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Preface

Demand for in situ surface analysis tools has increased considerably with
the advent of nanotechnology and the rapid development of life sciences and
chemical sensors. Investigating surface reactions in physics, chemistry, and
biology is rewarding and demanding at the same time. In particular, non-
invasive techniques are required to study subtle effects as they occur at cellular
membranes. The detection and quantification of subtle shifts in mechanical
properties comprising viscoelastic properties of soft matter, friction on small
length scales, adsorption of biomolecules, and interfacial forces created by
molecular contacts are desirable measurements for understanding processes
occurring at the solid liquid and solid gas interface.

In the last few years, acoustic resonators have leaped forward, meeting
many of the demands of interfacial sensors. Among them, thickness shear
mode (TSM) resonators are the most widespread and versatile acoustic res-
onators capable of studying viscoelastic properties of soft matter, adsorption
of molecules down to the picogram regime, motility of living cells just to name
a few prominent achievements. The beauty of this approach is that the infor-
mation content goes beyond most optical techniques comprising information
about mass density, contact mechanics, dynamics of interfacial processes, sur-
face roughness, and viscoelasticity of many layer systems. Acoustic sensor
technology is a highly interdisciplinary field. Researchers from different areas
ranging from electrical engineering to cell biology have contributed valuable
technological concepts, theoretical insights and applications to the use and de-
velopment of thickness shear mode resonators as extremely sensitive, robust
and versatile sensors, which are discussed in this book.

Thebookisintended to give a state-of-the-art overview of the recent achieve-
ments in the area of piezoelectric sensors. The focus lies on TSM resonators,
since this class of piezoelectric devices is most frequently used in physical and
chemical sensor and biosensor applications, and they are largely commercially
available. The book is divided into three parts. The first four chapters cover the
physical background of piezoelectric devices. While Ralf Lucklum and Frank
Eichelbaum discuss different interface circuits to drive a TSM resonator in
the first chapter, Diethelm Johannsmann provides a comprehensive picture
of how to treat different load situations of the quartz crystal microbalance
(QCM) in the second, including rather new development in the area of con-
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tact mechanics in the fourth chapter. The third chapter, written by Michael
Urbakh and coworkers, the solid/liquid interface, as probed by the QCM, is
discussed focusing on the impact of surface roughness and interfacial friction.
The second part of the book then presents a variety of possible applications
of the QCM and surface acoustic wave (SAW) sensors. The chapter by Franz
Dickert and Peter Lieberzeit describes how functionalization of a QCM and
SAW sensor surface with imprinted polymers allow monitoring very different
analytes ranging from simple organic molecules to bacteria and cells. The
next two chapters by Marco Mascini and coworkers and Robert Vaughan and
George G. Guilbault, respectively, provide an overview of nucleic acid biosen-
sors and immunosensors based on QCM techniques. In the eighth chapter we
show that, besides pure analytical applications, the combination of QCM with
atomic force microscopy measurements, and Monte-Carlo simulations allow
for a better understanding of the formation process of solid supported mem-
branes (SSMs) on quartz resonator surfaces and the interaction of proteins
with SSMs. Joachim Wegener and coworkers demonstrate in the ninth chapter
that, due to the sensitivity of a TSM resonator to changes in viscoelasticity, the
QCM is an invaluable tool to monitor and understand the interface between
cells and the resonator’s surface, which makes it possible to use this device in
whole cell biosensor applications.

This aspect is also discussed in the chapter written by Kenneth Marx, who
not only describes recent applications of the QCM to study thin polymer films,
electron transfer systems, biological macromolecules, and cells, but also the
application of the electrochemical QCM. This chapter is one of four of the
third part of this book, which is devoted to advanced QCM techniques. Yoshio
Okahata and coworkers demonstrate that a 27 MHz quartz plate enables one to
monitor the action of enzymes online, while Matthew Cooper gives an overview
on resonant acoustic profiling (RAP™) and rupture event scanning (REVS™)
realized by a QCM at Akubio. Fredrik Ho6k and Bengt Kasemo point out the
applicability of the QCM-D technique to biological questions pronouncing that
there is more than pure microgravimetry involved in interfacial processes.

We hope that the reader will find these contributions from leading scientists
working in the field of piezoelectric sensors stimulating.

Finally, we would like to express our gratitude to all the authors who
have contributed to this book, to Britta Wecker for her able handling of the
manuscripts, and to Otto S. Wolfbeis for his invitation to edit a book on this
cutting-edge topic in sensor development for this series and to Springer for
their professionalism in producing this book.

October 2006 Andreas Janshoff
Claudia Steinem
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Abstract Oscillators are the standard interface circuits for quartz crystal resonator sen-
sors. When applying these sensors in gases a large set of circuits is available, which can
be adapted to particular applications. In liquid applications viscous damping accompa-
nied by a significant loss in the Q factor of the resonator requires specific solutions. We
summarize major design rules and discuss approved solutions. We especially address the
series resonance frequency and motional resistance determination and parallel capaci-
tance compensation. We furthermore introduce recent developments in network analysis
and impulse excitation technique for more sophisticated applications. Impedance analy-
sis especially allows a more complete characterization of the sensor and can nowadays be
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realized with sensor interface circuitry. The performance of electrical circuitry depends
essentially on the stability of the acoustic device. We therefore begin with a discussion of
selected quartz crystal properties, disturbances from temperature and mechanical stress,
and analyze AT and BT cut from the sensor point of view.

Keywords Quartz crystals - Resonance frequencies - Oscillators - Network analysis

Abbreviations

A Gain

A Amplifier

a, b, c Acoustic modes

ALC Automatic level control

B Susceptance

BAW Bulk acoustic wave

C Capacitance

Co Parallel capacitance

Cec Equivalent capacitance

Cext External (stray) capacitance

Cq Equivalent (motional) capacitance of bare quartz crystal
C26 Element of piezoelectric tensor

Cé6 Element of mechanical stiffness tensor

o Effective complex shear modulus of quartz crystal
cq Piezoelectrically stiffened shear modulus of quartz crystal (real part)
D Dissipation

D Diode

d Plate thickness, crystal thickness

DA Differential amplifier

DDS Direct digital synthesizer

DT Diamond transistor

E Power source

eq = €26

f Frequency

fo Mechanical resonance frequency

Sosc Oscillator frequency

fob Plate-back frequency

forfes fm Series resonance frequencies of quartz crystal
fosfasn Parallel resonance frequencies of quartz crystal

his VCO frequency

FM Frequency modulation
FPGA Field programmable gate array
G Conductance

G(s) Transfer function

g(t) Impulse response

HPF High pass filter

I Current

I Integrator

j=+/-1

k Feedback factor

k Network parameter
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K2 Electromechanical coupling factor (complex value)
K% Electromechanical coupling factor (nq = 0)

L Inductance

Lg(Lp) Equivalent (motional) inductance of bare quartz crystal (acoustic load)
L{} Laplace transform

LPF Low pass filter

M Multiplier

N Number of samples

n Harmonic number

0SsC Auxiliary oscillator

PI Proportional-integral

PLL Phase-locked loop

PR Peak rectifier

PS Phase shifter

Q Quality factor

QCM Quartz crystal microbalance

QCR Quartz crystal resonator

R Resistance

Rq(Ry) Equivalent (motional) resistance of bare quartz crystal (acoustic load)
r Voltage ratio

Tg Internal dynamic emitter resistance

7q Electrode radius

s=o0 +jo Laplace variable

SAW Surface acoustic wave

T Temperature

T Period

t Time

14 Voltage

v Acoustic velocity

Vb DC voltage representing acoustic energy dissipation
VCA Voltage-controlled amplifier

vCo Voltage-controlled oscillator

X Reactance

Y Electrical admittance

VA Electrical impedance

7L Acoustic load (impedance)

Zq (Characteristic) acoustic impedance of quartz
o Resistance ratio

oq Acoustic phase shift in quartz crystal
Xmk kth Root of Bessel function of order m
£22 Element of permittivity tensor

Eq=¢€&2

n (Effective) viscosity

0 Phase angle

0 Crystal cut angles

K Design parameter of circular quartz discs
) Density

T Time constant

1) Angular frequency
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Indices

c Index for coating

el Index for electrical

H Index for high frequency

i Counting index

IF Index for intermediate frequency
L Index for low frequency

L Index for load

liq Index for (Newtonian) liquid

n, m, k Indices for acoustic modes in circular plate
m Index for motional

p Index for parallel

off Index for offset

open Index if Z — oo

out Index for output

q Index for quartz

ref Index for reference

s Index for series

short Indexif Z=0

* Index for sum of lumped elements
" Index for peak value

1

Introduction

There has been remarkable progress in the development and application of
the quartz crystal microbalance (QCM) principle in sensitive devices for the
detection and concentration measurement of specific molecules in gaseous
and liquid media [1]. Since the behavior of quartz crystal resonator (QCR)
sensors in gases is similar to quartz crystals technically used as frequency
standards, a large set of circuit configurations is available, whose known
properties can merely be adapted to particular applications [2-5]. In many
cases quartz crystals used in electronic circuitry, sometimes even from mass
production, are employed.

However, for chemical sensing applications these generally sealed devices
have to be opened and their surface functionalized with a chemically sensi-
tive coating. Just open the case reduces the quality factor, Q, by 1/3, and the
aging is 100-1000 times larger [6]. Viscoelastic properties of macromolecular
coating materials can have a strong impact on the vibration behavior of the
crystal and diminish the Q factor.

When using QCM sensors in liquid media one faces a considerably more
involved situation. The behavior of QCRs under these conditions diverges
essentially from that in vacuum or gaseous media. Most important is the
significant dissipation of acoustic energy due to liquid contact, which trans-
lates to energy lost from the electrical circuit. The oscillation is significantly
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damped and the Q factor is significantly reduced. This effect has two con-
sequences: Firstly, proofed circuit configurations for standard applications
cannot be applied anymore. Secondly, the zero-phase series resonance fre-
quency deviates notably from the series resonance frequency at in-phase
admittance maximum. This deviation is important, since the latter is the only
straightforward value when applying QCRs for sensing applications.

These facts must be taken into account when designing the sensor system.
We will therefore start with some considerations related to the quartz crystal
as transducer element. We will continue with an analysis of standard quartz
oscillators. We will give a survey on suitable circuit configurations and will
outline their advantages and drawbacks. Finally, a few interesting develop-
ments will be presented in more detail.

2
Crystals

2.1
Temperature and Force Sensitivity

The performance of oscillators depends essentially on the stability of the
acoustic device [7-9] no matter if working as electromechanical resonator or
delay line. Because of its extraordinary importance we will concentrate fur-
ther on resonators, namely quartz crystal resonators. However, the analysis
is descriptive also for other piezoelectric materials and partly for delay line
elements as well.

In a very fundamental way the principle of resonators must be described
on the basis of a traveling wave in a confined structure. Resonance in a vibrat-
ing system is always associated with a standing wave. The frequency is jointly
determined by the velocity of the traveling wave and the dimensions of the
confinement structure. In the case of a bulk acoustic wave (BAW) resonator,
an acoustic wave is confined by the substrate surfaces. The eigenfrequencies
can be mechanically and/or electrically perturbed, wanted or unwanted, by
either a change in the dimension of the resonator or by a change in the wave
velocity. Considering a complex wave vector those perturbations can also
cause a change of the acoustic wave amplitude, reflected in values of practical
interest: a change of the phase slope or in the Q factor of the device.

In its original application as timing reference, special care has been taken
to minimize the perturbations on frequency of the selected mode of vibration
caused by unavoidable variations in the environment, first of all temperature
and acceleration. The breakthrough of quartz crystal resonators in time-
keeping is very much correlated to the existence of a specific crystal cut, at
which the device resonance frequency provides a zero temperature coefficient
of frequency at 25°C and a remarkable temperature stability around room
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temperature [10]. Operated in the thickness shear mode, this so called AT-cut
quartz utilizes having two almost equal, but opposite temperature coefficients
of elastic stiffness compensating each other. This temperature insensitivity
is also favorable for sensor applications where variations in temperature are
usually a common concomitant. However, the temperature insensitivity of the
AT-cut is limited to bare crystals.

Applying a coating on one or the two main surfaces of the quartz disc re-
duces the temperature stability considerably, because acoustic properties of
the coating material usually depict much larger temperature sensitivities. The
overall temperature sensitivity of the sensor can be roughly estimated taking
the ratio of crystal and coating thickness into account. The temperature sensi-
tivity is significantly increased when operating the crystal in a liquid. A shear
wave evanescently penetrates into the liquid, thereby probing liquid density
and viscosity. The latter value can vary by an order of magnitude or more with
temperature and hence it governs the temperature coefficient of the sensor sig-
nal. The temperature dependence of liquid viscosity defines the requirements
of temperature maintenance of the experimental or measurement setup. Ap-
plying a reference sensor for temperature effect compensation is a passable
way; however, the design of a reference element is a challenging task.

As a second important fact, the coating required for (bio)chemical sens-
ing also tends to introduce mechanical stress into the system. For obvious
reasons the development concentrates on chemical sensitivity and selectiv-
ity. Mechanical and thermal properties should not be underestimated. They
strongly determine sensor reproducibility. On the one hand, stress from dif-
ferent thermal expansion coefficients contributes to the overall temperature
sensitivity of the sensor in an indirect way. On the other hand, the coat-
ing procedure must be considered to generate a noticeable amount of initial
stress. One example is a polymer film preparation from solution, where the
solvent evaporates more or less quickly and a solid polymer film remains
on the crystal surface. At the beginning of solvent evaporation the relaxation
time describing the time necessary for the macromolecule to realize confor-
mational changes is short enough to completely release the stress resulting
from volume reduction accompanying solvent evaporation. With continu-
ously decreasing solvent content the relaxation time increases and the coating
might not be able to release the generated stress within preparation time.
A certain amount of stress is “frozen” in the film and slowly released. Under
those circumstances the resonance frequency tends to show a long-term drift.
This relaxation phenomenon must not be mixed up with the viscoelastic re-
sponse of the coating to acoustic wave perturbations of the equilibrium state,
as discussed in Sect. 2. Due to the different time scales the coating can behave
rigidly without significant damping of the acoustic wave at the elevated ultra-
sonic frequencies, and at the same time act like a viscoelastic fluid in response
to the quasi-static stress introduced during preparation. The same holds for
thermal stress when temperature varies.
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The force-frequency effect was first observed by Bottom in 1947 [11]. Since
then, broad effort has been put into the design of piezoelectric resonators
for time-keeping purposes to reduce the effect of forces, mostly to make the
devices immune to acceleration. The initial emphasis of these activities was
driven by military applications. With the advent of satellite communications
systems, sensitivity to mechanical stress, mostly generated from acceleration,
is an important specification for commercial hardware as well. The sensitiv-
ity of piezoelectric transducers to acceleration has been critically reviewed
in [12]. Kosinski’s analysis also provides conclusions for sensor development
although advances achieved in resonator design get partly lost when using
them as sensor elements [13]. The driving factor behind frequency shifts
caused by a mechanical bias is deformation of the resonator. The effect can
be investigated based on Tiersten’s perturbation approach [14]. Changes in
the wave velocity are primarily a result of the non-linear elastic behavior of
the piezoelectric substrate; changes in the confinement dimensions is primar-
ily a linear mechanical effect. The frequency shift caused by wave velocity
changes is typically substantially larger than that caused by changes in the
resonator dimensions, hence the effect is sometimes thought of in a purely
non-linear manner. However, the linear part also causes an asymmetry in the
effective material constants [15]. The important consequence is that differ-
ent mechanical phenomena must be analyzed for the way in which they act
as deformation drivers. Acceleration sensitivity is hence a reaction to a force
against the mounting structure, planar stress sensitivity a result of interfa-
cial stress at the substrate/electrode/coating interfaces, and aging a relaxation
phenomenon of the composite resonator and the mounting structure. The
practical implication for sensor development is that techniques that reduce
the generic deformation sensitivity will improve the immunity to all of these
parameters simultaneously [12].

Minimization of the resonator deformation is a basic structural engineer-
ing problem. It has the advantage of achieving improvements without regard
to fabrication tolerances. On the one hand, plate thickness obviously governs
normal deformation, but on the other hand, plate thickness is the frequency-
determining value for BAW resonators. In consequence, a net 1/f dependence
of BAW resonator sensitivity on acceleration has been found for scaled de-
signs [12]. Scaled design means a similar crystal diameter- and electrode-to-
thickness ratio. Furthermore, the BAW acceleration sensitivity dependence
has been found experimentally to initially decrease with increasing harmonic
number and later to be essentially constant or slightly increased [16]. In sen-
sor applications, especially those which require liquid medium contact on
one side of the crystal only, special attention must be paid to the mounting
structure, which in addition to sealing must minimize the resonator deforma-
tion. An optimized mounting structure is symmetric with respect to the top
and bottom of the disc. A viscoelastic mount and a set of rigid support posts
should be advantageous to release both in-plane and normal stress [12]. Iso-
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lation of the crystal from external vibrations is less effective due to the direct
impact of the analyte on the crystal. Pressure variations originated, e.g., from
a peristaltic pump must be reduced with advanced sensor system design, for
example a fluidic low-pass filter [17]. Static pressure, e.g., hydrostatic pres-
sure from a liquid column acting on one side of the crystal, must be avoided,
carefully compensated or at least kept constant. For example, a simple dipping
experiment with a sensor, whose second surface is protected from liquid con-
tact by casing may fail if the immersion depths and the immersion angle are
not carefully controlled.

2.2
Crystal Cuts

The only design criterion of thickness—shear mode resonators for frequency
control is frequency stability. The AT-cut is most appropriate. AT-cut quartz
crystals are also typically used as sensor elements, although the requirements
for sensor applications are more complex. If part of the temperature insensi-
tivity of AT-cut quartz crystal resonators is lost anyway in sensor applications,
it is worth considering other crystal cuts. Each cut of a piezoelectric crys-
tal supports three bulk acoustic modes, each having different phase velocity,
different polarization, and different piezoelectric coupling. The modes are
usually ordered in terms of the wave velocity, with “a” having the highest and
“c” having the lowest velocity [18]. The a-mode is called quasi-longitudinal,
since the largest component is in the direction of wave propagation. The
b- and the c-modes are termed fast quasi-thickness shear and slow quasi-
thickness shear, respectively, since the dominant component is shear. The
existence of crystal orientations having a purely transverse b- and c-mode
is an important feature when designing a sensor. The resonators are called
thickness-shear mode (TSM) sensors. The absence of a longitudinal com-
ponent makes TSM sensors attractive for sensor applications, especially in
liquids. Acoustic energy is trapped within the device and an extremely thin
liquid layer adjacent to the resonator - the shear wave is evanescent in viscous
fluids - whereas energy from longitudinal waves is radiated into the fluid!.
This radiation loss must be considered as loss of acoustic energy stored in
the transducer and has the same adverse consequences as acoustic energy
dissipation.

Plates whose lateral dimensions are much larger than their thickness can
be approximated as a thin plate with infinite extension. With two electrodes
placed onto the main surfaces the three acoustic modes that can be excited
in principle are those associated with wave propagation in the direction of
the plate normal. Given that the specific cut has a non-zero coupling factor,

! Classical SAW devices utilize a Rayleigh wave, which has a normal component. Therefore SAWs
face significant insertion loss when operating in liquids due to radiation of acoustic waves into the
liquid.
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an applied AC voltage will induce an acoustic wave at the frequency of ex-
citation. The boundary conditions established at the top and bottom of the
plate together with the sound velocity in the plate define the frequencies of
resonance’. Remember, the mechanical resonance frequencies must not be
mixed up with the resonance frequencies of quartz crystal oscillator circuits,
although the quartz crystal is the frequency-determining element.

Coherent reflections at the top and bottom boundaries of the plate give
way for a set of standing acoustic waves between the two main surfaces of the
plate. Due to the piezoelectric nature of quartz two sets of resonance frequen-
cies exist for each mode, depending on the electrical boundary conditions.
The first set corresponds to a plate with open-circuit boundary conditions.
From the physical point of view charges will be collected on the electrodes
building up a potential difference and hence an electrical field; from the elec-
trical point of view the electrodes are unconnected. This resonance is termed
anti-resonance in the piezoelectric literature and parallel resonance in elec-
tronics literature. The second set of resonance frequencies corresponds to
a plate with short-circuit boundary conditions. The electrodes are connected
and a potential difference cannot be built up. The respective names are res-
onance in piezoelectric and series resonance in electronics literature. The
differences arise from piezoelectric stiffening accompanied by differences in
the sound velocity. The anti-resonance (parallel) frequencies of each of the
three acoustic modes are completely decoupled giving:

fm=n (1)

2dq

where index m denotes the mode, vy, is the respective mode velocity, d is the
plate thickness, and # is the harmonic number and an odd integer; odd only,
because even harmonics cannot be excited under symmetric load conditions.
By contrast, the (series) resonance frequencies of each mode are coupled and
cannot be given in a closed form. The practical consequence is that n is not
exactly an (odd) integer [19] (see also Fig. 7 later in this chapter).

Vetelino et al. [20] have studied the properties of singly and doubly ro-
tated cuts from the sensor application point of view. The crystal orientation
that defines the cut is determined by two angles, ¢ and 6. Due to the symme-
try of quartz, varying 6 from — 90° to 90° and ¢ from 0° to 30° encompasses
all the unique cuts possible [21]. Common cuts are AT (0 = —35.25°, ¢ =0°),
BT (0 = 49.20°, ¢ =0°), DT ( =52°, ¢ =0°), FC (9 = —34.33°, ¢ = 15°),
IT (6 = —34.08°, ¢ = 19.10°), SC (§ = —33.93°, ¢ = 21.93°), LC (6 = —9.39°,
@ =11.17°), and RT (6 = 34.50°, ¢ = 15°).

2 The electrodes are assumed here to be infinitesimally thin and provide just an area of equipo-
tential. From the mechanical point of view the surfaces are assumed to be stress-free. These
assumptions are not generally required; they just provide the simplest form of the transducer
element.
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The main criterion for the selection of an appropriate crystal cut for liquid
application is the absence of longitudinal displacements, i.e., to find a cut with
pure shear modes or at least a dominant shear mode. This restriction elimi-
nates all a-modes. The rotated Y-cut family of cuts corresponds to ¢ =0, i.e.,
a rotation of the y-axis about the crystallographic x-axis. All Y-cuts share the
beneficial property of having a single mode that is purely shear. Due to its
importance, sensor device key properties are repeated here in Figs. 1, 2, and
3 [20]. The data points were calculated using Matlab and the material con-
stants were taken from Salt’s book [21]. Figure 1 shows the wave velocity of
the b- and the c-mode, Fig. 2 the coupling factor, and Fig. 3 the temperature
coefficient of frequency.

The acoustic velocity reaches its minimum of about 3316 ms™! at § = — 32°
and its maximum of about 5107 ms™! at § = 58°. At § = 24° the velocities of
b- and c-modes are equal; the shear modes switch between “b” and “c”. The
coupling factor has its maximum of about 13.6% in mode “c” around 6 = — 5°.

The two most important cuts, AT and BT, provide a zero temperature co-
efficient of frequency. Actually, when departing from 25 °C the frequency of
AT-cut crystals varies in a cubic manner with respect to temperature. The
temperature dependence of BT-cut crystals is quadratic. This second-order
response to temperature is larger than the cubic variation of AT-cut quartzes.

The acoustic velocity of the shear mode in AT-cut quartz is not far from
the minimum acoustic velocity of the c-mode, whereas the BT-cut is next to
the maximum of the b-mode. Only one of the three modes can be electrically

5200 Al =Ll
so00 | | |womodel | T |

-90 -60 -30 0 30 60 90
0 / degrees

Fig.1 Acoustic wave velocity for pure shear mode of rotated Y-cut quartz (courtesy of
J. Vetelino [20])
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Fig.2 Coupling factor for pure shear mode of rotated Y-cut quartz (courtesy of
]. Vetelino [20])
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Fig.3 Temperature coefficient of frequency for pure shear mode of rotated Y-cut quartz
(courtesy of J. Vetelino [20])

excited. The coupling coefficients of the other two are zero. This reduces the
occurrence of spurious modes to those which owe their existence to the finite
lateral dimensions of a real crystal and the necessity of mechanical clamps.
The piezoelectric coupling of AT-cut crystals is reasonably high with 8.8%
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and moderate for BT-cut quartzes with 5.5%. A larger coupling factor allows
for excitation of the device with lower voltages.

For discussion of the consequences of acoustic wave velocity and coupling
factor for sensor applications we recall the electrical impedance, Z, as it can
be derived from the one-dimensional transmission line model [22, 23]:
1 Ké 2tan azq —j%

Zel (2)

Jjo Co aq 1 —]2 cotayg
Equation 2 can be rewritten in a way that Z, can be presented as a parallel
arrangement of Co, the only genuine electrical parameter in Eq. 2 (formed
by the two electrodes with quartz as dielectric), and a so-called motional
impedance, Zy, : Zg = Cyl|Zm (Fig. 4a). Zy, contains two elements in series.
The first summand, Zpg, includes only crystal parameters and describes the
motional impedance of the quartz crystal as a function of frequency w = 2xf.
The second summand expresses the “transformation” of the acoustic load,
Z1, into the (electrical) motional load impedance, Zy1. We therefore call the
fraction in front of Zy, transformation factor. Applying some assumptions rea-
sonable in most sensor applications Zy, becomes:

i dg [ o? -7 d
Zn~ O[T 7T )4 L 3)
7Co vq 8Kq 4C0-pq-vaq

2
I?‘Zl = Szgq is the electromechanical coupling coefficient with g = cg6 + Sg; +
jong = cq + jowng, eq = exs and eq = 2, with cgs, €26, and &2, being compo-
nents of the material property tensors for mechanical stiffness, piezoelectric
constant, and permittivity, respectively, and nq being the effective quartz
crystal viscosity. aq is the acoustic phase shift in the quartz crystal, pq is
the quartz density, and Zq = pqVq is the characteristic acoustic impedance
of quartz. Index q has been introduced to denote material properties of the
quartz crystal. By contrast, Z;, is the acoustic load (impedance) generated
from coatings, liquids, etc. and acts at the surface of the crystal. Zpyy, is the
electrical representation of Z; and therefore carries all information relevant
for sensing.

Consequently, the second term in Eq. 3 is the important one for sensor
applications. Obviously a small coupling factor and a small wave velocity in-
crease the electrical representation of the acoustic load. On the other hand,
the quartz motional impedance also alters upon changes in vq and K’é. It is
therefore helpful to rewrite Eq. 3 for our purposes:

2
T d 1 1 1
' an +J.a):0q2q eea. T + 0, VAR (4)
Seq/cdq Begk i quK q  jo(- Co) 4egi
T Cq ~ o~
~ -~ - ZmL

Zimg
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where « = 77(rq/dq)* is a design parameter for circular quartz discs and elec-
trodes, which implies the ratio between electrode radius, rg, and thickness of
the quartz disc, dq. The first three summands introduce the lumped elements,
Rg, Lg, and Cyg, respectively (Fig. 4b). The fourth summand is a straightfor-
ward result of the transmission line model and must not be neglected. With
Eq. 4 one can define the already empirically found elements, known from the
Butterworth-Van Dyke (BVD) equivalent circuit of a quartz crystal (Fig. 4c)*:

2
Ro=Rs =
q S
8e§1/<dq
Pqdq
Lo=Ls= 5
2 2
_Seq/cdq _ CoCq Seq/cdq
4=

S — - >
JTch Co - Cq cq (ﬁz _ SKé)

with Kfl = eé/(sch).

In the approximation Eq. 4, the transformation factor 1/(4e2«) does not
contain wave velocity or coupling coefficient and is therefore inaependent of
the quartz cut; neither does it include the frequency. The transformation fac-
tor is real and constant if the electrode radius-thickness ratio is constant.
Therefore the real part of Z;, directly determines the real part of Zp,1,, whereas
the imaginary part of Z;, defines the imaginary part of Zp. In a narrow fre-
quency range one can represent Re(Z,) as Ry, and Im(Zy) as @ ;.. In general,
Ry = Ry (w) and L, = Ly (w) remain frequency-dependent due to Zp = Zp(w)
(not linear).

Fig. 4 depicts Egs. 2-Eq. 5 in an electrical circuit.

The resistance increase is consequently independent of the quartz cut:

1
AR=Ry = Re (Z1). 6
L see (71) (6)
The calculation of the frequency shift requires the inductance Lq. Fig-
ure 4c delivers for the series resonance frequency ws, =1/ \/ (Lg+Ly)Cs =
a)s/\/l + L /Lq ~ ws(1 - L1/2Lg) and therefore:
Afs L

fS %_Zan (7)

3In consequence of - Cy, the series resonance frequency at conductivity maximum, Gmax, (with

2

_ oy _ CoCq \-1/2 _ 1 8Kg _ 1

Y=G+jB) is ws = (Lq Co—Cq) = \/Lqu (1- 2 ) whereas wp = \/Lqu is the parallel frequency
8K2

at resistance maximum, Rmax (Z =R + jX). Because of C;=Cq/(1 - ﬂzq) the definitions are obvi-

ously consistent with Eq. 14, which uses the nomenclature of electronic literature. Series and parallel

resonance frequencies lie close together with differences decreasing with larger coupling factor.
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Fig.4 Equivalent circuit representation of Eq. 2 (a), Egs. 3, 4 (b), and Eq. 5 (¢)

or with Egs. 4 and Eq. 5:
1
Afs= Im (Z1). (8)

21 pqdq

Obviously the factor relating Im(Z1) to Af; is proportional to 1/dq and, at the
first glance, independent of the crystal cut. Af; is independent of k and hence
of the electrode diameter? as well. As consequence of vq = 2dqfy the frequency
shift remains dependent on vq. The effect of wave velocity on the sensor’s fre-
quency sensitivity is dependent upon whether a certain resonance frequency
or a certain crystal thickness is the (experimentally) given value. It can be eas-
ily demonstrated in the simplest case of pure mass sensitivity (Z1, = jopcdc
holds). Following Sauerbrey, the frequency sensitivity can be rewritten as:

Af 2y v

pcdc Pq¥Vq 2pqdé .
Obviously a small wave velocity in the crystal improves the mass sensitivity
of the sensor for a given mechanical resonance frequency fy, whereas a large
wave velocity increases the mass sensitivity if thickness of the crystal must
not fall below a specific value. Table 1 illustrates these basic findings for AT-
cut (exemplarily for a small vq) and BT-cut quartz (exemplarily for a high vq)
for two cases: a 100 nm rigid film (Sauerbrey case) and a semi-infinite liquid
with a viscosity of 1 cP (Kanazawa case).

)

* Note, that these conclusions are based on a one-dimensional approximation based on dq < rq. The
smaller the electrode diameter, the more effects like fringing fields come into play, which are not
considered in the model.
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Table1 Some example data for AT-and BT-cut quartz crystals

AT BT
vq/ms™! 3322 5071
Kfl 0.0078 0.00335
fo/MHz 10 15.265 10 15.265
dq/nm 166.1 108.8 253.5 166.1
rq/mm 3 2 3.3 3
fs/MHz 9.968 15.216 9.986 15.244
Rq/S2 8 12 5 8
Lq/mH 5.914 3.874 9.0274 5.914
Cq/PF 0.043 0.028 0.028 0.018
Co/pF 6.778 4.440 10.347 6.778
Q factor 46562 30502 108497 71076
Afi00/kHz 2.3 5.3 1.5 3.5
Aficp/Hz 2.0 3.8 1.3 2.5
AR1p/Q 150 186 150 186
ARycp/Aficp/R2/kHz 74 49 113 74

Indices 100 and 1cP denote the cause of the signal shift: a rigid 100 nm thick film or
a semi-infinite liquid of 1 cP, respectively

A vast majority of (bio)chemical QCM sensors involve AT-cut quartz. Ex-
periments are usually performed at a certain frequency and AT-cut crystals
provide the larger frequency shift. However, BT-cut quartz can be considered
as an interesting alternative, if, e.g., a certain crystal thickness is required
for mechanical stability. As discussed already, the limited temperature insen-
sitivity of BT-cut crystals plays a minor role in sensor applications because
temperature maintenance is usually required anyway.

When applying quartz crystal resonators outside Sauerbrey’s limitations in
the so-called non-gravimetric regime, material properties come into play. The
electrical admittance (impedance) of the coated quartz crystal gives access to
the determination of material properties of the coating. The crystal cut can
again be used for optimization of the sensor performance. If mechanical sta-
bility is an issue (e.g., lateral stress induced during the experiment) BT-cut
crystals are favorable.

23
High Frequency Crystals

An increase in the sensor sensitivity can be realized when decreasing dg.
A minimal thickness around 55 um to limit mechanical fragility results in
a fundamental frequency of 30 MHz [24]. The application of photolitho-
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graphy and wet etching processes has been found to be a promising ap-
proach to push this limit down to smaller thicknesses and to fabricate mech-
anically stable quartz membranes with higher resonance frequencies and
smaller diameters in a supporting quartz frame [25]. This technique also
allows the fabrication of sensor arrays on one quartz wafer (Fig.5) [26].
Mechanical cross-talk between the array elements can be minimized by
a proper design.

ultra thin inverted  thicker supporting region
MESA region

top side electrode

bottom side electrode
(and contact pad)

a)

Fig.5 Scheme of inverted MESA quartz crystal (a) and realized 4 x 4 quartz crystal sensor
array (b). The membrane of each sensor element has been thinned with wet etching. The
resonance frequency of each sensor could be elevated to frequencies up to 50 MHz. The
analyte usually faces the flat (bottom) surface
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The challenging task of high frequency resonators arises from inharmonic
modes, often called spurious modes or spurs. These are characterized by
movement of particles in several regions of the quartz disc in antiphase. If
the frequency separation between the harmonic and inharmonic modes is
not sufficiently large, modes can efficiently be coupled. Frequency jumps of
quartz oscillators are an unwanted effect that impedes a reliable frequency
measurement. Spurious modes, especially those which lie close to the reson-
ance frequency, enhance the challenges of oscillator design.

The eigenfrequencies of a circular plate have been found to be [27]:

2
fnmk :anI |:1 + Kok i| > (10)

2nlnk

with n=1,3,5,..., m=0,1,2,..., k=1,2,3,... and xyx being the kth root
of the Bessel function of order m, and f,0; being the frequency of the nth
harmonic mode. The second term in the brackets of Eq. 10 corresponds to
the frequency difference between harmonic and inharmonic modes. This
difference increases with decreasing «, i.e., with decreasing electrode radius-
quartz crystal thickness ratio. Consequently the electrode size must be re-
duced when increasing the resonance frequency. Energy trapping [28], e.g.,
based on MESA shaped structures [29], or contouring [27], or beveling [30]
can be employed to suppress or shift the unwanted modes to higher frequen-
cies. The latter two procedures are not feasible for wet etching processes.
A rule of thumb for the design is given by the so-called plate-back frequency,
Afpp- With x;; = 3.832 one gets:

2.337
Afop < 11
fpb fo nZK ( )

to suppress the first mode (n11) and all higher modes. In practice, the bare
device is etched to a thickness that corresponds to a frequency somewhat
above the wanted resonance frequency, fo. The electrodes are then applied,
reducing the frequency to fy. This plate-back frequency should fulfill Eq. 11
to suppress inharmonic modes. Considering that Afyy, is caused by the mass
per area of the electrodes, the maximum electrode thickness can be derived
by comparison of Egs. 9 and Eq. 11. This thickness is proportional to hq/x.
Hence thinning the quartz crystal thickness would reduce Af,y, therefore «
cannot kept constant. Figure 6 shows a plot of diameter versus thickness of
gold electrodes for three different resonance frequencies. Considering fur-
thermore that the electrode thickness cannot be reduced below a certain value
without reducing electrical conductivity, the only free design parameter is the
electrode diameter.
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Fig.6 Relation between geometrical gold electrode parameters for suppressing spurs for
AT-and BT cut quartz crystals

An unavoidable consequence of crystal thinning is a reduction of the Q
factor. Applying Eq. 5 the Q factor is:

2
®Lq _ pqvqdq _ Pa¥q

= ) (12)
Rq TTlq WoMq

Q=

It decreases linearly with decreasing dq or is inversely proportional to fo (as-
suming the effective viscosity does not change with the crystal dimensions).
A large wave velocity improves the Q factor, hence the BT-cut provides en-
hanced properties. Note that Eq. 12 does not contain «; hence the Q factor
of the crystal does not depend on the electrode diameter in a direct manner.
However, 1q is an effective value and tends to increase with decreasing rq. As
part of electronic circuitry an increase of Rq may also reduce the signal-to-
noise ratio.
In liquid applications the Q factor is given by:

_w(Lqg+Liq) _ 7pgvq (13)
Rq + Rliq \/ 2'C’)Ioliqnliq

The additive contributions to Lq and Rq are similar due to similar real and

imaginary parts of Z.. Because Lq > Ljjq and Rq < Rjjq holds, Q changes ap-

proximately inversely with \/fy. This behavior is reflected in the plot of the

real part of electrical admittance, G, of a quartz crystal with single side con-

tact to water, Fig. 7. Both maximum and slope continuously decrease with
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Fig.7 Plot of real part admittance, G (Y = G + jX), against reduced frequency for AT-and
BT-cut quartz crystals for different fundamental frequencies, fy

frequency. The same holds for phase and phase slope, which makes oscilla-
tor design more involved. The differences between AT- and BT-cut are less
pronounced due to liquid load.

