.15) into Eqs. (3.1.14) yields

SlK = F,+F1, (7.5.16)

where we use Eq. (7.5.12) and

By r = aFx IKX = aF21K2 in Eqs. (7.5.2) and Eq. (7.5.16), we have

r = aSlt (7.5.17)

where we use

Kl+K2=K.

By Eqs. (7.5.1), r = aFJKt= aFJK2 in Eqs. (7.5.2) and Eq.
(7.5.17), we get

ZJTJN^^KJ, ;=1 ,2 . (7.5.18)

By Eqs. (7.5.18) and Eqs. (7.5.2)

WJ=1^F> J = i>2- (7-5-19)

Substituting l} = LJ/NJ and Eqs. (7.5.15) into (7.5.5) and then using Eq.
(7.5.11), we obtain

^- = AN1", (7.5.20)
k2

where we use wl I w2 = z and

N, z, \-t, UJUJ
By the definition of A and Ni + N2 = N, we have
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By IJRJ = rjkj IA in Eqs. (7.5.15), /, = LjINj and Eq. (7.5.3), we get

**•%• ( 7 " 2 )

where we use (7.5.12). By the definitions of Q ; and Eqs. (7.5.14), we
get

R, + 7 > , = S2kj, y = 1, 2 , (7.5.23)

where

S2= — -S-r = ' H* + Pdk > 0 .
A A

By Eqs. (7.5.23), we have

kl-k2=w0^{z-l)^>0. (7.5.24)

Region 1 's wage rate is higher than region 2 's wage rate, i.e., wx > w2

and the level of capital stocks owned by per capita in region 1 is higher
than that in region 2, i.e., fc, > k2. By Eqs. (7.5.20) and (7.5.24), we
solve

_ w0AA«v _ w0
K~Atr-V K~A^-\- (7'5'25)

It is necessary to require AN1" > 1. Substituting Eq. (7.5.22) and k2

in Eqs. (7.5.25) into

in Eqs. (7.5.23), we have

*= ^f2 k-MT)- (7-5-26)

Since AN!" > 1, for K > 0 it is necessary to require:

z > AN1".

Since k} > 0 are guaranteed by AN1" > 1, by Th
jwj =okj/A in Eqs.

(7.5.15), we see that To > T] > 0 are satisfied if

(7.5.21)
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ok.
To > T ^ , 7 = 1,2.

AWj

By Eqs. (7.5.25), we see that these two inequalities are satisfied if

A52z - a\z - 1) Ao2

Since

z > — z - 1 + 1 > ^ 7 ^>1>
Ao2 Ao2z - a\z -I)

we should require A to satisfy

z>ANlv>-^-{z-\) + \. (7.5.27)
Ao2

Under (7.5.27), we have K > 0, k, > 0 and TQ > T* > 0.
Substituting Eqs. (7.5.21) and (7.5.25) into Eq. (7.5.12) and then

using Eq. (7.5.26), we get

O(A) s (AM + ijKz - l) - (z - ^A"uVl + A ) ^ . (7.5.28)

n
It is shown that the function, O(A), has the following properties

o = ^ + ^ t - ( z - l ) O T 7 / ^ 2 ( l + A ) ( z _ l ) _ ^ ( z _ l ) 2 ;

77 / U 2

«^A' u =^-(z- l ) + l,
Ao2

O = (l + zAXz - l) or ^A"u = z ,

0>* = — = ^A ' u (z - l) + vAS.AA^il + A) - ^ ~
dA T]

AS2AA«V \av( A (TV AS2], ,v , .
+-^->{^-1)+o+T"tr~l)+iMi'

for z > AAnu >-^-(z - \) + I. (7.5.29)
/to2
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Since O > 0 at AN!" = z, we see that the equation, 3>(A) = 0, has
at least one solution satisfying (7.5.27) if O < 0 at

AA«v = (z-l)a/AS2+\.

By the first equation in (7.5.29), we see that O < 0 at

AN1" = {z-\)alAS2+\,

is held if

Aj3d2

As

arj/AS2 <min{cr, rj\,

we see that if z - 1 is not large, the requirement is satisfied. If O* > 0
under (7.5.27), the equation has a unique solution in the interval. By
(7.5.29), we see that it is acceptable to require O* > 0. For instance, if

{ AS2 ) v

then O* > 0 under (7.5.27) is held.

Proposition 7.5.1 We assume

Apo2 Ao2 V

The dynamic system has a unique equilibrium. The unique equilibrium
values of the variables are given by the following procedure: r by Eq.
(7.5.17) -» wJf j = 1, 2, by Eqs. (7.5.19) -» ^ by Eq. (7.5.28) -> iVy

by Eqs. (7.5.21) -> *y by Eqs. (7.5.25) -> K by Eq. (7.5.26) -> r / by
Eq. (7.5.22) ^ T., 0 < T* < To, by Eqs. (7.5.15) -> Ty. = To - T/ -»
^ . by Eqs. (7.5.18) -> F} by Eqs. (7.5.1) -> \j = LJ/NJ-> RJt cy and
Sj by Eqs. (7.5.15)-» yj by Eqs. (7.5.4)-> Uj by (7.5.5).

The assumptions in Proposition 7.5.1 are satisfied if the difference
between the two regions' levels of working efficiency is appropriately
small. It should be remarked that the dynamic system might have a
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unique equilibrium even if the requirements in Proposition 7.5.1 are not
satisfied. In the remainder of this chapter, we examine effects of changes
in some parameters. We accept the assumptions in Proposition 7.5.1 in
the remainder of the chapter.

We now examine the effects of changes in region 1 's working
efficiency, z,, on the economic structure. Taking derivatives of Eq.
(7.5.28) with respect to z, yields

. . dA ,. \ . . „ . . „ a + /?£ + fiASk zA52Az.O — = (1 - zpvAA - zAA + ——-—k-z + —

o-AS2vAA"v oA52vAAv a + fl; + 0ASk - aAS2v
TJ t] T]

+ \{\-(TV)^- + <JV-(TUZ2-Z2\A, (7.5.30)

in which we use (7.5.27) to get the right-hand side of (7.5.30) and
O* > 0 under Proposition 7.5.1. We have

a + /3^ + pX8k - aAS2v _

v

{l-a- 2r])a + (l - a - Tj)/3ASk +{l-a- rj)0g.

As a + t] + g + A = 1, the above term is positive if £ + A > rj. By
(7.5.30), we see that if the term

1 5\

(l - av) + crv- avz1 - z2 > 0,
n

then dAldzx > 0. As

/. \ZAO-, 2 2
(1 - crv) + av- avz - z

= |(£ + A)^-zJz-OT(l + zXz-l),
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we see that the term is positive if z -1 and rj are sufficiently small.
Otherwise, it is difficult to judge the sign of the term. Summarizing the
above discussion, we conclude that if z - 1 and rj are sufficiently small,
it is reasonable to have dAI dzx > 0. In the remainder of this section, we
assume dAI dzx > 0. We have

1 dNx _ 1 dA ^ Q

JV, Jz, {l + A)Adzl

1 dN2 _ 1 </A ; Q

N2 <£, 1 + A dz,

If the regional working efficiency difference, z - 1 and the propensity J]
to consume housing are appropriately small, some of region 2 's
population will migrate to region 1 as region 1 's working efficiency is
improved.

By Eqs. (7.5.7) and (7.5.15),

*• ( ! • ! •«>•

By Eqs. (7.5.25) and these two equations, we have

1 dyx _ 1 dkx _ 1 av ?jv dA

~J,~d7x ~ T,~d7x ~ (z - l)z2 ~ (^A"" - l]z, ~ [A/F - l J A ^ " '

1 dy2 _ )_dk^ = 1 _ OTA4A"" _ rivAA^ dA
y2 dz, ~ k2 dzx ~ (z - l)z2 [AAnv - ljz, (^A"u - l)A. Jz, "

It is difficult to explicitly judge the signs of dkjldzv By Eq. (7.5.17)
and Eqs. (7.5.19), we have

-£^. = £ ^ 1 = 0, dWi = w' > o.
cfe, cfe, ' dz, z,

By Eq. (7.5.22) and Eqs. (7.5.23), we get

1 dRy _ J_ dK_ _ AS2N dk2

RQ dzx K dzx rjK dz}

Bylj=LjINj
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IA = __L^<0
/, dzx Nx dzx '

l2 dzx N2 dzx

By Eqs. (7.5.15) and Tj + T* = To, we get

± ^ = J_^L, dTL = _J_^ j = l2t
Cj dzx kj dzx ' dzx kj dzx

J _ £ ? L . = _Lf*i. _ _L 1 dT2
h
 = 1 dk2

T? dzx ifc, dzx z, ' T2 dzx k2 dzx '

By Eqs. (7.5.1), (7.5.18), R} = r]KjIXLj and K} = kjNr we have

Rj dz
x ~ Fj dzx " ^ y <fe, ~ it. dzx Nj dzx' J ~ '

7.6 Growth with International Trade and Urban Pattern Formation

This section proposes a simple two-country and one-commodity trade
growth model with free capital mobility and urban pattern formation to
provide some insights into relationships between commodity prices,
factor prices, land values, production, preferences and trade volumes.9

The growth aspects of our model is based on the international
macroeconomic one-sector growth model with perfect capital mobility.10

The system consists of two countries, indexed by j , j = 1, 2 and
only one good is produced in the system. The good is assumed to be
composed of homogeneous qualities, and to be produced by employing
two factors of production - labor and capital. Perfect competition is
assumed to prevail in goods markets both within each country and
between the countries, and commodities are traded without any barriers
such as transport costs or tariffs. The households achieve the same utility

9 The model is based Chap, 10 in Zhang (2002).
10 See Oniki and Uzawa (1965), Rodriguez (1975), Frenkel and Razin (1987), Ruffin (1979),
Buiter (1981), Wang (1990), Ikeda and Ono (1992), Devereux and Shi (1991), Turnovsky
(1997), and Rauch (1991).
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level regardless of where they locate.11 The industrial production is
similar to that in the OGM. To describe the industrial sector, we introduce

Nj = the fixed population of country j , j = 1, 2;

Ky(t) = the capital stocks employed by country j's production

sector at time t;
Wj(t) = country j's wage rate;

r(t) = rate of interest;

Fj(t) = output of country j's production sector;

Cj(t) = country j's net consumption level;

Kj(f) = capital stocks owned by country j ;

E{t) > (<) 0 = country 2 's (1 's) capital stocks utilized by country 1
(2); and

K(t) = the world capital stock.

We assume that production is carried out by combination of capital

and labor force in the form of

F, = zK^Nf, F2 = K?2N?, a + 0 = \, a,fi> 0, (7.6.1)

where a and /? are parameters. Here, we call z the efficiency
parameter of economic production. The parameter may be simply
interpreted as a measurement of working efficiency difference between
the two countries. If z > 1, we say that country 1 's workers work more
effectively than country 2 's workers. The marginal conditions are given
by

w, = — , r = ^ - , j = l,2. (7.6.2)
1 N/ KtJ

 J

The world capital is equal to the sum of the capital stocks owned by
the two countries, i.e. Kt + K2 = K. According to the definitions of Ktj,
Kj and E, we have

11 The spatial aspects of this model are referred to the urban model in Chap. 4 of this
book.
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KiX=Kx+E, Ki2=K2-E. (7.6.3)

The above equations state that the capital stocks utilized by each
country is equal to the capital stocks owned by the country plus the
foreign capital stocks.

We now describe housing production and behavior of households.
First, we introduce

Lj = the fixed (territory) length of country j , j = 1, 2;

0)j - distance from the CBD to a point in the residential area in

country j ;

Rj \Q)j, t) = land rent per household at location co.;

kj \C0j , t ) = capital stocks owned by the household at location cot;

Cj \CDj , t j = consumption level of the household at location co.;

yjifOj, t) = net income of the household at location atj;

rij \C0j , t ) = residential density of the household at location O)j;

Lhj (o)j , t ) = lot size of the household at location O)j.

According to the definitions of LhJ and ny, we have

nk°P () = T \ \> 0<Q)j< LJt j = l,2. (7.6.4)

We assume the public land ownership. The total land revenue is
given by

Rj{t)= JRjfaj, t)da>j, 7 = 1,2.
0

The income from land per household is given by

/ \ Rib)
rj(t) = - ^ J = 1,2.

Jyj

The current income is given by

yMj.')=K>)*>;> 0 + WJ(() + 7M\ J = l>2- (7-6-5)
As in Sec. 4.4, we specify A^co^f) and ThJ(a)j,t) as
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julj,jUj,TQj,vj>0. (7.6.6)

The utility level Uj(fOj, t) of the household at location C0j is given
by

£/>_, , t) = AJTZC'/H'S]' , ap £., rjp Ap j = l,2, (7.6.7)

where £,(&>,, t) is the savings of the household at a>p ap t;p r)j and Xj

are respectively interpreted as country j 's propensities to use leisure
time, to consume the commodity, to use lot size and to own wealth. As
the population is homogeneous within each country, we have

£ / > , , , t)=Uj(a)J2, t\ 0 < con, coj2 < Lj.

The budget constraint is given by

Cj(cop t)+Rj(cop t)Lhj(cop t)+S}(a>j, t) = yj(cop t),

where

h K >*) = yj k > t ) + { \ - s k )kj (o)j , t ) .

Maximizing Uj subject to the budget constraint yields
CJ K ) = & & fa I RJ K K fa)=VJPJJ (WJ I

sM)=AjPjyMj)> (7-6-8)

where

1

According to the definition of Sj{o)pt), we have the following
capital accumulation for the household at location 0)j

kjicoj) = Sj(a>j) - kj(a)j), 0<a)j< Lt.

Substituting Sj(a>j) in Eqs. (7.6.8) into the above equation yields

k. (a,,) = s,yj fa) - Sjk, fa I 0 < a, < L,, (7.6.9)

where
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Sj = AJPJ, Sj = So + fa + j]j)p0J, pOj ={\- Sk)pj.

As there is no migration, the following population constraints are held

}*,(fl>>to,=tf,, 7 = 1,2. (7.6.10)
0

By the definitions of np c} and Cp we have

h
\cj{coj)nJ{coJ)dcoj =Cj, 7 = 1 . 2 .
0

The product is either invested or consumed. That is
Fx + F2 = C, + 5, + C2 + S2,

where Sj(t) is given by

Sj - j[s,(<y,) - (1 - S^XtOjJn^da),, j = 1, 2 .
0

By the definitions of np kj and Kj, we have

}*»»fl»y=^, 7 = 1,2.
0

The total income Yj(t) of country j is equal to the sum of incomes
of its population, i.e.

h
Yj = jyjMnjfajjdaj.

0

We have thus built the two-country trade model with economic
growth and economic geography under perfectly competitive institution.
The system has 18 space-time-dependent variables, kjycr Lhj, Sf, rij,
Aj, Uj, Rj, yj (j = 1, 2), and 21 time-dependent variables, Fn KtJ, Kp

Yj,Cj,wj,Sj,Rp Fj ( 7 = 1.2 ), r, K, and £,. It contains 39
independent equations. We now examine the properties of the dynamic
system.

We now examine dynamic properties of the system. First, we show
that the dynamics can be described by the motion of two variables, Kx

and K2. By Eqs. (7.6.5), (7.6.8) and (7.6.9) we see that the capital stocks
owned by per household and the net income are identical over space
within each country at any point of time. Hence, we have



280 Differential Equations, Bifurcations, and Chaos in Economics

Kj = kjNj, Yj = yjNJt Yj = rKj + WjN, + Rj. (7.6.11)

We rewrite the dynamics, Eqs. (7.6.9), in aggregated terms as
follows

KJ^SJYJ-SJKJ, 7 = 1 , 2 . (7.6.12)

Our problem is to show that we can express Yj(t) as functions of AT,
and K2.

Multiplying all the equations in Eqs. (7.6.8) by n^m^i) and then
integrating the resulted equations from 0 to Lj with respect to m., we
obtain

Cj = ZJPJYJ + fajK,, Rj = MY, + VAJKJ,

S]=AJpJYJ+AjpnjKJ. (7.6.13)

Substituting Rj in Eqs. (7.6.11), and r and Wj in Eqs. (7.6.2) into Yj in
Eqs. (7.6.11), we have

From

aF. aF2

F F

and Eqs. (7.6.1), we have

F N
rj2 iv2

From this equation and Eqs. (7.6.3), we have
E = z,K2 - z2Kx, Ka = z,K, Ki2 = z2K, (7.6.15)

where

zypN, N2
Zl~ z^N.+N,' Z2~ zu'Nl+N2'

We can thus express Kv and F} as functions of Kx and K2. By Eqs.
(7.6.12), (7.6.15) and (7.6.14), we have

(7.6.14)
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• _ K l z , K + fi^zz^NfK" - fe + SAX

^ {aK21z2K + fi^z^K" - (£ + <U)K2 ( ? 6 1 6 )

£ + At

As K = Kt + K2, we see that the dynamic system (7.6.16) is only
dependent on Kx(t) and K2(t). Accordingly, the above two differential
equations determine the capital stocks owned by the two countries,
independent of the other variables in the system. We can show that all
the other variables in the system are uniquely determined as functions of
Kj and coj (0 < O)j < Lpj = 1, 2) at any point of time.

Proposition 7.6.1 For any given (positive) level of the capital stocks,
^ , (0 and K2(t), at any point of time, all the other variables in the
system are uniquely determined as functions of K^t) and K2(t). The
dynamics of Kx{t) and K2{t) are determined by Eqs. (7.6.16).

Proof: We already uniquely determined kp yp E, K, Fp Ktj and Yj as
functions of Kx and K2. From Eqs. (7.6.13) and (7.6.8), we directly
determine RJS Cp Sn cy and Sr The income from land ownership per
household is given by: r = RIN. The rate of the interest r, and the
wage rate w; are uniquely determined by Eqs. (7.6.2). Substituting Eqs.
(7.6.4) and (7.6.6) into Uj(c0j) in (7.6.7) yields

Ujfrj) = fly(roy - vpfrc'jnWs)'. (7.6.17)

Substituting (7.6.17) into £/y.(0) = £/,.(&,), we have

1-^rH • (7-6.18)

Substituting Eqs. (7.6.18) into Eqs. (7.6.10) and then integrating the
resulted equation from 0 to Lp we have

We assume

 (7.6.17)
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V.L.

T

This simply means that the available time is sufficient to travel from the
boundary of the country to the CBD. By Eqs. (7.6.18) and (7.6.19), we
determine the residential density at any location in the two countries. The
lot size per household is given by:

From Eqs. (7.6.8), we have the land rent RJ{COJ). The local amenity
Aj(C0j) is given by Eqs. (7.6.6). The utility level Uj{(Oj) is given by
(7.6.7). We thus showed how to determine all the variables in the system
as unique functions of K{ and K2.

Before further analyzing the dynamic properties of the system, we
examine how the differences in values of some variables between the
two countries are determined at any point of time. Substituting Kn and
Kn in Eqs. (7.6.15) into Eqs. (7.6.1) and (7.6.2), we have

F2 w2 {zxK)

where we assume Nl = N2. If country 1 works more effectively than
country 2 , both country 1 's output and wage rate are higher than
country 2 . In the free trade system, if the world capital stocks K is
increased, the interest rate r is reduced. From Eqs. (7.6.19) and (7.6.18),
we get the ratio of the residential densities as follows

n,(0) ^vV-{\-v2L2ITjA
H2(0) [ i - ( i - y i vr 0 1 n '

n2(co2) n2(0){\-v2co2ITj^ ' J

where

v2B2N2TQ2 jUj+Vj
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We see that the ratios are determined by the differences in the
population, the transportation conditions, the available times, the
crowding effects, the preferences and the territory sizes between the two
countries. For instance, when the two countries are identical in the
transportation condition, the available time, the population, the
residential distribution is different if the two countries have different
preferences, i.e., 5, * B2. It should be remarked that as we have already
explicitly solved all the variables as functions of K}(t) and K2(t) at any
point of time, it is direct to compare all the variables in the system
between the two countries.

We now examine whether or not the dynamic system has equilibrium.
By Eqs. (7.6.16) equilibrium of the dynamic systems is given by

( f l + ^ Y z z " N ' K a = & + * A K

( f t + ty^x"= & + ̂  & • (7-6'20)
It can be shown that the above equations have a unique solution.

Proposition 7.6.2 The dynamic trade system has a unique stable
equilibrium.

Proof: We first show that the system has a unique equilibrium. Dividing
the first equation by the second one in Eqs. (7.6.20), we have

| L = A> (7.6.21)

where A is defined in Eqs. (7.6.24). Substituting Eq. (7.6.21) into the
first equation in Eqs. (7.6.20), we have

ft + dA
where A is a constant. By Kx + K2 = K, Eqs. (7.6.21) and (7.6.22), we
have

 (7620)
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„ AA A
A.. , A., — .

1 1 + A 2 1 + A
We obtained a unique equilibrium. We now provide stability conditions
for the equilibrium.

It is easy to calculate that the two eigenvalues, <f)x and <ft2, are given
by

f - (a, + b,)<t> + axb2 - a2bx = 0 , (7.6.23)

where

î + \

_ ArfNfK-' IK, - fe + 8k\ )IK Ba2= — K,

_ ^zMK-'/K, -{& + Sk\)lK

bi = ^KXK-Q/KI +& + SA)IKpKi : 0

As a, and b2 are negative, we see that the system is stable if

a2bx — ap2 < 0 .

From Eq. (7.6.23), we directly obtain
a2b, - ap2 =

Alzz?N?Kl+a{j;2 + 8^)1 K\ + ̂ zz? N? Kl+a fo + 8k\)l K\

Accordingly, the unique equilibrium is stable.

The ratio of the capital stocks owned by the two countries and the
foreign capital stocks E at equilibrium are given by

| L = A » A I + ( A ; + A , ) r .
K2
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E = {1-!$-}<*» (7>6-24)
where

_(Z2/A2+3ky
/% _a/fkl+l alfc2 +1

A ° = fa/l+Sfo ' Al= 2 A ° " 2 '
where we use Eq. (7.6.21) and the definitions of z, and z2. Here, if
£xl\ > (<) £, / /^, we say that country 1 's net propensity to own wealth
is lower (higher) than country 2 . From (7.6.7), we see that when
£xl\ >£2/A1, country 1 's propensity to own wealth is lower than
country 2. From Eqs. (7.6.24), we see that it is not easy to explicitly
determine the sign of E. The trade direction is affected by the
differences in the population, preferences and working efficiency
between the two countries. To examine the sign of E, we examine a few
special cases. In the case that the two countries have an identical working
efficiency and net propensity to own wealth, i.e., z = 1 and
£ , /^ = £il^2> we have:

* L = ^ L , E = 0.
K2 N2*

The country with larger population has more capital stocks but trade is in
balance.

We now examine the case that the two countries have identical
population and working efficiency and country 1 's net propensity to own
wealth is higher than country 2 , i.e., Nt = N2, z = 1, and
£, I \ < £2 / Aj. In this case, we have

_£2/A2+S _ (l + orXA. -1) 0

#i l \ + Ok IP

By Eqs. (7.6.24), we have

^ = A1 + ( A 2
1 + A 0 ) / 2 > 1 , E = (l-A)ziK2<0.

K2

When country 1 's net propensity to own wealth is higher than country 1,
country 1 has more capital stocks than country 2 and some of country
1 's capital stocks are utilized by country 2.
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Another case is that the two countries have identical net propensity
to own wealth and identical population, but different working efficiency,
i.e., N] = N2, £J\= ^//Lj and z * 1. As

A0=^,A1=^-L,

the country which has a higher working efficiency owns more capital
stocks and some of its capital stocks is utilized by the other country, i.e.,
KJK2> (<) 1 and E < (>) 0 in the case of z > (<) 1. In the case that
the two countries have identical population and country 1 works more
effectively than country 2 and country 1 's net propensity to own wealth
is higher than country 2, i.e.

it is obvious to check:

A , > 0 , A O > 1 , ^ - > 1 , E<0.
K2

7.7 A Dynamic Macro Model with Monetary Policy12

We now introduce a (short-run) dynamic macro model. Capital
accumulation is neglected. The model is a combination of the
conventional IS-LM model and Phillips curve. The formal model is
described by the following set of equations

Y(t) = D(Y°(t),r(t)-4t),A(t))+G,

0 </>,<!» D2<0, D 3 >0 , (7.7.1)

YD = Y-T + rb(t) - nA, (7.7.2)

A = m{t) + b, (7.7.3)

m = L(Y, r, A), L, > 0, L2 < 0, 0 < L3 < 1, (7.7.4)

12 This section is based on Chap. 2 in Turnovsky (2000). We will not examine the model.
Interpretations are referred to Turnovsky.
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p{t) = a{r-Y)+n, a>0, (7.7.5)

it = Y{p-n\ y>0, (7.7.6)

A = m + b = G-T + rb- p(m + b), (7.7.7)

where

Y = real output, or national income;
Y = the fixed capacity of production;
D = real private expenditure;
YD = real disposable income;
C = consumption expenditure by the private sector;
A = real wealth of the private sector;
/ = gross private domestic investment;
G — total government purchases of goods and services
P = price level of output;
p = rate of inflation {p = PIP);
r = nominal rate of interest;
n = the expected rate of inflation;
T = (exogenous) net real tax payments;
M = nominal stock of outside money, assumed the liability of central

bank;
B = nominal stock of government bonds;
m - real stocks of money (m = MIP, where );
b = real stocks of bonds (b = BIP).

Here, financial wealth defined by Eq. (7.7.3) consists of the stock of
money plus government bonds outstanding. The first five equations, Eqs.
(7.7.1) - (7.7.5), comprise an instantaneous set of relationships, in which
the five variables, Y, YD, r, p, and m or b (depending on the
government financing policy) are determined instantaneously in terms of
the predetermined values of K, A, and b or m. The dynamics of the
system are described by Eqs. (7.7.6) and (7.7.7).

Equation (7.7.7) is the budget constraint, expressed in real terms with
rb being the interest payments on the outstanding government debt and
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-p(m + b) described the "inflation tax" on government debt.13 To
complete the model, government policy needs to be specified. There is
only one constraint on the government budget but the government has
four policy instruments, debt, money, taxes, and government expenditure.
Only three of the four can be chosen independently. As G and T axe
fixed in this model, the government concerns with the mix between bond
financing and money financing of the deficit. We are now concerned
with three government policies.

(i) Fixed real stock of money policy
The monetary policy is to maintain the real stock of money constant, i.e.,
m = m. As m = MIP, this policy can also be expressed as
Ad(t) = mP(t\ Under m = m, the system becomes

Y = D{Y -T + r(A-m)- nA,r - n, A)+ G,

m = L{Y, r, A),

p = a(Y-Y)+n,

n = y{p-n),

A = G -T + r(A-m)- pA.

Since the monetary policy fixes the real stock of money and the
accumulation of real wealth takes the form of real bonds, the government
deficit is referred as bond-financed. Denote an equilibrium point by
{ft', A'). The Jacobian at the point is

; . [ HP.-I) PA "I
[(A - m)rn - Apa (r-p) + (A- m\rA - ApA)J '

13 If we assume price of government bonds Pb = 1, then the government budget

constraint in nominal terms is given by: M + B = P(G -T)+ rB, The right-hand side

equals the nominal value of government expenditures on goods and services, plus the
nominal value of interest payments on outstanding governments bonds, less revenue
raised by taxes. This deficit is financed either by issuing additional money or selling

more bonds, or by some combinations of the two. Substituting M = mP + mP and

B=bP + i>P into the constraint yields (7.6.7).
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where pn and rn are obtained by solving the linear equations

YM=Dl{YM+rll{A-m)-A) + D2{rll-ll

LxYn + L2rn = 0,

and pA and rA are obtained by solving the linear equations

YA = D,(YA +rA(A-m) + r-x) + D2rA + DA,

LxYA+L2rA+L, = 0,

PA = aYA.

The analysis is straightforward, even though behavioral interpretations
are tedious.

(ii) Constant rate of nominal monetary growth policy
The monetary policy maintains a constant rate of nominal monetary
growth

where fi is a constant. As M = mP, this policy can also be written in
the form of

m = (ju- p)m. (7.7.8)

The system now becomes

Y = D(Y - T + r(A - m) - a4, r - a, A) + G,

m = L{Y, r, A),

p = a{Y-Y)+n,

n = y{p-n),

A = G-T + r(A-m)~ pA,

together with Eq. (7.7.8). We see that the dynamics are now a third-order
system.
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Since the monetary policy fixes the real stock of money and the
accumulation of real wealth takes the form of real bonds, the government
deficit is referred as bond-financed.

(iii) Fixed real stock of government bonds policy
The monetary policy fixes a real stock of government bonds

b{t) = b,

where b is constant. This policy can also be expressed in terms of the
nominal stock of bonds B by B(t) = bP(t\

Under the monetary policy, the system is described by

Y = D(Y - T + rb - nA, r - n, A)+ G,

A-b= L{Y, r, A),

p = a(Y-Y)+n,

n = y{p-n),

A = G-T + rb-pA.

The instantaneous variables, Y, p, and r can now be solved at each
point in time in terms of G, n, A, and b.

7.8 Economic Growth with Public Services

We now introduce a growth model with public inputs.14 The economy is
populated with a continuum of infinitely lived agents, whose measure is
normalized to one. The representative agent supplies one unit of labor
services inelastically. The agent chooses consumption so as to maximize
the discounted sum of utility

[SlWMe-vdt, a<\, rj<\, (7.8.1)

14 The model is proposed by Zhang (2000jx), influenced by Barro (1990), Abe (1995),
and Futagami, Morita, and Shibata (1993). Zhang's work is of the global nature and
generates much richer dynamics than the traditional works.
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subject to the following constraint

c + k = (l-r)f{k,g), (7.8.2)

where p is the subjective discount rate, c is private consumption, r is
the government's tax rate on income, g is government consumption,
and / is the income. The agent takes government consumption as given.

The production function of the private sector is specified as

f{k,g) = ka{t)g'{t), a + /3>\, p<\,

where k is capital stock. Here, a + /? > 1 implies increasing returns to
scale in private production. The case of ft < 1 is referred to as mild
increasing returns, while the case of /3 > 1 as strong increasing returns.
Suppose that the economy's total capital stock per person is k.
Consequently, the domain for the capital stock is restricted to[O, k\ The
government's budget is balanced every instant, so that

g = #-(*,g) = * V - (7-8.3)

The current-value Hamiltonian for this problem is

H = ̂ f + A[(l-r)f-c],
where A is costate variable. The first-order necessary conditions include

A = c°~1g\ (7.8.4)

A = Ji\p - arok
aM], (7.8.5)

where

# > = 7 - ^ > ^ o s ( l - ^ ° , ao=a + /3-l,
1-/7

and the associated transversality condition

limAke-" = 0. (7.8.6)

Substituting g = ikagp, f = kagfi, and A = ca''g" into Eq. (7.8.2)
yields

k = T^-T—j^-, (7.8.7)
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where a0 = l/(l - a) and y = l//3Qa0. Equations (7.8.5) and (7.8.7)
jointly define a planar dynamic system in (A, k) on [o, °°)x [o, k]. The
system has a unique equilibrium point

L* _ A* 1* _ " * .'aaaSp-H-g

The Jacobian at equilibrium is

0 -pao/3oy

We have

De(j = ^o_>Ot jyj = h - cr - q)£.
ay 'y

The sign of the trace is the same as that of (l - a - rj).

Case A: a + r] > 1
In this case, the trace is negative, the equilibrium is a sink. Calculate the
discriminant (as a function of Tj )

A(i/) - (TV./)2 - ADetl = \^Z£ZllL - i ^ .
L Y a \Y

There exists a value of TJ, denoted by rjs, such that A(TJS) = 0. As
a + 77 > 1,15 we solve

If J]s < rj < 1, the equilibrium point is a stable node; if rjs > rj, the

equilibrium point is a stable focus.

CaseB: a + T]<l

15 It is not difficult to show that TJ < 1 can be generally warranted under a wide range of

parameter values.



Planar Dynamical Economic Systems 293

In this case, the trace is positive, the equilibrium is a source. There exists
a value of 77, denoted by T]u, such that A(T}U) = 0.

As a + r] < 1, we solve A(?]u) = 0 as

If rjc < rj < 1, the equilibrium point is an unstable focus; if rjc >rj, the
equilibrium point is an unstable node.

Case C: a + t] - 1
In this case, the Jacobian has a pair of pure imaginary eigenvalues.
Denote ?j0 = 1 - a and the two eigenvalues are ±iS0, where

at T}0. Moreover, it is straightforward to show that at 77 = J]o, the real
part of the derivative of eigenvalue with respect to t] does not vanish.
Therefore, the conditions of the Hopf bifurcation theorem are satisfied.
The dynamic system exhibits limit cycles.16

7.9 Endogenous Population Growth in the Ramsey Framework

In studying interdependence between population and economic growth, it
is necessary to take account of effects of economic factors on fertility
and mortality. Many empirical studies have found effects of economic
variables, such as per capita income, age rate, levels of female and male
education, social welfare on fertility and mortality. We introduce
endogenous birth rate in the Ramsey model.17

The production sides are described by the Cobb-Douglas production
function

y = Aka,

where

16 See Zhang (2000) for further investigation.
17 Refer to Sec. 9.2.2 in Barro and Sala-i-Martin (1995).
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~ K Y
0<a<\, k = -7r, y = — ,

N N
and N s Ne1" is the effective labor input with x > 0 being the rate of
exogenous, labor-augmenting technological progress in the economy. If
capital depreciates at the constant rate Sk, then the marginal conditions
are given by

r = aAka-x -Sk, w = (l- a)Akaexl.

