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Öttingerstr. 67, 80538 München, Germany

ISSN 0172-6218

ISBN-10 3-540-34458-6 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-34458-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable to
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specif ic statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Cover concept: eStudio Calamar Steinen

Printed on acid-free paper SPIN: 11502227

A Eusing a Springer LT X macro package

Library of Congress Control Number: 2006928272

54/3100/SPi - 5 4 3 2 1 0

springer.com

Department of Chemistry, The Pennsylvania State University

Cover production: GmbH, HeidelbergWMX Design

Dé partement de Chimie, Ecole Normale Supérieure

© Springer-Verlag Berlin Heidelberg 2007

Typesetting by the authors and SPi



Preface

Quantum phenomena are ubiquitous in complex molecular systems, and yet
remain a challenge for theoretical analysis. A complex molecular system is
composed of many atoms and may for example constitute an assembly of mole-
cules, a cluster, a polymer, a chromophore-protein complex, or an adsorbate-
surface structure. The system may be isolated, or more likely in contact with
some physical environment. Its properties and behavior usually depend on
the way it interacts with external fields or with other molecular species,
and typically involve excited atomic and electronic states, which must be
described in terms of quantum mechanics. From the point of view of quan-
tum theory, one is dealing with a system with many quantized degrees of
freedom, a subject that has been formally explored for a long time. But
molecular systems are special, in that they involve particles (electrons and
nuclei) with very different masses leading to interactions with very different
time scales. Therefore, quantum molecular dynamics can often be described
in terms of potential energy surfaces within the Born–Oppenheimer approx-
imation – even though it is the breakdown of this approximation, at avoided
crossings or conical intersections, which is at the root of many reactive and
photochemical processes. Further, molecular systems are subject to thermo-
dynamical constraints when they interact with a medium, which in turn dy-
namically evolves as a result of the interaction with the molecular subsystem.
The subsystem’s quantum dynamics is thus entangled with the nonequilib-
rium evolution of the environment. Due to these many facets of dynamical
behavior, the quantum dynamics of molecular systems, including statistical
effects, has become one of the most challenging and active areas of molecular
science.

Much current activity is directed at developing methods to tackle quantum
dynamics in many dimensions, including quantum coherence and dissipative
phenomena, often with the aim of interpreting and predicting experimental ob-
servations based upon detailed molecular scattering experiments or ultrafast
spectroscopic techniques. Indeed, the direct, femtosecond scale, observation
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of molecular phenomena (“femtochemistry”) has given a strong impetus
to the theoretical and computational developments in quantum dynamics.
Applications and comparisons with experiments demand theories that can be
implemented numerically to calculate measurable properties. Straightforward
numerical methods for solving the differential equations of quantum mechan-
ics, based on basis set expansions or discretization of variables on a grid,
are restricted to small systems and are not practical for complex molecular
systems. Relevant and useful treatments include self-consistent field meth-
ods for atomic motions and their multiconfiguration extensions, path integral
methods for molecular motions, semiclassical and mixed quantum–classical
approaches, various trajectory based methods, and density matrix methods
describing both population relaxation and decoherence.

The present book grew out of a workshop organized in May 2005 in Paris,
France, to bring together workers in the field of quantum dynamics of molecu-
lar systems, to discuss applications of present theories to a variety of phenom-
ena, along with new theoretical concepts and methods. The following chapters
have been contributed by some of the workshop participants and their collab-
orators, and have been grouped in what follows into Part I, with applications
to complex molecular systems, and Part II, on new theoretical and compu-
tational methods. In fact, method development and applications are closely
interconnected and related work is found in both parts.

Much can be done to explain phenomena in systems excited by light or
through atomic interactions, extending from the molecular scale to nanoscales
and even to macroscopic dimensions. The following chapters show that promis-
ing new methods are now available for those purposes. They demonstrate how
one can tackle the multidimensional dynamics arising from the atomic struc-
ture of a complex system, and address phenomena in condensed phases as
well as phenomena at surfaces. The chapters on new methodological devel-
opments cover both phenomena in isolated systems, and phenomena that
involve the statistical effects of an environment, such as fluctuations and
dissipation. The methodology part explores new rigorous ways to formulate
mixed quantum–classical dynamics in many dimensions, along with new ways
to solve a many-atom Schrödinger equation, or the Liouville-von Neumann
equation for the density operator, using trajectories and ideas related to
hydrodynamics.

The workshop leading to this book was made possible by sponsors from
the University of Florida in the USA and by several institutions in France.
We thank in connection with the University of Florida: the Paris Research
Center, the Vice President for Research, the Quantum Theory Project (an
Institute for Theory and Computation in the Molecular and Materials Sci-
ences), and the Chemistry and Physics Departments. On the French side, we
thank the Centre National de la Recherche Scientifique (CNRS), the Min-
istère de l’Education Nationale, the Ecole Normale Supérieure, Paris, and the
Ecole Doctorale 388 “Chimie Physique et Chimie Analytique.” The workshop
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greatly profited from the support of the Director of the Paris Research Center,
Dr. Gayle Zachmann, and from the help of Rachel Gora. We appreciate their
enthusiasm and hospitality.

Gainesville (Florida), USA David A. Micha
Paris, France Irene Burghardt
July 2006
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I.1 Condensed Matter and Surface Phenomena



Photoexcitation Dynamics on the Nanoscale

O.V. Prezhdo, W.R. Duncan, C.F. Craig, S.V. Kilina, and B.F. Habenicht

Summary. The chapter describes real-time ab initio studies of the ultrafast
photoinduced dynamics observed in quantum dots, carbon nanotubes, and molecule-
semiconductor interfaces. The theoretical modeling of these nanomaterials esta-
blishes the relaxation and charge transfer mechanisms and uncovers a number of
unexpected features that explain the experimental observations. In particular, the
ultrafast electron injection from alizarin into TiO2 surface occurs via strong coupling
to a few surface states rather than through the commonly assumed interaction with
multiple TiO2 bulk states. The injection does not require high densities of acceptor
states and, therefore, can function close to the edge of the conduction band, avoiding
energy losses and maximizing voltages attainable in Grätzel solar cells. The phonon-
induced electron and hole relaxation in the PbSe quantum dots is symmetric and
slow. As a result, the carrier multiplication that generates multiple electron–hole
pairs and increases solar cell efficiency becomes possible. In contrast to quantum
dots, the relaxation of charge carriers in carbon nanotubes is mediated by the high
frequency phonons and is, therefore, fast. Substantial contribution of the low fre-
quency breathing modes to the dynamics of holes, but not electrons rationalizes
why holes decay slower and over multiple timescales, even though they have been
expected to decay more rapidly due to their denser state manifold. The systems
considered here are representative of a wide spectrum of problems and contribute
to the general framework for control and utilization of the novel nanomaterials.

1 Introduction

Rapid advances in chemical synthesis and fabrication techniques generate
novel types of materials that exhibit original and often unforeseen properties
and phenomena. These are immediately studied by physical detection tools
that probe material response to a variety of perturbations. The experimen-
tal data generated in such measurements demand understanding and inter-
pretation that are greatly facilitated by theoretical modeling and simulation.
The current chapter presents three closely related theoretical studies of charge
transfer and relaxation phenomena recently observed in novel nanoscale mate-
rials using ultrafast laser spectroscopies. The materials under investigation are
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the molecule–semiconductor interface and the two types of quantum confine-
ment devices, including the quasi-zero-dimensional quantum dots (QD) and
quasi-one-dimensional carbon nanotubes (CN). The motivation for the stud-
ies largely stems from the search for alternative energy sources. The materials
under investigation have the potential to replace the existing solar cells with
more efficient designs and to generate chemically stored energy, such as hy-
drogen obtained by splitting water. The questions raised by the experimental
observations and elucidated by the described simulations bear on a wide range
of problems encountered in molecular and nanoscale electronics, spintronics
and quantum information processing, biological imaging and detection, etc.

The first problem addressed below deals with the photoinduced charge
transfer across a molecule–semiconductor interface. The system originates
from the Grätzel type solar cell and provides an excellent example of nu-
merous issues that arise when two fundamentally different types of systems
are brought together. Molecules, typically studied by chemists, show finite
sets of discrete, localized quantum states. Bulk semiconductors, on the other
hand, are studied by physicists, and are characterized by continuous bands
of delocalized orbitals. The intrinsic difference in the quantum states of the
two systems, as well as the often disparate sets of theories and experimental
tools used by chemists and physicists, create challenges for the study of the
molecule–semiconductor interface. Similar issues arise in nanoscale electron-
ics, where small molecular objects are sandwiched between bulk electrodes.

The second and third projects tackle charge and energy relaxation in
recently created materials showing quantum confinement effects. Originally
considered to be nanoscale derivatives of bulk materials with related pro-
perties, QDs and CNs have taken on a life of their own and are now often
regarded as artificial atoms and nanowires, due to their close resemblance to
traditional molecular objects. Yet QDs and CNs are in neither the bulk nor the
molecular regime, and each exhibit an entirely new range of properties placing
them squarely in between the two traditional types of materials. The study
of the electron and hole relaxation in the QDs reported below is prompted by
the recent experimental detection of multiple charge carriers generated upon
absorption of only a single photon. The study investigates the mechanisms
for increasing the current and voltage in photovoltaic cells and also directly
relates to spintronic and quantum computing applications of quantum dots,
in particular by establishing the limits on vibrationally induced dephasing
that must be avoided. The electron and hole relaxation facilitated by phonons
results in CN heating and is critical to understand for successful development
of nanotube-based miniature electronic devices. The relaxation plays a key
role in CN- and fullerene-based photovoltaic designs.

The simulations described below became possible with the development of
the state-of-the-art theoretical tools designed to tackle the specific problems,
which resulted in theoretical advances important in their own regard. The the-
oretical approaches are explained in Sect. 2, which is followed by the sections
on the molecule–semiconductor charge injection, the excitation dynamics in
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QDs and the electron and hole relaxation in CNs. The chapter concludes with
a summary and a broader prospective of the key results.

2 Theoretical Approaches

The simulations are performed using the time-dependent (TD) Kohn–Sham
(KS) density functional theory (DFT) for electron-nuclear dynamics, where
the electrons are described quantum-mechanically, while the much heavier
and slower nuclei are treated classically. Three variants of the theory are
used. They share the same equations for the electronic evolution and dif-
fer in the implementation of the nuclear dynamics that is chosen depending
on the problem under consideration and computational simplicity. DFT pro-
vides a modern and versatile means for the investigation of molecular and
solid state structures, reaction pathways, thermochemistry, dipole moments,
spectroscopic response, and many other properties [1, 2]. It is accurate, flex-
ible, and computationally efficient compared to the Hartree–Fock and post-
Hartree–Fock methods [3]. The electron-nuclear TDKS theory is implemented
within the VASP code that provides a commercially available distribution of
time-independent DFT [4,5].

2.1 Time-Dependent Kohn–Sham Theory for Electron-Nuclear
Dynamics

The electron density is the central quantity in DFT. It is represented in the
KS theory [6] as the sum over single-electron KS orbitals ϕp(x, t)

ρ(x, t) =
Ne∑
p=1

|ϕp(x, t)|2 , (1)

where Ne is the number of electrons. The time-evolution of ϕp(x, t) is deter-
mined by application of the Dirac TD variational principle to the KS energy

E {ϕp} =
Ne∑
p=1

〈ϕp|K|ϕp〉+
Ne∑
p=1

〈ϕp|V |ϕp〉+
e2

2

∫∫
ρ(x′, t)ρ(x, t)

|x− x′| d3xd3x′ +Exc.

(2)
The right-hand side of (2) gives the kinetic energy of noninteracting elec-
trons, the electron-nuclear attraction, the Coulomb repulsion of density ρ(x, t),
and the exchange-correlation energy functional that accounts for the residual
many-body interactions. Application of the variational principle leads to a
system of single-particle equations [1, 2, 7–9]

i�
∂ϕp(x, t)

∂t
= H(ϕ(x, t))ϕp(x, t), p = 1, . . . , Ne, (3)
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where the Hamiltonian H depends on the KS orbitals. In the generalized
gradient approximation [10] used in the current simulations, Exc depends on
both density and its gradient, and the Hamiltonian is written as

H = − �
2

2me
∇2 + VN (x;R) + e2

∫
ρ(x′)

|x− x′| d3x′ + Vxc {ρ,∇ρ} . (4)

The KS energy (2) may be related to the expectation value of the Hamiltonian
with respect to the Slater determinant (SD) formed with the KS orbitals [6]

H =
〈
ϕa ϕb · · · ϕp

∣∣H∣∣ϕa ϕb · · · ϕp

〉
. (5)

The single-electron density (1) is obtained from the SD by tracing over Ne−1
electrons.

ρ(x1) = Ne Trx2,...,xNe
|ϕa(x1)ϕb(x2) · · · ϕp(xNe)〉〈ϕa(x1)ϕb(x2) · · · ϕp(xNe)|.

(6)
The TD KS orbitals ϕp(x, t) are expanded in the basis of adiabatic KS orbitals
∼
ϕk (x;R) that are the single-electron eigenstates of the KS Hamiltonian (4)

ϕp(x, t) =
Ne∑
k

cpk(t)
∣∣∼ϕk (x;R)

〉
. (7)

The adiabatic KS orbital basis is readily available from a time-independent
DFT calculation [4,5] and provides a preferable representation for one of the
nuclear dynamics approaches described below. The TDKS equation (3) trans-
forms in the adiabatic KS basis to the equation for the expansion coefficients

i�
∂

∂t
cpk(t) =

Ne∑
m

cpm(t)
(
εmδkm + dkm · Ṙ

)
. (8)

The nonadiabatic (NA) coupling

dkm · Ṙ = −i�
〈∼
ϕk (x;R)

∣∣∇R

∣∣ ∼
ϕm (x;R)

〉
· Ṙ = −i�

〈∼
ϕk

∣∣ ∂
∂t

∣∣ ∼
ϕm

〉
(9)

arises from the dependence of the adiabatic KS orbitals on the nuclear tra-
jectory and is computed from the right-hand-side of Eq. (9) [11]. Similarly to
(7), the time-evolving SD (see (5)) evolves into a superposition of adiabatic
SDs ∣∣ϕa ϕb · · · ϕp

〉
=

Ne∑
j �=k �=···�=l

Cj ··· l(t)
∣∣∣∼ϕj

∼
ϕk · · ·

∼
ϕl

〉
(10)

with the many-electron coefficients Cj ··· l(t) expressed in terms of the single-
electron coefficients

Cj ··· l(t) = cpj(t) cqk(t) · · · cvl(t). (11)
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The evolution of Cj ··· l follows from (8)

i�
∂

∂t
Cq···v(t) =

Ne∑
a···p

Ca···p(t)
[
Eq···vδaq · · · δpv + Da···p;q···r · Ṙ

]
. (12)

Eq···v is the many-electron eigenenergy, and the many-electron NA coupling

Da···p;q···r · Ṙ = −i�
〈∼
ϕa

∼
ϕb · · ·

∼
ϕp

∣∣ ∂
∂t

∣∣∼ϕq

∼
ϕr · · ·

∼
ϕv

〉
. (13)

is nonzero only if the determinants differ in a single KS orbital.

2.2 The Classical Path Approximation

The equations above define dynamics of the electronic subsystem evolving in
response to the nuclear degrees of freedom that determine the electron-nuclear
potential V in the Hamiltonian (4). The nuclear trajectory R(t) has yet to
be defined. While it is common and straightforward to define the effect of the
classical nuclei on the quantum electrons through the R-dependence of the
electron-nuclear potential, the back-reaction of the electrons on the classical
nuclei is not straightforward. Numerous prescriptions have been proposed,
each with its own merits [11–18, 20–45, 66]. All quantum-classical approxi-
mations, however, violate some essential properties seen in a fully quantum
electron-nuclear dynamics. The classical path approximation (CPA) provides
the simplest solution by ignoring the back-reaction and assuming that the
classical path is predetermined [13,14]. The CPA is the simplest and compu-
tationally most efficient approximation, and is a valid approach if the nuclear
dynamics are not sensitive to changes in the electronic subsystem. The clas-
sical nuclear trajectory associated with the electronic ground state is often
used in cases where excited state potential energy surfaces (PES) are similar
to the ground state PES, and where the nuclear kinetic energy and thermal
fluctuations of the nuclei are large compared to the differences in the PES.

2.3 The Ehrenfest Nuclear Dynamics

The mean-field or Ehrenfest [46] approximation is the simplest form of the
back-reaction of electrons on the nuclei. Here, the classical variables couple to
the expectation value of the quantum force operator [12–14]

MR̈ = −
〈
ϕa ϕb · · · ϕp

∣∣∇RH
∣∣ϕa ϕb · · · ϕp

〉
. (14)

The gradient ∇R is applied directly to the Hamiltonian according to the TD
Hellmann–Feynman theorem [14]. Thoroughly investigated by many authors,
the Ehrenfest method remains valid under the conditions similar to those
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needed for the CPA and requires modification when electron-nuclear cor-
relations [16] and detailed balance must be taken into account [17, 47, 48].
Advanced versions of the Ehrenfest approach include “quantum fluctuation
variables,” alleviating some problems [47–57]. More radical solutions are
provided by other techniques; one of the most popular and efficient is the
trajectory surface hopping (SH) approach [11,14–18,20–31,66].

2.4 Surface Hopping

In SH, the nuclear trajectory responds to the electronic forces by stochas-
tically “hopping” between electronic states [11, 14–18, 20–31, 66]. Analytical
and numerical arguments have indicated that SH should be performed in the
adiabatic representation (7). Among many flavors of SH, the fewest-switches
(FS) SH is designed to minimize the number of hops and satisfy a number
of other key physical criteria [16]. The nuclear trajectory in SH propagates
adiabatically

MR̈ = −
〈∼
ϕa

∼
ϕb · · ·

∼
ϕp

∣∣∇RH
∣∣∼ϕa

∼
ϕb · · ·

∼
ϕp

〉
(15)

rather than in the mean-field, (14). The probability that the nuclear trajectory
hops to another adiabatic state over time interval dt is

dPa···p;q···r =
Ba···p;q···r
Aa···p;q···r

dt, (16)

where

Ba···p;q···r = −2Re
(
A∗

a···p;q···rDa···p;q···r · Ṙ
)
; Aa···p;q···r = Ca···p C∗

q···r. (17)

If the calculated dPa···p;q···r is negative, the hopping probability is set to zero.
After the hop, the nuclear trajectory continues adiabatically in the new state
q · · · r. In order to conserve the total electron-nuclear energy after a hop,
the nuclear velocities are rescaled [11,16] along the direction of the electronic
component of the NA coupling Da···p;q···r. If a NA transition to a higher energy
electronic state is predicted by (16), and the kinetic energy available in the
nuclear coordinates along the direction of the NA coupling is insufficient to
accommodate the increase in the electronic energy, the hop is rejected. The
velocity rescaling and hop rejection produce detailed balance between upward
and downward transitions [17].

The CPA can be adapted to SH in order to achieve computational speed-
up and improved statistical sampling. The SH probabilities can be computed
based on the ground state nuclear trajectory if the following assumptions
hold (1) that the electronic PES are similar, (2) that the electronic energy
dumped after a hop rapidly distributes among all vibrational modes. The
detailed balance that is achieved in the original FSSH by the nuclear velocity
rescaling performed after each transition is restored by multiplying the pro-
bability of transitions upward in energy by the Boltzmann factor.
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While several SH procedures have been derived using the partial Wigner
transform techniques [23–25], most SH approaches remain ad hoc. SH can
be viewed as a quantum master equation with the transitions probabilities
that are computed nonperturbatively and on-the-fly for the current nuclear
configuration. In contrast to the traditional quantum master equations, SH
is capable of describing the short-time Gaussian component of quantum
dynamics that is responsible for the quantum Zeno effect and related phe-
nomena [30,58–61].

3 Ultrafast Photoinduced Electron Injection
in Dye-Sensitized TiO2

Electron transfer (ET) at organic/inorganic interfaces plays a key role in many
areas of research, including molecular electronics [62–66], photo-electrolysis
[67], photo-catalysis [68–71] and color photography [72]. ET at semicon-
ductor interfaces constitutes the primary step in novel photovoltaic devices
comprised of dye-sensitized semiconductors [73–82], assemblies of inorganic
semiconductors with conjugated polymers [83–86], and quantum confinement
devices [87, 88]. The exact mechanistic details of the interfacial ET in these
materials are an issue of practical importance and theoretical debate.

The alizarin–TiO2 interface is a particular example of the photoinduced
charge separation component in the Grätzel cell, where highly porous nano-
crystalline titanium dioxide is sensitized with transition metal or organic dye
molecules [73–75]. Grätzel cells offer a promising alternative to the more costly
traditional solar cells. Absorption of light excites the dye-sensitizer molecules
from their ground state, which is located energetically in the semiconductor
band gap, to an excited state that is resonant with the TiO2 conduction
band (CB) (Fig. 1). The electron is then transferred on the ultrafast timescale
to the semiconductor, which is in contact with one of the electrodes. Upon
carrying an electric load and reaching the second electrode, the electron enters
an electrolyte that carries it back to the chromophore ground state. Ultrafast
laser techniques have shown that electron injection can occur in less than
100 fs [76–82], making it difficult to invoke traditional ET models, which
require slow ET dynamics to allow for redistribution of vibrational energy [77].

Direct modeling of the ultrafast electron injection processes between dyes
and semiconductors observed in laser experiments has been performed with
reduced models and a full quantum-mechanical description of electrons and
nuclei [81, 89, 90] and at a detailed atomistic level using a quantum descrip-
tion of electrons and classical treatment of nuclei [91–98]. The first real-
time ab initio atomistic simulation of the interfacial ET were carried out
in our group [92–94]. The isonicotinic acid dye was chosen to have an excited
state well within the semiconductor CB, since the researchers usually assume
that a high density of semiconductor states is needed for fast and efficient
ET [73–76,99–101].
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Fig. 1. Dye-sensitized TiO2. Upon photoexcitation, alizarin chemisorbed onto the
TiO2 surface transfers an electron into the semiconductor. The ground state of
alizarin is in the gap between the valence band (VB) and conduction band (CB).
The excited state of alizarin is energetically near the edge of the semiconductor CB,
and nontrivial electron injection dynamics ensues as the state crosses in and out of
the band

The alizarin/TiO2 system investigated in our group most recently rep-
resents an interesting and novel case in which the photoexcited state is
positioned near the band edge. The experiments show that electron injec-
tion from the alizarin excited state near the TiO2 CB edge is no less efficient
than ET from chromophores with excited states deep in the CB. Moreover,
the injection is extremely fast with a record 6 fs transfer time [80]. Efficient
ultrafast injection from photoexcited states near the CB edge is both funda-
mentally interesting and practically important. The fundamental question is:
what mechanisms make the ET so fast in the absence of a high density of ac-
ceptor states? On the practical side, injection at the CB edge has the potential
to aid in the design of cells with higher maximum theoretical voltage, since
energy will not be lost by rapid relaxation to the bottom of the CB [102]. We
have modeled the injection dynamics by the classical path approximation in
the ab initio TDKS theory described in the previous section. The simulation
has uncovered a number of novel features of the injection process that are not
observed in the previously studied cases [73–82,89–94].

3.1 Nuclear Dynamics

Nuclear dynamics have a twofold influence on the ultrafast electron injection
process. On the one hand, thermal fluctuations of the nuclei create an ensem-
ble of initial conditions with slightly different geometries and photoexcitation
energies. On the other hand, upon photoexcitation, nuclei drive ET by moving
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Fig. 2. Evolution of the photoexcited (thick line) and CB (thin lines) state ener-
gies in alizarin-sensitized TiO2. The energy of the photoexcited state fluctuates
by about 0.15 eV due to atomic motions. The fluctuation is small relative to the
2.5 eV excitation energy, but it moves the dye state into and out of the TiO2 CB.
Insert: Fourier transform of the photoexcited state energy shows low frequency peaks
associated with alizarin and surface atoms motions up to the 1,600 cm−1 frequency
of the C–C stretching

along the reaction coordinate and, alternatively, by inducing direct quantum
transitions between the donor and acceptor states. The evolution of the pho-
toexcited and CB state energies is presented in Fig. 2. The fluctuation of the
energies at room temperature is sufficient to move the photoexcited state into
and out of the TiO2 CB, generating two ET regimes. Outside of the band the
coupling of the chromophore excited state to the semiconductor states is small.
Inside the band the density of states (DOS) grows substantially with increas-
ing energy, and the chromophore excited state can therefore interact with a
larger number of TiO2 states. The Fourier transform (FT) of the photoexcited
state energy is shown in the insert of Fig. 2. The main contributions to the
energy fluctuation are seen at the frequencies below 700 cm−1, corresponding
to bending and torsional motions. Small peaks are seen up to 1,600 cm−1,
characteristic of the C–C and C=O stretches. Vibrations above 1,600 cm−1

do not contribute to the oscillation of the photoexcited state energy, although
they do contribute to the fluctuation of the photoexcited state localization
and, therefore, dye-semiconductor coupling [96].

3.2 Distribution of Initial Conditions for ET

Thermal fluctuations of atomic coordinates produce a distribution of the pho-
toexcited state energies and localizations that creates an inhomogeneous en-
semble of initial conditions for the electron injection. Near the CB edge the
TiO2 DOS is low, and there is very little mixing between the alizarin excited
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Fig. 3. Localization of the photoexcited state on alizarin (circles) and the TiO2

DOS (solid line) as functions of energy. Below the CB (filled circles) the photoexcited
state is localized on the dye. Above the CB (empty circles) the state is significantly
delocalized into the semiconductor. The delocalization parallels the increasing TiO2

DOS. The large spread of the localizations inside the CB is due to fluctuations in
the chromophore–semiconductor interaction

state and the semiconductor, Fig. 3. The localization of the photoexcited state
on the alizarin molecule (filled circles) is therefore close to one. As the energy
increases, progressively more CB states couple to the chromophore. Under
these circumstances the localization decreases (empty circles) and significant
amounts of ET occur already during the photoexcitation. The large spread
in the localization data at higher energies is due to fluctuations in the sur-
face that cause changes in the energies, spatial extent and localization of
the semiconductor surface states. The number of semiconductor states that
the chromophore can couple to at a particular energy varies with the atomic
configuration. Even if the density of acceptor states is the same, the spatial
overlap between these states and the chromophore excited state vary sub-
stantially, depending on the current geometry of the docking region. Despite
the spread of the localization data, there is a clear difference between the
photoexcited states below and above the CB edge.

3.3 The Mechanism of Electron Injection

Two competing ET mechanisms have been proposed to explain the observed
ultrafast injection events [76]. These mechanisms have drastically different im-
plications for the variation of the interface conductance and solar cell voltage
with system properties. In the adiabatic mechanism, the coupling between the
dye and the semiconductor is large, and the ET occurs through a transition
state (TS) along the reaction coordinate that involves a concerted motion
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of nuclei. During adiabatic transfer, the electron remains in the same Born-
Oppenheimer (adiabatic) state that continuously changes its localization from
the dye to the semiconductor along the reaction coordinate. A small TS bar-
rier relative to the nuclear kinetic energy gives fast adiabatic ET. NA effects
decrease the amount of ET that happens at the TS, but open up a new chan-
nel involving direct transitions from the dye into the semiconductor that can
occur at any nuclear configuration. The NA transfer becomes important when
the dye–semiconductor coupling is weak. Similar to tunneling, the NA transfer
rate shows exponential dependence on the donor–acceptor separation.

The dynamics of the electron injection from alizarin to TiO2 are pre-
sented in Fig. 4. The ET is determined by the portion of the electron that has
left the dye. The timescales and relative amounts of adiabatic and NA ET
are computed by separating the overall ET evolution into the contributions
that are due to changes in the localization of the initially occupied state and
populations of the initially empty states, respectively. In order to obtain the
ET timescale, the total ET is fit by the equation,

ET(t) = ETf(1 − exp [−(t+ t0)/τ ]), (18)

where ETf is the final amount of ET, and τ is the timescale. The fact that
the photoexcited state is initially delocalized onto the surface is reflected
by the t0 term of the fit. The t0 fitting constant can be interpreted as the
time the ET is advanced by the photoexcitation. Due to the delocalization of
the photoexcited state onto the semiconductor, Fig. 3, about 25% of the elec-
tron is already on the surface after the photoexcitation. The adiabatic and
NA ET are fit with a similar equation, but without the t0 term. The adiabatic

adiabatic

non-adiabatic 

total 

Fig. 4. ET dynamics in the alizarin–TiO2 system averaged over 900 initial con-
ditions and separated into the adiabatic and NA components. The thin grey lines
represent 20% of the variance in the ET data. The thick black lines are fits by (18)
with the timescales τ shown on the figure
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mechanism dominates the dynamics and is not only faster but also reaches
a much higher amplitude than the NA component. The thin grey lines show
20% of the variance of the data. The variance is quite large, which indicates
a large diversity in the individual electron injection events, depending on the
initial condition. The small oscillations in the total and adiabatic ET data,
relative to the fit line, are similar to those observed by Willig and co-workers
with perylene [82], and are due to coherent nuclear vibrations.

The ET events that originate from the photoexcited states above and be-
low the CB, Fig. 3, show significant differences [96]. The ET dynamics starting
in the photoexcited states above the band gap are qualitatively similar to the
average ET dynamics shown in Fig. 4. The photoexcited state is more delo-
calized and the ET proceeds faster at energies above the CB. Both adiabatic
and NA transfer components are faster at the higher energies. Because the
DOS increases with energy, Fig. 3, there is a shorter wait until a surface state
that is strongly coupled to the dye state is found and adiabatic ET takes
place. A larger DOS provides more semiconductor states to interact with,
leading to faster NA ET. The electron injection dynamics at high initial ener-
gies are even more dominated by the adiabatic mechanism than the dynamics
averaged over all initial conditions. In contrast, the ET coordinate and its adi-
abatic component are markedly different for the initial states that are below
the CB edge [96]. The ET is not exponential during the first 8 fs and is best
fit by an inverted Gaussian, reflecting the fact that the donor state must enter
the CB before crossing with an acceptor state. Once the dye state has moved
into the CB, the ET can be fit with an exponential. The state crossing is not
required by NA ET, which behaves exponentially even for the lower energy
initial conditions. Both adiabatic and NA ET components are slowed down
for the initial states below the CB. It is quite remarkable that photoexcitation
below the CB can lead to fast and efficient electron injection [95,96].

4 Excitation Dynamics in Quantum Dots

QDs have the potential to substantially improve the conversion of solar energy
into electric current, thereby producing more efficient solar cells. The tunabi-
lity of the absorption spectrum of QDs with their size circumvents the need
for sensitizer chromophores as in the Grätzel cell, Sect. 3. The control of the
charge carrier relaxation pathway with QD type, size and surface passivation
creates additional tools for improving photovoltaic devices.

Conversion efficiency is one of the most important parameters to opti-
mize in order to implement photovoltaic cells on a truly large scale [103].
The maximum thermodynamic efficiency for the conversion of unconcentrated
solar irradiance into electrical free energy in the radiative limit assuming de-
tailed balance and a single threshold absorber was calculated by Shockley and
Queisser [104] in 1961 to be slightly above 30%. QD solar cells have the poten-
tial to increase the maximum attainable thermodynamic conversion efficiency
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of solar photon conversion up to about 66% by utilizing hot photogenerated
carriers. There are two fundamental ways to utilize the hot carriers for enhanc-
ing the efficiency of photon conversion: by enhancing either the photovoltage
or the photocurrent. Enhanced photovoltage requires that the carriers be ex-
tracted from the photoconverter before they cool [105]. Enhanced photocur-
rent requires the energetic hot carriers to produce two or more electron–hole
pairs through impact ionization [106] – a process that is the inverse of an
Auger process whereby two electron–hole pairs recombine to produce a single
highly energetic electron–hole pair. In order to achieve higher voltages, the
rates of photogenerated carrier separation, transport, and interfacial transfer
across the contacts to the semiconductor must all be fast compared to the
rate of carrier cooling [107]. Achieving larger currents requires that the rate
of impact ionization be greater than the rates of cooling and other relaxation
processes of hot carriers.

Over the past several years many investigations have been published
that explore hot electron and hole relaxation dynamics in QDs. The re-
sults are controversial. It is quite remarkable that there are so many reports
that both support [88, 108–120] and contradict [121–127] the prediction of
the existence of a phonon bottleneck to the hot–electron cooling in QDs,
defined as a strong reduction in the efficiency of electron–phonon interaction.
A number of groups have investigated QDs created with III–V semiconduc-
tor materials, such as GaAs, InAs, and InP, and reported slowed charge-
carrier cooling due to the QD quantization effects [108–113]. Relaxation
of both hot electrons [108–111, 128] and holes [112, 113] was considerably
slowed down relative to the bulk materials. The studies of QDs of the II–
VI type, and CdSe in particular, found two relaxation time scales, whose
relative weights depended upon the molecules capping the QDs [114–119].
A phonon bottleneck was observed similar to the III–V QDs. In addition,
a new, faster relaxation component was seen and attributed to the Auger
mechanism for electron relaxation, whereby the excess electron energy is
rapidly transferred to a hole, which then relaxes rapidly through its dense
spectrum of states. If the hole is removed and trapped by the molecules
capping the QD surface, the Auger mechanism for the hot electron relax-
ation is inhibited and the overall relaxation time increases. However, there
are many investigations that indicate no phonon bottleneck. Such results
were reported for both III-V QDs [121–123] and II–VI QDs [124, 125]. In
some cases [126, 127] hot-electron relaxation was found to be slowed only
slightly.

The breakthrough in the studies of carrier multiplication came with the
observations of multiple electron–hole pairs in PbSe QDs upon absorption of
high energy photons [88,120]. The observations raise questions over why cer-
tain relaxation pathways fail to quench impact ionization in PbSe QDs, when
they are so effective in QDs composed of other materials. Using the FSSH
approach implemented within DFT as described in Sect. 2, we investigate the
relaxation mechanisms and establish that both electron and hole relaxation in
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PbSe QDs is slow, allowing time for the carrier multiplication and eliminating
the Auger relaxation pathway that transfers the electron energy to the rapidly
relaxing holes.

4.1 Electronic States of Quantum Dots

The electronic structure of QDs is intimately related to their quasizero-
dimensional nature that makes them closer to atoms than bulk materials.
For this reason, QDs are often called “artificial atoms,” and assemblies of
QDs are referred to as “artificial molecules.” The reduction in the system
dimensionality that accompanies the transition from bulk semiconductors to
QDs is associated with a dramatic transformation in the energy spectra, which
become discrete and atomic-like. At the qualitative level, the quantum ener-
gies of the electron and hole states can be understood by regarding the QD
as a spherical potential that confines the noninteracting particles. The lowest
states of both electrons and holes have an approximate spherical symmetry
and are labeled as S-states. The next three levels show P -like character and
are polarized along the x, y, and z-directions. [87, 111]

The electronic structure of QDs is exemplified in Figs. 5 and 6 with the 32
atom PbSe QD. The simple cubic lattice of bulk PbSe allows one to create the
small roughly spherical nanocrystal of about 10Å in diameter that preserves
the bulk symmetry. A structural relaxation of the 32 atom PbSe QD relative
to the bulk does occur even at zero Kelvin. Temperature induced fluctuations

Fig. 5. Geometric structure of the PbSe QD under investigation and the spatial
densities of its 4 lowest electron states. The simple cubic lattice of PbSe creates a
stable 32 atom QD that preserves the bulk structure. The quantum energy levels of
electrons and holes can be qualitatively understood by considering a particle in a
spherical well. The lowest energy level of both electron and hole is S-like, the next
three levels are P-like, etc.
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Fig. 6. DOS of the PbSe QD. The DOS fluctuates over time due to thermally
induced nuclear motions. The arrows indicate the energies of the initial electron
and hole excitations, which are set up to match the triple energy gap as in the
experiments [88]

further distort the dot, but cause neither surfaces to reconstruct nor bonds
reconnect. The four lowest electronic states shown in Fig. 5 exhibit the ex-
pected S- and P -like symmetries, which are significantly modulated by the
local atomic structure. The energies of the hole and electron states shown in
Fig. 6 fluctuate over time due to thermal nuclear motions. The DOS shown in
Fig. 6 is constructed by the broadening of the energy levels with Gaussians of
0.01 eV width. The S-like lowest electron and hole states are clearly isolated
from the rest of the states. The arrows in Fig. 6 indicate the energies of the
electron and hole excitations. The energy range is set three times larger than
the QD energy gap, in correspondence with the experiments. [88] The initial
excited states for each nuclear configurations are chosen based on the largest
transition dipole moments among the states close to the energies indicated by
the arrows.

4.2 Phonon-Induced Relaxation of Electrons and Holes

The quantum confinement effects in QDs strongly affect not only the elec-
tronic spectrum, but also the rates and pathways of electron–phonon and
hole–phonon relaxation. The reduced availability of pairs of electronic states
that satisfy energy and momentum conservation can lead to a strong reduc-
tion in the efficiency of electron–phonon interactions in QDs, i.e., the phonon
bottleneck. This effect dramatically slows down energy relaxation in zero-
dimensional QDs in comparison to systems of higher dimensionality. Other,
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nonphonon mechanisms for energy relaxation in QDs include interactions with
defects and Auger-type electron–hole interactions involving transfer of the
electron excess energy to a hole, with subsequent fast hole relaxation through
its dense spectrum of states. The relaxation effects are to be minimized in
order to achieve the desired enhancement of the solar photon conversion
efficiency [87].

The DOS of holes calculated for the 10Å PbSe QD shows a denser spec-
trum, compared to the DOS of electrons, Fig. 6. The separation of the S-like
from the main state manifold is more pronounced for the electrons than for the
holes. The difference in the electron and hole DOS is not as dramatic in PbSe
QDs as, for instance, in the extensively studied CdSe QDs. The simulated
relaxation dynamics are slightly faster for the holes than for the electrons,
Fig. 7. The difference is minor, which explains why the Auger-type electron
relaxation through energy transfer to the hole is not efficient in PbSe. The
relaxation times for both holes and electrons is around 1 ps. This is orders
of magnitude longer than the electron injection time in the alizarin–TiO2

system considered in the previous section, and is several times longer than
the closely related electron and hole relaxation times in CNs considered next.
It may be expected that the simulation overestimates the relaxation rates,
since in experiments the QD surfaces are passivated, decreasing the number
of states in the relevant energy range. Comparing the DOS of Fig. 6 with
the relaxation dynamics shown in the top panel of Fig. 7, one observes that
the initial photoexcitation peak vanishes and reappears directly at the final
P - and S-states. Although multiple states are visited by electrons and holes
during the relaxation, none of the intermediate states play any special role.
The slow and nearly symmetric electron and hole relaxation in the PbSe QD
leads us to conclude that the observed carrier multiplication takes place due
to the low rates of the other, unfavorable relaxation mechanisms.

5 Electron and Hole Relaxation in Carbon Nanotubes

Discovered in 1991 by Iijima [129], CNs continue to be at the forefront of
scientific research. Their unique structural, mechanical, and electronic prop-
erties [130,131] prompt a variety of applications ranging from chemical sensors
to computer logic gates and field-effect transistors [132–138]. Advancements
in the synthesis and purification of CNs have enabled the study of size-
selected tubes as well as rudimentary separation of metallic and semicon-
ducting CNs [139, 140]. Developments in the spectroscopic techniques have
accompanied the progress in the nanotube preparation. Numerous time-
resolved experiments have addressed the electronic structure of CNs, revealing
intriguing features in the nanotube response to electronic and optical excita-
tions [141–149].

Motivated by the time-resolved experimental observations we performed
the first real-time ab initio simulation of the electron and hole dynamics in a
CN. The simulated dynamics agree with the experimental timescales, establish
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Fig. 7. Evolution of the electron and hole excitations in the QD averaged over
500 initial conditions. The top panel shows DOS multiplied by the time-dependent
populations of the excited states. The bottom panel gives the average electron and
hole energies

the electron and hole relaxation pathways, characterize the electronic states
and phonon modes that facilitate the energy dissipation, and reveal a number
of intriguing details of the relaxation processes. In particular, the simula-
tion shows for the nanotube under investigation that the holes relax more
slowly than electrons, even though the holes have a denser manifold of states
facilitating the relaxation. The electrons show a single exponential decay,
while holes relax by a Gaussian and then an exponential component. Both
electron and hole relaxation is promoted primarily by the C–C stretching
G-type phonons with frequencies around 1,500 cm−1. However, holes, but not
electrons, additionally couple to the lower frequency breathing modes.



22 O.V. Prezhdo et al.

− −

2

9

9

Fig. 8. DOS of the (7,0) zig-zag CN. The electron is optically excited between the
second van-Hove singularities 2′ →2. The electron and hole then decay to the first
singularities 1′ and 1 on a subpicosecond timescale

The study described below is performed on the smallest semiconducting
(7,0) zig-zag CN, since semiconductors can be simulated with fewer basis
functions, and a zig-zag tube has a frequently repeated periodic pattern that
helps to reduce the size of the simulation cell. The study is carried out with
the SH approach described in the Theory section.

5.1 Electronic Structure of Carbon Nanotubes

The nanotube DOS exhibits characteristic van Hove singularities (vHs) due
to the folding of the 1D Brillouin zone of a graphene sheet [130], Fig. 8. These
singularities dominate the electronic spectrum of CNs. The curvature of the
nanotube, together with electron-correlation effects, alters the DOS by creat-
ing an asymmetric distribution of states across the Fermi level with the holes
having a denser manifold of states than the electrons. The electron and hole
relaxation under investigation is initiated by an excitation from the second
vHs below the Fermi level to the second vHs above the Fermi level, as in
the recent ultrafast laser experiments [143–145]. The states within the sin-
gularities were chosen based on the strongest transition dipole moment at a
given initial time. The electronic densities of the two most optically active
electron and hole states are shown as inserts in Fig. 9. Upon the photoexci-
tation the electrons and holes relax nonradiatively through the first vHs to
their corresponding band edges.

5.2 Phonons Facilitating Electron and Hole Relaxation

Figure 9 establishes the types of phonon modes that couple to the electrons
and holes and promote the relaxation. The two pairs of states whose densities
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Fig. 9. Fourier transforms of the energies of the two most optically active states of
electrons and holes in the CN. The insert shows the charge densities of these states.
The C–C stretching G-modes around 1,500 cm−1 strongly couple to both electron
and holes. The breathing modes at and below 500 cm−1 have fewer nodes and, as
a result, better couple to the holes, whose states are lower in energy and also have
fewer nodes than the electron states

are shown in the inserts account for 80% of the photoexcitation intensity. FTs
of the phonon induced dynamics of the energies of these states are shown in
Fig. 9. The FTs identify the modes that modulate the properties of the elec-
tron and hole states and create the NA coupling (13). The electron–phonon
and hole–phonon coupling occurs over a broad range of frequencies start-
ing at the C–C stretching G-type modes around 1,500 cm−1 down to the
breathing modes below 500 cm−1. The G-modes give the largest contribu-
tion to both electron and hole relaxation. In contrast to the electrons, holes
also strongly couple to the breathing modes. The coupling of the holes to
the lower frequency modes can be understood by considering the energies
and densities of the electron and hole states. The lower energy valence band
(VB) states supporting the holes have fewer nodes than the higher energy
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CB states supporting the electrons. The hole states with fewer nodes couple
to the lower frequency breathing phonons that also have fewer nodes. The
stronger coupling to the breathing modes slows down the hole relaxation dy-
namics relative to that of the electrons, counteracting the effect of the denser
manifold of hole states, Fig. 8, that facilitates the relaxation. Similarly, it can
be expected that coupling to lower frequency phonons slows down the hole
relaxation in QDs, Sect. 4, decreasing the rates of phonon heating and Auger
relaxation and allowing the carrier multiplication.

5.3 Electron and Hole Relaxation Dynamics

Figure 10 details the electron and hole relaxation dynamics in CNs by show-
ing the average electron and hole energies as functions of time. The energy
of the electrons is fitted with a single exponential. The energy of the holes
gives a poor single exponential fit and is described by a sum of the Gaussian
and exponential components. The Gaussian component can be hardly distin-
guished in the electron relaxation. The exponential component of the hole
relaxation is noticeably slower than that of the electrons, which is rather sur-
prising since the holes have a larger DOS, Fig. 8, that facilitates relaxation.
The Gaussian component accounts for nearly half of the hole energy relax-
ation and occurs while the hole spreads within the second vHs and before the
Boltzmann weighting produces the exponential decay from the second to the
first singularity. The existence of a smaller maximum in the second vHs of

−2

−1

 0
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 2

 0  100  200  300  400  500  600  700  800

E
-E

f (
eV

)

Time (fs)

τe = 384 fs

τe = 556 fs

τg = 250 fs

Fig. 10. Relaxation of the average energy of electrons and holes in the CN. The
holes show Gaussian and exponential regimes, while the electrons follow a single
exponential. The hole exponential decay is slower than that of the electrons, in
spite of the higher density of hole states, Fig. 8, that facilitates faster relaxation.
The slow dynamics of the holes can be attributed to the coupling with the low
frequency breathing modes, Fig. 9
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the hole DOS may additionally contribute to the Gaussian relaxation compo-
nent. Minor deviations from the exponential fit seen with the electron energy
toward the end of the relaxation are most likely related to the small peak in
the electron DOS near the Fermi level, Fig. 8.

The timescales for the electron and hole relaxation from the 2 and 2′

singularities to the band edge computed for the (7,0) tube are in good agree-
ment with the reported ultrafast spectroscopy experiments. The experimen-
tal results for this type of process vary from tens of femtoseconds [142–144]
to picoseconds [145–147] depending on sample preparation, size homogene-
ity, photoexcitation energy, intensity, and type of experiment. The simula-
tion gravitates toward the slower end of the experimental data and provides
an upper bound on the relaxation time, since other relaxation mechanisms,
most notably charge–charge scattering and electron–hole annihilation, have
not been included in the simulation.

6 Conclusions

The three case-studies described above provide a sampling of the exciting
phenomena observed with nanomaterials in the very recent past. The state-
of-the-art theoretical tools developed in our group allowed us to characterize
the excitation dynamics in these nanomaterials, establish the mechanisms
of charge transfer and relaxation, and uncover a number of interesting and
practically important features that are accessible only from simulation and
that explain the unexpected experimental observations.

We showed that the ultrafast electron injection takes place in the alizarin-
TiO2 system not through the commonly assumed coupling to multiple bulk
states of the semiconductor, but through a strong coupling to a few surface
states. The established injection mechanism does not require a high density of
acceptor states and, therefore, can function at the energies close to the edge of
the conduction band. Electron injection at those energies avoids energy losses,
helping to preserve the maximum voltage attainable in the Grätzel solar cell.

We found that the phonon-induced electron and hole relaxation in the
PbSe quantum dots is almost symmetric and occurs slowly, on a picosecond
timescale. The slow phonon-assisted relaxation allows for the other productive
processes to occur. The carrier multiplication that generates multiple electron–
hole pairs and increases the current attainable in a solar cell becomes possible,
since both the direct electron and hole cooling and the Auger assisted electron
relaxation through hole states are slow.

We determined the pathways of relaxation of free charge carriers in carbon
nanotubes. The simulations agreed with the available experimental data and
provided important insights into the decay mechanisms of the excited electrons
and holes. The nontrivial observations included the dominant role of the high
frequency phonons in both electron and hole relaxation, and the substantial
contribution of the low frequency breathing modes to the dynamics of holes,
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but not electrons. These facts rationalized why holes decayed more slowly
and over multiple timescales, despite the denser manifold of states which was
expected to facilitate faster relaxation.

The simulations we performed with specific systems, which address con-
crete experimental observations and practical questions, bear on a much wider
spectrum of problems. The interfacial charge transfer is generic to molecular
electronics, where the contacts between molecular conductors and bulk elec-
tron leads remain very poorly understood. The slow charge relaxation in the
QD suggests a phonon bottleneck that can be used to achieve not only carrier
multiplication and larger solar cell currents, but also better voltages through
delayed carrier cooling. The hole–phonon and electron–phonon interaction
timescales seen in our studies establish limits on vibrationally induced dephas-
ing that must be avoided for spintronic and quantum computing applications
of quantum dots. The heating mechanisms seen in the simulations of carbon
nanotubes are critical for successful development of nanotube-based miniature
electronic devices. The systems and problems considered here contribute to
a general framework for control and utilization of the novel phenomena that
become possible on the nanoscale.

Acknowledgments

The financial support of NSF CAREER Award CHE-0094012, PRF Award
150393, and DOE Award DE-FG02-05ER15755 is gratefully acknowledged.
The authors are thankful to Dr. Kiril Tsemekhman for fruitful discussions.
OVP is an Alfred P. Sloan Fellow and is grateful to Dr. Jan Michael Rost
at the Max Planck Institute for the Physics of Complex Systems, Dresden,
Germany for hospitality during manuscript preparation.

References

1. M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004)
2. T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Köhler, M. Amkreutz,
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Ultrafast Exciton Dynamics in Molecular
Systems

B. Brüggemann, D. Tsivlin, and V. May

Summary. The theory of subpicosecond Frenkel exciton dynamics in molecular sys-
tems is reviewed with emphasis on a stepwise improved description of the coupling to
intra- and intermolecular vibrations. After introducing the concept of multiexciton
states the motion of electronic Frenkel excitons as they appear in light harvesting
antennae of photosynthetic organisms is discussed. The description is based on a
multiexciton density matrix theory which accounts for the exciton–vibrational cou-
pling in a perturbative manner. Some improvements of this density matrix theory
as suggested in literature are shortly mentioned. Afterwards, vibrational Frenkel ex-
citons as found in polypeptides are considered. By utilizing the multiconfiguration
time-dependent Hartree method an exact description of the coupling to longitudinal
vibrations of the peptide chain becomes possible. The discussion of the computed
transient infrared absorption spectra is supported by the introduction of adiabatic
single- and two-exciton states.

1 Introduction

With the dawn of femtosecond spectroscopy the study of vibrational wave
packet dynamics in molecular systems became a main topic of molecular
physics and physical chemistry. And immediately this new type of spec-
troscopy was applied to the investigation of electronic excitations in mole-
cular systems known as Frenkel excitons (for recent introductions into this
field see [1–4]). Frenkel excitons are spatially delocalized excited states with
the basic excitations completely localized at individual molecules within the
complex. Furthermore, their excitation energy is much larger than the thermal
energy (at room temperature conditions). If the coupling of these excitations
to vibrational coordinates remains weak the excitation energy transfer may
proceed coherently up to some 100 fs. This makes the study of exciton dy-
namics and vibrational wave packet dynamics complementary to each other.
In the contrary case of strong coupling to vibrations the excitation jumps as a
localized state from molecule to molecule. One arrives at the case of incoher-
ent excitation energy transfer named after Förster. In recent years, however,
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experimental data have also been obtained characterizing the intermediate
case where the excitation energy becomes delocalized but couples strongly to
the vibrational coordinates (see, e.g., [5]).

The description of the quantum dynamics of excitons in organic crystals
and molecular systems like dye aggregates or polymer strands has a long
tradition (cf. [6–10]). In the late forties and early fifties of the last century the
field has been pioneered by Förster [11] and Dexter [12]. Later Davydov [6]
and Agranovich [9] established the theoretical basis for the description of
Frenkel excitons, their optical properties and of the related excitation energy
transfer dynamics. Over the past 15 years work has been concentrated on the
formulation of models adequate for the description of ultrafast dynamics of
excitonic systems and related nonlinear spectra (see [4,13,14] for an overview).
This required the inclusion of multiple electronic excitations (cf. Fig. 1) and
the utilization of techniques of dissipative quantum dynamics.

The present article reports on recent theoretical achievements in this
field with the specific account on exciton–vibrational coupling. Starting at
a description of exciton dynamics for the case of a weak coupling to mole-
cular vibrations, different possibilities will be touched to go beyond this
weak-coupling approximation. We conclude by an exact consideration of the
exciton–vibrational coupling. And, a theoretical description is presented which
can be applied to electronic as well as vibrational Frenkel excitons.

1.1 The Multiexciton Concept

When doing nonlinear spectroscopy on aggregates and chromophore com-
plexes higher excited states of single molecules as well as those of the whole
complex have to be taken into account. The resulting multiexciton scheme
displayed in Fig. 1 found various applications. Besides different nonbiological
complexes one striking example is given by photosynthetic antenna systems
(cf. Figs. 2 and 3 and the remark in [15]). Recently, the multiexciton scheme
has been also applied to understand nonlinear infrared spectra of polypep-
tides [16] (cf. also Fig.7) where Frenkel excitons are formed by localized high-
frequency vibrational excitations.

In order to introduce multiexciton states for all mentioned systems the
respective states of the single molecules are denoted by ϕa with a referring
to the ground-state (a = g), the first excited state (a = e), and a higher-
excited state (a = f). If electronic Frenkel-excitons are considered the ϕa

refer to electronic excitations of the individual molecules (cf. Fig. 2) whereas
the states ϕa describe distinct vibrational excitations if vibrational Frenkel-
excitons are of interest (see Fig. 8).

To characterize the possible states of the whole complex of excitable units
(the molecular complex) one may introduce product states

∏
m ϕmam

, where
m counts the individual molecules of the complex. Of course, such an ansatz
is only reliable if different ϕma do not overlap. It is advisable to order the
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Fig. 1. Energy level scheme of a molecular complex covering the groundstate |0〉 as

well as the manifold of single-exciton states |Φ(1)
α 〉 and of two-exciton states |Φ(2)

α̃ 〉.
Shown are respective potential energy surfaces (PESs) U (N), N = 0, 1, 2 (vs. vibra-
tional coordinates). The PES follow when calculating adiabatic multiexciton states.
X0 indicates the vibrational equilibrium configuration of the unexcited complex,
and X1 and X2 label the local energy-minimum configurations for particular single-
and two-exciton PES, respectively. The vertical arrows indicate different transition
processes initiated by external optical or infrared fields and observed in the exper-
iment. (The two PESs U

(2)
1 and U

(2)
2 separated from the majority of two-exciton

PESs correspond to self-trapped states described in the Sect. 4.)

product states with respect to the number of basic excitations (the single
excitation from ϕg to ϕe). The overall ground-state reads

|0〉 =
∏
m

|ϕmg〉 . (1)

The presence of a single excitation at unit m in the complex is characterized
by

|φm〉 = |ϕme〉
∏

n�=m

|ϕng〉 , (2)

whereas a double excited state covers a double excitation of a single molecule
as well as the simultaneous presence of two single excitations at two different
molecules:

|φmn〉 = δm,n|ϕmf 〉
∏

n�=m

|ϕng〉 + (1 − δm,n)|ϕme〉|ϕne〉
∏

k �=m,n

|ϕkg〉 . (3)

The ordering scheme can be easily continued. However, to describe existing
experiments (from various different fields), so far, does not require the intro-
duction of triple or quadruple excitations.
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J�mnn

Fig. 2. Three-level model of a planar chromophore complex (first excited state with
energy Ee and higher excited state with energy Ef ). Shown are the tetrapyrrole
rings of chlorophylls with the first excited, so-called Qy-level and a higher excited
singlet state together with all relevant interactions (interchromophore couplings Jmn

and J ′
mn) as well as optical excitations (cf. also the note in [22])

An expansion of the complete Hamiltonian with respect to these different
excited states forming so-called exciton manifolds yields

H = H0 + H1 + H2 − E(t)μ̂ . (4)

The HN (N = 0, 1, 2) are obtained as Π̂NHΠ̂N with the Π̂N projecting on
the different manifolds. Moreover, the HN describe intramanifold dynamics
including the coupling to all relevant vibrational coordinates abbreviated in
the following by X (cf. Fig. 1). If necessary intermanifold transitions beside
those induced by the external field E(t) (which couples to the complex via
the dipole operator μ̂) may be introduced into (4) (for the description of
exciton–exciton annihilation see, for example, [17,18] and references therein).
The ground-state Hamiltonian H0 = Tvib + U0(X) includes the vibrational
kinetic energy operator Tvib and the potential energy surface (PES) U0. The
overall minimum of the latter defines the nuclear equilibrium configuration
which will be abbreviated by X0 in the following. For the first and second
excited manifold, respectively, we get

H1 =
∑
m,n

(
δm,nHm(X) + (1 − δm,n)Jmn(X)

)
|φm〉〈φn| , (5)

and

H2 =
∑

kl,mn

(
δk,mδl,nHmn(X) + (1 − δk,mδl,n)Jkl,mn(X)

)
|φkl〉〈φmn| . (6)

Here, Hm and Hmn denote vibrational Hamiltonians referring to the respec-
tive intra-molecular excitations. The inter-state coupling matrices Jmn and
Jkl,mn have to be deduced from the inter-molecular Coulombic coupling (see,
e.g., [2]). If a multipole expansion is possible the matrices reduce to well
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Fig. 3. Water wheel like spatial structure of the LH2 (light harvesting complex
2 of purple bacteria, cf. [15]) with 27 chlorophyll molecules. The α-helical part of
the carrier protein is also shown. Those 18 chlorophylls forming the water wheel
like part absorb at 850 nm (transition into the single-exciton band formed by the
Qy-excitations) whereas the other (lying in the figure plane) absorb at 800 nm (for
other parameters see the listing in [25])

known expressions of the inter-molecular transition–dipole transition–dipole
coupling (in the case of Hmn(X) and Jkl,mn one has take care of the correct
normalization).

Standard single and two-exciton states are obtained by diagonalizing H1

and H2, respectively, but in removing the vibrational kinetic energy operator
and by fixing the X at the ground-state equilibrium configuration X0. These
exciton states are denoted as

|α〉 =
∑
m

C(1)
α (m)|φm〉 , (7)

and as

|α̃〉 =
∑
m,n

C
(2)
α̃ (mn)|φmn〉 . (8)

The respective multiexciton Hamiltonian Hmx is obtained from H, (4) and
covers H(N)

ex ≡ HN (X0) − Tvib (N = 1, 2, the ground-state energy of the
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complex has been set equal to zero). In detail we have H(1)
ex =

∑
α �Ωα|α〉〈α|

and H(2)
ex =

∑
α̃ �Ωα̃|α̃〉〈α̃| with related single- and two-exciton energies �Ωα

and �Ωα̃, respectively.
By removing the restriction of the vibrational coordinates to X0 while

diagonalizing the Hamiltonians H1 and H2 (minus Tvib) one arrives at so-
called adiabatic exciton states (cf. Fig. 1 and [13,19,20]):

|Φ(1)
α (X)〉 =

∑
m

C(1)
α (m;X)|φm〉 , (9)

and

|Φ(2)
α̃ (X)〉 =

∑
m,n

C
(2)
α̃ (mn;X)|φmn〉 . (10)

Now, the expansion coefficients C(1)
α and C(2)

α̃ depend on the actual vibrational
configuration.

The description introduced so far carries out an expansion of the Hamil-
tonian and any observable with respect to localized multiple excitations of the
complex (or delocalized multiexciton states). The use of such a type of eigen-
state representation is mainly motivated by a correct description of excitation
energy relaxation in the framework of dissipative quantum dynamics. Other
approaches have been directly based on Pauli-operators for Frenkel excitons [9]
or on the introduction of the so-called anharmonic oscillator model [21].

1.2 Regimes of Exciton Dynamics

The electronic interchromophore coupling described by the Jmn as well as the
Jkl,mn (cf. (5) and (6), respectively) and the multiexciton vibrational coupling
are the two basic interaction mechanisms determining the concrete character
of the exciton transfer. The interchromophore coupling will be characterized
by a representative J and the coupling to vibrational coordinates by a related
reorganization energy �λ. It equals the amount of energy which is set free
if the vibrational coordinates X in an excited state of a single molecule or
in a multiexciton state change from the vibrational ground-state equilibrium
configuration X0 to the actual equilibrium configuration in the chosen excited
state. Additionally, this process of vibrational coordinate reorganization can
be also characterized by a representative relaxation time τrel.

The regime of weak exciton–vibrational coupling is reached if �λ � J is
valid. The formation of delocalized (or partially delocalized) single and two-
exciton states becomes possible and the exciton dynamics appears coherent on
a time scale less than or comparable to τrel. For this regime a density matrix
description is most appropriate (see Sect. 2).

In the reverse case where J � �λ the dynamics after ultrashort photo
excitation are dominated by vibrational reorganization and relaxation. J af-
fects the excitation energy transfer only weakly, thus, the regime of localized
excitation energy transfer well characterized by the so-called Förster theory
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is reached (cf., for example, [3, 4] and Sect. 3). Of actual interest but less
investigated are those regimes of exciton dynamics where both fundamental
couplings compete against each other (see Sect. 4).

2 Electronic Frenkel-Excitons:
Weak Exciton–Vibrational Coupling

The treatment discussed hereafter is based on the introduction of (unrelaxed)
exciton states (7) and (8) referring to the vibrational equilibrium configura-
tion in the unexcited complex X0. Multiexciton–vibrational coupling H(N)

ex−vib

(N = 1, 2) is obtained as H(N)
ex−vib(X) = HN (X) − HN (X0) − Hvib. The

expression HN (X0) defines the multi-exciton levels at the vibrational equi-
librium configuration (plus vibrational kinetic energy operator). Their con-
tributions to HN (X) are removed to arrive at the multiexciton vibrational
coupling. Moreover, Hvib = H0(X) represents the ground-state reference vi-
brational Hamiltonian. Thus, the difference expression HN (X)−Hvib includes
the deviations from the ground-state PES (except the contributions given by
the HN (X0)) which act as the exciton–vibrational coupling.

If the H(N)
ex−vib(X) are linearly expanded with respect to the vibrational

coordinates and the latter undergo a change to normal-mode vibrations one
arrives at the standard expression for exciton–vibrational coupling [2]. A re-
striction to single-exciton states yields:

H
(1)
ex−vib =

∑
α,β

∑
ξ

�ωξgαβ(ξ)Qξ|α〉〈β| . (11)

The Qξ are dimensionless normal-mode coordinate operators with mode-index
ξ forming a set of otherwise decoupled harmonic oscillators. Neglecting any
X dependence of the Jmn the exciton–vibrational coupling constant follows
as

gαβ(ξ) =
∑
m

C∗
α(m)gm(ξ)Cβ(m) . (12)

The exciton coefficients Cα(m) are defined in (7) and the gm(ξ) follow from a
linear expansion of H(1)

ex−vib(X). The coupling Hamiltonian introduced in (11)
has been used in many studies (see [4] for a an overview and also the recent
applications in [17,18,23,24]).

2.1 Multiexciton Density Matrix Theory

Multiexciton dynamics for the case of weak exciton–vibrational coupling are
best formulated in the framework of a density matrix theory reduced to the
electronic (multiexciton) DOF. The reduced density operator reads

ρ̂(t) = trvib{Ŵ (t)} . (13)
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The trace refers to the vibrational DOF and Ŵ (t) denotes the nonequilib-
rium statistical operator of the complete multiexciton vibrational system. A
well established approach is represented by the perturbative account for the
exciton–vibrational coupling in the equation of motion for ρ̂(t) (cf., e.g., [2]).
From a projection superoperator perspective such calculations are based on

P... = r̂
(eq)
0 tr{...} , (14)

where r̂(eq)
0 denotes the vibrational equilibrium statistical operator of the un-

excited complex. The mentioned weak-coupling limit results in the following
equation of motion

∂

∂t
ρ̂(t) = − i

�

(
Hmx, ρ̂(t)

)
− +

(∂ρ̂(t)
∂t

)
diss

, (15)

with Hmx being the multi-exciton Hamiltonian introduced in Sect. 1.1. The
dissipative part takes the form

(∂ρ̂(t)
∂t

)
diss

= −
∑
u,v

t−t0∫
0

dτ
[
Cuv(τ)

(
Π̂u, e−iHmxτ/�Π̂vρ̂(t− τ)eiHmxτ/�

)
−

−Cvu(−τ)
(
Π̂u, e−iHmxτ/�ρ̂(t− τ)Π̂veiHmxτ/�

)
−
]
. (16)

This formula uses �
∑

u V̂u(X)Π̂u for H(N)
ex−vib, where Π̂u equals |α〉〈β| as well

as |α̃〉〈β̃| (i.e., u either abbreviates (αβ) or (α̃β̃) ). The V̂u(X) are the parts de-
pending on the vibrational coordinates according to V̂αβ = 〈α|H(1)

ex−vib|β〉 and

V̂α̃β̃ = 〈α̃|H(2)
ex−vib|β̃〉 (for the simplest version cf. (11)). They determine the

correlation functions Cuv(τ) which are defined with respect to the vibrational
equilibrium of the unexcited complex.

Introducing multiexciton matrix elements of ρ̂(t) results in the various
elements of the multiexciton density matrix, e.g., ρ0, ρα0, (ρ0,α), ραβ , ρα̃0,
(ρ0α̃), ρα̃β , (ρβα̃), and ρα̃β̃ . This density matrix approach with multiexciton-
vibrational coupling included in a second-order perturbational treatment
is well-know in dissipative quantum dynamics and often named multilevel
Redfield-theory [2]. The density matrix equations obtained from (15) include
four-index memory kernels which follow from (16). All the multi-exciton den-
sity matrix elements have to be calculated simultaneously when studying the
femtosecond photoinduced dynamics [17,18].

The most simple treatment of the dissipative multi-exciton dynamics is
based on the neglect of memory effects and the application of the so-called
secular approximation (for a detailed justification cf. e.g., [2,4]). As an example
we present the equation of motion for the single-exciton density matrix ραβ .
Here, the possible coupling among diagonal and off-diagonal elements via the
dissipative part does not take place (cf., e.g., [23], transitions into the two–
exciton manifold have been neglected for simplicity):
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∂

∂t
ραβ = −iΩαβραβ + δαβ

∑
γ

(−kα→γραα + kγ→αργγ) (17)

−(1 − δαβ)(γα + γβ)ραβ +
i

�
E(t)(dαρ0β − d∗

βρα0) . (18)

The Ωαβ = Ωα − Ωβ are transition frequencies following from the (single)
exciton energies �Ωα, and the dα denote the transition dipole elements into
exciton states |α〉. Neglecting any vibrational modulation of the Jmn the ex-
citon relaxation rates read

kα→β = 2πΩ2
αβ(1 + n(Ωαβ))

∑
m

|Cα(m)Cβ(m)|2[Jm(Ωαβ) − Jm(−Ωαβ)] .

(19)
The Jm =

∑
ξ g

2
m(ξ)δ(ω − ωξ) denote the spectral densities caused by the

exciton–vibrational coupling. The dephasing rates γα follow from the exciton
relaxation rates as

∑
β kα→β/2 if so-called pure dephasing contributions are

neglected.

2.2 Simulation of Linear and Nonlinear Spectra

All developments in the field of Frenkel excitons found an immediate appli-
cation to that part of photosynthetic research which concentrates on what is
known as the early events of photosynthesis (excitation energy transfer and
charge separation taking place on a ps and subpicosecond time region, for a
review on somewhat older work see [8]). Multiexciton models like those ex-
plained in Sect. 2.1 (cf. also Fig. 2) are in the focus of interest when doing
ultrafast spectroscopic experiments at antenna complexes. And the failure of
a complete quantum chemical determination of all multiexciton states of a
given antenna system (and all couplings to vibrational DOF) made the use
of more simple models unavoidable. When using such a multiexciton model
in most cases a complete knowledge of all parameters entering the model is
not achievable. Then, a specification via the fit of measured spectra becomes
necessary.

Linear Absorbance of the PS1 Antennae

As a particular example for such a fit of spectra we shortly comment on respec-
tive calculations for the PS1 (photosystem 1) core antenna system (in contrast
to the LH2 shown in Fig. 3 the PS1 complex which is found in cyanobacteria
comprises 96 chlorophyll molecules and includes the reaction center [23, 27]).
Although the spatial structure of the PS1 is known with a 2.6 Å resolution [27]
an exciton model like that derived from (5) in the foregoing sections cannot
be build up completely. This is caused by the fact that the excitation energy
Eeg of each chlorophyll is slightly changed by its specific protein environment.
Fitting the linear absorption of the PS1 (in the Qy-excitation region), how-
ever, allows one to complete the model (Figures 4 and 5).
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Fig. 4. Absorption spectrum of the PS1 antenna complex at 4 K. Thin dotted line:
measured spectrum, full line: spectrum calculated according to (20) (for parame-
ters see [28]), vertical line: exciton transition dipole moments |dα| at the excitonic
energies �Ωα (the respective line broadening is shown in Fig. 5)

In line with the presented density matrix theory which is suitable for weak
exciton–vibrational coupling the absorbance follows as (for more details see
[4, 23])

A(ω) ∼
∑
α

|dα|2
γα

(ω −Ωα)2 + γ2
α

. (20)

The expression includes all (single) exciton energies �Ωα, the transition dipole
elements dα and the dephasing rates (line-broadening) γα. All quantities have
been determined in [23] by applying an evolutionary search algorithm. (For a
discussion of the important influence of static structural and energetic disorder
we refer to [23]).

Subpicosecond Transient Absorption of the LH2 Antennae

Since a number of excitation energy transfer processes in photosynthetic an-
tenna systems takes place on a subpicosecond time–scale, pump probe spec-
troscopy is used to elucidate details of the dynamics. (Once respective data
are available they are used, for example, to understand the optimization of
the antennae by evolution to carry out excitation energy transfer efficiently
and lossless). Within pump probe spectroscopy the pump pulse (with field-
strength Epu) excites the system and the probe pulse (with field-strength
Epr) probes the resulting excited state dynamics (see also Fig. 1). The probe
pulse transient absorption spectrum (TAS) Apr decomposed with respect to
temporal and spectral contributions is used for an analysis.

Usually Apr is deduced by calculating the third-order response function.
The latter determines the polarization of the molecular complex proportional
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β
kαβ at T = 4K vs. wavelength for all PS1

exciton levels shown in Fig. 4. (A reasonable value of the inverse pure dephasing rate
is given by the dashed line)

to the dipole operator expectation value < μ̂(t) > at the third power of the
overall external field E = Epu + Epr (see, e.g., [1]).

Within the described multiexciton density matrix theory the polarization
is obtained from tr{ρ̂(t;E)μ̂} with the multiexciton density operator depend-
ing in any order on the external field. Such a nonperturbative dependency on
E simply follows from the solution of the field-driven multiexciton density ma-
trix equations. To arrive at Apr the respective part of the overall polarization
has to be deduced (for details see, e.g., [18]).

Figure 6 displays respective results for the LH2 of purple bacteria (cf.
Fig. 3). The lower panel nicely demonstrates the reproduction of experimental
data (cf. [29]), whereas the upper panels show the internal multiexciton dy-
namics of the antenna by drawing the absolute values of all elements of the
multiexciton density matrix (up to the two-exciton manifold) at different
times. There are parts in the figures corresponding to identical manifold-
numbers 0, 1, 2 on the horizontal and vertical axes. Those display the ground-
state density matrix ρ00 as well as all elements of the single-exciton and
two-exciton density matrices vs. energy. In the remaining parts, off-diagonal
density matrix elements are shown determining transition polarizations or so-
called coherences (for example, the combination (1,2) of manifold numbers
corresponds to the elements of ραβ̃).

If the pump pulse reaches its maximum (left upper panel) off-diagonal
density matrix elements become large. But with increasing time dephasing
results in a decay of these intra- and intermanifold off-diagonal elements and
only diagonal elements survive forming the two-exciton distribution Pα̃ = ρα̃α̃

and the single-exciton distribution Pα = ραα. For comparison, the lower panel
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Fig. 6. Transient differential absorption and related multiexciton dynamics for the
LH2 antenna complex shown in Fig. 3. Upper panels: absolute values of the multi-
exciton density matrix (for gray code see lower part of the figure) at the pump
pulse maximum as well as after 100 fs and after 200 fs (shown are all density matrix
elements ordered with increasing energy from the left to the right as well as from
the top to bottom, the numbers 0, 1, 2 indicate the different multiexciton mani-
folds). Lower panel: transient absorption vs. delay time between pump and probe
pulse together with the overall single and two-exciton population. Shown is also the
envelope of the 100 fs pump pulse (for experimental data which are displayed by
crosses cf. [29])

displays the overall two-exciton population P2 =
∑

α̃ Pα̃ and the single-exciton
counterpart P1 =

∑
α Pα. With increasing time Pα relaxes into a thermal

equilibrium distribution, whereas Pα̃ vanishes. This latter effect is caused by
the inclusion of exciton–exciton annihilation which represents a particular
two-exciton decay channel (for more details see [2, 17,18]).

3 Electronic Frenkel-Excitons: Beyond Weak
Exciton–Vibrational Coupling

To go beyond the limit of weak exciton–vibrational coupling mainly two ap-
proaches have been described in literature. Both, however, exclusively con-
centrate on the dynamics within the single exciton manifold, and determine
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diagonal electronic (excitonic) matrix elements of the reduced density opera-
tor ρ̂(t), (13). One approach is based on the distribution function for a single
molecular excitation Pm(t) = 〈φm|ρ̂(t)|φm〉, whereas the other uses the (sin-
gle) exciton distribution Pα(t) = 〈α|ρ̂(t)|α〉. The nonequilibrium quantum
statistical background, however, is common to both descriptions. To get Pm

or Pα the so-called Liouville space technique is applied ending up with gener-
alized master equations for the particular distributions. The related memory
kernels are the result of a complete perturbation expansion (see [30, 31] and
the more recent presentation [2, 4, 21] for details).

3.1 Generalized Förster Theory

The first approach leading to the distribution Pm(t) focuses on an expansion
with respect to the Coulombic interchromophore coupling Jmn (cf. (5)) and
is based on the following projection superoperator

P... =
∑
m

r̂(eq)
m Π̂mtr{Π̂m...} . (21)

The Π̂m are given by |φm〉〈φm|, and r̂(eq)
m denotes the statistical operator for

the vibrational equilibrium present if the mth molecule is excited. This exci-
tation might be connected with an arbitrary displacement of the vibrational
equilibrium configuration and thus the whole treatment is nonperturbative
with respect to the coupling to the vibrational coordinates. The related rates
follow from Fourier transformed memory kernels of the generalized master
equations. They describe excitation energy transfer from molecule m to mole-
cule n, and take the following form:

km→n = −itr{Π̂nJ G̃(ω = 0)J r̂(eq)
m Π̂m} . (22)

The quantity J is the Liouville superoperator defined by the interchromophore
interactions ∼ Jmn (cf. (5)), and G̃(ω = 0) denotes the Fourier–transformed
Green’s superoperator (but defined with (1−P)J instead of J alone [2, 4]).
The lowest order rate expression (neglecting any vibrational coordinate de-
pendence of the Jmn)

k(2)
m→n =

|Jmn|2
�2

∫
dt trvib{r̂(eq)

m eiHmt/�e−iHnt/�} (23)

reconstitutes the well-known Förster rate. Fourth-order rate expressions (re-
sembling what is known as superexchange in electron transfer theory, see,
e.g., [2]) have been investigated in [21, 32]. However, any experimental evi-
dence for these generalizations could not be underlined so far.

3.2 Excitonic Potential Energy Surfaces

A second way of treating exciton–vibrational coupling beyond a perturbation
expansion is based on the introduction of what might be called excitonic PES
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Uα(Q) = �Ωα−�λα+
∑

ξ �ωξ(Qξ+2gαα(ξ))2/4 (cf. [4,33]). Here, the diagonal
part of the exciton–vibrational coupling, (11), proportional to gαα(ξ) has been
assumed to be large and has been included in the PES. The reorganization
energy referring to a transition into such an excitonic PES of exciton level α
reads �λα =

∑
ξ �ωξg

2
αα(ξ). The introduction of excitonic PESs corresponds

to the following separtion of H1, (5):

H1 =
∑
α,β

(
δα,β(Tvib + Uα) + (1 − δα,β)

∑
ξ

�ωξgαβ(ξ)Qξ

)
|α〉〈β| . (24)

The assumed smallness of the gαβ(ξ) (α �= β) allows for a perturbational treat-
ment. But the presence of the gαα(ξ) in the PES accounts for the dominant
part of the exciton–vibrational coupling nonperturbatively (cf. [4, 33–36]).

Within this scheme, but neglecting the off-diagonal parts of gαβ(ξ) the
linear absorbance, for example, reads [4, 33]:

A(ω) ∼
∑
α

|dα|2e−Gα(0)

∫
dt ei(ω−Ωα−λα)+Gα(t) . (25)

The expression resembles the absorbance related to transitions between two
independent states with harmonic PES. Besides the reorganization energies
�λα it includes the so-called lineshape functions Gα(t) =

∑
ξ g

2
αα(ξ)([1 +

n(ωξ)]e−iωξt +n(ωξ)eiωξt). The (25) clearly indicates that the electronic inter-
chromophore coupling (resulting in the formation of exciton states) as well as
the exciton–vibrational coupling both enter beyond any perturbation theory
(a perturbational inclusion of the off-diagonal elements of the coupling matrix
has been used in [34] to calculate the corresponding correction to the linear
absorbance).

This treatment has been extended in [35] to calculate photon echo spec-
tra of the photosynthetic antenna complex LH2 and pump probe spectra (in
a doorway–window representation of the third-order response function). A
derivation of rate equations for Pα is also included. They have been obtained
in a similar way as those for Pm discussed in Sect. 3.1, but now with transition
rates being of second order with respect to the gαβ(ξ) (α �= β). A recent ap-
plication to fit transient absorbance of the LH2 can be found in [36]. There, it
has been argued that such a treatment improves the spectra fit considerable.
Unfortunately, the importance of the off-diagonal coupling constants has been
not quantified.

4 Vibrational Frenkel-Excitons:
Arbitrary Exciton–Vibrational Coupling

There exists a particular application of the Frenkel exciton concept to high-
frequency molecular vibrations. It dates back to the seventies of the last
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century and concentrates on the study of vibrational excitons in α-helical
polypeptides (see [37] for an overview as well as the Figs. 7 and 8). Since
the localized high-frequency vibrations of the various amide groups forming
the polypeptide chain are characterized by sufficiently large transition dipole
moments the formation of Frenkel exciton states becomes possible.

The self-localization of these excitons and the formation of so-called Davy-
dov solitons has been of main interest. But any univocal experimental con-
firmation has failed so far. Only recently some experimental indications on
the formation of self-trapped excitons could be reported in [38]. These studies
comprise subpicosecond infrared pump–probe measurements in the absorp-
tion range of the N–H amide group vibration of poly-γ-benzyl-L-glutamate
helices. And they focused on two-exciton states. The concept of vibrational
two-exciton states has been already introduced in the field of ultrafast infrared
two-dimensional spectroscopy (cf. [16, 39]). Recently, the formation and self-
trapping of two-exciton states in polypeptide chains has been also discussed
theoretically in [40,41].

It is believed that self-trapping follows from a sufficiently large change of
the energy level scheme of the amide group high-frequency vibrations upon
chain deformation. Therefore, the coupling to low-frequency vibrations of the
chain (mainly longitudinal vibrations along the chain axis) should become
large enough to suppress the quantum mechanical delocalization of the high-
frequency vibrational quanta along the chain. To achieve a correct picture
of self-trapping (self-localization) of multiexciton states, hence, it requires a
complete quantum description of the coupled exciton–vibrational dynamics
beyond any perturbation theory.

amide unit

Cá

CáC

N

H R H

O HR

α

α

Fig. 7. Spatial structure of an α-helical polypeptide (the three lines of variable
thickness indicate the sequence of hydrogen bridges connecting the amide units). In
the right part the chemical structure of a single amide unit is shown (the so-called
Cα carbon atoms bind residuals R which distinguish different amino acids by their
chemical structure)
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O HO HO HO H O HO H O H O HO H

Fig. 8. Linear chain model of the sequence of hydrogen bridges connecting different
amide units in an α-helical polypeptide (cf. Fig. 7). A three-level system is formed
by the ground-state energy Eg, the energy of the first excited state Ee and of the
first overtone energy Ef of a selected normal mode vibration of the amide unit. xm

is the one-dimensional displacement of the mth unit along the chain

It will be demonstrated in the following that the concept of multiexciton
states introduced in Sect. 1.1 together with a proper treatment of the exciton–
vibrational coupling is ready to describe self-trapping of vibrational multiexci-
ton states and to compute related spectroscopic observables. Already recently
it has been suggested by us in [20] that a (numerically) exact description of
the exciton–vibrational coupling and thus of self-trapping becomes possible
when applying the Multiconfiguration Time-Dependent Hartree (MCTDH)
method [42,43] for a solution of the multidimensional vibrational Schrödinger
equations. Calculating, additionally, the adiabatic multiexciton levels sup-
ports the understanding of vibrational exciton dynamics and related infrared
spectra.

Such an analysis has been carried out in [20] by concentrating on the
so-called amide I excitons and using a linear chain model of the α-helical
peptide suggested, e.g., in [37, 40]. Such a model incorporates a very selected
number of vibrational DOF referring to the longitudinal displacement of the
amide groups along the chain. We note here that self-localization has been also
suspected for electronic Frenkel-excitons [5]. Moreover, some recent theoretical
studies on adiabatic electronic excitons can be also found in [13,19].

4.1 Adiabatic Single and Two-Exciton States

If the reorganization of the vibrational coordinates upon multiexciton forma-
tion becomes large one may consider adiabatic states introduced in the (9)
and (10) rather than the ordinary states (7) and (8). We will consider them for
the N-H-amide group vibrations in a linear chain description of an α–helical
polypeptide (cf. Figs. 7 and 8). These studies do not account for the helical
structure of the polypeptide and neglect the coupling among different high-
frequency amide group vibrations (cf. [44]). Nevertheless, the essence of the
opposite action of exciton delocalization and self-trapping can be accounted
for in the right way (see also Fig. 8).
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What we have to expect is shown schematically in Fig. 1. Every single and
two-exciton state forms a set of PESs U (1)

α and U (2)
α̃ , respectively. They are

defined with respect to the longitudinal displacements xm of the single amide
group along the linear chain (additional local minima in the PESs are not
shown for simplicity). Moreover, the states ϕa with a = g, e, f of an individ-
ual excitable unit introduced in Sect. 1.1 correspond to the N-H-vibrational
ground-state as well as to the first and second excited state, respectively. As
a consequence the overall ground-state (1) and the single and double excited
states (2) and (3), respectively, can be easily defined.

To carry out computations for N-H-vibrational excitons the respective
coupling to the chain vibrations (of a chain with Nau amide units) has to
be specified. As suggested in literature [45] the following potential can be
taken

V (q,X) =
1
2
χ

Nau−1∑
m=1

q2m[xm+1 − xm] , (26)

where qm denotes the mth amide group N-H-vibrational coordinate. The
matrix elements 〈φm|V (q,X)|φm〉 and 〈φmn|V (q,X)|φmn〉 together with the
respective N-H-vibrational energy levels as well as the chain vibrational Hamil-
tonian define H1 and H2, (5) and (6), respectively. The inter-amide unit
couplings Jmn and Jkl,mn are used in the standard form of dipole dipole
interaction (for parameters cf. [46]).

First, a diagonalization of the Hamiltonians of (5) and (6) taken at the
equilibrium configurationX0 of the peptide chain ground-state (at the absence
of any N-H vibrational excitation) leads to the ordinary (unrelaxed) single and
two-exciton states, (7) and (8), respectively. Related relaxed multiexciton lev-
els are obtained in two steps. First, one carries out the calculation of the
excited states for arbitrary values of X, i.e., one introduces adiabatic states,
(9) and (10) with related adiabatic PES. And second, one searches for the
minimum of every adiabatic PES. Figure 9 shows both energy values (relaxed
and unrelaxed) for the single exciton states (upper panel) and the two-
exciton states (lower panel). To characterize the localization of these states
the participation ratios

∑
m |C(1)

α (m;X(α)
rel )|4 and

∑
m,n |C(2)

α̃ (mn;X(α̃)
rel )|4 at

the respective relaxed chain configurations X(α)
rel and X

(α̃)
rel have been also

drawn.
Since the potential, (26) is asymmetric the coupling to the chain vibrations

is absent for the last amide unit (m = Nau). This introduces in the upper-
most part of the single as well as the two-exciton energy spectrum displayed
in Fig. 9, a considerable shift. In the lower part of both spectra the reorga-
nization energy reaches its maximum. This together with the shown large
participation ratio indicates self-trapping of the excitations. In the single-
exciton manifold only the lowest exciton state appears to be self-trapped
whereas two-exciton states relax into a self-trapped configuration. It has been
already shown by us in [20] that these computations represent an exploratory
analysis, only.
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Fig. 9. Single- and two-exciton energies (caused by the coupling of amide unit
N-H-vibrations and for a chain of 9 units). Upper panel: single-exciton energies
vs. quantum number α (= 1,...,9). Lower panel: two-exciton energies vs. quantum
number α̃ (= 1,...,45, all shown energies are related to the minimum of the ground-
state PES which value has been set equal to zero). Open circles: values of the

PESs U
(1)
α and U

(2)
α̃ at the chain equilibrium configuration X0 in the ground-state.

Full circles: values following after relaxation into the configuration X
(α)
rel or X

(α̃)
rel

corresponding to the minimum of U
(1)
α or U

(2)
α̃ , respectively, (the differences between

the relaxed and unrelaxed energies define the reorganization energies �λα and �λα̃).
Open squares: participation ratio for all relaxed single and two exciton levels
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The complete quantum description of the chain configurations lifts this
obvious trapping discussed here and introduces quantum mechanical super-
positions of self-trapped configurations (a fact which is used by default in
variational descriptions of self-trapping [37]). Moreover, the correct energy
spectrum in the region of the single- and two-exciton manifold appears as
a mixture of the adiabatic levels (via nonadiabatic couplings) together with
vibrational progressions caused by the chain vibrations. It is the advantage of
the following considerations that all these effects can be accounted for when
calculating the transient absorbance.

4.2 Exciton–Vibrational Quantum Dynamics

To arrive at a complete quantum description of the exciton–vibrational dy-
namics we introduce an expansion similar to that of the (9) and (10) but
with the expansion coefficients C(1)

α (m;X) and C(2)
α̃ (mn;X) now reinterpreted

as time-dependent chain-vibrational wave functions ψm(X, t) and ψmn(X, t),
respectively. Both sets of functions have to be supplemented by the wave
function of the exciton ground state ψ0(X, t). The respective time-dependent
Schrödinger equations are governed by the related matrix elements of the
Hamiltonians H0, H1, and H2 introduced in the (4), (5), and (6), respec-
tively.

These equations are solved in applying the MCTDH-method. It represents
ψm(x, t), for example, as a time-dependent superposition of time-dependent
Hartree products (cf. [42]):

ψm(X, t) =
∑

ζ1,...,ζf

A(m)(ζ1, ..., ζf ; t)
f∏

j=1

ψ
(m)
ζj

(xj , t) . (27)

Within a single Hartree–product the index j counts the different vibrational
coordinates xj (j = 1, ..., f , with total number f = Nau − 1 in the present
case). The ψ(m)

ζj
(xj , t) are single chain-coordinate dependent wave functions.

Their dependence on m indicates that they refer to the mth vibrational wave
function in the single-exciton state expansion. Moreover, the particular index
ζj indicates that ψ(m)

ζj
enters the Hartree product in the multiconfigurational

ansatz with prefactor A(m)(ζ1, ..., ζf ; t). The method appears as a modification
of the standard basis-set expansion scheme by using time-dependent expansion
functions which may be adapted to the actual state and thus can be drastically
reduced in their overall number.

Calculations could be carried out up to chains with 9 peptide units (ar-
riving at eight longitudinal chain coordinates). This leads to a computation
of nine functions of the type ψm(X, t) referring to the single-exciton man-
ifold and 45 functions of the type ψmn(X, t) referring to the two-exciton
manifold. Related excitation energy dynamics in the single exciton mani-
fold has been studied in [21] by drawing the local amide group population
Pm(t) =

∫
dX|ψm(X, t)|2 vs. time. In the following, the possibility of a rather
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exact computation of ψ0, the ψm, and the ψmn is used to determine infrared
transient absorption spectra like those measured in [38].

4.3 Transient Absorption Spectra

As already mentioned in Sect. 2.2 it represents a suitable experimental ap-
proach to measure the femtosecond transient absorption signal (TAS) when
studying ultrafast molecular dynamics. In the present case it is of particular
interest to study higher excited states which are characterized by a short life
time. While the computation of the third-order response function becomes
necessary in the general case of simulating the TAS (cf. also the discussion
in Sect. 2.2) the description of a sequential pump–probe experiment is less
sophisticated.

In the sequential pump–probe experiment which is of interest here [38]
the pump and the probe pulse are well separated on a time-scale of single
exciton relaxation. Therefore, it is suitable to start with the calculation of
the probe–pulse response (the polarization Ppr) linear with respect to the
probe pulse field Epr. Although the related response function is defined in
any order of the pump field it is not necessary to calculate this dependence.
The sequential character of the experiment allows to assume the presence of
a relaxed excited state when the probe pulse starts to act (of course, the
considered time region needs to be below the life time of the excited state).
Here, we take a relaxed mixed state of the exciton vibrational system which
covers a somewhat depleted ground state with population w0 and energy �Ω

(0)
rel

and a relaxed state in the single exciton manifold with population w1 = 1−w0

and energy �Ω
(1)
rel . The wavefunctions of the respective pure states are written

as ψ(rel)
0 (X)|0〉 and

∑
m ψ

(rel)
m (X)|φm〉. They are computed via imaginary time

propagation as the chain vibrational ground-state and the lowest chain single-
exciton state.

Then, the differential TAS can be written as

ΔApr(ω) ∼ Im
(
R(GB)

pr (ω) +R(SE)
pr (ω) +R(EA)

pr (ω)
)
. (28)

The expression includes Fourier transformed response functions R(GB), R(SE),
and R(EA) referring to the ground state bleaching, the stimulated emission,
and the excited state absorption signal, respectively. All functions are deter-
mined within a time-dependent formulation according to

R(GB)
pr (t) =

i

�
θ(t)(w0 − 1)eiΩ

(0)
rel t

∫
dx

∑
m

d∗mψ
(rel)∗
0 (x)ψm(x, t)

R(SE)
pr (t) = − i

�
θ(t)w1e−iΩ

(1)
rel t

∫
dx

∑
m

d∗mψ
(rel)
m (x)ψ∗

0(x, t)

R(EA)
pr (t) =

i

�
θ(t)w1eiΩ

(1)
rel t

∫
dx

∑
m,n

(
δm,nd̃

∗
mψ

(rel)∗
m (x)ψmm(x, t)

+[1 − δm,n]
(
d∗mψ

(rel)∗
n (x) + d∗nψ

(rel)∗
m (x)

)
ψmn(x, t)

)
. (29)
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Fig. 10. Calculated linear absorption (left panel) and stimulated emission spectrum
(right panel) of a sequential pump probe experiment in the spectral range of N-H-
vibration of the amide units. The vertical lines give the position of the adiabatic
single-exciton levels displayed in Fig. 9, and their length corresponds to squares of
the respective transition dipole moments ∼ |

∑
m

C
(1)
α (m; X

(α)
rel )|2

The local ϕg → ϕe and ϕe → ϕf transition dipole moments are denoted as
dm and d̃m, respectively. To obtain ψm(x, t) in R

(GB)
pr a propagation within

the single-exciton manifold becomes necessary using the initial condition
d∗mψ

(rel)∗
0 . In a similar way R(SE)

pr and R(EA)
pr have to be calculated but now car-

rying out a propagation in the ground-state and in the two-exciton manifold,
respectively.

To understand details of the spectra let us first compare R(GB)
pr as shown

in Fig. 10 with the single-exciton levels displayed in Fig. 9 (note the inclusion
of levels with a sufficient large oscillator strength in Fig. 10). The spectrum
(which is identical with the linear absorbance) is dominated by the lowest
exciton level and a subsequent vibrational progression with some contributions
of higher lying exciton levels. The contribution of the level which shift is
caused by the chain end effect is also obvious. Changing to R(EA)

pr in Fig. 11
a clear separation of the two lowest self-trapped two-exciton levels from the
remaining levels can be found. At higher energies a number of delocalized two-
exciton levels contribute. The resulting differential TAS comprizes all these
contributions, in particular, it displays the signature of the self-trapped two-
exciton states as observed in [38] (for more details see also [47]).

5 Concluding Remarks

An overview on picosecond and subpicosecond Frenkel exciton dynamics
has been presented with particular emphasis on the description of exciton
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Fig. 11. Calculated differential transient absorption spectrum of a sequential pump
probe experiment in the spectral range of N-H-vibration of the amide units (upper
panel) The lower panel shows the related excited state absorption part. The vertical
lines give the position of the adiabatic two-exciton levels (minus the energy of the
lowest single-exciton level) of Fig. 9, and their length indicates the squares of the
respective transition dipole moments (for details cf. [47])

vibrational coupling. Systems forming electronic as well as vibrational exci-
tons have been considered on the basis of a common theoretical description
(and with the restriction to weak static disorder).

The multiexciton density matrix theory presented in Sect. 2.1 has to be
considered as standard in the field, with its advantages and disadvantage well
understood. So, the method can be used as technique to obtain reference data
for a proof if more sophisticated descriptions are necessary. The usefulness of
this approach in simulating excitation energy dynamics in the rather ordered
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chromophore complexes of photosynthetic antenna systems has been demon-
strated. The techniques presented in Sect. 3 may offer some improvements as
shown in particular by the recent calculations of [36]. Nevertheless, at the
moment further extended checks against experimental data are necessary.

The exact description of multiexciton vibrational dynamics as presented
in Sect. 4 seems to be particularly suitable. However, it is restricted to a
very limited number of modes (the agglomeration of modes as used in [48]
to describe electron transfer may represent a possible way to overcome this
restriction). Of course, another demand on theory would be an improvement
of the used multiexciton models by quantum chemical calculations.

Finally, we note that it became also of interest to discuss femtosecond
laser pulse control of exciton motion [24, 49]. In using appropriately tailored
laser pulses of some 100 fs one may try to form particular multiexciton wave
packets which lead, for example, to excitation energy localization at a single
chromophore. Then, particular energy transfer pathways may be studied
which are otherwise not accessible.
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Exciton and Charge-Transfer Dynamics in
Polymer Semiconductors

Eric R. Bittner and John Glen S. Ramon

Summary. Organic semiconducting polymers are currently of broad interest as po-
tential low-cost materials for photovoltaic and light-emitting display applications.
We will give an overview of our work in developing a consistent quantum dynami-
cal picture of the excited state dynamics underlying the photophysics. We will also
focus upon the quantum relaxation and reorganization dynamics that occur upon
photoexcitation of a couple of type II donor–acceptor polymer heterojunction sys-
tems. Our results stress the significance of vibrational relaxation in the state-to-state
relaxation and the impact of curve crossing between charge-transfer and excitonic
states. Furthermore, while a tightly bound charge-transfer state (exciplex) remain
the lowest excited state, we show that the regeneration of the optically active lowest
excitonic state in TFB:F8BT is possible via the existence of a steady-state involving
the bulk charge-transfer state. Finally, we will discuss ramifications of these results
to recent experimental studied and the fabrication of efficient polymer LED and
photovoltaics.

1 Introduction

Over the past three decades, there has been an explosion of interest in devel-
oping semiconducting materials based upon π-conjugated organic polymers.
Conducting polymers are generally lighter in weight, more flexible, and less
expensive to synthesize and fabricate than their inorganic counterparts which
are typically based upon copper or silicon. Such material properties are de-
sirable for applications such as smart windows, electronic paper, and flexible
flat screen displays. It has even been speculated that conductive polymers
may play a significant role in the development of quantum and molecular
computing.

Almost all organic solids and polymers are insulators. However, when the
electronic states of the constituent molecules are extended over a significant
length scale, as in the case of π-conjugated states, electrons can move quite
freely along the backbone of the molecules. The polycyclic aromatic polymers
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Fig. 1. Structures and common short-hand names of various conjugated poly-
phenylene derived semiconducting polymers that are of interest for fabricating lu-
minescent devices

shown in Fig. 1 and phthalocyanine salt crystals are just some examples of
these materials.