In summary, when looking for the optimal sensor design several conflic-
tive rules have to be taken into account. Only maximum frequency shift is
not an appropriate measure. A better value is the limit of detection, which
depends on the signal-to-noise ratio. Crystals with a higher resonance fre-
quency supply a larger signal. AT-cut crystals are the better choice when
working at a specific resonance frequency. They provide a smaller resist-
ance change to frequency shift ratio in liquid applications as well. The Q
factor is an important value governing frequency stability. Here, quartz res-
onators with a lower resonance frequency are favorable. With respect to
Q- Af the frequency dependence becomes approximately linear for a rigid
coating. BT or other crystal cuts with large wave velocity offer advantageous
properties.

Temperature dependence is a second major issue. It is small for AT-cut
crystals; however, temperature fluctuations cause fluctuations in Rq inversely
proportional to Q [7]. This effect is small compared to temperature ef-
fects having their origin in properties of the measurand. In liquid appli-
cations, the most temperature-sensitive value is the liquid viscosity. Here,
temperature-induced variations in frequency increase with /w, whereas
mass sensitivity increases with w. Therefore, an elevated resonance frequency

is helpful.
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Sensitivity to mechanical perturbations is a third major problem. It
is smaller for thicker crystals, i.e., lower resonance frequencies. BT-cut
crystals are favorable due to their larger thickness at a given resonance
frequency.

Finally, noise and systematic errors introduced by the electronic circuitry
must be also taken into account, especially when standard instruments are
used. An analysis has been performed in [31]. For driving the crystal in
an oscillator circuit a small equivalent resistance of the resonator is benefi-
cial. A large electrode diameter is advised; however, separation of harmonic
from spurious modes defines a maximum diameter, which decreases with fre-
quency.

3
Fundamentals of Oscillators

3.1
Quartz Crystal Resonator

3.1.1
Equivalent Circuit of Quartz Crystal in Vacuum

As shown in the previous section, the mechanical properties of a quartz crys-
tal close to resonance frequency can be expressed by means of a motional
impedance. To complete the equivalent circuit of a quartz crystal, the cap-
acitance, Cp, must be added in parallel to the motional impedance. It results
in the Butterworth-Van Dyke (BVD) equivalent circuit of a quartz crystal, as
shown again in Fig. 8 for an unloaded quartz crystal [32]. In this notation
common in electronic literature, L is the dynamic inductance and is under-
stood here as a representation of the oscillating mass of the quartz crystal. C,
is the dynamic capacitance and reflects the elasticity of the oscillating body.
R; is the dynamic resistance and returns friction of the quartz slice as well as
all kinds of acoustic damping.

The plot of impedance® Z = R + jX with R=Rs and X =j(wLs - wlcs) is
shown in terms of impedance magnitude, |Z| = VR + X2, and phase, tan ¢ =
X/R in Fig. 9. The values given in Table 1 for a 10 MHz AT-cut quartz crystal
have been taken for computation. The quartz impedance is inductive (phase
shift + 90°) between f and f;,, and capacitive (phase shift —90°) outside this
interval. The phase shift is very steep.

Ls, Cs, Rs, and Cy determine resonance frequencies of the crystal. Consid-
ering Fig. 8, the series resonance frequency, £, and the parallel resonance

5 We switch to electrical impedance as common in electronic literature, we furthermore renounce
the index el.
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Fig.8 Electrical equivalent circuit of a quartz crystal in vacuum
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Fig.9 Impedance and phase of a quartz crystal

frequency, Ifl, can be found as follows:

1
el
= 14
s 274/LsCs (14)
1 CsC
£el = , with cr= 0. (15)
P o /LsC* Cs + Co
3.1.2

Equivalent Circuit for Under-Liquid Sensing

The equivalent circuit of a liquid-immersed quartz crystal, Fig. 10, consists
of the same basic components. The motional acoustic impedance caused by
a (sensing) rigid film and the liquid load can be separated into an inductance,
L, (coating), an inductance, Lyig» and a resistance, Riig> (liquid). All additional
elements are in series to the quartz motional elements. Cjiq and Gj;q account
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Fig. 10 Electrical equivalent circuit for under-liquid sensing with a rigid coating

for permittivity and conductivity of the liquid. In the case of single-side con-
tact of the liquid to the grounded electrode Cj;q and Gj;q can be neglected [33].
However, an external capacitance, Cext accounts for (not fully compensated)
contributions from the measurement setup (cables, measurement cell).

The plots shown in Fig. 11 are based on the same values as above. One crys-
tal surface is loaded with a 100 nm rigid film and is in contact with water.
This combined load causes a shift of the complete impedance plot to lower
frequencies. Changes in both impedance magnitude and phase are smoother
than for the bare quartz crystal (Fig. 9). The result of an external capacitance,
Cext> parallel to Cyp has been presented as well. A rigid coating alone does
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2 0 3
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= 40 &
10 - 60
- 80
1 —— -100
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Frequency / kHz

Fig. 11 Impedance and phase curve of a 10 MHz quartz crystal coated with a rigid 100 nm
thick film in contact with water on one side (liq). The influence of an external capacitance
is also shown
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not change the shape of impedance plot; the curves are only shifted to lower
frequencies.

3.2
Characteristic Resonance Frequencies

For definition of the different characteristic resonance frequencies, the locus
of impedance Z = R + jX (a) and admittance Y =1 / Z =G+ jB (b) of a bare
quartz crystal are shown in Fig. 12 (for better distinction Rs has been set to
160 2 here, a typical value for single-side liquid load). The definitions are
summarized in Table 2 [34].

The separation between the resonance frequencies is very small for very
small Rs while it becomes obvious and cannot be neglected for higher R.
The major challenge for sensor electronics design arises from the fact that the
acoustically relevant frequency for sensing purposes is f;, whereas oscillators
work at a certain phase angle, usually ¢ = 0, i.e., at f; in case of an ideal series
oscillator. Applying the respective definitions one finds:

1
el
s = = (16)
5 274/ LsCs Js
X B
_—
f
r@xo\ R
1I-p @ Rpax ——
f
fo @ |Zlmax
fon @ [Ylmax
fs@ GH\M
f, @ B=0 G
a) b)

Fig.12 Characteristic resonance frequencies of quartz crystal resonators, shown in the
locus of impedance, Z = R +jX (a), and admittance, Y = G + jB (b). [J is the parallel res-
onant frequency f, at Rmax, & s the parallel resonant frequency f, at X =0, O is the
parallel resonant frequency f, at |Z|,,, B is the series resonance frequency f; at Gmax,
@ is the series resonant frequency f; at B =0, and @ is the series resonant frequency fm
at | Y| max
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Table2 Definition of characteristic resonant frequencies and example data of frequency
shifts generated from a rigid coating (density 1 gcm™, thickness 100 nm) alone and with
an additional semi-infinite Newtonian liquid (density 1gcm™, viscosity 1cP) on top.
Furthermore the effect of an external capacitance is considered (values in brackets)

Definition Frequency Frequency shift Frequency shift
100 nm rigid film 100 nm film + liquid

Cext =0 (4) PF Cext =0 (4) PF Cext =0 (4) PF
(MHz) (Hz) (HZ)

fi G- Max 9968304 (9968 304) 2271 (2271) 4299 (4299)

fi B=0(p=0) 9968304 (9968304) 2271 (2270) 4155 (4068)

fo  |Y] > Max 9968304 (9968 304) 2271 (2272) 4442 (4525)

fo R— Max 10000000 (9988 260) 2271 (2270) 4296 (4297)

fi X=0(p=0) 10000000 (9988260) 2271 (2271) 4440 (4528)

fa 12| > Max 10000000 (9988 260) 2271 (2271) 4153 (4072)

and with some approximations reasonable for small R,°:

1 1 R2C
for 50 (17)
2\ LsCs  L2Cs

Equation Eq. 17 clearly explains the dilemma of f;; the series resonance fre-
quency at zero phase depends on the equivalent resistance.

In a sensor experiment (e.g., in a typical biochemical experiment) the sen-
sor has been functionalized with a sensitive film, which is in contact with an
analyte containing buffer solution. The new resonance frequencies f* can be
calculated when replacing Ls and Rs by L{ = Ls + Lc + Ljjq and R{ = Rs + Ryjg,
respectively (neglecting Cjiq and Gyig). Usually frequency shifts are deter-
mined and of interest only. Some example data are added to Table 2. Series
and parallel resonance frequency shifts vary by a few percent. All the par-
allel resonance frequencies are very much affected by external capacitance
(values in brackets). The same holds for all frequency shifts in a liquid ex-
cept f;. Oscillators based on parallel resonance should not be used because
stray capacitance is hardly to avoid and hardly to keep constant in an experi-
mental setup. Deviations of f; and f, from f; are also amplified by external
capacitance.

The liquid may exhibit constant properties (Rjjq and Ljjq are constant).
Only in those cases are differences in frequency shifts caused by mass accu-
mulation in/on the sensitive film (small AL.) reasonably equivalent for all
resonance frequencies.

® The difference between the exact solution within the BVD model and the approximation Eq. 17
for a 10 MHz quartz crystal and an equivalent resistance Rs = 200 Q is only 2 Hz.
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4
Sensor Interface Circuits

4.1
Oscillators

The application of oscillator circuits as sensor interface for QCM is the most
common method. Since a quartz crystal is a resonant element, stable oscilla-
tion can be excited by quite simple circuits. They deliver a frequency analog
output signal, which can be easily processed in digital systems. Two oscilla-
tion conditions can be formulated assuming approximately linear behavior
and not considering the pre-oscillation process:

Amplitude condition: |kA| > 1 (18)
Phase condition: ¢ =0, 2x,..., n2xw (19)

where A is the open loop gain and k is the feedback factor. The electronic cir-
cuitry must provide deattenuation to get undamped oscillation. In order to
generate stable oscillations the oscillator circuit must excite the quartz crystal
with respect to a frequency where a sharp phase slope occurs. In gases, this
condition is fulfilled at the zero-phase resonance frequencies f; and f,. Phase
slope of an ordinary 10 MHz quartz crystal is about 2 Hz/degree. The phase
slope decreases in water to about 37 Hz/degree. Therefore, extreme phase sta-
bility of the circuit must be obtained, which becomes the deciding criterion
for frequency stability of the oscillator. Since the phase slope decreases fur-
ther with increasing (viscous) damping accompanied by shift of the largest
phase gradient to phase angles smaller than zero degrees (i.e., the absence of
phase zero crossing at strong damping) phase correction according to Eq. 19
is required. A phase-shifter should not deteriorate the phase stability in the
neighborhood of the resonance frequency. An automatic level control (ALC)
is advantageous, because the ALC controls the amplitude condition of the os-
cillator so that |kA| = 1. The output of the ALC can be employed as a measure
for quartz damping.

The operation principle of quartz crystal oscillators can be reduced to two
variants: series and parallel resonance oscillators [35]. The latter rarely op-
erate at parallel resonance, Eq. 15, since classic LC-oscillator configurations
are used applying the quartz as a high quality inductance. Parallel reson-
ance oscillators in fact oscillate slightly below parallel resonance frequency.
Practically, this is no disadvantage because the oscillator circuit only has to
guarantee high frequency stability. The oscillation frequency may vary due
to unavoidable production tolerance of quartz crystals; the exact oscillation
frequency can be adjusted by additional electronic components. Series os-
cillators theoretically work at zero phase; again, a problem arises with real
oscillator circuits. They produce phase shifts slightly different from theory so



28 R. Lucklum - F. Eichelbaum

| 90° | 90° | 180° |
‘quartz crystal‘
quartz

R1
I C1 I C2 j:I:CI‘ySta|
)

Fig.13 Oscillator circuit with inverting amplifier (a), with a Colpitts structure (b), and
with non-inverting amplifier (c)

a b)

that the quartz will not oscillate exactly at zero phase. Figure 13 shows the two
basic oscillator principles. The Pierce oscillator in Fig. 13a uses an inverting
amplifier so that its phase of 180° must be shifted to 360° by the feedback net-
work (R;, C; and quartz crystal, C;) in order to fulfill the phase condition.
The circuit, Fig. 13b, with an operation principle like Colpitts, forms a capac-
itive three point connection, where the quartz crystal acts as inductance of
high quality. The oscillator principle, in which the quartz behaves inductively
is generally named parallel resonance oscillator.

The oscillator circuit in Fig. 13¢, applying a non-inverting amplifier, works
as a series resonance oscillator where the quartz fulfils the phase condition at
series resonance frequency.

Because of the parallel capacitance the zero phase frequency deviates from
the series resonance frequency, Eq. 14, as discussed in Sect. 3.1.1, therefore
series resonance oscillators oscillate at a frequency fosc # fs. The series reson-
ance frequency f; is not accessible with standard oscillator concepts without
compensation of the parallel capacitance, Cy’. The phase of a quartz crys-
tal with compensation of Cyp becomes ¢, = 11{2((2:)) = ok _Rl*/ oG , where * again
symbolizes the sum of all respective series elements in the motional arm of
the modified BVD circuit (Fig. 10). The definition of f; (G — Max) is equiva-
lent to Im(Zy,,) = 0 (i.e., ¢y = 0) hence an ideal series resonance oscillator now
vibrates at f;. Figure 14 displays the difference between ¢ and ¢p, fora 10 MHz
quartz crystal with single side in contact with water in the region around se-
ries resonance. The plot of ¢, has an offset of 144 Hz with respect to ¢ (see
also Table 2), the slope of both curves is almost equivalent. The plot of G has
been added for comparison.

The quartz crystal should be operated in the neighborhood of its series res-
onance frequency, since alterations in Cy or Cext have much lower effects on
resonance frequency than on parallel resonance (Table 2). Another essential
reason for operating at series resonance is that the quartz impedance is in
the range of RF-technique impedance (50 2), which minimizes the effect of
interference signal coupling.

7If an external capacitance Cey parallel to Cp exists, ie, Co— C; = Co + Cext, Cj must be
compensated.
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Fig.14 Phase of impedance Z(¢ = X/R) and phase of motional impedance Zy (¢m =
Im(Zn)/Re(Zm)) and conductivity G of a 10 MHz blank quartz crystal with one surface
in contact with water

Due to the reduced Q factor of the quartz crystals in liquids, and there-
fore decreased phase slope, the requirements of the circuit with respect to
phase (frequency dependence, noise, temperature dependence), to amplifica-
tion linearity, and to temperature constancy are much higher. One electrode
of the quartz crystal should be grounded to minimize parasitic effects and to
allow operation of quartz arrays in conductive liquids. The increased damp-
ing of the oscillator should be overcome by automatic level control. The
control variable in the amplitude control loop can be used as an independent
measurement value. It also allows for calibration of fosc with respect to fs [36].

4.2
Network Analysis

The aim of network analysis is the investigation of the amplitude and phase
response of a two- or four-port network. Impedance analysis determines the
complex impedance or admittance of a device. This method is appropriate
for quartz resonators in order to obtain more complete information than is
conceivable by merely considering the shift of the resonance frequency. The
method especially allows the determination of the equivalent circuit elements
(BVD) presented in Fig. 8. Actually many commercial instruments directly
provide this information. Determination of the physical parameters, or their
effective values, for accurate modeling of the sensor behavior based on Eq. 5
requires mathematical procedures which fit the calculated curves (e.g., with
Eq. 2) to the experimentally measured values. It is recommended to include
an external capacitance parallel to Cy to account for uncompensated para-
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sitic capacitance, even if the crystal interacts with the surroundings only on
one surface. An external capacitance shifts the parallel frequency to lower
values but it does not change the elements of the motional arm, Fig. 4. It ac-
counts for deviations between series and parallel frequency from 1 - SKS1 /72,
see Footnote 3.

Impedance analysis is also suggested when properties of an attached film,
a liquid, or interfaces are of interest. Due to the weak frequency dependence®
of the acoustic load within a typical measurement range of some 10 kHz at
fundamental mode, one measurement point would be sufficient to calculate
Z1, (EqQ. 2). An effective method to decrease statistical errors is to first fit a the-
oretical curve to the experimental curve or a specific segment, secondly to
calculate Zy, from the fit, and finally to extract (material) parameters of inter-
est using separate models describing how the acoustic load is generated [37].

Due to passive operation of the quartz crystal it is possible to minimize
parasitic influences from the experimental setup, i.e., to almost eliminate
their effects by calibration. If the interface behaves like a linear network, most
electrical parameters relevant for the measurement can be implicitly obtained
and the influence of the network can be eliminated. Calibration of the meas-
urement setup is one of the important advantages of network analysis and
must be performed with care.

The ratiometric method treats the sensor interface as a network with four
ports (Fig. 15) [38].

The interface is powered by a source E. The measurement voltages V; and
V, depend on an impedance Z. In this model the inner resistance of the volt-
age source E, the cable connecting Z to the circuit, and the measurement
channels for V; and V; belong to the network itself and do not produce sys-
tematic errors. As a consequence of assumed linearity the voltage ratio:

Vi = 1(2) = ko+Z (20)

V, kKiZ +k;
depends on the measurement impedance Z and on three as yet unknown net-
work parameters kg, k1, and k;. In order to determine these constants three
calibration standards, open (Z — 00), short (Z = 0), and a reference resistor
(Z = Ryef) are required, which deliver three voltage ratios, open, Tshort> and ref,
respectively. Solving Eq. 20 for the unknown measurement impedance Z and
expressing ko,1,2 by their dependencies on 7opens 7short> and 7ef delivers:

Topen ~ Tref Tshort = 7(Z)

Z = Ryef .
Tref = Tshort 7(Z) = Topen

(21)

r(Z) is measured with the unknown impedance Z connected. In this way
Z is independent of the unknown linear network properties of the sensor

8 Under certain circumstances the acoustic load may exhibit a noticeable frequency dependence,
e.g., near the so-called film resonance.
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Fig.15 Network model for the measurement of impedance Z

interface. Since the behavior of the sensor interface is generally frequency-
dependent, the above calibration should be performed for every frequency
in the spectrum Z(w) to be acquired.

The ratiometric measurement principle is independent of the configura-
tion of the input stage, which therefore can be adapted to the specific sensor
application. The impedance range is restricted by stray capacitance in general
and by the input capacitance of the measurement channels in particular.

The essential drawbacks of network analysis are the high costs and large
dimensions of commercial equipment, which has to satisfy the require-
ments of universal application such as large frequency range and different
measurement principles. Acoustic sensors as a particular application case
do not require many of those instrument functions. The specific require-
ments have been realized in new network analyzer-based sensor interface
circuitry.

43
Impulse Excitation

After excitation with an ideal impulse, the quartz resonator will carry out
damped oscillations solely influenced by the acoustic properties of the res-
onator. The effect of the sensor interface circuit with a proper design is
negligible. At a first glance, the advantage of impulse excitation is the oscil-
lation of the quartz resonator at its mechanical resonance frequency, i.e., the
oscillation frequency depends only on the motional elements. The decay of
oscillation is defined by mechanical damping. In analogy to the discussion
of oscillators, the motional elements of the quartz crystal can be replaced by
those with * in case of a sensor application; the generic principle does not
change.

In control theory the impulse response, g(t), is the response of a (linear)
system to a Dirac delta input. The Laplace transform of the delta function is
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1, hence the system’s transfer function is equivalent to the Laplace transform
of the impulse response:

o0

G(s) =L{g(t)} = /g(t)e'” dt, (22)
0

where s = o + jo is the Laplace variable. Obviously impulse excitation delivers
the inverse Laplace transform of the system’s transfer function in a (theoret-
ically) infinite frequency range. Since the resonator comprises several modes,
including spurious modes near fundamental (or overtone) modes, signal pro-
cessing and analysis is more involved if high accuracy in absolute values is
required.

4.4
Comparison

Table 3 summarizes the advantages and drawbacks of the above sensor in-

terface concepts. Oscillators are the best solution for most chemical sensor
applications. Low expenses of circuitry and a frequency analog output signal

Table3 Survey on advantages and drawbacks of sensor interfaces

Sensor interface ~ Advantages Drawbacks
Oscillator e Low expenses for circuitry e High stability of circuit
e Direct frequency output necessary
with high resolution e Extremely high phase stability
e Acoustic energy dissipation required
measurement possible o fosc #fs without

Co-compensation
e Restricted to single mode

Network analysis e Provides complete impedance e High expenses for circuitry
spectrum e Data processing necessary to
e Calibration of measurement select characteristic values
setup; reduction of parasitic e Complex measurement setup
effects and measurement routines

e Access to acoustic parameters

Impulse excitation e Provides sensor transfer e Impulse generation not appro-
function priate in liquid applications
e Other kinds of excitation e Limited range for precise
possible frequency and damping
e Direct access to resonant measurement
frequency and acoustic e High expenses for circuitry

energy dissipation
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are the crucial advantages. Oscillators allow per se high accuracy of frequency
measurement, however, fosc may significantly deviate from f;. The necessity of
parallel capacitance compensation increases the efforts in oscillator develop-
ment. The same holds when a lower Q factor of the sensor must be expected.
Automatic level control and evaluation of the control signal as a measure of
acoustic energy dissipation is strongly recommended since this value pro-
vides independent information.

Network analysis is the preferred concept under more complex experimen-
tal conditions and is approved during sensor development to analyze and
optimize sensor signal generation, especially for (bio)sensors if effects other
than pure mass effects contribute to the signal. Measurement at different har-
monics is easily established. Modern sensor interface concepts are about to
combine the advantages of precision measurement with reasonable expenses
for circuitry.

Determination of the sensor transfer function, unperturbed by the inter-
face electronics, is a major advantage of impulse excitation. Other forms of
excitation have been proven to overcome limitations when applied to liquid
analytes. Access to harmonic analysis of the resonator is an inherent feature
of this method.

5
Examples for Sensor Interface Circuits

5.1
Quartz Crystal Oscillators

5.1.1
Pierce and Colpitts Oscillator

The simplest oscillator circuits for QCM apply solutions according to Pierce
or Colpitts—Miller. The Pierce oscillator (Fig. 13a) does not meet the re-
quirement of a quartz crystal with one electrode grounded. The operation
principle of the Colpitts oscillator (Fig. 13b) applies the quartz crystal as an
inductance of high quality. In order to fulfill the phase condition the oscilla-
tor operates at a frequency at which the quartz crystal has a phase of 90°. As
shown in Fig. 11, a quartz crystal in contact with water is not able to reach
this phase, hence additional frequency-dependent feedback components are
used to enable the circuit to oscillate. Since the quartz crystal is part of the
feedback network, alterations of its equivalent parameters cause a shift of the
phases in this network, which means a shift of the resonance point along the
phase curve depending on damping. Therefore, the oscillator frequency is
strongly influenced by the acoustic load.
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5.1.2
Lever Oscillator

The Lever oscillator [39], Fig. 16, allows the application of series resonance
configurations with one-side quartz electrode grounding. Since the effect
of parasitic capacitance is minimized and simple shielding is possible, this
circuit configuration is especially suited for under-liquid QCM. Besides the
series resonance frequency, the series resonance resistance Rs can be meas-
ured. For this purpose the Lever oscillator allows a largely transistor current
gain-independent measurement of the resistance. An automatic level control
provides a signal proportional to Rs.

The practical realization with discrete transistor circuits may offer some
problems caused by a strong influence of their parasitic capacitance to the
phase curve. Best results could be achieved in the lower MHz range.

R
|

W~
—_0
0

R, quartz crystal

Fig.16 Simplified circuit of the Lever oscillator [39]

o

5.1.3
Emitter Coupled Oscillator

The emitter coupled oscillator (Fig. 17) is a circuit also providing one quartz
crystal electrode grounded. For practical realization as a series resonance os-
cillator, a signal proportional to the current through the quartz crystal is
amplified and fed back as a voltage. Since least gain is necessary for low
impedance resonance, the resonance with the smallest impedance will prefer-
ably be excited. Phase condition is fulfilled for a frequency where the quartz
crystal behavior is real, i.e., for f;.
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quartz crystal R,

Fig. 17 Emitter-coupled oscillator (example)

The properties of discrete transistors, their non-linear amplification char-
acteristic, parasitic capacitance, and the problematic adjustment of a stabile
operating point are uncomfortable drawbacks.

5.14
Quartz Oscillator with OTA

5.1.4.1
OTA as Amplifier

In contrast to the traditional operational amplifier (OPA) an operational
transconductance amplifier (OTA), Fig. 18, has a mode of operation where the
non-inverting input is high ohmic whilst the inverting input is low ohmic.
Here, the input current controls a current source, which affects transconduc-
tance and thus generates the output voltage [40, 41].

o+U

cC
T, >1 T Buffer

—0
| R Uour
| IN R1 2
0
o-Ugc

Fig. 18 Amplifier with OTA and current feedback (simplified circuit)



36 R. Lucklum - F. Eichelbaum

G =100
G =100 —
1] G=10
E G=10
c
- G=1
L] —

1 10 100 1k 10k 100k 1M 10M 1k 10k 100k 1M i0M 100M 1G 100G
Frequency / Hz Frequency /| Hz

Fig. 19 Frequency response: a voltage feedback, b current feedback

In contrast to common OPAs a low ohmic current source reloads internal
parasitic capacitance, which determines the upper cut-off frequency. Conse-
quently a much higher slew rate becomes possible. Gain for both voltage and
current feedback OPA circuits is:

A=1+ 72, (23)

Ry

Figure 19 demonstrates the advantage of current feedback (OTA) over voltage
feedback. Bandwidth in the case of current feedback is almost independent of
gain, and also the phase shift is constant over a wide frequency range. The
OTA bandwidth is determined by R;, where constancy of bandwidth-gain-
product is not given. Nevertheless, the feedback voltage divider R;, R, should
be low ohmic in order to minimize low-pass behavior of R, together with
parasitic capacitance.

Current feedback amplifiers always consist of a diamond transistor (DT)
and a buffer stage internally connected. The OPA660 [42] or its replacement
OPA860 [43] allows separated access to both circuit parts so that a voltage-
controlled current source (OTA) at a bandwidth of 90 MHz and a buffer stage
at a bandwidth of 700 MHz are available. In contrast to normal transistors the
diamond transistor, whose temperature-stabile operating point is internally
determined, allows four-quadrant operation. The OTA provides the required
almost-ideal transistor to design an emitter-coupled oscillator.

5.1.4.2
Circuitry

Fig. 20 shows the practical realization of a quartz oscillator concept [44] uti-
lizing an OTA.

Bias current and thus maximal current slew rate of DT; must be adjusted
with R;, Rs, and Rg to suppress high frequency parasitic effects; R3 generates
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Fig.20 Quartz crystal oscillator with OTA and amplitude limiting

an emitter DC potential. Gain is to be charged as follows:
R
A= U
(Z||R3) + e

where Z is the electrical impedance of the quartz crystal and rg is the internal
dynamic emitter resistance [42].

Amplitude stabilization is provided by means of antiparallel connected
low capacitance Schottky diodes D; and D,. Thus gain is maximal at small
amplitudes and the oscillator begins to oscillate even at strong quartz damp-
ing. The Ry, C; high-pass partially compensates for the phase-shift of the
circuit resulting from loop transit time, internal OPA860 phase-shift, and
low-pass behavior of the entire configuration. The phase at resonance fre-
quency can be adjusted in the range — 25° to — 60° depending on bias current
(R;-determined), gain (R4-determined) and C; R, high-pass. The L;,C, par-
allel oscillating circuit damped by R4 avoids parasitic oscillation above quartz
crystal resonance.

The frequency signal is coupled out via DT, and buffer 2, amplified and
adapted to the coaxial cable impedance. The circuit is adjusted to a reson-
ance frequency near f;. However, driving the quartz crystal at a phase of —40°
has been found to be optimal for under-liquid sensing [44]. Temperature de-
pendence of the circuit is essentially due to the temperature dependence of
the quartz crystal. Dependence on voltage supply of approximately 20 Hz V!
has been found for a quartz crystal in air and 80 Hz V™! in water [45]. Thus
common stabilizing methods for current supply are sufficient.

For measurement of quartz crystal damping the amplitude limiting can
be replaced by an automatic level control (ALC). For this purpose the oscil-
lator, Fig. 21, must be modified by opening the feedback loop and inserting
a variable gain amplifier. The control variable effecting the loop gain is pro-
portional to the series resonance resistance R.

For designing an ALC, a precision rectifier, a comparator, a proportional-
integral (PI) controller, and a gain-controllable amplifier are required. The
block diagram of the quartz crystal oscillator with ALC is depicted in Fig. 21

(24)
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Fig.21 Scheme of a quartz crystal oscillator with automatic level control. The gray com-
ponents belong to the automatic level control [36]

with the new components marked gray. A realization of this oscillator al-
lowed under-liquid measurement up to a resonance frequency of 30 MHz and
a damping equivalent value of Rs = 800 2 [44].

5.1.5
PLL-Based Oscillators

PLL-based oscillators are characterized by a loop with phase detection of two
signals in a sensor and reference path. A circuit based on a phase-locked loop
(PLL) configuration has been introduced in [46]. The core of this solution is
a sensor circuit consisting of a reference and a sensor path. It is essential for
the working principle to maintain an identical structure in the sensor and
the reference path, in order to minimize systematic differences between them.
A phase frequency detector measures the phase difference between the sensor
and reference path. An adjustable capacitance in the reference path allows for
Co-compensation. The oscillator can therefore work at f;.

The concept behind the design of the oscillator shown in Fig. 22 ensures
continuous measurement and automatic compensation of the parallel capaci-
tance C}, while the quartz crystal is simultaneously and independently driven
at its zero-phase frequency [47, 48]. Provided that the capacitance compensa-
tion is effective, the zero-phase frequency is always equal to the sensor series
resonance frequency fs, irrespective of the load.

For that purpose, the quartz crystal is simultaneously excited at two fre-
quencies. The response at the lower frequency is processed by a feedback loop
dedicated to measure and automatically compensate Cj. The response at the
higher frequency is processed by a phase-locked loop that continuously main-
tains and tracks oscillations at f;. The voltage waveform Vyy, is the sum of the
two sinusoidal signals Vg, with frequency fy generated by the voltage con-
trolled oscillator VCO, and V1, with frequency fi, lower than fy, generated by
the auxiliary oscillator OSC. The frequency fy of the signal Vy is taken as the
output frequency four of the whole circuit. In the frequency domain, the ex-
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Fig.22 Block diagram of the automatic capacitance compensation oscillator. Adapted
from [48] with kind permission of V. Ferrari

pression of the differential voltage (V, — V) at the output of the amplifiers Al
and A2 is:

Vy -V = VurLZs«a [Ys +]a)C$ —ja)Cc] , (25)

R3 _ R _TA ) 1 -1
14jwRsCy> & = R4R,> CC = [& -~ 1]C and Ys = [jwL; + Ry + ijS] .

As shown in Eq. 25, the equivalent capacitance Cg, that is dependent on the
gain A of the voltage-controlled amplifier VCA, becomes subtracted from the
sensor parallel capacitance C;. Therefore, C¢ effectively behaves as a voltage-
controlled compensating capacitance. The values of R3 and C; are properly
chosen so that their parallel impedance Z; is dominated by Rz at the low
frequency fi., and by Cs at the high frequency fy. Therefore, Eq. 25 can be sim-
plified in two ways. At fi, the sensor is far from the resonance, therefore its
equivalent circuit reduces to the parallel capacitance Cj and Eq. 25 becomes:

where Z3 =

V, - Vi = joViRsa [Cj - Cc]. (26)

According to Eq. 26 V, - V1 =0 if Cc = Cjj. The circuit section including low
pass differential filter (LPF), differential amplifier (DA2), phase shifter (PS),
multiplier (M2), integrator (I2), and the equivalent capacitance Cc automat-
ically maintain the compensation condition by forming a feedback loop so
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that V, - V7 is constantly kept zero. The LPF extracts the low-frequency com-
ponent from V;, - V; at f.. The DC voltage V. at the output of I2 adjusts the
gain A of the voltage-controlled amplifier (VCA) and, in turn, modifies the
equivalent compensating capacitance Cc to be equal to the sensor parallel
capacitance C;. The integrator output voltage V. can be taken as an additional
output providing the value of Cj.

At fy, due to the automatic compensation of C}, Eq. 25 becomes:

aVy |. 1 1!
Vo,-Vi=. ]a)LS + Rs + . . (27)
jwCs jwCs

M1, 11 and the VCO form a phase-locked loop feedback system. The multi-
plier makes a synchronous detection of (V, - V1) at the frequency fu. The
output of I1 drives the VCO so that the output frequency fi; constantly adjusts
to the frequency where the admittance of the motional arm Y; of the sensor is
real, i.e., to the series resonance frequency f;. Therefore, the oscillator output
frequency fout = fu is continuously tracking f;.

The high-pass differential filter (HPF), DA1, and peak rectifier (PR) form
a section dedicated to the measurement of the sensor damping at resonance.
The HPF extracts from (V, - V;) the high frequency component at f = f;.
The rectifier then detects the amplitude and provides a DC voltage Vp, which
is proportional to 1 / R, and a measure of acoustic energy dissipation at res-
onance:

VD _ .O(VH 1 ) (28)

]CUSC3 Rs

A different way of Cyp-compensation is schematically shown in Fig. 23 [49, 50].

This approach is dedicated to the measurement of liquid viscosity by
determining the real part of the sensor admittance at series resonance fre-
quency. According to this concept, one terminal of the sensor is fed with the
(constant-level) output of a VCO. The resonator current I is measured by con-
necting a transimpedance amplifier at the second terminal. Due to the low
input impedance of the transimpedance amplifier, the entire VCO output volt-
age is applied to the sensor. Parasitic capacitances from the sensor terminals
to ground (e.g., due the shielding of the connection cables) are on one side

out=G

|
Nl
veo | —1 >
freq. modulation quartz crystal S

Fig.23 Oscillator circuit self-tuning to f; and evaluating G. Adapted from [49] with kind
permission of B. Jacoby
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shorted by the low input impedance of the transimpedance amplifier, while
they are fed by a low impedance source (VCO output) on the other side, so
that they do not affect the measurement. The amplitude of the in-phase con-
tribution of I (with respect to the phase of the VCO output voltage) is then
determined by means of a synchronous detector (demodulator) consisting of
a mixer and a low pass filter yielding an output signal G according to

A A

N N ViV
V1 sin(wt) - V; sin(wt + ¢) = 12 2 [cos(- @) - cos2wt + ¢)] . (29)

With the latter summand in the brackets suppressed by the low pass filter and

with Vy(w) «x V; /Zg> p(w) =Im(Zq)/Re(Zq) Eq. 29 yields

ViV,
2

Re (Z
cos<p‘ x e( ;l) =G. (30)
14

If the VCO frequency fv is tuned to the series resonance frequency f; G(f)
shows a maximum value. In order to tune fy to f;, the resonance peak in G(f)
needs to be detected. This is achieved by means of a control loop applying
a frequency modulation (FM) to the VCO signal using a low-frequency mod-
ulating signal, e.g., a sinusoidal signal (or a triangular waveform). For fy < f;,
the FM-induced amplitude variations in G are in phase with the FM signal,
for fy < f; they are out of phase, Fig. 24. These phase shifts can be detected by
means of another synchronous detector whose output signal is used as the in-
put of a controller (integrator) tuning the center frequency of the VCO, fy, to
fs. In the case of fy = f;, the tuning signal vanishes.