Let n > 0 be a family's birth rate; a choice variable of households at
every point in time t. Let d > 0 stand for the mortality rate. For
simplicity, assume d to be constant. According to the definitions, we
have

N(t) = {n(t)-d)N(t). (7.9.1)

The formation of household utility is

U = ]^-{N{tYc{t)(n{t) - df\B - \}dt. (7.9.2)

The term e''* is the 'altruism factor'. Here, we can think of the pure rate
of time preference as 0 in the present context. To explain

[N{tyc(t){n(t)-dy}~e -\
1 - 0

we consider that the temporary utility that generation t obtains is given
by

U\t) = N(treu{c{t),n(t)-d), (7.9.3)

where £ is a positive parameter and N(t) is the number of adult
descendants in generation t. The term u{c,n - d) represents the utility
generated during adulthood from consumption and the presence of (net)
children. The condition e > 0 measures the degree of altruism between
parents and children. We assume that utility function, u(c,n - d), is
taken on the following form that the elasticity of marginal utility with
respect to c and n - d is constant, i.e.

, v = [c(t){n(t) - df]'6 - 1
W 1-0
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where 0>Q and 6 > 0. We also require ^ ( l - # ) < l . This condition
guarantees diminishing marginal utility with respect to n. Substituting
the above equation into Eq. (7.9.3) yields

K)~ 1 - 0

where

l-e
iff = .

1-0
We see that

U= je-"U'(t)dt,
0

gives Eq. (7.9.2).
Assume that each child costs an amount rj for the birth and rearing.

For tractability of analysis, we consider r/ to be spent entirely at the time
of birth, even though in reality the cost should be spent over many years.
Per unit of time the number of births is n(t)N(t). The total expenditures
on child rearing per unit of time is equal to tjn(t)N{t); the expenditure
per capita is T]n(t). Here, the child-bearing cost is assumed to be
proportional to the number of children. In reality, there may be scale-
effects in cost determination. Moreover, the setup cost for a family to
have its first child suggests possible existence of a range in which the
cost per child diminishes with the number of children. Eventually, the
costs would increase more than linearly with the number, because the
parents are very old when they have children. It should be noted that t]
is related to many other variables such as the value of parents' time and
children's quality. It is argued that the cost rj tends to rise with parents'
wage rates or with other measures of the opportunity costs of parental
time. Greater educational attainment of adults, for instance, tends to
increase t). More generally, T] tends to rise in per capital consumption
c(t) and per capita asset k{t). For simplicity of analysis, it is assumed a
linear relation between r] and k as follows

77(0 = k+ bk{t), (7.9.4)
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where b0 and b are non-negative parameters. We interpret b0 as the
goods cost of child bearing and bk(t) as the part of the cost that
increases with the capital-labor ratio. In the following discussion, we
assume b0 = 0.

We now construct the family budget constraint. Each family member
is assumed, for convenience of analysis, to receive the same wage rate,
irrespective of his/her age and human capital. The family's assets earn
the rate of return r(i). The budget constraint can be expressed as

k = w + (r - n + d)k - bnk - c. (7.9.5)

It is assumed that each household takes as given the path of the wage rate
and the rate of return.

The household's optimization is to choose the path of the control
variables c(t) and n(t) to maximize U in (7.9.2). The problem is
subject to the initial assets k(0); the transition equations for the two state
variables, N(t) and n(t), given by Eqs. (7.9.1) and (7.9.5), c(t) > 0 and
n(f) > 0. The Hamiltonian for the problem is

j=)v-AN¥^n - dyye - ] } + & - d)N'
+ v[w + (r -n + d)k - bnk - c],

where v and ju are the shadow prices associated with the two state
variables, k(t) and N(t). The first-order conditions for maximization
are

a / a /
dc dn

V = -TT, M = ~-zz7- (7-9.6)
dk dN

From the definition of the Hamiltonian, we can express the
conditions dJ /dc = 0 and v = -dJ/dk in terms of the growth rate of
c(t)

i = L\r-p-(n-dil-r(l-e)]-nb + !^M.
c 0 [ n - a )

In particular, if we choose 6 = 1, the above equation becomes
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- = r-p-(n-d)-nb. (7.9.7)
c

The conditions dJ /dc = dJ /dn = 0 are expressed as

ju = e-"N^-e)-V-e{n - dY(1-e)Q, (7.9.8)

where

c n - d

Differentiating this expression for ju with respect to time and then
using the condition ju = -dJ/dN yields

Q = -y, + ̂ \p-{\-e^-{l-Wtn-d)-nb + - ^ .

In the case of 0 = 1, the above equation becomes

Q, = - y/ + pQ.. (7.9.9)

This linear differential equation is solved as

Q(0 = — + Q(0) - ̂  ef* .
P V P.

Because y/ is constant and p is positive, the above equation is
unstable. The unstable path violates the transversality condition
associated with N. To show this, we note that Eq. (7.9.8)
becomes juN = e"Q, when 0 = 1. That is

,iy = ] £ l + Q(0)- l* l .
P P

Therefore, the transversality condition associated with N

lim(//A0 = 0,

is satisfied only when Q(0) = y/l p. In this case, Q = 0 for all t, and
Q(/) always equals its initial value.

By Cl(t) = y//p and the definition of Q, we conclude that the
fertility rate always satisfies the condition
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n=d+ tEknd.
p{\ + b)- y/{c/k)'

The fertility rate is proportionally related to the mortality rate. Since
higher values of <f> and y/ raise the marginal utility associated
respectively with n and N, an increase in these values increases n.

The dynamics are determined by Eqs. (7.9.5) and (7.9.7). These two
equations can be rewritten as

£ = -p-{l-a)z + Z,
X

where

X-k,z-Ak .

The dynamics can be analyzed by the methods in Chaps. 5 and 6.
The task is left to the reader. Barro and Sala-i-Martin simulated the model
with different combinations of the parameter.

7.10 The Ramsey Model with Endogenous Time

We now introduce endogenous time into the Ramsey model. The model
reviewed here is based on a model by Barro and Sala-i-Martin.18 Let us
denote N(t) population, which grows at a fixed growth rate n. Let T(t)
denote worker's efforts (e.g., working time) at time t. Labor input,
denoted by N'(t), are given by

N\t) = T(t)N(t).

The production side is described by the Cobb-Douglas production
function

y = Aka,

18 See Sec. 9.3 in Barro and Sala-i-Martin (1995).
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where 0 < a < 1, k = K/N, y = YIN, and N = N'e" is the effective
labor input with x > 0 being the rate of exogenous, labor-augmenting
technological progress in the economy. If capital depreciates at the
constant rate Sk, then the marginal conditions are given by

r = aAk"-1 -St,

w = (l - a)Ak"e*.

We now introduce the utility which includes a disutility of work effort as

U = )u[c(t),T(t)]e-{p-"]dt,

0

where the usual concavity conditions are required

uc > 0, uT< 0, ucc < 0, UJT < 0 .
Let w(t) and k(J) respectively stand for the wage rate paid for per

unit of labor input and per capita wealth. Evolution of individual wealth
follows

k' = wT + (r-rty-c. (7.10.1)

The Hamiltonian for the problem is

J = u(c,T) + v[wT + (r- n)k - c],

where v is the shadow price associated with the state variable, k{t). The
first-order conditions for maximization are

a/= a/
dc~dT~ '

dJ
v- .

dk
The first-order condition that reflects the substitution between

consumption and leisure at a point in time is

uT

= w.

The first-order condition that provides a relation between the rate of
interest rate and growth rate of per capita consumption is
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, . , . ( * £ ] * - ( j ! ^ | | ; . (7.10.2)

Since it is so difficult to analyze the behavior of the model, let us
consider the steady state at which w and c grow at the same rate, x. We
ask whether there is a utility function that the model has a steady state in
which c grows at a constant rate and T is constant. According to Eq.
(7.10.2), these requirements imply that the elasticity of the marginal
utility of consumption must be constant, i.e.

— = -6>, a constant. (7.10.3)

We now rewrite - uT luc = w as

w _ uT

c cuc

To find a steady state in which w and c grow at the same rate, we
take logs of the above equation and differentiate with respect to time

uTcc + UJJT uj + ucTf c _ Q

uT uc c

Since f - 0 and c/c is generally non-zero in the steady state, the
above equation can be rewritten as

uT uc

That is

1 duT _ 1 - 9

uT dc c

Integration of the above equation with respect to c yields

log(uT) = {\-0)log(c) + H(T),

where H(T) is a function of work time to be determined. Again,
integrating the above equation with respect to T, we have

u(c,T) = J-e<pi(T) + <p2(c), (7.10.4)
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where <px and <p2 are respectively arbitrary functions of T and c. Eqs.
(7.10.3) and (7.10.4) imply

c<p\ = -0<p2.

This differential equation is solved as, except multiplicative and
additive constants

<p2 = c'~e, if 0 * 1, <p2 = log(c), if 0 = 1. (7.10.5)

Substituting Eq. (7.10.5) into Eq. (7.10.4), we can get the required form
of u{c,T). The following function satisfies the requirements

. f a r ) - " " ' • * * - » * " ' - ' , (7.10.6)
1 — 0

where co'(T) < 0, a>"(T) < 0, and 0 > 1 . With the utility function
specified by Eq. (7.10.6) and - uTluc = w, we get

c

For simplicity of analysis, let us consider 0 = 1. In this case, the
utility function specified by Eq. (7.10.6) is

«(c,7) = log(c) + log(r). (7.10.7)

With this utility function, by Eq. (7.10.2) the growth rate of c is

gc=r-p. (7.10.8)

Introduce the variables per unit of effective labor to include the
effect from variable work effort T

fc_ K C
TNexl' ° TNex> '

Using

gT=0, r = f(k)-Sk,

we have

g£=f'(k)-{Sk+p + x),

gk.=+y--{sk+p + x)-J.
k k



302 Differential Equations, Bifurcations, and Chaos in Economics

Through these two equations, the growth rates of variables are
examined. Further discussions on the following specified forms

f = Aka, oKO^-gr1™

are referred to Barro and Sala-i-Martin. The dynamics can be analyzed
by the methods in Chaps. 5 and 6. The task is left to the reader.



Part III

Higher Dimensions



Chapter 8

Higher-Dimensional Differential Equations

In this chapter we study higher-dimensional differential equations.
Section 8.1 gives general solutions to systems of linear differential
equations. Section 8.2 examines homogeneous linear systems with
constant coefficients. Section 8.3 solves higher-order homogeneous
linear differential equations. Section 8.4 introduces diagonalization and
introduces concepts of stable and unstable subspaces of the linear
systems. Section 8.5 studies the Fundamental Theorem for linear systems
and provides a general procedure of solving linear equations.

8.1 Systems of Linear Differential Equations

By a system of first-order linear differential equations, we mean a system
that can be written in the form

*/(') = fl«('k(0 + aJ'MO + - + aJ'MO + k<f\
1=1,2,. . . /! ,

where aa(t) are parameters and *,(/) are variables. In vector notation,
the equations are written as

x{t)=A{t)x{t)+h{t), (8.1.1)

where x(t) and h(t) are «xl vectors, and Amn{t) is an nxn matrix. We
have been concerned with the case of n = 2. In this chapter, we are
mainly concerned with higher-dimensional problems. As in the case of
n = 2, if h(t) = 0, the system is homogeneous; otherwise it is called
nonhomogeneous.

304
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Without loss of generality, if we add the initial conditions x(t0) = b,
where b is a given nx l vector, we call the system of linear differential
equations an initial value problem. A solution to the system is an «xl
vector x(t) which satisfies (8.1.1).

Theorem 8.1.1 If a^if) and ht{f) are continuous on the interval (a, b)
containing t0 for 1 < i < n and 1 < j < n, then the initial value problem
(8.1.1) has a unique solution on (a, b).'

We now investigate the stability of a solution x'(t) to the problem
(8.1.1). Let x(t) represent any other solution and define %{i) by

# ) = *(<)-*'(0-
The initial condition for ^(t) is

f (O = *(O - **('<>)•
Also £[f) satisfies the homogeneous equation derived from (8.1.1)

£(t)=A(?)g(t). (8.1.2)

It can be seen that the stability property of x'(t) is the same as the
stability of the zero solution of Eq. (8.1.2).

Theorem 8.1.2 All solutions of the regular linear system

x{t) = A{t)x{t)+h{t),

have the same Liapunov stability property (unstable, stable, uniformly
stable, asymptotically stable, uniformly and asymptotically stable). This
is the same as that of the zero (or any other) solution of the homogeneous
equation

Example All the solutions of the system.

1 See Chap. 6 in Peterson and Sochacki (2002). The other theorems in this section are
referred to the same source.
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x2 =-co2x, + / ( / ) ,

are uniformly stable, but not asymptotically stable. Equation (8.1.2)
becomes £ = g2 and £2 = -0)2%v The zero solution is a center, which
has the specified properties.

We are now concerned with a homogeneous system x = A(t)x. It is
known that the solutions to x = A(t)x form a vector space of dimension
n. We call a set of n linearly independent solutions Xt, X2,..., Xn to
x - A(t)x a fundamental set of solutions. Here, linear independence is
defined as follows.

Definition 8.1.1 Let Xx{t), X2(t),..., Xn(t) be vector functions (real or
complex), continuous on -oo<?<oo ; none being identically zero. If
there exist (scalar) constants (real or complex) Arp k2,..., kn, not all zero,
such that

kiXl{t) + k2X2(t)+...+ k,,Xn(t) = 0,

for - °° < t < o°, the functions are linearly dependent. Otherwise they are
linearly independent.

As a consequence of the definition, note that the vector

"li ly
;J ' [ty

are linearly independent, although the constant vectors

"il W
AT k '

are linearly dependent for every /„.

Example cos? and sin? are linearly independent on - °° < t < °°.
This is confirmed by observing

kx cost + k2 sin? = asin(t + 0)

where a = yjkf + k\ and /? is defined by kx = a sin/?.



hh

Theorem 8.1.2 There exists a set of n linearly independent solutions of
x = A(t)x.

Theorem 8.1.3 Any n + 1 nonzero solutions of the homogeneous system

x = A\t)x are linearly dependent.

These two theorems settle the dimension of the solution space: every
solution is a linear combination of the solutions X}, X2,..., Xn of
Theorem 8.1.2; but since these solutions are themselves linearly
independent, we cannot do without any of them. Instead of the special
solutions Xj(t) we may take any set of n linearly independent solutions
as the basis.

If Xx, X2, ..., Xn form a fundamental set of solutions, then the
general solution to x - A\t)x is given by

XH=±clXi=XcC,

where c, are constant, and

Xc=[xi,X2,...Xm]m, CIBtl=[cl,c2,...cJ.

Here, the nxn matrixXc{t) is called a fundamental matrix of the
homogeneous system

x = A(t)x. (8.1.3)

Theorem 8.1.4 The solution of the homogeneous system x = A(t)x with
the initial conditions x(t0) = *0 is given by

x{t) = xc{t)x;>{t0)x0,
where Xc{t) is any fundamental matrix of the system.

Example Verify that [2 e'\T and \e~' ljT are solutions of

. "l -2e"~
x = x.

le ~l J
Find the solution x(t) such that x

0 = [3 l]T.

Higher-Dimensional Differential Equations 309
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Direct substitution confirms that the two vectors are linearly
independent solutions. So we have

Hence

Theorem 8.1.5 Suppose that X,(/), X2(t),..., Xn(f) form a fundamental
set of solutions to x = A(t)x and that Xp(t) is a solution to the
nonhomogeneous system of first-order linear differential equations

x{t) = A{t)x{t)+h(t).

Then every solution to x = A(t)x + h(t) has the form

x = fjciXi+Xp=XcC + Xp.

We call Xp(t) a,particular solution to the nonhomogeneous system.

Example Find all solutions of the system

The corresponding homogeneous system is $ = <t>2, 4>1=-<j>v From
$ + <px = 0 and 02 = ^ , we obtain two linearly independent solutions

cost 1 sin/

-sinfj cos/

It can be confirmed that xx=t and x2 = 1 is a particular solution of
the original system. Therefore, all solutions are given by

cost s i n / T d \t
x= \\ +

-sin/cos/J[C2J [1
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Theorem 8.1.6 If atj(f) and h^t) are continuous and

X^t), X2(t),..., Xn(t) form a fundamental set of solutions to x = A(t)x

on the interval [a, b). If Xc is the matrix of fundamental solutions, then

a particular solution to x{t) = A(f)x(f) + h(t) on (a, b) is given by

xp=xc\x-c%t)dt.

The theorems in this section shows how to solve x = A(t)x + h(t\

Example Consider a two-dimensional system

" 1 2l \2
x = x +

[-1 4j [/_
We leave the reader to show

A particular solution is given by

r 19 t~
X = [ ~ \ dt= 1 8 3

" [e2x e3x\\-e-}* 2e-3x\[t\ _ i i _ i '
L 36 6 .

Hence, the general solution to the problem is

X = cxX, +c2X2+Xc,

where c, and c2 are constant.

From Theorems 8.1.4 to 8.16, we see that the following theorem
holds.

Corollary 8.1.1 The solution of the system

x = A{t)x + f{t),
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with the initial conditions x(t0) = x0 is given by

x{t) = xc{t)x-:{tX + xc{t)\x;\s)f{s)ds,
'o

where Xc(t) is any fundamental matrix of the corresponding
homogeneous system x = A{t)x.

Example Find the solution of

"*ii r ° * oj* 1 ! \e'~
x2 = 1 0 0 x2 + 0 ,

i 3 te~' te~' 1 x} 1

which satisfies the initial conditions x(o) -[o 1 - l ] r .
We first find a fundamental solution matrix of the associated

homogeneous system X = A(t)X. In component form, this equation
separates into

X\ ~ X2,

Y — Y

X, -X3 = te"(Xi +X2).

From the first two equations

Xl = Ae' + Be'1, X2 = Ae' - Be'1,

whilst the third equation now becomes

X3 - X3 = 2tA .

This equation has the general solution

X3 =-2A(\ + t)+Ce'.

Hence we obtain a fundamental solution matrix

e' e' 0"

Xc(t)= e' -e" 0 .

-2(l + /) 0 e'

Calculate detXc(t) = -2e' and
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f e1 e' 0 '

X?(t) = \ V -e' 0 ,

[2(1 + t)e-2' {l + t)e-2' 2e-'

|"l 1 0"

J T ; 1 ( O ) = 1 I - I O .

|_2 1 2

It is easy to check that the solution to

[xl V4 2) 4

2 U 2 J 4
I 3 J 3 e ' - ? 2 - 3 ? - 4

Corollary 8.1.2 If {\)A is a constant «x« matrix and the eigenvalues of
A have negative real parts; and C(t) is continuous for t > t0 and

t

l\\c{t]\dt is bounded for t > t0,
'o

then all solutions of

x = {A + C{t)}x,

are asymptotically stable.2

Example Show that when a > 0 and b > 0 all solutions of

j + ay + (b + ccost)y = 0,

are asymptotically stable for t> t0. The system can be rewritten as

x = {A + C{t)}x,

where

2HereJc|Sfc,>,|f .
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~XA M A [ ° 1 1 r \ ° °"
= . , A = , C=

*2J L-^J L~° ~a\ \_—ce cost 0
As the eigenvalues of A are negative when a and b are positive and

flcj|dr = |cjjew|cos/|dr<co,
<0 ' 0

the conditions in the corollary are satisfied. All solutions are
asymptotically stable.

Theorem 8.1.8 (Superposition of solutions for nonhomogeneous
equations) If X^t) and X2(t) are solutions of two nonhomogeneous
linear differential equations

x{t) = A{t)x{t) + hl{t),

and

x{t) = A{t)x{t) + h2{t),

respectively, with the same associated homogeneous equation
x{t) = A{t)x{t), then

X{t) = X1(t) + X2{t),

is a solution to the equation

x(t)=A{t)x(t) + h1(t)+h2(t).

Exercise 8.1
1 All solutions of the equations JC, = x2 and x2 - -Q}2x} - kx2 + f(t) are
asymptotically stable.

2 Find the general solution to the following two-dimensional systems

"o 1 1 r o l
(a) x = x + ;

[-2 -3J |_sin'J
To l l fo"
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3 Find the general solution to the following two dimensional system

• _r ° 11 r °
[-2 -3 sint + e'

8.2 Homogeneous Linear Systems with Constant Coefficients

We are concerned with systems of homogeneous linear equations with
constant coefficients

x{t) = AnXnx{t), (8.2.1)

where A is a (real) constant nxn matrix. We assume that A is
nonsingular. The origin is the unique (and hence isolated) equilibrium
point of this system. We have dealt with the case of n = 2. It is actually
straightforward to extend to the general case. It should be noted that for
the system

*(t) = Anxnx{t) + Kx >

we introduce y(t) = x(t) + A'lb. Here, we assume the existence of the
inverse of the matrix A. Under the transformation, the above system
becomes

Hence, it is sufficient for us to be only concerned with Eq. (8.2.1).
Like in Sec. 5.1, we seek solutions of Eq. (8.2.1) of the form

*„*,(') = V
where the exponent p and the constant vector C are to be determined.
Substituting xnxl(t) = C^ef* into Eq. (8.2.1) yields

{A-pl)C = 0,

where / is the nx« identity matrix. Hence, to solve the system of
differential equations is to determine the eigenvalues and eigenvectors of
A. The eigenvalues p are the roots of the «th degree polynomial
equation

det(i4 - pi) = 0 .



314 Differential Equations, Bifurcations, and Chaos in Economics

There are three possibilities for the eigenvalues of A: (1) all
eigenvalues are real and different from each other; (2) some eigenvalues
occur in complex conjugate pairs; and (3) some eigenvalues are repeated.

If all eigenvalues, p } , p 2 , •••, p n , are real and different from each
other, then associated with each /?, is a real eigenvector v^ and the set
of n eigenvectors is linearly independent. The corresponding solutions
of the differential system (8.2.1) are x{i)(t) = v(i)er'', i = 1, 2, ••-, n. Since

v0)e/v V(V2< ... V (V" ' v,(l) vf2) ••• v,w

v < V ' v < V ' ••• vfef* Y* m f v<2) ••• v(:]

. . . =eLj'-' 2 \ . *0,

v ( l ) g A < v ( 2 ) P2> . . . V ( » ) g / V v ( 0 v ( 2 ) . . . M

we see that x(x){t), x(2)(t\---, x{n)(t) form a fundamental set of solutions.
Hence the general solution of Eq. (8.2.1) is

*(0 = £c ,v ( V , (8.2.2)

where c, are scalar constants.

Theorem 8.2.1 If A is an nxn matrix and all the eigenvalues of A
have negative real parts, then all solutions x(t) of x = Ax satisfy

lim JC(/) -^ 0.
<->oo v '

The origin is called a sink when Theorem 8.2.1 holds. There is an
exactly analogous statement when all eigenvalues have a positive real
part, turning time backward; then the origin is called a source.3

It is known that if A is symmetric and negative definite, then every
eigenvalues of A is real and negative. Hence, a sufficient condition for
the stability of x* - 0 is that A is symmetric and negative definite. We
now provide the conditions for all the eigenvalues of an arbitrary n x n
matrix to have negative real parts. The following Routh-Hurwitz theorem
determines this.

3 When eigenvalues are not all distinct the formal situation is more complicated, and for
the theory the reader is referred to, for instance, Wilson (1971).
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Theorem 8.2.2 We consider that the eigenvalues p are the roots of the
following wth degree polynomial equation

aop" + a,pnA + --- + an^p + an=0,

with real coefficients having real negative real parts, which in turn holds
if and only if

a, a0 0

ax >0 , °' ° >0, a3 a2 ax > 0, •••
a3 a2

a5 a, a,

a, a0 0 0

«3
 a2 a\ ao

«s a, a, a2 > Q

0 0 0 0 0 an

Here a0 is taken to be positive (if a0 < 0, then multiply the equation by

The theorem provides a necessary and sufficient condition for
stability in a linear system. If A is real and symmetric, then it is known
that all the eigenvalues pv yO2, •••, pn must be real. Even if some of the
eigenvalues are repeated, there is always a full set of n eigenvectors
v,, v2, •••, vn that are linearly independent. In this case, the general
solution is still given by Eq. (8.2.2). The following example
demonstrates this.

Example Consider the system

'0 1 1"

x= 1 0 1 x.

We calculate the three eigenvalues, /?, = 2 and p2 = p3 = - 1 and
corresponding three eigenvectors

-1).
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f\\ m (o >
v<" = 1 , v ( 2 ) = 0 , v( 3 ) = 1 .

W I- v I -1
The general solution is

X\ ( l ) ( ° "
JC(0 = C, Ie2 '+c2 0 e~'+c3 1 e"'.

W I- !J I - 1
We now discuss the case that some eigenvalues occur in complex

conjugate pairs. As A is real, any complex eigenvalues must occur in
conjugate pairs. For instance, if p - \ + iA^, where \ and A^ are real,
is an eigenvalue of A, then so is p = \ - ik^. Moreover, if v is an
eigenvector associated with p, then v is an eigenvector associated with
p. The corresponding solutions

x%) = ve", x{2\t) = ve^,

of the differential equations (8.2.1) are complex conjugates of each other.
Let v = Mj + iu2 where «, and u2 are real vectors. We have

x{i){t)= (M, + n/2)e
(4 + rtl> = («, + i « 2 y ( c o s ^ r + is in^f) .

where we use

e>h' = cos A2t + i sin A.2t.

Hence, from the above formula we can write x^l\t) in the form of
x%)=a,{t)+ic72{t), (8.2.3)

where <r,(?) and <72{t) are real vectors

<7,(f) = eA'(«, cos^f - u2 sin A7t),

G2(f) = e*{ux s\nA4 + u2 cosA^t).

Here, it can be shown that <r,(f) and cr2(t) are linearly independent
solutions. To find general solutions, suppose that

pl = A, + iA,, p2 = I , - //l2,
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and that p.i,---,pn are all real and distinct. Let the corresponding
eigenvectors be v'1^ = M, + iu2, v^2' = ux - iu2, and v3, •••, vn. Then the
general solution of Eq. (8.2.1) is

x{t) = c,oi + c2o2 + Jc ,v ( 'V" . (8.2.4)

Theorem 8.2.3 Corresponding to an eigenvalue of AnXn, p = pn

multiplicity m < n, there are m linearly independent solutions of the
system x = Ax. They are of the form

Pl(ty",p2(ty",-,Pm(ty,
where the p^t) are vector polynomials of degree less than m.

Note that when an eigenvalue is complex, the eigenvectors and the
polynomials in the theorem will be complex, and the arrays consist of
complex-valued solutions. Here, we will not discuss difficult cases when
an eigenvalue is repeated.4

Theorem 8.2.4 Let A be constant in the system x = Anxnx, with
eigenvalues, /?,, i = 1, •••,«.
(i) If the system is stable, then Re{pj}< 0, / = 1, •••,«.
(ii) If either Re{/?,.}< 0, i = 1, •••, n; or if Re{yO,.}< 0, / = 1, •••, n and
there is no zero repeated eigenvalue, then the system is uniformly stable.
(iii) The system is asymptotically stable if and only if Re{/?,}<0,
i = 1, •••,«.
(iv) If Re{/7,.} > 0 for any i, the solution is unstable.

Exercise 8.2
1 Find the general solutions of the following equations and describe the
behavior of the solutions as f —> +°°

(3 2 4N

(i) x = 2 0 2 x;

[4 2 3J

4 See Boyce and DiPrima (2001: Chap. 7).
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' l - 1 4^j
(ii) x = 3 2 -I x ;

,2 1 "I
' 0 1 0N

(iii) x= 0 0 1 x.

,~5 5 I

2 Find the general solution of the following equation, using (8.2.4)

- 1 - -
I 2j

8.3 Higher-Order Equations

Many differential equations encountered in economics involve higher-
order derivatives of unknown functions. We saw in Chap. 2 that a
second-order equation is "equivalent" to a system of first-order
equations. This is held also for higher-order equations. Since the theory
for systems of first-order equations is simple and the intuitive idea of
what a differential equation means is clear, it is usually convenient to
replace a higher-order equation by system of first order equations. One
can show that the «th order homogeneous linear differential equation

«.(0*w + < U 0 * M + - + *(')* = o. «.(')* 0'
is equivalent to the system of n homogeneous linear differential
equation

X{t) = A(t)x(t),

where
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T o i o ••• o
•̂ o 1 0 0 1 ••• 0

• 0 ••• 0 1

where x0 = x, x, = xM, / = 1, • • • , « - 1. It should be noted that if
ar0, a,,..., an are constants, then the characteristic equation of the «th
order constant coefficient homogeneous linear differential equation and
the characteristic equation of the matrix A are the same.

This result can be generalized in the following way. A differential
equation of order n in one variable is an equation of the form

x(n) = / ( ; c , ; c ' , " - , * M ) , ' ) . (8.3.2)

Obviously, Eq. (8.3.1) is a special case of Eq. (8.3.2). Here, / is a
function defined in some region in R" xR. The key idea to solution of an
«th order differential equation is to introduce new variables representing
successive derivatives, generalizing what we did before.

Theorem 8.3.1 The differential equation (8.3.2) is equivalent, if we set
x0 = x, to the first-order differential equation in R"

' ~i r • ~i r
X XQ X|

it

X= x" = x2 = x3 =f{X,t),

X J \_X
n-l J J \XQ' X\ 1 X2> '"> Xn-\ )_

(8.3.3)
in the sense that a function x(t) = u(t) is a solution of Eq. (8.3.2) if and
only if the n -dimensional vector function



320 Differential Equations, Bifurcations, and Chaos in Economics

r u(t) i
u(t)

U{t)= u'(t) ,

is a solution of the system (3.3.3).

The theorem tells us that for an nth order differential equation, we set
up n variables:

x0 = x, x, = x M , i = 1, •••, n - 1;

then we solve the system of the first-order differential equations to obtain
the solution to the original equation.

Example Consider

x"-3tx" + e2'x'-2x + 3t = 0.

The third-order differential equation is equivalent to

x0 xx

xx = x2

x2 2tx2 - eltx1 + 2x0 - 3t

The reduction of a higher-order differential equation to a system enables
us to directly have a uniqueness and existence theory for higher-order
differential equations, using Theorem 8.3.2 and the uniqueness and
existence theorem for system of the first order differential equations in
Chap. 3.

Theorem 8.3.1 Let f(X, t) be a function defined on some region Q in
R"xR and satisfying a Lipschitz condition with regard to X. Given any
toe R and a vector V e R", there exists a unique solution u(t) of

xM = f{x,x',-,x^\t),
such that U(t0) = V; that is
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" ( 0 1 |~vo~

U(to)= u%) = v2 (=V).

«""'('o)J U->.
It is also possible to carry out the reverse process. For illustration, we

examine how to go from a first-order equation in R2 to transform from a
system of first-order equations in R2 to a second-order equation in one
variable.

Suppose

Xl = /2(*P Xl\

is a first order system in R2. Differentiate x, = /,(x,, x2) to find

•• #1 • #1 • • (« ^ - I / 3 /
ox, dx2 ^ OJC, J dx2

Use i, =/,(x1, x2) to express x2 as a function of x, and x,, say
x2 = ^(x,, x,). Substituting these two new relations into x2 = /2(x,, x2)
yields

_9/,(x, ,F) , v y . ^ . F )
^ - — ^ A w . ^ ) + — ^ xi •

ox2 ox,
The above equation is a second-order equation solely in terms of x, and
its derivatives.

Example Consider the system of equations

x, = -5xt + x2,

x2 =cos(x, + x2).

From x, = -5x, + x2, we get

x2 = x, + 5x,.
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Substituting them into x2 = cos(x, + x2) yields

x, = - 5x, + cos(6x, + JC, ).

Exercise 8.3
1 Convert the following linear differential equation to a system of linear
equations

x(i] + 4x" -x'-4x = 0.

Also show that the two systems have the same characteristic equation.
Finally, determine the general solution to the system of linear systems.

2 Convert the following system into a first-order system of linear
differential equations

x = x + y,

y=x+x+y+y.

8.4 Diagonalization

The method of separation of variables can be used to solve a one-
dimensional differential equation, x = ax. The general solution to this
linear differential equation is x(t) = ceal. Now consider an uncoupled
linear system x = Anxtix, where A is a diagonal matrix,

A = diag[al,---,an].

The general solution of the uncoupled linear system can once again be
solved by the method of separation of variables. It is given by
xi{t) = cie

a", i = l,-,n.
The algebraic technique of diagonalizing a square matrix A can be

used to reduce the linear system

x = Ax, (8.4.1)

to an uncoupled linear system, which can be easily solved by the method
just mentioned.
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L e m m a 8.4.1 If the eigenvalues p v - - , p n of an nxn matrix A are
real and distinct, then any set of corresponding eigenvectors {v,, ••-, vn}
forms a basis for R", the matrix P = [v,, •••, v j is invertible and

p-lAP = diag\pl,-,Pnl

To reduce the system (8.4.1) to an uncoupled system using the above
theorem, introduce the linear transformation of coordinates

y = p-'x,

where P is defined as in Lemma 8.4.1. Substituting y = P'xx into Eq.
(8.4.1) yields

y = diag[p{, —,p.]y.

The solution to this uncoupled system is

y{t) = diag\f!»',-,e"}y{0).

It follows

x{t) = Pdiag[eM ,---,ep"' ]p" 'x(o) .

This is the general solution to the initial problem (8.4.1).

Example Consider

' ^ l j - l -3Tx,~
x2j [o 2\[x2_

-

The matrix A has two eigenvalues px = -1 and p2 = 2. A pair of
corresponding eigenvectors is given by

The matrix P and its inverse P'1 is given by

L° l J L° K
We have
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Under y = P'lx, we have

^i = ->"..

A = 2 j 2 .

The general solution to this equation is

yi{t) = c2e
2'.

We thus have

xi(t) = cle-+c2(e--e2'\

x2(t) = c2e
21.

In the above example, the subspaces spanned by the eigenvectors v,
and v2 of the matrix A determine the stable and unstable subspaces of
the linear system (8.4.1) according to the following definition.