Typically, conjugated polymeric materials conduct electricity poorly com-
pared to inorganic conductors. This is due to the intramolecular disorder
intrinsic to a polymeric and glassy material. This disorder leads to trapping
of polaronic charge carriers and hence a dramatic decrease in the carrier mo-
bility. Recent work has focused upon improving the carrier mobility through
either doping or through exploiting self-assembled systems and molecular crys-
tals. In fact, recent observations of mobilities as high as 30 cm2 V−1 s−1 have
been reported in rubrene [1] as well as several reports of high mobility in
pentacene [2–8].

One of the earliest reported organic electronic devices was a voltage con-
trolled switch fabricated from melanin (polyacetylene) by McGinness et al. [9]
This original device is actually now in the Smithsonian Institution’s collec-
tion of early electronic devices. These researchers also patented batteries and
other devices made from organic semiconducting materials. Remarkably, even
though this seminal work appeared in Science, the principal credit for the
discovery and development of organic polymer semiconductors and “synthetic
metals” goes to Heeger, MacDiarmid, and Shirakawa [10] who were jointly
awarded the Nobel Prize in Chemistry in 2000. The high conductivity of
doped polyacteylene, as well as a number of its semiconducting properties
is largely explained by the simple one-dimensional lattice soliton model by
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Su et al. [11–13] Finally for succinct history of the field of conducting poly-
mers we, see Hush [14].

Organic semiconductors exhibit similar electronic properties as inorganic
semiconductors. The highest occupied molecular orbitals (HOMOs) and the
lowest unoccupied molecular orbitals (LUMOs) give rise to separate hole and
electron conduction bands and a band gap. In organic semiconductors, these
are π-type molecular orbitals. As with inorganic amorphous semiconductors,
localized states due to disorder, tunneling, mobility gaps and phonon-assisted
hopping all contribute to the conduction and mobility of charge carriers in the
materials. Unlike inorganic materials, the electronic states of organic semicon-
ductors can be easily modified by chemical modification of the polymer and
through the addition of side-chains to the polymer backbone. Such chemical
modifications can also be used to tune the mechanical and material properties
while preserving desirable electronic properties. Furthermore, the quasi-one-
dimensional nature of the π-states means that the density of electronic states
is largely determined by the persistence length of the π-conjugation. Hence,
polymer morphology will have a significant impact on the electronic density
of states. Defects in the chain due to torsions, chemical impurities, and so
on limit the persistence length of the π orbitals to the extent that one can
consider conjugated polymer molecules to be a linked sequence of isolated
quasi-one-dimensional states [15–19].

In light of the novel material and semiconducting properties of organic
semiconductors, there have been significant advances in fabricating optical-
electronic devices such as light-emitting diodes and photovoltaic cells based
upon polymeric materials. Since OLED displays do not require backlighting,
they are well suited for mobile applications such as cell phones, digital cam-
eras, and flat-screen displays. According to data compiled by the Society for
Information Display, the world-wide market for organic light emitting diodes
in 2004 was approximately $480 million. By 2008, that figure is estimated be
anywhere between $3 and $8 billion.

In fact one of the economic driving forces behind the development of this
technology is the quest for energy efficient light sources. In the US alone,
six quadrillion BTU’s energy per year is required to provide lighting, this
is nearly 20% of all the energy used in buildings. Incandescent bulbs, which
typically operate at 15 lm W−1, turn about 90% of that energy into heat and
fluorescent bulbs, at 60–100 lm W−1, are a bit better in converting 70% of
their energy into light. As of recently, there have been reports of very bright
organic based white LEDS with efficiencies as high as nearly 60 lm W−1 [20]
This efficiency, along with their relatively inexpensive fabrication and ability
to be cast from solution over large surface areas make it highly likely that
OLED based lighting technologies will soon become common place.

Organic LED devices are typically layered structures with luminescent me-
dia sandwiched between cathode and anode materials which are selected such
that their Fermi energies roughly match the conduction and valence bands
of the luminescent material. Often the semiconducting media itself consists
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of a hole transport layer and an electron transport layer engineered to facili-
tate the rapid diffusion of the injected carriers away from their image charges
on the cathode or anode. These carriers are best described as polarons since
electron–phonon coupling produces significant lattice reorganization about
the carriers. Finally, a third, luminescent layer can be sandwiched between
the transport layers. In this layer, the electron and hole polarons interact and
combine to produce excitons. The individual spins of the electrons and holes
are uncorrelated and only singlet excitons are radiatively coupled the ground
electronic state. In the absence of singlet–triplet coupling, this places a the-
oretical upper-limit or 1:4 or 25% on the overall efficiency of an LED device
and it has been long debated whether or not the efficiency of organic LED
devices is in fact limited by this theoretical upper-limit.

The electronic properties of these materials are derived from the delo-
calized π orbitals found in conjugated polymers. The π electron system is
primarily an intramolecular network extending along the polymer chain. For
a linear chain, the valence and conduction π and π∗ bands are typically
1–3 eV wide compared to the intermolecular bandwidth (due to π-stacking) of
about 0.1 eV for well ordered materials. Thus, intrachain charge transport is
extremely efficient; however, interchain transport typically limits the charge
mobility for the usual size range of devices. The polymer backbone is held to-
gether through a σ bonding network. These bonds are considerably stronger
than the π bonds and keep the molecule intact even following photoexcitation.
Hence, we can consider the electronic dynamics as taking place within the π
band and treat the localized σ bonds as skeletal framework.

Since the dielectric constant of organic semiconductors is relatively low,
screening between charges is relatively weak. At a given radius, rc, thermal
fluctuation will be insufficient to break apart an electron/hole pair,

kT =
e2

εrc

at 300 K, this radius is approximately 20 nm, which is on the order of a few
molecular lengths. If we consider the electron/hole pair to be a hydrogenic-
type system with effective masses equal to the free electron mass and dielectric
constant of 3, the resulting binding energy is about 0.75 eV with an effective
Bohr radius of 0.3 nm, which effectively confines the exciton to a single mole-
cular unit. Finally, if we consider the electron/hole pair to be a pair of bound
Fermions, exchange energy resulting from the antisymmetrization of the elec-
tron/hole wave function splits the spin-singlet and spin-triplet excitons by
about 0.5–0.7 eV with the spin-triplet lying lower in energy than the singlet.
While both species are relatively localized, singlets typically span about 10nm
in well ordered materials while triplets are much more localized. In absence
of spin–orbit coupling, emission from the triplet states is forbidden. Hence,
triplet formation in electron/hole capture can dramatically limit the efficiency
of a light-emitting diode device, although strong theoretical and experimental
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evidence indicates that singlet formation can be enhanced in long-chain
polymers.

Experiments by various groups suggest that in long-chain conjugated poly-
mer systems, the singlet exciton population can be greatly enhanced and that
efficiencies as high as 60–80% can be easily achieved in PPV type systems [21].
On the other hand, in small oligomers, the theoretical upper limit appears to
hold true. These initial experiments were then followed by a remarkable set of
observations by Wohlgenannt and Vardeny [22] that indicate that the singlet
to triplet ratio, r > 1 for wide range of conjugated polymer systems and that
r scales universally with the polaron energy – which itself scales inversely with
the persistence length of the π-conjugation

r ∝ 1/n. (1)

The electro-luminescent efficiency, φ, is proportional to the actual singlet pop-
ulation and is related to r via

φ = r/(r + 3).

Various mechanisms favoring the formation of singlets have been proposed
for both interchain and intrachain e–h collisions. Using Fermi’s golden rule,
Shuai, Bredas and coworkers [23–25] indicate that the S cross-section for in-
terchain recombination can be higher than the triplet one due to bond-charge
correlations. Wohlgenannt et al. [26] employ a similar model of two paral-
lel polyene chains. Both of these works neglect vibronic and relaxation ef-
fects. In simulating the intrachain collision of opposite polarons, Kobrak and
Bittner [27–29] show that formation of singlets are enhanced by the near-
resonance with the free e–h pair. The result reflects the fact that spin-exchange
renders the triplet more tightly bound than the singlet and hence more elec-
tronic energy must be dissipated by the phonons in the formation of the
former. The energy-conservation constraints in spin-dependent e–h recombi-
nation have been analyzed by Burin and Ratner [30] in an essential-state
model. The authors point out that nonradiative processes (internal conver-
sion, intersystem crossing) must entail C=C stretching vibrons since these
modes couple most strongly to π → π∗ excitations. Tandon et al. [31] suggest
that irrespective of the recombination process, interchain or intrachain, the
direct transition to form singlets should always be easier than triplets due to
its smaller binding energy relative to the triplet. A comprehensive review of
detailing the experiments and theory of this effect was presented by Wohlge-
nannt et al. [32]. By and large, recent theoretical models point towards the role
of multiphonon relaxation and the scaling of the singlet/triplet splitting with
chain length as dominant factors in determining this enhancement [33–36].

If we assume that the electron/hole capture proceeds via a series of mi-
crostates one can show that the ratio of the singlet to triplet capture cross-
sections, r scale with the ratio of the exciton binding energies [37]

r ∝ εTB
εSB
.
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If we take the singlet–triplet energy difference to be equal to twice the
electron–hole exchange energy, ΔEST = 2K, and expand K in terms of the
inverse conjugation length

K = K∞ +K(1)/n+ · · · ,

where 2K∞ is the singlet–triplet splitting of an infinitely long polymer chain,
one obtains

r ∝ 1 + nK∞/εSB + · · ·
Since both K∞ > 0, r > 1. Moreover, if we take εSB ∝ 1/n, we obtain a simple
and universal scaling law for the singlet–triplet capture ratio, r ∝ n. This
“universal” scaling law for r was reported by Wohlgennant et al. [22]. What is
even more surprising, is that the the same scaling law (i.e., slope and intercept
for r = an + c) describes nearly all organic conjugated polymer systems.
Hence, it appears that a common set of electronic interaction parameters is
transferable between a wide range of organic conjugated polymer systems.

Another general consequence of localized electronic states in molecular
semiconductors is their effect on the molecule itself. Promoting an electron
from a π bonding orbital to a π∗ antibonding orbital decreases the bond order
over several carbon–carbon bonds. This leads to a significant rearrangement of
the bond-lengths to accommodate the changes in the electronic structure. By
and large, for polymers containing phenyl rings, it is the C=C bond stretch-
ing modes and much lower frequency phenylene torsional modes that play
significant roles in the lattice reorganization following optical excitation. This
is evidenced in the strong vibronic features observed in the absorption and
emission spectra of these materials.

Finally, one can fabricate devices using blends of semiconducting poly-
mers which phase segregate. For example, the phenylene backbone in F8BT
is very planar molecule facilitating very delocalized π-states. On the other
hand, TFB and PFB are very globular polymers due to the triamide group
in the chain. Consequently, phase segregation occurs due to more favorable
π-stacking interactions between F8BT chains than between F8BT and TFB or
PFB. Moreover, the electronic states in TFB and PFB are punctuated by the
triamides. This difference in electronic states results in a band offset between
the two semiconducting phases. When we place the materials in contact with
each other, a p–n heterojunction forms.

One can think of the HOMO and LUMO energy levels of a given polymer
as corresponding to the top and bottom of the valance and conduction bands,
respectively. For the polymers under consideration herein, the relative band
edges are shown in Fig. 2. In Type II heterojunction materials, the energy
bands of the two materials are off set by ΔE. If the exciton binding energy
εB > ΔE, excitonic states will the lowest lying excited state species, resulting
in a luminescent material with the majority of the photons originating from
the side with the lowest optical gap. Since the majority of the charge carriers
are consumed by photon production, very little photocurrent will be observed.
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Fig. 2. Relative placement of the HOMO and LUMO levels for various conjugated
polymers

On the other hand, charge transfer states across the interface will be ener-
getically favored if εB < ΔE. Here, any exciton formed will rapidly decay in
to a charge-separated state with the electron and hole localizing on either side
of the junction. This will result in very little luminescence but high photocur-
rent. Consequently, heterojunctions of PPV and BBL which have a large band
offset relative to the exciton binding energy are excellent candidate materials
for organic polymer solar cells [38,39].

Heterojunctions composed of TFB:F8BT and PFB:F8BT lie much closer
to the exciton stabilization threshold as seen by comparing the relative band
offsets in Fig. 2. Notice that the offset for TFB:F8BT is only slightly larger
than 0.5 eV, which is approximately the exciton binding energy where as in
PFB:F8BT the offset is >0.5 eV. Since such blends lie close to the stabilization
threshold, they are excellent candidates for studying the relation between the
energetics and the kinetics of exciton fission.

A comprehensive overview of the all the experimental and theoretical de-
velopment in this field is well beyond the scope of a single chapter or single
review article. Indeed, very good topical reviews exist and the reader is steered
towards the Handbook of Conducting Polymers [40] for general overview, as
well as Organic Light-Emitting Devices: A Survey [41] and Conjugated Poly-
mers: The Novel Science and Technology of Highly Conducting and Nonlinear
Optically Active Materials edited by Bredas and Silbey [42].

In this paper we present an overview of our recent work in developing a
dynamical model for electronic relaxation processes in molecular semicon-
ductors. We start with a brief primer on the excited states of molecular
semiconductors and develop concepts from solid-state physics that are impor-
tant in understanding molecular semiconductors. We then provide details of a
model we have developed over the past few years which captures much of the
salient physics for the photophysics of molecular semiconductors with nonde-
generate ground states, such as PPV, F8BT, and related polymers. We then
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present an overview of our recent theoretical work aimed at understanding and
modeling the state-to-state photophysical pathways in blended heterojunction
materials [43,44].

2 Two-Band Configuration Interaction Model

Our basic description is derived starting from a model for the on-chain elec-
tronic excitations of a single conjugated polymer chain [36,45–47]. This model
accounts for the coupling of excitations within the π-orbitals of a conjugated
polymer to the lattice phonons using localized valence and conduction band
Wannier functions (|h〉 and |p〉) to describe the π orbitals and two optical
phonon branches to describe the bond stretches and torsions of the the poly-
mer skeleton

H =
∑
mn

(F ◦
mn + Vmn)A†

mAn

+
∑
nmiμ

(
∂F ◦

nm

∂qiμ

)
A†

nAmqiμ

+
∑
iμ

ω2
μ(q2iμ + λμqiμqi+1,μ) + p2iμ, (2)

where A†
n and An are operators that act upon the ground electronic state |0〉

to create and destroy electron/hole configurations |n〉 = |hp〉 with positive
hole in the valence band Wannier function localized at h and an electron in
the conduction band Wannier function p. Finally, qiμ and piμ correspond to
lattice distortions and momentum components in the ith site and μth optical
phonon branch.

Wannier functions are essentially spatially localized basis functions that
can be derived from the band-structure of an extended system. Quantities such
as the exchange interaction and Coulomb interaction can be easily computed
within the atomic orbital basis; however, there are many known difficulties
in computing these within the crystal momentum representation. Because of
this, is is desirable to develop a set of orthonormal spatially localized functions
that can be characterized by a band index and a lattice site vector, Rμ. These
are the Wannier functions, which we shall denote by an(r−Rμ) and define in
terms of the Bloch functions

an(r −Rμ) =
Ω1/2

(2π)d/2

∫
e−ikRμψnk(r)dk. (3)

The integral is over the Brillouin zone with volume V = (2π)d/Ω and Ω is
the volume of the unit cell (with d dimensions). A given Wannier function is
defined for each band and for each unit cell. If the unit cell happens to contain
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multiple atoms, the Wannier function may be delocalized over multiple atoms.
The functions are orthogonal and complete.

The Wannier functions are not energy eigenfunctions of the Hamiltonian.
They are, however, linear combinations of the Bloch functions with different
wave vectors and therefore different energies. For a perfect crystal, the matrix
elements of H in terms of the Wannier functions are given by∫
a∗l (r −Rν)Hoan(r −Rμ)dr =

Ω

(2π)d

∫
ei(qRν−kRμ)ψlk(r)Hoψnk(r)dr dq dk

= En(Rν −Rμ)δnl, (4)

where
En(Rν −Rμ) =

Ω

(2π)d

∫
eik(Rν−Rμ)En(k) dk.

Consequently, the Hamiltonian matrix elements in the Wannier representation
are related to the Fourier components of the band structure, En(k). Therefore,
given a band structure, we can derive the Wannier functions and the single
particle matrix elements, F ◦

mn.
The single-particle terms, F ◦

mn, are derived at the ground-state equilibrium
configuration, qμ = 0, from the Fourier components fr and fr of the band
energies in pseudomomentum space

Fmn = δmn〈m|f |n〉 − δmn〈m|f |n〉
= δmnfm−n − δmnfm−n. (5)

Here, fmn and fmn are the localized energy levels and transfer integrals for
conduction-band electrons and valence-band holes. At the ground-state equi-
librium geometry, qμ = 0, these terms can be computed as Fourier components
of the one-particle energies in the Brillouin zone. For example, for the con-
duction band

fmn = fm−n =
1
Bz

∫
Bz

εkeik(m−n) dk, (6)

where k is the pseudomomentum for a 1-dimensional lattice with unit period.
For the case of cosine-shaped bands

ε(k) = fo + 2f1 cos(k),

the site-energies are given by the center fo and the transfer integral between
adjacent Wannier functions is given by f1. The band-structure and corre-
sponding Wannier functions for the valence and conduction bands for PPV
are shown in Fig. 3 [35, 45, 46]. For the intrachain terms, we use the hopping
terms and site energies derived for isolated polymer chains of a given species,
ti,||, where our notation denotes the parallel hopping term for the ith chain
(i = 1, 2). For PPV and similar conjugated polymer species, these are approx-
imately 0.5 eV for both valence and conduction π bands.
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Fig. 3. Computed band-structure and vinylene-centered Wannier functions for PPV

The two-particle interactions are spin-dependent with

V T
mn = −〈mn||nm〉 (7)
V S

mn = V T
mn + 2〈mn||mn〉 (8)

for triplet and singlet combinations respectively with

〈mn||ij〉 =
∫

d1
∫

d2φ∗m(1)φ∗n(2)v(12)φi(1)φj(2)

With the exception of geminate WFs, orbital overlap is small such that the
two-body interactions are limited to Coulomb, J(r) and exchange integrals,
K(r) reflecting e–h attraction and spin-exchange coupling nongeminate config-
urations. and transition dipole–dipole integrals D(r) coupling only geminate
singlet electron–hole pairs. Table 1 gives a listing of the electron–hole integrals
and their parameters we have determined for PPV and similar poly-phenylene
based conjugated chains. We have found that these are quite transferable
amongst this class of conjugated polymers and allow us to focus upon model-
ing similar poly-phenylene chains through variation of the Wannier function
band-centers (i.e., site energies) and band-widths (i.e., intrachain hopping
integrals).

Since we will be dealing with interchain couplings, we make the follow-
ing set of assumptions. First, the single-particle coupling between chains is
expected to be small compared to the intramolecular coupling. For this, we
assume that the perpendicular hopping integral t⊥ = 0.01 eV. This is consis-
tent with LDA calculations performed by Vogl and Campbell [48] and with
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Table 1. Electron/hole integrals for poly-phenylene-type polymer chains

Term Functional form Parameters

Direct Coloumb J(r) = Jo/(1 + r/ro) Jo = 3.092 eV
ro = 0.6840a

Exchange K(r) = Ko e−r/ro Ko = 1.0573 eV
ro = 0.4743a

Dipole–dipole D(r) = Do(r/ro)
−3 Do = −0.03209 eV

ro = 1.0a

Note: a =unit lattice spacing

the t⊥ ≈ 0.15f1 estimate used in an earlier study of interchain excitons by Yu
et al. [49] Furthermore, we assume that the J(r), K(r), and D(r) two-particle
interactions depend only upon the linear distance between two sites, as in the
intrachain case. Since these are expected to be weak given that the interchain
separation, d, is taken to be somewhat greater than the intermonomer sepa-
ration.

Finally, the most important assumption that we make is that the site
energies for the electrons and holes for the various chemical species can be
determined by comparing the relative HOMO and LUMO energies to PPV.
These are listed in Table 2. For example, the HOMO energy for PPV (as
determined by its ionization potential) is −5.1 eV. For BBL, this energy is
−5.9 eV. Thus, we assume that the fo for a hole on a BBL chain is 0.8 eV
lower than fo for PPV at −3.55 eV. Likewise for the conduction band. The
LUMO energy of PPV is −2.7 eV and that of BBL is −4.0 eV. Thus, we shift
the band center of the BBL chain 1.3 eV lower than then PPV conduction
band center to 1.45 eV. For the F8BT, TFB, and PFB chains, we adopt a
similar scheme as discussed below. The site energies and transfer integrals
used throughout are indicated in Table 2. We believe our model produces a
reasonable estimate of the band offsets in the PN-junctions formed at the
interface between these semiconducting polymers.

Table 2. Band centers and reported HOMO and LUMO levels for various polymer
species

Molecule εe εh HOMO LUMO

PPV 2.75 eV −2.75 eV −5.1 eVa −2.7 eVa

BBL 1.45 −3.55 −5.9a −4.0a

F8BT 1.92 (2.42,1.42) −3.54 (−3.04,−4.04) −5.89b −3.53b

PFB 3.16 (3.36,2.96) −2.75 (−2.55,−2.95) −5.1b −2.29b

TFB 3.15 (3.35,2.95) −2.98 (−2.78,-3.18) −5.33b −2.30b

Parenthesis indicate the modulation of the intramolecular valence and conduction
band site energies
a See [53]
b See [54]
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Fig. 4. Semiempirical (PM3) LUMO (left) and HOMO (right) orbitals for FBT
monomer

A uniform site model for F8BT, TFB, and PFB, may be a gross simplifi-
cation of the physical systems. For example, recent semi-empirical CI calcula-
tions by Jespersen and coworkers [50] indicate that the lowest energy singlet
excited state of F8BT consists of alternating positive and negative regions
corresponding to the electron localized on the benzothiadiazole units and the
hole localized on the fluorene units. These are consistent with a previous
study by Cornil et al. [51] which places the LUMO on the benzothiadiazole
units. Cornil et al. [51] also report the HOMO and LUMO levels of the isolated
fluorene and benzothiadiazole [51] indicating a Δ = 1.56 eV offset between the
fluorene and benzothiadiazole LUMO levels and a 0.66 eV offset between
the fluorene and benzothiadiazole HOMO energy levels. Similarly, PM3 level
calculations at the optimized geometry indicate an LUMO offset of 1.48 eV
and a HOMO offset of 0.8 eV. The HOMO and LUMO orbitals for FBT (where
we replaced the octyl side chains in F8BT with methyl groups) are shown in
Fig. 4. This clearly indicates the localization of the HOMO and LUMO wave
functions on the copolymer units.

We can include this alternation into our model by modulating the site
energies of the F8BT chain [46]. Thus, in F8BT we include a 0.5 eV modulation
of both the valence and conduction band site energies relative to the band
center. Table 2. Hence, the fluorene site energies are at 2.42 and −3.04 eV
for the conduction and valence band while the benzothiadiazole site energies
are 1.42 and −4.04 eV. This results in a shift in the excitation energy to
0.28 eV relative to the unmodulated polymer and a 0.09 eV increase in the
exciton binding energy. Furthermore, the absorption spectrum consists of two
distinct peaks at 2.14 eV (563 nm) and 4.4 eV (281 nm) which are more or less
on par with the 2.77 eV (448 nm) So → S1 and the 4.16 eV (298 nm) So → S9

transitions computed by Jespersen et al. [50] and observed at 2.66 and 3.63 eV
by Stevens et al. [52].

For the case of parallel chains, we assume that there is no direct mechanical
coupling between the chains. Consequently, each polymer chain is assumed to
posses its own ensemble of phonon normal modes localized on the given chain
and that there are no interchain phonon–phonon couplings. Moreover, since
we have assumed bilinear coupling between on-site displacement coordinates
qiμ and hard-wall boundary conditions, the phonon normal mode frequencies
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for each mode ξ are given by

ω2
ξμ = ω2

μ + 2λμ cos
(

ξπ
2(N + 1)

)
, (9)

where N is the number of lattice sites in a given chain, ωμ the band center
for the μ-phonon band, λ the coupling, and ξ = 1, . . . , N . In what follows,
we shall condense our notation and adopt a generic ξ to denote both normal
mode and band.

Finally, an important component in our model is the coupling between
the electronic and lattice degrees of freedom. These we introduce via a linear
coupling term of the form(

∂fmn

∂qiμ

)
o

=
Sμ

2
(2�ω3

μ)1/2(δmi + δni), (10)

where Sμ is the Huang–Rhys factor which can be obtained from the vibronic
features in the experimental photoemission spectrum. The Huang–Rhys fac-
tor, S is related to the intensity of the 0–n vibronic transition

I0−n =
e−SSn

n!
. (11)

For the case of conjugated polymers such as PPV and similar poly-phenylene
vinylene species, the emission spectra largely consists of a series of well-
resolved vibronic features corresponding to the C=C stretching modes in the
phenylene rings with typical Huang–Rhys factors of S = 0.6 and a broad-
featureless background attributed to either low frequency ring torsions (in
the case of phenylene–vinylene polymers) or other low frequency modes with
weak coupling to the electronic states with Sμ ≈ 4. On the other hand, the
photoluminescence spectra of F8 shows a series of well resolved vibronic peaks
with an energy separation of about 1,600 cm−1 [52,55]. Analysis of the Huang–
Rhys factors of F8 in crystalline β phase and glassy states indicates a rela-
tively low overall Huang–Rhys factor of S = 0.6 [55] which indicates that
there is relatively little geometric relaxation following the transition from the
excited to the ground state in these systems. This value of S = 0.6 is also in
reasonable agreement with values estimated by Guha et al. [56] for ladder-
type poly-para-phenylene and S = 1.2 for para-hexaphenyl. The modes which
would couple a more planar excited state to a nonplanar ground state involve
torsions between phenylene rings. These low frequency modes occur around
70 cm−1 and can not be spectroscopically resolved [55]. Based upon these ob-
servations, it seems reasonable from the standpoint of model building that a
two phonon branches, one with ω= 1,600 cm−1 and S = 0.6 and the other
with ω = 70 cm−1 and S = 4, provide a transferable set of electron/phonon
couplings suitable for the conjugated polymers considered in this work.

Upon transforming H into the diabatic representation by diagonalizing
the electronic terms at qiμ = 0, we obtain a series of vertical excited states
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|a◦〉 with energies, ε◦a and normal modes, Qξ with frequencies, ωξ. (We will
assume that the sum over ξ spans all phonon branches.)

H =
∑

a

ε◦a|a◦〉〈a◦| +
∑
abξ

g◦abξqξ(|a◦〉〈b◦| + |b◦〉〈a◦|)

+
1
2

∑
ξ

(ω2
ξQ

2
ξ + P 2

ξ ). (12)

The adiabatic or relaxed states can be determined then by iteratively mini-
mizing εa(Qξ) = 〈a|H|a〉 according to the self-consistent equations

dεa(Qξ)
dQξ

= gaaξ + ω2
ξQξ = 0. (13)

Thus, each diabatic potential surface for the nuclear lattice motion is given
by

εa(Qξ) = εa +
1
2

∑
ξ

ω2
ξ (Qξ −Q

(a)
ξ )2. (14)

These are shown schematically as Sa and Sb in Fig. 5 withQξ being a collective
normal mode coordinate. On can also view this figure as a slice through an
N -dimensional coordinate space along normal coordinate Qξ. In this figure, ε◦a
and ε◦b are the vertical energies taken at the ground-state equilibrium geometry
Qξ = 0. The adiabatic energies, taken at the equilibrium geometry of each
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Fig. 5. Schematic representation of excited state Diabatic potentials obtained within
our approach. The ground state configuration is taken as qξ = 0 with vertical exci-
tation energies atε◦a and ε◦b and adiabatic (minimum) energies at εa and εb
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excited state are denoted as εa and εb. While our model accounts for the
distortions in the lattice due to electron/phonon coupling, we do not account
for any adiabatic change in the phonon force constants within the excited
states. Lastly, the electronic coupling between diabatic curves is given by
gab which we compute at the ground-state geometry (g◦ab). We assume that
both the diagonal g◦aa and off-diagonal g◦ab terms can be derived from the
spectroscopic Huang–Rhys parameters.

The advantages of our approach is that it allows us to easily consider
the singly excited states of relatively large conjugated polymer systems. Our
model is built from both ab initio and experimental considerations and can
in fact reproduce most of the salient features of the vibronic absorption and
emission spectra for these systems. The model is limited in that we cannot
include specific chemical configurational information about the polymers other
than their conjugation length and gross topology. For isolated single chains,
the model is rigorous. For multiple chains, our interchain parameterization
does not stand on such firm ground since technically the Wannier functions
are derived from a quasi-one-dimensional band structure. Nonetheless, our
model and results provide a starting point for predicting and interpreting
the complex photophysical processes within these systems. We next move on
to describing the state-to-state interconversion proceses that occur following
both photo- and electro-excitation.

3 State-to-State Relaxation Dynamics

The electronic levels in our model are coupled to the lattice phonons as well as
the radiation field. Consequently, relaxation from a given electronic state can
occur via state to state interconversion via phonon excitation or absorption or
fluorescent decay to the S0 ground state. For triplet excitations, only phonon
transitions are allowed. For the singlets, fluorescence occurs primarily from the
lowest Sn state independent of how the excitation was prepared. This certainly
holds true for conjugated polymers in which both electroluminescence and
photoluminescence originates from the same S1 = Sxt state. This implies that
internal conversion dynamics are fast relative to the fluorescence lifetime.

Coupling the electronic relaxation dynamics to the vibrational dynamics
is a formidable task. An exact quantum mechanical description of this is cur-
rently well beyond the state of the art of current computational methods. One
can, however, compute the state-to-state rate constants using Fermi’s golden
rule and arrive at a reasonable picture.

If we assume that the vibrational bath described by Hph remains at its
ground-state geometry, then the state-to-state transition rates are easily given
by Fermi’s golden rule:

k◦ab = π
∑

ξ

g2
ab

�ωξ
(1 + n(ωab))(Γ (ωξ − ωab) − Γ (ωξ + ωab)). (15)
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where n(ω) is the Bose–Einstein population for the phonons, Γ is a Lorentzian
broadening in which the width is inversely proportional to the phonon lifetime
used to smooth the otherwise discrete phonon spectrum, ωab = (εoa − εob)/�.
In order for a transition to occur, there must be a phonon of commensurate
energy to accommodate the energy transfer. The coupling term, gabξ, is the
diabatic coupling in the diabatic Hamiltonian given in (12).

This static model is fine so long as either the nuclear relaxation has little
effect on the state to state rate constant or if the electronic transitions occur on
a time-scale which is short compared to the nuclear motion. However, if lattice
reorganization does play a significant role, then we need to consider the explicit
nuclear dynamics when computing the state-to-state rates. If we assume that
vibrational relaxation within a given diabatic state is rapid compared to the
interstate transition rate, we can consider the transitions as occurring between
displaced harmonic wells

kab =
2π
�

|Vab|2 F , (16)

where Vab is the coupling between electronic states a and b and

F = F(Eab) =
∑
νa

∑
νb

Pth(εa(νa))|〈νa|νb〉|2δ(εa(νa) − ε(νb) + ΔEab) (17)

is the thermally averaged Franck–Condon weighted density of nuclear vibra-
tional states. Here, νa and νb denote the vibronic states, Pth is the Boltzmann
distribution over the initial states, εa(νa) and ε(νb) are the corresponding en-
ergies, and ΔEab is the electronic energy gap between a and b. In the classical
limit, F becomes

F(Eab) =
1√

4πEλkBT
exp

(
− (Eλ + ΔEab)2

4EλkBT

)
, (18)

where Eλ is the reorganization energy as sketched in Fig. 5.
Each of these terms can be easily computed from the diabatic Hamiltonian

in (12). The diabatic coupling matrix element between the adiabatically re-
laxed excited states, |Vab|2, requires some care since we are considering transi-
tions between eigenstates of different Hamitonians (corresponding to different
nuclear geometries). Since the vertical Qξ = 0 states provide a common basis,
|a◦〉, we can write

Vab =
∑
a◦b◦

〈a|a◦〉g◦ab〈b◦|b〉, (19)

where g◦ab is the diabatic matrix element computed at the equilibrium geom-
etry of the ground-state.

Once we have the rate constants computed, it is a simple matter to inte-
grate the Pauli master equation for the state populations
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Ṗa(t) =
∑

b

(kbaPb − kabPa) − krad
a Pa, (20)

where krad
a is the radiative decay rate of state a

krad
a =

|μa0|2
6εo�2

(1 + n(ωa0))
�ω3

a0

2πc3
, (21)

where μa0 are the transition dipoles of the excited singlets. These we can
compute directly from the Wannier functions or empirically from the pho-
toluminescence decay rates for a given system. Photon mediated transitions
between excited states are highly unlikely due to the ω3

ab density factor of the
optical field. In essence, so long as the nonequilibrium vibrational dynamics is
not a decisive factor, we can use these equations to trace the relaxation of an
electronic photo- or charge-transfer excitation from its creation to its decay
including photon outflow measured as luminescence.

4 Exciton Regeneration Dynamics

Donor–acceptor heterojunctions composed of blends of TFB with F8BT and
PFB with F8BT phase segregate to form domains of more or less pure donor
and pure acceptor. Even though the polymers appear to be chemically quite
similar, the presence of the triphenyl amine groups in TFB and PFB cause
the polymer chain to be folded up much like a carpenter’s rule. F8BT, on
the other hand, is very rod-like with a radius of gyration being more or less
equivalent to the length of a give oligomer. Molecular dynamics simulations
of these materials by our group indicate that segregation occurs because of
this difference in morphology and that the interface between the domains is
characterized by regions of locally ordered π-stacking when F8BT rod-like
chains come into contact with more globular PFB or TFB chains.

As discussed earlier, TFB:F8BT and PFB:F8BT sit on either side of the
exciton destabilization threshold. In TFB:F8BT, the band offset is less than
the exciton binding energy and these materials exhibit excellent LED per-
formance. On the other hand, devices fabricated from PFB:F8BT where the
exciton binding energy is less than the offset, are very poor LEDs but hold
considerable promise for photovoltic devices. In both of these systems, the
lowest energy state is assumed to be an interchain exciplex as evidenced by
a red-shifted emission about 50–80 ns after the initial photoexcitation [57].
In the case of TFB:F8BT, the shift is reported to be 140± 20 meV and in
PFB:F8BT the shift is 360± 30 meV relative to the exciton emission, which
originates from the F8BT phase. Bearing this in mind, we systematically var-
ied the separation distance between the cofacial chains from r = 2a−5a (where
a=unit lattice constant) and set t⊥ = 0.01 in order to tune the Coulomb and
exchange coupling between the chains and calibrate our parameterization.
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Fig. 6. Vertical and relaxed energies of the lowest lying states in the TFB:F8BT
and PFB:F8BT heterojunctions. In each, A and C refer to the interchain exciplex
state and B and D refer to the predominantly intrachain F8BT exciton state

For large interchain separations, the exciton remains localized on the F8BT
chain in both cases. As the chains come into contact, dipole–dipole and direct
Coulomb couplings become significant and we begin to see the effect of ex-
citon destabilization. For TFB:F8BT, we select and interchain separation of
r = 2.8a giving a 104 meV splitting between the vertical exciton and the ver-
tical exciplex and 87.4 meV for the adiabatic states. For PFB:F8BT, we chose
r = 3a giving a vertical exciton–exciplex gap of 310 meV and an adiabatic
gap of 233 meV. In both TFB:F8BT and PFB:F8BT, the separation produce
interchain exciplex states as the lowest excitations. with energies reasonably
close to the experimental shifts.

Figure 4 compares the vertical and adiabatic energy levels in the TFB:F8BT
and PFB:F8BT chains and Figs. 7 and 8 show the vertical and relaxed exciton
and charge-separated states for the two systems. Here, sites 1–10 correspond
to the TFB or PFB chains and 11–20 correspond to the F8BT chain. The
energy levels labeled in Fig. 4 correspond to the states plotted in Figs. 7 and
8. We shall refer to states A and B as the vertical exciplex and vertical ex-
citon and to states C and D as the adiabatic exciplex and adiabatic exciton
respectively. Roughly speaking, a pure exciplex state will have the charges
completely separated between the chains and will contain no geminate elec-
tron/hole configurations. Likewise, strictly speaking, a pure excitonic state
will be localized to a single chain and have only geminate electron/hole con-
figurations. Since site energies for the the F8BT chain are modulated to reflect
to internal charge-separation in the F8BT copolymer as discussed above, we
take our “exciton” to be the lowest energy state that is localized predomi-
nantly along the diagonal in the F8BT “quadrant”.

In the TFB:F8BT junction, the lowest excited state is the exciplex for
both the vertical and adiabatic lattice configurations with the hole on the
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Fig. 7. Excited state electron/hole densities for TFB:F8BT heterojunction. The
electron/hole coordinate axes are such that sites 1–10 correspond to TFB sites
and 11–20 correspond to F8BT sites. Note the weak mixing between the interchain
charge-separated states and the F8BT exciton in each of these plots

TFB and the electron on the F8BT (Fig. 7a,c). In the vertical case, there
appears to be very little coupling between intrachain and interchain configu-
rations. However, in the adiabatic cases there is considerable mixing between
intra- and interchain configurations. First, this gives the adiabatic exciplex
an increased transition dipole moment to the ground state. Second, the fact
that the adiabatic exciton and exciplex states are only 87 meV apart means
that at 300 K, about 4% of the total excited state population will be in the
adiabatic exciton.

For the PFB:F8BT heterojunction, the band offset is greater than the ex-
citon binding energy and sits squarely on the other side of the stabilization
threshold. Here the lowest energy excited state (Figs. 8a,b) is the interchain
charge-separated state with the electron residing on the F8BT (sites 11–20
in the density plots in Fig. 8) and the hole on the PFB (sites 1–10). The
lowest energy exciton is almost identical to the exciton in the TFB:F8BT
case. Remarkably, the relaxed exciton (Fig. 8D) shows slightly more inter-
chain charge-transfer character than the vertical exciton (Fig. 8C). While the
system readily absorbs at 2.3 eV creating a localized exciton on the F8BT,
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Fig. 8. Excited state electron/hole densities for PFB:F8BT heterojunction. The
axes are as in previous figures except that sites 1–10 correspond to PFB sites and
sites 11–20 to F8BT sites

luminescence is entirely quenched since all population within the excited states
is readily transfer to the lower-lying interchain charge-separated states with
vanishing transition moments to the ground state.

In calculating the state-to-state interconversion rates for TFB:F8BT, we
note two major differences between the static and the adiabatic Marcus–Hush
approaches (see Fig. 9). First is the sparsity of the latter with transitions being
limited to states with smaller energy differences. This leads to a relaxation
dynamics that is more intertwined with the DOS. Second is the relatively
faster rates calculated in the latter leading to interconversion lifetimes in the
femtosecond (fs) to a couple of picosecond (ps) regime as opposed to hundreds
of ps in the former. The same general difference is observed for PFB:F8BT
(Not shown). These marked differences in the distribution of rates and their
range of magnitudes are brought about by the introduction of the reorganiza-
tion energy as a parameter in the rates calculation to complement the energy
differences between the states. It provides a way to incorporate lattice distor-
tions in the semiclassical limit into the relaxation dynamics. While this is not
fully dynamical in its account of the lattice distortions, it improves upon the
static approximation previously employed.
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Fig. 9. (Color online) TFB–F8BT internal conversion rates distribution at 290 K.
Rates are in ps−1. Note the sparsity and relatively faster Marcus rates compared to
the diabatic rates

The photoexcitation of heterojunction systems is simulated by populating
a higher-lying excitonic state. Figure 10 shows the time-evolved populations of
the lowest charge-transfer (CT) and excitonic (XT) vertical and relaxed states,
respectively, in photoexcited TFB:F8BT and PFB:F8BT. We see that the
relaxation to the lowest CT state is faster in TFB:F8BT than in PFB:F8BT.
Furthermore, the relaxation from the XT state to the CT state occurs faster
in the former. This is despite the XT state being formed faster in the latter
for both cases. This is manifested more in the Marcus–Hush approach shown
in Fig. 10 where despite reaching a maximum population of 0.86 in 250 fs as
opposed to just 0.40 in 500 fs, the XT→CT interconversion is practically done
in 2 ps in TFB:F8BT compared to 10 ps in PFB:F8BT. In addition, we note
that the XT state reaches a steady-state population in TFB:F8BT whereas
it goes to zero in PFB:F8BT. This small but nonzero population of the XT
state is consistent with the distributed thermal population of states of 0.022 at
290 K owing to the fact that this XT state is 95 meV higher in energy relative
to the lowest CT state [43].

Interestingly, while the overall XT→CT interconversion occurs in just a
couple of ps in both heterojunction systems, a closer look into the rates reveal
that this relaxation does not occur directly. Rather, it involves the next low-
est CT state. Figure 11 show the relevant interconversions between the three
lowest states of both systems: the lowest CT state(CT1), the next lowest
CT state(CT2), and the lowest XT state(XT). It is worth noting that the
considerable mixing between the intra-chain and interchain configurations
of the former compared to those of the latter. In TFB:F8BT, the direct
XT→CT1 transition (∼10−3 ps−1) is at least 3 orders of magnitude slower
than the corresponding XT→CT2→CT1 transition route (>1 ps−1), the in-
direct route being consistent with the evolution data (Fig. 10). Thus, the
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Fig. 10. Time-evolved populations of the lowest CT (solid lines) and XT (dashed
lines) relaxed states of TFB:F8BT(TF) and PFB:F8BT(PF) in the Marcus–Hush
approach at 290 K

Fig. 11. Relevant Marcus–Hush interconversion rates for the three lowest states of
(left) TFB:F8BT and (right) PFB:F8BT. In both cases, relaxation proceeds from
the density of states (DOS) to the lowest excitonic state(XT) (offset to the right
relative to the CT states for clarity of relaxation route) before relaxing to the lowest
charge-transfer state(CT1). CT1 proceeds to equilibrium with the next higher CT
state(CT2). In PFB:F8BT, CT2 has a lower energy than XT where as in TFB:F8BT,
it has a higher energy. Also shown are the radiative rates emanating from the XT
states which are strongly coupled to ground state, S0, of both systems and the
TFB:F8BT CT1 state which is just weakly coupled to S0
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XT→CT conversion occurs via the CT2 state and not directly. The reverse
transitions for both routes are slower but have the same order of magnitude
difference. This CT1→CT2→XT transition (∼10−1 ps−1) effectively presents
a regeneration pathway for the XT. This leads to an XT state population that
is always at equilibrium with the CT1 state.

In PFB:F8BT the XT→CT1 and XT→CT2 conversion occur at relatively
the same rate (∼10−1 ps−1) while their reverse transitions are at least 2 orders
of magnitude slower. Consequently, XT is not regenerated. The role played by
CT2 as a bridge state is apparently relative to whether it has a slightly higher
or lower energy than the XT as has been accounted by Morteani et al. [57,58].
Spontaneous transition rates are typically faster when going from a higher to
a lower energy state than the reverse according to detailed balance. Here,
CT1 is the exciplex state which exhibit sizable mixing with the bulk CT state
(CT2). When CT2 has a higher energy than XT, such as in TFB:F8BT, a
fraction of the population in CT2 converts to XT. If it has a lower energy
relative to the XT state such as in PFB:F8BT, this regeneration of the XT,
practically, does not occur.

To see the effect of temperature, the interconversion rates were calcu-
lated at 230, 290, and 340 K. Figure 12 shows how the interconversions among
the three lowest states (CT1, CT2, and XT) of TFB:F8BT, as illustrated in
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Fig. 12. Interconversion rates between the three lowest states of TFB:F8BT as a
function of temperature (230, 290, and 340 K). Plot is given as log k vs. 1/T . Tran-
sitions to lower energy states are given as solid lines while their reverse are given
as dashed lines. The CT2↔CT1, CT2↔XT and XT↔CT1 are plotted as squares,
triangles, and circles, respectively. All transition rates increase directly with tem-
perature except the CT2→XT conversion which decreases as temperature increases
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Fig. 11, vary with temperature. This dependence is given in an Arrhenius plot
of log k vs. 1/T and gives a linear plot for each transition having a slope as-
sociated with the activation energy, Eact, for that particular transition. This
activation energy has the expression

Eact =
(ΔE − Eλ)2

4Eλ
. (22)

Transitions to lower energy states are given as solid lines while those going to
higher energy states are given as dashed lines. Curiously, although XT→CT1
is exothermic compared to XT→CT2 which is endothermic, the latter is a
more favorable transition. This has to do with the fact that XT→CT1 has
an activation energy almost three times greater than that of XT→CT2. As
alluded to above, this is a consequence of the former being in the inverted
region while the latter being in the normal region. In the inverted region, the
larger ΔE is, the larger Eact as opposed to the more familiar normal region
where Eact decreases as ΔE increases. Having stated this, however, we note
that in the former, due to maximal overlap between the vibrational modes of
the two states, transitions may be possible via tunneling processes. Overall,
in TFB:F8BT, we see an increase in the fraction of the total excited state
population in XT as temperature increases. At 230 K only 0.81% is in XT
while at 290 and 340 K, 2.16% and 3.67% is in XT, respectively.

Finally, we note that all transition rates increase with temperature except
for the CT2→XT in TFB:F8BT and XT→CT2 in PFB:F8BT which decrease
with temperature. Such a trend, while not uncommon in chemical reactions,
are though to be indicative of a more complicated transition mechanism as
noted by Porter [59]. We surmise this to be due to the coupling between the
low frequency vibrational modes of the initial state with the high frequency
vibrational modes of the final state as in the case of an early transition state
in reactive scattering.

5 Discussion

In this paper, we gave an overview of our recent work in developing a the-
oretical understanding interfacial excitonic dynamics in a complex material
system. The results herein corroborate well with the experimental results on
these systems. In particular, following either charge injection or photoexci-
tation, the system rapidly relaxes to form the interchain charge-separated
species. In the experimental data, this occurs within the first 10 or so ps for
the bulk material. Our calculations of a single pair of cofacial chains puts the
exciplex formation at about 1 ps. Likewise, the experimental time-resolved
emission indicates the regeneration occurs on a much longer time-scale with
most of the time-integrated emission coming from regenerated excitons. This
too, is shown in our calculations as evidenced by the slow thermal repopulation
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of the XT state in the TFB:F8BT system. Since this state has a significant
transition dipole to the ground state, population transferred to this state can
either decay back to the CT state via thermal fluctuations or decay to the
ground state via the emission of a photon. Since this secondary emission is
dependent upon the thermal population of the XT state at any given time,
the efficiency of this process shows a strong dependency upon the temperature
of the system.

The exciton model we present herein certainly lacks the molecular level of
details so desired by materials chemists. However, it offers a tractable way of
building from molecular considerations the salient physical interactions that
give rise to the dynamics in the excited states of these extended systems.
In building this model we make a number of key assumptions. First, and
perhaps foremost, that the excited states are well described via bands of π
orbitals and that from these bands we can construct localized Wannier func-
tions. Hand in hand with this assumption is that within the general class of
oligo-phenylene derived polymers, configuration interaction matrix elements,
hopping integrals, electron/phonon couplings, and phonon spectra are trans-
ferable from one system to another. This is a fairly dangerous approximation
since it discounts important contributions from heteroatoms, side-chains, and
chain morphology. However, given that a single oligomeric chain of F8BT with
10 repeat units has well over 300 atoms, such potentially dire approximations
are necessary in order to extract the important features of these very extended
systems.

Second, we make the assumption that the explicit vibrational dynamics
can be integrated out of the equations of motion for the electronic states. This
is probably not too extreme of an assumption so long as we can assume that
the phonons remain thermalized over the course of the electronic relaxation.
However, looking back at the level correlation diagrams, crossings between
diabatic states are present in this system and hence conical intersections be-
tween electronic states may play an important role. Finally, we discount the
effects of electronic coherence. This, too, may have a profound impact upon
the final state-to-state rate constants since it is well recognized that even
a small amount of quantum coherence between states leads to a dramatic
increase in the transition rate. Fortunately, many of the papers presented in
this proceedings address these assumptions. Approaches, such as the MCTDH
method presented by Thoss, the DFT based nonadiabatic molecular dynamics
approach (NAMD) developed by Prezhdo, for example, are important strides
towards achieving a molecular level understanding of complex photophysical
processes in light-emitting and light-harvesting materials.
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Dynamics of Resonant Electron Transfer
in the Interaction Between an Atom
and a Metallic Surface

J.P. Gauyacq and A.G. Borisov

Summary. Resonant Charge Transfer (RCT) between an atom and a metal surface
corresponds to a one-electron energy-conserving transition between a discrete atomic
level and the continuum of metallic states. In a static system (fixed atom-surface
distance), RCT can be efficiently described by attributing a width, inverse of a
finite lifetime, to the atomic level. The RCT rate is then given by the atomic level
width. The use of the same description, based on an adiabatic approximation, is
not always valid in a collisional context, when the atom moves with respect to
the surface. We review some recent results obtained on this problem using a wave-
packet propagation approach to describe the dynamics of RCT. The nonadiabatic
character of RCT is illustrated on three different situations. (1) For a free-electron
metal surface, the adiabatic approximation is found to hold. (2) For more realistic
metal surface descriptions, the presence of a projected band gap is found to deeply
influence the static RCT. However, significant non-adiabatic transitions can appear
even at moderate velocities, which wash out the effect of the metal electronic band
structure. (3) In the case of metal surfaces partly covered with adsorbates, the
possibility of electronic transitions between three objects (the atom, the adsorbate,
and the substrate) deeply affects the RCT, leading to various dynamical behaviors,
very different from the predictions of the adiabatic approximation.

1 Introduction

Electron transfer between an ion (atom, molecule) and a metal surface deter-
mines the charge state of the species scattered or sputtered from the surface
during a heavy particle impact on the surface. It is thus important, for e.g.,
negative ion beam production techniques [1] and for various surface analysis
methods such as SIMS [2, 3] (secondary ion mass spectrometry), LEIS [4, 5]
(low energy ion spectroscopy), or MDS [6–8] (metastable atom de-excitation
spectroscopy) as well as for the determination of charge equilibrium between
gas and surfaces. In addition, charge transfer between an atom (molecule) and
a surface often play a key role as a step in surface reaction processes: transient
states formed by electron transfer between adsorbates and the surface or be-
tween a projectile and the surface are often invoked as intermediates in surface
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reaction mechanisms [9,10]. Owing to its fundamental and practical interests,
charge transfer in ion-surface interaction has received a lot of attention, that
have been reviewed at a few places [11–14].

The electron transfer process between an atomic particle and a metal sur-
face corresponds to a discrete state-continuum transition and presents a few
specific characteristics that are linked to the very different nature of the states
involved in the two collision partners: atomic levels are discrete states local-
ized in a finite region of space around the atom center, whereas metallic states
form a continuum of states delocalized over the entire crystal. If the atomic
level is degenerate with a continuum of metallic states, a one-electron reso-
nant (energy conserving) transition between the atomic level and the metallic
states is possible. It is usually termed resonant charge transfer (RCT). Multi-
electron transitions also exist. For example, if there is a vacancy on an inner
orbital of the atom, a metal electron can be transferred on this orbital, the
energy defect of the capture being balanced by the excitation of another metal
electron (Auger process) or by a collective excitation of the metal electrons
(plasmon-assisted charge transfer) [15–18]. In the present chapter, we discuss
the RCT process with an emphasis on its dynamical characteristics in the
course of an ion-surface collision. Since it is a one-electron process, it is usu-
ally considered to be the most efficient charge transfer process, when it is
energetically possible.

As said earlier, the atom–metal surface charge transfer is associated to
a discrete state-continuum transition. In a static system (fixed atom–surface
distance), such transitions are associated to an exponential decrease of the
discrete state population with time (Fermi golden rule) [19]. The evolution
from the discrete state to the continuum is irreversible. The interaction with
the continuum of metallic states results in a finite width of the atomic levels,
equal to the inverse of their lifetimes. Let us consider a time-dependent system,
such as an atom–surface collision described in a semiclassical approach with
a classical motion of the atom centers. It is very tempting to keep the same
kind of description for the RCT as for the static system (fixed atom–surface
distance), i.e., to assume that at each time along the trajectory, the transition
rate between the discrete state and the continuum can be described by the
width of the atomic level at the corresponding position, i.e., obtained in a
static calculation with a fixed atom–surface distance. Equivalently, the atomic
level is associated to a complex potential, the imaginary part of which gives
the decay rate of the state. This adiabatic approximation is often referred to
as the local complex potential approximation. Various theoretical approaches
have been developed to go beyond this simple adiabatic approximation for
ion–surface collisions, including in particular many body aspects [20–30]. In
this chapter, we review some recent results on the dynamics of the RCT
process obtained with a wave-packet propagation approach (WPP). Three
cases are presented in detail (1) the case of a metal described in the free-
electron model, where the adiabatic approximation is found to hold, (2) the
case of a metal surface with a projected band gap in its electronic structure,
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which can strongly modify the RCT, and lead to important nonadiabatic
effects, and (3) the case of a metal surface with adsorbates on it, where the
existence of transitions between three objects (the projectile, the adsorbate,
and the metal) leads to a variety of dynamical behaviors.

2 Wave-Packet Propagation (WPP) Treatment
of the Charge Transfer Process

A useful theoretical framework for the treatment of the one-electron RCT
process is to consider the time evolution of the active electron in the compound
potential created by the projectile and the surface. We solve this problem with
a wave packet propagation (WPP) approach (see e.g., [31, 32] for details on
the WPP application to RCT). The active electron is described by a three-
dimensional wave-packet Ψ(r, t) defined on a grid of points and the time
evolution of Ψ(r, t) is given by the time dependent Schrodinger equation:

i
dΨ(r, t)

dt
= H Ψ(r, t) = (T + V )Ψ(r, t)

= (T + Ve−Surf + Ve−Atom + Δ VSurf) Ψ(r, t), (1)

where T is the electron kinetic energy operator and V , the potential felt
by the active electron. V is given by the sum of three terms: Ve–Surf , the
electron interaction with the metal surface, Ve–Atom, the electron interaction
with the atomic projectile core and ΔV Surf , the change in the electron–surface
interaction induced by the presence of the projectile core. The three potential
terms are usually represented with model or pseudopotentials.

The Ve–Atom potentials are taken from earlier atomic physics studies. As an
example, in the applications later with alkali atoms, the electron interaction
with positive alkali ion cores are taken as the �-dependent pseudopotentials
from Bardsley [33], transformed using the Kleynman-Bylander procedure [34],
allowing an efficient handling in the WPP propagation scheme. In order to
study the effect of the target metal band structure on the RCT, we have
used two different Ve–Surf terms representing two different physical situations:
a free-electron metal and a metal with a projected band gap perpendicular
to the surface. Free-electron metals are described with the local analytical
potentials derived by Jennings et al. [35] from DFT slab calculations. This
potential is constant inside the metal and joins an image potential outside
the metal. Metal targets with a projected band gap are described with the
model potentials by Chulkov et al. [36]. These potentials only depend of z,
the electron coordinate normal to the surface and are invariant by transla-
tion parallel to the surface. Inside the metal, the potential oscillates with the
lattice frequency opening a gap for the electron motion perpendicular to the
surface. This oscillating potential smoothly joins an image potential outside
the surface. These model potentials accurately reproduce the characteristics
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of the electronic band structure perpendicular to the surface [36]: energy po-
sition of the surface projected band gap, energies of the image states and of
the surface states (or resonances). As shown later, these are the important
features influencing the RCT process. The ΔV Surf term corresponds to the
polarization of the surface electronic density by its interaction with the pro-
jectile core; it is mainly important in the case of charged projectile cores and
is then taken as the electron interaction with the classical electrical image of
the core.

With the earlier choice of potentials, the projectile-surface system is invari-
ant by rotation around the z-axis, normal to the surface and going through the
projectile center andm the projection of the electron momentum on the z-axis
is a good quantum number. We thus used cylindrical coordinates (ρ, φ, z) and
the φ dependence of Ψ(r, t) can be factored out following:

Ψ(r, t) =
∑
m

Ψm(ρ, z, t) eimφ, (2)

where Ψm(r, t) is given by:

i
∂Ψm(ρ, z, t)

∂t
= Hm Ψm =

(
−1

2
∂2

∂z2
− 1

2ρ
∂

∂ρ

1
ρ

∂

∂ρ
+

m2

2ρ2
+ V

)
Ψm.

(3)

The WPP approach consists in propagating the electronic wave packet
from a well-chosen initial condition, Ψ(⇀

r , t = 0) = Φ0(r). Usually, Φ0(r)
is chosen equal to the wave function of one of the bound states of the free
projectile. The time propagation of the electron wave function is performed
using the time-stepping algorithm:

Ψm(ρ, z, t+ dt) = e−iHmdt Ψm(ρ, z, t). (4)

The split operator approximation [37] is then used to compute the action
of the exponential operators involved in the e−iHmdt time propagator:

ei(A+B)dt = eiAdt/2 eiBdt eiAdt/2 + O(dt3). (5)

This allows to use propagation schemes appropriate for each part in the
Hamiltonian [31]: coordinate representation for the local potential terms,
pseudospectral approach [38] with fast Fourier transform or finite differences
with Cayley transform and variable change for the kinetic energy terms.

Two different kinds of calculations are performed and discussed later: static
and dynamic. In the static calculations, the atom–surface distance is fixed.
From the time propagation one obtains the survival amplitude, A(t), of the
wave packet in the initial state:

A(t) = 〈Φ0(r) | Ψ(r, t)〉 . (6)

The Laplace transform of the survival amplitude yields n(ω), the density
of states of the system projected on the initial state, which presents peaks
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with a finite width at the position of the quasistationary states (resonances)
of the problem. One thus obtains the energy and the width of the resonances of
the system, i.e., of the projectile states perturbed by their interaction with the
surface. Alternatively, one can adjust the time dependence of the A(t) function
to the sum of a few exponentials representing the main quasistationary states
in the wave packet [31]. In this static calculation, the width of a given projectile
state, called static width later, is equal to the RCT rate and to the inverse of
the lifetime of the state.

In the dynamic calculation, the projectile is moving with respect to the sur-
face along a classical trajectory, given by Z(t), the projectile surface distance
as a function of time. The active electron is then evolving in a time-dependent
potential. The propagation is started for a large enough projectile–surface dis-
tance with the initial wave packet equal to a bound state of the free projectile.
The survival amplitude, A(t), and probability, PWPP (t) = |A(t)|2, directly
correspond to the survival of the initial state for the physical situation of a
collision. At this point, one must stress that, due to the interaction with the
surface, one can expect the initial projectile state to mix with other states,
e.g., to get polarized, so that the above survival probability is a priori different
from the survival of the system in the quasistationary state localized on the
projectile. This feature can be very important in the case of a strong mixing
between atomic states induced by the surface or in the case of mixing between
atomic and surface states, such as occurs when adsorbate localized states are
present on the surface.

3 Resonant Charge Transfer with a Free-electron Metal

The simplest description for a metal electronic structure is given by a free-
electron model where electrons move freely in a constant potential inside the
metal. This situation is schematized in Fig. 1 which presents the total potential
felt by the active electron. In the case of a negative ion projectile interacting
with a metal surface illustrated later, it is the sum of the electron–metal and
electron–atom interactions. This potential exhibits two potential wells, one
inside the metal and one around the atom, separated by a potential barrier.
RCT consists in transitions between the states localized around the atom and
the continuum of metal states. It can also be seen as the tunneling of the
active electron through the potential barrier separating the projectile and
the surface. Figure 1 is only a cut of the potential. In the full 3D problem, the
potential barrier is the thinnest along the normal to the surface that goes
through the atom center, the z-axis, so that electron transfer preferentially
occurs along this direction.

Because of the interaction with the surface, in a static picture, the atomic
levels acquire a finite width, Γ. Γ gives the transfer rate of the electron, it is
a function of Z, the atom–surface distance. If the atomic level is above the
Fermi level of the metal, it is degenerated with the empty part of the metal
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Fig. 1. Schematic picture of the potential felt by the electron active in the RCT
between a negative ion and a free-electron metal surface. It is presented along the
z-axis, that is normal to the surface and goes through the projectile center. The
projectile is located at 10 a.u. from the surface and the metal surface is located at
the origin of coordinates. The metal extends on the z < 0 side. The energy position
of a negative ion state is indicated by the horizontal full line

conduction band (at 0 K) and the electron transfer occurs from the atom to
the surface. If the atomic level is below the Fermi level it is degenerated with
the occupied part of the metal conduction band and electron transfer to the
metal is impossible. In that case, it is better to reformulate the problem in
terms of vacancies, leading to the conclusion that a vacancy on the atom is
transferred to the metal, i.e., that electron transfer occurs from the metal to
the atom.

A few theoretical methods have been designed and applied to the determi-
nation of the energy and width of the atomic levels in a static situation (fixed
projectile–surface distance) using model or pseudopotentials representations.
Nonperturbative approaches basically look for the quasistationary states in
the problem using different techniques: complex scaling [39], close-coupling
scattering approach [40], stabilization [41,42], close-coupling [43,44], or wave
packet propagation [32,45,46]. Energies and widths obtained in a static study
can then be used to describe the RCT dynamics in a collision via an adia-
batic assumption. It consists in assuming that the width of the atomic level
computed in the static picture (fixed atom–surface distance), Γ (Z), still gives
the charge transfer rate when the atom moves with respect to the surface. If
one also makes the assumption that the atom is following a classical trajec-
tory, Z(t), when approaching the surface, the evolution of the atomic state
population, Padia(t), can be described via a rate equation:

dPadia

dt
= −Γloss(Z(t))Padia(t) + Γcapture(Z(t))(1 − Padia(t)), (7)
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where the time dependence of the capture and loss rates is given by Z(t). Γloss

and Γcapture are the electron transfer rates. In the simplest situation, they are
equal to the static width of the state, depending on the population of the
metallic states degenerated with the atomic level. They can also include a
statistical factor taking into account the different degeneracy of the different
charge states [47]. Derivations of the rate equation have been presented using
a semiclassical approximation [22, 48] or a high temperature limit [49]. They
were all made through a broad band approximation, implicitly assuming the
absence of structures in the continuum or of fast energy dependence of the
various couplings in the continuum. The rate equation approach has been
applied to a series of systems involving quasifree-electron metals such as Al,
leading to predictions in quantitative agreement with experiments [50–53]. In
the case of fast grazing angle collisions [14], the collision velocity perpendic-
ular to the surface is very low and the adiabatic approximation (7) where
the capture and decay rates incorporate the parallel velocity effect leads to a
quantitative account of experimental results in a variety of collisional systems
involving an Al metal target [50,51] which can reasonably well be described by
a free-electron model. The so-called “parallel-velocity” effect is a consequence
of the change of Galilean reference frame between the metal target and the
projectile [54] that can strongly affect the RCT process in the case of fast
collisions. Its treatment in the rate equation approach requires the computa-
tion of the partial electron transfer rates between the atomic levels and the
different metallic states.

The WPP approach solves the dynamics of the problem exactly and can
be used to test the validity of the adiabatic approximation in the free-electron
metal case. The idea is to get the exact time dependence of the atomic level
population, PWPP(t), using the WPP approach,and then to extract from it an
effective charge transfer rate, G(Z) that can be directly compared to the static
width Γ (Z) obtained in the fixed atom calculation. This procedure directly
tests the relevance of the adiabatic approximation for the charge transfer rate.
Figure 2 presents such a comparison for the case of an H− ion approaching an
Al(111) surface at a normal velocity of 0.05 a.u. [55]. In the considered range
of projectile–surface distances, the ion level is well above Fermi level and the
electron transfer only occurs from the ion to the surface. The effective charge
transfer rate is then defined by:

G(Z) = − 1
PWPP

dPWPP

dt
. (8)

Figure 2 shows that, the two rates, Γ (Z) and G(Z), perfectly agree over a
very large range of projectile–surface distances, Z. It then fully confirms the
validity of the adiabatic approximation, i.e., of the rate equation (7) in this
case. This agreement covering a large collision velocity range is fully consistent
with the success of the various theoretical studies based on the rate equation
(7) in quantitatively accounting for experimental results.
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Fig. 2. Comparison of the effective width (black circles, see definition (8) in the text)
with the width obtained in a static calculation (full line) for an H− ion interacting
with an Al(111) surface described in the free-electron model. The ion velocity is 0.05
a.u. The two widths are presented as functions of the ion–surface distance measured
from the surface image reference plane

4 Effect of the Electronic Band Structure
of the Metal Target

Free-electron metals being much idealized, one must wonder about the pos-
sible effects of the electronic band structure of the metal target. Indeed, the
potential inside a metal is not constant, its periodicity according to the lat-
tice structure leads to specificities in the electronic band structure. In a one-
dimensional problem, a periodic potential leads to the existence of an energy
gap in which propagation is impossible. In 3D, the periodicity leads to do-
mains in the (E, k̂) (energy, direction of the momentum) space where there is
not any propagating state. The surface performs a cut through this structure
and it can occur that propagation perpendicular to the surface is impossible
for states in a certain energy range; such an energy gap is called a surface
projected band gap. The impossibility of propagation in a surface projected
band gap can lead to the existence of states localized in the surface area such
as surface states or image states [56,57]. A projected band gap can be thought
to deeply influence the RCT and even to be the most efficient feature of an
electronic band structure to do so. Consider the electronic band structure
of Cu(111) as described by the model potential from [36] and presented in
Fig. 3. There is a band gap along the surface normal (vanishing k//, electron
momentum parallel to the surface) and the various states exhibit a parabolic
dispersion as a function of k//. As explained earlier, tunneling between the
atom and the metal is much favored along the normal to the surface in the case
of a free-electron metal surface and so, it mainly populates metal states that
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Fig. 3. Schematic picture of the electronic structure of the Cu(111) surface as
described by Chulkov et al. potential [36]. The energy of the various states are
presented as functions of k// the electron momentum parallel to the surface. The
hatched areas correspond to 3D-propagating bulk states. The surface state and
image state located inside the surface projected band gap are shown as dashed lines.
The energy of a Cs atomic level interacting with the Cu(111) surface is shown by
the horizontal line

are propagating along the surface normal, around k// = 0. If the projectile
level is located in front of a projected band gap, the only metal states avail-
able for resonant state transfer, i.e., the metal states with the same energy
as the projectile state, correspond to a finite k//. As seen in Fig. 3, these can
be 3D-bulk states or a state in the surface state 2D-continuum with a given
k//. Thus, the k// ≈ 0 states that are the most active states in the RCT for
a free-electron metal are not playing any role because of the projected band
gap. In this case, one can then think that RCT should be deeply affected, and
more specifically to be significantly weakened.

4.1 Static Systems: Alkali Adsorbates on Noble Metals

The projected band gap effect is illustrated on the example of excited states
localized on alkali adsorbates on noble metals surfaces [58]. The (111) and
(100) surfaces of noble metals exhibit surface projected band gaps in energy
domains where atomic levels can lie. At low coverage, isolated alkalis adsorb
as positive ions on metal surfaces [59–61]. Excited states corresponding to
the transient capture of an electron around the adsorbed ion can be found in
the energy range of the projected band gap. These states can be associated
with atomic alkali states perturbed by their interaction with the surface [58].
Since, in the equilibrium situation, these states are not populated, they are
usually studied by inverse photoemission or by two-photon photoemission.
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In particular, time resolved two-photon photo-emission (TR-2PPE) allows
the study in real time of the dynamics of the charge transfer between the
adsorbate and the metal [62]. Theoretical studies of these systems using the
WPP approach confirmed the very large effect of the projected band gap.
The Cs/Cu(111) system exhibits the most spectacular effect [58]. At the
adsorption distance, the RCT rate for the lowest lying state (termed “6s”
even if it is much distorted by the interaction with the surface and is closer to
a 6s–6p hybrid) is found to be equal to 7 meV, to be compared with 900 meV
on a free-electron metal [63]. The projected band gap leads to a decrease of
the electron transfer rate by two orders of magnitude, i.e., to a quasiblocking
of the RCT in this case.

The band gap quasiblocking effect is illustrated in Fig. 4 which shows the
wave packet associated to the “6s” excited state in the Cs/Cu(111) and in
the Cs/free-electron metal systems. It presents the logarithm of the modu-
lus of the electron wave function (electron density) of the transient excited
state in cylindrical coordinates: the z-axis is normal to the surface and goes
through the adsorbate center and ρ is the coordinate parallel to the surface.
The Cs-metal surface distance is different in the two cases in order to have

Fig. 4. Electron density of the resonant Cs(6s) states in front of a Cu(111) and a
free-electron metal surface (left and right panel, resp.). The logarithm of the electron
density is presented as a contour plot as a function of the coordinates perpendicular
and parallel to the surface. The Cs atom is located at the origin of coordinates and
the metal is on the negative coordinate side. In the left panel, Cs is at its adsorption
distance, 3.5 a0 from Cu(111) image reference plane. In the right panel, Cs is at 10.
a0 from the image reference plane. Large electron densities zones are in black, smaller
electron densities are in gray with electron densities increasing with darkening gray
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similar decay rates for the Cs transient state. One recognizes in both cases
the distorted atomic wave function centered on the adsorbate center. In the
free-electron case, the electron transfer appears as a strong electron flux along
the surface normal. This flux is absent in the Cu(111) surface case and the
outgoing electron flux, much weaker, goes into the metal at a finite angle from
the surface normal. This is directly the signature of the projected band gap
effect, which prevents RCT along the surface normal, requiring the electron
to tunnel through a much thicker barrier. One can also notice a strong distor-
tion of the electron cloud in the Cu(111) case, which corresponds to a short
atom–surface distance. This polarization of the electronic cloud is induced by
its interaction with the surface, it also contributes to the quasiblocking of the
RCT process (see a discussion in [64]).

Usually, the RCT is thought to dominate the various possible electron
transfer processes, however, when it is almost blocked, one should also consider
multielectron effects i.e., electron transfer induced by inelastic interaction of
the excited electron with the substrate electrons. Theoretical computation of
the multielectron term [65] yields a transfer rate of 16.5 meV, leading to a
total electron transfer rate of 23.5 meV, i.e., to a lifetime of the excited state
of 28 fs. Experimental TR-2PPE studies also revealed very long lived states
in the Cs/Cu(111) systems with lifetimes up to a few tens of fs [66–70], in
excellent agreement with the theoretical predictions [63,65,71]. Similar results
are found for other alkali/Cu(111), Cu(100) systems [66,68,72], the differences
being associated with differences in the band gap locations or to differences
between the alkali atoms [73]. So, in the static system (fixed atom–surface
distance) a projected band gap has a very strong influence on the RCT, or
in other words, the RCT process is quite sensitive to the electronic band
structure of the metal.

4.2 Collisional Systems

As a first example, we can briefly mention the case of grazing angle collisions.
In that case, the collision velocity vector makes a very small angle with the
surface plane, so that the component of the velocity perpendicular to the sur-
face remains small, even for very fast collisions. In such collisions (see e.g., a
review in [14]), if we neglect corrugation parallel to the surface, the dynamics
of the collision is governed by the small perpendicular velocity. The component
parallel to the surface leads to the well-studied parallel velocity effect [14,54].
A detailed joint experimental-theoretical study of RCT in grazing angle col-
lisions has been performed for electron capture by hydrogen atom and Li+

ions in collisions on Cu(111) surfaces [74, 75]. The theoretical part includes
a static WPP study of the system, associated to an adiabatic approximation
for treating the collision dynamics and the parallel velocity effect. In this low
velocity system, the adiabatic approximation holds, as has been checked with
the dynamical WPP approach. From the comparison between theory and ex-
periment, it appears that the electronic band structure of Cu(111) plays an
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important role in the process. In particular electron transfer from and to the
two-dimensional Cu(111) surface state is dominating the RCT and leads to
results very different from the predictions made for a free-electron metal sur-
face where only 3D-propagating bulk states are involved. In contrast, similar
collisions on a Cu(110) surface, which do not exhibit a projected band gap, are
very well reproduced by a free-electron modeling. So, in this case of collisions
with the perpendicular collision energy typically in the eV range, the elec-
tronic band structure effect on RCT is present and deeply influencing and the
adiabatic approach is efficient in accounting for experimental observations.

The situation is quite different if we consider higher collision velocities
where nonadiabatic effects come into play. A first theoretical analysis of these
effects was reported in the case of H− ions interacting with a Cu(111) sur-
face [31, 76]. In this system, the H− ion level is in front of the projected
band gap of the surface, and similarly to the cases discussed in the preceding
section, this leads to a decrease of the static RCT rate compared to the free-
electron case [31, 76]. However, in the dynamical situation, it was found that
very quickly as the collision velocity is increased, the dynamics of the RCT
cannot be represented by the adiabatic approximation (7) anymore. Dynami-
cal WPP calculations were performed for an H− ion approaching the surface
at constant velocity and the effective width was extracted from the decay
of the H− ion population, following (8). The effective width is presented in
Fig. 5 as a function of the ion–surface distance for various collision velocities.

Fig. 5. Effective width for an H− ion approaching a Cu(111) surface at different
collision velocities: v = 0.2 a.u. (full line), 0.05 a.u. (dashed line), and 0.003 a.u.
(dotted line). It is compared to the static width obtained in front of a Cu(111)
surface (full squares) and of a free-electron metal surface (full circles). All widths
are presented as a function of the ion–surface distance, measured from the surface
image reference plane
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It is also compared with the static width obtained in a static WPP calcula-
tion on Cu(111) and on a free-electron metal. As a first remark, the effective
width varies with the collision velocity, bringing evidence of a nonadiabatic
behavior. It appears that for the lowest velocity (v = 0.003 a.u) the effec-
tive width nicely agrees with the static width for Cu(111). However, for a
0.2 a.u. velocity, the effective width is quite different and is practically equal
to the static width for a free-electron metal. For intermediate velocities, the
effective width varies with the velocity in between the two limits given by
the static width for Cu(111) and for a free-electron metal. Thus on Cu(111)
the adiabatic approximation is only valid for very low collision velocities.
As the collision velocity is increased, nonadiabatic transitions appear that
tend to make the charge transfer on Cu(111) identical to that on a free-
electron metal. This last feature can be linked to the time-dependence of the
RCT. Indeed, the specificities of an electronic band structure are consequences
of the periodic structure of the crystal lattice, i.e., they come from interference
of waves scattered by the different lattice sites. This interference needs some
time to set in and so does the band structure effect on the RCT.

Figure 6 shows the time dependence of the survival probability of an H−

ion at a fixed distance (Z = 6a0) from a Cu(111) surface [31]. Two results
are shown: for a free-electron metal and for the model Cu(111) surface (WPP
approach). For late times, in both cases, the decay of the population is ex-
ponential with two very different time constants. The decay at late times on
Cu(111) is much slower; indeed, the H− ion level is inside the Cu(111) pro-
jected band gap and similarly to the Cs case discussed later, RCT is partly
blocked. The situation is quite different at very short time. Below 30 a.u., the
decay on Cu(111) is identical to that on the free-electron metal, it is followed

Fig. 6. Decay of the population of an H− ion held at a fixed distance (Z = 6 a0)
from a Cu surface. Dashed line: free-electron metal surface and full line: Cu(111)
surface
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by a transition region with oscillations in P (t), before reaching the slow decay
region at late times. This change of behavior corresponds to the onset of the
effect of the band structure. For very small times, the electron wave-packet
is localized around the ion and does not feel the periodic potential inside the
metal. The electron then tunnels through the potential barrier separating the
ion and the metal, this step is the same for Cu(111) and for the free-electron
metal. After tunneling, the electron wave-packet enters the metal and is partly
reflected by the various atomic planes, i.e., by the modulation of the Ve–Surf

potential. All these reflections and the ensuing interference build up the block-
ing of the electron propagation along the surface normal and after a while,
result in the drop of the electron transfer rate. It thus appears that the effect
of the band structure on the RCT needs time to appear and that on very short
time scales, the RCT behaves as on a free-electron metal. The critical time
scale is of the order of a few back and forth travels of the electron between
(111) reflecting planes and the ion. As a consequence, in a collision, if the
effective collision time is shorter than this critical time, the RCT behavior
will be similar to the one on a free-electron metal.

Experimentally, the energy variation of electron transfer in the H−–
Ag(111) collisional system has been interpreted as due to this short time
effect [77]. More recently, the effect of nonadiabatic transitions in the RCT
has been further studied in a joint experimental–theoretical study devoted
to the neutralization of Li+ ions by collision on Ag(100) surfaces [78]. Since
the energies of the excited states of the Li projectile are too high compared
to the Fermi energy of Ag(100), neutralization of Li+ ions is dominated by
electron capture into the Li(2s) ground state. The results of the static study
of the Li(2s)–Ag(100) system are presented in Fig. 7. It presents the energy
and the width of the Li(2s) level as a function of the Li-surface distance, in two
cases: Ag(100) and a free-electron model. The level which correlates at infinite
projectile–surface distance to the 2s atomic orbital is labeled “2s,” although
it is much mixed with other states by its interaction with the surface. Ag(100)
exhibits a projected band gap, between −2.83 eV and +2.21 eV with respect
to vacuum and a complete series of image states is present. It also exhibits
a surface resonance located below the gap at −3.13 eV. In the free-electron
model, the Li(2s) level energy steadily increases as the projectile approaches
the surface, following the image charge potential variation. The presence of
the surface resonance qualitatively influences the static picture in the case of
Ag(100). An extra state splits off the Ag(100) surface resonance and mixes
with the 2s state leading to an avoided crossing structure (see [32, 79–81] for
a discussion of similar extra states). At large Z, the Li(2s) level is very close
to the free-electron case and as Z decreases, it exhibits an avoided crossing
with a state initially localized very close to the surface resonance. At small Z
the two states have interchanged their character and the Li(2s) character is
transferred to the higher level. As for the level width, it appears that except
at very small Z, the Ag(100) and free-electron metal results are very similar;
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Fig. 7. Energy (part a) and width (part b) of the various states involved in Li+

neutralization on a Ag surface, as a function of the Li-surface distance measured from
the surface image reference plane. Energies (measured with respect to vacuum) and
widths are obtained in WPP calculations performed for a fixed projectile–surface
distance. Free-electron metal surface: dashed line. Ag(100) surface: state correlated
at infinity with the Li(2s) level (full black line) and state splitting off at infinity
from the Ag(100) surface resonance (full gray line). The Ag(100) Fermi energy is
indicated by the thin horizontal full line

indeed, in both cases, RCT along the surface normal is possible leading to a
large electron transfer rate at small Z.

In an adiabatic view, the avoided crossing in the Ag(100) case could be
thought to deeply influence Li+ neutralization. Indeed, neutralization by res-
onant electron capture only occurs at distances large enough for the Li(2s)
level to be below the surface Fermi level. As seen in Fig. 7, the presence of
the avoided crossing significantly widens the Z-region where Li+ can capture
an electron, in particular at small Z where the electron capture rate is large.
So from the static picture, one would expect a much larger neutralization
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probability on Ag(100) than on a free-electron metal. This expectation is con-
firmed in Fig. 8 which shows experimental and theoretical results for the Li+

neutralization as a function of the collision energy (scattered particles along
the surface normal). As a first result, one can see that, in the entire investi-
gated energy range, a large neutralization probability, over 90%, is obtained
within the adiabatic approximation using the static Ag(100) results (Fig. 7).
It is much larger than the corresponding result obtained with the adiabatic
approximation, using the free-electron static results.

The result obtained via a dynamical WPP treatment for a Ag(100) surface
is also shown in Fig. 8: it is quite different from the adiabatic Ag(100) result
and it is much closer to the free-electron result. So, in this system, very im-
portant nonadiabatic effects are present and they tend to remove the effect of
the electronic band structure, i.e., to make Ag(100) behave as a free-electron
metal surface. One can also notice that at large velocities, the dynamical WPP
result is very close to the free-electron result, whereas at the smallest investi-
gated velocity, it is midway between the free-electron result and the adiabatic
result, possibly indicating an onset of the Ag(100) band structure effect at
small velocity. As for the experimental result, it lies close to the free-electron
and to the dynamical-WPP results, confirming the earlier conclusions as well
as the validity of the present WPP dynamical approach.

The results on the Li–Ag(100) system can be interpreted as the influ-
ence of nonadiabatic transitions increasing as the collision velocity goes up
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Fig. 8. Neutral fraction of Li particles reflected from a Ag(100) surface as a function
of their energy. Experimental results from Canario et al. [78]: black dots. Theoretical
results obtained in a rate equation approach (adiabatic approximation, (7)): short
dashed line (Ag(100)) and long dashed line (free-electron metal). Dynamical WPP
results for Ag(100): full line
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(the experiments are in the 0.02–0.1 a.u. range). Equivalently, one can inter-
pret it as the system behaving diabatically in the avoided crossing seen in
Fig. 7, however, without a clear understanding of what is the diabatic charac-
ter of the state crossing through the avoided crossing. Alternatively, following
the earlier discussion on the H−–Cu(111) system, one can say that in the
collision energy range investigated in Fig. 8, the collision is too fast for an
effect of the Ag(100) band structure to show up and Ag(100) behaves as a
free-electron metal, at least from an RCT point of view.

4.3 Charge Transfer on a Metal Surface with Adsorbates

When adsorbates are present on a metal surface, they influence the electron
transfer processes in collisions via nonlocal and local effects (see a review
in [82]). The nonlocal effect is due to the change of the surface work-function
induced by the presence of adsorbates. The surface work function change
modifies the relative position of atomic and Fermi level and consequently the
direction of the RCT. Local effects of the adsorbates on RCT arise because of
changes in the electrostatic potential and in the electronic structure in the im-
mediate vicinity of the adsorbates. In particular, quasistationary states such
as the long-lived states discussed in Sect. 4.1 may be localized on adsorbates,
bringing a three-body aspect into the RCT. In this case, the electron involved
in the charge transfer can make transitions between the projectile, the adsor-
bate or the metal. This three-body aspect deeply influences the RCT process
and is possibly associated to nonadiabatic transitions.

The local effects of adsorbates on the RCT are illustrated on the example
of an H− ion interacting with a Li adsorbate on an Al surface [83]. Figure 9
shows the energies and widths of the various states for a hydrogen projectile
at a fixed position on the normal to the surface that goes through the adsor-
bate center (this geometry maximizes the local effects). At large distances, one
recognizes the H− ion state with its energy decreasing as the ion approaches
the surface, due to electrostatic interactions with the adsorbate-surface sys-
tem. Its width increases exponentially as the ion approaches the surface due to
the increasing overlap between projectile and metal states. The state localized
on the adsorbate has a different behavior: its properties, energy and width,
are roughly independent of the projectile position when the latter is far away.
As the ion approaches the surface, the energies of the projectile and adsorbate
localized quasistationary states come close together and the two quasistation-
ary states exhibit an avoided crossing in the complex energy plane. At small
distances, it is the lowest energy state that exhibits the H− ion characteristics
with an energy close to the electrostatic prediction. One can also notice that
the energy and width of an H− ion approaching a clean Al surface are quite
different (Fig. 9) confirming the importance of the local perturbation induced
by the Li adsorbate.

The electron loss by an H− ion approaching a Li adsorbate on an Al surface
in the back-scattering geometry has been studied in the dynamical WPP
approach [83] associated with a classical trajectory of the hydrogen projectile.
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Fig. 9. Energy (part a) and width (part b) of the various quasistationary states in
the case of an H− ion interacting with a Li/Al system. The H− ion is located on the
normal to the Al surface that goes through the Li adsorbate center (back-scattering
geometry). Energies (with respect to vacuum) and widths are presented as functions
of the projectile distance from the Al image reference plane. Two quasistationary
states are present that correlate at infinity to the H− ion state (full circles) and
to the quasistationary state localized on the Li adsorbate in the Li/Al system (full
squares). Full and short dashed lines: electrostatic predictions for the H− ion state
and the Li localized state (these are obtained as the energy at infinity plus the
electrostatic potential at the center of the atom, H or Li). Long dashed lines: energy
and width of the H− ion state interacting with a clean Al surface

A straight line trajectory with a constant velocity along the surface normal
going through the adsorbate center was chosen for this study aiming at the
characterization of the system dynamics. The dynamical behavior of the RCT
has been studied by computing the effective decay rate of the H− ion, similarly
to the case discussed in Sect. 3, and by computing the energy spectrum of
the electron transferred into the metal [83]. Both methods yield the same
conclusion: strong nonadiabatic transitions occur in the avoided crossing in
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the investigated velocity range (0.005–0.04 a.u.). When the projectile–surface
distance decreases, the system initially in the upper adiabatic state crosses
through the avoided crossing and goes into the lower state and no sign of
adiabatic behavior can be seen, even at the lowest velocity. Because of the
finite width of both these states, this evolution is associated to a decrease of
the total probability. One can notice that the investigated velocities are very
low, too low even for the use of a straight line trajectory. In a more realistic
approach, the projectile would first accelerate when approaching the surface,
however, that can only strengthen the present result of the absence of adiabatic
behavior at low energy. The dynamics of this system then appears to be never
of the adiabatic kind and to be dominated by non-adiabatic transitions.

One can relate the discussion of the H−–Li/Al system dynamics to the
above discussion of the band structure effect. The lifetime of the adsorbate-
localized state is very short, meaning that the interaction between the adsor-
bate localized level and the metal is strong. So it is reasonable to consider that
the three-body system (adsorbate + projectile + metal surface) is in fact be-
having as two coupled subsystems: projectile and (adsorbate + surface). The
presence of the adsorbate then generates a broad structure in the metal state
continuum with which the projectile level is interacting. In this picture, to first
order, the energy of the projectile level follows the electrostatic prediction and
does not exhibit any avoided crossing. The result of the dynamical study can
be expressed as the system behaving as if the quasistationary state localized
on the adsorbate were absent, i.e., as if it were completely incorporated into
the continuum. In this sense, it can be compared with the disappearance of
band structure effects in a collision, here it is the structure associated to the
quasistationary state that is not seen in the collision.

5 Conclusions

We have summarized some recent theoretical results on the dynamics of the
RCT in the course of an atom–surface collision. RCT is a one-electron, energy-
conserving transition between a discrete atomic state and the continuum of
metallic states. In a static system, a bound state-continuum interaction re-
sults in a finite lifetime of the discrete state and usually in an exponential
decrease of the discrete state population with time. However, in the course
of a collision, the dynamics of the RCT can be deeply modified by the ex-
istence of nonadiabatic transitions that qualitatively alter the RCT features.
The use of a wave packet propagation approach allows the direct treatment
of the RCT dynamics via the study of the time evolution of an electron in
a time-dependent potential. This allows to characterize the main features of
the dynamics of the atom–metal electron transfer.

On a free-electron metal, a quantitative account of the dynamics of the
RCT in the course of a collision can be obtained with an adiabatic approx-
imation that describes the atomic state population evolution by a classical
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rate equation, in which the transition rates are equal to those obtained in a
static situation (fixed atom–surface distance).

The situation is quite different if structures are present in the contin-
uum (these can come from the electronic band structure of the metal or from
local perturbations induced by adsorbates on the surface). In the static sit-
uation, structures in the metal continuum such as a surface projected band
gap or states localized on adsorbates can efficiently modify the RCT rate;
as a striking example, Cu(111) projected band gap partially blocks the RCT
in the Cs/Cu(111) system. However, these modifications in the static RCT
characteristics do not always survive in a dynamical context. For fast enough
collisions, the specificity of the metal surface disappears and the RCT dy-
namics is practically identical to that on a free-electron metal. This feature is
attributed to a short time effect: if the collision is fast, the electron active in
the RCT does not have time to probe in detail the target electronic structure
and electron transfer has the same characteristics as on a structure-less metal.

Other types of systems also revealed strong nonadiabatic transitions that
qualitatively modify the dynamics of atom–metal surface transitions. One can
further mention two examples:

1. In the case of Cs adsorbates on Cu(111), the long-lived quasistationary
state localized on the adsorbate almost behaves as a true bound state when
a projectile hits the Cs adsorbate. The three-body system (projectile–
adsorbate–metal) can then be considered as partly decoupled in two sub-
systems (projectile–adsorbate) and (metal). As a consequence, electron
transfer in this system resembles much an atom–atom charge transfer and
in particular, it loses its irreversible character allowing for Stuckelberg
oscillations due to back and forth transitions between the adsorbate and
the projectile to appear [84].

2. In the case of a thin metal film as the target, quantization of the electron
motion in the direction perpendicular to the film surface results in static
RCT rates quite different from those on a semi-infinite metal; in particular,
the RCT rate exhibits a sharp saw-tooth behavior as a function of the
atom–surface distance [85–88]. However, in a collision context, for fast
enough collisions, the electron does not have enough time to travel back
and forth between the two film surfaces, i.e., to feel the finite film thickness
and the RCT dynamics is identical to that on an a semi-infinite metal [88].

Finally, one can stress that an adiabatic approximation can be very tempt-
ing for the treatment of charge transfer in atom–surface collisions. Discrete
state-continuum transitions can be very heavy to treat exactly in a collisional
context and reducing the effect of the continuum on the discrete state to a
lifetime or to a local complex potential is a very appealing approximation.
However, the above examples, all pertaining to the case of structured con-
tinua, show that nonadiabatic effects already appear at moderate collision
velocities or even for all velocities in certain cases, making the adiabatic ap-
proximation inoperative in these systems. The breakdown of the adiabatic
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approximation is not uncommon in molecular reactive processes where, often,
interactions between several potential energy surfaces strongly influence the
dynamics. In the present case, we showed that a similar situation arises with
electronic continua.
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I.2 From Multidimensional Dynamics to Dissipative
Phenomena



Nonadiabatic Multimode Dynamics
at Symmetry-Allowed Conical Intersections

H. Köppel

Summary. Conical intersections of potential energy surfaces have emerged as para-
digms for nonadiabatic excited state processes and correspondingly complex nuclear
dynamics. In this contribution a particular quantum dynamical approach is sur-
veyed which has been developed and used in our groups over the years to describe
molecular electronic spectra and ultrafast internal conversion processes in such situ-
ations. Particular attention is paid to the existence of a symmetry element in many
cases; this allows one to formally diagonalize the electronic Hamiltonian, although
at the expense of introducing a nonlocal potential. This can be viewed as an opera-
tor formulation of a block-diagonal structure of the secular matrix for the different
irreducible representations existing in these cases. An application of the formalism
is given to singlet excited states of furan.

1 Introduction

Vibronic coupling, i.e., the interaction of different electronic states through
the nuclear motion, is of paramount importance for spectroscopy, collision
processes, photochemistry, etc., and quite general for electronically excited
state processes of even small polyatomic molecules. One of its most impor-
tant consequences is the violation of the Born–Oppenheimer, or adiabatic,
approximation [1] whereby the nuclear motion no longer proceeds on a sin-
gle potential energy surface but rather on several surfaces simultaneously.
Nonadiabatic coupling effects are of singular strength at degeneracies of these
surfaces, in particular at conical intersections, which have emerged in recent
years as paradigms of nonadiabatic excited-state dynamics in quite different
fields [2, 3].

In our groups (Heidelberg and Munich) we have developed over the past
decades simple, but also efficient and rather flexible methods to deal with
the nuclear dynamics in such systems, based on the so-called multimode
vibronic coupling approach [4–7]. This approach relies on the well-established



114 H. Köppel

concept of diabatic electronic states [8–11], where the singularities of the adi-
abatic electronic wavefunctions at the intersection are removed by a suitable
orthogonal transformation and the off-diagonal, or coupling, elements arise
from the potential rather than kinetic energy (at least to a sufficiently good
approximation). The potential coupling terms can be expanded in a Taylor
series, and the truncation after the first (or second) order gives the linear (or
quadratic) multimode vibronic coupling scheme. The resulting model poten-
tial energy surfaces turn out to be sufficiently flexible to cover a variety of
interesting phenomena and be applicable to different molecular systems [4–7].
To generalize the approach, it has been suggested more recently that it be
applied only to the adiabatic-to-diabatic (ATD) mixing angle [12–14]. This
leads directly to the concept of regularized diabatic states [12–14], see also
below. The resulting enormous increase in flexibility renders this concept ap-
plicable also to photochemical problems, at least in principle. To present both
approaches in comparison, and give a representative current application, is a
main objective of the present article.

Most of our applications of the above formalism to date are characterized
by the existence of a symmetry element by which the interacting electronic
states differ. This implies that the “original” symmetry has to be lowered in
order for an interaction to become possible: there is a high-symmetry sub-
space in which the potential energy surfaces cross freely, and the associated
conical intersection is thus termed “symmetry-allowed.” In accord with this
symmetry it is only nontotally symmetric modes that couple the states to
first order, while totally symmetric modes provide for first-order intrastate
couplings [4]. The vibronic secular matrix then block-diagonalizes according
to the different irreducible representations of the interacting states [4]. In the
present contribution we draw particular attention to this fact and show that it
can be cast in an elegant operator formulation. This is basically independent
of the aforementioned approximations and only a consequence of symmetry.
The treatment formally diagonalizes the electronic potential energy matrix
(in the diabatic representation), although at the expense of introducing non-
local potential energy terms. The symmetry-adapted treatment is presented
in its generality (for a two-state problem) in the next-but-one Sect. 3, follow-
ing an exposition of the multimode vibronic coupling approach in the next
Sect. 2. Important aspects of the numerical implementation are presented in
Sect. 4, while an illustrative example (singlet excited states of furan) follows
in Sect. 5. Concluding remarks as well as a short summary are provided in
Sect. 6.

2 Vibronic Hamiltonians

2.1 The Linear Vibronic Coupling Approach

Throughout this work we utilize the concept of a diabatic electronic ba-
sis [8, 9, 11], where the interaction between the different states is described
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by a potential energy matrix W, containing off-diagonal elements, while the
nuclear kinetic energy operator TN is taken to be diagonal to a sufficiently
good approximation. The pertinent Hamiltonian H can then generally be
written as

H = TN1 + W, (1)

where 1 denotes the unit matrix in electronic function space.
Owing to the smoothness of the diabatic states, the matrix elements of W

can be expanded in a Taylor series in the nuclear displacement coordinates
Q = (Q1, Q2, . . . , Qf ). Taking the expansion to be around the origin Q = 0
we can write these matrix elements as follows [4]:

Wnn = V0(Q) + En +
∑

i

κ
(n)
i Qi +

∑
i,j

γ
(n)
ij QiQj + . . . , (2a)

Wnm =
∑

i

λ
(nm)
i Qi +

∑
ij

η
(nm)
ij QiQj + . . . (n �= m). (2b)

In (2), V0(Q) represents some “unperturbed” potential energy term which
is often identified with that of the electronic ground state and treated in
the harmonic approximation. The En denote vertical excitation (or ioniza-
tion) energies, the quantities κ(n)

i and λ(nm)
i are first-order coupling constants

(intra- and interstate, respectively) while the parameters γ(n)
ij and η(nm)

ij rep-
resent second-order coupling constants. In the linear vibronic coupling (LVC)
approach the latter terms in (2) are neglected.

In the frequent case of different spatial symmetries of the interacting states
there is a useful symmetry selection rule limiting the number of relevant vi-
brational modes. Denoting the irreducible representations of the electronic
states n and m by Γn and Γm, respectively, and that of the vibrational mode
by ΓQ, we have [4]

Γn × ΓQ × Γm ⊃ ΓA, (3)

where ΓA denotes the totally symmetric representation of the point group
in question. For two nondegenerate states of different spatial symmetry (3)
implies that – in first order – only totally symmetric modes appear in the
diagonal elements Wnn, while suitable nontotally symmetric modes enter the
off-diagonal elements Wnm (n �= m) of (2). This will also apply to all subse-
quent examples mentioned below.

The LVC approach embodied in (2) has been applied for a long time to ana-
lyze the vibrational structure of electronic spectra and time-dependent (elec-
tronic and vibrational) dynamics of vibronically coupled systems (see [4–7]
and references therein). Strong nonadiabatic coupling effects associated with
conical intersections of potential energy surfaces could be unequivocally es-
tablished in this way. We refer to this literature for a survey of these examples
and also for a further discussion of the meaning and implications of the various
terms in the Hamiltonian (2).
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Over time, the strict LVC approach has been extended by including se-
lected, or even all, second-order terms in (2). In some cases their effect on the
spectrum turned out to be surprisingly large [15]. Fitting the LVC spectra
to a result obtained with the inclusion of second-order terms implies effective
LVC coupling constants which incorporate some of the higher-order effects.
The use of second-order coupling terms may reduce the need for parameter
adjustment when using ab initio calculated coupling constants to reproduce
an experimental spectrum [16]. The ab initio determination of the coupling
constants is relatively easy (with or without second-order terms) since no
multidimensional grid and only a small number of energy points per mode are
required owing to the model assumptions underlying (2).