G(f)4

f,. . .
PP f

Al

t t t

Fig.24 Tuning principle. Adapted from [49] with kind permission of B. Jacoby
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5.2
Network Analysis

5.2.1
Analog Interface

A miniaturized realization of an analog network analysis interface is shown in
Fig. 25 38, 51].

The input stage of the impedance analyzer is a voltage divider formed by
the quartz crystal and the series resistor Ry. The quartz crystal is grounded
to meet the requirements of sensor applications in liquids. The voltage di-
vider is powered by a direct digital synthesizer (DDS 1) at a programmable
frequency f for acquiring an impedance spectrum. The synthesizer applied
here is clocked at 100 MHz and controlled with a 4 x 8 bit frequency tuning
word which gives a resolution of 100 MHz/2? = 0.02 Hz. The DDS is set by
a field-programmable gate array having an identical clock to the DDS. The
DDS output signal is a staircase sine wave with a typical pulse amplitude
modulation spectrum containing the desired frequency, f, and, additionally,
artifacts at 100 MHz % f. These artifacts are suppressed with a fourth-order
Cauer filter, thus obtaining a harmonic excitation signal for the voltage di-
vider. The filter is optimized for a measurement frequency of f = 10 MHz,
having two notches at 90 and 110 MHz for suppressing the first two artifacts.
The voltage divider is fed at adjustable amplitude and the voltage across the

| signal generator| Input stage | Mixing | Amplitude measurement |

= P
| —
1 kHz MR
DC MUX |
D
L == T
1 kHz
T f T f+10 kHz
DDS 1 DDS 2
LP21
v
ADC-Control Phase detector
e RS-232 PC
FPGA System bus
| Control |

Fig.25 Interface with analog measurement of (quartz crystal) sensor impedance
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frequency-dependent sensor impedance varies between 1.5V and 70 mV. The
resulting voltages V) and V; are to be measured referring to amplitudes and
phase difference.

For the improvement of precision, Vi(f) and V,(f) are transformed into
the low frequency range by mixing each with a sine wave from a second
DDS at a frequency f + 10 kHz. A mixed signal consists of a harmonic com-
ponent at the intermediate frequency of 10 kHz and a second component at
2f + 10 kHz that is suppressed by low-pass filtering. Consequently, interme-
diate signals Vip; and Vip, are obtained at a 10 kHz intermediate frequency
retaining the amplitude and phase information of V; and V. The value of
10kHz is constant while the measurement frequency f increases stepwise
when acquiring an impedance spectrum.

The amplitudes of the intermediate signals are measured by two-way rec-
tification according to the principle of the “ideal diode” having zero thresh-
old. The error of the output voltage due to the thresholds of applied diodes
is reduced by the factor of the open-loop gain of the employed amplifier.
The 20 kHz signals resulting from a rectification of 10 kHz sine waves are
composed of two positive half-cycles whose mean value is determined by
averaging with fourth-order Butterworth low-pass filters. Due to the cut-off
frequency of 1kHz, signals require a settling time of 1 ms which limits the
measurement rate of this analog interface. Finally, the amplitude informa-
tion d; and 4, is obtained as two DC voltages. The use of two individual
analog-to-digital converters (ADCs) for simultaneous sampling could imply
temperature dependence. Consequently, amplitudes are subsequently meas-
ured by a single 12 bit-ADC, which is multiplexed by the FPGA.

The phase shift ¢;, between the intermediate signals Vig; and Vip; is meas-
ured with the FPGA counting the time At;; elapsing between zero crossings
of Vir; and Vip,. Because of their constant period (T = 100 ps) the phase shift
becomes

@21 = 360° At (31)

T

Zero crossings are detected by fast comparators. Since their thresholds di-
verge from 0 V a zero crossing will be detected too early or too late, resulting
in time measurement errors At; and Af,. Assuming that these errors are the
same for the positive and negative slopes of the signal, they can be compen-
sated by counting the time between the positive and negative edges of the
comparators 1 and 2. Since the shift register S is refreshed every 40 ns the
phase resolution is 360° x 40 ns/100 ps = 0.14°.

The impedance Z can be calculated according to Eq. 20, using a computer.
An impedance spectrum with 1000 frequencies can be acquired within 5s,
including data transfer.

With a similar concept, real and imaginary parts of the admittance, instead
of magnitude and phase of impedance, can also be determined [52]. In this
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case, the DDS must provide two signals phase-shifted by 90 degrees. Multi-
plication with the sensor signal followed by low pass filtering provides two
voltages that contain the essential information.

5.2.2
Digital Interface

The digital interface shown in Fig. 26 employs a fast analog-to-digital con-
verter for directly sampling the voltages V; and V) at their original frequency
o = 2nf. The method of direct sampling aims at calculating amplitudes and
phase shifts by a sine wave fitting of acquired signal probes [38, 53, 54].

The time dependence of the voltage signals V;(¢) and V,(#) considering an
unavoidable offset V is given by:

V(t) = Vsin(wt + ©) + Voge = V, sin(wt) + V. cos(wt) + Votts (32)

where V, = Vcos(¢) and V. = Vsin(g), Vz\/( V2+V2),and ¢ = arctan(V,/Vs).
A least mean square fitting of N samples:

N
(Vssin (wt) + Ve cos (wt) + Vo - Vi)2 — min (33)

=1

is necessary to achieve the required accuracy of the unknown parameters Vs,
Ve, and V. In order to run the digital interface independent of a computer
this sine fitting is performed by an onboard FPGA in real time. The final
computation is done by an onboard microcontroller via a standard routine
for matrix inversion. This procedure delivers the amplitudes V; and V, and
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Fig.26 Digital interface based on direct sampling and sine fitting with an FPGA



Interface Circuits for QCM Sensors 45

phase angles ¢; and ¢;. Note that offset voltages V¢ do not influence these
results since they are fitted as well. The measurement time for both voltages
including multiplexing is 60 s compared to 3 ms for the analog interface.

5.3
Impulse Excitation

The practical application of this measurement principle is the QCM-D tech-
nique (quartz crystal microbalance with dissipation monitoring), patented
by Q-Sense [55]. The QCM-D technique extracts frequency, f, and dissipa-
tion, D = Rs/(wLs), or the respective changes Af and AD (see Chap. 12 in this
volume).

The measuring principle is based on an abrupt decoupling of the sensor
driving circuitry from the resonator and monitoring the decay of the quartz
sensor oscillation, Fig. 27. The influence of electrical load on the crystal is
both minimized and independent of the mechanical load on the crystal. It
is possible to measure the resonance frequency for parallel oscillation mode,
fp> the resonance frequency for series oscillation mode, f;, the decay constant
for parallel oscillation mode, Dy, and the decay constant for series oscillation
mode, Ds.

The oscillation decays is with a time constant t inversely proportional to D:

V(t) = Ve !/ sin(wt + ¢) + constant, t>0. (34)

The QCM-D technique allows measurement of these parameters several times
per second and the performance of measurements on quartz crystals either in
vacuum, gaseous, or liquid environment. Additionally it is possible to switch
between fundamental frequency and overtones [56].
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Fig.27 Principal circuitry for QCM-D [55]
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Abstract The chapter summarizes the standard model of how acoustic multilayers inter-
act with a quartz crystal microbalance (QCM). In a first step, it is shown how the three
formulations around (the mathematical description, the description in terms of acoustic
reflectivities, and the equivalent circuit) model correspond to each other. Special empha-
sis is given to the small-load approximation, which states that the shifts of frequency and
bandwidth are about equal to the real and the imaginary parts of the stress—speed ratio
(the load) at the crystal surface. The (laterally averaged) stress-speed ratio can be com-
puted for many types of samples (including anisotropic and heterogeneous materials).
The small-load approximation is therefore of outstanding importance when employing
the QCM in complex environments. The second part of the chapter provides the predic-
tions of the standard model for various geometries. This includes the discussion of slip,
of the comparison of optical and acoustic thickness, of electrode effects, of the frequency
dependence of the viscoelastic parameters, and of the consequences of a finite contact
area. Viscoelastic modeling of QCM data has some pitfalls, which are pointed out. A sep-
arate section is devoted to the shortcomings of the small-load approximation (which can
be very noticeable) and the amendments to the model accounting for these.

Keywords Acoustic multilayers - Equivalent circuits - Quartz crystal microbalance -
Quartz crystal resonator - Viscoelasticity

Abbreviations
A Area
a Amplitude of oscillation at the crystal surface
bs  Slip length
c Speed of sound, ¢ = (G/p)'/?
Ci  Motional capacitance
Co  Electrical (parallel) capacitance
D  Dissipation, D = Q!
Thickness
e Thickness of the electrode
di  Thickness of the film
dq  Thickness of the crystal, dq = cq/(2f;)
dys  Piezoelectric strain coefficient, dyg = 3.1 x 1072 m V!
e Piezoelectric stress coefficient, exs = d26Gq = 9.65 x 107> Cm™
e as an index: Electrode

F Force
Fex  External force
f as an index: Film (exception: f;, frequency of the fundamental)

f Frequency

fe Resonance frequency (real part)

fo  Resonance frequency in reference state

fr Resonance complex frequency, f; = f; + il”

fo Resonance complex frequency in reference state

f A parameter close to the resonance frequency of the fundamental
G Shear modulus, G=G +iG”’

Gq  Shear modulus of AT-cut quartz, Gq &~ 29.3 x 10° Pa
hq  Half of the thickness of the crystal, hq = dq/2

h Half of the thickness of a layer

I,  Electrical current
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=I+=-2 B e -E
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Shear compliance, J =1/G,J =] -i]”’

Wave vector, k = w/c = w(p/G)/?, k=K - ik’

as an index: Liquid

Motional inductance

Areal mass density of the electrode

Areal mass density of the film

Mass of resonating system; 1, is not an areal mass density, it is a mass
Areal mass density of the crystal, mq = pqdq = pqcq/(2ff) = Zq/(2f;)
Overtone order, n = f; /f;

as an index: Quartz

Q factor, Q=f;/(2I)

Motional resistance

Time

Lateral displacement

Lateral speed, u = iwu

Wave traveling to the left (+) or to the right (-)

Amplitudes of waves

Electrical voltage

Spatial coordinate in the surface plane

Spatial coordinate in the surface plane

Spatial coordinate perpendicular to the surface plane

Location of interface between layers j and j + 1

Acoustic impedance, Z = pc = (0G)'/?, Z =7 +iz"

Electric impedance

Circuit element related piezoelectric stiffening

Acoustic impedance of a liquid, Zj;q = (iwnp)*/>

Mechanical impedance, Zy, = F/u = Ao/u

Acoustic impedance of AT-cut quartz, Zq = 8.8 x 10°kgm™s~!

Load impedance, Z1, = o/u

Power law exponent of viscoelastic dispersion, J'(f) =J'(fref) - (f/ ﬁef)ﬁ,
Power law exponent of viscoelastic dispersion, J”(f) = J” (fief) - (f /foet)?
Complex frequency shift

Frequency shift

Shift of half bandwidth at half maximum

Phase shift induced by the sample

Decay constant, y = &§,/my

Half-band-half-width of a resonance, HBH width, “bandwidth” for short
Factor for conversion between current and speed, ¢ = Aeys/dg, Ie| = i
Phase shift for one round-trip

Viscosity, n = G/(iw)

Spring constant of a resonator

Piezoelectric coupling coefficient, «? = 656 /(eg0Gq)

Wavelength

Dimensionless parameter describing the mass of the electrode, 1. = me/mq
Dimensionless parameter describing the mass of the film, u¢ = m¢/mq
Density

Stress

Radial frequency

Radial frequency on resonance
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wo  Radial frequency on resonance in the reference state or eigenfrequency of a res-
onator, wp = (kp/ mp)l/ 2

&  Drag coefficient, &, = F/u

&liq Dimensionless parameter describing the viscosity of liquid

¢e  Dimensionless parameter describing the compliance of the electrode

¢ Dimensionless parameter describing the compliance of the film

1
Introduction

The quartz crystal microbalance (QCM) is a well-known tool to measure film
thicknesses in the nanometer range [1-3]. It is difficult to imagine a device
which is simpler than a quartz crystal resonator, and simplicity is one of
the principal advantages of the QCM. A QCM is a disk of crystalline quartz.
The disk displays acoustic resonances like any other three-dimensional body.
As a resonator, it distinguishes itself from other resonators by a number of
features:

e Since crystalline quartz is weakly piezoelectric, the acoustic resonances
can be probed by electrical means. Otherwise, piezoelectricity is of minor
importance.

e There are a number of acoustic modes, which can be well approximated
by standing plane waves with the k vector perpendicular to the crystal sur-
face. For these plane-wave modes, the crystal can be considered as laterally
infinite. The only dimension of interest is the dimension perpendicular to
the surface. One-dimensional models apply [4].

e For certain crystal cuts the motion is of the thickness-shear type. Since the
motion at the crystal surface is then in the surface plane, these modes do
not emit longitudinal sound (or at least not very much of it). The weak
acoustic coupling to the environment increases the Q factor of the reso-
nances to rather exceptional levels. The bandwidth is orders of magnitude
smaller than the resonance frequency, which greatly simplifies the data
analysis.

The classical sensing application of quartz crystal resonators is micro-
gravimetry [1,5]. Many commercial instruments are around. These devices
exploit the Sauerbrey relation (Eq.28). For thin films, the resonance fre-
quency is—by and large—inversely proportional to the total thickness of the
plate. The latter increases when a film is deposited onto the crystal surface.
Monolayer sensitivity is easily reached. However, when the film thickness in-
creases, viscoelastic effects come into play, as was for instance recognized by
Lu and Lewis, who derived a refined version of the Sauerbrey equation [6].
These authors mainly intended to improve the microweighing procedure. Ac-
tually measuring viscoelastic properties with the QCM was not a major issue
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at the time. In the late 1980s, it was recognized that the QCM can also be
operated in liquids, if proper measures are taken to overcome the large damp-
ing [7, 8]. The ensuing questions and their discussion contributed much to the
increased interest in nongravimetric applications of the QCM.

Today, microweighing is only one out of many uses of the QCM (Fig. 1).
The QCM can be viewed as an acoustic reflectometer, as a high-frequency in-
terfacial rheometer, or as a micromechanical probe. In view of this diverse
set of applications, it is helpful to describe the acoustic interaction between
the crystal and the sample in a general way. This entails a certain mathemat-
ical effort. However, there are intuitive views for most cases. Regardless of the
complexity occurring in the intermediate steps of the calculation, simple re-
lations are eventually found which can be readily programmed in any of the
standard software packages for data analysis. For instance, if the sample is
a thin film in air, an advanced analysis (Eq. 72) can yield the viscous com-
pliance of the film, J{(w). I the film is in a liquid environment, the elastic
compliance of the film, ]g(a)), is derived (Eq. 85). Equations 72 and 85 are lim-
iting cases to a viscoelastic model, which today is well established. Note that
the “nongravimetric” QCM is by no means an alternative to the conventional
QCM. Viscoelastic modeling deepens our understanding of the conventional
QCM and enhances the information derived from physical, chemical, or bio-
logical sensors based on quartz crystal resonators.

Although this chapter is mainly concerned with modeling, we briefly ad-
dress a few experimental issues:

QCM & SPR

\ ! acoustic and optical ‘yH 1<

[ | thickness of adsorbates f
viscoelastic multilayers

colloidal dispersions

J\

A A 11

AFM / colloidal probe : |
adhesion under HF H‘ H(
shear excitation acoustic second-
harmonic-generation
\[ < )
K i A

dry granular media
sphere-plate contact

Fig.1 Different uses of the QCM
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e Impedance analysis (Fig. 2), whereby the resonance curves are passively
mapped out with a network analyzer, has in many ways laid the ex-
perimental ground for the viscoelastic modeling [9, 10]. With impedance
analysis, both the frequency and the bandwidth of the resonance are ac-
cessible on a number of different overtones. Ring-down has been recently
introduced as an alternative to impedance analysis [11]. This technique
(Sect. 2) also provides frequency and bandwidth and can do so on a num-
ber of harmonics.

e Oscillator circuits are a cost-efficient alternative to impedance analysis
and ring-down [12, 13]. Naturally, most sensors run on oscillator circuits.
Some advanced circuits provide a measure of the dissipation (such as the
peak resistance, R;, see Sect. 6) in addition to the frequency. Most os-
cillators operate on one harmonic only. Oscillators can be more stable
than ring-down and impedance analysis because the latter two techniques
periodically turn the crystal on and off in one way or another, whereas
oscillators just run quietly on one fixed frequency. If the signal-to-noise
ratio is the primary concern, no technique can beat oscillators. There is
one pitfall with the use of oscillators worth mentioning: the theory be-
low pertains to the series resonance frequency (simply called resonance
frequency). The output frequency of an oscillator circuit, on the other
hand, usually is not the series resonance frequency (Fig. 2). For instance,
phase-locked-loop oscillators keep the phase constant. Many oscillators
run at the zero-phase frequency (B = 0, Fig. 2). Importantly, the difference
between the zero-phase frequency and the series resonance frequency
changes if the bandwidth or the parallel capacitance change (Sect. 6). The

3 _Cor;ductancé G [mS]T . . |
Unloaded

6 - -

4} ]

2 - -

11999 11999 12,000 12.000 12.001
Frequency

Fig.2 Impedance analysis is based on the conductance curve of the crystal. The central
parameters of measurement are the resonance frequency, f;, and the half-band-half-
width, I'. The insert shows the admittance diagram in the complex plane of the admit-
tance Y(w) = G(w) + iB(w). The series resonance frequency, f, corresponds to the peak
of the conductance. The frequency corresponding to B = 0 is the zero-phase frequency



Studies of Viscoelasticity with the QCM 55

latter may happen as a consequence of fluctuating stray capacitances.
Changes in bandwidth or parallel capacitance therefore induce a change in
the frequency of oscillation that is not related to a shift of the (series) res-
onant frequency. This cross-sensitivity easily leads to misinterpretations.

e Because the QCM is so tremendously sensitive, factors of influence come
into play that can safely be ignored in other fields of physics. The correct
interpretation of an experiment is often a challenge and supplemental in-
formation in addition to the frequency shift is helpful. Such information
can, for instance, come from the comparison of the shifts of frequency and
bandwidth at the different harmonics. The combination of the QCM with
other surface-analytical techniques like electrochemical cyclovoltamme-
try [14-16], optical reflectometry [17], atomic force microscopy [18, 19],
or the colloidal probe [20,21] has been pursued for the same reason. Par-
ticularly advanced is the electrochemical QCM (EQCM) [14].

e While a stability of §f/f< 10~ and better is achieved with sealed res-
onators as they are usually employed in timing and frequency-control
applications, a typical stability for resonators exposed to the environment
is in the range of 10°8-107.

e The best agreement between theory and experiment is reached with pla-
nar, optically polished crystals for overtone orders between n =5 and
n=13. On low harmonics, energy trapping [22] is insufficient, while on
high harmonics, anharmonic side bands interfere with the main reson-
ance [23].

e Admittedly, some of the amazing simplicity of quartz crystal resonators
is lost once the surfaces are covered with electrodes and the crystal is
inserted into a holder. In this chapter, we mostly stick to an idealistic
view and describe the modeling as if there were none of these com-
plications. We do not touch upon compressional waves [24,25], effects
of varying temperature or stress [26,27], anharmonic side bands [23],
roughness [28, 29], bubbles and slip [30], or effects of a variable dielectric
environment [31, 32].

Although this chapter is concerned with bulk acoustic wave (BAW) de-
vices, some of the concepts apply to shear horizontal surface acoustic wave
(SH-SAW) devices in a similar way [33, 34]. When modeling SH-SAW devices,
one usually decomposes the wave vector into a vertical and a lateral compon-
ent. The vertical component obeys similar laws as the shear wave in a BAW
resonator. This being said, we confine the discussion to BAW devices (also
termed thickness-shear resonators) in the following.

The most popular BAW resonator is the QCM. The name QCM correctly
suggests that its main use is microgravimetry. However, many researchers
who use quartz resonators for other purposes have continued to call the
quartz crystal resonator “QCM”. We will follow this usage and call all quartz
crystal resonators QCMs. Actually, the term “balance” makes sense even for
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nongravimetric applications if it is understood in the sense of a force bal-
ance. The force exerted on the crystal by the sample is balanced by the force
originating from the shear gradient inside the crystal. This is the essence of
the small-load approximation (Eq. 51). Crystalline a-quartz is by far the most
important material for thickness-shear resonators. Langasite (La3zGasSiO14,
“LGS”) and gallium orthophosphate (GaPOy) are investigated as alternatives
to quartz, mainly (but not only) for use at high temperatures [35, 36]. We also
call these devices “QCMs”, even though they are not made out of quartz (and
may or may not be used for gravimetry).

2
Complex Resonance Frequencies

We use complex resonance frequencies, where the real part, f;, is the series
resonance frequency and the imaginary part, I', is half the bandwidth at half
maximum of the resonance (half-band-half-width, HBH width, also termed
“bandwidth” for short). In the following, we comment on why—and under
what conditions—the imaginary part of the resonance frequency is equal to
the half-band-half-width [37].

Consider a forced resonator obeying the force-balance equation:

Ex(t)  dx(t)
m, d’; v ipx(t) = Fex(t) (1)

with m,, the mass, &, the drag coefficient, «}, the spring constant, and Fey the
external force. Introducing the decay constant y = &,/my and the eigenfre-
1/2 Sy .
quency wg = (kp/mp) ", and also considering the Fourier transforms x(w)
and Fex(w), this reads:
mpx(w 1
pH@) ) . ()
Fex(0)  f-o? +iyw
We now introduce the variables f = w/2n, f; = wo /27, and I" = (1/2)y/(27x).
The factor of 1/2 in the latter definition is essential. Assuming that the reson-
ance is narrow (I" < f;), one may approximate 2il'f by 2iI'f, and write:

4 mpx(f) 1 _ 1 - 1
Fe(f)  f2-f242f  f2-f242il'f;  f2-f2+2lf, - I'?
1 1
(3)

(ﬁ+iF)2—f2 f;Z_fz-
The small term I'? has been added to the denominator in step 3. As Eq. 3
shows, the bandwidth can been absorbed into a complex resonance fre-

quency, f;, if one chooses the real part as f; and the imaginary part as I'. Since
the crystal cannot be excited with a complex frequency, the denominator al-
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ways remains nonzero and the amplitude x(f) remains finite. Allowing for
complex resonance frequencies is a convenient way to include the bandwidth
in all equations.

It is instructive to go through a similar set of equations in the time domain.
Assume that the excitation of the resonance is carried out with a radiofre-
quency pulse (rather than a continuous sine wave). After the excitation has
been turned off, the resonator rings down according to a decaying complex
exponential:

x(t) = xq exp (i t) = xo exp (27if;t) exp (- 27Tt) . (4)
Since Fex = 0, Eq. 1 requires that:

(— mpcﬁf +i&pdr + KP) (xo exp(27ria3rt)) =0 (5)
and further, since x¢ # 0:

a)f—iycf)r—wgzo, (6)
which, for y < wy, is solved by

i - y2 i
Oy = y:l:\/ Z +a)0%:|:a)0+;/

5 (7)

Again, the imaginary part of &; is one half of the decay constant, y, provided
that the resonance is sharp. Sharp resonances are always found for the QCM.
A quick estimate shows that the error caused by neglecting 3% /4 in compari-
son to w? in Eq. 7 is negligible in all cases of practical interest. The complex
resonance frequency, f;, also describes the ring-down of a freely oscillating
resonator. Since the decay time, 7, is equal to (27" )1, I' can be determined
by ring-down experiments (see the chapter by F. H66k and B. Kasemo, 2006,
in this volume) just as well as by mapping out the resonance curve with an
impedance analyzer.

The time-domain description and the frequency-domain description are
connected via the Greens function formalism. Solving Eq. 1 for an arbitrary
tune sequence of the external force Fex(t) by means of the Greens function
shows that the crystal “remembers” the ariving conditions of a tune equal
to (27I")71. The Greens function formalism is of importance in the context
of advanced pulse sequences for driving the crystal [40]. Note, however, that
a response to a change in the crystal properties (for example a change in &}
caused by a contact with an external object) is instantaneous. The parame-
ters kp, mp, and &, in Eq. 1 (and, as a consequence, fr) then acquire an explicit
time dependence. The output of the QCM responds almost instantaneously
to changes in its resonance parameters, whereas it responds more slowly to
changes in its driving conditions. This issue is of importance in the context of
fast measurements [38, 39].
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In this chapter, the half-band-half-width, I', is used to quantify dissipa-
tion.! Other common parameters are the quality factor, Q, and the dissipa-
tion [11] D = QL. Q is defined as:

fr
= 8
Q= (8)
which implies that:
2r
D="_. )
fr

These other measures of dissipation are completely equivalent to the band-
width. It is entirely a matter of taste which variable to use.

The motional resistance, R; (Sect. 6), is also used as a measure of dissipa-
tion. R; is an output parameter of some instruments based on advanced oscil-
lator circuits. However, experiments based on impedance analysis show that
R; usually is not strictly proportional to the bandwidth (although it should
be, according to the Butterworth-van Dyke (BvD) circuit, Appendix A). Also,
in absolute terms, R;j—being an electrical quantity and not a frequency—
is affected by calibration problems much more than the bandwidth. In the
author’s opinion, I" or D are better measures of dissipation than R;.

Even though getting used to a complex resonance frequency takes some
exercise, one is rewarded later on with a reduction in the number of equa-
tions by a factor of two. Just about every single equation below (concerning
load, impedance, speed of sound, wave vector, resonance frequency, shear
modulus, or shear compliance) can be formulated with complex parameters,
where the imaginary part quantifies a loss of energy. Consistently using com-
plex variables (including complex resonance frequencies) much simplifies the
algebra.

At this point, we introduce a convention: a traveling wave u(z, t) shall be of
the form

ut(z,t) = u™ exp (+ i(wt £ k2)) + c.c., (10)

where “c.c.” denotes the complex conjugate and is usually omitted. We could
equally well have written u™*(z, t) = u™° exp (- i(wt £ kz)) + c.c. because after
adding the complex conjugate, it does not matter whether the time depen-
dence has the form exp(iwt) or exp(- iwt). However, it is helpful to stick to
exp(+ iwt) and to certain other sign conventions as well, in order to ensure
that dissipative processes always increase the entropy and never decrease it.
These sign conventions are: G =G’ + iG” for the shear modulus, J =] -iJ”’
for the shear compliance, Z = Z’' + iZ” for the acoustic impedance, ¢ = ¢’ - i¢”
for the dielectric constant, k = k' — ik” for the wave vector, c = ¢ + ic” for

! Note that I" denotes the half-band-full-width in [28] and other publications by this group.
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the speed of sound, and 1 = n’ - in” for the viscosity. Using the above conven-
tions, all quantities with two primes are positive as long as the corresponding
processes comply with the second law of thermodynamics.?

In the following, all variables which are connected to viscoelasticity in one
way or another (such as G, J, k, ¢, or Z) are considered complex. Exceptions
are the parameters Gg, kg, cq, and Zg, which pertain to the quartz crystal.
These parameters, as well as the frequency of the fundamental, f;, are consid-
ered to be real in order to conform to the current usage in the literature. One
can also define them as complex (which they are, in principle, although the
imaginary parts are much smaller than the real parts). When any of the par-
ameters Gg, kq, cq, and Zq are meant to be complex, they attain a tilde (7).
Even when they are complex, the ratios ¢q/ (fo) and Zq / (fo) (leading to the
thickness of the crystal, dq, and the mass per unit area of the crystal, mq) are
real. Frequencies and spring constants are real, unless they have a tilde (., fo,
Ors Af, Kp). The overtone order, , is never complex. The overtone order is
meant to be the nearest integer to f,/f;. In some cases, it makes sense to de-
fine n as the real part of f,/f;. Since overtones are always slightly displaced
from the exact integer multiples of the fundamental, £, /f; is not exactly an in-
teger [41]. The deviation is small and, further, the context will make it clear
whether accuracy can be gained by considering #n a real number (close to an
integer), rather than an integer.

3
Assumptions of the Standard Model

A standard model has emerged for the calculation of the resonance frequen-

cies of quartz crystal resonators coated with planar layers [37, 42-45]. We first

summarize the assumptions entering the model:

1. The resonator and all cover layers are laterally homogeneous and laterally
infinite.

2. The distortion of the crystal is given by a transverse plane wave with

the k vector perpendicular to the surface normal (thickness-shear mode).

There are neither compressional waves [24] nor flexural contributions to

the displacement pattern [46]. There are no nodal lines in the plane of the

resonator. The standard model ignores anharmonic side bands (spurious

modes) [23].

All stresses are proportional to strain. Linear viscoelasticity holds [47].

4. The voltage across the crystal is a boundary condition controlled by the
experimentalist. The current through the electrodes is the primary par-
ameter of the measurement.

w

2 For the viscosity, the primed quantity (i') is related to dissipation rather than the quantity with
double primes.
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These assumptions deserve a few comments. Assumptions 1 and 2 are inter-
related and not fulfilled in practice. In order to be able to mount the crystal
in a holder touching its rim, “energy trapping” [22] is employed. One confines
the oscillating region to the center of the plate by making the crystal slightly
thicker in the center than at the rim. The resonator then acts as a small acoustic
lens, which focuses the acoustic beam to the center of the plate. An increased
thickness at the center can, for instance, be achieved with keyhole-shaped back
electrodes or, alternatively, with plane-convex crystals. There is an analytical
treatment of energy trapping with plane-convex crystals by Stevens and Tier-
sten [48]. Finite element calculations are being done [49], but their routine
use at this point seems difficult. Importantly, energy trapping induces flexural
contributions to the pattern of motion as well as compressional waves [50, 51],
which is a problem with the use of the QCM in liquids. Because laterally het-
erogeneous samples are of tremendous importance in practice, we treat them
briefly in Sect. 8.1.1 (see also D. Johannsmann, 2006, in this volume).

Assumptions 1 and 2 constitute a practical requirement for the construc-
tion of resonators in the sense that resonators perform poorly if the width-
to-thickness ratio is less than about 30. This condition severely restricts the
design options when it comes to miniaturization and array sensors. Viola-
tions of assumptions 1 and 2 are tolerable only to a certain extent.

Linear viscoelasticity (assumption 3) is obeyed as long as the driving volt-
age is small enough. In air, a drive level of - 5dBm (170 mVyn) usually is
safe.? In liquids, higher drive levels (resulting in a better signal-to-noise ratio)
can be tolerated because the motion is more strongly damped and the peak
amplitude is not as high as in air. The main source of a drive-level dependence
of the resonance parameters is an elastic anharmonicity of the crystal [47, 52].
Heating also plays a role. Linear viscoelasticity is often violated in contact
mechanics experiments (D. Johannsmann, 2006, in this volume) because in-
terfacial friction is a strongly nonlinear phenomenon.

Assumption 4 is not fulfilled in practice, because the electrical circuitry
probing the crystal has finite output and input impedance. Nevertheless, since
the calculations provide the electrical impedance of the crystal, the electrical
circuitry can be accounted for by using an appropriately extended equivalent
electrical circuit of the crystal (Sect. 6) in the analysis.

When employing impedance analysis, proper calibration of the impedance
analyzer takes care of the additional electric circuit elements to a large
extent.* It turns out to be advantageous to interface the crystal to an elec-

3 A drive level of DL=0dBm corresponds to a power of P=1mW. With an impedance of
the cable of R=500hms, this translates to a voltage Ug = (RP)Y/2 = (50 x 1072 )12V (rms) x
exp(DL/(20 dBm)) = 223.6 mV(rms) x exp(DL/(20 dBm)). The amplitude of the voltage is equal to
the rms voltage multiplied by 21/2.

4 Most network analyzers use three-term calibration, which is good enough in the sense that the
resonance curves look correct after calibration. Evidently, three-term calibration only accounts for
sufficiently simple electrical elements between the analyzer and the crystal. Three-term calibration
is described in the EIA Standard 512.
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tronic circuitry with low impedance. Because of piezoelectric stiffening
(Sect. 6) the crystal responds rather sensitively to stray capacitances between
the electrodes. The influence of stray capacitances can be lowered by con-
necting the two electrodes across a small resistor (typically 14.2 ohms). The
resistor short-circuits the stray capacitances. Such an electrical separation
from the environment is achieved by means of a 7= network [53]. However,
the 7 network also short-circuits the connection between the crystal and the
driving electronics to some extent (effectively acting as a 15-dB attenuator),
thereby decreasing the signal-to-noise ratio.

4
Wave Equations and Continuity Conditions: The Mathematical Approach

The following section describes the canonical mathematical way of finding
the resonance frequencies of coated quartz crystals. The method is described
in detail in [54]. The wave equations for the different layers and the boundary
conditions at the interfaces between the layers form a homogeneous system
of linear equations, which can only be solved if the determinant of the sys-
tem is zero. Since the determinant depends on frequency, the zeros of the
determinant lead to the resonance frequencies.

Figure 3 illustrates the geometry. There are a total of N layers, where the
semi-infinite media to the left and to the right of the layer stack have the in-
dices 0 and N + 1. Later on, the crystal will usually be layer 1 and the index 1
will be replaced by gq. Each layer j is characterized by the thickness, dj, an
acoustic impedance, Z;j, and a speed of sound, ;. Both the impedance Z; and
the speed of sound ¢;j are complex. They are given by:

G; G +iG!
Gg=['=/" (11)
pj pj

Zj = pj¢j = \/IOJGJ = \/pJ (GJ/ + IGJN) , (12)
Li Sj.i+1
o [1="q" | |j j+1 N | N+t
o 5
-— S Upgeq™
u +.0 uj+,D
z z

izl

Fig.3 Layer system and definition of variables
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where p is the density and G is the shear modulus. Each 1ayer supports two
waves of the form uJjE O exp (i(wt £ kjz)), where the “+” and “~” signs de-
note the direction of propagatlon, U is the wave traveling from left to right,
kj = w/cj is the wave vector, and uji’o is the amplitude. Unless the crystal is op-
erated as a microphone [55] (which is not considered here), the semi-infinite
media to the left and to the right each only support one wave, which propa-
gates outwards. The amplitudes u(')’o and u;:,’i)l are zero, leaving us with a set
of 2N + 2 nontrivial amplitudes. The N layers are bounded by N + 1 inter-
faces. Both the displacement, u, and the stress, Gou/dz, are continuous at the

interface. The continuity of displacement is expressed as:

+ - _ 7t -
uf (zijn) + 145 (Zj01) = Wy (5j01) + 8530 (501) 5 (13)
where zj ;.1 is the location of the interface between layers j and j + 1. Adopting
the definition that:

" (z15) = uji ?
uJjE (zij41) = u 0 exp (Likd;) , (14)

Eq 13 translates to:
0 exp (ikjd;) + U’ Oexp (- ikid;) = ]+1 0+ uJ+1 (15)

The contlnulty of stress is expressed as:

Gk [ (zij01) - 5 (z3j1) | = iGyerkian [, (@31) = 5,4 (@31) | - (16)

Using Eqs. 14 and 15 as well as k = w/c = w(p/G)'/? = wZ/G, Eq. 16 can also
be written as:

Z; [u;r’o exp (ikjdj) - uj_’o exp ( ik;d; )] Ziv1 [ ;? uj_;(i] . (17)

Equation 17 illustrates why the acoustic impedance is of such tremendous
importance in the physics of the QCM. The acoustic impedance governs the
condition of stress continuity, and thereby the reflectivity at acoustic inter-
faces.