Definition 8.4.1 Suppose that the nxn matrix A has k negative
eigenvalues pi,---,pk and n-k positive eigenvalues Pk+l,---,Pn- Let
{v,, •••, vn} be a corresponding set of eigenvectors. Then the stable and
unstable subspaces of the linear system (8.4.1), Es and E" are the linear
subspaces spanned by

K-'.vJ, {vw,-,v,},
respectively, i.e.

E* =Span{vl,-,vk},

E" =Span{vk+l,-,vn}.

Exercise 8.4
1 Solve the following equations with the technique of diagonalizing
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Xj~\ f i o o T * ,

(ii) x2 = 1 2 0 x 2 .

x 3 1 0 - 1 x3

8.5 The Fundamental Theorem for Linear Systems

This section establishes the fundamental fact that for x0 e R" the initial
value problem

x = Amx, x{0) = x0, (8.5.1)

has a unique solution for all f e R which is given by

x(t) = eA'x0. (8.5.2)

Theorem 8.5.1 (The fundamental theorem for linear systems) Let A be
an nxn matrix. Then for a given x0 e R", the initial value problem
(8.5.1) has a unique solution for all tG R given by the solution (8.5.2).

Example Solve

^l_r-2 _nrxi n-
J2J [ 1 -2\[x2j ° |_0_ •

Using the results in Sec. 5.4, we have

/v 2,rcos^ - s in /T i l 2 ,rc o s /

JC(/) = eAlx0 = e-2'\ = e1'
|_sin/ cos? J|_Oj Ismt

Lemma 8.5.15 If the 2nx2n A has 2« distinct complex eigenvalues,
Pj = Oj + ibj and p ; = oy - ibj and corresponding complex
eigenvectors vv7. = wy + /v; and w; = «7 - ivy, then

5 The lemma is proved in Hirsch and Smale (1974).
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is a basis for R2", the matrix

P = [ux v, ••• un v j ,

is invertible and

[a, -b,
P-'AP = diag ' ' ,

lbj aJ \

is a real 2nx2n matrix with 2x2 blocks along the diagonal.

We immediately have that under the hypotheses of the above lemma,
the solution of the initial problem (8.5.1) is given by

/ \ „ J cos b.t - sin b,f\ ,
x{t) = Pdiage>' . ' ' P ' Vv ; [sin 6/ cosbjt J °

Example Solve x = Ax where

1 - 1 0 0 '

1 1 0 0

0 0 3 - 2 '

0 0 1 1

The matrix has the eigenvalues 1 ± / and 2 ± /. The corresponding
complex eigenvectors

"±/l I" 0
1 0

"l ± lVl = 0 ' "2 ± tV2 = j + • •

oj [ i
It is straightforward to calculate

"1 0 0 0] |~1 0 0 0"
0 1 0 0 . 0 1 0 0

P = P =
0 0 1 1 ' 0 0 1 - 1 '

0 0 1 lj [o 0 1 1
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" 1 - 1 0 0 "

1 1 0 0
P-'AP =

0 0 2 - 2

0 0 1 2

Hence the solution is

e'cost -e'sint 0 0

/ . _ e'sin/ e'cost 0 0

0 0 e2'(cost + smt) -e2'sinf °'

0 0 e2'sinf e2'(cosf - sin?)

In the case A has both real and complex eigenvalues and they are
distinct, we have the following result: If A has distinct real eigenvalues
Pj and corresponding eigenvectors v;, j = 1, • • •, k and distinct
eigenvalues p} = ay + ib} and pj = aj - ibj and corresponding complex
eigenvectors wy = wy + ivj and wj = wy. - /vy, j = k + 1, •••, «, then the
matrix

p = bi ••• v* v*+. U M ••• v» M J '
is invertible and

p - i A P = diag\pt ••• A B M ••• 5 j ,

were the 2x2 blocks

B j = ' J , j = k + l,-,n.

Example Solve x = Ax where

"-3 0 0 "

A= 0 3 - 2 .

0 1 1

Its eigenvalues are px = - 3 and /?23 = 2 ± / and the corresponding
eigenvectors are

[l 0 0l [0 ±1 l].
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We calculate

"l 0 0] |"l 0 0~| [3 0 0"

P= 0 1 1 , P-1 = 0 1 - 1 , PrlAP= 0 2 - 1 .

0 0 1 0 0 1 0 1 2

The solution is

V3' 0 0
x(t)= 0 e2'(cost + sint) -2e2'sint x0.

0 2e2'sinf e2'(cost - sint)

Here, we don't discuss the case when the matrix A has multiple
eigenvalues.6

Exercise 8.5
1 Solve x = Ax for

" 1 0 0"

(i) A= 0 2 - 3 ;

0 3 2

"-1 - 1 0 0"

1 - 1 0 0
(ii) A =

0 0 0 - 2

0 0 1 2

6 General solutions to x = Ax when A has multiple eigenvalues can be found in Sec.

1.7ofPerko(2000).



Chapter 9

Higher-Dimensional Nonlinear Differential
Equations

The chapter examples higher dimensional nonlinear differential
equations. Section 9.1 studies local stability and validity of linearization.
Section 9.2 introduces the Liapunov methods and studies Hamiltonian
systems. In Sec. 9.3, we examine differences between conservative and
dissipative systems. We examine the Goodwin model in detail. Section
9.4 defines the Poincare maps. In Sec. 9.5, we introduce center manifold
theorems. Section 9.6 applies the center manifold theorem and Liapunov
theorem to a simple planar system. In Sec. 9.7, we introduce the Hopf
bifurcation theorem in higher dimensional cases and apply it to a
predator-prey model. Section 9.8 simulates the Lorenz equations,
demonstrating chaotic motion of deterministic dynamical systems.

9.1 Local Stability and Linearization

We now consider a general autonomous system of the form

x(t) = f(x), (9.1.1)

where

x = {x,,--,xj, f = {fx,---,fj.
Suppose x is an equilibrium point of Eq. (9.1.1). Introduce

X(t) — x(t) - x'. From the Taylor theorem for functions,1 we know

1 The Taylor series is referred to App. A4.

329
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j = !,-,«, (9.1.2)

where gj{x) are higher order terms and

where

II y|| _ / y yl
\\A\\ = ^2~ijAj •

Using x = X and fix) = 0, Eq. (9.1.1) can be expressed in vector form
as

X = AX + g(x), (9.1.3)

where the matrix

-ft) •
is the Jacobian matrix of / at x'. The linear system

X = AX,

is called the linearized system of Eq. (9.1.1).

Example Consider

x2 — x, — x2 x2 .

x3 2x2 + x3 - 2 x3

The Jacobian at equilibrium is

"2*, - 1 1"

J = 1 - 1 0 .

0 2x2 0

The system contains two equilibrium points [-2 - 2 - 6 f and
[l 1 Of. Hence,
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"-4 - 1 l l [~2 - 1 1"
J= 1 - 1 0 , J= 1 - 1 0

. 0 - 4 0 j h 2 _ 2 _ 6 ] [o 2 o j [ l i o ]

The following theorem includes the case that g explicitly depends on t.

Theorem 9.1.1 If (i) g(0,t)-0 and A is an nxn constant matrix, (ii)

the solutions of

k- Ax,

are asymptotically stable; and (iii)

**-{¥)•••
uniformly in t, 0 < t < °°, then the zero solution,

xit) = 0 for t > 0,

is an asymptotically stable solution of the regular system

x = Ax + g(x, t)}

Example Consider the Van der Pol's equation.

x + e(x2 - \)x + x = 0, e<0 .

We replace the system by

_x2] [-1 e\[x2} [-xfx2_

The eigenvalues of A are negative when e < 0; therefore all solutions of
A\xx x2j are stable. It is straightforward to demonstrate that the
conditions of the theorem are satisfied. Hence, the system has an
asymptotically stable zero solution.

2 Here, by regular system we mean that g{x,t) is continuous and 9g, /dxj for all i, j ,

are continuous on - ~ < x; < ~ and -°= < / < °° . The proof of the theorem is referred,

for instance, to Cesari (1971).
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Definition 9.1.1 An equilibrium point x of the system (9.1.1) is called
a sink if all of the eigenvalues of the Jacobian matrix A at JC* have
negative real part; it is called a source if all of the eigenvalues of A have
positive real part. It is called a saddle if it is a hyperbolic equilibrium
point and A has at least one eigenvalue with a positive real part and at
least one with a negative part.

If x* is sink, there is a neighborhood U of x' such that any solution
u(t) with w(fo)e ^ remains in U for / > t0, and l im,^ u{t) = x'\ if x'
is a source, there is a neighborhood U of x* such that any solution u\t)
with u(to)e U remains in U for t < t0, and lim,^^ u(t) - x".

Theorem 9.1.2 If at a zero of an autonomous differential equation the
linearization is a sink or a source, then zero is itself a sink or a source.
Furthermore all solutions sufficiently close to the zero tend to it
exponentially fast as t —» °° for a sink or as / —> -°° for a source.

The following example shows that it is possible for a zero to be a sink
without the linearization being a sink.

Example Consider

i, =-x2 -x,(x2 +xl\

*2=X\ ~XM +Xl)
The linearization at (0, 0) is a center. Introduce

d(t)= {xl+xl).

Then d - - Id1 for the original system. The general solution to this new
system is u = \/(2t - C) As d is the distance from the origin of a
solution to the original equation, the distance goes to zero as t —> °°.

Theorem 9.1.3 Let / be a C1 function. If all the eigenvalues of the
Jacobian matrix A have negative real parts, then the equilibrium point
x' of the differential equation x = f(x) is asymptotically stable.
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Theorem 9.1.4 Let / be a C1 function. If at least one of the
eigenvalues of the Jacobian matrix A has positive real parts, then the
equilibrium point x' of the differential equation x = f(x) is unstable.

In the absence of eigenvalues with zero real parts, linearization
captures many of the local qualitative features, such as stability type and
local stable and unstable manifolds of nonlinear systems near equilibria.
The following theorem demonstrates that linearization determines the
full orbit structure locally under certain conditions.

Theorem 9.1.5 (Grobman-Hartman theorem) If x' is a hyperbolic
equilibrium point of x = f(x) (that is, all the eigenvalues of the Jacobian
matrix A have nonzero real parts), then there is a neighborhood of x' in
which / is topologically equivalent to the linear vector field x = Ax.

The Grobman-Hartman Theorem shows that the stability type of a
hyperbolic equilibrium point is preserved under arbitrarily but small
nonlinear perturbations.

X = AX + g{x). (9.1.3)

Exercise 9.1
1 Show that the zero solution of the equation

x + kx + s i n x = 0, k > 0

is asymptotically stable.

2 For the differential equation

x2 = — x, — x2.

(i) Show that at the origin the linearization gives a center, so we need
further analysis to determine the nonlinear behavior; (ii) Show that
V - x\ + x\ serves as a Liapunov function.
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9.2 Liapunov Functions

Section 6.2 introduces the Liapunov methods for stability analysis. This
section introduces the analysis for higher dimensions.

Definition 9.2.1 Consider the function: V\UxR+ —> R, where U c R"
is open and connected, 0 e U, and assume that V e C1; we say that V is
positive semidefinite if V(x, t)>0 for all (x, t)e UxR+; V is positive
definite if there is a function WeC°(U, R) such that for all
(x,t)e UxR+, x*0:

V(x, t) > W{0) > 0,

and v(0, t) = W(o) = 0; V is indefinite if for every neighborhood B of
the origin it assumes positive as well as negative values in BxR+.

We can similarly define negative semidefinite and negative definite
functions. We say that the function h:R+-^R+ belongs to the function
class H if h(o) = 0, and it is strictly increasing and continuous. Let
X c R" be open and connected

xe X, fe C°{XxR+), fxeC°(XxR+), f(O,t) = O,

and consider the system

x = f{x,t). (9.2.1)

The derivative of V with respect to Eq. (9.2.1) at (JC, t)e C°(XxR+) is

V{x,t)=v;{x,t) + ±V^x,t)f,=

V;{t,x) + {gardV{x,t\f{x,t)). (9.2.2)

In the following theorems,3 U denotes an open and connected subset of
X which contains the origin.

Theorem 9.2.1 (Liapunov's first theorem) If there exists a function
V:UxR+ -> R, where OGU a X, and a function hs H such that for

(JC, t)e UxR+: v(x, t) > h(\x\\ V{t, 0) = 0,

3 The proofs of these theorems can be found in Rouche, Habets and Laloy (1977).
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and V with regard to the problem (9.2.1) is negative semidefinite, then
the origin is stable in the Liapunov sense.

The conditions in the theorem imply that V is positive definite.
Inversely, one may prove that if V is positive definite, then such h€ H
exists.

Theorem 9.2.2 (Liapunov's second theorem) If there exists a function
V: UxR —> R, where 0 e U c X, and functions h\, h2, h2e H such
that: hx^<V{x, t)<h2(\x\\ and V < -h3i\x\\ then the origin is
uniformly asymptotically stable.

Theorem 9.2.3 (Liapunov's third theorem) If there exist a function
V:UxR-^ R, where 0 £ U c X, functions h2>h2eH such that:
V{x,t)<h2(\x\\ and F < - / J 3 ( | ^ {x, t)e UxR+, and a t0 e R+ such
that in every neighborhood 5(0, d) of the origin, there is an xe B(0, S)
for which V(x, t0) < 0, then the origin is unstable.

The functions V in Theorems 9.2.1-9.2.3 are called loosely Liapunov
function. The method sketched in these theorems is often called the
method of Liapunov functions.

Example Consider

xl — x 2 ,

x2 = -asin*, - bx2, a > 0,

where a and b are parameters. Introduce

V(x,, x2) = a(l - cos*,) + xl > 0,

fo,x2)*(0,0), |*i|<w, x2sR. (9.2.3)

This is a positive definite function on the indicated domain satisfying
the conditions of Liapunov's First and Second Theorems. Its derivative
with respect to the system is

V = -bxl,
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which is negative semedefinite for positive b. From Eq. (9.2.3), we
conclude that the origin is stable in the Liapunov sense. Nevertheless, if
we modify V by

Fj(jc,, x2) = 4a(l - cos*,) + x\ + (&c, + x2)
2 > 0,

(x, ,xJ#(0, 0), \x\<n, x2eR.

This function is positive definite and its derivative with respect to Eq.
(9.2.1) is

Vl(xl,x2) = -2b(xl + ax, sin *,)<().

Thus V satisfies the conditions of Liapunov's Second Theorem for
positive b. We see that the origin is uniformly asymptotically stable. If
b < 0, then the Liapunov function - V{ and its derivative - Fj satisfy the
conditions of Liapunov's Third Theorem, so the origin is unstable.

Example Consider

Xi ~~ ~~ i A 2 I X-yA'i ,

X2 •*"] XJXJ ,

x , — xxx2.

The origin is an equilibrium point for this system and the Jacobian matrix
at the origin is

0 - 2 0"

7 = 1 0 0 .

0 0 0

Thus J has eigenvalues /?, = 0, p2i = ±2i, i.e., x = 0 is a
nonhyperbolic equilibrium point. Choose

V(t) = ^+2xl+xl),

where c> 0 is a constant. We have V{t) > 0 for x * 0 and V = 0 for all
x € R\ Therefore, the origin is stable.
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Liapunov's theorems are valid for autonomous systems as well. But
there are results about the asymptotic stability of the equilibrium of an
autonomous system that relaxes the requirements in Liapunov's Second
Theorem.4

Example Hamiltonian problems in dynamics.5

Conservative problems can be expressed in the form

BH
Pi = — 5 — .

dq,

BH . ,

Bp,

where H is a given function called the Hamiltonian of the system, q. is
a generalized coordinate, and p, is a generalized momentum. The
Hamiltonian is defined by

H{p,q) = T{P,q)+V{q),

where T is the kinetic energy and Fis the potential energy. Assume
V(o) = 0. T is a positive definite quadratic form in p,., so T(o, 0) = 0.
Suppose that q - 0 is a minimum of V so that V, and hence H, is
positive definite in a neighborhood of the origin. Then

• v"< BH . v-< BH .

Hence, H is a weak Liapunov function for the dynamical system. The
zero solution is stable when it is at a minimum of V.

Consider an n -dimensional dynamic system

x = Anxnx + g{x), x&R", (9.2.4)

where A is real and g(x) is of smaller order of magnitude than Ax. We
now construct explicit Liapunov functions for the linearized system
x = Ax and show that they also work for the original system.

4 See Sec. 1.5 in Farkas (1994).
5 See Perko (2001) for father examination of Hamiltonian systems.
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Theorem 9.2.4 Let the n - dimensional system (9.2.4) be regular and the
origin be an equilibrium point of the system (9.2.4). If (i) the zero
solution of x = Ax is asymptotically stable; (ii) g(o) = 0 and
o |x | ) / |x | —» 0 as ||x| —> 0, then x(t) = 0 for any t0 is an asymptotically
stable solution of the system (9.2.4).

Proof: From the conditions, we know all the real parts of eigenvalues are
negative, i.e., Re]/?;}< 0 for any j . Define V(x) = xTKx (where K is to
be determined) and differentiate V with regard to t for the system
(9.2.4)

V = xTKx + xTKx = xT(ATK + KA)x + g7Kx + x7Kg . (9.2.5)

We now want to determine K such that ATK + KA = -I and V is
positive definite. We choose

K = ]eAT'eAl dt.
0

We see that K is symmetry. As x = Ax is asymptotically stable, there
are c> 0 and b < 0 such that |e'"|, e^r' < ceb>. This ensures the
convergence of the integrals below

K = — \eAT'eAl dt = AT]eAT'eAl dt + ]eAT'eA> dtA = -I,

(9.2.6)
where we use

±-)eAT'eA>dt = eAT'eAr =-Inxn.
dt{ o

From the right-hand sides of Eq. (9.2.6) and the definition of K, we
have

ATK + KA = -I. (9.2.7)

To show that V is positive definite, we first note

V = ](xTeAT'\eAlx)dt = ]xTeAT'eA'xdt.
0 0
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The integrand is simply the sum of certain squares, and is therefore
positive definite. Using Eq. (9.2.7) and the symmetry of K, we reduce Eq.
(9.2.5) into

V = -xTx + 2gTKx. (9.2.8)

It is possible to find a neighborhood of the origin in which the first
term in Eq. (9.2.8) dominates. Now

By (ii), given any £ > 0 there exists 6 > 0 such that

W<^|g(x|<,|H|.
Suppose £ to be chosen so that £ < 1 /4 |K | . Then we have

|2g^|<%(^|H||H|<2£M|f<H.

From this inequality and Eq. (9.2.8), we conclude that V is negative
definite on lljcll < S. Therefore, the zero solution is asymptotically stable.

Theorem 9.2.5 Let the n -dimensional system (9.2.4) be regular and the
origin be an equilibrium point of the system (9.2.4). If (i) the eigenvalues
of A are distinct, none are zero, and at least one has positive real part;
(ii) g(o) = 0 and O(I|X||)/||JC| ->0 as ||JC| -> 0, then the zero solution

j * ii ii II II II II

x[t) = 0 for any tQ to the system (9.2.4) is unstable.

Proof: Here, we shall only prove the case that all the eigenvalues /?. are
real and different. As the origin is unstable for the linearized system, at
least one eigenvalue is positive. We know that a real nxn matrix
invertible C can be chosen such that C~'AC = diag\pj\ = D, where at
least one pj is positive. Introduce x = CX. Now the system (9.2.4) is
transformed into

X = DX + C~]g(CX). (9.2.9)

Introduce

V{x) = XTD-1X = fJ— •
7=1 Pj
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If /?, > 0, then V{X)> 0 when Xx * 0 and all X} =0,j*l. Using
the system (9.2.9), we calculate

V = 2 J x y
2 + 2XTD'1g(CX). (9.2.10)

7=1

By (ii), given any e > 0 there exists <? > 0 such that

| c | x | < s => ||cr| < <? => ||g(cx| < e\cx\.

Therefore, flA'fl < <y/|C|| implies

\2XTD-g(CX] < 2\\xT\\\D-%g(cx}\ < 2e\\D-fdix\\.

If we choose e < l/2\\D'lff\\, then \2XT D~* g(CX} < \xf. Under this
condition, V is positive definite. Hence, the zero solution is unstable.

Exercise 9.2
1 Show the origin is an asymptotically stable equilibrium of the system

" _ T 3 2 _

and that the ball 5(0, l) is a subset of the basin.

2 Show that for the system

•At "~ *JA") \ JtjJC-i ~~ J\*% y

X2 — Xj — XJJCJ *~ X 2 ,

the origin is asymptotically stable, but it is not a sink.

9.3 Conservative Systems

We are now concerned with the concept of conservative systems and
examine the properties of such systems. We also discuss the relation
between conservative systems and structural stability.

Consider a dynamic system x = f{x). The fundamental property of a
conservative system is the existence of a function for the dependent
variables which is a constant of the motion equation and plays the role of
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"energy". Accurately, the system is called conservative if there exists a
function G(x), known as a first integral, or simply an integral, of the
system, such that

dG{x)_fdGdxl_
dt &dx, dt

In physical terms, conservative systems are characterized by the fact
that during evolutionary processes a "volume" element in phase space
changes only its shape but retains its volume in the course of time. This
difference is illustrated in Fig. 9.3.1. In dissipative systems, trajectories
are attracted to a fixed point, and volume shrinks, but in conservative
systems the points rotate around an elliptic fixed point and volume is
conserved.

Fig. 9.3.1 Dissipative systems and conservative systems.

Definition 9.3.1 If a differential equation in R" implies for some
function F(X) that F'{x) = 0, then

F(x) = A,

where A is a constant, along the trajectories of the solutions, and the
equation F(x) = A is called a conservation law.

The system of ordinary differential systems x = f(x) is called
dissipative if there are numbers R > 0 and /, > 0 such that for all
solutions x(t) of the system it is the case that \x(oj < R always implies
that x(t]<R for all times t > tv About dissipative systems, the
following theorem holds.
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Theorem 9.3.1 The dissipative system x = f(x, t), x e R" has a
solution of period p > 0 if (i) the function / is p-periodic with respect
to t; and (ii) for every initial value x0 e R" there is a unique solution
x(t) with x(o) = x0 which exists for all times t e [0, + °°J Here, x(t)
depends continuously on x0.

Proof: To prove the theorem, we use the following Brouwer fixed point
theorem. Let A: X —» X be a compact operator on R". Suppose that for
some fixed natural number m the set Am{x) is bounded. Then A has a
fixed point.

Construct the shift operator A:R"-^R" by Ax0 = x(p). Here JC(.) is
the solution of the system. Then

Amx0 - x(mp).

Set G = {XG R" :\x\< R}. Hence Amx0 e G for all x0 belongs to the
closure of G and sufficiently large m. Thus A has a fixed point, to
which the desired periodic solution corresponds.

Example Find the trajectories of the system

>:, = 4 - 2x2, x2 = 12 - 3.x,2.

The equilibrium points of the system are (- 2, 2) and (2, 2). For this
system, we have

dx2 _ 12 - 3x,2

etc, 4 - 2x2

Separating the variables in the above equation and integrating, we find
that solutions satisfy

//(*,, x2) = 4x2 - x\ - 12x, + x\ = c,

where c is an arbitrary constant. It is straightforward to check that
(- 2, 2) is a center and (2, 2) is a saddle point.

Example A well-known example of differential equations possessing

first integrals is the existence of a first integral in the so-called

Hamiltonian formations. For a given C1 function

H:R2 ^R,
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a planar system of differential equations of the form

. dH

• --<¥L
dX]

is called a Hamiltonian system with the Hamiltonian H. The total energy
of a mechanical system, up to a multiplicative or additive constant, can
often be taken as the Hamiltonian of the system. The Hamiltonian
function is obviously a first integral - conservation of energy, as H = 0.
It is straightforward to check that

H{x,,x2) = ̂  + )g{s)ds,
*• o

is the Hamiltonian of the equivalent first-order system

Conservative systems often have oscillatory solutions and have
therefore been widely used to model phenomena such as oscillations in
prey and predator populations, urban land rent and land use density
interactions, unemployment and economic growth dynamics, and so on.

We consider the predator-prey system, which has been applied in
economic dynamics. The system consists of two differential equations

x(t) = a{yo-y(t))x(t),

y(t) = fl(x(t)-xM\ (9-3.1)

where x(t) and y(t) are respectively the population of preys and
predators, and a, /?, x0 and y0 are parameters.6

6 This is called the Lotka-Volterra predator-prey system. It was suggested by Volterra
(1931) to explain the change in the composition of catch observed by fishermen on the
Adriatic Sea after World War One. The same model occurred in Lotka (1924). See also
Freedman (1980) and Sec. 3.4 in Farkas (1994) for analysis of other (generalized) Lotka-
Volterra models.
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In the dynamic urban literature, this model has been employed to
describe the dynamics of a small urban area. We interpret x(t) and y(t)
respectively as the land use density and the land rent. This is a simple
demand-supply model of speculative land rent under foresight, with
particularly congruent expectations from demanders and suppliers.7

We now provide another application of this type of model to
economics. The Goodwin model reviewed below is built to describe the
class struggle in labor market.8 Consider two kinds of households:
workers and capitalists. It is assumed that workers spend all their income
w(t)L(t) on consumption, where w(t) is the wage rate at time t and L{t)
is the labor force. Capitalists save all their income, which is equal to
Y - wL, where Y(t) is production. The goods price is normalized to
unity. Let K(t) denote capital stocks and a(f) (=Y(t)/L,(t)) denote
labor productivity. Assume that labor productivity grows at the constant
rate g, that is, a(t) - a0 exp(wf), where a0 is the initial level of labor
productivity. The wage income share of national income is
wLIY-wla. Hence, the profit share is equal to l-w/a. As the
savings are determined by

S{t) = Y-wL = (l-—)Y,

the investment is

K = S = Y-wL=(l- — V , (9.3.2)

where we neglect any depreciation. Introducing the capital output ratio
k = K/Y, we rewrite Eq. (9.3.2) as

K \ a )k

We assume k to be constant. Hence, by k-KIY, we have
KIK = YIY. From a = YIL, we have

7 See Dendrinos and Mullally (1985) and Zhang (1988) for further explanations of the
urban model.
8 See Gabisch and Lorenz (1989) for the explanation of the model.

Y,

(9.3.3)

/a. /a.
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Y L

From this equation, K/K = Y/Y, and Eq. (9.3.3), we have

7-fi--U-«- <»•")
L \ ajk

Introducing the labor bill share, y = w/a, and the employment rate,
x = L/N, we can show that the dynamics of the class struggle are
described by

x = x \ ^ - -{g + «)j ,

where we use a/a = g. The wage rate is assumed to be a fast variable
and be determined by a Phillips curve relation as follows

w = wf{x)x, l im/(*) = + - , l im/(jc)<0, / ' > 0 .

Approximating this relation linearly by

— = -r + bx.

w
From this equation and Eqs. (9.3.5), we have

x = j{yo-y),

y = by(x-x0), (9.3.6)

where

yo=l-{g + n)k, xo=^-^-.
b

We see that the Goodwin model (9.3.6) is dynamically identical to the
predator-prey model. The general discussion about properties of the
system (9.3.1) should be applicable to the Goodwin model. The formal
identity of the Goodwin model with the Lotka-Volterra predator-prey
system establishes an analogy between the class struggle and the struggle

(9.3.5)
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of competitive species. The Goodwin model, with its interaction of the
employment rate and the wage bill share, is strongly reminiscent of the
models of classical political economics. The model, sometimes referred
to as a neo-Marxian model, has stimulated modern attention to the
classical economists such as Ricardo, Smith, and Marx. There are
different extensions of the model.9 The model is simple and may exhibit
oscillations. However, the property of structural instability limits its
applications. It is known that even small perturbations in the functional
forms will change the qualitative properties of the system. It can seen
that the model can hardly be transferred to the real process under
consideration because when we construct a model, the real situation is
simplified and idealized. The parameters would be determined only
approximately. The question then arises of how to choose those
properties of the model of a process, which are not very sensitive to
small changes in the model. The concept of structural stability answers
the question.10

To show that the system (9.3.6) is conservative, we make the
following transformation

x v bkxn » t

*o y<> y0
 k

Under this transformation, the system (9.3.6) becomes

u = u(\-v),

v = qy{u-l), (9.3.7)

where the derivatives are with respect to t". The following first integral
can easily be identified as

9 See Desai (1973), Velupillai (1978), Shah and Desai (1981), van der Ploeg (1983,
1987), and Zhang (1988).
10 The fundamental ideas for the concept of structural stability were introduced by
Poincare'. The model development of the concept was initiated by Andronov and
Pontrjagin in 1973. Smale (1967) made significant progresses for phase spaces with small
dimension. He showed that for phase space of large dimension, systems exist in the
neighborhood of which there is no structural stable system. This result means that the
problem of complete topological classification of differential equations with high-
dimensional phase space is hopeless, even when restricted to generic equations and
nondegenerate cases. See App. A. 5 for the definition of of structural stability.
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G(u, V) = <T(M - ln«) + v - lnv = A,

where A is a constant. Since G\u, v) does not change as we move along
a trajectory or solution curve of the equations, these trajectories are
defined by the curves G(u, V) = A for different values of the constant A,
It follows from this that the equilibrium point (l, l) cannot be a stable
focus. For if it were, then all curves in a neighborhood of it would tend to
it, and hence would have

G(u,v)=G(l,l),

since G is a continuous function. But this implies that G is constant in
the neighborhood of (l, l), which contradicts its definition. It also
follows by similar arguments that there are no stable or unstable limit
cycles surrounding the equilibrium point. All trajectories starting in the
positive quadrant are bounded, so the only possibility is that the phase
plane consists of closed trajectories around the equilibrium point, each
with a different value of the "energy" G(u, V). The model is thus
orbitally stable but not stable.

In order to show how the behavior of the system (9.3.7) can be
affected by small perturbations, let us add a term - ru2 to the first of the
system (9.3.7) to obtain

M = w(l - v) - ru2,

v = ay{u-\). (9.3.8)

If the parameter r is extremely small, it is reasonable to require that
the new term will not have a significant effect on the solution of the
original system. However, an eigenvalue analysis shows that the
equilibrium point (l, 1 - r) is a stable focus in the linearized system and
is therefore a stable focus in the nonlinear system, however small r may
be. It is straightforward to demonstrate that the following function

V(u, v) = cr(u - ln«) + v - (l - r)lnv

is a global (in the positive quadrant) Liapunov function for the system.
The solutions now spiral into the equilibrium point, and system can no
longer be put forward as a model for oscillations.

In fact, for the general perturbation problem to the system (9.3.7)
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W = M ( 1 - V ) + #J(W, v),

v = qy{u-l)-ef2(u,v), (9.3.9)

where _/| and / 2 are perturbation functions, even when e is extremely
small, it is possible to observe stable or unstable cycles for some
specified functions / , which are qualitatively different from the original
periodic solution. It is known that conservative systems tend to be
amenable to analysis, but they have some major disadvantages as models
for real systems. As all conservative systems are structurally unstable,11

they should be used with great care.

9.4 Poincare Maps

Poincare maps transform continuous-time dynamical systems defined by
differential equations to discrete-time dynamical systems (maps). The
introduction of such maps allows us to apply the results concerning maps
to differential equations. This is particularly efficient if the resulting map
is defined in a lower-dimensional space than the origin system.

Consider a dynamic system

x = f{x), xeR", (9.4.1)

with smooth / ( * ) Assume that the system (9.4.1) has a periodic orbit
Lo. Take a point JC0 e Lo and introduce a cross-section S at this point,
see Fig. 9.4.1.

The cross-section 2 is a smooth hypersurface of dimension « - l ,
intersecting Lo at a nonzero angle. Since the dimension of 2 is one less
than the dimension of the state space, we say that £ is of "codimension"
one, codimE = 1. Suppose that £ is defined near the point x0 by the
zero-level set of a smooth scalar function

g:R"^R,g{xo) = O

as

Z = {xeR":g(x) = 0}.

"Britton(1986).
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/ l'(\) • \ / I

Fig 9.4.1 The Poincare' map associated with a cycle.

A nonzero intersection angle ("transversality") means that the
gradient

WM - {M& 3gW dg(x))T

I ax, dx, &„ J
is not orthogonal to Lo at JC0, that is

where (•, •) ̂  0 is the standard scalar product in R". A possible choice
of Z is a hyperplane orthogonal to the cycle Lo at x0 given by

(f{xo),x-xo) = O.

Consider now the orbits of the system (9.4.1) near the cycle. The
cycle starts at the point x0 on Z and returns to 2 at the same point.
Since the solutions of the system depend smoothly on their initial points,
an orbit starting at a point x e X sufficiently close to x0 also returns to
S at some point 3c e Z near:c0. Moreover, nearby orbits will also
intersect Z transversally. Thus, we have constructed a map

P:Z-»Z, xh*x=P(x).
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This map Pis called a Poincare map associated with the cycle Lo.
The point 3c is the first return or Poincare map of the point x. We are
not implying that such a point must exist, but if it does then it is called a
first return. If we continue on, then the first return of JC, (= 3c) is x2. We
can represent this process as a mapping by an operator Px, x - Pz{x).
For successive returns starting from x0, we use the notation
xk = Pz{xk_i), k = 1, •••,«. Note that the "time" lapse between returns is
not in general constant.

The Poincare map is invertible near x0 because of the invertibility of
the dynamical system defined by the system (9.4.1). From the
construction process, we see that the intersection point xQ is a fixed point
of the Poincare map, that is, P(x0) = x0.

Let us introduce local coordinates £ = (£,, •••, £„_,) on £ such that
£ = 0 corresponds to x0. Then the Poincare map will be characterized
by a locally defined map

which transforms £ corresponding to x into g corresponding to 3c

/#) = ?.
The origin of £ = 0 is a fixed point of the map

P: P(0) = 0.