Finally we point out the close relation of the general Hamiltonian (2) and
model Hamiltonians frequently used in Jahn–Teller (JT) theory [17,18]. There,
an analogous Taylor series is used, but many interrelations between the various
coupling terms exist due to symmetry. Formally, these JT Hamiltonians are
thus a special case of (2) and are recovered by imposing these restrictions.
They have been successfully used to analyze and interpret even high-resolution
molecular JT spectra [19]. Similar applications and extensions have been made
to cover also couplings to nearby nondegenerate electronic states [18].

2.2 The Concept of Regularized Diabatic States

The concept of regularized diabatic states [12, 13] can be understood as a
generalization of the “conventional” LVC approach (as outlined earlier) by
applying it to the ATD mixing angle only. For illustrative purposes consider
the case of two potential energy surfaces V1(Q) and V2(Q) intersecting at a
point Qg = Qu = 0 in two-dimensional nuclear coordinate space. Let their
behavior near the origin be described by E0 +κQg ± δκQg along a symmetry-
preserving coordinate Qg (no interaction between the states) and by E0 ±
λQu along a symmetry lowering coordinate Qu (inducing an interaction). The
corresponding LVC Hamiltonian (2) can be written as follows:

H = (TN + V0 +E0 + κQg)1 +
(
δκ Qg λQu

λQu −δκ Qg

)
(4a)

= H01 + W(1). (4b)

The corresponding ATD angle α(Q) is defined through the eigenvector relation

S†(H− TN1)S =

(
V

(1)
1 0

0 V
(1)
2

)
, (5a)

S =
(

cosα sinα
− sinα cosα

)
, (5b)
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where V (1)
1 and V (1)

2 are the adiabatic potential energy surfaces in first order,
inherent to the LVC model Hamiltonian (4). For convenience the coordinate-
dependence of the various quantities is suppressed in (5) and also below. The
concept of regularized diabatic states consists in applying the LVC mixing
angle α of (5) to the general adiabatic potential surfaces V1 and V2. After
some elementary algebra this leads to the following result [12,13]:

Hreg =
(
TN +

V1 + V2

2

)
1 +

V1 − V2

V
(1)
1 − V

(1)
2

(
δκ Qg λQu

λQu −δκ Qg

)
. (6)

This expression is seen to reduce to the usual LVC result close to the intersec-
tion (when V1 → V

(1)
1 and V2 → V

(1)
2 ). On the other hand, for configurations

far away from it (when the adiabatic approximation is valid), the general
surfaces V1 and V2 are recovered, because the eigenvalues of the coupling ma-
trix in (6) cancel the denominator of the preceding ratio (of potential energy
differences). It thus interpolates “smoothly” between the two limits.

A theoretical justification of this procedure is obtained by noting that
the linear terms of (4) determine the singular part of the full derivative
couplings [12, 13] (corresponding to the full surfaces V1 and V2) near the
intersection at Qg = Qu = 0. Thus, within the concept of regularized dia-
batic states, (6), the singular derivative couplings are eliminated, which mo-
tivates the nomenclature adopted. Note that all derivative couplings cannot
be eliminated in the general case [10, 11, 20]. Thus, the concept of regular-
ized diabatic states constitutes a natural extension of the usual adiabatic, or
Born–Oppenheimer, approximation to intersecting electronic surfaces: all the
singular couplings are eliminated and the others are neglected (group Born–
Oppenheimer approximation).

The above scheme has been generalized to cover seams of symmetry-
allowed conical intersections, where likewise all information needed for the
construction is obtained from the potential energy surfaces alone [13]. The
singular derivative couplings can thus be removed for the whole symmetry-
allowed portion of the seam [13]. The same has been achieved recently for
an accidental intersection (i.e., without any symmetry) in a two-dimensional
nuclear coordinate space [14]. In the most general case, however, more in-
formation, e.g., from the derivative couplings, is needed [21]. We mention in
passing that virtually all other schemes, proposed in the literature for con-
structing approximately diabatic states, rely on information on the adiabatic
electronic wavefunctions [11]. Finally we point out that the concept of regu-
larized diabatic states has been tested numerically for a number of different
symmetry-allowed [13] and Jahn–Teller [12], as well as accidental [14], conical
intersections, and very good agreement on dynamical quantities with appro-
priate reference data has been obtained. The neglect of nonsingular coupling
terms apparently constitutes a very good approximation in these cases, as is
also expected from general reasoning [20,22]. Applications of the scheme have
been reported for H3 [23,24] and NO2 [25], and are ongoing for C2H2 [21,26].
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3 Symmetry-Adapted Formulation of the Hamiltonian

We now turn to the question of a symmetry-adapted formulation of the vi-
bronic coupling Hamiltonian. A formulation will be achieved which covers not
only the above, but even more general cases, namely that of any Abelian sym-
metry with a single type of relevant nontotally symmetric coupling mode. It
is inspired by an earlier related development of Fulton and Gouterman [27].
We start from the general diabatic matrix representation of the Hamiltonian,
(1). For the case of two interacting electronic states, on which we focus here,
the potential energy matrix can be written explicitly (in an obvious notation)
as follows:

H = (TN + W̄ )1 +
(

ΔW W12

W12 −ΔW

)
. (7)

Consider now the case of a symmetry element by which the interacting
states differ, one being of g (gerade) the other of u (ungerade) symmetry.
Consequently, the off-diagonal element W12 must also be antisymmetric with
respect to that symmetry element in order to allow for an interaction between
the states (whereas the diagonal elements will be symmetric). Let us denote
a representative symmetric displacement coordinate by Qg, the antisymmet-
ric one by Qu (without loss of generality these are taken to be dimensionless
normal coordinates of some suitable harmonic oscillator). Then the matrix el-
ements of W can be written as the following Taylor series in Qu, guaranteeing
the aforementioned symmetry requirements:

W̄ =
∑

w̄(m)(Qg) Q2m
u ,

ΔW =
∑

Δw(m)(Qg) Q2m
u , (8)

W12 =
∑

w
(m)
12 (Qg) Q2m+1

u .

The various expansion coefficients may depend on the symmetric coordinate
Qg. This formulation is immediately extended to several symmetric modes,
while remarks for the case of several antisymmetric modes are provided below.

Next we introduce the following operator, acting in the space of the
antisymmetric normal coordinate Qu:

G = eiπb†b (9)

with the usual creation and annihilation operators

b =
1√
2

(
Qu +

∂

∂Qu

)
, (10)

b† =
1√
2

(
Qu − ∂

∂Qu

)
,

the subscript u being suppressed at the l.h.s. for simplicity of notation.
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The operator G is easily verified to be hermitean as well as unitary,G2 = 1.
In the Hilbert space of harmonic oscillator eigenfunctions |n〉 its matrix rep-
resentation is diagonal with elements +1 and −1 according to whether the
eigenfunctions are symmetric or antisymmetric, respectively, under the reflec-
tion operation Qu �→ −Qu:

〈n|G|n′〉 = δnn′(−)n (11)

Furthermore, also the following relations are easily found to hold:

GQuG = −Qu, (12)
GPuG = −Pu

with Pu being the momentum conjugate to Qu. The above should make it
apparent that the operator G represents nothing but the symmetry operation
Qu �→ −Qu (say σ, to have a reflection in mind) in the vibrational space of
the mode Qu. From the expansions of (8) also the following relations become
clear immediately:

GW̄G = W̄ ,

GΔWG = ΔW, (13)
GW12G = −W12.

After these preparatory steps we now introduce our basic transformation
U to achieve the desired symmetry-adapted representation:

U =
1
2

(
1 +G 1 −G
1 −G 1 +G

)
. (14)

The matrix operator U is again found to be hermitean as well as unitary. Uti-
lizing the above relations (12) and (13), the transformed Hamiltonian matrix
can be re-written, after some elementary manipulations, as follows:

UHU = (TN + W̄ )1 +
1
4

(
1 +G 1 −G
1 −G 1 +G

)(
ΔW W12

W12 −ΔW

)(
1 +G 1 −G
1 −G 1 +G

)

= (TN + W̄ )1 +
(
W12 +GΔW 0

0 W12 −GΔW

)
. (15)

Equation (15) looks surprising at first glance, since a formal diagonalization of
the Hamiltonian matrix has been achieved: the coupling elements W12 appear
now in the diagonal of the matrix in (15), while the diagonal elements ΔW are
multiplied with the reflection operatorG (with which they commute, see (13)).

The result of (15) represents an operator formulation of a symmetry-
adapted block-diagonalization of the matrix Hamiltonian (7). While this will
also become apparent below from the matrix representation of H in the vi-
brational space of the mode Qu, we demonstrate this here more formally from
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an analysis of the symmetry operator itself. In the original basis of (1) the
symmetry operator S extends the operator G as follows:

S =
(
G 0
0 −G

)
. (16)

Indeed, S can be shown to commute with H and W of (1), and to have
opposite eigenvalues for the two underlying electronic states with even and
odd quanta of the mode Qu, respectively, (owing to the different signs of G
in the two diagonal elements of S). In the transformed basis corresponding to
(14) it is straightforward to show

USU =
1
4

(
1 +G 1 −G
1 −G 1 +G

)(
G 0
0 −G

)(
1 +G 1 −G
1 −G 1 +G

)
=
(

1 0
0 −1

)
. (17)

This shows explicitly that the two diagonal elements of the transformed Hamil-
tonian of (15) correspond to the different eigenvalues +1 and −1 of the trans-
formed symmetry operator S.

Equation (15) and the subsequent developments represent the main result
of this section and the major methodological result of this paper. It general-
izes and extends the earlier results of Fulton and Gouterman [27] by a more
transparent formulation (giving the unitary transformation (14) instead of a
projection operator formalism, and also explicit expressions such as (9) for
the operator G). As stated above, further generalization to several totally
symmetric modes (g-modes) is trivial, since it amounts merely to a multidi-
mensional argument of the various functions w(m) in (8) without affecting any
of the (anti)commutation relations leading to (15). Somewhat less evident,
but also simple, is the generalization to several coupling modes (u-modes)
Qu,j(j = 1, 2, ..) according to the substitution

W12 →
∑

w
(j)
12 (Qg) Qu,j , (18)

where I have confined myself to the linear coupling terms for simplicity of
notation. This situation is dealt with by the analogous substitution

G→
∏

eiπb†
j
bj , (19)

where the creation and annihilation operators b†j and bj refer to the mode Qu,j ,
in an obvious notation. It can be verified quite easily that the key relations
(13) still hold for the substituted quantities of (18, 19), the latter still being
unitary and Hermitean. Thus, all conditions are met to recover (15) also in this
more general case. The same can be shown to hold when higher-order terms
w.r.t. the u-modes are included in (18): since the sum of all exponents of these
modes has to be odd due to symmetry, the same (anti)commutation relations
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remain valid also there, when using the substituted operator according to (19),
and the block-diagonalized Hamiltonian (15) is recovered by the analogous
transformation as in (14).

Finally, the most general Abelian case would be to allow for different types
of nontotally symmetric modes such that their product, or multiple products
thereof, have the correct symmetry behavior. While similar considerations as
above are possible also there [28], a systematic exposition of this situation
is beyond the scope of this work. On the other hand, for a single (type of)
coupling mode and a special case of the LVC model, similar developments as
above have already been worked out for the non-Abelian case, that is, for point
groups and a vibronic coupling problem with degenerate electronic states and
vibrational modes [29].

4 Numerical Implementation

4.1 General

Numerical applications of the above formalism have focused to date on
photoinduced dynamics, where the vibronic coupling is operative in the fi-
nal electronic-state manifold reached by the photoexcitation or -detachment
process [5–7]. The initial electronic state is typically not part of the interact-
ing system, and used to define the reference potential V0 in (2). Together with
the kinetic energy operator TN this is often described in the harmonic approx-
imation. The spectral intensity distribution of the photoexcitation spectrum
is treated by Fermi’s golden rule, either in the time-independent or in the
time-dependent framework. Since both approaches are well established in the
literature, the formalism is not repeated here. Suffice it to say that within
the time-independent framework we employ the Lanczos algorithm, which is
very well suited for our purposes since it converges fastest on the quantities
of interest, that is, individual vibronic lines for low energies and the spec-
tral envelope for medium and high vibronic energies [6]. In effect, the time-
consuming step in either of the two approaches consists in the matrix–vector
multiplication.

Two different variants of representing the state vector can be distinguished.
In the LVC approach a basis set expansion is usually employed, relying on mul-
tidimensional harmonic oscillator wave functions as defined by the reference
potential V0. Within the concept of regularized diabatic states we are dealing
with general functional forms of the potentials and coupling elements (see (6))
which can be conveniently treated by grid (FFT and DVR) methods. The
integration of the time-dependent Schrödinger equation is usually achieved
through standard methods (like the short iterative Lanczos scheme [30]).
Within the LVC treatment, for genuinely multimode problems we are also
relying on the multiconfiguration time-dependent Hartree (MCTDH) method
[31,32]. This wave packet propagation method uses optimized time-dependent
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one-particle basis functions and thus arrives at a very compact representation
of the state vector, at the expense of more complicated equations of motion.
Owing to the structural simplicity of the LVC Hamiltonian matrix, (2), it is
nevertheless particularly efficient for this purpose.

4.2 Symmetry Adaptation

Of special interest for the present work is the numerical implementaton of
the symmetry-adapted formulation, (15), of the vibronic Hamiltonian. This is
quite straighforward within the basis set approach, where the operator G is
given by a diagonal matrix, with elements +1 and −1, see (11). Thus, the sign
change of G with the vibrational quantum number n of the u-mode implies a
switching of the diagonal elements W̄ ±GΔW between the interacting states:
n odd amounts to (say) the first state, while n even amounts to the second
state. This is precisely the result of a (numerical) block diagonalization of the
vibronic secular matrix, see Fig. 1 of [4]. Two submatrices of this type result,
with the notion “first” and “second” state being interchanged in the two
matrices. Another evidence lies in the matrix representation of the operator
U , (14). This is just the unit matrix for n even and the (1,2) transposition
matrix for n odd, according to

〈2m|U |2m〉 =
(

1 0
0 1

)
, (20)

〈2m+ 1|U |2m+ 1〉 =
(

0 1
1 0

)
. (21)

With this somewhat shorthand notation adopted, the vibrational integration
is meant to be performed for each (electronic) matrix element of U , (14),
separately. The switching expressed by (20, 21) represents the well-known
instance of vibronic coupling theory, namely, that even quanta of the (non-
totally symmetric) coupling mode in one state combine with odd quanta in
the other state to form the vibronic eigenstates, because of the same vibronic
symmetry. Both reasonings confirm that the formal diagonalization achieved
in (15) amounts to an operator formulation of the symmetry-adapted block
diagonalization of the vibronic Hamiltonian.

We now turn to grid methods (see, e.g., [33, 34]). Here, a transformation
from a suitable basis set to a grid is employed, on which the position operator
Qu for the nontotally symmetric mode is diagonal. The coordinates at the grid
points are obtained, for example, by diagonalizing the position operator (here
Qu) in a suitable basis, such as harmonic oscillator wavefunctions [33,34]. By
transforming the operator G, (11) with the same transformation matrix, but
also by direct geometric reasoning, it can be seen that the matrix elements of
G on the grid read as

〈Qn|G|Qm〉 = δQm,−Qn
. (22)
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This means, as emphasized before, that G represents a reflection operation
at the origin Qu = 0, thus connecting only grid points of equal modulus
and opposite sign. In the frequent case that the grid points are arranged
symmetrically around the origin as in the following diagonal matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Ql .. 0 0 0 0 ... 0
.. .. ... ...
0 −Q2 0
0 −Q1 0
0 Q1 0
0 Q2 0
.. .. .... ...
0 .. 0 0 0 0 ... Ql

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

the grid representation of G takes an appearance similar to the unit matrix,
but with an arrangement of nonzero entries which is orthogonal to the
diagonal:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ... 0 0 0 0 ... 1
... ... ... ...
0 0 1 0
0 0 1 0
0 1 0 0
0 1 0 0
... ... ... ...
1 ... 0 0 0 0 ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

The important point to note is that, due to the Kronecker-δ in (22) there is
just one nonzero element of G per line and column in the grid representation,
(24). Therefore, although G is a nonlocal operator, its implementation in grid-
based methods does not introduce an extra computational effort compared to
the (local) potential itself. Full advantage of the symmetry blocking, leading
to half the length of the state vector to be dealt with, can thus be taken care
of also there. This is expected to be of considerable help in the treatment of
general coupled potential energy surfaces, as appear, for example, within the
concept of regularized diabatic states.

5 Application to Singlet-Excited Furan

5.1 Model System and Potential Energy Surfaces

In this section the general concepts are illustrated by an application to singlet
excited states of furan in the energy range 5.6–6.8 eV. Furan is a prototype
heteroaromatic molecule [35] and has at least five singlet electronic states
in this energy range [36–38]. The lowest four are considered in the dynami-
cal treatment simultaneously, along with 13 nonseparable vibrational modes.
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This multistate multimode treatment has been developed earlier [39,40]. Here
we review some of the key results obtained there and augment them by a
new representation of the potential energy surfaces as well as new population
dynamics.

The calculations rely on the LVC approach, (2) and thus constitute a
model type of treatment: The underlying potential energy surfaces are those
of the LVC model, and the singular derivative couplings are eliminated only
within the accuracy to which these surfaces reproduce the full ones near the
conical intersections (remarks on this will be provided later). The pertinent
molecular point group (for the ground state equilibrium geometry) is C2v, and
the electronic states in question transform according to the A2, B2, A1, and
B1 irreducible representations. Utilizing the symmetry selection rule, (3), one
readily arrives at the following Hamiltonian matrix for this interacting mani-
fold (H0 = TN + V0):

H = H01

+

⎛⎜⎜⎝
EA2 +

∑
k1

sQs

∑
λ12

s Qs

∑
λ13

s Qs

∑
λ14

s Qs∑
λ12

s Qs EB2 +
∑
k2

sQs

∑
λ23

s Qs

∑
λ24

s Qs∑
λ13

s Qs

∑
λ23

s Qs EA1 +
∑
k3

sQs

∑
λ34

s Qs∑
λ14

s Qs

∑
λ24

s Qs

∑
λ34

s Qs EB1 +
∑
k4

sQs

⎞⎟⎟⎠ .
(25)

Here the vertical excitation energies and the totally symmetric vibrational
modes enter in the diagonal elements, in an obvious nomenclature. The sum-
mation index s is used throughout in (25), although the modes appearing in
the various matrix elements are different according to (3). All symmetries of
the vibrational modes come into play in the off-diagonal elements; the modes
transform according to the various irreducible representations as follows:

Γvib = 8A1 ⊕ 3A2 ⊕ 3B1 ⊕ 7B2. (26)

Extensive equation-of-motion coupled-cluster (EOM-CCSD) calculations have
been undertaken, in combination with an augmented cc-pVDZ basis set to
determine the parameters entering (25). For technical details of the calculation
I refer to earlier work [38] As a result, 13 of the 21 vibrational modes of
furan are found to be excited significantly in the system. The linear coupling
constants of the relevant totally symmetric modes, as well as the vertical
excitation energies resulting from the EOM-CCSD treatment, are collected in
Table 1. Also included in the table are the corresponding harmonic vibrational
frequencies which enter the zero-order (harmonic oscillator) Hamiltonian TN +
V0 of (1, 2) and which are used in the subsequent calculations. The original
literature is referred to for the other parameters [38,39]. Suffice it to say that
the only modes neglected are the in-plane hydrogen stretching modes and
(basically) the out-of-plane hydrogen bending modes (there are two of them
in each of the four symmetry species of C2v).
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Table 1. Selected parameter values (all in eV) used in the dynamical calculations on
furan. The excitation energies and coupling constants are determined by the EOM-
CCSD method, the harmonic vibrational frequencies by the MP2 method [38,39]

mode ω 1A2
1B2

1A1
1B1

ν3 0.1885 0.155 0.192 0.252 0.169
ν4 0.1773 0.130 0.213 0.107 0.129
ν5 0.1443 0.002 0.063 0.199 0.006
ν6 0.1384 0.107 0.067 −0.017 0.075
ν7 0.1265 0.044 0.105 0.032 0.027
ν8 0.1085 0.056 0.071 −0.016 0.048

E — 6.01 6.44 6.72 6.78

The close energetic proximity of the electronic states, and the rather large
number of active vibrational modes, leads to low-energy surface crossings be-
tween most pairs of the potential energy surfaces. While there is no interac-
tion for totally symmetric distortions due to symmetry (that is, within the
C2v molecular point group), the interaction becomes possible upon suitable
nontotally symmetric distortions. There is thus a series of seams of symmetry-
allowed conical intersections, according to the nomenclature adopted in the
introduction. Rather than specifying the energetic minima on these seams
numerically (as was done already before [40]), I find the schematic drawing
of Fig. 1 illustrative. This shows three cuts in the multidimensional coordi-
nate space (of the totally symmetric vibrations) designed so as to minimize
the energy of the crossing seam for three pairs of potential energy surfaces.
The cuts are straight lines, characterized by expressions that have been de-
rived earlier [4]. The pairs of states are specified in each of the panels, and
each minimum-energy crossing is emphasized by the circle surrounding it.
The three lowest singlet excited states, being of A2, B2, and A1 symmetry
are indeed all interconnected through conical intersections in an energy range
close to the vertical excitation energies (see Table 1) and thus relevant to the
absorption spectrum (see later).

As is evident from the above, there is a whole set of seams of symmetry-
allowed conical intersections between the various potential energy surfaces.
These arise not only in the totally symmetric vibrational subspace, but also
in lower symmetry. Consider, for example, the A1 and B2 potential energy
surfaces which interact and repel each other upon distortion along a B2 vi-
brational mode [39]. In the resulting Cs point group, the state correlating with
B2 still has a different symmetry than that correlating with the A2 lowest ex-
cited state. The corresponding potential energy surfaces cross freely, but they
interact upon further distortion along a B1 vibrational mode. The situation is
illustrated in Fig. 2. This figure displays nicely a symmetric pair of intersec-
tions that arise because of the double minimum shape of the upper, B2 state
surface (due to the repulsion with the still higher, A1 state surface, not shown
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energetic ordering of the states is as follows: 1A2 (full lines), 1B2 (long dashed lines),
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Fig. 2. Perspective drawing of the 1A2 and 1B2 state potential energy surfaces of
electronically excited furan in the space of a B1 and an effective B2 vibrational mode
(the latter are denoted by b1 and b2 in the figure). For more details see text

in the drawing). The intersections are arranged symmetrically around the ori-
gin Q(b2) = 0 because of the symmetric shape of the potential energy along
this coordinate; they are also symmetry-allowed for the reason stated above.
They may be called “twin intersections,” and are considered an instructive ex-
ample of coupling between more than two electronic states and involving more
than one type of nontotally symmetric vibrational mode. A rather complex
nuclear dynamics can be expected to prevail in such a situation.

The accuracy of the LVC model underlying these potential energy surfaces
has been checked by comparing its predictions on the stationary points with
the results of a full geometry optimization (using, of course, the same ab initio
method of calculation) [39]. The bond lengths and bond angles have thus been
found to agree within ∼0.01 Å and 1–2◦, respectively, while the correspond-
ing potential energy data differ by no more than 0.03 eV for all four states
(with very few exceptions). Thus, the LVC model allows for a very reliable
description of singlet-excited furan and can thus be used with confidence for
the treatment of the nuclear dynamics.

5.2 Photoabsorption Spectrum and Population Dynamics

The LVC description established in Sect. 5.1 has been used for a variety of
dynamical studies on the system following photoexcitation [39, 40]. The gen-
eral computational framework employed is as described in Sect. 4.1, and more
technical details can be found in the earlier work. The symmetry adaptation
has been generally employed in the Lanczos calculations, and implicitly also in
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the MCTDH calculations for the wavepacket propagation (although not in the
explicit formulation developed above). The Lanczos scheme proved feasible for
most of the calculations, except for those with all 13 vibrational modes and
four electronic states: these latter computations rely on a underlying basis of
∼2.1012 harmonic oscillator wavefunctions, being reduced in number to ∼106

time-dependent single-particle functions by virtue of the MCTDH contraction
effect. Apparently, the contraction effect is crucial to render the calculations
numerically tractable. The results presented below have all been obtained in
this way.

In Fig. 3 results for the photoabsorption spectrum are presented and
compared to the experimental recording of Palmer et al. [36]. The overall
agreement achieved is considered very satisfactory, although not quantitative.
Nevertheless, all essential features observed are reproduced by the calculation.
The energy scale of the lower panel is an absolute one, and the excitation en-
ergies thus deviate from experiment by less than 0.2 eV. Here it should be
stated that a single quantity has actually been slightly adjusted, namely, the
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Fig. 3. Comparison of experimental [36] (upper panel) and theoretical (lower panel)
photoabsorption spectrum of furan in the energy range 5.6–6.7 eV. In the lower
panel, the spectral intensity is decomposed into the contributions from transitions
to the 1B2 and 1B1 final states
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vertical excitation energy of the B1 state been increased by 0.25 eV relative
to the EOM-CCSD result. This adjusted datum is given in Table 1 and has
been used in all calculations reported here. All other parameters, however,
are pure ab initio results, and also the vibrational frequencies have not been
scaled in any way.

A closer analysis of the calculated absorption spectrum by various reduced
dimensionality calculations [39] reveals the following key features. As also
shown by the additional curves in Fig. 3b, the spectral intensity is largely
due to the 1B2 electronic state and, to a smaller extent, also to the 1B1

state of furan. The transition to the 1A1 state has almost vanishingly small
oscillator strength, while that to the 1A2 state is dipole forbidden in the
C2v point group [38]. Nevertheless, the lowest energy range in the spectrum
is below the minimum of the 1B2 state, and this part of the spectrum is
characterized by an excitation of odd quanta of B1 vibrational modes in the
A2 state, i.e., an effect of intensity borrowing from the 1B2 state. For higher
energies, above ∼6.2 eV, all the various conical intersections, discussed above,
come into play and render the nuclear motion completely nonadiabatic. The
vibronic line structure is correspondingly highly complex and leads to the
diffuse appearance of the spectral envelopes in Fig. 3. The latter is thus not
an artifact of the finite propagation time (of 200 fs), amounting to a limited
resolution, but represents a characteristic spectral feature for such a final state
electronic manifold [4, 6]. Only the relatively sharp B1 spectral peak at ∼6.7
eV seems less affected by the nonadiabaticity. This is found to correspond
to a Rydberg excited state of furan, as also the lowest-energy A2 state. The
unambiguous interpretation of these spectral features in terms of the Rydberg
states in question represents an improved assignment of the experimental
recordings of this system.

We now turn to the population dynamics (internal conversion processes)
corresponding to these spectral bands. Figure 4 presents such results for a
vertical transition to the 1B2 (upper panel) and 1A1 (lower panel) excited
states of furan. As stated before, the transition to the 1B2 state carries most
of the oscillator strength, and therefore this result is most directly related
to experiment. Figure 4a highlights a typical feature, namely an ultrafast in-
ternal conversion process on conically intersecting potential energy surfaces,
proceeding on the time scale of typically 10–20 fs. This is of the order of a
characteristic (totally symmetric) vibrational period, which means that the
transition to the lower surface is virtually complete after a single encounter of
the wave packet at the intersection [3, 5, 6]. As the figure shows, most of the
population interconverts directly to the A2 ground state and relatively little to
the higher excited A1 state. This is natural on energetic grounds and in view
of the different densities of vibrational states. It explains why the photochem-
istry of this prototype heterocyclic molecule takes place on the A2 potential
energy surface (as assumed in the literature [41]), although the transition to
this state is dipole forbidden. The B2 → A2 internal conversion process is so
fast that it precedes all other primary photochemical events.
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Fig. 4. Time-dependent electronic populations of singlet-excited furan for optical
transitions to the 1B2 state (upper panel) and 1A1 state (lower panel). The excitation
is broad-band, that is, the initial wave packet is located at the respective potential
energy surface in the centre of the Franck–Condon zone

Figure 4b presents analogous results for the transition to the higher excited
1A1 electronic state. While less important from an experimental point of view,
the electronic populations shown there serve to illustrate genuine multistate
features of internal conversion dynamics: In view of the existence of several
electronic states lower in energy than that prepared initially, there is a stepwise
transition to lower-energy states, first the next-lower 1B2 state, then the 1A2

lowest excited state. Only little population is transferred to the 1B1 state,
being still higher in energy than the 1A1 state. Again, all processes proceed
on the same ultrafast time scale as before. The curves of Fig. 4 represent
benchmark results for highly complex, multistate nonadiabatic dynamics, i.e.,
involving more than 2 or 3 coupled potential energy surfaces. We mention
that the 1B1 state, when excited initially, is found to undergo slower decay
(on a time scale of ∼100 fs) owing to its weaker coupling to the other states.

6 Conclusions

In this contribution, I have surveyed salient features of a specific quantum
dynamical approach to study the nonadiabatic nuclear motion on conically
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intersecting potential energy surfaces. This approach has been established
in the literature over an extended time period, and complex structures in
many electronic spectra as well as ultrafast internal conversion processes been
treated successfully [3–6]. Two different lines of approach can be distinguished:
for larger systems, with more than 3–6 relevant degrees of freedom, the LVC
approach in its original formulation [4] is still the method of choice, although
its applicability has to be explicitly checked for an individual example. How-
ever, the computational efficiency renders it most attractive, besides its con-
ceptual simplicity: 10–20 nonseparable degrees of freedom can be included
almost routinely in this way, especially with efficient wave-packet propaga-
tion techniques like the MCTDH method [16, 32]. In more recent work, em-
phasis has been shifted to include several (3–5) coupled electronic states in
the analysis, with a correspondingly richer variety of phenomena and effects,
thus highlighting even more the complexity of the nonadiabatic nuclear mo-
tion. The example presented here, the singlet excited states of furan, belongs
to this category. For another system with degenerate electronic states and
vibrational modes, I refer to the benzene radical cation [42,43].

For smaller systems, where a more accurate description is possible and
desired, the concept of regularized diabatic states offers a relatively simple
alternative, where the LVC Hamiltonian is applied only to the adiabatic-to-
diabatic mixing angle [13,14]. This enables the treatment of general potential
energy surfaces, with the same computational effort as for uncoupled poten-
tial energy surfaces (putting aside here the effort for an ab initio energy point
itself).

The emphasis in this article, as in most of our applications of this formalism
to date, was on symmetry-allowed conical intersections, where an interaction
between the different electronic states becomes possible only by a suitable
asymmetric distortion, leading to a lowering of the molecular symmetry. It
has been worked out above that this allows for a formal diagonalization of
the vibronic coupling Hamiltonian, rendering it electronically diagonal, but
at the expense of introducing a nonlocal potential. The latter involves essen-
tially the reflection operator in the coordinate space of the symmetry-lowering,
i.e., coupling mode. This can be viewed as an operator formulation of the
block-diagonalization (symmetry adaptation) of the vibronic secular matrix.
Although within basis set methods this has been used before in the litera-
ture [4], the current analysis leads to a simple computational scheme also for
grid methods, where the secular matrix is likewise reduced in size by a factor
of two, without other disadvantages involved. Thus, full benefit can be taken
of the symmetry blocking also for general coupled potential energy surfaces.
While the above always refers to a quantum treatment of the nuclear mo-
tion, the same formulation of (15) can be used also within direct dynamics
approaches, at least in principle. The tractability in numerical applications re-
mains to be seen. Nevertheless, these developments are hoped to be of use in
further studies of the complex nuclear dynamics at symmetry-allowed conical
intersections.
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Non-Markovian Dynamics at a Conical
Intersection: Ultrafast Excited-State Processes
in the Presence of an Environment

I. Burghardt

Summary. A high-dimensional environment coupled to a conical intersection can
substantially influence the excited-state decay as well as the ensuing dephasing and
relaxation processes. We use a reduced dynamics approach, via cumulant expansion
techniques, to show that two phases can be distinguished in the system–environment
dynamics: (a) an initial, short time scale on which the environment’s effects are
coherent (“inertial”), and are entirely determined by three effective environmental
modes as recently introduced in [Cederbaum, Gindensperger, Burghardt, Phys. Rev.
Lett. 94, 113003 (2005)]; (b) a longer time scale, on which dissipative effects set in,
due to the coupling between the effective modes and the (many) residual bath modes.
The short-time effects can play a key role in the ultrafast nonadiabatic events at the
conical intersection. The overall picture corresponds to a “Brownian oscillator” type
dynamics, and is generally non-Markovian. An example is given for a 22-dimensional
model system related to the D1–D0 conical intersection in the butatriene cation; for
this system, explicit quantum dynamical calculations are feasible using the Multi-
Configuration Time-Dependent Hartree (MCTDH) technique.

1 Introduction

Conical intersections are ubiquitous occurrences in the excited states of poly-
atomic systems, signalling an extreme breakdown of the Born–Oppenheimer
approximation [1–5]. Due to their particular, double cone topology, they pro-
vide highly efficient photochemical decay mechanisms. The decay at a conical
intersection is typically ultrafast, with a characteristic time scale of femtosec-
onds to picoseconds.

While conical intersections have been characterized in detail for many
isolated gas phase species over the past decades, the effects of an environ-
ment on a conical intersection – in an intramolecular situation, solvent, or
even in highly complex systems like proteins – have more recently become
a topic of intense interest. Dynamical aspects relating to high-dimensional
model environments and dissipative effects have been considered, e.g., in [6–8].
The explicit inclusion of a cluster, solvent or protein environment has been
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addressed in the hybrid quantum mechanical/molecular mechanical studies
of [9–11] as well as the model studies of [12, 13]. As shown by these studies,
the conical intersection topology is indeed extremely sensitive to environment-
induced perturbations: these can shift the location of the conical intersection,
or could even remove the degeneracy altogether. The importance of environ-
mental effects is underscored by recent photochemical experiments, ranging
from high-dimensional intramolecular situations [14,15] to the photochemistry
of biological chromophores like retinal [16, 17] and the chromophores of the
photoactive yellow protein [18] and the green fluorescent protein [11].

Of key importance is the influence of the environment on the character-
istic, ultrafast time scale of the excited-state decay. If a large number of en-
vironmental modes couple to the conical intersection, one may ask whether
(a) characteristic cumulative effects arise, and (b) if so, whether these effects
are essentially of dissipative character, or whether they exhibit a coherent,
“inertial” component which would typically arise on the shortest time scale
available to the system. In this latter case, the dynamics would be of non-
Markovian character.1 The present discussion will show that cumulative ef-
fects can indeed be identified, and that two phases can be distinguished in
the dynamical evolution of the system–environment supermolecular system:
(a) an initial, short time scale on which the environment’s effects are entirely
coherent, or non-dissipative; (b) a longer time scale, on which dissipative ef-
fects set in and become dominant. This perspective will be developed in the
framework of a suitable system–bath theory approach, in terms of a cumulant
expansion of the subsystem propagator [19–22].

The present analysis is closely connected to our recent work [23–25], where
we have shown for a multi-dimensional environment which couples to a con-
ical intersection that three collective environmental modes can be identified
which capture the short-time dynamics exactly. These modes result from an
orthogonal coordinate transformation of the original N -mode system. The
transformation in question can be considered to generalize the construction of
an effective “cluster” mode for Jahn–Teller situations in solids, by O’Brien and
others [26–29]: Here, a single effective mode was shown to carry all informa-
tion on the width and asymmetry of the spectral envelope. For general conical
intersection situations, three modes are necessary to describe the initial decay
dynamics exactly [23–25].

Since the effective modes are in turn coupled to a set of (many) residual
bath modes, the overall picture corresponds to a “Brownian oscillator” type
dynamics, as recognized early on by Toyozawa and Inoue [30] and by Kubo
and collaborators [31]. The dissipative effects exerted by the high-dimensional
residual bath act with a delay, since the environment’s influence during the

1 Typically, non-Markovian behavior arises if the characteristic system vs. bath
time scales are not well separated, and bath correlation times are long [19–22].
Such effects can acquire a predominant role if the observed processes are fast, and
occur on the characteristic system/bath time scale.
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earliest time scale is determined exclusively by the effective modes. Due to
the fact that the decay at the conical intersection can be extremely rapid,
the short-time, “inertial” effects determined by the effective modes can be of
crucial importance.

A reduced dynamics analysis via a cumulant expansion of the subsystem
propagator, to be detailed later, shows that the first few moments of the
propagator are reproduced exactly if the overall bath is replaced by the ef-
fective modes, in the absence of the residual modes. This proves that the
short-time behavior is entirely determined by the truncated “effective-mode
bath”, thereby confirming and extending our results of [23–25], which were
based on a moment analysis for the wavepacket autocorrelation function. The
present approach provides a systematic route for including mixed states and
thermal effects, and for developing approximate treatments for intermediate
and long time scales.

For illustration, we consider an example relating to the intramolecular
dynamics at the D1–D0 conical intersection in the butatriene cation [23–25].
Here, a 2-mode subsystem, which provides an appropriate zeroth-order de-
scription of the conical intersection, is coupled to a finite-dimensional, intra-
molecular 20-mode bath (at T = 0). We use this system to illustrate the main
aspects of our analysis, and to establish the connection between the character-
istic quantities of the overall system (which remains in a pure state) and the
subsystem (which evolves into a mixed state). For the system under consider-
ation, a direct calculation including all bath modes can be carried out using
efficient quantum propagation methods, in particular the multiconfiguration
time-dependent Hartree (MCTDH) technique [32–35].

The remainder of the chapter is organized as follows. In Sect. 2, we review
the construction of effective modes at a conical intersection. Sect. 3 addresses
a reduced dynamics formulation, in conjunction with a moment (cumulant)
expansion of the subsystem propagator. Sect. 4 gives a discussion of an alter-
native system–bath partitioning scheme, Sect. 5 addresses an example relating
to the multidimensional intramolecular situation mentioned earlier, and Sect.
6 concludes.

2 Multi-Mode System–Bath Hamiltonian at a Conical
Intersection

In the following, we consider a model Hamiltonian describing multi-mode
processes at a conical intersection. We distinguish a “system” part which
contains an electronic (two-level) subsystem, along with a certain number of
nuclear modes which couple strongly to the electronic subsystem. The “bath”
part is composed of a – potentially very large – number of nuclear modes
which also couple to the electronic system. For certain nuclear geometries
in the combined system and bath nuclear coordinates, a degeneracy arises,
corresponding to a conical intersection point (or, in higher dimensions, a seam
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or (N − 2)-dimensional intersection space) [1–5]. In general, we will assume
that the system part by itself features a conical intersection. However, the
analysis also includes situations where a conical intersection is generated by
the interaction with the environment, along with the limiting case where all
nuclear modes are part of the bath subspace (see the discussion of Sect. 5).

2.1 System–Bath Perspective

In accordance with the above, we consider a system–bath partitioning,

Ĥ = ĤS + ĤSB + ĤB (1)

with the system part [23–25]

ĤS = V̂Δ +
NS∑
i=1

[
ωS,i

2
(p̂2S,i + x̂2

S,i) + V̂S,i(x̂S,i)
]
, (2)

where V̂Δ = −Δσ̂z gives the electronic splitting, with σ̂z = |1〉〈1| − |2〉〈2|
the operator representation of the Pauli matrix, and p̂i = (�/i) ∂/∂xi. The
potential part V̂S,i represents the coupling of the ith mode to the electronic
subsystem and is of the form,

V̂S,i(x̂S,i) = v̂1(x̂S,i) 1̂ + v̂z(x̂S,i) σ̂z + v̂x(x̂S,i) σ̂x. (3)

This form of the potential, in conjunction with the diagonal form of the kinetic
energy, corresponds to a so-called (quasi-)diabatic representation [1, 4, 5, 36].

A particular instance is given by a linearized form at the conical intersec-
tion, i.e., the so-called linear vibronic coupling (LVC) model [1, 4, 5, 36],2

V̂S,i(x̂S,i) = κ
(+)
S,i x̂S,i 1̂ + κ

(−)
S,i x̂S,i σ̂z + λS,i x̂S,i σ̂x. (4)

In general, the ith nuclear mode can couple both to σ̂z (diagonally) and
to σ̂x = |1〉〈2| + |2〉〈1| (off-diagonally). If the system is characterized by
symmetry – i.e., in the case of so-called symmetry-allowed conical intersec-
tions [37–40] – the modes which couple diagonally (tuning modes) are distinct
from those which couple off-diagonally (coupling modes). The basic, two-
dimensional conical intersection topology is represented by the combination
of one coupling mode and one tuning mode.

Further, the bath Hamiltonian ĤB represents the zeroth-order Hamil-
tonian for a – potentially large – number of environmental modes,

2 By a linear expansion around the conical intersection, the LVC model accounts
for the so-called removable part of the nonadiabatic coupling [37–40]. This model
can be augmented so as to yield a correct, global representation of the adiabatic
surfaces away from the conical intersection geometry [38].
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ĤB =
NB∑
i=1

[
ωB,i

2
(p̂2B,i + x̂2

B,i)
]

(5)

Finally, the system–bath interaction is given in terms of the electronic–nuclear
interaction, which is of the same form as the linear vibronic coupling potential
of (4),

ĤSB =
NB∑
i=1

[
κ

(+)
B,i x̂B,i 1̂ + κ

(−)
B,i x̂B,iσ̂z + λB,i x̂B,i σ̂x

]
. (6)

Note that there is no direct coupling between the NS system nuclear modes
and the NB bath nuclear modes, but the coupling acts entirely via the elec-
tronic subsystem.3

While an analysis of the system–bath dynamics could be undertaken for
the present form (1)–(6) of the Hamiltonian, we choose in the following a
different approach, by first introducing a coordinate transformation in the
bath subspace [23–25]. This transformation combines the effect of the (many)
bath modes which couple to the electronic subsystem into few – actually
no more than three – effective modes. The transformation is detailed in the
following.

2.2 Effective-mode Transformation in the Bath Subspace

Following the analysis of [23–25], we note that the bath modes produce cumu-
lative effects by their coupling to the electronic two-level system. Thus, the
interaction Hamiltonian equation (6) can be formally re-written in terms of a
set of three collective bath modes (X̂B,+, X̂B,−, X̂B,Λ),

ĤSB = X̂B,+ 1̂ + X̂B,− σ̂z + X̂B,Λ σ̂x (7)

defined as

X̂B,+ =
NB∑
i=1

κ
(+)
B,i x̂B,i ,

X̂B,− =
NB∑
i=1

κ
(−)
B,i x̂B,i ,

X̂B,Λ =
NB∑
i=1

λB,i x̂B,i , (8)

3 The interaction Hamiltonian can be understood to correspond to a generalized
spin-boson model, as pointed out in [41]. The conventional spin-boson Hamil-
tonian only includes a system–bath interaction term proportional to σ̂z, while
the coupling term proportional to σ̂x is coordinate-independent [22,42].
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which reflect the collective shift (X̂B,+), tuning (X̂B,−), and coupling (X̂B,Λ)
effects induced by the bath. These modes are, however, not orthogonal, and
are not of direct relevance for dynamical considerations.4

In [23–25], we have introduced three orthogonal effective coordinates
(X̂B,1, X̂B,2, X̂B,3) which will turn out to play a crucial role for the system–
bath dynamics on short time scales. These coordinates can be related to the
(X̂B,+, X̂B,−, X̂B,Λ) by an orthogonalizing transformation [24],⎛⎜⎜⎜⎜⎝

X̂B,1

X̂B,2

X̂B,3

⎞⎟⎟⎟⎟⎠ = W−1

⎛⎜⎜⎜⎜⎝
X̂B,+

X̂B,−

X̂B,Λ

⎞⎟⎟⎟⎟⎠ (9)

with W−1 the inverse of the transformation matrix

W =

⎛⎜⎜⎜⎜⎝
1
2K1κ̄

(+)
B

1
2K2κ̄

(−)
B 0

1
2K1κ̄

(−)
B

1
2K2κ̄

(+)
B 0

λ̄BΛ1 λ̄BΛ2 λ̄BΛ3

⎞⎟⎟⎟⎟⎠ (10)

with the parameters λ̄B =
[∑

i(λB,i)2
]1/2 and κ̄

(±)
B = (κ(1)

B ± κ
(2)
B ), where

κ
(1,2)
B =

[∑
i(κ

(+)
B,i ± κ

(−)
B,i )2

]1/2

; K1,2 are normalization constants and the Λi

are defined as in [25].
The interaction Hamiltonian of (6) and (7) reads as follows in terms of the

new, orthogonal coordinates [23–25]:

ĤSB =
1
2

(K1κ̄
(+)
B X̂B,1 +K2κ̄

(−)
B X̂B,2) 1̂ +

1
2

(K1κ̄
(−)
B X̂B,1 +K2κ̄

(+)
B X̂B,2) σ̂z

+λ̄B (Λ1X̂B,1 + Λ2X̂B,2 + Λ3X̂B,3) σ̂x. (11)

The effective modes (X̂B,1, X̂B,2, X̂B,3) are the first three members of a set
of NB new coordinates which are generated by an overall unitary transforma-
tion from the original coordinates {x̂B,i}, X̂B = T−1x̂B [23, 25]. This overall
transformation yields the 3-mode interaction Hamiltonian (11) and the bath
Hamiltonian in the form5

4 The modes (X̂B,+, X̂B,−, X̂B,Λ) have a direct significance, though, for topological
aspects. In the case where all nuclear modes are included in the bath subspace,
the two modes (X̂B,−, X̂B,Λ) span the branching plane, where the degeneracy is
lifted [43, 44]. The third coordinate X̂B,+ acts as a shift, or “seam coordinate”,
along which the degeneracy is preserved.

5 Note that the transformation leaves the components of the Hamiltonian physically
unchanged; we therefore keep the symbols ĤSB and ĤB.
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ĤB =
NB∑
i=1

ΩB,i

2
(P̂ 2

B,i + X̂2
B,i)1̂ +

NB∑
i,j=1,j>i

dij

(
P̂B,iP̂B,j + X̂B,iX̂B,j

)
1̂. (12)

As a result of the transformation, bilinear couplings in the coordinates and
momenta now occur within the bath subspace. Importantly, the (NB − 3)
“residual” bath modes do not couple to the electronic subsystem, but couple
instead to the three effective modes (X̂B,1, X̂B,2, X̂B,3).

We note for completeness that the definition of the effective modes is not
unique. The coordinates (X̂B,1, X̂B,2, X̂B,3) are a member of a manifold of
coordinate triples which are interrelated by orthogonal transformations [24].
Two choices are of particular relevance: (1) First, a definition of the new
coordinates which eliminates the bilinear couplings dij within the effective-
mode subspace, and creates a diagonal form of the kinetic energy in that
subspace [25]. (2) Second, a definition leading to topology-adapted vectors,
two of which lie in the branching plane [24]. This choice further connects to
the adiabatic (g,h, s) vectors discussed by Yarkony [3, 45].

The effective-mode transformation is conceptually related to early work
by Toyozawa and Inoue [30] on the identification of an “interaction mode” in
Jahn–Teller systems, and further, to work by O’Brien and others [26–29] on
the construction of a “cluster mode”. Our recent results reported in [23–25]
represent a generalization beyond the Jahn–Teller case, to generic conical
intersection situations described by the LVC Hamiltonian (6), which requires
consideration of three effective modes.

2.3 Hierarchical Description of the Bath, and an Effective
Hamiltonian

With the new form of the Hamiltonian Ĥ = ĤS + ĤSB + ĤB, now using (11)
for ĤSB and (12) for ĤB, a hierarchy of modes has been introduced in the
bath subspace: (a) the three effective modes, which are distinguished by their
role in determining the system–bath interaction ĤSB, and (b) the (NB − 3)
residual bath modes which couple in turn to the effective modes. The new
bath Hamiltonian ĤB of (12) can thus be split as follows:

ĤB = Ĥeff
B + Ĥeff-res

B + Ĥres
B (13)

with the effective (eff) 3-mode bath portion

Ĥeff
B =

3∑
i=1

ΩB,i

2
(P̂ 2

B,i + X̂2
B,i)1̂ +

3∑
i,j=1,j>i

dij

(
P̂B,iP̂B,j + X̂B,iX̂B,j

)
1̂ (14)

the effective–residual (eff–res) mode interaction

Ĥeff-res
B =

3∑
i=1

NB∑
j=4

dij

(
P̂B,iP̂B,j + X̂B,iX̂B,j

)
1̂ (15)

and a definition analogous to (14) for the residual (res) Hamiltonian Ĥres
B

comprising the (NB − 3) residual bath modes.
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Since the transformation leaves some freedom in determining the coupling
constants dij , one may choose these couplings to vanish within the effective-
mode and residual-mode spaces, while only the dij ’s occurring in the interac-
tion term (15) remain non-zero [23,25].

Overall, the transformation leads to a “Brownian oscillator” type picture
[46, 47], by which the effective (X̂B,1, X̂B,2, X̂B,3) modes are coupled to the
residual (X̂B,4, . . . , X̂B,NB) modes via Ĥeff-res

B . The hierarchical picture of
the system–bath interaction is illustrated in Fig. 1.

Since the system–bath interaction ĤSB of (11) is entirely carried by the
effective modes (X̂B,1, X̂B,2, X̂B,3), one may conjecture what is the effect of
truncating the bath at the level of the 3-mode Ĥeff

B contribution contained
in ĤB, see (13). That is, consider replacing the overall Hamiltonian Ĥ =
ĤS + ĤSB + ĤB by the modified Hamiltonian Ĥ ′ [23–25]

Ĥ ′ = ĤS + ĤSB + Ĥeff
B , (16)

where the NB-mode bath space was approximated by three effective modes,
i.e., the bath Hamiltonian ĤB of (13) was approximated by Ĥeff

B .
When replacing the original (NS + NB)-mode Hamiltonian Ĥ by the

(NS+3)-mode effective Hamiltonian Ĥ ′ of (16), one would expect that (a) the
short-time, “inertial” dynamics is correctly reproduced, while (b) the dynam-
ics on an intermediate time scale, which is also determined by the coupling to
the residual bath, is not very well reproduced. Thus, coherent artifacts are ex-
pected to appear since the multimode nature of the bath has been disregarded.

Yet, even at the level of the reduced 3-mode bath of (16), the analysis
can be of interest, due to the key importance of the short-time dynamics in

system modes {x̂S }

electronic subsystem

{X̂B,1, X̂B,2, X̂B,3}

residual modes

effective modes

{X̂B,4, . . . , X̂B ,NB
}

]
] system
]
]

]
] bath
]
]

Fig. 1. Chain of interactions resulting from the transformation within the bath
subspace. The effective modes (X̂B,1, X̂B,2, X̂B,3) couple directly to the electronic
subsystem while the residual modes are in turn coupled to the effective modes. As
a consequence of this hierarchical structure, the effective modes entirely determine
the short-time, “inertial” components of the system–bath dynamics. The residual
modes interact indirectly with the system, on intermediate and long time scales
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the decay at the conical intersection. For intermediate and long time scales,
the residual bath needs to be taken into account, at least in an approximate
fashion.

In the following, the implications of the hierarchical system–environment
interaction for the dynamical evolution are examined in detail, from a reduced
dynamics perspective.

3 Reduced Propagator, Moments, and Short-time
Dynamics

The goal of the present section is to show that the hierarchical structure of
the transformed bath Hamiltonian translates to a hierarchy in the dynamics
of the system–bath interaction. In particular, it is shown that the effective
mode part of the bath accounts for all short-time effects which the actual
bath exerts upon the system. The effects of the residual bath modes come
into play on an intermediate time scale.

We will address these issues in the framework of a “reduced dynamics”
formulation and, specifically, by referring to a moment, or cumulant expan-
sion of the subsystem propagator [19,22,47,48], see (23) and (30) later. This
formulation is particularly appropriate in view of addressing the influence of
the environment on the short-time dynamics (in fact, more appropriate than
the alternative master equation approaches [22,48]).

This perspective is connected to our previous analysis [23–25] in terms of a
moment expansion of the wavepacket autocorrelation function 〈ψSB(t0)|ψSB(t)〉
= 〈ψSB(t0) |exp(−iĤt) |ψSB(t0)〉. (Note that we use the convention � = 1 here
and in the following.) By this analysis, we have shown that the first four mo-
ments 〈ψSB(t0)|Ĥn|ψSB(t0)〉, n = 0, . . . , 3, of the Hamiltonian are preserved
if Ĥ is replaced by the effective (NS + 3)-mode Hamiltonian Ĥ ′ of (16). As
demonstrated later, a similar conclusion can be drawn from the moment ex-
pansion of the subsystem propagator.

3.1 Reduced Propagator

The evolution of the subsystem (comprising the relevant electronic and nuclear
degrees of freedom) can be characterized by reduced equations of motion for
the subsystem density operator ρ̂S = TrB ρ̂SB, where TrB is the trace operation
with respect to the bath subspace,

ρ̂S(t) = ˆ̂
Usub(t, t0)ρ̂S(t0). (17)

The propagator ˆ̂
Usub is a superoperator (denoted by a double hat symbol)

acting upon the subsystem density. ˆ̂
Usub in principle gives an exact repre-

sentation of the dynamics. Its equation of motion can be constructed to be
of local-in-time form or else of non-local in time form as detailed in Appen-
dix A (while fully accounting for non-Markovian effects in both cases). In
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the Markovian limit, corresponding to a separation of system vs. bath time
scales [19–22], the propagator is local in time and independent of the initial
conditions.

Equation (17) can be derived from the evolution equation for the overall

system under the Liouvillian ˆ̂
L = [ Ĥ, · ], with the Hamiltonian (1), expressed

in the original coordinates or else in the transformed coordinates. Given the
unitary evolution of the overall density ρ̂SB

ρ̂SB(t) = Û†(t, t0) ρ̂SB(t0)Û(t, t0)

≡ ˆ̂
U(t, t0) ρ̂SB(t0) (18)

with the propagator Û(t, t0) = exp(−iĤ(t−t0)) and the associated Liouvillian

propagator ˆ̂
U(t, t0) = exp(−i ˆ̂L(t−t0)), the evolution for the subsystem density

ρ̂S(t) follows as:

ρ̂S(t) = TrB

[
ˆ̂
U(t, t0) ρ̂SB(t0)

]
= ˆ̂
US(t, t0)TrB

[
ˆ̂
Uint(t, t0) ρ̂SB(t0)

]
(19)

with ˆ̂
US(t, t0) = exp(−i ˆ̂LS(t − t0)), given ˆ̂

LS = [ ĤS, · ], and where an inter-
action representation propagator was introduced as follows:

ˆ̂
Uint(t, t0) = T exp

(
−i
∫ t

t0

dt′ ( ˆ̂
LSB(t′) + ˆ̂

LB)
)

= ˆ̂1 +
∑

n

(−i)n

∫ t

t0

dτ1
∫ τ1

t0

dτ2 . . .
∫ τn−1

t0

dτn ( ˆ̂
LSB(τ1) + ˆ̂

LB)

×( ˆ̂
LSB(τ2) + ˆ̂

LB) . . . ( ˆ̂
LSB(τn) + ˆ̂

LB) (20)

with T the time-ordering operator. Note that ˆ̂
Uint has been defined for the

interaction Liouvillian ˆ̂
LSB(t) = ˆ̂

US†
0 (t, τ) ˆ̂

LSB
ˆ̂
US

0(t, τ), i.e., with respect to
the system’s zeroth-order propagator. This choice is in contrast to the usual
interaction representation (defined with respect to ˆ̂

US
0

ˆ̂
UB

0 ), and is motivated
by the fact that we propose to examine the influence of the bath on short time
scales (or, equivalently, in a regime of long correlation times).

We consider an initial system–bath state which is uncorrelated,6 ρ̂SB(t0) =
ρ̂S(t0)⊗ ρ̂B(t0) (see Appendix B for the explicit form of ρ̂SB(t0)), so that one
obtains the following evolution equation in the system subspace:

ρ̂S(t) = ˆ̂
US(t, t0)TrB

[
ˆ̂
Uint(t, t0) ρ̂B(t0)

]
ρ̂S(t0). (21)

6 An extension to correlated initial conditions is feasible, as described, e.g., in
[21,49].
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Comparison with (17) yields an explicit expression for the subsystem propa-
gator

ˆ̂
Usub(t, t0) = TrB

[
ˆ̂
U(t, t0) ρ̂B(t0)

]
= ˆ̂
US(t, t0)TrB

[
ˆ̂
Uint(t, t0) ρ̂B(t0)

]
. (22)

Equation (17) with the reduced propagator ˆ̂
Usub of (22) describes the subsys-

tem evolution exactly. In the following, we consider a moment expansion of
ˆ̂
Usub which allows one to envisage various approximation schemes.

3.2 Moment Expansion

From (22) and the definition of the interaction representation propagator ˆ̂
Uint,

the following moment expansion for ˆ̂
Usub follows immediately:

ˆ̂
Usub(t, t0) = ˆ̂

US(t, t0)
(

ˆ̂1 +
∞∑

n=1

ˆ̂
Mn(t, t0)

)
(23)

with

ˆ̂
Mn(t, t0) = (−i)n

∫ t

t0

dτ1
∫ τ1

t0

dτ2 . . .
∫ τn−1

t0

dτn ˆ̂mn(τ1, . . . , τn) (24)

Here, the moments ˆ̂mn are defined as

ˆ̂mn(τ1, . . . , τn) = TrB{( ˆ̂
LSB(τ1) + ˆ̂

LB) . . . ( ˆ̂
LSB(τn) + ˆ̂

LB)ρ̂B(t0)}. (25)

The series equation (23) represents a chronologically ordered expansion of the
propagator.

The moments of equations (24)–(25) are (super)operators acting on the
subsystem density. In order to establish a connection to the (scalar) moments
in the bath subspace, we note that the system–bath interaction of (6) or (11)
can be expressed as a sum of products, ĤSB =

∑
k ckĥ

S
k ⊗ ĥB

k ,

ˆ̂
LSB = [ ĤSB, · ]

=
∑

k

ck [ ĥS
kĥ

B
k , · ], (26)

where the electronic system operators ĥS
k correspond to the Pauli matrices

{ σ̂x, σ̂y, σ̂z }, while the bath operators ĥB
k relate to the nuclear bath degrees

of freedom. In the following, we will formally include the bath Hamiltonian in
this form, i.e., ĤB =

∑
k 1̂S ⊗ ĥB

k .
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Using (25) and (26), we obtain for the moment operators acting on the
subsystem density

ˆ̂mn(τ1, . . . , τn) ρ̂S(t0) = TrB

{
( ˆ̂
LSB(τ1) + ˆ̂

LB ) . . .

. . . ( ˆ̂
LSB(τn) + ˆ̂

LB ) ρ̂B(t0)
}
ρ̂S(t0)

= TrB

{[∑
k

ck ĥ
S
k(τ1)ĥB

k , . . .

. . .

[∑
k′

ck′ ĥS
k′(τn)ĥB

k′ , ρ̂B(t0) ⊗ ρ̂S(t0)
] ]}

. (27)

For example, the second-order contribution leads to

ˆ̂m2 ρ̂S(t0) =
∑

k

∑
k′

ckck′ [ ĥS
k(τ1), ĥS

k′(τ2)ρ̂S(t0) ] Tr
{
ĥB

k ĥ
B
k′ ρ̂B(t0)

}
−ckck′ [ ĥS

k(τ1), ρ̂S(t0) ĥS
k′(τ2) ] Tr

{
ĥB

k′ ĥB
k ρ̂B(t0)

}
(28)

which involves commutators of the system operators along with the bath mo-
ments M(kk′)

B,2 = Tr{ĥB
k ĥ

B
k′ ρ̂B(t0)} = 〈0B| ĥB

k ĥ
B
k′ |0B〉. Here, ρ̂B(t0) = |0B〉〈0B|

was used, see Appendix B.
More generally, the bath moments MB,n are the following – scalar – quan-

tities derived from operators acting in the bath subspace only:

M(k...k′)
B,n = Tr

{
ĥB

k . . . ĥ
B
k′ ρ̂B(t0)

}
= 〈0B|ĥB

k . . . ĥ
B
k′ |0B〉. (29)

If approximations are sought for within the moment expansion formulation,
a central criterion will thus be the faithful representation of – or, a good
approximation of – the bath moments MB,n.

3.3 Moment Expansion: Cumulants

The basic moment expansion (23) is of limited usefulness, except for a per-
turbation development in the regime of very long correlation times [22]. One
therefore turns to a resummation of the series equation (23) in terms of so-
called cumulant expansions [19–22, 50]. In particular, a resummation can be
carried out in such a way as to obtain the form

ˆ̂
Usub(t, t0) = ˆ̂

US T exp
[ ∞∑

n=1

(−i)n ˆ̂
Kn(t, t0)

]
(30)
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with

ˆ̂
Kn(t, t0) =

∫ t

t0

dτ1 . . .
∫ τn−1

t0

dτn
ˆ̂
θn(τ1, . . . , τn). (31)

The expansion equation (30) is also referred to as a partially time-ordered
series [19–22,50].

Here, the first two cumulants are related as follows to the moments of (25):

ˆ̂
θ1(τ1) = ˆ̂m1(τ1),

ˆ̂
θ2(τ1, τ2) = ˆ̂m2(τ1, τ2) − ˆ̂m1(τ1) ˆ̂m1(τ2). (32)

The cumulants, or connected averages, vanish whenever an n-time average
“decorrelates” and reduces to a product of low-order moments. This allows
for a truncation of the series (30) according to different criteria than for the
series (23).7

Different cumulant expansions can be defined, which exhibit different sta-
tistical properties. E.g., apart from the definition (30) for the partially ordered
series, a so-called fully chronologically ordered series can be introduced [20,50].
The different types of expansions are associated with different generators in
the equations of motion for ˆ̂

Usub, see the discussion of Appendix A. With par-
ticular regard to the short-time properties, the partially ordered series (30) is
distinct in that it yields a Gaussian distribution in the static limit [20]. We
will consider this series further in the following discussion of the short-time
evolution.

3.4 Short-Time Evolution

The moment expansions (23) and (30) can be carried out for the Hamiltonian
equation (1) in the original coordinates or else in the transformed coordinates
of Sect. 2.2. Since the coordinate sets {x̂S,1, . . . , x̂S,NS , x̂B,1, . . . , x̂B,NB} and
{x̂S,1, . . . , x̂S,NS , X̂B,1, . . . , X̂B,NB} are related by an orthogonal transforma-
tion, the moments of the propagator remain unchanged as a result of the
transformation.

The advantage of the new coordinate set lies in the approximations that
the transformed Hamiltonian suggests. In particular, one would expect useful
dynamical approximations to result from the (NS +3)-mode truncated Hamil-
tonian Ĥ ′ of (16), which accounts for the effective environmental modes while
disregarding the residual modes.

Indeed one finds that the first three moments ˆ̂mn(τ1, . . . , τn), n = 1, . . . , 3,
of the expansion equations (23)–(25) are unchanged if the (NS + NB)-mode

7 In particular, the series equation (30) can be truncated at the second order if
λτc � 1, with λ the coupling strength associated with the system–bath interaction
and τc the characteristic correlation time [22].
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Hamiltonian Ĥ = ĤS + ĤSB + ĤB is replaced with the (NS +3)-mode Hamil-
tonian Ĥ ′ = ĤS + ĤSB + Ĥeff

B of (16) – or, equivalently, if the bath is replaced
with the 3-mode effective bath portion, ĤB → Ĥeff

B , see equation (13). Like-
wise, the corresponding orders of the cumulant expansion equation (30) are
unchanged.

The invariance of the moments is due to the fact that the bath moments
MB,n of (29), for n ≤ 3, only depend upon the effective modes and are there-
fore unchanged when replacing the NB-mode bath with the 3-mode truncated
bath. The higher-order moments, starting from the fourth order, also depend
on the interaction between the effective modes and the residual modes. (For
an explicit demonstration of the moment calculation, we refer to [24,25].)

The fact that the first few moments are reproduced when replacing Ĥ →
Ĥ ′ (ĤB → Ĥeff

B ) implies that the 3-mode truncated bath acts as a surrogate
bath on short time scales. An effective propagator can be defined as follows:

ˆ̂
Ueff(t, t0) = exp

(
−i ˆ̂Leff(t− t0)

)
(33)

with the (NS + 3)-mode Liouvillian ˆ̂
Leff = [ Ĥ ′, · ], with Ĥ ′ of (16). The asso-

ciated subsystem propagator reads as follows:

ˆ̂
U eff

sub(t, t0) = TrB

[
ˆ̂
Ueff(t, t0) ρ̂B(t0)

]

= ˆ̂
US(t, t0)TrB

[
ˆ̂
U eff

int(t, t0) ρ̂B(t0)
]
. (34)

The propagator ˆ̂
U eff

sub has the same short-time properties as the original prop-

agator ˆ̂
Usub, since its first few moments are identical.

In addition, by drawing on the previous cumulant expansion analysis, a
short-time propagator can be constructed which again has the same first mo-
ments as both ˆ̂

U sub and ˆ̂
U eff

sub

ˆ̂
U short

sub (t, t0) = ˆ̂
US(t, t0) T exp

[ 3∑
n=1

(−i)n ˆ̂
Kn(t, t0)

]
. (35)

Here, the cumulant expansion was truncated at the third order. This ap-
proximation is appropriate if the effects of the second and third cumulants
are dominant, and the interaction with the bath brings about a rapid decay
of correlations.8 An example of this approximation is given in Fig. 2a, b of
Sect. 5.

8 In the frequency domain, the spectral features are expected to be very broad; this
is illustrated, e.g., by the study of pressure broadening in [51].
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3.5 Autocorrelation Functions

Apart from the reduced propagator which has been at the center of the dis-
cussion so far, quantities of interest include autocorrelation functions, as il-
lustrated in Sect. 5. We consider, in particular, autocorrelation functions of
the following type, which can be formulated for both the overall density ρ̂SB

and the reduced density ρ̂S,

C(t, t0) =
[
Tr
{
ρ̂†SB(t0)

ˆ̂
U(t, t0) ρ̂SB(t0)

}]1/2

=
[
TrS

{
ρ̂†S(t0)

ˆ̂
U c

sub(t, t0) ρ̂S(t0)
}]1/2

, (36)

where a separable initial condition ρ̂SB(t0) = ρ̂S(t0) ⊗ ρ̂B(t0) was again as-

sumed (see Appendix B). The modified subsystem propagator ˆ̂
U c

sub is given
as

ˆ̂
U c

sub(t, t0) = ˆ̂
US(t, t0)TrB

[
ρ̂B(t0)

ˆ̂
Uint(t, t0) ρ̂B(t0)

]
(37)

i.e., containing a projection onto ρ̂†B(t0) = ρ̂B(t0) as compared with the defi-

nition equation (22) of ˆ̂
Usub(t, t0).

A moment (cumulant) development can be carried out for ˆ̂
U c

sub by com-
plete analogy with the series expansions discussed earlier. The same observa-
tions thus hold as in the analysis of the earlier sections: In particular, the first
few moments of the autocorrelation function are reproduced accurately by the
3-mode effective bath, i.e., when replacing ˆ̂

U c
sub → ˆ̂

U eff,c
sub , see also (44)–(45).

If the overall system is prepared in a pure state ρ̂SB = |ψSB〉〈ψSB| (and
remains in a pure state), the expression (36) simplifies so as to yield the
absolute value of the wavepacket autocorrelation function

C(t, t0)
∣∣∣∣
ρ̂SB=pure

= |〈ψSB(t0)|Û(t, t0)|ψSB(t0)〉|

= |〈ψSB(t0)|ψSB(t)〉|. (38)

The corresponding relation for the subsystem is again given by the second
line of (36) since the subsystem state ρ̂S(t) = TrB[ρ̂SB(t)] = ˆ̂

U sub(t, t0)ρ̂S(t0)
generally corresponds to a mixed state – even if ρ̂SB remains pure. This is a
consequence of the system–bath correlations which are created at t > t0 due
to the system–bath interaction. The same is true for the modified subsystem
state ρ̂c

S(t) = ˆ̂
U c

sub(t, t0)ρ̂S(t0) of (36). Therefore, even if the overall system
remains in a pure state, it is necessary to consider the general mixed-state
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correlation function (36) if dynamical calculations are carried out in the sys-
tem subspace.

The example discussed in Sect. 5 relates to such a pure-state situation for
the overall system. To connect to our previous analysis of [23–25], the moment
development based upon the pure-state expression (38) is briefly summarized
in Appendix C.

4 Alternative system–bath partitioning

The earlier sections have shown that the representation of the bath in terms
of primary, effective modes (X̂B,1, X̂B,2, X̂B,3) and secondary, residual modes
(X̂B,4, . . . , X̂B,NB) leads to a sequential picture of the system–bath interac-
tion. Only the effective modes appear in the interaction with the electronic
subsystem, cf. ĤSB of (11), while the residual modes impact indirectly upon
the subsystem evolution, via their coupling to the effective modes. This chain-
like interaction, illustrated in Fig. 1, entails a sequential-in-time dynamics of
the system–environment interaction.

The impact of the effective modes in the absence of the residual modes is
represented by the (NS + 3)-mode effective Hamiltonian Ĥ ′ of (16), and is
essentially of non-dissipative nature. The collective modes (X̂B,1, X̂B,2, X̂B,3)
carry the dynamical tuning, coupling, and shift effects exerted by the bath,
which add to analogous effects generated by the system modes. These effects
can lead, e.g., to a displacement of the conical intersection, changes in topol-
ogy, and changes in the dynamics at the conical intersection, all of which can
have a key influence on the passage through the conical intersection.

The three effective modes entirely determine the bath’s response on the
shortest time scales. This is proven by the moment (cumulant) expansion of

the propagator ˆ̂
Usub of (23) and (30), whose first three moments (cumulants)

are reproduced exactly when replacing Ĥ → Ĥ ′ of (16) (i.e., ĤB → Ĥeff
B in

(13)). The (NS + 3)-mode propagator ˆ̂
U eff

sub and the exact propagator ˆ̂
U sub

have identical cumulant expansions up to the third order. Hence, ˆ̂
U eff

sub acts
as a surrogate propagator on short time scales. If all higher-order cumulants,
beyond the third order, are disregarded, ˆ̂

Usub and ˆ̂
U eff

sub can in turn be replaced

by their short-time approximant ˆ̂
U short

sub of (35).
Since the residual modes do not contribute to the first few moments, the

multi-mode effects contained in the residual bath are “inactive” on the shortest
time scales. Dissipation acts with a delay, setting in on an intermediate time
scale. This is a characteristic instance of a non-Markovian dynamics.

This perspective suggests the possibility of a new partitioning of the overall
Hamiltonian, by which the effective mode part of the bath becomes part of a
modified system Hamiltonian. The new partitioning of the Hamiltonian reads

Ĥ = Ĥ ′′
S + Ĥ ′′

SB + Ĥ ′′
B (39)
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with the augmented subsystem part

Ĥ ′′
S = Ĥ ′

= ĤS + ĤSB + Ĥeff
B , (40)

see (16), while the system–bath coupling part now represents the coupling
between the three effective modes and the remaining (NB − 3) bath modes,

Ĥ ′′
SB = Ĥeff-res

B , (41)

see (15), and the new bath corresponds to the residual modes

Ĥ ′′
B = Ĥres

B . (42)

Depending on the physical nature of the system, the residual bath can be
amenable to a treatment by models for dissipation – within the Markovian
limit, in the simplest case – or else to an explicit but approximate dynamical
description. Since the dominant non-Markovian effects have been formally
eliminated (by shifting the effective bath modes into the subsystem space),
the formulation of a reduced dynamics is generally simpler for the modified
system–bath problem (39).

The concept of modifying the system–bath partitioning according to (39)
has been suggested previously by Kubo and collaborators [31], in conjunction
with a Markovian description of a residual phonon bath in solids. A more
recent application of the same concept is given in [52].

5 Vibronic-Coupling Dynamics for a System–bath Model

5.1 Model System

We illustrate the above development for the ultrafast, femtosecond scale decay
dynamics in an intramolecular situation involving approximately 20 modes.
The model system under consideration is closely related to the low-lying
D1–D0 conical intersection in the butatriene cation. The system has been
described in an early analysis [53,54] in terms of two strongly coupled modes;
the predominant role of the latter has been confirmed by a recent comprehen-
sive dynamical study involving all normal modes [55]. It is thus appropriate
to consider the two strongly coupled modes – along with the electronic sub-
system – as the “system” while the remaining modes act as an intramolecular
“bath” (i.e., a finite-dimensional, zero-temperature bath). Alternatively, one
could think of all nuclear modes as a bath coupled to the electronic subsys-
tem. From this viewpoint, the conical intersection topology as such is entirely
a feature of the environment.

In [23–25], we have explicitly constructed the decomposition into effective
vs. residual modes for this finite-dimensional intramolecular model bath, using
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the transformation described in Sect. 2.2. The goal of the present discussion
is to review our previous results in light of the reduced dynamics perspective
developed above, i.e., in terms of the reduced propagators ˆ̂

U sub, ˆ̂
U eff

sub, and
ˆ̂
U short

sub and the associated correlation functions of Sect. 3. We will mainly
focus upon the short-time decay at the conical intersection, captured by the
effective modes, rather than the intermediate and long-time effects exerted by
the residual modes. Work in progress addresses various approximation schemes
for the residual bath.

Indeed, the residual bath has rather specific properties for this system,
which is intermediate between a low-dimensional intramolecular dynamics
and a high-dimensional, dissipative situation. Nevertheless, even the low-
dimensional bath under consideration acts so as to induce an effectively irre-
versible behavior of the relevant autocorrelation function,9 as can be inferred
from the decay of the “exact” 22-mode correlation functions of Fig. 2. This
suggest that, even though the reduced dynamics framework developed above
strictly applies only for the case NB → ∞, useful approaches to the modeling
of the residual bath can be derived even for finite-dimensional situations.

For the present system, quantum-dynamical calculations for all degrees
of freedom, including the bath modes, are feasible using efficient quantum-
dynamical techniques, in particular the multiconfiguration time-dependent
Hartree (MCTDH) method [32–35]. We can thus relate quantities which are
calculated explicitly for the overall system (which remains pure-state) to “re-
duced” quantites which characterize the subsystem that evolves into a mixed
state for times t > t0, see Sect. 3.5.

Since a detailed account of the model system has been given in [24, 56],
only a brief summary of the main aspects is provided here. The system com-
prises 22 modes overall, two of which are assigned as “system” modes (unless
the system part is restricted to the electronic subsystem). The remaining 20
“bath” modes are weakly coupled. The bath modes fall into three groups:
(a) tuning modes, with κ

(+)
i , κ

(−)
i �= 0;λi = 0, (b) coupling modes, with

λi �= 0;κ(+)
i , κ

(−)
i = 0, and (c) non-symmetric modes, which do not con-

form to the symmetry of the molecular system. One may consider this model
as a combination of an intramolecular bath (obeying the molecular symme-
tries) with an intermolecular, nonsymmetric bath [56]. The frequencies of
the respective groups of bath modes are chosen to be randomly distributed
within intervals that in part are close to the 2-mode subsystem frequencies
(for the tuning modes), and in part are distributed over considerably lower fre-
quencies (for the nonsymmetric modes). The model parameters are specified
in [24,56].

9 Indeed, due to the short observation time scales relevant for the dynamical events
at the conical intersection, even a comparatively low-dimensional bath would
appear effectively irreversible. That is, the Poincaré recurrence time is always
long as compared with the observation time scale.
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5.2 Autocorrelation Functions and Spectra

In the following, we consider the autocorrelation functions introduced in Sect.
3.5, which directly reflect the properties of the – exact or approximate –
propagators, defined with respect to the overall system or else the subsystem.
We focus on the case (38) corresponding to an overall system that remains in
a pure state. As a reference, the exact correlation function comprising all 22
modes is calculated

C(t, t0) = |〈ψSB(t0)|Û(t, t0)|ψSB(t0)〉| (43)

with the propagator Û(t, t0) = exp(−iĤ(t − t0)) for the Hamiltonian Ĥ =
ĤS + ĤSB + ĤB of (1). According to (36), C(t, t0) also corresponds to the
subsystem correlation function

C(t, t0) =
[
TrS

{
ρ̂†S(t0)

ˆ̂
U c

sub(t, t0)ρ̂S(t0)
}]1/2

, (44)

where ρ̂c
S(t) = ˆ̂

U c
sub(t, t0)ρ̂S(t0) is a mixed state for t > t0. (Recall that the

index c indicates that the subsystem propagator contains a projection onto
the initial bath state, see (37).) C(t, t0) can thus be calculated either from the
time-evolving wavefunction |ψSB(t)〉 (as in the present study), or else from
the time-evolving reduced density ρ̂c

S(t).
Following the discussion of Sect. 3.4 and Sect. 3.5, we now consider two

types of approximate correlation functions. First, we address the effective-
mode approximation of (34),

Ceff(t, t0) = |〈ψSB(t0)|Ûeff(t, t0)|ψSB(t0)〉|

=
[
TrS

{
ρ̂†S(t0)

ˆ̂
U eff,c

sub (t, t0)ρ̂S(t0)
}]1/2

(45)

with the propagator Ûeff = exp(−iĤ ′(t− t0)) derived from the effective (NS +
3)-mode Hamiltonian Ĥ ′ = ĤS+ĤSB+Ĥeff

B of (16). The subsystem propagator
ˆ̂
U eff,c

sub (t, t0) is defined analogously to ˆ̂
U c

sub(t, t0), i.e., by including a projection

onto ρ̂B(t0) as compared with the definition equation (34) of ˆ̂
U eff

sub(t, t0).
Second, the short-time cumulant approximation equation (35) is con-

sidered,

Cshort(t, t0) = |〈ψSB(t0)|ψSB(t)〉|
∣∣∣∣
3rd order cumulant

=
[
TrS

{
ρ̂†S(t0)

ˆ̂
U short,c

sub (t, t0)ρ̂S(t0)
}]1/2

(46)

The first few cumulants defining the propagator ˆ̂
U short,c

sub can be calculated
either from the overall (NS+NB)-mode Hamiltonian, or else from the (NS+3)-
mode effective Hamiltonian.
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In Fig. 2, the respective correlation functions (43)–(46) are shown [24,25].
We consider the two types of system–bath partitioning that were mentioned
earlier: (1) The system part ĤS is restricted to the electronic two-level sys-
tem, such that the effective-mode transformation is applied to all nuclear
coordinates; Ĥ ′ = ĤS + ĤSB + Ĥeff

B of (16) is thus a 3-mode Hamiltonian. (2)
The system part ĤS comprises the two most strongly coupled nuclear modes
in addition to the electronic subsystem; Ĥ ′ is thus a five-mode Hamiltonian
(including two system modes and three effective bath modes). Panels (a)–(d)
of Fig. 2 refer to case (1) while panels (e) to (h) refer to case (2). All panels
on the l.h.s. of the figure relate to the ground (D0) state, while the panels on
the r.h.s. relate to the excited (D1) state. A reference calculation (“exact”)
for the overall 22-mode system is shown in all panels.

In panels (a) and (b), the initial decay of the autocorrelation function
C(t, t0) of (43)–(44), on a 20 fs time scale, is compared with the approximants
Ceff(t, t0) of (45) and Cshort(t, t0) of (46). The system–bath partitioning (1)
is chosen, that assigns all nuclear modes to the “bath” subspace. Two fea-
tures are noteworthy: (1) The initial, Gaussian decay is common to the three
correlation functions, as predicted in Sect. 3.4,10 and (2) the effective-mode
approximation Ceff(t, t0) remains very close to the exact correlation function
for times which noticeably exceed the validity of the short-time approximant
Cshort(t, t0). This indicates that while the first few moments of ˆ̂

U sub(t, t0)

are reproduced exactly by ˆ̂
U eff

sub(t, t0), the effective propagator also provides
a very good approximation for a certain number of moments beyond the
third-order.

In panels (c) and (d), the same calculations are compared on an interme-
diate time scale, up to 60 fs. The figure illustrates that artificial recurrences
tend to appear when using Ĥ ′, i.e., for Ceff(t, t0), due to the fact that the
residual bath modes are neglected. Clearly the effects of the residual bath
need to be included, at least in an approximate fashion.

In panels (e) to (h), the focus is shifted to the system–bath partitioning (2)
which includes the two most strongly coupled nuclear modes in the “system”
part. Panels (e) and (f) illustrate that the artificial recurrences are much
less pronounced for the combination of the 2-mode system and the 3-mode
effective bath (“sys+eff (5)”). Indeed the result of the five-mode calculation
remains close to the exact result for comparatively long times. In practice,
it is therefore of importance to identify strongly coupled modes and include
these in the “system” part.

For reference, panels (g) and (h) also show the correlation function
Csys(t, t0) = |〈ψS(t0)|ÛS(t, t0)|ψS(t0)| for the 2-mode isolated system, in the

10 Since only the even-order moments contribute to Cshort(t, t0), the decay of the
short-time correlation function is purely Gaussian, i.e., is determined by the sec-
ond moment.
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Fig. 2. Autocorrelation functions C(t, t0), Ceff(t, t0), and Cshort(t, t0) for the 2-state,
22-mode system–bath model discussed in Sect. 5 (data reproduced from [24]). All
lhs (rhs) panels relate to the D0 (D1) state. See text for detailed explanations
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absence of the bath modes. Csys(t, t0) is clearly a less good approximation for
the overall dynamics – both on short and intermediate time scales – than
Ceff(t, t0) (or, for the shortest time scale, a less good approximation than
Cshort(t, t0)).

Finally, Fig. 3 shows the associated spectrum, which represents a sum over
the spectra obtained from the autocorrelation functions with initial conditions
in one or the other diabatic state. Note the characteristic “interfering” band
structure, which is a signature of the conical intersection [1, 53].

To summarize, the autocorrelation functions discussed above reflect the
characteristic decay properties of the respective propagators, which can be
defined either for the overall system or for the subsystem, see (43)-(46).
While we can always refer back to the pure-state wavepacket autocorrela-
tion functions in the present case, the connection to the subsystem correlation
functions paves the way for general mixed-state situations. We expect that the
main features of the dynamics carry over to situations which include thermal
fluctuations.

The correlation functions confirm the role of the effective (NS + 3) mode

propagator ˆ̂
U eff

sub(t, t0) (or Ûshort(t, t0)) as a surrogate propagator on short time
scales. The “inertial regime” which we define here as the time interval over
which the effective mode approximation is valid, corresponds to the initial
decay of the autocorrelation function, but can extend markedly beyond the

10 10.5 11 11.5

E [eV]

sys+bath (22)
eff (3)

sys+eff (5)
sys (2)

Fig. 3. Spectra obtained by Fourier transformation of the autocorrelation func-
tions shown in Fig. 2, reproduced from [24]. The spectra represent superpositions of
the spectra obtained from the autocorrelation functions for the individual diabatic
states. The traces shown in the figure are defined in accordance with Fig. 2, and
correspond to low-resolution spectra (with a resolution of about 40 meV, obtained
by imposing a Gaussian damping with a decay constant of 40 fs)
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very initial, Gaussian decay. Beyond the inertial time scale, multi-mode effects
set in and induce dephasing and dissipation. These effects require the explicit
calculation and/or approximate modeling of the residual bath.

6 Conclusions and Outlook

The purpose of the present analysis has been to develop a system–bath theory
perspective describing the impact of a high-dimensional environment on the
dynamics at a conical intersection. We have envisaged a scenario by which
many environmental modes couple to the electronic subsystem, in addition
to a limited number of strongly coupled “system” modes. We have addressed
this situation within the LVC approximation for the environmental modes
(see (6)), while no approximation is assumed a priori for the system modes.

A cornerstone of our analysis is the effective mode transformation which we
have recently developed [23–25]. By an orthogonal coordinate transformation,
three effective modes can be identified which carry all short-time effects of
the environment on the evolution at the conical intersection. These modes
correspond to the cumulative tuning, coupling, and shift effects exerted by
the environment. They are in turn coupled to a residual bath composed of the
remaining (NB−3) modes. This chain-like picture of interactions corresponds
to a generalized Brownian oscillator model, as illustrated in Fig. 1.

An analysis by cumulant expansion techniques leads to the conclusion that
the hierarchical structure of the transformed bath Hamiltonian translates to
a hierarchy in the dynamics of the system–bath interaction. In particular, we
conclude that (a) a short-time, “inertial” regime exists which is entirely deter-
mined by the three effective modes [23–25];11 (b) the (NB−3) residual modes
come into play on an intermediate time scale, via their coupling to the effective
modes. A separation of time scales within the bath is thus observed, relating to
the partitioning between the effective and residual modes. These conclusions
have been obtained by consideration of the reduced propagator ˆ̂

Usub of (30),
thus confirming our earlier analysis based upon a moment expansion of the
wavepacket autocorrelation function [23,25].

The present analysis has focused on the general formulation in terms of a
subsystem propagator, and on the short-time limit determined by the “iner-
tial” effects exerted by the effective modes. We have shown that the propaga-
tors ˆ̂

U sub, ˆ̂
U eff

sub of (34), and ˆ̂
U short

sub of (35) have identical cumulant expansions
up to the third order. The short-time propagator ˆ̂

U short
sub can be identified as

a limiting description in a regime where all higher-order cumulants vanish.
However, the effective propagator ˆ̂

U eff
sub tends to give a good approximation

11 A related situation is encountered in describing the effects of a polar or polar-
izable solvent environment on a conical intersection situation. Here, a “solvent
coordinate”, or collective polarization mode, is introduced which also gives rise
to pronounced inertial dynamical effects [12].
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even at longer times, i.e., for higher-order moments. This is especially so if
the “system” part comprises the most strongly coupled modes, as can be seen
from the numerical results of Sect. 5.

Beyond the initial, inertial regime, the multi-mode, dissipative effects car-
ried by the residual bath cannot strictly be neglected. These effects become
dominant on longer time scales and include in particular, energy relaxation
and dephasing phenomena which play a crucial role once the system has tra-
versed the conical intersection. (See, e.g., [7, 8], for a detailed discussion of
these aspects.) Future developments will address the systematic formulation
of approximation schemes for the subsystem propagator on intermediate and
long time scales.

As an alternative strategy, discussed in Sect. 4, the effective mode portion
of the bath can be integrated into a modified system Hamiltonian, in view
of the effective modes’ coherent, “non-dissipative” effects. Depending on the
physical nature of the system, one could envisage, e.g., a Markovian approx-
imation scheme for the residual bath. This picture goes back to early work
by Kubo and collaborators [31], in connection with the coupling to phonon
modes in a solid.

Finally, in the vein of the example discussed in Sect. 5, one can resort to
an explicit dynamical treatment of the combined system and bath dynamics,
which is feasible either by the powerful multiconfigurational quantum dynam-
ical techniques based upon the MCTDH method [32–35], or else by mixed
quantum–classical techniques [44, 45, 47, 57]. Here, the reformulation of the
Hamiltonian according to (11)–(12) may offer numerical advantages in the
treatment of the residual bath modes. Among the multiconfigurational quan-
tum approaches, several variants have been specifically designed for a hybrid
system–bath dynamics, namely the self-consistent hybrid approach of [61], the
multilayer formulation of [62], and the G-MCTDH method of [63,64] which in-
volves a moving basis of Gaussian functions. In future work, we will report on
the application of these methods, in conjunction with the reduced dynamics
formulation reported here.
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Appendix A Equation of Motion for the Subsystem
Propagator

In this appendix, we consider the equations of motion for the subsystem prop-
agator ˆ̂

Usub of (17) [19–21,50]. Two types of equations can be formally derived,
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one of which is local in time

∂

∂t
ˆ̂
Usub(t, t0) = ˆ̂

Γ (t, t0)
ˆ̂
Usub(t, t0), (A.1)

while the other is non-local in time

∂

∂t
ˆ̂
Usub(t, t0) =

∫ t

t0

dt′ ˆ̂
Ξ(t, t′; t0)

ˆ̂
Usub(t′, t0). (A.2)

In practice, perturbation series (using, in particular, the moment expansions
discussed in Sect. 3) are applied to derive explicit equations for the generators
ˆ̂
Γ and ˆ̂

Ξ.
Specifically, the cumulant expansion (30) can be shown to obey the local-

in-time equation (A.1), with the explicit form [19–21,50]

ˆ̂
Γ (t, t0) =

∞∑
n=1

(−1)n ∂
ˆ̂
Kn(t, t0)
∂t

. (A.3)

A resummation of the cumulant expansion (30) in terms of a fully chronolog-
ically ordered series yields the non-local in time equation (A.2).

Both representations (A.1) and (A.2) are formally exact. Importantly, the
local-in-time form of (A.1) does not imply any Markovian approximation. The
non-local in time equation (A.2) is closely related to the Nakajima–Zwanzig
equation [65–67], or generalized master equations [20, 22], which are usually
derived by projection operator techniques.

In the Markovian limit, which implies the rapid decay of system–bath
correlations, both (A.1) and (A.2) lead to equations of motion that are local

in time. We now have a generator ˆ̂
ΓMarkov which is independent of time (and

independent of the initial condition at time t0). Markovian equations are valid
on a coarse-grained time scale, with t − t0 > τc, with τc the characteristic
system–bath correlation time, beyond which the bath is assumed to “forget”
the initial correlations and approach a stationary state.

Appendix B Initial Conditions

In the context of the present discussion, the initial state of the overall system
corresponds to the form [24,25]

|ψSB(t0)〉 = τ1 |0〉vib ⊗ |1〉 + τ2 |0〉vib ⊗ |2〉, (B.1)

where |1〉 and |2〉 denote the electronic states and

|0〉vib = |0S〉 ⊗ |0B〉 (B.2)
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is the non-interacting vibrational ground state, separable with respect to the
system vs. bath modes.

The corresponding initial density operator is thus given as

ρ̂SB(t0) = |ψSB(t0)〉〈ψSB(t0)|
=
∑
ij

τiτ
∗
j |i〉〈j| ⊗ |0S〉〈0S| ⊗ |0B〉〈0B| (B.3)

representing a separable system–bath state,

ρ̂SB(t0) = ρ̂S(t0) ⊗ ρ̂B(t0) (B.4)

with ρ̂B(t0) = |0B〉〈0B| and the reduced subsystem density at time t0,

ρ̂S(t0) = TrB{ρ̂SB(t0)} =
∑
ij

τiτ
∗
j |i〉〈j| ⊗ |0S〉〈0S|, (B.5)

where Tr{ρ̂B(t0)} = 1 was used.

Appendix C Moment expansion of the pure-state
autocorrelation function

In this appendix, we consider the moment expansion of pure-state autocor-
relation functions, derived from the Hamiltonian analog of the Liouvillian
propagator that was at the center of the discussion of Sect. 3. If the pure-
state expression for the autocorrelation function, C(t, t0) = |C(t, t0)|, see
(38), with C(t, t0) = 〈ψSB(t0)|ψSB(t)〉 = 〈ψ0|Û |ψ0〉, is taken as a starting
point, one can introduce a moment expansion for the propagator Û which
is entirely analogous to (23) and (30), except that we now refer to a Hamil-
tonian (rather than Liouvillian) setting. Using the separable initial condition
|ψSB(t0)〉 = |0S〉 ⊗ |0B〉, we obtain

C(t, t0) = 〈ψ0|Û |ψ0〉 = 〈0S|Ûsub|0S〉 (C.1)

with the (non-Hamiltonian) subsystem propagator

Ûsub(t, t0) = ÛS(t, t0) 〈0B|Ûint|0B〉

= ÛS(t, t0)
(

1̂ +
∞∑

n=1

M̂n(t, t0)
)

(C.2)

and the moments of the interaction representation propagator Ûint

M̂n(t, t0) = (−i)n

∫ t

t0

dτ1
∫ τ1

t0

dτ2 . . .
∫ τn−1

t0

dτn m̂n(τ1, . . . , τn) (C.3)
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with the moment operators

m̂n(τ1, . . . , τn) = TrB{(ĤSB(τ1) + ĤB) . . . (ĤSB(τn) + ĤB)ρ̂B(t0)}. (C.4)

With the product form of the Hamiltonian, ĤSB =
∑

k ckĥ
S
kĥ

B
k , see (26), the

moments (C.4) reduce to products of system operators and bath moments.
The latter are again of the form (29). A similar conclusion holds for the
associated cumulant expansion of Ûsub(t, t0)

Ûsub(t, t0) = ÛS(t, t0) T exp
[∑

n

(−i)nK̂n(t, t0)
]
. (C.5)

Alternatively, a moment expansion of the overall propagator Û (includ-
ing the system part) can be considered, without resorting to an interaction
representation. This yields a direct moment expansion of C(t, t0),

C(t, t0) = 1 +
∞∑

n=1

M̃n(t, t0)

= 1 +
∞∑

n=1

(−i(t− t0))n 1
n!

〈ψSB(t0)|Hn|ψSB(t0)〉. (C.6)

By resummation of the series (C.6), the corresponding cumulant expan-
sion is obtained. With separable initial conditions, the matrix elements
〈ψSB(t0)|Hn|ψSB(t0)〉 separate into system and bath contributions, where the
bath matrix elements are again of the form (29). This latter perspective was
used in [23–25].
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Density Matrix Treatment of Electronically
Excited Molecular Systems: Applications
to Gaseous and Adsorbate Dynamics

D.A. Micha, A. Leathers, and B. Thorndyke

Summary. The quantum mechanical density operator provides a consistent treat-
ment of a many-atom system in contact with a physical environment, as needed to
describe a complex molecular system undergoing a localized electronic excitation
induced by interaction with light, or by atomic collisions. Treatments are presented
where the degrees of freedom of the many-atom system are separated into quan-
tal and classical-like ones, and the equation of motion of the density operators are
derived by means of a partial Wigner transform. A computational procedure intro-
duces approximations of short wavelengths in phase space, and effective potentials
that guide trajectory bundles. The dynamics and spectra of electronically excited
systems are treated introducing a basis set of many-electron states calculated in ad-
vance, or in terms of time-dependent molecular orbitals in a first principles approach
to dynamics, and are used in applications on photodissociation of a diatomic and on
collisional excitation in atomic collisions. Interactions with a medium are described
by reduced density operators that satisfy equations of motion with dissipation and
fluctuation terms. Both delayed and instantaneous dissipation are considered, and
are involved in applications to femtosecond photodesorption and to vibrational re-
laxation of adsorbates.

1 Introduction

The quantum mechanical density operator provides a consistent treatment of
a many-atom system in contact with a physical environment, as needed to de-
scribe a complex molecular system undergoing a localized electronic excitation
induced by interaction with light, or by atomic collisions. The density opera-
tor (DOp) satisfies the Liouville–von Neumann (L–vN) equation, [1–3] which
involves the Hamiltonian operator of the whole system and also accounts for
thermodynamical constrains through its initial conditions. When the system
of interest is only part of the whole, the treatment can be based on its reduced
density operator (RDOp) . This satisfies a modified L–vN equation including
dissipative rates and has been used in treatments of molecular spectra [4–8]
and dynamics [8–10] in a medium.
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The quantum mechanical calculation of spectral and dynamical proper-
ties is very demanding even for systems with a few (less than ten) atoms.
A promising alternative approach is to separate the degrees of freedom of the
many-atom system into quantal and classical-like ones, and to develop a con-
sistent treatment of their interaction. References to this very active area of
research, as they relate to electronic transitions in molecular systems, can be
found in our recent publications. [11–13] Among several available methods,
the one which introduces the Wigner transform [6, 14] is well suited for a
quantum–classical formalism based on the density operator. Here we follow a
treatment which introduces a partial Wigner transform (PWT) for molecular
systems [15,16].