Equations 15 and 17 constitute a homogeneous system of 2N + 2 linear
equations. A nontrivial solution for the set of amplitudes (u only exists
if the determinant of this equation system vanishes. The search for the ze-
ros of the determinant as a function of frequency will in general be carried
out numerically. The zeros define the resonance frequencies. Since, for a real
material, the shear modulus always contains a dissipative component, G”, the
resonance frequencies are complex (where the imaginary part is the half-
band-half-width, I').

Let us consider a simple example. For the bare crystal in air, the number
of layers is equal to 1 and the adjacent bulk media have vanishing impedance
(Zop =0, Z, = 0). Here and in the following, we neglect the impedance of air
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«_»

and treat air and vacuum as the same. We use the index “q” instead of “1”
because the first layer is the quartz crystal. The resulting set of equations is:

ug? = u;,o + u(']’o (18)
0=2Zq [u:;’o - u&’o] (19)
u:l“’o exp (ikqdq) + u("l’o exp (- ikqdq) = u3” (20)
Zq [ug’o exp (ikqdgq) - ua’o exp (- iEqdq)] =0. (21)
In matrix notation this reads as:

-1 1 1 07 [ug?®

0 Z -7 0| ub®
2 2 41 =o. (22)

0 exp (ikqdy) exp (- ikqdq) -1 | ug

0 Zgexp(ikqdq) -Zgexp(-ikqdg) 0 u;°

Requiring that the determinant of this system be zero amounts to:

Zé exp (ikqdq) - Zzl exp (- ikqdq) =0 (23)
or equivalently:
~ Wy NI
kq = = > 24
17 ¢ dq (24)

where the overtone order, n, is an integer.5 Equation 24 is the well-known
resonance condition for a bare plate in vacuum. The displacement pattern is
given by a standing wave with antinodes at the surfaces. For the fundamental,
the wavelength is twice the crystal thickness. The surfaces are stress-free with
vanishing gradients du/dz. The overtone order may be even or odd. However,
only odd harmonics can be excited electrically.®

For later use, we rewrite Eq. 24 in two different ways. Calling the frequency
of the fundamental f} (n=1), we find:

16
q= 5 z (25)
2 fe
and
1pqéq 172
mq=pgdg=_" % =_"1 (26)

~ ~
2 2k

5 The overtone order may turn into a noninteger number if piezoelectric stiffening and energy
trapping are taken into account. This does not change the structure of the equations.

6 A resonance can be excited electrically if there is a difference between the displacement of the
two electrodes (inducing a polarization and a current). Harmonics with even overtone order can,
under certain conditions, also be electrically excited. The displacement pattern has to be slightly

asymmetric. This may be the case if one side of the crystal is heavily loaded whereas the other side
is empty.
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where mgq is the mass per unit area of the crystal, and pq is its density. In
the context of viscoelastic modeling, the combination of parameters Zy and f;
usually encodes the mass of the crystal. For the reasons stated in [41], the res-
onance frequency at the fundamental is not the best choice for the parameter
fs. This resonance frequency is also affected by piezoelectric stiffening and
energy trapping. Some accuracy can be gained by using the high-frequency
limit fo(n)/n (where fo(n) is the frequency of the bare crystal at overtone
order n) for the parameter f;, rather than the frequency of the fundamental.
The two are not exactly the same.

Let us assume that a thin film of thickness df < dq has been coated onto
the crystal surface. Let the film have the same acoustic properties as the
crystal (of = pq, & = Cq). Adding a film of identical properties amounts to
a thickening of the plate. This system may still be modeled as a single layer.
If the properties of the film were to be different from the properties of the
crystal, we would need to repeat the full analysis with two layers instead of
one. The discussion of a viscoelastic film with arbitrary acoustic properties is
deferred to Sect. 8.2.

For a film which has exactly the same acoustic properties as the crystal, the
shift in resonance frequency is predicted as:

Af o mi (27)

fo dq g
Here and in the following, f; is the resonance frequency of the crystal in the
reference state (which usually is the uncoated state)’; m; and mq are the areal
mass densities (mass per unit area) of the film and the crystal, respectively.
The relation d¢/dq = m¢/mq evidently requires that the density of the film and
the crystal are the same. It will turn out that the fractional frequency shift is
the same as the ratio of m¢ and mq for all thin films, regardless of their acous-
tic properties. Therefore, one may memorize the relation Af/fy =- mg/ mgq
right here. Note that this “Sauerbrey limit” only holds for films much thinner
than the wavelength of sound, X.

Using Eq. 26 for the parameter mg, we arrive at the famous Sauerbrey
equation:

Af  2f
fe Zq
or, equivalently,

< 2fofr 2nf?
Af%— ';fo%— mef.
q q

mg (28)

(29)

7 For reasons which are stated in [56] and [41], the reference frequency at the nth overtone is never
strictly equal to nfs.
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Zq is the acoustic impedance of AT-cut quartz; its value is 8.8 x 10° kgm™s7".

Strictly speaking, Zq is a complex quantity Z, +iZ, where Z accounts for
internal friction. Zg is often considered to be real. When this happens, the
fundamental frequency f; must also be a real number (see end of Sect. 2). The
Sauerbrey equation fails to account for viscoelasticity and also, when applied
in liquids, cannot distinguish between the adsorbed material itself and sol-
vent trapped inside the adsorbed film. When a mass is derived by means of
the Sauerbrey equation, the interpretation of this mass parameter is some-
times difficult. The terms “Sauerbrey mass” and “Sauerbrey thickness” are
used in order to indicate that the respective parameters have been calculated
by the simple Sauerbrey equation.

The derivation above ignores piezoelectricity (Sect. 6). The theory of the
piezoelectric plate has been worked out by Tiersten [56]. Kanazawa has ap-
plied this theory rigorously to the case of a crystal loaded with a liquid or
a viscoelastic film [54]. These treatments are equivalent to the treatment with
equivalent circuits (Sect. 6), and we therefore defer the discussion of piezo-
electricity to that section.

5
The QCM as an Acoustic Reflectometer: The Optical Approach

The procedure described in Sect. 4 is mathematically straightforward, but
somewhat technical. Applying the formalism to multilayers leads to awk-
wardly large determinants (Eq. 22). Searching the zeros of these determinants
certainly is possible, at least numerically. On the other hand, the procedure
is tedious and somewhat obscures the underlying physics. Two other formu-
lations are around. These make use of an analogy to the theory of optical
reflectivities and of electrical circuits, respectively. With regard to the out-
come, these theories are completely equivalent to the strictly mathematical
formulation. It is just a matter of language and graphical representation. The

resonance condition:
¢ =2mn

hare ; >

erystal

loaded]

erystal e

Fig.4 The frequency shift depends on the acoustic reflectivity at the quartz-sample inter-
face
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alternative formulations provide an intuitive insight and we therefore discuss
them both.

Within an optics-type approach, one considers the resonator as an acous-
tic cavity. The term “acoustic” in this context always pertains to shear waves,
never to longitudinal waves. This distinction is important: in liquids, shear
waves rapidly decay because the elastic part of the shear modulus is zero.
Shear waves therefore provide for surface specificity. Longitudinal waves, on
the contrary, propagate because the elastic component of the compressional
modulus is nonzero.

Resonances occur if the time required for one round-trip is an integer
multiple of the period of oscillation. If this is the case, there is constructive
interference and the amplitude becomes large. In order to calculate the time
needed for one round-trip, we need to know the set of layer thicknesses, {d;},
wave vectors, {kj}, and reflectivities at the interfaces (Fig. 3). Let us calcu-
late the reflectivity r,1, = ui?® / u;° ofa single interface between media termed
“a” and “b”. We have 1;° =1 and u;’o = 0. The analogs of Eqs. 13 and 17
are:

0

ug® +uy’ =y (30)
Zy [up® - 1] = Zyuy® (31)

Eliminating ul;’o, one finds:
u®  Za-Zp (32)

Ta’b = 4= .
ua’o Za+ 2y

This relation is reminiscent of the reflectivity of optical waves impinging
vertically onto a dielectric interface. The optical reflectivity r is given by
r=(n, - ny)/(na + np), where n, and ny, are the indices of refraction. In
acoustics, the acoustic impedance, Z = (,oG)l/ 2 takes the role of the re-
fractive index. Note, however, that this analogy has its limitations. In op-
tics, the refractive index governs both the reflectivity at interfaces and
the speed of light. This happens because the magnetic permeability (the
analog of the density) is about equal to unity at optical frequencies. In
acoustics, it is not quite as easy. Also, strictly speaking, n is not the op-
tical impedance, but the ratio of the optical impedances of vacuum and
of the medium. Finally, refractive indices typically vary by a few percent.
Typical optical reflectivities (of—let’s say—the water surface) therefore are
also in the range of a few percent. The acoustic shear impedance, on
the other hand, can easily vary by a factor of 10 or more because the
shear modulus may vary by orders of magnitude. As a consequence, acous-
tic reflectivities easily approach unity even for rather similar materials
(Sect. 8.3.2).
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Let us apply the optical approach to a single plate in vacuum. The ampli-
tude of the wave after one round-trip, u® s given by:
u) = 4 exp (- ikqdq) rq,2 exp (- ikqdq) rq0 » (33)

where u® is the initial amplitude and r is the reflectivity. Since both Z; and
Z, vanish, we have rq, = 74,0 = 1 and the condition of constructive interfer-
ence is:

; -2io
1@ =, = O exp (— Zikqu) =40 exp ( ¢ rdq>
q

— Arif - 47rif,
— 4 exp ( ife dq) — 4 exp fry/Pq dq
&q \/Gq

— 477if
=4 exp( Tfrpqdq) . (34)
Zq

The argument of the exponential (the phase shift, — ip) must be an integer
multiple of - 271, leading to:

x Nig n qu _ an _an

o= 04,2 dq  2pqdq 2mgq’ (35)

q Pqlq  £Pqlq  <Mq
which is the familiar resonance condition.

Now let us assume that the reflectivity at the front surface, rq>, is slightly
different from unity. The absolute value may be smaller than unity because
some energy may be dissipated inside the sample. Also, there may be a phase
shift because a certain part of the wave enters the sample, returns, and su-
perimposes itself onto the wave reflected at the crystal surface (Fig. 4). The
resonance condition then is:

4rifed

l=rqoexp (— fr q) . (36)
Cq

If we assume that 7 is close to unity, we may write f; = fo + Af with a small

complex frequency shift Af. Since 47fodq/cq = 27rn, we can write:

4nif0dq 4niAqu
I=rgoexp |- z exp | - B

q Cq
4minfd 4minfd
=rgexp | - - fdq ~Arga|1- . fdq , (37)
q Cq
which leads to the expression:
4minfd Af Af  rga-1
fdq =2mi .f R 2mi f ~ 97 Arga-1 (38)

Cq ft fe rq,2
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or equivalently:

A"’ .
fff A 2; (1-rq2) - (39)

Af /f; is small whenever 7q.2 is close to one. Conversely, since the QCM only
works well when the normalized frequency shift Af /f; is small, it makes sense
to assume rq, ~ 1. Equation 39 shows that quartz crystals are acoustic re-
flectometers. The results of QCM measurements can therefore be easily com-
pared to data obtained with other forms of ultrasonic reflectometry [57, 58].
It is well known from optical techniques such as ellipsometry [59] or surface
plasmon resonance (SPR) spectroscopy [60] that a film thickness can be in-
ferred from a measurement of the reflectivity. The same applies to acoustics.

Let us assume that the crystal has been coated with a thin film of thick-
ness dg. Let the film have the same acoustic properties as the crystal. In this
case, the entire acoustic wave enters the sample. Evaluating 74 as the ratio
u(‘;(zq,z) / u(‘](zq,z), we find the modulus |rq>| as unity. There is a phase shift
A =- 2keds which the wave acquires while traveling through the film. We
find:

Af ~ il - exp(- 2ikedy) ~ 2k¢ds _- @y ds _- Zfrdf _- Zfr

2 2 - - Z ms, (40)
ff T T 7lq Cq q

which is again the Sauerbrey equation.

In the presence of multilayers, the coefficient of reflectivity rq, = uar (2q,2)/
ug(2q,2) can be derived in the same way as in optics. There is a choice between
the matrix formalism [61] and an iterative scheme [59]. In the following, we
briefly describe the matrix formalism.

The amplitudes are written as a two-dimensional vector (uj+’0, uj_’o). There
is no reflected wave in the last, semi-infinite medium on the right-hand side.
The transmitted wave in this medium, ”ﬁgp is normalized to unity. The vec-
tor of amplitudes in this medium therefore is (0,1). The vector (u.+’0, uj"o) at
any other location is related to the amplitudes at the right end of the layer sys-
tem via transfer matrices (Fig. 3). There are transfer matrices for the layers
(L;) and for the interfaces (S;+1). The amplitudes are calculated as:

uj+’0 0
‘o] = Lj . Sj’j.}.l Ceee s SNON#T E (41)
4

For the matrix Lj, one has:

_ (exp(-ikid)) 0
L= < 0 ™ exp(ikjdj)> ’ (42)
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where kj is the wave vector and d is the thickness. §j ;1 takes care of reflection
at interfaces. One has:

V(14 Z/Zin1 - Z/Zina
Siiiq = )yt 1/ <)t , 43
AL (1 ~Zi/Zin 1 + Zj/ Zin (43)

where Z; = (p; Gj)l/ 2 is the acoustic impedance of the respective medium. Ap-

plying S;;+1 to the vector (uj:’?, u}ﬁ), one reproduces Egs. 13 and 17. The
vector (ug(zq,z), ua(zq,z)) is computed as:
ug(2q2) 0
97 ) =8g2-Lavee SNt [ 1 ) - 44
(”a(zq,Z)) q,2 2 N,N+1 1 ( )

Finally, using g = uf{(zq,z) /g(2q,2), the reflectivity of an arbitrary layer sys-
tem can be obtained.

6
Equivalent Circuits: The Electrical Approach

Electrical engineers also deal with waves. In electrical engineering, the waves
are usually confined to cables and different cables are interconnected to form
networks. When calculating the properties of such networks, one makes use
of the Kirchhoff laws. The first Kirchhoff law states that the sum of all the cur-
rents entering a junction is equal to the sum of all the currents leaving the
same junction. The second law states that the sum of voltages encountered in
a complete traversal of any closed loop is zero. With a little exercise, one can
get an intuitive feeling for a network by just looking at its graphical represen-
tation. For instance, when a capacitance, C, and an inductance, L, are placed
in series, the total impedance of the two vanishes at a resonance frequency
equal to (LC)'/2.

Naturally, electrical engineers have designed “equivalent circuits” for non-
electrical wave phenomena. The waves may or may not be confined to cables.
For simple propagating waves, the equivalent circuits are often called trans-
mission line models. The transmission line has two ports representing input
and output. The input-output relation can be predicted by applying the
Kirchhofflaws to the set of elements located in between.? The circuit elements
may be simple resistors or capacitors, but their electrical impedance may also
be a more complicated function of frequency (see, for instance, Fig. 6)

Can acoustic phenomena be described by electrical circuits? Yes, they can,
by means of the electromechanical analogy, that maps forces onto voltages

8 While a certain equivalent circuit uniquely predicts the input-output relation, the same input-
output relation can be represented by more than one equivalent circuit. It is a bit of an art to find
the simplest one. For example, the Norton transformation (Fig. 13b) links two networks which are
equivalent to each other with regard to the input-output relation.



70 D. Johannsmann

and speeds onto currents. The ratio of force and speed is termed “mechanical
impedance”. Nota bene: speed here means the derivative of a displacement,
not the speed of sound. There is also an electroacoustic analogy, within which
stresses (rather than forces) are mapped onto voltages. In acoustics, forces
are normalized to area. With regard to the terminology, there is a compli-
cation: the ratio of stress and speed cannot be called “acoustic impedance”
(in analogy to the mechanical impedance) because this term is already in
use for the material property Z (which only under certain conditions is
equal to the stress-speed ratio, see below). We call the stress-speed ratio
“load impedance”. It is also called “surface impedance” [30] and “acoustic
load” [62].

The electromechanical analogy provides for simple equivalents of a resis-
tor, an inductance, and a capacitance, which are the dashpot (quantified by
the drag coefficient, &), the point mass (quantified by the mass, m,), and the
spring (quantified by the spring constant, «p). The ratio of force and speed is
the mechanical impedance, Z,. For a dashpot, the impedance by definition is
Zm = F/u =&, (with F the force and # the speed). For a point mass under-
going oscillatory motion u(t) = ug exp(iwt) we have Zy, = iwm,. Finally, the
spring obeys Zn, = kp/(iw).

Piezoelectric coupling is depicted as a transformer. It is characterized by
a “ratio of the number of loops”, ¢. While ¢ is dimensionless for usual
transformers, it has the dimension of current/speed here. The transformer
separates the electrical and the acoustic branch of the network. The following
equations hold [4]:

I = ¢u
1 1
Ug= F= Ao
o @
Uq 1 Ao 1
= = = 7 45
Aejg
¢= d
q

The parameter A is the effective area of the crystal, o is the stress, dq is
the thickness of the quartz plate, and eys is the piezoelectric stress coeffi-
cient [63]. Its value is 9.65 x 10 Cm™ for AT-cut quartz. Actually, putting
down a number for the effective area of a quartz crystal, 4, is not an easy task
(end of Appendix A). The effective area is less than the total area of the plate
because of energy trapping [22].

There is a pitfall with the application of the electromechanical analogy,
which has to do with how we draw networks. When a spring pulls onto
a dashpot, we would usually draw the two elements in series. However, when
applying the electromechanical analogy, we have to draw the two elements in
parallel. For two parallel electrical elements the currents are additive. Since
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the speeds add when placing a spring behind a dashpot, this assembly has to
be represented by a parallel network (Fig. 5).

Figure 6a shows the transmission line representing a viscoelastic layer [64].
Every layer is represented by a “I”. The application of the Kirchhoff laws to
the Ts reproduces the wave equation and the continuity of stress and strain.
The detailed proof is provided in [4]. To the left and to the right of the cir-
cuit are open interfaces (ports). These can be exposed to external shear waves.
They can also be connected to the ports of neighboring layers (Fig. 6b). Al-
ternatively, they may just be short-circuited, in case there is no stress acting
on this surface (left-hand side in Fig. 6¢). Finally, if the stress—speed ratio
Z1, (the load impedance, see below) of the sample is known, the port can be
short-circuited across an element of the form AZy, where A is the active area
(right-hand side in Fig. 6¢). Figure 6c shows a viscoelastic layer which is also
piezoelectric. This equivalent circuit was first derived by Mason [4, 55]. We
term it the Mason circuit. The capacitance, Cy, is the electric capacitance be-
tween the electrodes. The port to the right-hand side of the transformer is
the electrical port. The series resonance frequency is given by the condition
that the impedance of the acoustic part (the stress-speed ratio, o/#) be zero,
where the “acoustic part” comprises all elements connected to the left-hand
side of the transformer.

Even though o/ is an entirely acoustic quantity, the series resonance fre-
quency is affected by the value of the electrical capacitance, Cp, because of the
element Zy = - ¢?/(iwCy), which introduces piezoelectric stiffening into the
acoustic branch. Piezoelectricity adds a negative capacitor into the mechan-
ical branch of the circuit.

physical  equivalent circuit
situation

Fig.5 When representing mechanical elements with equivalent circuits, elements which
are placed in series to each other, physically, have to be drawn as parallel elements in the
circuit representation because currents (speeds) are additive for parallel electrical elem-
ents. Conversely, mechanical elements which are physically placed in parallel have to be
represented in series because the voltage (force) is additive for electrical elements placed
in series. In the literature on polymer rheology, springs and dashpots are depicted as on
the right-hand side, but connected to each other as on the left-hand side. This conven-
tion differs from the convention chosen here. It amounts to a different set of Kirchhoff
rules
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(a)
U,~-1, {,~1,
01 i AZ tan(kh) —— i AZ tan(kh) :O
F.~U, F,~U,

—i AZ/sin(2kh)
O O
(b)
O i AZ, tan(k;h,) —i AZ, tan(k,h,) —O— i AZ, tan(k,h,}-1 i AZ, tan(k,h,) QO
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F,=0 ’ F.=0
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(c) - .
— i AZ, tan(k;h,) i AZ tan(k h,) ——

-i AZ Jsin(2k h,)

ZkJ_ AZ
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Fig.6 Equivalent circuits of a a viscoelastic layer of thickness 2h, b two viscoelastic layers
of thickness 2h; and 2h; (where 1 denotes the quartz crystal and 2 denotes the film), and
c a piezoelectric plate loaded on one side with a load AZ;. The parameter F is half of the
thickness of the respective layer

When applying the Kirchhoff laws to such a network, one finds the same
resonance conditions as with the mathematical and the optical approaches.’
Why should one bother going through these transformations if the results are
the same? There are important benefits tied to the use of equivalent circuits:

e All acoustic, electric, and piezoelectric parameters can be displayed in
a single graph, which is not just a cartoon. The graph, in conjunction with
the Kirchhofflaws, predicts the behavior of the resonator. Anyone who can

9 In this section, the Mason circuit does account for piezoelectric stiffening, whereas piezoelectric
stiffening is neglected in Sects. 4 and 5. In order to find exact equivalence between the three models,
the element Zy (dealing with piezoelectric stiffening) must be deleted from the Mason circuit.
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master the Kirchhoff laws can also calculate the impedance across the elec-
trical port and search the zeros of this impedance. This can be done for
arbitrarily complicated layer systems. It is easy to add more layers to the
model. Every new layer is represented by another “T”, as in Fig. 6b [65]. If
the crystal is immersed in a viscoelastic liquid, the mechanical port on the
right-hand side is not just short-circuited (as in air), but connected across
a circuit element, AZjg, which is the product of the area A and the acoustic
impedance of the liquid, Z};q. A load impedance Zy, (see below) is treated in
the same way as the acoustic impedance of a liquid.

e In the vicinity of resonances, the somewhat complicated algebraic form
of the circuit elements can be approximated in such a way that they can
be represented by resistors, capacitors, and inductances. If this is the
case, one can intuitively understand the circuit. The famous Butterworth-
van Dyke (BvD) circuit [66] (Fig. 7) can be derived from the Mason circuit.
While the general form of the BvD circuit can be guessed without going
back to the Mason circuit, the values of its elements can only be deter-
mined by the full derivation (Appendix A).

e Piezoelectricity and piezoelectric stiffening are rigorously accounted for
in the Mason circuit. This is not the case for the mathematical and optical
approaches at the level of detail presented here.

Apart from these practicalities, there is an important new concept contained
in the equivalent circuit representation, which is the load impedance, Z;. The
load impedance in this context is the ratio of the stress, o, and the speed, 1,
at the crystal surface. The load impedance is normalized to area (unlike the
mechanical impedance).

The load impedance, Z;, in general is not equal to the material constant
Z = pc=(Gp)'/2. Only for propagating plane waves in an infinite medium are
the values of Z1, and Z the same. The ratio of stress and speed in this case is
given as

o Gou/oz
i ou/dt
_ Giku G

Z1, =

] = \/G,o =Z. (46)
iou ¢

iol, 1(wC)R, AZ

acoustic
branch

! W(iwC,y) electrical
I branch

Fig.7 Butterworth-van Dyke equivalent circuit
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For a propagating wave in an infinite medium the stress-speed ratio is the
same everywhere and equal to the acoustic impedance. This is not true for
more complicated displacement patterns. For instance, if two waves u* and u~
travel in opposite directions, the analog of Eq. 46 reads:

- Gik (u*(z) - u‘(z))
4= i iw (ut(2) + u(2)) “7)

and there is no way to further specify Z; without knowledge of the am-
plitudes and the relative phase of the two waves. One can show that the
fractional frequency shift of a quartz crystal resonator is proportional to the
load impedance. This important result is further elaborated in Sect. 7.

The Mason circuit is a necessary level of complication (and a safe ground,
as well) if any of the following conditions are encountered:

e Both sides of the crystal are loaded.

e The behavior of the crystal far away from the resonances matters.

e The linearizations used in the derivation of the Butterworth-van Dyke cir-
cuit (Fig. 7) are not accurate enough (Sect. 9).

e The amplitude of shear motion is of interest (end of Appendix A).

A word of caution is appropriate with regard to an over-interpretation of the
Mason circuit: in principle, one might attempt to calculate the complete ad-
mittance spectrum of a crystal directly from the Mason circuit. However, this
possibility is of little practical use, because the electrical admittance cannot
be measured accurately enough in experiment. In order to allow for a com-
parison with the prediction from the Mason circuit, the admittance would
have to be measured as precisely as the resonance frequency (relative error
of 1077), which is impossible. The strength of the QCM lies in its tremen-
dous accuracy with regard to frequency measurements. Unfortunately, this
extreme accuracy is limited to the frequency of the peak conductance; it does
not extend to the conductance (or, more generally, the complex admittance)
itself.

For frequencies close to the resonance, the Mason circuit can be simplified
to the Butterworth-van Dyke (BvD) circuit shown in Fig. 7. The values of its
elements are:

1 8Ae2 8\~
Ci=4¢? = 26 (1 “ )
K

o dg(nm)2Gq \ (n)?
3
1 Pqd.
Li= my=__J1 (48)
4¢ 8Aes
1 dé dq 2
Ry = = Zqnm tan(8) = niw .
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The derivation is provided in Appendix A; &p, mp, and &, represent a (piezo-
electrically stiffened) spring, a mass, and a dashpot. The parameter « is a di-
mensionless measure of piezoelectric coupling (see Appendix A). The BvD
circuit is frequently used. For instance, the admittance diagram of a quartz
crystal (insert in Fig. 2) can be easily understood from the BvD circuit. Given
that the width of any given resonance is small, the susceptance of the parallel
capacitance, wCp, can be considered constant over the frequency range of an
individual resonance. It adds to the susceptance of the motional branch and
therefore just displaces the admittance curve along the vertical scale. The con-
ductance (the real part of the admittance) is unaffected by Cy. The admittance
curve of the motional branch is a circle, where the series resonance frequency
corresponds to the point with the largest conductance.

A few other comments on the Mason circuit and the BvD circuit are pro-
vided in the Appendix. Here, we move on and discuss the role of the load
impedance in data analysis.

7
Relation Between the Frequency Shift and the Load Impedance

The load impedance is the ratio of stress and speed at the crystal sur-
face. From the BvD circuit, one can read how the resonance frequency
responds to the load. Below we derive a relation between the frequency shift
and the stress-speed ratio. We use a complex spring constant, £p = &p +
iwép, and a complex eigenfrequency of the bare crystal, @y = (&} /mp)l/ 2,
for computational convenience. From Fig. 14b one reads the resonance
condition as:

0=idmy+ P+ Az =i Jipmy (- ) 4 Az
=i® =i/k -
P i@y L PP Wy O L
Oy + O - W 2(0r - @
:i\//zpmp( ! ‘i)(~ %) +AZ ~i Ry (@ =D0) | oz (a9)
WoWy (O]
~ N 2Af
~iaZy T Az,
fo

where the relation (Rpmp)'/? = ((&p + iw&)my) V2~ AZ qnm/2 was used
(Eq. 115). Equation 49 also made use of the approximation wy + wr ~ 2wy,
which requires Af/fy < 1. Further using fy = nf;, we obtain:

A~ . .

o L= L9 (50)
fe  mZq lq U
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Since the phase angles of Z] and f; are the same, one has Z] /fr= Zq/fs and
one can also write:
Af  Af+iAT i o
f = f ~ 71, = . (51)
ft ft Zq wZq U
Equation 51 shows that Af and AT are proportional to the imaginary and
the real part of the load, respectively. Using Zq =2mqg fr, this can be further
rewritten as:
. i
Af = Af +1IAT = 71 . 52
f=4f 2rmg - (52)
Equation 52 shows that the areal mass density of the crystal is the only param-
eter connecting the load and the frequency shift, as long as the latter is small.
The stiffness of the crystal (and piezoelectric stiffening, in particular) is of no
influence at this level of approximation. Comparing Egs. 51 and 39, we find:

“ (53)

1-ry9~x2
92 A
q

which provides the link between the optical and the equivalent circuit formu-
lation.

We briefly convince ourselves that the same result is found without re-
currence to equivalent circuits in case the sample is a semi-infinite liquid
(ZL = Zjjq with Zj;q < Zq a materials constant). For such a situation we have
using (Eq. 32):

q~ Zliq ~1 1- Zliq/Zq

l-rg2=1- ~1-
Zq +Zliq 1+Zliq/Zq

27);
~ 1= (1-Zig/Zq) (1~ Ziig/Zq) ~ 1 - (1 - 2Z4q/Zq) = th , (54)
q

which is equivalent to Eq. 53.

Since Eq. 51 is of such fundamental importance, we briefly re-derive it in
the frame of the mathematical approach. According to Egs. 13 and 16, the dis-
placement and the stress must both be continuous at the crystal surface. The
equation for displacement is given as:

u:; (zq2) + ug (242) = exp (1k d ) O+ exp (- ikqd ) ”sample (55)

where zy 7 is the location of the crystal surface and u!°

ple is the total displace-
ment at the crystal surface. Note that ui(z) is always deﬁned to be equal to

% on the left-hand side of each layer j (Eq 14). The condition that the stress
at the back of the crystal (the left-hand side in Fig. 3) vanishes, reads:

iGgkq [uq + (240) - Ug (zq,o)] = iwZq [u;,o - ua’o] =0, (56)
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where zg is the location of the back of the crystal. The stress continuity at
the front surface requires that the stress originating from the shear gradient
inside the crystal is balanced by the stress from the sample, where the latter is

- tot —_ : tot
B ZLusample - ZLlwusample‘

i0Zq [ (242) - 1 (242)

= ia)Zq [exp (lic'qdq) u?o - exp (_ ii('qdq) ua,o] = _iwZL u;ginple

= - ia)ZL [exp (lkqdq) ug)o + exp (— iEqdq) ua’o] . (57)

From Eq. 56 we know that u:lr,o = uc_l’o. Using this result, Eq. 57 can be simpli-
fied to read:

Zq [exp (ikqdq) - exp (- ikqdq)] =~ ZL [exp(ilzqdq) + exp(- ikqdq)] (58)

or, equivalently:

) . .d
_ ? —itan (kqdq) =itan (271 (fo + Af) Eq>

q q

=itan (271Af[ilq> =itan <n ?f) . (59)

Cq f

Equation 25 as well as the relation tan(nmw + ¢) = tan(e) have been used.
Taylor-expanding tan(x) as tan(x) ~ x we find Eq. 50 confirmed. The pertur-
bation analysis (Sect. 9) will start out from Eq. 59.

When using the small-load approximation below, the load will always be
evaluated at the reference frequency, fo. For instance, for the load given by
a Sauerbrey film, one uses iwm = 2wifym (as opposed to 2wi(fy + Af)m).
Using the latter expression would turn Eq. 51 into an implicit equation in
Af and that is exactly what must be avoided at this level of approximation.
Within the perturbation analysis, one makes peace with implicit equations
and therefore also evaluates the load at the true resonance frequency, rather
than the reference frequency. The perturbation analysis cures both the prob-
lems resulting from approximating tan(x) as x and the problems resulting
from evaluating the load at f; rather than f.

Equation 51 is the most important equation of the physics of the QCM. As
long as the frequency shift is small compared to the frequency, the complex
frequency shift is proportional to the load impedance at the crystal surface.
We term Eq. 51 the small-load approximation. At this point, we have not
made any statement on the nature of the sample. We have only stated how
the frequency shift depends of the stress-speed ratio at the crystal surface.
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Under certain conditions, this statement can also be applied in an average
sense.l? [67]

Assume that the sample does not consist of planar layers, but instead of
a sand pile, a froth, an AFM tip, an assembly of spheres or vesicles, a cell cul-
ture, a droplet, or any other kind of heterogeneous material. There are many
interesting samples of this kind. The frequency shift induced by such objects
can be estimated from the average ratio of stress and speed at the crystal-
sample interface. The latter is the load impedance of the sample. The concept
of the load impedance tremendously broadens the range of applicability of
the QCM. The load impedance is the conceptual link between the QCM and
complex samples. If we want to predict the frequency shift induced by a com-
plex sample, we must ask for the average stress—speed ratio. If this ratio can
be estimated in one way or another, a quantitative analysis of the experimen-
tal QCM data is in reach. Otherwise, the analysis must remain qualitative.

8
Layered Systems within the Small-Load Approximation

In the previous sections, we have assembled the tools needed to calculate the
frequency shifts based on acoustic modeling. In following, we apply these
equations to calculate the complex frequency shift for a number of different
planar geometries.

8.1
Semi-infinite Viscoelastic Medium

For the semi-infinite medium, there is only one wave traveling outwards with
an amplitude u~°. The stress exerted onto the crystal surface is:
ou N -0 o _,
0=-Glg, =-Gug-ik)u™ =iGyq u”
0z Clig

= iwGiig Plig u= inliqu"O , (60)
Gliq
where the index liq denotes the liquid. For the frequency shift, Af, one finds:
Af io i 5 i \/ ,
= = s = 1w
fi mZqu mZg liq Zqg Pligiett

1 -1+ i\/
= 2 nfepyq (0 - in” (61)
an \/2 ffphq (77 n )

10 Heterogeneous samples will, in general, lead to scattering of acoustic waves and a modified
energy trapping, which is not captured by just calculating the average stress.
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which was independently derived by Stockbridge [68], Borovikov [69], and
Kanazawa [70]. (The Borovikov reference misses a factor of 2 in Egs. 1, 2,
and 3. Otherwise, the result is the same as the Kananazawa result.) A related
version applying to torsional resonators was derived by Mason in the early
days of acoustic sensing [71]. For Newtonian liquids (' = const., " = 0), Af
and AT are equal and opposite. They scale as the square root of the overtone
order, n'/2. For non-Newtonian liquids (' = (), n”(w) # 0), the complex
viscosity can be obtained by inversion of Eq. 61 as:

7Z3f AfAT
Pliq ffz
2
_ATES (A1 ap)
2 Pliq ffz

Note that viscoelasticity always entails viscoelastic dispersion in the sense
that 7' and n” are themselves a function of frequency [72]. The n!/? scaling
therefore no longer holds. Contrary to intuition, a finite elastic component in-
creases the bandwidth more than it increases the negative frequency shift. An
ideally elastic medium leads to Af =0 and to a nonzero A, because energy
is withdrawn from the crystal in the form of elastic waves.

Compressional waves, surface roughness, and slip cause systematic errors
in the determination of the viscosity on the order of about 10%. For reasons
which are not entirely understood, the imaginary part of the viscosity, ”,
often is derived as slightly negative when applying Eq. 62 to the experimen-
tal data [73]. This clearly contradicts the second law of thermodynamics and
points to a systematic shortcoming of Eq. 62. Roughness and slip may play
a role [28]. These issues are covered in more detail in Chapter by M. Urbakh
et al. 2006, in this volume. The values for " found by application of Eq. 62 to
the experimental data tend to be larger than the literature values, which may
be related to compressional waves [24].

Importantly, the QCM only probes the region close to the interface. The
shear wave evanescently decays into the liquid according to:

\/ipliqw

!

(62)

u(z) . . iw
— _ k/ _ k// = _ — _ 63
sy exp ( i(k' -1 )z) exp ( : z) exp Jor - in”)z (63)
For Newtonian liquids (" = 0), this amounts to:
u(x) W Z
. =exp <_(1+1)6) (64)

with § = \/ 2n'/ (,oliqa)), the penetration depth. Using w = 27 -5 MHz and the
viscosity of water (7 &~ 107 Pas), the penetration depth is found to be about
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250 nm. For the general case of viscoelastic materials, one writes:

-1
_ 1/ -1 — ,thw
s§=(kK")" = <1m \/ oy - ) ) : (65)

8.1.1
The Sheet-Contact Model

Equation 62 is very attractive for the study of adhesion between polymers and
solid surfaces, since it allows for the determination of the viscoelastic con-
stants of the adhesive in the immediate vicinity of the contact. Unfortunately,
the QCM does not work well with semi-infinite media when the viscosity, n,
is larger than about 50 cP. The bandwidth in this case is too large. Most poly-
mers exceed this limit. If, however, the contact area can be confined to a small
spot in the center of the crystal the measurement becomes feasible [74]. Such
a small contact area can, for instance, be established with a JKR tester [75].
The area of contact can be determined by optical microscopy. Of course,
this kind of sample is laterally heterogeneous and the applicability of simple
models may be questioned. Experiment shows that the finite contact area can
be reasonably well accounted for by modifying as:

A i A
f= i Ka ACZL, (66)

fi mZg
where A. is the contact area and Ky is a “sensitivity factor”. For more details
see Sect. 4.2 by D. Johannsmann, 2006, in this volume.