The stability of the cycle Lo is equivalent to the stability of the fixed
point £0 = 0 of the Poincare map. Thus, the cycle is stable if all
eigenvalues (multipliers) p,, •••, pnA of the ( « - l ) x ( n - l ) Jacobian
matrix of P

are located inside the unit circle. The following lemma guarantees that
the multipliers are not dependent on the choice of the point x0 on S or
the coordinates <f on it.
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Lemma 9.4.112 The multipliers /?,,-••,/?„_, of the Jacobian matrix A of
the Poincare map associated with a cycle Lo are independent of the point
x0 on LQ, the cross-section 2, and local coordinates on it.

We now state the relationship between the multipliers of a cycle and
the differential equations (9.4.1) defining the dynamical system that has
this cycle. Let x'(t) denote aperiodic solution of Eqs. (9.4.1),

x(t + T0) = x(t)

corresponding to a cycle Lo. Represent a solution of Eqs. (9.4.1) in the
form

x(t) = x(t) + u(t),

where u(t)e R" is a deviation from the periodic solution. Then

it = A(t)u + o\\u(),

where

A{t) = fx{x(t)\ A{t + T0) = A{t).

Truncating 6>(||w|| j terms results in the linear To -periodic system

u = A{t)u, ueR". (9.4.2)

Definition 9.4.1 The system (9.4.2) is called the variational equation
about the cycle Lo.

The stability of the cycle depends on the properties of the variational
equation.

Definition 9.4.2 The time-dependent matrix M{t) is called the
fundamental matrix solution of Eqs. (9.4.1) if it satisfies

M = A(t)M,

with the initial condition M(o) = Inxn. Moreover, the matrix M(TO) is
called a monodromy matrix of the cycle Lo.

12 The proofs of the lemma and the next theorems are referred to Kuznetsov (1998). See
also Hartman (1964) and Farkas (1994) on the relation between Poincar6 maps,
multipliers, and stability of limit cycles.
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The following Liouville formula expresses the determinant of the
monodromy matrix in terms of the matrix A(t)

detM{T0) = expj ]trA{f)dt 1.

Theorem 9.4.1 The monodromy matrix M(T0) has eigenvalues

1,A> • • •># , -> .

where /?, are the multipliers of Poincare map associated with the cycle

V

Example Obtain the map of first returns P^ for the differential
equations

j , = /JXX + x2 - xiyjxt +xl,

x2 = - x , + jux2 - x2^xl + x\,

for the cross-section Z given by x2 = 0, xx > 0 with t0 = 0. In polar
coordinates the system becomes

r = r{ju- r),

e = -\.
We solve

, - - t»0

r0 + (ju - r o > - " '

We see that r = ju is a limit cycle. Eliminating t in the first equation, we
obtain

r0 + (ju - r o y ^ •

The section given corresponds to 0O — 0, and required successive
returns occur for 0 = -2n, -An, ... with initial point (r0, 0). Hence
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' • • ^ ^ V ' ^ * " " 1 " 1 <9A3)

As n —> oo the sequence of point approaches the fixed point (̂ w, 0),
as shown in Fig. 9.4.2, corresponding to the intersection with the limit
cycle.

/* ,f • ^ v limit cycle

/ / / - ^ i ^ \ \ fixed point

I

Fig. 9.4.2 First returns approaching the fixed point on 2.

We can find the difference equation of which (9.4.3) is the solution.
From (9.4.3), we solve r0 as a function of rn and substitute it into (9.4.3)
for n +1

r *** = . ' " " .

= f(r.). (9-4.4)

This is a first-order difference equation for rn.
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9.5 Center Manifold Theorems

We studied bifurcations of equilibria and fixed points in one- and two-
dimensional systems. We will show that the corresponding bifurcations
occur in "essentially" the same way for "generic" n -dimensional
systems. We shall see that there are certain parameter-dependent one- or
two-dimensional invariant "manifolds" on which the system exhibits the
corresponding bifurcations, while the behavior off the manifolds is
somehow "trivial". This section states the main theorems that allow us to
reduce the dimension of a given system near a local bifurcation.

First, consider a dynamical system

x = f{x), xeR", (9.5.1)

where / is sufficiently smooth,

/ (0) = 0.

Let the eigenvalues of the Jacobian matrix A evaluated at the origin be
P\'""" > Pn • Suppose that the equilibrium is not hyperbolic and that there
are thus eigenvalues with zero real part. Assume that there are n+

eigenvalues (counting multiplicities) with Re/?>0, «O eigenvalues
with Re p = 0, and n_ eigenvalues (counting multiplicities) with
Rcp<0, see Fig. 9.5.1.

Fig. 9.5.1 Critical eigenvalues of an equilibrium point
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Let Ec denote the linear eigenspace of A corresponding to the union
of the «0 eigenvalues on the imaginary axis. The eigenvalues with
Rep = 0 are called critical, as is the eigenspace E°. Let 0(t) denote the
flow associated with the system (9.5.1). Before stating the center
manifold theorem, we introduce the concept of manifold. Technically a
manifold is a subspace of dimension of m < n in R" usually satisfying
continuity and differentiability conditions. For our purpose, it is
sufficient to consider the manifold Me R" as a set of points in R" that
satisfy a system of m scalar equations, F(X) = 0, where F: R" —» Rm

for some m<n. The manifold M is smooth (differentiable) if F is
smooth and the rank of the Jacobian matrix Fx is equal to m at each
point x G M. Thus the sphere surface

xf + x\ + xl = 1,

is a manifold of dimension 2, the solid sphere

x2 + x\ + x] < 1,

is a manifold of dimension 3 in R3; and the parabola y = x1 is a
manifold of dimension 1 in R2. If a solution of a differential equation
starts on a given space, surface or curve (manifold) and remains within it
for all time, the manifold is said to be invariant. For instance, the Kaldor
model has a limit cycle. Any solution which starts on the limit cycle will
remain on it for all time. Hence, this closed curve in the phase plane is an
invariant manifold. Equilibrium points are invariant manifolds.

At each point x of a smooth manifold, an n - m -dimensional tangent
space TXM is defined. This space consists of all vectors v e R" that can
be represented as v = h(t), where h: i?1 —> A/ is a smooth curve on the
manifold satisfying h(o) = 0. Alternatively, TXM can be characterized
as the orthogonal complements to

span^F,,-,VFm},

where

*'•-&-••£)'• * = •• - -
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are linear independent gradient vectors at point x. One can introduce
n - m coordinates near each point x e M by projecting to TXM, so that
a smooth manifold M is locally equivalent to R"'m.u

Before introducing the center manifold theorem, we introduce the
stable manifold theorem, which is one of the most important results in
the local qualitative theory of ordinary differential equations. It shows
that near a hyperbolic equilibrium point x', the nonlinear system (9.5.1)
has stable and unstable manifolds S and U tangent at x' to the stable
and unstable subspaces Es and E" of the linearized system

x = Ax,

where A = Df[x*). To explain the theorem, consider
xl — — x , ,

Xj — ~ X^ i .Xj ,

JC3 = xi + x*.

The origin is an equilibrium point. The Jacobian matrix is

J = Diag[-l - 1 l] .

The stable and unstable subspaces Es and E" of x = Ax are the JC, - x2 -
plane and the x3-axis respectively. It is straightforward to solve the
original nonlinear equation as

x1(t) = c1e-+ct(e-'-e-»\

where c = JC(O) Clearly <t>(f, xa) = 0 as t —> °° if and only if

c3+c,3/3 = 0,

and <fi(t, *0) = 0 as /—>-°° if and only if
C\ = C2 = 0 .

Thus we have

S = {c e R3 |3c3 + c\ = 0} U = {ce R3 |c, = c2 = o}.

13 See Arrowsmith and Place (1990) and Jordan and Smith (1999).
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Theorem 9.5.1 (The stable manifold theorem) Let E be an open subset
of R" containing the origin, let f e C\E), and let </>(t) be the flow of
the nonlinear system (9.5.1). Suppose that / (o) = 0 and Df(o) has n_
eigenvalues with negative real part and n-n_ eigenvalues with positive
real part. Then there exists an n_ -dimensional differentiable manifold
S tangent to the stable subspace Es of the linear system

x = Ax,

at 0 such that for all / > 0, 0(t, S)cS and for all x0 e S, 0(t, xo) = O
as / —» °°; and there exists an (n - «_)-dimensional differentiable
manifold U tangent to the unstable subspace E" of the linear system
x - Ax at 0 such that for all / < 0, </>{t, U)<zU and for all JC0 e U,
#(t,xo) = O as f - > - ° ° .

Let </>{t) be the flow of the nonlinear system (9.5.1). The global
stable and global unstable manifolds of the nonlinear system (9.5.1) at 0
are defined respectively by

W'(0) = Uj{t, S), W*{6) = Uj{t, S).

It can be shown that the global stable and unstable manifolds are unique
and that they are invariant with respect to the flow </>{t).

Theorem 9.5.2 (Center manifold theorem) There is a locally defined
smooth n0 -dimensional invariant manifold Wc(o), called the center
manifold, of the nonlinear system (9.5.1) that is tangent to Ec at x - 0.
Moreover, there is a neighborhood U of x0 = 0 such that if fi(x, t)s U
for all / > 0 (f <0),then

j(x,t)eWe{0),

for t —> °°(t —» -oo).

It should be mentioned that Wc need not be unique. For instance, the
system

x =x1

x2 — — x2,
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has an equilibrium point (JC, , x2) = (0, 0) with />, =0, p2 = - 1 . It
possesses a family of one-dimensional center manifolds

wl = { ( * I . * 2 ) : * 2 = ^ / J ( * I ) } .

where

»r M = j^ e x P( - 1 / x ) ' for *> < °.
A i} |0, for *,>().

In its eigenbasis which is a basis formed by all (generalized)
eigenvectors of A (or their linear combinations if the corresponding
eigenvalues are complex), the system (9.5.1) can be rewritten as

ii = Cu + g(u, v),

v = Pv + h(u, v), (9.5.2)

where ueR"° and ve R"**n-, C is an «ox«o matrix with all its
n0 eigenvalues on the imaginary axis, while P is an
(«+ + n_)x(«+ + «_) matrix with no eigenvalues on the imaginary axis.
Functions g and h have Taylor expansions starting with at least
quadratic terms. The center manifold Wc of the system (9.5.2) can be
locally represented as a graph of a smooth function

Wc ={(u,v):v = V{u)}.

Here

V: R"° -» ^"++"-,

and due to the tangent property of Wc, V(u) = o(||w| ).

Theorem 9.5.3 (Reduction principle) The system (9.5.2) is logically
topologically equivalent near the origin to the system

u = Cu + g(u, V(u)\

v = Pv. (9.5.3)

The equations for u and vare uncoupled in the system (9.5.3). The
first equation is the restriction of (9.5.2) to its center manifold. Thus, the
dynamics of the structurally unstable system (9.5.2) are essentially
determined by this restriction, since the second equations for v in the
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system (9.5.3) is linear and has exponentially decaying/growing
solutions. The following local center manifold theorem often helps us to
find center manifolds in applications.

Theorem 9.5.4 (The local center manifold theorem)14 Let / e Ck(u),
where U is an open subset of R" containing the origin and k>\.
Suppose that / (o ) = 0 and that Df(o) has an n0 eigenvalues with zero
real parts and n_ eigenvalues with negative real parts, where
«_ + «„= n. The system (9.5.1) can then be written in diagonal form

x = Cx + F{x, y),

y = Py + G{x, y), (9.5.4)

where (x, y)e R"° xR"-, C is a square matrix with n0 eigenvalues
having zero real parts, P is a square matrix with n_ eigenvalues with
negative real parts, and

F(0) = G(0) = 0, DF(0) = DG{0) = 0;

furthermore, there exists a S > 0 and a function he Ck(Ns(o)) that
defines the local center manifold

WL = {(*> y)e R"° xR"~ I y = Kx) for |*| < s\,

and satisfies

Dh(xfCx + F(x, h(x))] - Ph{x) - G(x, h(x)) = 0, (9.5.5)

for all |*| < S; and the flow on the center manifold is defined by the
system of differential equations

x = Cx + F(x, h{x)), (9.5.6)

for all x e R"0 with \x\ < S.

Equation (9.5.5) for the function h follows from the fact that the
center manifold is invariant under the flow defined by the system (9.5.1)
by substituting x and y from the differential equations (9.5.4) into the
equation

y = Dh(x)x,

14 The theorem is proved in Carr (1981).



360 Differential Equations, Bifurcations, and Chaos in Economics

which follows from the chain rule applied to the equation y = h(x)
defining the center manifold. Equation (9.5.5) gives us a method for
approximating the function h to any degree of accuracy that we wish,
provided that the degree k is sufficiently large.

Although there may be many different functions h which determine
different center manifolds, the flows on the various center manifolds are
determined by Eq. (9.5.6) and they are all topologically equivalent in a
neighborhood of the origin.

Example Consider the following system with n_ = n0 = 1

Aj X] ^2 Xj ,

x2 = — x2 + x,2.

In this case, we have

C = 0,P = [-\\ F(x,, X2)= X,2X2 - xl, G(X, , x2) = x,2.

We substitute the expressions

/*(x,) = axf + bx\ + O(xfl Dh(x{ ) = 2axl + 3bxf + o(xf),

into Eq. (9.5.5) to obtain

(2ax, + 3bxf + • • -̂ ax,4 + bx\ + x\)

+ axf +bx\ + x2
x = 0 .

Setting the coefficients of like powers of x, equal to zero yields
a = 1, b = 0. Thus

A(x1) = x,2+O(x1
5).

Substituting this result into Eq. (9.5.6) yields

x, =x,4 +0{x[),

on the center manifold near the origin. We see that the origin is a saddle-
node and it is unstable. The local phase portrait of the system and the
center manifold Wc(o) are depicted by Fig. 9.5.2.

Example Consider the following example with «0 = 2 and n_ = 1

1 AJVVJ Aj.A.2 J
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X 2 — .XJJCJ — X2X\ >

*3 = ~X3 + Xl + X2-

x2 Es =Ws{s) Wc(0)

t i t 1 1 F t * > * * /

T t v f T 1 < v * \
t €.8 ' T 1 1 \ * ^ I \
T ^ t 6 v F \ 1 ^ ^ J V
T L 4 v f ' ^ * ' A v

T T '• F ^ 1 ^ i / V ^
t T '• r , r ^ 7 v v
1 f>-2v ! T ^ , A V V
^ ' V ' i > - ^ k V ^x

-lr T-0.75 -0.5* -tf.251 ' 40.2^ *0.5k Q.75v vl
* f * i k L A < k i k *> ^ ^ r-
* l ' i k i -».2 , . 4 i i v V V X

Fig. 9.5.2 The phase portrait

We have C = 0,P = [-l]

x2x3 x2xx _

We substitute the expression

h{x

it x2) = ax\ + bxtx2 + cx\ + O(|JC| j ,

into Eq. (9.5.5) and set the coefficients of like powers of xt and x2 equal
to zero. We obtain

a = \, 6 = 0, c = \.
Thus

h(

Xl,x2) = xl +x22+o\xf).
Using this result, we obtain
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x2 =x\ +o\x\*\

on the center manifold near the origin. As

rr = xl +x* + o\x\5)>0,

we see that the origin is unstable.
Theorem 9.5.3 can be generalized to the case when the dimension of

the unstable manifold is not equal to zero.15 In its eigenbasis which is a
basis formed by all (generalized) eigenvectors of A (or their linear
combinations if the corresponding eigenvalues are complex), the system
(9.5.1) can be rewritten as

x = Cx + F(x, y, z),

y = Py + G{x, y, z),

z = Qz + H{x, y, z), (9.5.7)

where

xe R"°, ye Rn-, z<= R"+,

C is an noxno matrix with all its «0 eigenvalues on the imaginary axis,
P is an n_xn_ matrix with negative real parts, Q is an «+x«+ matrix
with positive real parts,

F(0) = DF{6) = 0, G(0) = DG(0) = 0, H{6) = DH{0) = 0.

The local center manifold is now given by
W M = {(*> y, z ) e *"° xR"~ *Rnt \y = ^ ( 4 z = hi(*)for H < <y}.

for some S > 0 where

hj e Ck{Ns(0)\ MO) = 0, Dhj(0) = 0, j = I, 2 .

The functions hj can be approximated to any desired degree of
accuracy (provided that k is sufficiently large) by substituting their
power series expansions into the following equations

DhjixfCx + F(x, A,(4 h2(x))] - Phjix) - G(x, h.ix), h2{x)) = 0.

(9.5.8)

15 The following theorem is proved in Carr (1981). See also Wiggins (1990).
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Theorem 9.5.5 Let / e Cl(u), where U is an open subset of R"
containing the origin. Suppose that / (o) = 0 and that Df(o) has an «0

eigenvalues with zero real parts, n_ eigenvalues with negative real parts,
«+ eigenvalues with positive real parts, where

n_ + n+ + n0 = n.

Then there exist C1 functions /*,(*) and h2(x) satisfying Eqs. (9.5.8) in a
neighborhood of the origin such that the original system (9.5.1), which
can be written in the form (9.5.7), is topologically conjugate to the C1

system16

x = Cx + F{x,hi{x),h2{x)\

y = Py,

z = Qz

in a neighborhood of the origin.

Exercise 9.5
1 Apply Theorem 9.5.3 to examine the dynamics near a unique
equilibrium of the following system

X2 — Xj + X] ,

9.6 Applying the Center Manifold Theorem and the Liapunov
Theorem to a Simple Planar System

This section applies the center manifold theorem and the Liapunov
theorem to examine dynamic properties of a simple dynamical system.17

We show how to determine the stability of a nonhyperbolic
equilibrium point of a planar vector field with one zero and one negative

16 Two maps, / and g , satisfying / = h~l ° g ° h for some homeomorphism h are called

conjugate.
17 The example is from Sec. 10.1 in Hale and Kocak (1991).
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eigenvalue. Since linearization cannot help us to solve the problem, we
have to examine how a particular term of a vector field affects the flow
near such a nonhyperbolic equilibrium point. To illustrate the essence of
the problem, we begin with an example easy to examine.

Let k > 1 be an integer, a * 0 be a real number. Consider

The eigenvalues of the linearized system at the origin are always 0
and - 1 , independent of a and k. Linearization cannot determine the
stability type. We need to study the effect of the nonlinear term of the
vector field. Since x2[t) —> 0 as t —> °°, the stability properties of the
equilibrium point x - 0 are determined by the first scalar equation

i, = ax*.

The origin is asymptotically stable if a is negative and k is odd, and
unstable otherwise. Figure 9.6.1 depicts a case of stability when k = 3
and a < 0.

We now consider a general system

X\ = f\\Xi> X2j>

x2=-x2+ f^x^x^, (9.6.1)

where / is a given Ck function with k > 1,

/ (0) = 0,Z>/(0) = 0.

We may also write the system in vector form

_x2j [o -iJL*2J L/2J
The linear part of the vector field about the equilibrium point at the

origin is in Jordan form with eigenvalues 0 and - 1 . We may consider
x2 in the first equation as the zero h(xt) of

-x2+f2(x,,x2).

The dynamics in a neighborhood of the origin should be determined by the
scalar differential equation

(9.6.2)
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* = ./; (*•>*(*! ))•

To find h\X\), consider

z(X],x2) = -x2 + f2(Xi, x2) = 0.
x2

\ \ \\ M \ \ \ \ M M M / / / /
\ \ V V M * * M M M * / / / /
\ \ \ * \ • 4 4 4 4 * f f f • / * / / •
X X \ <i i \ * * * * i i i i y\ t t / / y
X X \ \ \ \ t T T T T T T 1 / I t ? ? *
x \ \ 1 i t \ ' ' ' ' ' f / r t r s s s
-^ *. «. \ ^ t *\r ^ •» r r r ^ » ^ > > > ^
-». ^ v \ •* 1 ^ \ T * T T if T r r r A * *r
^ k. ^ v \ x i » ^ T T ^ T r r / > > . - « -».
j . ^ ». ^ ^ «, \ 1 ^ T T ^ r A ^ a ^ . ^ ^ ^

"^ • " * " " » ' • ' / i ^ i i ^ k V > •» •- "• "" "*̂  X l
—•-••»••* 4 4 4 i / i i \ 4 i v V > -^ - -^

-*-*•<< 4 4 i yr i i i t \ i ^ v v > •> »̂-
- w * * • / / 4 ^ ^ i i i i ^ i i v > > • • " * •

* * S i 4 I A 1 1 i 1 1 i \ * ^ V \ V V

x y / v < / i i i i i i i i \ k v v v x

/y n / i 4 4 4 4 f f f f i \ n v \
/ / / /1 M 4. 4 4 f f f f t ^ \ \ V \
/ / / / l f M H I M M M \ \ \ \

Fig. 9.6.1 Phase portrait for k = 3 and a < 0.

Since z(0, 0) = 0 and ZX2 (0, 0) = 0, the Implicit Function Theorem
implies that there is a constant S > 0 and a unique C1 function

/*: \xl: \x{\ < S\ —» {x2: JJC2| < S}

such that

-A(x,) + /2(x,, *(*,)) = 0,

*(0) = 0, h'{0) = 0. (9.6.3)

The relation h'(o) = 0 follows from differentiating the first equation in
Eqs. (9.6.3) with respect to xl and setting xi = 0.
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Theorem 9.6.1 Suppose that / = (/,, f2) is a Ck+1 function with

/,(*„ />(*,)) = axk
x + O\x^\] as *, -> 0 , (9.6.4)

where a *• 0 is a real number, k is a positive integer, and /*(*,) is as by

-h{x1) + f2{x1,h(x1)) = 0.

Then the equilibrium point at the origin of Eqs. (9.6.1) is asymptotically
stable if a < 0 and k is an odd integer; otherwise, it is unstable.

Proof: Introduce the new variables y = (>>,, y2)

x2 =y2 +h{Xl).

In these variables the original system (9.6.1) becomes

^2 = - ^ 2 + f t U . ^2^ (9-6-5)
where

g\ = fi(yi> hM + yi\

g2 = f*iy,, *(y.) + J 2 ) - fhv A(y.)) - A'CyJyiU, A(yJ + j 2 ) .
The stability properties of the equilibrium point of Eq. (9.6.5) are the

same as those of the equilibrium point x-0 of Eqs. (9.6.1). As
|>| —> 0, from Eqs. (9.6.3) and (9.6.4), the first several terms of the
Taylor series of these functions about the origin are given

g 2 6 w 2 M l > d ) + ^ M I ) (9-6-6)
Let us now consider the function

v{yl,y2) = --J—)yr+^yl (9-6.7)
a\k +1) 2

and compute its derivative along the solution of Eqs. (9.6.5). Utilizing
Eq. (9.6.7), we observe that there is a 8 > 0 such that for |>| < S

v(y, y2) = -K"(I + ^H|))+^2^H|)-^(i + oM)
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The function -V(yr, y2) can easily be seen to be positive definite by
treating it as a quadratic function in y\ and y2. We conclude that if
a < 0 and k is odd, then V(yi; y2) is positive definite, thus from the
Liapunov Theorem, y = 0 is asymptotically stable. If a > 0 and k is
odd, then we apply Theorem 6.2.4 of Cetaev to the function - F to
conclude the instability of y = 0. The remaining case a * 0 and k
follows from the same theorem.

Example Consider

i, = ax,3 + xxx2,

x2 = - x2 + x\ + x{ x2 - JC,3, (9.6.8)

where a is a real constant. The function h(xt) is a solution of

-h(x1) + /i2(x,) + x, A(x,) - jcf = 0.

Substituting a Taylor series for h[x^) and equating the coefficients of
like powers JC,, we obtain

fXxi,h{xi)) = ax3
l~X: + o\x5

1\).

Theorem 9.6.1 implies that the equilibrium x = 0 of Eqs. (9.6.8) is
asymptotically stable if a < 0 and unstable if a > 0.

9.7 The Hopf Bifurcation Theorem and Its Applications

We studied the Hopf bifurcation in planar dynamical systems. We now
examine the Hopf bifurcation in higher dimensions.

Theorem 9.7.1 (Andronov-Hopf bifurcation theorem) Consider the

system

x = f{x,X),
where
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feCM(R"xR\k>4, f(0,X) = 0.

Suppose that for small \A\ the matrix /J(0, X) has a pair of complex
conjugate eigenvalues

a(X) ± ico(X), a)(A) > 0, «(0) = 0, a'(o) > 0,

and the other n - 2 eigenvalues have negative real part; then

(i) there is a S > 0 and a function X e Ck'2((-S, S), R) such that for

e G (- S, S) the system

x = f(x, A(e)),

has a periodic solution p(t, e) with period Tie) > 0, also

T e Ck~2, A{0) = 0, r(0) = 2x/a)(0), p(t, 0) s 0 ,

and the amplitude of this periodic solution (the approximate distance of
the corresponding periodic orbit from the origin) is proportional to

(ii) the origin (x, X) = (0, 0) of the space R"xR has a neighborhood
U c R" xR that does not contain any periodic orbit of Eqs. (9.7.1) but
those of the family p(t, e), ee (-S, S\
(iii) if the origin x = 0 is a 3 -asymptotically stable (resp. 3 -unstable)
3 -unstable equilibrium of the system x = f(x, 0), then A(e) > 0 (resp.
A(e)< 0) for e * 0, and the periodic solution p(t, e) is asymptotically
orbitally stable (resp. unstable).18

Example We examined a predator-prey model in Sec. 9.3. This section
applies the Andronov-Hopf bifurcation theorem to a predator-prey model
with memory}9 The model is as follows

N{t) = eN{t\\-^yaP{t)N{t\

18 The concepts of h - asymptotical stability and instability are referred to Chap. 7 in Farkas
(1994).
19 This example is from Sec. 7.3 in Farkas (1994). We illustrate the analysis, leaving
some terms and results unexplained. The analysis in detail is referred to the reference.
See also MacDonald (1978), Worz-Busekros (1978), Dai (1981), Farkas (1984), Farkas,
Farkas and Szabo (1988).
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P{t) = - yPif) + PP '\N(r)G{t - r)dr,

where N(t) and P(t)aie respectively the quantity of prey and predator,
respectively, e > 0, a > 0, /? > 0, and y > 0 are respectively the
growth rate of prey, the predation rate, the mortality of predator and the
conversion rate, K > 0 is the carrying capacity of the environment for
the prey, and G: [0, °°) —»R+ be a C1 density function satisfying

]G(s)ds = \.
0

The term -NIK takes account of the intraspecific competition in
the prey species: this has a saturation effect, and as a consequence that
the prey is not growing exponentially in the absence of predation but
tends to a finite limit. The term fiJN(r)G(t - r)dr reflects that the
present growth rate of a predator depends not only on the present
quantity of food but also on past quantities (in the period of gestation,
say). Assume the density function is exponentially decaying

G{s) = ae"", a>0.

Introduce

Q{t) = \N{r)3{T)dT = a Jw(r)f o('-r) dx.

Under this transformation, the original system becomes

N = £N\l-—)-aPN,
{ K)

P = -yP + pPQ,

Q = a{N-Q\ (9.7.1)

where the last equation is obtained by differentiation with respect to t.
Instead of the delay equation with exponentially fading memory, we will
study the system (9.7.1) of ordinary differential equations on t e [o, °°).

First, we introduce
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N{t) = Kn{t), P{t) = Kp{t\ Q{t) = Kq{t), t = ±.

To transform the system (9.7.1) into

h = «(l - n) -np,

Y 1
P = --yP + —pq,

e eb
q=-{n-q\ (9.7.2)

where «0 = aK, b = 1/pK, and the dot now denotes differentiation with
respect to the variable s.

The system (9.7.2) has three equilibria: the origin which is unstable
and of no interest; the point (l, 0, l) which is asymptotically stable if
yb > 1 and unstable if yb < 1. The third equilibrium is

(n,p',q') = \yb,——E,yb\,

where y0 = yb. The equilibrium point is in the positive octant of the
three variables if and only if y0 < 1. This condition also implies that the
system has no asymptotically stable equilibrium except, possibly
(«*, p*, q'\ The Jacobian matrix at this point is

-yb -ayle/3 0

0 0 (l-yb)j3/a .

£ o -a-
£ £

The characteristic equation is

^3
+^ + f y + ^ f + ( l - ^ ) f = O. (9.7.3)

From the Routh-Hurwitz criteria we know that this is a stable
polynominal if and only if
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That is

#>< 1, a> — y - ybe.
b

If 1 / b — y - ybe is negative or equal to zero (which can be guaranteed if
£is sufficiently large), then the equilibrium point («*, p*, qj is
asymptotically stable for all positive a. Here, we are concerned with

l/b-y- ybe>0.

The equilibrium is losing its stability at the positive value

\-yb- 2ybe
« o = ~b •

At a = a', the characteristic polynomial (9.7.3) assumes

The three eigenvalues are

I \ by-I

A,2 = ± i0)>

where

\\-yb- 2ybe .<y s i '-—y > o.
V e

Denote p{(a) the root of the polynomial (9.7.3) as a function of a
that assumes the value ico at a0 and by

F(p, a) = p>+[yb + | ) p 2 + £2£ + (i _ 0)££, (9.7.4)

the characteristic polynomial in Eq. (9.7.3) as a function of a. Since

F{p{a0),a0) = F{ico,a0) = 0,
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and ico is a simple root of the polynomial F(p, a0), the smooth function
pl is uniquely determined by

F(p(a),a) = 0,p1(icu) = ico.

The derivative of the implicit function px at a0 is

• K{i6),ao)_

{yb + ico){yb(l -yb- yb2e) + cojl - yb)} yb2

y2b2(l-yb-yb2ej + co2{\-ybf 2 "

Hence, we have

yb2 \-yb-ytfe ^

2 eyb2{\-yb-yb2e)+{l-yb)2

We see that the equilibrium («*, p', q'j is asymptotically stable for
a > a0 and is losing its stability at a = a0. Hence, we established the
conditions for occurrence of the Hopf bifurcation. With some more
complicated calculations, Farkas proved the following theorem.20

Theorem 9.7.2 If

1 - yb - 2ybe
ao= > 0 ,

e2yb
ao-—j—>O, (resp.<0),

then there exists a 8 > 0 such that for each

a e (a0 - 8, a0) (resp.a e (a0, a0 + 8)),

the system (9.7.1) has a unique periodic orbit in a neighborhood of the
equilibrium point («*, p', q) and the corresponding periodic solution is
asymptotically orbitally stable (resp. unstable).

20 See Farkas (1994:447-8).
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Exercise 9.7
1 We consider the following augmented Kaldor model21

Y = a{l{Y,K,r)-S{Y,r)\

r = fi\L{r,Y)-M\

K = I(Y,K)-SK,

where variables and parameters are defined as

Y = output level;
K = capital stock;
r - interest rate;
l(Y, K, r) = investment function (IY > 0, IK < 0 );
S(Y, r) = savings function (0 < Sr <l,Sr > 0);
L(Y, r) = money demand;
M = money supply
a and J3 = positive adjustment parameters;
S = capital depreciation rate.

In Sec. 6.4, we demonstrated that when /? —> oo, the system exhibits
limit cycles under certain conditions. With the similar arguments, try to
establish conditions for the existence of limit cycles in the model.

2 We consider the so-called Oreganor equations22

EX — x + y — qx2 — xy,

y - -y + 2hz - xy,

pz = x-z,

where the parameters s, q, h and p are all positive. We simulate the
model with the following specified parameters

21 The model is examined by Lorenz (1993: 105-107). As mentioned by Lorenz, the
adjustment equation for the interest rate is not unproblematic. The interest rate is
determined on the bonds market, and assumed form of its adjustment equation implies
that the excess supply of bonds excess demand for money. However, it remains unclear
how possible excess demand in the goods market are financed.
22 Enns and McGuire (2001: 76-79).
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e = 0.03, q = 0.006, h = 0.75, p = 2, x0 = 100,

y0 = 1, z0 = 10 .

/"30p\\ 40

/ *° ) zh \ ^
I 10 ^ 20 \ \ | \ | \

./lo'^^To^- J V J v ^ :
1'5'n x y ° 5 10 t 15 20

Fig. 9.7.1 The motion of the Oreganor equations.

The system exhibits oscillations at the specified parameter values. Try to
apply the Hopf bifurcation theorem to identify existence of limit cycles
in the model.

9.8 The Lorenz Equations and Chaos

It has recently become clear that there are different and very complex
phenomena that can occur in systems of third and higher order that are
not present in second order systems. We now introduce the Lorenz
equations to illustrate phenomena of chaos.

The Lorenz equations are a quadratic system of autonomous
differential equations in three dimensions modeling a three-mode
approximation to the motion of a layer of fluid heated from below. The
system of equations that Edward N. Lorenz proposed in 1963 is

x = cr(- x + y), y = rx - y - xz,

z = -bz + xy, (9.8.1)

where x, y, and, z are time-dependent variables.23

23 A thorough treatment of the Lorenz equations is given by Sparrow (1982).
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The Lorenz equations are nonlinear as the second and third equations
involve quadratic nonlinearities. The system involves three positive, real
parameters, a, r, and b. For the earth's atmosphere reasonable values
of these parameters are a -10 and 6 = 8/3. The parameter r is
proportional to the vertical temperature difference

To analyze the behavior of the system, first we study critical points
by solving

a{-x + y) = 0,

rx - y - xz - 0,

-bz + xy = 0.

F r o m cr(-x + y) = 0 , w e h a v e x = y . S u b s t i t u t i n g x - y i n to t h e o t h e r
t w o e q u a t i o n s y i e l d s

x(r - 1 - z) = 0, -bz + x2 = 0.

In the case of x - 0, we have y = z = 0. In the case of x * 0, the
other critical points are

z = r - l , x = y = ±Jb{r-l).