The classification of degrees of freedom into quantal and classical ones is
particularly useful in electronically excited molecular systems. The electronic
motions must be treated in terms of quantum mechanics while the motion of
nuclei, or atomic cores, can instead frequently be described as classical-like
and given in terms of trajectories in phase space, starting from sets of initial
conditions properly chosen to account for quantal distributions. The criterion
here is that the associated de Broglie wavelengths should be short compared
to distances over which interatomic potential energies change. The treatment
can be done introducing a basis set of many-electron states calculated in
advance, or in terms of time-dependent molecular orbitals (TDMOs) in a first
principles approach to dynamics and spectra as we will show in the following
applications on photodissociation of a diatomic and on collisional excitation
in atomic collisions.

The equations for the RDOp contain terms describing energy dissipation
and fluctuation effects as a locally excited molecular subsystem interacts with
an extended medium. The total system can be partitioned into a primary
(or p-) region to be treated in detail, interacting with a secondary (or s-) region
treated only in terms of its statistical properties. Depending on the times scales
of motions in both regions, the dissipative phenomena may occur with a delay
described by a memory function, or it may happen instantaneously at each
time. In some cases the instantaneous dissipation may further be independent
of time, and is termed a Markovian dissipation. These cases will be discussed in
the applications that follow, on the femtosecond photodesorption of adsorbates
and on the vibrational relaxation of adsorbates.

2 Density Operator Treatment for Finite Systems

2.1 Quantum–Classical Treatment for Finite Systems

The state of a many-atom system is given by a density operator Γ̂ (t) which
satisfies the L–vN equation of motion,

i�∂Γ̂ /∂t = Ĥ(t)Γ̂ (t) − Γ̂ (t)Ĥ(t), (1)
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where Ĥ(t) is the Hamiltonian operator of the whole system; the equation
must be solved for the initial condition Γ̂ (tin) = Γ̂in and normalization
tr[Γ̂ (t)] = 1. Expectation values of physical operators Â of the whole system
are obtained from the trace, 〈A(t)〉 = tr[Γ̂ (t)Â]/tr[Γ̂ (t)], which also depends
on initial conditions. Introducing quantum variables (position and spin vari-
ables) q = (q1, . . . , qn) and quasiclassical variables (describing nearly classical
motions in terms of trajectories) Q = (Q1, . . . , QN ), the density operator can
be expanded in a partial coordinate representation using the set of states
{|Q〉}, as

Γ̂ (t) =
∫

dQ
∫

dQ′ |Q〉Γ̂ (Q,Q′, t)〈Q′|, (2)

where the function Γ̂ (Q,Q′, t) is yet an operator in the quantal variables.
The PWT is obtained introducing the new coordinates R = (Q + Q′)/2

and S = Q−Q′, in abbreviated notations, and the integral transform [14]

Γ̂W(P,R, t) = (2π�)−N

∫
dNS exp(iP · S/�)〈R− S/2|Γ̂ |R+ S/2〉, (3)

where (P,R) are variables corresponding to momenta and position in a clas-
sical limit. The normalization of this density operator is obtained from a
trace over quantum variables and an integral over P and R as tr[Γ̂W] =
trqu[

∫
dRdP Γ̂W(P,R, t)] = 1. From this operator it is possible to obtain

the quasiclassical phase density γ(P,R, t) = trqu[Γ̂W(P,R, t)] and the quantal
density operator Γ̂qu =

∫
dR dP Γ̂W(P,R, t).

A partially Wigner transformed operator ÂW is similarly defined by

ÂW(P,R) =
∫

dNS exp(iP · S/�)〈R− S/2|Â|R+ S/2〉 (4)

and physical properties are obtained from the trace as

〈A〉 = tr(Γ̂WÂW) = trqu[
∫

dR dPΓ̂W(P,R, t)ÂW(P,R)]. (5)

Quantities in the PWT are yet operators on the quantal variables, and their
order must be preserved in products.

2.2 Coupled Quantal and Quasiclassical Variables

Taking the PWT of the L–vN equation gives the equation of motion for Γ̂W.
This can be further developed for given Hamiltonians. Here we are interested
in the dynamics of coupled quantum and quasiclassical variables that follows
from a Hamiltonian operator

Ĥ = H(qu)(p̂, q̂) +H(cl)(P̂ , Q̂) +H(cq)(p̂, q̂, P̂ , Q̂) (6)



168 D.A. Micha et al.

with terms corresponding to quantal and quasiclassical Hamiltonian functions
of position and momentum operators {p̂, q̂} and {P̂ , Q̂} plus their coupling en-
ergy H(cq), a function of all the variables . Their PWT give H(qu)

W = Hqu(p̂, q̂),
H

(cl)
W = Hcl(P,R) = P 2/(2M) + V (R), and H(cq)

W = Hcq(p̂, q̂, P,R), so that
ĤW = Ĥqu+Hcl+Ĥcq, to be replaced in the equation of motion. This leads to

∂Γ̂W/∂t = (i�)−1[Ĥqu, Γ̂W(t)] + (i�)−1[(Hcl + Ĥcq) exp(−i�
←→
Λ /2)Γ̂W(t)

−Γ̂W(t) exp(−i�
←→
Λ /2)(Hcl + Ĥcq)] (7)

in terms of the Moyal bidirectional operator

←→
Λ =

←−
∂

∂P
·
−→
∂

∂R
−

←−
∂

∂R
·
−→
∂

∂P
, (8)

to be solved with initial conditions given by Γ̂W(P,R, tin) = Γ̂W,in(P,R). The
equation of motion for the quasiclassical phase density γ(P,R, t) is found by
taking the trace of this equation over quantal variables, and the equation of
motion for Γ̂qu follows by instead integrating over R and P .

The initial conditions must be specified for both quantal and quasiclassical
density functions. At an initial time tin, the distribution of (P,R) values must
be obtained from the PWT of initial conditions, so that the distribution is
not simply classical. Initial distributions of (P,R) in phase space fall not only
on classical allowed regions but also in regions around them. The correct
calculation of expectation values requires a sum over all relevant points in
phase space, and may be inaccurate if restricted to trajectories with purely
classical initial conditions. For this reason we refer to (P,R) as quasiclassical
or classical-like variables.

2.3 Expansion in Quantum States

It is convenient to deal with the quantum degrees of freedom introducing
a basis set of NB quantum states, parametrically dependent on the phase
space variables (P,R). They can be arranged as a row matrix |Φ(P,R)〉 =
[|Φ1(P,R)〉, |Φ2(P,R)〉, ...], taken here to be orthonormal, to obtain the matrix
representation Γ̂W = |Φ〉ΓW〈Φ|. Dropping in what follows the subindex W
in the matrix, so that ΓW = Γ, the DM equation is of the form

∂Γ/∂t = (i�)−1[Hqu,Γ(t)] + (i�)−1[(HclI + Hcq)
←→
L Γ(t)

−Γ(t)
←→
L (HclI + Hcq)], (9)

where I is the identity matrix and
←→
L = 〈Φ| exp(−i�

←→
Λ /2)|Φ〉 is yet a bidi-

rectional operator.
When a few quantum states are involved, the basis set can contain a small

number of many-electron states. It can instead be a set of atomic orbitals in a
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treatment that introduces TDMOs as linear combinations of atomic orbitals,
in a first principles description of the atomic dynamics. It can also be a set of
vibrational states or of vibronic states when vibrational motions are included
among the quantum variables. We will show in what follows examples for each
of these choices.

3 The Semiclassical Limit

3.1 Coupled Quantum and Classical Equations

The formalism of the PWT provides an approach useful for approximations
in applications to many-atom systems. In this subsection and the next one we
describe a procedure based on two basic approximations which lead to coupled
quantal–classical equations suitable for calculations [17]. Each approximation
is of first-order in an expansion in a small parameter, so that its limitations
can in principle be found by estimating the higher order terms.

In the first approximation, the PWT equations are given in a semiclassical
limit, obtained to lowest order in �

←→
Λ , so that for two operators Â and B̂,

Â exp(−i�
←→
Λ /2)B̂ � Â(1 − i�

←→
Λ /2)B̂, (10)

which is justified provided the operators are slowly varying functions of phase
space variables (P,R). Further it follows that −Â←→Λ B̂ = {Â, B̂} a Poisson
bracket in a given order. This leads to

∂Γ̂W

∂t
= (i�)−1[Ĥqu + Ĥcq, Γ̂W] + {Hcl, Γ̂W}

+
1
2
({Ĥcq, Γ̂W} − {Γ̂W, Ĥcq}), (11)

where we find to the right a first term corresponding to quantal motion,
followed by a term involving only classical motion, and finally a classical–
quantum coupling term which cannot be expressed as a commutator of Γ̂W

with a Hamiltonian and therefore describes a (nonintuitive) new term which
does not appear in other treatments based only on physical considerations.
This is a partial differential equation for a density operator in the quantum
states and of first-order in the 2N+1 variables (P,R, t), which must be solved
starting with the initial value Γ̂W(P,R, tin).

An equation for the quasiclassical phase space density γ(P,R, t) follows
from the trace over quantum variables, giving

∂γ/∂t−{Hcl, γ} =
1
2
trqu({Ĥcq, Γ̂W}−{Γ̂W, Ĥcq}) = trqu({Ĥcq, Γ̂W}) (12)

written in terms of Poison brackets and showing that it it coupled to the
equation for the density operator.
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3.2 Trajectories from Effective Potentials and Forces

It is possible to further simplify the equations taking advantage of the quasi-
classical nature of the P and R variables, by introducing effective potentials
or forces to guide their motion through phase space, by the approximation

{Ĥcq, Γ̂W} � {V ′, Γ̂W} (13)

with V ′(P,R, t) an effective potential function relating to the coupling Hamil-
tonian of quantal and classical variables. This leads to a new potential
V(P,R, t) = V (R)+V ′(P,R, t), and a new classical HamiltonianH ′

cl(P,R, t) =
Hcl(P,R) + V ′(P,R, t), so that the equation for Γ̂W becomes

∂Γ̂W

∂t
= (i�)−1[Ĥqu + Ĥcq, Γ̂W(t)] + {H ′

cl, Γ̂W}, (14)

which takes the usual form found in the literature, with quantum plus clas-
sical terms to the right. This may be justified for example if the density
operator varies slowly with classical positions and momenta. Possible choices
for the effective potential are the Ehrenfest potential V(P,R, t) = V (R) +
trqu[Γ̂W(P,R, t)Ĥcq]/γ(P,R, t) or the average path potential V(P,R, t) =
V (R) + Hcq[qt(P,R), pt(P,R), P,R] with qt(P,R) = trqu[Γ̂W(P,R, t)q̂] and
similarly for pt, or the potential from the effective (Hellmann–Feynman) force

∂V(P,R, t)
∂R

=
∂V

∂R
+ trqu[Γ̂W(P,R, t)

∂Ĥcq

∂R
]/γ(P,R, t). (15)

The same approximation can be made in the equations of motion for γ to
obtain

∂γ

∂t
= {H ′

cl, γ}, (16)

which is the usual equation of motion of the purely classical density of phase
space.

A more accurate equation includes the quantum–classical operator cou-
pling, after adding and subtracting the V ′ term, and reads

∂Γ̂W

∂t
= (i�)−1[Ĥqu + Ĥcq, Γ̂W] + {H ′

cl, Γ̂W}

+
1
2
({Ĥcq − V ′, Γ̂W} − {Γ̂W, Ĥcq − V ′}), (17)

where the last term is a first-order quantum–classical coupling correction.
This could be estimated to make sure that it is small in a given application
and to insure that the previous equations would give accurate results. These
operator equations become, after expansions in a basis of quantal states, sets
of coupled equations for density matrix elements.
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The time-evolution of the phase space density γ(t) can be obtained from
a bundle of trajectories generated by the effective potential at each initial
condition. It is known from the Wigner transform or path integral descriptions
of quantum dynamics that trajectories are in principle coherently coupled.
The effective potentials of our quantum–classical description account for this
indirectly through an average over the quantal density matrix. This provides
a big advantage in numerical applications because each trajectory can be
independently propagated from its initial condition. Other choices have been
suggested instead of the effective potential V, to account in more detail for the
different dependence of each density matrix element with time, [15,16,18–21]
and provide alternative couplings of quantal and classical variables.

Our equations for γ and Γ̂W must be solved simultaneously. To proceed,
it is convenient to introduce the functions R(t) and P (t), solutions of the
Hamiltonian equations

dR
dt

=
∂H ′

cl

∂P
,

dP
dt

= −∂H
′
cl

∂R
(18)

with H ′
cl = P 2/(2M) + V(P,R, t), and initial conditions Rin = R(tin) and

Pin = P (tin). Introducing the total time derivative

dΓ̂W

dt
=
∂Γ̂W

∂t
+

dR
dt
.
∂Γ̂W

∂R
+

dP
dt
.
∂Γ̂W

∂P
(19)

and similarly for γ, we find that γ and Γ̂W depend on the parameters
{Rin, Pin}. When the first-order coupling correction is neglected, they satisfy
the simple equations

dΓ̂W/dt = (i�)−1[Ĥqu + Ĥcq(t), Γ̂W(t)] , dγ/dt = 0 (20)

with total derivatives with respect to time, instead of the previous partial
derivatives, and with the second equality indicating conservation of the phase-
space density. In this way the many-atom description has been reduced to the
simultaneous solution of the above equation for the quantal density operator
coupled to the Hamiltonian equations for the classical variables, for given
initial classical values. The first-order coupling can be added to the equation
for Γ̂W if desired.

The procedure we have described allows for the numerical integration of
individual trajectories for each set of initial conditions, which greatly sim-
plifies calculations in applications. It would seem as if the trajectories would
then be noninteracting, while we know that they should interact quantum
mechanically. In fact, the trajectories are indirectly coupled in our treatment
through the effective potential, which is constructed from the quantal terms
in the shared hamiltonian operator and then evolves differently for each initial
condition.
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Expectation values of properties can be obtained from integrals over initial
classical values, considering that the element of volume in phase space is
independent of time so that dR dP = dRindPin. With this, we find that

〈A〉 = tr(Γ̂WÂW) = trqu[
∫

dRindPin Γ̂W(P,R, t)ÂW(P,R)], (21)

where R and P are known functions of their initial values along the classical
trajectories, and the integral can be constructed as the equations of motion
are integrated over time for each initial condition.

4 Propagation of the Density Matrix

4.1 Propagation in a Local Interaction Picture

Oscillations in time of quantal states are usually much faster that those of
the quasiclassical variables. Since both degrees of freedom are coupled, it is
not efficient to solve their coupled differential equations by straightforward
timestep methods. Instead it is necessary to introduce propagation procedures
suitable for coupled equations with very different time scales: short for quantal
states and long for quasiclassical motions. The following treatment parallels
the formulation introduced in our previous review on this subject [11]. Our
procedure introduces a unitary transformation at every interval of a time
sequence, to create a local interaction picture for propagation over time.

As P (t) and R(t) change over time, basis functions |Φ(P,R)〉 generate
matrix representations that vary over time, and the hamiltonian matrix takes
the form H = Hqu + Hcq − i�〈Φ|dΦ/dt〉. At a given time, this matrix can
be decomposed into a term H0 for fixed positions and zero velocities plus a
term that depends on the instantaneous velocity and drives the system to
its new phase space location. The hamiltonian H0 can be used to generate a
local interaction picture to propagate the density matrix. The computational
procedure starts with the matrix representation Γ̂W = |Φ〉Γ〈Φ|, and the DM
equation is of the form

dΓ
dt

= (i�)−1[Hqu + Hcq − i�〈Φ|dΦ
dt

〉,Γ(t)]

+
1
2
({Hcq − V ′I,Γ(t)} − {Γ(t),Hcq − V ′I}) (22)

with the full time derivative to the left. The last two terms can be made
negligible in applications, with a suitable choice of the V ′ potential.

The coupled quantum–classical equations must be solved for the initial
conditions at t = tin : Rin = R(tin) and Pin = P (tin), and Γin = Γ(tin). In the
time-propagation, the matrices and trajectory variables are assumed known
at a time t0; the density matrices are first obtained as they relax over the
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interval t0 ≤ t ≤ t0 +Δt while keeping the quasiclassical variables fixed. They
are the solutions of the equations

i�dΓ0/dt = H0Γ0(t) − Γ0(t)H0, (23)

which shows that the density matrix changes with time as it relaxes from its
(nonstationary) value at t0. The initial conditions in the interval are Γ0(t0) =
Γ0. Since the Hamiltonian matrix is now constant in time, these coupled
equation are simple first-order differential equations with constant coefficients,
and can be integrated by diagonalizing the matrix of coefficients. The results
are sums of rapidly oscillating functions in time, reflecting the rapid quantal
transitions.

In reality the quasiclassical variables are changing and one must account
for the driving effect of their displacement due to the finite velocities within
the interval t0 ≤ t ≤ t1. Provided this is small, and insofar as the quasiclassical
motions are slower than the quantal ones, one can assume that the driving
effect will only give corrections to the relaxing densities; this can be verified
by shortening the time interval and repeating the calculations. The corrected
densities are obtained writing

Γ(t) = Γ0(t) + U0(t)Γ′(t)U0(t)†, U0(t) = exp[− i
�
H0(t− t0)] (24)

for the density matrix, where U0 defines a unitary transformation to a local
interaction picture at each time t0.

Replacing this in the L–vN equation, it is found that

i�
dΓ′

dt
= [V,Γ0] + [V,Γ′],

V(t) = U0(t)[H(t) − H0]U0(t)†. (25)

Here the matrix V contains the velocity dependent quasiclassical displace-
ments within H(t) and therefore gives a driving effect. Formally, the solution
for the density matrix correction is

Γ′(t) = Δ′(t) + (i�)−1

∫ t

t0

dt′ [V(t′),Γ′(t′)],

Δ′(t) = (i�)−1

∫ t

t0

dt′ [V(t′),Γ0], (26)

where the driving term Δ′ can be obtained from a quadrature, and the second
term can be made negligible by controlling the size of increments of t.

4.2 The Relax-and-Drive Computational Procedure

Straightforward stepwise integration of the coupled Hamiltonian and L–vN
differential equations would be inefficient and possibly computationally in-
accurate, because the fast quantal oscillations demand very small time steps,
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while the slow quasiclassical motions must be followed over long times, requir-
ing many steps. An alternative is to separately do some of the integrations
by quadratures. A simple and yet useful procedure employs the first-order
correction Γ′(t) = Δ′(t) and an adaptive step size for the quadrature and
propagation. The density matrix is approximated in each interval by

Γ(t) = Γ0(t) + U0(t)Δ′(t)U0(t)† (27)

with the first term describing relaxation and the second one giving the driving
effect.

To advance from t0 to t1 =t0 + Δt, the quasiclassical trajectory is first
advanced to the time t1/2 = t0 + Δt/2 and the relaxing density Γ0(t) is
calculated at this time; then the correction Δ′(t1) is obtained with the (easily
improved) integrand approximation

V(t) = U0(t)[H(t1/2) − H(t0)]U0(t)†, (28)

which allows an analytical integration of each matrix element. This is finally
followed by recalculation of the quasiclassical trajectory and full density ma-
trix at time t1. To ensure an accurate propagation, the step size Δt is varied
to keep the density matrix correction within high and low tolerances in the
interval, in accordance with εlow ≤ ‖ Δ′(t) ‖ / ‖ Γ0(t) ‖ ≤ εhigh and the nor-
malization is checked. This leads to an efficient adaptation of the step size, so
that for example in a collision it will start large, will then decrease, and later
increase again after the interaction forces have disappeared. The propagation
accuracy can also be verified by reversing the propagation direction in time.

This sequence, based on relaxing the density matrix for fixed nuclei and
then correcting it to account for quasiclassical motions has been called the
relax-and-drive procedure, and has been numerically implemented in several
applications involving electronic rearrangement in atomic collisions [11].

5 Gaseous Dynamics

5.1 Photodissociation of NaI

A two-state model of the NaI molecule involves two diabatic potential curves
and an interaction coupling them around their crossing. State |1〉 describes a
covalent bonding between Na and I, while state |2〉 describes the ionic species
Na+ and I−. The Hamiltonian elements are [22] H11(R) = A1 exp[−β1(R −
R0)], H22(R) = [A2 +(B2/R)8] exp(−R/ρ)−1/R−(λ+ +λ−)/2R4−C2/R

6−
2λ+λ−/R7 + ΔE0, and H12(R) = A12 exp[−β12(R − Rx)2], with the model
parameters given in [23]. This gives a potential well for the ionic state 2
coupled to a repulsive potential for the neutrals state 1 in the region of their
crossing.
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Although this is a simple special case, it provides a test of all the im-
portant features of our treatment. In particular, it tests the present use of
effective forces because it involves a nearly bound motion in the ionic state
2 coupled to a nearly free motion in the neutrals state 1, with very different
forces for each independent state. The quantum–classical approach with our
effective potentials allows us to follow the populations and coherence of the
ionic and neutral states for NaI, starting on its excited state after excitation
by a femtosecond pulse, with a quantal distribution of initial conditions. Av-
erage distance and velocity changes can also be calculated to gain insight into
the nature of the dissociation. The following calculations were done with the
effective Hellmann–Feynman forces.

The computational procedure introduces the matrix representation Γ̂W =
|Φ〉Γ〈Φ|, in terms of the row matrix |Φ〉 = [|1, R〉, |2, R〉]. The propagation of
the density matrix over time requires integration of the sets of coupled differ-
ential equations for the quasiclassical trajectories and for the density matrix.
Here we work with a diabatic electronic basis set for which 〈Φ|dΦ/dR〉 = 0.
The coupled equations are, dP/dt = −∂H ′

cl/∂R and dR/dt = ∂H ′
cl/∂P as

before, and

dΓ/dt = (i�)−1(HΓ − ΓH) (29)

that must be solved for the initial conditions at t = tin : Rin = R(tin) and
Pin = P (tin), and Γin = Γ(tin). This has been done with the relax-and-drive
procedure.

Populations and Coherence

We construct the initial DM from the lowest vibrational state of the harmonic
well of the ionic potential. At t = 0, the wavefunction undergoes a sudden
optical promotion to the neutral curve, so that the PWTDM becomes,

Γ11(P,R) = π−1exp{−[(R−R0)/σ]2 − σ2(P − P0)2}, (30)

with Γ12 = Γ21 = Γ22 = 0.
We have defined three populations [23]: Ionic

(
η2 =

∫∞
0

dR
∫

dPΓ22

(R,P, t)
)
, bound neutral

(
ηb
1 =

∫ Rx

0
dR
∫

dPΓ11(R,P, t)
)

and free neutral(
ηf
1 =

∫∞
Rx

dR dPΓ11(R,P, t)
)
, and introduce the coherence amplitude η12 =∫∞

0
dR
∫

dP Γ12(R,P, t). These quantities evolve in time while coupled to the
evolution of a grid of phase space points arising from the initial discretization
of the P and R variables, which are then followed as they move over time.
A total of 40 points along both P and R (for a total of 1,600 points) have
been used in the following calculations.

Numerical results have been obtained solving our equations with the
present quantum–classical propagation scheme, and also solving the full
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quantum coupled differential equations with the split-operator-fast-Fourier-
transform (SO-FFT) method [24] to generate wavepacket solutions, for com-
parison to ascertain the accuracy of our procedure.

The ionic and covalent populations are displayed in Fig. 1. We see oscilla-
tions in the populations between ionic and covalent states, repeating approxi-
mately every 40,000 au, or about 1 ps. The results from the effective potential
quantum–classical Liouville equation (EP-QCLE) is quantitatively similar to
the exact results from the SO-FFT up to around 3 ps.

The quantum coherence, shown in Fig. 2, initially peaks through the first
crossing, but it is substantially diminished through subsequent crossings. The
EP-QCLE shows quantitatively similar results to the SO-FFT calculations.
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Fig. 1. Ionic and neutral populations over time, from [23]
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Fig. 3. Phase space grid at the end of the simulation, from [23]

The time evolution of the average value of the position, 〈R〉, and its dis-
persion ΔR have also been calculated [23] and show very good agreement
with accurate results up to about 1.0 ps. At later times the average maintains
qualitative accuracy up to 3 ps, while the dispersion ΔR starts to diverge
from the accurate values. The dispersion is much more sensitive to the larger
asymptotic populations in the SO-FFT simulation.

Phase Space Evolution

The deformation of the phase space grid has been followed from its initial rec-
tangular shape to the distribution plotted in Fig. 3, and shows characteristics
of both free and bound motions.

One set of grid points rapidly moves over time from the center of the
grid, quickly straightening to reflect a negligible force on the points. These
points represent the asymptotically free neutral components of the PWTDM.
A second set of points circles around, gaining velocity and position, then
turning. The formed ellipses are characteristic of the phase space of classical
particles in a well. Therefore the quasiclassical motion of the PWTDM points
under the Hellmann–Feynman force correctly show the features of motion on
both ionic and covalent curves. This can also be seen in a sequence containing
frames at each 4,000 au [23].

5.2 Collisional Excitation

The PWT of the density operator can be used to describe atomic and
molecular collisions involving electronic excitations, by combining a time-
dependent many-electron treatment with a quasiclassical description of the
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atomic motions in a first principles treatment. The terms first principles,
ab initio and direct molecular dynamics equivalently refer to a class of meth-
ods for studying the dynamical motion of atoms while the electronic structure
is generated “on the fly,” and atomic forces are computed directly from the
electronic structure of the system. A report along these lines [11] has cov-
ered treatments combining eikonal (or short wavelength) wavefunctions for
the atomic motions and TDMOs for electrons. The present PWT of the DOp
allows for a generalization where the short wavelength limit is applied to phase
space. To illustrate the procedure, we present here results for the processes
M(nl) + Ng → M(n′l′) + Ng, where M is an alkali atom and Ng a noble
gas atom, and in particular for Li(2s) + He → Li(2p) + He. In this case it is
possible to obtain accurate results using atomic pseudopotentials, that reduce
the many-electron problem to a single-electron case [25].

The electronic hamiltonian, writen in terms of the pseudopotentials V̂ PP
el ,

using here atomic units with � = e = me = 1 and neglecting spin–orbit
coupling, is

ĤPP
el = − 1

2∇2
rA

+ V̂ PP
el , V̂ PP

el = V̂A(rA) + V̂AB(rA,R). (31)

Here A refers to the alkali atom and B to the noble-gas atom and R is the
relative position of the two centers. The atomic pseudopotential V̂A describes
the interaction between the valence electron at rA and the center A. The
term V̂AB contains the interaction between the electron and the Ng atom,
electron–cores and core–core potentials. The PWT allows introduction of a
classical-like hamiltonian for the nuclear motions of form

H(P ,R) =
P · P
2M

+ V(P ,R), (32)

where P is the relative momentum, and the effective potential V can be writ-
ten as V = tr(ρ̂ĤPP

el )/tr(ρ̂), where ρ̂ = |ψ〉〈ψ| is the electronic density opera-
tor. The dynamics is carried out by solving the Hamilton equations

dR/dt = ∂H/∂P , dP /dt = −∂H/∂R (33)

coupled to the time-dependent differential equation for the density operator
ρ̂(t)

i∂ρ̂/∂t = ĤPP
el ρ̂− ρ̂ĤPP

el , (34)

where the time derivative here is (∂/∂t)r = (∂/∂t)r,R + (dR/dt) · ∂/∂R, so
that it implicitly includes gradient couplings between electronic states.

The TDMO ψ can be expanded as a linear combination of the traveling
atomic functions ξμ

ψi(r, t) =
∑

μ ξμ(r, t)ciμ(t), ξμ(r, t) = Tm(r, t)χμ(r), (35)

where the c’s are complex expansion coefficients, χμ(r) is an atomic orbital
centered at core position Rm(t) for the electron with position r, and Tm(r, t)
is an electron translation factor.
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The density operator in the basis of traveling atomic orbitals is written as

ρ̂(t) =
∑
μν

| ξμ〉Pμν(t)〈ξν |=| ξ〉P〈ξ |, (36)

where P is the density matrix, with matrix elements Pμν(t) =
∑

occ i c
∗
μi(t)

cνi(t), and the differential equation for the density matrix is then transformed
into

iṖ = WP − PW† , W = S−1HT, (37)

where S = 〈ξ | ξ〉 is the atomic overlap matrix, and HT is the hamiltonian
matrix in the traveling atomic basis.

Calculations require generating electron integrals, as described in [25], to
construct the matrices in W. The density matrix P can then be propagated
with the relax-and-drive procedure mentioned before. Some results are pre-
sented in Fig. 4, [25] obtained with four different sets of atomic basis functions:
Basis I (6s5p2d/4s4p2d); Basis II (6s5p3d/4s4p3d); Basis III (7s6p4d/5s5p4d);
and Basis IV (9s9p5d/7s7p5d). Results for sets III and IV are indistinguish-
able in the graphics. The results with the largest basis set are in very good
agreement with experiments over a wide range of laboratory collision ener-
gies (1.0–10.0 keV), and illustrate the importance of using large basis sets to
obtain reliable results.
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Fig. 4. Integral cross-sections for the excitation Li(2s) to Li(2p) in Li–He collisions
(Elab = 1.0–10.0 keV), comparing results with several basis set and experimental
data, from [25]
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6 Dissipative Dynamics in Extended Systems

6.1 Equation of Motion of the Reduced Density Operator

Localized dynamics in a complex molecular system, induced by light absorp-
tion or by collisions, is accompanied by energy dissipation into the medium
and by effects of fluctuation forces. When a molecular subsystem of interest
is strongly coupled to its surroundings, it is convenient to define a primary or
p-region including the subsystem and neighboring atoms, and a remaining sec-
ondary or s-region. This is illustrated in Fig. 5, for energy dissipation between
times t and t′. The dissipation is generally delayed and involves a memory
term in the dissipative rate. In special cases the s-region undergoes an instan-
taneous dissipation at each time t, or an instantaneous and time-independent
dissipation (a Markovian dissipation).

The extension of the previous treatment to a system in a medium starts
from Γ̂ (t) to derive the equation of motion of the reduced density operator
for the p-region, (RDOp) ρ̂(t) = trs[Γ̂ (t)], involving the trace over s-region
variables. This equation includes a dissipative term, given by a Liouville su-
peroperator L̂(D)

p that can be obtained from the interaction with an s-region.
The PWT is applied only to the p-region so that the quantum and classical
Hamiltonians of the previous section refer to the p-region. The s-region can
be described in terms of its collective motions and a distribution of initial

Fig. 5. Interaction of primary (p) and secondary (s) regions for transitions between
p-states g and e, coupled to an s-region where dissipation of energy occurs between
times t and t′
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motion amplitudes [17,26] when the region is a surface or a crystal, and it can
be described by means of stochastic dynamics or hydrodynamics when it is a
fluid or dense gas.

The dissipative term in the L–vN equation has been derived in several
ways. Three models of current interest are based on dissipative potentials
[26–28], on dissipative rate operators [29, 30], and on a memory obtained

to second-order in the p–s coupling, [8, 31, 32]. The treatments take simpler
forms when the coupling of p- and s-regions is of the bilinear form Ĥps =∑

j Â
(j)
p B̂

(j)
s , in which case the dissipation effects can be expressed in terms

of time-correlation functions of the s-region.
Strong couplings must be expected between p- and s-regions when the lat-

ter is activated for example by light absorption or atomic collisions, or when
there are chemical bonds between atoms in the p- and s-regions. A pertur-
bative treatment of their interaction would not suffice; an alternative is to
obtain approximate solutions to the L–vN equation assuming that they can
be factorized after averaging over the distribution of initial s-region proper-
ties, as

Γ̂ (t) = ρ̂(t) ⊗ Γ̂ (s)(t) (38)

at all times, with Γ̂ (s) describing the s-region and with normalizations trpρ̂ = 1

and trsΓ̂ (s) = 1. If for example the s-region involves collective modes such as
phonons or charge density waves, then the averaging is done over the distri-
bution of initial values of mode amplitudes and phases. The above product
form is more general than the usual Fano factorization [3], insofar the latter
assumes that the secondary region can be described by a time-independent
(and usually equilibrium) density operator. Our factorization allows for ac-
tive media, as found in femtosecond pulse excitations of complex systems.
This expression leads to coupled equations for p- and s-regions, which can be
constructed to provide mean-field solutions, or more generally to give selfcon-
sistently correlated states, as we next describe.

To derive an equation for ρ̂(t) including p–s correlations, we start from
the full L–vN equation for Γ̂ (t). Introducing Liouville superoperators shown
as caligraphic symbols, such as Ĥ = [Ĥ, •], to write

i�∂Γ̂ /∂t = ĤΓ̂ (t). (39)

We will transform this into an integrodifferential form as has been done to dis-
play correlations in the s-region [4], summarizing the derivation first without
an external field. Solving formally for the density operator, with a decomposi-
tion Ĥ = F̂ +ĤF , where F̂ is a convenient, possibly time-dependent, effective
hamiltonian to be defined, we have

Γ̂ (t) = Û0(t)Γ̂ (0) + (i�)−1

∫ t

0

dt′ Û0(t, t′)ĤF (t′)Γ̂ (t′), (40)
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where Û0(t, t′) = expT [−i
∫ t

t′ dt′′F̂(t′′)/�], written as a time-ordered exponen-
tial. Replacing this integral form in the original L–vN equation gives

i�∂Γ̂ /∂t = F̂ Γ̂ (t) − R̂(t)Γ̂ (0)

+(i�)−1

∫ t

0

dt′ M̂(t, t′)Γ̂ (t′). (41)

Here R̂(t) = ĤF Û0(t) is an energy fluctuation term and M̂(t, t′) = ĤF Û0(t, t′)
ĤF = R̂(t)R̂(t′)† is a dissipative memory term. Taking the trace over
s-variables on both sides one obtains a generalized Langevin equation (or
GLE) for ρ̂.

To obtain equations for selfconsistently correlated ρ̂ and Γ̂ s, it is convenient
to make the choice of effective Hamiltonian

F̂ = F̂p + F̂s − 〈〈Ĥps〉〉 , F̂p = Ĥp + Ĝp (42)

with Ĝp = trs[ĤpsΓ̂ (s)] and 〈〈Ĥps〉〉 = trps[Ĥpsρ̂Γ̂ (s)], and similarly for the
s-operators. This definition leads to ĤF = Ĥps − (Ĝp + Ĝs) + 〈〈Ĥps〉〉, a
residual coupling due to the nonfactorized correlation of motions in the p-
and s-regions which averages to zero at all times. Using the factorized form
of Γ̂ on the right hand side of the equation for ρ̂, one obtains

i�∂ρ̂/∂t = F̂pρ̂(t) − R̂p(t)ρ̂(0)

+(i�)−1

∫ t

0

dt′ M̂p(t, t′)ρ̂(t′), (43)

where R̂p = trs[R̂Γ̂ (s)] and M̂p = trs[M̂Γ̂ (s)] are expressions for fluctuation
and dissipative terms from the p–s coupling. Dissipation in the s-region can be
similarly treated, making the same stochastic medium assumptions to obtain
the equation of motion for Γ̂ (s)(t).

An alternative procedure for the derivation of dissipative rates relies on
projection operator techniques for the L–vN equation [8, 33–36]. The treat-
ment is more general than the SCF one when the s-region is at equilibrium,
but involve more complicated equations. For a bath at equilibrium, with
DOp Γ̂

(s)
eq , a projection superoperator P̂ eq is defined by Γ̂P(t) = P̂eqΓ̂ (t) =

Γ̂ (p)(t)Γ̂ (s)
eq /trs(Γ̂

(s)
eq ), where Γ̂ (p) = trs(Γ̂ ) is as before the reduced density

operator of the p-region, and a complementary projection superoperator is
defined by Q̂eq = Î − P̂eq. The projected density operator Γ̂P has the factor-
ized form of an SCF approximation, here for a medium at equilibrium, and
Γ̂Q(t) = Q̂eqΓ̂ (t) describes correlation corrections. Projecting the L–vN equa-
tion with both P̂eq and Q̂eq, one finds coupled equations of motion for Γ̂P and
Γ̂Q, which can be formally solved to obtain an integrodifferential equation for
Γ̂P. It provides a generalization with a delayed dissipation term containing a
memory superoperator.
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When the bilinear coupling Ĥps =
∑

j Â
(j)
p B̂

(j)
s is weak, the memory can

be approximated to second-order in the coupling, and is expressed in terms of
time-correlation functions C(jk)

s (t) = �
−2〈ΔB̂(j)

s (t)ΔB̂(k)
s (0)〉 of the s-region,

where ΔB̂(j)
s = B̂

(j)
s − 〈B̂(j)

s 〉s. Taking the trace over s-variables then gives,
for operators in the interaction picture generated by Ĥ0 = Ĥp + Ĥs, [8]

∂ρ̂/∂t = (i�)−1
∑

j

〈B(j)
s 〉[Â(j)

p , ρ̂(t)]

−
∑
j,k

∫ t

0

dt′ {C(jk)
s (t− t′)[Â(j)

p (t), Â(k)
p (t′)ρ̂(t′)]

−C(kj)
s (−t+ t′)[Â(j)

p (t), ρ̂(t′)Â(k)
p (t′)]−}, (44)

which identifies a memory kernel superoperator K̂(t, t′) in this approximation.
A variety of methods have been developed to integrate these equations of
motion [37–41].

6.2 Instantaneous Dissipation

The equation for ρ̂ is simplified when the s-region can be described as a
stochastic medium where fluctuations relax rapidly toward mean values and
the delay of the dissipative memory can be neglected. This can be done in
the context of the selfconsistent factorization when (1) the fluctuation forces
average to zero on the primary time scale, i.e., R̂(t)Γ̂ (0) = 0; and (2) the
memory kernel describes instantaneous dissipation, so that M̂(t, t′)Γ̂ (t′) =
δ(t−t′)Ŵ(t)Γ̂ (t), giving a time-dependent dissipative potential superoperator.
The equation for ρ̂(t) is then

∂ρ̂/∂t = (i�)−1[F̂p, ρ̂(t)] + L̂(D)
p ρ̂(t), (45)

where L̂(D)
p = −Ŵp(t)/(2�) and Ŵp(t) = trs[Ŵ(t)Γ̂ (s)(t)] is an instantaneous

dissipative potential quadratic in ĤF . This dissipative potential superoper-
ator depends generally on the time t, but in some cases it can be assumed
to be independent of t, giving a Markovian approximation. The dissipative
term cannot be written as a commutator of the RDOp with a Hamiltonian,
and therefore it is necessary to solve the differential equation directly for the
RDOp.

A popular choice for the Markovian dissipative superoperator follows from
the so-called Lindblad-type expression, [29,30] which amounts in our notation
to

L̂(D)
p ρ̂(t) =

∑
L

{
Ĉ(L)

p ρ̂(t)Ĉ(L)†
p −

[
Ĉ(L)†

p Ĉ(L)
p , ρ̂(t)

]
+

/
2
}
, (46)

where the Ĉ(L)
p are operators in the p-region constructed from information

about relaxation and decoherence times in the s-region. This form main-
tains complete positivity, and also leads to an RDOp ρ̂(t) of constant norm.
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The operators Ĉ(L)
p can be constructed as combinations of position and mo-

mentum operators in the p-region, or from empirical transition rates kα′←α

between orthonormal eigenstates Φp
α and Φp

α′ of F̂p [42]. The index L then
refers to a given transition α → α′, and the corresponding operator is
Ĉ

(L)
p =

√
kα′←α|Φp

α′〉〈Φp
α|.

The PWT of the resulting equation of motion can be obtained expressing
a product [ÂB̂Ĉ]W in terms of each operator PWT, and keeping the first-
order in the operator �

←→
Λ . The resulting equation of motion for ρ̂W also leads

to a new equation for the phase space density γ, after taking the trace over
quantum variables.

Alternatively, the equation of motion can be obtained from the Hamil-
tonian F̂pW, using its eigenstates |Φp

I (P,R)〉 for mixed quantum–classical
states I at each phase space point (P,R) to construct the operators Ĉ(L)

pW(P,R)
of the Lindblad expression, with semiempirical rates kJ←I(P,R). The result-
ing matrix equation is

dρ

dt
= (i�)−1[Fqu + Fcq − i�〈Φ|dΦ

dt
〉,ρ]

−(1/2)
∑
L

{[C(L)†C(L),ρ]+ − 2C(L)†ρC(L)}, (47)

where C(L) = [
√
kJ←I ] is an NB ×NB matrix. The DM depends on the initial

conditions in phase space, and it can be obtained as before on a grid, now
constructed in the p-region phase space. The matrix equation is equivalent
to a set of coupled linear equations for functions of time, which must be
simultaneously integrated with the classical density in phase space, γ(t). The
propagation of the DM, which generally changes rapidly over time compared
to γ(t), can again be done with our relax-and-drive procedure. This advances
time from t0 to t1 by first generating a relaxing ρ0(t) from F(t0) and then
correcting it by quadratures to account for the driving term ΔF(t) = F(t) −
F(t0). Similar equations can be derived for the time evolution of the RDOp
and RDM in the s-region.

7 Adsorbate Dynamics

7.1 Photodesorption

The main steps in the femtosecond photodesorption of CO from Cu(001) are
excitation by the substrate, followed by energy transfer to the adsorbate re-
gion and break-up of the Cu–C bond [43]. The desorption dynamics is fast
compared with vibrational motions in the substrate metal, so that only elec-
tronic excitation and de-excitation of its electrons must be considered. The
steps are as follows.

CO(v)/Cu(001)
light−→ CO(v)/Cu(001)∗ (light absorption)

CO(v)/Cu(001)∗ → CO(v′) + Cu(001)∗ (break-up)
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corresponding to an indirect photodesorption, where v indicates the collection
of vibrational quantum numbers for the normal modes of the adsorbate. The
modes with the lowest excitation energy, and most likely to be excited during
desorption, are the so-called frustrated translation and frustrated rotations
[44]. The position of the center of mass of the CO above the surface is called
Z, the frustrated translation coordinate parallel to the surface is x, and the
frustrated rotation angles are (θ, φ), as shown in Fig. 6, in a cluster model
CO/Cu6 for the adsorbate site. The potential energy surfaces and distance
dependent transition dipoles were calculated from the electronic structure of
CO/Cun clusters and were parametrized for calculations of the dynamics [28].

In the application that follows, an external electric field pulse E(t) lasting
femtoseconds, first excites the s-region and leads to a density operator Γ̂ s =
Γ̂ s

0 + Γ̂ s
l where the second term results from the response of the s-region to

the field. This then shows as an indirect excitation of the p-region, through
the SCF potential Ĝp = Ĝ0

p + Ĝl
p. The second term here is expressed as

the field coupled to an effective p-dipole operator which can be parametrized
from experiment, or alternatively it is written as the coupling of the p-dipole
operator to an effective field in the p-region, as has been recently derived from
a theory of the nonlinear response of the s-region to a pulse of light [45].

In our model, the transfer of energy from the substrate metal to the ad-
sorbate region is mediated by the dipole–dipole interaction

Ĥps =
∫

d3rs
D̂p(rp) · P̂ s(rs) − 3[D̂p(rp) · np]P̂ s(rs) · ns

|rs − rp|3
(48)

from which the SCF potential Ĝp, a dissipative potential Ŵp and dissipative
rates in the s-region can be derived. Here D̂p is the dipole operator of the
p-region, P̂s is the dipole operator per unit volume in the s-region, and ni =
ri/ri, i = p, s, denotes a unit vector in the p- or s-region. This simplifies for

Cu

Cu Cu

Cu
Cu Cu

C

O

{Z

x

θ

φ

Fig. 6. The CO/Cu6 cluster model of CO/Cu(001) for the adsorbate region
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an electric field of long wavelength polarized parallel to the surface, to give
for the SCF potential [45]

Ĝp(rp, t) = D̂p(zp)Ds(t;Zs)|Zs − zp|−3, (49)

where Ds(t;Zs) is the average substrate dipole induced by the applied field
inside the metal at distance Zs.

In our previous work [27,28,45], we have implemented the dissipative po-
tential approach in a computationally convenient way, starting instead with a
total density operator expressed in terms of density amplitudes Ψμ(t) with sta-
tistical weights wμ, as Γ̂ =

∑
μ wμ|Ψμ〉〈Ψμ|. An average over initial conditions

in the s-region is assumed to give factorized weights wμ = wp
αw

s
β and ampli-

tudes Ψμ(t) = Ψp
α(t)Ψs

β(t), used to construct as above an integrodifferential
equation for the p-region amplitude. The p-density operator is

ρ̂(t) =
∑
α

wα|Ψp
α〉〈Ψp

α| (50)

and the assumptions of instantaneous dissipation give then p-amplitude
equations

i�
∂

∂t
|ψp

α〉 = (F̂p − iŴp/2)|ψp
α(t)〉, (51)

where now Ŵp is a positive dissipative operator quadratic in the residual
coupling ĤF [27], given by

Ŵp(t) = (2/�)
∫ t

0

dt′ trs[ĤF Û0(t, t′)ĤF Γ̂ s(t′)] (52)

and the normalized p-amplitudes are |Ψp
α〉 = |ψp

α〉/〈ψp
α|ψp

α〉. This explicit form
for the dissipative potential allows for its calculation or parameterization start-
ing with an atomic model of the p-region. Additional details may be found
in [27,28].

Instead of trying to describe the s-region in full detail, it is enough to follow
its dynamics only to the extent needed to model the phenomena of interest in
the p-region. This can be achieved using a description of the s-region in terms
of time-dependent macroscopic variables T (t) and N̄(t), the temperature, and
number of electrons in the substrate, and of a reduced one-electron density
operator γ̂(s)(t), involving a subset of energy band states {φ(s)

λ } of the s-region.
Equations for the time-evolution of T (t), N̄(t), and γ̂(s)(t) can be derived from
Γ̂ (s)(t). These quantities appear in the dissipative potential through (52), and
therefore the p-region dynamics depends on their values.

Insofar the electronic relaxation in the metal is fast, dissipation can be
assumed instantaneous, and the s-dissipative rate superoperator can be taken
as the Lindblad form

L̂(D)
s γ̂(s)(t) =

∑
L

{Ĉ(L)
s γ̂(s)(t)Ĉ(L)†

s − [Ĉ(L)†
s Ĉ(L)

s , γ̂(s)(t)]+/2}. (53)
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One way to implement this, already used in studies of photodesorption [42,45],
is to make the choice Ĉ(L)

s =
√
κλ→λ′ |φ(s)

λ′ 〉〈φ(s)
λ |, where the transition rates

κλ→λ′ , obtained from separate calculations or from experiment, can be used
to construct the dissipative rate operator. This leads to an equation of motion
for the reduced matrix γ(s)(t) with elements γ(s)

λ′λ(t) in a basis of stationary
s-states.

To summarize, the description of coupled p- and s-regions requires the
solution of the following set of coupled differential equations.

∂

∂t
ψp

α(X, t) = (i�)−1[F̂p(t) − iŴp(t)/2]ψp
α(X, t) (A),

dT/dt = F [T (t), N(t)] , dN/dt = G[T (t), N(t)] (B),
dγ(s)/dt = (i�)−1[Fs(t),γ(s)(t)] + L(D)

s γ(s)(t) (C), (54)

where X is the collection of atomic variables. Here the functions F and G
can be obtained from treatments of near equilibrium processes and contain
macroscopic parameters such as heat capacities, excitation rates, and relax-
ation rates [46]. The hamiltonian operator F̂p(t) and the matrix Fs(t) of the
effective hamiltonian in the s-region are shown to be time dependent, to allow
for inclusion of couplings with an external light pulse of electric field E(t).
The set of coupled equations in (A),(B),(C) must be solved coupled to each
other.

To implement a numerical solution of these equations, it is further neces-
sary to transform the partial differential equation of the p-density amplitudes
into coupled ordinary differential equations in time. This can be done expand-
ing the amplitudes in a basis of electronic states {|Φ(el)

J (X)〉}, for electronic
states J = g, e, or more generally in a basis of vibronic states. In what follows
the p-region variables have been assumed quantal in nature, with Z discretized
on a grid, and (x, θ, φ) motions described with basis functions. Introducing a
basis set of vibronic states

|ΦJv(Z, x, θ, φ)〉 = |φ(el)
J (Z, x, θ, φ)〉φT

vx
(x)Ur(θ)Vs(φ), (55)

where the ket indicates an electronic state for fixed nuclear positions, and φT
vx

,
Ur and Vs are basis functions suitable for the surface vibrational modes with
quantum numbers v = (vx, r, s), the p-amplitude ψgv is expanded as

|ψgv(Z, x, θ, φ, t)〉 =
∑
J,v′

|ΦJv′(Z, x, θ, φ)〉ψ(nu)
Jv′,gv(Z, t) (56)

and the equation for the matrix ψ(nu)(Z, t) of coefficient functions is

∂ψ(nu)

∂t
= (i�)−1[F̂p − iWp/2 − Ep(t)Dp]ψ(nu) (A′). (57)

The equations in sets (A’), (B), and (C) are all coupled, but sets (B) and (C)
can first be integrated over time to obtain the response of the s-region, and
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their results can be interpolated over time as needed to integrate the set (A’),
where the effective field in the p-region must be obtained from that response.

The equations have been solved with a split-operator propagator [23] mod-
ified to include the dissipative potential term, and using a fast Fourier trans-
form on a Z-grid of N (p)

G values. The effective electric field in the p-region,
Ep(t), has been obtained from the nonlinear response of the metal substrate as
explained in [47]. The calculations were started with the system in the ground
electronic state, and its vibrational motion along Z given by a wavefunction
φvZ

(Z).
Desorption yields Yα from initial vibrational-electronic state α = (g, vZ ,v),

are obtained integrating the probabilities from a desorption distance ZD to
infinity, as

Yα(t) =
∑
Iv′

∫ ∞

ZD

dZ |ψ(nu)
Iv′,α(Z, t)|2, (58)

which also provides the time evolution of the desorption yield as a pulse of
light is applied.

Calculations have been done for 1-D, 2-D, and 3-D models, with variables
Z, (Z, x), and (Z, x, θ), respectively. Comparison of results from the models
with experimental data [48], are shown in Fig. 7. A single value of the yield
was fit to experiment at a fluence of 3.5 mJ cm−2 [45, 47].

This comparison establishes that the treatment is realistic and that the
1-D model is useful for studies at low fluence. The 2-D models give similar
results for the smaller fluence values, and are very close to the 1-D model.
However as the fluence increases the model including the frustrated rotation
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Fig. 7. Yield Y of CO desorbed from Cu(001) vs. the laser fluence for 1-D, 2-D,
and 3-D models, compared to experiment [48]
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Fig. 8. Yield Y vs. time for several fluence values showing the shape of the ex-
citing laser pulse and the delay in photodesorption calculated in agreement with
experiment [48]

gives better agreement with experiment. The 3-D model is of course more
realistic, and calculations at even higher fluence show that the 3-D model
gives a flatter graph, due to increased de-excitation rates.

The models also display a delay between pulse arrival and photodesorption
as observed in the experiments, calculated with the present model to be about
250 fs, and provide insight on the time evolution of desorption, as shown in
Fig. 8. The delay is associated to the time it takes a wavepacket to build up
its amplitude in the excited repulse potential leading to CO + Cu(001)∗.

7.2 Adsorbate Vibrational Relaxation

An adsorbate at a surface may be vibrationally excited by collisions with
species in a gas, or following relaxation to a ground electronic state after
excitation by light. Here we treat the vibrational degrees of freedom of the
adsorbate and substrate as quantal, with a hamiltonian F̂gg = Ĥ and a RDOp
ρ̂gg = ρ̂. We assume that the medium is at thermal equilibrium and that the
coupling of adsorbate and substrate are small enough so that the memory
superoperator can be calculated to second order in the coupling, in terms of
the substrate correlation functions.

We start with the density operator Γ̂ (t) for the whole system, composed
of a species A interacting with the surface or reservoir R, taken here to be
the p- and s-regions, respectively, and use the projection operator formalism
mentioned at the end of Sect. 6.1. The RDOp ρ̂(t) = trR[Γ̂ (t)], satisfies the
equation

dρ̂(t)
dt

= (i�)−1[Ĥ, ρ̂] +
∫ t

0

K(t, t′)ρ̂(t′)dt′ (59)
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in terms of a memory kernel superoperator K(t, t′), of the form given in (44).
This is a Volterra integro-differential equation that must be solved for the
initial condition ρ̂(0) = ρ̂0 corresponding to the preparation of the system
before relaxation.

We consider the vibrational relaxation of a frustrated T-mode of the adsor-
bate (the primary region or A-subsystem) and treat it as a harmonic oscillator
bilinearly coupled to the surface (the secondary region or R-subsystem), and
model this as a reservoir of harmonic oscillators at a temperature T . The
Hamiltonian for the total system is then Ĥ = ĤA + ĤR + ĤAR with terms
given in a second quantization notation by ĤA = �ω0â

†â, ĤR =
∑

j �ωj b̂
†
j b̂j

and ĤAR = q̂B̂, where q̂ = (â† + â)/
√

2, and with

B̂ = �
√

2
∑

j

κj(b̂
†
j + b̂j). (60)

Here â and â† are the creation and annihilation operators for the frustrated
T-vibrational mode of the adsorbate A with frequency ω0, related to the
vibrational displacement q̂ and momentum p̂, while b̂j and b̂†j are the creation
and annihilation operators for the reservoir R excitations of frequencies ωj .
The κj are coupling strength coefficients. The operators b̂j and b̂†j have a
spectral density per unit frequency g(ω) =

∑
j δ(ω − ωj) that depends on

the nature of the reservoir R excitations. The bilinear coupling ĤAR leads
to delayed dissipation when the range of the spectral density is close to the
adsorbate vibrational frequency, and the dissipative memory kernel can be
expressed in terms of the thermally averaged time-correlation function C(t) =
〈〈B̂(t)B̂(0)〉〉. This includes the spectral function J(ω) given by ω2 J(ω) =
2 g(ω)|κ(ω)|2, and it takes the form

C(t) =
∫ ∞

0

[
cos(ωt) coth

(
�ω

2 kBT

)
− i sin(ωt)

]
ω2J(ω)dω. (61)

The equation for ρ̂ can be transformed into a matrix equation in the basis
set {φr} of eigenstates of ĤA, with eigenenergies Er = �ω0(r + 1/2), where
r = 0, 1, .... Because qsr = 〈φs|q̂|φr〉 = 0 for r �= s± 1, there are no couplings
in a two-state description between the diagonal elements of the density matrix
corresponding to populations and the off-diagonal ones corresponding to quan-
tum coherence, but couplings do appear with more than two states. Properties
of the adsorbate varying over time can be obtained from the density matrix. In
particular, the amount of energy left in the adsorbate motion after its initial
excitation is obtained as ΔEA = EA(t) − EA(0), with EA(t) = trA[ρ̂(t)ĤA],
which reduces in our model to EA(t) = �ω0

∑1
r=0 ρrr(t)(r + 1/2) so that

ΔEA(t) = −�ω0ρ00(t)/2.
In our numerical method [49] we write the matrix version of (59) in a more

compact form, as

dρ(t)
dt

= f [t,ρ(t), z(t)] , z(t) =
∫ t

0

K[t, t′,ρ(t′)]dt′. (62)
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A generalized Runge–Kutta scheme then introduces time increments Δt and
a sequence of j = 1 to m stages of iteration, with values Pn,j = ρ(t0 +nΔt)(j)

and Zn,i = z(t0 + nΔt)(i), in an algorithm which does not require the inverse
of matrices and is applicable to many coupled states.

In what follows we concentrate on adsorbate relaxation due to coupling to
phonons in the substrate. The couplings κj contain contributions both from
direct coupling of vibrations and from their indirect coupling through short
lived electron–hole excitations in the metal, and have been obtained from
experiment [50]. The phonon frequencies ωj may be considered to form a con-
tinuum with spectral density g(ω) = 18πNω2/ω3

D, with g(ω) = 0 for ω > ωD,
and where N is the number of lattice atoms and ωD is the Debye phonon cut-
off frequency. We use a parameterization for κ(ω) in the neighborhood of ω0

of the form |κ(ω)|2 = [p+ q(ω − ω0)]/N where p and q are parameters which
depend on the system, with values for CO/Cu(001) given in [50]. Figure 9
shows populations obtained from the diagonal elements of the RDM for the
systems CO/Cu at 150 and at 300 K, starting with initial values ρ11 = 1,
ρ00 = 0, and ρ01 = 0.

Results for instantaneous dissipation (given in [51]) have been obtained
substituting ρ̂(t′) with ρ̂(t) inside the integral of the Volterra equation, and
they show that the Markovian approximation leads to the correct long time
limit but is deficient at short times. Higher temperatures lead to decreased os-
cillation peaks and a faster relaxation to equilibrium, as expected. For CO/Cu,
the population of the ground state r = 0 oscillates with a period around 2,000
au(T) at both temperatures. Comparing this with the decay time of the cor-
relation function, one concludes that the correlation of reservoir vibrations
does not decay rapidly enough to justify an approximation of instantaneous
dissipation. From Fig. 9, the CO/Cu populations are found to relax within

0 20000 40000
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1

ρ 0
0

ρ00 , (150Κ, upper)
ρ00− 0.6, (300K, lower)

Fig. 9. The ground state population ρ00 vs. time for the CO/Cu(001) system at
temperatures of 150 and 300 K from [51]
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Fig. 10. Real part of the quantum coherence ρ01 vs. time for CO/Cu(001) at 150
and 300 K, for very long times, from [51]

about 4 × 104 au(T), or about 1.0 ps, at 150 K, with this time increasing at
lower temperatures. This is in qualitative agreement with experimental re-
sults [52]. In the above case we set the initial quantum coherence (ρ01 = ρ∗10)
equal to zero, in which case it remains zero in our model. Figure 10 shows our
results for the real part of ρ01 over a longer time range, using an initial value
of ρ01(0) = 0.1 + 0.1i.

The imaginary part of ρ01 shows a similar pattern for long times. Hence
here again, the treatment of dissipation must incorporate memory effects.

8 Conclusion

A general formalism for quantum–classical systems, based on the density
operator and the PWT, can be computationally implemented to deal with
electronically excited systems. In our procedure, this has been done in a semi-
classical limit that assumes short wavelengths in the phase space of classical-
like variables, and introduces an effective potential for each initial condition
in a set chosen from an initial quantum distribution in phase space. This has
provided very good results for the photodissociation dynamics of NaI over
several picoseconds, and also very good cross-sections for electronic excitation
in Li + He collisions.

Dissipative dynamics arising in interactions with a medium can be de-
scribed with a reduced density operator, and with dissipative potentials or
rates related to atomic structure. We have briefly reviewed a derivation of
dissipative potentials for self-consistently correlated primary and secondary
regions of a complex molecular system, and its implementation for compu-
tational work. A procedure has also been described to calculate phenomena
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with delayed dissipation. These two developments have been applied to the
femtosecond photodesorption of CO/Cu(001) and the vibrational relaxation
of the same system after collisional excitation. The results of our models agree
with experimental results and trends in both cases.
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Quantum Dynamics of Ultrafast Molecular
Processes in a Condensed Phase Environment

M. Thoss, I. Kondov, and H. Wang

Summary. The accurate description of quantum effects for reactions in a con-
densed phase environment continues to be a central issue in chemical dynamics.
In this chapter, two recently proposed methods to simulate quantum dynamics
in complex molecular systems are discussed – the multilayer version of the mul-
ticonfiguration time-dependent Hartree method and the self-consistent hybrid ap-
proach. The methods are applied to selected examples of ultrafast photoreactions in
the condensed phase, including electron injection in the dye–semiconductor system
coumarin 343 – TiO2 and intervalence electron transfer in the mixed valence system
(NH3)5RuIIINCRuII(CN)−5 in solution. Furthermore, we discuss the application of
the methodology to simulate photoexcitation processes and time resolved optical
spectra by including the coupling to the laser field explicitly in the calculation.

1 Introduction

Femtosecond laser spectroscopy has revealed that many photoinduced pro-
cesses in complex molecular systems occur on a subpicosecond timescale [1–3].
Prominent examples include cis–trans photoisomerization reactions in pro-
teins [4–7] and photoinduced charge transfer processes in solution or on sur-
faces [8–17]. The accurate description of quantum effects in such reactions
continues to be a central issue in chemical reaction dynamics. Although at
present there is no practical method that is capable of simulating quantum
dynamics for a general, complex molecular system with arbitrary nuclear po-
tentials, significant progress has been made recently in devising methods that
allow accurate simulations of certain classes of quantum dynamical processes
in large molecular systems or in the condensed phase.

Considering only methods that allow a numerically exact simulation of
quantum dynamics in a condensed phase environment, two different strate-
gies have been followed: First, path-integral methods based on the influence-
functional technique [18], where the environment is formally integrated out.
For example, numerical path-integral calculations based on this idea [19–27]
have been used successfully to study the dynamics of the spin-boson model
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[28, 29] — a two-level system interacting with a harmonic bath — which is
a standard model for electron transfer (ET) in the condensed phase [30]. For
cases where the influence functional is known analytically, e.g., for a harmonic
or spin bath, this method allows the description of a problem with an (in prin-
ciple) infinite number of degrees of freedom. For ultrafast molecular processes,
however, one is typically only interested in the dynamics on a relatively short
timescale (up to a few picoseconds). Since on this timescale only a limited
number of degrees of freedom can be resolved, the infinite number of degrees
of freedom of the bath (e.g., a solvent) can be represented by a finite number
of degrees of freedom. In this case basis set methods for wave packet or den-
sity matrix propagation can be used to describe the corresponding dynamics,
which represents the second, alternative, approach.

A particularly efficient method for simulating quantum dynamics in large
systems is the multiconfiguration time-dependent Hartree (MCTDH) method
[31–34]. The performance of this method has been demonstrated by numer-
ous applications to gas-phase reactions of relatively large molecules in recent
years [33–41]. Further applications have shown that this method can also be
used to describe molecular systems in a dissipative environment with a mod-
erate number of degrees of freedom (up to about ≈100) [42–46]. To extend its
applicability to even larger and/or more complex systems, we have recently
proposed two approaches: (1) The self-consistent hybrid method [47,48], where
the accurate treatment of part of the overall system (the “core”) is combined
with an approximate description of the rest of the system (the “reservoir”).
Due to the iterative optimization of the core-reservoir separation included in
the self-consistent hybrid scheme, this method also allows (as the MCTDH
method) an accurate (in principle numerically exact) treatment of the quan-
tum dynamics. (2) A multilayer (ML) extension of the MCTDH method [49],
which (as the original MCTDH method) is a rigorous quantum dynamical
method.

The ML–MCTDH method and the self-consistent hybrid approach have
so far been used to study a variety of ultrafast photoreactions in the con-
densed phase including various model studies of electron transfer (ET) reac-
tions, photoinduced ET reactions in mixed-valence compounds in solution,
heterogeneous ET reactions at dye–semiconductor interfaces, and photoi-
somerization reactions in a condensed phase environment [49–53]. In this
article we review the basic ideas of the ML–MCTDH method and the self-
consistent hybrid approach. To illustrate the performance of the methods,
we discuss applications to two ultrafast photoreactions we have considered
recently: (1) electron injection in the dye–semiconductor system coumarin
343 – TiO2 and (2) intervalence electron transfer in the mixed valence system
(NH3)5RuIIINCRuII(CN)−5 . In addition, we will also discuss the application
of the methodology to simulate photoexcitation processes and time resolved
optical spectra.
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2 Summary of Methodology

2.1 Hamiltonian and Observables of Interest

To study the dynamics of a molecular system in a condensed phase environ-
ment we consider the generic Hamiltonian

H = Hs +Hb +Hsb, (1)

where Hs and Hb denote the Hamiltonian of the system and environment (the
“bath”), respectively, and Hsb their interaction. In the applications, we shall
consider different dynamical observables which can be represented in form of
correlation functions (throughout this paper we use atomic units in which
� = 1),

CAB(t) = tr
{
ρbAeiHtBe−iHt

}
. (2)

Here, A and B denote operators involving the “system” degrees of freedom
that corresponds to some physical quantities (e.g., the reduced density matrix,
dipole moment, etc.) and ρb is the initial density matrix for the “bath” degrees
of freedom. To evaluate the trace we use a direct product basis |n〉|j〉, where
the “bath” states {|n〉} are the eigenstates of Hb, i.e.,

ρb =
∑

n

pn|n〉〈n|, (3)

and the “system” states {|j〉} are any convenient basis, in which operator A
has the representation

A =
∑

j

∑
i

aij |i〉〈j|, (4)

where aij ≡ 〈i|A|j〉. Using this basis to evaluate the trace leads to the following
expression for CAB(t),

CAB(t) =
∑

n

pn

∑
j

∑
i

aij〈n|〈j|eiHtBe−iHt|i〉|n〉

=
∑

n

pn

∑
j

∑
i

aij〈Ψ j
n(t)|B|Ψ i

n(t)〉, (5)

where
|Ψ i

n(t)〉 = e−iHt|Ψ i
n(0)〉 = e−iHt|i〉|n〉. (6)

Thus, the major computational task is to solve the time-dependent
Schrödinger equations

i
∂

∂t
|Ψ i

n(t)〉 = H|Ψ i
n(t)〉, n, i = 1, 2, ... (7)
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with initial conditions

|Ψ i
n(0)〉 = |n〉|i〉. (8)

2.2 Multilayer Version of the Multiconfiguration Time-dependent
Hartree Method

To solve the time-dependent Schrödinger equation we employ the multilayer
(ML) version [49] of the multiconfiguration time-dependent Hartree method
(MCTDH). To review this method, let us first briefly discuss the original
(single-layer) MCTDH theory [31–34]. In this method, the overall wave func-
tion is expanded in terms of many time-dependent configurations

|Ψ(t)〉 =
∑

J

AJ(t)|ΦJ (t)〉 ≡
∑
j1

∑
j2

...
∑
jM

Aj1j2...jM
(t)

M∏
k=1

|φk
jk

(t)〉, (9)

Here, |φk
jk

(t)〉 is the “single-particle” (SP) function for the kth SP degree of
freedom and M denotes the number of SP degrees of freedom. Each SP group
usually contains several (Cartesian) degrees of freedom in our calculation,
and for convenience the SP functions within the same SP degree freedom are
chosen to be orthonormal.

Substituting the MCTDH ansatz, (9), into the Dirac-Frenkel variational
principle [54] results in the following equations of motion [31]

iȦJ (t) = 〈ΦJ(t)|Ĥ|Ψ(t)〉 =
∑
L

〈ΦJ(t)|Ĥ|ΦL(t)〉AL(t), (10)

i|φ̇k
(t)〉 = (1 − P̂ k)(ρ̂k)−1〈Ĥ(t)〉k|φk(t)〉, (11)

where |φk(t)〉 = {|φk
1(t)〉, |φk

2(t)〉, ...}T denotes the symbolic column vector of
(the coefficients of) the SP functions for the kth SP degree of freedom, and
(ρ̂k)−1 denotes the pseudoinverse of the reduced density matrix. The mean-
field operator 〈Ĥ(t)〉k and the reduced density matrix ρ̂k(t) are given by

〈Ĥ(t)〉knm = 〈Gk
n(t)|Ĥ|Gk

m(t)〉, (12)

ρk
nm(t) = 〈Gk

n(t)|Gk
m(t)〉, (13)

where the “single-hole” function, |Gk
n(t)〉, for the kth SP degree of freedom,

is defined as [31–34]

|Gk
n(t)〉 =

∑
j1

...
∑
jk−1

∑
jk+1

...
∑
jM

Aj1...jk−1njk+1...jM
(t)

×|φ1
j1(t)〉...|φ

k−1
jk−1

(t)〉|φk+1
jk+1

(t)〉|φM
jM

(t)〉, (14)
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so that

|Ψ(t)〉 =
∑

n

|φk
n(t)〉|Gk

n(t)〉. (15)

The time-dependent projection operator P k(t) is defined in the subspace of
SP functions as

P k(t) =
∑
m

|φk
m(t)〉〈φk

m(t)|. (16)

The main limitation of the MCTDH approach lies in its way of constructing
the SP functions, which is based on a full configuration-interaction (FCI)
expansion

|φk
n(t)〉 =

∑
I

Bk,n
I (t)|uk

I 〉 ≡
∑
i1

∑
i2

...
∑
iF (k)

Bk,n
i1i2...iF (k)

(t)
F (k)∏
q=1

|ϕk,q
iq

〉. (17)

Here F (k) is the number of Cartesian degrees of freedom within the kth SP
group, and |ϕk,q

iq
〉 denotes the corresponding time-independent primitive basis

functions for the qth Cartesian degree of freedom. The FCI-type expansion of
the SP functions in (17) is usually limited to a few (∼10) degrees of freedom
due to the exponential scaling of the number of basis functions versus the
number of degrees of freedom in one SP group. Furthermore, the multiconfig-
urational expansion of the wave function in (9) is typically limited to ∼10 SP
groups. As a result, a routine MCTDH calculation is limited to systems with
a few tens of quantum degrees of freedom.

The recently proposed ML–MCTDH theory [49] circumvents this limita-
tion by using a dynamic contraction of the basis functions that constitute the
SP functions. Thereby, the FCI-type construction of the SP functions in (17)
is replaced by a time-dependent multiconfigurational expansion

|φk
n(t)〉 =

∑
I

Bk,n
I (t)|uk

I (t)〉, (18)

i.e., the basic MCTDH strategy is adopted to treat each SP function. For
clarity we refer in the following to the SP defined in the original MCTDH
approach as level one (L1) SP, which in turn contains several level two (L2)
SPs

|uk
I (t)〉 =

Q(k)∏
q=1

|vk,q
iq

(t)〉. (19)

Similar to (9), the L1-SP function |φk
n(t)〉 is thus expanded in the time-

dependent L2-SP functions as

|φk
n(t)〉 =

∑
I

Bk,n
I (t) |uk

I (t)〉 ≡
∑
i1

∑
i2

...
∑

iQ(k)

Bk,n
i1i2...iQ(k)(t)

Q(k)∏
q=1

|vk,q
iq

(t)〉.

(20)
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Here, Q(k) denotes the number of L2-SP degrees of freedom in the kth L1-SP
and |vk,q

iq
(t)〉 is the L2-SP function for the qth L2-SP degree of freedom. It is

noted that both are in the context of the kth L1-SP group. The expansion of
the overall wave function can thus be written in the form

|Ψ(t)〉 =
∑
j1

∑
j2

...
∑
jM

Aj1j2...jM
(t) (21)

×
M∏

k=1

⎡⎣∑
i1

∑
i2

...
∑
iQ(k)

Bk,jk

i1i2...iQ(k)
(t)

Q(k)∏
q=1

|vk,q
iq

(t)〉

⎤⎦ .
The equations of motion within the ML–MCTDH approach can again be

obtained from the Dirac–Frenkel variation principle [49]. For two layers, they
are given by

i
∣∣∣Ψ̇(t)

〉
L1 coefficients

= Ĥ(t)
∣∣∣Ψ(t)

〉
, (22)

i
∣∣∣φ̇k

(t)
〉

L2 coefficients
=
[
1 − P̂ k(t)

] [
ρ̂k(t)

]−1
〈
Ĥ(t)

〉k ∣∣∣φk(t)
〉
, (23)

i
∣∣∣v̇k,q(t)

〉
L3 coefficients

=
[
1 − P̂ k,q

L2 (t)
] [
"̂k,q(t)

]−1
〈
Ĥ(t)

〉k,q ∣∣∣vk,q(t)
〉
, (24)

where the L2 mean-field operators and reduced densities are defined, similar
to (22), in terms of the L2 single-hole functions |gk,q

n,r(t)〉

"k,q
rs (t) =

∑
n

∑
m

ρk
nm(t)

〈
gk,q

n,r(t)
∣∣gk,q

m,s(t)
〉
, (25)

〈
Ĥ(t)

〉k,q

rs
=
∑

n

∑
m

〈
gk,q

n,r(t)
∣∣∣〈Ĥ(t)〉knm

∣∣∣ gk,q
m,s(t)

〉
, (26)

|φk
n(t)〉 =

∑
r

|vk,q
r (t)〉 |gk,q

n,r(t)〉. (27)

The projection operator P̂ k,q
L2 in L2-SP space is defined in a similar way as in

(16) as
P̂ k,q

L2 (t) =
∑

l

∣∣vk,q
l (t)

〉〈
vk,q

l (t)
∣∣. (28)

The equations of motion for further layers are obvious extensions of (22)–(24).
The inclusion of several dynamically optimized layers in the ML–MCTDH

method provides more flexibility in the variational functional, which signif-
icantly advances the capability of performing wave packet propagations in
complex systems. This has been demonstrated by applications to several ex-
amples of photoreactions in the condensed phase including many degrees of
freedom [49,50,53].
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2.3 Self-Consistent Hybrid Method

The ML–MCTDH method, as well as the original MCTDH method, are rig-
orous (in principle numerically exact) quantum dynamical methods, i.e., if a
sufficiently large number of SP functions are included, the solution of the equa-
tions of motion converges to the solution of the time-dependent Schrödinger
equation. In many situations, however, there are parts of the overall system
which do not require a rigorous quantum dynamical treatment. For example,
slow solvent degrees of freedom can often also be accurately described using
classical mechanics. A method that takes advantage of this fact without dero-
gating the accuracy of the dynamical calculation is the self-consistent hybrid
(SCH) method [47,48].

Basic Concept

The development of the SCH method was motivated by a variety of other
dynamical hybrid approaches for simulating quantum dynamics in large sys-
tems, such as, for example, the classical Ehrenfest method [55–60] and the
surface-hopping approach [61–66]. The major conceptual difference from these
approaches is that in the SCH method an iterative convergence procedure is
introduced in such a hybrid dynamical simulation. Thereby the overall system
is first partitioned into a core and a reservoir, based on any convenient but
otherwise rather arbitrary initial guess. A hybrid dynamical calculation is then
carried out, with the core treated via a numerically exact quantum mechanical
method and the reservoir treated via a more approximate method. Next, the
size of the core is systematically increased, similar to increasing the number of
basis functions in a basis-set calculation, and other variational parameters are
adapted accordingly until convergence (usually to within 10% relative error)
is reached for the overall quantum dynamics. The details of the convergence
procedure have been discussed previously [47, 48]. The key concepts in the
SCH method are thus the numerically exact treatment of the core and the
systematic optimization of the core size, which makes the method variational
in nature and ensures, at least in principle, convergence to the true quantum
dynamical limit. In contrast to other commonly used hybrid methods, the
SCH method entails no ambiguity in partitioning the overall system into the
core and the reservoir parts – the true quantum dynamical result, by defini-
tion, is obtained when all the degrees of freedom are included in the core. In
practice, however, convergence is achieved in many situations well before such
a rigorous level of theory.

A variety of approaches can be adopted to treat the core/reservoir at a hy-
brid level. The essential requirement is that the quantum mechanical method
used to treat the core should be both accurate (i.e., in principle numerically
exact) and efficient. The approximate method to treat the reservoir should
be easily implementable with reasonable accuracy. The former ensures that a
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moderately large number of core degrees of freedom (e.g., up to a few hun-
dred degrees of freedom in model systems) can be treated in a numerically
exact fashion, so that the converged result is approached in the full-core limit,
whereas the latter ensures both numerical efficiency and the attainment of cer-
tain physical limits. Due to interactions between the core and the reservoir, the
equations of motion for the two parts are coupled and solved simultaneously.

Currently, the most efficient, rigorous quantum dynamical method for
treating the core part is the ML–MCTDH method outlined in Sect. 2.2. The
flexible form of the variational functional in this method allows the quantum
treatment of a much larger core subsystem than it is possible with other ex-
isting methods such as conventional wave packet propagation approaches and
the original MCTDH method. Various approximate methods can be used to
treat the reservoir, e.g., classical mechanics, semiclassical methods [51,67–69],
or quantum perturbation theory. It is usually rather straightforward to select
the most efficient one among these methods by examining the physical regimes
of the reservoir. For example, if the reservoir has a rather low characteristic
frequency, classical mechanics is often adequate to describe its dynamics for
not too low temperatures. On the other hand, if the reservoir has a rather
high characteristic frequency, one may use a perturbative quantum mechani-
cal method to describe its impact on the core. It should be emphasized that
the choice of these approximate methods, together with the core–reservoir par-
tition, merely serves as a trial “initial guess.” The central step of the method
is to systematically include more degrees of freedom in the core for a rigorous
treatment, i.e., a regular convergence test. Similar to situations in many other
self-consistent variational calculations, the better the initial guess, the more
easily the convergence is achieved. However, the converged result does not
depend on the specific initial guess.

Practical Implementation

To discuss some details of implementation of the SCH method, we consider
the correlation function (2) recast in the form

CAB(t) = tr
[
ρ̂NÂ eiĤtB̂e−iĤt

]
. (29)

Here, Ĥ is the Hamiltonian of the overall system, the density operator ρ̂N

describes the initial state of the nuclear degrees of freedom, and Â and B̂ are
observables of interest. In the SCH method the overall system is partitioned
into a core and a reservoir. Accordingly, the total Hamiltonian is separated
into a core and a reservoir part,

Ĥ = Hc(p̂s, ŝ) +Hr(p̂, q̂) +HI(p̂s, ŝ; p̂, q̂), (30)

where Hc(p̂s, ŝ) and Hr(p̂, q̂) represent the uncoupled Hamiltonian for the
core and the reservoir, respectively, and HI(ŝ, p̂s; p̂, q̂) describes their inter-
actions. The corresponding phase-space variables (ps, s) and (p,q) belong to
the core and the reservoir, respectively.
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The core is treated rigorously by the ML–MCTDH method. As has been
discussed earlier, various approximate methods can be used to treat the reser-
voir. The details of the implementation of the SCH method depend on the
specific method used to treat the reservoir. For example, if the reservoir is
treated by quantum perturbation theory, (29) is modified to a reduced trace
over the core degrees of freedom [48]. Most applications of the SCH method
have employed a classical treatment of the reservoir, similar to the classical
Ehrenfest model [55–60], where the dynamics of the core and the reservoir are
governed by different time-dependent Hamiltonians

Ĥeff
c (t) = Hc(p̂s, ŝ) +HI[p̂s, ŝ;pt,qt], (31)

Heff
r (t) = Hr(pt,qt) + 〈ψc(t)|HI(p̂s, ŝ;pt,qt)|ψc(t)〉. (32)

Here |ψc(t)〉 represents the wavefunction for the core, and the Heisenberg
operators (p̂, q̂) for the reservoir have been replaced by their corresponding
(time-dependent) classical phase space variables (pt,qt).

Within this mixed quantum–classical implementation of the SCH method,
the quantum mechanical trace expression in (29) is modified as

CAB(t) =
∫

dp0

∫
dq0 ρ

r
N (p0,q0) tr

{
ρ̂c

N Â B̂(t)
}
, (33)

where B̂(t) denotes the Heisenberg operator which is obtained by time evolu-
tion from B̂ using the time-dependent Hamiltonian Ĥeff

c (t). In (33) the trace
is now only over the core degrees of freedom. The initial density matrix ρ̂N

is split into a core part, ρ̂c
N , and a corresponding classical distribution ρr

N for
the reservoir. In the applications discussed in Sect. 3, the initial phase space
distribution ρr

N (p0,q0) is obtained based on a semiclassical prescription [70]
by taking the Wigner transform [71] of the corresponding operator ρ̂r

N

ρr
N (p0,q0) =

1
(2π)Nr

∫
dΔq e−ip0·Δq

〈
q0 +

Δq
2

|ρ̂r
N |q0 − Δq

2

〉
, (34)

where Nr denotes the number of reservoir degrees of freedom. For cases where
the Wigner transform is not available or difficult to evaluate, a purely classical
Boltzmann distribution function can be used instead.

3 Applications

The ML–MCTDH method and the SCH approach have been applied to
study a variety of ultrafast reactions in the condensed phase [49–53], in-
cluding various model studies of electron transfer (ET) reactions, photoin-
duced ET reactions in mixed valence compounds in solution, heterogeneous
ET reactions at dye–semiconductor interfaces, as well as photoisomerization
reactions in a condensed phase environment. In this section we will con-
sider two representative examples of ultrafast photoreactions in the condensed
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phase: (1) electron injection in the dye–semiconductor system coumarin 343 –
TiO2 and (2) intervalence electron transfer in the mixed valence system
(NH3)5RuIIINCRuII(CN)−5 . Furthermore, we will discuss the application of
the methodology to simulate photoexcitation processes and time resolved
optical spectra.

3.1 Electron Injection in the Dye–Semiconductor System
Coumarin 343 – TiO2

Photoinduced ET reactions at dye–semiconductor interfaces represent an in-
teresting class of charge transfer processes. In particular, the process of elec-
tron injection from an electronically excited state of a dye molecule to a
semiconductor substrate has been investigated in great detail experimen-
tally in recent years [12–14, 72–84]. This process represents a key step for
photonic-energy conversion in nanocrystalline solar cells [12, 75, 76, 85, 86].
Employing femtosecond spectroscopy techniques, it has been demonstrated
that electron injection processes often take place on an ultrafast timescale.
Electron injection as fast as 6 fs has been reported for alizarin adsorbed on
TiO2 nanoparticles [80]. For other sensitizing chromophores, e.g., coumarin
343 [14, 73, 75, 87, 88] or perylene [13, 89], injection times on the order of
tens to hundreds of femtoseconds have been found. Studies of dye molecules
with electron injection timescales on the order of a few tens to a few hun-
dred femtoseconds also indicate that the coupling to the vibrational modes
of the chromophore may have a significant impact on the injection dynam-
ics [13, 89, 90]. In particular, the influence of coherent vibrational motion on
the injection dynamics has been observed in studies of perylene adsorbed on
TiO2 nanoparticles [13, 89]. Other important effects that have been investi-
gated experimentally are the influence of surface trap states [91,92] as well as
bridging groups [93] on the kinetics of the electron injection process.

The theoretical modeling of ET at dye–semiconductor interfaces requires
in principle a simulation of the electron injection dynamics. While for very fast
injection processes (<10 fs), the dynamical influence of the nuclear degrees
of freedom on the electron injection process is presumably of minor impor-
tance and one may consider the purely electronic injection dynamics [94], for
ET reactions on the order of a few tens to a few hundred femtoseconds the
coupling to the nuclear degrees of freedom has to be included in the dynami-
cal simulation. Various theoretical approaches have been applied to study the
electron injection dynamics at dye–semiconductor interfaces, including nona-
diabatic molecular dynamics simulations based on the classical path or Ehren-
fest model [95–100], Anderson–Newns type models of reduced dimensionality
(taking into account typically a single reaction mode) [83,101–107], as well as
Redfield theory [104]. In a recent model study, we have investigated in detail
the influence of multidimensional coherent and dissipative vibrational motion
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on the electron injection dynamics [50] employing the SCH approach [47, 48]
in combination with the ML–MCTDH theory [49].

Here we will consider the electron injection dynamics of the dye–
semiconductor system coumarin 343 – TiO2. The ET dynamics in this system
has been studied experimentally by a number of groups in the recent years
[14,73,75,87,88]. Employing different techniques, injection times in the range
20–200 fs have been found. A recent theoretical study [108] based on elec-
tronic structure calculations for small complexes of titanium with coumarin
343 showed that the photoexcited state of this system is predominantly lo-
calized at the chromophore. Furthermore, this study also demonstrated that
there is significant electronic–vibrational coupling which is distributed over a
relatively large number of vibrational modes of coumarin. These results sug-
gest that the coumarin 343 – TiO2 system is particularly well suited to study
the electron injection dynamics as well as the influence of the nuclear degrees
of freedom on the ET process. Besides the fundamental interest in the elec-
tron injection mechanism, coumarin derivatives have also been investigated
as alternative organic photosensitizers in nanocrystalline solar cells [109].

Model

To study the dynamics of ultrafast photoinduced electron injection from the
electronically excited state of the chromophore coumarin 343 (in the follow-
ing abbreviated as C343) into the conduction band of the semiconductor
(TiO2) substrate, we consider a generic model of heterogeneous ET based on
an Anderson–Newns type Hamiltonian [50, 110–113]. Within this model the
Hamiltonian is represented in a basis of the following diabatic (charge local-
ized) electronic states which are relevant for the photoreaction: the electronic
ground state of the overall system |φg〉, the donor state of the ET process |φd〉
(which, in the limit of vanishing coupling between chromophore and semicon-
ductor substrate, corresponds to the product of the first electronically excited
state of C343 and an empty conduction band of the semiconductor), and the
(quasi)continuum of acceptor states of the ET reaction |φk〉 (corresponding in
the zero coupling limit to the product of the cationic state of C343 and an elec-
tron with energy εk in the conduction band of the semiconductor substrate).
Thus, the Hamiltonian reads

H = |φg〉εg〈φg| + |φd〉εd〈φd| +
∑

k

|φk〉εk〈φk| (35)

+
∑

k

(|φd〉Vdk〈φk| + |φk〉Vkd〈φd|) +HN,

where HN denotes the part of the Hamiltonian which involves the nuclear
degrees of freedom.

The electronic coupling matrix elements Vdk and the distribution of ener-
gies εk of the conduction band of the semiconductor can be specified by the
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energy-dependent decay width of the donor state

Γ (E) = 2π
∑

k

|Vdk|2 δ(E − εk), (36)

which describes the coupling-weighted density of states of the semiconduc-
tor substrate. In principle, the energy-dependent decay width Γ (E) can be
determined employing electronic structure theory calculations [114]. In the
studies reported below, we have adopted a parameterization based on a tight-
binding model which has been developed recently by Petersson et al. [115] to
study the electron injection rate from an excited state of a dye molecule to a
semiconductor substrate.

To study the influence of the nuclear degrees of freedom on the electron
transfer reaction, we consider the vibrational degrees of freedom of C343 as
well as the effect of a solvent surrounding the dye–semiconductor system

HN = Hm +Hb +Hsb. (37)

The nuclear degrees of freedom of the chromophore are characterized using the
normal modes of the electronic ground state of C343 as well as the gradients
of the potential energy surfaces of the first optically excited state and the
ground state of the cation of C343 resulting in

Hm =
1
2

∑
l

(P 2
l +Ω2

l Q
2
l ) +

∑
l

|φd〉κd
l Ql〈φd| +

∑
k

|φk〉
∑

l

κa
lQl〈φk|. (38)

The vibrational frequencies Ωl as well as the gradient κd
l , κa

l have been de-
termined by electronic structure calculations employing density functional
theory [108].

To account for the influence of the surrounding solvent on the ET dynam-
ics in our simulations, we employ a standard (outer sphere) linear response
model [29, 116, 117] where the Hamiltonian of the dye–semiconductor system
is coupled linearly to a bath of harmonic oscillators.

Hb +Hsb =
1
2

∑
j

(p2j + ω2
jx

2
j ) (39)

+|φd〉
∑

j

cdjxj〈φd| +
∑

k

|φk〉
∑

j

cajxj〈φk|.

The parameters of the solvent part of the Hamiltonian are characterized by
the spectral densities

Jd(ω) =
π

2

∑
j

(cdj )2

ωj
δ(ω − ωj), Ja(ω) =

π

2

∑
j

(caj )
2

ωj
δ(ω − ωj), (40)

in the donor and acceptor states, respectively. In the calculations considered
below we have employed a model for relaxation in a polar solvent which
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includes a Gaussian part describing the fast (inertial) decay of the solvent
polarization and a Debye part modeling the slower diffusive dynamics, i.e.

Jd(ω) =
√
π
λGω

ωG
e−[ω/(2ωG)]2 + 2λD

ωωD

ω2 + ω2
D

, (41)

Ja(ω) = α2Jd(ω),

with ωG = 144.54 cm−1, ωD = 25 cm−1, λd
D = λd

G = 700 cm−1, and α =
−0.1. The relaxation parameters ωG, ωD have been chosen in accordance
with experimental results on solvation dynamics of C343 in water [118, 119]
(for more details on the model see [120]). To illustrate the model parameters
describing the nuclear degrees of freedom, Fig. 1 shows the reorganization
energies of the intramolecular modes (with respect to the electron transfer
transition |φd〉 → |φk〉) as well as the spectral densities of the solvent. It is
seen that the electronic–vibrational coupling is distributed over a relatively
large number of intramolecular modes of C343. In the dynamical calculations
presented later, 38 of the normal modes of C343 have been explicitly taken into
account. These modes were selected according to their electronic–vibrational
coupling strength.

Since in our dynamical simulations all degrees of freedom are treated
explicitly, the continuum of electronic states (describing the conduction band
of the semiconductor) as well as the continuous distribution of solvent modes
are first discretized and represented by a finite number of states and modes,
respectively. Thereby, the actual number of modes (states) necessary to
represent the true continuum depends on the specific parameters considered
and the timescale of interest, and serves as a convergence parameter. The
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Fig. 1. Properties of the nuclear degrees of freedom of the ET model associated
with the ET transition, i.e., the transition from the electronically excited state of
neutral C343 to the electronic ground state of the cation of C343. Shown are the
Gaussian (dashed-dotted line) and Debye (dashed line) part of the spectral density
of the solvent environment as well as reorganization energies of the intramolecular
modes of C343. The spectral densities have been scaled for better illustration
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details of efficiently discretizing the continuum of electronic states and the
continuous distribution of vibrational modes have been given previously in [47]
and [50], respectively, and will not be repeated here. For the system considered
here, the number of bath modes required varies between 30 and 50 and the
number of electronic states between 200 and 400 (depending on the timescale
of interest).

Results

The electron injection dynamics is described by the population of the donor
state after photoexcitation,

Pd(t) = tr{ρmρb|φd〉〈φd|eiHt|φd〉〈φd|e−iHt}, (42)

where ρm and ρb denote the initial state of the nuclear degrees of freedom
of the intramolecular modes of C343 and the solvent (described by the re-
spective Boltzmann operators at T = 300 K), respectively. The dynamical
simulations have been performed fully quantum mechanically employing the
ML–MCTDH method. The result of the simulation shown in Fig. 2 exhibits an
ultrafast injection of the electron from the electronically excited state of C343
chromophore into the semiconductor: More than 80% of the population of the
initially prepared donor state decays within 20 fs into the conduction band
of titanium oxide. This timescale is at the lower boundary of experimental
results for the C343-TiO2 system, where injection times in the range between
20 fs and 200 fs have been found using different techniques [14, 73, 75, 87, 88].
In addition to the dominating ultrafast injection, the simulation results also
show a small component with slower injection dynamics and oscillatory struc-
ture superimposed on the decay. The comparison with a purely electronic
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Fig. 2. Electron injection dynamics of the C343-TiO2 system. Shown is the popu-
lation of the donor state after photoexcitation with (full line) and without (dashed
line) coupling to the nuclear degrees of freedom
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calculation (dashed line in Fig. 2) (where the coupling to the nuclear degrees
of freedom has been neglected) reveals that both the slowly decaying compo-
nent and the oscillatory structures are caused by the coupling of the electron
to the nuclear degrees of freedom.

We have analyzed in detail the mutual influence of electronic and nu-
clear degrees of freedom in the dynamics of the C343-TiO2 system [120]. The
analysis shows that the oscillatory structure is caused by vibrational mo-
tion of high-frequency modes of C343 which have oscillation periods similar
to the fast ET time of ≈20 fs. While such a direct dynamical influence of
vibrational coherence on the ET process is only possible for high-frequency
(fast) modes, low-frequency (slow) modes exhibit another interesting effect
due to electronic–vibrational coupling. As an example, Fig. 3 shows wave
packet motion of the low-frequency vibration of the nitrogen group (Ω = 133
cm−1). This mode has negligible changes in equilibrium geometry with respect
to photoexcitation but shows a rather large displacement with respect to the
ET process, i.e., the transition from the photoexcited state to the cation. As a
result, the photoexcitation prepares an (with respect to this mode) essentially
stationary wave packet in the donor state. On the other hand, the wave packet
in the acceptor states shows pronounced oscillatory motion. This motion is
induced by the ultrafast ET process, the timescale of which (≈20 fs) is more
than one order of magnitude faster than the vibrational period of the mode
(t = 2π/Ω ≈ 251 fs). Thus, similar to ultrafast photoexcitation, the ultrafast
ET process prepares a coherent wave packet on the potential energy surface
of the acceptor states which then (due to the relatively large reorganization
energy) starts to oscillate. This process of ET-induced vibrational motion is
beyond the traditional Marcus theory of ET [30] which assumes that vibra-
tional relaxation is faster than ET so that ET proceeds from a vibrationally
relaxed initial state. Here, ET is so fast that it can induce coherent vibrational
motion.

Overall, the analysis of the electronic–vibrational dynamics in the C343-
TiO2 system demonstrates that within the same molecule – depending on the
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Fig. 3. Wave packet dynamics of one of the vibrational modes of C343 after photoex-
citation. Shown is the reduced density of a low-frequency vibration of the nitrogen
group (Ω = 133 cm−1) in the donor state (left) and averaged over the acceptor
states (right), respectively
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timescale of nuclear motion – electronic–vibrational coupling can result in ET
driven by coherent vibrational motion as well as vibrational motion induced
by ET. Thus, the heterogeneous ET reaction in the C343-TiO2 system is
another example of a photoreaction which cannot be described by traditional
rate theories because the fundamental assumption of a timescale separation
between ET dynamics and nuclear motion is not fulfilled.

3.2 Intervalence Electron Transfer Reaction
in (NH3)5RuIIINCRuII(CN)−

5

The reaction considered in the previous Section represents an example for
an ultrafast ET reaction on a timescale of ≈20 fs. In this section, we con-
sider an example for a somewhat slower (yet still very fast) ET reaction. To
this end, we consider an intervalence ET reaction in the mixed-valence com-
pound (NH3)5RuIIINCRuII(CN)−5 (for simplicity we denote this compound
as RuRu). The generic metal–metal charge transfer (MMCT) process in this
system can be schematically represented as

(NH3)5RuIIINCRuII(CN)−5
hν
−→←−
ET

(NH3)5RuIINCRuIII(CN)−5 . (43)

Upon photoexcitation into the MMCT band an electron is transferred from
one metal center to another. This process is followed by an ultrafast internal
conversion, resulting in the back transfer of the electron on a subpicosecond
timescale [121–123] . The study of this particular ET reaction is of interest for
both experimental and theoretical reasons: First, in femtosecond pump-probe
studies of this ET reaction in solution coherent oscillations have been observed
on timescales longer than the ET time, suggesting that the coherence of the
vibrational motion is maintained during the ET process [121–123]. Second,
the observation of multiple timescales in optical signals indicates that the ET
process cannot be characterized by a simple exponential decay. This is often
attributed to the existence of multiple timescales in the solvation dynamics, as
well as the influence of the strongly bound ligand modes. Therefore, golden-
rule type approaches may not be applicable [124, 125]. Finally, modelings of
these type of ET reactions are relatively straightforward since they correspond
to direct optical ET and, therefore, most of the parameters required can be
obtained from the analysis of absorption and resonance Raman spectra.

Model

The details of the model used to study the ET reaction in RuRu have been
described in [124, 125]. Briefly, the study is based on a Hamiltonian of the
form

H = |φ1〉E1〈φ1| + |φ2〉E2〈φ2| + |φ1〉V 〈φ2| + |φ2〉V 〈φ1| +HN, (44)
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where |φ1〉 and |φ2〉 denote the electronic ground state and the charge-transfer
state, which results from the photoinduced ET between the metal centers,
respectively, and V is the donor–acceptor coupling matrix element. Similar as
earlier, the nuclear degrees of freedom comprise inner-sphere intramolecular
modes of the RuRu complex as well as an outer-sphere solvent, described by
the nuclear Hamiltonian

HN = Hm +Hb +Hsb (45)

with

Hm =
1
2

∑
l

[
P 2

l +Ω2
l

(
Xl − |φ2〉

cl
Ω2

l

〈φ2|
)2]

. (46)

and

Hb +Hsb =
1
2

∑
j

[
p2j + ω2

j

(
xj − |φ2〉

dj

ω2
j

〈φ2|
)2]

. (47)

The modeling of the former is based on the analysis of experimental line-
shapes [123,126], where nine Raman-active modes are taken into account. The
solvent is modeled by the bimodal spectral density, (41), with λG = 2, 240
cm−1, ωG = 100 cm−1, λD = 960 cm−1, and ωD = 10 cm−1. All other
parameters have been given in [124,125].