8.1.2
Nematic Liquid Crystals

Nematic liquid crystals (LCs) are a classical example of complex fluids. If we
trust the small-load approximation as well as the matured theory of nema-
todynamics [76], we must be able to predict the frequency shift induced by
nematic LCs. The theory of nematic LCs in contact with the QCM has been
worked out in detail by people who did not know about the QCM as a tool to
probe these phenomena. These authors performed ultrasonic reflectometry.
As we know from Sect. 5, the results of these studies can be transported to the
QCM in a straightforward way by just using Eq. 39.

In nematic liquid crystals, the viscosity depends on the relative orientation
between the shear gradient and the orientation of the nematic phase. Close to
a surface, the orientation is usually governed by surface orientational anchor-
ing [77]. Anchoring transitions, for instance induced by the adsorption of an
analyte molecule to the surface [78], can therefore be easily detected with the
QCM [79, 80]. This reorientation induced by adsorption amounts to an ampli-
fication scheme: the expected shift in the resonance frequency and bandwidth
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due to reorientation is much larger than the frequency shift induced by the
adsorption in the Sauerbrey sense.

The physics of shear waves in nematic liquid crystals is rather compli-
cated. Because shear couples to reorientation, there are two separate modes—
termed “hydrodynamic” and “orientational”’—emanating from the oscillat-
ing crystal surface. The hydrodynamic mode mainly transports vorticity. This
mode is known from simple liquids. The orientational modes mainly trans-
port rotation of the director with regard to the background fluid. The pene-
tration depth of the orientational mode is much smaller than the penetration
depth of the hydrodynamic mode. While the amplitude of the orientational
mode strongly depends on the strength of surface anchoring, the amplitude
of the hydrodynamic mode does not [76].

The quantitative description has been worked out by Kiry and Mar-
tinoty [81]. They discuss the director orientations perpendicular to the sur-
face (“c”), along the direction of shear (“b”), and in-plane and perpendicular
to the direction of shear (“a”). Tilted orientation is not covered. Their ex-
periments were based on ultrasonic reflectometry [82] rather than quartz
crystal resonators. Generally speaking, the topic is somewhat academic be-
cause the theory involves no less than five independent parameters, which
are usually unknown. Interestingly, Kiry and Martinoty predict the effective
viscosities, 1, and 7, to be the same, which was confirmed by their experi-
ments on the liquid crystal 4-n-pentyl-4’-cyanobiphenyl (5CB). This finding
has gotten some attention because it constitutes the only experimental proof
of the Parodi relation [83]. Parodi has used the Onsager theorem to reduce the
number of independent parameters of nematodynamics from six to five.

8.13
Colloidal Dispersions

The flow behavior of colloidal dispersions at interfaces is of paramount im-
portance in many branches of industry [84]. The effective high-frequency
viscosity of such materials is of interest in this context because there are
qualitative differences between the low-frequency and the high-frequency
rheology [85-87]. A considerable amount of literature on this topic has been
accumulated by authors employing torsional resonators. Apart from the fre-
quency range (which is around 100 kHz for torsional resonators) the prin-
ciples established in these works apply to the QCM as well. Three different
timescales come into play, which are the Brownian diffusion time g ~ a?/Dy
(a is a characteristic length such as the particle radius and Dy the self-
diffusion coefficient), the hydrodynamic retardation time tyy ~ d?/v (d is the
interparticle distance and v the kinematic viscosity), and the momentum re-
laxation time g ~ m/& (m is the mass of the particle and & = 67nR the drag
coefficient) [88]. Time-temperature superposition [72] does not hold for col-
loidal dispersions. Theories exist for excitation frequencies larger than 7',
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but smaller than rl‘{l and rlgl [86, 88]. Filling in numbers, one finds that the
particle size must be in the range of 10 nm or less in order for these condi-
tions to hold in the megahertz range.

8.2
Viscoelastic Film in Air

8.2.1
Purely Inertial Loading

Before going into the details of the calculation for thin films, we briefly
come back to a statement made earlier with regard to the proportionality of
frequency shift and added mass (as opposed to film thickness). This propor-
tionality is the essence of the Sauerbrey relation. The frequency shift-mass
proportionality holds for all thin films, regardless of their viscoelastic prop-
erties. It even applies to laterally heterogeneous samples as long as these are
so thin that viscoelasticity can be ignored. In the latter case, the areal mass
density of course is an average mass density.

We now prove the Sauerbrey equation (Eq. 28) based on the small-load
approximation (Eq. 51): the stress induced by a very thin film is caused by
inertia only and is given as o = — w?ugmy, where u is the amplitude of oscil-
lation and iy is the (average) mass per unit area. Inserting this result into the
small-load approximation (Eq. 51), one finds:

Af ~ i —a)zuomf _ 2f

~ - me, 67
i mZq iwuo Zg " (67)

which is the Sauerbrey relation.

8.2.2
Viscoelastic Film

If we now drop the thin-film condition and instead consider viscoelastic films
of arbitrary thickness, we find:

ou -0 +0
o=-Gf_  =-Gg(-ik (u’—u’)
£, = O (=iko) (s - 1
@040
=iG (u T-ug’ >
fee U f

= iwZ; (u;’o -uf "’) ; (68)

where u;’o and u;r’o are the amplitudes of the waves traveling away from the

crystal and toward the crystal, respectively. The index f labels the film. Since
the reflectivity at the film-air interface is r¢, = 1, the parameter u;’o is given



Studies of Viscoelasticity with the QCM 83

by:
u;r’o = exp (— 2ikfdf) u;’o = exp (— A(p) u;,o ) (69)

where Ag is the phase shift induced by the film. The frequency shift induced
by the film is:

Af i iwZg (”; . - ug’ O) i 1-exp (- 2ikedy)

fe _”Zq ia)(uf +u;0) _”Zq f1"'eXP(‘Zikfdf)

i P exp (ikfdf) - exp (— ikfdf)
T Zq f exp (ikfdf) + exp (ikfdf)

-1
"z Zgtan (kfdf) . (70)
The first pole of the tangent (kedf = 7/2) defines the film resonances [6, 37,
89]. Higher order film resonances corresponding to k¢df = m/2 with m an
odd integer should exist, in principle, but have rarely been observed in ex-
periment. At the film resonance one has df = A/4. Note that the frequency
shift is not small right at the film resonance and that the small-load approx-
imation used in the derivation of Eq. 70 breaks down. Cernosek et al. have
developed an equivalent circuit for the film resonance which also holds right
at the film resonance [90]. According to this circuit (and also to a more rig-
orous numerical calculation based on the Mason circuit), the frequency shift
does not go to infinity at the film resonance. Rather, there are two resonances
in parallel, which correspond to a symmetric and an antisymmetric motion
of the crystal and the film, respectively. The quantitative agreement between
the experimental data and this more rigorous theory still is not impressive.
This is one manifestation of the general rule that the QCM does not work well
when the frequency shifts become large. It is instructive to write Eq. 70 in
a slightly different form:

Af -1
= Zetan (kedg
"z, (ked)
-7 -7
= “Ttan (wdf> = ta ( pr ) f tan (w ,ofdf>
JTZq Ct \/ f JTZq Zf
-7
= ftan(wmf> , (71)
Zq Zs

which shows that the acoustic properties of a film are fully specified by two
parameters: its acoustic impedance, Z, and its mass per unit area, m. Equa-
tion 70 misleadingly suggests that there might be three parameters (Z, k, and
d), but these three parameters are not independent. As a consequence, one
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can never hope to independently derive the thickness, density, and viscoelas-
tic parameters of a film from acoustic measurements alone. This statement
holds for multilayers and films in contact with a liquid in the same way.

8.2.3
Derivation of Viscoelastic Constants

In principle, viscoelastic constants can be extracted from the experimental
data by fitting Eq. 70 (or any of the more complicated equations below) to the
data. For a small film thickness, certain approximations hold which make the
derivation more transparent. If keds is much less than unity, the tangent in
Eq. 70 can be Taylor-expanded to third order as tan(x) ~ x + 1/3x°, resulting
in:

Af

-1 -1 1 3
ff = an Zgtan (kfdf) ~ an Zs (kfdf + 3 (kfdf) >

-1 1 ,emt) -1 1 Zg (me )
= Zekeds [ 1+ w? pr 2f = ome |1+ Jf d < Fur >
TZq 3 G 0f TZq 37 pr \mgq

-1 12 ('m 2
= om(1+, 3 ( fnn) : (72)
TZq 3 Zf mq

where the relation w = 27nf; = nnZq/mq has been used. J; is the complex
compliance Jf = G;l =J; - iJ{. A large elastic compliance, Ji, tends to decrease
the frequency, whereas a large viscous compliance, ]{ , increases the band-
width. For small m¢ (neglecting the second term inside the brackets) this
expansion reproduces the Sauerbrey equation. For slightly larger film thick-
nesses, there is a viscoelastic correction proportional to n2. In principle, both
J; and J{' can be extracted from the dependence of the frequency shift on the
overtone order. However, there are certain caveats to be kept in mind:

e Unless the film is very soft, Eq. 72 should be replaced by the corresponding
equation derived from perturbation theory (Eq. 99) for the reasons stated
in Sect. 9. The difference is noticeable if the compliance of the film is of the
same order of magnitude as the compliance of the crystal.

e J;and J{' often depend on frequency f. Since the experimentally accessible
range of frequencies is narrow (usually less than a decade), it is fair to as-
sume that Ji and J{’ depend on f according to a power law with power law
exponents ' and f”:

, , Y\
TP ~ T fe) ( fref>

Y
]E’(f)%]é’(ﬂa)(}cf) , (73)
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where fef is a reference frequency (typically in the center of the accessible
frequency range).

In standard polymer rheology, there are no inertial effects and g’ is always
negative [72]. The choice of the exponents g’ and g” does affect the derived
values of the compliance. Generally speaking, viscoelastic dispersion applies
to all viscoelastic parameters, not just the compliance of the film. However,
for the crystal and the electrodes, the viscoelastic dispersion is often weaker
than for polymer films.

Not all choices for Ji, J{', #', and p” are equally plausible, because Ji(f)
and ]g’ (f) are interrelated by the Kramers-Kronig relations [72]. For illustra-
tion, consider the simplest model for a viscoelastic solid depicted in Fig. 8. If
the spring on the left-hand side is small, the material behaves like a Maxwell
fluid J” «J', B/ ~ -2, B ~ - 1). The Maxwell fluid is characterized by its re-
laxation time t = &/«. Simple liquids like water have relaxation times in the
gigahertz range. For more complex liquids, there is a broad spectrum of re-
laxation times, usually also covering the megahertz range. The other extreme
is given by the viscoelastic solid in the Voigt sense (J” > J', B/ ~ 0, g/ ~ - 1).
Voigt-based modeling [92] with frequency-independent parameters G’ and
n only makes sense if G’ is significantly larger than wn(wt). However, wt is
often comparable to unity in the megahertz range, and G’ and wn are of-
ten comparable as well. This is the essence of viscoelasticity. If G’ works out
to be of the same order of magnitude as wn(wt), G'(w) must increase with
frequency.

Electrode effects are very important in the determination of J; from experi-
mental data (Fig. 11). Unless the electrode thickness is precisely known, the
derivation of ]é is difficult. The viscous compliance, J, can be derived much

G (Maxwell} .-

log G', log G"

G'(3-element) 7
rd

/ & slope 2

s G (Maxwell)

log w

Fig.8 Three-element network describing a viscoelastic solid. Leaving out the spring on
the right-hand side leads to the Voigt model [92]. However, this model predicts infinite
stress at infinite frequency. Since the frequency of the QCM is high, the Voigt model
misses an essential bit of the picture
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more reliably. Even the frequency dependence of J{' can be determined. This
applies to experiments in air.

The Voigt modes is represented by Fig. 8 if the spring on the right-hand
side is omitted. Omission of the spring is dangerous because it leads to an infi-
nite stiffness at infinite frequencies. The Voigt model only makes sense in the
low-frequency limit.

8.3
Viscoelastic Film in Liquid

As usual, we start the calculation from the small-load approximation. Equa-
tion 68 still applies, but the coefficient of reflection at the outer interface of
the film now is not unity but (Z¢ - Zjiq)/(Zf + Zjiq) instead. The amplitude u;’o
is given by:

Ze— 7
+0 . iq 0
u;” = exp (- 2iked u: . 74
f p( ff)Zf+Zliqf (74)
Inserting Eq. 74 into Eq. 68, we arrive at [91-93]
. . Zs~Z; .
Af i 1 - exp (_ Zlkfdf) Zf+Zh((l1 - Zs Zgtan (kfdf) - 1Z1iq (75)

£ = . :
o TZq 14exp (- 2ikeds) Z éll‘li nZq Zg + iZjiq tan (kedy)

At the pole of the tangent one again has a film resonance [91]. The Chalmers
group (F. H6ok and B. Kasemo, 2006, in this volume) have derived an equiva-
lent equation, which they term “Voigt model” [92]. Expanding Eq. 75 to first
order in df, one finds:

3 2
Af i . Zliq

~ Ziiq +1Z¢deks | 1 - . 76
f an|:1q fff( Zf)} (76)

The frequency shift is usually determined with respect to a reference state,
where the quartz is already immersed in liquid. When the film is absent, one
has Z1, = Zjjq. Referencing the measurement to the bare quartz in liquid by
means of subtraction of Eq. 61 from Eq. 76, one obtains [94-96]:

y 5 R
A i -1 /e — omg Z
/ ~ (Ztot - Ztig) = Zkeds [ 1 - 12q = 1- 12‘1
fi mZg Zq Z wZqg Z;
2 _ 2
- omy (25 ~Zyq
- 2 > (77)
TZq Z;

where Zo is the load of the entire sample. Apart from the term in brackets,
Eq. 77 is equivalent to the Sauerbrey equation. The term in brackets is a vis-
coelastic correction, dealing with the fact that highly dilute and soft layers
lead to a smaller Sauerbrey thickness than rigid layers.
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Because Eq. 77 is linear in mass, it also holds in an integral sense [97]:
o0

7 _ o FIZ%z) - 72 G
Af ~_ w / f 22 liq p(z)dz ~ - pw / |:Gf(Z) thj| dz,
fe nZq J Z;(2) wZq J Ge(2)

(78)

where p(z) was assumed to be about constant and equal to p. The integral for-
mulation would be used when the viscoelastic properties vary with distance
from the crystal surface.

8.3.1
Physical Interpretation of the Sauerbrey Thickness

The correct interpretation of the frequency shift from QCM experiments in

liquids is a challenge. Practitioners often just apply the Sauerbrey equation

(Eq. 28) to their data and term the resulting areal mass density “Sauerbrey

mass” and the corresponding thickness “Sauerbrey thickness”. Even though

the Sauerbrey thickness can certainly serve to compare different experiments,
it must not be naively identified with the geometric thickness. Here is a list of
considerations:

1. The QCM always measures an areal mass density, never a geometric thick-
ness (cf. the remarks below Eq. 71). The conversion from areal mass dens-
ity to thickness usually requires the physical density as an independent
input. A density of 1 gcm™ is often assumed in soft matter experiments.
Given the other uncertainties (see below), this is in many cases a fair ap-
proximation.

2. It is difficult to infer the viscoelastic correction (brackets in Eq. 77) from
QCM data. However, if the correction factor is significantly different from
unity, it may be expected that it also affects the bandwidth, AT, and also
that it depends on overtone order. If, conversely, such effects are absent
(A < Af, Sauerbrey thickness same on all overtone orders) one may
assume (1 —leiq/Zf) A~ 1.

3. When the viscoelastic correction as discussed in (2) is insignificant, this
by no means implies that the film is not swollen in the solvent. It only
means that the (swollen) film is much more rigid than the ambient liquid.
The amount of swelling can only be inferred from a comparison of the
wet and dry thicknesses. QCM data taken on the wet sample alone do not
allow the degree of swelling to be inferred (Sect. 8.3.2).

4. Complex samples are often laterally heterogeneous. The models presented
here do not capture lateral heterogeneities, for example caused by rough-
ness (M. Urbakh et al. 2006, in this volume).

5. Complex samples often have fuzzy interfaces. Again, the QCM can never
quantitatively determine such a fuzziness. However, a “fluffy” interface
will lead to a viscoelastic correction and, as a consequence, to a nonzero
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AT as well as an overtone-dependent Sauerbrey mass. In the absence of
such effects, one may conclude that the outer interface of the film is sharp.

6. Last but not least, let it be mentioned that the competing techniques for
thickness determination in liquids have their own problems. For AFM
measurements, one worries about the influence of the tip on the film.
Neutron reflectometry [98] certainly is very accurate, but not easily avail-
able on a routine basis. With optical measurements, there is the unknown
refractive index of the film. The output of SPR measurements is often re-
ported in terms of the shift of the coupling angle (rather than in terms of
thickness) for that reason. The conversion from the shift in coupling angle
(or from “RUs” [99]) to percent coverage must be done for every adsor-
bate separately, based on a calibration to be carried out on this particular
system.

8.3.2
Comparison of Optical and Acoustic Reflectometry

It is instructive to compare Eq. 78 with the corresponding equation applied
in the context of SPR spectroscopy. For the shift of the coupling angle, 6., we
have [17, 100, 101]:

2 00
2 Eq€li 1 &f\Z) — &y
A (Sin Qc) ~ T < q llq ) / f( ) llq dZ , (79)

mA \&q+eélq) /- Eqfliq ef(2)

where n, is the refractive index, X is the wavelength, and ¢ = nf is the di-
electric permittivity of the medium. The index q in this case denotes the
substrate, rather than the quartz crystal. The structure of Eqs. 78 and 79 is
very similar. Since both techniques are based on reflectometry, this is not at
all a coincidence.

Comparing Eqgs. 78 and 79, and one might assume that the information
contained in surface plasmon resonances and quartz crystal resonances is
essentially the same. However, this is very often not the case, which has
to do with the fact that the contrast obtained with acoustic shear waves is
usually much larger than the contrast in optics. While refractive indices typ-
ically vary in the range of a few percent, shear moduli may easily vary by
orders of magnitude even for rather dilute adsorbates. In optics the weight
function (the integrand in Eq. 79) is much smaller than unity and roughly
proportional to the concentration. Therefore, the shift of the coupling angle
is approximately proportional to the adsorbed amount. In acoustics, on the
contrary, the weight function (integrand in Eq. 78) easily saturates to a value
of unity even for dilute adsorbates if the shear modulus of the adsorbate is
much higher than the shear modulus of the liquid [91]. As a consequence, the
Sauerbrey thickness (also termed acoustic thickness) approaches the geomet-
ric thickness even for rather dilute polymer layers. If the adsorbate drags some
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Fig.9 The acoustic contrast easily saturates. The figure shows a sketch of the contrast
function (integrands in Eqs. 78 and 79) as a function of the polymer volume fraction of
an adsorbed polymer film. It is assumed that both the shear modulus G¢ and the dielectric
constant &¢ are roughly proportional to the polymer concentration. However, Gy increases
much more strongly than ;. If, for instance, a swollen polymer film contains 50% water,
this will not appreciably decrease the apparent acoustic thickness because the modulus of
the film is still much larger than the modulus of water and (Gt - Gyiq)/Gr remains about
unity. This is different in optics because the contrast is roughly proportional to the con-
centration. As a consequence, the apparent optical film thickness is proportional to the
product of concentration and thickness, which is the adsorbed amount. In acoustics, the
apparent thickness is close to the geometric thickness. Trapped water appears as part of
the film in acoustics

solvent along in its shear movement, the trapped solvent appears as part of
the film, as far as the acoustic properties are concerned. However, the trapped
solvent does not increase the optical thickness (Fig. 9). Swelling therefore in-
creases the acoustic thickness, while it affects the optical thickness to a much
lesser extent [102]. The ratio of acoustic and optical thickness gives an es-
timate of the degree of swelling. For adsorbed proteins, this amounts to an
estimate of the degree of hydration.

Evidently, the fact that the acoustic contrast is much higher than the opti-
cal contrast is beneficial for sensing. The advantage which the QCM has over
the competing optical techniques is most strongly felt for dilute adsorbates.
The QCM responds very sensitively to these because—pictorially speaking—
a few polymer strands suffice to turn the film into a solid-like object.

8.3.3
Information Contained in the D/f Ratio

The term in brackets in Eq. 77 is a viscoelastic correction to the Sauerbrey
equation. The viscoelastic correction is independent of film thickness in a li-
quid environment. This is in contrast to films in air or vacuum, where the
viscoelastic correction scales as the square of the mass (Eq. 72). In air, the
film surface is stress-free. The film only shears under its own inertia and in
the limit of vanishing film thickness, the shear strain goes to zero. As a conse-
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quence, the shear compliance drops out of the equations in the thin-film limit.
This is different in liquids: here the film is “clamped” by the liquid on its outer
side, regardless of how thin it is.

In most cases, the viscoelastic correction cannot be directly extracted from
the frequency shift because the mass, my, is not known independently. The
frequency shift contains the product of the mass and the real part of the
term in brackets in Eq. 77. The two contributions cannot be disentangled.
Note, however, that the mass can be eliminated by considering the ratio of the
shift in half-band-half-width, AI", and the negative frequency shift, - Af (the
“D/f ratio”, where the D stands for dissipation). One has:

2 2
A~ Im (1 - Zliq/Zf)

A Re(1-2/22) o

In the following, we assume that the liquid is Newtonian with a density, Plig>
and a viscosity, . The acoustic impedance then is:

Zliq = \/iwpliqn . (81)

For the film we use:
Zg =/ piGr = \/?: : (82)

Inserting Eqs. 81 and 82 into Eq. 80, we find:

AT -Im(1-iwpyqni/p)  @pignl;

= . = . (83)
- Af  Re(1-iwpignks/pf)  Pr=@puglf

Equation 83 is exact to first order in dy. Further simplifying assumptions can
be made with regard to the right-hand side. Firstly, the densities in soft matter
experiments usually are similar. Assuming pf ~ pjiq yields:

Al wn]é
-Af T 1-on)

Secondly, most films of interest are substantially more rigid than the ambient
liquid. Even films which are statically soft will often appear rigid at mega-
hertz frequencies. The denominator in Eq. 83 can be rewritten as 1 - J{ /J/ v
where ]l’i/q = (wn)™! is the viscous compliance of the liquid. The elastic com-
pliance of the liquid is infinite. If the film is much more rigid than the liquid,

the denominator is close to unity and one has [97]:
A’
- Af

(84)

~ nwj; = 2w nfm]; . (85)
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If the density of the film and the liquid are not the same, one can still neglect

the second term in the denominator in Eq. 83, leading to:
2

‘Zliq‘

2
Zf

Al ~ pliq

~ 86
-Af  pr (86)

Pl
wli= p‘fq 2mnfinJ; = Re

Detailed investigation shows that Eqs. 85 and 86 require films with a thick-
ness of not more than a few nanometers in order to yield fair agreement with
the full equation. Still, it holds quite generally that the shift in bandwidth is
mostly affected by the elastic compliance of the film, rather than its viscous
compliance. This contrasts to the situation in air, where Al is dominated by
the viscous compliance of the film.

8.3.4
Slip

The issue of slip at the solid-liquid interface has been a topic of much de-
bate [103]. The influence of slip on the frequency of the QCM is discussed
in detail in the chapter by M. Urbakh et al. 2006, in this volume. Slip can be
very easily integrated into the framework of the multilayer formalism and we
briefly show this connection. We represent slip by a layer close to the solid
surface (a “film”) with a reduced viscosity. Inside this layer, the shear gradi-
ent is increased, leading to the flow profile indicated in Fig. 10. The slope of
the profile dv(z)/dz is proportional to 17!(z). The slip length, by, is the dif-
ference between the location of the surface and the extrapolated plane of zero
shear. One can show that the slip length, bs, is given by:

by = ["“q - 1} ds, (87)
n¢

where 7y is the viscosity inside the film and dg is the thickness of the layer with
reduced viscosity (solid line in Fig. 10). Since this relation is linear in df, it
also holds for continuous profiles 1(z) (dashed line in Fig. 10) in an integral

v(z)

4—bs—»-«—df—b i

Fig. 10 Flow profile above a solid surface with slip. Dashed line: the viscosity 7(z) in-
creases continuously from a small value at the surface to a somewhat higher value in
the bulk. At the surface, the shear gradient is correspondingly increased. Solid line: the
viscosity is reduced inside a hypothetical discrete layer of thickness d¢
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sense:

bs=/[”ﬁq —l}dz. (88)
) n(z)

For quantitative analysis, we may treat the layer with reduced viscosity like
a thin film. As in Eq. 78, we can use an integral formulation:

Af 2
_ f/( Zz( ))p(z)dz
__ 2f r _ iC’)/Oliqnliq > d
ZqO/ (1 iwp(2)n(2) plz)dz

00
2f Nliq 2f
% -1 = . b,
Z /th (n(z) ) dz Zq phqbs (89)

where p(z) ~ pjiq has been used.

To the experimentalist, slip looks like a negative Sauerbrey mass, where the
slip length is equal to the negative Sauerbrey thickness. This model ignores
roughness and lateral heterogeneities, which presumably play a role in most
practical situations where slip is observed.

8.3.5
Roughness at the Film-Liquid Interface

Roughness, generally speaking, is not easily incorporated into the multilayer
formalism because it violates the assumption of lateral heterogeneity. On the
other hand, it is certainly essential. The chapter (M. Urbakh et al. 2006, in this
volume) describes various ways to deal with roughness. Roughness may very
well occur not only at a quartz-liquid interface, but also at a film-liquid in-
terface. There is a logical extension of the formalism treated to the case of
multilayers (M. Urbakh et al. 2006, in this volume). One uses an impedance
of the liquid of the form:

_ [Pigen h? h2 h2
thw\/ 5 [(1+28>+1<1+3¢n13 )| (90)

The term in front of the bracket is the well-known Kanazawa expression
(Eq. 61). The correction terms inside the brackets take care of roughness at
the interface of the liquid; I; is the lateral correlation length of roughness
(where the spectrum of spatial frequencies is assumed to be Gaussian), h,
is the root-mean-square roughness, and § = (2n/ (p))'/? is the penetration
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depth. Both I; and h; must be much smaller than § for Eq. 90 to hold. Also,
hy must be much less than I, (shallow roughness). For details, see (M. Urbakh
et al. 2006, in this volume)

8.4
Two Viscoelastic Films in Air

For two films in air, the matrix formalism yields:
Af -1 Zstan (kfdf) + Z. tan (kede)
fe  7Zq1-Z;/Ze tan (keds) tan (kede)
The indices e and f denote the electrode (the lower film, in general) and the
film (the upper film, in general), respectively. Electrode effects can be very
noticeable, particularly when Eq. 91 is used to derive the elastic properties of

a film. For thin films (tan(x) ~ x), the effects of both films are additive in the
sense that:

Af o
fi  nZg

8.5
Two Viscoelastic Films in Liquid

(1)

(me + mf) . (92)

For two films in a semi-infinite medium (liquid) the matrix formalism yields:
Af
fe
-Ze Zt (Ze tan (kede) + Zstan (kfdf)) + iZliq (Ze tan (kfdf) tan (kede) - Zf)

© mZq Z; (Ze - Zgtan (kedy) tan (kede)) + 1Ziiq (Ze tan (kedy) + Zgtan (kede))

(93)

The indices e, f, and liq denote the electrode (the lower film, in general), the
film (the upper film, in general), and the liquid, respectively. While Eq. 93
seems long and complicated, it definitely is of practical relevance. It has to
be used when films in liquids are investigated and electrode effects not be
neglected.

9
Perturbation Analysis

In Sect. 8 we have used the small-load approximation to derive frequency
shifts for various geometries. Evidently, the linearization in Af, which was
applied in order to derive the small-load approximation, has its limits of
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validity. These limits are felt not only when large frequency shifts are en-
countered, but also when one looks into the details of the dependence of the
frequency shift on the overtone order n. This one would do in order to derive
viscoelastic parameters such as the compliances J’ and J”. These viscoelastic
effects are typical second-order effects in the sense that a linearization of the
equations can easily produce wrong results.

For an illustration of this shortcoming, assume that the film has the ex-
act same acoustic properties as the quartz crystal. In this case the fractional
frequency shift must be strictly the same on all overtone orders:

Af __dr__me (94)

fo dq Mq
Equation 94 holds regardless of the overtone order and is a simple result.
However, Eq. 94 is not reproduced when applying the small-load approxima-
tion (Eq. 51) and using the load impedance of a viscoelastic film as expressed
in Eq. 72:

Af -1 128 (m 2 m 1.2 (m 2
f% oms |1+ 3( fmr) =_ 1+ J¢ q< fmr) .
fi  mZg 3Z; \mq mgq 37 pr \mq
(95)

Unless the compliance of the film, Ji, is zero (which is physically impos-
sible) there is a nontrivial dependence of Af on overtone order, contradicting
Eq. 94. This error occurs because the term - 2iAZg cot(kqﬁq) in Eq. 113 was
linearized in f - f; (Appendix A), whereas the impedance of the load was ex-
panded to third order in thickness (Sect. 8.2.3). In order to do the derivation
consistently, we have to omit the linearization in Af = f - f,. Requiring that
the mechanical impedance on resonance, Zp,, be zero amounts to an implicit
equation in Af. The entire equation has to be Taylor-expanded in Af/f and
solved iteratively. In the following, we sketch the argument. The full deriva-
tion is given in [104].
We neglect piezoelectric stiffening and base the analysis on Eq. 59:

Zy, =— izq tan | A~f = iZq tan | nm A~f =Zc, (96)
fe fo

where the last identity only serves to define the parameter Z,. In the follow-
ing, we neglect the difference between fo and fy. Both sides of Eq. 96 can be
Taylor-expanded in Af /f, as:

- <\ 2 ~ =\ 2
A A A A
VAL ﬁ)f+Z£2)(ﬁ)f) +..~Z0 fof+Z§§)<ﬁ)f) o (97)

Superscripts in brackets (") denote the respective coefficient of the Taylor
expansion. Importantly, the zeroth-order term on the right-hand side van-
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Fig.11 Illustration of the effects of electrodes for a film in air. The figure shows the
frequency shift scaled by overtone order Af/n induced by a 100-nm polymer film
(o=1g/cm? G =1GPa, G’ =0) as a function of the square of the overtone order
(Eq. 99). [J: Small-load approximation, no electrode effects; o: 200-nm gold electrodes
(pe =19 g/cm?, G, =29 GPa); third-order perturbation same as o; A: fifth-order pertur-
bation. The slope in the upper panel strongly depends on the electrode thickness

ishes. Solving Eq. 97 to first order in Af/f, we find:

s\ A
5] S0 0% 0 (%8)

0 Zex _ZL Zer
In the next step we write Af/f; as (Af/fo) 1 4+ (Af/fo)?], insert this expres-
sion into Eq. 97, linearize in (Af/f;)[?], and solve for (Af/fo)1?). Superscripts
in square brackets denote the perturbatlon order. This step is iterated until
the desired accuracy is reached. This procedure cures, for instance, the prob-

lem outlined below Eq. 95. After going through the perturbation analysis to
third order, one finds:

7 7 ZZ 2
i_f =- ZZmef <1+; (Z<21 —1) (::frm) )
f q f q
Z ZZ 2
m_zfomf P4l Jr o1 (mfnn> . (99)
Zq 3 P mq
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Fig.12 Illustration of the difference between the small-load approximation and the per-
turbation analysis for a film in liquid. [J: Experimental data obtained with an adsorbed
protein layer in buffer. Dashed line: fit with third-order perturbation analysis. Fit parame-
ters: de =14 nm, J; = 13300 GPa™!, and B’ =- 1; gold electrodes as in Fig. 11. The viscosity
of the buffer was 0.96 cP. Solid line: simulation with the small-load approximation and the
same model parameters as the input to the dashed line. There is a systematic difference.
(Experimental data kindly provided by I. Reviakine)

Clearly, the viscoelastic correction (second term in brackets) vanishes if the
film and the crystal have identical properties (Z = Zg).
We introduce the following new variables:

Mme mf
He = 5 e = )
mq mq
z; Je(@) z Je(@)
é‘e(a)) - Zg(w) 1 pe Zq 1 > é‘f(a)) Zg(a)) ,Of Zq 1 )
Zjiq(w)
Eliq(w) = 1; . (100)
q

The parameter p is a dimensionless measure of the film thickness. The par-
ameter ¢ is a dimensionless measure of the shear compliance, and the par-
ameter &};q is a dimensionless measure of the viscosity of the liquid. Strictly
speaking, the parameters e, {f, and &};q of course are measures of the acoustic
impedances of these materials. In soft matter experiments, the density often
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is about constant and the impedance is governed by the viscoelastic paramet-
ers. The parameters jie, i1, and &g are considered small in the perturbation
calculation. The perturbation therefore can only cover the thin-film limit.

The full equations are lengthy and therefore not reproduced here. They are
available from the author on request. As an example, we provide the fifth-
order perturbation result for a film in liquid:

2 :£3 (65
Af wléliq + lé:liq + lgliq
fo nm  3nm Snxw

) . o\ £3
lgliq 2 (_ S+ 151§f) Eliq 4

+[-1- + €+ + gkl

( ot ¢6iiq 15nm Sebliq | Mf

+ <1 + (nlﬂ + inﬂé’f) Sliq - 4Cfélziq

. (51 - 45ig;) . (15im2¢g¢ - 15im%¢7) AW
15nmw 15nmw liq J £

1,5 i .
+|-1- n'7w ¢+ (— - 41n7r§f> %-liq
3 nw

2 (= 1073 ¢¢ + 2022
+(10§f+n( S gf))é@)u?

157
3(_ 4 4,2
n 5m%¢s + 10m™¢ )
f Eliq M?

4, 5 i .
+|1- _nm¢+ + 101in7ge +
3 nmw 157

+ (— 1- 130 n?mlep - 115 ntmti (— 1+ 2§f)> ,u? . (101)

Note that the reference state is always the bare crystal. Should the crystal
in the reference state already have a load (such as an electrode or a buffer
solution) the proper subtractions have to be carried out. For instance, if the
reference state is the crystal immersed in liquid without a film, one applies
Eq. 101 setting u¢ = 0 and subtracts this result from the full result in order to
compare with the experimental frequency shift.

In order to properly treat electrode effects, it is essential to use the per-
turbation formalism. The small-load approximation gives the wrong results.
The situation is particularly dangerous in dry environments. In liquids, the
shortcomings of the small-load approximation are less severe.

Equation 101 also clarifies which viscoelastic parameters are easily de-
termined from experiments, and which are not. A typical situation where
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Eq. 101 would be employed is adsorption from solution, such as typically oc-
curs in biosensing. In this case, the reference state is usually the QCM inserted
in the buffer. Also, the films are usually so thin that only the first-order term
in p is of importance. Subtracting the contribution from the pure liquid and
omitting terms proportional to uZ and 47 one arrives at:

Af i&;
fof ~ - g (1 + mqu - g“fsﬁq> I (102)
Z2 Z2 . e
mg liq liq 1\/ 1wPign
=- 1- S+ 4+ .
mq Zf Zq nwZq

In order to make the comparison with Eq. 77, we normalize to the frequency
of the fundamental f;, rather than to f;. Further, we neglect the last two terms
on the right-hand side. These are small because they have the quantity Zg
in the denominator. Finally, we assume a Newtonian liquid (n'(w) = const.,
n” = 0) and separate the real and the imaginary parts, leading to:

A 2 WPy
f%_ f()mf<1_]£/ Phq’?)

ff Zq Pf
A 2 WP

~ f"mf@ ”1“1”>. (103)
ff Zq Pf

Equation 103 shows that—at this level of approximation—only the quantity
J” (the viscous compliance) enters the frequency shift, whereas only the quan-
tity J' (the elastic compliance) enters the bandwidth. This has far-reaching
consequences in the data analysis. Because the thickness and the viscous
compliance additively enter the frequency shift, it is difficult to derive the vis-
cous compliance without independent knowledge of the thickness. J' cannot
be inferred from the n-dependence of Af because the n-dependence of J' is
unknown. The elastic compliance, on the other hand, can be derived with fair
accuracy, because the mass only enters the bandwidth as a prefactor. Even its
frequency dependence (Eq. 73) is obtained.