The expressions of x and y are real only when r > 1. Thus
(0, 0, 0), denoted by Px, is a critical point for all values of r, and it is
the only critical point for r < 1. When r > 1, the other two critical
points, denoted respected by P2 and P3, are

(jb(r - 1), yjb{r -\),r- l), (-Jb{r - l), -Jb{r - l), r - l).

All three critical points coincide at r = 1. As r increases through the
value 1, the critical point Px at the origin bifurcates and the critical
points P2 and P3 come into existence. We specify a = 10 and 6 = 8/3
in the remainder of this section.

Near /J (0, 0, 0) , the linearized system is

'x} Mo 10 o (xs

Y = r - 1 0 7 . (9.8.2)

z) { 0 0 -8/3 [zj

The eigenvalues are determined by
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-10-/? 10 0

r -\-p 0

0 0 -8/3-/?

= -[p + fj\p2 +Up-l0(r-l)}=0.

Therefore,

8 _ - l l ± V 8 1 + 40r
P\~ r> A,3 - z • 0>.8.3)

If r < 1, then all three eigenvalues are negative. Hence, the origin is
asymptotically stable for this range of r. However, /?3 changes sign
when r passes from 1 to r > 1. The origin is unstable for r > 1. Near

P2 (jb{r -1), ,jb{r -1 ) , r -1 ) ,

the linearized system is

'x*\ ( -io io o Yx"
7 = 1 -1 -^8(r-l)/3 7 .

ZJ ^8(r-l)/3 V8(r ~ lV3 ~8/3 J l z ,
The eigenvalues are determined from the equation

3yO3 + 4lp2 + 8(r + 10)p + 160(r - l) = 0 .

The solutions of the above equation depend on r as follows24

For 1 < r < rx = 1.3456, there are three negative real eigenvalues.
For r, < r < r2 = 24.737, there are one negative real eigenvalue and two
complex eigenvalues with negative real part.
For r2 < r, there are one negative real eigenvalue and two complex
eigenvalues with positive real part.

The same results are obtained for the critical point Pr Summarizing
these discussions, we conclude that: (1) For 0 < r < 1, the only critical
point /} is asymptotically stable; (2) For 1 < r < r]t P2 and P3 are
asymptotically stable and Px is unstable. All nearby solutions approach

24 See Boyce and Diprima (2001: 534) or Sec. 5.4 in Tabor (1989).
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one or the other of the points P2 and P3 exponentially; (3) For
rx < r < r2, P2 and P3 are asymptotically stable and /} is unstable. All
nearby solutions approach one or the other of the points P2 and P3; most
of them spiral inward to the critical point; and (4) For r2 < r, all three
critical points are unstable. Most solutions near P2 and P3 spiral away
from the critical point.

We consider solutions for r2 < r. All three critical points are
unstable. A trajectory can approach any one of the critical points only on
certain highly restricted paths. The slightest deviation from these paths
causes the trajectory to depart from the critical point. What is surprising
with the system is that no trajectory will approach infinity as /—><»,
even though all critical points are unstable. In fact, it can be shown that
all solutions remain bounded as t —> °°. It can be shown that all for
positive values of r, all solutions ultimately approach a certain limiting
set of points that has zero volume.

We first simulate the model, we compute values of jc(f) versus t.
Figure 9.8.1 describes the motion of x(t) with initial condition (6, 6, 6).
The solution changes "randomly" from positive values to negative ones.
The Lorenz equations are deterministic and its motion is completely
determined by the initial conditions. The attracting set in this case has a
complicated structure and is called a strange attractor. The term chaotic
is used to describe solutions such as those shown in Fig. 9.8.1.

A|5W 1 ft 10 V 15 1 1 20 A 25* U ^0

Fig. 9.8.1 A plot of x(t) for r = 28 for initial condition (6, 6, 6).
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A significant feature of the system is that its solutions are extremely
sensitive to small changes in the initial conditions. Figure 9.8.2 shows
the solutions x(t) with different initial conditions. The initial conditions
of y and z are the same in the two cases; the only difference is for x(o).
The two solutions remain close until t is near 10, after which they
diverge rapidly. This property of the Lorenz equations caused him to
conclude that detailed long-range weather predictions are probably no
possible as any small difference in initial condition may lead to great
differences in the future.

Figure 9.8.3 shows the corresponding Lorenz attractor. There are two
sheets in which trajectories spiral outwards. When the distance from the
center of such a spiral becomes larger than some particular threshold, the
motion is ejected from the spiral and is attracted by the other spiral,
where it again begins to spiral out, and the process is repeated. The
motion is not regular. The number of turns that a trajectory spends in one
spiral before it jumps to the other is not specified. It may wind around
one spiral twice, and then three times around the other, then ten times
around the first and so on.

is i ' i i i

(
^ 5\ I \ A lo \ UI is \ \\ \ |\2o IM z f l U ip"

I f! I 11<!' '! ' HP
-15 [- V \ J 1 '

Fig. 9.8.2 A plot of x(t) for r = 28 ; (x0, y0, z0) = (6, 6, 6) for solid curve and

(x0, y0, zo,)= (6.01, 6, 6) for dashed curve.
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20

Fig. 9.8.3 The dynamics of the Lorenz equations r = 28 and {x0, ya, z0) = (6, 6, 6)

The Lorenz attractor is dubbed a strange attractor because there are
no asymptotically stable equilibria or period orbits in a global attractor
that is a compact, connected invariant set. The geometry of the attractor
is exceedingly complicated. We may also visualize projects in xz - plane.
Figure 9.8.4 illustrates the case with r = 28 and (x0, y0, z0) = (6, 6, 6).
The graphs appear to cross over themselves repeatedly, but this cannot be
true for the actual trajectories in three-dimensional space because of the
unique theorem. The apparent crossings are due wholly to the two-
dimensional character of the figure.

z

-15 -10 -5 5 10 15

Fig. 9.8.4 Projections of a trajectory of the Lorenz equations in the xz -Plane; r = 28.
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Example An interpretation of the Lorenz equations for urban dynamics.
Zhang found that some urban systems can also be described by the
Lorenz equations.25 The urban model describes an urban system within a
metropolitan area. The system under consideration is small, so that its
dynamics will have almost no significant impact on the metropolitan
area. Businesses and residents are free to choose their location sites
either in the urban area or in the outside world. Locational characteristics
of the urban system are described by the following three variables:

x(t) = the output of the urban system at time t;

y(t) — the number of residents;

z(t) = the land rent.

With some proper assumptions about the behavior of businesses and
consumers, Zhang constructed a dynamic urban system that can be
reduced to the Lorenz equations. Since the urban system exhibits the
same behavior given by Fig. 9.8.3, the urban system exhibits the
following properties: (1) the temporary path of the three urban variables
are time-dependent but are not periodic (or "regular"); (2) the motion
does not appear to show a transient phenomenon since, regardless of how
long the numerical integration is continued, the trajectory is going to
continue to wind around and around without settling down to either
periodic or stationary behavior; (3) the topology of the figure is not
dependent on the choice of initial conditions or integrating route; and (4)
it is impossible to predict the details of how the trajectory will develop
over any period other than a very short time interval. Considering the
above urban interpretation of the Lorenz equations, we see that even if
the government is well informed and is composed of well-educated
officials and experts, it is impossible for the government to predict the
impact of its own actions, such as tax policy, land policy, and
infrastructure policy.

25 See Zhang (1991, Chap. 6).
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Exercise 9.8
1 (a) Show that the eigenvalues of the linear system (9.8.2) are given by
(9.8.3); (b) Determine the corresponding eigenvectors; and (c) Determine
the eigenvalues and eigenvectors of the system (9.8.2) when r = 28.

2 Using the Liapunov function
V(x, y,z) = x2 +oy1 + az\

to show that the origin is a globally asymptotically stable critical point
for the Lorenz equations if r < 1.



Chapter 10

Higher-Dimensional Economic Evolution

This chapter applies the mathematical concepts and theorems of higher
differential equations introduced in the previous two chapters to
differential economic models. Section 10.1 examines some tatonnement
price adjustment processes, mainly applying the Liapunov methods.
Section 10.2 studies a three-country international trade model with
endogenous global economic growth. Section 10.3 extends the trade
model of the previous section for examining impacts of global economic
group on different groups of people not only among countries but also
within countries. We provide insights into complexity of international
trade upon different people. Section 10.4 examines a two-region growth
model with endogenous capital and knowledge. Different from the trade
model where international migration is not allowed, people freely move
among regions within the interregional modeling framework. Section
10.5 introduces money into the growth model. We demonstrate the
existence of business cycles in the model, applying the Hopf bifurcation
theorem. Section 10.6 guarantees the existence of limit cycles and
aperiodic behavior in the traditional multi-sector optimal growth model,
an extension of the Ramsey growth model. Section 10.7 proposes a
dynamic model with interactions among economic growth, human
capital accumulation, and opening policy to provide insights into the
historical processes of Chinese modernization. Analysis of behavior of
this model requires almost all techniques introduced in this book.

382
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10.1 Tatonnement Price Adjustment Processes

We now use the Liapunov direct method to prove stability of a
Tatonnement price adjustment process of the Arrow-Debreu system. The
following example is based on Hahn.1

There are N goods in the economy, H households, and F firms in
the economy. Let xh e RN stand for the net trade vector of households
h; introduce

H

Define yf e RN as an activity of firm / where positive components
of yf denote outputs and negative ones denote inputs. Also introduce

Let z be the aggregate excess demand vector and s the aggregate
excess supply vector defined by

z = x — y = —s .

Let ps R" be a price vector. Assume that the price of goods 1 is
positive, /?, > 0. Let P stand for the vector {[/p^p with its first
component deleted. The endowment of household h is denoted by
wh G R". Define

We are concerned here with economies, which have continuously
differentiable excess supply and demand functions. It is known that as a
result of the rational behavior of the households and firms, we can
determine the excess supply and demand as functions of p and w*, i.e.,

s(p, w') a n d z{p, w ) .

They are homogeneous of degree one in p and obey Walras' law,2

respectively

'See Hahn (1982).
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s(p,w')=s(l,P,w*), ps(p,w') = O, fovallpeR?.

Let

D = {p\p>O,^iPl=l}.

Also let G be the boundary of D.

Definition 10.1.1 p e DIG is an equilibrium of the economic system
if for each / , (a) s\p', w) is non-negative, and (b)

p'si(p',w')=0.

Under appropriate conditions the existence of a unique equilibrium is
guaranteed. We consider the following Walrasicm tdtonnement

Pi=0, if pi=0andsi(p)>0, i = 2,---,N,

Pt = ~ kisi [p\ K > ° otherwise. (10.1.1)

Introduce

Under Walras' law, we have

V = 2ps{p).

It can be shown that if all goods are gross substitutes, then

p's{p) < 0

if p is not equal to kp* for k > 0.3 The following theorem is thus held.

Theorem 10.1.2 If all goods are gross substitutes, then the unique
equilibrium is globally asymptotically stable under (10.1.1).

2 Positive homogeneity of degree zero means that if all prices are multiplied by the same
positive constant, the excess demands do not vary, and this is a well-known consequence
of the utility maximization postulate.
3 Gross substitutability means that 8zf / dpj > 0 for all i, j , i * j . The conclusion of

p's(p) < 0 can be found in Arrow, Block, and Hurwicz (1959: 90). Note that the negativity
of the expression means that the aggregate excess demand function satisfies the weak axiom
of revealed preference.

(10.1.2)
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The price dynamic process described by the dynamics (10.1.1) can be
generalized. Moreover, different possible adjustment processes have
been suggested in the literature.4 For illustration of applying the
Liapunov function, we introduce the case of the dominant negative
diagonal.5 The assumption of the dominant negative diagonal means that
the aggregate excess demand functions satisfy

*,,<0, K,|> S | z , | for all i, (10.1.3)

where zik = dzi/dpk. Consider the following Walrasian tdtonnement

P, =k,zi(p\ K >0 f o r a 1 1 '»
where k, are constant. For the Liapunov function, we choose

V = maxl^zl.

Let \ksz5\ > \kiz\ for all /. Then

v = \K4
Assume that V exists everywhere.6 Using the notation sgn ,7 we have

v = K sgn(ZjE
z-A = *. ^kiZ^M • C10-1-4)

i i

At the equilibrium, V = 0. If the system is out of equilibrium,
zk ^ 0 at least for some k. By the definition of zs, \zs\ > 0 and

K\> IKI-
Hence, we have

KI^I>KIZW=KIZKI^Z^WKI>
i=l,i*s i=l,i*s "-s i=l,/*s

where we use |zj > ^.jz,!/^. Therefore

4 See Hahn (1982) and AITOW and Hahn (1971).
5 This case is referred to Gandolfo (1996).
6 The situation when V does not exist is referred to Arrow, Block, and Hurwicz (1959:
106).
7 The notation , syn{x), means the sign of x , i.e., syn(x) = +1 if x > 0, syn(x) = - 1 if

x < 0, syn(x) = 0 if x = 0.
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*.WW> 2>.kl l4 (10.1.5)

As zss < 0, we have

*>Jz»| = -M-W»(z,)- (10-1-6)
We now show

*.klKI> Z*iK/lhlsen(zJ=s8n(zJZ*iMz'l- (10-L7)
i=l,i*j i=l,i*s

We exclude

sgn(z,) = O

since the system is out of the equilibrium. There are three possible cases.
The first case is that for one or more subscripts i, zsi and z,. have the
same sign. We thus have zsijzf\ = zsjzr The second case is that for one or
more subscripts i, zsi or/and z,. are equal to zero. In this case,

The third case is when one or more subscripts i, zsj and z, are of
opposite sign. If

sgn(zj = - l ,

we have:

K,|KI = ^z,sgn(zJ.
I f sgn (z> l ,

Summarizing the above discussions, we conclude Eqs. (10.1.6). From
Eqs. (10.1.5) to (10.1.7), we obtain

- k,zaz,syn(z,) > sgn(zJ g ^ zazfo .

Therefore

0>sgn(zs)Jz,z,l,. (10-1-8)

This inequality holds in any non-equilibrium point. From Eq.
(10.1.4), we conclude that the equilibrium point is globally stable.
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It should be noted that the proof for the case of the dominant negative
diagonal can be extended to the case of a quasi-dominant negative
diagonal, in which

n

zu <0 , c\zH\> YJCJ\Z«\
 f o r a l l ^

where the c 's are positive constants. If we choose

V = max—z. ,

then as in the previous case we prove the global stability.

Example An unstable competitive equilibrium8

Consider an economy with three consumers and three goods. Each
consumer desires only two commodities (as specified in the utility
functions below) in a fixed ratio (i.e., the two commodities are perfectly
complementary), which is taken to be one to one, and has no desire for
the remaining commodity. Formally, the utility functions of the tree
consumers are written as

Ui(xu,xn,Xn)=min(xu,xl2),

U2(x,,, x22,x23) = min(x,2, x23),

U3(x3l, xi2, x3i) = min(*33, x3l\

where xj} are the quantity of good j by consumer i. It is assumed that
the initial endowments are

_ _ Jl fori = y,

*" ~ [0 for i * j .

That is, the first consumer possesses initially one unit of goods 1 and
zero units of goods 2 and 3, and so on.

Consider consumer 1. The first consumer's income is

Mi =*LJPJ*IJ =Pi>

8 This example is from Gandolfo (1996: 417-20). The model was proposed by Scarf
(1960).



388 Differential Equations, Bifurcations, and Chaos in Economics

where Pj is the price of goods / His budget constraint is

HjPjXlj=Mi-

For any income he will demand the same quantity of goods 1 and 2.
His demand functions are given by

*H(P» Pi' Pn K) = — = — - — ,
Pi + Pi Pi+ Pi

*u(Pi» Pi' P^ Mi) = — — — .
Pi + Pi

Xl3{Pl>P2>P3>Ml)=°-

The excess demands of the first consumer are

^iiPvPi'Pi) = xn ~ 1 = f2—.
Pi + Pi

ZniPvPi>Pi) = Xn - ° = — T '
Px + Pi

Zn(Pi>P2>P3)=
xn-(> = 0-

In a similar way we can derive the excess demand functions of
consumers 2 and 3. Adding the three excess demand functions for each
commodity we obtain the following aggregate excess demand functions

Z3(fl. Pi' ft) = Z,Z/3 = —~- + P! •
Pi + Pi Pl+ Pi

The only equilibrium situation is9

Pi = Pi = Pz •

9 At equilibrium, z, = 0 for all i.
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To determine absolute prices, we need a normalization condition, for
instance

The equilibrium point is thus (l, 1, l).
We consider the following Walrasian tdtonnement

Pi =z<{Pi> P2>Pi)- (10.1.9)

It is straightforward to show that

P1{t)p2(t)p3(t) = constant,

for any solution of Eqs. (10.1.9). It follows that equilibrium is not
asymptotically stable. In fact, the value of pxp2Pi at equilibrium is 1,
and if

/>,(ok(o)/>,(o)*i,
equilibrium will never be reached.

10.2 The Three-Country Trade Model with Capital Accumulation

Most aspects of our model are similar to the OSG model defined in
Chap. 4, except that the system consists of three countries, indexed by
j = 1, 2, 3.10 Only one goods is produced in the system. Perfect
competition is assumed to prevail in goods markets both within each
country and between the countries, and commodities are traded without
any barriers such as transport costs or tariffs. We assume that there is no
migration between the countries and the labor markets are perfectly
competitive within each country. Each country has a fixed labor force,
Nj, (j = 1, 2, 3 ). Let prices be measured in terms of the commodity and
the price of the commodity be unity. We denote wage and interest rates
by Wj(t) and ry(f), respectively, in the yth country. In the free trade
system, the interest rate is identical throughout the world economy, i.e.,

10 This model is proposed by Zhang (1992a, 1992b, 1993a, 1994). This section only
provides some simulation illustrations. Varied extensions of this model are proposed in
Zhang (2000).
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Behavior of producers
We specify the production functions as follows

a + /3 = \, a,/3>0, j = 1,2,3, (10.2.1)

where Z; are the technological level of country j , Kj is the level of
capital stocks owned by country j , and E} > (<) 0 are the level of
foreign capital stocks (the home capital stocks located abroad)."

According to the definition of Ep we have the following accounting
equation

tEj=°- (10-2-2)

The marginal conditions are given by

aF. J3F,
r = '-—, y, =!—L. (10.2.3)

Kj+E/ ' N,
Behavior of consumers
Consumers obtain the current income Yj

y » = r(/)«:y(/)+Wy(/)iVy, (10.2.4)

from the interest payment rKj and the wage payment WjN.n The total
value of wealth that consumers can sell to purchase goods and to save is
equal to K(t). Here, we assume that selling and buying wealth can be
conducted instantaneously without any transaction cost. This is
obviously a strict assumption. The gross disposable income of country j
is equal to

Y;.{t) = Yj{t) + Kj{t). (10.2.5)

11 Chapter 2 in Zhang (2000) examines cases when a 's are different between the two
countries.
12 It should be noted that the current income of the world is equal to its total output. This
can be shown by

Z/v = Z ,K- + WJN)= I y K + rEJ + WJN) - H/EJ = I / > '
where we use Eqs. (10.2.2) and (10.2.3).
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The gross disposable income is used for saving and consumption and
for paying the depreciation of the wealth. We assume that consumers pay
the depreciation of capital goods which they own. The total amount is
equal to SkKj(t) where Sk (0 < Sk < 1) is the depreciation rate of
physical capital. We assume that the depreciation rate is equal across
countries. At each point of time, consumers would distribute the total
available budget among saving Sj(t), consumption of goods Cy(f), and
payment for depreciation SkK{t). The budget constraint is given by

The disposable income is

Yj = Yj + Kj - SkKj = rKj + WjN + 5Kjy S = \-Sk.

The budget constraint is now given by

CJ + SJ = Yj. (10.2.6)

We use the Cobb-Douglas utility function to describe consumers'
preferences

Uj{t) = &lSx', £,/t. >0, (10.2.7)

in which £ and X} are respectively country j 's propensities to
consume goods and to own wealth. Without loss of generality, we
require

£ + 4 = 1 .
Maximizing Uj subject to (10.2.7) yields

C. = £ / , , SJ=XJYJ. (10.2.8)

Accumulation of capital
The change in the households' wealth is equal to the net saving minus
the wealth sold at time t, i.e.

KJ{t) = SJ{t)-Kj{t).

Substituting Eqs. (10.2.8) and Yj = rKj + WjN + SKj into the above
equation yields

Kj=AjYJ-SJKJ, y = l , 2 , 3 , (10.2.9)
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where

Sj=(\-Sk)tJ+Sk.

We have thus built the model. Through the conditions of equalization
of interest rates in Eqs. (10.2.3) and (10.2.1), we obtain

r~(Kl + EXY ~ {K2 + E2y ~{K3 + E,y
Hence,

E, = a,(*i + Ex) - Kn i = 2, 3, (10.2.10)

where

U,J AT,
We see that E2(t) and E3(t) can be considered as functions of Kj(f)
(j = 1, 2, 3) and £,(/). From Eqs. (10.2.2) and (10.2.10), we solve £,(/)
as a function of ^ ( z ) (j = 1, 2, 3)

^ t e + ^ - k ^ K . (10211)
a2 + a3 + 1

Lemma 10.2.1 For given levels of Kj(t) (j = 1, 2, 3 ) at any time /, all
the other variables in the dynamic system are uniquely determined by the
following procedure: El by Eq. (10.2.11) —> E2 and Ez by Eqs.
(10.2.10) -+ Fj by Eqs. (10.2.1) -» r and w, by Eqs. (10.2.3) -> Y}

Eqs. (10.2.4) -> Yj = rKj + WjN + SKj -> C, and Sj by Eqs.
(10.2.8) -^ Uj by (10.27). Moreover, the dynamics of Kj(t)
(_/ = 1, 2, 3) over time is given as follows

Kj = X/jiK,, Klt K3) -SJKJ, j = 1,2,3. (10.2.12)

This lemma shows how to simulate the model with given initial
conditions of Kj(6) (j - 1, 2, 3) and the parameters. The simple model
reveals the motion of the global economy with different (exogenous)
preferences and technology under economic freedom (not freedom of
migration). To simulate the model, we specify the parameters as follows
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a = 0.25, St = 0.05, \ = 0.7, A, = 0.65. X, = 0.5, iV, = 1,

JV2 =5 , N3 = 10, Z, = 3, Z2 = 1, Z, = 0.5.

As shown in Fig. 10.2.1, the total capital, output and consumption
levels of the world economy increase; but tend to approach long-term
equilibrium.

K,F,C

27.5 ^ _ _ _ _ _ _ _ _ _ _ _

25 y ^ " ^

22.5 /

20 /

17.5 /

12.5 / - "" '^^

-/L—.—,—.—,—,—,—,—.—,—,—.—.—.—,—.—.—.—,—•_ t
5 10 15 20

Fig. 10.2.1 The total capital, product and consumption of the world economy.

Figure 10.2.2 shows the dynamics of three countries' wage rates and
the rate of interest. Differences in wage rates between countries are great.
For instance, the ratio between country 1 and country 3 's human capital,
ZJZi, is 6; the wage ratio between the two countries w,/w3 is 14
near the long-term equilibrium.

Figure 10.2.3 shows the per-capita consumption levels in the three
economies. In free competitive world, living conditions are greatly
different among the countries due to differences in human capital and
preferences.
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Fig. 10.2.2 Countries'wage rates and rate of interest.
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Fig. 10.2.3 Countries'consumption levels.



Higher Dimensional Economic Evolution 395

10.3 Growth, Trade, and Wealth Distribution Among Groups13

The model examines how free trade may affect different people from the
same national economy. This chapter classifies the population of each
country into two groups. The two groups are assumed to have different
human capital and utility functions. We are interested in how changes in
the preferences and human capital of one group may affect the living
conditions of all the groups in the world economy. Most parts of the
model are the same as the trade model in Sec. 10.2. The system has two
countries, indexed by j = 1, 2, and produces one good. The population
of each country is classified into two groups, indexed by group 1 and
group 2, respectively.

NJk = the fixed population of group k in country j , k - 1, 2 ;

Kjk(t) - the capital stocks owned by group k in country j , at

time t;
E(t) > (< ) 0 = country 2 's ( l 's) capital stocks employed by country 1

(2);
Fj{t) = country j's output;

C/*(0 = the consumption level of group k in country j ;

yvjk{t) = the wage rate of group k in country j ; and

r{t) = the rate of interest.

Country y"s total capital stock Kj(t), the world's capital stocks K(t),
country y ' s qualified labor force Np and the world's qualified labor
force N are given by

Kj = Kn + Kj2, K = K1+ K2, Nj = zjXNn + zJ2NJ2,

N^Nt+N,, (10.3.1)

where zjk is the human capital of group k in country j , k = 1, 2. The

parameter zjk measures the productivity of group k in country j . The

production functions of the two countries are

13 This model is explained and analyzed in Zhang (2000).
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F](t) = (K1 + EJN(>, F&) = fc-EfNZ,
a + /3 = l, a,p>0, y = l , 2 , (10.3.2)

where AT, + E and K2-E are the capital stocks employed by countries
1 and 2, respectively. The marginal conditions are given by

r = ̂ L _ _ _ ^ _ , **L. (10.3.3)
K,+E K2-E

 Jk Nj K J

It is assumed that the utility level Ujk(t) of group k in country j
depends on its temporary consumption level CJk(t) and the net saving,
SJk(t). The utility functions Ujk(t) are specified as

u j k { t ) = c ^ s ^ ,

Zlk + K = i, £»> ** > °. J>k = l>2 • (10-3-4)
Here, we call £]k and AJk group jk 's propensities to consume goods
and to hold wealth, respectively. We interpret Ujk as in Chap. 2.

The current income Yjk of group k in country j is given by
Yjk = rKJk + wjkNjk. (10.3.5)

Households in each country have two decision variables, Cjk and
Sjk. The budget constraints are given by

Cjk+Sjk=Yjk, 7 , * = 1,2, (10.3.6)

where

Yjk=YJk+Kjk-SkKJk

and Sk is the fixed depreciation rate of capital. The consumers' optimal
decisions are

Cjk = ZjkYjk, Sjk = AJkYJk, j , k = 1, 2 . (10.3.7)

The wealth accumulation of group k in country j is given by

Kjk = Sjk ~ Kjk.

Substituting Sjk from Eqs. (10.3.7) into the above equations yields

Kjk=AjJj>-V*> (10.3.8)
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where

We have thus built the model. The system consists of 30 endogenous
v a r i a b l e s , K j k , CJk, S J k , Y]k, w j k , Ujk ( j , k = 1 , 2 ) , K , , K 2 , F p F 2 ,
E and r. It also contains the same number of independent equations.
We now show that the system has solutions.

To express the dynamics in terms of Kjk(t), it is sufficient to
represent Yjk(t) as functions of Kjk(i) at any point of time. First, by Eqs.
(10.3.2) and

aFx _ aF2

Kx+E~ K2-E '

in Eqs. (10.3.3), E is solved as a function of Kx and K2 as follows:

N

Substituting Eqs. (10.3.3), (10.3.2) and (10.3.9) into Eqs. (10.3.5), we get

The above four equations determine Yjk as functions of Kjk. By Eqs.
(10.3.10) and (10.3.8), the dynamics of the four variables Kjk{t) are
determined by the following four-dimensional autonomous differential
equations

KJk=^kYJk(K})-SJkKjk. (10.3.11)

Summarizing the above discussion, we obtain the following lemma.

Lemma 10.3.1 The dynamics of the economic system are determined by
the four-dimensional differential equations (10.3.11). The values of all
other variables at any point of time are directly given by the following
procedure: Kjk by Eqs. (10.3.11) -> K].=KJ1+KJ2 -» E by Eq.
(10.3.9) -> YJk by Eqs. (10.3.10) -> F ; by Eqs. (10.3.2) -> r and wjk

by Eqs. (10.3.3) -> Sjk and Cjk by Eqs. (10.3.7) -> Ujk by (10.3.4).

(10.3.9)

(10.3.10)
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The dynamic structure of the economic system is explicitly
determined by the above lemma. By Eqs. (10.3.10) and (10.3.11), an
equilibrium point is given as a solution of the following equations

aNKjkIK + (kjkN, SjkKlk

From this equation, we solve Kjk as functions of K as follows

K = &#NjtK (103 12)
* (SJkK^/AjkN"-a)N- ( 1 0 J - 1 2 )

Since Kjk > 0 have to be satisfied, by Eqs. (10.3.12) it is necessary to
require

K>K0=mm\\^\ N, j,k = l,2\>0. (10.3.13)

Adding the above four equations and using

we have

* w - ^ - w > - « - (KU'14)
Since O(K0) < 0, O(-H») > 0 and O'> 0 for A:o<A:<+oo) the

equation,
<$(K)=0, Ka<K<+°°,

has a unique solution. The world capital stocks K are thus uniquely
determined. By Eqs. (10.3.12), the capital stocks Kjk of the two groups
in the two countries are uniquely determined. By the procedure in lemma
10.3.1, the equilibrium values of the other variables are uniquely
determined. The following proposition is held.

Proposition 10.3.1 The dynamic system has a unique equilibrium.

We now examine the equilibrium trade pattern. By Eqs. (10.3.9),
(10.3.1) and (10.3.12), we have
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(3NXN2K\ z2kN2k

N2 \(S2kK?l W - a)N2

_y Zit^u ]
^k(SlkK

fi/AltN
p-a)Nlj'

As it is not easy to explicitly interpret the above condition, we
examine some special cases. It can be seen that E is positive (negative)
if

(SUKP I^N" - a)N2 (SuK
fi IA,kN

p - a)Nx'

k = \,2.

In the case of z2kN2k = zikNlk, E is positive (negative) if
S2k/A2k <(>)Slk/Alk, i.e., \l\k <(>)l/Alk. We may thus conclude
that in the case in which the qualified labor force of group A: (A: = 1 and
2) in country 2 is equal to that of group k in country 1, then if group
k in country 2 has higher (lower) propensities to hold wealth than in
country 1, country 1 (2) will utilize some of country 2 's (1 's) capital
stocks.

In the case of A,t = \ k , k = 1, 2, E is positive (negative) if
z2kN2k > (<) zuNu. In the case in which the preferences of group k
(k = 1 and 2) in country 2 are identical to those of group k in country
1, then if group k in country 2 has more (less) qualified labor force
than in country 1, country 1 (2) will utilize some of country 2's (l 's)
capital stocks. It is difficult to interpret other cases. From the above
discussion, it can be seen that the trade pattern is determined by
differences in human capital and propensities to hold wealth between the
two countries.

For convenience of discussion, in the remainder of this section it is
assumed that the populations of the four groups are identical, i.e.,
NJh = Njh. By Eqs. (10.3.12), the ratios of the capital stocks per capita
between group jk and group ih are given by

Kjk_SihK*IXih^-azik

Kih ^ / ^ / - a z / " 1 ' 1 ( 1 ° - 3 - 1 5 )
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We have that KJk > (<) Kih if z.k > (<) zih and AJk > (<) Aih. That is, in
the free trade world economy the level of capital stocks owned by group
jk is higher (lower) than that owned by group ih if group jk has a
higher level of human capital and a higher propensity to hold wealth than
group ih.

B y AjkYjk = SjkKjk and Eqs. (10.3.7), we obtain
Yjk _ 5jAhKjk cjk _ €jAhKJk n ( n i / a

'i* Ajk°ihKih L t t AjktsihKih

By Eqs. (10.3.15) and (10.3.16), we see directly that Yjk > (<) Ylh if
z
;* > (<) zih an<^ ^jt -* (<) ' V 1° ^ c a s e °f ît = 0> w e have:

Cjk > (<) Cl7l if zjk > (<) ztt and Xjk > (<) yltt. In other cases, it is difficult
to explicitly judge the signs of Yjk - Yih and Cjk - Clh.

We now examine effects of changes in group 11 's human capital zn

on the world economy. By Eq. (10.3.14), we get

dK _(AilN
fi-SnK

/))Nn Nn
0 dzn (SUK» - aA.^P N '

where

o my /»W> >0
0 ^Jk {SJkK

fi I XJkN
p - a)2 XjkK

aNp

In the case of ̂ Np > 8nK
p, an improvement in group 11 *s human

capital increases the world capital stocks. If ^XNP < SuK
fi, the impact

on K is ambiguous. As the equilibrium value K is not explicitly solved,
it is not easy to interpret the condition \XNP > SuK

fi'. Taking
derivatives of Eqs. (10.3.12) with respect to zu, we obtain

SUKP - aX^N* dKn _ SuK
fi - a^.N0

Ku dzu zu

[K dzn N )

(SJkK* - cdJkN')K dKjk

aKjk dzu
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It is easy to check that in the case in which the four groups have
identical preferences, i.e., A = Ajk (£ = £Jk and 5 - djk) for all j , k.
Using

we get

«ii V<V dzn zu dzn

That is, an improvement of group 11 's human capital enlarges group
11 's capital stocks and the world's capital stocks, but has no impact on
the capital stocks of the other three groups. Taking derivatives of
7y* =Vjk/Ajt and CJk = £JkKjk/AJk with respect to zn respectively,
we obtain

1 dCjk _ 1 dYjk ^ 1 dKjk

Cjk dzu YJk dzu KJk dzn

for all j , k. The sign of dCjk/dzn and dYjkl dzn is the same as that of
dKjk/dzn.

10.4 A Two-Region Growth Model with Capital and Knowledge

The model studies relationships between regional growth and regional
trade patterns.14 Each region's production is similar to the standard one-
sector growth model. Knowledge accumulation is through learning by
doing. We consider an economic system consisting of two regions,
indexed by 1 and 2, respectively.