Results

The dynamics of the back transfer of the electron after photoexcitation is
directly reflected by the population of the charge-transfer state,

P (t) = tr{ρmρb|φ2〉〈φ2|eiHt|φ2〉〈φ2|e−iHt}, (48)

where ρm and ρb denote the initial state of the nuclear degrees of freedom
of the intramolecular modes and the solvent (described by the respective
Boltzmann operators), respectively. Figure 4 shows P (t) for a temperature
of T = 300 K. The results have been obtained employing the SCH method,
whereby all intramolecular modes and 10% (high-frequency) bath modes were
included in the core (for details, see [124,125]). Overall, the population exhibits
a bimodal decay: a fast component on a timescale of ≈120 fs which accounts
for approximately 70% of the ET, and a slower component on the timescale
of 1–2 picoseconds. This bimodal decay is in qualitative agreement with the
experimental results of Barbara et al., where similar timescales were found
in pump-probe signals [121, 123]. Several oscillatory structures superimposed
on the population decay are observed, the timescale of which can be roughly
divided in three groups: the frequency of the very fast oscillation, which can
only be seen in the first 10 fs in the inset of Fig. 4, corresponds to the Rabi
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Fig. 4. Time-dependent population of the charge-transfer state (at T = 300 K) for
the RuRu system. The inset shows P (t) for the first 100 fs. Adapted from [125]
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Fig. 5. Vibrational dynamics of the RuRu system. Shown is the time-dependent
density of a CN-stretch vibration (Ω = 2, 118 cm−1) in the charge transfer (left)
and the ground (right) state, respectively. Adapted from [51].

frequency of the bare electronic two state system and is therefore a remnant of
electronic coherence. The oscillations on a timescale of about 16 fs reflect the
vibrational motion of the two high-frequency intramolecular modes included
in the model (both high-frequency modes have been assigned to CN-stretch
vibrations [127]). Finally, several step-like structures on a longer timescale can
be seen. The electronic dynamics thus indicates that the ET reaction exhibits
significant vibrational coherence effects.

This finding is substantiated by the vibrational dynamics. In [51] we have
analyzed in detail the vibrational motion accompanying the back ET reaction
in RuRu. As a representative example, Fig. 5 shows the wave packet dynamics
of a high-frequency vibration (which has been assigned to the CN-stretch mode
of the bridge ligand) in the ground and charge-transfer state. The analysis
reveals correlated electronic–vibrational dynamics: whenever the wave packet
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Fig. 6. Dependence of the ET dynamics in the RuRu system on the relaxation
parameters of the solvent: ωG = 200 cm−1, ωD = 20 cm−1 (full line); ωG = 50
cm−1, ωD = 5 cm−1 (dashed line); ωG = 20 cm−1, ωD = 2 cm−1 (dashed-dotted
line). Adapted from [124]

passes the crossing between the potential energy surfaces of the ground and
excited electronic states, part of the wave packet is transfered to the ground
state. This mechanism results in a modulation of the electronic population
dynamics and thus indicates vibrationally coherent ET.

Another interesting mechanism in ultrafast ET reactions are dynamic sol-
vent effects, i.e., the influence of the relaxation timescale of the solvent on the
ET reaction. Experimentally it has been shown that the ET dynamics in the
RuRu system depends on the solvent, e.g., the average ET time for the RuRu
compound in water, a fast relaxing solvent, was found to be τET = 100 fs,
which is faster compared to τET = 220 fs in the slower relaxing solvent ethyl-
ene glycol [121]. To investigate if this change in ET time is due to the different
relaxation timescale of the respective solvent, we have performed simulations
for models where only the relaxation parameter of the solvent was changed.
The results in Fig. 6 show indeed that the ET becomes slower with longer
solvent relaxation times, thus demonstrating the dynamical solvent effect.

3.3 Simulation of Photoexcitation Processes and Time-resolved
Optical Spectra

In the two examples for ultrafast photoreactions discussed earlier the photoex-
citation process was modeled by starting the calculation in the photoexcited
state (corresponding to an infinitely short laser pulse). Both the ML–MCTDH
method and the SCH approach also allow a rather straightforward direct sim-
ulation of the photoexcitation process by including the coupling to the laser
field in the calculation. Thus, the overall (material + laser field) Hamiltonian
reads
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Htot(t) = H − μE(t), (49)

where μ denotes the dipole operator and E(t) the electric field of the laser
pulse. Including several laser pulses, the methodology can also be used to
simulate time-dependent nonlinear spectra [52], such as for example pump-
probe or photon-echo spectra.

In this section, we present results of ML–MCTDH simulations for pho-
toexcitation processes and pump-probe spectra for a model that represents
qualitatively a class of intervalence ET reactions such as the RuRu system
studied earlier. The model Hamiltonian is given by (44–47). The model com-
prises four intramolecular modes and a solvent environment described by the
spectral density in (41) with parameters λG = 2, 250 cm−1, λD = 1, 250 cm−1,
ωG = 500 cm−1, ωD = 500 cm−1. All other parameters of the model are given
in Table 1.

The observable of interest is the time-dependent population of the pho-
toexcited charge-transfer state,

P (t) =
1

tr[e−βH ]
tr
[
e−βHU†(t)|φ2〉〈φ2|U(t)

]
, (50)

which is analogous to (48) but includes explicitly the laser field in the simu-
lation,

i
∂

∂t
U(t) = [H − μE(t)]U(t). (51)

Another important physical quantity is the overall polarization induced by
the laser field

I(t) =
1

tr[e−βH ]
tr
[
e−βH U†(t) μ U(t)

]
. (52)

Fourier decomposition of I(t) along different directions gives different types
of time-resolved nonlinear spectra [52, 128, 129]. In (50) and (52), the mater-
ial system is initially at thermal equilibrium, represented by the Boltzmann

Table 1. Parameters of the model Hamiltonian (44) considered in Sect. 3.3, in-
cluding vibrational frequencies Ωl and reorganization energies λl = c2

l /(2Ω2
l ) of

the intramolecular modes as well as electronic energies and coupling strength. All
quantities are given in cm−1

l Ωl λl

1 2,100 750
2 650 750
3 400 750
4 150 750

E2 − E1 = 6,500 V = 500
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operator e−βH , until the laser field induces the electronic excitation and the
subsequent ET process. Noting the similarity between the Boltzmann operator
and the time-evolution operator e−iHt, it is apparent that the ML–MCTDH
method is also applicable to evaluate e−βH by replacing the real time t with
the imaginary time τ = −iβ [130].

Figure 7 depicts results of simulations of P (t) corresponding to a weak
(upper panel) and strong (lower panel) laser field, respectively. Similar to the
dynamics exhibited by the RuRu system, the results show that the population
dynamics of the charge transfer state after photoexcitation is nonexponential
and has stepwise structures. This indicates the influence of strongly-coupled
vibrational modes on the ultrafast ET process. It is also interesting to note
that the qualitative behavior of P (t) is very similar for weak and strong laser
field. The stronger laser field essentially results in a larger population trans-
fer to the excited charge-transfer state and additional field-induced (Rabi)
oscillations of the population at short times.
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Fig. 7. Time-dependent population of the photoexcited charge-transfer state at
T = 25 K. The parameters of the material system have been given in the text, and
the parameters for the laser pulse are: pulse carrier frequency ω = 13, 000 cm−1,
center of the pulse td = 40 fs, pulse duration τ = 10 fs. The strength of the laser
pulse is weak in the upper panel, and strong in the lower panel
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Fig. 8. Pump-probe transient transmittance spectrum corresponding to the ET
system considered in the upper panel of Fig. 7. The dashed line depicts results for
the same ET system except that the ET coupling matrix element V has been set
to zero. The carrier frequency and the duration of the probe pulse are the same as
those of the pump pulse in Fig. 7, upper panel

The pump-probe (transient transmittance) spectrum for the model ET
system is displayed in Fig. 8 [52]. To discuss the manifestation of ET dynamics
in this time-resolved spectrum, Fig. 8 also depicts the pump-probe spectrum
for the same set of parameters except that the ET coupling matrix element
V has been set to zero (dashed line). A more detailed analysis reveals (data
not shown) that the pump-probe spectrum for the system without ET is
characterized by an ultrafast decaying (stimulated emission) component at
short delay times and a long time stimulated Raman contribution. The results
for the system including the ET process indicate an additional absorptive
process, which results in an overall negative transient transmittance signal at
longer times. This additional absorptive contribution to the signal corresponds
to absorption from vibrationally excited states in the electronic ground state
which are formed in the ET process, and is thus a manifestation of the ET
dynamics.

4 Concluding Remarks

In this article, we have studied two examples of ultrafast photoreactions in
a condensed phase environment: electron injection in the dye–semiconductor
system coumarin 343-TiO2 and intervalence electron transfer in the mixed va-
lence system (NH3)5RuIIINCRuII(CN)−5 . To describe the dynamics in these re-
actions, we have employed the multilayer formulation of the MCTDH method
and the self-consistent hybrid approach. Both methods allow accurate simu-
lations of quantum dynamics in complex molecular systems.

The results demonstrate the pronounced influence of electronic–nuclear
coupling, which – depending on the relative timescale – may result in electron
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transfer driven by coherent vibrational motion or vibrational motion induced
by ultrafast electron transfer. The simulation for the mixed valence system,
furthermore, reveals the influence of the relaxation timescale of the surround-
ing solvent on the electron transfer dynamics (dynamic solvent effects).

In addition, we have also discussed the application of the methodology
to simulate photoexcitation processes and time resolved optical spectra by in-
cluding the coupling to the laser field explicitly in the calculation. As has been
shown for a model of intervalence electron transfer reactions, the simulation
of time resolved optical spectra allows to investigate the manifestation of elec-
tronic and nuclear dynamics in experimentally accessible spectra. Since the
dynamical method is based on a nonperturbative treatment of the material–
laser field coupling, it can also be applied to investigate the possibility of
coherent control in complex molecular systems in the condensed phase.
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Part II

New Methods for Quantum Molecular
Dynamics in Large Systems



II.1 Semiclassical Methods



Decoherence in Combined Quantum
Mechanical and Classical Mechanical
Methods for Dynamics as Illustrated
for Non-Born–Oppenheimer Trajectories

Donald G. Truhlar

Summary. This chapter discusses the role of decoherence in mixed quantum–
classical approaches to electronically nonadiabatic chemical dynamics. The corre-
lation of electronic and nuclear motion, which is not included in the semiclassical
Ehrenfest or time-dependent Hartree method, induces decoherence in the reduced
electronic density matrix, and the chapter shows how this can be modeled by adding
algorithmic demixing to the Liouville-von Neumann equation. The resulting mixed
quantum–classical equations of motion involve stochastically controlled, smooth, and
continuous surface switching coupled to coherent propagation through each region
of strong interaction of the electronic states. The chapter also reviews test results
that show good agreement with fully quantum mechanical results for a diverse set
of atom–diatom test cases.

1 Introduction

The coupling of quantum mechanics to classical mechanics is a recurring theme
in the treatment of complex systems because a full quantum mechanical treat-
ment is usually possible only for simple systems. The coupling may occur in the
generation of potential energy surfaces, as in combined quantum mechanical
and molecular mechanical methods [1–3] or it may occur in the dynamics step,
as when quantum mechanical nuclear-motion effects are combined with tran-
sition state theory or molecular dynamics simulations [2, 4–7]. Conventional
molecular dynamics simulations themselves, even when the nuclear motion is
only treated classically, involve using quantum mechanics, explicitly or implic-
itly, to derive the Born–Oppenheimer [8] potential energy surface and then
treating nuclear motion classically [7, 9–12]. This kind of joining of the two
mechanics raises fewer theoretical questions than the first two. However, if we
allow for Born–Oppenheimer breakdown, that is, electronic nonadiabaticity,
then a number of conceptual issues arise [7,13–31]. Very similar issues arise in
Born–Oppenheimer processes if some nuclear degrees of freedom are treated
quantum mechanically and others classically [32–41]. The present article is
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concerned with this problem and especially with elucidating the important
role of decoherence in shaping a physically correct form for the equations of
motion of the quantal and classical subsystems. Furthermore we seek a prac-
tical algorithm that allows us to simulate systems in which decoherence plays
an important role. Although one could illustrate the theory by any problem in
which some degrees of freedom are treated as quantal but are not simply adi-
abatic and other degrees of freedom are treated as classical, we use the prob-
lem of electronic nonadiabaticity as our illustrative example, with all nuclear
degrees of freedom classical. Furthermore, we start with a Hartree approxi-
mation (also called the Ehrenfest approximation [14, 21], the time-dependent
self-consistent-field approximation [20, 37, 40], or the self-consistent eikonal
approximation [15]), which assumes only a mean-field (uncorrelated) coupling
of the electronic and nuclear degrees of freedom, and we show how adding
correlation effects leads to decoherence. Since the nuclear degrees of freedom
are coupled to the electronic ones, we will see that they require some quantum
mechanical elements for their description.

2 Theory

The quantum mechanical time-dependent Hartree approximation for coupled
electronic and nuclear motion is

Ψ = φelec (r, t)ψnuc (R, t) . (1)

The factors in (2) satisfy an electronic mean-field Schrödinger equation

i�
∂

∂t
φelec = 〈ψnuc |H|ψnuc〉R φelec(R, t) (2)

and a nuclear mean-field Schrödinger equation

i�
∂

∂t
ψnuc =

〈
ψelec |H|ψelec

〉
r
ψnuc(R, t), (3)

where i =
√
−1, � is Planck’s constant divided by 2π, r and R denote the

electronic and nuclear coordinates, respectively, and t is time.
Now we approximate ψnuc by an ensemble of trajectories, which yields a

semiclassical time-dependent Hartree approximation [37]. The nuclear mean-
field wave packet is replaced by an ensemble of classical trajectories propa-
gating under the influence of the self-consistent potential

USCP =
〈
ψelec |H|ψelec

〉
r
. (4)

The electronic mean-field Schrödinger equation becomes

i�
∂

∂t
φelec = 〈H〉nuclear ensemble φ

elec(r, t). (5)
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This treatment neglects important correlations between electronic and nuclear
motion. A better starting point than (1) is a multiconfigurational wave packet
[20,42–45]. A wave packet in a multielectronic-state molecular system may be
written

Ψ =
∑

states α

cα(t)φelec
α (r,R(t))ψnuc

α (R, t) , (6)

where φelec
α is a normalized component of the electronic wave function, ψnuc

α

is a normalized component of the nuclear-motion wave packet, and cα is a
time-dependent coefficient.

To improve upon the mean-field approximation in the semiclassical treat-
ment, we add correlation by making the independent-trajectory approxi-
mation [15, 40]. (A quantum wave packet analog is the “independent first
generation” approximation [45].) This replaces (5) by

i�
∂

∂t
φelec = H (R(t)) φelec (r,R, (t)) (7)

for each trajectory. The combination of the independent-trajectory approxi-
mation and the semiclassical time-dependent Hartree approximation is called
the semiclassical Ehrenfest approximation [23,26–30].

Next we choose an electronic basis

φelec =
∑
α

cα(t)φel
α (r,R(t)) , (8)

where cα is a coefficient, and φel
α is an antisymmetrized many-electron config-

uration state function in either the adiabatic [8] or a diabatic [26] representa-
tion. Furthermore we make the semiclassical replacement

∂φel
α

∂t
=

dR
dt

∂φel
α

∂R
. (9)

Substituting (8) and (9) into (7) yields the following time-dependent Schrödi-
nger equation for the coefficients along the trajectory [20]

i�
∂cα
∂t

=
∑

β

cβ(t)
[
−i�Ṙ · dαβ + Uαβ (R(t))

]
, (10)

where
Uαβ ≡

〈
φel

α |Helec|φel
β

〉
r

(11)

and
dαβ ≡

〈
φel

α |∇R|φel
β

〉
r
. (12)

In (12), Helec is the so called electronic Hamiltonian, which also includes
nuclear repulsion. It is defined by

Helec = H − TR, (13)
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where TR is the nuclear kinetic energy. Since dαβ is anti-Hermitian, its diag-
onal elements vanish identically. Note that if an adiabatic representation is
used in (8), U is diagonal [13b], whereas if a diabatic representation is used in
(8), dαβ is assumed to be negligible and is neglected. The diagonal elements of
U are called potential energy surfaces, and Uii is often denoted as Vi. In well
established but somewhat inconsistent conventions, the off-diagonal elements
of U are called the diabatic couplings, and dαβ is called the nonadiabatic cou-
pling. It is convenient to reformulate (10) in terms of the reduced electronic
density matrix, which is defined by its matrix elements as follows:

ραβ ≡ cαc
∗
β . (14)

Substituting (14) into (10) yields a unitary Liouville-von Neumann equation
[46], which in our case can be written as:

i�
∂ραβ

∂t
= −

∑
γ

([
−i�Ṙ · dγβ + Uγβ

]
ραγ − {permute indices}

)
. (15)

Equation (15) is also called a unitary quantum Liouville equation. It is the
quantum mechanical analog of Liouville’s theorem in classical mechanics, and
it is equivalent to the time-dependent Schrödinger equation [47,48].

In the semiclassical Ehrenfest method one solves the coupled quantum me-
chanical equation (15) [or the equivalent equation (10)] for the electrons and
simultaneously the classical equations of motion with the effective potential of
equation (4) for the nuclear motion. Because we made the independent trajec-
tory approximation, we repeat this calculation for an ensemble of initial con-
ditions in the classical phase space (which may be sampled classically [11,12]
or quasiclassically [9, 10, 12a]), we average over initial conditions, and we sum
over final states. The semiclassical Ehrenfest method shares with the exact
solution of the Schrödinger equation that the results are independent of the
representation (adiabatic, diabatic, or intermediate) used for the quantum
subsystem. In fact this is true for each individual trajectory, not just for the
ensemble average. But there is a serious defect in this method, namely that
the system ends in an unphysical final state. Consider, for example, a collision
or a photodissociation event where the final state is a diatomic molecule AB
and an atom C. Suppose that the total energy is 2.5 eV above the classical
potential energy of ground-state products, and that the products have one
excited electronic state with an electronic excitation energy of 2.0 eV. The
accurate quantum mechanical distribution of nuclear-motion energies will be
bimodal: systems in the ground-electronic state will have 2.5 eV of nuclear
energy, and systems in the excited electronic state will have 0.5 eV of nuclear
energy. One might, under certain circumstances, even find a 50:50 distribution
of these states. However, because a semiclassical Ehrenfest trajectory propa-
gates on an average potential energy surface (4), it might end with an average
nuclear energy of 1.25 eV or 1.5 eV (or in fact any energy in the range 0–2.5
eV), rather than being restricted to one of the two quantally allowed values.
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Why is the semiclassical Ehrenfest method wrong? Because ραβ fails to
tend to δαβ (a kronecker delta) as t → ∞. And why does that failure occur?
Because (10) and (15), being equivalent to the time-dependent Schrödinger
equation, are wrong for a subsystem.

There is only one system governed by the Schrödinger equation, namely
the entire universe. All other systems are subsystems and satisfy a quantum
master equation, in particular, a nonunitary Liouville-von Neumann equation
with dissipation and dephasing. In our example of non-Born–Oppenheimer
trajectories, the nuclei serve as a “bath” or “environment” for the electronic
subsystem [30,49–53]. To understand the effect of this bath, consider the wave
packet of (6). In our example, there are two electronic states, corresponding to
α = 1 and α = 2. The component of the nuclear wave packet corresponding
to the lower-energy electronic state (α= 1) moves faster, as does the trajectory
subensemble corresponding to this subpacket. Therefore the two terms in (6)
get out of phase, and they become subpackets in different regions of space;
for these reasons their overlap tends to zero. As a consequence, ραβ → 0.

When a semiclassical Ehrenfest trajectory finishes a non-Born–
Oppenheimer event, ραβ for α �= β is not zero and ραα is neither zero nor
unity. That is, the trajectory does not decohere to a pure state. Physically,
dephasing would cause the off-diagonal elements to decay(

ραβ ραβ

ρβα ρββ

)
→
(
ρ′αα 0
0 ρ′ββ

)
. (16)

Algorithmically, we want our statistical ensemble of trajectories to “demix”
to an ensemble of trajectories with quantized electronic states, schematically(

ρ′αα 0
0 ρ′ββ

)
→ ρ′αα

(
1 0
0 0

)
+ ρ′ββ

(
0 0
0 1

)
. (17)

To achieve this we add algorithmic decay to the unitary Liouville-von Neu-
mann equation such that each trajectory, at any given time, decoheres toward
a given state, called the “decoherent state,” in such a way that the distribution
of states (averaged over an ensemble of trajectories) is self-consistent with the
density matrix. The resulting nonunitary Liouville-von Neumann equation,
also called a quantum master equation, has the form

dραβ

dt
=
[
dραβ

dt

]
unitary

+
[
dραβ

dt

]
decoherent

, (18)

where the first term on the right-hand side is from (15) and generates dy-
namics equivalent to the Schrödinger Equation, and the second term is an
algorithmic control term added to simulate the effect of decoherence. Both
terms conserve total energy and total angular momentum of the combined
quantal and classical subsystems. However energy is transferred between the
two subsystems; when energy is transferred from the quantal subsystem to
the classical one, this may be considered to be a form of dissipation.
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The density matrix of (18) is a reduced density matrix, that is, a density
matrix of a subsystem traced over its environment. In the present case, it is
the electronic density matrix obtained by tracing over the nuclear degrees of
freedom. This matrix, being Hermitian, can be diagonalized in any basis. In
which basis does it become diagonal and stay diagonal? That basis is called
the pointer basis [54], and the selection of this basis by the decoherent process
is called environment-induced superselection or einselection [55]. The pointer
basis is determined by the interaction of the subsystem with its environment;
this interaction is sometimes called the measuring process. For example if the
system is a spin- 1

2 particle (S = 1
2 ), and its interaction is to encounter a detec-

tor properly designed to measure Sz, the pointer basis will be the eigenvectors
of the operator Ŝz. If, however, the interaction with the environment is to en-
counter a detector properly designed to measure Sx, the pointer basis will be
the eigenvector of Ŝx. More generally, if the subsystem behaves adiabatically
(such as when the frequencies of the environment are much lower than those
of the subsystem), the pointer basis will be the adiabatic energy states of the
subsystem [56], which is fully in accord with intuition. In the limit where the
self-Hamiltonian is negligible compared to the subsystem-environment inter-
action, the eigenvectors of the interaction becomes the pointer state [57]. In
the general case the pointer basis is unknown. The analog of the pointer basis
in our algorithm is the basis used to express the decoherent states; we may
call this the algorithmic pointer basis. Since the physical pointer basis is not
easy to predict and may change with time as the system explores different re-
gions of nuclear configuration space (i.e., as the electronic subsystem explores
different aspects of its nuclear environment), our goal is to find an algorithm
whose accuracy does not depend strongly on the choice of algorithmic pointer
basis. In practice this means we seek an algorithm that yields good results
in both the adiabatic and diabatic representations. Not only must we choose
an algorithmic pointer basis, we must also choose the decoherent state, which
will be labeled K. Thus α = K for the state toward which the system is
decohering at a particular time along a particular trajectory.

To derive a form for the second term of (18) we make the reasonable as-
sumption that Re cα and Im cα (in (10)) decay by a pure first-order process
at the same rate in the algorithmic pointer basis [23]; this conserves the elec-
tronic phase angle, that is, it conserves arctan (Im cα/Re cα). Then we obtain,
for example for the αβ = αK element [27]

(
dραK

dt

)
decoherent

=
1
2

⎡⎣ 1
ρKK

⎛⎝∑
γ �=K

ργγ

τKγ

⎞⎠− 1
ταK

⎤⎦ ραK . (19)

The more common assumption is that the master equation is linear, which
yields: (

dραβ

dt

)
decoherent

= − 1
ταβ

ραβ , α �= β. (20)
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To which state does the system decohere? We determine this stochasti-
cally by Tully’s [17] fewest switches algorithm, which was originally proposed
for use in surface hopping calculations. Trajectory surface hopping calcula-
tions [13, 16–18] stochastically switch the state in which the system propa-
gates (i.e., the potential energy surface governing nuclear motion) to keep
the ensemble of nuclear trajectories as consistent as possible with the quan-
tal evolution of the quantal subsystem governed by the unitary Liouville-von
Neumann equation. In contrast, our algorithm [29,30] stochastically switches
the decoherent state to keep the nuclear ensemble consistent with the uni-
tary Liouville-von Neumann equation over each passage through a strong in-
teraction of the electronic states, which is called coherent switching . At the
same time the nuclei propagate on a potential energy surface consistent with
the nonunitary Liouville-von Neumann equation incorporating decay of mix-
ing. The algorithm is therefore called coherent switches with decay of mixing
(CSDM). Because the boundaries of the coherent switching regions introduce
time nonlocality, the algorithm is non-Markovian.

In summary, the CSDM algorithm introduces decoherence into the elec-
tronic reduced density matrix such that in the strong interaction region
the potential energy surface governing nuclear motion has the desirable
(representation-independent) properties of the semiclassical Ehrenfest poten-
tial, whereas in the asymptotic or weakly coupled regions the effective po-
tential reduces to that of the decoherent state in the pointer basis. But the
decoherent state switches stochastically in a coherent way for each complete
passage through a strong interaction region. Thus we evolve two density matri-
ces, one (evolved with decay of mixing) controls the effective potential energy
surface for nuclear motion, and the other (evolved coherently through strong-
interaction regions) controls stochastic switching of the decoherent state.

The decoherence process is first-order with rate constant τ−1. For example,
for a diagonal element ραα of the density matrix, with α �= K, we have

dραα

dt
=
(

dραα

dt

)
unitary

− ραα

ταK
, (21)

where the first term on the right is associated with coherent Ehrenfest propa-
gation and the second term causes demixing. There are similar equations for
other density matrix elements, except that they are nonlinear for off-diagonal
elements ραβ . We call τ the decoherence time or the demixing time.

Since our algorithmic demixing is analogous to but not identical to physical
decoherence, it is reasonable that our demixing time should be similar to but
not identical to the physical decoherence time. We therefore base our choice
of the demixing time on three principles:

1. The semiclassical limit of a wave function is the sum of WKB-like tra-
jectories associated with minimum wave packets, and decoherence of the
superposition is faster than decoherence of the individual packets [57]. Nu-
clear wave packets move at different speeds on different surfaces, causing
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dephasing and decay of overlap, and this leads to decay of off-diagonal
elements of the density matrix [53].

2. The pointer basis is the one in which decoherence is fastest [57].
3. Decoherence slows down when the momentum component in the nonadi-

abatic coupling direction is small [29].

Using the first two principles we derived [53] an approximate expres-
sion for the physical decoherence rate constant for electronically nonadiabatic
chemistry:

1
τ

=
1
τΔF

+

√(
1
τΔp

)2

+
(

1
τΔF

)2

, (22)

where τΔp is a complicated expression associated with the wave packet hav-
ing different momenta pα and pβ on two surfaces Vα and Vβ , and τΔF is a
complicated expression associated with the wave packet experiencing different
forces on the two surfaces. For parallel surfaces in one dimension,

τ = τΔp =
�

|Vα − Vβ |

√
4π2 |pα − pβ |

p̄
, (23)

where p̄ is the average momentum. The first factor (“prefactor”) on the right-
hand side of (23) is the fastest time scale in the system.

For our purposes, the “correct” rate of algorithmic demixing is whatever
makes the ensemble average with the independent-trajectory approximation
best simulate the rate of change of populations and final-state distributions.
We found that the following works well

τ =
�

|Vα − Vβ |

⎛⎝1 +
E0

(p · ŝ)2
/

2μ

⎞⎠ , (24)

where p is nuclear momentum, ŝ is the direction of the nonadiabatic coupling,
μ is the nuclear reduced mass (p and μ both correspond to isoinertial coor-
dinates scaled to a single reduced mass), and E0 is a parameter that we set
equal to 0.1 hartree. The final factor in (24) is motivated by principle no. 3
above and by the fact [55] that the fastest time scale in the system provides a
lower bound on the physical decoherence time. Although our experience indi-
cates that the performance of (24) can be improved by making the prefactor
larger, we find that with the current form the results are reasonably insensitive
to E0 and that (24) works well for a diverse set of non-Born–Oppenheimer
processes [29,30].

Two further issues need to be considered. First is the direction of deco-
herent energy release and decoherent energy uptake (these energy exchanges
are required because the potential energy surface is self-consistent with the
decohering density matrix). We formulated the decoherence term such that
the direction of the nuclear momentum in which energy is exchanged as the



Decoherence in Combined Quantum and Classical Mechanical Methods 235

system decoheres (as the pointer state is einselected) is the direction of the
nonadiabatic coupling vector when nonadiabatic coupling is large and is in
the direction of the vibrational momentum when the nonadiabatic coupling is
small. The latter is motivated by the existence of a “small” but nonremovable
component of the nonadiabatic coupling associated with any motion of the
nuclei [26].

The final issue to be considered is the criterion for a strong coupling region
over which the density matrix that controls stochastic switching evolves coher-
ently. For calculations in the adiabatic representation we take the boundaries
of strong-coupling regions as the minima of the magnitude of the nonadia-
batic coupling. For calculations in the diabatic representation, we take these
boundaries as the minima of the diabatic level spacing (gap); using the max-
imum gap turned out to be slightly less accurate on average. At boundaries
between strong-coupling regions, the switch-controlling coherent density ma-
trix is synched to the relaxing one that controls the effective potential. This
key element of the method differs from all previous trajectory surface hopping
and decoherence algorithms; as a result the amount of decoherence introduced
at strong-interaction-region boundaries depends on the length of the strong
coupling region and the relaxation rates controlled by the decoherence times.

We emphasize that the DM potential energy surface switches gradually
and smoothly between the various electronic surfaces; no hops are invoked,
and therefore no frustrated hops arise. In the DM formalism, we preserve
Ehrenfest-like motion in strong interaction regions or when the decay times
are long. In the limit of short decay times, the DM formalism is similar to
surface hopping in having instantaneous decay of the reduced density matrix,
but surface hopping has no synching.

3 Tests

We validated the CSDM method for a variety of test cases for which we
computed [58–60] accurate quantum mechanical transition probabilities by
methods developed earlier [61] for converged quantum mechanical scattering
theory. All of the test systems have the form

A∗ + BC →
{

AB + C
A + BC

, (25)

where * denotes electronic excitation; A, B, and C are atoms; and the collision
occurs in full three-dimensional space with total angular momentum zero. The
masses of the atoms in atomic mass units are denoted mA, mB, and mC.
The full set of tests are presented in [29,30], and here I give only a survey of
the results of those studies.

First we consider a case with mA = 10, mB = 1.00783, mC = 6, and a
potential energy surface resembling that for Br* + H2. This is a case of weakly
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coupled surfaces that do not cross in either representation; the gap between
the adiabatic surfaces is about 0.36 eV throughout the whole important region,
and the diabatic coupling is a constant, 0.20 eV [59]. Table 1 shows results for a
case with a total energy of 1.10 eV where the initial vibrational and rotational
quantum numbers of BC are respectively v = 0, j = 6. In the table, PR denotes
the probability of reaction (top product in (25)), and PQ is the probability
of nonreactive quenching (electronic-to-vibrational energy transfer; bottom
product in (25)). Table 1 shows the actual calculated probabilities, and Table 2
shows the dependence on representation.

Tables 1 and 2 show that trajectory surface hopping has a very strong
dependence on representation. In simple cases like this weakly coupled atom–
diatom collision, it is not too difficult to recognize which representation pro-
vides a better description (in this case it is the adiabatic one). However, for
systems with complex potential energy surfaces, it is not always possible to
know which representation is more appropriate [22]. There may be systems
with some initial conditions for which the adiabatic representation is more
accurate and other initial conditions for which the diabatic representation is

Table 1. Test results for a weakly coupled case

method representation PQ PR

Trajectory surface hopping methods

Parlant-Gislason (PG)a adiabatic 0.01 0.002
diabatic 0.55 0.359

Tully’s fewest switchesb adiabatic 0.18 0.025
diabatic 0.40 0.161

Fewest switches with time uncertaintyc adiabatic 0.18 0.015
diabatic 0.33 0.044

Self-Consistent-potential methods

Semiclassical Ehrenfest (SE) either 0.003 0.000

CSDM adiabatic 0.15 0.021
diabatic 0.18 0.012

Accurate

Quantum scattering either 0.14 0.26
aMethod of [16]
bOriginal TFS+ method of [17] with frustrated hops ignored
cFSTU gradV method of [24] and [25]



Decoherence in Combined Quantum and Classical Mechanical Methods 237

Table 2. Representation dependence for the weakly coupled case of Table 1

type
of

P (diabatic)/P (adiabatic) or
P (adiabatic/P (diabatic)

methods method Quenching Reaction

TSH PG 55 180
TFS+ 2.1 6
FSTU gradV 1.8 3

SCP SE 1.0 –a

CSDM 1.2 1.7
aCannot compute because no reaction was observed due to qualitatively incorrect
Ehrenfest potentials in the reactive exit valley

more appropriate. Furthermore, and even more serious, is that for systems
with complex coupled potential energy surfaces, there may be regions of con-
figuration space where the diabatic representation is more suitable and other
regions or product valleys where the adiabatic representation is more suit-
able. Thus it may not be possible to find a good zero-order description that
remains valid for a whole trajectory; this was one of the original motivations
for trying to incorporate the representation independence of the semiclassical
Ehrenfest method into our scheme. Tables 1 and 2 do show that the results
obtained by the semiclassical Ehrenfest method are independent of represen-
tation; unfortunately though the results are too inaccurate to be useful. The
CSDM method reduces the representation dependence to factors of 1.2 and
1.7 for the two probabilities, and the results are reasonably accurate in both
representations, especially when we consider that the weak coupling case is
especially difficult for semiclassical methods.

We carried out similar comparisons for additional test cases. In particular,
we considered three kinds of systems, all of the form of (25) [28–30, 58–60].
We considered three cases of the weak coupling type already discussed, nine
test cases with energetically accessible avoided crossings (where the diabatic
potentials cross, but the adiabatic ones do not), and five test cases with ener-
getically accessible conical intersections. The weak coupling cases include two
strengths of diabatic coupling, one of which is studied with two different ini-
tial conditions. The avoided crossing cases consist of three different couplings
(varying in strength and extent of delocalization), each studied with three dif-
ferent initial rotational states. The conical intersection cases correspond to five
different coupling functions. The results [28–30] are shown in Table 3, which
presents mean unsigned percentage errors in the probabilities of quenching
and reaction, in the total nonadiabatic transition probability (PN ≡ PQ + PR),
and in the final internal energy distributions of the diatomic fragments. The
means are computed by logarithmic averaging [62] so as to give equal weight
to overestimates and underestimates, and the results are averaged over the di-
abatic and adiabatic calculations. The CSDM method leads to uniformly good
results for all three kinds of systems. In fact the errors are comparable to the
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Table 3. Mean unsigned percentage errors of semiclassical methods for non-Born–
Oppenheimer trajectories tested against accurate quantal results for 17 test cases
averaged over diabatic and adiabatic representations

kind kind of system averaged

of method weak avoided conical over kinds
method coupling crossing intersection of systems

TSH PG 298 107 52 152
TFS+ 195 58 44 99
FSTU gradV 74 40 44 53

SCP SE –a 65 55 –
CSDM 24 21 31 25

aCannot compute mean error because there is no reaction, and hence there are no
reactive products for which to compute mean internal energies

accuracy attainable [21] by trajectory methods for single-surface problems of
this nature.

4 Concluding Remarks

We have shown that decoherence is essential for modeling the quantum me-
chanical electronic subsystem in the simulation of electronically nonadiabatic
chemical dynamics. We have developed an improved self-consistent-potential
method called Coherent Switches with Decay of Mixing (CSDM) by writing
the time derivative of each density matrix element as the sum of a coherent
Ehrenfest-like term and a demixing term. The demixing terms control the
decay of the system from a mixed state to a stochastically selected pure state
called the decoherent state. The form of the equations was determined by
requiring:

– Conservation of total energy and angular momentum;
– Conservation of electronic phase angle;
– The decoherent state switches to maintain self-consistency, but it is other-

wise chosen as coherently as possible for each complete passage through a
strong interaction region (corresponding to non-Markovian decoherence);

– The direction in which energy is exchanged between the classical vibra-
tional degrees of freedom and the quantal electronic degrees of freedom
as the system decoheres is chosen physically based on the nature of the
nonadiabatic coupling.

The CSDM algorithm provides a semiclassical version of the multiconfigu-
rational self-consistent-field method that puts mixed quantum/classical dy-
namics for non-Born–Oppenheimer systems on a comparable footing with BO
dynamics. In particular the accuracy is comparable to that attainable when
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trajectory methods are applied to single-surface problems. Furthermore the
classical subsystem experiences no discontinuities in momenta, coordinates,
or potentials, there is relatively little dependence on representation, and the
cost of the calculation is similar to that for single-surface trajectories.

A key advantage of the semiclassical SCDM algorithm is that it is more
practical than a fully quantal multiconfigurational quantum master equation
[63–67] for applications to complex systems.
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Time-Dependent, Direct, Nonadiabatic,
Molecular Reaction Dynamics

Y. Öhrn and E. Deumens

Summary. Electron Nuclear Dynamics (END) is a time-dependent, nonadiabatic,
direct, theory of molecular processes. It has a hierarchical structure which permits
the theory to be applied at levels of increasing sophistication and accuracy. Each
rank in this hierarchy is defined by the choice of wave function for participating
electrons and atomic nuclei. The dynamical variables of the theory are the wave
function parameters, which carry the time-dependence. The time-dependent varia-
tional principle is employed to derive the equations of motion.

We describe the simplest level of approximation, which we call minimal END,
and also give a brief account of how this level of theory can be extended. Various
applications are discussed with results from calculations of integral and differential
cross section for binary molecular encounters.

1 Introduction

Concepts and pictures that shape much of the modeling and simulations of
molecular events have their origin in the separation of electronic and nuclear
dynamics. The time-independent Schrödinger equation for the total molecular
system

HΨ = EΨ (1)

is supplemented with the electronic Schrödinger equation

HelΦk(x;X) = Uk(X)Φk(x;X), (2)

solutions of which are sought for fixed nuclear positions X. When electronic
structure calculations are carried out for a large enough set of nuclear geome-
tries so-called Born–Oppenheimer potential energy surfaces (PESs) Uk(X) are
obtained. The corresponding stationary electronic states Φk then are employed
as a basis for the total molecular state, i.e.

Ψ(x,X) =
∑

k

Φk(x;X)χk(X). (3)
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When this expansion is substituted into (1), this expression multiplied by a
particular electronic state vector Φ∗

l , and integrated over all electronic degrees
of freedom the following expression obtains:[

Tn + Ul(X) +
∫
Φ∗

l (x;X)TnΦl(x;X)dx− E

]
χl(X)

= −
∑
k �=l

∫
Φ∗

l (x;X)TnΦk(x;X)dxχk(X), (4)

where Tn is the kinetic energy operator and χk the wave functions for the
nuclei. This equation is traditionally expressed for a fixed total angular mo-
mentum and in a set of coordinates internal to the molecular system, which
often leads to quite involved expressions for Tn. The integral on the left is
the so-called adiabatic correction to the Born–Oppenheimer PES Ul and the
right-hand side has the nonadiabatic coupling terms.

Although there are today a number of different approaches of how to
extract useful information from these equations, such as the use of density
functional methods for the electronic degrees of freedom, the direct use of
reduced density matrices, etc. the basic pictures and the rendering of dynamics
stem from the use of stationary electronic states and the associated PESs. Also
many time-dependent approaches to molecular processes interpret results in
terms of this picture of electronic potentials as the source of the forces that
drive the nuclear dynamics.

An alternative view of molecular dynamical processes is offered by focusing
on the evolving total molecular state vector ψ in a time-dependent formula-
tion using general bases, i.e. not necessarily those provided by the stationary
electronic states. Electron nuclear dynamics (END) theory [1, 2] is such an
approach.

The starting point is the action

A =
∫ t2

t1

L(ψ,ψ∗)dt (5)

in terms of the quantum mechanical Lagrangian (� = 1)

L =
〈
ψ

∣∣∣∣H − i
∂

∂t

∣∣∣∣ψ〉 /〈ψ|ψ〉. (6)

The time-dependence is carried by a number of wave function parameters
q(t), such as average nuclear positions and momenta, and molecular orbital
coefficients, etc. The principle of least action or the time-dependent variational
principle δA = 0 yields the Euler–Lagrange equations

d
dt
∂L

∂q̇
=
∂L

∂q
. (7)

Should the wave function be so general that its variations can reach all
parts of Hilbert space, then the Euler–Lagrange equations would become the
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time-dependent Schrödinger equation. However, for all problems of chemi-
cal interest the, necessarily, approximate wave function form for the mole-
cular system will yield a set of coupled first-order differential equations in
the time parameter t, which in a variational sense optimally approximates
the time-dependent Schrödinger equation. The wave function parameters q(t)
that carry the time-dependence play the role of dynamical variables and it
becomes important to choose a form of evolving state vector with parameters
that are continuous and differentiable. Generalized coherent states are useful
in this context [2, 3].

2 Minimal END

END theory can be viewed as a hierarchical approach to molecular processes.
The various possible choices of families of molecular wave functions represent-
ing the participating electrons and atomic nuclei can be arranged in an array
of increasing complexity ranging from a single determinantal description of
the electrons and classical nuclei to a multi-configurational quantum repre-
sentation of both electrons and nuclei [4]. The simplest level of END theory
is implemented in a program package [5] that includes efficient molecular in-
tegral routines and well tested propagation algorithms to solve the system of
coupled END equations.

This minimal END employs a wave function

|ψ(t)〉 = |R(t), P (t)〉|z(t), R(t), P (t)〉, (8)

where

〈X|R(t), P (t)〉 =
∏
k

exp[−1
2

(
Xk − Rk

b

)2
+ iPk · (Xk − Rk)] (9)

and
〈x|z(t), R(t), P (t)〉 = detχi(xj) (10)

with the spin orbitals

χi = ui +
K∑

j=N+1

ujzji(t) (11)

expanded in terms of atomic spin orbitals

{ui}K
1 , (12)

which in turn are expanded in a basis of traveling Gaussians

(x−Rx)l(y −Ry)m(z −Rz)n exp [−a(x − R)2 − i
�M

P · (x − R)] (13)

centered on the average nuclear positions R and moving with velocity P/M .
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In the narrow nuclear wave packet limit, a → 0, the Lagrangian may be
expressed as

L =
∑
j,l

{[
Pjl +

i
2

(
∂ lnS
∂Rjl

− ∂ lnS
∂R′

jl

)]
Ṙjl +

i
2

(
∂ lnS
∂Pjl

− ∂ lnS
∂P ′

jl

)
Ṗjl

}

+
i
2

∑
p,h

(
∂ lnS
∂zph

żph − ∂ lnS
∂z∗ph

ż∗ph

)
− E (14)

with S = 〈z,R′, P ′|z,R, P 〉 and

E =
∑
jl

P 2
jl/2Ml + 〈z,R′, P ′|Hel|z,R, P 〉/〈z,R′, P ′|z,R, P 〉. (15)

Here Hel is the electronic Hamiltonian including the nuclear–nuclear repulsion
terms, Pjl is a Cartesian component of the momentum and Ml the mass of
nucleus l. One should note that the bra depends on z∗ while the ket depends
on z and that the primed R and P equal their unprimed counterparts and the
prime simply denotes that they belong to the bra.

The Euler–Lagrange equations

d
dt
∂L

∂q̇
=
∂L

∂q
(16)

can now be formed for the dynamical variables

q = Rjl, Pjl, zph, z
∗
ph (17)

and collected into a matrix equation⎡⎢⎢⎢⎣
iC 0 iCR iCP

0 −iC∗ −iC∗
R −iC∗

P

iC†
R −iCT

R CRR −I + CRP

iC†
P −iCT

P I + CPR CPP

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ż
ż∗

Ṙ

Ṗ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∂E/∂z∗

∂E/∂z
∂E/∂R
∂E/∂P

⎤⎥⎥⎥⎦ , (18)

where the dynamical metric contains the elements

(CXY )ik;jl = −2Im
∂2 lnS
∂Xik∂Yjl

∣∣∣∣∣
R′=R,P ′=P

, (19)

(CXik
)ph = (CX)ph;ik =

∂2 lnS
∂z∗ik∂Xik

∣∣∣∣∣
R′=R,P ′=P

, (20)

which are the nonadiabatic coupling terms, and

Cph;qg =
∂2 lnS
∂z∗ph∂zqg

∣∣
R′=R,P ′=P

. (21)
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In this minimal END approximation the electronic basis functions are cen-
tered on the average nuclear positions, which are dynamical variables. In the
limit of classical nuclei these are conventional basis functions used in mole-
cular electronic structure theory, and they follow the dynamically changing
nuclear positions. As can be seen from the equations of motion discussed above
the evolution of the nuclear positions and momenta is governed by Newton-
like equations with Hellman–Feynman forces, while the electronic dynamical
variables are complex molecular orbital coefficients which follow equations
that look like those of the time-dependent-Hartree–Fock (TDHF) approxi-
mation [6]. The coupling terms in the dynamical metric are the well-known
nonadiabatic terms due to the fact that the basis moves with the dynamically
changing nuclear positions.

The time evolution of molecular processes in the END formalism employs
a Cartesian laboratory frame of coordinates. This means that in addition to
the internal dynamics overall translation and rotation of the molecular system
are treated. The six extra degrees of freedom add work, but become a smaller
part of the total effort as the complexity of the system grows. The advantage
is that the kinetic energy terms are simple. This means that the effect of
small kinetic energy terms, such as mass polarization, often neglected using
internal coordinates, is included. Furthermore, the complications of having to
choose different internal coordinates for product channels exhibiting different
fragmentations are not present. One can treat all product channels on an equal
footing in the same laboratory frame. Since the fundamental invariance laws
with respect to overall translation and rotation are satisfied within END [2]
it is straightforward to extract the internal dynamics at any time during the
evolution.

3 Electrons as Reactants and Products

Molecular collision processes with free electrons either as reactants or as prod-
ucts have for historical reasons [7] been treated theoretically somewhat sep-
arate from those problems in atomic and molecular collision dynamics where
only bound electrons appear. This seems to be due in part to the fact that
the interaction of electron projectiles with the bound state electrons of mole-
cular targets involves the complications of permutation symmetry of identical
particles and partially due to that the treatment of continuum states in mole-
cular quantum mechanics is far less developed than that of bound states. It is
interesting to note that even modern texts [8] on electron–molecule scattering
approaches the general electron–molecule collision via potential scattering,
treats exchange collisions as a special problem, and deals separately with
elastic and various inelastic processes.

In order to treat molecular reactive processes involving ionization, electron
scattering, and recombination END can be augmented to deal with combined
electron–molecule dynamics. This is done employing a coherent state based
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approach to describe freely moving electron wave packets. This is a natural
extension of the common approach to center basis functions on nuclear cen-
ters. It also relates to the approach using floating Gaussians [9] in electronic
structure calculations. The basic idea is to add to the parameters describing
the electronic wave function the position and momentum of centers carry-
ing basis functions and to define a consistent dynamics for these degrees of
freedom.

Considering a single free center with basis functions

(x− ρx)l(y − ρy)m(z − ρz)n exp [−c(x − ρ)2 − i
�
π · (x − ρ)], (22)

where x = (x, y, z) is an electron coordinate, ρ = (ρx, ρy, ρz) is the center
coordinate and π the center momentum. The Euler–Lagrange equations are
then constructed with the dynamical variables q = R, ρ, P, π, z, z∗ and we can
write⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

iC 0 iCR iCρ iCP iCπ

0 −iC∗ −iC∗
R −iC∗

ρ −iC∗
P −iC∗

π

iC†
R −iCT

R CRR CRρ −I + CRP CRπ

iC†
ρ −iCT

ρ CρR Cρρ CρP Cρπ

iC†
P −iCT

P I + CPR CPρ CPP CPπ

iC†
π −iCT

π CπR Cπρ CπP Cππ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ż
ż∗

Ṙ
ρ̇

Ṗ
π̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂E/∂z∗

∂E/∂z
∂E/∂R
∂E/∂ρ

∂E/∂P
∂E/∂π

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(23)

with definitions of the elements analogous to those in (19), (20), and (21).

4 Cross-Sections

END trajectories for a molecular process are obtained by integrating the equa-
tions (18) and (23) from suitable initial conditions for the reactants to a time
where the products are well separated or no further change occurs in the sys-
tem. In the case of a binary molecular reactive collision, minimal END, which
uses classical nuclei, requires that for each trajectory the reactants are given
some initial relative orientation. One of the reactant moieties is considered
the target and placed stationary at the origin of the laboratory cartesian co-
ordinate system while the other collision partner, considered the projectile, is
placed sufficiently distant so the interaction with the target is negligible. A
Thouless determinant in a suitable basis is constructed for, say, the ground
electronic state of the entire system. The projectile is given an impact para-
meter b and a momentum commensurate with the chosen collision energy E.

Each set of initial conditions leads to a particular set of product fragments
and states. The final evolved state |ψ〉 may be projected against a number of
possible final stationary electronic states |f〉 expressed in the same basis as
that of the initial state to yield a transition probability Pfo(b, E, ϕ) = |〈f |ψ〉|2,
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which is a function of the collision energy E, the relative initial orientations,
and the scattering angles (θ, ϕ) or impact parameter and angle (b, ϕ).

The classical differential cross-section for a particular product channel with
probability Pfo is

dσfo(E, θ, ϕ)
dΩ

=
∑

j

Pfo(bj , E, ϕ)
bj

sin θ|dΘ/dbj |
, (24)

where the sum runs over all impact parameters bj leading to the same scatter-
ing direction (θ, ϕ) for the fragment going to the detector. In this expression
Θ(b) is the deflection function, which, for the first branch of the scattering
region, satisfies |Θ| = θ.

For randomly oriented reactants, as is the case in gas phase reactions,
trajectories for a sufficient number of initial relative orientations are used to
produce an angular grid to calculate orientaionally averaged cross sections
[10,11]

dσf(E, θ, ϕ)
dΩ

=
〈

dσfo

dΩ

〉
o

(25)

The well-known deficiencies of the classical cross-section in (24) that occur
for small angle scattering and at so-called rainbow angles, where dθ

dbj
= 0,

as well as the lack of interference effects between the various trajectories in
the sum, can be removed with semiclassical corrections such as the uniform
Airy [12,13] or the Schiff approximations [14].

The Schiff approximation [11, 14] for small angle scattering yields a scat-
tering amplitude (for oriented reactants)

fo(kf ,k0) = ik0

∫ ∞

0

J0(qb)(1 − eiδo(b,ϕ))bdb (26)

with q = |kf − k0| the magnitude of the momentum transfer, δo(b, ϕ) the
semiclassical phase shift, and J0 the Bessel function of order 0.

The semiclassical phase shift is connected to the deflection function or
scattering angle, which is obtained directly from each END trajectory. The
expression [7]

Θ(b, ϕ) =
1
k0

dδo(b, ϕ)
db

(27)

can then be integrated to yield the phase shift. Also q, which depends on the
angle between incoming projectile wave vector k0 and the final wave vector
kf pointing toward the detector, is obtained from the END trajectories.

The form
dσfo

dΩ
= Pfo(E, θ, ϕ)

kf

k0
|fo(kf ,k0)|2 (28)

has been used with some success in predicting absolute direct and charge
transfer differential cross sections for a number of ion–atom and ion–molecule
collisions at energies ranging from tens of eV to 100 keV [11,15–24].
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However, this form of differential cross-section still does not include inter-
ference effects and in order to remedy this an augmented Schiff approximation
has been introduced such that

fo(kf ,k0) = ik0

∫ ∞

0

〈f |ψ〉oJ0(qb)(1 − eiδo(b,ϕ))bdb, (29)

i.e. the complex amplitude 〈f |ψ〉o is inserted obtained by projecting the
evolved state vector against a particular final state f for each orientation
of the reactants. In spite of the difficulty in tracking the phase from one tra-
jectory to the next this approach has had some success for simple ion-atom
systems [11] and even yielded accurate state-state cross-sections.

Integral cross-sections are less sensitive to the fine details of the collision
dynamics and the classical cross sections have produced accurate predictions
down to energies of about 0.5 eV [25] for H+

2 +H2 reactions, and also allowed
to shed some light on reaction mechanisms for molecular beam studies of D2+
NH+

3 [26–28]. Recent calculations covering a wide range of collision energies
for the test case H+ +H [29] show excellent agreement with experiments.

It can be shown [13,30,31] that by employing coherent states a posteriori
information about rovibrational resolution of cross-sections can be obtained
from dynamics with classical nuclei.

5 Examples of Applications of Minimal END

Absolute integral and differential cross-section for direct as well as charge
transfer processes in simple ion–atom and ion–molecule collisions have been
calculated with minimal END with good agreement with the best experiments.
We show in Fig. 1 one of the early simple test cases of direct cross-sections for

Fig. 1. Direct differential cross-sections for He/Ne collisions [15] compared to the
absolute differential cross sections measured by Gao et al. [32]
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Fig. 2. Total cross-sections for collisions of protons with atomic hydrogen, helium,
and neon [16] compared with measured values by ◦ [33], • [34], and (�,∗) [35]

collisions between helium and neon atoms at three different energies in the
keV range.

Also charge transfer cross sections are accurately predicted with minimal
END for collisions over a range of energies in the eV to keV range. In Fig. 2 we
show total cross-sections for proton collisions with atomic hydrogen, helium,
and neon.

Some advantages of a method such as END include that it proceeds
without precalculated potential energy surfaces, it accounts for nonadiabatic
coupling terms, and all allowed processes are treated at the same level of
approximation. This is particularly useful for hyperthermal reactions involv-
ing polyatomic systems where often several electronic states may be involved.
We illustrate this with the calculated fragmentation cross-sections of ethane
colliding with energetic protons [36]. In Fig. 3 we show the dominant fragmen-
tation channel, and in Fig. 4 the fragmentation cross sections of the remaining
allowed channels in this energy range are depicted.

Experimental data on fragmentation cross sections of polyatomic mole-
cules are scarce. There are some results for smaller systems. For instance,
the fragmentation of methane by 30 eV protons was studied experimentally
by Toennies group [37] and END was applied to this system [10] with inter-
esting agreements with results and some alternative suggestions to those of
experimental conclusions.

These results suggest that product branching ratios for collisions can be
affected and perhaps controlled by choice of projectiles and their energies.

The rendering of results from a time-dependent treatment of reaction dy-
namics is a problem that leads to movies and time-lapse pictures of dynamical
events. Obviously a great variety of properties and dynamical quantities can be
displayed in this manner. We have found it quite useful to use such techniques
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Fig. 3. Calculated reaction cross-section [36] for the dominant fragmentation chan-
nel of energetic protons colliding with ethane molecules in the given energy range

Fig. 4. Calculated reaction cross-sections [36] for all but the dominant allowed
fragmentation channels in the considered energy range

also for discovering errors. It is often a lot easier to discover flaws in the dy-
namics from a pictorial representation of the massive amounts of data than it
is to search in tables of numbers.

As an example of rendering of a reaction with dynamically active electrons
we display in Fig. 5 six panels of a typical trajectory for the H +D2 reaction
leading to HD products. The electrons are shown as a sphere around each
nucleus with the size proportional to the time-dependent population on that
atom. This result comes from a study of the time-delay effects in the formation
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Fig. 5. Six snap shots of H + D2 → D + HD with the dynamical electrons repre-
sented by a sphere around each nucleus with the size proportional to the electronic
population on each atom. The H approaches from above in the first frame, and
polarizes the D − D bond in the second frame. The third to sixth frames show the
products departing rovibrationally excited

of HD products when H projectiles collide with D2 targets at 1.64 eV in the
center of mass. Time-delays of about 25 femtoseconds between the backward
and forward scattered product molecules were put forth as a signature of
resonance in this reaction [38,39]. END calculations [24] also bore this out.

It is of course not quite accurate to display the electron cloud around H
in a different color to that around D, since in END all the electrons of the
reacting system are treated as indistinguishable. However, it is helpful to do
so in aiding the eye in following the time evolution.
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6 Extensions of Minimal END

Even if many molecular processes, in particular at higher energies, can be ac-
curately described with classical nuclei, it is sometimes, particularly at lower
energies, and for light nuclei, such as protons, necessary to account for quan-
tum effects on the instantaneous nuclear dynamics. This can be done in the
END framework [4].

Minimal END is derived as the narrow wave packet limit of frozen nuclear
gaussian wave packets. From the dynamical equations one can discern, as was
first pointed out by Heller [40], that the dynamical equations are the same
whether the zero width limit is achieved or not. Only a slight renormaliza-
tion of the matrix elements is required, but the qualitative dynamics is the
same.

For quantum nuclei END considers a basis centered at the parametric
positions R and with nuclear momentum factors just as is the case for the
traveling gaussians for electrons with momentum P in (13). Such basis func-
tions are denoted |s,R, P 〉 for a set of s-type orbitals, |jk,R, P 〉 (j = x, y, z)
for p-type orbitals and k labeling the particular nucleus, etc. A molecular wave
function, similar to a Born–Huang series corresponding to a single Thouless
determinant, |z,R, P 〉, for the electrons, can be expressed as

v|s,R, P 〉|z,R, P 〉 +
∑
j,k

vjk|jk,R, P 〉
∂

∂Rjk
|z,R, P 〉

+
∑

j,k,i,l

vjkil|jkil, R, P 〉
∂2

∂Rjk∂Ril
|z,R, P 〉 + · · · . (30)

The END equations for this type of molecular wave function has been studied
[4], and is being included in the ENDyne code.

The single Thouless determinant description of the electronic part of the
molecular wave function also clearly has its shortcomings. Although suffi-
ciently accurate results for cross sections and transition probabilities have
been obtained for reactive collisions at higher energies, it is clear that at
lower energies when a single PES is dominating the dynamics a better elec-
tronic description is needed to provide accurate barriers and gradients. This
will be achieved by a so-called vector Hartree–Fock wave function. This con-
struction is a complete active space multi-configurational (CAS-MC) wave
function [41] parameterized as a vector coherent state [42–44].

Such a wave function is a linear combination of Thouless determinants,
which means that not only are the spin orbitals non-orthogonal but so are the
determinants. It is anticipated that rather short expansions of this kind will
allow correct spin symmetry and permit sufficient accuracy of the electron
dynamics such that low energy processes can be studied. This option is being
included in the ENDyne program package.
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20. R. Cabrera-Trujillo, Y. Öhrn, J. R. Sabin, and E. Deumens, Phys. Rev. A 65,
024901 (2002)
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The Semiclassical Initial Value Series
Representation of the Quantum Propagator

Eli Pollak

Summary. One of the central open challenges of the 21st century is the computa-
tion of real time quantum dynamics for systems with “many” degrees of freedom.
A promising approach for obtaining approximate real time quantum dynamics is
through the use of the semiclassical initial value approximation for the exact quan-
tum propagator. The main drawback of this class of approximations was its ad hoc
nature, it was in many senses an uncontrolled approximation scheme. This drawback
has been recently remedied by showing that the semiclassical initial value represen-
tation (SCIVR) propagator is just a leading order term in a formally exact series
representation of the true quantum propagator. In this review we present the SCIVR
series representation, its successes and future challenges in applications to “large”
systems. In addition, a new interaction representation initial value series represen-
tation for the exact quantum propagator is formulated.

1 Introduction

Classical dynamics is a well established numerical method for obtaining real
time information on the evolution of systems with many thousands of degrees
of freedom. Although, even today there are limitations to classical molecular
dynamics, most notably the extent of time for which one can get converged
results, these limitations are trivial when compared to the difficulty of car-
rying out real time quantum mechanics computations in systems with many
degrees of freedom. The central stumbling block is that the real time quan-
tum propagator is complex. Its path integral representation at time t is a sum
over all paths leading from the configuration space point x to x′ weighted by
exp(iS/�), where S is the action along the path. It is this oscillatory weight
function which causes any direct Monte Carlo estimate of the propagator or
its matrix elements to be exponentially expensive and so unrealistic except
for systems with only a very few degrees of freedom.

From its inception, a central problem in quantum mechanics, was to relate
it to classical dynamics. The formal theory, applicable to systems of arbitrary
size was developed during the second half of the 20th century. The central
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object here is the so called van Vleck semiclassical propagator [1], which rep-
resents the stationary phase limit of the quantum propagator. In this station-
ary phase limit, instead of a sum over all paths, one has at most a countable
set of classical paths that lead from x to x′ at time t:

KV V (x,x′; t) =
∑

all traj′s

(
(2πi�)N ∂x

′
t

∂x

)−1/2

exp
(

iS(x,x′; t)
�

)
, (1)

where S(x,x′; t) denotes the action along the trajectory including the “Maslov
index” and N is the number of degrees of freedom. This form was very suc-
cessful in explaining quantum superposition [2], obtaining the semiclassical
quantization rules for quasiperiodic classical systems [3] and classically chaotic
systems [4]. As a practical tool though it is not very useful. There are two main
deficiencies. One is the necessity of solving a double ended boundary condition
for the appropriate trajectories. The second problem is that the propagator
diverges whenever the denominator in the prefactor goes through zero. This
divergence may be “fixed” by using uniform semiclassical approximations [5],
but the methodology becomes rather tedious and is not readily amenable to
solution for large systems.

To overcome some of these problems, Miller suggested [6] to use an initial
value form of the van Vleck propagator. By changing variables from the initial
and final point in configuration space to the initial point in phase space, Miller
wrote down for the first time a semiclassical initial value representation of the
propagator:

KM =
∫

dpdq |qt〉〈q|
(

1
(2πi�)N

∂qt

∂p

)1/2

exp
(

iS(q,p; t)
�

)
. (2)

This form addresses the two major difficulties appearing in the van Vleck form.
One does not need to solve a double ended boundary condition problem, rather
one needs to propagate from any point in phase space a classical trajectory
until time t. Furthermore, the derivative with respect to the initial conditions
is now in the numerator, so even if it vanishes, it does not introduce any
infinities as in the Van Vleck form. From a numerical point of view though,
one remains with a difficult sign problem. Even though the sum over all paths
is reduced to a sum over all classical paths, the weight is highly oscillatory
and so difficult to converge using a Monte Carlo scheme.

Some years later, Heller suggested [7] a “frozen Gaussian” approximation
to the propagator, which also has the “nice” property of being an initial value
representation, moreover it has a built in Gaussian weighting function in the
form of coherent states

KH(t) =
∫

dpdq
(2π�)N

exp

(
iS̃(p,q; t)

�

)
|g(p,q; t)〉〈g(p,q; 0)|, (3)
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where the |g〉’s are coherent states, whose coordinate representation is
Gaussian

〈x|g(p,q; 0)〉 =
(

det (Γ )
πN

)1/4

exp
(
−1

2
(q − x)T

Γ (q − x) +
i
�
p(x − q)

)
,

(4)
where for a system with N degrees of freedom, Γ is a width parameter ma-
trix (with positive eigenvalues) with dimension N ×N . If the width matrix is
chosen as constant in time, one talks about a frozen Gaussian approximation,
if it is time dependent, one uses the terminology thawed Gaussian approx-
imation. The action appearing in the exponent of (3) is no longer “simple”
but involves the action along a coherent state weighted average of the clas-
sical potential. The frozen and thawed Gaussian forms have the advantage
that now the coherent states provide a natural Gaussian weighting function,
so that the multidimensional phase space integral can at least in principle
be converged using Monte Carlo methods. The Gaussian weighting causes a
natural decay which leads to convergence. However, this representation has a
major problem, it is not unitary, as time evolves, the initial unitarity prop-
erty is rapidly lost and the results become seemingly meaningless. Heller’s
form raises another difficulty. There is almost arbitrary freedom in the choice
of the width parameter matrix. So, one has an approximation which is uncon-
trolled. For different width parameters one gets different results and there is
no objective criterion by which to choose the width parameter.

The unitarity problem was solved to a large extent by Herman and Kluk.
In their now famous paper [8], they showed that what was missing in Heller’s
frozen Gaussian was a prefactor which depends on elements of the monodromy
matrix. When including the prefactor, the “frozen Gaussian” propagator, now
called the Herman–Kluk SCIVR propagator was approximately unitary for
rather long times. How about the arbitrariness of the width parameter matrix?
Kluk et al. [9] showed that there was a large region in parameter space, for
which the results were not too sensitive to changes in the width parameters,
so that from a practical point of view, this problem was not too acute.

The early numerical and analytical studies of the Herman–Kluk SCIVR
propagator opened the way for a large body of numerical studies of ever in-
creasing complexity (for recent reviews see [10–14]). There were a number of
important milestones in the applications of the theory. One was the invention
of the forward–backward simplification of the SCIVR expression for thermal
correlation functions [15–18]. This led to a significant decrease in the oscil-
latory nature of the phases in the SCIVR expression. Numerical convergence
was then achieved with a significantly smaller sample of Monte Carlo points.
A second trick which is used extensively is Filinov filtering of the SCIVR
expression for correlation functions [20–22]. This too significantly reduces the
phase oscillations, however, it must be applied with care, since, especially
in the presence of classically chaotic systems it can also degrade the signal,
leading to erroneous results [23].
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The derivation of the HK SCIVR has also been a subject of intense debate
[12, 24, 25]. However, lately, especially through the studies of Martin-Fierro
and Gomez-Llorente [26] and Kay [14] it is evident that the HK SCIVR is a
valid semiclassical expression.

Although the Herman Kluk SCIVR expression for the propagator and its
variants may be considered as important progress in our ability to compute
quantum phenomena in complex systems, there remain some severe draw-
backs. There are in principle, an infinite number of SCIVR expressions for the
propagator, all of which are exact for harmonic systems and all of which reduce
to the van Vleck semiclassical limit in a stationary phase sense. This ambi-
guity should be resolved. Even for a given SCIVR expression, there remains
ambiguity in the choice of the width parameters appearing in the coherent
states. Finally, when the number of degrees of freedom increases, or when
the time interval becomes “long” the phase oscillations in the SCIVR expres-
sions become unmanageable. It is not an accident that to date the SCIVR
based expressions have not been applied to systems with more than a few
dozen degrees of freedom. In Sect. 2, we will review how the SCIVR series
representation [27,28] has helped in overcoming some of these deficiencies.

2 The SCIVR Series Method

2.1 The Formalism

The exact quantum propagator K̂(t) obeys the equation of motion

i�
∂

∂t
K̂(t) = ĤK̂(t), K̂(0) = Î . (5)

The SCIVR propagator K̂0(t) is (except for harmonic systems) not identical to
the exact propagator so that

(
i� ∂

∂t − Ĥ
)
K̂0(t) �= 0. We can therefore define

the residue to be a “correction operator” [29] so that:

i�
∂

∂t
K̂0(t) = ĤK̂0(t) + Ĉ(t), K̂0(0) = Î , (6)

where we have imposed the condition that at least at the initial time the
SCIVR propagator is the identity operator. The correction operator is deter-
mined uniquely by the choice made for the SCIVR propagator. Given K̂0(t)
one knows exactly what the correction operator is. Computation of its matrix
elements is typically not more or less difficult than computation of the SCIVR
propagator itself. Explicit expressions for the correction operator associated
with the HK propagator may be found in [30]. More general formulae for the
correction operator, for families of SCIVR propagators may be found in [31].

Equation (6) may be formally solved [28] as:

K̂0(t− ti) = K̂(t− ti) −
i
�

∫ t

ti

dt′K̂(t− t′)Ĉ(t′). (7)
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The numerical experience with the various SCIVR propagators implies that
typically they are not far off the mark. This implies that we may consider
the correction operator to be “small” in some sense and so justifies a pertur-
bative expansion of the formal solution given in (7). Representing the exact
propagator in terms of a series, in which the jth element is of the order of
Ĉ(t)j

K̂(t− ti) =
∞∑

j=0

K̂j(t− ti); (8)

inserting this expansion into the formal solution (7) gives the recursion relation

K̂j+1(t− ti) =
i
�

∫ t

ti

dt′K̂j(t− t′)Ĉ(t′). (9)

This recursion relation together with the known form of the correction oper-
ator provides a series representation of the exact propagator. Experience has
shown that this series typically converges rapidly [28, 30, 32–35]. This rapid
convergence is a reflection of the fact that the zeroth order SCIVR term does
incorporate in it much of the quantum phenomena. However, an analytic the-
ory of the convergence properties remains unknown at present.

The SCIVR series representation of the propagator is exact. It immedi-
ately provides a pathway for removal of some of the difficulties associated
with the SCIVR approximation, mentioned in the Introduction. The series
representation turns the ambiguity in the definition of the SCIVR propaga-
tor to a strength as discussed Sect. 2.2. The SCIVR series representation is
actually just a generalization of time dependent perturbation theory. In time
dependent perturbation theory one divides the Hamiltonian into two parts
Ĥ = Ĥ0 + Ĥ1 and chooses as the zeroth order propagator the supposedly
known propagator for Ĥ0: K̂0(t) = exp(− i

�
Ĥ0t). Since i�∂K̂0(t)

∂t = Ĥ0K̂0(t) =
(Ĥ0 + Ĥ1)K̂0(t) − Ĥ1K̂0(t) one finds that the “correction operator” is just
−Ĥ1K̂0(t) and the series representation of the exact propagator is just the
standard interaction picture representation. For example, the first-order cor-
rection term is K̂1(t) = i

�

∫ t

0
dt′ exp(− i

�
Ĥ0(t− t′))Ĥ1 exp(− i

�
Ĥ0t

′).

2.2 Properties of the Correction Operator

Viewing the SCIVR series representation as a generalization of perturba-
tion theory implies that one should minimize the correction operator in some
sense. For example, when considering an overlap function of the form c(t) =〈
Ψ
∣∣∣K̂(t)

∣∣∣Ψ〉 =
∑∞

j=0 cj(t) with cj(t) being of the order Ĉj in the correction
operator, then in the spirit of perturbation theory the width parameters of
the coherent states appearing in the SCIVR propagator should be chosen so
that the first-order term in the series c1(t) = i

�

〈
Ψ
∣∣∣∫ t

0
dt′K̂0(t− t′)Ĉ(t′)

∣∣∣Ψ〉 is
minimal. We have shown in a number of examples that indeed this leads to im-
proved convergence of the SCIVR series [28,32,34]. However, the computation
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of this first-order term is more expensive than the computation of the zeroth
order term since it involves a product of two operators. It turned out therefore
to be of practical convenience to minimize instead the expectation value of〈
Ψ
∣∣∣Ĉ(t)

∣∣∣Ψ〉 [30]. Here, one needs to compute only a single operator and the
numerical effort is the same as the computation of c0(t), instead of a product
of two operators as in the full first-order expression. This cheaper minimiza-
tion led to very similar parameters, as compared to the full minimization of
the first-order term.

The SCIVR series representation also opens the way for understanding the
advantage of the HK type SCIVR as compared to the Miller type of SCIVR
propagator. If one takes the time derivative of the prefactor in the Miller type
SCIVR propagator one sees that

∂

∂t

(
∂qt

∂p

)1/2

=
1
2

(
∂qt

∂p

)−1/2
∂pt

∂p
.

In other words, in the associated correction operator, the derivative with
respect to initial conditions in the prefactor moves from the numerator to
the denominator and so whenever it vanishes it leads to a divergence in the
correction operator. However, if one uses the Herman Kluk SCIVR propaga-
tor, the prefactor itself is typically a complex factor which does not vanish at
any time and so this problem does not occur. More specifically the SCIVR
propagator can be written without loss of generality as:

K̂0(t) =
∫ ∞

−∞

N∏
j=1

(
dpjdqj
2π�

)
R(p,q, t)e

i
�

S(p,q,t)|g(p,q, t)〉〈g(p,q, 0)|. (10)

The prefactor R(p,q, t) for the Herman Kluk SCIVR is

RHK(p,q, t) =
(

det
[
1
2

(
∂qt

∂q
+ Γ−1 ∂pt

∂p
Γ − i�

∂qt

∂p
Γ +

i
�
Γ−1 ∂pt

∂q

)]) 1
2

(11)
with Γ being the constant width parameter matrix as it appears in the co-
herent states, see (4). For example, for a one-dimensional harmonic oscillator
with frequency ω, the HK prefactor is just

[
cos(ωt) − i sin(ωt) 1

2

(
ω

�Γ + �Γ
ω

)]1/2

and this prefactor never vanishes while for the Miller van Vleck form one has
that ∂pt

∂q = sin(ωt)/ω and this evidently vanishes whenever ωt = nπ. It should
be stressed that the Miller SCIVR propagator is exact for the harmonic oscil-
lator, so that after integration over the phase space, the correction operator
vanishes identically, however, this phase space integration would be difficult
to converge when using a Monte Carlo algorithm. The same is not true for
the Herman Kluk form.

To obtain the general form of the correction operator associated with the
SCIVR propagator as given in (11) it is necessary to specify the time evolution
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of the coordinates and momenta. For any specified time evolution one would
derive an associated correction operator. It is therefore of interest to present
a general formalism for possible dynamics and the associated family of cor-
rection operators. For this purpose we introduced [31] a normalized averaging
function f(x− q) which is even with respect to the argument. Given a quan-

tum Hamiltonian with form Ĥ = p̂2
q

2 +V (q̂) one considers a classical dynamics
which is governed by the classical Hamiltonian

H̃cl =
p2

q

2
+ Ṽ (q) (12)

and Ṽ (q) is the averaged potential

Ṽ (q) =
∫ ∞

−∞
dxf(q − x)V (x). (13)

The classical (mass weighted) coordinates and momenta q(t) and p(t) obey
Hamilton’s equations of motion on the averaged potential

q̇j(t) =
∂H̃cl

∂pj
= pj(t), (14)

ṗj(t) = −∂H̃cl

∂qj
= −∂Ṽ [q(t)]

∂qj
, (15)

where the dot denotes time differentiation.
The correction operator may now be written down as [32]:

Ĉ(t) =
∫ ∞

−∞

N∏
j=1

(
dpjdqj
2π�

)
R(p,q, t)e

i
�

S(p,q,t)ΔV (q̂, t)|g(p,q, t)〉〈g(p,q, 0)|

(16)
with the “potential difference” operator having the form:

ΔV (q̂, t) = ∇Ṽ [q(t)] · (q̂−q(t)) − V (q̂)−∂S
∂t

+
pT · p

2

+i�
·
R

R
+

i�
4
∂ log[detΓr(t)]

∂t
− �

2

2
Tr [Γ (t)]

+
�

2

2
(q̂−q(t))T Γ (t)Γ (t) (q̂−q(t))

− i�
2

(q̂−q(t))T
[
∂

∂t
Γ (t)

]
(q̂−q(t)) . (17)

Here we have assumed that the width matrix may be time dependent and
complex. The real and imaginary parts of the matrix are denoted by the
subscripts “r” and “i” (Γr(t), Γi(t)) and for the sake of brevity we have omitted
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the fact that the matrices may be dependent on the initial time phase space
variables. At time t = 0, the imaginary part will vanish and the real part has
only positive eigenvalues.

This form of the correction operator can be used to define families of
useful SCIVR propagators. At this point, neither the width matrices nor the
prefactor have been defined. A “good” SCIVR propagator is one for which
the correction operator is “small.” Ideally, one would want to make the po-
tential difference operator vanish, however, this is impossible in general. In-
stead, one may demand for example, that the potential difference operator
vanish on the average [32]. Limiting oneself to a real constant width para-
meter matrix, choosing the “averaging function” f(x − q) = δ(x − q) and
averaging the potential difference operator over the coherent state such that
〈g(p,q; t) |ΔV (q̂, t)| g(p,q; t)〉 = 0 leads immediately to the Heller frozen
Gaussian form of the SCIVR propagator as given in (3). In [31] we have
shown how one can use this methodology to generalize the thawed Gaussian
propagator of Baranger et al. [12].

2.3 Renormalization

The frozen Gaussian SCIVR has a major numerical advantage over the
Herman Kluk SCIVR since one does not need to compute the monodromy
matrix elements. However, there is a price to pay. While the HK SCIVR is
approximately unitary for rather long times, the prefactor free SCIVR loses
unitarity rather rapidly [36]. Here too though, the SCIVR series approach pro-
vides a route for overcoming the loss of unitarity [32]. Consider for example
the overlap function c0(t) =

〈
Ψ
∣∣∣K̂0(t)

∣∣∣Ψ〉 . Associated with it is a normal-

ization function N(t) =
〈
Ψ
∣∣∣K̂†

0(t)K̂0(t)
∣∣∣Ψ〉. One may now define a renor-

malized SCIVR propagator K̂N0(t) = K̂0(t)/
√
N(t) so that by definition〈

Ψ
∣∣∣K̂†

N0(t)K̂N0(t)
∣∣∣Ψ〉 = 1. The correction operator associated with the

renormalized propagator is then modified, one readily finds that

ĈN (t) = Ĉ(t)/
√
N(t) − 1

2
K̂N0(t)

d lnN(t)
dt

.

The SCIVR series representation of the renormalized propagator follows
through using the renormalized correction operator ĈN (t). Similar strate-
gies may be employed when computing correlation functions in dissipative
systems. The computation of the normalization function is more expensive
than the computation of the overlap function since it involves a product of
two propagators. However, it is still less expensive than the computation of
the second term in the SCIVR series and usually needs to be carried out for
internal consistency checks. It is also noteworthy that the suggested renormal-
ization is not general. For different wavepackets |Ψ〉 one would get different
normalization functions. The renormalization to be used will thus depend on
the specific problem to be solved.
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2.4 IVR in the Interaction Representation

The SCIVR series methodology can be also used to develop IVR approx-
imations within the interaction representation of quantum mechanics. The
Hamiltonian is divided into two parts as before Ĥ = Ĥ0 + Ĥ1 and K̂0(t) =
exp(− i

�
Ĥ0t) is assumed to be known exactly. In the interaction picture, the

propagator is represented as a product of two propagators K̂(t) = K̂0(t)K̂I(t),
where K̂I(t) = exp+

(
− i

�

∫ t

0
dt′Ĥ1(t′)

)
is the time ordered exponential with

Ĥ1(t) = K̂†
0(t)Ĥ1K̂0(t). An Interaction Representation IVR (IRIVR) would

be an IVR representation for the interaction propagator K̂I(t). A pioneering
work on the SCIVR interaction representation was presented by Shao and
Makri [37]. They replaced the classical dynamics appearing in the Herman–
Kluk SCIVR propagator with forward–backward dynamics, that is each tra-
jectory is propagated classically forward in time under the action of the full
Hamiltonian and then propagated classically backward to time zero under the
action of the zeroth order Hamiltonian. The resulting SCIVR approximation
for K̂I(t) has the desired properties that K̂I0(0) = I and that it reduces to the
identity operator I if Ĥ1 = 0. Especially the first property implies that here
too one can apply the correction operator formalism, the correction operator
would now be defined as ĈI(t) = i�∂K̂I0(t)

∂t − Ĥ1(t)K̂I0(t) and (7)–(9) follow
through readily.

A different suggestion for an IRIVR would be:

K̂I0(t) =
∫ ∞

−∞

N∏
j=1

(
dpjdqj
2π�

)
exp

(
− i

�

∫ t

0

dt′〈g(p,q)|Ĥ1(t′)|g(p,q)〉
)

× |g(p,q)〉〈g(p,q)|. (18)

Note that here the time dependence does not come from classical mechanics,
but rather from time propagation with the known zeroth order propagator
K̂0(t). The IRIVR suggested in (18) also reduces to the identity operator both
at the initial time as well as when the perturbation part of the Hamiltonian
Ĥ1 vanishes.

The equation of motion for the interaction representation propagator is

i�
∂K̂I(t)
∂t

= Ĥ1(t)K̂I(t). (19)

The correction operator in this interaction representation is defined as:

ĈI(t) = i�
∂K̂I0(t)
∂t

− Ĥ1(t)K̂I0(t)

=
∫ ∞

−∞

N∏
j=1

(
dpjdqj
2π�

)(
〈g|Ĥ1(t)|g〉 − Ĥ1(t)

)
e−

i
�

∫ t

0
dt′〈g|Ĥ1(t

′)|g)〉|g〉〈g|,

(20)
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where for the sake of brevity we wrote everywhere g instead of g(p,q). Evi-
dently, this correction operator has the property that at every point in phase
space, when averaged over the coherent state, it vanishes. This is similar to
the condition which leads to the prefactor free SCIVR as described earlier.
Given the correction operator, one may repeat the same algebra as before and
obtain a series representation of the interaction propagator in terms of the
correction operator and K̂0(t). The usefulness of representations of this sort
remains an open topic for future investigation, however, even at this point,
one sees from here the potential and power of the series method for obtaining
practical ways of computing real time quantum dynamics using Monte Carlo
methods.

3 Applications

The SCIVR series method has been applied thus far to a number of cases.
The first application was to the overlap function c(t) =

〈
Ψ
∣∣∣K̂(t)

∣∣∣Ψ〉 for
a Gaussian wavefunction evolving on a quartic potential Hamiltonian [28].
Optimization of the width parameter, as described in the previous section
led to a converged correlation function using only the first two terms in the
SCIVR series, for times up to three periods of motion in the well of the quartic
potential [30]. As in any time dependent perturbation theory, it is necessary
to go to higher order in the perturbation series as the time interval increases.

The next application was to the double slit scattering model studied by
Miller and coworkers [32]. This two dimensional problem was solved using
two different variants of the SCIVR series method. Optimization of the width
parameter and use of the Herman–Kluk propagator led to accurate results for
the interference pattern of the scattered wavepacket using only the first two
terms in the SCIVR series. Use of the Heller frozen Gaussian method with
renormalization, led to convergence with the first three terms in the SCIVR
series. The numerical effort involved was similar in both cases, here the great
advantage of the prefactor free Heller SCIVR did not play a major role, since
the number of degrees of freedom in this model scattering problem is only two.

One of the interesting challenges to the SCIVR method was the com-
putation of deep tunneling probabilities. A partially successful attempt at
describing tunneling with the aid of classical trajectories is based on Wigner
transformation of the initial wave-packet followed by classical propagation of
the phase space variables. The wavepacket has a tail whose energy is larger
than the barrier height and classical trajectories propagated at these high
energies will lead one over the barrier. The probability for transmission is
exponentially small and so one has a qualitative description of tunneling via
classical trajectories [38]. This classical path description of tunneling is ex-
act for a parabolic barrier. However, as noted by Maitra and Heller [39], it
fails for “deep” tunneling. When the barrier goes to a constant value at plus
or minus infinity, the classical path contribution becomes too small. Tunnel-
ing is dominated by nonclassical paths connecting two manifolds of classical
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trajectories lying close to the separatrix between transmitted and reflected
trajectories. Kay [40] showed that one may improve upon the classical path
description with the aid of an SCIVR propagator provided that the coher-
ent states have a complex time dependent width. Grossmann [41] estimated
the tunneling probability by splitting the propagator into a product of two
equal time propagators and then estimating each half time propagator using
an SCIVR propagator. Burant and Batista continued in this vein using time
slicing of the propagator [42].

We have shown that deep tunneling is accounted for when using the SCIVR
series method [28]. The nth term in the series involves a product of n+ 1
propagators, each related to the other by an overlap matrix element of co-
herent states. Thus, the nth term involves n + 1 trajectory segments, whose
final and initial points are related through a Gaussian overlap function. Such
a path was termed a coherent classical path. We found that “deep” tunneling
is well described by such coherent classical paths, and that only a finite small
number of segments (typically less than 5) are needed to accurately describe
the tunneling process. This analysis worked well both for thermal and energy
dependent scattering.

As already discussed, one of the central problems in application of the
SCIVR method to “large” systems is that the cost of propagating all the
elements in the monodromy matrix is rather high in cpu time. One way of
overcoming this is to use the prefactor free methods. A different way is to use a
hybrid method, that is construct the prefactor but using only the system vari-
ables while treating the bath variables with the prefactor free formalism [34].
This hybrid method was applied to the relaxation of an anharmonic oscillator
bilinearly coupled to a bath of five harmonic oscillators. Comparison with nu-
merically exact results using basis set methods showed that it again sufficed
to use only the first two terms in the SCIVR series to obtain convergence.

4 Discussion

The SCIVR series method has led to significant conceptual progress. The
various ambiguities associated with SCIVR propagators was resolved through
the understanding that the SCIVR propagator is just a zeroth order term in a
perturbation series. The “best” SCIVR propagator is the one that leads to the
quickest convergence. For different problems this can mean different choices.
The analysis of the correction operator has led to new families of SCIVR
operators, has provided new physical insight into Heller’s frozen Gaussian
propagator and has shown the way to construct general forms of prefactor
free and hybrid propagators with favorable numerical convergence properties.

There are though obstacles that need to be addressed. In chaotic systems,
the Herman–Kluk prefactor diverges exponentially in time making a Monte
Carlo evaluation of even the HK SCIVR propagator impossible [43]. This may
be remedied by using prefactor free hybrid or thawed Gaussian propagators.
In all these cases either the prefactor is a constant, or the effect of chaos is
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limited or the monodromy matrix elements appear in the denominator instead
of the numerator so that the contribution of the highly chaotic trajectories is
exponentially small at long times. There is perhaps another strategy and that
is to replace the classical Wigner dynamics by the so called Q representation
of the quantum Hamiltonian wherein the quantum Hamiltonian is averaged
over coherent states. The Herman–Kluk form of the SCIVR propagator in this
Q representation has been derived by Martin-Fierro and Gomez-Llorente [26].
In the Q representation, the Gaussian averaging of the potential softens it
and so reduces the hard chaos. To date though, none of these options have
been studied seriously, so that chaos in the SCIVR approach remains an open
question.

Perhaps, though the most serious challenge facing the SCIVR series
method is the old phase problem. As the number of degrees of freedom in-
creases, so do the variations in the phase in the integrand of the SCIVR propa-
gator and it becomes increasingly difficult to converge the results using Monte
Carlo methods. It is not an accident that to date one does not find converged
SCIVR results for systems with more than a few dozen degrees of freedom.
Even then, results are obtained for relatively short times. This highlights the
need for extracting information from short time quantum propagation. One
way of doing this is with the filter diagonalization method [44, 45]. We have
recently shown how one may use a time dependent Rayleigh-Ritz variational
theorem to extract tunneling probabilities and wave functions in a symmetric
double well potential [35]. Further studies of the efficacy of these short time
methods will be needed to turn the SCIVR series method into a viable tool
for computing eigenvalues.

The initial value series representation in the interaction representation
presented in this paper is an additional twist on the use of IVR methods to
obtain the exact propagator with the aid of Monte Carlo methods. Here too
the series method assures that at least in principle, if the series converges
it will lead to the exact propagator. The interaction representation has the
advantage that it “pulls out” of the IVR portion a large part of the phase, thus
hopefully leading to easier convergence when using Monte Carlo methods. The
utility of the interaction representation IVR series remains a topic for future
studies.

In summary, the SCIVR series method has been shown thus far to be viable
for a variety of problems, but the proof of the pudding is its applicability to
systems with at least dozens of degrees of freedom.
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II.2 Mixed Quantum-Classical Statistical Mechanics
Methods



Quantum Statistical Dynamics with
Trajectories

G. Ciccotti, D.F. Coker, and Raymond Kapral

Summary. In this chapter we review the key issues in the construction of a
mixed quantum–classical statistical mechanics. Two approaches are outlined: First,
the construction of a formally consistent quantum–classical scheme which entails
modified dynamical equations, and a modified equilibrium distribution that is the
stationary state of the quantum–classical dynamics. Second, an approach which
starts from the exact quantum correlation functions and introduces approximations
for both the dynamics and (possibly separately) the equilibrium distribution. The
first scheme is internally consistent, but inconsistencies arise in the properties of
the quantum–classical correlation functions including the fact that time translation
invariance and the Kubo identity are only valid to O(�). The second scheme does
not address the consistency issues explicitly, but has to provide suitable criteria
for approximations for both the dynamics and the equilibrium distribution. Two
approaches to the practical implementation of this second scheme are presented
(1) a mixed quantum–classical propagation, closely related to the first scheme and
(2) a linearized path integral approach.

1 Introduction

Consider quantum systems which can be partitioned into two subsystems, one
of which behaves almost classically while the other requires a full quantum
description. It is reasonable to assume that the overall quantum behavior of
the total system will be simplified due to the presence of this almost classical
component. This fact has motivated the development of mixed quantum–
classical methods, an idea which has attracted considerable interest for a
number of years. In spite of the simplicity of this idea, the formulation of a
mixed quantum–classical dynamics is not a simple problem, and many con-
ceptual difficulties arise making this a very active area of research.

A great deal of effort in this area has been devoted to the development of
approximate quantum–classical dynamical schemes while much less effort has
been invested in exploring statistical mechanical issues. In the physical sci-
ences one is interested in the calculation of time-dependent expectation values
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and (equilibrium) correlation functions. In order to compute these quantities
one needs not only mechanics but also statistical mechanics.

One can imagine investigating statistical mechanical issues from two per-
spectives (1) construct a fictitious world in which one formulates statistical
mechanics based on an underlying quantum–classical dynamics or (2) begin
with the full quantum statistical mechanical description of the real world
and make approximations to the quantum dynamics that lead to a represen-
tation in terms of trajectories. There are advantages and disadvantages to
both schemes. As we shall see it is difficult to construct a consistent mixed
quantum–classical formulation, however, if scheme (1) could be carried out
one would have a consistent statistical mechanical formulation in the fictitious
quantum–classical world. The essential issue then would be to determine the
extent to which this fictitious world is a faithful model of the corresponding
real one defined above. In scheme (2) the starting point is the correct sta-
tistical mechanical description of the quantum world but approximations are
used to reduce the dynamics to trajectories. These approximations introduce
inconsistencies in the formulation. In particular the full quantum equilibrium
distribution is not stationary under the approximate quantum evolution.

In this chapter we will address some of these issues and illustrate the
ideas by considering specific examples of methods which construct approxi-
mate trajectory descriptions of quantum evolution. In Sect. 2 we describe the
formulation of a statistical mechanics based on quantum–classical equations of
motion and point out some difficulties that arise in carrying out this program.
In Sect. 3 we consider formulations based on approximations to the dynam-
ics in the full quantum statistical mechanical expressions for time correlation
functions. The ideas are illustrated by considering two examples that approx-
imate the dynamics in terms of trajectories. Finally we conclude with some
observations and perspectives for future research.

2 Quantum–Classical Worlds

We begin by formulating the quantum laws underlying dynamics and statis-
tical mechanics. Let B̂ be an observable of the system, then the Heisenberg
equation describing its motion is

dB̂(t)
dt

=
i
�
[Ĥ, B̂(t)] . (1)

The Liouville–von Neuman equation of motion for the density matrix ρ̂ is
given instead by

∂ρ̂(t)
∂t

= − i
�
[Ĥ, ρ̂(t)] , (2)

and the equation for the average value of an observable can be written in either
of the following two equivalent forms obtained using cyclic permutation of the
trace:

B(t) = TrB̂ρ̂(t) = TrB̂(t)ρ̂(0) . (3)
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As described in the Sect. 1 we partition our system into two subsystems:
the first subsystem contains n degrees of freedom representing particles with
massm and coordinate operators q̂; the second subsystem comprisesN degrees
of freedom describing particles of mass M and coordinate operators Q̂. The
hamiltonian operator may be written as

Ĥ =
P̂ 2

2M
+
p̂2

2m
+ V̂ (q̂, Q̂) ≡ P̂ 2

2M
+ ĥ(Q̂) , (4)

where p̂ and P̂ are momentum operators, V̂ (q̂, Q̂) is the total potential energy,
and ĥ is the hamiltonian of the first subsystem in the field of the second
subsystem with fixed coordinates. We employ a condensed notation such that
q̂ = (q̂1, q̂2, . . . , q̂n) and Q̂ = (Q̂1, Q̂2, . . . , Q̂N ), with an analogous notation for
p̂ and P̂ .

Let us now consider the partial Wigner transformation [1] of the density
matrix with respect to the subset of Q coordinates [2],

ρ̂W(R,P ) = (2π�)−N

∫
dZeiP ·Z/�〈R− Z

2
|ρ̂|R+

Z

2
〉 . (5)

In this representation the quantum Liouville equation is

∂ρ̂W(R,P, t)
∂t

= − i
�

(
(Ĥρ̂)W − (ρ̂Ĥ)W

)
= − i

�

(
ĤWe�Λ/2iρ̂W(t) − ρ̂W(t)e�Λ/2iĤW

)
, (6)

where the partially Wigner transformed hamiltonian is

ĤW(R,P ) =
P 2

2M
+
p̂2

2m
+ V̂W(q̂, R) , (7)

and Λ is the negative of the Poisson bracket operator, Λ =
←
∇P ·

→
∇R −

←
∇R ·

→
∇P , where the direction of an arrow indicates the direction in which the
operator acts. To obtain this equation we used the definition of the partial
Wigner transform of an observable

ÂW(R,P ) =
∫

dZe−iP ·Z/�〈R+
Z

2
|Â|R− Z

2
〉 , (8)

and the fact that the partial Wigner transform of a product of operators is [3]

(ÂB̂)W(R,P ) = ÂW(R,P )e�Λ/2iB̂W(R,P ) . (9)

Suppose now that the subsystem comprising the particles with masses
M is taken to represent an environment or bath and assume that M � m.
In this limit it can be shown that e�Λ/2i can be replaced by (1 + �Λ/2i)
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and the full von Neuman equation reduces to the quantum–classical Liouville
equation [2, 4–10]

∂ρ̂W(R,P, t)
∂t

= − i
�
[ĤW, ρ̂W(t)] +

1
2

({
ĤW, ρ̂W(t)

}
−
{
ρ̂W(t), ĤW

})
≡ −iL̂ρ̂W(t) ≡ −(ĤW, ρ̂W(t)) . (10)

Here [ , ] is a commutator, while { , } indicates a Poisson parenthesis
on the R and P variables. The second line of this equation defines the
quantum–classical Liouville operator L̂ and the quantum–classical bracket.
The quantum–classical equation of motion for a dynamical variable B̂W can
be written in a similar form as

dB̂W(t)
dt

= iL̂B̂W(t) ≡ (ĤW, B̂W(t)) . (11)

Equation (10) is the quantum–classical Liouville equation describing the
coupled evolution of our two subsystems. It can be shown that as a result of
the coupling a purely newtonian description of bath dynamics is no longer
possible [11]. However, it is possible to express the solution of this equation
in terms of an ensemble of surface hopping trajectories [2].

Even though this evolution is well defined, quantum–classical dynamics
does not possess a Lie algebraic structure like quantum or classical mechanics
since the Jacobi identity is violated by the quantum–classical bracket [12,13]

(ÂW, (B̂W, ĈW)) + (ĈW, (ÂW, B̂W)) + (B̂W, (ĈW, ÂW)) �= 0 . (12)

This leads to pathologies in the general formulation of quantum–classical
dynamics and statistical mechanics [12,13].

A fundamental ingredient of statistical mechanics is the equilibrium den-
sity which is the stationary solution of the Liouville equation. The well known
form of the quantum canonical equilibrium density is ρ̂e = Z−1

Q exp(−βĤ)
which, expressed in terms of the partial Wigner transform, can be written as

ρ̂We(R,P ) = (2π�)−N

∫
dZeiP ·Z/�〈R− Z

2
|ρ̂e|R+

Z

2
〉 . (13)

This quantity is not stationary under quantum–classical dynamics. So the
equilibrium density of the quantum–classical approach has to be determined
by solving the equation

iL̂ρ̂We = 0. (14)

An explicit solution for this equation has not been found although a recursive
one, obtained by developing the density matrix in a power series in � or the
mass ratio, μ = m/M , in the partial Wigner representation, can be written
down. While it is difficult to find the full solution to any order in �, it is not
difficult to find the solution analytically to O(�). To this order the result agrees
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with that of the partial Wigner transform of the exact canonical quantum
equilibrium density. This expression for the equilibrium density matrix to
O(�) can be useful for testing the validity of approximate calculations of time
correlation functions.