The situation becomes much more complicated when moduli (or the vis-
cosity) are used for the analysis, rather than compliances. Moduli and com-
pliances are interrelated in the following way:

, 1 J'()
G =R =
(@) e(](w)> J2(w) +J72(w)
vy 1 _ J"(w)
Glw)=Im <I(w)> (@) +J7()
1 ()

' (w) = ! G'(w) = (104)
w

o] (@) + ] (w)
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When using moduli (or an elastic modulus and a Newtonian viscosity) one
has parameters which are combinations of /' and J”. Since only J’ is well de-
termined, the solutions found in the fitting procedure will not be unique.
However, it will be difficult to find the cross correlations, because J' and J”
both contribute. Fitting with J" and J” is more transparent. Figures 11 and 12
illustrate that perturbation indeed is of practical relevance.

10
Concluding Remarks

This chapter has focused on applications of the QCM which go beyond mi-
croweighing. The analysis has relied on the small-load approximation and
has led to a comprehensive picture covering a wide variety of configurations.
From a practical point of view, the main benefits of this analysis can be sum-
marized as follows:

e The frequency-dependent viscous compliance J”(w) can be determined for
thin films in air.

e The frequency-dependent elastic compliance J'(w) can be determined for
thin films in a liquid environment.

e Interfacial viscoelastic spectroscopy on soft elastomers is possible by
virtue of the sheet-contact model.

On the other hand, there are numerous experiments which cannot easily be
interpreted within this frame. Here are some examples:

e Electrical fringe fields often do penetrate into the sample. The sample’s
dielectric properties affect the parallel capacitance, Cp, and thereby the
frequency shift. The QCM can probe dielectric properties and viscoelastic
properties at the same time.

e The laws of linear acoustics are violated at high amplitudes of oscilla-
tion. Studying nonlinear interactions between the crystal and the sample
should be useful in the context of tribology and adhesion.

e Many interesting samples are not laterally homogeneous. The calculation
of the average shear-induced stress is not an easy task, but it seems feas-
ible in some cases. High-frequency fluid dynamics calculations should be
helpful.

It is to be hoped that the established models describing the QCM can be ex-
tended to cover these more complicated—but also more interesting—samples
as well.

Acknowledgements The author is indebted to I. Reviakine and R. Lucklum for critical
reading of the manuscript.
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Appendix

A
Derivation of the Butterworth—van Dyke Equivalent Circuit

In the following, we derive the Butterworth-van Dyke (BvD) equivalent cir-
cuit (Fig.7) from the Mason circuit (Fig. 6¢c). The Mason circuit itself is
derived in detail in [4]. The BvD circuit approximates the Mason circuit close
to the resonances. The BvD circuit accounts for piezoelectric stiffening and
can also be extended in a simple way to include an acoustic load on one side of
the crystal. In the derivation of the BvD circuits, one assumes small frequency
shifts as well as small loads and applies Taylor expansions in the frequency
shift (or the load) whenever these variables occur. The condition of Af /f <1
is fulfilled as long as the load impedance of the sample, Zi, is much smaller
than the impedance of crystalline quartz, Zy (where the latter, as opposed
to Z1, is a material constant). Zg sets the scale of the impedances contained
in the Mason circuit. Generally speaking, the QCM only works properly if
Zy L ZgM

In a first step, we set the load on the back side of the crystal (left-hand
side in Fig. 6a) to zero and short-circuit the respective port. In a second step
we apply the “Norton transformation” (Fig. 13b). The circuit from Fig. 13c is
fully equivalent to the circuit shown in Fig. 13a. The equivalence of Figs. 13¢
and 13d is based on the relation:

tan(x) + cot(x) = (105)

sin(2x)

In the following we neglect the small element 4Z; for notational convenience.
Accounting for the term 47y does not introduce essential changes. We put the
term 4Z; back into the equations when introducing the piezoelectrically stiff-
ened spring constant £, (Eq. 117). On resonance, the total impedance across
the electrical port (which is now located on the left-hand side) vanishes. This
happens close to a frequency where cot(thq) is zero. Since tan(thq) is large
at this frequency and since we have assumed the element AZ;, (in parallel to
iAZg tan(l%qhq)) to be small, we may omit the element iAZg tan(thq) close to
resonance.

We first consider the resonance in the absence of the sample (Z;, = 0). On
resonance, cot(thq) is zero, which implies:

. 21ty nmw
kqhq = ~f hg="_, n=13,5.. (106)
Cq 2

1 This is a statement based on practical experience. The theory itself is not limited to small loads.
However, the agreement between theory and experiment is unsatisfactory for large loads.
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Fig.13 Steps in the derivation of the Butterworth-van Dyke circuit. a Same as Fig. 6¢
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9"

and

f=fo+ifp="3="9, n=1,35,... (107)

ahq ~ 2dg

Here, the overtone order, n, is odd to ensure an antisymmetric pattern of
motion. Otherwise, there is no current through the electrodes. Symmetric
acoustic resonances cannot be excited electrically. Neither the mathematical
approach (Eq. 24) nor the optical approach (Eq. 35) captures this fact because
they do not account for piezoelectricity. Separating the real and imaginary
parts of Eq. 107, we find:

nc,

fo=_1, n=135,.. (108)
2d,
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and

nmc’ c’ \/Géi 1
fo= gt =h =k =hyan () 2h, n (o) (109)
q

2dq q \/

where tan(s) = Gq/Gﬁ1 is the loss tangent. Note that the approximation
(tan(8))Y/? & tan(8)/2 requires tan(s) < 1, which is certainly fulfilled for

quartz.
For the Q factor, we find:
fo 1
= = . 110
Q 2, tan(d) (110)

We now consider a frequency close to the resonance frequency f = fy + df
rather than the resonance frequency itself. Here df is a small difference be-
tween the driving frequency and the resonance frequency (as opposed to
a shift of the resonance frequency). We write:

) df tan(s
Kohg =Kyfrg =i kgha ~ " <1+ f(]:—i anz( )> . (111)

Separation of cot(kqhq) into its real and imaginary part yields

o sin (2K k)
() 50) =~ ) - com 2k

sinh (Zkﬁihq>
cos <2k21hq) - cosh <2kghq) .

Using Eq. 111 and Taylor-expanding Eq. 112 to first order in the small terms
df /fo and tan(§), we find:

-i (112)

. tan (8
- 21AZg cot (kqhq) ~nmAZg ( anz( ) + 1;f) . (113)
0

In order to find the equivalent mass, mp, the equivalent spring constant, «,
and the equivalent dashpot, &,, we need to write down the impedance of such
an equivalent circuit (Fig. 14b). By comparing the coefficients with the coef-
ficients in Eq. 113, we determine the values of mp, kp, and &,. When placing
a mass, a spring, and a dashpot in series (in the electrical sense, Fig. 5) the
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Fig. 14 Simplified Mason circuit (a) close to Fig. 13d. Since tan(kqhq) is large close to the
resonance and, further, since this element is in parallel to the small load AZ;, it may be
neglected. b Close to resonance we have cot(kqhq ~ 0) and the element - 2iAZq cot(kqhq)
can be approximated by a spring, a mass, and a dashpot. ¢ Using the electromechanical
analogy, the spring, the mass, and the dashpot may also be represented as a motional
capacitance, C;, a motional inductance, L;, and a motional resistance, R}

total impedance is:

. Kp . w
iomp + ° +&p = 1 /Kkpmyp +&

iw a)o

<w+wo o- wo>)

= 1/Kkptp +&

SN (2 @ )+gp
(

2 f)+§p, (114)

0

~ i\/Kpmp
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1/2

where the relations wo = (kp/mp)*/* and @ + wo ~ 2w have been used. Com-

parison with Eq. 113 shows that:

VKptp = “ :AquT
(O 2

n kpm
gy = Az, tan (5) = VO . (115)
2 Q
Using 27f; = (kp/mp)'/? = 2mncq /(4hq) we find:
nw cq nr  AGq (nm)? (nm)?
Kp = /Kkpmp 27fy = AZg 2 hy 2 = dy 2 = Kg,stat 5
Kpm hqg Apqdq 1
mp:«/p pzAquz Pqlq _ Amg
27fy cq 2 2
n
& =42, tan(9) , (116)

where kg stat is the static shear stiffness of the crystal. As expected, « is re-
lated to the static stiffness, but the relation is not trivial. The same is true for
the mass parameter, my, and the mass of the crystal, Amq.

We now put the term 47 back into the equations, thereby accounting for
piezoelectric stiffening. The elastic energy contained in a strained crystal de-
pends on whether or not the strain-induced polarization is compensated by
an external potential (supplied by the electric circuit). If the polarization is
not compensated, then there is an electrical contribution to the strain en-
ergy and the restoring force pushing the crystal back into its original shape
is stronger than in the case of compensation. Piezoelectric stiffening is more
effective on higher harmonics than on lower ones because the displacement
pattern on high harmonics contains antinodes in the center of the plate,
whereas the fundamental only has antinodes at the surfaces. A polarization
close to the surface is more efficiently compensated by the external electric
field emanating from the electrodes than a polarization at the center.

This stiffening is one of two reasons why the resonance frequencies on the
various overtone orders do not strictly scale as the overtone order, n [41, 105].
In the context of timing applications, one actually takes advantage of piezo-
electric stiffening in order to electrically pull the resonance frequency of
a crystal [106]. By inserting a capacitor in series with the crystal, one can
shift the resonance frequency within certain limits. Stray capacitances be-
tween the electrodes and the sample also pull the frequency, which—most of
the time—is an undesired perturbance. One way to diminish the influence
of stray capacitances is to connect the two electrodes across a small resis-
tor (see end of Sect. 3). A second countermeasure is good grounding of the
front electrode. If no such measures are taken, piezoelectricity opens a box of
interesting phenomena [31, 32] which are, in fact, highly relevant to sensing.
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Given the functional form of the term related to piezoelectric stiffening,
one can define a new complex spring constant, &, taking piezoelectric stiff-
ening into account. Remembering that Zy = ¢?/(iwCy), one writes:

2 1 _AGq(nm)* 44’ dg
Co dq 2 dé A880

AGq (nm)? 8ess 1 8
= 1- = 1- , 117
dqg 2 ( Gqeto (m'r)z) “p ( (nn)zK (117)

where « = [656 / (esqu)]l/ 2 is a dimensionless coefficient of piezoelectric
coupling. Its value is ¥ = 0.089 for AT-cut quartz. The spring constant drops
out from the resonance conditions when the latter is linearized in Af/f;
(Eq. 52). Within the linearized theory, piezoelectric stiffening may be ig-
nored. This is not true in the same way for the perturbation analysis (Sect. 9).
Neglecting piezoelectric stiffening in the perturbation theory amounts to an
approximation, which does change the outcome of the calculation to some
extent.

Equations 114-116 can be written down in terms of an electrical capaci-
tance, Cj, an inductance, L;, and a resistance, R;, as well (Fig. 14c). In order
to find the values for C;, L1, and R, one needs the conversion factor between
electrical and mechanical impedances. We have:

2
Zu= Lz = dq VA (118)
el—4¢2 m — 2625A m >

where the factor of 4 (Eq. 45) is a consequence of the Norton transformation
(Fig. 13b). We have for the Butterworth-van Dyke circuit elements:

1 8Ae2 82\
Cr=4¢® = % (1 “ )
K

Kp = kp —4¢

o dq(nm)2Gq ' (nm)?
1 JH
Ly=, ,mp=_ ,
49 8Aes
1 d; dq L1
Ry = = Zonm tan (8) = nw)ng = S 119
! 42 5 8Ae§6 B ( ) 8Ae§6( )nq G Q (119)

where the relations tan(8) = Gq/Gy = wnq/Gq and deZqw/Gy = dqZq2nnf; /Gy
= nmZqcq/ Gfl = nm have been used. The parameter 14 quantifies internal
damping of the crystal. It is not a Newtonian viscosity: nq depends on fre-
quency in a nontrivial way.

The load, AZp, can also be introduced into effective BvD parameters in
analogy to Eq. 117. For instance, one could write m, = A(mq/2 + my) in the
Sauerbrey case. The author prefers to use the BvD parameters for the un-
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loaded crystal according to Eq. 119 and calculate the frequency shift with the
small-load approximation (Eq. 52). This, again, is a matter of taste.

The amplitude of motion and the effective area can be calculated rather
straightforwardly from the Mason circuit. One has:

a= " dsQUa. (120)
(nr)
Here, dys = €26/Gq = 3.1 x 10712 m V! is the piezoelectric strain coefficient.
Note that the derivation assumes laterally infinite resonators; it does not
account for energy trapping. Equation 120 is therefore expected to miss a nu-
merical factor of order unity. Inputting values (das = 3.1 pm V1), we arrive
at:

a 4 _ 1.25pm
QUa (a2 " w2 vV

This compares well with the experimental value of 1.4 n> pm V!, where the
latter has been extracted from the blurring of a scanning tunneling micro-
copy (STM) image (taken of the electrode of a quartz crystal), which occurred
when the oscillation was turned on [107]. Kanazawa finds a similar value
by numerically solving the full Mason circuit [108]. The agreement between
Eq. 120 and experimentally derived values of the amplitude is often bad on
the fundamental, whereas it is fair on overtones with n = 3 and higher.

The direction of oscillation can be experimentally determined with a po-
larizing microscope in the conoscopic mode. Colored rings are observed. The
direction of curvature points perpendicular to the x-axis of the crystal, that is,
perpendicular to the direction of oscillation.

The drive level is often quoted in dBm, where 0 dBm corresponds to
a power of 1 mW. The conversion is:

(121)

Uq = 0.317 x 10PowerldBml/20) (122)

where U, is the amplitude (half of the peak-to-peak voltage).
From the comparison of the resistance R; and the Q factor one can infer
the effective electrode area as:

1 nm

A= . 123
3217 Zg R1Q 1)

When the resonance parameters are probed via impedance analysis, the par-
ameter R; is routinely determined as the inverse of the peak conductance,
Gmax. The effective area is proportional to the peak conductance, Gpax = RII,
because a large active area draws a large current. Being an electric quantity,
the parameter R; is susceptible to calibration problems and electrical imper-
fections. Also, Eq. 123 does not account for energy trapping and is therefore
expected to miss a factor of the order of unity. The active area may vary with
overtone order due to energy trapping. By routinely measuring the effective
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electrode area, one can check for the electrical contact of the electrodes with
the holder.
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Abstract In this chapter we discuss the results of theoretical and experimental studies of
the structure and dynamics at solid-liquid interfaces employing the quartz crystal mi-
crobalance (QCM). Various models for the mechanical contact between the oscillating
quartz crystal and the liquid are described, and theoretical predictions are compared with
the experimental results. Special attention is paid to consideration of the influence of
slippage and surface roughness on the QCM response at the solid-liquid interface. The
main question, which we would like to answer in this chapter, is what information on
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the structure and dynamics at the solid-liquid interface can be extracted from the QCM
measurements. In particular, we demonstrate that the quartz crystal resonator acts as
a true microbalance only if, in the course of the process being studied, the nature of the
interface (its roughness, slippage, the density and viscosity of the solution adjacent to it,

M. Urbakh et al.

and the structure of the solvent in contact with it) is maintained constant.

So far most of the QCM data were analyzed on a qualitative level only. The next step
in QCM studies requires a quantitative treatment of the experimental results. Theoretical
basis for the solution of this problem already exists, and has been discussed in this re-
view. Joint experimental and theoretical efforts to elevate the QCM technique to a new

level present a challenge for future investigators.

Keywords Quartz crystal microbalance - Roughness - Slippage - Thin films
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Cm
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AL Half-width of the resonance for quartz crystal resonator contacting a semi-
infinite liquid

r,,r, Surface excess and maximum surface excess of adsorbate

8 Velocity decay length in a liquid, 8 = \/n/7pfo

Ay Change of surface tension

Af Resonant frequency shift

Afm Mass-induced resonant frequency shift

Afy Viscosity-induced resonant frequency shift

Afp Pressure-induced resonant frequency shift

Afr Roughness-induced resonant frequency shift

Afq Slippage-induced resonant frequency shift

Afr Resonant frequency shift due to change of temperature

Afi Frequency shift for quartz resonator contacting a semi-infinite liquid

Amg Surface mass density of a film

Amy Average surface density of the adsorbed atoms

Amg Average surface mass density

Amy Root mean square deviation of the mass distribution

Els» €11 Energy of liquid-substrate and liquid-liquid interactions

Ela> €aa> Eas Energy of adsorbate-liquid, adsorbate-adsorbate and adsorbate-substrate in-
teractions

n Viscosity of a liquid

ng Viscosity of the liquid film

by Slip length

beft Effective slip length

Aq Wave length of shear-mode quartz oscillations

Hq Shear modulus of the quartz crystal

£(R) Surface profile

&n Permeability of interfacial layer

P Density of a liquid

Pq Density of the quartz crystal

0f Density of the liquid film

Os Density of solid

Ts Slip time

¢ Porosity of interfacial layer

X Coefficient of sliding friction

1) Angular frequency

o Fundamental angular frequency, wo = 27fo

1

Introduction

The literature concerning the quartz crystal microbalance (QCM) and its elec-
trochemical analog, the electrochemical EQCM, is wide and diverse. Many
reviews are available in the literature, discussing the fundamental properties
of this device and its numerous applications, including its use in electrochem-
istry [1-7]. In this chapter we focus on the effect of interfacial properties on
the QCM response, specifically when the device is immersed in a liquid.
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When the quartz crystal microbalance was first introduced in 1959 [8],
it represented a major step forward in our ability to weigh matter. Un-
til then, routine measurements allowed a sensitivity of 0.1 mg, and highly
sensitive measurements could be made with an accuracy limit of 0.03 pg,
under well-controlled experimental conditions [9]. The QCM extended the
sensitivity by two or three orders of magnitude, into the sub-nanogram
regime.

Even when used in vacuum or in an inert gas at ambient pressure, the QCM
acts as a balance only under certain conditions, as discussed below. Under
these conditions the change of mass caused by adsorption or deposition of
a substance from the gas phase can be related directly to the change of fre-
quency, by the simple equation derived by Sauerbrey [8].

Generally this is not the case, and the frequency shift observed could more
appropriately be expressed by a sum of terms of the form:

Af = Afm + Afy + Afp + Afg + Afg + Afr, (1)

where the different terms on the right hand side of this equation represent
the effects of mass loading; viscosity and density of the medium in contact
with the vibrating crystal; the hydrostatic pressure; the surface roughness;
the slippage effect, and the temperature, respectively, and the different con-
tributions can be interdependent. These effects become of major importance
particularly when small changes of frequency, associated with sub-monolayer
phenomena, are considered. Some of these factors will be discussed in this
chapter.

1.1
Applications of the Quartz Crystal Microbalance

The most common commercial use of the QCM is as a thickness gauge
in thin-layer technology. When used to monitor the thickness of a metal
film during physical or chemical vapor deposition, it acts very closely as
a nanobalance, providing a real-time measurement of the thickness. Indeed,
devices sold for this purpose are usually calibrated in units of thickness (hav-
ing a different scale for each metal, of course), and claim a sensitivity of less
than 0.1 nm, which implies a sensitivity of less than a monolayer.

The other common application of the QCM is as a nanosensor proper,
made sensitive to one gas or another by suitable surface treatment. Selecting
the suitable coating on the electrodes of the QCM can determine selectiv-
ity and enhance sensitivity. It is not our purpose to discuss sensors in the
present review. It should only be pointed out that any such sensor would have
to be calibrated, since the Sauerbrey equation would not be expected to apply
quantitatively.
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1.2
Applications for Gas-Phase Adsorption

The high sensitivity of the QCM should make it an ideal tool for the study
of adsorption from the gas phase. We note that the number of sites on the
surface of a metal is typically of the order of 10'°> cm™, hence a monolayer
of a small adsorbate, occupying a single site, would be about 2 nmol cm™.
A monolayer of water would therefore weigh about 40 ng cm™2, while a mono-
layer of pyridine would weigh 30-60 ngcm™, depending on its orientation
on the surface. Comparing these numbers with the sensitivity of 2 ngcm™
shows that adsorption isotherms could be measured in the gas phase, em-
ploying the QCM. This has not been done properly until relatively recently,
mainly because the device was treated as a microbalance, i.e., it was assumed
that the Sauerbrey equation could be applied, and several important terms
in Eq.1 were ignored. Obtaining adsorption isotherm one has to change
the pressure over a wide range. Therefore the changes of properties of the
surrounding gas cannot be ignored. This shortcoming was overcome by the
present authors [10] who developed the supporting gas method. When this
method is employed, the overall pressure is maintained constant by a large
excess of an inert gas, and the frequency shift of the QCM is measured as
a function of the partial pressure of the material being investigated. In this
manner all terms in Eq. 1, other than Afy,, are essentially zero and the device
acts as a true nanobalance.

1.3
Use of the QCM in Liquids

It was not initially obvious that the quartz crystal resonator would operate
in liquids, until this was proven experimentally [11, 12]. The term associated
with the influence of the viscosity, 7, and density, p, of liquid in Eq. 1 can be
written [13] as:

Ay ==y (1) " . @

Since the product of ,/np in liquids is about two orders of magnitude higher
than in gases at ambient pressure, the crystal is heavily loaded when trans-
ferred from the gas phase into a liquid.

Once the door had been opened to its use in liquids, the potential of the
QCM for interfacial electrochemistry was obvious, and the EQCM became
popular.

When a QCM, with fundamental frequencies 6-10 MHz, is placed in con-
tact with a dilute aqueous solution, the frequency should shift to lower values
by about 0.8-1.2kHz according to Eq. 2. In practice the observed shift is
larger by 1-2 kHz, depending on the surface roughness. The effect of rough-
ness is also related indirectly to viscosity and density, since the hydrodynamic
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flow regime at the surface is altered as a result of roughness [14-16]. Rough-
ness is a major issue in the interpretation of the response of the QCM in
liquids, and it is discussed in some detail in the following sections.

14
Impedance Spectrum of the EQCM

In early studies of the QCM and the EQCM, only the resonance frequency
was determined, and conclusions were drawn, based on the shift of frequency.
Unfortunately, in many cases this shift was attributed to mass loading alone,
and it was used to calculate the weight added or removed from the surface,
disregarding other factors that affect the frequency. In the past decade more
and more laboratories expanded such studies to include measurements of the
impedance spectrum of the crystal [17-28]. This provides an additional ex-
perimental variable that can obviously yield further information and deeper
understanding of the structure of the interface. For instance, a variation of the
resonance width provides an unambiguous proof that mechanisms other than
mass loading are also involved.

The properties of the impedance spectrum are discussed in detail in
Chap. 2 in this volume. Here we present only a relation between the reso-
nant frequency and the mechanical impedance of the medium contacting the
quartz surface, Z;. The latter is defined as the ratio of the shear stress act-
ing on the contact medium to the surface velocity [6]. Under the experimental
conditions when the surface loading is relatively small, the shift of the reso-
nant frequency with respect to the resonant frequency of the unloaded quartz
crystal, fo, can be written as [14, 29]:

o2
T Zq
where Z, is the acoustic impedance of an AT-cut quartz.

It should be noted that the frequency shift Af can be a complex num-
ber, and its imaginary part, AI, reflects the half-width of the resonance.
Equation 3 shows that the complex frequency shift Af contains the same in-
formation as the mechanical impedance Z.

In order to analyze the influence of the different loading mechanisms
on the QCM response one has to model a dependence of the mechanical
impedance Z, or the complex resonance frequency shift on the chemical and
physical properties of the contacting medium. Various models for the me-
chanical contact between the oscillating quartz crystal and the outer medium
are discussed below. The QCM is now so widely and extensively used that,
in the framework of this chapter, it is not possible to review all the available
literature. Hence we limited ourselves here to a review of the experimental
data and theoretical ideas concerning the studies of structure and interac-
tion at solid-liquid interface. Furthermore, we did not present here studies on

Af = Af +iAT = , (3)
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adsorption, metal deposition, and kinetics with the help of the QCM. These
topics are well described in previous reviews ( [1,2, 6], and in many articles
published in readily accessible journals). The problems of the interpretation
of the QCM response caused by changes taking place at the solid-liquid inter-
face are obviously of first priority, especially for studies in electrochemistry.

2
Effect of Thin Surface Films

2.1
Film Rigidly Attached to the Surface

First we consider the effect of a thin film, rigidly attached to an ideally flat
crystal surface, on the response of the quartz crystal resonator (Fig. 1).

For a homogeneous thin film with a thickness smaller than the wavelength
of the shear oscillations, the shift of the resonance frequency can be expressed
in terms of the change in surface mass density of the film, Amy, (in units

-2 . . .
gcm™). This was given by Sauerbrey [8] as:

Af = - CmAmg, (4)

where Cy, = 2f02 / (,uq,oq)l/ 2 and pq and pq are the density and shear modu-
lus of quartz. Equation 4 can be derived by supplementing the wave equation,
which describes displacements in the quartz crystal, with the Newtonian
equation of motion for the surface film [6]. Equation 4 shows that the addition
of mass rigidly attached to the surface of the quartz crystal resonator leads to
a decrease of the resonant frequency, but it does not influence the width of

z
i
liquid film
electrodes
7
d A"20;.:QI.10;.;.I0;.102.1.2.;.:.;.:02.}.:.1.:’;.10;1 D / g
———

quartz

0 . X

Fig.1 Schematic presentation of the quartz crystal resonator in contact with a liquid. The
contacting medium is a thin film rigidly attached to the crystal surface from one side, at
z=d. The opposite surface of the crystal (z=0) is unconstrained. d is the thickness of the
quartz crystal
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the resonance. The constant Cy, in Eq. 4 can differ from the theoretical value
given above due to effects of non-uniform mass distribution, roughness, etc.
Therefore one is well advised to calibrate the QCM.

It should be noted that Eq. 4 is valid only for thin films for which the thick-
ness is much smaller than the wave length of the shear mode oscillations. In
this case the frequency shift is determined by the inertial force of the film
acting on the quartz surface. For thicker films effects of elasticity or viscoelas-
ticity become important and Eq. 4 should be modified essentially [30].

A question arises whether an inhomogeneous mass distribution would
lead to an additional shift of frequency and/or to a broadening of the res-
onance, compared to the result given by the Sauerbrey equation? It was
shown [6] that in the case of inhomogeneous mass distribution splitting of
the resonant frequency can occur, and the frequency shift can be estimated
as:

23
VPakq

where Am; is the root mean square deviation of the mass density from the
average value Amy. In contrast to the case of uniform mass loading, where
Amy =0, two values of the resonance frequency are derived. This effect can be
simulated by a simple equivalent circuit consisting of two Butterworth-Van
Dyke [31-33] circuits in series with the inductances corresponding to the two
different values of the surface mass densities, Am¢+ Am; and Ams - Amy.
Due to overlap of these two resonance states, splitting can lead to an appar-
ent broadening of the resonance, which will have an effective half-width of the
order of fOZAml /n(uq,oq)l/ 2, For the 6 MHz quartz resonator this broadening
effect becomes important when the correlation length of the mass distribu-
tion is larger than 0.02 cm.

Af=- [Amg Amy], 5)

2.2
Slippage at the Interface Between a Thin Film and a Solid

The Sauerbrey equation shows that a thin uniform film rigidly attached to
the quartz surface does not influence the width of the mechanical resonance.
However, it was experimentally shown for a number of systems that adsorp-
tion on the quartz surface produced both a shifts of frequency and an increase
of the width of the resonance [34-38]. This phenomenon can be explained,
assuming slippage at the adsorbate-substrate interface.

Slippage occurs as a result of the force of inertia acting on the adsorbate
during the vibrational motion of the crystal. The force of inertia, F, is ex-
tremely weak (~ 10713 dyne per atom) [39] and cannot, by itself, move an
adsorbed species over the lateral energy barriers of the adsorbate-substrate
potential [39]. However, this force decreases the barriers in the direction of F
that leads to a thermally activated drift of the adsorbate in the direction oppo-
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site to the motion of the crystal surface. As a result, the instantaneous velocity
in the adsorbate layer can differ from the velocity of the surface of the quartz
crystal resonator.

The slippage at the interface between a thin film of density Am;s and the
substrate is usually described in terms of an interfacial friction coefficient
(“coefficient of sliding friction”), x. This coefficient determines the stress act-
ing between the film and the substrate, which move at different velocities. An
infinite value of x implies that the non-slip (sticking) boundary condition is
applicable. When the interfacial friction coefficient equals zero, the film is free
to slide with no energy dissipation.

The motion of the adsorbed film on the oscillating quartz surface can be
described by Eq. 6:

d
Amg o vi(t) == x[ve(t) - vq(0)], (6)

where vq(t) = vqo(w) exp(iwt)) and ve(t) = vy (w) exp(iwt) are the velocities of
the crystal surface and of the film. Simultaneous solution of the wave equation
in the quartz crystal and the equation of motion (Eq. 6) for the adsorbed film
yields the following expressions for the changes of the frequency, Af, and the
half-width of the resonance,AT:

Af = -
d JPalkq Lx* + QrfoAmy)? (7)

212N 27fy A
ar =20 mf[ 2 mfo Amgx 2] ©
VPaltq L x* + 2rfoAmy)
Note that:
AT Am
af =2 Xf 9)

Thus, the interfacial friction can be evaluated from measurement of A’
and Af. This procedure has been applied to a number of systems in which
weak physical adsorption occurs, such as the adsorption of Xe, Kr, N, on
Au, and of H,0 and CgHj; on Ag [34-38]. In all the above cases slippage
was observed, and the ratio of the coefficient of sliding friction to the mass
density was of the order x/Ams= (108 - 10%)s™!. As an example, the fric-
tional stress acting on the monolayer Xe film sliding on a Ag(111) surface
at a velocity v=1cm s7, F=xv, equals about 10 Nm™ [40]. It is much
smaller than typical shear stresses involved in sliding of a steel block on
a steel surface under boundary lubrication condition (Eq. 6), which is of order
~ 108 Nm™ [39].
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The effect of slippage at a substrate-film interface can also be described in
terms of slip time [39]. To understand the physical meaning of the slip time,
one can consider an adsorbate film on a substrate, moving at constant vel-
ocity. If the substrate stops, the velocity and momentum of the film decay
exponentially, and the time constant of this process is the slip time. If this pro-
cess is very rapid, i.e., we have a rigidly adsorbed film, the time constant will
be close to zero, and there will be no noticeable slip. The slip time is related
to the interfacial friction coefficient through the equation [39]:

Ts=Amg/x . (10)

In a recent paper [41] the dependence of the slip time, 75, on the amplitude
of the crystal surface oscillations, A, and on the surface coverage was investi-
gated. The results refer to the absorption of krypton atoms on gold at 85°K. It
was found that there is a step-like transition between a low-coverage region,
where slippage exists at the solid-film interface, and a high-coverage region
where the film is locked to the surface. The transition occurs at different cov-
erage depending on the amplitude, A. Independent of coverage, the film is
attached rigidly to the surface for A < 0.18 nm and slides for A > 0.4 nm. In
the region of sliding at small coverages the values of the slip time are in the
interval 2-10ns, for 0.18 nm < A < 0.4 nm.

3
Quartz Crystal Operating in Contact with a Liquid

3.1
General Considerations

When a quartz crystal resonator operates in contact with a liquid, the shear
motion of the surface generates motion in the liquid near the interface. The
velocity field, v(r, w), related to this motion in a semi-infinite Newtonian li-
quid is described by the linearized Navier-Stokes equation:

iwpv(r,w) = - VP(r,w) + nAv(r,w), (11)

where P(r, w), n and p are pressure, viscosity, and density of the liquid. Under
the typical conditions of the QCM experiments, where the shear velocities are
much smaller than the sound velocity in the liquid, the displacement of the
crystal does not generate compressional waves and a liquid can be considered
to be incompressible. If the surface is sufficiently smooth, the quartz oscil-
lations generate plane-parallel laminar flow in the liquid, as shown in Fig. 2.
The velocity field obtained as the solution of Eq. 11 for a flat surface has the
form:

vx(2) = vqo(w) exp[- (1 +i)z/8], (12)
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z

1 o i
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Fig.2 System geometry and velocity profiles. Curves 1 and 2 represent the velocity distri-
butions at the liquid-adsorbate interface without and with slippage, respectively. Curve 3
is the velocity distribution in the quartz. The thickness of various layers is not drawn to
scale

where vqo(w) is the velocity of the liquid at the surface, and § = V2n/wop.
Equation 12 represents a damped shear wave radiating into the liquid from
the surface of the oscillating resonator. § is the velocity decay length of this
shear wave, which lies between 250 and 177 nm for dilute aqueous solutions at
room temperature, for crystals having a fundamental frequency in the range
5-10 MHz. Damping of the shear wave has a number of important conse-
quences. First, it ensures that the quartz crystal can operate in liquids, the
losses in the liquid being limited by the finite depth of penetration. Secondly,
a small portion of the liquid is coupled to the crystal motion and a frequency
decrease is observed. Thirdly, the viscous nature of motion gives rise to en-
ergy losses, which are sensed by the resonator, both as a decrease in frequency
and as an increase in the width of the resonance.

3.2
Non-slip Boundary Condition

The response of the QCM at the solid-liquid interface can be found by match-
ing the stress and the velocity fields in the medium in contact. It is usu-
ally assumed that the relative velocity at the boundary between the liquid
and the solid is zero. This corresponds to the non-slip boundary condition.
Strong experimental evidence supports this assumption on the macroscopic
scales [42,43]. In this case the frequency shift, Af], and the half-width of the
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resonance, A, can be written as follows [12, 13]:

3/2

NN (13)
VTTPakq
3/2

]’i:fo Ve (14)
V/Pqlq

Equations 13 and 14 show that the generation of a damped laminar flow in the
liquid causes a decrease in the resonance frequency and an increase in the res-
onance width, which are both proportional to \/pn. In contrast to the case of
the mass loading where Af is proportional to f;, the liquid-induced response
of the QCM is proportional to fo3 2

It is interesting to note that for both a surface film rigidly attached to the
resonator and a liquid in contact with the surface of the quartz crystal, the
shift of the resonant frequency can be written in the same form, as:

Af=-fo " khegr. (15)
Pq

Where k = a)o\/ Pq/ Iqs p is the bulk density of the medium in contact with the
vibrating surface of the solid, a film or a liquid, and he is the thickness of the
layer that responds to the quartz oscillations. In the case of the film, heg co-
incides with the thickness. For a semi-infinite liquid, ke presents a thickness
of liquid involved in the motion and it should be taken as equal to §/2. The
difference in the frequency dependence of the QCM response in the two cases
is a result of the frequency dependency of . However, in contrast to the case
of pure mass loading, the effect of a liquid results not only in a frequency shift
but also in a broadening of the resonance.

33
Effect of a Thin Liquid Film at the Interface

The properties (the effective viscosity and density) of the liquid layer in close
vicinity to the interface can differ from their bulk values. There are various
reasons for these phenomena. For example, the structuring of a liquid in-
duced by the substrate and a non-uniform distribution of species in the liquid
near the substrate can influence significantly the properties of the liquid at
the interface. The liquid properties change with distance from the interface,
until the values corresponding to the bulk of solution have been reached. In
order to simplify the description of this non-uniformity on the QCM, we as-
sume here that a thin film of liquid, having different values of n¢ and py, exists
at the interface [44]. To calculate the effect of this film on the frequency shift,
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one has to solve the wave equation for the elastic displacements in the quartz
crystal simultaneously with the linearized Navier-Stokes equation for the vel-
ocities in the film and in the bulk liquid under standard non-slip boundary
conditions.