It is assumed that climates and environment are homogeneous within
each region, but they may be different between the two regions. We

14 This section is referred to Chap. 9 in Zhang (2003). The modeling framework is
proposed by Zhang (1991a, 1993b).
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select commodity to serve as numeraire. The amenity levels are assumed
to be regionally fixed. Since people's locational choice is affected by
regional environmental conditions and the temporary equilibrium
condition for labor movement is that people achieve the same level of
utility in two regions, we see that wage rates between the two regions
may not be equal.

To describe the model, we introduce

N = the given population of the economy;
K{t) - the total capital stocks of the economy at time t;
Z(t) = the level of knowledge stock at time t;

Fj(f) = the output levels of region j 's production sector;

Kj(t) and Nj(t) = the levels of capital stocks and labor force employed

by region j's production sector;

Cj{t) and Sj{t) = the consumption level of and level of saving per

capita in region j ;

y>] ( 0 = the net income per capita in region j ;

r(t) = the rate of interest; and

Wj(t) = region j's wage rate.

Production functions of the two regions are

Fj(t) = Zm^K^Nf, mj>0,

a,/3>0, a + p = \, y = l , 2 , (10.4.1)

in which mj are region j's knowledge utilization efficiency parameters.
They measure how effectively each region utilizes the knowledge
reservoir of the economy. The marginal conditions are given by

aF BF.
r = —L, w.=Z-Lm (10.4.2)

K/ ' Nj

The rate of interest is identical in the whole economy and the wage
rates, w;, may be different between the two regions.

If we denote kj{t) the level of capital stocks per capita in region j ,
the interest payment per capita is given by r{t)kj{t). The current income
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per capita, _yy(f) in region j consists of the wage income, Wj(t), and
interest payment, r{t)kj{t). That is

J0(O = w7(O + KO*,(O, 7 = 1 , 2 . (10.4.3)

It is assumed that a typical person's utility level, Uj(t), in region j
is dependent on the person's consumption level, Cj(t), of community,
and the net saving, Sj(t). The utility functions are specified as follows

UJ(t) = AJcfs^, £j,Aj>0, <fy+A, =1, 7 = 1.2, (10.4.4)

in which £ and Aj are respectively region j's propensities to consume
commodity and to hold wealth.

A household's current income is distributed between consumption
and saving. The budget constraints are given by

CJ + SJ = y j + k j - s t k j > J = l > 2 -

The optimal problem has the following unique solution

Cj = ipr Sj=xJa], (io.4.5)
where

Qj^yj+dkj, d = \-St.

The wealth accumulation of a typical person in region j is given by

kJ=sJ-kJ.

Substituting s. in Eqs. (10.4.5) into these two equations yields

kJ=AJQJ-kj. (10.4.6)

As people are freely mobile between the two regions, the utility level
of people should be equal, irrespective of which region they live. That is

Ul(t) = U2(t). (10.4.7)

This equation is the temporary equilibrium condition for interregional
labor force markets.

Knowledge accumulation
In this section, we only take account of learning by doing in formulating
knowledge accumulation.

We propose the following possible dynamics of knowledge
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in which r\ (> 0), e}, and Sz (> 0) are parameters. Here, we interpret
TJFJ IZe' as region j 's contribution to knowledge accumulation through
learning by doing. We assume that the contribution to the knowledge
creation of region j's labor force is positively and linearly related to the
region production scale, Fy. The term, \IZ*', implies that region j's
knowledge accumulation exhibits return to scale effects. The parameters,
Ej, measure return to scale effects of knowledge in knowledge
accumulation by region j's labor force. We say that the contribution to
knowledge growth of region j exhibits increasing (decreasing) scale
effects when s} < (>) 0. We interpret zj as a measurement of
knowledge accumulation efficiency. It should be noted that it is
conceptually not difficult to introduce other ways, such as research
institutions and education, of accumulating knowledge.

By the definitions of K, k} and N., we have

K - *,#, + k2N2. (10.4.9)

The above equation tells that the total capital stocks of the economy is
equal to the sum of the capital stocks owned by the two regions. The
assumption that labor force and capital stocks are fully employed is
represented by

N,+N2=N, KX+K2=K.

We complete the construction of the basic model. We are now
concerned with conditions for the existence of equilibria of the dynamic
system. By Eqs. (10.4.8) and (10.4.6), at equilibrium we have

5 5 . + *& = 5ZZ, AjQj = kJt 7 = 1,2. (10.4.10)

Substituting kp.} = kj from Eqs. (10.4.10) into Eqs. (10.4.5) yields

Cj=^~, Sj=dkj. (10.4.11)

These equations tell that at a steady state the level of consumption per
capita in region j is proportional to the capital stocks per capita.

(10.4.8)
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Substituting Eqs. (10.4.11) into the utility functions (10.4.4) and then
using Eqs. (10.4.7), we get

The balance of demand and supply is given by

S&N, + S2k2N2 =Fl+F1, (10.4.13)

where

By AJQJ = kj in Eqs. (10.4.10) and (10.4.3) and the definitions of
Qj, we get

wj=(Sj-r)cj, j = l,2. (10.4.14)

By Eqs. (10.4.1) and (10.4.2), we get

A s *' = K* , r = -^r, w,=fiZmj"'Aa. (10.4.15)
tf.Z"1" N2Z

m'ip Afl J

Substituting

rK. K.
p = L-—J-

j a tf

into Eq. (10.4.13) yields

d&N^+S^N^jf, (10.4.16)

where we use K = Kx + K2. Substituting Eqs. (10.4.9) and (10.4.12)
into Eq. (10.4.16) yields

r=FW (10A17)

where T = NJN2. By N} + N2 = N and T = Nt IN2, we have

N. =-^-, N2 =-^—. (10.4.18)
1 i + r 2 l + r

(10.4.12)
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Dividing the first equation in Eqs. (10.4.14) by the second one and
then using Eq. (10.4.12) and Eqs. (10.4.15), we obtain

z"=^f- ( 1 0 A 1 9 >
where

w, -m2

In the case of m = 0, we solve A and F respectively by Eqs.
(10.4.19) and (10.4.17). If without special mention, m * 0 holds below.

For simplicity of discussion, we require:

^ > 8, > 82.

We interpret this requirement later on. By Eqs. (10.4.14) and r = a I Ah

in Eqs. (10.4.15), we see that Wj > 0 are guaranteed if

A^>maxRy=l,2Uf.
[Sj J S7

By Eq. (10.4.19) we see that this condition also guarantees Z* > 0.
By Eq. (10.4.17) T > 0 is guaranteed if \IS2 >T>\ISV It is thus
sufficient for us to require

i - > T > maxU-, -^1 = 4" • (10.4.20)
82 \8X 82) 8X

By the first equation in Eqs. (10.4.15) and Fj = Kj /A0, we have

KJ^ANJZ"1'^, Fj = AaNjZmj^. (10.4.21)

Substituting F} from Eqs. (10.4.21) into the first equation in Eqs.
(10.4.10), we get

O ( A ) S O 1 ( A ) + O 2 ( A ) - ^ = 0, - 1 > A " > 4 - , (10.4.22)
82 8,

where we use Eq. (10.4.17) and
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m.

In Eq. (10.4.22), F and Z are functions of A respectively defined
by Eq. (10.4.17) and Eq. (10.4.19). By Eqs. (10.4.22), (10.4.17), and
(10.4.19), we conclude that the function, O(A), has the following
properties

JO _ ^O, + x2<3>2 dZ 0 , / r - O . , dT 3>, + O2

dA~ Z dA+ 1 + r IK*" A7 '

in which

dZ _ S2- S1 afiZ
mdh~ {S2A

fi -a\S^ -a) A" '

*L*L= I + * >p
/3TdA S2A

p-a S,AP - a
As it is difficult to explicitly judge the signs of ^IS\ip\ o(l/<?j//J)

and d<S>/dA, we see that it is difficult to judge whether or not the
equation, <3>(A) = 0, has solutions for \l82 > A0 >\lSv We may solve
the equation properly specifying values of some parameters. For
instance, if o(l /Jj / < 8)>0 (which is guaranteed, for instance, if T2 is
large), $ ( l / ^ ) < 0 (which is guaranteed, for instance, if r, is small),
and d<J?/dA > 0 (which is guaranteed, for instance, if m > 0, xi < 0
and x2 < 0), then the dynamic system has a unique equilibrium.
Summarizing the above discussion, we obtain the following proposition.
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Proposition 10.4.1 We assume m>0 and 82la> 8X>82. If Eq.
(10.4.22) has solutions for

52 dl

for any given solution, the dynamic system has a unique equilibrium.
The number of economic equilibrium is equal to the number of solutions
of Eq. (10.4.22).

Since it is difficult to interpret the conditions that Eq. (10.4.22) has a
meaningful solution, for illustration we now examine the case of m = 0.
We still require: S2/a > S{ > d2. By Eq. (10.4.19), we solve A^ as
follows

A'=-T^4- ( 1 0 A 2 3 )
olA - o2

The unique solution, A^, is positive and satisfies (10.4.20) if

AZfLzil < A < m i n R , —&—\ < 1. (10.4.24)

Under (10.4.24), we solve A by Eq. (10.4.23). By Eq. (10.4.17), we
solve F. It should be noted that the values of T and A are independent
of Z . Similarly to Eq. (10.4.22), we get

<D0(Z) = 0>01(Z) + O02(Z)-</ = 0, c o > z > 0 , (10.4.25)

where
r NV7Xl A" T N7*1 A"

O01(Z) = 7 ' M Z A , O 0 2 ( Z ) S ^ ^ - .

It should be noted that in Eq. (10.4.25) A and F are treated as
parameters. The equation includes a single variable, Z.

We obtain that <I>0(Z) has the following properties: 1) in the case of
Xj < 0, we have

O0(Z)>0, O0(=o)<0, - ^ < 0 , o o > z > 0 ,

2) in the case of x} > 0, we have
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O 0 (Z)<0 , O0(oo)>0, ^ > O , c o > Z > 0 .

aZ,

3) in the case of x, > 0 and x2 < 0 (x{ < 0 and x2 > 0 ), we have

O0(Z)>0, O0(oo)>0,

= 0 has a unique solution, °o > Z > 0.
dZ

From these properties of O0(Z), we have the following results.

Corollary 10.4.1 If m = 0, 82 la > Sx > S2, and (10.4.24) holds, then,
we have: (1) If Xj < 0, j - 1, 2, the system has a unique equilibrium; 2)
If Xj > 0, y = 1, 2, the system has a unique equilibrium; 3) If x] > 0
and x2 < 0 (x, < 0 and x2 > 0), the system has either two equilibrium
or no equilibrium point. Moreover, the equilibrium values of the
variables are given by the following procedure: A by Eq. (10.4.23) —> T
by Eq. (10.4.17) -» Np 7 = 1 , 2 , by Eqs. (10.4.18) -» Z by Eq.
(10.4.25) -» r, Wy and / : . by Eqs. (10.4.15) -> K = Kt + K2 ^ kj by
Eqs. (10.4.14) -» Cj and sy by Eqs. (10.4.11) -* F;. by Eqs. (10.4.1) ^
^ by Eqs. (10.4.3) -» t/, by (10.4.4).

The requirement, m = 0, means that the two regions have the same
level of knowledge utilization efficiency. The requirement, Sx > S2 (i.e.,
A2 > /i[), implies that region 2 's propensity to hold wealth is higher
than region 1. The condition, S2/a>Si>S2, implies that the
preference difference between the two regions is not large. The condition
(10.4.24) is guaranteed if the amenity ratio between the two regions is
properly bound. As mj is region j's knowledge utilization efficiency
parameter and ey. denotes the return to scale effects of knowledge in
knowledge accumulation, we may interpret x} as the measurement of
return to scale effects of knowledge in region j . The condition,
Xj < (>) 0, j = 1, 2, may be interpreted as that the two regions exhibit
weak (strong) return to scale effects of knowledge.

In the remainder of this chapter, we examine effects of changes in
some parameters on the economic structure. For simplicity, we assume
that the assumptions in Corollary 10.4.1 are satisfied. Moreover, we are
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concerned with the two cases, xs > 0 and x} < 0, j = 1, 2, that
guarantee the existence of a unique equilibrium in the dynamic system.

We now examine the impact of changes in the parameter, A. By the
definition of A, A is changed either due to changes in Aj or Xr Here,
we assume that a change in A is due to changes in amenity levels. An
increase in A means an increase in A1 or decrease in Al. Taking
derivatives of Eqs. (10.4.17), (10.4.18), r = alAp in (10.4.15), and
(10.4.23) with respect to A yields

fi dA _ St-S2

aAa dA {SXA-Sj '

dr _ ap dA
dA ~ Ap+l dA < '

^ = 3 - / 2 ^ d A _ I < 0
dA (l-S^ll-S.A^A" dA A '

1 dN, _ 1 dT

~N[HA~ (i + r)r^4 < '

1 dN2 _ -1 dr ^ 0

N2 dA 1 + TdA
As region 2's amenity level is increased, the rate of interest is

reduced and some of region 1 's population migrate to region 2. By Eq.
(10.4.25), we have

_NdO±dl=ccd_dA+f%L_^L)j^2_dr
dZ dA Ap dA [N, N2)\ + TdA

Since d$>ldZ < (>) 0 in the case of x} < (>) 0, we conclude that if
we further require O02IN2 > O01 / N{ then dZ/dA> (<) 0 in the case of
Xj < (>) 0 In the case that the contribution, <bO2/N2, to knowledge
accumulation by region 2 's per capita is larger than the contribution,
<l>01/JVp by region l 's per capita, if the two regions exhibit strong
(weak) increasing return to scale effects in knowledge utilization and
accumulation, then an improvement in region 2 's amenity will reduce

(10.4.26)
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(increase) the equilibrium value, Z, of the knowledge stock. In the case
of

N2 N, '

it is difficult to determine the sign of dZI dA.
By Eqs. (10.4.15) and F} = K} I Ap, we get the impact on Kj and wj

as follows

1 dwj _ mx dZ_ a_dA_ . , 2

~^~~dA~~/3Z~dA+7^~dA' J~ ' '

J_^L = J_^L L^L mJ dZ

Kj dA ~ Nj dA A dA fiZ dA '

±^ = _Li_^^. (1o.4.27)
Fj dA Kj dA KdA

In the case of dZ I dA > 0, the sign of dwj I dA is the same as that of
dZ I dA. We see that the two regions' wage rates may be either increased
or reduced in the case of dZldA < 0. From Eqs. (10.4.26) and (10.4.27),
we see that it is complicated to explicitly determine the signs of dK} I dA
and dFj/dA.

By Eqs. (10.4.14), (10.4.11) and y} = Sjkj, we have

J_^I__w]_rfZ aSj -r dA

kj dA ~ pZ dA + [Sj - r)\ dA '

1 dys _ J_ dcj_ _ 1 dkj

y} dA Cj dA kj dA

As

— > 0 , S - r > 0, adx- r >Q, aS2-r>0,
dA

we conclude that dk{/dA>0 (dk2/dA<0) in the case of
dZ IdA> (<) 0 . The signs of dk2ldA (dkxldA) may be either negative
or positive in the case of dZI dA> (<) 0.
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10.5 Money and Economic Growth

In the process of exchange and division of labor, money plays an
essential role in modern economy.15 We provide the neoclassical growth
model with money - the generalized Tobin model. This section is based
on Chap. 6 in Burmeister and Dobell and in Zhang.16 The model in this
section is developed and extended within the framework of Tobin's
analysis.17 We assume the presence of a paper currency in addition to a
single capital good; wealth may be held in either of these two forms. The
production side is identical to the OSG model. Money, issued by the
government without cost, is assumed to serve as numeraire. Money is
desired for current investment and transaction purposes. We assume that
the per capita demand for money is a function of per capita money
income, per capita money wealth, and the expected yield on capital. The
money market is assumed to be always in equilibrium, that is, money
demand per capita md always equals the actual money supply per capita

md = G(y,w,r) = m,

where m (= MIN, where M is money stock, N labor force) is per
capita money stock supply, G is a continuous function with regard to the
arguments, y per capita value of output, w (= pk + m) per capita
money wealth; r is the expected money yield on the capital good. We
have

L P .
where p is price of output in terms of money as numeraire, F, f(k),
k, and Sk are defined as in the OSG model. In the above formation,
E[dpldtl p] is the expected inflation rate.

15 See Hahn (1969), Gale (1983), Grandmont (1983, 1985), Orphanides and Solow (1990),
Stadler(1990).
16 See Burmeister and Dobell (1970) and Sec. 3.3 in Zhang (1990).
17 See Tobin (1955,1965). Extensions of this model to the Keynesian economics are referred
to Chiarella and Flaschel (2000). Franke and Asada (1994) construct a nonlinear dynamic IS-
LM model in four state variables representing real balances, inflation, income distribution,
and a so-called state of confidence. The system exhibits time-dependent behavior.
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We assume the absence of "money illusion", which means that
G(y,w,r) is homogeneous of degree one in its first two arguments. The
real wealth W and real disposable income Yd{t) are defined as

W(t) = K(t) + y/(t), Yd(t) = F{K(t),N(0) ~ SkK(t) + xj/(t),

where

,^ Af (0

H0 = —?-f-
As

F(t) = C(t) + SkK(t) + k(t),

where C(t) is the consumption, we have

Yd(t) = C(t) + W(t).
That is, real net disposable income is equal to the change in real

wealth plus real consumption. It is assumed that real consumption is
always a constant fraction of real net disposable income

C(t) = cYd(t),

where c is the propensity to consume. This is a flow equilibrium
condition satisfied at all points of time. From Yd =C + dWldt and
C = cYd, we have

W(t) = sYd(t),

where s = \ - c. This implies

K - s(Y + iff - 8kK)-y/ = s{y - Skk) - (1 - s)\ff , (10.5.1)

which is referred to as Tobin's fundamental equation.
Taking the derivative of x = y/1N yields

Sx=z~n- gp,

where n is the fixed population growth rate and z is the constant
proportional rate of increase in the nominal stock of money. The
parameter z is fixed by the government. Let us denote

1 = E[gp] = gp.
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By y - f(k) and omitting depreciation factors (i.e., Sk =0 ) , it is
obvious to show that we may write (10.5.1) and gx = z - n - gp as
follows

*(0 = sf(k(t)) - c{z - q{t))x{t) - nk{t),

x{t) p{t)

To complete the system, we have to specify dpidt. We permit the
market for goods and services and the money market to be out of
equilibrium and the actual rate of inflation to be different from the
expected one. We adopt the Walrasian view that when there is excess
demand the price rises, and when there is excess supply the price falls.
Without taking account of expected inflation, we propose the following
dynamics

p = ap[x-g{.)},

where or is a positive constant parameter, and the function g is to be
specified. It is assumed that the expected inflation rate may be different
from the actual inflation rate. The dynamics is specified as

IP J
where /? is the so-called "expectation coefficient". This is the "adaptive
expectation" equation initially introduced by Cagan.18 It states that
expectations change a constant proportion of the "error" between the
actual rate of inflation and the expected one. If /3 —> °°, we again have
the perfect foresight equation.

We now come to the problem of specifying the demand function for
money. In the case in which the demand for real balances is only for
asset purposes, then it is a function of the opportunity cost of holding
them, / ' (£ ) + q. We now examine the cases in which the two assets of
our model, capital and real cash balances are perfect and imperfect
substitutes. In the first case, the yields of both assets have to be the same.
Otherwise, when f'(k) + q > 0 only capital is demanded, and when

18 Cagan (1956).
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f'(k)+ q < 0 only real cash balances are demanded. In this case we
have g'(.) —> - °°, where the derivative is related to f'(k) + q. In the
second case, we have f'(k) + q > 0 because of the obvious superiority
of real cash balances. The demand function is negatively related to
f'(k) + q. Tobin attributed this difference to a risk element involved in
asset capital as compared to the risklessness of real cash balances, while
Friedman et al. attributed this difference to what they call the utility yield
of real cash balances. We also have to take account of money which is
demanded for transaction purposes. The proxy for per capita transaction
demand usually found in the literature is the per capita output f(k); the
higher the per capita output, the higher the per capita transaction
demand. We can thus generally write g as,

g = G'{f(k), f+ q}, or g = g(k,q).

In the case of perfect substitutability, we have gk - + °° and g = - °°;
in the case of imperfect substitutability, gk > 0 and gq < 0.

Summarizing the above discussions, we obtain the following
generalized Tobin model

k = sf(k) - c(z - q)x - nk,

- = z-n-a{x- g(k,q)},
x

q = /3[a{x-g(k,q)}-q]. (10.5.2)

A positive long-run equilibrium is determined as a solution of

sf{k) — c(z - q)x - nk = 0,

z-n-a{x-g(k,q)} = 0,

a{x - g(k,q)} = q .

First we have

x = (sf -nk)lcn,

which exhibits the non-neutrality of money in the sense that the capital-
labor ratio of the monetary model is lower than that of the non-monetary
one. If x = 0, then one has sf = nk, which is identical to the solution of
the Solow model. If x0 is positive, then f lk> nl s. The non-neutrality
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follows. As shown by Zhang,19 the following theorem is held for the
Tobin model.

Theorem 10.5.1 (i) If both a and 0 —> °°, then the long-run model is
locally unstable, (ii) Even if either a or /?-4°°, if money is a perfect
substitute for capital, the long-run model is locally unstable.

As shown from the comparative analysis by Hadjimichalakis,20 if the
equilibrium is stable, an increase in the rate of change of the nominal
quantity of money increases the long run capital intensity and the
expected rate of inflation. The following theorem is proved by Benhabib
and Miyao.21

Theorem 10.5.2 The equilibrium point is locally asymptotically stable if
the following conditions are satisfied

{-I Mi_lg + C1 - *)" < i ^L>!
[ox (g-fl)gj ak ' g

The theorem says that the smaller the value of /? or the greater the value
of a, the more likely it is stability. Also, the smaller the elasticity of the
money demand function with respect to q, or the greater the elasticity
with respect to k, the more likely it is stability.

The above two theorems imply that the equilibrium may be either
stable or unstable. For instance, if we move from adaptive expectations
towards perfect foresight, saddle-point instability may appear as it does
in the Tobin model. For the sake of illustration, consider an increase in
the stock of money at the equilibrium. The immediate impact of this is to
increase the price level while the real money stock tends to fall back to
its original level; but the initial increase in the stock of money also tends
to increase price expectations and reduce the capital stock. The latter two
effects reinforce the decrease in the money supply and may cause the
money stock to overshoot its long-run equilibrium. As the money supply

19 Zhang (1990).
20 Hadjimichalakis (1971a, 1971b).
21 Benhabib and Miyao (1981).
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keeps falling beyond its equilibrium level, the effects on the two
variables are reversed: the capital stock rises and expectations fall.
Combined with the direct effect of the money stock on the accumulation
of money, the fall of the money stock will now be reversed. This
discussion hints at the possibility of oscillations in the long run. In fact,
the existence of Hopf bifurcations in the generalized Tobin model has
been identified by Benhabib and Miyao.22 Their results can be
summarized as follows.

Theorem 10.5.3 If there exist a set of parameter values which guarantee
the stability of the equilibrium, we can find a value of /?, denoted by
/?0, such that the Jacobian of the system has a pair of purely imaginary
eigenvalues. Moreover, there exists a continuous function v(e)
(v(0) = 0) of a parameter e such that when £ is sufficiently small, the
generalized Tobin model has a continuous family of periodic solutions
(k(t,e),x(t,e),q(t,£))T, which collapse to the equilibrium point as

This theorem identifies the existence of regular oscillations in the
system. Such oscillations will continue permanently if the stability of the
cycles can be identified. Non-equilibrium economic development is no
longer a short-run phenomenon. This theorem shows that the loss of
stability that occurs as expectations adjust is associated with the
emergence of bounded, persistent oscillations in prices, output and
expectations. This holds no matter how quickly prices adjust since there
always exists a value of (3 at which the stability of the equilibrium is
lost. The generalized Tobin model can be applied to explain business
cycles. Zhang actually improved the results obtained by Benhabib and
Miyao in the following aspects: (i) to find stability conditions of the
cycle; (ii) to explicitly interpret the parameter h; (iii) to find the explicit
expression of the cycle; and (iv) to discuss whether the Hopf bifurcation
is supercritical or subcritical. We will not introduce Zhang's results for
technical reasons. Supercritical bifurcations mean that if the bifurcation
parameter /? is increased, the system is stabilized, while if it is

22 Benhabib and Miyao (1981).
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decreased, the system becomes unstable and bifurcations may take place.
Zhang's results give a complete description of the Hopf bifurcations near
the equilibrium. At the equilibrium point, the system is very sensitive to
changes of the parameter J3. Even when perturbations in the parameter
are sufficiently small, structural changes take place, resulting in limit
cycles.

10.6 Limit Cycles and Aperiodic Behavior in the Multi-Sector
Optimal Growth Model23

We now introduce the traditional optimal growth model with two or
more capital goods. There are many studies on behavior of the multi-
sector growth models.24 Zhang's works are mainly concerned with
identifying existence of periodic and aperiodic solutions of the nonlinear
dynamic model.

Let there be m production sectors in the economy and the population
grow at a fixed positive growth rate, n. The optimal growth problem is
defined, in terms of per capita variables, as

Max"\u[T{y,k)y{r-n)' dt,
o

ki{t) = yi{t)-nk,(t), i = l,2,.. . , m, (10.6.1)

where vectors y and k stand for output per capita and stocks of capital
goods respectively, the consumption per capita is given by

c{t)=T(y,k)

while U(T) is the utility derived from consumption, and r is the rate of
interest. We require: r - n > 0. We apply the maximum principle to
solve the optimal problem.

Economic interpretations of the following six assumptions are
referred to Benhabib and Nishimura25.

23 This part is based on Zhang (1988c, 1989).
24 See Cass and Shell (1976), Brock and Scheinkman (1976), Araujo and Scheinkman
(1977), and Magil l (1977).
25 Benhabib and Nishimura (1979).
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(Al) All goods are produced non-jointly with homogeneous production
functions of degree one, strictly quasi-concave for non-negative inputs,
and twice differentiable for positive inputs;
(A2) If we denote by \KV) the set of inputs used in the production of
good j , then the j th goods cannot be produced without [Kg). The
maximum principle yields

qi{t) = -U'{t)wi{t)+r(th(t),

«,{*)= Ui'Mh P,(f)=-Ty,M>

Wi{t) = Tki(y,k), i = l , 2 , ..., m, (10.6.2)

where Ty(y,k) and Tk(y,k) represent the partial derivatives of T(y,k)
with regard to y.(t) and k^t), respectively. Here, pi and wj are the
price and the rental of the /th goods in terms of the price of the
consumption goods. It can be shown that the above system has a unique
solution for r e («, r), where r may be positively infinite. The steady
state of the system, denoted by (k0, q0), is a solution of k = 0 and q = 0
satisfying Eqs. (10.6.2). It can be shown that the system has a stationary
state.

To examine whether the stationary state is locally stable, we write the
dynamics of the system in a local form near the equilibrium. To do this,
we make the following assumptions.

(A3) At the steady state, the capital coefficient matrix is indecomposable.
(A4) At the steady state, direct labor and at least one capital input is
required in the production of consumption good.
(A5) Near the steady state, marginal utility of consumption is constant,
i.e., CT = 0 and£/' = l.
(A6) The input coefficient matrix is non-singular near the steady state.

It can be proved that if (A1)-(A6) hold, then we have

(i) T(y,k) is twice differentiable;
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(ii) The dynamics near the steady state are given by

k,{t) = yl{k,p)-nkl(t),

p(t)=-wi(k,p)+r(t)pi(t), i = l,..., m, (10.6.3)

where y^^p) a n d w; (£,/?) are differentiable.

By standard analytical methods, we can analyze behavior of the
system.26 We are now interested in nonlinear phenomena of the dynamic
system. We now add another assumption.

(A7) Let there be a value of r denoted with r0 such that the Jacobian at
the equilibrium has one pair of conjugate eigenvalues

zU2=a(r)±i0(r),

which satisfy

a{ro) = O, i/3{ro)±O, ^ * 0 .

We now consider r as a bifurcation parameter with critical value r0. We
express perturbation in the rate of interest from r with x, i.e.,
x = r - r0. Let us denote the Jacobian by L(x) at r. At the critical
point, the Jacobian is L(o)

(A8) Let ± i/30 (/?„ = /?(r0)) be simple, isolated eigenvalues of Z,(o) and
all real parts of other eigenvalues except z, 2(r) of Z,(0) are negative. We
also require that the strict loss of stability condition can be guaranteed,
i.e.

Rfiffyfi'Uo.
[i = m + 1 J

Here, Y and 7* are solutions of

L{oy = ifij, iT{o)r = -wr,
subject to y,Y} = 1 and y,Y*\ = 0 where (,) is product operator in

C2m.

26 See Araujo and Scheinkman (1977), and Magill (1977).
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The following theorem is proved by Zhang.27

Theorem 10.6.1 (Existence of limit cycles) Let the optimal problem
(10.6.1) satisfy Assumptions (Al) - (A8), y(k,p) and w(k,p) be
C, p>3. Then there exist limit cycles bifurcated from the
equilibrium (ko,po) with the bifurcation parameter r of critical value
being r0. The bifurcated cycles, with period In I co{h), are explicitly
expressed as

k(t,h)l Jkol + 2Arcow{ /̂  v j R / y ) _ s i n{^UI m(y)]
./>M)J IPoj

where h is an expansion amplitude parameter, O)(h), x(h), and U2 are
explicitly determined as functions of h in Zhang.28

We now introduce another dynamic property of the model, basing on
Zhang.29

We are now interested in the existence of aperiodic time-dependent
solutions in the optimal growth model with three sectors. We show that
endogenous oscillations appear when stability is lost by virtue of two
pairs of complex conjugate eigenvalues of the linearized system
simultaneously crossing the imaginary axis.

In the remainder of this section, we assume m = 2. If Assumptions
(Al) - (A6) hold, then the system is locally governed by

kXt) = y,{k,p)-nkl{t),

p{t) = -wi{k,p) + r(t)pi(t\ i = l , 2 . (10.6.4)

In addition to Assumptions (A1)-(A6), we make the following
assumption.

27 As mentioned in Zhang (1988c), although Benhabib and Nishimura (1979) identified
existence of limit cycles in the multisector optimal growth model, Zhang provide explicit —
only in an approximate sense — solutions to the problem.
28 See Zhang (1988c).
29 Zhang (1989).



422 Differential Equations, Bifurcations, and Chaos in Economics

(A9) Let the system (10.6.3) possess two pairs of simple complex
conjugate eigenvalues denoted by zl2(r) and z34(r) respectively. Here,

where 0Cj(r) and Pjir) are real numbers. Assume that there exists a
value of r, denoted by r0, such that

<x1{r0) = a2{r0) = 0, ax{r) = a2{r)> 0, r*r0, —± *0,
dr

/ ?>„ )* 0, 7 = 1,2.

As demonstrated by Benhabib and Nishimura,30 all the assumptions
made so far are economically acceptable. Let us introduce an expansion
amplitude parameter as follows

A , = j x, if a[{ro)>O

\-x, ifa[{ro)<O.

According to Zhang,31 the following theorem holds.

Theorem 10.6.2 (Existence of aperiodic solutions) Let the optimal
problem (10.6.1) satisfy Assumptions (A1)-(A6) and (A9), y{k,p) and
w(k,p)be Cp, p > 3 . Then if

|#-2ar2|,|fl-flr2|,and|2fl-ai|

are all 0(1) with regard to h, we have

k(t,h)] = [U + h[CR/Q\sinQ/QA + c2R(®)cosQ{®,t)
p{t,h)\ \_pa\

+ DxS{®)smT{@,t) + D2S(&)cosr(G,t) + o(h2),

where

® = h2t,

30 See Benhabib and Nishimura (1979).
31 Zhang (1989).
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and C, and Dt (i = 1, 2) are constant four-dimensional vectors, and
r(@,t), Q.(©,t), R(Q) and S(@) are scalar functions given by Zhang in
1989. Moreover, stability of the aperiodic solution is determined by the
asymptotic behavior of R(@) and S(@) as 0 —> °°. If they approach
constant values or oscillate, then the bifurcated solution is stable.

Calculating the parameters and determining the functions in the
theorem are tedious; hence we omit them. The theorem describes the
oscillations bifurcated from the equilibrium. In sharp contrast to the case
of the bifurcation at a pair of simple complex eigenvalues as described
by Theorem 10.6.2, it is possible for the time dependent solution not to
be periodic. The superposition of harmonics in r(Q,t) and £>(©,/) is not
periodic if /?, and fi2 are incommensurate.

10.7 Theoretical Insight into China's Modern Economic
Development

Inspired by China's history and modernization of overseas Chinese, in
1990 Zhang attempted to explain possible paths of interdependence
between China's economic reform and political development.32 We
consider an economic system consisting of two, agricultural and
industrial, sectors. It is assumed that the agricultural sector produces
goods such as corn, rice and vegetables, which are only for consumption.
The industrial sector produces commodities for investment and
consumption. Industrial commodity is selected to serve as numeriare.

Behavior of production sectors and households
We denote K(t), r(t), and pa(t), the total capital, the rate of interest
and price of agricultural commodity. We define the following indexes
and variables

a, i = subscripts denoting agriculture and industry;
L and N = the fixed land and total labor force of the economy;

32 This chapter is based on a model built by Zhang (1990, 1992) to reveal possible paths of
Mainland China's contemporary economic dynamics. The Chinese history does prove that
the mathematical model "economizes" the thinking processes for revealing the essence of the
dynamic processes of Chinese societies.
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Nj{t) and Kj(t) = the labor force and capital stocks employed by sector

j U = a, i);

La (t) = the land used by the agricultural sector;

S(t) and Lh(t) = the total saving and land used for housing;

Fj{t) and Cy(f) = sector j's output and consumption levels of product

j ; a n d

Wj (/) and R(t) = sector j's wage rate and land rent.