To complete the presentation of this approach we now define the quantum–
classical forms of equilibrium time correlation functions and their associated
transport coefficients. The issue we address is the construction of a nonequi-
librium statistical mechanics in a world obeying quantum–classical dynamics.
To carry out this program we begin by constructing a linear response theory
for quantum–classical dynamics [12]. The formalism parallels that for quan-
tum (or classical) systems. We suppose the quantum–classical system with
hamiltonian ĤW is subjected to a time dependent external force that couples
to the observable ÂW, so that the total hamiltonian is

ĤW(t) = ĤW − ÂWF (t) . (15)

The evolution equation for the density matrix takes the form

∂ρ̂W(t)
∂t

= −(iL̂ − iL̂AF (t))ρ̂W(t) , (16)

where iL̂A has a form analogous to iL̂ with ÂW replacing ĤW, iL̂A = (ÂW, ).
The formal solution of this equation is found by integrating from t0 to t,

ρ̂W(t) = e−iL̂(t−t0)ρ̂W(t0) +
∫ t

t0

dt′ e−iL̂(t−t′)iL̂Aρ̂W(t′)F (t′) . (17)

We now choose, as usual, ρ̂W(t0) to be the equilibrium density matrix,
ρ̂We. As discussed above ρ̂We is the invariant solution of the quantum–classical
dynamics, iL̂ρ̂We = 0. In this case the first term on the right-hand side of (17)
reduces to ρ̂We and is independent of t0. We may assume that the system
with hamiltonian ĤW is in thermal equilibrium at t0 = −∞, and with this
boundary condition, to first order in the external force, (17) is

ρ̂W(t) = ρ̂We +
∫ t

−∞
dt′ e−iL̂(t−t′)iL̂Aρ̂WeF (t′) . (18)

Then, computing BW(t) = Tr′
∫

dR dP B̂Wρ̂W(t), where Tr′ is the partial
trace over the quantum degrees of freedom, to obtain the response function,
we find

BW(t) =
∫ t

−∞
dt′ Tr′

∫
dR dP B̂We−iL̂(t−t′)iL̂Aρ̂WeF (t′)

=
∫ t

−∞
dt′ 〈(B̂W(t− t′), ÂW)〉F (t′) ≡

∫ t

−∞
dt′ φQC

BA(t− t′)F (t′) .

(19)
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Thus, the quantum–classical form of the response function is

φQC
BA(t) = 〈(B̂W(t), ÂW)〉QC = Tr′

∫
dR dP B̂W(t)(ÂW, ρ̂We) , (20)

where in writing the second equality in (20), we have used cyclic permutations
under the trace and integrations by parts. The derivation of linear response
theory in the quantum–classical world is completely analogous to that in quan-
tum mechanics up to (20). However, the simplifications that are easily derived
in the full quantum, or classical worlds are not available at the moment for
the quantum–classical world. In particular, the calculation of the response
function in the quantum–classical approach should be performed using (20)
and cannot be started using well-known standard time correlation function
expressions (notice that the Kubo transformed form can be shown to differ
from the expression given in (20) by terms of O(�2) [12]).

At this point we have all the ingredients for the computation of trans-
port properties and expectation values of dynamical variables in a quantum–
classical world. The equilibrium time correlation function in (20) entails
evolution of B̂W(t) under quantum–classical dynamics, evaluation of the
quantum–classical bracket of ÂW and ρ̂We, and an integration over the clas-
sical phase space coordinates and trace over the quantum states.

While this statistical mechanical formulation is complete, it is worth
remarking that some aspects of the quantum mechanical calculation do not
carry over to the quantum–classical world. These concern time translation in-
variance and alternate forms for the time correlation function expressions for
transport coefficients. The first issue we examine is time translation invari-
ance of the equilibrium time correlation functions [11]. A quantum mechanical
response function can be written in the two equivalent forms

φBA(t) = 〈 i
�
[B̂(t), Â]〉 = 〈 i

�
[B̂(t+ τ), Â(τ)]〉 , (21)

as is easily seen using stationarity of the canonical equilibrium density matrix
and cyclic permutations under the trace. This property is not exactly satisfied
by the correlation function in quantum–classical response function (20). To
see this we may write (20) more explicitly as

φQC
BA(t) = 〈(B̂W(t), ÂW)〉QC (22)

=
i
�

(
〈B̂W(t) (1 + �Λ/2i) ÂW〉QC − 〈ÂW (1 + �Λ/2i) B̂W(t)〉QC

)
,

Using cyclic permutations under the trace, integration by parts and the fact
that ρ̂We is invariant under quantum–classical dynamics, one may show that

〈B̂W(t) (1 + �Λ/2i) ÂW〉QC = 〈eiLτ (B̂W(t) (1 + �Λ/2i) ÂW)〉QC . (23)
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However, the evolution of a composite operator in quantum–classical dynamics
cannot be written exactly in terms of the quantum–classical evolution of its
constituent operators, but only to terms O(�). To see this, consider the action
of the quantum–classical Liouville operator on the composite operator ĈW =
B̂W(1 + �Λ/2i)ÂW. A straightforward calculation shows that

iL̂ĈW = (iL̂B̂W)
(

1 +
�Λ

2i

)
ÂW + B̂W

(
1 +

�Λ

2i

)
(iL̂ÂW) + O(�) . (24)

It follows that

ĈW(τ) = eiL̂τ ĈW =
(
eiL̂τ B̂W

)(
1 +

�Λ

2i

)(
eiL̂τ ÂW

)
+ O(�)

= B̂W(τ)
(

1 +
�Λ

2i

)
Â†

W(τ) + O(�) . (25)

Therefore, the quantum–classical correlation function satisfies standard time
translation invariance only to O(�),

φQC
BA(t) = 〈(B̂W(t), ÂW)〉QC = 〈(B̂W(t+ τ), ÂW(τ))〉QC + O(�) , (26)

although its most strict form, (23), is surely satisfied.
Next, we consider alternate forms for correlations that are commonly used

in computations. The quantum mechanical response functions can be written
in an equivalent form using the Kubo identity. The quantum–classical version
of the Kubo identity holds only to O(�) [12],

(ÂW, ρ̂We) =
∫ β

0

dλ ρ̂We(1 +
�Λ

2i
) ˙̂
AW(−i�λ) + O(�) . (27)

Since the quantum–classical form of the Kubo identity is valid only to O(�),
the various autocorrelation function expressions for transport coefficients, to
which we are accustomed, are equivalent only to O(�). The results of compar-
isons of computations of both forms of the correlation functions can provide
information about the reduction to the quantum–classical limit.

A discussion of the scheme used to simulate quantum–classical dynamics is
postponed to next section and we simply remark here that statistical mechan-
ical quantities may be computed within the quantum–classical framework.
A limitation is a lack of knowledge of the exact form of the equilibrium den-
sity matrix, so we cannot compute exact quantum-classical time correlation
functions. Note however that relaxation from given initial density matrices can
be computed without any approximation other than that on the dynamics.
So, for example, since quantum–classical dynamics is exact for the spin-boson
model, it is possible to compute the exact relaxation, given an initial nonequi-
librium distribution. Simulations of this model have confirmed the utility of
surface-hopping algorithms for its study.
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3 Approximations to the Real World

A very different route is to begin with any rigorous expression for the quantum
mechanical response, e.g., in terms of quantum time correlation functions –
since we know that they are all fundamentally equivalent – and make approxi-
mations to either or both the dynamics and equilibrium density. This approach
implicitly avoids questions of consistency but they exist. These inconsisten-
cies make these treatments invalid. However, if by a stroke of luck or design
the inconsistencies are numerically small, these methods can often be very
useful. With these approaches we can in principle independently approximate
the equilibrium structure or the propagator so that we have more freedom
than with the mixed quantum–classical statistical mechanical approach of the
previous section.

The quantum time correlation function of two operators of the system is
defined as

CAB(t;β) ≡ 〈ÂB̂(t)〉 = Tr ÂB̂(t)ρ̂e

=
1
ZQ

Tr Âe
i
�

tĤB̂e−
i
�

tĤe−βĤ . (28)

There are many different ways described in the literature to construct
approximations to this correlation function [14–19]. Here we will illustrate how
such approximations are implemented using two example approaches that we
have explored:

(1) Mixed Wigner representation approach

The first approach [20,21] we consider uses the ingredients of the quantum–
classical Liouville dynamics discussed in Sect. 2. We begin by introducing the
coordinate representation of the operators so that the correlation function
becomes

CAB(t;β) = Tr′
∫

dQ1 dQ2 〈Q1|B̂(t)|Q2〉〈Q2|ρ̂eÂ|Q1〉 . (29)

Making use of the change of variables, Q1 = R−Z/2 and Q2 = R+Z/2, this
equation may be written in the equivalent form

CAB(t;β) = Tr′
∫

dR dZ 〈R− Z

2
|B̂(t)|R+

Z

2
〉

×〈R+
Z

2
|ρ̂eÂ|R− Z

2
〉 . (30)

The next step in the calculation is to replace the coordinate space matrix
elements of the operators with their representation in terms of Wigner trans-
formed quantities. The partial Wigner transform of an operator, Ô, is defined
in (8) while the inverse transform is

〈R+
Z

2
|Ô|R− Z

2
〉 =

1
(2π�)N

∫
dP e

i
�

P ·ZÔW(R,P ) . (31)
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For simplicity we write X ≡ (R,P ). It is convenient to consider a represen-
tation of such operators in basis of eigenfunctions, here we consider an adi-
abatic basis to make connection with surface-hopping dynamics. The partial
Wigner transformed hamiltonian can be written as ĤW = P 2/2M + ĥW(R).
The last equality defines the hamiltonian ĥW(R) for the light mass subsys-
tem in the presence of fixed particles of the heavy mass subsystem. The
adiabatic basis is determined from the solutions of the eigenvalue problem,
ĥW(R)|α;R〉 = Eα(R)|α;R〉. The adiabatic representation of ÔW(X) is

ÔW(X) =
∑
αα′

|α;R〉Oαα′
W (X)〈α′;R| , (32)

where Oαα′
W (X) = 〈α;R|ÔW(X)|α′;R〉.

By inserting (32) into (31) we can express the coordinate representation
of the operator Ô as

〈R− Z

2
|Ô|R+

Z

2
〉 =

1
(2π�)N

∑
αα′

∫
dP e

i
�

P ·Z |α;R〉(O)αα′
W (X)〈α′;R| . (33)

Using this result in (30), we obtain

CAB(t;β) =
∑
α,α′

∫
dX (B̂(t))αα′

W (X)(ρ̂eÂ)α′α
W (X) . (34)

This equation is still formaly exact but now we approximate the dynamics
using the quantum–classical evolution given in (11).

In the adiabatic basis the quantum–classical Liouville operator defined in
(10) takes the form

iLα′α,β′β(X) =
(
iωα′α(R) + iLα′α(X)

)
δα′β′δαβ − Jα′α,β′β(X) , (35)

where ωαα′(R) = (Eα(R) − Eα′(R))/� and

iLα′α(X) =
P

M
· ∂

∂R
+

1
2

(
Fα′

W (R) + Fα
W(R)

)
· ∂

∂P
, (36)

is the classical Liouville operator involving the mean of the Hellmann–
Feynman forces where Fα

W = −〈α;R|∂V̂W(q̂,R)
∂R |α;R〉 = −〈α;R|∂ĤW(R)

∂R |α;R〉.
Quantum transitions and bath momentum changes are described by

Jα′α,β′β(X) = − P

M
· dα′β′

(
1 +

1
2
Sα′β′(R) · ∂

∂P

)
δαβ

− P

M
· dαβ

(
1 +

1
2
Sαβ(R) · ∂

∂P

)
δα′β′ , (37)

where Sαβ = (Eα − Eβ)dαβ( P
M · dαβ)−1 and dαβ = 〈α;R|∇R|β;R〉 is the

nonadiabatic coupling matrix element.
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In this approximation the correlation function is then given by

CAB(t;β) =
∑
α,α′

∫
dX Bαα′

W (X, t)(ρ̂eÂ)α′α
W (X), (38)

where
Bαα′

W (X, t) = (eiLtB̂W(X))αα′
. (39)

Various ways of simulating nonadiabatic transitions in quantum–classical
dynamics have been devised, as well as schemes for computing the evolu-
tion operator [2, 9, 20–26]. These schemes typically employ an ensemble of
surface hopping trajectories with classical trajectory segments [21, 25, 26].
Approximations must also be introduced to evaluate the equilibrium density
matrix. In making these approximations the consistency problem is not neces-
sarily the most serious. In the desire to achieve consistency one could use the
quantum–classical equilibrium density matrix, however, there would remain
two problems. (1) This quantity is not known in closed form therefore expres-
sions based on approximations for it would leave the consistency unattained.
(2) As mentioned, (38) is not an admissible form for the quantum–classical
response as given in (20) (although it can be related to O(�)) and there-
fore would not result in a consistent, interesting, quantum–classical object.
Chemical rate coefficients written in terms of Kubo transformed correlation
functions have been computed using this strategy [21,27]. In the case of spin
boson type models for reaction rates the fact that one knows the exact Wigner
transformed equilibrium bath density can be exploited along with a quadratic
approximation near the barrier top to obtain an estimate of the reaction
rate that includes quantum equilibrium effects [21]. In more complex systems,
like models for proton transfer in the condensed phase, one can exploit the
high temperature limit to obtain suitable approximation to the equilibrium
density [28]. See Chapter 13 in this volume for a discussion of this approach
applied to reaction rate problems.

Although algorithms have been developed that have allowed one to sim-
ulate chemical reaction rates and short time relaxation processes, further
algorithmic development is needed to simulate quantum–classical dynamics
for long times.

(2) Linearized path integral approach

An alternative to the calculation of quantum time correlation functions
is offered by the so-called linearized path integral approach [17,18,29–33]. In
developing this approach it is simplest to work with a basis defined as the ten-
sor product, |Qα〉, of bath position states |Q〉 and a quantum subsystem basis
|α〉 which, for convenience, we choose to be independent of bath configuration
(see Chap. 14 in this volume for a discussion of how this formalism changes
when the adiabatic basis is used). The quantum time correlation function in
this representation becomes
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〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dQ0 dQN dQ′

0 dQ′
N 〈Q0α|ρ̂eÂ|Q′

0α
′〉 (40)

×〈Q′
0α

′|e i
�

Ĥt|Q′
Nβ

′〉〈Q′
Nβ

′|B̂|QNβ〉〈QNβ|e−
i
�

Ĥt|Q0α〉.

Here the hamiltonian is the usual one defined in (4), while the quantum sub-
system hamiltonian has matrix elements hαβ(Q̂) = 〈α|ĥ(Q̂)|β〉.

A convenient representation to account for the effects of the quantum
subsystem transitions on the bath degrees of freedom is offered by the mapping
hamiltonian formalism [34–39]. The core of this idea is to replace the quantum
subsystem with a system of fictitious harmonic oscillators which can take only
a restricted set of excitations representing the states of the basis. Therefore
the states of the real system are mapped onto states of the fictitious harmonic
oscillator system according to

|α〉 → |mα〉 = |01, . . . , 1α, ..0n〉. (41)

This prescription maps the Hilbert space spanned by the original n quantum
subsystem states into one coinciding with a subspace of n-oscillators of unit
mass with at most one quantum of excitation in a single specific oscillator.
Under these conditions the hamiltonian of the fictitious system is obtained
by requiring that its matrix elements are equal to those of the corresponding
physical states 〈mα|ĥm(Q̂)|mβ〉 = 〈α|ĥ(Q̂)|β〉. So that

ĥm(Q̂) =
1
2

∑
λ

hλ,λ(Q̂)(q̂2λ + p̂2λ − �) +
1
2

∑
λ,λ′

hλ,λ′(Q̂)(q̂λ′ q̂λ + p̂λ′ p̂λ) (42)

where q̂λ and p̂λ are the λth mapping oscillator’s position and momentum
operators reconstructed from the creation and annhilation operators of the
occupation number representation. Then the total hamiltonian of the system
becomes Ĥm = P̂ 2/2M + ĥm(Q̂) and the propagator matrix elements of the
real system are given by the mapping propagator matrix elements

〈QNβ|e−
i
�

Ĥt|Q0α〉 = 〈QNmβ |e−
i
�

Ĥmt|Q0mα〉. (43)

To proceed, we now apply standard discrete path integral techniques to
express the right-hand side of (43) as a functional integral over bath subsystem
paths of an integrand containing the quantum subsystem transition amplitude
evaluated along each path. This result parallels that of Pechukas [40] thus

〈QNmβ |e−
i
�

Ĥmt|Q0mα〉 =
∫ N−1∏

k=1

dQk
dPk

2π�

dPN

2π�
e

i
�

S (44)

×〈mβ |e−
i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉,
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where

S = ε
N∑

k=1

[
Pk

(Qk −Qk−1)
ε

− P 2
k

2M

]
(45)

and ε = t/N is the time slice.
The transition amplitude 〈mβ |e−

i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉 contains a
discrete time ordered propagator that evolves the initial mapping subsystem
state according to the time dependent mapping hamiltonian where the time-
dependence arises because of the changing configuration of the bath along the
path (Q1, . . . , QN ). For any given specification of the bath subsystem path,
the quadratic nature of the mapping hamiltonian in the mapping subsystem
variables in (42) allows us to obtain an exact expression for the mapping
transition amplitude. A particularly convenient expression for the transition
amplitude can be obtained using semiclassical methods which are exact for
quadratic hamiltonians with time-dependent coefficients (see [41] for details
of the manipulations). The result is

〈mβ |e−
i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉

∼
∫

dq0 dp0 (qβt + ipβt)(qα0 − ipα0) × exp
{
−1

2

∑
λ
(q2λ0 + p2λ0)

}
(46)

Here (qt, pt) = (q1t, . . . , qnt, p1t, . . . , pnt) is the mapping phase space point
that evolves classically from the initial sampled point (q0, p0) to time t ac-
cording to the given realization of the discrete time-dependent hamiltonian
(ĥm(QN ), . . . , ĥm(Q1)).

This expression for the transition amplitude can now be conveniently re-
written by introducing a polar representation of the complex polynomials
appearing in the above result, thus

〈mβ |e−
i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉 =
∫

dq0 dp0 rt,β({Qk})e−iΘtβ({Qk})

×r0αeiΘ0,αG0. (47)

Here G0 =exp
{
−1

2

∑
λ(q20,λ+p20,λ)

}
, rt,β({Qk})=

√
q2t,β({Qk})+p2t,β({Qk}),

and

Θt,β({Qk}) = tan−1

(
p0,β

q0,β

)
+
∫ t

0

dτ hβ,β(Qτ )

+
∫ t

0

dτ
∑
λ�=β

[
hβ,λ(Qτ )

(pτβpτλ + qτβqτλ)
(p2τβ + q2τβ)

]

= tan−1

(
p0,β

q0,β

)
+
∫ t

0

θβ(Qτ )dτ. (48)
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Equation (48) defines the function θβ(Q).
Substituting (47) and its analogue for the backward propagator (primed

quantities) into the expression for the correlation function we finally obtain

〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dQ0 dQ′

0

∫ N∏
k=1

dQk
dPk

2π�

∫ N∏
k=1

dQ′
k
dP ′

k

2π�

∫
dq0 dp0 dq′0 dp′

0

×e
i
�

(S−S′)r′0α′e
−iΘ′

0,α′ G′
0r0αeiΘ0,αG0〈Q0α|ρ̂eÂ|Q′

0α
′〉

×〈Q′
Nβ′|B|QNβ〉rt,β({Qk})e−iΘtβ({Qk})r′t,β′({Q′

k})e
iΘ′

tβ′ ({Q′
k
})

.

(49)

Here we employ a shorthand notation labeling the mapping oscillator states
with their state index, e.g., mα ≡ α.

All manipulations performed so far are exact, and the nuclear evolu-
tion is still described at the full quantum level. To proceed to a com-
putable expression [17,41], we now change bath subsystem variables to mean,
R̄k = (Qk +Q′

k)/2, and difference, Zk = Qk −Q′
k, coordinates (with similar

transformation for the bath momenta, P̄k = (Pk + P ′
k)/2 and Yk = Pk − P ′

k

say) and Taylor series expand the phase in (49). Truncating this expansion to
linear order in the difference variables we obtain the following approximate
expression for the correlation function

〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dq0 dp0 dq′0 dp′0 r

′
0α′e−iΘ′

0,α′G′
0r0αeiΘ0,αG0

×
∫

dR̄0 dZ0

∫ N∏
k=1

dR̄k
dP̄k

2π�

∫ N∏
k=1

dZk
dYk

2π�

×〈R̄0 +
Z0

2
α|ρ̂eÂ|R̄0 −

Z0

2
α′〉e−iP̄1Z0

×〈R̄N − ZN

2
β′|B|R̄N +

ZN

2
β〉eiP̄N ZN

×e−iε{[∇θβ(R̄N )+∇θ′
β′ (R̄N )]/2}ZN

×rt,β({R̄k})r′t,β′({R̄k})e−iε
∑N

k=1
[θβ(R̄k)−θ′

β′ (R̄k)]

×e−iε
∑N−1

k=1
{(P̄k+1−P̄k)/ε+[∇θβ(R̄k)+∇θ′

β′ (R̄k)]/2}Zk

×e−iε
∑N

k=1
{P̄k/M−(R̄k−R̄k−1)/ε}Yk (50)

The integrals over the end-point difference coordinates Z0 and ZN in this
linearized approximate form can be performed defining the Wigner trans-
formed operators

(ρ̂eÂ)α,α′
W (R̄0, P̄1) =

∫
dZ0〈R̄0 +

Z0

2
α|ρ̂eÂ|R̄0 −

Z0

2
α′〉e−iP̄1Z0 (51)
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and in the limit of ε→ 0

(B̂)β′,β
W (R̄N , P̄N ) =

∫
dZN 〈R̄N +

ZN

2
β′|B̂|R̄N − ZN

2
β〉e−iP̄N ZN . (52)

All integrals over the difference coordinates, Zk, and difference momenta, Yk

for 0 < k < N can also be performed as they are integral representations
of delta functions, so the linearized approximation for the time correlation
function can finally be expressed as

〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dR̄0 dq0 dp0 dq′0 dp′0 r

′
0α′e−iΘ′

0,α′G′
0r0αeiΘ0,αG0

×
∫ N∏

k=1

dR̄k
dP̄k

2π�
(ρ̂eÂ)α,α′

W (R̄0, P̄1)(B̂)β′,β
W (R̄N , P̄N )

× rt,β({R̄k})r′t,β′({R̄k})e−iε
∑N

k=1
(θβ(R̄k)−θ′

β′ (R̄k))

×
N−1∏
k=1

δ

(
P̄k+1 − P̄k

ε
− F β,β′

k

) N∏
k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)
, (53)

where

F β,β′
k = −1

2
{
∇R̄k

hβ,β(R̄k) + ∇R̄k
hβ′,β′(R̄k)

}
−1

2

∑
λ�=β

∇R̄k
hβ,λ(R̄k)

{
(pβkpλk + qβkqλk)

(p2βk + q2βk)

}

−1
2

∑
λ�=β′

∇R̄k
hβ′,λ(R̄k)

{
(p′β′kp

′
λk + q′β′kq

′
λk)

p′2β′k + q′2β′k)

}
. (54)

The product of δ-functions in (53) amounts to a time-stepping prescription
in which the mean path evolves classically. As the motion of the mapping vari-
ables is already classical, the calculation of the time correlation function has
been reduced to a two step procedure (1) sampling a set of initial conditions
for the bath variables from a probability distribution related to the partial
Wigner transform of the thermal density times the operator Â, i.e., the factor
(ρ̂eÂ)α,α′

W (R̄0, P̄1) in (53), and a Gaussian distribution, G′
0G0 as defined under

(47), for the mapping subsystem variables; (2) integration of a set of coupled
classical equations of motion for the mapping and bath variables. The first
of these tasks can be accomplished only approximately using recently devel-
oped local harmonic approximate methods for sampling the Wigner density
for complex systems [17,18]. The second task of evolving the classical dynam-
ics is straightforward. However, we note that depending on the specific term
of the correlation function which is being evaluated, the forces in (54) are
determined by different time-dependent linear combinations of pairs of diag-
onal, and off-diagonal elements of the quantum subsystem hamiltonian. The
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diagonal terms are identified by the final states in the propagators appearing
in the original expression for the correlation function, while the off-diagonal
terms are responsible for the feedback between bath motion and changes in
the quantum subsystem state occupations. The latter are affected by the bath
propagation through the parametric dependence of the classical counterpart
of (42), but the coupling mechanism is not deducible from a single hamil-
tonian. In spite of this unusual characteristic, all propagations required in
this approximate evaluation of the correlation function are classical and local
in time and maintain the usual properties of classical, or quantum, mechanics
e.g., time reversibility).

To highlight the basic similarities between the two approximate approaches
we have outlined here for computing time correlation functions in mixed
quantum–classical systems, (53) can be put into the form of (38) by mak-
ing the following identification

Bαα′
W (X, t) =

∑
ββ′

∫
dq0 dp0 dq′0 dp′0 r

′
0α′e−iΘ′

0,α′G′
0r0αeiΘ0,αG0

×
∫

dR̄1

N∏
k=2

dR̄k
dP̄k

2π�
(B̂)β′,β

W (Xt(X))

× rt,β({R̄k})r′t,β′({R̄k})e−iε
∑N

k=1
(θβ(R̄k)−θ′

β′ (R̄k))

×
N−1∏
k=1

δ

(
P̄k+1 − P̄k

ε
− F β,β′

k

) N∏
k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)
, (55)

where now the initial phase space point is X = (R̄0, P̄1), and the terminal
point, Xt = (R̄N , P̄N ), is an implicit function of X determined by sequentially
evaluating the δ-function integrals and classically time stepping the propaga-
tion of the bath. Comparing this result with the expressions at the end of the
previous section it is clear that the basic features of these two approaches are
similar but that the underlying dynamics is very different. These differences
stem in part from the different representations employed but also result from
different approximations made in the derivations. It is beyond the scope of
this chapter to present a detailed comparison of these two approaches. As
mentioned earlier and outlined below, they both yield good results for model
condensed phase systems so exploring the connections between these differ-
ent ideas may prove fruitful in developing algorithms for implementing mixed
quantum–classical methods for computing time correlation functions.

The central approximation of the linearized path integral approach to
nonadiabatic dynamics outlined here is that the Taylor expansion of the phase
of the integrand in the path integral expression for the correlation function
can be truncated at low order. One could imagine computing higher order
corrections with significant additional computational effort beyond the lin-
earized approach. This lowest order approximation, however, has proved par-
ticularly reliable in various model test calculations [41]. With the spin-boson
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model, for example, calculations of the time dependent expectation value of
the spin population difference, starting from a nonequilibrium initial condition
in which the coupling between an excited spin and an independent, thermal
equilibrium harmonic oscillator bath is turned on at t = 0, gave results that
were in excellent agreement with exact calculations [42] over a wide range of
friction and temperature. Small deviations between exact results and those
of the linearized approximate approach are observed at low temperature and
high friction. Under these conditions the assumption that the only impor-
tant contributions to the correlation function (or time-dependent expectation
value) come from pairs of forward and backward paths that remain “close” to
one another (keeping only terms to linear order in the path difference) is vio-
lated since at low temperatures the initial bath density has larger off-diagonal
elements so forward and backward bath paths which differ significantly can
begin to make contributions and these are ignored in the linearized scheme.
The linearized path integral approach, however, is found to converge very
quickly with trajectory ensemble size for these nonadiabatic problems, requir-
ing fewer than 1,000 trajectories to converge these spin-boson calculations.
This feature makes these methods promising for realistic model condensed
applications in future studies.

In general the appeal of these methods is that they require Monte Carlo
sampling and trajectories, features that scale favorably with the dimensions of
the system, especially when compared with basis set methods. Unfortunately
a quantitative assessment of this favorable conjecture is far from evident.

4 Conclusion

We have seen that it is possible to develop a consistent approach to equilib-
rium and nonequilibrium quantum–classical statistical mechanics. However,
due to the different algebraic structures of the exact quantum bracket in the
Wigner representation and its quantum–classical counterpart described here,
the formulation contains one unpleasant feature: the nonassociative property
of the product. This feature leads to a violation of the Jacobi identity so that
in contrast to both quantum and classical mechanics, the quantum–classical
approach does not have a Lie algebraic structure. This in turn leads to the
fact that the Onsager reciprocal relation and the Kubo identity are valid only
to order O(�). It is conceivable that this approach can be improved by devel-
oping a quantum–classical bracket that satisfies the Lie algebraic structure.
This is a challenge worthy of future research. Even if such a program could
be carried out one would be left with the task of testing the fidelity of this
quantum–classical world as a model of the real quantum world in the limit
discussed in this chapter.

In the other approach considered here we saw that one could start with
the full quantum statistical mechanical structure of the time correlation func-
tion and develop approximations to both the quantum evolution and equi-
librium density. This type of approach readily leads to promising results as
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demonstrated in applications to models. The major drawback of such an
approach is that the consistency between the quantum equilibrium structure
and the approximate dynamics is lost, although one has gained the possibility
to consider independently approximations to the evolution and the equilib-
rium structure. Examples of the utility of being able to make independent
approximations to the evolution and equilibrium structure in which the con-
sistency problem does not seem to matter much include applications reported
in various references [21,27,28,33,41]. These local successes, however, do not
justify a general statement and we do not yet know what physical conditions
need to be satisfied to guarantee that the inconsistency problem will not be
crucial. In the context of the approaches described in Sect. 3 one can also
attempt to consistently approximate the equilibrium structure and dynam-
ics although it is unclear at the present time how such consistency could be
achieved.

In contrasting the two approaches we should not lose sight of the fact
that the ultimate aim is to compare theoretical predictions with rigorous
results for the real problem. We have seen that approximations enter both
schemes in various ways. As we noted earlier we must ascertain the valid-
ity of quantum–classical worlds as models of the real world. In fact, since
a consistent quantum–classical world has not yet been constructed we have
the residual task of testing the validity of predictions of this model. This
would be instrumental not only in realizing its limitations and give ways to
improve the approach but also in establishing a preliminary test of the corre-
spondence between the quantum–classical and the real worlds. Simulations on
model systems indicate that violations of the Lie algebraic structure and its
consequences may be minor for many applications [27], and thus scheme (1)
may have practical utility. In the approach that begins with exact quantum
equilibrium time correlation function, the freedom to approximate both the
equilibrium density and the dynamics, separately or together, provides one
with additional possibilities. Some of these approximations could indeed
be unfaithful to the real world and highly inconsistent, while others may pro-
vide results much closer to the real quantum world. Of course there is nothing
unique about the approaches we have discussed here, and other fresh ideas
can come from many alternative formulations of quantum mechanics and/or
ways to go to the semiclassical limit of quantum mechanics and, moreover,
there is no indication that these alternative approaches will be less success-
ful [43, 44]. So the way ahead is open and, at this point, it is unclear which
alternative will prevail. Thus, it is worth pursuing these programs of research
in all directions.
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Quantum–Classical Reaction Rate Theory

G. Hanna, H. Kim, and R. Kapral

Summary. A correlation function formalism for the calculation of rate constants in
mixed quantum–classical systems is presented. The full quantum equilibrium density
is retained in the rate expressions and quantum–classical Liouville dynamics is used
to propagate the species variables in time. Results for a model two-level system
coupled to a nonlinear oscillator that is coupled to a harmonic bath and for a proton
transfer reaction in a polar liquid solvent are presented. The rate coefficients for these
systems are computed using surface-hopping dynamics based on the solution of the
quantum–classical Liouville equation.

1 Introduction

A knowledge of the rates of condensed phase chemical reactions is necessary
for an understanding of many problems in chemistry and biology. If one is
interested in the reactive dynamics of a light particle immersed in an envi-
ronment of heavy molecules, a quantum rate theory is required to correctly
describe this dynamics. Consider a proton transfer occurring in a solvent or
large molecule. Due to its light mass, the proton’s thermal de Broglie wave-
length is comparable in length to the distance over which it travels. As a
result, the proton must be treated quantum mechanically and the importance
of such quantum effects is well documented. Experimental evidence suggests
that hydrogen tunneling is important in enzyme catalysis under physiological
conditions [1]. The magnitude of such quantum effects can be gauged by com-
paring the measured or calculated deuterium kinetic isotope effect for these
reactions with that predicted by classical transition state theory. In addition,
quantum effects in the environment surrounding the proton may be signifi-
cant. Quantum phenomena exist in the solvent dynamics associated with the
transfer of excess protons in liquid water and can explain the anomalously
high mobility of these protons [2, 3].

Although it is not difficult to write a correlation function expression for
the time-dependent rate coefficient of a reacting quantum system [4], a full
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quantum dynamical simulation of a condensed phase system containing a
large number of degrees of freedom is not computationally feasible. Calcula-
tions of rate constants for reactive processes occurring in many-body envi-
ronments, which incorporate quantum effects, have been performed using a
variety of computational techniques. The techniques used include influence-
functional [5, 6] and real-time path integral methods [7, 8], methods based
on the stochastic Schrödinger equation [9,10], centroid dynamics [11], golden
rule and Fokker–Planck formulations [12], mode coupling theories [13, 14],
techniques based on the initial value representation [15–22], mapping Hamil-
tonian methods [23,24], nonadiabatic statistical methods [25], surface-hopping
schemes [26–30], multi–configuration time-dependent Hartree methods [31,
32], and methods based on the quantum-classical Liouville equation [33–39].

In this chapter, we consider systems for which a description in terms of
quantum-classical dynamics is appropriate [37], i.e., systems in which a subset
of the degrees of freedom are treated quantum mechanically while the dynam-
ics of the remainder of the degrees of freedom can be adequately described by
classical mechanics. We first derive expressions for the quantum mechanical
rate coefficient of a general reaction A � B and then obtain their quantum-
classical analogs. Next, we consider the choice of a reaction coordinate and
the specification of species variables used to monitor the progress of a quan-
tum reaction and discuss the rate expressions which arise from such a choice.
We apply this quantum–classical rate theory to a two-level quantum system
coupled to a classical nonlinear oscillator which is in turn coupled to a clas-
sical harmonic bath, and to the more realistic situation of a proton transfer
reaction occurring in a polar solvent.

2 Rate Theory

Quantum–classical expressions for rate coefficients have been derived [40,41],
and computed for model systems [40–42] and proton transfer reactions [43].
An alternate approach to the calculation of quantum transport properties was
described recently [44,45]. The starting point of this approach is the full quan-
tum mechanical expression for a transport property; however, the evolution of
dynamical variables is carried out in the quantum–classical limit. This scheme
has the advantage that the full quantum mechanical equilibrium structure of
the system, described by a spectral density function, is retained; only the
quantum mechanical time evolution is replaced by quantum–classical time
evolution. The calculation of the quantum equilibrium structure, although a
difficult problem, is far more tractable than that of the quantum time evo-
lution of a many-body system. Exact expressions for the reaction rate coef-
ficient have been derived in this more general context [45]. In many cases,
one may take advantage of convenient features of the system to make ap-
proximations which simplify the computation of these expressions. For each
system, the most applicable reaction coordinate must be identified, along with
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the dynamical variables which characterize the microscopic species involved
in the reaction.

In this section we shall derive a series of quantum mechanical expressions
for the rate coefficient of a general interconversion reaction A � B starting
from the flux–flux quantum correlation function. By taking the quantum–
classical limit of these expressions, we obtain formulas that can be computed
using quantum–classical surface-hopping dynamics.

2.1 Quantum Mechanical Rate Expressions

For a quantum mechanical system in thermal equilibrium undergoing a trans-
formation A � B, a rate constant kAB may be calculated from the time
integral of a flux–flux correlation function [46],

kAB =
1
neq

A

∫ ∞

0

dt〈ĵA; ĵB(t)〉 =
1

βneq
A

∫ ∞

0

dt〈 i
�
[ĵB(t), Â]〉 , (1)

where Â = N̂A is the A species operator, neq
A is the equilibrium density of

species A, ĵA = ˙̂
A = (i/�)[Ĥ, Â] is the flux of Â with Hamiltonian Ĥ, with an

analogous expression for ĵB , [·, ·] is the commutator and the angular brack-
ets 〈Â; B̂〉 = 1

β

∫ β

0
dλ〈eλĤÂe−λĤB̂〉 denote a Kubo transformed correlation

function, with β = (kBT )−1. The equilibrium quantum canonical average is
〈· · · 〉 = Z−1

Q Tr · · · e−βĤ , where ZQ is the partition function. The time evolu-
tion of the reactive flux is given by projected dynamics. In simulations it is
often convenient to consider the time-dependent rate coefficient defined as the
finite time integral of the flux–flux correlation function,

kAB(t) =
1
neq

A

∫ t

0

dt′〈ĵA; ĵB(t′)〉 =
1
neq

A

〈 ˙̂
A ; B̂(t)〉

=
1

βneq
A

〈
i

�
[B̂(t), Â]

〉
, (2)

where we have replaced projected dynamics by ordinary dynamics and assumed
[B̂, Â] = 0.

Writing the second equality in (2) in detail and inserting arbitrary time
variables t1 and t2, we can write the rate coefficient kAB(t) as,

kAB(t) =
1

neq
A βZQ

∫ β

0

dλTr
( ˙̂
A(t1 − i�λ)e

i
�

Ĥt′B̂(t2)e−
i
�

Ĥt′e−βĤ
)
, (3)

where t′ ≡ t+ t1 − t2. To insert the times t1 and t2, we used the fact that the
time evolution of an operator Ô is given by Ô(t) = e

i
�

ĤtÔe−
i
�

Ĥt.
We partition the entire quantum system into a subsystem S plus environ-

ment E so that the Hamiltonian is the sum of the kinetic energy operators
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of the subsystem and environment and the potential energy of the entire sys-
tem, Ĥ = P̂ 2/2M + p̂2/2m + V̂ (q̂, Q̂), where lower and upper case symbols
refer to the subsystem and environment, respectively. In the next subsection
we shall show how the rate coefficients for a system partitioned in this way
can be evaluated in the quantum–classical limit. For the present, however,
it is convenient to first make a Wigner transform over all degrees of free-
dom, subsystem plus environment, and later single out the subsystem and
environmental degrees of freedom for different treatments. Introducing a co-
ordinate representation {Q} = {q}{Q} of the operators in (3) (calligraphic
symbols denote variables for the entire system), making the change of vari-
ables Q1 = R1 −Z1/2, Q2 = R1 +Z1/2, etc., and then expressing the matrix
elements of the operators in terms of their Wigner transforms, we obtain

kAB(t) =
1

βneq
A

∫ β

0

dλ
∫

dX1dX2(Ȧ)W(X1, t1)BW(X2, t2)

× 1
(2π�)2ν

ZQ

∫
dZ1dZ2e−

i
�
(P1·Z1+P2·Z2)

×
〈
R1 +

Z1

2

∣∣∣e i
�

Ĥ(t′+i�λ)
∣∣∣R2 −

Z2

2

〉
×
〈
R2 +

Z2

2

∣∣∣e−βĤ− i
�

Ĥ(t′+i�λ)
∣∣∣R1 −

Z1

2

〉
, (4)

where ZQ = (2π�)−ν
∫

dX (e−βĤ)W(X ). In writing this equation we used the
fact that the matrix element of an operator Ô(t) can be expressed in terms of
its Wigner transform OW(X , t) as〈

R− Z
2

∣∣∣Ô(t)
∣∣∣R +

Z
2

〉
=

1
(2π�)ν

∫
dPe−

i
�
P·ZOW(X , t), (5)

where ν is the coordinate space dimension and

OW(X , t) =
∫

dZe
i
�
P·Z

〈
R− Z

2

∣∣∣Ô(t)
∣∣∣R +

Z
2

〉
, (6)

defines the Wigner transform. We use the notation R = (r,R), P = (p, P ) and
X = (r,R, p, P ), where again the lower case symbols refer to the subsystem
and the upper case symbols refer to the environment.

We define the spectral density by

W (X1,X2, t) =
1

(2π�)2ν
ZQ

∫
dZ1dZ2e−

i
�
(P1·Z1+P2·Z2)

×
〈
R1 +

Z1

2

∣∣∣e i
�

Ĥt
∣∣∣R2 −

Z2

2

〉
×
〈
R2 +

Z2

2

∣∣∣e−βĤ− i
�

Ĥt
∣∣∣R1 −

Z1

2

〉
. (7)
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If we let

W (X1,X2, t) =
1
β

∫ β

0

dλW (X1,X2, t+ i�λ)

=
2
β

∫ β
2

0

dλReW (X1,X2, t+ i�λ), (8)

we can write the rate coefficient as

kAB(t) =
1
neq

A

∫
dX1dX2(Ȧ)W(X1, t1)BW(X2, t2)W (X1,X2, t+ t1 − t2) . (9)

We may choose the times t1 and t2 to yield various forms for the correlation
function. Since the time evolution of the operator is usually more convenient
than that of the spectral density, we set t1 = 0 and t2 = t to give

kAB(t) =
1
neq

A

∫
dX1dX2(iLW(X1)AW(X1))BW(X2, t)W (X1,X2, 0). (10)

The quantum Liouville operator in Wigner-transformed form is iLW =
2
�
HW(X ) sin(�Λ/2), where Λ is the negative of the Poisson bracket opera-

tor. We can rewrite (10) as

kAB(t) =
1
neq

A

∫
dXBW(X , t)WA′(X , 0), (11)

where1

WA′(X , t) =
∫

dX ′(iLW(X ′)AW(X ′))W (X ′,X , t). (12)

From the last equality in (2), we can obtain an alternative form of the
rate coefficient involving the commutator of Â and B̂(t). Performing a set of
manipulations similar to those used above, we may show that kAB(t) is also
given by

kAB(t) =
i

�βneq
A

∫
dX1dX2AW(X1)BW(X2, t)

×[W (X1,X2, i�β) −W (X1,X2, 0)]

=
2

�βneq
A

∫
dX1dX2AW(X1)BW(X2, t)ImW (X1,X2, 0), (13)

1 Here, W A′ corresponds exactly to W A defined in [47].
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where Im stands for the imaginary part. Using the definition

WA(X , t) =
∫

dX ′AW(X ′)W (X ′,X , t), (14)

we can rewrite kAB(t) as

kAB(t) =
2

�βneq
A

∫
dXBW(X , t)ImWA(X , 0). (15)

So far, both (11) and (15) for the time-dependent rate coefficient are exact.
We find that the following symmetry relations hold for W :

W (X1,X2, t)∗ = W (X2,X1,−t) , (16)
W (X1,X2, t+ i�λ)∗ = W (X1,X2, t+ i�(β − λ)) . (17)

Note that W (X ′,X , t+ i�λ) is real only for λ = β/2; namely,

W

(
X1,X2, t+

i�β
2

)∗
= W

(
X1,X2, t+

i�β
2

)
. (18)

This corresponds to the first order term when W is expanded in terms of β,

W (X1,X2, 0) = W

(
X1,X2,

i�β
2

)
+ O(β2). (19)

In the high temperature limit, the higher order terms in β become negligible.
Note that the symmetry relations above also hold for WA′(X , t).

In the long time limit, the time-dependent rate coefficient, kAB(t), decays
to zero. However, if there is a large difference between the time scales of the
chemical reaction and the transient microscopic dynamics, the rate coefficient
first decays to a plateau from which the rate constant can be extracted. If
absorbing boundaries are introduced to prevent escape of the trajectory from
the metastable states once they are reached from the barrier top, the rate
coefficient will no longer decay to zero and will assume a constant value at
long times. This can be achieved more rigorously by formulating the rate
expressions using projection operator techniques [46].

2.2 Quantum–Classical Rate Expressions

In this section we show how to take the quantum–classical limit of the general
expressions for the rate coefficient, which treat the system plus environment
fully quantum mechanically. By taking the quantum–classical limit [37] of
these expressions we can obtain rate coefficient expressions that are amenable
to solution using surface-hopping methods. The computation of the initial
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value of W is still a challenging problem but far less formidable than the
solution of the time-dependent Schrödinger equation for the entire quantum
system.

To make a connection with the surface-hopping representation of the so-
lution of the quantum–classical Liouville equation [37], we first observe that
AW(X ) can be written as

AW(X ) =
∫

dz e
i
�

p·z < r − z

2
|ÂW(X)|r +

z

2
> , (20)

where ÂW(X) is the partial Wigner transform of Â, defined as in (6), but
with the transform taken only over the environmental degrees of freedom.
The partial Wigner transform of the Hamiltonian is ĤW = P 2/2M+ p̂2/2m+
V̂W(q̂, R) ≡ P 2/2M + ĥW(R), where ĥW(R) is the Hamiltonian of the subsys-
tem in the fixed field of the environment. The adiabatic eigenstates are the
solutions of the eigenvalue problem, ĥW(R)|α;R >= Eα(R)|α;R >. We may
now express AW(X ) in the adiabatic basis to obtain,

AW(X ) =
∑
αα′

∫
dz e

i
�

p·z < r − z

2
|α;R > Aαα′

W (X) < α′;R|r +
z

2
> , (21)

where Aαα′
W (X) =< α;R|ÂW(X)|α′;R >.

Inserting this expression and its analog for BW(X2) into (10), we obtain

kAB(t) =
1
neq

A

∑
αα′

∫
dXBαα′

W (X, t)Wα′α
A′

(
X,

i�β
2

)
, (22)

using the approximation prescribed by (19). The matrix elements of WA′ in
the adiabatic basis are given by

Wα′α
A′

(
X,

i�β

2

)
=
∑
α1α′

1

∫
dX ′

(
iL(X ′)AW(X ′)

)α1α′
1
Wα′

1α1α′α
(
X ′, X,

i�β
2

)
,

(23)
where

Wα′
1α1α′α

(
X ′, X,

i�β
2

)
=

1
(2π�)2νZQ

∫
dZdZ ′e−

i
�
(P ·Z+P ′·Z′)

× < α′;R| < R+
Z

2
|e− β

2 Ĥ |R′ − Z ′

2
> |α1;R′ >

× < α′
1;R

′| < R′ +
Z ′

2
|e− β

2 Ĥ |R− Z

2
> |α;R > . (24)
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From (15), the alternative form of the rate coefficient can be obtained

kAB(t) =
2

�βneq
A

∑
αα′

∫
dX Im[Bαα′

W (X, t)Wα′α
A (X, 0)], (25)

where

Wα′α
A (X, 0) =

∑
α1α′

1

∫
dX ′Aα1α′

1
W (X ′)Wα′

1α1α′α(X ′, X, 0). (26)

In the quantum–classical limit, Bα′α
W (X, t) satisfies the quantum–classical

Heisenberg equation:

d
dt
Bα′α

W (X, t) =
∑
ββ′

iLα′α,β′β(X)Bβ′β
W (X, t). (27)

The quantum–classical Liouville operator, iL, in the adiabatic basis is given
by iLαα′,ββ′(X) = [iωαα′(R) + iLαα′(X)]δαβδα′β′ − Jαα′,ββ′(X) [37], where
the classical evolution operator is defined by

iLαα′ =
P

M

∂

∂R
+

1
2

[
Fα

W(R) + Fα′
W (R)

] ∂

∂P
, (28)

with

Jαα′,ββ′(X) = − P

M
dαβ

[
1 +

1
2
Sαβ(R)

∂

∂P

]
δα′β′

− P

M
d∗

α′β′

[
1 +

1
2
S∗

α′β′(R)
∂

∂P

]
δαβ . (29)

Here the frequency is ωαα′(R) = [Eα(R)−Eα′(R)]/�, the Hellmann–Feynman
force is Fα

W = −
〈
α;R

∣∣∣∂V̂W(q̂, R)/∂R̂
∣∣∣α;R

〉
, the nonadiabatic coupling ma-

trix element is dαβ = 〈α;R |∇R|β;R〉, and Sαβ = (Eα − Eβ)dαβ [(P/M) ·
dαβ ]−1.

It should be noted that W
α′α
A′ (X, t) and Wα′α

A (X, t) satisfy the following
symmetry relations:

W
α′α
A′ (X, t)∗ = W

αα′

A′ (X, t), (30)

Wα′α
A (X, t+ i�λ)∗ = Wαα′

A (X, t+ i�(β − λ)). (31)

It follows that

{Wα′α
A′ (X, t) +W

αα′

A′ (X, t)}∗ = W
α′α
A′ (X, t) +W

αα′

A′ (X, t), (32)
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and

{Wα′α
A (X, t+ i�λ) +Wαα′

A (X, t+ i�λ)}∗ (33)

= Wα′α
A (X, t+ i�(β − λ)) +Wαα′

A (X, t+ i�(β − λ)).

Using these properties, we may write kAB(t) from (22) and (25) as

kAB(t) =
1
neq

A

∑
α

∑
α′≥α

(2 − δα′α)
∫

dX Re
[
Bαα′

W (X, t)Wα′α
A′

(
X,

i�β
2

)]
, (34)

or

kAB(t) =
2

�βneq
A

∑
α

∫
dX
(
Bαα

W (X, t)ImWαα
A (X, 0)

+
∑

α′>α

Im[Bαα′
W (X, t){Wα′α

A (X, 0) −Wαα′
A (X, 0)∗}]

)
. (35)

These rate coefficient expressions involve quantum–classical evolution of the
matrix element Bαα′

W (X, t) but retain the full quantum equilibrium structure
of the system. We now derive specific forms of the rate coefficient based on
different choices of dynamical variables BW(X, t).

3 Species Variables

We now have to choose specific forms of the dynamical variables AW and BW

which characterize the chemical species in the reacting mixture, but first we
need some insight into how to choose them. This will be the topic of the next
subsection.

3.1 Reaction Coordinate and Free Energy

To illustrate how one chooses a particular species variable, we consider a two-
level quantum subsystem coupled to an environment with many degrees of
freedom. This is an interesting case since many features of condensed phase
proton and electron transfer processes can often be captured by such two-
level models. In many situations, due to the nature of the coupling between
the quantum and classical degrees of freedom, one may choose a reaction co-
ordinate, ξ(R), which depends solely (either directly or parametrically) on the
classical coordinates. In such a case, reactive events in the quantum subsys-
tem are reflected by changes in a function of the classical coordinates. The
reaction coordinate must be appropriate in the sense that it will be able to
detect the formation of the various chemical species in the reacting mixture, if
monitored along the course of a reaction. The guide to the specification of the
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relevant species variables for our two-level model is provided by the structure
of the ground and first excited state free energy profiles along ξ(R).

The free energy along the reaction coordinate can be obtained analyti-
cally for simple two-level systems [40] or, more generally, generated from long
constant temperature trajectories on the different adiabatic surfaces. The free
energy corresponding to adiabatic surface α is given by

βWα(ξ′) = − ln
Pα(ξ′)
Pu

, (36)

where Pu is the uniform probability density of ξ, and

Pα(ξ′) =
∫

dR dP δ(ξ(R) − ξ′)e−βHα∑
α

∫
dR dP e−βHα

, (37)

is the probability density for finding the numerical value ξ′ of ξ(R) when
the system is in adiabatic state α with Hamiltonian Hα =

∑
i P

2
i /(2Mi) +

Eα(R), where the sum runs over all classical particles i, and Pi and Mi are
the momentum and mass of the ith particle, respectively. We may then write
the free energy as

βWα(ξ′) = − ln
〈δ(ξ(R) − ξ′)〉α

Pu
− ln

pα

p1
, (38)

where 〈δ(ξ(R) − ξ′)〉α is defined by,

〈δ(ξ(R) − ξ′)〉α =
∫

dR dP δ(ξ(R) − ξ′)e−βHα∫
dR dP e−βHα

, (39)

and can be estimated by binning ξ(R) along a long trajectory on adiabatic
surface α. The probability that the system is in state α is pα =

∫
dξ′ Pα(ξ′),

and therefore
pα

p1
=
∫

dR dP e−β(Eα−E1)e−βH1∫
dR dP e−βH1

. (40)

This factor is related to the relative probability that the system is in state α
(regardless of the value of ξ), and can be determined from a long adiabatic
trajectory on the ground state surface.

Figure 1 schematically shows two sets of free energy profiles for a two-
level system; they correspond to systems in which there is weak (left panel)
and strong (right panel) coupling between the quantum subsystem and the
reaction coordinate, respectively. In both, the ground state surface has two
minima corresponding to two stable species separated by a high barrier at
ξ(R) = ξ‡. In the left panel, the excited state surface is nearly parallel to
the ground state surface, whereas in the right panel it has a single minimum.
Since transitions between the two stable species will occur on a long time scale
(due to the high barrier and excitations to higher states), we may identify the
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W
(ξ

)
ξ=ξ

‡
ξ=ξ

‡

ξ

Fig. 1. A schematic illustration of two contrasting sets of free energy (W ) profiles
along a reaction coordinate ξ. The left and right panels, respectively, depict situ-
ations of weak and strong coupling between the quantum subsystem and reaction
coordinate. The dotted lines at ξ = ξ‡ indicate the position of the barrier top

values of ξ(R) greater than and less than ξ‡ with species A and B, respectively.
Hence, we may use the Heaviside functions θ(ξ(R) − ξ‡) and θ(ξ‡ − ξ(R)) as
variables which correspond to species A and B, respectively.

Let us consider a system in which only one classical coordinate, R0, is
directly coupled to the quantum subsystem. In this case, the progress of
the quantum reaction can be simply monitored by the reaction coordinate
ξ(R) = R0. For the remainder of this section, all the derivations are carried
out using this reaction coordinate because the mathematical manipulations
are less cumbersome using this reaction coordinate.

3.2 Reactive Flux Operator

The A and B species operators may be defined as ÂW = θ(−R0) and B̂W =
θ(R0), where θ is the Heaviside function and the dividing surface is located
at ξ‡ = 0. For this choice of species variable, Wα′α

A′ (X, i�β
2 ) defined in (23),

can be simplified by taking advantage of the fact that integrations over all X ′

coordinates can be performed to obtain,

Wα′α
A′

(
X,

i�β
2

)
=

1
(2π�)ν

ZQ

i�
M0

∫
dZ dZ ′

0(∂δ(Z
′
0)/∂Z

′
0)e

− i
�

P ·Z

× < α′;R0|
〈
R+

Z

2

∣∣∣e− β
2 Ĥ
∣∣∣− Z ′

0

2

〉
×
〈
Z ′

0

2

∣∣∣e− β
2 Ĥ
∣∣∣R− Z

2

〉
|α;R0 > . (41)
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In this equation the adiabatic eigenstates depend parametrically only on R0

since the subsystem S couples directly only to the coordinate R0.
In order to compute the rate, we need to carry out quantum–classical evo-

lution of Bαα′
W (X, t), as dictated by (27), and sample from an initial quantum

distribution with weights determined by Wα′α
A′ (X, i�β

2 ). The imaginary time
propagators in Wα′α

A′ (X, i�β
2 ) can, in principle, be computed using quantum

path integral methods [48] or approximations such as linearization meth-
ods [23,24,49,50]. Below we show how one may construct approximate analyt-
ical expressions for this quantity, which will be used to obtain the numerical
results in the next section.

Parabolic potential in barrier region

In activated rate processes a knowledge of the dynamics of a system in the
vicinity of its potential energy barrier is crucial for the calculation of the rate
constant. In many situations the potential is locally parabolic in the barrier re-
gion and such harmonic barrier approximations have been employed frequently
in the study of quantum and classical reaction rates [17,51–55]. Here we show
how the local harmonic character of the barrier along the reaction coordinate
R0 can be exploited to construct an approximate form for Wα′α

A

(
X, i�β

2

)
,

which is useful for the situation depicted in the left panel of Fig. 1.
To proceed with the analytical calculation, we first partition the Hamil-

tonian into Ĥ = Ĥsn + Ĥb(n), where Ĥsn = Ĥs + Ĥn + V̂sn is the Hamil-
tonian of the subsystem plus a subset of degrees of freedom N plus the
coupling between them, and Ĥb(n) is the Hamiltonian of the bath B in the
field of N . For our model the subset N is just that associated with the R0

coordinate. Then, we assume that the imaginary time propagator may be
written as exp(−βĤ/2) ≈ exp(−βĤsn/2) exp(−βĤb(n)/2), so that (41) for
Wα′α

A′ (X, i�β
2 ) is given by

Wα′α
A′

(
X,

i�β
2

)
=

1
ZQ

i

2πM0

∫
dZ0dZ ′

0δ
′(Z ′

0)e
− i

�
P0·Z0

× < α′;R0|
〈
R0 +

Z0

2

∣∣∣e− β
2 Ĥsn

∣∣∣− Z ′
0

2

〉
×
〈
Z ′

0

2

∣∣∣e− β
2 Ĥsn

∣∣∣R0 −
Z0

2

〉
|α;R0 > ρb(Pb, Rb;R0),

(42)

where ρb(Pb, Rb;R0) is proportional to the Wigner transform of the canonical
equilibrium density matrix for the bath in the field of the R0 coordinates,

ρb(Pb, Rb;R0) =
1

(2π�)ν−1

∫
dZbe−

i
�

Pb·Zb

×
〈
Rb +

Zb

2

∣∣∣e−βĤb(n)

∣∣∣Rb −
Zb

2

〉
. (43)
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Next, we single out the barrier region around R0 = 0 for special con-
sideration. Separating the Hamiltonian Ĥsn into a harmonic term Ĥh0 =
P 2

0 /2M0 − 1
2M0ω

‡2R2
0 (where ω‡ is the frequency at the barrier top) and re-

mainder terms ĥsn, we can write Ĥsn = Ĥh0 + ĥsn. The eigenstates of ĥsn

are |α;R0 > as above but the eigenvalues, denoted by εα(R0), are related
to the Eα(R0) introduced earlier by εα(R0) = Eα(R0) + 1

2M0ω
‡2R2

0. Taking
exp(−βĤsn/2) ≈ exp(−βĤh0/2) exp(−βĥsn/2), the matrix elements in (42)
can then be written as

< α′;R0| < R0 +
Z0

2
|e− β

2 Ĥsn | − Z ′
0

2
><

Z ′
0

2
|e− β

2 Ĥsn |R0 −
Z0

2
> |α;R0 >

=< R0 +
Z0

2
|e− β

2 Ĥh0 | − Z ′
0

2
><

Z ′
0

2
|e− β

2 Ĥh0 |R0 −
Z0

2
>

× < α′;R0|e−
β
2 ĥsn(R0+

Z0
2 )e−

β
2 ĥsn(R0−Z0

2 )|α;R0 > . (44)

Using the representation of ĥsn in the adiabatic basis, e−
β
2 ĥsn(R0) =

∑
α |α;

R0 > e−
β
2 εα(R0) < α;R0|, expressing the matrix element in a Taylor series

in Z0 and retaining up to first order terms in Z0, we find

< α′;R0|e−
β
2 hsn(R0+

Z0
2 )e−

β
2 hsn(R0−Z0

2 )|α;R0 >

= e−βεα(R0)

[
δαα′ +

Z0

2
Oα′α(R0)dα′α(R0) + O(Z2

0 )
]
,

(45)

where Oα′α(R0) =
(
1 − e−

β
2 εα′α(R0)

)2

and εα′α = εα′ − εα.
Finally, using the expression for the matrix elements of the harmonic os-

cillator imaginary time propagator,

< R0|e−
β
2 Ĥh0 |R′

0 >=

√
2aM0u

π sinu
exp

[
− aM0u{

−(R0 +R′
0)

2 tan
u

2
+ (R0 −R′

0)
2 cot

u

2

}]
, (46)

where u = β�ω‡/2 and a = (2β�
2)−1, and carrying out the integrations over

Z0 and Z ′
0, we have

Wα′α
A′

(
X,

i�β
2

)
=

1
2π�ZQ

1
cos2 u

√
2M0u′

β�2π
e−

2M0u′
β�2 R2

0

× P0

M0
e−

βP2
0

2M0u′ Fα′α(R0)ρb(Pb, Rb;R0), (47)

where u′ ≡ u cotu and

Fα′α(R0) = e−βεα(R0)

(
δα′α +

1
2

(
1 − βP 2

0

M0u′

)
i�
P0

dα′αOα′α

)
. (48)

The off-diagonal contribution to WA′ is imaginary and therefore, from (34),
only the imaginary part of Bαα′

W (X, t) contributes to the rate.
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Partitioning of the propagator

When the ground and excited states have different structures in the barrier
region (as in the right panel of Fig. 1), the parabolic approximation used above
is no longer valid and another approximation must be made. In this connec-
tion, instead of singling out the harmonic part of Ĥsn in the barrier region, one
may partition Ĥsn into kinetic plus potential terms as Ĥsn = P̂ 2

0 /2M0 + ĥ0.
Then approximating the propagator in (42) as eβĤsn/2 ≈ eβP̂ 2

0 /4M0eβĥ0/2, and
carrying out a series of calculations similar to those outlined above, we obtain

Wα′α
A′

(
X,

i�β
2

)
=

1
2π�ZQ

√
2M0

β�2π
e−

2M0
β�2 R2

0

× P0

M0
e−

βP2
0

2M0 Fα′α(R0)ρb(Pb, Rb;R0), (49)

where Fα′α has a definition similar to that of Fα′α but with εα(R0) replaced
by Eα(R0),

Fα′α(R0) = e−βEα(R0)

(
δα′α +

1
2

(
1 − βP 2

0

M0

)
i�
P0

dα′αOα′α

)
. (50)

Likewise, Oα′α has a definition analogous to that of Oα′α with εα(R0) replaced
by Eα(R0).

The advantages of the two methods based on (47) and (49) are worth
noting. Equation (49) does not assume a particular form for the potential in
the barrier region, while in (47), a harmonic form is assumed. However, (47)
retains the quantum effects resulting from the coupling between the potential
and kinetic terms unlike (49).

Classical treatment of environmental coordinates

Making the high temperature approximation limβ→0

√
a

βπ e−
a
β R2

0 = δ(R0) and

using the classical analog of (43), ρcl
b (Pb, Rb;R0) = e

−βHb(n)

(2π�)ν−1 , (49) reduces to

Wα′α
A′

(
X,

i�β
2

)
=

1
2π�ZQ

δ(R0)
P0

M0
e−

βP2
0

2M0 Fα′α(R0)ρcl
b (Pb, Rb;R0)

=
1

(2π�)νZQ
δ(R0)

P0

M0
e−βHα(X)

×
(
δα′α +

1
2

(
1 − βP 2

0

M0

)
i�
P0
dα′αOα′α

)
, (51)

where Hα(X) = Hb(n) +Eα(R0). This result may be substituted into (34) to
obtain an expression for the rate coefficient:
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kAB(t) = kd
AB(t) + ko

AB(t), (52)

where the diagonal contribution is

kd
AB(t) =

−1
neq

A (2π�)νZQ

∑
α

∫
dXBαα

W (X, t)δ(R0)
P0

M0
e−βHα(X), (53)

and the off-diagonal contribution is

ko
AB(t) =

1
neq

A (2π�)νZQ

∑
α′>α

∫
dXIm{Bαα′

W (X, t)}δ(R0)
P0

M0
e−βHα(X)

×
(

1 − βP 2
0

M0

)
�

P0
dα′αOα′α. (54)

The diagonal contribution agrees with the result obtained earlier using
quantum–classical linear response theory [40], while the off-diagonal contri-
bution does not due to the inherent differences in the approximations made.
For a general reaction coordinate, ξ(R), the high temperature approximation
leads to

kd
AB(t) =

−1
neq

A (2π�)νZQ

∑
α

∫
dX

P

M
· ∇Rξ(R)Bαα

W (X, t)

×δ(ξ(R) − ξ‡)e−βHα(X), (55)

and

ko
AB(t) =

1
neq

A (2π�)νZQ

∑
α′>α

∫
dXIm{Bαα′

W (X, t)}δ(ξ(R) − ξ‡)e−βHα(X)

×
(∑

j

∇Rj
ξ(R)
Mj

[
dj

α′α − βPj

(
P

M
· dα′α

)])
�Oα′α. (56)

4 Applications

In order to compute the rate constants of processes such as proton and elec-
tron transport in condensed phases, one must account for the effects of the
environmental degrees of freedom. The theory presented in the previous sec-
tions provides a convenient framework in which a rate study of such systems
can be performed.

In this section, we show the results of a rate coefficient calculation for a
proton transfer reaction occurring in a linear hydrogen-bonded complex dis-
solved in a polar solvent. The proton is treated quantum mechanically and the
remainder of the degrees of freedom is treated classically. Valuable insight into
such rate processes can also be obtained, more efficiently, by studying simple
transfer reaction models which simulate the effect of a condensed phase envi-
ronment on a reaction coordinate. In this connection, we first show rate results
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for a two-level quantum system coupled to a classical nonlinear oscillator that
is in turn coupled to classical harmonic bath. For these two applications, an
appropriate choice of reaction coordinate and species variables is made and
quantum–classical Liouville dynamics is used to evolve the species variables.

4.1 Two-level Model for Transfer Reactions

Spin-boson-type models, where a two-level quantum system is bilinearly cou-
pled to a bath of independent harmonic oscillators, have often been used to
compute nonadiabatic reaction rates [8,16,23,48,56,57]. For such spin-boson
systems quantum–classical dynamics is exact and our simulation algorithms
that employ quantum–classical trajectories have been shown [58] to reproduce
the exact quantum results [56]. The rate constant for such spin-boson sys-
tems, when computed using quantum–classical dynamics and sampling from
quantum initial states, corresponds to that obtained in a full quantum treat-
ment [45, 47]. Here we consider a more complex model involving coupling
between the two-level system, a nonlinear oscillator and a bath of harmonic
oscillators as a more realistic model for quantum particle transfer in the con-
densed phase. No exact results are available for this model.

Model

The model system we consider has the Hamiltonian operator, expressed in the
diabatic basis {|L〉, |R〉} [40]

H =

(
Vn(R0) + �γ0R0 −�Ω

−�Ω Vn(R0) − �γ0R0

)

+

⎛⎝ P 2
0

2M0
+

N∑
j=1

P 2
j

2Mj
+

N∑
j=1

Mj

2
ω2

j

(
Rj −

cj
Mjω2

j

R0

)2
⎞⎠ I .

(57)

In this model, a two-level system is coupled to a classical nonlinear oscil-
lator with mass M0 and phase space coordinates (R0, P0). This coupling
is given by �γ0R0 = �γ(R0). The nonlinear oscillator, which has a quar-
tic potential energy function Vn(R0) = aR4

0/4 −M0ω
‡2R2

0/2, is then bilin-
early coupled to a bath of N independent harmonic oscillators. From the first
matrix in (57), we see that the diabatic energies are given by Ed

1,2(R0) =
Vn(R0) ± �γ0R0 and the coupling between the diabatic states is −�Ω. The
bath harmonic oscillators labelled j = 1, ..., N have masses Mj and frequen-
cies ωj . The bilinear coupling is characterized by an Ohmic spectral density
[56, 57], J(ω) = π

∑N
j=1(c

2
j/(2Mjω

2
j )δ(ω − ωj), where cj = (ξ�ω0Mj)1/2ωj ,

ωj = −ωc ln (1 − jω0/ωc), and ω0 = ωc

N

(
1 − e−ωmax/ωc

)
, with ωc a cut-off

frequency.
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The adiabatic states obtained from the diagonalization of Hamiltonian (57)
are given by

|1;R0〉 =
1
N [(1 +G)|L〉 + (1 −G)|R〉]

|2;R0〉 =
1
N [−(1 −G)|L〉 + (1 +G)|R〉] , (58)

where N (R0) =
√

2(1 +G2(R0)) and

G(R0) = γ(R0)−1
[
−Ω +

√
Ω2 + γ2(R0)

]
. (59)

The corresponding adiabatic energies are E1,2(R) = Vb(R) ∓
√
Ω2 + γ2(R0),

where

Vb(R) = Vn(R0) +
N∑

j=0

P 2
j

2Mj
+

N∑
j=1

Mj

2
ω2

j

(
R2

j −
cj

Mjω2
j

R0

)2

. (60)

Insight into the nature of the quantum reaction dynamics can be gained
by considering the ground and first excited adiabatic free energies along the
R0 coordinate, as given by

Wα(R0) = −β−1 ln

⎛⎝∫ N∏
j=1

dRj Z
−1
α e−βEα(R)

⎞⎠
= β−1 lnZα + Vn(R0) ∓

√
Ω2 + γ2

0R
2
0 , (61)

where Zα =
∫

dR exp(−βEα(R)) and α = 1, 2. They are plotted in Fig. 1
for both a small (left) and large (right) value of γ0. Based on the structure
of these profiles, we may choose θ(R0) and θ(−R0) for the A and B species
variables, respectively.

For small values of γ0, the potential in the reactant region is approximately
harmonic, making the ground and excited free energy surfaces nearly paral-
lel. As a result, the partition function for the reactant state, neq

A ZQ, can be
approximated using the mean free energy surface and given by

(neq
A ZQ)−1 ≈ eβVr sinh(β�ωr/2)

N∏
j=1

2 sinh(β�ωj/2), (62)

where ωr is the frequency in the reactant well and Vr is the bare potential at
the bottom of it. Using the high temperature form of (62) in the transition
state theory (t = 0+) form of (53) we obtain

kTST
AB ≈ ωreβVr

2π
e−βΩ + eβΩ

2
, (63)
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which will be used to scale the results presented in the figures. When the
coupling between the two-level system and the quartic oscillator is negligible,
Ω is also negligible, and kTST

AB becomes the well-known value of ωreβVr/2π. In
this regime, a symmetric oscillator has the frequency ωr ≈

√
2ω‡. Using these

results and (34) and (47) for kAB(t), the transmission coefficient, κAB(t) =
kAB(t)/kTST

AB , takes the form

κAB(t) = −
∑
α

∑
α′≥α

(2 − δα′α)
∫

dXRe[Bαα′
W (X, t)wα′α

QRB(X)], (64)

where

wα′α
QRB(X) =

2u
sin 2u

sinhur

ur

P0

M0

√
πM0β

2u′
Fα′α∑

α e
−βεα(0)

×Ga

(
R0;

2M0u
′

β�2

)
Ga

(
P0;

β

2M0u′

)

×
N∏

j=1

Ga

(
Rj −

cjR0

Mjω2
j

;
β

2u′′
j

Mjω
2
j

)
Ga

(
Pj ;

β

2Mju
′′
j

)
,

(65)

the Gaussian function Ga is defined by Ga(x; b) =
√

b
π exp(−bx2), and

u
′′
j = uj cothuj with uj = β�ωj/2. We label the results obtained using this

formula, which treats the initial distribution of the reaction coordinate and
bath quantum mechanically, by QRB.

When the initial distribution of the reaction coordinate and bath is treated
classically, we can use (51) for Wα′α

A to obtain

wαα′
CRB(X) =

P0

M0

√
πM0β

2
δ(R0)Ga

(
P0;

β

2M0

) Fα′α∑
α e−βEα(0)

×
N∏

j=1

Ga

(
Rj ;

β

2
Mjω

2
j

)
Ga

(
Pj ;

β

2Mj

)
. (66)

Results obtained using this formula are labeled by CRB.
We used a convenient set of dimensionless coordinates and parameters,

which is given in [40]. The calculations were performed for a bath of N = 100
harmonic oscillators with the following values of the parameters: ωmax = 3,
Ω = 0.1, γ0 = 0.1, a = 0.05, and ω‡ = 1. The simulation scheme for carrying
out quantum–classical molecular dynamics has been described in detail ear-
lier [40, 43, 58, 59], so only a few comments about the calculations are needed
here. The initial distribution of X for the QRB and CRB results was sampled
from weights determined by (65) and (66), respectively. The time evolution of
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the species variable, Bαα′
W (X, t), is determined from constant energy quantum–

classical trajectories generated using the sequential short-time propagation
algorithm [58].

Results

First, we compare the QRB and CRB rate results for two temperatures in
Fig. 2. For high temperatures (β = 0.1), both the QRB and CRB results are
indistinguishable, except at very short times. At t = 0, the CRB result for the
time-dependent transmission coefficient, κ(t), is nonzero and equal to unity,
which yields the transition state theory value of the rate constant. The QRB
results for the time-dependent transmission coefficient are zero at t = 0, which
is expected from quantum rate processes [46]. At lower temperatures (β = 2),
where quantum effects are more pronounced, one sees that the QRB formula
yields a larger rate constant than does the CRB one. This enhancement of
the quantum rate has also been observed in other studies [15,48,60].

In Fig. 3, the QRB results for the transmission coefficient κAB , obtained
from the plateau value of κAB(t), are plotted as a function of the Kondo
parameter ξ, which when increased, creates more friction in the bath. As the
friction is increased from zero, the rate initially increases to a maximum and
then continuously decreases, capturing the well-known turnover behavior [61].
This initial increase at low values of ξ is solely due to quantum effects.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

 κ(
t)

=2.0

1 2 3 4 5

t

=0.1

QRB
CRB

Fig. 2. Comparison between the time-dependent transmission coefficient of the
case where the equilibrium structure of the reaction coordinate and bath is treated
quantum mechanically (QRB) and that of the case where it is treated classically
(CRB). Parameters values: β = 2 (left), β = 0.1 (right), γ0 = 0.1, Ω = 0.1, and
ξ = 3
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Fig. 3. Transmission coefficient (κ) vs. the Kondo parameter (ξ) for β = 2,γ0 = 0.1,
and Ω = 0.1

4.2 Proton Transfer

Model

Proton transfer dynamics plays an important role in many chemical and bi-
ological systems. Therefore, an accurate picture of the global dynamics of
these systems requires a careful treatment of the proton in the context of
its environment. Since these systems are usually too complex and too large
to simulate, one can resort to simplified models in order to gain valuable in-
sights. In this connection, we studied a model for a proton transfer reaction
(AH-B � A−–H+B) in a hydrogen-bonded complex (AHB) dissolved in a
polar solvent. All the details of the model can be found in [43] and references
therein, so we will only mention a few main aspects of it. This model has been
used as a benchmark for testing a variety of techniques [62–68].

The potential energy describing the hydrogen bonding interaction within
the complex in the absence of a solvent, which is a function of the protonic
coordinate, models a slightly strongly hydrogen-bonded phenol (A) trimethy-
lamine (B) complex. The parameters which control the strength of the A−B
bond were chosen to yield an equilibrium A − B separation of RAB = 2.7
Å. For this value of RAB , the potential energy function has two minima, the
deeper minimum corresponding to the stable covalent state and the shallower
minimum corresponding to the metastable ionic state. We have constrained
RAB to be 2.7 Å in our simulations. The AHB complex is dissolved in a solvent
composed of 255 polar, nonpolarizable model methyl chloride molecules. The
temperature of the system in the simulations performed was approximately
250 K.
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The time evolution of the system is determined using quantum–classical
Liouville dynamics in which the complex and solvent are treated classically
and the proton, quantum mechanically. The Hamiltonian operator, which is
partially Wigner transformed over the solvent and A and B groups of the
complex, can be found in [43].

Proton transfer dynamics in polar liquids is usually monitored [69, 70] by
the solvent polarization, ΔE(R),

ΔE(R) =
∑
i,a

zae
(

1
|Ra

i − s| −
1

|Ra
i − s′|

)
, (67)

where zae (e = 1.602 × 10−19 C) is the charge on solvent atom a, and s and
s′ are two points within the complex, one at the center of mass and the other
displaced by −0.56 Å from the center of mass, respectively, which correspond
to the minima of the bare hydrogen bonding potential. The sums run over
all solvent molecules i and atoms a. In essence, the solvent polarization is
the difference between the solvent electrical potentials at points s and s′ and
drives the transfer of the proton, making it an ideal reaction coordinate.

In Fig. 4 we see that ΔE tracks the hops of the proton between the
reactant/covalent state (ΔE ≈ 0.005 eC/Å) and the product/ionic state
(ΔE ≈ 0.0225 eC/Å). The complex spends more time in the ionic config-
uration than in the covalent configuration since electrostatic interactions with
the polar solvent preferentially stabilize the ionic configuration of the com-
plex. In the absence of the polar solvent, the complex is primarily found in
the covalent configuration.

The free energy profiles corresponding to adiabatic evolution on the
ground, first and second excited state surfaces, are shown in Fig. 5. The free en-
ergy in the ground state has a double-well structure and a single-well structure
in the first excited state. The second excited state free energy has a double-well
structure with a relatively low barrier. Given the magnitude of the energy gap
between the first and second excited state surfaces, the second excited state
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0.028

 0  50  100  150  200  250
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 (
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/Å
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Fig. 4. Time series of the solvent polarization (ΔE) for a ground state adiabatic
trajectory
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Fig. 5. Free energy (βW ) profiles along the ΔE reaction coordinate for the system
undergoing ground, first and second excited state adiabatic dynamics

is not expected to participate strongly in the nonadiabatic quantum-classical
dynamics. It is evident from the ground state free energy profile that the min-
imum of the ionic state is lower in free energy than that of the covalent state
as a result of the stabilizing effect of the polar solvent. The barrier top of the
ground state surface is located at ΔE‡ = 0.0141 eC/Å.

Since the temperature of the system is fairly high and the dynamics of
the solvent and complex atoms can be accurately captured using classical
mechanics, a high temperature/classical approximation (analogous to the one
which lead to (51)) is made to obtain a rate expression for this proton trans-
fer reaction that employs ΔE(R) as the reaction coordinate. Based on the
structure of the free energy profiles, we selected the A and B species variables
as N̂A = θ(ΔE(R) − ΔE‡) and N̂B = θ(ΔE‡ − ΔE(R)), respectively. The
specific form of the diagonal part of the rate coefficient (which turns out to
be the major contribution) for this choice of species variables is

kd
AB(t) = − 1

neq
A

∑
α

∫
dR dP ΔĖ(R)Nαα

B (R,P, t)

×δ(ΔE(R) −ΔE‡)ραα
We

, (68)

where the equilibrium fraction of species A is

neq
A =

∫
dΔE′ θ(ΔE(R) −ΔE‡)e−βW (ΔE′)Pu, (69)

and the time derivative of the solvent polarization can be rewritten as
ΔĖ(R) = P

M · ∇RΔE(R). The canonical equilibrium distribution is given
by ραα

We
= Z−1

0 e−βHα
W , with Z0 =

∑
α

∫
dR dP e−βHα

W .

Equation (68) provides a well-defined formula involving initial sampling
from the barrier top ΔE = ΔE‡. In addition, quantum–classical time evolu-
tion of Nαα

B (R,P, t) must be carried out to compute the reaction rate.
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Fig. 6. The rate coefficient, kAB(t), as a function of time. The dotted line indicates
the plateau value kAB

Results

In Fig. 6, we present results for the time-dependent rate coefficient which were
obtained from an average over 16, 000 trajectories. As expected from the high
temperature form of the rate coefficient, we see that it falls quickly from
its initial transition state theory value in a few tenths of a picosecond to a
plateau from which the rate constant can be extracted. The decrease in the
rate coefficient from its transition state theory value is due to recrossing by
the trajectory of the barrier top before the system reaches a stable state. The
value of kAB obtained from the plateau is kAB = 0.013 ps−1. This result
is 32% lower than the adiabatic result, indicating a significant nonadiabatic
quantum correction.

5 Concluding Remarks

The theory presented in this chapter shows how chemical reaction rates can be
computed from time correlation function expressions that retain the quantum
equilibrium structure of the system and employ a quantum–classical descrip-
tion of the dynamics of the species variables. Thus, the computational method
combines a surface-hopping dynamics based on the quantum–classical Liou-
ville equation, with initial sampling from a quantum equilibrium distribution.
As such, the method differs from conventional surface-hopping schemes for
reactive quantum–classical dynamics, both in the nature of the time evolu-
tion of operators and in the way the trajectories are sampled to compute the
reaction rate.

The simulation results reported above utilized various approximate analyt-
ical expressions for the spectral density function that describes the quantum
equilibrium structure. In some circumstances, especially for low temperatures,
effects arising from the quantum equilibrium structure lead to important mod-
ifications of the reaction rate. To treat more general and complex molecular
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systems one could resort to numerical schemes for computing the equilibrium
structure, similar to those based on the initial value representation [68,71,72]
and linearization techniques [50,73–75].

Different formulas for the time-dependent rate coefficient can be derived
within this framework using other choices of the reaction coordinate and chem-
ical species variables. These should allow one to effectively capture quantum
effects in a variety of chemical rate processes occurring within a wide range
of temperatures and in complex condensed phase environments.
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Linearized Nonadiabatic Dynamics in the
Adiabatic Representation

D.F. Coker and S. Bonella

Summary. In this chapter we generalize a recently developed approximate method
for computing quantum time correlation functions based on linearizing the phase of
path integral expressions for these quantities in terms of the difference between paths
representing the forward and backward propagators. The approach is designed with
condensed phase applications in mind and involves partitioning the system into
two subsystems: One best described by a few discrete quantum states, the other
represented as a set of particle positions and momenta. In the original formulation,
a diabatic basis was used to describe the quantum subsystem states. Here we extend
the technique to allow for a description of the quantum subsystem in terms of
adiabatic states. These can be more appropriate in certain dynamical regimes and
have the formal advantage that they can be defined uniquely from the electronic
Hamitonian. The linearized algorithm in the adiabatic basis is derived first, and its
properties are then compared to those of alternative dynamical schemes.

1 Introduction

Statistical mechanics identifies time correlation functions as the fundamen-
tal link between the microscopic description of a system and its macroscopic
behavior as observed in experiments. If classical mechanics provides an accu-
rate description, it is possible to remedy the shortcomings of the analytical
tools applicable to the calculation of time correlation functions for complex
systems by using accurate, exact computer simulation schemes. Unfortunately,
if quantum mechanics must be applied to the evolution of the system, exact
numerical algorithms scale exponentially with the number of degrees of free-
dom and simulations become rapidly too expensive to study realistic models
of condensed phase experiments. Therefore, the development of approximate
methods to calculate quantum time dependent correlation functions by com-
puter simulation is an active field of research in physics and chemistry.

In recent work [1, 2] we presented a new approximate method, called the
Linearized Approach to Nonadiabatic Dynamics using the Mapping hamil-
tonian formulation or LAND-Map, for calculating nonadiabatic time corre-
lation functions. When studying the properties of nonadiabatic systems, a
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fruitful strategy to simplify the situation with respect to the fully quantum
propagation is to take the classical limit for the evolution of the nuclear degrees
of freedom in the presence of a set of electronic states which maintain all their
quantum characteristics. This results in a mixed quantum–classical picture of
the world of the type described in Chap. 12 and the references therein.

A key property of the LAND-Map method, not shared by many of the
alternative techniques for simulating nonadiabatic dynamics, is that the cou-
pling mechanism between the classical and quantum evolution equations
emerges naturally from a theoretical analysis of the time-correlation func-
tion. This is accomplished by combining the linearization ideas put forward
by Poulsen [3–5] and Geva [6–9] with the mapping description of nonadiabatic
transitions [10–14].

Linearization methods start from a path integral representation of the for-
ward and backward propagators in the Heisenberg representation of a time
correlation function, and combine them to describe the overall time evolution
of the system in terms of a set of classical trajectories whose initial conditions
are sampled from a quantity related to the Wigner transform of the density
operator [15]. The linearized expression for a correlation function is a powerful
tool for describing systems in the condensed phase since the rapid decay of
correlation functions for such systems enables reliable results to be obtained
using a representation of the dynamics strictly valid only for relatively short
times. In order to extend the linearization scheme to nonadiabatic problems it
is convenient to describe the electronic role in the dynamics in terms of oper-
ators with a continuous spectrum. A way to achieve this goal that has proved
accurate in many situations is provided by the mapping formalism [16–19].
The method represents the electronic degrees of freedom and the transitions
between the different states in terms of positions and momenta of a set of
fictitious harmonic oscillators. The mapping formalism was originally applied
to nonadiabatic dynamics in the context of semiclassical calculations. In that
case, the continuous nature of the oscillator’s spectra simplified the task of
defining a classical analog for the total Hamiltonian of the system. In lin-
earized approaches the mapping representation proves even more fruitful in
that it gives an exact expression for the quantum system transition amplitude
in the nuclear path integral representation. The expression depends paramet-
rically on the nuclear path, but it is otherwise explicit, local in time, and
computable by propagating a set of auxiliary classical equations that describe
the evolution of the quadratic degrees of freedom that account for electronic
transitions in the full quantum propagator exactly.

In LAND-Map the mixed quantum–classical evolution is obtained by
applying the linearization procedure to the nuclear variables only. This results
in a coupled nuclear and electronic evolution that is quite different from the
propagations used in related methods and in other nonadiabatic techniques.
For example, the exact solution of the mapping evolution by means of a propa-
gation that is local in time avoids the self-consistent calculation of the nuclear
trajectories and electronic transition amplitude that limits the usefulness of
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the Pechukas [20] path integral approach. Further the continuous description
of the electronic states is reflected in the smooth changes in the forces experi-
enced by the classical bath when a nonadiabatic transition takes place. This is
to be contrasted, for example, with the situation in Surface Hopping [21–25] or
Wigner mixed quantum–classical approaches [26–30]. In both cases, ensembles
of trajectories that combine segments of classical evolution with “hops” from
one state to another determined by some stochastic mechanism must be prop-
agated. These hops introduce discontinuities, for example in the momenta of
the classical particles, and, in some cases, ambiguities in the redistribution of
the energy among the different degrees of freedom that are absent in our case.

LAND-Map was originally derived using a diabatic representation of the
electronic states (i.e., an electronic basis set whose elements do not depend on
the nuclear coordinates). Although the definition of such a basis for a given
system is not unique, it has the convenient characteristic of describing the
coupling between the different electronic surfaces via relatively smooth func-
tions of the nuclear coordinates: the off-diagonal elements of the electronic
Hamiltonian. Consequently the resulting evolution equations for the nuclei in
a mixed quantum–classical scheme are relatively easy to integrate numerically.
This description of the states is particularly advantageous, for example, when
describing strongly vibrationally coupled systems. There are, however cases
in which choosing an adiabatic basis set for the electronic degrees of freedom
proves more convenient both conceptually and numerically. For instance, the
adiabatic picture is an accurate representation of the dynamics of a system
where the time scale separation of the nuclear and electronic motion is pre-
served throughout the evolution, so that, even when approaching an avoided
crossing between adiabatic surfaces, the component of the nuclear momen-
tum in the direction of the nonadiabatic coupling vector (see definition later)
remains small [31]. The main benefit with this choice lies in the fact that the
electronic states are determined by diagonalizing the electronic Hamiltonian
at each nuclear configuration during the run. In this case, off-diagonal terms
in the kinetic-energy operator, usually highly localized and rapidly varying
functions of the nuclear coordinates, are responsible for the coupling.

Here we extend our linearized approach to nonadiabatic dynamics to sit-
uations in which an adiabatic electronic basis is more convenient.

The generalization is worth investigating for several reasons. Quantum
mechanics prescribes that the result of an observation, whether it be the
average value of an operator or a correlation function, does not depend on the
choice of a particular basis set. This is manifest in the mathematical repre-
sentation of an observable as a trace (i.e., an invariant with respect to basis
choice). Approximate methods, however, can fail to preserve this fundamental
property.

The reasons of this shortcoming fall into three broad categories. First,
it might be difficult to maintain the physical picture underlying the prescrip-
tions of a given dynamical scheme in a basis set different from the one in which
the scheme was originally conceived. Surface hopping [21–25] is a prominent
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example of this kind. Second, even if it is possible to cast a given approach in
a different basis, the approximations to the dynamics may lead to evolution
equations that are not equivalent (i.e., not related by a canonical transfor-
mation) classically. In the self-consistent classical trajectory representation
of nonadiabatic dynamics, such as for example the Ehrenfest method, this
pathology manifests itself in the fact that the nuclear Hamiltonians derived
from a diabatic or adiabatic representation of the electronic system contain
identical first-order nonadiabatic coupling, but they differ in the form of the
second-order coupling terms [32]. Finally, for methods that can be cast in
more than one basis, choosing the most appropriate representation for a given
problem might be crucial from a numerical point of view.

The chapter is organized as follows. A detailed derivation of the linearized
nonadiabatic algorithm for calculating correlation functions within an adia-
batic picture for the electronic states is presented and the features that differ-
entiate it from other nonadiabatic techniques are mentioned. Some comments
are offered on the method from a numerical viewpoint. The analogous lin-
earized approach in the diabatic basis is presented in Chap. 12 in this book.
Here we limit the discussion of the similarities and differences of the two for-
mulations of LAND-Map to a few remarks. A detailed comparison on a specific
application will be the object of a future publication [33].

2 Theory

The time-dependent quantum correlation function of operators Ô1 and Ô2 is
defined as 〈

Ô1Ô2(t)
〉

= Tr
{
ρ̂Ô1e

i
�

ĤtÔ2e−
i
�

Ĥt
}
. (1)

In this expression

Ĥ =
P̂ 2

2M
+ ĥel (2)

is the Hamiltonian of the interacting system of electrons and nuclei written
in terms of the nuclear kinetic operator and an electronic contribution con-
taining the kinetic energy of the electrons and the nuclear–nuclear, electron–
electron, and electron–nuclear interaction potentials as well as any external
field present. ρ̂ is the density matrix for the system.

We begin by representing the total wavefunction in a basis chosen as the
tensor product of the nuclear coordinates |R〉 and the adiabatic electronic
basis set, i.e., |Ψλ(R)〉 such that

ĥel|Ψλ(R)〉 = Eλ(R)|Ψλ(R)〉. (3)

The appropriate insertion of resolutions of the identity in this basis allows us
to express the correlation function as



Linearized Nonadiabatic Dynamics in the Adiabatic Representation 325

〈Ô1Ô2(t)〉 =
∑

αβ,α′β′

∫
dR0dRNdR̃0dR̃N 〈R0Ψα(R0)|ρ̂Ô1|R̃0Ψα′(R̃0)〉 (4)

×〈R̃0Ψα′(R̃0)|e
i
�

Ĥt|R̃NΨβ′(R̃N )〉〈R̃NΨβ′(R̃N )|Ô2|RNΨβ(RN )〉
×〈RNΨβ(RN )|e− i

�
Ĥt|R0Ψα(R0)〉.

The quantum propagators in (4) are the transition amplitudes to move, for
example, from nuclear position R0 to position RN in a time t while the elec-
tronic state changes from Ψα(R0) to Ψβ(RN ). The fact that the amplitude
is nondiagonal in the electronic states reflects the possibility of nonadiabatic
transitions during the system’s evolution.

Our first goal is to cast the propagators in a form suitable to be approx-
imated by means of classical trajectories. To that end, we introduce a diadic
representation of the Hamiltonian in (2)

Ĥ =
P̂ 2

χ

2M
+
∑
λ,μ

|Ψλ(R)〉
(
Eλ(R)δλ,μ + Λ̂λ,μ(R)

)
〈Ψμ(R)|, (5)

where

Λ̂λ,μ(R) = −
[
iDλ,μ(R)

P̂χ

M
+

1
2M

Gλ,μ(R)

]
(6)

with

Dλ,μ(R) = 〈Ψλ(R)| ∂
∂R

|Ψμ(R)〉, (7)

Gλ,μ(R) = 〈Ψλ(R)| ∂
2

∂R2
|Ψμ(R)〉.

Here and in the following � = 1. This Hamiltonian acts on a general vibronic
wave function of the form |Φ〉 =

∑
μ χμ(R)|Ψμ(R)〉 where χμ(R) is the nuclear

coefficient function. Note that Λ̂ is an operator in P̂χ and a function of the
nuclear coordinates. The differential operator P̂χ = i(∂/∂R) acts on the nu-
clear coefficient functions, χμ(R), only, i.e., it does not touch the parametric
dependence on R of the adiabatic wavefunctions.Dλ,μ(R) is known as the non-
adiabatic coupling vector and together with the other non Born–Oppenheimer
term, Gλ,μ(R), is responsible for the nonadiabatic transitions.

2.1 Mapping Hamiltonian Representation of the Quantum
Subsystem in the Adiabatic Basis

Let us now introduce the mapping representation of the system by proceeding
in analogy to what is usually done in the case of a diabatic representation
of the electronic states [10–14]. We replace the evolution of the electronic
subsystem with the evolution of a system of fictitious harmonic oscillators
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to achieve a twofold objective. On the one hand, the replacement, defined
by two mapping relations that we shall detail in a moment, is such that the
propagation of the nuclear part of the problem is not changed. On the other,
the introduction of this set of harmonic oscillators paves the way for a series
of simplifications that will be exploited in the following.

The mapping relations act on the representations of the basis set and of
the Hamiltonian. In the first case, the mapping is defined as

|Ψλ(R)〉 → |mλ〉 = |01, ..., 1λ, ..0n〉 (8)

and it transforms the Hilbert space spanned by the original n adiabatic states
into one coinciding with a subspace of n-oscillators with at most one quantum
of excitation in a single specific oscillator.

As for the Hamiltonian, we substitute the diadic operators as follows:

|Ψλ(R)〉〈Ψμ(R)| → a†λaμ, (9)

where a and a† are creation and annihilation operators of mapping oscillators
excitations such that, for example,

a†λaμ|01, ..., 1μ, ..0n〉 = |01, ..., 1λ, ..0n〉. (10)

These operators can be expressed in terms of the positions and momenta of
the n oscillators, for example

âλ =
1√
2
(q̂λ + ip̂λ). (11)

Using this prescription for the creation operator, and the analogous for the
annihilation operator, the Hamiltonian (5) becomes

Ĥm =
P̂ 2

χ

2M
+

1
2

∑
λ

Eλ(R)(q̂2λ + p̂2λ − 1)

+
1
2

∑
λμ

[
ReΛ̂λμ(R)(q̂λq̂μ + p̂λp̂μ) − ImΛ̂λμ(R)(q̂λp̂μ − p̂λq̂μ)

]
−1

2

∑
λ

ReΛ̂λλ(R), (12)

where we introduced the symbol Ĥm to indicate the Hamiltonian in the map-
ping representation. In deriving the equation above, we have used the fact
that Λλμ = Λ∗

μλ. For future convenience we write the Hamiltonian as

Ĥm =
P̂ 2

χ

2M
+ ĥm(R), (13)

where ĥm(R) is defined by comparing this equation with (12). Note that the
mapping prescription takes us to a basis that, unlike the electronic states that
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appeared originally, has no parametric dependence on the nuclear coordinates.
This is compatible with the diadic expression of the total Hamitonian in (5)
since we took care of isolating the effect of the nuclear kinetic operator on the
adiabatic states by introducing the nonadiabatic coupling terms D̂(R) and
G(R). As mentioned before, P̂χ acts on the nuclear coefficients only and these
are left unchanged by the mapping.

It should be pointed out that the mapping defined in this section is not
a conventional transformation of the electronic basis, in the sense that there
is no unitary transformation that takes us from the adiabatic to the mapping
states. So, for example, the dependence of ĥm(R) on the nuclear coordinates
is preserved by the prescriptions detailed above and it is determined by the
original form of the non Born–Oppenheimer terms in the expression of the
operator Λ̂(R). The mapping has, however, the remarkable property that it
preserves the time evolution of the total system. Thus, since

〈RNΨβ(RN )|e− i
�

Ĥt|R0Ψα(R0)〉 = 〈RNmβ |e−
i
�

Ĥmt|R0mα〉 (14)

we can substitute the mapping quantum propagator in the expression for the
correlation function without changing its value. Thus

〈Ô1Ô2(t)〉 =
∑

αβ,α′β′

∫
dR0dRNdR̃0dR̃N 〈R0α|ρ̂Ô1|R̃0α

′〉〈R̃Nβ
′|Ô2|βRN 〉

×〈R̃0α
′|e i

�
Ĥmt|R̃Nβ

′〉〈RNβ|e−
i
�

Ĥmt|R0α〉 (15)

The shorthand notation α ≡ mα etc. has been introduced in the sum.