Then the shift of the resonant frequency and the half-width of the reson-
ance can be written as:

3/2 2 2
S AT T
qrq qr~q
3/2 2f2 d>
AF:fO Jpn+ fo |:p(l—n)+(,0f—,0)j| f’ (17)
\/ﬁﬂqpq «/N«qpq ng s

Here df and ps are the thickness and the density of the film. These equations
are valid in a particular case, when df < 8. The general case for arbitrary ds
was given in [44]. The first terms in Eqgs. 16 and 17 yield the liquid-induced
frequency shift and half-width of the resonance in the absence of a film. The
terms in brackets describe the influence of the viscosity and density of a film
of thickness df. According to Egs. 16 and 17, the ratio of the film-induced half-
width to the film-induced frequency shift is proportional to d¢/§. Thus, for
ds/8 < 1, the contribution of the thin interfacial film to the width is much
smaller than its contribution to the frequency shift. For ¢ >> n the film acts
as though it were rigidly attached to the surface: it causes a shift in frequency
equal to that caused by its mass. The thin film model has been successfully
used to describe the QCM response in electrochemical systems, which arises
due to the effect of electrostatic adsorption of ions and the effect of electric
field on viscosity inside the diffuse layer [44].

34
Slip Boundary Conditions

3.5
Slippage at Solid-Liquid Interface

Although the non-slip boundary condition has been remarkably successful
in reproducing the characteristics of liquid flow on the macroscopic scale, its
application for a description of liquid dynamics in microscopic liquid layers
is questionable. A number of experimental [45-52] and theoretical [53, 54]
studies suggest the possibility of slippage at solid-liquid interfaces. Recent re-
views [55-57] summarize the results of these works. Here we focus on the
effect of slippage on the QCM response.

The boundary condition is controlled by the extent to which the liquid
“feels” a spatial corrugation in the surface energy of the solid. This depends
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on a number of interfacial parameters, including the strength of the liquid-
liquid and liquid-solid interactions, the commensurability of the substrate
and the liquid structures, substrate and liquid densities, and also the rough-
ness of the interface. In order to quantify the slippage effect, the slip length,
b, is usually introduced [53, 58, 59]. The traditional non-slip boundary con-
dition is replaced by:

dv(z, w) 1

dz = bS(V(O, w) - vqo(®)) (18)

z=0

where v(z, w)is the velocity in the liquid and vg(w) is the velocity of the
quartz crystal surface, z= 0. Equation 18 expresses the discontinuity of the
velocity across the interface. For bs = 0, Eq. 18 is reduced to the usual non-
slip boundary condition: v(d, w) = vqo(w). The physical meaning of the slip
length can be clarified by comparing velocity profiles for the non-slip and slip
boundary conditions. These two profiles coincide when the non-slip bound-
ary condition is imposed at the surface shifted inside the solid by the distance
bs with respect to the actual interface.

Basically two different types of experimental approaches have been used
to study the boundary slip: local (direct) [45,60] and effective (indirect)
methods [49-52, 61]. The first group of methods is based on application of
optical techniques using tracer particles or molecules to determine the flow
field. These techniques have a resolution of less than 100 nm, so they cannot
distinguish small differences in slip lengths. The effective methods assume
the boundary conditions (Eq. 18) or similar ones to hold at the substrate sur-
face and infer the slip length by measuring macroscopic quantities. These
methods have been the most popular so far and they include atomic force
microscopy (AFM), surface force apparatus (SFA), capillary techniques, and
QCM.

The experimental studies involving different techniques report slip ef-
fects varying over more than two orders of magnitude, and with qualita-
tively different shear-rate dependence, for similar systems [55, 56]. Drastically
different behaviors are reported for liquids wetting atomically smooth sur-
faces [45,49, 55,56, 62], for the influence of surface roughness [63,64], and
for the amplitude and rate dependence of boundary slip on hydrophobic sur-
faces [48-52]. There is no clear understanding why such large differences
are obtained. A possible reason for the disagreement between the results
obtained by different groups is a contamination of substrate surfaces by
nanoparticles [49, 65]. Another parameter of obvious importance, which may
explain such variability, is surface roughness. We discuss the effect of rough-
ness on slippage in Sect. 5 of this chapter.

Within the QCM measurements the slip boundary condition (Eq. 18) re-
sults in the following equations for the resonant frequency shift and the
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half-width of the resonance:

_f02p8 [ 1 ] f02p5 [ 2bs]
A = - S - -
/ A/ Palq (1+ bs/8)? + (bs/8)? A/ Pqiq ! d (19)

AP = fEps [ 1+2A/8 ]N fEps [1_2173},

- ~ 20
VPattq L(L+bs/8)2+ (bs/8)2 |~ /pqliq 52 (20)

where the right hand side equalities are valid for small values of the slip
length, bs/8 <« 1. Equations 19 and 20 show that the influence of the slippage
on the response of the QCM in liquid is determined by the ratio of the slip
length b; to the velocity decay length, §. Even for a small value of bs & 1 nm
the slippage-induced correction to the frequency shift, Afy, will be of the
order of 6.5 Hz for the fundamental frequency of f, = 5 MHz. This value far
exceeds the resolution of the QCM, but it is difficult to separate it from the
overall QCM signal.

It should be noted that in QCM measurement interfacial properties are
determined by averaging over the length scale §. As a result one cannot
distinguish between a true slip on the molecular level and an apparent hy-
drodynamic slip, which can arise from a shear thinning of the liquid near the
surface. The latter leads to a steep velocity profile at the surface that appears
as a slip, although the velocity is continuous at the surface. Indeed, a compar-
ison between Eqgs. 19-20 and Egs. 16-17, which describe the effects of slip and
surface film on the resonant frequency respectively, allow a relationship to be
established between the apparent slip length and the film properties that give
the same QCM response:

bs:<77 _pf) ) 1)
§ neoop

According to Eq. 21 the apparent boundary slip can be observed if the vis-
cosity and/or density depends on the composition (1 # ns, p # pf) and the
less viscous and less dense fraction of the liquid wets the substrate better
than the more viscous and the more dense one (1 > 1y, p > pg). It is also clear
that there are two ways to obtain a large slip length. The first is by having
a macroscopically thick boundary layer, since the slip length has the same
order of magnitude as the thickness of this layer. The second is by providing
large values of the viscosity and/or density contrast. Similar conclusions were
reached in [66] for the Couette flow of liquid.

There were attempts [39] to estimate the slip length at the solid-liquid in-
terface on the basis of QCM experiments for adsorbed liquid layers. The slip
length can be expressed in terms of the coefficient of sliding friction, x, at the
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interface:
be= " . (22)
X

Using the sliding friction coefficient x = 3 gcm™ s, which is obtained for
a monolayer of water on Ag in [35] and on Au in [67], a surprisingly high
slip length of bs = 6 x 10* nm is obtained. Using this value for the inter-
face between Au and bulk water, Eq. 19 yields for f, =5MHz a value of
Af ~ 7 x 1073 Hz, which turns out to be smaller than that observed exper-
imentally by a factor of 10°. This inconsistency is most likely caused by
a roughness of the electrode surface that reduces the effective slip length. An-
other reason could be the difference between friction at the solid-adsorbed
layer and the solid-liquid interfaces. For example, a decrease of the slip length
with increasing film thickness has been observed recently in QCM studies of
Kr films on gold electrodes [41].

From a theoretical point of view, molecular dynamics simulations (MD)
have shown [53, 66, 68] that the slip length is mostly determined by the ratio
of characteristic energies of liquid-substrate, &5 and liquid-liquid ey in-
teractions, bs = f(e)5/¢y1). For the simple Lennard-Jones liquids wetting an
atomically smooth surface, g5/ > 1, slip length is negligible except at very
high shear rate when the hydrodynamic boundary condition becomes non-
linear [53, 68]. It grows with the decrease of the parameter gj;/¢j. Substantial
slip develops in non-wetting situations when the contact angle is larger than
90°, with slip lengths reaching 10-50 molecular sizes, and it depends on the
pressure [59]. It should also be noted that, for a given value of g /ey, the
slip length is minimal when substrate and liquid molecules are of the same
size, and increases with the increase of incommensurability of the sizes. For
smaller coupling between the liquid and the substrate or incommensurability
of their sizes, the spatial corrugation in the interfacial energy is weaker and
interfacial slip can develop.

MD simulations and mode-coupling calculations [59, 68, 69] have shown
that the magnitude of the hydrodynamic slippage can be correlated to the
wettability of surfaces, which is characterized by a contact angle 6 [59]:

cos(@)=-1+ 2'0S s , (23)

o €1

where ps and p are the density of the solid and the liquid, respectively. Thus,
the contact angle may be interpreted as a measure of the strength of inter-
action between the liquid and the solid, ;. One expects a large value of
the slip length for a non-wetting situation (cos(6) —- 1), when &, becomes
much smaller than ey. This conclusion is in agreement with several experi-
mental observations [45, 70] reporting large slip lengths for partially wetting
liquids.

An early model for molecular slip based on wetting properties has been
suggested by Tolstoi [71] and extended in later publications [72]. This model
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predicts a relation between the slip length and the contact angle in the form
bs/o =exp [ao?y (1-cosb) /kgT]| -1, (24)

where o is the molecular size, y is the surface tension at the substrate-liquid
interface and « is a geometric parameter of order one. According to Eq. 24 the
slip length increases with the contact angle and can be orders of magnitude
above the molecular length. However, the values predicted by Eq. 24 are usu-
ally much smaller than those measured experimentally. As well, Eq. 24 does
not account for surface roughness or other surface properties.

The authors of [16, 73, 74] showed that surface treatments affecting liquid
contact angle influence the response of quartz crystal resonator: resonant
frequency changes caused by liquid loading were consistently smaller for sur-
faces having large liquid contact angles. These results were interpreted as
arising from the onset of slippage at the solid-liquid interface: the solid-
liquid interaction becomes sufficiently weak on a hydrophobic surface and
shear displacement becomes discontinuous at the interface. However, this in-
terpretation was called into question by a series of experiments, in which
the effect of a hydrophobic monolayer was examined on devices with various
surface roughness [14].

3.6
Slippage at the Adsorbate-Electrolyte Interface

Slippage is very sensitive to the molecular structure of the interface, as we
have already discussed. Thus, adsorption can strongly influence this phe-
nomenon. In order to describe the effect of adsorption, let it be assumed that
the adsorbed layer is rigidly attached to the surface, and slippage occurs at
the adsorbate-liquid interface, see Fig. 2. Then the equation of motion of the
adsorbed layer can be written as [61]:

iwAmava(w)=—uqd‘;(ZZ)—x(va<w>—vl<w>), at z=d, (25)

where v,(w) is the velocity of the adsorbed layer and Am, is its mass per unit
area, while vi(w) is the velocity of the liquid at the interface, z = d. The first
term on the right hand side of Eq. 25 describes the driving force acting on the
adsorbed layer from the quartz crystal, while the second term accounts for the
friction at the adsorbate-liquid interface.

The velocity fields in the crystal and the liquid are given by the solutions of
the wave equation in the crystal and the linearized Navier-Stokes equation in
the liquid, respectively. The solution of these equations and Eq. 25, with the
boundary conditions for shear stresses and velocities, leads to the following
equation for the shift of the resonant frequency, Af, and the change of the
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half-width of the resonance, AT":

2ofama  fy(on)"? 1 06
T (pqrg)?  (mpgig)!/? [(1 +a)? + a2i|
CRPenVA T (1 +2a)
AF - (JTPqu)l/Z |:(1 + a)Z + a2i| (27)

Writing Eqgs. 26 and 27 we introduced a dimensionless parameter a = 1/x8 =
bs/8, which is the ratio of the slip length, bs = /%, and the velocity decay
length in the liquid, §. Equations 26 and 27 include both the interfacial (ad-
sorption) and the bulk solution contributions to the response of the QCM,
given by Eqs. 13 and 14. The latter remains constant in adsorption studies,
and can be subtracted from the overall change given by Eqs. 26 and 27. As
a result, the shift of the resonant frequency and the change of the half-width
due to adsorption, which are measured experimentally, are given by the equa-
tions:

3/2

N o 2ffama i (em2 [ aa+1)
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3/2 1/2 2
Ar - ar=_ 2o (om ¢ (29)

 (mpqng)? 1+ a2 +a?’

Equation 28 shows that there are two different contributions to the frequency
shift, Afm and Afy, which originate from: (i) a change of the mass of the ad-
sorbed layer rigidly coupled to the surface (first term on the right hand side
of Eq. 28), and (ii) partial decoupling between the quartz crystal oscillations
and the solution, caused by slippage at the adsorbate-liquid interface (sec-
ond term on the right hand side of Eq. 28). It should be stressed here that, in
contrast to adsorption from the gas phase, adsorption from liquid phase can
result in either a decrease or an increase of the resonant frequency, depend-
ing on its effect on the mass of the layer rigidly coupled to the surface and
on changes of the coefficient of sliding friction, x, which determined the slip
length, according to Eq. 22.

Consider the effect of adsorption on the parameters Am, and x. The
layer adsorbed at the electrode-electrolyte interface contains two types of
molecules: adsorbate and solvent. In the framework of mean field approxima-
tion, the effective interaction between the liquid and the adsorbed layer can
be characterized by the energy ejs ~ €, I'a/I'm + €1(1 - I'a/ '), where ¢y, is
the characteristic energy of the adsorbate-liquid interaction I', and I'y, are
the surface excess and the maximum surface excess of the adsorbate, respec-
tively. As a result, the slip length at the adsorbed layer-liquid interface can be
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expressed as

bs=fl(eta/em)Ta/ T + (1 - T'3/T )] =~ f(ela/e)) T a/ T » (30)

showing an increase of b with I', for &1, /¢ < 1. Equation 30 is the interpola-
tion formula that describes correctly the behavior of b for small I'y /'y, and
for I'y/I' , = 1. We note that, when the liquid and the adsorbate molecules are
of significantly different size, the incommensurability between the structures
of the adsorbed layer and the liquid grows with I',, which may lead to an ad-
ditional enhancement of the slip length. What is important here is a relation
between scales of corrugations of the potential energy in the solvent and the
adsorbate molecules, rather than their physical size.

The foregoing discussion shows that for ¢, /ey < 1 the parameter a = b,/3,
in Eqgs. 28 and 29, characterizing the effect of slippage on the response of the
QCM increases with I',. For instance, for €),/ey = 0.5, it may reach values
as high as a ~ 1072, for I'y ~ I'y,. Correspondingly, the adsorption-induced
slippage leads to a positive frequency shift, which grows with I',. This con-
tribution can be larger than the effect of added weight. As a result, the overall
frequency shift due to adsorption can be positive and increases with I', [61].
It should be noted that, for small values of the parameter a, the effect of slip-
page on the resonance frequency shift is much larger than its effect on the
width of the resonance (Egs. 28 and 29). Also, slippage will always cause a de-
crease in the width of the resonance. Thus, if a positive shift of frequency with
adsorption is to be associated with enhanced slippage, it should also be exhib-
ited as a reduction of the width of the resonance, although the latter may be
hard to detect experimentally.

The approach described above has been applied to treat experimental data
on adsorption of pyridine from the electrolyte solutions [61]. Using Eq. 28
made it possible to determine the slip length as a function of surface excesses
of pyridine. In agreement with the theoretical prediction, it was found that
bs grows with I';. The values of bs did not exceed 0.3 nm and 1.2 nm for
adsorption from butanol and water solutions, respectively. The dependence
of slip length on surface excess was essentially linear (Eq. 30) for pyridine
adsorption from butanol solution, but deviated from linearity for pyridine
adsorption from water. The deviation was attributed to a reorientation of ad-
sorbed pyridine molecules at the Au surface.

Above, we discussed the situation where the adsorbed layer is rigidly at-
tached to the oscillating crystal surface, and there is finite slippage at the
adsorbate-liquid interface. An alternative model, based on the assumption
that slippage occurs at the crystal-adsorbed interface and non-slip boundary
conditions apply to the adsorbate-liquid interface, can also be considered.
For a small slip length, by < 8, this model leads to the same results for the
shift of the complex resonance frequency as the model discussed above and
measurements employing the QCM cannot distinguish between them. How-
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ever, in the case of specific adsorption, the assumption of slippage at the
crystal-adsorbed layer interface is hard to justify, since the characteristic en-
ergy of adsorbate-substrate interactions, &,, is larger than the energy of
adsorbate-adsorbate interactions, €,4, hence the corresponding slip length
bs = f(£as/€aa) is expected to be very small.

4
Quartz Crystals with Rough Surfaces Operating in Liquids

4.1
Theoretical Approaches

When the surface of a quartz crystal resonator is rough, the liquid mo-
tion generated by the oscillating surface becomes much more complicated
than for the smooth surface. A variety of additional mechanisms of coup-
ling between the acoustic waves in the solid and the motion in the liquid can
arise. These may include generation of non-laminar motion, the conversion
of in-plane surface motion to motion normal to the surface, and trapping of
liquid by cavities and pores. It has been experimentally demonstrated [14,
17,75-79] that the roughness-induced response of the QCM includes both
the inertial and viscous contributions. Measurements of the complex shear
mechanical impedance [14] were used to analyze different contributions to
the roughness-induced response of the quartz resonator, and to correlate
the experimental results with the surface roughness of the quartz resonator.
Nevertheless, this subject is poorly developed, and the interpretation of ex-
perimental results can often be ambiguous.

The dependence of the QCM response on the morphology of the interface
is determined by the relation between the characteristic sizes of roughness
and the length scales of the shear modes in the liquid and the quartz res-
onator. The length scales in the liquid (the velocity decay length, §) and
in the crystal (wave length of the shear-mode oscillations, Aq) are defined
by the Navier-Stokes equation and by the wave equation for elastic dis-
placement, respectively. For typical frequencies used in QCM experiments,
fo ~ 5-10 MHz, the lengths § = (n/7fyp)/? and Aq = (q/pq)"/*fy" are of the
order 0.177-0.25 um and 0.03-0.1 cm, respectively.

The surface profile may be specified by a single valued function z = £(R)
of the lateral coordinates R that defines a local height of the surface with re-
spect to a reference plane (z = 0). The latter is chosen so that the average value
of £(R) will equal zero. Surfaces used in QCM experiments may have vari-
ous scales of roughness. In order to clarify this point, let us consider the two
limiting cases: slight and strong roughness structures, which are schemati-
cally shown in Fig. 3. For the slight roughness (Fig. 3a) the “amplitude” of
deviation from the reference plane z = 0 is much less than the lateral charac-
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(a) z=£(R)

Fig.3 Schematic representation of a slight (a) and a strong (b) roughness. The profile of
slight roughness is described by the function z = £(R). L is the effective thickness of the
“porous” film that represents strong roughness. (From [27])

teristic length. In the case of strong roughness (Fig. 3b), the “amplitude” and
“period” of repetitions are of the same order of magnitude.

In order to stress the multiscale nature of roughness, the profile function
can be written as the sum of the functions that characterize the profile of the
specific scale i:

E(R) = Zsiuo. (31)

For the calculation of the response of the QCM, the height-height pair corre-
lation function is needed [80]. When rough structures having different scales
do not correlate, the total correlation function can be written in the form:

(E(RHER - R)) = Y (E(R)E(R - B)), (32)

1

where (£;(R")&;(R' - R)) is the correlation function for the scale i and ( )
means averaging over the lateral coordinates. Usually one assumes that the
correlation function (£;(R")&;(R’ - R)) has a Gaussian form (&;(R')&;(R' - R)) =
h? exp(- |R|? /2), where h; is the root mean square height of the roughness
and [; is the lateral correlation length, which represents the lateral scale.
Thus, the morphology of the rough surface can be characterized by a set of
lengths [81].

It is impossible at the present time to provide a unified description of the
response of the QCM for non-uniform solid-liquid interfaces with arbitrary
geometrical structure. Below we summarize results obtained for the limiting
cases of slight and strong roughness.
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411
Slight Roughness

For slightly rough surfaces, the problem was solved in the framework of per-
turbation theory with respect to the parameters |VE(R)| < 1 and h/é < 1,
where Fh is the root mean square height of the electrode surface [80, 82]. The
first condition means that the local slope of the interface is small, i.e., the
height, A, is less than the lateral characteristic length (i.e., the correlation
length, I) of the roughness.

For roughness described by a one-scale correlation function, the shift in
the resonant frequency and the half-width of the resonance can be written in
the following form [80, 82]:

2 $ h2

Af =- (prZ)lﬁ [1+ ° F(l/a)] (33)
2 S hZ

AT = (pi’z)l/z [1+ ZZQD(Z/S)] . (34)

The scaling functions F(I/5) and ®(I/3) are expressed through the Fourier
components of the height-height correlation function of the roughness
g(K) [82], which can be defined as:

Hg(K) = / dR exp(- iKR)(E(R)ER - R)) . (35)

The correlation function provides the most detailed characterization of the
surface structure. Sometimes the surface roughness is described by an inte-
gral parameter, the roughness factor, R, which is the ratio between the true
and the apparent (geometrical) surface area. For slight roughness, the rough-
ness factor is expressed through the correlation function [82] as:

W [ dK )

R=1+ 2 | @ny g(K)K*. (36)
For the Gaussian random roughness g(K) = 72 exp(- ’K?/4) and Eq. 36
yield R = 1 + 2h%/P2.

It should be noted that the roughness factor, R, relevant to the operation
of the QCM is not the same as the roughness factor commonly referred to
in studies of adsorption and interfacial electrochemistry, because of the dif-
ference in corresponding length scales. The QCM roughness factor is mostly
determined by the roughness on the scale of the velocity decay length in the
liquid, 8, which assumes values of hundreds of nanometers, depending on
the frequency of the crystal and the viscosity and density of the liquid. The
“interfacial” roughness factor is related to the structure of the molecular ad-
sorbed layer, or the double layer, or to the charge transfer at the interface, and
therefore its characteristic scale is about 1 nm.
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The first terms in braces in Eqgs. 33 and 34 define the shift and the broad-
ening of the resonance at the interface between an ideally smooth crystal and
the liquid [13]. The surface roughness leads to an additional decrease of the
resonant frequency and a broadening of the half-width of the resonance, ex-
pressed by the second terms in this equation.

The particular form of the scaling functions F(I/8) and @(I/3) is deter-
mined by the morphology of the surface. However, the asymptotic behavior
of these functions for /8 >> 1 and I/8 < 1 is universal [82] and has the form:

F(1/8) = (I/8)[a1 + a28/1] at 1/8>>1 (37)
E(l/8) =(/3)[B1 + Bal/8] at /6 K1 (38)
o(/8) =y, at 1/5>1 (39)
@(1/8) =(1/8)%y, at 1/s<k1. (40)

For random Gaussian roughness, the parameters are:
ar=n'?0=2p=37"%p=-2 and n=p=2. (41)

It should be noted that for I/§ > 1 the roughness-induced frequency shift in-
cludes a term that does not depend on the viscosity of the liquid, the first
term in Egs. 37 and 33. It reflects the effect of the non-uniform pressure dis-
tribution, which is developed in the liquid under the influence of a rough
oscillating surface [80]. The corresponding contribution has the form of the
Sauerbrey equation. This effect does not exist for smooth interfaces. The sec-
ond term in Eq. 37 and Eq. 39 describe a viscous contribution to the QCM
response. Their contribution to Af has the form of the QCM response at
a smooth liquid-solid interface, but includes an additional factor R that is
a roughness factor of the surface. The latter is a consequence of the fact that
for I/8 > 1 the liquid “sees” the interface as being locally flat, but with R times
its apparent surface area.

Results obtained in [80, 82] show that the influence of slight surface rough-
ness on the frequency shift cannot be explained in terms of the mass of liquid
“trapped” by surface cavities, as proposed in [76,77]. This statement can be
illustrated by consideration of the sinusoidal roughness profile. The mass of
the liquid “trapped” by sinusoidal grooves does not depend on the slope of
the roughness, h/l, and is equal to Sxh, where S is the area of the crys-
tal. However, Eq. 33 demonstrates that the roughness-induced frequency shift
does increases with increasing slope.

Equation 34 and the asymptotic behavior of the scaling functions show
that in the regions where I/§ > 1 and I/§ « 1, the width is proportional to the
factors (pn)V/2f2/* and p¥/n71/2£/%, respectively. In the high viscosity limit,
when 71 > Prpfo, the roughness-induced frequency shift approaches a con-
stant value and the roughness-induced width tends to zero.
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The results obtained make it possible to estimate the effect of roughness on
the response of the QCM, if the surface profiles function &£(R) can be found
from independent measurements.

4.1.2
Strong Roughness

Perturbation theory cannot be applied to describe the effect of the strong
roughness. An approach based on Brinkman’s equation has been used in-
stead to describe the hydrodynamics in the interfacial region [83]. The flow
of a liquid through a non-uniform surface layer has been treated as the
flow of a liquid through a porous medium [84-86]. The morphology of the
interfacial layer of thickness, L, has been characterized by a local permea-
bility, £y, that depends on the effective porosity of the layer, ¢. A number
of equations for the permeability have been suggested. For instance, the em-
pirical Kozeny-Carman equation [84] yields a relationship between £ and
the effective porosity EI%I ~ 123 /(1 - ¢)?, where r is the characteristic size of
inhomogeneities.

The flow of liquid through the interfacial layer can be described by the
following equation [83]:

2

42 "@ @ + ki v - vz )], (42)

iwpv(z,w) =1

where vqo is the amplitude of the quartz surface velocity and v(z,t) =
v(z, w) exp(iwt) is the velocity of the liquid in the layer. In this equation the
effect of the solid phase on the flow of liquid is given by the resistive force,
which has a Darcy-like form, ngﬁz[vqo - ¥(z, w)]. In the case of high effective
porosity, the resistive force is small and Eq. 47 is reduced to the Navier—
Stokes equation, describing the motion of the liquid in contact with a smooth
quartz surface. For a given viscosity, the resistive force increases with decreas-
ing effective porosity and strongly influences the liquid motion. At very low
effective porosity all the liquid located in the layer is trapped by the rough-
ness and moves with a velocity equal to the velocity of the crystal surface
itself.

Brinkman’s equation represents a variant of the effective medium approx-
imation, which does not describe explicitly the generation of non-laminar
liquid motion and conversion of the in-plane surface motion into the normal-
to-interface liquid motion. These effects result in additional channels of
energy dissipation, which are effectively included in the model by introduc-
tion of the Darcy-like resistive force.
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The liquid-induced frequency shift and the half-width of the resonance
have the following form [83]

23
Af = -
/ (1hgpg)'/?
1 L 1 1 [2q . ]}
R h(g,L) -1 h(g;L
X e{qo + Eﬁql Equ |: [cosh(g1L) - 1] + sinh(gq;L)
(43)
23
Al' = -
(quq)l/z
1 L 1 1 [29
I h(g(L) - h(g,L
X m:% + Eﬁql Squ [ [cosh(q1L) - 1] + sinh(q; )i”

(44)

Here qo = (i2nfop/m)'/%, q% = g% + &%, and W = q; cosh(q1L) + qo sinh(q; L).
The first terms on the right -hand sides of Egs. 43 and 44 describe the response
of the QCM for the smooth quartz crystal-liquid interface [13]. The addi-
tional terms present the shift and the half-width of the QCM response caused
by the interaction of the liquid with a non-uniform interfacial layer.

When the permeability length scale is the shortest length of the problem,
&n < 8 and &y < L, the layer-induced shift, Afi, is proportional to the dens-
ity of the liquid and does not depend on the viscosity. It has the form of
the Sauerbrey equation for mass loading. This effect results from the inertial
motion of the liquid trapped by the inhomogeneities in the interfacial layer.

2f3p
(1q

The effective thickness of the liquid film rigidly attached to the oscillating
surface is equal to L - &y, and is less than the thickness of the inhomoge-
neous layer, L. The increase of the permeability &y leads to the enhancement
of the velocity gradient in the layer, which results in a decrease of the shift due
to mass loading, and an increase of the width caused by the energy dissipa-
tion. When the layer thickness is the shortest length of the problem, L « 4,
L < &y, and &g < 6, the frequency shift is also proportional to the density of
the liquid and does not depend on viscosity:

2f5pL
"~ 3(1qPq
However, in contrast to the previous case, it cannot be related to the mass of

trapped liquid. The correction to the width of the resonance depends on the
viscosity and is substantially less than the layer-induced shift.

Afp=- P2 (L-én). (45)

Afi= T L/&n)*. (46)
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4.2
Experimental Studies

4.2.1
Non-conducting Liquids

Experimentally, correlation between the QCM signal and the surface morph-
ology, as determined by microprofilometry and STM techniques, has already
been established in the early experiments with the QCM in liquids [14, 16].
Measurements indicated that the mechanical impedance, Z1, increases with
increasing surface roughness. In contrast to smooth surfaces, interactions of
rough oscillating surfaces with liquids do not contribute equally to Re(Zy)
and Im(Zy) [14,87,88]. It was also found that the roughness leads to new
dependencies of the frequency shift on viscosity, which does not appear for
smooth surfaces. For instance, the experimental data obtained in methanol-
water mixtures and in alcohols [16] demonstrated that the effect of roughness
on the QCM is most pronounced for low viscosities, where the liquid-induced
shift of the resonance frequency is small. This conclusion agrees with the the-
oretical predictions discussed in Sect. 4.1 (see Egs. 33 and 34). Theory shows
that, at low viscosities, the QCM response in liquids is mainly determined
by the contribution of the non-uniform pressure distribution, which is de-
veloped in the liquid under the influence of a rough oscillating surface [89].

In [27] experiments in liquids having a wide range of viscosity and dens-
ity were performed, and the response of the QCM was analyzed, using the
theoretical models described in Sect. 4.1. Both parameters characterizing the
resonator, the shift in fundamental frequency and the width of the resonance,
were measured simultaneously. The usual form of presenting the experimen-
tal data in liquids is to plot the real and the imaginary components of the
response of the QCM as a function of the density of the liquid or of the pa-
rameter ,/pn. However, these parameters are the natural variables only for
ideally flat interfaces. Equations 33, 34, 43 and 44 show that for rough sur-
faces it is more convenient to consider the quantities AT'/f2p and Af/f?p, as
a function of the velocity decay length in the liquid, §, as shown in Fig. 4. The
dependence of these two parameters on § is linear for the ideally smooth sur-
face of the quartz crystal resonator loaded on one side, (see line 1 in Fig. 4a,b).

Close points in these figures represent data measured on a relatively
smooth surface, (obtained by vacuum sputtering), while open points were
taken on a surface with strong roughness, prepared by electroplating. The de-
viation of the data from the straight line 1 calculated for an ideally smooth
surface increases with increasing roughness, as expected.

The experimental dependence of the quantity AI/f2p on the velocity de-
cay length exhibits a sharp increase at low values of §, followed by a gentle
growth at large values of 8. This effect becomes more pronounced with in-
creasing roughness (open circles).
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Fig.4 Dependence a of the parameter AI/pf? and b Af/pf* on the velocity decay
length in different liquids, for an ideally smooth surface (lines I), and experimental data
for two real surfaces: vacuum-sputtered gold (closed circles) and electrochemically de-
posited gold (open circles). Lines 2 and 3 represent results of parameter fitting, see text.
(From [27])

In Fig. 5a, the theoretical dependence of the function AI'/f2p on § is given
(lines 2-4) for different values of the local permeability, £y, and a fixed value
of the film thickness parameter, L, in the framework of the theory developed
for strong roughness (Sect. 4.1.2). At large values of §, the calculated lines ap-
proach line 1 for an ideally smooth surface. This behavior can be understood
since it becomes difficult for the liquid to move inside pores in the surface
film when § is much larger than the size of the pores. In the limiting case the
liquid moves in-phase with the solid surface, acting only as a mass loading,
but adding nothing to the width of the resonance.

Line 5 in Fig. 5 is calculated for a surface having slight roughness, accord-
ing to Eq. 34 and 39. The hydrodynamic roughness factor R is chosen so that
this line connects the origin with the experimental point for the highest value
of §. This yielded a value of R = 1.3.

Curves 2-4 in Fig. 5b were calculated for different values of the film thick-
ness, L, and a constant value of the local permeability, &g, according to Eq. 44.
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Fig.5 Dependence of the parameter AI'/pf? on the velocity decay length: points ex-
perimental data, line I in both plots indicates an ideally smooth surface. a Influence of
strong roughness according to Eq. 44 for different values of &x: 2 69, 3 172, 4 276 nm) and
L =506 nm. b The same for different values of L: 2 460, 3 506, 4 690 nm and &g = 172 nm.
Line 5 in both plots was calculated for slight roughness (roughness factor R = 1.3, Eqs. 34
and 39). (From [27])

Lines 1 and 5 are the same as in Fig. 5a. The width of the resonance is seen to
increase with increasing film thickness.

Figure 5 shows that there is no way to fit the experimental data assum-
ing that only one type of roughness is presented on the surface. We are thus
forced to conclude that, in these experiments the surface has a multiscale
roughness, shown schematically in Fig. 6. The structure of this rough surface
is a combination of a slight and a strong roughness shown in Fig. 3a,b. When
this is taken into account, it is possible to use Eqs. 33, 34, 43, and 44 to calcu-
late the shift in resonance frequency and shift in the width of the resonance,
and fit the experiments to the calculated curves with properly chosen values
of the parameters of strong roughness. The result of such a fit is shown in
Fig. 4, curves 2 and 3. For details of the fitting procedure, the limitations asso-
ciated with the use of a simplified model, and the comparison with STM data
see [27].
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Fig.6 Schematic representation of multiscale roughness. This structure is a combination
of a slight and a strong roughness shown in Fig. 3a,b. (From [27])

Here we should emphasize only one point, of major importance for elec-
trochemical use of the QCM. The velocity decay length of most solvents
of interest for electrochemical and analytical purposes happen to be at the
lower end of the values of § shown in Figs. 4 and 5. This is the region
where the interplay between the two types of roughness is the strongest, and
it is the most difficult to fit the data to either model. This inherent diffi-
culty should be borne in mind whenever an attempt is made to interpret the
impedance response of the QCM operating in typical solvents such as water,
alcohols, or many of the other non-aqueous solvents employed in electro-
chemistry.

The importance of measuring the imaginary component of the quartz
crystal in order to study metal deposition and dissolution processes has also
been noted by the authors of [26, 88]. In particularly, in this way they [26] suc-
ceeded in separating contributions of mass loading and roughness to QCM
response and to characterize the electrode roughness.

Recently it has been suggested that shear oscillations of rough surfaces can
generate acoustic compressional waves in the liquid at the second harmonic
frequency if the amplitude of oscillations is large enough [90, 91]. This effect
has been detected while electrochemically growing a rough metal surface on
the QCM device. It should be noted that mass loading, viscosity, and slippage
effect do not contribute to the second harmonic generation, and thus the sec-
ond harmonic generation would allow for an independent measurement of
the surface roughness with the QCM technique. Unfortunately under realistic
conditions, the acoustic signal at the second harmonic frequency is too small
to obtain quantitative results.