We now describe the basic model. We assume that production
processes of each sector can be described by some aggregate production
functions. We assume that agricultural production is a process of
combining land, labor force and capital. For simplicity, production
function of the agricultural sector is specified as follows

Fa{i) = K"a-{Hm'">-NatL<a,

ma>0, a + 0a+g = l, aa,fr,g>0.

Here, the term Hm'lfiaNa is the qualified labor input. The parameter
mal J3a describes how effectively the agricultural sector utilizes human
capital. The marginal conditions for the agricultural sector are given by

r = ^ £ ^ , W = M^, R=®Is,. (10.7.1)

We now describe the industrial sector. Production function of the
industrial sector is specified as follows

F,(0 = tf,a'(tf"'/AJV,y\ m, > 0, at + ft = 1, a,, fi > 0 .

Two, machines and the qualified labor force, inputs are taken into
account by describing industrial production. It should be noted that
possible land use by the industrial sector is omitted. The marginal
conditions for the industrial sector are given by

r = M W = M . (10.7.2)

We have thus described behavior of the two production sectors.
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Assume the public land ownership, which means that the revenue
from land is equally shared among the population. As the urban land and
rural land are respectively homogeneous in urban and rural land markets,
each household gets identical land revenue from the land markets. The
total land revenue is given by R(t)L. Let us denote 7(0 the net income
of the households. The net incomes consist of three parts: wage income,
interest payment and revenue from land ownership, i.e.

7(0 = rK + wN + RL.

It is assumed that utility level U(t) of each household is dependent on
consumption levels of industrial commodity and agricultural commodity,
C,.(0 and Ca{t), housing conditions (measured in terms of lot size),
Lh{t), and saving, S(t). The utility function is specified as follows

U(t) = C:C?LlS\ M,£,r},A>0, M + £ + ri + A = \,

in which the parameters, //, <f and f], are respectively the propensities
to consume agricultural good, industrial commodity, and housing, and
the parameter A is the propensity to hold wealth.

The budget constraint of households is given by

Pa(t)Ca(0 + C,(t) + R(t)Lh(t) + S(t) = 7(0 ,

where

7(0 = 7(0 + ^(0-
In the left-hand side of the budget constraint, pa{t)Ca(t) and C,(0 are
spending on consumption of agricultural good and industrial commodity,
respectively, R(t)Lh(t) is payment for housing, and S(t) is saving.
Maximizing U(t) subject to the above budget constraint yields

paCa=fiY, C,=£Y, RLh=T}Y, S = AY. (10.7.3)

Substituting S from Eqs. (10.7.3) into

K = S-K

yields

k(t) = tf(t)-K(t).

The above equation determines capital accumulation of households.
We assume that capital, labor, and land are fully employed, i.e.
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K,+Ka=K, Ni + Na=N, Lh+La=L.

Assume that industrial product is either consumed or invested. We
have

Cl+S-K + SkK = Fl.

The balance of demand of and supply for agricultural product is
represented by

Ca = Fm.

In order to formulate the dynamics of human capital H, we first
introduce another variable - a measurement of the degree of openness of
a nation with respect to the rest of the world. It is supposed that
international interactions may have significant impact upon economic
development of the society under consideration. Developed economies
are considered a stimulus and source of human capital for social progress
and economic development. However, there are many deterministic as
well as uncertain factors which affect the degree of openness of a
national economy. In the case of China, its long history and vast size,
virtual inaccessibility (both in terms of transportation and
communication) to developed economies, low education, and other
factors make China responsively inert with respect to events in the rest of
the world. The current reforms may be considered as a policy designed to
change the openness of the system. We model the dynamics of openness
X as follows

X = Tx[eX-6lX> +q(K,H)],

where Tx is a positive adjustment speed parameter. The term, eX - OX2,
represents the political forces which affect the openness of the nation.
The linear term eX expresses the strength of the 'reformers' who
support scientific and technological development and extra-cultural
learning effects; the nonlinear term OX3 represents the power of the
conservative fraction which tacitly or openly opposes increasing
openness. The term eX implies that the more open the nation becomes,
the greater the efforts of reformers toward even more openness; the term
0X3 states that when the country becomes more open, the opposition of
conservatives toward even more openness increases.
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In the above formula, the relative strength of the conservatives vis-a-
vis the reformers increases very rapidly as the country becomes more
open. The absolute value of the relative strength is dependent upon the
values of e and 6. The term eX - 6Xl also shows that for any given e
and 0, the effects of the conservatives tend to be greater than those of
the reformers with respect to the openness of the nation.

Indeed in order to explain the long-run dynamics of openness, one
may necessarily treat political struggle parameters, e and 6, as
endogenous (slow-)variables. The function q{K,H) specifies that
human capital and living conditions affect economic openness. In
general, we are not certain about the effects of these factors upon the
openness. As living conditions are improved and the level of human
capital is increased, the nation may become more open and eager to learn
more from other cultures. But validity of this hypothesis obviously
depends upon the culture to which it is applied. The adjustment speed,
Tx, is much difficult to determine. During the whole period of the
Cultural Revolution, this parameter was almost equal to zero because no
force at that time was strong enough to open China.33 In the present
situation, the parameter is positive, but not infinitely large. It may be
important for us to investigate what will happen to the system when Tx

takes on different values.

Changes in the education system, openness policy, the freedom of
communication among people, etc. may increase or decrease the level of
human capital.34 We propose that human capital is accumulated from
three sources: learning by doing and learning from other cultures (a
reflection of economic openness). We specify the following dynamics

\ l + bH NHe° NHe' h )

where a, b, Th, Ta, T,, Sh are parameters.

33 See Zhang (1998).
34 The two typical ways of knowledge are "learning by doing" (Arrow, 1962) and
"learning through educat ion" (Uzawa, 1965). There are many models of growth with
endogenous knowledge (e.g., Becker and Burmeister, 1991, Breschger, 1999, Young,
1993, Grossman a n d H e l p m a n , 1991, Zhang, 1996, Aghion andHowi t t , 1998).
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The term 8hH in the above formula describes depreciation of human
capital, where 8h is the depreciation rate of human capital. The first
term, aX /(I + bH), implies that as the economic system becomes more
open, the level of human capital tends to increase. However, effects of
international interactions upon human capital accumulation tend to
decline if the society's human capital is already very high: if the level of
human capital is already very high, a country tends to have less to learn
from others. We interpret Tfltf/NH*' as effects of "learning by doing"
of each worker in the industrial sector upon accumulation of human
capital.

We have thus established the economic dynamics with endogenous
economic structure, physical capital and human capital, and openness.
The system has 18 endogenous variables, K{f), H{t), X{t), Ka(t),
K,(t), Na(t), N,(t), Lh(t), 4 ( 0 , Fa(t\ Ca(t),C,{t), S(t), U(t),
r(t), w(t) and pa(t). We now examine dynamic properties of the
system.

Since this system is highly dimensional with a complicated internal
economic structure, it is difficult to explicitly determine all possible
behavior of the dynamic system. In order to analyze dynamic behavior of
the system, it is necessary to show that the 3-dimensional systems are
governed by the dynamics of three variables. The following lemma
guarantees this.

Lemma 10.7.1 For any given K{t) > 0, H(t) > 0 and X{t) > 0 at any
point of time, the other variables in the system are uniquely determined
as functions of K(t) and H(t) by the following procedure: Q.(t) by Eq.
(10.A.1.7) -> Ka(t) and K,(t) by Eqs. (10.A.1.5) -> Na(t) and N,(t)
by Eqs. (10.A.1.6) -> Lh{t) and La(t) by Eqs. (10.A.1.2) -> R(t) by Eq.
(10.A.1.2) -> Fa(t) = Ka;{Hm^'NaY'L^ pa(t) by Eqs. (10.7.1) ->
Fi{t) = Nfi{Hm'iPlNiY

l -> #•(/) and w(t) by Eqs. (10.7.2) ->
Ca(t), C,(t), and S(t) by Eqs. (10.7.3) -> U(t) = C^CfLn

hS\ Moreover,
the motion of K(t), H(t), and X(t) are determined by the following
three-dimensional differential equations

K = AY(K,H)-K,
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X=T,[eX-ajf + q(K,H)],

|_1 + bH NH£" NHCi

We prove the above lemma in the Appendix. The lemma guarantees
that if we know the dynamics of £ ( 0 , H(t), and X(t), then all the
other economic variables are determined as unique functions of these
three variables at any point of time. Hence, it is sufficient to be
concerned with the above differential equations. This result is important
for carrying out stability analysis.

For simplicity, we first set b = 0. Equilibrium of the dynamics is
defined by follows

AY(K,H) = K, eX -OX* + q(K,H) = 0,

r N F r N F

We now show how we can determine equilibrium. First, substituting
AY - K into Eq. (10.A.1.7), we solve

K = ahH
m'IA , (10.7.5)

where

<*. ) &N
 ; 0

aJA-SJ a1IA-81

By AY = K, and Eqs. (10.A.1.5) and (10.A.1.6), we have

Ka - aX K, = aX

N°=AN'N'=AN' (10-?-6)
in which

or, - SXA ax

(10.7.4)
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We see that Na and N, are already determined. By Eqs. (10.7.6) and
(10.A.1.2), we see that Fa and F, are given as functions of K and H as
follows

F, = (a'ah)
aiNf'Hmi+aim''p>. (10.7.7)

Substituting Eqs. (10.7.7) into the last two equations in Eqs. (10.7.4), we
have

QX(X,H) = eX - 6X3 + q{ahH
m'lfi',H) = 0 ,

<t>h(X,H) = ̂ r + Oa(H) + O,(tt) - Sh = 0 , (10.7.8)
ti

in which

xa=mq+ ^ i - -ea-\, x , = m, + ̂ - -e,-l.
Pi Pi

Since K is uniquely determined by H, we see that the number of
equilibria is equal to the number of solutions of the two equations
(10.7.8). It is straightforward to show that for any fixed H > 0, Ox = 0
may have one or three solutions. When a = 0, the equation $>h{H) = 0
has two positive solutions in the case of xa > 0 and xt < 0 (or xa < 0
and JC, > 0) and has a unique positive solution in the case of xa > 0 and
x, > 0 (or xa < 0 and xt < 0). This implies that the dynamic system
may have multiple equilibria.

It is straightforward to prove that when we neglect human capital
accumulation (H(t) = 1) and omit the impact of openness on the system
(X(t) = 0), then the economic system consisting of a one-dimensional
differential equation for capital accumulation has a unique stable
equilibrium. As stationary states are independent of Tx and Th, it can be
seen that the system is locally stable under certain constraints, when Tx

and Th are sufficiently small. If the human capital and opening policies
adapt to new situations very slowly, the economic system tends to be
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stable. Since Tx and Th, in particular Tx, may be rather large, the system
is faced with possible instabilities.

The isolated economy with human capital accumulation
We omit any possible impact of openness on the dynamics, i.e.,
X(t) = 0. By Lemma 10.7.1, the dynamics are given by

K = A&(K,H)-K,

H = T\lJ^ + im-ShHl
"I NHE° NHe' h \

Equilibrium of the dynamics is given by

ASl(K,H) = K,

r N F r N FVVk + W i = s.H .
NHe° NH£< h

The variables, K, Ka, K,, Na, and Nt are still given by Eqs.
(10.7.5) and (10.7.6) as functions of H. Hence, if we find H, we
determine all the variables in the system. By Eq. (10.7.8), we see that H
is determined by

in which <5a and O. are defined in the previous section.
We omit the case of xa = x, = 0. Equilibrium of the system is given

by a positive H such that ®(H) = 0. When xa > 0 and x. > 0,
O ( # ) = 0 has a unique positive solution as O' > 0 for any positive H,
<£(//) < 0 and 0>(oo) > 0. Similarly, if xa < 0 and xi < 0, O(//) = 0
has a unique positive solution. It is easy to check that if either xa = 0 or
xj = 0, then the system has a unique positive solution under certain
conditions. We now prove that if xa > 0 and xi < 0 (or xa < 0 or
xt > 0), then the system has either two solutions or no solution. It is
sufficient for us to examine one case, for instance, of xa > 0 and X(t).
As O ( # ) > 0, O(oo) > 0, we see that O(/f) = 0 cannot have a unique
solution. That is, <J>(77) = 0 has either multiple solutions or no solution.
On the other hand, as O'(H) = 0 has a unique positive solution, we
conclude that O(//) = 0 has two solutions if Q>(H) has solutions. The
necessary and sufficient condition for the existence of two solutions is
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that there exists a positive value Hu of H such that O(//,) < 0 and
O'Ctf,) = 0.

By calculating the Jacobian and eigenvalues at each equilibrium, it is
straightforward to prove that if the term

^ - _ xjba + x,Q>,

H

is negative, then the equilibrium is unstable; if it is positive, then the
equilibrium is stable. Moreover, when the system has two equilibria, O*
is positive (negative) at the equilibrium with the low (high) value of H.
Summarizing the above analytical results, we prove the following
proposition.

Proposition 10.7.1 If xa < 0 and x, < 0, the system has a unique stable
equilibrium. If xa > 0 and xt > 0, the system has a unique unstable
positive equilibrium. If xa<0 and x, < 0 ( * a < 0 and x, > 0 ) , the
system has two equilibria. The one with higher values of K and H is
unstable; the other one is stable.

By the definitions of xa and xn we see that we may interpret xa and
x, respectively as measurements of return to scales of the agricultural
and industrial sectors in the dynamic system. When xa (>) 0, we say
that the agricultural sector displays decreasing (increasing) returns to
scale in the dynamic economy. Hence, the above proposition tells us that
if the two sectors display decreasing (increasing) returns, then the
dynamic system has a unique stable (unstable) equilibrium; if one sector
displays decreasing (increasing) returns and the other sector exhibits
increasing (decreasing), the system has two equilibria. When the system
has two possible equilibria, it may be located in the stabilized situation
with low creativity and low living standard.

Slow opening and catastrophes
We now consider the case that the adjustment speed of the openness X
is much slower than the adjustment speeds of human capital and capital.
That is, Th=\ and Tx is sufficiently small. For simplicity of analysis,
we specify the functional form of q(K,H) as
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q{K,H) = ba\c'-^p^, (10.7.9)

where c is the average net income per capita in the developed
economies which have great influences upon China, b0 is a given non-
negative parameter. The nations which affect China may include the
USA, Japan and some developed economies in Europe. In Eq. (10.7.9),
YIN is the net income per capita.

Introducing T' - tTx, we can rewrite the dynamics in the following
form

TX-^ = AY(K,H)-K,

jL = £X-eXi+q{K,H),

Tx*L = aX + LEA-ShH,
" dT N "

in which we require
b = Ta = £i = 0 , m, = ft.

We assume that Tx is so small that we can safely let

^ = 0 , ^ = 0
dT dT

in the dynamic analysis. It should be noted that this assumption is valid
only under some conditions. As the system is subjected to instabilities,
its behavior may be rather sensitive to the small parameter of the system
even from a qualitative point of view.

The long-run dynamics are thus approximately given by

•^- = eX-6Xi +q(K,H), (10.7.10)
al

subject to
An(K,H) = K,

T N F
aX + ^ - L = ShH. (10.7.11)
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Although the dynamic behavior appears to be dependent only on Eq.
(10.7.10), the equations expressing capital accumulation and change in
human capital affect the actual paths of X since they determine the term
q{K,H) in Eq. (10.7.10).

From the first equation in Eq. (10.7.11) and the definition of Q., we
have Y = (I/A - 1 + 5k)K. By the second equation in Eqs. (10.7.11),
(10.7.5) and (10.7.7), we solve

H = axX, Y = a2X,

where

By H = axX, Y = a2X and Eq. (10.7.9), we rewrite Eq. (10.7.10) as
follows:

^f = -0Xi+(e-b2)X + bi,

where bx = boc' and b2 = bQa2 IN. Here, we interpret the terms (e - b2)
and bx as measurements of progressive forces for China. The parameter
bx measures how the foreign economic and technological conditions
push the government to open the nation; and the parameter b2 measures
how improved living conditions may slow down the rate of change of
openness. The term (e - b2) is an aggregated measurement of the
progressive forces of the reformers and people's attitudes toward other
cultures. According to these interpretations of the parameters, we see that
openness is determined by dynamic interactions of the conservative and
progressive forces upon the system.

The stationary values are given by

X 3 + rxX + r2 = 0,

in which

e - b7 b,

0 2 0

This equation has either one or three real roots. If
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then the equation has three roots.
As the left term is always positive, a necessary condition for the

inequality is that

r, < 0, i.e., £ > b2.

This is the case only when the reformers have strong political influence
with respect to anti-foreign attitudes. Otherwise, there is only one
equilibrium in the system. This discussion shows that the existence of a
unique X is dependent on the power of the reformers.

The boundaries of the region for single and multiple solutions are
determined as follows

4r,3 + 21r2 = 0 .

This produces the cusp-shaped curves on the control manifold - the
(r,,r2) plane. As shown in Fig. 10.7.1, outside the cusp-shaped region
there is only one root and this is a minimum of the corresponding
potential of the system

r-£-+:£. + &.
4 2 2

The unique equilibrium is stable. Inside the region, there are three
real roots — one maximum (an unstable state) and two minima (stable
states). The shaded region is the catastrophe set and the boundary is the
bifurcation set. The r,-axis, for rx < 0 (i.e., the reformers are strong),
represents the conflict set: here there are two stable states of equal value.
In the case of cusp catastrophe, r, is termed as the 'splitting factor' and
r2 the normal factor.35 The reason is that it is the value of r, which
determines whether a trajectory is in a region where the surface is folded.
If /-, > 0, the surface is single valued; if r, < 0, the surface is double
valued. In the case of the normal factor r2, the variable X changes
monotonically as r2 changes, and continuously except for jumps at the
bifurcation points.

35 Refer Zeeman (1977) for catastrophe theory.
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Proposition 10.7.2 If capital and human capital accumulation are fast
variables and openness is a slow variable, the long-run dynamics may be
described by a single dynamic equation of the slow variable. In other
words, capital and human capital are 'enslaved' by the change in
openness.36 And sudden structural changes in the long-run dynamic
evolution may exist, depending upon the whole structure of dynamic
interactions of economic development, human capital growth, and
political struggles.

\

f

I
Fig. 10.7.1 The cusp catastrophe

We can find three types of behavior which are not familiar in the
traditional comparative analysis. They are: (i) a sudden jump (or
catastrophe); (ii) hysteresis - a reverse path to some point not being the
same as the original; and (iii) divergence - a small difference approach
towards a cusp point leads the system to the upper or lower surface and
hence to a very different state.

We are particularly interested in the parameters e and 6. As
r, = (e - b2)IO, we see that for a (positive) fixed b2, when the
reformers are not politically strong, there is a unique stationary state. As

36 The "Slaving principle" is introduced as a key concept in synergetics developed by
Haken (1977,1983).
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the power of the reformers increases to such a degree that rx becomes
negative, the situation becomes more complicated. There are multiple
equilibria in the system. Figure 11.5.2 illustrates the relationship between
the opening policy and the power of the conservatives.

Depending on the power of the conservatives, there may be sudden
changes the openness. Outside the interval [#,, 02], there is a unique X
for each value of 9. However, if 9] < 9 < 92, there are two stable and
one unstable equilibria. Consider a possible case of the dynamics. When
the economy is just opened, the power of the conservatives begins to
increase, i.e., 6 increases toward 6X from the right. The economy
becomes smoothly more open as 9 continuously changes. When 9
arrives at the critical point 9V there are sudden increases in
communication and trades between the economy under consideration and
the rest of the world. Near such a point, there are structural changes. The
consumption per capita, capital per capita, and average human capital in
the society increase during a very short period.

P

if"""" ^

1 1 e

Fig. 10.7.2 Structural changes.
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However, as such increased external communication and improved
living conditions may cause officials to be corrupt and may introduce
some 'undesirable elements' from other countries, the conservatives'
power may either increase or decrease, which is, however, uncertain. If
the conservatives continuously become weaker, the country will become
more open and there are no further sudden changes in the system.
However, if the conservatives become stronger after the sudden change,
the country becomes more isolated. When the conservatives wield so
much power that the parameter value reaches 02, there is a sudden
change again. The nation suddenly becomes more isolated and it is
impossible for scientists and entrepreneurs to interact with other
countries. Near such points, there are sudden decreases in consumption,
capital per capita, and the average human capital.

Fast capital accumulation and social cycles
The learning processes have been very slow, as observed, for instance,
during the period from the Opium War to the fall of Qing Dynasty in
1911 or the period from the establishment of New China to the start of
the economic reforms. It may be mentioned that during the later period
the society 'forgot' more than it learned. It is meaningful to examine
what will happen to the system if both the openness and learning
processes are very slow, i.e., Tx and Th are very small. For simplicity, let
Tx=Th.

We introduce T' = tTx. Like the preceding section, we still require:
b = ra= ei = 0 and mi = /3r We still assume Eq. (10.7.9). Under these
requirements we can rewrite the system as follows:

Tx-^ = Aa(K,H)-K,
dT

dT °1 N j

^L = ax + S M _ S.H. (10.7.12)
dT N "

From dK/dT' = 0, we have AQ.(K,H) - K. From this equation and
the definition of Q., we have
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rij'-i+s')K-
By this equation and Eq. (10.7.5), we solve Y = ahH, where

I/A -1 + 8k

ah = - .

By Y = ahH and Eq. (10.7.7), we rewrite Eqs. (10.7.12) as

-^- = £X-0Xi-b2H+bi,
al

— = aX + a<)H,

where

1 ° 2 N N

It is necessary to require that a0 be negative. The stationary values of X
are determined by

Xi +rxX + r2 = 0 ,

in which

r -£~b^ =-A
1 e ' 2 ^-

This equation has either one or three real roots. In this section we still
choose the power of the conservatives as a bifurcation parameter. From
the previous section, we know that outside the interval [0t, 02], there is a
unique level of openness for each value of 9. We now consider the case
in which 6 > 02. That is, during the study period under consideration the
conservatives are politically very strong. As rt > 0, this requirement is
equal to saying that the reformers are rather weak.

The equilibrium is denoted by (Xo, Ho). The two eigenvalues are
given by

_ a0 + e - 30X2

Ai - 2
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{ . . 2 1 1/2

( f i l ial) -„.(,-3^)-^} .
As 6 is rather large, rx is small and r2 < </>(0) is large. It is not

difficult to see that the term (a0 + e - 2,6K2) is negative when £ is
rather small and 0 is large, i.e., the conservatives are strong and the
reformers are weak. As e increases and 6 decreases, the term tends to
increase. It is also not difficult to see that for sufficient large e and
appropriately small 6, the term becomes positive. This means that we
can appropriately choose the combinations of e and 9 such that

a0 + E-36X2 = 0,
which defines a critical point of the system. We let e0 be the value of e
for which the term is equal to zero. In what follows, we denote small
perturbations of e from e0 by x, i.e.

x = e - e0.
When x is positive, the power of the reformers increases, and when

x is negative, the reformers' power becomes weaker. At x = 0, we have

rt.2(0) = ±i>,
where

y s {ao(e - WX1) + a b 2 } i n > 0 .

That is, at x = 0 we have a pair of purely imaginary eigenvalues. As the
eigenvalues are continuous functions of x, for the neighborhood of
x = 0, <j){x) denotes the eigenvalue which equals iy at x = 0. As

2 2y

the real part of the derivative of the eigenvalue <j> is positive when x
becomes positive. Hence, when x crosses its critical value, the system
becomes unstable. That is, an increase in the power of the reformers may
result in instabilities.

According to the Hopf bifurcation theorem, we know that when x
becomes positive, limit cycles appear around the stationary state. The
results can be summarized in the following theorem.
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Proposition 10.7.3 Near the critical state, when the power of the
reformers increases, social cycles appear in the system. The cycles are
approximately (the first order) given by

X(t,h) = X, + 2ha'cos(yt) + O(h2),

H(t,h) = HQ+ 2ha{(e - 30X2)cos(yt) + y*Hy*)) + O(h2),

where h is a small expansion parameter and a =Y IX.

The proposition can be proved by applying the bifurcation method by
Iooss and Joseph.37 What should be noted, however, is that the
eigenvectors W and adjoint eigenvectors W* are given by

W = (aa, a(e - WX2 - iyjf,

W = (JC, + ix2, (s - 3eX2]x} - x2y + i{x,y + x2e - 3x20X2)J,

where

= m 2y(e - WX2)

*' ~ m2 + Ay2(e - WX2)2' *2 " m2 + 4y2(e - ZOX2)2 '

m = aa -(£- 38X2)2 + y2.

Moreover, the stability conditions and more accurate expressions of the
limit cycles can be given by using the eigenvectors and the adjoint
eigenvectors. As these expressions are too complicated to deepen our
insight into the problem, we do not explicitly calculate them here. The
cycles can be illustrated as in Fig. 10.7.3.

The system oscillates around the stationary state: (Xo, Ho). Let us
begin the movement at point A. Human capital tends to increase near A.
Since the level of human capital is increased, the nation tends to become
more open, which results in further expansion of human capital. When
the system arrives at B, the conservatives become so strong that it is
impossible to increase the openness of the economy; thus the nation
becomes more isolated. The situation is continued. When the
conservatives have increased their power, the level of human capital does

37 Iooss and Joseph (1980). This method has been applied to some economic systems by
Zhang (1991).
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not seem to decrease rapidly. Instead, human capital is increased until the
system arrives at C. This also implies that just after the nation becomes
isolated, production and consumption will not decrease. The economic
conditions are further improved because of the improved human capital.
After C, the level of human capital decreases and the nation continues to
be further isolated. During the period C -D, the nation may assume a
very pessimistic outlook. However, after the social conditions tend to
worsen, the effects of the conservatives begin to weaken. The nation
becomes open again. However, even when the nation is open, human
capital cannot be increased very rapidly. It will still take a long time for
the effects of the opening policy to be recognized. It is after A that the
masses may become a little more optimistic because everything seems to
be improved from now on.

H{t)

^ \ B

un A I j AC
**o T * f

Ls

Fig. 10.7.3 The social cycles.

Appendix: Proving Lemma 10.7.1

First, by Eqs. (10.7.1) and (10.7.2) we have

JL=«JL = S*L. (10.A.1.1)

Substituting paCa = fJY into Ca = Fa yields
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PaFa=MY-

Substituting the above equation into R = gpaFal La we get

From RLh = TjY from Eqs. (10.7.3), R = gjuY'/'La and Lh + La = L,
we solve

R = (SH + fl)Y Lh=^jL^ L a = ^ ^ . (10.A.1.2)
L gju + rj g/i + rj

Substituting C, and S in Eqs. (10.7.3) into

C, + S-K + 5kK = Fl,

we get

F,=(£ + X)Y - (1 - Sk)K. (10.A.1.3)

From

r =
 aaPaFa =

 a,Fi

we get:

K _ "FA
' <*aPaFa '

Substituting paFa = juY and Eqs. (10.A.1.3) into this equation yields

f ^ + ̂ - ^ V dO.A.,.4)

By Eq. (10.A.1.4) and Kt + Ka=K, we solve

K.= a°"f K, K . ^ + rt-Kg.K. (10.A.1.5)
a,Y-8xK aJ-SxK '

where

«, s aaju + a£ + aft, 8X = 8ai.

In order that 0<Kn Ka < K are held, it is sufficient to require:
YIK > 8, /or, for any K > 0 and Y > 0.
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By Eqs. (10.A.1.1) and (10.A.1.4), we get

N, _{g + X)Y-8K

K PaMY '
By this equation and Nt + Na = N, we solve

a2Y - S2K a2Y - S2K

where

Ot-BAM + fig + PA, s2=sfi.
In order that 0 < N,, Na < N are held, it is sufficient to require:

Y/K > S2la2 for any K > 0 and Y > 0. We see that the capital and
labor distribution can be expressed as functions of K and Y at any point
of time if

Y . . {% S2\
->^smin-i,— ,K [or, a2]

Substituting K, in Eqs. (10.A.1.5) and N, in Eqs. (10.A.1.6) into

Fi(t) = N^(Hm'IANiY
l

yields

[ aJ-StK J [ <ar27-^2A: J

By this equation and Eq. (10.A.1.3), we have

?<K PiK - 1 = 0.
aJ-S.K) [a2Y-S2K)

(10.A.1.7)
We now show that for any given positive K and H, the equation

<&,(Y;.^,/f) = 0 has a unique solution Y(K,H) satisfying
oo > f > S'K. It is straightforward to check that the function O,.(f) has
the following properties

<&X8*K) > 0, O,(+°°) < 0, o ; < 0 for oo > # > S'K.

(10.A.1.6)
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Hence, for any positive K and H, the equation O.(7;^,i/) = 0 has
a unique solution. We thus proved Lemma 10.7.1.



Chapter 11

Epilogue: Economic Evolution with
Changeable Speeds and Structures

We have filled many pages with differential equations and their
applications to economics. Mathematically, we have left many theorems
unproved and have been unable to mention many new developments in
dynamical systems. Economically, we have provided examples to
illustrate applications of analytical techniques. Those numerous
economic models (each of which appears to be quite reasonable), which
are supposed to deal with the same economic system might have caused
the reader to wonder whether economics should provide a consistent
theory which treats those ideas within the same framework. We now
would like to offer in these closing sentences a "general" vision about
economic theories for explaining economic reality. We are now
concerned with two issues which are important but rarely addressed in
economics.

Time scales and changeable speeds
As time passes, economic issues with which economists are concerned
have shifted. Even since the time of Adam Smith, the economic variables
that economists have dealt with appear to have been invariant. But the
ways in which these variables are combined and the speeds at which they
change have constantly varied and the dominant economic doctrines
have shifted over time and space. The complexity of economic reality is
constantly increasing in modern time. This is partially because of the
expanded capital and knowledge stocks of mankind. Knowledge, in
fields of philosophy, arts, literature, music, technology and sciences,
expands man's imagination and extends possibilities of human action,
not to mention that the knowledge reservoir can directly satisfy the

446
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desires of an unlimited number of people at the same time. Knowledge is
not only power and sources of money, but also the most durable capital
goods for human mind. Increases in machines, housing and
infrastructures has enriched human environment, increased accessibility
to various locations, and enlarged variety of human behavior. The
explosion of knowledge and capital in this century has resulted in far
more complicated human action fields than anyone could have imagined
in the last century.

Time is the main difficulty of almost every economic problem. The
role of time in decision-makings and action is becoming increasingly
complicated as variety of action and social networks are expanding. It is
a difficult issue to decide the length of time which affects a special
decision making since each kind of human decisions are made with
different time scales and two persons may have different time scales with
regard to the same kind of decision making. Because of the high variety
of human behavior and time scales, in order to analyze a single person's
economic behavior as a whole we have to conduct the analysis within a
framework with varied time scales. Human behavior are connected in
direct or indirect ways in human action fields; but we may miss
interdependence between some elements if we do not properly recognize
the role of time.

If we examine the complexity of economic evolution from a historical
perspective, we may argue that mankind has experienced three economic
structural transformations - from hunting society to agricultural one,
agricultural society to industrial one, industrial society to
information/knowledge-based one. These transformations are still
occurring in different nations in different forms at different speeds. Each
of these economic systems has certain corresponding dominant
ideologies such as religions, socialism and capitalism. At each turning
point there tend to be great conflicts among different social classes,
though forms of conflicts are affected by geographical conditions,
cultural traditions, international environment, and other factors. As an
illustration of applying the concept of speeds of changes in analyzing
economic structural changes, we may select three basic variables, the
population, capital and knowledge. As shown Table 1, these three
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variables may be roughly considered to be changeable at different speeds
in different societies.

Table 11.1 Change speeds of the economic variables.

-""•-^-^^Society Agricultural Industrial Knowledge

Variables ^~~~^-~^^^

Population Fast fast/slow slow

Capital Slow slow/fast fast

Knowledge Slow slow/fast fast

It may be argued that if we are interested in examining agricultural
economies, we may concentrate on studying population (and power
struggle) dynamics. But the analytical conclusions about agricultural
economies cannot be applied to explain economic dynamics of
industrialized economies, as capital is the dominant variable of industrial
economies. Similarly the analytical conclusions about capital-based
societies cannot be applied to explain economic phenomena of
knowledge-based societies. In fact, from the studies of history of
economic analysis1, it is clear that many economic ideas were created at
the time when the societies were faced with new economic problems
(such as structural transformation) and thus required new ideas to solve
those problems. We may thus expect certain correspondence between
creation of economists' ideas and historical conditions.

Another dimension in analysis is space. Man, action, capital,
knowledge and time can become culturally and socially meaningful only
if we locate them over space. Each human being is born into a unique
existence and each piece of land has its unique attributes in affecting
human action. Space means individual characteristics and accordingly
requires refined classification. This is particularly important in analyzing
modern economies. Fast technological changes, richness of material
living conditions, complicated international interactions, and many other
modern phenomena have increased complexity of spatial economies. The

1 See Schumpeter (1954), Blaug (1985), Negishi (1989).
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subsystems such as ecological, economical and social subsystems, which
could be once decomposable as separate elements in analyzing the social
system at least in short terms over a homogenous space, have to be
treated as a part of the whole system. Some economic relations cannot be
recognized if we don't explicitly introduce spatial and temporal
dimensions. It will take some time for what is happening in a scientific
lab to affect economic reality. Without spatial dimension, we can hardly
analyze actual processes of, for instance, how Japanese economy may
actually affect the world economy. In fact, the choice of spatiotemporal
scale is a delicate and obligatory process and must be made before actual
study of any special economic problem. The explicit awareness of this
necessity is very important for understanding both economic reality and
structure of economics. For instance, for human life what is good to
one's taste (assessment on a short timescale) may be harmful to one's
health (assessment on a longer timescale). One can hardly explain
differences between Keynes and Schumpeter's economic visions without
differentiating their temporary scales. Temporal scales in the economist's
vision have complicated interdependent relationships with actual
analyses and abstraction of reality.