2.2 Bath Subsystem Path Integral Representation

We then proceed by representing the nuclear part of the propagator as a
path integral [34, 35]. This is slightly delicate, since the Λ operator contains
a term, the nonadiabatic coupling vector, which features the product of the
nuclear momentum operator with an operator function of the nuclear position.
The situation is similar to that encountered when describing the motion of a
charged quantum particle in a magnetic field. The coordinate representation
of the discrete path integral expression of each propagator in the correlation
function can therefore be obtained in analogy with that case [35]. For example,

〈RNmβ |e−iĤmt|R0mα〉 =
∫ N−1∏

k=1

dRkeiS (16)

×〈mβ |e−iεĥm(RN ,RN−1)....e−iεĥm(R1,R0)|mα〉,

where

S =
εM

2

N∑
j=0

(
Rj+1 −Rj

ε

)2

(17)
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and

ĥm(Rj+1, Rj) =
1
2

∑
λ

(Eλ(Rj) − ReΛλλ(Rj)) (q̂2λ + p̂2λ − 1)

+
1
2

∑
λ�=μ

[ReΛλμ(Rj)(q̂λq̂μ + p̂λp̂μ) − ImΛλμ(Rj+1, Rj)(q̂λp̂μ − p̂λq̂μ)] . (18)

The propagator is thus written as the integral of a multidimensional func-
tion of the nuclear coordinates along the path connecting R0 to RN , but it is
still an operator in the mapping subspace. However, an explicit expression of
the mapping transition amplitude as a function of the nuclear coordinates can
be obtained. The mapping Hamiltonian is a bilinear or quadratic operator in
the subspace of the variables {qα, pα}, and this allows evaluation of the ma-
trix element written above exactly, for example via a semiclassical expression.
The result will depend parametrically on the nuclear path {Rj} which, at this
stage, plays the role of an external time dependent parameter.

2.3 Quantum Subsystem Mapping Transition Amplitude

A convenient exact representation for the mapping transition amplitude can
be found using the Herman–Kluk expression [36,37]. This is given by

〈mβ |e−iεĥm(RN ,RN−1)....e−iεĥm(R1,R0)|mα〉 =∫
dq0dp0

(2γqβt + ipβt)
2σpq

e−
i

2σpq

∑
λ

qλtpλte
− 1

2

∑
λ

(
q2
λt

σ2
q

+
p2

λt
σ2

p

)
cteist

× (2γqα0 − ipα0)
2σpq

e
− 1

2

∑
λ

(
q2
λ0

σ2
q

+
p2

λ0
σ2

p

)
e

i
2σpq

∑
λ

qλ0pλ0 . (19)

Here γ is the width of the coherent states used in the representation of the
semiclassical propagator, σ2

q = (γ + 1
2 )/γ, σ2

p = 2(γ + 1
2 ), and σpq = γ + 1

2 .
(qt, pt), where, for example, qt = (q1t, . . . , qnt), are the end points of classical
trajectories starting at (q0, p0) and evolving according to the Hamiltonian

h(R) =
1
2

∑
λ

Aλλ(R)(q2λ + p2λ − 1)

+
1
2

∑
λ�=μ

[Bλμ(R)(qλqμ + pλpμ) + Cλμ(R)(pλqμ − qλpμ)] , (20)

where (at nuclear time-slice j)

Aλλ(R) = Eλ(Rj) − ReΛλλ(Rj) = Eλ(Rj) +
1

2M
Gλλ(Rj), (21)

Bλμ(R) = ReΛλμ(Rj) = − 1
2M

Gλμ(Rj),

Cλμ(R) = ImΛλμ(Rj , Rj+1) = −
[
Dλμ(Rj+1) +Dλμ(Rj)

2

]
(Rj+1 −Rj)

ε
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and the boldface indicates the dependence of h on the nuclear coordinates at
more than one time-slice. st is the mapping action which we will compute in
detail later, and

ct =
[
det

1
2

(
∂qt

∂q0
+
∂pt

∂p0
− 2iγ

∂qt

∂p0
+

i
2γ
∂pt

∂q0

)] 1
2

(22)

is the square root of the determinant of the complex matrix which measures
the stability of the mapping variable trajectories with respect to variations in
the initial conditions.

The evolution of the mapping variables cannot, in general, be determined
explicitly since it depends on the value of the nuclear coordinates at the
various points along the path which has not been specified so far. The mapping
transition amplitude can, however, be simplified by taking advantage of a
number of properties of the evolution that can be derived without knowledge
of the parametric dependence of (20) on nuclear coordinates.

The Hamiltonian dynamics of the mapping variables is determined by the
following set of equations:

dqβ
dt

= Aβ,β(R)pβ +
∑

λ( �=β)

Bβ,λ(R)pλ +
∑

λ( �=β)

Cβ,λ(R)qλ, (23)

dpβ

dt
= −Aβ,β(R)qβ −

∑
λ( �=β)

Bβ,λ(R)qλ +
∑

λ( �=β)

Cβ,λ(R)pλ.

Here, and in the following,
∑

λ( �=β) indicates a single sum over the index λ
restricted to not include λ = β. Using these equations it is not difficult to
show that the difference between the action st and the explicit phases arising
from the initial and final mapping states in (19) can be manipulated as follows

st −
1

2σpq

∑
λ

qλtpλt +
1

2σpq

∑
λ

qλ0pλ0

=
∫ t

0

dτ

{∑
λ

pλτ
dqλτ

dτ
− h(Rτ )

}
− 1

2σpq

∫ t

0

dτ
d
dτ

∑
λ

pλτqλτ .

(24)

Choosing σpq = 1, this reduces to

st −
1

2σpq

∑
λ

qλtpλt +
1

2σpq

∑
λ

qλ0pλ0 =
1
2

∫ t

0

dτ
∑

λ

Aλ,λ(Rτ ). (25)

The choice of σpq, which is equivalent to setting the value of the coherent state
width to γ = 1

2 , does not compromise the generality of the method. The value
of the width parameter does not affect the properties of the Gaussian basis
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set necessary to obtain the Herman–Kluk approximation for the quantum
propagator and is usually fixed so as to optimize the numerical convergence
of the calculations.

Let us then introduce the complex vector η = q+ ip and observe that the
determinant, in (22) can be expressed as

ct = det
{

1
2
∂ηt

∂η0

} 1
2

. (26)

From the evolution equations of the mapping variables it follows that

dη
dt

= Mη, (27)

where
M = −i[A+B] + C. (28)

A is the matrix with elements {A}αβ , and similarly for B and C (see (23)).
From (27) one gets

∂ηt

∂η0
= e−iεM(RN) . . . e−iεM(R0) (29)

and
ct =

1√
2d

e−
i
2

∫ t

0
dτ
∑

β
Aβ,β(Rτ ) (30)

where d is the dimension of the stability matrix.
Further, from the mapping evolution equations it also follows that the

quantity ∑
λ

(q2λ + p2λ) (31)

is a constant of the motion.
Using the results detailed above we can then rewrite the amplitude in

(19) as

〈mβ |e−iεĥm(RN ,RN−1)....e−iεĥm(R1,R0)|mα〉 =∫
dq0dp0(qβt + ipβt)(qα0 − ipα0)e

− 1
2

∑
λ
(q2

λ0+p2
λ0). (32)

An even more explicit expression for this object can be derived by introducing
a polar representation of the complex polynomials. Thus defining

G0 = e−
1
2

∑
λ
(q2

0,λ+p2
0,λ),

rt,β({Rk}) =
√
q2t,β({Rk}) + p2t,β({Rk}),

Θt,β({Rk}) = tan−1

(
pt,β({Rk})
qt,β({Rk})

)
. (33)
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the transition amplitude becomes

〈mβ |e−iεĥm(RN ,RN−1)....e−iεĥm(R1,R0)|mα〉 = (34)∫
dq0dp0rt,β({Rk})e−iΘtβ({Rk})r0αeiΘ0,αG0.

The mapping evolution equations can also be used to show that

Θt,β({Rk}) = tan−1

(
p0,β

q0,β

)
+
∫ t

0

dτ
[

d
dτ

tan−1

(
pτ,β(Rτ )
qτ,β(Rτ )

)]
(35)

= tan−1

(
p0,β

q0,β

)
−
∫ t

0

dτAβ,β(Rτ )

−
∫ t

0

dτ
∑

λ( �=β)

[
Bβ,λ(Rτ )

(pτβpτλ + qτβqτλ)
(p2τβ + q2τβ)

]

+
∫ t

0

dτ
∑

λ( �=β)

[
Cβ,λ(Rτ , Ṙτ )

(pτλqτβ − pτβqτλ)
(p2τβ + q2τβ)

]

= tan−1

(
p0,β

q0,β

)
+
∫ t

0

θβ(τ)dτ (36)

+
∫ t

0

dτ
∑

λ( �=β)

[
Cβ,λ(Rτ , Ṙτ )

(pτλqτβ − pτβqτλ)
(p2τβ + q2τβ)

]
.

By using (34), and its counterpart for the backward propagated mapping
variables, identified by a tilde, the correlation function can be expressed as

〈Ô1Ô2(t)〉 =
∑

αβ,α′β′

∫
dR0dRNdR̃0dR̃N

∫ N−1∏
k=1

dRk

∫ N−1∏
k=1

dR̃k

×ei(S−S̃)〈R0α|ρ̂Ô1|R̃0α
′〉〈R̃Nβ

′|Ô2|βRN 〉

×
∫

dq̃0dp̃0r̃t,β′({R̃k})eiΘ̃tβ′ ({R̃k})r̃0α′e−iΘ̃0,α′ G̃0

×
∫

dq0dp0rt,β({Rk})e−iΘtβ({Rk})r0αeiΘ0,αG0 (37)

The forward and backward propagators are now represented as a combina-
tion of path integrals in the nuclear variables and integrals over the mapping
oscillators phase space. We emphasize that, although the expression above
has been obtained using semiclassical results, so far no approximation has
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been introduced: For any given pair of forward and backward paths in the
nuclear configuration space, (37) is an exact rewriting of the definition of
the correlation function from which we started. As such, its calculation is
as problematic as that of any full quantum object. Before introducing the
only approximation needed to obtain the expression of the correlation func-
tion in terms of sets of classical trajectories that we wish to discuss in this
chapter, let us briefly summarize the steps performed so far. First, we ob-
tained a nuclear path integral expression for the correlation function in which
the effect of the nonadiabatic electronic transitions was accounted for by the
fictitious set of harmonic oscillators introduced by the mapping method, see
(16). We then took advantage of the quadratic nature of the operators in the
mapping transition amplitude to derive an exact expression for this quantity.
It should, however, be pointed out that the procedure used in this chapter
is not the only possibility, since the harmonic nature of the mapping sub-
space opens up several opportunities for evaluating the amplitude exactly.
Here we choose to evaluate the amplitude using a semiclassical representation
for it that presented certain formal advantages. In particular, we exploited
the properties of the Hamiltonian, classical evolution of the mapping vari-
ables in the Herman–Kluk expression of the amplitude to simplify the form of
the phase in the nuclear path integral representation of the time correlation
function (19–34).

2.4 Linearization of the Bath Subsystem Path Integrals:
An approximate, Trajectory based Expression for the
Correlation Function

To set the stage for the approximation we intend to perform to obtain a
viable expression for the correlation function, it is convenient to modify our
result further by introducing a set of momentum-like variables for the nuclear
paths. This can be accomplished in the following way. Define, for example in
the forward propagator of (16),

Wβ =
∑

λ( �=β)

(Dβλ(Rk+1) +Dβλ(Rk))
2

(
pkλqkβ − qkλpkβ

p2kβ + q2kβ

)
. (38)

Then, using the results in (17) and (21), the terms containing a dependence
on (Rk+1 −Rk) in the nuclear path integral are of the form

e
iε

[
M(Rk+1−Rk)2

2ε2
− (Rk+1−Rk)

ε Wβ

]
. (39)

We can write this, barring constants, as the Fourier transform of a Gaussian∫
dPkeiPk(Rk+1−Rk)e−

iε
2M [Pk+Wβ ]2 , (40)
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where the Fourier variables are the nuclear momenta Pk. Using this result
in the nuclear path integral along with the phase space expression for the
mapping amplitude, the propagator becomes

〈RNmβ |e−iĤmt|R0mα〉 =
∫ N−1∏

k=1

dRk

N−1∏
k=1

dPkdPNeiSP (41)

×
∫

dq0dp0rt,β({Rk})e−iΦβt({Rk})r0αeiΦ0,αG0

with

SP = ε
∑

k

{
Pk

(Rk+1 −Rk)
ε

− 1
2M

[Pk +Wβ ]2
}

(42)

and

Φβt = tan−1

(
p0,β

q0,β

)
− ε
∑

k

⎧⎨⎩Aβ,β(Rk) +
∑

λ( �=β)

[
Bβ,λ(Rk)

(pkβpkλ + qkβqkλ)

(p2
kβ + q2

kβ)

]⎫⎬⎭
= tan−1

(
p0,β

q0,β

)
+ ε
∑

k

φβ,k. (43)

Substituting (41) and its conterpart for the backward time evolution in the
expression for the correlation function gives

〈Ô1Ô2(t)〉 =
∑

αβ,α′β′

∫
dR0dR̃0d

∫ N∏
k=1

dRkdPk

∫ N∏
k=1

dR̃kdP̃kei(SP −S̃P ) (44)

×
∫

dq0dp0dq̃0dp̃0〈R0α|ρ̂Ô1|R̃0α
′〉〈R̃Nβ

′|Ô2|βRN 〉

×rt,β({Rk})e−iΦtβ({Rk})r0αeiΦ0,αG0

×r̃t,β′({R̃k})eiΦ̃tβ′ ({R̃k})r̃0α′e−iΦ̃0,α′ G̃0.

As a final step toward the linearized approximation of the correlation function,
let us change variables to sum and difference in the nuclear paths

R̄k =
Rk + R̃k

2
(45)

ΔRk = Rk − R̃k

and similarly for Pk, P̃k for all k. We now proceed as indicated by Poulsen
et al. [3–5] and Geva and co-workers [6–9]. After substituting the vari-
able transformed propagators into the correlation function, the integrand is
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approximated by truncating the Taylor series expansion of its phase to linear
order in the difference path. The terms appearing in the expansion of the
phase can be classified as follows:

1. Terms of order zero in the difference path: They are of the form

Ω = ε
∑

k

P̄k

M
[Wβ(R̄k, {qk, pk}) − W̃β′(R̄k, {q̃k, p̃k})]

+ ε
∑

k

1
2M

[W 2
β (R̄k, {qk, pk}) − W̃ 2

β′(R̄k, {q̃k, p̃k})]

+ ε
∑

k

{
φβ(R̄k, {qk, pk}) − φ̃β′(R̄k, {q̃k, p̃k})

}
. (46)

2. Linear terms in ΔP : They are of the form

fΔP = ε
∑

k

[
R̄k − R̄k−1

ε

]
ΔPk (47)

− ε
∑

k

[
1

M
P̄k+

Wβ(R̄k−1, {qk−1, pk−1})+W̃β′(R̄k−1, {q̃k−1, p̃k−1})
2

]
ΔPk

3. Linear terms in ΔR: They are of the form

fΔR = ε
∑

k

[
P̄k+1 − P̄k

ε

]
ΔRk (48)

+ε
∑

k

[
1

2M
P̄k∇R̄k

{Wβ(R̄k, {qk, pk}) + W̃β′(R̄k, {q̃k, p̃k})}
]

ΔRk

+ε
∑

k

[
dWβ(R̄k, {qk, pk}) + ˜dW β′(R̄k, {q̃k, p̃k})

]
ΔRk (49)

+ε
∑

k

[
1
2
∇R̄k

(φβ(R̄k, {qk, pk}) + φ̃β′(R̄k, {q̃k, p̃k})
]
ΔRk

where, for example,

dWβ(R̄k, {qk}{pk}) =
∑

λ( �=β)

Dβλ(R̄k)

(
pkλqkβ − qkλpkβ

p2kβ + q2kβ

)

×
∑

μ( �=β)

∇R̄k
Dβμ(R̄k)

(
pkμqkβ − qkμpkβ

p2kβ + q2kβ

)
. (50)

Once these expressions have been introduced in the exponent of the correlation
function, the integrals over the difference path can be performed analytically.
For k > 0, they are integral representation of δ-functions. As for the integral
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over ΔR0 and ΔRN , they define the partial Wigner transform with respect
to the nuclear variables of the product ρ̂Ô1, and of the operator Ô2. The
linearized correlation function can therefore be written as

〈Ô1Ô2(t)〉 =
∑

αβ,α′β′

∫
dR̄0dq0dp0dq̃0dp̃0

∫ N∏
k=1

dR̄k
dP̄k

2π

×
[
Ô2

]W
β′β

(R̄N P̄N )
[
ρ̂Ô1

]W
α,α′

(R̄0, P̄1)e−iΩ

×G0G̃0r0αeiφ0,α r̃0α′e−iφ̃0,α′ rt,β({R̄k})r̃t,β′({R̄k})

×
N−1∏
k=1

δ

(
P̄k+1 − P̄k

ε
−F β,β′

k

) N∏
k=1

δ

(
R̄k−R̄k−1

ε
−Π

ββ′
k

M

)
, (51)

where Ω is defined in (46),

Πββ′
k =

[
P̄k +

Wβ(R̄k−1, {qk−1, pk−1}) + W̃β′(R̄k−1, {q̃k−1, p̃k−1})
2

]
(52)

and

F β,β′
k = − 1

2M
P̄k∇R̄k

(Wβ(R̄k, {qk, pk}) + W̃β′(R̄k, {q̃k, p̃k}))

− 1
2M

(dWβ(R̄k, {qk, pk}) + ˜dW β′(R̄k, {q̃k, p̃k})

−1
2
∇R̄k

(φβ(R̄k, {qk, pk}) + φ̃β′(R̄k, {q̃k, p̃k})) (53)

The product of delta-functions in (51) amounts to a time-stepping prescription
which forces the mean path to obey a classical evolution law. This, together
with the classical motion of the mapping variables specified by (23), allows us
to formulate the following algorithm for the evaluation of the integrals in the
time correlation function calculation:

1. Assign the set of indexes α, α′, β, β′

2. Sample initial values R̄0, P̄1 from the Wigner transform of the thermal
density times the operator Ô1

3. Sample initial values of the forward and backward mapping variables in
states α and α′ respectively

4. Accumulate weights at the initial time
5. Perform integral over R̄1 advancing the nuclear position by one time step

using

R̄1 = R̄0 +
ε

M

[
P̄1 +

Wβ(R̄0, {q0}{p0}) + W̃β′(R̄0, {q̃0}, {p̃0})
2

]
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6. Calculate the matrix elements of the electronic Hamiltonian at the new
nuclear positions and move mapping variables one step farther in the
forward and backward propagation

7. Perform the integral over P̄2 advancing the nuclear momentum by one
time step using

P̄2 = P̄1 + εF β,β′
1

8. Accumulate weights and iterate from step 5. until the final time of the
run is reached

9. Calculate rt,β({Rk})r̃t,β′({R̄k}) and the Wigner transform of operator Ô2,
and multiply the weights

10. Iterate from step 1. to accumulate all terms in the correlation function
until convergence is reached.

2.5 Some Comments on the Algorithm

All the propagations in the algorithm described above are classical and local
in time, two features which simplify the numerical task considerably. The
mapping variables evolve according to (23), while the classical trajectory for
the nuclear variables is determined by the forces in (53). As such the over-
all evolution of the two coupled dynamical subsystems is not governed by a
single Hamiltonian. This is in marked contrast to the usual semi-classical ap-
proach where the mapping Hamiltonian is differentiated to obtain a classically
consistent system of equations of motion for all degrees of freedom [38–43].
The method we present here is also significantly different from the Pechukas
semiclassical formulation of nonadiabatic dynamics [20]. The Pechukas tran-
sition amplitude and trajectory must be determined by self-consistent itera-
tion. With the mapping formulation, however, we have an explicit form for
the transition amplitude, (34), which can be integrated as the nuclear trajec-
tory is advanced making the approach local in time and straightforward to
implement.

The two distinct evolutions in the LAND-map approach are reminiscent of
the situation in surface hopping or mean field nonadiabatic methods where dif-
ferent dynamical prescriptions apply to the quantum and classical subsystems
(see for example [23]). However, in our approach the nuclear variables do not
move in the mean field of the quantum subsystem nor vice-versa. The different
terms in the expression for the correlation function in general involve trajec-
tories moving with forces determined by linear combinations of different pairs
of diabats and off-diagonal electronic Hamiltonian matrix elements. Since the
motion does not happen on a single average potential surface our approach
does not suffer from some of the limitations of mean field methods. Further
the coupling between nuclear motion and electronic transitions is determined
rigorously by the linearization procedure in contrast to the nonrigorous nature
of the development of traditional surface hopping approaches [23].
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Note also that the contributions to the force in (53) coming from the eigen-
values of the electronic matrix do not enter multiplied by mapping oscillator
number operator terms as is found with the standard semiclassical implemen-
tation of the mapping formulation. As discussed in previous work for the case
of a diabatic basis set [16,17], this kind of terms can result in unstable trajec-
tories due to inversion of the potentials which compromise the convergence of
the standard algorithm for long times.

The use of the polar representation of the complex Hermite polynomi-
als that project onto the final states β or β′ complicates to some extent the
implementation of the method. When the complex polynomial is zero, the
phase is ill-defined. This is reflected in the expression of the force in (53)
by the apparent singularity in the W contribution. The existence of a diver-
gence in the force, however, depends on the behavior of the gradients of the
nonadiabatic coupling vector. In fact, the analogous problem is also present in
LAND-Map as derived using a diabatic representation of the electronic states.
In that case the potential divergence is compensated by the behavior of the
off-diagonal elements of the electronic Hamiltonian matrix that usually are,
or go to, zero very rapidly in regions of zero population of the final state. As
proved in applications [1,2], it is therefore possible to remedy the problem by
a careful implementation of the algorithm. Since, in this respect, the nonadi-
abatic coupling vector behaves similar to the diabatic off-diagonal elements
of the electronic Hamiltonian, the numerical properties of the new algorithm
are expected to resemble those observed in applications of the diabatic ver-
sion of the scheme. Furthermore, like in the previous case, the weight of such
trajectories is rigorously zero for zero population in the final state, thanks to
the amplitudes rβ and r̃β′ in (51). Thus, the effect of this apparent pathology
in the phase affects the integration of the evolution equations but does not
compromise the convergence of the average.

A second potential problem, that has affected the use of the mapping
method to describe nonadiabatic processes in an adiabatic basis in the past
[31], arises from the typically rapid variations in the coupling terms among the
different states. The nonadiabatic coupling vector is usually strongly localized
in the vicinity of avoided crossings or conical intersections. This results in very
steep contributions to the forces that may lead to numerical instabilities in
the integration algorithm for the evolution equations.

From a formal viewpoint, the main difference between the linearized
approach for calculating quantum time correlation functions starting from
an adiabatic representation of the electronic degrees of freedom and the result
obtained from a diabatic representation lies in the structure of the evolution
equations for the bath degrees of freedom. In the adiabatic picture, the force is
not simply the gradient of a function of the nuclear coordinates times a term
that depends on the mapping variables. Rather, it contains a multiplicative
coupling of the “potential” to the momenta, in close analogy to the classical
evolution equations of a charged particle moving in a magnetic field. The anal-
ogy is particularly evident in the form of the action, (42), where W plays the
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role of a vector potential. This structure does not come as a surprise, since it is
a direct consequence of the nature of the nonadiabatic coupling in the chosen
basis. Quantum mechanically, transitions among different electronic states are
governed by the operator Λ̂λμ, introduced in (6), that contains the same kind
of coupling between the nuclear momentum and position operators. It is inter-
esting that, in spite of this fundamental difference in the structure of the quan-
tum Hamiltonian, the formal manipulations necessary to derive the linearized
expression of the correlation function can be performed in very close analogy
to the procedure followed for the diabatic case. It also interesting to point out
that, within the framework of a semiclassical implementation of the mapping
method in the adiabatic representation, Sun and Miller [44], following earlier
work of Meyer and Miller [10] obtained a similar result for the (single) Hamil-
tonian governing the motion of the coupled nuclear and electronic degrees of
freedom. They followed a very different route, exploiting the correspondence
between the similarity transformation leading from one basis set to another in
quantum mechanics and a classical canonical transformation, to derive a form
for the evolution equations in the adiabatic basis after taking the semiclassi-
cal limit for the propagator in the diabatic mapping representation. In this
chapter, on the other hand, we have introduced the mapping of the electronic
states in the adiabatic representation at the full quantum level and reduced
the nuclear evolution to a classical prescription through linearization of cor-
relation function expressions as a second step. Interestingly, their evolution
equations for the bath variables obtained in these two different ways contain
the same first order terms in the nonadiabatic coupling vector, but the sec-
ond order terms, the function Gλ,μ(R) appears differently. It is known, see
for example [31] and references therein, that different procedures to reduce
the quantum propagation to classical motion can have such an effect. Fur-
ther, different semiclassical or mixed quantum–classical approaches require to
weight the contribution of the trajectories by different functions to account, at
least approximately, for the coherence in the quantum propagation. It is the
delicate balance of these ingredients that determines the performance of the
available approximate methods and further investigation is required to build
general criteria to assess their relative merits for a given class of applications.

3 Conclusions

The linearized nonadiabatic method for evaluating time quantum correlation
functions, originally developed starting from a diabatic representation of the
quantum subsystem’s states, has been generalized to allow for an adiabatic
representation of the electronic properties of the system. The generalization is
interesting both from a formal and a numerical point of view. Not all available
approximate methods for describing mixed quantum–classical nonadiabatic
dynamics, in fact, can be cast in more than one representation. From a nu-
merical viewpoint, the flexibility of LAND-Map with respect to the choice of
the quantum subsystem’s representation opens up, in principle, the possibility
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of choosing the most efficient electronic basis for any given problem. The prac-
tical usefulness of the algorithm described here will be tested in the future on
the same set of model problems employed to assess the performance of the
diabatic version of the method [33].
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II.3 Quantum Trajectory Methods



Atom–Surface Diffraction:
A Quantum Trajectory Description

A.S. Sanz and S. Miret-Artés

Summary. The trajectory-based formalism of Bohmian mechanics constitutes an
alternative (but equivalent at a predictive level) approach to the standard or con-
ventional formulation of quantum mechanics. Here we show the advantages of this
formalism in providing both an accurate description and a novel interpretation when
applied to different phenomena of interest in elastic atom–surface scattering, such
as (a) diffraction by a “soft” double-slit, (b) surface rainbows and quantum–classical
correspondence, (c) quantum vortical dynamics due to the presence of single adsor-
bates, and (d) selective adsorption resonances and classical vs quantum trapping.
These problems illustrate fairly well how quantum trajectories are able to satisfacto-
rily reproduce the main features of real scattering experiments as well as to provide
a causal insight of the underlying dynamics.

1 Introduction

Particle diffraction experiments are playing a key role in the conceptual
development of quantum theory since its inception [1,2]; they explicitly display
the three main ingredients of this theory: quantization, interference, and un-
certainty. Hence, since the pioneering electron diffraction experiments carried
out by Davisson and Germer [3], experiments with heavier and more complex
particles have been performed, like the most recent ones with fullerenes [4]
and large biomolecules [5] by Zeilinger’s group.

Nonetheless, apart from their obvious fundamental implications, diffrac-
tion experiments have always had an important practical interest. Thus, the
first experimental evidence of atom diffraction presented by Stern and cowork-
ers [6], based on the study of scattering of light (noble gas) atoms off surfaces,
became one of the cornerstones of surface science. Low-energy He-atom diffrac-
tion is nowadays a well established and valuable tool to study the structure
of periodic surfaces, probe gas–surface interaction potentials, or investigate
the presence of defects and adsorbates on surfaces. Moreover, this technique
has the advantage that it causes no damage to the surface when probing its
outermost layers [7–9].
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In order to extract useful information, provide correct interpretations, and
make further predictions when dealing with diffraction experiments, one needs
quantitative theories firmly relying on quantum mechanics [10–14]. These the-
ories, however, lack a clear intuitive picture for the studied phenomena because
of the intrinsically probabilistic nature of quantum mechanics in its standard
formulation [15,16] – although there is an answer to the question of how prob-
able it is for a scattered atom to be deflected at a certain angle, there is no
information about the actual deflection angle or how the scattering process
takes place (unless one runs classical trajectories to get an approximate in-
sight). Hence it is also highly desirable to have trajectory-based theories that
not only accurately reproduce a quantum observable [17,18], but at the same
time offer a clear and intuitive picture of the diffraction process [19–22].

Among the different trajectory-based approaches that one might consider
(some of them gathered in this book), Bohmian mechanics [23–26] is the most
accurate one. In it the trajectory picture directly emerges from a reinterpre-
tation of the quantum state without involving any kind of approximation.
Within the classical-like Bohmian formalism, quantum systems are under-
stood as consisting of a wave and a particle (thus breaking the “old” dichotomy
wave vs particle), both evolving according to deterministic laws of motion. In
this sense, accurate statistical predictions and a consistent theory of quantum
motion are gathered within a more general conceptual framework than the
standard quantum-mechanical one. This makes quantum trajectories to be an
important working tool in the analysis of quantum phenomena from both an
interpretative and a computational viewpoint.

In order to stress the relevance of Bohmian mechanics as the appropria-
te framework to interpret and predict quantum phenomena, this chapter is
organized as follows. A brief survey of the Bohmian formalism is given in
Sect. 2, where we emphasize those aspects that are more closely related to the
problems that will be described later on. In Sect. 3, we present a description
based on quantum trajectories of a number of phenomena of interest in elas-
tic atom–surface scattering, providing a more physically, intuitive and novel
interpretation for them. Finally, in Sect. 4 we briefly discuss the directions in
which our work will be addressed in the near future.

2 Fundamentals of Bohmian Mechanics

According to the statistical interpretation of quantum mechanics [15,16], the
probability for finding a particle at a position r at a time t is described by the
probability density, "t(r) := |Ψt(r)|2. Unlike classical mechanics, the state of
a particle is not specified by its position and momentum, but by a probability
amplitude or wave function, Ψt(r), whose time evolution is determined by the
Schrödinger equation,

i�
∂Ψt(r)
∂t

=
[
− �

2

2m
∇2 + V (r)

]
Ψt(r) . (1)
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Despite this fully probabilistic viewpoint of the quantum world, Bohm [23]
realized1 that (1) not only provides statistical information about the particle.
Rearranging this equation conveniently, valuable information concerning in-
dividual properties of the particle can also be obtained. This constitutes the
main idea behind Bohmian mechanics; uncertainty arises from the unpredicta-
bility in determining the particle initial conditions – distributed according to
"0(r) [24,29] –, but not from the impossibility to know the actual (quantum)
trajectory pursued during its evolution.

The (Bohmian) equations of motion for the particle can be easily derived
by expressing the wave function in polar form,

Ψt(r) = "
1/2
t (r) eiSt(r)/� , (2)

and then substituting it into (1). Separating the real and imaginary parts
from the resulting expression, two real coupled equations are obtained:

∂t"t + ∇·
(
"t

∇St

m

)
= 0 , (3a)

∂tSt +
(∇St)2

2m
+ Veff = 0 , (3b)

where

Veff := V − �
2

2m
∇2"

1/2
t

"
1/2
t

(4)

is an effective potential resulting from the sum of the “classical” contribution,
V , and the so-called quantum potential, Qt, which depends on the quantum
state via "t. Equation (3a) is the continuity equation for the particle flow (or
the probability density, from a conventional viewpoint) and (3b) is a genera-
lized Hamilton–Jacobi equation. As in classical mechanics, the characteristics
or solutions, St, of (3b) define the particle velocity field,

v :=
p

m
=

∇St

m
, (5)

from which the quantum trajectories are kown.
An alternative way to obtain the quantum trajectories is by formulating

Bohmian mechanics as a Newtonian-like theory. Then, (5) gives rise to a
generalized Newton’s second law,

mdtv = −∇Veff . (6)

This formulation results very insightful; according to (6), particles move
under the action of an effective force, −∇Veff , responsible for effects that

1 Madelung [27] and de Broglie [28] had previously worked on similar approaches.
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have no classical analog (e.g., interference and tunneling). Furthermore, this
formulation is also particularly useful to solve problems from a quantum-
hydrodynamical viewpoint [26] (see later).

As seen earlier, the quantum potential depends on the instantaneous cur-
vature of the wave function, thus representing the (instantaneous) action
of “internal” quantum forces on the system. Hence, though classical and
Bohmian mechanics look formally the same, the presence of the quantum po-
tential breaks down a full formal and conceptual equivalence. This can be seen
by means of the following example (see also Sect. 3). The diffraction pattern
obtained experimentally arises from a statistical count2 of particles arriving
in the detector after being deflected by the target. Any of these particles is de-
scribed by the same initial state, i.e., an identical initial wave function, Ψ0, is
associated to all of them. Despite that, each particle reaches the detector at a
different angular position because they have different initial conditions (from a
Bohmian viewpoint). Up to here there is no difference between a classical and
a quantum experiment. The difference arises from the kind of space–time cou-
pling that Qt establishes between those independent3 particles. Consequently,
quantum trajectories evolving from different initial conditions (but identical
initial state) can never cross at a time t, unlike what one observes in classical
descriptions – classical avoided crossings happen only in phase space, but not
in configuration space. Because of this nonlocal action, Qt can be considered
an agent for the transmission of quantum information [25,30,31].

The nonlocal nature of Qt has two important consequences in problems
related to scattering processes. First, relevant quantum effects can be observed
in regions where the classical interaction (described by V ) is negligible and,
more important, where "t(r) ≈ 0. This happens because quantum particles
respond to the “shape” of Ψt, but not to its “intensity,” "t(r), unlike the
classical analog – notice that Qt is scale-invariant under the multiplication
of "t(r) by a real constant. Second, quantum-mechanically the concept of
asymptotic or free motion only holds locally. According to classical mechanics,
this concept is defined by the condition:

mdtv ≈ 0 , (7)

which is satisfied whenever V ≈ 0. Analogously, Veff ≈ 0 determines the condi-
tion for quantum free motion. This condition is fulfilled, for example, along the
directions specified by the diffraction channels [19, 21]; in between, particles
are still subjected to strong quantum forces (although V ≈ 0). The asymp-
totic condition allows one to establish a distinction between two dynamically
different regions in configuration space [32]: the interaction or Fresnel region,

2 Remember that (1) refers to the evolution of a single particle of mass m, although
a statistics has to be invoked in order to reproduce �t(r).

3 By “independent” we mean that there is no physical connection between particles,
since each one represents a different experiment.
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where the particle dynamics is very intense due to the combined action of
both V and Qt; and the asymptotic or Fraunhofer region, where the dynamics
becomes stationary, and only Qt influences the particle motion.

The role played by the quantum potential is also relevant within quantum
hydrodynamics [26, 27, 33], the hydrodynamical picture of quantum mecha-
nics. Here, two important concepts come into play: the quantum pressure and
the quantum vortices, which we will borrow to apply them in the context
of scattering. Quantum hydrodynamics constitutes nowadays the basis for
different computational techniques applied in the study of quantum dynamics
of a large number of physical and chemical complex processes [34–39]. In
analogy to classical fluids, quantum ones are characterized by a velocity field,
v, the probability density, "t, and the quantum density current, J t := "tv.
These elements allow to rewrite (3) as

∂t"t + ∇·J t = 0 , (8a)

∂tv + (v ·∇) v = − 1
m

∇Veff , (8b)

respectively, with (8a) describing the conservation of the probability density
and (8b) being a generalized Euler equation. Notice that, in correspondence
with classical fluids, m is identified with the mass of a piece of fluid separated
from the rest by a closed surface, m"t with the fluid density, and v with the
velocity field of the flow. Nevertheless, let us stress out that, unlike classical
fluids, quantum ones are generated by probability flows that do not have any
material structure.

To understand the concept of quantum pressure, it is interesting to compare
(8b) with its classical counterpart,

"t

[
∂tvi + (v ·∇) vi

]
= "tfi + ∂j(−Pδij) . (9)

Here, ∂j denotes the partial derivative along the j-direction, fi is the exter-
nal force acting on the fluid along the i-direction, and P the fluid pressure.
Equation (9) describes the evolution of an ideal fluid (an incompressible and
nonviscous flow) in absence of thermal effects, and shows that the flow dy-
namics is determined by both an external and an internal force – as seen, the
internal force, given by "−1

t ∂j(−Pδij), depends on the properties of the fluid
(via P ). If (8b) is rewritten as

"t

[
∂tvi + (v ·∇) vi

]
= "tfi + ∂jTij , (10)

in analogy to (9), we observe that

Tij :=
�

2

4m2
"t ∂ij ln "t (11)

is the quantum analog of the classical stress tensor, −Pδij . This term, called
the quantum stress tensor, implies the existence of a quantum pressure. Here,
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nonetheless, we are going to use this concept in a fully qualitative, simpler
manner when we will present the interpretations provided for the different
scattering processes discussed in Sect. 3.

There is an important feature regarding the nature of the quantum pres-
sure that we would like to emphasize. In classical mechanics the pressure is
associated to the number of particles that constitutes a fluid. On the contrary,
the quantum pressure is related to "t rather than to the total number of par-
ticles, since, as said earlier, quantum fluids do not possess material structure.
For example, all the phenomena discussed here are problems of a single parti-
cle scattered off a potential V , and therefore one should not expect to observe
any pressure in a classical sense. However, one observes that each quantum
trajectory (which represents the time-evolution of a particle with a certain ini-
tial condition with probability "0) “feels” the effect of the quantum pressure
through the information about the (time-dependent) particle distribution, "t,
conveyed by the quantum potential.

As stated earlier, quantum hydrodynamics is also characterized by the
presence of quantum vortices. Observe that, since Ψt is a complex function, it
is always uniquely determined except for a constant phase factor, i.e.,

Ψ′
t[S

′
t] = Ψt[St] ⇐⇒ S′

t(r) = St(r) + 2π�n , (12)

where n is an integer number. Therefore, considering that Ψt is a smooth
function (its first derivative is continuous), discontinuities in its phase (n �= 0)
can only occur in nodal regions, where Ψt = 0 and St can display discrete
“jumps” because of the wave function multivaluedness. These discontinuities
give rise to a vortical dynamics, with the particles avoiding to cross the nodes
of the wave function and moving parallel along them. In the case of point-like
nodes particles undergo permanent or transient loops around them depending
on the node lifetime (in general, nodes are time-dependent).

As inferred from (4), the presence of nodes leads to singularities in the
quantum potential. From a computational viewpoint, this can be inconve-
nient for those numerical algorithms based on the direct solution of the hy-
drodynamical equations, since those singularities can explicitly appear. In
such cases, it is necessary not only to know where they emerge (as could
happen when one considers classical singular potentials, e.g., Coulombic-like
potentials), but also when they do it. It is important to note that this prob-
lem disappears when quantum trajectories are computed by using the wave
function – i.e., obtaining St at each time from Ψt, and then solving for (5).
In this case, given Ψ0 and r0, the velocity vector is well-defined and the tra-
jectory propagates avoiding to come into nodal regions – only in cases of loss
of accuracy these trajectories can enter into such regions, which is equivalent
to say that the algorithm provides a wrong solution.

To finish this section, we are going to make a few remarks on the quantum–
classical correspondence from the Bohmian viewpoint. Although according to
(4) it is apparent that Bohmian mechanics should approach classical mechan-
ics in the limit Qt → 0, in general a gradual, smooth transition does not
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exist, as happens, for example, from relativistic to Newtonian mechanics –
in this case, the latter emerges when the particle velocity is much smaller
than the speed of light. In quantum mechanics only the expectation value
of an observable (but not the observable itself) can be compared with its
corresponding classical counterpart. Nonetheless, an important insight on the
quantum–classical correspondence can be obtained by expressing (5) in terms
of the well-known ansatz of the WKB approximation [19,21],

Ψt(r) = eiS̄t(r)/� , (13)

where S̄t is a general complex function. Introducing (13) into (1) one obtains

∂tS̄t +

(
∇S̄t

)2
2m

+ V +
�

2mi
∇2S̄t = 0 , (14)

which is a complex equation totally equivalent to the Schrödinger equation,
though similar to (3b). If, like in the procedure followed to derive the WKB
approximation, S̄t is expanded in a series of �/i,

S̄t =
∞∑

n=0

(
�

i

)n

S̄
(n)
t , (15)

with S̄(n)
t being real functions, and substituted into (14), a set of couple equa-

tions is obtained [21]. The equation corresponding to the zeroth order in �

is the classical Hamilton–Jacobi equation; the remaining equations describe
the evolution of higher order contributions to S̄t, responsible for the quantum
behavior undergone by the particle.

On the other hand, introducing (15) into (5) results in

ṙ =
1
m

∞∑
n=0

(−1)n
�

2n∇S̄(2n)
t = ṙ(cl) +

1
m

∞∑
n=1

(−1)n
�

2n ∇S̄(2n)
t , (16)

where ṙ(cl) := ∇S̄(0)
t /m is the classical law of motion. A simple inspection of

(16) leads to the conclusion that quantum trajectories can be interpreted as
classical trajectories “dressed” with a series of interfering terms, this showing
the capital difference between both types of trajectories. Thus, in principle, it
is always possible to distinguish some “classical” features in quantum trajec-
tories whenever the interference effects are relatively weak. As will be seen in
Sect. 3, this is a general statement that does not necessarily require expansions
in terms of �.

3 Applications

3.1 The “Soft” Double-slit Model

Apart from the fundamental implications of experiments with slits, they can
also be used to understand the concepts underlying the gas–surface scatter-
ing dynamics; multiple-slit arrangements are diffracting gratings equivalent to
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perfect periodic surfaces. The simplest slit system is the famous double-slit,
which we describe in this section in order to advance concepts and ideas that
will be further used when dealing with scattering of He atoms off different
types of surfaces. In particular, we consider two cases, regarded as exper-
iments A and B, describing the scattering (and subsequent diffraction) of
electrons by soft potentials modeling the double-slit [21] – these models are
more realistic than the typical textbook example of sharp-edged slits.

The double-slit potential for experiment A is given by

V (x, y) =
(
V0 −

1
2
mω2y2 +

m2ω4y4

16V0

)
e−x2/α2

, (17)

a model used in the literature [17,18] to show the advantages of the backward–
forward semiclassical initial value representation into the study of decoherence.
Here, α = 25 bohr, ω = 600 cm−1, V0 = 8, 000 cm−1, and m is the electron
mass. Experiment B is described by a modified version of (17) that consists
in a slight shift forward (with respect to the plane containing the slit) of the
central barrier. The corresponding potential model, introduced by Guantes et
al. [21] to study the effects of the central barrier on the electron dynamics, is

V (x, y) =
m2ω4y4

16V0
e−x2/α2

+ V0 e−(x−xb)
2/α2−y2/β2

, (18)

with β = 90 bohr and xb = 125 bohr. Classically, this model presents direct
transmission only for high values of the incidence energy, Ei. For lower values
of Ei, the two slits become transversal channels that frustrate such a transmis-
sion – the electrons can only pass laterally after bouncing several times over
the three walls of the arrangement. The results shown here are for a quasiplane
(or quasimonochromatic) initial wave function with energy 〈E〉i � 500 cm−1,
for which there is no direct transmission in experiment B. This wave function
is launched perpendicular to the double-slit from a distance 〈x〉0 = −400 bohr
(far enough from the interaction region of the soft potential).

Figure 1 shows the probability density after the collision with the double-
slit (top panels), the transmission function4 (center panels), and the intensity
pattern that would appear on a screen behind the slits (bottom panels) for
experiments A (left) and B (right). From the transmission function, a certain
delay in reaching the Fraunhofer regime in experiment B (0.55 ps vs 0.27 ps
for experiment A) is noticeable. This delay is caused by the barrier; as the
wave function gets into the region Σ := {0 � x � xb}, it becomes highly
peaked inside, giving rise to a transient trapping or resonance. The portion of
the wave packet inside Σ reaches its maximum at t ≈ 0.18 ps (see Fig. 1b′),
and then the resonance begins to dissipate, with the probability either flowing
backward or passing through the transversal channels. Observe that the decay
4 The transmission function is defined here as the probability to localize the electron

behind the double-slit: Tt =
∫ +∞

xb
|Ψt(x)|2dx (in experiment A we assume xb = 0

bohr).
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Fig. 1. Quantum results for the experiments A (left panels) and B (right panels):
outgoing probability density (top), transmission function (center), and intensity
pattern (bottom). In the upper panels, the initial propagation is from left to right
with respect to the plane containing the slit. Circles in (a′) enclose weak resonance
peaks. The thin solid line in (b′) refers to the probability inside Σ, and the dotted
line denotes the probability behind x = xb
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of this resonance becomes asymptotically slower after t ≈ 0.28 ps (thin solid
line), thus still remaining for a relatively long time. This manifests as the
appearance of a weak peak in each opening of Σ (the three corresponding
peaks are enclosed by circles in Fig. 1a′).

Transient quantum trapping is intimately connected to the presence of
transient classical trapping or classical chaos [21], what demonstrates a high
quantum–classical correspondence. The classical values for the transmit-
tance – the fraction of transmitted particles from an ensemble initially covering
the same extension along the y-direction as "0 – are 10.48% for experiment A
and 4.05% for experiment B. These values are comparable to those obtained
quantum-mechanically – the quantum transmittance is the asymptotic value
of the transmission function –, 14.24% and 4.78%, respectively. The slight
difference is attributed to tunneling (see later) and diffractive effects.

The previous results have been explained by using the standard version
of quantum mechanics. However, in our opinion, a deeper understanding of
the dynamics can be gained by using Bohmian mechanics. As seen in Sect. 2,
electrons undergo a motion similar to that of particles in a classical fluid,
manifesting the action of an effective potential that is the sum of the classical
potential plus the quantum one. The latter, which conveys information on the
whole ensemble of particles, gives rise to the quantum pressure. In this way,
the electrons with initial positions corresponding to the rear part of "0 (with
respect to the direction of propagation) will not be able to reach regions that
are accessible to those starting closer to the slits. Indeed, the latter will be
“pressed” by those coming behind, being bounded to remain for a longer time
in contact with the real double-slit potential. This is something with no analog
in the classical problem of a single particle5 passing through a double-slit.

The aforementioned statements are easily understood by looking at the
different ensembles of quantum trajectories plotted in Fig. 2. Taking advantage
of the reflection symmetry with respect to y = 0, only half of the trajectories
(those corresponding to the upper slit) has been represented to make clearer
the figures (moreover, the incident part is not shown either). The values of the
initial y-coordinate for homologous trajectories in the different panels are the
same, and only their initial x-coordinate changes. In particular, three different
values of x0 sampling the three parts of "0 (rear, middle, and front with respect
to the direction of propagation, respectively) are considered: x0 = 〈x〉0 − 100,
x0 = 〈x〉0, and x0 = 〈x〉0+100, with 〈x〉0 = −400 (all units are given in bohr).
As can be seen, the dynamical role of the quantum pressure is fundamental to
understand the motion of the electrons. Notice how the trajectories starting
at distances further from the double-slit potential (in both experiments) can
not reach it, contrary to what happens in a purely classical situation, where
the starting point (provided it is located at asymptotic distances from the
potential) does not influence the behavior of subsequent groups of trajectories.
Moreover, the distortion that the slits cause on the topology of the trajectories
is also remarkable. If the potential was just a wall (i.e., no slits), electrons

5 Single particle in the sense outlined in footnotes 2 and 3.
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Fig. 2. Bohmian trajectories for experiments A (left panels) and B (right panels).
The propagation is from left to right with respect to the plane containing the slit,
launching the trajectories from: x0 = 〈x〉0 − 100 (top), x0 = 〈x〉0 (center), and
x0 = 〈x〉0 +100 (bottom), with 〈x〉0 = −400 (all units are given in bohr). For clarity,
only the scattered part of half of the trajectories is represented (see text for details)
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would get diffracted backward giving rise to a diffraction pattern similar to
that of a wave passing through a single-slit. However, the presence of slits
leads to the appearance of some channels (two in experiment A and only one
in experiment B) that disrupt the relatively smooth motion of the reflected
electrons.

From a dynamical viewpoint, two interesting effects are worth discussing.
First, observe that there are a number of electrons initially starting close to
the potential that cannot pass through the slits, but that are pushed away
by other particles coming behind. Due to quantum pressure, these electrons
have two possibilities to “escape” when are reflected: either by going toward
the borders of the incoming wave, or (in the case of experiment A; see Fig. 2c)
toward the symmetry axis (i.e., the y = 0 axis). Thus, as happens in classical
hydrodynamics, here the electrons also move toward those regions where the
values of the quantum pressure are smaller. Second, notice the presence of
tunneling mentioned earlier; Fig. 2c, c′ show how trajectories pass through
regions that are classically forbidden. This is possible in Bohmian mechanics
because quantum particles have an additional quantum energy arising from
the quantum potential [36] which helps them to overcome regions that are
classically forbidden. Regarding the conservation of the energy, this does not
constitute a problem; quantum-mechanically, the magnitude that must be
conserved is the average energy of the ensemble, 〈E〉t, but not the energy of
each individual particle.

Although the number of particles passing through the slits is a function
of the energy Ei and the parameters defining the classical potential, it is
clear that by studying the electron dynamics one can determine with no am-
biguity which part of the initial wave packet is reflected and which one is
transmitted. This is something unthinkable in standard quantum mechanics,
where the wave function is a kind of “wholeness” from which such an infor-
mation cannot be inferred. Here, we have seen that the electrons in the rear
part of the ensemble do not cross the slits, while those initially closer to the
potential do it. That is, the quantum transmittance has contributions from
the front of the wave packet, but not from its rear part. Moreover, the elec-
tron quantum trajectories also indicates the part of the initial wave packet
contributing to each diffraction peak. This fact, as we will see later, is of
capital importance in characterizing of diffraction channels in atom–surface
scattering.

Finally, let us stress the difference between Fig. 2c, c′ in relation to Fig. 1c,
c′, respectively. In experiment A there is interference of the two diffracted
electron beams. This manifests as a kind of “wiggly” behavior in the topology
of the trajectories until the electrons reach a diffraction channel or Bragg
direction; then, they move as free particles. The formation of these channels
in the Fraunhofer region is a direct consequence of the information that the
quantum potential transmits to the particles about the status of each slit
(either open or close). In the case of experiment B, the electrons exiting
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from each slit behave like if such an information was not relevant, because
the diffracted beams do not overlap. This makes electrons to display the free
evolution – approximately, since there are still small disturbances produced
by the remaining transiently trapped wave – that would correspond to motion
under the guidance of a Gaussian wave packet.

3.2 Surface Rainbows

In classical scattering theory it is common to find that the scattering inten-
sity displays singularities for certain deflection angles [40]. One of the effects
responsible for such singularities is the so-called rainbow effect, which consists
in a large accumulation of classical trajectories (caustics) as they approach
the maximum/minimum deflection angle or rainbow angle, θr. An important
tool to study this effect is the classical deflection function, i.e., the relation-
ship between the deflection or final angle, θf , and the impact parameter. For
θf = θr, the deflection function presents local maxima and/or minima. This
clearly explains the singularities in the classical intensity, since this magnitude
is proportional to the inverse of the derivative of the deflection function with
respect to the impact parameter.

The classical rainbow singularity gives rise in quantum mechanics to a cer-
tain modulation of the diffraction intensity patterns [41]. Strictly speaking, the
quantum rainbow takes place when the rainbow angle is a Bragg or observable
final angle. The general procedure followed to assign a feature from the inten-
sity pattern to a rainbow is merely based on a direct correspondence between
such a feature and the classical intensity [21,42,43]. By means of a semiclassi-
cal analysis, one also finds [44] that for (Bragg) diffraction peaks appearing at
the place of classical rainbow angles, the (semiclassical) intensity comes from
the contribution of the corresponding classical rainbow trajectories.

Despite the interest and accuracy that classical and semiclassical pic-
tures might provide to this problem, the appropriate theoretical framework
to establish a clear and unambiguous quantum–classical correspondence for
the rainbow effect has to be of quantum nature. This working framework is
precisely given by Bohmian mechanics. In analogy to classical scattering, one
can define the quantum deflection function [45] with certain preventions. Since
the initial wave packet has a finite width along the perpendicular direction
to its propagation, the impact parameters have always to be chosen at differ-
ent transversal (with respect to the propagation direction) cuts of the wave
packet, as seen in Sect. 3.1. For periodic surfaces, this deflection function dis-
plays a seemingly step-ladder structure, with each step referring to a different
diffraction channel that can be mapped backward onto a specific region of the
initial probability density [32,45]. On the other hand, as also seen in Sect. 3.1,
quantum dynamics is global unlike classical one, this meaning (within this
context) that it involves the total number of unit cells illuminated by the
incoming wave packet. Therefore, the quantum deflection function has to be
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built by considering the whole illuminated area in contrast to what happens in
classical mechanics, where it is enough to study impact parameters covering
a single unit cell.6

To study the quantum–classical correspondence in rainbow scattering, the
classical limit is approached here by artificially increasing the mass (m) of
the impinging particles. One can easily observe that the total number of dif-
fraction orders, nt, scales with

√
m for a fixed incidence energy, and leads

to an increase of the complexity of the intensity pattern [45], which becomes
highly oscillatory due to the large amount of emergent Bragg channels. On
average, the intensity pattern resembles the one obtained classically; the dif-
fraction intensity peaks become higher in the vicinity of those deflection angles
that correspond to classical rainbow angles. From a Bohmian viewpoint, as
m increases the trajectories get more complex and loose smoothness [21, 45].
Appealing to the quantum-hydrodynamical picture, this is equivalent to say
from a qualitative point of view that light particles can be considered as
moving in a laminar flow, while heavier ones undergo a more turbulent dy-
namics. In the latter case, crosses between trajectories can be observed (at
different times), showing certain resemblance to the pattern formed by the
classical trajectories (covering the same number of unit cells) in the Fresnel
region. This makes clear the statement that a quantum trajectory can be
understood as a classical trajectory “dressed” by a series of additional in-
terference terms, as infers from (16). The presence of these additional terms
is, nonetheless, very important regarding the properties of nonlocality and
context-dependence provided by Bohmian trajectories, which still remain in
the classical limit unless they are explicitly “removed”7 from (16).

As an illustration of the previous statements, we are going to analyze
the scattering of He atoms off Cu(110) at normal incidence and 21 meV. The
quantum and classical deflection functions are plotted in Fig. 3. Quantum tra-
jectories are run for two different masses, mHe and mHe∗ = 500mHe, and their
deflection functions are compared with the classical counterpart (for the same
incidence conditions, the classical deflection function does not depend on the
impinging particle mass). As commented earlier, the most remarkable feature
is the transition from a (discrete) step-ladder structure, typical of a pure quan-
tum regime, to another one that (on average) smoothly adapts to the classical
deflection function. Observe that, effectively, the periodicity of the classical
deflection function is absent in the Bohmian case; the corresponding deflection
function only agrees with the classical one when the latter is rescaled to the
range of impact parameters covered by the initial wave packet. Nonetheless,
it is meaningful the fact that one can locally appreciate that the quantum
deflection function displays an oscillating envelop with the periodicity of a

6 Due to the translational symmetry of the potential surface, trajectories with
impact parameters differing an integer amount of unit cells are identical.

7 The interference terms can be very complicated in the classical limit, but it does
not mean that they gradually disappear.
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Fig. 3. Quantum deflection function for incident particles with masses mHe (dashed
line) and m∗

He = 500 mHe (thin solid line); the classical deflection function is rep-
resented in thick solid line. The impact parameter is given in number of unit cells
covered (1 = 1 u.c.). Observe the difference between the length covered by the quan-
tum deflection function (lower horizontal axis) with respect to the set of classical
impact parameters (upper horizontal axis)

single unit cell – notice that there are ten oscillations, which is in agreement
with the number of unit cells illuminated.

As seen, the emergence of surface rainbows manifest in a completely dif-
ferent way in classical and quantum mechanics. In the former, rainbows are
reproduced independently on each unit cell, while in the latter they appear as
a global feature connected to the whole initially illuminated surface. This is
a consequence of the type of information carried by the quantum potential,
which does not fully vanish even for large values of the incident particle mass.
As quantum trajectories show, observe that negligible values of this potential
have still very important dynamical effects.

3.3 Vortical Dynamics

The presence of impurities, defects, and/or adsorbates on a surface greatly
affects its physics and chemistry. They give rise to diffusive scattering [46],
which is responsible for the formation of intensity peaks in between the Bragg
angles. This phenomenon is characterized by the incoherent scattering of
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atoms from different defects [47], and is well illustrated by He scattering off
CO adsorbed on Pt(111), for which there is a wealth of experimental data
and theoretical work [42, 43, 46, 48, 49]. The Bohmian dynamics related to
this system has been well characterized recently [50,51], showing the key role
played by quantized vortices as the dynamical origin of the different inten-
sity peaks. As said in [21], vortical dynamics may lead to quantum chaos and
can be of capital importance to understand a more complex situation like the
He–Cu(117) system (see Sect. 3.4), which displays a strong classical chaotic
behavior under certain conditions.

To simulate the He–CO/Pt(111) interaction, a simple two-dimensional,
soft potential model has been used. This model, originally proposed by Yin-
non et al. [42], has also been used to perform wave packet propagations [48].
It models a step defect (axially symmetric), rather than a point-like one
(radially symmetric). The topological difference between both defects is only
relevant from a statistical viewpoint, since the corresponding scattering in-
tensities (computed either by means of the standard quantum mechanics or
Bohmian mechanics) display certain differences in the relative height of their
maxima [48]. However, here we are interested in the individual motion of the
atoms involved in the scattering process for which both models are equiva-
lent. This can be easily understood in the following intuitive way. Due to the
noncrossing property of Bohmian trajectories, there will not be any “mixing”
between trajectories with initial positions chosen to be contained in different
planes transversal to the symmetry axis of the defect and perpendicular to the
clean Pt surface. On the other hand, in the case of the punctual defect, such
a choice is equivalent for trajectories with initial positions contained in differ-
ent planes along the radial direction (with respect to the CO center-of-mass).
Therefore, since the profile of both defects is the same, trajectories will also
display the same features in both cases. To explain why the statistical results
mentioned earlier are different, one must realize that this is a matter of diffu-
sion; in the two-dimensional model (step defect) the diffusion of trajectories
only takes place along the transversal direction (i.e., the diffusion can be seen
basically as a one-dimensional motion), while in the three-dimensional model
(point-like defect) their diffusion is along the radial direction (i.e., the diffu-
sion takes place across the full two-dimensional plane because of the different
orientation of the radial planes containing the trajectories).

As claimed in [50], the quantum dynamics associated to the perpendicular
He–CO/Pt(111) scattering (i.e., the dynamical origin of the diffraction pat-
tern) is strongly influenced by the presence of quantum vortices. These vortices
appear because of the overlapping of semicircular and plane wavefronts; the
semicircular fronts arise from the interaction of the wave function with the CO
adsorbate, and the plane ones from its interaction with the clean Pt surface. In
Fig. 4, a contour plot of the probability density when the interaction with the
adsorbate/surface is more intense (t � 1.41 ps) is shown for an incident energy
of 10 meV. According to Sect. 2, the pattern of nodal lines translates into a
pattern of quantum vortices that changes with time as the wave packet evolves.
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Fig. 4. Contour plot of the probability density during the instant of more intense
interaction with the potential. The incidence is perpendicular to the surface, at an
energy of 10 meV

This pattern of vortices is directly related to the de Broglie wavelength of the
incident atoms – although λdB = 2π�/

√
2m(Ei − V ), only a slight variation

with respect to the initial wavelength (�2.71 bohr) must be pointed out.
The web of vortices generates a highly organized, complex dynamics that

Bohmian trajectories reflect; each trajectory manifests either a more laminar
or a more turbulent behavior from a qualitative point of view depending on its
initial position with respect to "0. This statement is illustrated by the three
sets of trajectories shown in Fig. 5, with initial positions distributed along
cuts perpendicular to the propagation direction and: z0 = 〈z〉0 − 6, z0 = 〈z〉0,
and z0 = 〈z〉0 + 6 (from top to bottom), with 〈z〉0 = 19.4 (all units are given
in bohr). In the three right panels, enlargements of the region around the
adsorbate are plotted for a better understanding of the corresponding quan-
tum dynamics. In Fig. 5a it is apparent how trajectories covering regions of "0

closer to the surface mainly contribute to the peaks of the diffraction pattern
with larger values of the momentum transfer, ΔK (see [50]). However, tra-
jectories starting further away from the surface, as those shown in Fig. 5b, c,
contribute to peaks with smaller values of ΔK. Again, this can be understood
in terms of the quantum pressure; atoms closer to the surface suffer a higher
pressure than those further away from it. In this sense, the latter manifest a
classical-like motion, “bouncing” on the former, which act like an effective bar-
rier (see enlargements of Fig. 5b, c). This explains why these atoms contribute
to the central peaks of the diffraction pattern. On the contrary, those atoms
starting closer to the surface remain “compressed” between the surface and
the atoms coming from upper regions. This makes such atoms either to escape
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showing in more detail the particle dynamics in the region near the adsorbate

along the surface or to remain trapped permanently (see Fig. 5a), leading to
the more marginal peaks of the diffraction pattern.

In a direct connection with the previous interpretation of the quantum
motion, we observe that the He-atoms dynamics gets more complex as their
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initial positions are closer to the surface. This dynamics can be well described
by recalling the concepts of laminarity and turbulence mentioned earlier.
Within the hydrodynamical picture, there is a transition from laminar to
more turbulent motions as initial positions are chosen closer to the surface
(and mainly to the adsorbate), as inferred from Fig. 5. Thus, these regimes
are clearly influenced by the presence of the nodal or vortical structure. Let
us remark that the existence of a vortical regime leads to a transient vortical
trapping [50, 51], different from the permanent trapping mentioned earlier,
which is induced by the interaction with the surface. This temporal trapping
is due to the action of the quantum pressure, and ends when the latter de-
creases sufficiently as for the atoms can escape from their confined motion
within the vortical region. Given the complexity of the quantum motion, it
is clear that the optical picture of this phenomenon [46] does not look like
the Bohmian one at all, although it remains valid as any other semiclassical
mechanism proposed to explain such diffraction patterns.

3.4 Surface Resonances

In Sect. 3.2, we have analyzed the quantum–classical correspondence in the
rainbow effect, showing how Bohmian mechanics explains it in a way that
goes beyond any classical or semiclassical approach. Here, we analyze the
same correspondence in a more complicated phenomenon: the selective ad-
sorption. It has been widely conjectured that the classical counterpart of a
selective adsorption resonance (SAR) in atom–surface scattering is the tem-
poral trapping of the incident atoms along the surface, with free parallel and
bound perpendicular motions to the surface [52]. By means of a Bohmian
analysis, we show that this classical picture has to be replaced within the
quantum domain.

In order to study the elastic resonance effects, we have chosen the He–
Cu(117) system [53] as a working model. Two types of quantum resonances
of totally different nature are observable in this kind of systems [22, 54–56]:
threshold resonances (TRs) and SARs. TRs occur when a diffraction channel
just appears or disappears, i.e., the energy along the perpendicular direction
to the surface vanishes. SARs, on the contrary, take place when the energy
along the perpendicular direction to the surface becomes equal to any of the
bound states of the attractive, surface-averaged potential. Here we are going
to consider only SARs – discussion about TRs can be found elsewhere [21,56].

Based on classical and semiclassical arguments, it is common to think of
these resonances as being connected to classical trapped trajectories that dis-
play a chaotic dynamics [55]. For example, if we consider the reciprocal lattice
vector B = (3, 0) (in units of 2π/a, a being the unit cell length of the assumed
one-dimensional vicinal surface) and an incidence energy Ei = 21 meV, three
SARs appear at incidence angles θ(0) ≈ 51◦, θ(1) ≈ 46◦, and θ(2) ≈ 43◦ (super-
scripts refer to the bound states of the averaged potential), as seen in Fig. 6.
Although these three resonance conditions are very close around the onset of
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Fig. 6. SAR conditions (dashed lines) when the reciprocal lattice vector exchanged
in the resonance process is B = (3, 0) [in units of 2π/a, a being the unit cell length
of the assumed one-dimensional Cu(117) surface], and onset of chaos (solid line) as a
function of the incidence energy and angle for the He–Cu(117) system. Dashed lines
represent here the positions plus/minus the angular halfwidths of the three bound
states (εn, with n = 0, 1, 2) corresponding to each resonance. The vertical dotted
line (at Ei = 21 meV) indicates the incidence energy for which the results shown in
this work were obtained

classical chaos, θc ≈ 44.75◦, or multiple scattering regime, only two of them are
earlier it, and therefore the classical picture for these two resonances should be
applicable. However, the validity of such a picture breaks down when trying
to explain the third resonance, which lays on the single scattering regime.
Since it is later the vibrational trapping or classical chaos threshold, no (clas-
sical) trapped trajectory can provide an image of the resonance behavior.
Even more, in this type of scattering, the transition from direct scattering
(classical regularity) to trapping (classical chaos) can be easily controlled by
the incident angle for a fixed incident energy.

To illustrate the behavior of the quantum trajectories in the multiple (or
chaotic) and single scattering classical regimes, some calculations carried out
at incidence angles 34.4◦ and 51.5◦, and incident energy Ei = 21 meV [56] are
shown. As can be seen in Fig. 6, the first incidence angle lays on the classical
regular region, while the second angle does it on the chaotic one. In Fig. 7, a
sample of quantum trajectories for the two downhill (left) and uphill (right)
incidence conditions, starting at cuts of "0 close to the surface (and perpen-
dicular to the initial propagation of Ψ0) are displayed. In Fig. 7a, we can
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Fig. 7. Left : Quantum trajectories for downhill scattering at incidence conditions
Ei = 21meV and: (a) θi = 34.4◦, and (b) θi = 51.5◦. Right : Quantum trajectories
for uphill scattering at incidence conditions Ei = 21 meV and: (a′) θi = −34.4◦, and
(b′) θi = −51.5◦. The initial positions for the quantum trajectories are chosen along
a cut in the front part of �0 transversal to the propagation direction

observe that quantum trajectories escape through several exit channels after
remaining trapped along the surface a distance of one unit cell or less. On the
contrary, in Fig. 7b, quantum trajectories remain trapped along the surface
for a much longer time, thus covering a larger number of unit cells. These
trapped quantum trajectories represent the direct analog of the (classical)
skipping orbits, a bouncing motion with more than one turning point [21,44].
The striking difference in the behavior of both types of trajectories (classical
and quantum) comes from the presence of a kind of “sliding” motion in the
region of stronger interaction for the quantum trajectories, which makes them
to smoothly follow the potential contour. In this way, a SAR in the chaotic
region should be interpreted as a bounded motion along the z-direction with
a vibrational frequency given by the corresponding bound state of the surface
average interaction potential, and a free motion parallel to the surface during
a lifetime given by the inverse of the internal halfwidth covering a distance of
two or more unit cells. On the contrary, a SAR in the regular or single scat-
tering regime should be interpreted in a similar way, but in a shorter time
scale and covering a length of one single unit cell or less. This is in sharp
contrast to the classical idea of trapping, in which at least two consecutive
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unit cells are involved (one turning point at each unit cell). Moreover, notice
the also apparent lack of vortical dynamics, unlike that observed in the He–
CO/Pt(111) system [50, 51] (see also Sect. 3.3). Although quantum trapping
is observed in the lower panel, due to the weak corrugation of the Cu sur-
face and its periodicity, a well-defined structure of quantum vortices cannot
be distinguished. Nonetheless, certain degree of vorticality should exist very
close to the surface but, at the resolution level of the plots shown, vortices are
not appreciated.

The nonparity and time-reversal invariance of this scattering process is
manifested by the quantum trajectories for the two uphill conditions plotted
in Fig. 7a′, b′. In both cases, the existence of a new type of quantum skipping
orbits is apparent. Particles usually keep moving along the surface. However,
as can be seen, some of them are now bouncing along a different axis, far
from the surface. It could be said that they are feeling an effective corrugated
(quantum) potential along such an axis. This effect is more clearly observed
in Fig. 7a′ at final grazing angles.

As already mentioned in previous sections, an interesting and remarkable
feature observed is the global (or nonlocal) character of Bohmian dynamics in
contrast to the local character of classical dynamics. The quantum potential
has the effect that atoms behave differently depending on their initial condi-
tions with respect to "0 – observe that the classical dynamics does not show
this dependence. The quantum dynamics is very strongly influenced by the
initial distribution: particles coming from behind “know” (through the infor-
mation transmitted by the quantum potential) that there are other particles
reaching the surface in front of them, and therefore they cannot follow the
same tracks. In this way, while the front trajectories reach the surface and
move along it, those starting behind cannot approach it. Indeed, the trajec-
tories starting in the outmost rear part of "0 can approach (on average) only
at 6.4 Å. This behavior making the atoms to undergo a bounce when they are
still far from the surface, arises from the different effective forces that they
“feel” depending on their initial position relative to "0. The concept of quan-
tum pressure previously introduced explains this observation; particles under
a high pressure (and close to the surface) are constrained to keep moving along
the surface until such a pressure decreases enough to let them escape. As in-
ferred from Fig. 7a, the effects of quantum pressure are relatively small along
the exit channels. On the other hand, quantum trapping also comes from the
attractive dynamics governed by the interaction potential (which can coincide
with conditions of classical trapping). In Fig. 7b it is apparent that the front
trajectories follow a sliding motion along the potential surface and when the
upper trajectories begin to leave, such a pressure decreases, and the quantum
trajectories that remain trapped along the surface either keep moving in the
same direction due to the attractive potential or simply escape.

Another feature worth mentioning is the impulsive character of classical
trajectories in both the regular and the chaotic regime. In classical mechanics
the collision can be considered, in a simplistic way, as an instantaneous kick of
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Fig. 8. Weighted fraction of trapped Bohmian trajectories inside Σ for incidence
conditions Ei = 21 meV and: (a) θi = 34.4◦, and (b) θi = 51.5◦, for downhill
scattering. The trajectories are started with initial positions covering the rear (dotted
line), middle (dashed line), and front (solid line) parts of �0

the particle against the surface, thus changing its initial momentum. Depend-
ing on this initial momentum and how the kick takes place (i.e., depending
on the particular orientation of the surface with respect to the direction of
the incoming particle), the atom will get trapped (and move along a length
of more than one unit cell) or not. This is something totally different with re-
spect to what happens in Bohmian mechanics, where the concepts of collision
and trapping acquire a more general physical meaning. Only those trajectories
associated to the central and rear parts of "0 will display features typical of
classical trajectories.

In the light of the previous statements, we note that for He atoms scat-
tering off Cu(117), in particular, and any corrugated surface, in general, the
quantum dynamics can be considered as an isomorphism of the classical one
“plus interferences.” Classical dynamics provides a kind of pattern ruling the
different observable dynamics (regular or chaotic, in this case), and interfer-
ences determine the final motion displayed by the quantum trajectories, i.e.,
their global dynamics under the effects of the quantum pressure.

Finally, in order to complete our analysis, the fraction of trapped Bohmian
trajectories (properly weighted) is given in Fig. 8 for three different sets of
initial positions and downhill scattering. The (statistical) relevance of the
contribution of each group of trajectories to the restricted norm,8 Pt and the
effects of the global quantum dynamics can be better understood by means of
this plot. In particular, we define the weighted fraction of trapped quantum
trajectories as:

Wt ∝
∑

i

ρ0(r0
i ) δ(z − zt

i) for z ∈ Σ := {z ≤ 8 Å}, (19)

8 The restricted norm, Pt, is the (time-dependent) probability inside Σ [56]. This
definition is similar to that given in footnote 6 for the transmission function, Tt.
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where the index i runs over the total number of trajectories chosen along a
cut of "0, r0

i is the initial position of each trajectory, and zt
i is its z-coordinate

at time t. The proportional relation comes from the fact that the Wt function
plotted is not exactly the value given by the r.h.s. of (19), but a renormalized
one. This renormalization results from assuming the maximum value of Wt

equal to the maximum value of Pt. Let us remark that the restricted norm
can be approximated by

∑
n W(n)

t , where n runs over all cuts of "0 considered.
Thus, while Wt only accounts for the weighted number of trapped trajectories
corresponding to one single cut of "0, Pt stands for the (also weighted) total
number of trapped trajectories with initial positions covering the whole spatial
extension of "0. Hence, in Fig. 8a, b, it is observed that each Wt function
contributes differently to Pt. As is clearly seen, the main contribution to Pt

is given by the trajectories starting in the central and front cuts of the region
covered by "0, while the rest contribute marginally. This is expected since
the profile of the incoming plane wave along the direction parallel to the
initial wave vector is a Gaussian, and then the number of trajectories in the
central part of "0 will be proportionally larger than in any other. Moreover,
the position of the maximum (in t) of Wt agrees fairly well with that of
the restricted norm. Other ensembles of trajectories initially located at the
borders of the Gaussian profile will contribute only to small deviations of the
maximum position of Wt, thus resulting a total agreement with the restricted
norm. Notice, however, that the trajectories starting at the front part of ρ0

determine the long-range behavior of Wt, and therefore are responsible for the
tail displayed by the decay of the restricted norm, leading to higher residence
times or SAR lifetimes.

4 Future Work

A natural extension of this type of studies is toward inelastic atom–surface
scattering. In particular, the role played by the surface temperature as well
as the surface phonons is very well established in the standard quantum me-
chanics, and we are convinced that new physical insight will be provided by
Bohmian mechanics. Furthermore, if the surface is seen as a heat bath, this
type of scattering can be seen as a dissipative, stochastic quantum process [22].
Work in both directions is now in progress.
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Hybrid Quantum/Classical Dynamics
Using Bohmian Trajectories

C. Meier and J.A. Beswick

Summary. The mixed quantum–classical method based on Bohmian trajectories as
introduced by Gindensperger, Meier and Beswick [J. Chem. Phys. 113, 9369 (2000)]
is reviewed, together with its basic properties. It is shown that this approximative
method combining quantum and classical dynamics can be derived in a rigorous way
from the hydrodynamic formulation of quantum mechanics. The quantum subsystem
is described by a wave packet depending on the quantum variables and, via the total
potential energy of the system, parametrically on the classical trajectories. The wave
packet provides de Broglie–Bohm quantum trajectories which are used to calculate
the force acting on the classical variables. Two examples are presented; the first one
concerns molecule surface-scattering and the second one pump–probe spectroscopy
of a molecule in a high pressure rare gas environment.

1 Introduction

The dynamics of systems containing a large number of degrees of freedom
is one of the challenges in contemporary theoretical chemistry. Full quan-
tum mechanical wave packet propagations in several degrees of freedom is a
numerically demanding task, for which specialized methods like the multi-
configuration time dependent Hartree (MCTDH) method [1,2] has proven to
be a unique and particularly efficient tool. However, for processes like pro-
ton and electron transfer in isolated polyatomic molecules, liquids, interfaces
and biological systems, intramolecular energy redistribution and unimolecular
fragmentation, as well as interactions of atoms and molecules with surfaces [3],
a full quantum treatment of all degrees of freedom is still out of reach.

In many systems comprising a large number of particles, even though a
detailed quantum treatment of all degrees of freedom is not necessary, there
may exist subsets that have to be treated quantum mechanically under the
influence of the rest of the system. If the typical timescales between system and
bath dynamics are very different, Markovian models of quantum dissipation
can succesfully mimic the influence of the bath onto the system dynamics [4].
However, in the femtosecond regime studied with ultrashort laser pulses, the



370 C. Meier and J.A. Beswick

so-called Markov approximation is not generally valid [5]. Furthermore, very
often the bath operators are assumed to be of a special form (harmonic for
instance) which are sometimes not realistic enough.

Another class of approximate methods are hybrid quantum/classical
schemes in which only the essential degrees of freedom are treated quantum
mechanically while all others are described classically. The most popular of
these mixed quantum/classical methods are the mean-field approximation [6],
the surface hopping trajectories [7] or methods based on quantum/classical
Liouville space representations [8–14]. In the mean-field treatment the force
for the classical motion is calculated by averaging over the quantum wavefunc-
tion. In the surface hopping scheme the classical trajectories move according
to a force derived from a single quantum state with the possibility of transi-
tions to other states.

An alternative treatment to mix quantum mechanics with classical me-
chanics, proposed in [15–21], is based on Bohmian quantum trajectories for the
quantum/classical connection. Briefly, the quantum subsystem is described
by a time-dependent Schrödinger equation that depends parametrically on
classical variables. This is similar to the other approaches discussed earlier.
The difference comes from the way the classical trajectories are calculated. In
our approach, which was called (mixed quantum/classical bohmian MQCB)
trajectories, the wave packet is used to define de Broglie–Bohm quantum tra-
jectories [22–24] which in turn are used to calculate the force acting on the
classical variables.

Recently, there has been a renewed interest in the de Broglie–Bohm formu-
lation of quantum mechanics, both from a conceptual and numerical point of
view [25]. As a numerical tool, it has been used to perform multidimensional
wave packet calculations [26–34] In this context, one of the central problems
is the accurate calculation of the quantum potential, especially in regions of
small probability density (‘node problem’) [35–38].

It has also been used to visualize the motion of quantum mechanical wave
packets by trajectories and to study the transition from quantum mechanics
to classical mechanics [39–44]. Carlsen and Goscinsky [39] for instance, have
studied fractional and full revivals of circular Rydberg wave packets in the
hydrogen atoms using this formulation.

In what follows we shall show that the de Broglie–Bohm formulation can
also be used to establish a hybrid quantum/classical scheme to treat the dy-
namics of systems with a large number of degrees of freedom in which a few
need to be described quantum mechanically.

2 De Broglie–Bohm Formulation of Quantum Mechanics

Since the method to mix quantum and classical mechanics to be presented can
be considered as an approximate method derived from the de Broglie–Bohm
formulation of quantum mechanics, this completely equivalent perspective of
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quantum mechanics will be briefly reviewed. To this end, we consider a two
dimensional Hilbert space.

Note that considering two dimensions is no restriction to what will be
shown later, actually, x,X can be viewed as collective variables one of which
will comprise all quantum degrees of freedom while the other all classical ones.
Writing the wavefunction as ψ(x,X, t) = R(x,X, t) exp(iS(x,X, t)/�), with
R,S being real, the Schrödinger equation can be recast in terms of a continuity
equation,

∂R2
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∂S
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∂R2
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and a quantum Hamilton–Jacobi equation
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where Q(x,X, t) is the so-called quantum potential [22]
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Hence one sees that the phase of ψ(x,X, t) can be viewed as an action function,
a solution to the Hamilton–Jacobi equation with an additional potential term,
the quantum potential. This observation led to the definition of trajectories
(x(t),X(t)) [22], the conjugate momenta of which are given by the derivative
of S(x,X, t):

p = mẋ =
∂S

∂x

∣∣∣∣
x=x(t),X=X(t)

; ṗ = − ∂

∂x
(V +Q), (4)

P = MẊ =
∂S

∂X

∣∣∣∣
x=x(t),X=X(t)

; Ṗ = − ∂

∂X
(V +Q). (5)

Thus, within the Bohmian formulation of quantum mechanics, quantum
trajectories move according to the usual Hamilton’s equations, subject to the
additional quantum potential defined in (3). An ensemble of quantum particles
at positions (x(t),X(t)) distributed initially according to

P ([x, x+ dx]; [X,X + dX]) = |ψ0(x,X)|2 dx dX (6)

and propagated alongside using (4,5), will represent the probability distribu-
tion of the quantum mechanical wavefunction at any time [22].

From (4) and (5) one sees that whenever the additional force due to the
quantum potential is negligible, one has a purely classical motion. Thus, the
limit from quantum theory to classical mechanics appears naturally within
this theory.
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3 From the de Broglie–Bohm Formulation of Quantum
Mechanics to the MQCB Method

In order to establish the mixed quantum–classical method based on Bohmian
trajectories (MQCB) [15], we take the same approach as in the de Broglie–
Bohm formulation of quantum mechanics, as detailed earlier. Hence we start
from the same, full dimensional initial wavefunction ψ0(x,X) alongside with
an ensemble of trajectories at initial positions (x(t = 0),X(t = 0)) distrib-
uted acording to R2(x,X, t = 0) = |ψ0(x,X)|2. After taking derivatives with
respect to x and X of (2) we neglect the term involving the second derivative
of S with respect to X. In addition we neglect the second derivative of S
with respect to X in (1) and the second derivative of R with respect to X in
(3). Considering the simplest case of a free two-dimensional Gaussian wave
packet, one sees that these terms describe the dispersion in X-direction. In
the limit of large M the wave packet behaves classically and does not show
much dispersion in the X-direction. Hence neglecting these terms should be a
good approximation to the real quantum dynamics. In this sense, X will from
now on be called the classical degree of freedom. Note that this approxima-
tion cannot be made in the original Schrödinger equation (1) but only in the
equations for the amplitude and phase! We then have from (1):
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where Q̃ = −(�2/2mR̃) ∂2R̃/∂x2 and tilde quantities stand for the approx-
imate solutions. As in the usual hydrodynamic formulation detailed earlier,
the Bohmian trajectories associated with these approximate equations are

p = mẋ =
∂S̃

∂x

∣∣∣∣∣
x=x(t),X=X(t)

, (10)

P = MẊ =
∂S̃

∂X

∣∣∣∣∣
x=x(t),X=X(t)

, (11)

together with the same initial conditions as in the hydrodynamic formulation
of quantum mechanics. This does not pose any problem, since within the
MQCB method, the full-dimensional initial wavefunction is supposed to be
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known. Hence the initial values (x(t = 0),X(t = 0)) are chosen according to
the distribution as earlier:

P ([x, x+ dx]; [X,X + dX]) = |ψ0(x,X)|2 dx dX. (12)

The next step consists in evaluating (7) and (8) at X = X(t). Using (11)
one gets
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where d/dt stands for df̃/dt = ∂f̃/∂t+ Ẋ·
(
∂f̃/∂X

)
X=X(t)

.

The important observation at this point is that (13) and (14) are rigorously
equivalent to a quantum problem in the x subspace with X being a time-
dependent parameter. Thus the approximate wavefunction ψ̃(x,X(t), t) =
R̃(x,X(t), t) exp(iS̃(x,X(t), t)/�) obeys the Schrödinger equation

i�
dψ̃(x,X(t), t)

dt
=
(
− �

2

2m
∂2

∂x2
+ V (x,X(t))

)
ψ̃(x,X(t), t), (15)

Note the appearance of the total derivative in the left-hand side of this equa-
tion. As it will be shown later, this is important when an adiabatic basis set
is used for solving the quantum problem. Since we have only approximated
the equations of motion and supposed that the initial wavefunction ψ0(x,X)
is known, we have

ψ̃(x,X(t = 0), t = 0) = ψ0(x,X)|X=X(t=0) (16)

as the initial wavefunction in the quantum subspace.
A consistent equation of motion for the classical degrees of freedom is

obtained by taking the total derivative with respect to time of (11). Noting
that this leads to a term 1

M
∂2S
∂X2 which we assumed to be small we can use (9)

to give:

Ṗ = − 1
M

∂
(
V (x,X) + Q̃(x,X)

)
∂X

∣∣∣∣∣∣
x=x(t),X=X(t)

. (17)

The fact that at this level of approximation, the quantum potential cor-
responding to the quantum subsystem remains in the classical equation of
motion, is somewhat reminescent of the Pechukas’ force in the surface hop-
ping method [7]. In both cases, the classical degrees of freedom are directly
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affected by changes in the quantum subspace. In practice, however, since we
do not solve (8) and (9) directly but only following a specific trajectory X(t),
we additionally neglect the quantum potential in the classical degree of free-
dom. At this level of approximation, the MQCB method is identical to the
one proposed independently by Prezhdo et al. [19–21]. In [15] we have studied
this approximation. In the example considered, its influence was negligible.

Equation (17), together with (15) and (10) provide the working equations
of the MQCB method. According to their structure, the position of the clas-
sical degree of freedom, its momentum, the position of the Bohmian particle
and the wavefunction in the quantum subspace need to be propagated simul-
taneously. For clarity, these quantities shall be combined as

Γ (t) =
(
ψ̃(x,X(t), t),x(t),X(t),P(t)

)
. (18)

Note that if one expands ψ̃(x,X(t), t) in a basis set, the MQCB equations sim-
ply form a set of coupled, first-order ordinary differential equations and Γ (t)
is a vector of complex numbers, containing the classical position and momen-
tum, the quantum trajectory and the expansion coefficients of the subspace
wavefunction.

4 Structure of the MQCB Equations: Initial Conditions,
Reversibility and Observables

The mathematical structure of the four MQCB equations (10), (11), (15),
and (17) is such that the time evolution of the combined quantities Γ (t)
is uniquely determined by the MQCB equations, and reversibility is given
in a strict mathematical sense. Upon propagation Γ (0) −→ Γ (t), changing
∂/∂t −→ −∂/∂t and Ẋ(t) −→ −Ẋ(t) propagates the state Γ (t) backwards to
yield the same initial state: Γ (t) −→ Γ (0).

This simple mathematical structure of the quantities Γ (t) together with
the MQCB equations need also to be connected to physical quantities. For the
initial conditions, we have shown above that Γ (0) can be chosen in a consis-
tent and physically sound way if the full-dimensional initial wavefunction is
known.

However, due to the approximate nature of the MQCB equations, the
full-dimensional wave packet is in general not known at later times. In this
sense, the time zero is a special time at which, due to the physical situation
considered, the full-dimensional wave packet must be known. However, this is
not a severe restriction, since in many physically relevant situations the initial
state is either a known asymtotic state like in all collisional processes or an
eigenfunction (often the ground state).

The second point is to use the mathematical objects Γ (t) to calculate
physically measurable observables. Even though the definiton of observables
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is not unique within the MQCB scheme, in all cases considered so far, we use

〈A〉 =
∑

i

〈
ψ̃i

∣∣∣∣A(x, ∂∂x,Xi,Pi

)∣∣∣∣ ψ̃i

〉
, (19)

where the sum runs over all initially sampled trajectoires. Due to the approx-
imate nature of the propagations, the observables obtained by the MQCB
method are approximate as well. Especially, as compared to a full quan-
tum wave packet calculation, the total energy is not a rigorously conserved
quantity.

5 Applications

5.1 Molecule-Surface Scattering

The five-dimensional model chosen corresponds to molecular diffractive rota-
tional scattering of N2 from an LiF(001) surface. This problem still allows
for a full quantum treatment and thus the MQCB results can be compared
to reference calculations [18]. The interaction potential was chosen to be the
dumbell model initially proposed by Gerber et al. [45]. Although this is a
model surface it nevertheless has the same features of a realistic surface, in
particular a two-dimensional corrugation with periodicity a. We considered
energies up to 300 meV. Since at this energies, the first vibrational channel is
closed, we approximate the diatomic as a rigid rotator, i.e. keep r fixed. Hence
the Hamiltonian reads as

H(R, θ, ϕ) =
P2

R

2M
+

�
2J2

2μr2
+ V (R, θ, ϕ), (20)

where M and μ are the total and reduced masses of N2, respectively. In this
expression, PR is the total momentum of the center of mass of N2 and J its
angular momentum.

The process we are interested in is the rotational energy transfer during
the collision as well as the diffraction of the diatomic from the surface that
exhibits a two-dimensional corrugation. Since the diffraction is a quantum
effect, we treat the whole system classically except for the directions X and Y
parallel to the surface. The separation of the total Hamiltonian into a classical
and quantum part reads as follows:

H(X,Y,Z, θ, ϕ) = Tq(X,Y ) + Tcl(Z, θ, ϕ) + V (X,Y,Z, r, θ, ϕ), (21)
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2
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; Tcl(Z, θ, ϕ) =

P 2
Z

2M
+

�
2J2

2μr2
. (22)

The MQCB equations for this problem are thus given by the Schrödinger
equation in the (X,Y ) subspace for ψ̃(X,Y, qα(t), t) that depends paramet-
rically on the classical variables qα(t) = Z(t),θ(t),ϕ(t), the corresponding
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equations for the quantum trajectories, as well as Hamilton’s equations for
the classical degrees of freedom and their conjugate momenta
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M
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μr2
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μ sin2 θ(t)r2
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μr2 sin3 θ(t)
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∂θ
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evaluated atX = X(t), Y = Y (t), qα = qα(t). Starting with initial conditions
to be specified later, these equations have to be solved simultaneously. In
practice, the Schrödinger equation was solved in a basis of plane waves bearing
the periodicity of the surface.

We are interested in the diffraction probability of the scattered molecule.
To this end, we project the final asymptotic wave packet onto scattering states.
When this projection is performed with the wave packet being in the asymp-
totic region, this is equivalent to projecting onto free waves, i.e. the scattering
amplitudes are then simply given by the Fourier transform of the asymptotic
wave packet [18]. Since in our case, the wavefunction depends parametrically
on the classical variables, each trajectory yields a diffraction probability

Pi(n,m) = lim
t→∞

∣∣∣∣∣∣
a∫

0

a∫
0

dX dY
1√
ab

e−i(KnX+KmY ) ψ̃(X,Y,Z i,θi,ϕi, t)

∣∣∣∣∣∣
2

, (27)

where i = 1, N , Kn = 2πn/a, and Km = 2πm/a. The energy dependence
stems from the initial velocites of the classical trajectories. To obtain the total
diffraction probability, we average over the whole ensemble of N trajectories:

P (n,m) =
1
N

N∑
i=1

Pi(n,m). (28)

The second quantity we are interested in is the rotational energy that
is being transferred during the collision. If the initial state is taken to be a
J=0 state, the energy transfer from the translational to the rotational degrees
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freedom is simply the rotational energy after the collision

Erot,i =
1

2μr2

(
p2

θ,i +
p2

ϕ,i

sin2 θi

)
i = 1, N (29)

The average rotational energy transfer (ARET) is then given by

Erot =
1
N

N∑
i=1

Erot,i (30)

With these definitions, P (n,m) and Erot can directly be compared to
full-dimensional quantum wave packet results using the MCTDH method
[1,2]. These quantities, which give a detailed information about the rotational
diffractive scattering of a diatomic molecule, were calculated with the MQCB
method and compared to full-dimensional quantum wave packet results based
on the MCTDH method (for details of the calculations see [46]).

Results on the N2/LiF(001) Molecule-Surface Scattering

As detailed earlier, we have treated the case of normal incidence with the
molecule in an initial rotational state J=0.

In Fig. 1 we compare the results for the final diffraction probabilities of
the orders (0, 0), (1, 1), (2, 2) as well as (0, 1), (0, 2) and (2, 1) for different
collision energies between 0.1 and 0.3 eV. The solid lines correspond to the
quantum result, and the dashed lines represent the results obtained by the
approximate MQCB calculations. One clearly sees the very good agreement
of our approximate method with the exact results for all orders considered.

At energies higher than about 0.17 eV, the diffraction into the order (0, 0),
has decreased to only about 1%, while the other diffraction channels are be-
ing more and more populated. The diffraction probability P (1, 1) shows a
maximum as about 0.15 eV. Taking the symmetry n −→ −n,m −→ −m into
account, we see that diffraction into the order (±1,±1) accounts for about
30% of the whole diffraction probability.

Qualitatively and even quantitatively, the exact results are well repro-
duced. Note that these diffraction probabilities are a pure quantum effect and
cannot be obtained directly (i.e. without boxing) by a classical calculation, as
it is the case for the average rotational rotational energy transfer (ARET) to
be shown later.

We now discuss the results for the average rotational energy transfer
(ARET). Since this quantity can be obtained from a purely classical calcula-
tion, we can compare the ARET as a function of collision energy obtained by
three methods: a purely classical treatment, the mixed MQCB method and
the five-dimensional quantum treatment. To be able to rigorously test the
MQCB method, in all three cases the same five-dimensional Hamiltonian (20)
was used.
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Fig. 1. Diffraction probability as a function of collision energy. Full line: exact
quantum mechanical result obtained by the MCTDH method (from: [46]), dashed
line: MQCB results (28)

The pure classical results are readily obtained by integrating the usual
Hamilton’s equations of classical mechanics, and a solution of the Schrödinger
equation in (23) is not necessary any more. This again reflects that the MQCB
method can be viewed as an extension of classical mechanics by adding quan-
tum effects to certain degrees of freedom. The ARET is then calculated in
exactly the same way with (30).

Figure 2 shows the ARET as a function of collision energy between 0.1
and 0.3 eV. The full line is the quantum result, and the dotted line corre-
spond to the ARET obtained by a purely classical calculation. The MQCB
result is shown as dashed lines. For this quantity, we find almost quantitative
agreement between all three calculations, showing a monotonically increasing
behaviour of the ARET as a function of the collision energy. The classical re-
sult is in very good agreement with the correct quantum one, and adding the
quantum effects in the X- and Y -direction by the proposed MQCB scheme
does not modify the already very good agreement between classical and quan-
tum results.

However, one should keep in mind that even if the ARET for this system is
well described by classical mechanics, the diffraction process, being of purely
quantum mechanical nature, cannot be treated by classical mechanics. Thus
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Fig. 2. Average rotational energy transfer (ARET) Erot for different collision en-
ergies. Full line: quantum mechanical wave packet propagation using the MCTDH
method (from: [46]); dashed line: MQCB method (30); dotted line: classical dynamics

one clearly sees how the MQCB method, as a mixed method, really combines
classical mechanics with quantum mechanics in some degrees of freedom, when
one is interested in effects that are of purely quantum mechanical nature.
Comparing the MQCB method with the full quantum results presented in
Figs. 1 and 2, one sees that both the diffraction probabilities as well as the
average rotational energy transfer are extremely well described by the MQCB
method.

5.2 Vibrational Decoherence of I2 in a Dense Helium Environment

As second example, we consider the coherent vibrational dynamics of one
diatomic molecule (I2) after femtosecond laser pulse excitation to an excited
state, while interacting with an environment of a high pressure rare gas [47].
After a well-defined delay time, a second laser pulse induces a transition to a
final electronic state, from which the fluorescence is detected. The electronic
ground, excited and final states are denoted by |g〉, |e〉 and |f〉, respectively.

We consider an iodine molecule and 40 rare gas atoms with periodic bound-
ary conditions. This is justified, because the experiments we want to compare
with are performed with a low I2 concentration, and diatom–diatom interac-
tions can be neglected.

The total Hamiltonian for the I2/Rg system with the I2 being in its elec-
tronic ground, excited, or final state are given by
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H = H
(g,e,f)
int +Htrans +Hrot +Hint +HRg (31)

H(g,e,f)
r =

1
2μ
p2r + V

(g,e,f)
I−I , (32)

Htrans =
P 2

2M
, (33)

Hrot =
1

2μr2

(
p2θ +

p2φ

sin2 θ

)
, (34)

H
(g,e,f)
int =

N∑
i=1

V
(g,e,f)
I2−Rg , (35)

HRg =
N∑
i=1

pi

2m
+
∑
i>j

VRg−Rg. (36)

In this expression, μ is the reduced mass of I2, r its internuclear distance,
θ and φ the polar angles describing its orientation in the laboratory frame of
reference and P is its center-of-mass momentum. The N rare gas atoms are
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described by their positions ri and momenta pi. The interaction potentials
between the iodine molecule and helium atoms were taken to be the same
as in the previous study by Ermoshin et al. [48]. The potential energy surfaces
for the X- and B-states of I2 are those of [49], and the f-state potential was
taken from [50]. The I2–He potentials were represented by a sum of atom–
atom potentials with Morse functional form and parameters from [51]. The
parameters of the Lennard-Jones parametrization for the He–He interactions
were taken to reproduce the equilibrium distance and well depth of more
sophisticated Hartree–Fock dispersion potentials from [52,53].

In the study presented in this work, which concerns the vibrational relax-
ation and decoherence of nuclear vibrational motion of I2 in the electronic
B0+

u –state after femtosecond pulse excitation, we used for simplicity the same
potentials V (g,e)

I2−Rg for the ground (X-) and excited (B-) state. Note however
that with the methodology presented here this assumption is not necessary
and more refined interaction potentials could be used.

The field-matter interaction

Wα(t) = μ · εαEα(t) α = pu,pr (37)

takes a different form for the pump and the probe transition, due to possibly
different polarizations, central frequencies or pulse shapes. Following the ex-
perimental set-up described in [54,55], we consider linear polarizations for the
two pulses, with an adjustable angle α bewteen the pump- and probe polar-
izations. Taking further into account, that the induced electronic transitions
I2(B ← X) and I2(f ← B) are parallel transitions, the interaction terms for
pump- and probe pulses are given by

Wpu(t) = cos θ μeg Epu(t), (38)
Wpr(t) = [sinα sin θ cosϕ+ cosα cos θ]μfe Epr(t). (39)

In writing these equations, we have assumed that the laboratory frame z-axis
is defined by the pump–pulse polarization εpu.