4.2.2
The Electrochemical Case

There are only few publications where the response of the QCM in electro-
chemical systems has been studied on intentionally roughened surfaces [25,
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26,92-95]. Figure 7 shows how the response of the EQCM changes with the
change of surface roughness, induced by extensive cycling into the region of
surface oxide formation. When the surface was not roughened, the loops de-

T T T T T T T T T
150
100
b
¥ E
—
b 50
0z T T T T T T T
b
01k —_— -
00 - .
@O
o | 20k 4
£ k")
O 01k o4 5 —
< 9 W
e 1 18} 2
—
B T - e
16 = -
03 -
i e T e ..1.
14 1 -— 4
_04 1 L L L L 'l L L L
00 05 10 15 08 08 1.0 12 14 16
E/Vvs SHE E/V vs SHE

Fig.7 a Influence of the number of oxidation-reduction cycles on the frequency re-
sponse for platinum in 0.2 M H,SO4, at 100 mV /sec (curve 1 100, 2 2000, 3 10000 cycles).
b Stabilized cycling voltammogram for Pt electrode. ¢ Frequency shift and d width of res-
onance for gold electrodes in 0.1 M HCIO4 at 10 mV /sec (curve I 4, 2 100, 3 500 cycles).
(a and b from [93])
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scribing the shift in frequency with potential, associated with surface oxide
formation, have clockwise directions, (see curves 1 in Fig. 7a,c). On very
rough surfaces, (represented by curves 3), the loops are in the opposite di-
rection. The data for platinum electrode (Fig. 7a,b) were taken from [93], in
which only the shift of resonance frequency was measured. The data on the
gold electrode were obtained in our own laboratory, and both the shift of fre-
quency and the width of the resonance were measured (Fig. 7c,d). The latter
shows that when the surface is sufficiently smooth there are no changes in the
width of resonance with the potential. The corresponding curves for rough
surfaces, when the resonance is wide (A" > 1.5 kHz), show strong potential
dependence and remarkable hysteresis. On the one hand the comparison of
voltammograms and dependence of the responses of the EQCM on potential
clearly shows that the hysteresis is associated with surface oxide formation.
On the other hand, the effect cannot be ascribed to mass loading because the
frequency shift on rough surfaces is not only larger than that on smooth sur-
faces - the effect has a reverse sign. Moreover, mass loading alone cannot lead
to changes in AT". The loop of frequency shift also changes its sign in the re-
gion of hydrogen adsorption on platinum. It should be noted that the surface
of Pt is much more resistant to roughening than that of gold. Thus, comparing
Figs. 7a,c it would seem that cycling 2000 and 10000 times on Pt has an effect
comparable to that of cycling Au 100 and 500 times, respectively. However, the
experiments on Pt and Au shown they were performed under similar, but not
identical, conditions.

Comparison of Fig. 7c,d for a highly rough surface (curve 3) shows that
a decrease in width is associated with a positive shift in resonance frequency,
in the region of surface oxide formation. This is consistent with the notion
that both effects result from a weakening of the interactions between the vi-
brating surface and the liquid under surface oxidation. Similar results have
been obtained for gold surfaces having different degrees of roughness.

All the data obtained with rough surfaces and the discussion of these
data [25, 28,92, 93, 95] lead to the following conclusions

1. The roughness of the electrode has a profound influence on the response
of the EQCM, see Figs. 7 and 8. This may explain the unusually large dis-
crepancies among data obtained with the EQCM in different laboratories
(not necessarily on intentionally roughened surfaces). A good example is
the large discrepancy in data reported for the region of surface oxide for-
mation on gold [76,96-100].

2. The response of the EQCM on rough surfaces cannot be treated in terms of
the electrochemically defined roughness factor R, which is obtained from
adsorption phenomena, e.g., from data such as presented in Fig. 9. This
quantity can be considered as representing all adsorption sites on the sur-
face, which is equivalent to the surface roughness on the atomic scale.
However, the response of the EQCM depends on roughness on a meso-
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scopic scale, which is comparable to the hydrodynamic velocity decay
length rather than to the double layer thickness.

3. The width of the resonance is an important characteristic of the surface, as
seen in Fig. 8b, and can serve as a semi-quantitative measure of its rough-
ness, on the scale relevant to the response of the EQCM. Unfortunately,
only very few publication so far contain this information.

In addition to the conclusions drawn above, one is still left with the need to
interpret the dependence of the response of the EQCM on potential on rough
surfaces (Figs. 7 and 8). Attempts to provide a qualitative interpretation were
made in [95, 101]. The authors ascribed the effects on rough surfaces to “for-
mation of a structured region of solvent which leads to increased viscosity
and consequent frequency changes” and agreed that “the exact nature of the
changes in the surface ... still has to be established” [95]. Thus, they assumed
that the properties of that “structured region of solvent” near the electrode
depend on adsorption and on potential.
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Fig.8 Dependence of the frequency shift (a) and the half-width of the resonance (b) of
the EQCM on potential, for different gold surfaces, S1-S4 [28]. (From [28])
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Fig.9 Cycling voltammetry (5 mV/sec) for gold electrodes of different roughness [28]. SI
untreated (as received) surface. S2-S4 surfaces obtained by electrodeposition of gold at
currents densities close to the limiting current density. Inset: approximate values of the
half-width of resonance. Curves S2 and S3 lie between curves SI1 and S$4, in some parts
coinciding with them. Arrows P(SI1) and P(S4), show the peak currents for reduction of
the surface oxide, measured for the surfaces SI and S4, respectively. (From [28])

5
Slippage at Rough Surfaces

Mesoscopic roughness at the solid-liquid interface can greatly modify both
interfacial flow and static wetting properties leading to two behaviors, ei-
ther a decrease [45, 64, 102] or an increase [63, 103] of surface slippage with
roughness.

The calculations, which have been made for periodic and random sur-
faces [6,104-106], demonstrated that if the liquid fully wets the solid surface,
the roughness reduces slip and shifts the position of the effective surface
plane (the plane where the liquid and substrate velocities are equal) in the
direction of the liquid phase [6, 107]. The authors of [39, 108] suggested intro-
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duction of an effective slip length, b¢f, which takes into account both slippage
and roughness, in order to describe an interplay between the slippage and
roughness. In this manner, liquid flow at a rough surface has been simulated
as a flow at a smooth surface with an effective slip length. Application of
this approach to the QCM problem [6] yields the following equation for the

effective slip length:

beff =bsq1- <h0k0>2 3 + 4bsko : kOh% 2 + 3bskg .
$ 2 1+ 2bgko 2 | (1 + bgko)(1 + 2bsko)
(47)

Equation 47 was derived for a sinusoidal profile of roughness, z(x) =d +
hg sin(kox), with an amplitude hg and a period of 27/kj, assuming that the de-
cay length, §, is the largest characteristic length of the problem, §/bs >> 1 and
8ko > 1. Beyond these conditions the effective slip length is a complex func-
tion. Equation 47 shows that roughness diminishes the influence of slippage
on the QCM response, namely the effective slip length becomes smaller than
the corresponding length for the smooth interface. At rough interfaces, the ef-
fective slip length decreases with an increase of the amplitude of the surface
corrugation and with a decrease of its period.

It should be noted that an effective slip length is not an intrinsic prop-
erty of the surface. Its value depends also on the experimental configuration,
for instance, b found for the Poiseuille flow between rough surfaces [108]
differs from the corresponding value obtained for QCM experiments (Eq. 47).

When the liquid partially wets the solid surface, roughness can lead to
the spontaneous dewetting of a surface and the appearance of a super-
hydrophobic state, resulting in large slip length [103,109, 110], and possibly
in shear-rate-dependent effects [111]. It was also claimed that under these
conditions roughness favors the formation of vapor or gas pockets (nanobub-
bles) trapped at the solid surface, which could be an important factor in slip-
page phenomena [55, 56]. It was proposed to simulate the effect of nanobub-
bles on the QCM signal through the introduction of laterally heterogeneous
slip [112]. Over the last 5 years many groups have reported experimental ob-
servations of nanobubbles against hydrophobic surfaces in water [113-120].
The amount of slip has been observed experimentally to depend on the type
and quantity of dissolved gas. However, there is great variation in published
results and the observed behaviors are very sensitive to the surface prep-
aration. The formation and stability of nanobubbles, even on hydrophobic
surfaces, is not easily explained.

The formation of bubbles at solid surfaces has also been studied with
the QCM technique. In [121] a non-linear dependence of Af/p on (np)®?
was interpreted as the result of the presence of nanobubbles on the surface.
However, it should be noted that the observed dependencies could be also
explained using the concept of multiscale roughness discussed above (see
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Sects. 4.1.2 and 4.2.1). In order to check the hypothesis of bubble formation,
the authors of [122] immersed dry surfaces of the QCM of different roughness
and hydrophobicity into electrolytes saturated by oxygen (or hydrogen). In
all cases removing gases in situ by electrochemical reduction (or oxidation)
did not result in changes of either the resonant frequency or the width of res-
onance. This led to a conclusion that even on freshly formed metal/aqueous
solution contacts, the size and coverage of bubbles (if they exist) are so low
that they could not influence the QCM response.

The above discussion shows that existing literature contains arguments,
both theoretical and experimental, in favor as well as against the presence of
nanobubbles at the metal/liquid interface. Many more targeted experiments
and theoretical works are required to clarify this issue.

6
Conclusion

The quartz crystal resonator is a useful device for the study of thin-layer and
interfacial phenomena. The crystals commonly employed have a fundamental
resonance frequency of 5-10 MHz and a resolution of the order of 0.1-0.5 Hz.
This high resolution makes the device sensitive to a myriad of physical phe-
nomena, some of which are interrelated and some quite independent of each
other. It cannot be overemphasized that the quartz crystal resonator acts as
a true microbalance (more appropriately a nanobalance) only if in the course
of the process being studied, the nature of the interface (its roughness, slip-
page, the density and viscosity of the solution adjacent to it, and the structure
of the solvent in contact with it) is maintained constant.

In this chapter we have limited our discussion to the effects of interfacial
structure on the QCM response in liquids.

Some of the main conclusions are listed below:

e The shift in frequency observed experimentally cannot be interpreted in
terms of a change in mass loading alone, unless the conditions have been
carefully chosen to ensure that this is the only factor affecting the reson-
ance frequency.

e It seems to be essential to measure the admittance spectrum and de-
termine both the resonant frequency shift and the width of the reson-
ance simultaneously. This yields additional information not available from
measurement of the resonant frequency alone, and can hence provides
more detailed interpretation of processes occurring at the solid-liquid
interface.

e Surface roughness is of paramount importance in the use of the QCM in li-
quids. The existing theories provide a description of the QCM response for
rough surfaces in two limiting cases of slight and strong roughness. How-
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ever, much is left to be developed for a quantitative interpretation of data
obtained for real surfaces. In order to overcome the gap between exist-
ing theory and experiments, measurements on specially prepared surfaces
with well-defined roughness should be performed.

e Numerous experimental techniques employed to study solid-liquid inter-
faces (X-ray and neutron scattering, optical, AFM and STM, adsorption,
double layer capacitance, rotating disc electrode and QCM) are sensitive to
the roughness of substrate surfaces. It should be noted that each technique
probes roughness on the particular characteristic scale only, which is the
atomic scale for X-ray and neutron scattering, AFM, STM, adsorption and
double-layer capacitance measurements; a wave-length of light for opti-
cal measurements; the Nernst diffusion layer for rotating disc electrode
experiments; and the hydrodynamic velocity decay length for the QCM.
Thus, the impedance of the QCM would be expected to respond to rough-
ness of about 10 nm and above, ignoring most of the so-called atomic scale
roughness, but detecting roughness that can usually be ignored in experi-
ments conducted under mass transport limitations.

e The results obtained by the QCM contain information relevant to the un-
derstanding of phenomena in the area of nanotribology, where techniques
such as SFA and AFM are used. In both cases the results carry information
regarding the properties of a nanoscale layer of liquid at the interface.

e An important part of modern experimental surface science and electro-
chemistry has been performed on single-crystal electrodes. In contrast,
the metal deposited on the surface of the quartz resonator always has
a rough surface and at best a preferred crystal orientation. Studies with
a QCM having a true single crystal surface have not yet been reported.
Making a thin (about 1 um) stable single-crystal metal layer on the surface
of quartz seems to be an insurmountable problem.

So far most of the QCM data were analyzed on a qualitative level only. The
next step in QCM studies requires a quantitative treatment of the experimen-
tal results. The theoretical basis for the solution of this problem already exists,
and has been discussed in this chapter. Joint experimental and theoretical
efforts to elevate the QCM technique to a new level present a challenge for
future investigators.

Finally it would seem that, in spite of some shortcomings, the potential ad-
vantages of the QCM far exceed its limitations. There are many challenges to
overcome and the QCM will undoubtedly continue to be one of the important
tools in studies of metal-solution interfaces in general.
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Abstract The quartz crystal microbalance can serve as high-frequency probe of the
microcontacts formed between the crystal surface and a solid object touching it. On
a simplistic level, the load can be approximated by an assembly of point masses, springs,
and dashpots. The Sauerbrey model, leading to a decrease in frequency, is recovered if
small particles are rigidly attached to the crystal. In another limiting case, the particles
are so heavy that inertia holds them in place in the laboratory frame. The spheres exert
a restoring force onto the crystal, thereby increasing the stiffness of the composite res-
onator. The resonance frequency increases in proportion to the lateral spring constant
of the sphere-plate contacts. A third limiting case is represented by particles attached
to the crystal via a dashpot. Within this model (extensively used in nanotribology) the
dashpot increases the bandwidth. The momentum relaxation time s (“slip time”) is
calculated from the ratio of the increase in bandwidth and the decrease in frequency,
AT/(= Af).

The force-displacement relations in contact mechanics are often nonlinear. A promi-
nent example is the transition from stick to slip. Even for nonlinear interactions, there is
a strictly quantitative relationship between the shifts of frequency and bandwidth, Af and
AT, on the one hand, and the force acting on the crystal, F(t), on the other. Af and A"
are proportional to the in-phase and the out-of-phase component of F(t), respectively. Ev-
idently, F(t) cannot be explicitly derived from Af and AT Still, any contact-mechanical
model (like the Mindlin model of partial slip) can be tested by comparing the predicted
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and the measured values of Af and ATI". Further experimental constraints stem from the
measurement of the amplitude dependence of the resonance parameters.

Contacts mechanics in the MHz range is much different from its low-frequency coun-
terpart. For instance, static friction coefficients probed with MHz excitation are often
much above 1. Contact mechanics at short time scales should be of substantial practical
relevance.

Keywords Contact mechanics - Contact stiffness - Fretting wear - Mindlin model -
Nonlinear mechanics - Quartz crystal resonator - Quartz crystal microbalance -
Partial slip - Stick-slip

1
Introduction

Contact mechanics is both an old and a modern field. Its classical domains of
application are adhesion, friction, and fracture. Clearly, the relevance of the
field for technical devices is enormous. Systematic strategies to control fric-
tion and adhesion between solid surfaces have been known since the stone
age [1]. In modern times, the ground for systematic studies was laid in 1881
by Hertz in his seminal paper on the contact between solid elastic bodies [2].
Hertz considers a sphere-plate contact. Solving the equations of continuum
elasticity, he finds that the vertical force, F| , is proportional to 83/2 where § is
the indentation. The sphere-plate contact forms a nonlinear spring with a dif-
ferential spring constant « = dF/d§ o §!/2. The nonlinearity occurs because
there is a concentration of stress at the point of contact. Such stress concen-
trations — and the ensuing mechanical nonlinearities — are typical of contact
mechanics.

Clean, dry single-asperity contacts have intensely been studied both the-
oretically [3-5] and experimentally [6]. The development of the atomic force
microscope (AFM) [7-9] and the surface forces apparatus (SFA) [10-12]
have certainly been influential. Both instruments allow for experiments under
a control of geometry on the molecular level. Multi-asperity contacts evi-
dently are more difficult to study than clean sphere-plate contacts [13, 14],
but are much closer to the real world, as well. Currently, there is quite some
activity carrying the knowledge gained on single-asperity contacts to the field
of dry and wet granular media [15, 16]. The mechanics of a sand pile (such as
its critical angle of sliding, its compactification with time or pressure, or its
strengthening upon exposure to water vapor) all depend on the forces (nor-
mal and lateral) exerted at the contacts between the individual grains.

Given that nonlinearities are ubiquitous, testing with oscillatory excitation
is of less practical importance in contact mechanics than in other fields of ma-
terial science. For instance, stick-slip motion is most easily studied by steadily
pulling the object of interest across the supporting substrate. Oscillatory test-
ing will result in complicated trajectories [17]. Sinusoidal excitation mostly
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makes sense in the small-amplitude limit, where force and displacement are
linearly (or almost linearly) related. In the linear domain, superposition holds
and a system’s response is fully specified by its complex, frequency-dependent
stiffness. Small nonlinearities can be dealt with in the frame of the two-timing
approximation (cf. Sect. 3). Linear behavior, generally speaking, is always
found in the limit of small stress [5]. This is true for both elastic interactions
and sliding. A sliding motion, where the speed is proportional to the force,
is termed “creep” in the context of rheology. Linear creep occurs whenever
the external force is comparable in magnitude to the random forces related
to Brownian motion. The external force then only adds a small bias to the
random movement of the sample, and this bias is proportional to the force.

The use of the QCM for contact mechanics has been pioneered by Dyb-
wad [18]. Dybwad placed a sphere onto a quartz resonator and found an
increase in frequency. He explains this increase by the fact that the sphere
rests in place in the laboratory frame due to inertia. It exerts a restoring force
onto the crystal, thereby increasing its resonance frequency. He points out
that the frequency shift can be exploited to measure the strength of the con-
tact between the sphere and the quartz plate.

Nanotribology has also gained much from the QCM, where the early work
has been done by J. Krim [19, 20]. The Krim group studied adsorbed mono-
layers of noble gas atoms onto the electrode and observed an increase in
dissipation. Describing these experiments in the frame of continuum models,
where the monolayer would correspond to a film with a viscosity 7 (Eq. 71 in
Chap. 2 of this volume, replace Z¢ by (iwpn)'/?), cannot explain these findings.
The viscosity would have to be orders of magnitude smaller than the viscosity
of the corresponding bulk liquid, and it is hard to see why this should be the
case. The Krim group models the atoms as discrete objects sliding across the
surface. The motion of the atom is coupled to the motion of the surface via
a dashpot with a drag coefficient &s. The ratio of mass and drag coefficient has
the dimension of a time, called “slip time”, ts. ts is a momentum relaxation
time. When the motion of substrate stops abruptly, the speed of the sphere
exponentially slows down with a decay time ts. There is now experimental ev-
idence that this kind of sliding - at least in certain cases - is not a creep in the
sense of biased diffusion. Mistura and coworkers determined the amplitude
dependence of the slip time and found a critical minimum amplitude, below
which the molecules slick [21]. This finding contradicts liquid-like sliding. In
liquid-like sliding, the slip time would be independent of amplitude.

2
Modeling with Discrete Mechanical Elements

In contact mechanics experiments with the QCM, the sample usually does
not consist of a planar layer system, but rather of one or more discrete ob-
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Fig.1 Equivalent circuit representation of the quartz crystal including a load. Piezo-
electric stiffening (described by the element 4Z; in Fig. 13, Chap. 2 in this volume) was
neglected. The sample is represented by the load Z;,

jects touching the crystal surface. One can - on a purely heuristic level -
describe the sample by an equivalent mechanical model containing elements
like a mass, a spring, or a dashpot. The effect, which these elements have on
the frequency shift, is readily calculated starting from the small-load approx-
imation (Eq. 51 in Chap. 2 in this volume). We assume that the stress-speed
ratio may be replaced by an average stress-speed ratio, where the average
stress is just the lateral force divided by the active area of the crystal. Replac-
ing the stress by an average stress certainly is an approximation'. It can to
some extent be justified by an argument based on the scattering of acoustic
waves [22]. Once one has accepted this simple picture, the change of res-
onance frequency can be easily predicted by means of the Butterworth-van
Dyke (BvD) equivalent circuit (Sect. 6 in Chap. 2 in this volume). In the fol-
lowing, we use the version of the BvD circuit, where electrical and mechanical
elements are separated as shown in Fig. 1.

2.1
Loading with a Mass

Consider a small sphere rigidly attached to the crystal (Fig. 2). Let the mass
of the sphere be mg. Figure 2a shows a single sphere. Real crystals might
be in contact with many such spheres, which is accounted for by including
the number density of these spheres, Ns/A, as a prefactor into the equa-
tions below. Ng is the number of spheres and A is the active area of the
crystal.

If the spheres are small enough, they can be treated like a Sauerbrey film
with an areal mass density m¢ = Nsms/A. Let «p be the spring constant of
the crystal in the BvD sense, mj, the equivalent mass of the crystal in BvD
sense (Eq. 116 in Chap. 2 in this volume), and mq the areal mass density of the

! For instance, energy trapping may be affected by a load applied at the center of the disk.
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T

(a) mass (b) spring

KS{}mS

(c) mass-spring

(e) Voigt (f) Maxwell

Fig.2 Different circuits to be inserted for the load in Fig. 1. The conversion from the
physical situation (right) to the equivalent circuits (left) entails a complication because
networks are depicted such that the electrical Kirchhoff rules apply. Elements which are
placed in series, physically, are represented as parallel circuit elements and vice versa (cf.
Fig. 5 in Chap. 2 in this volume). For instance, the forces exerted by the spring and the
dashpot in e are additive. In order to let the corresponding voltages in the electrical cir-
cuit also be additive, the circuit elements have to be placed in series. In the literature on
polymer rheology, networks of springs and dashpots are drawn according to the physical
situation (right-hand-side in this figure), which comes down to a different set of Kirchhoff
rules

crystal. The frequency shift of the composite resonator then is:

_ 1 Kp “p
Af=fr-fo= 27 (\/mp + (Ns/A) ms _\/mp)

o 1w0(1_;(Ns/A)ms_1)=_ﬁ)mf’ (1)
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where f; is the resonant frequency, fy is the resonant frequency of the bare
crystal, and wo = (kp/myp)'/? is the radial resonant frequency of the bare crys-
tal. The relation m;, = Amq/2 (Eq. 116 in Chap. 2 in this volume) was used.
Equation 1 reproduces the Sauerbrey equation (Eq. 28 in Chap. 2).

The same result is found by use of the small-load approximation (cf. Eq. 51
in Chap. 2) Using the stress 0 = - w*(Ns/A)msa = - w*mga (a is the amplitude
of motion) and the speed u = iwa exp(iwt), one finds:

Af i o i i -w*muaexp(iot) - omg my
= = A= . : = =-n_—, (2
fi wZqu mZg wZq iwaexp(iwt) Zq mgq
where the relation mq = Zg/(2 f;) has been used (Eq. 26 in Chap. 2). ZL =o/u
is the load impedance.

2.2
Loading with a Spring

In analogy to Eq. 1, one can add a spring (with a spring constant «s) into the
BvD circuit, rather than a mass (Fig. 2b). Such a spring would represent the
stiffness of a contact between the crystal and an object touching it. The object
would have to be so heavy that it does not take part in the movement of the
crystal. The analog of Eq. 1 is:

_ _ 1 Kp + (Ns/A)xs Kp
e )

1 Ns ks Ns 1 ks
~foll+ -1)=f ,
2 A kp A nZqw

3)
where the relation («p mp)l/2 =Kp/wo X kp/w~ AZgnm/2 (Eq. 115 in Chap. 2)
has been used. In this context the resonance frequency of the unloaded crys-
tal, wp, and the loaded crystal, w, can be considered to be about equal. The
same result is found by application of the small-load approximation if one as-
sumes that the average stress is given by the spring constant multiplied the
number density, Ns/A [23]:

Af_ i o i NsKsuo_ i NsKs (4)

fi  mZgu mZg Adouy 7Zq A o

In the following, the small-load approximation is always used to calculate the
frequency shift.

The frequency shift in Eq. 4 is positive. If the spring constant is indepen-
dent of frequency, Af scales as w™!, that is, as the inverse overtone order, n™!.

Damping and frequency dependent interactions can be introduced into Eq. 4
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by replacing x5 with a complex spring constant «s(w) + iw&s(w), leading to:

Af N5 1 ,
fff = nziqw(xs(w)+lwss<w>). (5)

The parameter Af = Af +iAT is a complex resonance frequency. I” is the
half-band-half-width (cf. Sect. 2 in Chap. 2 in this volume). The drag coeffi-
cient may describe interfacial drag, but also the withdrawal of energy from
the crystal via radiation of sound. Equation 5 can be inverted, leading to ex-
plicit formulas for xs(w) and &s(w):

ks(w) = 27°Zgn 4 Af () (6)
Ns
_TZq A
§s(w) = 5 NSAF(w). (7)

In order to emphasize the generality of the model, the frequency dependence
of ks(w) and &s(w) was explicitly included in Egs. 5, 6, and 7. More detailed
models (cf. Sects. 2.4 and 2.5) predict the frequency dependence of ks(w) and
&s(w). For the time being, no such statement is made. The only assumption
made here is the absence of inertial effects: Clearly, some of the material close
to the contact must move with the crystal. The total mass of this co-moving
material was neglected.

23
Loading with a Mass in Series with a Spring

In the simple-spring model, the crystal is in contact with an immobile ob-
ject. The model can be extended to cover situations where the object takes
part in the oscillation to some extent. A typical object of this kind would be
a small (< 10 pm) sphere [40]. Figure 2c depicts the physical situation and the
equivalent circuit representation. Note that the motion occurs into the lateral
direction even though the spring is drawn vertically. In the following, we as-
sume a spring constant independent of frequency, labeled &s. From Fig. 2c, we
infer the load to be:

Ns - -1 Ns 1 iw\ ™
ZL = (Zmass 1‘|'Zspring 1) = ( + )

A A \lwms Ks
Ns  iwmgks Ns, 1

= _ = lwmsg - (8)
A - a)zms + Ks A 1-9

2
ws
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where the parameter ws = (s/ ms)Y/? denotes the resonance frequency of the
mass-spring system. Using the small-load approximation, we find:

Af 1 ZL:_Nsa)ms 1 o )

fi  nZg A nZgp_ e

@5

Since the spring constant is complex due to dissipalion, the denominator
never becomes zero. Equation 9 was first proposed by Dybwad [19]. In the
limits of @3 > w and w? < w, Eq. 9 reproduces the Sauerbrey equation (Eq. 2)
and the simple-spring model (Eq. 4), respectively. Equation 9 can also be de-
rived from Eq. 91 in Chap. 2 in this volume by expanding all tangents to first
order. This amounts to a continuum model of the same experimental situ-
ation, where the contacts and the spheres correspond to a “soft”, first layer
and a “hard”, second layer, respectively.

24
Loading with a Mass in Series with a Dashpot

The connection between the sphere and the crystal can also be made across
a dashpot (Fig. 2d). This model is extensively used for the interpretation of
nanotribological experiments with the QCM [20]. We consider the drag coef-
ficient of the dashpot, s, to be a fixed parameter independent of frequency.
Within this model, the sphere slides on the surface in a liquid-like sense
(creep). This liquid-like friction is very different from interfacial sliding in the
Coulomb sense. For Coulomb sliding, the friction force is proportional to the
vertical load with a dimensionless dynamic friction coefficient, up. In par-
ticular, the friction force is independent of the sliding speed. Sliding in the
Coulomb sense implies a strongly nonlinear force-speed relation. The drag
force in creep, on the other hand, depends linearly on sliding speed.
From Fig. 2d one reads:

Ns _ -1 Ns [ 1 1\
ZL= (Zmass L+ Zdashpot 1) = ( + >

A A ia)ms és
Ng ia)msé's Ns . 1 Ns . 1 -iwTts

= . _ = 1wmsg . = 1wms . 20 (10)
A iwms+E& A 1+iwts A 1+ iw? 7§

where the slip time t5 = mg/£s was used. Using the small-load approximation,
we find [19, 24]:

Af Ng 1-iwTts
=- wms 2

(11)

The tilde denotes a complex frequency shift. We write Af = Af +iAT. The
imaginary part, A, is the shift of the half bandwidth at half maximum. The
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slip time is inferred from the ratio of AI" and (- Af) as:
1 ATl
o (- Af)

The mass-dashpot model predicts that the ratio AI'/(- Af) scales as the over-
tone order (unless the slip time itself depends on frequency).

Ts (12)

2.5
Loading with a Spring and a Dashpot

The extension of the previous models to a sphere coupled to the plate via
a spring and a dashpot is straightforward. The coupling can be achieved ei-
ther via a Voigt-type circuit (viscoelastic solid, Fig. 2e) or via a Maxwell-type
circuit (viscoelastic liquid, Fig. 2f). Below, we assume that the object is so
heavy that it does not take part in the motion. When the mass is infinite, the
inertial term drops out of the load impedance. An infinite mass is graphically
depicted as a wall. For Voigt-type coupling we find:
Ns ~ Ns (ks -

ZL= A (Zspring + Zdashpot) ~ A (ia) + ES) (13)
leading to a frequency shift of:

Af_ 1 Ng

i nzq Ao (ks + ioés) . (14)

Voigt-type coupling makes sense for multi-asperity contacts. The load-
bearing asperities correspond to springs, but there will also be interfacial
drag (for instance across capillary bridges) acting in parallel to the elastic
contacts. The model predicts a positive frequency shift, which scales as the
inversely overtone order, n~!. Both the positive frequency shift and the n!-
scaling are rather characteristic experimental features. Checking for the n~!-
scaling, one can easily determine whether or not Voigt-type coupling applies.

Figure 3 shows an example [25]. A monolayer of glass spheres with a diam-
eter of 200 um was deposited onto the crystal at t = 0 (state I). The initial
deposition had virtually no effect on the frequency of resonance. Even though
the spheres did touch the crystal, the dry contacts only transmitted a minute
amount of stress. After about 10 min, the chamber was filled with saturated
water vapor, leading to a substantial frequency increase (state II). Capillary
forces strengthen the contacts, as known from the sand-castle effect. A fur-
ther strong increase in frequency was achieved by ramping the humidity back
down to a low value (state III). After having been exposed to water vapor,
the spheres form a cake. The latter transition is reversible: once the assembly
of spheres has been soaked in humid air, one can go back and forth be-
tween the states II and III. Comparing the frequency shifts on the different
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Time (min)

Fig.3 Shifts of frequency (a) and bandwidth (b) experienced by a quartz crystal covered
with a monolayer of glass spheres (diameter d = 200 um) exposed to humid air. States I,
II, and III correspond to the initial state right after deposition, to humid air, and to
a dry state reached after soaking the sample in humid air for a while and then returning
to the dry state, respectively. Full line 5 MHz, dashed line 15 MHz, dotted line 25 MHz,
dash-dotted line 35 MHz (adapted from [28])

overtones, one confirms n~! scaling. This experiment proves the QCM to be
a non-destructive monitoring device for capillary aging [26].

For Maxwell-type coupling, the situation is more complicated. From
Fig. 2f, one reads:

Ng -1 -1 Ns (fiw 1 -1
2L~ Zspri +Z = + .
L A ( spring dashpot ) A\ &
Ng /€5§5 _ Ng 1 _ Ns . 1-iwtg

= = = . 15

A Kg + iwés A sl+ia)‘L’R A sl+ia)2‘L’}% (15)
A retardation time tg = £5/ks was introduced. For the frequency shift, we
find:

Af _ Ns i . 1-iwtg _ Nsés wTr +1 (16)
fi A mZg 1+ itk AnZgl+ w?td’

The frequency shift is positive. The n-scaling depends on the value of wtr. In
the limit of wtg > 1, n! scaling is found. In this case, the relaxation time is
much longer than the period of oscillation and the Maxwell element behaves
elastically. The Maxwell model reduces to the simple-spring model (Sect. 2.2).
If, on the other hand, the retardation time is short (wtr < 1), the frequency
shift is still positive, but it scales linearly with . If a positive frequency shift
in conjunction with linear n-scaling is found, this in indicative of fast relax-
ation processes in the contact zone. If this is the case, the damping must also
be large.
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Two caveats are worth mentioning: Firstly, inertial effects can only be neg-
lected if the contact area is small enough. Otherwise, the co-moving mass
needs to be included into the model. The co-moving volume is much smaller
than the volume of the entire sphere but it may be nonzero. Secondly, there
usually is some increase in bandwidth originating from the radiation of
acoustic waves into the sphere. Acoustic radiation can be accounted for by
adding a dashpot with a drag coefficient &, as a parallel element into the
circuits shown in Fig. 2. The magnitude of the dashpot is of the order of
&ac ~ (krc)ks/w, where k is the wave number of sound and r. is the contact
radius [24, 27].

3
Nonlinear Mechanics and Memory Effects

The standard model for analyzing QCM data is based on linear mechanics.
All forces and stresses are assumed to be proportional to displacement or
speed. Such a linear behavior is a prerequisite for equivalent circuits to apply.
Nonlinear behavior, generally speaking, is often found in contact mechanics
because of the sharp peaks in the stress distribution.

Importantly, the analysis of QCM data is not limited to situations, where
stress and strain at the crystal surface are linearly related. In the presence
of nonlinear interactions, the movement of the crystal becomes slightly an-
harmonic, meaning that it weakly deviates from a pure cosine. It is essential
that the deviation from the purely harmonic motion is small. The two-timing
approximation used below only holds for weakly nonlinear oscillators. How-
ever, since the perturbation of the crystal by the sample is small in any case,
the nonlinear term in the dynamical equations governing the crystal’s re-
sponse are always small, as well. They are by far outweighted by the strong,
linear stress-strain relation intrinsic to the crystal, even if the interaction be-
tween the crystal surface and the sample is strongly nonlinear. Assume that
the crystal is in contact with a tip, which undergoes a transition from stick to
slip: This would usually be considered a complicated situation. The interac-
tion is so strongly nonlinear that the trajectory of the tip is highly hysteretic.
Still: the tip only weakly perturbs the motion of the crystal and the analysis
described below therefore holds.

The following section describes the use of the two-timing approxima-
tion for the analysis of QCM data. The same formalism is also used in
the field of non-contact atomic force microscopy [28,29]. In the latter con-
text, the tip-sample interaction perturbs the oscillation of the cantilever.
As long as the tip-sample force is weak compared to the force needed to
bend the cantilever, the interaction potential can be reconstructed from the
frequency of the cantilever as a function of amplitude and mean vertical
distance.
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The behavior of weakly nonlinear oscillators is discussed in the text-
books [30]. For a small external force F(t), the two-timing approximation
holds. The motion of the crystal is almost sinusoidal and the consequences
of the external force are captured by a slowly varying amplitude a(¢) and
a slowly varying phase ®(¢):

u(t) = a(t) cos (wot + <I>(t)) . (17)

u(t) is the lateral displacement of the crystal surface and wy is the resonance
frequency of the unperturbed oscillator. The shift in bandwidth, AT, is pro-
portional to the time derivative of the amplitude, whereas the frequency shift,
Af, is proportional to the time derivative of the phase [31, 32]:

2n Al = 1 da
T oadr
do
2n Af = . 1
nAf= (18)

Here, the time increment dt is meant to be larger than the period of oscilla-
tion. This is the essence of the two-timing approximation. With regard to the
details of the two-timing approximation, the reader is referred to [32]. The
outcome of the calculation is [31, 32]:

A 2 1 1
fff: 2 wAZ w(F(t) cos(wt)) (19)
q
and
AI' 2 1 1
£ = 2 mAZ w(F(t) sin(wt)) . (20)
q

The angular brackets denote the average over an entire period of oscillation.
The parameter w is the frequency of the loaded oscillator (as opposed to wy).
The difference between w and wy is small.

Note that the quantities in angular brackets are the exact same weighted
averages which a lock-in amplifier (referenced to w) would produce. Although
the angular brackets look clumsy at first sight, they represent quantities which
are very familiar to the experimentalist. They are the in-phase and the out-of-
phase components of the force.

Equation 20 can be made plausible by noting that the term (F(t) sin(wt?)) is

proportional to the energy dissipated per cycle:
Ty
1 1 du(t 1
(F(t) sin(wt)) = / F() 9 gy =
awg TP
0

1
F = AW,
dt Znaf () du 2mwa
(21)

where T}, is the period of oscillation and 55 F(u)du = AW is the area inside the
hysteresis loop (see, for example, Fig. 4). The connection to the bandwidth is
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Fig.4 Force-displacement relation as predicted by the Mindlin model. Since the central
area, where the contact sticks, decreases with increasing tangential load, the force in-
creases sub-linearly with displacement. The area under the hysteresis loop is the energy
dissipated per cycle, AW

made by noting that the Q-factor of a resonance obeys the relation:

. 2AT AW AW

aQhH="" = = (22)
f 27[Eosc 2 ZKpa

where A(Q7!) is the shift of the inverse Q-factor and Eyg = Kpa2 /2 is the

energy contained in the oscillation. Using the relation (kpmyp)'/? = kp /0 =
AZgnm/2 (Eq. 115 in Chap. 2), we find:

AT 1f 1
ft _fsz(Q )_HZJTKPQZAW
=n 1 227ra(F(t)sin(a)t))
2nKpa
2 11 .
= Aquraa)<F(t) sin(wt)), (23)

which reproduces Eq. 20. With regard to the frequency shift (Eq. 19), the ar-
gument is less i