We are in an era of high economic complexity. This implies that
economic decisions have to be made within a large context in which
internal structures of each subsystem and connections of different
subsystems have to be taken into account within a genuinely dynamic
framework. The bringing-up of children, lower and higher education,
family structure, and family values are all connected in a subtle and
complicated way in economic networks. We have to consider reciprocal
relations of different aspects of social and economic factors rather than
considering these facts in isolation. Simple one-sector growth models
without economic structures will hardly provide any useful information
about the complexity of modern economies. We need to enlarge
analytical frameworks to handle multiple hierarchical levels, multiple
space degrees and multiple time scales.
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Dynamic economic structures
An economic system is composed of many people, and the psychology of
people and the relations (which are reflected in values, institutions and
customs) among people are constantly changing. The difficult task is to
find out whether or not there are durable (if not permanent) patterns or
orders in human behavior and in human societies and to explicitly
construct descriptions (usually, models) for these orders if they exist. In
order to construct a comprehensive theory it is necessary to understand
general patterns of people's behavior in a society over time and space.
The difficult task is how to construct such a comprehensive economic
theory.

It is significant to examine economic systems with a spatiotemporal
structural vision. The key words are space, time, and structure. It is hard
to give a precise concept of structure. Here, a structure means a sum of
elements and relationships between those elements. In other words,
structure stands for the way the elements and constituent parts of a whole
are arranged with respect to each other. Structure represents a whole in
which each element depends on the others by virtue of its relation with
them. According to Thom,2 structure is defined as a spatiotemporal
morphology described by significant spatial discontinuities and by the
syntax that determines how these sets of discontinuities form into
relatively stable systems. In evolving structures relations depend on time.
The structure includes properties, which are properties of the whole
rather than only properties of its component parts. Any change in one
element or one relationship will cause a modification in other elements
or relationships. By means of the cooperation of the individual parts of
different subsystems new properties may emerge that are not present in
the subsystems. Economic evolution involves not only changes in
variable levels and functions but also in organizational structures that
concern the way elements are connected within subsystems, the way
subsystems are embedded in large ones, and the way that organizational
structures emerge or disappear. As mentioned in the introduction,
advances in theory of complex systems provide promising ways for
understanding the dynamics of structural changes in socio-economic

2 Thorn (1977).
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systems. Theory of complex systems provides many deep insights into
structural evolution. The modern study of economic chaos permits the
discovery of chaotic economic structures disguised by very complicated
fluctuations. The concept of structural stability in theory of complex
systems is essentially significant in the study of structural evolution.

Hierarchy is a main character of economic structures. Economic
systems consist of a hierarchical structuring among the component parts.
Hierarchy here means, following Herbert Simon3, a set of Chinese boxes
of a particular kind. Opening any given box discloses a whole small set
of boxes; and opening any one of these component boxes discloses a new
set in turn. Power distribution is an important indicator of this structure.
For instance, in common situations the state organizes the regions within
the country, and the regional governments in turn organize the lower-
levels within them. Each society is characterized by its own hierarchical
structure. In social evolution, these structures may be either stable or
unstable, depending on material, affective, cognitive, and spiritual,
factors. In the traditional societies economic structures often remained
quite stable over many generations; in modern societies structural
changes may occur several times within a short period of time.

Hierarchy is not only the character of human societies; even sciences
exhibit hierarchical structures. Dawkins sees scientific theories and areas
as a hierarchical structure, on different levels, corresponding to levels of
description of phenomena4. Philosophers and some scientists have sought
ultimate reality in the structure of matter at increasingly finer scales in
order to provide the most elementary explanation, while astronomers
have sought the structure of the universe in increasingly wider domains.
In natural science, the complexities of ecosystems are explained by
examining those of organisms, organisms are explained by referring
them back to the growth of spatially organized proteins and other
macromolecule, the complex organization of organisms is explained
back to the linear complexity of their DNA code, the complexity of DNA
is referred back to combinations of simpler atoms, and so on. We should
have national macroeconomics based on regional economics; regional

3 Simon (1973).
4 Dawkins (1986).
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economics should be referred back to urban and rural economics; spatial
economics referred back to family-level and company-level economics.
In a broader perspective, psychology and behavior sciences should be the
starting point of microeconomics. Chemists will to explain psychological
processes in terms of natural laws. The processes can be further going
on. Darwin's remarks that it is not necessary to refer every phenomenon
back down this chain of reductions in order to understand it. In natural
sciences, chemistry can be considered as a 'fixed parameter' for the
purpose of understanding DNA. In economics, macroeconomics can be
considered as 'given' for labor economics and family economics. It is
obviously important to construct a grand theory, which connects all the
levels within a compact framework.

Connections between levels in a social hierarchy are usually not
simple. An economic hierarchical system may operate on different
scales. Its variables and substructures may operate or change in different
process rates. Since higher levels usually strongly and quickly affect low
levels in the hierarchical structure, higher levels usually tend to be
changed in lower frequencies. But this asymmetry in change speeds is
not always held. To study the hierarchical nature of complex systems, we
have to accept a different perspective - a different spatiotemporal scale
used. There are gaps between any two levels of social hierarchy. For
instance, we may have a reasonable understanding of single male or
female behavior and we know how men and women get married and
form families. But the functioning of families is far more complicated.
Micro level phenomena such as family ties have significant implications
for macro economies. An economic theory without endogenous family
structure can hardly explain modern economic reality since on one hand
family structures have been affected by economic development, on the
other hand economic development is the consequences of cooperative
(and competitive) behavior among family members.

All these intrinsic difficulties related to economic structures heavily
affect the efficiency of modeling economic systems. Multiple levels have
to be described in long-term studies. This requires economic theory to
have internal structures to represent the complexity of subsystems and
connections of the subsystems. Such structural models will eventually
turn out to be very complicated. Indeed, we may find out some special
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characteristics of the system under consideration and thus are able to
simplify the analysis. For instance, some hierarchical systems are
decomposable, at least in short timescales. This means that it is possible
to effectively isolate and describe a part of the system for a given
timescale. We may analyze behavior of the independent subsystem in
isolation from the rest of the hierarchy to which it belongs. A study of
dynamics of a particular process on a particular level can thus be
conducted by taking behavior of higher levels as fixed and 'enslaving'
behavior of the low levels as structurally determined flows. In other
words, for the chosen time scale the behavior of higher levels are so slow
that they can be effectively negligible and the behavior of lower levels
are so fast that perturbations generated by the behavior of lower levels
can also be effectively neglected. For instance, an economic analysis
may be conducted in a time scale short enough to assume changes in
ecological processes negligible and long enough to average out noise
from processes occurring at individual levels. It should be remarked that
this method might be invalid especially in 'revolutionary' periods. At
such critical points, neither the dynamics of higher levels nor the
perturbations generated by the behavior of lower levels are negligible.
The model used to describe the dynamic interaction of the chosen
subsystem is no longer able to provide reliable information about
possible behavior of the subsystem.

An important feature of economic structures is that they are
intrinsically complicated at each level. Individuals, groups or clubs,
regions and nations, even as they develop under practically similar
conditions, are never exactly the same. Detailed studies of their evolution
have provided many examples of an intrinsic complexity. For instance,
random fluctuations in tastes may affect microeconomic evolutionary
processes on a large scale. The economic structure represents the values
and principles of the economic organization. The system may be
analyzed by dividing the whole system into different levels, each
representing a subsystem, which consists of relatively uniform elements
that interact with each other either in simple or complicated ways. To
find and describe these interactions are the key elements for analyzing
order and disorder at any given level. Economists have sought structural
invariants on macro, meso and micro levels. The construction of a theory
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with structure is not arbitrary and gratuitous. We first have to determine
issues under examination, scales (both of variables, time and space) and
domains, and analytical methods. Here, when assuming the habitual
three-dimensional representation of space, with time as a fourth
dimension, scale is defined as the smallest volume within the interior of
which it is agreed not to try to distinguish the nonuniformity of a
property being measured and as the shortest interval of time during
which it is agreed not to try to distinguish variations of a given property.
The domain is defined as the greatest volume and the longest time
interval over which the study will be extended. For instance, the whole
economy can be studied by employing several scales. The variables used
at one scale may be treated as a coarser scale, macroscopic in
comparison with the first by taking averages of larger volumes and
longer intervals of time. In building a sophisticated economic theory, one
has to construct, without making any mistakes, a long chains of
assertions, has to be aware of what one is doing at each step of the
construction process, and has to speculate about where one is going. The
constructor has be to able to guess what is true and what is false at each
level and be able to judge what is useful and what is not in the whole
framework.



Appendix

A.1 Matrix Theory

We present some important concepts and theorems from linear algebra
and matrix theory. Some elementary concepts, such as identity matrices
and null matrices, matrix operations, and proofs of theorems are
omitted.1

Let vectors A be a nonempty set of vectors in R". A vector x in R"
is linearly dependent on the set A if there exist vectors >>,, y2,..., ym and
scalars a,, a2,..., am such that

For any nonempty set A of vectors in R", (A} is the set of all
vectors in R" that are dependent on A. (A^ is a subspace of R". A
vector of the form

is called a linear combination. A set A of vectors is a basis of the
subspace U if (i) A "spans" U and (ii) A is linearly independent. If U
is any subspace of R", the number of vectors in a basis of U is called
the dimension of U and is abbreviated as dim(C/). The dimension of R"
is n.

1 This part on matrix theory is based on Gilbert and Gilbert (1970). See also Chiang (1984), Berman
and Plemons (1979), and Peterson and Sochachi (2002).

455



456 Differential Equations, Bifurcations, and Chaos in Economics

Let U -{Ul,U2,...,Ur} be a set of vectors in R" and
V = \VX, V2,..., Vs} be a set of vectors in ([/), a matrix of transition from
U to V is a matrix A = la I such that

L 'J Jrxs

K=iaifUn 7=1 ,2 , . . . , ^ .

Definition A.1.1 A square matrix A = [a^j^ is nonsingular if and only
if v4 is a matrix of transition from one basis of R" to another basis of
R". A square matrix that is not nonsingular is called singular.

We denote the identity matrix by In ( = 1 ^ , ^ where 8tj is the
Kronecker delta).

For any mxn rectangular matrix, if the maximum of linearly
independent rows that can be found in such a matrix is r, the matrix is
said to be of rank r, denoted by Rank{A) or RankA. The rank also tells
us the maximum number of linearly independent columns in the same
matrix. As a square matrix has n linearly independent rows (or
columns), it must be of rank of n. HA is mxn matrix over R and P
is any invertible nxn, then we have Rank(A) = Rank(AP\

Definition A.1.2 An nxn matrix B is an inverse of the nxn matrix
A = \pA if AB = In - BA. Furthermore a square matrix is called
invertible if it has an inverse.

Theorem A.1.1 An nxn matrix A is invertible if and only if A is
nonsingular. The inverse of an invertible matrix is unique.

If A = [cigl^ is invertible, its unique inverse is denoted by A'1. If
Av A1,..., Am are square invertible matrices of order n over R", then
A^--- Am is invertible and

For any mxn matrix A, the transpose of A is denoted by AT. If a
square matrix A is invertible, then AT is also invertible and
[AT)' = [A'1). The following concept is only referred to square
matrices.
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Definition A.1.3 The determinant of the square matrix A = [«,yJnXn is the
scalar det(A) defined by

dQt(A) = ^(-l)'aViaih...alJn,
j

where ]T denotes the sum of all terms of the form (-l)'alhaih •••axu

as /,, j2{ ..., jn assumes all possible permutations of the numbers of the
numbers 1, 2,... n, and the exponent t is the number of interchanges
used to carry j , , j2 ..., jn into the natural order 1, 2,...,«.

The notations det^4 and A are used interchangeably with det(^).
When n = 2 and n = 3, we have

I I au an

an a22

an an an

| 4 M | = °n «22 «23 = a\\a2iai2 + °12«23a31 + ^ 3 2 ^ 2 1 »

a3i «32 a33

- «31«22«13 - a32«23ai 1 ~ «33ai2«21 • (A. 1.1)

Definition A.1.4 The minor of the element a., in 4̂ = la, I is the
determinant MtJ of the ( H - I ) X ( W - I ) submatrix of A obtained by
deleting row i and column j of A . The cofactor, denoted by Atj, of a{j

in 4̂ = |a,Jnxn is the product of (- l) and My, that is,

4=(-i)(i+y>^--
The adjoint of .4, denoted by adj{A), is given by

Theorem A.1.2 If A = [aj^, then
anA\ + fl*24t2 •' • + a*.4b, = S,k det(^), i, k = l,2,...,n,

% A u + aij^ik ••• + <*nJAk = 8* d e t ( ^ ) , j , k = l , 2 , . . . , n .
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By the above formula and (A. 1.1) with Su = 1, we can calculate
det(A) of any dimension, in principle. For instance, when n = 4

det(^4x4) =
 auAx + a?A\ + °yA\ + a4i^4i.

where An are calculated from the corresponding 3x3 matrices.
It can be shown that if A = [a(>.Jn is invertible, then

Definition A. 1.5 If A is nxn matrix, an eigenvector of A is a nonzero
column vector v in R" such that Av = pv for some scalar p; the scalar
p is called an eigenvalue of A.

Theorem A. 1.3 If A is an nxn matrix, a number p is an eigenvalue of
A if and only if det(plnxn - A) = 0.

The equation det(pInM - A) = 0 is called the characteristic equation
of the matrix A. Upon expanding the determinant det(plnxn - A) we will
have a polynomial of degree n in p called the characteristic polynomial
of A.

An nxn matrix B is said to be similar to the nxn matrix A if there
is an invertible nxn matrix P such that B = P'lAP. A square matrix is
said to be diagonalizable if it is similar to a diagonal matrix. It can be
proved that a square matrix A is diagonalizable if and only if there is a
basis for R" consisting of eigenvectors of A. A non-square matrix is not
diagonalizable. There is something close to diagonal form called the
Jordan canonical form of a square matrix. A basic Jordan block
associated with a value p is expressed

p 1 0 ••• 0 0"

0 p 1 • •• 0 0

0 0 0 ••• p 1

0 0 0 • •• 0 p
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The Jordan canonical form of a square matrix is compromised of such
Jordan blocks.

Theorem A.1.4 Suppose that A is an nxn matrix and suppose that

tet{pr-A)={p-rlY>{p-r2Y>-{p-rtY>,
where px, p2, •••, pk are distinct roots of the characteristic polynomial of
A. Then A is similar to a matrix of the form

'Bi 0 ... 0"

0 B 2 ••• 0

0 0 ... Bk

where each B, is an m, x m, matrix of the form

"J. 0 ... 0"

0 J , - 0

o o ... J.

and each J. is a basic Jordan block associated with r.

A.2 Systems of Linear Equations

A system of linear equations is

anx, + ai2x2 +••• + ainxn = bp j = 1, 2 , . . . , w ,

or in the matrix form

^A,=tr (A.2.1)

A solution of the system is a set of values of x that satisfies Ax = b.
In this system, A is called the coefficient matrix, x the matrix of
unknowns, and b the matrix of constants. The matrix [̂ 4, b] is called the
augmented matrix of the system.
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Theorem A.2.1 The system Ax = b has a solution if and only if
Rank([A,b]) = Rank(A).

Theorem A.2.2 If Rcmk{[A,b]) = Rank(A) = r, then the solution to
Amxnxixn = blXn can be expressed in terms of n - r parameters.

Theorem A.2.3 Consider a system of linear equations

If det(^) ^ 0, then the unique solution is given by x = A'lb.

Theorem A.2.4 Consider a system of linear equations Anxnxnx] = bnxS. If
det(A) ^ 0, then the unique solution of the system is given by

_ L M /-I 2 - n
J~ det(j) ' J~ ' ' ' '

where AtJ are cofactors of A.

The above formula is called Cramer's Rule. We note that

is the determinant of the matrix obtained by replacing the /* column of
A by the column of constants b.

A.3 Properties of Functions and the Implicit Function Theorem

First we state a few theorems from analysis.

Definition A.3.1 Suppose that Vx and V2 are two normalized linear
spaces with respective norms || Ĵ  and[| |[2- Then F:Vl^>V2 is
continuous at x0 e Vx if for all £ >0there exists a S>0 such that
x e Vx and |JC - *„! e S implies that \\F{X) - F{xo]\2 < e. And F is
said to be continuous on the set U € Vx if it is continuous at each point
xeU, and we write F E C(U).



Mathematical Appendix 461

Theorem A.3.1 (The intermediate-value theorem) If the function
/ : [a, b] —> R is continuous and

f{a)<0<f{b),
then there exists a point c e (a, b) such that f(c) = 0.

Definition A.3.2 The function f:R"-^R" is differentiable at x0 e R"
if there is a linear transformation Df(x0) that satisfies

limJ/(*o+*)-/(*o)-£/(*oM_0
M-H) |ft|

The linear transformation v is called the derivative of / a t x0.

The following theorem gives us a method for computing the
derivative in coordinates.

Theorem A.3.2 If the function f:R"->R" is differentiable at
xoe R", then the partial derivatives df,/dxj all exist at x0 and for all
xeR"

Df(xo)x = i^(xo)Xj.

Thus if / is a differentiable function, the derivative Df is given by
the n x n Jacobian matrix

v-\f.
[dXj_

For U an open subset of R", the higher order derivatives Dkf(x0) are
defined in a similar way.

Definition A.3.3 Suppose that f:U->R" is differentiable on £/. Then
/ e C^C/) if the derivative D/" is continuous on [/.

We can define

ft Ck{u),k = 2,3,-

in a similar manner.
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Theorem A.3.3 Suppose that U is an open subset of R" and that
f:U->R". Then fe C'([/) if and only if the partial derivatives
dfi /dxj all exist and are continuous on U.

It can be shown that / e Ck{u) if and only if the partial derivatives

dxh-dxh'

with i, j \ , •••, jk = 1, •••, k exist and are continuous on U.

Theorem A.3.4 (Inverse function theorem) Let U be an open set in R"
and / : U -> R" be a C* function with k > 1. If a point x e U is such
that the nx« matrix Df(x) is invertible, then there is an open
neighborhood V of x in [/ such that / : F —> / ( F ) is invertible with a
C* inverse.

The inverse function theorem implies that if the matrix fx(o) is
nonsingular, then there is a smooth locally defined function

x = g{y), g:Rn-*R"

such that

f(g(y)) = y,

for all y in some neighborhood of the origin of R". The function g is
called the inverse function for / and is denoted by g = f~\

If y = g(x\ g:R" ->Rm and z = f(y), f': Rm -^ Rk are two maps,
then their superposition

h = f°g

is a map z = h(x), R" -+ Rk, defined by the formula h(x) = f{g(x)). Let
fy(y) denote the Jacobian matrix / evaluated at a point ye Rm

fM = [^) , i = l. 2, ...,*, 7 = 1,2,...,*..
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We similarly define h (x) as

'•<•>•(?»
We consider a map

(x, y)h> F{x,y),

where F: R"xRm —> R" is a smooth map defined in a neighborhood of
(x,y) = (0,6) and F(0,0) = 0. Let Fx(0,6) denote the matrix of first
partial derivatives of F with respect to x evaluated at (0, 0)

'.<M)-NH •
Theorem A.3.4 (The implicit function theorem) If the matrix ^(0,0) is
nonsingular, then there is a smooth locally defined function y = f(x),
f:R"->Rm such that

F{x,f{x)) = 0,

for all x in some neighborhood of the origin of R". Moreover

/,(0) = -te(0,0)]-'F,(0,0).

The degree of smoothness of the function / is the same as that of F.

Theorem A.3.5 (The submanifold theorem) Let U be an open set in R"
and let f:U^>Rp be a differentiable function such that Df(x) has
rank p whenever f(x) = 0. Then /" '(o) is an (n - p)-dimensional
manifold in R".

Lemma A.3.1 (The Morse lemma) Let f:R"^>R be a sufficiently
differentiable function. If x' is a nondegenerate critical point of / , that
is, Df[x) = 0 and the Hessian matrix [32/(x*)/3x;.3x.J is nonsingular,
then there is a local coordinate system ( y , , ' " , y j in a neighborhood U
of JC* with y,(jc*) = 0 for all i, such that



464 Differential Equations, Bifurcations, and Chaos in Economics

for all yeU. The integer k is the number of negative eigenvalues of
the Hessian matrix.

Sard's Theorem Let U be an open set in R" and let / : U -> R" be a
differentiable function. Let C be the set of critical points of / , that is,
the set of all x e U with rankDf{x) < p. Then f(c) has measure zero
in Rp.

A.4 Taylor Expansion and Linearization

Given a successively differentiable one-variable function f(x), the
Taylor expansion around a point x gives the series

f(x)=f(x)+fixtx-x)+rk}{x.x-r+^

+ l^(x-x)f+R(x),

where a polynomial involving higher powers (than n) of (x — x0)
appears on the right. For a two-variable function, f(x, y), the Taylor
expansion around a point [x*, yj is given by

/(*, y) = /(**, / ) + /,(**» y\x - x')+ fy(
x*> y\y - / )

+ ̂ L(**> y\* ~ X'J + 2fv(x, y\x - x\y - y)

+ fyy(
x',yh-y}\+- + R(x>y)-

Linearization of a function is obtained by simply dropping all terms
of order higher than one from the Taylor series of the function. For
instance, the linear approximation of a one-variable function f(x) gives

f{x) =/(?')+f(xk-x).
In the case of two variables

/(*> y) = f{x, y')+fx(
x> y'fa ~ x) + fy(

x> /h ~ / ) •
We now give the Taylor expansion for any dimension around the

origin. Let U be a region in R" containing the origin x = 0. We denote
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the set of all continuous functions / : £ / - > 7T by C°(u, Rm) and the set
of all differentiable functions with continuous first derivatives by
Cl(u, Rm) Analogously, we will use Ck(u, Rm) to indicate the functions
with continuous derivatives up to order k. If fe Ck\U,Rm) with a
sufficiently large k, the function / is called smooth. A C°° function has
continuous partial derivatives of any order. Any function / e CkyJ, Rm)
can be represented near x = 0 in the Taylor expansion

f(x) = ±—± dl<lf{x) . « ... *'" + R(x),
| f ( , ( , ... I OX,'OXj ... OX"

where

and

^)=o|xr)=4f),namely

in which |x| = V^rx. Here, we give precise definitions of O and o. Let
/ and g be two given functions. We say that

f(x)=O(g(x)\ asx->0,

if there are constants a > 0 and 4̂ > 0 such that |/(x)j < ̂ |g(*)| for
x\ < a. We say that

f(x) = o(g(x)\ asx->0,

if for any £ > 0 there is a £ > 0 such that |/(JC)| < £"g(x)j for x| < ^.
A C°° -function / is called analytical near the origin if the

corresponding Taylor series

f i aM/(*) ^ ^ x,
II l i n \ l n X=Q

converges to f(x) at any point x sufficiently close to x = 0.
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A.5 Structural Stability2

The stability concepts introduced so far are related to the way in which a
dynamic system reacts to perturbations in initial conditions. However,
sometimes we are interested in properties of functional forms. For
instance, it is important to know about the stability of the money supply
function itself. The concept of structural stability is related to qualitative
properties of functions.

Models we build for describing reality may be very sensitive to small
changes. In such cases, an arbitrarily small change in a model leads to
another model with essentially different properties. To explain the
concept of structural stability, let us consider the differential equation
x = fix), for a given vector, / , on the manifold, M.

Definition A.5.1 Two systems are said to be topologically orbitally
equivalent if there exists a homeomorphism of the phase space of the
first system onto the phase space of the second, conserving oriented
phase curves of the first system onto oriented phase curve of the second.
No coordination of the motion on the corresponding phase curve is
required.

Definition A.5.2 Let M be a compact manifold (of class C*"1, k = 1).
Let / be a vector field of class k (if M has a boundary, then it is
assumed that / is not tangent to it). The system (M, f) is said to be
structurally stable if there exists a neighborhood of / in the space C1

such that every vector field in this neighborhood defines a system
topologically orbitally equivalent to the initial one, and the
homeomorphism of the equivalence is close to the identity
homeomorphism.

A system which is not structurally stable is defined to be structurally
unstable. The following predator-prey system is structurally unstable

x{t) = a{y(t-y{t))x{t),

2 This section is based on Sec. 3.5 in Zhang (1991).
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y(f) = /3{x{t)-xo)y(t),

where x(t) and y(t) are respectively the population of preys and
predators, and a, ft, JC0 and y0 are parameters. We can define the
concept more simply, which is enough for our purpose. A system
x = f(x) is structurally stable if there exists a homeomorphism from the
orbits of x = f\x) to the orbits of

x = f(x) + p{x)

for sufficiently small perturbations p(x).
Let M denote the interior of a closed curve without contact to any of

the vector fields to be considered and let G be the set of all such Ck

vector fields. We have the following theorem. The theorem provides a
necessary and sufficient condition for identifying structural stability of a
dynamic system. However, the results are not so easy to apply because it
is difficult to check the conditions for real problems.

Theorem A.5.13 A function f(x) in G is structurally stable if and only
if every equilibrium point and every periodic orbit is hyperbolic and
there are no connections between saddle points. Also, the set of
structurally stable system is open and dense in G.

A.6 Optimal Control Theory4

The optimal control problem is one to obtain the trajectory x(t) by
choosing a function v(t) to maximize or minimize a certain objective.
The theory for such a problem is called optimal control theory. In
general, x(t) is an n -dimensional vector function and v(t) is an m-
dimensional vector function. The basic result of the Pontryagin and his
associates is called Pontryagin's maximum principle. The principle gives
the necessary conditions for optimality. We now introduce this principle.

Consider the following system of n first-order differential equations

3 The concepts introduced above and Theorem A.5.1 are referred to Chow and Hale (1982).
4 Different extensions of the maximum principle and various economic applications of the theory are
referred to Takayama (1996) and Seierstad and Sydsaeter (1987). The theorems listed here are
referred to Takayama (1994).
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x,{t) = f i [ x { t ) , v { t ) , t \ i = 1 , 2 , • • • , » , (A.6.1)

where

4f) = (xl(t\x2{t\-,xll(t)\

v(') = (v,(O,v2(O,",vm(O),
where f, xj and vk are all real-valued functions. The boundary
conditions for the differential equations (A.6.1) are specified as
x(to) = x0. If we specify the path of v(t), then we can determine the
trajectory x(t; x0, ta). The existence theorem in Chap. 3 provides
sufficient conditions for the local existence and the uniqueness of a
solution. The optimal control theory is to find the trajectory v(t) (e Q)
which maximizes an objective function. We now consider an objective
function

S = £ciXi(T), (A.6.2)

where c, and T are constant. Our problem is

Maximizes,

Subject to (A.6.1), v ( / ) e Q , / D < ( < T, x{tQ ) = x0. (A.6.3)

In optimal control theory, x(t), which are assumed to be continuous
in t, are called the state variables, and v(t) are called the control
variables. Here, Q is the set of admissible controls. When v(/) 6 Q,
v(t) is called an admissible control function. We assume that Q is
restricted to the set where v^) is "piecewise continuous."5 Here, we
assume that f 's are continuous in each xt, vy, and t, and possess
continuous partial derivatives with respect to each xt and t. The range of
x(t) is denoted by I I , where II is an open connected subset of R".6

5 By piecewise continuous, here we mean that a function is continuous except possibly at a finite
number of points and that the discontinuity is limited to the first kind (which means that the left-hand
and right-hand limits are finite though they are riot equal.
6 A subject X of R" is said to connected if it cannot be partitioned into two disjoint nonempty

subsets of R" which are open in X .
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Theorem A.6.1 (Pontryagin's maximum principle) For the problem
(A.6.3), in order that v'(t) is a solution of the problem with the
corresponding state variable x'(t), it is necessary that there exists a
continuous, vector-valued function

i(0=U(/U(4-,^(/)),
not vanishing simultaneously for each /,7 such that

(1) X{f) together with x'{t) and v*(/) solving the following Hamiltonian
system

.. _dH\
x< ~ dAj |(*V,a)>

4 = - f r | ( . v , , * i = l'2-••••"> (A-6-4>

where the Hamiltonian H is defined by

H(x(t), V(t\ t, A(t)) = ±4{t)f,{x{t\ v(t), t).
(=1

(2) The Hamiltonian is maximized with respect to v(t), that is

H(x{t), v'(t), t, A{t))>H(x'{t), v(t), t, A{t)\ foraUv(0e Q .

(3) The following traversality condition holds

4(2") = c,, i = l,2,-,n.

(4) xl{t0) = xm, i = l , 2 , - , « .

The theorem gives the necessary conditions for v*(̂ ) to be optimal. It
turns out that these conditions are also sufficient (for global optimum) if
the f, 's are concave in x and t. The variables A(t) are called the
Pontryagin multipliers, the auxiliary variables, or the costate variables.
The conditions (A.6.3) can be rewritten as

7 The phrase "not vanishing simultaneously" means that A(t) is a non-zero vector. In the appendix,

A{t), like x(t), is continuous and has piecewise continuous derivatives on the interval [t0, T\ .

The possible discontinuities of X\t) and x\t) occur at the points of discontinuity of v{t).
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» ^ (*W(<),<)

z = 1,2, ••- ,«. (A.6.5)

The system (A.6.5) consists of In first-order differential equations
for In variables x(t) and A(t). There are 2« boundary conditions,
x(to) = xo and A{T) = c corresponding to these In equations. The
condition (2) in the theorem determines v(/) as functions of x(t) and
A(t). We call the pair x*(t) and v*(/) the optimal pair or the solution

pair. The function v'(t) is called the optimal control, and x*(t) the
optimal trajectory.

It should be noted that the objective function S in the condition
(A.6.2) is more general than it appears. It includes frequently-used
objective function

v = )fMt\v{t),t)dt.

Introduce a new variable xo(t) by

xo(t)^fo{x{t),v{t),t), xa{t0) = 0.

Then *F = XO(T) is a special case of the condition (A.6.2). Hence the
problem of maximizing *F subject to xo(t) = fo(x, v, t), the condition
(A.6.1), and x(to) = x0 can be converted to the problem of maximizing
jco(r) subject to xo(t) - fo(x, v, t), the condition (A.6.1), and
JC(/0) = JC0. We can then immediately apply Theorem A.6.1.

The above discussion shows that the target in the integral form can be
converted to a summation form S. Conversely, we can convert S in the
condition (A.6.2) to the integral form. To see this, we use

S = ±c,xl(T)=Tl£clxl(T)+£cM.

Hence, the maximization of S subject to the differential equations
(A.6.1), and x(t0) = x0 is equivalent to the maximization of the integral

'0 M
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subject to the differential equations (A.6.1), and x(t0) = x0.
Since vy(/) can be any piecewise continuous function, v*(f) may be

such that

u](t) = 0, to <t<t,

«;(/) = 1, i<t<T.

Such a control is called the bang-bang control.
Theorem A.6.1 is extended to varied forms of optimal problems. We

now provide two cases which are frequently applied in economics. First,
consider case of fixed time with variable right-hand end-points problem.

Theorem A.6.2 Consider the following problem
T

Maximize \fo{x{t), v{t), t)dt,
'o

Sub jec t to x , (t) = f, [x{t\ v{t\ t\ i = 1, 2 , • • - , « ,

v ( / ) e Q , * 0 < f < 7 \ * ( 0 = *o>

with T being fixed and X,(T) to be determined. In order that v*(f) is a
solution of the problem with the corresponding state variable x'(t\ it is
necessary that there exists a continuous, vector-valued function

40=fo('Uto-",4.(0).
not vanishing simultaneously for each t, such that

(1) A(t) together with x*(t) and v'(t) solving the following
Hamiltonian system

.. _ BH\
*-• - a / lJ(,V,a) '

4 = - f H ( , V , a ) ' » = 1 . 2 . - . » . (A.6.4)
where the Hamiltonian H is defined by

H(x(t),v(t),t,A(t)) = ±Ai(t)fi(x(t),V(t),t).
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(2) The Hamiltonian is maximized with respect to v(t), that is

H(x(f\ v(t), t, Mf)) ^ H(x{t\ v(t), t, A(t)\ for all v{t)e Q .

(3) AXT) = 0, i = 1,2, ••• ,«.

(4) x,{to) = xm, i = l,2, •••,«.

Theorem A.6.3 If fo(x{t), v(t), t) and fi{x(t), v(t\ t) are all concave in
JC and v, then the set of necessary conditions stated in Theorems A.6.1
and A.6.2 are also sufficient for optimum for their respective problems.
In addition, if / 0 is strictly concave in x and v, the optimal path is
unique.

The following form of the principle is most frequently applied in
economics.

Theorem A.6.4 Consider the following problem
oo

Maximize f/0(x(4 v{t), tY" dt
v(t) J

Subject to x,(t) = f, [x{t\ v{t), t\ i = 1, 2, • • •, n,

Vj(t)>0, j = l,2,-,m, x(0) = x0,

where p is a positive constant. Assume that f0 and / are continuously
differentiate in the {x, v, t) -space. In order that v*(f) is a solution of
the problem with the corresponding state variable x'(t\ it is necessary
that there exist multipliers

A(t) = (Al{t),A2(t),-,AM,
such that

(1) A(t) together with x'(t) and v'(t) solve the following Hamiltonian
system

.. _ dH
x> - dAj (*V,a)'
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A=M--^-|(/,v.,M), ' = U,- ,«

where the current value Hamiltonian H is defined by

H(x(t), v(t), t, A(t)) = fo(x(t\ v(0, /) + tlitVMl v(t), t).

(2) H is maximized with respect to v(/) subject to Vj{t) > 0, that is

dVj

Vj — = 0, j = l,2,---,m.

dVj

(3) KmAi{ty"xi{t) = 0, i = l,2,-,n.

( 4 ) x / ( 0 ) = x / 0 , i = l , 2 , • • • , « .

Theorem A.6.3 is also applicable to Theorem A.6.2.
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