In what follows, we shall treat the internuclear distance r as quantum
degree of freedom to account for the wave packet formation by the ultrafast
laser excitation and for the vibrational revivals, as well as for the decoherence
induced by the rotation and random collisions. All other degrees of freedom,
like the center of mass motion, the rotation and the motion of a large num-
ber of rare gas atoms are treated classically within the spirit of a molecular
dynamics simulation.

Prior to the pump–pulse excitation, the initial conditions of both the quan-
tum as well as the classical degrees of freedom need to be defined. Since a wave-
function for the whole system is not known in this case, the initial conditions
were chosen corresponding to the quantum wavefunction of the I2 vibration
and a statistical distribution for the rotation and rare gas atoms, according to
a given pressure and temperature. This is similar as in a previous quantum-
classical simulations that used the mean-field approach [48]. A full classical
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molecular dynamics equilibration was performed keeping the I–I distancne
fixed to its ground state equilibrium value. To this end, the rare gas atoms
are placed initially on a regular grid and the orientation of the diatomic was
chosen at random. The rare gas momenta as well as the the values for pθ and
pϕ were chosen to correspond to the desired temperature. The initial quan-
tum vibrational wavefunction ψg(r, t = 0) was chosen randomly according to
a Boltzmann distributon of vibrational levels. This vibrational wavefunction
was then used to describe the femtosecond laser pulse interaction.

Between the pump and the probe pulse, we have to propagate the excited
state vibrational wave packet alongside with the rotational and center of mass
motion and their interactions with the colliding rare gas atoms. The time
evolution of this coupled quantum/classical system is calculated by

i�
d
dt
χe(r, t) =

[
− �

2

2μ
∂2

∂r2
+ V e

I−I(r)

+
1

2μr2
(
p2

θ +
p2

φ

sin2 θ

)
+

N∑
i=1

VI2−Rg(r,R, ri)
]
χe(r, t) (40)

ṙ =
�

μ
Im
( 1
χe(r)

∂χe(r)
∂r

)
r=r(t)

(41)

Ṙ =
P

M
Ṗ = −∇RVT,

ṙi =
pi

m
, ṗi = −∇riVT, i = 1..N,

θ̇(t) =
pθ(t)
μr2

ṗθ(t) =
p2

ϕ(t) cos θ(t)

μr2 sin3 θ(t)
− ∂VT

∂θ

∣∣∣∣
r=r(t),q=q(t)

,

ϕ̇(t) =
p2

ϕ(t)

μ sin2 θ(t)r2
ṗϕ(t) = − ∂VT

∂ϕ

∣∣∣∣
r=r(t),q=q(t)

. (42)

For clarity, we have collectively denoted by q the classical variables R, ri,θ,ϕ
and we have defined a classical potential energy VT =

∑N
i=1 V

e
I2−Rg +∑

i>j VRg−Rg.
This system of equations (40–42) consists of [15,16]:

1. The Schrödinger equation (40) for the wavefunction χe(r, t) of the quan-
tum subspace, which depends parametrically on the classical variables
R, ri,P ,pi,θ,ϕ,pθ,pϕ

2. A quantum trajectory (41) that follows the quantum wave packet motion
[22–24] and that is used in the classical equations

3. The classical Hamilton’s equation, (42) for the classical degrees of freedom
R, ri,P ,pi,θ,ϕ,pθ,pϕ
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Starting from the inital values R0, ri,0,P 0,pi,0,θ0,ϕ0,pθ,0,pϕ,0 and χe

(r, t = 0), these quantities have to be propagated simultaneously for a large
number of different initial conditions representing an ensemble of given pres-
sure and temperature as detailed above.

In our implementation, each wavefunction is represented by one quan-
tum trajectory. It is this feature which allows to treat the back-reaction for
wavefunctions that split in several subpackets as it is the case in the example
presented here. An extension of the method is possible, in which several quan-
tum trajectories are associated with one wavefunction, and the back-reaction
being calculated by an average of these quantum trajectories. In the limit of
all trajectories associated with one single wavefunction, the method becomes
identical to the mean-field method. Hence this idea of regrouping trajectories
is an interesting direction for future work, since one can consider it to be a
continuous interpolation from MQCB to mean-field. With only one quantum
trajectory associated with one wavefunction, as it was used in this work, the
total energy is not conserved. In principle, this could be fixed by velocity ad-
justment in a way similar to the surface hopping methods. However, in the
context of the work presented here, this is not necessary since the parameters
used in the calculations correspond to fairly low pressures where practically
no helium atoms collide twice with the vibrating I2 molecule.

Note that (41) can be re-written as

r̈ =− 1
μ

∂

∂r

(
V e

I−I(r) +
1

2μr2

(
p2

θ +
p2

φ

sin2 θ

)
+
∑

i

VI2−Rg(r,R, ri) +Q(r)

)
(43)

with

Q(r) = − �
2

2μ
1

|χe(r)|
∂2|χe(r)|
∂r2

. (44)

In this way it becomes clear that the MQCB method can be viewed as an
extension of purely classical mechanics by adding an approximate quantum
potential to selected degrees of freedom to include quantum effects (here the
internuclear distance r). Details of the derivation of the equations have been
given elsewhere, together with an analysis of their structure, how to sample
initial conditions and how to calculate observables. In this work, the ques-
tion of reversibility and resampling at intermediate times is also addressed
thoroughly [16].

After a well-defined delay time τ , the probe pulse interacts with the sample
which induces a transition from the ground to a final state |f〉, the popula-
tion of which is the detected pump–probe signal (e.g., fluorescence). In the
experiment to compare with [54, 55], the probe polarization is rotated by an
angle α with respect to the pump–pulse polarization. We assume pulses of
weak intensity to allow for a time-dependent perturbative treatment.
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The total population in the final electronic state, after both laser pulses
have interacted with the sample, is given by:

P (τ)=
[
(cosα sin θτ cos ϕτ + cosα cos θτ ) cos θ0

]2∫
dr |χf (r, t = τ)|2

(45)

This expression has a clear physical interpretation: the first term, depend-
ing on the relative orientation of the dipole at time t = 0 and t = τ , reflects
the fact that a transition is favoured when the dipole is aligned with the
polarization vectors. However, between the pump- and probe pulse the mole-
cule continues to rotate, perturbed by the random collisions with the rare gas
atoms.

The second term describes the interaction of the optical pulse with the
internal degrees of freedom, i.e. the electronic and vibrational states. It reflects
the ultrafast vibrational wave packet motion induced by the femtosecond laser
pulse. The total population of the final electronic states depends on both, the
rotational motion as well as the electronic/vibrational motion, the first process
being described by classical mechanics, the latter by quantum mechanics.

In the pump–probe experiment we want to compare our results with
[54, 55], the measured signal is the total fluorescence from the final exited
electronic state as a function of delay time between the pump and probe
pulse. This fluorescence signal is taken to be proportional to the total excited
state population after the pump- and probe pulse have interacted with the
sample. In the preceding sections we have shown how, starting from a well-
defined initial state for the quantum and classical degrees of freedom, this
quantity can be calculated within a mixed quantum/classical scheme.

To simulate a pump probe spectrum of an ensemble of molecules in a high
pressure environment at a given tempertature T , the total experimentally
measured signal is obtained by averaging P (τ) over many individual quan-
tum/classical propagations, but with different initial conditions corresponding
to a statistical ensemble of given pressure and temperature (p, T ).

Due to the fact that we consider the rotational motion frozen on the time
scale of the pulse duration, we were able to separate angular parts (treated
classically) and internal degrees of freedom (treated quantum mechanically)
that take pulse duration, central frequency or specific pulse forms into account.
By taking the azimuthal symmetry into account ϕ0 is uniformely distributed,
and so is ϕτ . Hence we find

P
(p,T )
total (τ ;α) =

〈(
cos2 α− sin2 θτ P2(cosα)

)
cos2 θ0

∫
dr |χf (r, t = τ)|2

〉
(p,T )

,

(46)

where P2 is the second Legendre polynomial. In this form, it becomes im-
mediately clear that for α0 = 54.7◦ (‘magic angle’ detection) the effects of



Hybrid Quantum/Classical Dynamics Using Bohmian Trajectories 385

rotational motion are suppressed, and the pump–probe signal S(p, τ) reflects
the internal vibrational motion only

S(p, τ) ≡ P
(p,T )
total (τ ;α0) ∼

〈 ∫
dr |χf (r, t = τ)|2

〉
(p,T )

. (47)

The mixed quantum–classical expression (21) generalizes the picture of
polarization anisotropy of classical dipoles to the case where internal degrees
of freedom are excited by the laser pulses: if the latter effect, expressed by∫
dr |χf (r, t = τ)|2 is unimportant, one recovers a classical expression for a

dipole–dipole correlation function. If on the other hand rotational motion is
unimportant (for very short times or cold samples as in molecular beams),
the pump–probe signal reflects the internal vibrational wave packet motion in
the the different elecronic states involved.

Results: Pump–Probe Spectroscopy of I2 in a High Pressure Rare
Gas Environment

For the results to be presented later, we used 40 rare gas atoms in a periodic
molecular dynamics box of length 31.7 a.u. for 5 bar simulations (10 bar: 25.2
a.u., 20 bar: 20 a.u). After the equilibration, the femtosecond excitation and
mixed quantum/classical MQCB propagation was performed for 1,000 runs
independently, with the pump–probe signal being averaged over. Increasing
the number of trajectories did not alter the signals presented later. The wave
packet propagation was performed using the Split–Operator technique of Feit
and Fleck [56], with the classical equations (42) integrated simultaneously
using Gear’s algorithm. The time step for the quantum part was chosen to
be 1 fs, while for the classical part a variable timestep integration in steps
of 1 fs was found to be a fast and stable way of propagating the MQCB
equations simultaneously. Equation (41) requires special attention due to the
highly oscillatory nature of the complex wavefunction. To increase numerical
stability, (41) is evaluated using a smoothing procedure detailed in [47]. By
this method, the overall shape of the wavefunction is unchanged (dispersion,
revival, fractional revival) while preventing the integrator from slowing down
when the wave packet interferes with itself at the inner turning points.

Pump–probe experiments of iodine dimers in different high pressure rare
gas environments at different pressures were performed by Lienau et al. [54,55].
We have performed simulations as described above using helium as buffer
gas and using the laser parameters of the experiment (620 nm pump and
310 nm probe). Using the mixed quantum/classical method descibed in the
theory section, we simulated pump–probe spectra with the results shown in
Fig. 4. As a first result one sees how increasing the pressure leads to a strong
decrease in the revival structure around 10 ps. These spectra can be directly
compared to the experimental signals measured by Zewail and coworkers (see
Fig. 20 in [55]) and a very good agreement is found. Note that the short-time
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Fig. 4. Calculated pump–probe signals under magic angle conditions for different
buffer gas pressures. The structure around 10 ps, originating from the phenomena
of fractional revivals, vanishes gradually as pressure increases, due to dephasing
induced by random collisions with the buffer gas atoms

signal, which reflects the first few vibrational periods, is almost unaffected
for the pressures considered in this work. Second, for the delay times up to
20 ps, no considerable energy relaxation is found. The process can thus be
considered as pure dephasing. This result is also documented in Fig. 5. It
shows the vibrational populations and coherences of neighbouring vibrational
levels calculated within the MQCB method as

ρν′,ν =

〈
〈ν′|ψe〉〈ψe|ν〉

〉
(p,T )

, (48)

where |ψe〉 is the wavefunction in the quantum subspace (depending also on
the classical variables) and |ν〉 the vibrational eigenfunctions of the purely
quantum part H(e)

r , which is the radial part of the Hamiltonian in the B0+
u –

state potential (see (40)).



Hybrid Quantum/Classical Dynamics Using Bohmian Trajectories 387

6 7 8 9 10 11 12 13 14
vibrational level ν

0

0.1

0.2

|ρ
ν,

ν+
1|

0

0.1

0.2
ρ ν,

ν

6 7 8 9 10 11 12 13 14
vibrational level ν   

10 bar

10 bar

20 bar

20 bar

Fig. 5. Vibrational populations ρν,ν (upper panel) and coherences ρν,ν+1 (lower
panel) as defined in (23) for two different delay times (white: 300 fs, black: 10 ps)
and pressures of 10 and 20 bar, as indicated. In the pressure/delay-time regime
considered, the dominating process is dephasing, i.e. the decay of the coherences
ρν,ν+1 (lower panel), and not vibrational relaxation

The dynamical process of decoherence can be seen in Fig. 5: The upper
panel shows the populations ρν,ν for two pressures, 10 bar and 20 bar, for two
times, at 300 fs (open histograms) and at 10 ps (black histograms). The lower
panel shows the coherences ρν,ν+1 for two pressures and times.

Thes results have a clear physical significance. For both pressure condi-
tions, the ultrafast laser pulse creates a wave packet around the vibrational
state ν = 10, comprised of states ranging from ν = 6 up to ν = 14 (shown
as open histograms of the upper panel). After 10 ps, this distribution has
not changed very much, it is still centered around ν = 10. However, in the
case of a buffer gas pressure of 20 bar the distribution is found to be en-
larged. No significant vibrational relaxation is found for the pressures and
delay times considered in this work. In contrast, the dephasing documented
in the lower panel is clearly visible by a decay of the coherences between
adjacent vibrational levels. While just after the femtosecond excitation the
presence of coherences indicates a wave packet motion, which is detected by
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the pump–probe set-up, after 10 ps the coherences have significantly decayed.
As a result, the system has evolved from one showing a coherent wave packet
motion to one with statistically distributed population of vibrational levels. If,
as it is the case for our system considered, the diagonal relaxation is not the
dominating process, one usually speaks of pure dephasing. It is this process
which prevents the wave packet from rephasing and showing the clear revival
structure, which is detectable by pump–probe spectroscopy. Hence the pump–
probe set-up considered in this work, which is able to detect fractional revivals
of vibrational wave packets, is very sensitive to dephasing. This behaviour is
clearly documented by the simulated pump–probe signals presented in Fig. 4.

6 Conclusions

In this paper we have given a review of the MQCB method as introduced
by Gindensperger, Meier and Beswick [15], together with a discussion of its
main properties. The method is illustrated by two examples, a five-dimensional
model of a molecule–surface collision and a simulation of molecular vibrational
decoherence, detected by pump–probe spectroscopy.

Since for the first example full quantum results can still be obtained by
quantum wave packet propagation tecniques, we can give a direct comparison
and thus show the accuracy of the (approximate) MQCB method for the
model considered. We find an almost quantitative agreement, which is an
encouraging results for possible further applications of the MQCB method
in large systems, where inherent quantum effects require to treat at least
parts of the full system quantum mechanically. However, whether the method
would give good agreement with other systems, or a systematic study of its
applicability to a large number of situations, remains to be studied.

The second example shows that the recently proposed scheme to mix quan-
tum and classical mechanics can successfully be used to study the process
of molecular vibrational decoherence induced by rotations and random col-
lisions. It allows to employ realistic microscopic potentials to describe the
system–environment interaction. Since dimensionality does not pose a major
problem within the classical space, standard molecular dynamics methods can
be employed to account for macroscopic parameters like pressure and temper-
ature. As compared to the popular reduced-density matrix approaches based
on master equations, the proposed method does not require a separation of
time scales which in the femtosecond regime are often violated.

For this case, where ultrafast excitation and detection of I2 in a helium
environment is considered, we have shown that the phenomena of revivals of
vibrational wave packets are a very sensitive to decoherence processes. Using
the proposed theoretical approach of mixing quantum and classical dynamics,
a very good agreement with experimental results was found. This method
should thus be a promising tool to investigate the excitation and evolution of
quantum systems with coherent light while interacting with a large number of
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other degrees of freedom, such as in a liquid or within a large molecule. This
paves the way to the development of coherent control schemes to overcome
or minimize decoherence effects induced by the environment in condensed
phases.
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Quantum Hydrodynamics and a Moment
Approach to Quantum–Classical Theory

I. Burghardt, K.B. Møller, and K.H. Hughes

Summary. We review and extend the quantum hydrodynamic formulation for
mixed states (density matrices), by which a hierarchy of coupled moment equations
is derived from the quantum Liouville equation. The quantum hydrodynamic picture
provides a complement, in a quantum–statistical context, to its pure-state “Bohmian
mechanics” analogue, and also connects in a unique way to quantum phase-space
distributions. This formulation is used to introduce a novel hybrid quantum–classical
method based upon partial moments, which combine the hydrodynamic represen-
tation in the quantum subspace with a Liouvillian phase-space representation in
the classical subspace. In the Lagrangian picture, this results in a mixed quantum–
classical molecular dynamics scheme. The interleaved trajectory dynamics is guided
by a quantum force which also depends upon the classical variables. The method is
shown to be closely connected to the quantum–classical Liouville equation, but its
deterministic trajectory evolution is specific to the hydrodynamic setting. Examples
are given for the vibrationally nonadiabatic dynamics in harmonic and anharmonic
oscillator systems coupled to a classical harmonic subspace, for pure-state vs. dissi-
pative situations; for these systems, the method is exact.

1 Introduction

The hydrodynamic, or “Bohmian” representation of quantum mechanics [1–7]
is of great appeal (and has led to much controversy) in that it postulates the
existence of quantum-mechanical particle trajectories, derived from the anal-
ogy between the Schrödinger equation and the equations of motion of fluid
dynamics. Independently of the de Broglie–Bohm particle interpretation [1–4],
the fluid-dynamical analogy was recognized in 1926 by Madelung [8] – in the
same year as Schrödinger’s seminal papers and de Broglie’s first “pilot wave”
interpretation [1]. Madelung’s perspective refers to fluid-dynamical trajecto-
ries to represent the quantum hydrodynamic fields, but does not necessitate
the interpretation of the Lagrangian dynamics in terms of actual particle tra-
jectories, as in the Bohmian picture.
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The considerations of the present chapter are limited to this latter point
of view, compatible with the conventional (“Copenhagen”) interpretation
of quantum mechanics. This is in line with the use of the fluid dynam-
ical trajectory picture as an analysis tool [9–11], and with the extensive
recent efforts aiming at the numerical implementation of quantum trajec-
tory propagation, as an alternative to conventional wavepacket propagation
methodology [7, 12–24].

While the majority of recent works – as well as most of the interpreta-
tional issues associated with Bohmian mechanics [5, 6, 25] – have focused on
the representation of wavefunctions (pure quantum states) in the hydrody-
namic picture [1, 3, 4, 8, 26], the main concern of the present chapter is quan-
tum hydrodynamics for mixed states. Indeed, the quantum-statistical theory,
suitable for nonequilibrium states and dissipative processes, can be entirely
cast in the hydrodynamic language. This version of quantum hydrodynamics
goes back to Moyal [27], Zwanzig [28], Takabayasi [26], and Fröhlich [29], fol-
lowed more recently by others [30–36]. Starting from the phase space (Wigner)
representation ρW(q, p) of the density operator, the associated hydrodynamic
formulation can be derived as a “projection onto coordinate space” [26], in
terms of hydrodynamic moments,

〈Pnρ〉q =
∫

dp pnρW(q, p), (1)

obtained by integration over the phase-space momentum p only. A hierarchy
of coupled moment equations can be derived, which have the form of the
hydrodynamic equations of classical mechanics, i.e., coupled equations for the
mass density, momentum density, kinetic energy density, etc. [27, 29, 31–35].
For pure states (wavefunctions), the hierarchy terminates with the first two
members, thus yielding the equations of motion of Bohmian mechanics [26,
35, 37]. Even though pure-state hydrodynamics can thus be understood as a
particular case of the quantum-statistical formulation, this relation has only
been scarcely discussed in the literature, with the exception of [26,35–37], see
also the recent overview in [7].

Against this background, the purpose of the present chapter is twofold:
First, to provide an overview of quantum-statistical hydrodynamic theory and
its relation to quantum phase space theories and to pure-state Bohmian me-
chanics. Second, to address a hybrid quantum–classical formulation which is
suitable for the quantum-statistical context. We have recently proposed such
a formulation [38,39], which provides a new framework for coupling hydrody-
namic quantum trajectories with classical Hamiltonian trajectories. Using the
connections between the phase-space (Wigner) representation and the hydro-
dynamic picture, we define a mixed hydrodynamic-Liouvillian representation
based upon partial hydrodynamic moments [38, 39],

〈Pnρ〉qQP =
∫

dp pn ρW(q, p;Q,P ). (2)
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Here, the hydrodynamic projection is applied to the quantum (q, p) sector
only. Exact equations of motion can be derived for the 〈Pnρ〉qQP ’s from the
quantum Liouville equation (see Sect. 3.2) [39]. With a classical-limit approx-
imation in the Liouvillian (Q,P ) sector, and using the Lagrangian picture
associated with the hydrodynamic representation, the following dynamical
equations are obtained, which couple quantum hydrodynamic trajectories with
classical phase-space trajectories (Sect. 3.4),

q̇ =
p̄

m
,

˙̄p = − ∂

∂q

(
Vq(q) + Vint(q,Q)

)
+ Fhyd(q,Q, P ),

Q̇ =
P

M
,

Ṗ = − ∂

∂Q

(
VQ(Q) + Vint(q,Q)

)
, (3)

where the hydrodynamic momentum p̄ ≡ p̄qQP is a function of (q,Q, P ),
defined via the first moment 〈Pρ〉qQP = p̄qQP 〈ρ〉qQP , and the hydrodynamic
force Fhyd(q,Q, P ) acting within the quantum subspace is a function of q as
well as of the classical phase-space variables (Q,P ).

The approximation made in (3) is the same as in the quantum–classical
Liouville equation [40–48], and (3) can in fact be derived from this equation
(Sect. 3.3). Several aspects regarding the trajectory equations (3) are worth
noting: (a) Equation (3) captures the details of the phase-space correlations
between the quantum and classical sectors, thus going far beyond mean-field
(Ehrenfest type) methods. (b) No hydrodynamic force arises in the classical
subspace, which is described within a Liouvillian setting. (c) As is the case
for the quantum–classical Liouville equation, (3) is exact if the classical sub-
system is harmonic. (This is not the case for other mixed quantum–classical
representations derived from the Bohmian picture [49–51].) (d) Contrary to a
mixed quantum–classical representation in terms of phase-space (“Wigner”)
trajectories [52–55], the quantum correction terms do not “penetrate” into the
classical sector, i.e., in (3), the classical sector obeys a Hamiltonian dynamics.
(e) Contrary to the stochastic trajectory dynamics (i.e., surface hopping type
trajectories) which is necessary in the classical sector if the quantum part of
the mixed quantum–classical Liouville equation is expressed in a discretized
representation [45,46], the coupled trajectory equations (3) are deterministic.
These latter features are essentially due to the fact that the hydrodynamic
representation “localizes” the quantum sector.

The remainder of the chapter is organized as follows: Section 2 gives an
overview of the quantum-statistical formulation of quantum hydrodynamics,
while Sect. 3 focuses on the mixed quantum–classical formulation using par-
tial moments. Section 4 gives an application to pure-state and mixed-state
situations in the context of vibrationally nonadiabatic dynamics, and Sect. 5
concludes.
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2 Quantum Hydrodynamics for Mixed States

Even though largely disregarded from the viewpoint of de Broglie–Bohm the-
ory [1, 3, 4, 6], which has traditionally been considered as a theory for pure
quantum states,1 quantum hydrodynamics for mixed states has a long his-
tory, going back to Moyal [27], Zwanzig [28], Takabayasi [26], Fröhlich [29],
and Yvon [30], along with a number of more recent works [31–35]. Starting
from either the coordinate representation or else the associated phase space
(Wigner) representation of the density operator, the hydrodynamic formu-
lation can be derived in terms of hydrodynamic moments – i.e., q-dependent
momentum moments of the Wigner function, see (1). Especially noteworthy is
the work by Takabayasi [26] – published in 1954, shortly after Bohm’s seminal
papers – which focuses on pure states while using the hydrodynamic moment
language. Surprisingly, the pure/mixed-state connection has remained largely
ignored, both in the Bohmian mechanics literature and in the mixed-state
hydrodynamics literature, apart from few exceptions, notably [37].

In the following, a brief summary is given of the relevant relations, fol-
lowing [35, 36, 57]. These relations provide the basis for the mixed quantum–
classical theory described in Sect. 3.

2.1 Hydrodynamic Moments: Projection of the Wigner Density
upon Coordinate Space

The hydrodynamic moments in question can be derived from the density op-
erator in the coordinate representation, ρ(x, x′), or else from its phase-space
analog, the Wigner function ρW(q, p) [58–60],

ρW(q, p) =
1

2π�

∫ ∞

−∞
dr ρ

(
q − r

2
, q +

r

2

)
exp(ipr/�) (4)

with the sum and difference coordinates q = 1/2(x+x′) and r = x−x′. In the
following, we address a single degree of freedom for simplicity, but all relations
can be readily generalized to an arbitrary number of degrees of freedom.

In the hydrodynamic description, the quantum density is characterized
by a set of moment functions obtained from ρW(q, p) by integration over
momentum only2 [27, 29,31–35], see also (1),

〈Pnρ〉q =
∫ ∞

−∞
dp pn ρW(q, p). (5)

The hydrodynamic moments correspond to the coefficients of the Taylor ex-
pansion of the coordinate space density with respect to the coordinate r
1 See, however, the recent discussion on the role of density matrices in Bohmian

mechanics in [56].
2 Equivalently, the moments can be obtained by taking repeated derivatives with

respect to the difference coordinate r of the coordinate space distribution [31,35].
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(noting that r and p are conjugate Fourier variables, see (4)),

ρ(q, r) =
∑

n

1
n!
〈Pnρ〉q

(
ir
�

)n

, (6)

where the coordinate space density was rewritten as a function of the sum
and difference coordinates.

Depending on the structure of the quantum density, the moments 〈Pnρ〉q
can carry redundant information. In particular, for a pure-state density,
ρ(x, x′) = ψ(x)ψ∗(x′), and its associated Wigner transform, the state is char-
acterized by its first two moments (see Sect. 2.3). Similarly, a Gaussian mixed-
state density is characterized by the first three moments [35,36,61]. In general,
an infinite number of moments are necessary to describe the quantum state –
or, to reconstruct the state according to (6).

2.2 Dynamical Equations: Moment Hierarchies

The dynamical equations for the hydrodynamic moments are derived from the
Liouville–von Neumann (LvN) equation for the density operator:

∂ρ̂

∂t
= − i

�

ˆ̂
Lρ̂, (7)

with ˆ̂
L the Liouvillian superoperator and ˆ̂

Lρ̂ = [ Ĥ, ρ̂ ] for a Hamiltonian
system. In the Wigner phase-space representation, the LvN equation takes
the following form (“quantum Liouville equation”) [58–60]:

∂ρW

∂t
= (H, ρW )qp

= − i
�

(
H exp(�Λqp/2i)ρW − ρW exp(�Λqp/2i)H

)
(8)

where ( , )qp denotes the Moyal bracket, and the Poisson bracket operator Λqp

is given as

Λqp =

←
∂

∂p
·

→
∂

∂q
−

←
∂

∂q
·

→
∂

∂p
. (9)

The linear approximation exp(�Λqp/2i) � 1+�Λqp/2i formally yields the clas-
sical Liouville equation, ∂ρW/∂t = {H, ρW}qp = −1/2(HΛqpρW − ρWΛqpH).
In the following, we shall refer to the limiting procedure

(H, ρW )qp −→ {H, ρcl }qp (10)

as the classical Liouville limit [58–60,62].3

3 The convergence properties associated with the limit equation (10) are in fact
nontrivial, see, e.g., the discussion in [63,64].
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Equation (8) can be rewritten as a series expansion in � “correction terms,”
i.e., the so-called Wigner–Weyl series,

∂ρW

∂t
= {H, ρW }qp +

n∑
k=3
odd

1
k!

(
�

2i

)k−1
∂kV

∂qk

∂kρW

∂pk
. (11)

Note that the quantum correction terms involve the third and higher order
derivatives of the potential. For a harmonic potential, the quantum vs. clas-
sical phase space dynamical equations are thus identical.

From (11), and using prescription (5), one obtains the moment equations
in a form which involves a classical part to which quantum correction terms
are added,

∂〈Pn ρ〉q
∂t

= 〈Pn {H, ρW }qp〉q + Cq (12)

with the classical part

〈Pn {H, ρW }qp〉q = − 1
m

∂

∂q
〈Pn+1ρ〉q − n

(
∂V

∂q

)
〈Pn−1ρ〉q (13)

and the quantum correction part

Cq = −
n∑

k=3
odd

(
n
k

) (
�

2i

)k−1
∂kV

∂qk
〈Pn−k ρ〉q. (14)

Since the quantum correction terms only appear with the third order onwards,
the first three moment equations are formally of classical appearance.4 The
first equation is the continuity equation, which reflects the conservation law
for the local density 〈ρ〉q. The second and third equations are the dynam-
ical equations for the momentum density 〈Pρ〉q and kinetic energy density
〈P2ρ〉q/2m, respectively.

As detailed in [35, 36, 65], the formulation of (12)–(14) for the moment
hierarchy can be readily generalized so as to include dissipation [31, 35, 36]
and coupled electronic states [65].

In (13), the kinetic-energy contribution (first term on the rhs of the equa-
tion) generates a dynamical coupling between the nth hydrodynamic moment
〈Pnρ〉q and the (n + 1)th moment 〈Pn+1ρ〉q. The coupling of successive or-
ders implies that the hierarchy does not terminate, unless a given moment can
be expressed in terms of the lower-order moments. For example, for Gaussian
mixed-state densities, the hierarchy terminates with the equations for 〈Pnρ〉q,
n = 0, 1, 2, because the third moment can be represented in terms of the lower-
order moments. Another special case are pure-state densities, for which the
4 The classical or quantum nature of the lowest-order moment equations thus de-

pends entirely on the (classical or quantum) nature of the density.
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hierarchy closes with the first two equations. This case will be considered
explicitly in Sect. 2.3.

The closure, or approximate closure, of the hydrodynamic hierarchy is a
central problem in applying the moment method. Quoting from the context
of plasma physics, where a similar problem occurs in connection with the
Vlassov equation, the moment equations “must be terminated somewhere by a
flash of insight” [66]. In classical hydrodynamics, a Gaussian (“Maxwellian”)
closure is invoked, in conjunction with an equilibrium assumption; thus one
obtains closure at the level of the second moment [67]. For nonequilibrium
states, systematic closure criteria at higher orders of the hierarchy have been
developed [68], in particular involving maximum entropy estimates [69]. These
approaches have recently been transposed to the quantum domain [70].

2.3 Pure States and the Connection to Bohmian Mechanics

For pure states, ρ(x, x′) = ψ(x)ψ∗(x′), the hydrodynamic hierarchy closes
with the first two equations since the second moment can be expressed in
terms of the zeroth and first moments [35,71]

〈P2ρ〉q
∣∣∣∣
pure

= p̄2q〈ρ〉q −
�

2

4
〈ρ〉q

∂2

∂q2
ln〈ρ〉q, (15)

where the hydrodynamic momentum field p̄q = p̄(q) was introduced, via the
first moment 〈Pρ〉q = p̄q〈ρ〉q.

The pure-state closure relation (15) can be shown to lead to the conven-
tional equations of pure-state hydrodynamics (Bohmian mechanics) [26, 35,
37]. That the coupled equations for the first two moments, i.e., the local den-
sity 〈ρ〉q and the hydrodynamic momentum field 〈Pρ〉q, form a closed subset
in this case is not unexpected, since the first two moments entirely deter-
mine the wavefunction (apart from a piecewise constant phase factor [72]).
Using the polar form of the wavefunction, ψ(x) = R(x) exp[iS(x)/�], the local
density and momentum field are given as

〈ρ〉q = R2(q),

〈Pρ〉q = p̄q〈ρ〉q =
∂S

∂q
〈ρ〉q (16)

and contain the amplitude and phase information, respectively.
The dynamical equations for the first two moments read as follows:

∂〈ρ〉q
∂t

= − 1
m

∂

∂q
〈Pρ〉q

∂〈Pρ〉q
∂t

= − 1
m

∂

∂q
〈P2ρ〉q

∣∣∣∣
pure

− ∂V

∂q
〈ρ〉q. (17)

With (15) for the pure-state second moment, these two equations separate
from the rest of the moment hierarchy.
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Equation (17) represents the so-called Eulerian picture of hydrodynamics.
In the associated Lagrangian (“moving with the flow”) picture, one defines
fluid particle trajectories q̇ = v(q), with the velocity field v(q) = p̄(q)/m.
Using the total, or “material” time derivative, d/dt = ∂/∂t + v(q)∂/∂q, the
Lagrangian equations of Bohmian mechanics are obtained as follows [6, 7],

d〈ρ〉q
dt

= −〈ρ〉q
m

∂p̄

∂ q

d
dt
p̄(q, t) = −∂V

∂ q
+ Fhyd

∣∣∣∣
pure

(18)

where the hydrodynamic force Fhyd reads [26,35–37]

Fhyd

∣∣∣∣
pure

= − 1
m

〈ρ〉−1
q

∂σq

∂q

∣∣∣∣
pure

(19)

i.e., Fhyd is the derivative of the q-dependent momentum variance

σq

∣∣∣∣
pure

= 〈P2ρ〉q
∣∣∣∣
pure

− p̄2q〈ρ〉q (20)

For pure states, σq is obtained explicitly as follows, from (15) [35,37,71]:

σq

∣∣∣∣
pure

= −�
2

4
〈ρ〉q

∂2

∂q2
ln 〈ρ〉q (21)

As shown in [35], (19) is equivalent to the “quantum force” of the conventional
Bohmian formulation

Fhyd

∣∣∣∣
pure

= −∂Q
∂q

(22)

i.e., the gradient of the Bohmian quantum potential [3, 4, 6, 7]

Q = − �
2

2m
1

〈ρ〉1/2
q

∂2〈ρ〉1/2
q

∂q2
(23)

The derivation of the pure-state hydrodynamic equations from the Liouville
space perspective of densities and phase-space distributions sheds some light
on the physical meaning of the fluid-dynamical quantities involved. In par-
ticular, the “Bohmian” momentum is found to correspond to the average
momentum at a given value of the position variable, pBohm(q) = p̄(q). In the
de Broglie–Bohm formulation, this momentum is associated with an actual
particle momentum [5,6].
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2.4 Hydrodynamic Force for Mixed States and Classical
Distributions

Equations (18)–(20) can be formally transposed to arbitrary mixed states.
However, for nonpure states, the first two equations of the moment hierarchy,
equation (18), do not form a closed set, since they are coupled to the higher
orders of the hierarchy via the hydrodynamic force. Yet, the picture of fluid
particle motion under the hydrodynamic force remains valid,

d〈ρ〉q
dt

= −〈ρ〉q
m

∂p̄

∂ q

d
dt
p̄(q, t) = −∂V

∂ q
+ Fhyd

∣∣∣∣
mixed

(24)

with the general, mixed-state hydrodynamic force

Fhyd

∣∣∣∣
mixed

= − 1
m

〈ρ〉−1
q

∂σq

∂q

∣∣∣∣
mixed

(25)

obtained again as the spatial derivative of the variance

σq

∣∣∣∣
mixed

= 〈P2ρ〉q − p̄2q〈ρ〉q, (26)

where σq is now no longer constrained to the pure-state form equation (21).
The expression (25) is closely related to the “pressure force” of classical

hydrodynamics [67, 73]. Indeed, the occurrence of this additional force is an
intrinsic property of the hydrodynamic representation. It can be understood
to compensate for the fact that we consider the dynamical evolution of the
average momentum p̄q.

Importantly, the same relations hold for a purely classical phase-space
distribution function, with the classical hydrodynamic force

F cl
hyd = − 1

m
〈ρcl〉−1

q

∂σcl
q

∂q
(27)

derived from the variance of the classical distribution ρcl(q, p), i.e., σcl
q =

〈P2ρcl〉q − p̄2q〈ρcl〉q.
This implies that the hydrodynamic force is generally nonvanishing, inde-

pendently of whether the system is quantum or classical. A pertinent example
is the evolution of a quantum vs. classical harmonic oscillator: While the Liou-
ville space evolution is governed by the same (classical) Liouville equation for
both the quantum and classical oscillator (noting that the quantum correc-
tion terms Cq of (11) disappear for quadratic potentials), the hydrodynamic
evolution involves an extra force in both cases, see also Sect. 2.6.5

5 For illustration, consider the second hydrodynamic moment for the thermal equi-
librium state of the harmonic oscillator, which is essentially of quantum origin at
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2.5 Classical Limit Considerations

Following the arguments of the preceding Section, the classical limit of the
hydrodynamic representation naturally corresponds to a transition from a
quantum–statistical (mixed-state) description to a classical–statistical descrip-
tion. One thus obtains the purely classical force term (27) as the classical limit
of the quantum–statistical hydrodynamic force (25),

Fhyd

∣∣∣∣
mixed

−→ F cl
hyd classical−statistical limit, (28)

where F cl
hyd derives from a classical distribution ρcl(q, p) which represents the

classical phase-space limit of the reference mixed-state quantum distribution.
The classical limit equation (28) can be considered to follow from the

classical Liouville limit equation (10), in conjunction with the approximation
ρW(q, p) −→ ρcl(q, p) for the phase-space density. This limit is valid for small
mass ratios for the quantum vs. classical systems, m/M � 1 [45, 46], and
translates to the usual semiclassical limit defined, e.g., in terms of the action
� � A. This limit also holds at high temperatures, where the width of the
phase-space distribution is predominantly of thermal origin, and quantum
interference effects are washed out.

While the presence of the classical hydrodynamic force (27) and (28)
follows directly from the hydrodynamic moment construction, it conflicts,
though, with the usual definition of the classical limit in Bohmian mechan-
ics [6]. In the Bohmian, pure-state picture, the hydrodynamic, or “quantum”
force vanishes in the classical limit

Fhyd

∣∣∣∣
pure

−→ 0 “Bohmian” classical limit. (29)

This limiting process is formally a � → 0 limit (while disregarding the �

dependence of the wavefunction component R = 〈ρ〉1/2
q , see (22) and (23)).

low temperatures,

〈P2ρ〉q
∣∣
kT��ω

=
1

2
m�ω 〈ρ〉q

and essentially of thermal origin at high temperatures

〈P2ρ〉q
∣∣
kT��ω

= mkT 〈ρ〉q.

The quantum–statistical moment description naturally comprises these limits,
and the intermediate case. The hydrodynamic force resulting from both of the
above expressions is temperature-independent, Fhyd = mω2 q – and exactly com-
pensates for the effect of the external force on the oscillator. Hydrodynamics thus
predicts stationary trajectory solutions for both the quantum ground state at
zero Kelvin and the high-temperature thermal equilibrium state.
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However, from the discussion of the previous sections, the limit equation (29)
can only be strictly valid for states whose momentum variance σq – or spatial
variation (dσq/dq) – vanishes. This is the case for momentum eigenstates, i.e.,
in the “plane wave limit” [6,25,36]. Apart from this, (29) can be shown to be
approximately valid for certain physical situations where the hydrodynamic
force can be neglected as compared with the external forces, Fhyd/Fext � 1.
For example, this would apply to a coherent state peaked around high quan-
tum numbers, and undergoing large-amplitude oscillations [6].

Overall, caution needs to be exercised when applying (29), see the detailed
discussion in [6]. Difficulties of interpretation arise from the fact that the
condition (29) is state-dependent and often cannot be directly related to the
physical properties of the system. For the applications we are focusing on, in
a quantum molecular dynamics context, the classical–statistical limit (28) is
generally the appropriate limiting procedure.

We conclude this section with a remark on initial conditions. While the
limiting procedure (28) implies the limit ρW(q, p) −→ ρcl(q, p) for the distri-
bution function, one often constructs the initial condition in a less consistent
fashion. In particular, if one aims to simulate quantum dynamics by classical
dynamics, the initial condition is chosen to be the Wigner distribution it-
self, rather than its classical approximant; this approach is generally denoted
the “Wigner method” [74, 75]. While this method introduces inconsistencies,
as a consequence of evolving a quantum initial condition under the classi-
cal Liouville equation, it is frequently used to approximate the true quantum
evolution.

Both of the above schemes for constructing initial conditions are relevant
for the present discussion: (a) the construction of the classical approximant
distribution, ρW(q, p) −→ ρcl(q, p), which guarantees a consistent classical
limit; (b) the Wigner method, which preserves the quantum initial condition
and remains quantum-mechanical in nature (simulation of quantum mechanics
using classical mechanics). The examples discussed in Sect. 4 are in fact in line
with the Wigner method, even though future applications aim at a classical-
limit perspective in many-body systems, in accordance with scheme (a).

2.6 Hydrodynamic Phase Space

The Lagrangian, fluid-dynamical trajectories which are defined by the relation
q̇ = p̄(q)/m in conjunction with (18) or (24), are fundamentally different from
the Liouville phase space trajectories which represent a time-evolving classical
distribution ρcl(q, p). This is so because the hydrodynamic momentum p̄(q) =
〈Pρ〉q/〈ρ〉q originates in an average with respect to the Liouville phase-space
momentum p. Hence, the fluid–particle momentum is a q-dependent average
over Liouville-space momenta.

To underscore the particular character of the hydrodynamic momentum,
one can introduce the notion of a hydrodynamic phase space [26, 35, 36, 76],
whose momentum variable corresponds to the hydrodynamic momentum field
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p = p̄q. The distribution functions in this alternative phase space are of the
form [26,35,36,76]

ρhyd(q, p) = 〈ρ〉q δ (p− p̄q) , (30)

i.e., they are single-valued in the momentum, with p = p̄q a function of q.
This is illustrated in Fig. 1, for a Gaussian distribution.

Information on the momentum-space width of the underlying Wigner
phase-space distribution (along with all other higher-order moments) is thus
not directly available in this alternative phase-space picture. However, the
higher-order moments indirectly determine the time evolution, via the force
Fhyd. An equation of motion can be formulated for the distribution ρhyd(q, p),
which is analogous to the classical Liouville equation but contains the addi-
tional, hydrodynamic force term [6, 36]. The associated trajectory equations
are given as follows, in accordance with the Lagrangian equations (18) or (24)
and using p = p̄q [6, 36]:

q̇ =
p

m
,

ṗ = − ∂

∂q
V (q) + Fhyd(q). (31)

For illustration, two paradigm cases will be considered in the following:
First, the evolution of a Gaussian free-particle distribution, and second, the
evolution of a Gaussian wavepacket in a harmonic well.

For the free-particle distribution, the initial condition corresponds to a
Gaussian wavepacket at rest, with parameters taken from [77]. As shown in
Fig. 2 (left panel), the distribution tilts and elongates, thus giving rise to
the observed spreading in coordinate space. While the average momentum
is initially uniform, p̄q = 0, it acquires a pronounced dependence on q as
the distribution spreads out. This is reflected in the p = p̄q evolution of the
hydrodynamic phase space distribution, see Fig. 2 (right panel).

Figure 3 illustrates the hydrodynamic force as a function of time, for the
two trajectories A(t) and B(t) whose end points are shown in Fig. 2. Fhyd is
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Fig. 1. Gaussian Wigner phase space distribution (left panel) and associated hy-
drodynamic phase space distribution (right panel), see (30)
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Fig. 2. Time-evolving Gaussian distribution for a free particle: Liouville phase space
(left panel) vs. hydrodynamic phase space (right panel) representations. The two-
dimensional Gaussian distribution is represented by a single contour line for the
Liouville-space distribution, and by a line in the case of the associated hydrody-
namic phase space distribution (see also Fig. 1). The distributions are shown for
t = 0 and t = 50 fs. Two trajectories are indicated, starting at the points (A, B),
and evolving to (A′, B′). At time t = 0, these points correspond to the average
momentum at the given q values, and are therefore part of both the Wigner phase
space distribution and of the hydrodynamic distribution. In the Wigner picture,
these points remain stationary (A = A′, B = B′), while they are nonstationary in
the hydrodynamic picture. The dotted line (right panel) indicates the hydrodynamic
phase space trajectory leading from (A, B), at t = 0, to (A′, B′) at t = 50 fs
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Fig. 3. Time-dependent hydrodynamic force for the free-particle evolution depicted
in Fig. 2. Fhyd is shown for the trajectories A(t) and B(t), which include the points
(A, A′) and (B, B′) indicated in the preceding figure. The hydrodynamic force tends
to vanish as t → ∞, as discussed in the text
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seen to vanish with time; in fact, the hydrodynamic force is proportional to
q(0)[1+ (t/τ)2]−3/2 [6] where τ is a constant that depends on the initial wave
packet. This is due to the fact that as the Wigner distribution elongates, both
the momentum width σq and its spatial variation decrease and eventually tend
to zero.

In a harmonic potential (see Figs. 4 and 5), the hydrodynamic trajectories
experience an oscillatory hydrodynamic force, reflecting the changing width of
the wavepacket. (Only for a coherent state is the hydrodynamic force time in-
dependent [6,36].) The effect of the hydrodynamic force is to counter balance,
to a certain extent, the distance dependence of the classical force, and thereby
prevent the space–time trajectories from crossing. Figure 4 shows schemati-
cally a Gaussian Wigner function and the corresponding hydrodynamic dis-
tribution at various instants during the oscillation period in a harmonic well.

In both examples, the Wigner phase space distribution evolves under
the classical Liouville equation, since quantum correction terms are absent
for both the free particle and the harmonic oscillator. Moreover, the time-
dependent Gaussian distributions in question are positive definite and can be
taken to be either quantum or classical. From this follows that the hydrody-
namic force could be either a “quantum force” (in the Bohmian sense), or else
a classical–statistical hydrodynamic force.
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Fig. 4. Time-evolving Gaussian wavepacket for a harmonic potential: Liouville
phase space (left panel) vs. hydrodynamic phase space (right panel) representa-
tions. For the initial distribution, the average momentum is q-independent, p̄q = 0,
and the points (A, B) again coincide for the Liouvillian vs. hydrodynamic distribu-
tions. At later times, the trajectories (A, A′, A′′) and (B, B′, B′′) differ for the two
phase space representations, as in the free particle case of Fig. 2. The inset shows
the associated Liouvillian vs. hydrodynamic space–time trajectories
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Fig. 5. Time-dependent hydrodynamic force for the harmonic-oscillator evolution,
which determines the trajectories A(t) and B(t) that include the points (A, A′, A′′)
and (B, B′, B′′) shown in the preceding figure. The hydrodynamic force is a periodic
function of time

3 Quantum–classical dynamics via partial moments

Against the background of the earlier sections, we develop here a mixed
quantum–classical formulation based upon the hydrodynamic picture. The
dynamical scheme to be constructed should couple quantum hydrodynamic
trajectories with classical (Hamiltonian) trajectories. This scheme should
allow one to simulate potentially large systems containing many degrees of
freedom, which can be subdivided into a quantum sector (with predominant
quantum effects) and a classical sector (which is not strongly affected by
quantum effects).

In view of the discussion of the earlier section, the following difficulty arises
regarding the representation of the classical sector: While a classical limit can
be defined within the hydrodynamic picture (see Sect. 2.5), this limit is asso-
ciated with classical fluid-dynamical, non-Hamiltonian trajectories, evolving
under the classical hydrodynamic force (27). Only in special cases, compat-
ible with the Bohmian classical limit (29), does the additional force disap-
pear. While a mixed quantum–classical formulation is thus feasible within
the hydrodynamic representation – by taking into account both quantum and
classical hydrodynamic forces – the disadvantage of this approach is that the
simplicity of the classical Liouville-space dynamics, in terms of Hamiltonian
trajectories, is lost. Even though the hydrodynamic representation is appro-
priate in order to define a trajectory representation in the quantum sector,
it is thus desirable to retain a Liouville-space representation in the classical
sector.
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In the present development, we therefore consider a hybrid representa-
tion which is hydrodynamic with respect to the quantum subspace, and
classical-Liouvillian with respect to the classical subspace. As a result, a
mixed quantum–classical molecular dynamics scheme is obtained which cou-
ples quantum trajectories with classical Liouvillian trajectories. In order to
construct this hybrid dynamics, it is necessary to introduce the partial mo-
ment quantities of equation (2).

3.1 Partial Moments: A Hybrid Hydrodynamic-Liouvillian
Representation

Partial moments are constructed by introducing a hydrodynamic projection
for selected degrees of freedom.6 If one starts from the Wigner representation
for two degrees of freedom, one may thus choose to integrate only over the
phase space momentum variable p [38, 39],

〈Pnρ〉qQP =
∫
dp pn ρW(q, p;Q,P ) (32)

Given that the hybrid quantities 〈Pnρ〉qQP can be understood as hydrody-
namic moments in q which are parameterized in the phase space variables
(Q,P ), many of the conclusions of the previous sections carry over to the
mixed hydrodynamic-Liouvillian picture. In particular, for a pure-state den-
sity and its associated Wigner transform, the state is characterized by the first
two partial moments; a brief discussion of the pure-state case is given in Ap-
pendix A. Similarly, a Gaussian mixed-state density is determined by the first
three partial moments. In general, an infinite number of moments is required
to characterize the system, and truncation schemes have to be designed by
analogy with the considerations of Sect. 2.2.

Finally, one can introduce a hybrid hydrodynamic-Liouvillian phase space
with distribution functions ρhybrid(q, p;Q,P ) = 〈ρ〉qQP δ(p− p̄qQP ) which pre-
serve the features of the underlying Liouville space distribution in the classical
subspace but are single-valued in p in the quantum subspace [38, 39]. These
distribution functions combine the hydrodynamic phase space picture (for the
quantum subspace) and the Liouvillian phase space picture (for the classical
subspace), see Figs. 1–5.

6 We have previously applied this idea to the description of nonadiabatic processes
where a hydrodynamic representation is chosen for the nuclear degrees of freedom
while the electronic degrees of freedom remain in a Liouville-space setting (in a
discretized representation of diabatic or adiabatic states [57, 65]). Note that the
reverse strategy also appears promising, i.e., choosing a moment representation
for the electronic degrees of freedom while treating the nuclear degrees of freedom
by a classical phase space dynamics [78].
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3.2 Exact Equations of Motion

Equations of motion for the partial moments can be derived from the LvN
equation either in the coordinate space representation or else in the phase
space Wigner representation. In the following, we will consider a Hamiltonian
of the formH = p2/2m+P 2/2M+V (q,Q), with V (q,Q) = Vq(q)+Vint(q,Q)+
VQ(Q).

As shown in [39], exact equations of motion can be obtained in the follow-
ing form:

∂〈Pnρ〉qQP

∂t
= 〈 Pn {H, ρW }qp〉qQP

+ {H, 〈 Pn ρ〉qQP }QP + CqQP . (33)

As one would intuitively expect from the partial moment construction, (33)
comprises (a) a classical hydrodynamic part in the (q, p) subspace

〈 Pn {H, ρW }qp〉qQP = − 1
m

∂

∂q
〈Pn+1ρ〉qQP

− n
∂[Vq(q) + Vint(q,Q)]

∂q
〈Pn−1ρ〉qQP (34)

(b) a classical Liouvillian part in the (Q,P ) subspace

{H, 〈 Pn ρ〉qQP }QP = − P

M

∂〈 Pn ρ〉qQP

∂Q

+
∂[VQ(Q) + Vint(q,Q)]

∂Q

∂〈 Pn ρ〉qQP

∂P
(35)

and (c) a mixed hydrodynamic-Liouvillian quantum correction part,

CqQP =
∑

l1+l2≥3

(−1)l2+1 1
l2!

(
n
l1

) (
�

2i

)l1+l2−1

×
(
∂l1+l2 [Vq(q) + Vint(q,Q) + VQ(Q)]

∂ql1∂Ql2

)
∂l2

∂P l2
〈Pn−l1 ρ〉qQP , (36)

where the summation runs over odd values of the sum of indices l1 + l2 and
l1 ≤ n. The “quantum correction” part collects all terms that carry an explicit
� dependence and involve third and higher order derivatives of the potential.
Hence, this part is nonzero for moments of all orders, except for systems
described by potentials that are at most second order polynomials. The fact
that the equations of motion for the zeroth and first order moments carry
explicit � contributions, which are absent in a pure hydrodynamic description,
highlights the mixed hydrodynamic-Liouvillian nature of the partial moments.
Indeed, for the 0th moment 〈ρ〉qQP (l1 = n = 0), the explicit � terms originate
entirely in the (Q,P ) subspace, while the equation of motion for the first
moment 〈Pρ〉qQP (l1 = 0, 1) contains correction terms involving mixed q/Q
derivatives.
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3.3 Quantum–classical Approximation and Connection to the
Quantum–Classical Liouville Equation

In view of defining a mixed quantum–classical dynamics, a classical approx-
imation is introduced in the (Q,P ) subspace. To this end, only those quan-
tum correction terms of (36) are retained which involve derivatives of order
l2 = 0, 1, i.e., we neglect in the equations of motion for the partial moments all
terms involving multiple order derivatives with respect to the coordinate Q.
This is the same approximation as the one made when obtaining the classical
Poisson bracket from the Moyal bracket, see (10) and Sect. 2.5. The quantum–
classical equations thus read as follows [39]:

∂〈Pnρ〉cqQP

∂t
= 〈 Pn {Hq + Vint, ρW }qp〉cqQP

+ {HQ + Vint, 〈 Pn ρ〉c }QP + Cc
qQP (37)

with the approximate quantum correction part

Cc
qQP = −

n∑
l1=3
odd

(
n
l1

) (
�

2i

)l1−1
∂l1V

∂ql1
〈Pn−l1 ρ〉cqQP

+
n∑

l1=2
even

(
n
l1

) (
�

2i

)l1 ∂l1+1V

∂ql1Q

∂

∂P
〈Pn−l1 ρ〉cqQP . (38)

The index c indicates the approximate nature of the quantities evolving under
the above equation of motion.

In contrast to (33)–(36), the approximation of (37) entails that the equa-
tions of motion for the first two partial moments do not carry any quantum
correction terms. This will turn out to have important implications for the
Lagrangian trajectory dynamics of (42), see Sect. 3.4. If the potentials in the
classical subspace are harmonic, and the coupling between the quantum and
classical subspaces is at most linear in the classical variables, (37) is exact.

Equation (37) is found to be identical to the partial moment equations one
would obtain from the quantum–classical Liouville equation [40–43,45–48,79],

∂ρ̂c
W

∂t
= −i/� [ĤW, ρ̂

c
W ]

+
1
2

(
{ĤW, ρ̂

c
W}QP − {ρ̂c

W, ĤW}QP

)
, (39)

where ρ̂c
W(Q,P ) and ĤW are partially Wigner transformed [45] operator quan-

tities, i.e., operators with respect to the quantum subspace and functions of
the classical phase-space variables (Q,P ).

When constructing the moment equations, the characteristic commutator
structure of (39) translates to nonclassical terms in the moment hierarchy for
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the local-in-q moments 〈Pnρ〉qQP , starting from the second-order onwards.
(These nonclassical terms will be affected by certain fundamental inconsisten-
cies incurred at the level of the Jacobi identity [45,46,80]).

3.4 Lagrangian Picture, and Trajectory Representation

To obtain the trajectory equations (3), the Eulerian equations (37) for the
mixed quantum–classical moments have to be translated to the Lagrangian
frame. If the equation for the zeroth-order moment 〈ρ〉cqQP is interpreted as
a hybrid hydrodynamic-Liouvillian continuity equation, the fluid-particle dy-
namics follows from the definition of a three-component current jqQP [39],

∂〈ρ〉cqQP

∂t
= − 1

m

∂〈Pρ〉cqQP

∂q

+{HQ + Vint, 〈ρ〉cqQP }QP

= −∇qQP · jqQP (40)

with ∇qQP = (∂/∂q, ∂/∂Q, ∂/∂P ) and the current

jqQP

〈ρ〉cqQP

=

⎛⎝ q̇

Q̇

Ṗ

⎞⎠ =

⎛⎝ p̄qQP /m
(∂H/∂P )

−(∂H/∂Q)

⎞⎠ , (41)

where the momentum field p̄qQP was introduced via the first moment,
〈Pρ〉cqQP = p̄qQP 〈ρ〉cqQP . The quantity p̄qQP again represents the average
momentum derived from the underlying Wigner distribution for a given com-
bination of independent variables (q,Q, P ).

In the Lagrangian picture, the hydrodynamic fields are evaluated along
the fluid particle trajectories – or, more precisely, the characteristics of (40)
[81] – as defined by (41). The temporal evolution in the Lagrangian frame
is expressed via the total time derivative, d/dt = ∂/∂t + vqQP · ∇qQP .
Thus, the continuity equation (40), which describes the local density bal-
ance at each point (q,Q, P ), translates to the Lagrangian form d〈ρ〉cqQP /dt =
−(〈ρ〉cqQP /m)(∂p̄qQP /∂q).

In order to connect to a phase-space perspective similar to the one of (31),
(41) is combined with an equation for the fluid particle acceleration dp̄qQP /dt
(obtained from the equation for the first moment, 〈Pρ〉cqQP = p̄qQP 〈ρ〉cqQP )
which involves a generalized hydrodynamic force term [39]. The overall picture
is the one of a correlated dynamics of the quantum hydrodynamic variables
(q, p = p̄qQP ) and classical variables (Q,P ), see (3)

q̇ =
p̄

m
,

˙̄p = − ∂

∂q

(
Vq(q) + Vint(q,Q)

)
+ Fhyd(q,Q, P ),
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Q̇ =
P

M
,

Ṗ = − ∂

∂Q

(
VQ(Q) + Vint(q,Q)

)
(42)

with p̄ ≡ p̄qQP and the hydrodynamic force

Fhyd(q,Q, P ) = − 1
m 〈ρ〉cqQP

∂σqQP

∂q
(43)

obtained as the spatial derivative with respect to q of the generalized variance

σqQP = 〈P2ρ〉cqQP − p̄2qQP 〈ρ〉cqQP . (44)

The quantity σqQP reflects the width in p, for given x = (q,Q, P ), of the
(approximate) phase-space distribution ρc

W(q, p;Q,P ), and it is the spatial
variation of σqQP with respect to the hydrodynamic coordinate q which gives
rise to Fhyd.

Apart from its dependence upon the classical phase-space variables (Q,P ),
(43) is entirely analogous to the quantum hydrodynamic equation obtained for
a single quantum degree of freedom [35, 36] (see Sect. 2), and reduces to this
equation in the absence of the classical subspace. Furthermore, if the isolated
quantum subsystem corresponds to a pure state, one recovers the Bohmian
quantum force Fhyd = −∂Q/∂q of (22) [6, 35,37].

The deterministic, Lagrangian trajectory representation equation (42) is
a result of the classical nature of the first two moment equations, within the
quantum–classical approximation. The representation equation (42) is rather
unique in several respects. First, the dynamics of the coupled hydrodynamic
and classical trajectories is nonstochastic, in contrast to the trajectory dynam-
ics usually associated with the quantum–classical Liouville equation [45, 46].
Furthermore, the difficulty/ambiguity in formally defining and propagating
quantum trajectories in Liouville space [52–55] is avoided. A Liouville space
representation of both the quantum and the classical sector would, as a conse-
quence of (39), most likely entail quantum correction terms in the classical sec-
tor. By “localizing” the quantum subsystem, the hydrodynamic representation
leads to a remarkably simple form of the coupled trajectory equations (42).

4 Coupled Light-Heavy Oscillator Systems

For illustration, we consider the vibrationally nonadiabatic dynamics in a
system of coupled light (“quantum”) and heavy (“classical”) oscillators. This
type of system has been shown to pose a challenge for mixed quantum–classical
methodology – notably the surface hopping and mean-field methods – even in
the case of a harmonic potential in the classical subspace [82]. A quantum–
classical method based upon the Bohmian picture (using the Fhyd → 0
approximation in the classical sector, see (29)) was also found to be subject to
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considerable error, of the same order as the mean-field approach [49]. A sen-
sitive measure of the dynamics is the time-dependent probability for the light
oscillator to be in a given adiabatic state, padn (t) = Tr{|φad

n 〉〈φad
n |ρ̂(t)} [82]; we

therefore consider these survival probabilities in terms of the partial moment
quantities introduced earlier (see Appendix B).

Within the quantum–classical picture developed here, the dynamics is de-
scribed exactly if the classical subsystem is harmonic. This is exemplified by
the cases to be discussed below: (a) a pure-state example where a double
well system in the quantum subspace is coupled to a harmonic oscillator in
the classical subspace, (b) a mixed-state case including dissipation, where a
harmonic oscillator in the quantum subspace is coupled to a “Brownian” har-
monic oscillator (undergoing Caldeira–Leggett type dissipation [83]) in the
classical subspace. Both examples refer to cases where the moment hierarchy
terminates at low orders, due to the pure-state vs. Gaussian closure condi-
tions, respectively. Work in progress addresses suitable truncation schemes
for more general situations.

While our mixed quantum–classical scheme is eventually meant for systems
with a high-dimensional classical subspace for which the classical Liouville
limit is applicable, we are discussing here low-dimensional situations with ini-
tial conditions which correspond to pure states. In the “classical” sector, these
distributions thus remain quantum distributions, represented by classical
trajectories. The present perspective in fact corresponds to the Wigner
method rather than a rigorously defined classical limit situation, see Sect. 2.5.

4.1 Pure-State Case: Double Well Coupled to a Harmonic
Oscillator

In this example, the quantum coordinate involves a quartic double well po-
tential which is bilinearly coupled to a classical harmonic oscillator,

H =
p2

2m
+
P 2

2M
+Aq2 +Bq4 + CqQ+

K

2
Q2, (45)

where A < 0 and B > 0.7 We will focus upon the case where the overall
system remains in a pure state.

We have used two complementary approaches to compute the hydro-
dynamic partial moments: First, conventional wavepacket propagation,8 by
which the partial moments are constructed from the relevant pure-state quan-
tities, as described in Appendix A and [38, 39]. Second, propagation of the

7 The parameters used in the calculation are as follows: for the masses, m = 2, 000
a.u. and M = 20, 000 a.u., and for the classical oscillator force constant K = 0.118
a.u. For the quantum part the parameters A = −0.033 a.u., B = 0.030 a.u. were
used, along with a coupling constant of C = 0.01 a.u.

8 The 2D wavepacket propagation was carried out by the Chebyshev propagator,
combined with the grid based Fast Fourier Transform method to calculate the
Hamiltonian operation on the wavefunction.
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Wigner function,9 with the partial moments obtained by integration over the
quantum momentum variable as in (32). The numerical results obtained by
these two methods were found to be in accurate agreement. In forthcoming
work, we will report on a direct propagation of the partial moments using
either (37) in a Eulerian frame, or else (42) in a Lagrangian frame.

The initial wavefunction is taken as a product of the ground adiabatic
state φad

0 (x|X) of the quantum subsystem multiplied by a Gaussian function
in the classical sector,

ψ(x,X; t0) =
(2β
π

) 1
4
φad

0 (x|X) exp(−β(X −Xe)2), (46)

whereXe = 0.5 a.u. defines the Gaussian maximum with a width characterized
by the parameter β = 44 a.u. For the potential function parameters chosen
in this study, this choice of Xe leads to a density which is predominantly
localized in the left well. For comparison, Xe = 0 would delocalize the initial
density in both potential wells, and Xe < 0 would localize the density in the
right well.

Figure 6 depicts the first three hydrodynamic moments as a function
of time, in the Eulerian picture. The moments were integrated over the
classical variables (Q,P ) so as to obtain the reduced quantities 〈Pnρ〉q =∫

dQdP 〈Pnρ〉qQP , n = 0, 1, 2. The figure illustrates the transfer of density
between the two wells, by a dominant tunneling mechanism.

Figure 7 illustrates the time-dependent probability padn=0(t) for the “light”,
double well oscillator to remain in its adiabatic ground state. Appendix B
provides details on the calculation of this probability in terms of the partial
moment quantities, see (B.3). Nonadiabatic effects are extremely pronounced,
since the time scales of the “light” (quantum) vs. “heavy” (classical) oscil-
lators are not well separated. The density oscillates along Q with period 0.1
fs−1, as manifested in the periodic revivals of padn=0(t) in Fig. 7. As density
is transferred to the adjacent potential well, the magnitude of oscillations
in padn=0(t) diminishes until at around t = 800 fs, when the density is fully
delocalized in both wells.

We emphasize that the moment method is exact for the system considered
here, where the classical coordinate is harmonic. This is also the case for the
mixed quantum–classical phase space methods of [45, 46] (prior to approxi-
mations made in the propagation scheme), but is in contrast to other hybrid
methods like the surface hopping and mean-field methods [49, 82], as well as
the hybrid Bohmian-classical method of [49].

4.2 Quantum Oscillator Coupled to a Classical Brownian
Oscillator

The second example addresses a mixed-state problem which can be solved
analytically. We consider a harmonic “quantum” oscillator coupled bilinearly
9 For the Wigner calculation in the four-dimensional (q, p, Q, P ) phase space, the

time integration was performed using a fourth-order Runge–Kutta method, and
derivatives were calculated using the Fast Fourier Transform method.
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Fig. 6. The first three hydrodynamic moments are shown as a function of time
(Eulerian picture), for the double well system coupled to a harmonic oscillator,
(45). As explained in the text, the reduced q-dependent quantities 〈Pnρ〉q =∫

dQdP 〈Pnρ〉qQP are shown. The moment evolution reflects the transfer of den-
sity between the two wells. Further, a one-dimensional cut is shown for the second
moment 〈P2ρ〉q, illustrating that negative regions can occur. These can be traced
back to the characteristic quantum interference (and tunneling) effects which give
rise to negative regions of the Wigner function, typically in the barrier region be-
tween the two wells
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Fig. 7. For the double well system coupled to a harmonic oscillator, (45), the time-
dependent probability pad

n=0 for the quantum subsystem to be in the zeroth adiabatic
state, is shown, calculated from (B.3) for the pure-state case. The marked oscillations
in pad

n=0 signal pronounced nonadiabatic effects which are generated by the coupling
to the classical subsystem. Superimposed is a slow oscillation which corresponds to
the tunneling period
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to a “classical” oscillator which undergoes Caldeira–Leggett type dissipation
[83]. The dynamics is described by a Fokker–Planck equation in the Wigner
phase space representation,

∂ρW

∂t
= {H, ρW}qp + γ

∂

∂P
(PρW) + γMkBT

∂2

∂P 2
ρW (47)

where the index denotes qp = (q, p,Q, P ), and the Hamiltonian reads:

H =
p2

2m
+
P 2

2M
+

1
2
k(q −Q)2 +

1
2
KQ2. (48)

The quantum oscillator undergoes delayed (non-Markovian) dissipation due
to its coupling to the classical “Brownian” oscillator. Given a Gaussian initial
condition (which is again chosen to be pure-state), the system remains in a
time-evolving Gaussian state, which is always mixed-state due to the effects
of dissipation. The time evolution can be obtained analytically in terms of
the time-evolving Gaussian parameters, i.e., the mean values of positions and
momenta, as well as the matrix of variances [84].

The Gaussian density can at all times be represented in terms of the first
three partial moments,

ρW(q, p,Q, P ) =
〈ρ〉qQP

(2πσ̃qQP )1/2
exp

(
− 1

2σ̃qQP
(p− p̄qQP )2

)
, (49)

where σ̃qQP = σqQP /〈ρ〉qQP . As detailed in [84], the momentum p̄qQP and the
hydrodynamic force (43) are linear functions of (q,Q, P ). The time-dependent
adiabatic probability padn=0(t) can also be constructed analytically in terms of
the first three moments, see Appendix B.

Propagation in the Eulerian frame thus involves the time evolution of the
first three partial moments [84]. In the Lagrangian frame, the fluid–particle
dynamics is of stochastic character, due to the effects of dissipation in the
classical subspace, so that (42) needs to be augmented by a Langevin term [84]

q̇ =
p̄

m
,

˙̄p = − ∂

∂q

(
Vq(q) + Vint(q,Q)

)
+ Fhyd(q,Q, P ),

Q̇ =
P

M
,

Ṗ = − ∂

∂Q

(
VQ(Q) + Vint(q,Q)

)
− γP +R(t) (50)

with the Gaussian random force R(t).
We have calculated the time-dependent adiabatic probability padn=0(t) (B.4)

both in the Eulerian and Lagrangian representations [84], with parame-
ters as specified in [38, 82, 84] and initial conditions analogous to (46). As
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Fig. 8. The time-dependent adiabatic probability pad
n=0 is shown for a system of

coupled oscillators, (48), according to the mixed-state expression (B.4). Parameters
were specified as in [38, 82, 84]. The system’s behavior in the absence of dissipation
(upper panel) is compared with the behavior in the presence of dissipation (lower
panel). The friction coefficient was γ = 0.05 a.u. and the temperature was chosen as
T = �ω/(2 kB) (see text). The nonadiabatic oscillations are strongly reduced, i.e.,
an effect of “noise-induced adiabaticity” is observed

demonstrated in Fig. 8, a pronounced nonadiabatic behavior is again ob-
served. As also illustrated by the figure, dissipation acts so as to make the
dynamical behavior “more adiabatic”: i.e., the characteristic oscillatory ef-
fects in the adiabatic probabilities subside as the stochastic dynamics affects
the classical oscillator and, indirectly, the quantum oscillator. Dissipation
slows down the classical oscillator (thus reducing the probability of nona-
diabatic transitions) and, from an alternative viewpoint, leads to a loss of
vibrational coherence in the quantum subsystem, thus impeding the popula-
tion transfer. As a consequence of the high-temperature assumption inherent
in the Caldeira–Leggett dynamics (47), the survival probability approaches
padn=0(∞) = (1/2 + kBT/�ω)−1 [84], here chosen as padn=0(∞) ∼ 1.

5 Conclusions

The quantum–statistical moment formulation allows one to carry the hydrody-
namic picture beyond the pure-state (“Bohmian”) case, so as to include mixed
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states and dissipation. Complementary Eulerian and Lagrangian representa-
tions can be derived, by complete analogy with pure-state hydrodynamics (and
classical hydrodynamics). The difference between the pure-state and mixed-
state cases lies in the fact that two fluid-dynamical equations completely de-
scribe a pure quantum state, while an infinite number of coupled moment
equations are necessary to fully characterize a general mixed state (Sect. 2.2).
Special cases include, e.g., Gaussian mixed states, for which the moment hi-
erarchy terminates with the first three equations. In general, the approximate
closure of the moment hierarchy, by appropriate truncation schemes, is a key
issue in applying the moment equations.

The hydrodynamic formulation provides a unique connection to the quan-
tum phase space (Wigner) representation. The hydrodynamic moments in
question are the moments of the Wigner function with respect to the phase
space momentum variable p, i.e., obtained by a “projection onto coordinate
space” [26]. Importantly, this perspective immediately leads one to identify
the hydrodynamic momentum as an average momentum at given q, p = p̄q.
The additional, hydrodynamic (or “pressure”) force Fhyd which arises in the
hydrodynamic picture can thus be taken to compensate for the fact that the
dynamics of the average momentum p̄q is considered [36, 37]. This aspect
is underscored by introducing the concept of a hydrodynamic phase space
(Sect. 2.6). In the Bohmian theory, the hydrodynamic momentum is identified
with an actual particle momentum, pBohm ≡ p̄q.

These observations raise several questions as far as the classical limit of
quantum hydrodynamics is concerned (Sect. 2.5). While the “Bohmian” clas-
sical limit postulates the vanishing of the hydrodynamic, or “quantum” force,
Fhyd → 0, the classical–statistical hydrodynamic limit implies that the force
converges towards a purely classical form, Fhyd → F cl

hyd, which is generally
nonzero. The classical hydrodynamic force F cl

hyd = −(1/m) 〈ρ〉−1
q ∂σcl

q /∂q can
be deduced from the momentum variance σcl

q obtained in the classical Liouville
limit, where the quantum Wigner distribution is approximately represented
by a classical phase-space distribution. The classical-statistical hydrodynamic
limit is thus compatible with – and can be taken to follow from – the classi-
cal Liouville limit. The two hydrodynamic classical limits – i.e., the classical-
statistical limit (following from the classical Liouville limit) vs. the “Bohmian”
Fhyd → 0 limit – generally differ substantially. (Exceptions are cases where
Fhyd vanishes due to the form of the underlying phase-space distribution, e.g.,
in the free-particle case as discussed in Sect. 2.6).

Against this background, one of the central concerns of this chapter has
been the construction of a hybrid quantum–classical scheme based upon the
hydrodynamic picture (Sect. 3.1). We have chosen the dynamics in the classical
subspace so as to be compatible with the classical Liouville limit (or, the
statistical–hydrodynamic limit) rather than the Bohmian classical limit. This
choice is motivated by the observation that the classical Liouville limit is
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most appropriate for the following two situations, which take a central role
in a quantum molecular dynamics context: (a) the description of quantum–
statistical phenomena in a regime where classical effects dominate, e.g., at high
temperatures; (b) the simulation of quantum dynamical processes (even for
pure states, at T = 0), by classical trajectory ensembles (“Wigner method”).

The hybrid quantum–classical scheme in question is based upon the rep-
resentation in terms of the partial moments of equation (3) [38, 39]. While
quantum hydrodynamics (like classical hydrodynamics) is fundamentally a
coordinate space formulation, its derivation from the Wigner picture makes
it an ideal setting for combining the two representations. Thus, the essence of
the partial moment construction is to introduce a hydrodynamic projection
for a subset of selected degrees of freedom, while the remaining degrees of
freedom remain in a Liouville space setting. In a further step, the classical
Liouville limit is introduced in the classical subspace. As a result, one obtains
the hybrid quantum–classical representation of (3) which combines a hydro-
dynamic Lagrangian evolution in the quantum subspace with a Hamiltonian
dynamics in the classical subspace. Equation (3) can be considered as a hybrid
quantum–classical molecular dynamics (MD) approach, where the sampling
in the classical subspace is the same as in conventional MD simulations. This
hybrid representation is distinct from other mixed quantum–classical schemes
which are based upon the Fhyd → 0 limit in the classical subspace [49,51].

The classical-limit description is obtained from the exact dynamical evo-
lution for the partial moments (Sect. 3.2) by omitting the quantum correction
terms pertaining to the classical sector. This approximation is the same as the
one made in the quantum–classical Liouville equation (Sect. 3.3), and therefore
shares all properties of the latter – in particular, the exactness for harmonic
classical subsystems. The hybrid Lagrangian trajectory dynamics is unique,
though, in that it describes deterministic, coupled quantum–classical trajec-
tories according to (3). We have demonstrated this quantum–classical picture
for coupled light-heavy oscillator systems.

The examples addressed in the present chapter have focused on cases for
which the hydrodynamic hierarchy terminates with the second order (pure
states) or with the third order (Gaussian mixed-state densities). Future work
will focus on the closure problem for general densities, as briefly discussed
in Sect. 2.1. In particular, maximum entropy methods [69, 70] will be applied
and developed to construct approximate closure schemes. Once the closure
problem is satisfactorily solved, the strength of the hydrodynamic description
lies in (a) the possibility to selectively probe and propagate a limited number
of moments, not the complete information contents of the quantum density,
and (b) the use of the Lagrangian trajectory representation and its generaliza-
tion to a hybrid hydrodynamic-Liouvillian setting. Quantum hydrodynamics
for mixed quantum states could thus become a viable setting for dynamical
calculations in a quantum–statistical setting.
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Appendix A Partial Moments for Pure States

For pure states, the partial moment hierarchy terminates with the first two
equations. Since the fundamental representation for pure states is the coordi-
nate space representation, the moments can be written as follows:

〈Pnρ〉qQP =
(

�

i

)n
∂n

∂rn

∫
dR exp

(
− iPR

�

)
ρ(q, r;Q,R)

∣∣∣∣
r=0

(A.1)

with the pure state density matrix

ρ(q, r;Q,R) = ψ

(
q +

r

2
, Q+

R

2

)
ψ∗
(
q − r

2
, Q− R

2

)
(A.2)

With the polar form of the wavefunction, ψ(x,X) = R(x,X) exp[iS(x,X)/�],
the partial moments (A.1) can be entirely expressed in terms of the local-in-
space quantities [38,39]

ρ̃(q,Q) = R2(q,Q), (A.3)

p̃(q,Q) =
∂S(q,Q)
∂q

. (A.4)

The explicit form of the pure-state partial moments is given in [39]. Note
that the pure-state property is not generally conserved under the quantum–
classical dynamics.

Appendix B Adiabatic Survival Probabilities

Within a Born–Oppenheimer zeroth-order description for a coupled light-
heavy system [82], i.e., with a basis of functions {φad

n (x|X)ϕln(X) }, the pro-
jection onto the light-oscillator nth adiabatic state φad

n (x|X) is given as follows
for a general coordinate-space density ρ(x,X;x′, X ′) [84]:
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padn = Tr{|φad
n 〉〈φad

n |ρ̂(t)}

=
∫

dX dxdx′ φad∗
n (x|X) ρ(x,X;x′, X ′ = X)φad

n (x′|X). (B.1)

This expression is a generalization of the corresponding pure-state expression
given, e.g., in [82]. In the following we will consider, in particular, the time-
dependent survival probabilities with respect to the n = 0 adiabatic ground
state. E.g., for a harmonic oscillator in the quantum subspace, the adiabatic
ground state corresponds to a displaced Gaussian centered on the mean posi-
tion of the classical oscillator [82].

In general, the representation of (B.1) in terms of moments would neces-
sitate an expansion of ρ(x,X;x′, X ′) as in the Taylor expansion (6). Here,
we will consider two special cases, for which the density itself, and hence, the
expression (B.1) can be cast in terms of the lowest-order moments.

First, for pure states, the wavefunction ψ(x,X) = R(x,X) exp[iS(x,X)/�]
can be rewritten in terms of the quantities ρ̃(x,X) and p̃(x,X) introduced in
(A.3)–(A.4),

ψ(x,X; t) = ρ̃1/2(x,X) exp
(
i/�

∫
dq p̃(x,X) + f(X)

)
(B.2)

so as to obtain for the adiabatic probability

padn=0(t)
∣∣∣∣
pure

=
∫

dX
∣∣∣∣∫ dxφad∗

0 (x|X)

ρ̃1/2(x,X; t) exp
(

i/�
∫

dx p̃(x,X; t)
)∣∣∣∣2, (B.3)

which we used in our analysis in [38]. When propagating the partial hydrody-
namic moments, the local-in-space quantity p̃(q,Q) is obtained by integration
over the phase space momentum P , p̃(q,Q) =

∫
dP 〈Pρ〉qQP /

∫
dP 〈ρ〉qQP .

Second, a Gaussian mixed-state density will be considered, for the specific
case where both the quantum and classical parts are harmonic. In this case,
the adiabatic probability can be expressed in the following analytical form,
involving the first three partial moments [84]

padn=0(t)
∣∣∣∣
gauss

=
∫

dq dQdP 〈ρ〉qQP (t) I(q,Q, P ; t) (B.4)

with the kernel

I(q,Q, P )=2
(

�
2β2

2σ̃qQP +�2β2

)1/2

exp

[
−β2(q −Q)2−

p̄2qQP

2σ̃qQP +�2β2

]
, (B.5)

where β = (mω/�)1/2 and σ̃qQP = σqQP /〈ρ〉qQP .
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(2004)
48. D. A. Micha and B. Thorndyke, Adv. Quant. Chem. 47, 293 (2004)
49. E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 113, 9369

(2000)
50. E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 116, 8 (2002)
51. O. V. Prezhdo and C. Brooksby, Phys. Rev. Lett. 86, 3215 (2001)
52. H. W. Lee and M. O. Scully, J. Chem. Phys. 77, 4604 (1982)
53. H. W. Lee, Phys. Rep. 259, 147 (1995)
54. A. Donoso and C. C. Martens, Phys. Rev. Lett. 87, 223202 (2001)
55. J. Daligault, Phys. Rev. A 68, 010501 (2003)
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adiabatic and non-adiabatic electron

transfer, 15
adiabatic basis, 8, 411
adiabatic proton transfer, 315
adiabatic representation, 323
adiabatic survival probability, 412, 413,

415, 418, 419
adsorbate, 103, 166
adsorbate dynamics, 184
adsorbate relaxation, 191
adsorbate vibrations, 191
Ag metal, 103
alkali-noble gas, 178
amide units, 51
Anderson–Newns model, 205
antenna complex, 39, 40
artificial molecules, 18
asymptotic motion (see also free

motion), 346
ATD mixing angle, 114, 116
atomic basis, 179
Auger, 88
Auger process, 17
autocorrelation function, 149, 153
avoided crossing, 237, 238, 323

bidirectional operator, 168
bilinear coupling, 183
Bohmian, 391–394, 397, 398, 400, 404,

405, 410, 412, 415, 416
Bohmian mechanics (formulation), 344
Bohmian trajectories, 374
Boltzmann factor, 10

Born–Oppenheimer approximation, 227
branching space, 140
Brillouin zone, 22
Brownian oscillator, 135, 142
butatriene cation, 151

Caldeira–Leggett, 411, 414, 415
canonical equilibrium distribution, 316
carbon nanotube, 6
carrier multiplication, 25
carrier separation, transport, transfer

and relaxation, 17
chaos, 270
charge transfer, 5, 57, 195
charge transfer state, 211, 215
charge-charge scattering, 25
chlorophyll, 34, 35
chronologically ordered moment series,

145, 159
classical chaos, 352, 362
classical deflection function, 355–357
classical dynamics, 259
classical Hamilton–Jacobi equation, 349
classical limit, 393, 400, 401, 405, 416,

417
classical Liouville limit, 395
classical rainbow angle, 355, 356
classical rainbow singularity, 355
classical reaction coordinate, 316
classical skipping orbit, 363
classical stress tensor, 347
classical trapping, 364
cluster mode, 141
cluster model, 185
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coherent classical path, 269
coherent state representation, 328, 329
coherent states, 260
coherent switches with decay of mixing,

233, 238
coherent switching, 233
coherent vibrational motion, 16
collective environmental modes, 136,

139
collisional excitation, 177
complex nuclear dynamics, 113, 117,

129, 131
condensed phase, 195
condensed phase chemical reactions,

295
conduction and valence bands, 12
conical intersection, 113, 117, 125, 129,

131, 135, 137, 151, 237, 238
conjugated polymers, 58
continuity equation, 396, 409
correction operator, 262, 263, 265
correlation function, 197, 202
coumarin, 205
coupled quantum-classical, 169
coupling mode, 138, 152
cross section, 179, 250, 251
crossing seams, 125, 126
Cu metal, 99
cumulant expansion, 146, 159, 161
cumulative effects, 136, 139
current, 409

De Broglie–Bohm formulation, 372
Debye model, 191
decoherence, 227, 228, 231, 233–235,

350, 381
decoherent state, 231–233
deep tunneling, 268, 269
deflection angle, 355, 356
delayed dissipation, 150, 151, 190
demixing, 231, 233
density functional theory, 7
density matrix, 37, 165, 172
density of states, 13
density operator, 143, 165–167, 169, 395

reduced, 165, 180, 182
desorption yield, 188
detailed balance, 16

diabatic electronic states, 114
diabatic representation, 323
diffusive scattering, 357
dipole-dipole interaction, 185
Dirac-Frenkel variational principle, 198
dissipation, 150, 415
dissipative dynamics, 180
dissipative potential, 186
dissipative rates, 165
donor and acceptor, 13
donor-acceptor coupling, 15
double minimum shape, 125
double well, 411–413
driving effect, 173
dye–semiconductor interfaces, 204
dynamical metric, 248
dynamical variable, 247
dynamics solvent effects, 213

effective force, 345, 364
effective Hamiltonian, 141, 142, 150
effective modes, 139–141
effective potential, 170, 171, 345, 352
Ehrenfest method, 201, 228–231, 233,

235–238
Ehrenfest, self-consistent classical

trajectory, 324
einselection, 232
electron injection, 204
electron injection mechanism, 12
electron transfer, 204
electron transfer rate, 93
electron-hole annihilation, 25
electron-vibrational relaxation, 20
electronic and optical excitation, 20
electronic–vibrational coupling, 209,

216
electrons and holes, 18
energy gap, 19
energy relaxation, 6
EOM-CCSD calculations, 124
Euler–Lagrange equations, 248
excited-state processes, 135
exciton, 57, 59, 61, 63, 65, 67, 69, 71,

73, 75, 77, 79, 81, 83, 85
exciton regeneration, 73
exciton–vibrational coupling, 37, 44
expectation values, 172
exponential decay, 103
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factorized density operator, 180
femtosecond spectroscopy, 204, 210
Fermi Golden Rule, 88
Fermi level, 22
Filinov filtering, 261
filter diagonalization, 270
first and second van Hove singularities,

22
flux–flux quantum correlation function,

297
Foerster theory, 43
forward-backward propagators, 322
Fraunhofer region (or regime), 346, 347,

350
free electron, 249
free motion, 346, 363
free particle, 402–404, 416
free-electron metal, 89, 91, 102
Frenkel exciton, 31, 37
Fresnel region (or regime), 346, 356
frozen Gaussian approximation, 260
frozen Gaussian propagator, 266
frustrated T-mode, 190
furan singlet excited states, 123

G-modes and breathing modes, 23
Galilean transformations, 93
Gaussian and exponential relaxation, 21
Gaussian distribution, 395–397, 402,

404, 406, 411, 412, 414, 416, 417,
419

Gaussian random force, 414
generalized Euler equation, 347
generalized Hamilton–Jacobi equation,

345
generalized Langevin equation, 182
grazing angle collision, 97

Hamiltonian equations, 171
harmonic bath, 310
harmonic oscillator, 399, 404, 411, 413,

419
harmonic oscillator imaginary time

propagator, 307
Hellmann–Feynman, 302
Hellmann–Feynman force, 170
Hellmann–Feynman theorem, 9
Herman–Kluk SCIVR, 264
Herman–Kluk SCIVR propagator, 261

Herman–Kluk semiclassical propagator,
328

heterogeneous electron transfer, 205
hopping probability, 10
hybrid propagators, 269
hybrid representation, 393, 405, 407,

409, 410, 416, 417
hydrodynamic force, 393, 398–403, 405,

409, 414, 416
hydrodynamic moments, 392–397,

399–401, 406, 412, 413, 415, 419
hydrodynamic phase space, 401–404
hydrogen-bonding, 314

image potential, 89
imaginary time propagators, 306
impact parameter, 250
inertial regime, 137, 156, 157
initial value representation, 318
initial weight distribution, 312
instantaneous dissipation, 183, 191
interaction mode, 141
interaction region (see also Fresnel

region), 350
interaction representation, 267
interference, 100, 343, 346, 349, 354, 356
internal conversion, 113, 129, 210
intersection space, 138
intervalence electron transfer, 210
invariance laws, 249
ion population, 176
IRIVR - Interaction Representation

IVR, 267

Jacobi identity violation, 409

Kleynman-Bylander, 89
Kondo parameter, 313
Kubo transform, 297

laboratory frame, 249
Lagrangian, 246
Lagrangian frame, 391, 393, 398, 401,

402, 408–410, 412, 414, 416, 417
Lanczos algorithm, 121, 127
LAND-Map, 322
level width, 92, 98, 101, 105
Li+ neutralization, 100
lifetime, 91
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Lindblad expression, 184, 186
linear vibronic coupling (LVC) model,

138
linearization, 322, 333
Liouville superoperators, 181
Liouville–von Neumann equation, 165,

230, 231, 233
local complex potential, 88
LVC approach, 115, 116, 124, 131

Mapping hamiltonian formalism, 322,
325

Marcus–Hush approach, 78
Markovian approximation, 144, 159
Markovian dissipation, 166, 191
MCTDH calculations, 121, 128
mean field nonadiabatic dynamics, 336
mean-field approximation, 9
mean-field operator, 198
memory term, 182
metal band structure, 94, 100
metal surface, 87
minimal END, 247
mixed quantum–classical, 323, 374
mixed quantum–classical systems, 295
mixed quantum-classical approaches,

238
mixed states, 137, 149, 153, 392,

394–396, 399, 400, 406, 412,
415–417

mixed valence, 210
molecular electronic materials, 63
molecular electronics, 26
molecule-semiconductor interface, 6
molecule-surface scattering, 377
moment expansion, 145
moment hierarchy, 396, 397, 399, 408,

411, 415, 418
MQCB results, 379
multiconfiguration time-dependent

Hartree (MCTDH), 152, 198, 199
multiconfigurational methods, 137
multiexciton, 32
multilayer formulation, 198

N2/LiF(001) scattering, 377
NaI, 174, 175
neutral population, 176
node, 24

non-adiabatic coupling, 8
non-adiabatic molecular dynamics, 7
non-adiabatic transitions, 87, 98, 102,

105
non-Markovian, 135, 136, 143
non-Markovian decoherence, 233, 238
nonadiabatic, 135, 245, 247, 249, 251,

253, 255, 257, 391, 393, 406, 410,
412, 413, 415

nonadiabatic correction, 317
nonadiabatic coupling, 230, 235, 248,

302
nonadiabatic coupling effects, 113, 129
nonadiabatic coupling vector, 323, 325,

337
nonadiabatic dynamics, 227, 228, 230,

234, 235, 237, 238
nonadiabatic reaction rates, 310
nonadiabatic time correlation functions,

321
nonadiabatic transitions, 323, 415
nonlinear oscillator, 310
nonlinear spectroscopy, 214
nonlocal action, 346
nonlocality, 356

optical and acoustic phonons, 23
organic light emitting diodes, 59

partial moments, 391, 393, 405–408,
411, 412, 414, 417–419

partial Wigner transform, 167, 171, 301
partially ordered cumulant series, 146,

147, 159
path integral nuclear, 284, 289, 322, 327
Pauli matrix, 138
Pechukas semiclassical nonadiabatic

dynamics, 323, 336
permanent trapping, 361
perturbation theory - time dependent,

263
phase density, 167
phase shift, 251
phase space, 170, 172, 177

density, 184
phonon bottleneck, 19
photoabsorption spectrum, 127
photochemistry, 136
photodesorption, 166, 184
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photodissociation, 166, 174
photoexcitation, 213, 214
photoinduced electron transfer, 11, 211
pointer basis, 232
Poisson bracket, 395, 408
Poisson bracket operator, 299
polar solvent, 314
polymers, 63
population dynamics, 129, 130
populations, 175
potential difference operator, 265
potential energy surface, 9
PPV two-band model, 69
primary amplitude, 186, 187
primary region, 180
projected band gap, 95, 98, 100
projection operators, 182
propagation, 172
proton transfer, 295, 314
pseudopotential, 178
pump-probe spectra, 216
pump-probe spectroscopy, 383, 388
pure states, 137, 149, 153, 160, 397, 398,

418

quantum chaos (see also vortical
dynamics), 358

quantum coherence, 175, 192
quantum computing, 26
quantum confinement, 16
quantum correction, 393, 396, 399, 404,

407, 408, 410, 417
quantum deflection function, 355–357
quantum dot, 6
quantum dynamics, 195, 228–231, 235,

236, 238, 239
quantum equilibrium structure, 296
quantum hydrodynamic trajectories,

393, 405
quantum hydrodynamics, 347, 348
quantum information (transmission of),

346
quantum Liouville operator, 299
quantum mechanical action, 246
quantum mechanical rate coefficient,

297
quantum nuclei, 256
quantum potential, 345–348, 354, 357,

364, 398

quantum pressure, 347, 348, 352, 354,
359, 361, 364, 365

quantum rainbow, 355
quantum skipping orbit, 364
quantum stress tensor, 347
quantum trajectory (definition), 345
quantum transitions, 10
quantum trapping, 364
quantum vortex, 347, 348, 358, 364
quantum–classical, 170, 391, 404, 408
quantum–classical correspondence, 348,

349, 352, 355, 356, 361
quantum–classical Heisenberg equation,

302
quantum–classical limit, 300
quantum–classical Liouville dynamics,

295
quantum–classical rate theory, 296
quantum-hydrodynamical picture, 356
quasi-stationary states, 92

rainbow angle (see also deflection
angle), 355

rainbow effect, 355, 361
rate constant, 295, 300, 317
rate equation, 92, 102
reaction coordinate, 303
reaction dynamics, 245, 247, 249, 251,

253, 255, 257
reaction mechanism, 252
reactive flux, 305
reduced density operator, 180, 189, 192
reduced dynamics, 137, 143
reduced propagator, 137, 143–145
regularized diabatic states, 114, 116
relax-and-drive, 173, 174, 184
relaxation dynamics, 71
renormalized propagator, 266
reorganization energy, 207
residual bath, 141, 142, 158
resonance, 91, 350, 351
resonant charge transfer, 87, 91
response time, 20
restricted norm, 365, 366
Runge–Kutta method, 191

S- and P-states, 18
Schiff approximation, 251, 252
SCIVR, 259
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SCIVR propagator, 264

SCIVR series representation, 259, 262,
263

secondary region, 180

selective adsorption, 361

selective adsorption resonance, 361

self-consistent, 182

self-consistent eikonal approximation,
228

self-consistent hybrid method, 201, 202

self-consistent potentials, 228, 231, 232,
234, 236, 238

semiclassical approximations, 227–231,
233

semiclassical corrections, 251

semiclassical initial value
approximation, 259

semiclassical limit, 169

short-time propagator, 147, 148, 150

single-exciton, 33, 48

single-particle function, 198

solar cell, 11

solvation dynamics, 207

solvent coordinate, 157

solvent polarization, 315

spectral density, 206, 207, 298

spectral function, 190

spin-boson model, 139

spin-boson systems, 310

spintronics, 26

split operator approximation, 90

split-operator propagator, 176

stationary phase limit, 260

statistical interpretation, 344

stretching, bending and torsional
modes, 13

substrate, 87

surface rainbow, 355, 356

surface resonance, 100, 361

surface state, 95

surface substrate hopping, 323, 336, 410

surface-hopping dynamics, 295

surrogate propagator, 148, 150

survival amplitude, 90

symmetry-adapted formulation, 118,
131

system–bath model, 137, 138

temporal trapping (see also transient
trapping), 361

TFB–F8BT junction, 77
thermal fluctuations, 13
thermodynamic efficiency, 17
Thouless determinant, 256
threshold resonances, 361
time-dependent, 245, 247, 249, 251, 253,

255, 257
time-dependent Hartree approximation,

228
time-dependent rate coefficient, 300
time-resolved spectroscopy, 213
titanium oxide, 205
topology-adapted modes, 141
trajectories, 227, 228, 231, 233, 238, 239
trajectory surface hopping, 232–238
transient classical trapping, 352
transient quantum trapping, 352
transient spectra, 52
transient transmittance, 216
transient trapping, 350
transient vortical trapping, 361
transition amplitude, quantum

subsystem, 322
transition state, 14
transition state theory, 311, 317
transmission coefficient, 312
transport property, 296
trapping (general), 365
traveling atomic functions, 178
traveling gaussian, 247
tuning mode, 138, 152
tunneling, 346, 352, 354, 412, 413
twin intersection, 127
two-exciton, 33, 48
two-level system, 310

ultrafast processes, 129, 130, 135, 195
uncertainty, 343, 345
unpredictability, 345

van Hove singularity, 22
van Vleck semiclassical propagator, 260
variance (momentum), 398, 399, 401,

410, 416
vector coherent state, 256
vector potential, 338
vibrational coherence, 209, 212
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vibrational decoherence, 379
vibrational trapping (see also classical

chaos), 362
vibronic coupling, 113, 115, 118, 131,

138, 151
vibronic states, 187
vortical dynamics, 348, 357, 358, 364
vortical regime, 361
vortical structure, 361
vorticality (see also vortical dynamics),

364

wave-packet dynamics, 209, 212

wavepacket, 89, 176, 229, 233, 234
Wigner function, 394, 395
Wigner method, 401, 417
Wigner transform, 166, 203, 298

partial, 167
Wigner transformed density operator,

322
Wigner–Weyl, 396

yield vs fluence, 188

zig-zag nanotube, 22


